
IBM i
Version 1

Web Services Client for ILE
Programming Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
219.

Sixth Edition (June 2018)

This edition applies to version 1 of Web Services Client for ILE and to all subsequent releases and modifications until
otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2011, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Preface

Web Services Client for ILE provides a set of libraries and Java™ tools that enable you to build web service
client applications. This book describes how to use the IBM® Web Services Client for ILE to create web
service client applications.

This book is structured into four parts:

• Part 1 presents the underlying concepts, architectures, and specifications for the use of web services,
including discussions on the web services core technologies of XML, SOAP, and WSDL.

• Part 2 presents the underlying concepts and architecture of Web Services Client for ILE.
• Part 3 presents information on generating and using C++ stubs.
• Part 4 presents information on generating and using C stubs.
• Part 5 presents information on generating and using RPG stubs.

Who should read this book?

This book is primarily for application programmers who develop web service client applications. Some of
the information might also be useful to system administrators who manage systems on which web service
applications are developed and deployed. It is not intended that the reader be a guru of either web
technology or web services in order to find this document of value.

Conventions used in this book

Italics is used for new terms where they are defined.

Constant width is used for:

• Program language code listings
• WSDL file listings
• XML listings
• Command lines and options

Constant width italic is used for replaceable items in code or commands.

In addition, in order to simplify paths when referring to files or commands in the Web Services Client for
ILE install directory, /QIBM/ProdData/OS/WebServices/V1/client, we will use <install_dir> as
the initial path in path names to represent the install directory.

About examples in this book

Examples used in this book are kept simple to illustrate specific concepts. Some examples are fragments
that require additional code to work.

What has changed in this document

As new features and enhancements are made, the information in this document will get updated. To use
any new features or enhancements you should load the latest HTTP Group PTF for your IBM i release. To
see what HTTP Group PTF a feature or enhancement is in, go to the IBM Integrated Web Services for i
Technology Updates wiki, at URL:

http://www.ibm.com/developerworks/ibmi/techupdates/iws

Notes:

1. Sometimes new features or enhancements are not yet part of a group PTF, in which case the wiki will
list the PTF number(s) containing the feature or enhancement.

© Copyright IBM Corp. 2011, 2018 iii

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/dW%20IBM%20Integrated%20Web%20Services%20for%20i/page/Welcome%20to%20IBM%20Integrated%20Web%20Services%20for%20i%20Technology%20Updates

2. To help you see where technical changes have been made since the previous edition, the character | is
used to mark new and changed information.

The following lists the changes that have been made to the book since the previous edition:

• June 2018

– New information has been added to document new option
(AXISC_PROPERTY_HTTP_HEADERS_RESPONSE) in the “axiscTransportGetProperty()” on page 174
transport API.

– APIs relating to set SSL information have been updated to ensure the a NULL pointer is passed as the
last parameter. The APIs affected include the “axiscStubSetSecure()” on page 161,
“axiscTransportSetProperty()” on page 171, and “Stub::SetSecure()” on page 109 APIs.

• February 2018

– New information has been added to document the enhancements relating to SSL connections, which
includes the ability to specify application ID instead of certificate keystore path and Server Name
Indication (SNI) in the “axiscStubSetSecure()” on page 161, “axiscTransportSetProperty()” on page
171, and “Stub::SetSecure()” on page 109 APIs.

– New information has been added to document the ability of RPG stub applications to retrieve SOAP
fault information as part as of the “SOAP fault C APIs” on page 168.

– New information has been added to document new conversion options in the
“axiscTransportSetProperty()” on page 171 transport API.

• February 2017

– New information has been added to document enhancements to allow using SSL when connecting to
a proxy server. See documentation updates for the C axiscStubSetProxySSL(), C
axiscTransportSetProperty(), and C++ setTransportProperty() APIs.

– New information has been added to document the ability to allow the establishment of SSL
connections even if the SSL certificate is expired or not in the certificate store in the C
axiscStubSetSecure(), C axiscTransportSetProperty(), and Axis C++ core APIs APIs.

• August 2016

– New sections have been added to document new support for sending user-defined (e.g. REST and
SOAP) requests in the Axis C core APIs chapter.

– New information has been added to document enhancements to the SSL support for TLS v1.1 and
TLS v1.2 in the Axis C core APIs and Axis C++ core APIs chapters.

• June 2012

– New sections have been added to document new support for setting connect timeout in the Axis C
core APIs and Axis C++ core APIs chapters.

– The usage notes for the wsdl2ws.sh command line tool has been updated to show how one would
generate web service client stubs when the transport protocol being used for the URI of the WSDL file
is HTTP SSL.

– New information on C-only APIs that allow the setting of attributes in the SOAP Header and Body
elements have been added to the Axis C core APIs chapter.

iv IBM i: Web Services Client for ILE

Contents

Preface...iii

Part 1. Web service fundamentals..1

Chapter 1. What is a web service?...3
Why web services?... 4

Chapter 2. Types of web services.. 7
SOAP-based web services..7

XML primer.. 8
SOAP primer..17
WSDL primer... 24

REST-based web services.. 32
HTTP protocol... 33
Uniform Resource Identifiers (URIs)..33
JSON primer..34
REST primer.. 36
Swagger primer...42

Part 2. Web services client for ILE concepts... 43

Chapter 3. Web services client overview.. 45
Supported specifications and standards... 45
Client architecture..45
Client programming model.. 47

Chapter 4. The Web services client for ILE installation details.. 55

Chapter 5. Command line tools...57
wsdl2ws.sh command..57
wsdl2rpg.sh command...59

Chapter 6. Configuration files..61
The axiscpp.conf file...61
The Web services deployment descriptor (WSDD) file... 63

Part 3. Using C++ stubs..65

Chapter 7. WSDL and XML to C++ mappings.. 67
Mapping XML names to C++ identifiers... 67
XML schema to C++ type mapping.. 67
WSDL to C++ mapping..71

Chapter 8. Developing a Web services client application using C++ stubs..77
Generating the C++ stub code... 77
Completing C++ client implementation...78
Deploying the client application.. 79

Chapter 9. Creating client-side handlers..81

 v

Chapter 10. C++ programming considerations...85
C++ exception handling..85
C++ memory management.. 86

Built-in simple types...87
Arrays of simple type.. 88
Complex types and arrays of complex type... 90
Deep copying...91
Summary of rules..91

Securing web service communications in C++ stub code...92
Cookies... 93
Floating point numbers in C++ types...95

Chapter 11. Troubleshooting C++ client stubs... 97

Chapter 12. Axis C++ core APIs.. 99
Axis class.. 99
Stub class... 103
Call class...111
IHeaderBlock class.. 112
BasicNode class... 115

Part 4. Using C stubs..117

Chapter 13. WSDL and XML to C mappings.. 119
Mapping XML names to C identifiers... 119
XML schema to C type mapping...119
WSDL to C mapping..122

Chapter 14. Developing a Web services client application using C stubs..129
Generating the C stub code... 129
Completing C client implementation...130
Deploying the client application.. 131

Chapter 15. C stub programming considerations...133
C exception handling..133
C memory management...135

Built-in simple types...135
Arrays of simple type..136
Complex types and arrays of complex type...138
Summary of rules..138

Securing web service communications in C stub code... 139
Cookies... 139
Floating point numbers in C types... 141

Chapter 16. Troubleshooting C client stubs... 143

Chapter 17. Axis C core APIs.. 145
Axis C APIs... 145
Stub C APIs...149
Header block C APIs.. 164
Basic node C APIs.. 166
SOAP fault C APIs...168
Transport C APIs.. 169

Part 5. Using RPG stubs... 179

vi

Chapter 18. WSDL and XML to RPG mappings... 181
XML names... 181
XML schema to RPG type mapping..181
WSDL to RPG mapping... 188

Chapter 19. Developing a Web services client application using RPG stubs...193
Generating the RPG stub code...193
Completing RPG client implementation.. 195
Deploying the client application.. 195

Chapter 20. RPG stub programming considerations.. 197
RPG exception handling...197
RPG memory management..198
Securing web service communications in RPG stub code.. 198
Setting SOAP headers.. 199
Floating point numbers in RPG types.. 201

Chapter 21. Troubleshooting RPG client stubs...203

Appendix A. Code Listings for myGetQuote Client Application.............................205
The GetQuote.wsdl File... 205
The myGetQuote.cpp File...206
The myGetQuote.c File... 208
The myGetQuote.rpgle File.. 209

Appendix B. Code Listings for Client Handler.. 213
The client.wsdd File... 213
The myClientHandler.hpp File..213
The myClientHandler.cpp File..214
The myClientHandlerFactory.cpp File.. 216

Notices..219
Trademarks.. 220

Glossary.. 223
Index.. 225

 vii

viii

Part 1. Web service fundamentals

This part of the document introduces web service concepts and architecture, including a discussion on
the core technologies that form the basis of web services.

© Copyright IBM Corp. 2011, 2018 1

2 IBM i: Web Services Client for ILE

Chapter 1. What is a web service?

A web service enables the sharing of logic, data, and processes across networks using a programming
interface.

Some of the key features of web services are the following:

• Web services are self-contained.

On the client side, no additional software is required. A programming language with XML (Extensible
Markup Language) and HTTP client support, for example, is enough to get you started. On the server
side, merely a web server or application sever is required. It is possible to web service enable an
existing application without writing a single line of code.

• Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the format and content of
request and response messages (loosely coupled application integration). The definition of the message
format travels with the message. No external metadata repositories is required.

• Web services are modular.

Web services are a technology for deploying and providing access to business functions over the Web;
J2EE (Java 2 Enterprise Edition), CORBA (Common Object Request Broker Architecture), and other
standards are technologies for implementing these web services.

• Web services can be published (externalized), located, and invoked across the Web.

All you need to access the web service from a client perspective is a URI (Uniform Resource Identifier).
• Web services are language independent and interoperable.

The interaction between a service provider and a service requester is designed to be completely
platform and language independent. This interaction requires a document to define the interface and
describe the service. Because the service provider and the service requester have no idea what
platforms or languages the other is using, interoperability is a given.

• Web services are inherently open and standards based.

XML, JSON (JavaScript Object Notation) and HTTP are the technical foundation for web services. Using
open standards provides broad interoperability among different vendor solutions. These principles
mean that companies can implement web services without having any knowledge of the service
requesters, and service requesters do not need to know the implementation specifics of service
provider applications. This use of open standards facilitates just-in-time integration and allows
businesses to establish new partnerships easily and dynamically.

• Web services are composable.

Simple web services can be aggregated to more complex ones, either using workflow techniques or by
calling lower-layer web services from a web service implementation.

Web services allow applications to be integrated more rapidly, easily and less expensively than ever
before. Integration occurs at a higher level in the protocol stack, based on messages centered more on
service semantics and less on network protocol semantics, thus enabling loose integration of business
functions. These characteristics are ideal for connecting business functions across the Web. They provide
a unifying programming model so that application integration inside and outside the enterprise can be
done with a common approach, leveraging a common infrastructure. The integration and application of
web services can be done in an incremental manner, using existing languages and platforms and by
adopting existing legacy applications.

© Copyright IBM Corp. 2011, 2018 3

Why web services?
Why should you care about web services? One reason is that web services is well suited to implementing
a Service-Oriented Architecture (SOA). SOA is a business-centric information technology (IT) architectural
approach that supports integrating your business as linked, repeatable business tasks, or services. Within
this type of architecture, you can orchestrate the business services in business processes. Adopting the
concept of services—a higher-level abstraction that's independent of application or infrastructure IT
platform and of context or other services—SOA takes IT to another level, one that's more suited for
interoperability and heterogeneous environments.

Because an SOA is built on standards acknowledged and supported by the major IT providers, such as
web services, you can quickly build and interconnect its services. You can interconnect between
enterprises regardless of their supported infrastructure, which opens doors to delegation, sharing, reuse,
and maximizing the benefits of your existing assets.

With an SOA established, you bring your internal IT infrastructure to a higher, more visible, and
manageable level. With reusable services and high-level processes, change is easier than ever and is
more like disassembling and reassembling parts (services) into new, business-aligned processes. This not
only promotes efficiency and reuse, it provides a strong ability to change and align IT with business.
Figure 1 on page 4 shows web services in action. The operational systems layer shows the data and
applications that contain the information to be delivered as a service. The services layer shows the
services that enable the operational layer to be delivered as a service. The business process layer shows
how web services can be linked together to create highly flexible and automated business processes. The
people and application layer shows how web services are used to create web applications and
dashboards. It is all about efficiency in creation, reuse for execution, and flexibility for change and growth.

Figure 1: Web services in action

Another reason web services are important is due to web services that is commonly known as web
Application Program Interfaces (APIs). An API is a public persona for a company, exposing defined assets,
data, or services for public consumption.

In the 1990’s when the World Wide Web (WWW) was relatively new many companies focused their
business toward creating a web presence. As Internet access became more readily available, speed
limitations lifted, and technology improved, many companies migrated from a relatively flat and static
web presence to a more dynamic, content rich and interactive approach. Today we live in a data centric

4 IBM i: Web Services Client for ILE

world of connected devices where we expect data to be readily available at our fingertips. These devices
include, but are not limited to, smart phones, tablets, games consoles, and even cars and refrigerators. As
the number of devices has increased, so too has the complexity to manage and maintain the code for each
of these devices and this is where an “API First” approach has really gained the most traction. Exposing
the data via a common API allows a single point of maintenance, security, versioning and control. In this
way data can be exposed consistently across multiple devices. APIs can help companies expose data that
they wish to make available to the outside world or select business partners. These APIs can be used to
create applications as well as act as a powerful means to market a company’s product and to help carve
out new market opportunities. Once APIs are established they can be used to drive brand awareness and
increase profit. Most importantly the APIs, which are a now a core part of the business also need to be
treated as a product. Whether or not you or your company are considering exposing APIs it is very likely
one of your competitors are. In the highly competitive world we live in today, this in itself is a significant
reason to start considering an API strategy.

Figure 2: APIs in action

Figure 2 on page 5 shows a fundamental shift from websites as being the information technology access
mechanism for the majority of businesses, to the rapidly growing ecosystem of interconnected devices
that require APIs to consume business function. Today, we have applications in cars, appliances,
smartphones, game consoles, and other devices, that communicate with back-end business functions
through APIs. This “interconnected revolution” is here today: refrigerators can tell their manufacturer
services systems when maintenance is required; cars can do the same with routine maintenance
notification; and smart electric meters can provide usage and consumption information to the utility
company.

All of this is possible through web APIs.

What is a web service? 5

6 IBM i: Web Services Client for ILE

Chapter 2. Types of web services

A web service is composed of operations that are offered in one of two styles:

• A web service based on the Service Object Access Protocol (SOAP) protocol.
• A web service that follows the principles of Representational State Transfer (REST).

The following sections discusses each of the types of web services.

SOAP-based web services
A SOAP-based web service is a self-contained software component with a well-defined interface that
describes a set of operations that are accessible over the Internet. Extensible Markup Language (XML)
technology provides a platform—and programming language-independent means by which a web
service's interface can be defined. Web services can be implemented using any programming language,
and can be run on any platform, as long as two components are provided to indicate how the web service
can be accessed: a standardized XML interface description, called WSDL (Web Services Description
Language), and a standardized XML-based protocol, called SOAP (Simple Object Access Protocol).
Applications can access a web service by issuing requests formatted according to the XML interface.

Figure 3: SOAP-based web services

Core technologies and standards

Several key technologies and standards exist within the SOAP-style web services community:

• XML, developed by the World Wide Web Consortium (W3C) for defining markup languages. XML allows
the definition, transmission, validation and interpretation of data between applications. It is a meta-
language: a language for defining other markup languages, interchange formats and message sets. For
information about XML, see “XML primer” on page 8.

• SOAP, a standard protocol for exchanging XML messages. It also details the way applications should
treat certain aspects of the message, such as elements in the "header", which enable you to create
applications in which a message is passed between multiple intermediaries before reaching its final
destination. For information about SOAP, see “SOAP primer” on page 17.

• WSDL, a specification that details a standard way to describe a SOAP-based web service, including the
form the messages should take, and where they should be sent. It also details the response to such a
message. For information about WSDL, see “WSDL primer” on page 24.

The big interoperability question: can web services continue to interoperate as the various standards they
rely on change over time? From a user perspective, the use of arbitrary collections of web services
technology should not stand in the way of interoperability between web services.

© Copyright IBM Corp. 2011, 2018 7

The WS-I was formed with the intent of promoting standardized interoperability in the web services
marketplace. Without a controlled combination of the various technologies that make up web services,
interoperability would be almost impossible.

Consider the following: Company X has decided to use WSDL Version 1.2 and SOAP Version 1.1 for their
web services. Company Y has decided to use WSDL Version 1.1 and SOAP Version 1.2. Even though both
companies are using web services, a client would need to know about the two different combinations of
protocols in order to interact with both. The protocols by themselves are not enough to achieve
interoperability. A standardized grouping of the protocols would make it possible for Company X,
Company Y, and their clients and registries to adopt a common set of protocols and versions. Without a
standardized grouping, the companies and clients can only pick what protocols and versions they think
are appropriate according to their unique set of constraints or requirements, and hope that they will be
able to communicate with each other.

The WS-I Profile initiative addresses the problem that Companies X and Y are facing. A profile is a
grouping of web services protocols and their versions under a title. By having such a grouping,
organizations can negotiate their protocol requirements at more granular levels. Profiles also limit the
number of official protocol sets from inestimable to whatever degree of finiteness the WS-I chooses.

As enterprises begin to apply web services technologies to solve their integration and interoperability
problems, they increasingly find that they require more advanced features such as security, reliable
messaging, management and transactional capabilities. Some of these quality-of-service capabilities
demand interoperable infrastructure services for such things as metadata, trust, resource management,
event notification, and coordination services. The majority of today's deployed SOAP-style web services
are limited to use of only the foundation technologies of SOAP, WSDL, and XML. However, SOAP-style web
services provides a broad range of capabilities that compose with the foundation to provide more
advanced qualities of service, infrastructure services and service composition. The quality of service
extensions to the base SOAP-style web services standards include:

• WS-Addressing, which defines a standardized endpoint reference schema type and a set of message
addressing properties that can be used in conjunction with the SOAP process model to effect a broad
range of message exchange patterns beyond the simple request/response.

• WS-PolicyFramework, which provides a framework for articulating policy constraints of a service
endpoint and a framework for attaching such policy constraints to WSDL and other web services
artifacts.

• WS-Security, which provides a framework for an entire family of security specifications including WS-
Secure Conversation providing session-based security capabilities and WS-Trust providing a
standardized interface to a trust service.

• WS-ReliableMessaging, providing for the reliable exchange of messages between web services
endpoints.

• WS-AtomicTransactions, which handles short-lived transactional activities.

For more information on the web services standards, consult an online reference of web services
standards, such as is hosted on the IBMdeveloperWorks® web site, available at:

http://www.ibm.com/developerworks/webservices/standards/

XML primer
XML stands for Extensible Markup Language and it has become one of the most important standard of
modern times. XML is a specification developed by the World Wide Web Consortium (W3C) for defining
markup languages. XML allows the definition, transmission, validation and interpretation of data between
applications. It is a meta-language: a language for defining other markup languages, interchange formats
and message sets. XML is the standard upon which many Web services standards are based and thus we
will briefly touch upon some of the more important parts of the specifications as a very quick primer. The
entire specification can be studied at the web site of the World Wide Web Consortium at:

https://www.w3.org/TR/xml/

8 IBM i: Web Services Client for ILE

Basic rules for creating XML documents

Below is an example of an XML document. XML documents are created with three main XML components:
elements, attributes and "text" contents of the elements. XML documents should be defined by a
corresponding XML definitional document (for example, an XSD) - not shown here - which will be
discussed later.

<?xml version="1.1"?> 1
<!-- Complete address tag --> 2
<Address>
 <Name> 3
 <Title>Mrs.</Title>
 <First-Name>Ashley</First-Name>
 <Middle-Name/> 4
 <Last-Name>Adams</Last-Name>
 <Phone>777-444-2222</Phone>
 </Name> 5
 <Street>123 Corporation Avenue</Street>
 <City state="NC">Hometown</City> 6
 <Postal-Cde>27709</Postal-Cde>
 <Department>Industrial Design</Department>
</Address>

• XML declaration: In the above example, line 1 (<?xml version="1.1"?>) is the XML declaration
that provides basic information about the document to the parser.

• Tag: A tag is the text between the left angle bracket (<) and the right angle bracket (>). There are
starting tags (such as <Name> on line 3) and ending tags (such as </Name> on line 5).

• Element: An element is the starting tag, the ending tag and everything in between. The <Name>
element on line 3 , contains four child elements: <Title>, <First-Name>, <Middle-Name/> and
<Last-Name>.

Element rules include:

– There's only one root element in an XML document.
– The first element is considered the root element. It is also the outermost element, so its end tag is

last.
– Elements must be properly nested and follow well-formed XML code structure.
– Opening and closing tags cannot cross each other. At any given depth of open tags, it is only valid to

close the innermost element (the last one to have been opened at that point).
– An element does not directly contain characters: consecutive characters are grouped into a “Text”

node and the "Text" node is the child of Element. Although "Text" is the official term, schemas can
require that a text node actually contain a number, date or other type of data. Schemas can impose
similar requirements on attribute values.

• Attribute: An attribute is a name-value pair inside the starting tag of an element. On line 6 (<City
state="NC">Hometown</City>), state is an attribute of the <City> element. The "NC" is the
value of the attribute.

Attribute rules include:

– Attributes must have values. However, an attribute can have a value that is an empty string (for
example, <House color=""/>.

– Those values must be enclosed with single or double quotation marks.
• Comment tag: Line 2 contains a comment tag. Comments can appear anywhere in the document; they

can even appear before or after the root element. A comment begins with <!-- and ends with -->. A
comment can not contain a double hyphen (--) except at the end; with that exception, a comment can
contain anything.

• Empty element: An empty element contains no content. Line 4 contains the markup <Middle-
Name/>. There is no middle name so it is empty. The markup could also be written as <Middle-
Name></Middle-Name>. The shorter version still has an ending tag of "/>". An XML parser would
treat them in the same way. If your XML document was referencing an XML schema and the XML

Types of web services 9

schema was checking for that element, you would make sure that you included that element in your
XML document, but leave it empty if you don't have data.

Naming rules for elements and attribute tags

The following are examples of the naming rules for XML (for a complete list of naming rules, see the W3C
XML recommendations):

• A name must consist of at least one letter and can be either upper or lower case.
• XML code is case sensitive. <c> and <C> are considered two different tags.
• You can use an underscore (_) as the first character of a name, if the name consists of more than one

character.
• Digits can be used in a name after the first character.
• Colons are used to set off the namespace prefix and should not otherwise be used in a name.

Nesting tags

By nesting tags, XML provides you with the ability to describe hierarchical structures as well as sequence.
Nesting requirements mean that a well-formed XML document can be treated as a tree structure of
elements. Many XML specs will casually refer to the term XML tree when referring to the structure of
elements.

Understanding XML namespace

Namespace is a method of qualifying the element and attribute names used in XML documents by
associating them with a Universal Resource Identifier (URI). A URI is a string of characters that identifies
an Internet Resource (IR). The most common URI is the Uniform Resource Locator (URL), which identifies
an Internet domain address along with other system identifiers. Another, not so common, type of URI is
the Universal Resource Name (URN).

An XML namespace is a collection of names identified by a URI reference, which are used in XML
documents and defines the scope of the element and attribute names. Element and attribute names
defined in the same namespace must be unique.

An XML document can have a default namespace (using ‘xmlns=') and any element can belong to the
default, or another specified namespace. The collection of defined elements and attributes within the
same namespace are said to be in the same “XML vocabulary.” The example below shows some examples
of the use of namespace:

<Envelope xmlns="http://www.w3.org/2003/05/soap-envelope">
<Header>
 <n:AlertControl xmlns:n="http://ibm.com/alertcontrol">
 <n:Priority>1</n:Priority>
 </n:AlertControl>
 </Header>
 <Body>
 <m:Alert xmlns:m="http://ibm.com/alert">
 <m:Msg>Pick up Mary at school at 2pm</m:Msg>
 </m:Alert>
 </Body>
</Envelope>

Default Namespaces and Scope

For a namespace definition, a prefix is optional. All elements that are defined without a prefix and appear
within the element containing the namespace declaration belong to that default namespace.

10 IBM i: Web Services Client for ILE

A namespace declaration applies to the element that contains the definition as well as its child elements,
unless it is overridden by another namespace declaration within the element definition. If we look at the
example below, we see that

<Books xmlns:BookInfo="http://www.ibm.com/BookInformation"
 xmlns:BookContent="http://www.ibm.com/BookContent"
 xmlns ="http://www.ibm.com/BookDefault" >

 <Book>
 <BookInfo:Name>Understanding Namespaces</BookInfo:Name>
 <Author>Whizlabs</Author>
 <BookInfo:ISBN>s677-898-765-098</BookInfo:ISBN>
 <BookContent:Price>53.50</BookContent:Price>
 <Publisher
 xmlns="http://www.ibm.com/Publishers">Whizlabs</Publisher>
 </Book>
</Books>

the following are the element names and the namespaces they belong to:

Table 1: Mapping of element names to namespaces

Element Namespace

<Book> http://www.ibm.com/BookDefault

<Name> http://www.ibm.com/BookInformation

<Author> http://www.ibm.com/BookDefault

<ISBN> http://www.ibm.com/BookInformation

<Price> http://www.ibm.com/BookContent

<Publisher> http://www.ibm.com/Publishers

Attributes

As with elements, you can also qualify attributes by assigning them a prefix that's mapped to a
namespace declaration. But attributes behave differently from elements when it comes to the application
of namespaces. If an attribute is not qualified with a prefix, it does not belong to any namespace, so
default namespace declarations do not apply to attributes.

Definition of XML documents

An XML schema is a document that defines constraints for the structure and content of an XML document.
This is in addition to the rules imposed by XML itself and should be looked at as a higher level of
organizational restriction.

One of the first XML schema definition languages has been the Document Type Definition (DTD) language.
Because of its complexity it has been largely replaced by the XML Schema Definition (XSD) specification.
XSD allows us to define what elements and attributes may appear in a document, which ones are optional
or required and their relationship to each other. It also defines the type of data that can occur in elements
and helps define complex data types.

Having an XSD document also allows us to verify an XML document for validity. In addition, you will notice
that WSDL documents usually reference the XSD namespace in their <types> section and utilize the XSD
specification therein to define the input and output messages of the Web Service.

Types of web services 11

Schema definition

A schema is defined in a separate file and generally stored with the .xsd extension. Every schema
definition has a schema root element that belongs to the http://www.w3.org/2001/XMLSchema
namespace. The schema element can also contain optional attributes. For example:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

This indicates that the elements used in the schema come from the http://www.w3.org/2001/
XMLSchema namespace.

Schema linking

An XML file links to its corresponding schema using the schemaLocation attribute of the schema
namespace. You have to define the schema namespace in order to use the schemaLocation attribute.
All of these definitions appear in the root element of the XML document. The syntax is:

<ROOT_ELEMENT
 SCHEMA_NAMESPACE_DEFINITION
 SCHEMA_LOCATION_DEFINITION >

And here's an example of it in use:

<Books
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://www.booksforsale.com Books.xsd">

Schema elements

A schema file contains definitions for element and attributes, as well as data types for elements and
attributes. It is also used to define the structure or the content model of an XML document. Elements in a
schema file can be classified as either simple or complex -- defined in “Schema elements - simple types”
on page 12 and “Schema Elements - Complex Types” on page 13

Schema elements - simple types

A simple type element is an element that cannot contain any attributes or child elements; it can only
contain the data type specified in its declaration. The syntax for defining a simple element is:

<xs:element name="ELEMENT_NAME" type="DATA_TYPE" default/fixed="VALUE" />

Where DATA_TYPE is one of the built-in schema data types (see below).

You can also specify default or fixed values for an element. You do this with either the default or fixed
attribute and specify a value for the attribute. The default and fixed attributes are optional.

An example of a simple type element is:

<xs:element name="Author" type="xs:string" default="Whizlabs"/>

All attributes are simple types, so they are defined in the same way that simple elements are defined. For
example:

<xs:attribute name="title" type="xs:string" />

Schema data types. All data types in schema inherit from anyType. This includes both simple and
complex data types. You can further classify simple types into built-in-primitive types and built-in-derived

12 IBM i: Web Services Client for ILE

types. A complete hierarchical diagram from the XML Schema Datatypes Recommendation1 is shown
below:

Figure 4: XML schema datatypes

Schema Elements - Complex Types

Complex types are elements that either:

• Contain other elements
• Contain attributes
• Are empty (empty elements)
• Contain text

1 Copyright 2003 World Wide Web Consortium, (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved. http://www.w3.org/
Consortium/Legal/2002/copyright-documents-20021231

Types of web services 13

To define a complex type in a schema, use a complexType element. You can specify the order of
occurrence and the number of times an element can occur (cardinality) by using the order and occurrence
indicators, respectively. (See “Occurrence and Order Indicators” on page 14 for more on these
indicators.) For example:

<xs:element name="Book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Author" type="xs:string" maxOccurs="4"/>
 <xs:element name="ID" type="xs:string"/>
 <xs:element name="Price" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

In this example, the order indicator is xs:sequence, and the occurrence indicator is maxOccurs in the
Author element name.

Occurrence and Order Indicators

Occurrence indicators specify the number of times an element can occur in an XML document. You specify
them with the minOccurs and maxOccurs attributes of the element in the element definition.

As the names suggest, minOccurs specifies the minimum number of times an element can occur in an
XML document while maxOccurs specifies the maximum number of times the element can occur. It is
possible to specify that an element might occur any number of times in an XML document. This is
determined by setting the maxOccurs value to unbounded. The default values for both minOccurs and
maxOccurs is 1, which means that by default an element or attribute can appear exactly one time.

Order indicators define the order or sequence in which elements can occur in an XML document. Three
types of order Indicators are:

• All: If All is the order indicator, then the defined elements can appear in any order and must occur
only once. Remember that both the maxOccurs and minOccurs values for All are always 1.

• Sequence: If Sequence is the order indicator, then the elements must appear in the order specified.
• Choice: If Choice is the order indicator, then any one of the elements specified must appear in the

XML document.

Take a look at the following example:

<xs:element name="Book">
 <xs:complexType>
 <xs:all>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="ID" type="xs:string"/>
 <xs:element name="Authors" type="authorType"/>
 <xs:element name="Price" type="priceType"/>
 </xs:all>
 </xs:complexType>
</xs:element>

<xs:complexType name="authorType">
 <xs:sequence>
 <xs:element name="Author" type="xs:string" maxOccurs="4"/>
 </xs:sequence>
</xs:complexType >

<xs:complexType name="priceType">
 <xs:choice>
 <xs:element name="dollars" type="xs:double" />
 <xs:element name="pounds" type="xs:double" />
 </xs:choice>
</xs:complexType >

In the above example, the xs:all indicator specifies that the Book element, if present, must contain
only one instance of each of the following four elements: Name, ID, Authors, Price. The xs:sequence

14 IBM i: Web Services Client for ILE

indicator in the authorType declaration specifies that elements of this particular type (Authors
element) contain at least one Author element and can contain up to four Author elements. The
xs:choice indicator in the priceType declaration specifies that elements of this particular type (Price
element) can contain either a dollars element or a pounds element, but not both.

Restriction

A main advantage of schema is that you have the ability to control the value of XML attributes and
elements. A restriction, which applies to all of the simple data elements in a schema, allows you to define
your own data type according to the requirements by modifying the facets (restrictions on XML elements)
for a particular simple type. To achieve this, use the restriction element defined in the schema
namespace.

W3C XML Schema defines 12 facets for simple data types. The following list includes each facet, along
with its effect on the data type value and an example.

• enumeration: Value of the data type is constrained to a specific set of values. For example:

<xs:simpleType name="Subjects">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Biology"/>
 <xs:enumeration value="History"/>
 <xs:enumeration value="Geology"/>
 </xs:restriction>
</xs:simpleType>

• maxExclusive: Numeric value of the data type is less than the value specified.

minExclusive Numeric value of the data type is greater than the value specified. For example:

<xs:simpleType name="id">
 <xs:restriction base="xs:integer">
 <xs:maxExclusive value="101"/>
 <xs:minExclusive value="1"/>
 </xs:restriction>
</xs:simpleType>

• maxInclusive - Numeric value of the data type is less than or equal to the value specified.

minInclusive - Numeric value of the data type is greater than or equal to the value specified. For
example:

<xs:simpleType name="id">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="100"/>
 </xs:restriction>
</xs:simpleType>

• maxLength - Specifies the maximum number of characters or list items allowed in the value.

minLength - Specifies the minimum number of characters or list items allowed in the value.

pattern - Value of the data type is constrained to a specific sequence of characters that are expressed
using regular expressions. For example:

<xs:simpleType name="nameFormat">
 <xs:restriction base="xs:string">
 <xs:minLength value="3"/>
 <xs:maxLength value="10"/>
 <xs:pattern value="[a-z][A-Z]*"/>
 </xs:restriction>
</xs:simpleType>

• length - Specifies the exact number of characters or list items allowed in the value. For example:

<xs:simpleType name="secretCode">
 <xs:restriction base="xs:string">
 <xs:length value="5"/>
 </xs:restriction>
</xs:simpleType>

Types of web services 15

• whiteSpace - Specifies the method for handling white space. Allowed values for the value attribute are
preserve, replace, and collapse. For example:

<xs:simpleType name="FirstName">
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="preserve"/>
 </xs:restriction>
</xs:simpleType>

• fractionDigits - Constrains the maximum number of decimal places allowed in the value.

totalDigits - The number of digits allowed in the value. For example:

<xs:simpleType name="reducedPrice">
 <xs:restriction base="xs:float">
 <xs:totalDigits value="4"/>
 <xs:fractionDigits value="2"/>
 </xs:restriction>
</xs:simpleType>

Extension

The extension element defines complex types that might derive from other complex or simple types. If
the base type is a simple type, then the complex type can only add attributes. If the base type is a
complex type, then it is possible to add attributes and elements. To derive from a complex type, you have
to use the complexContent element in conjunction with the base attribute of the extension element.

Extensions are particularly useful when you need to reuse complex element definitions in other complex
element definitions. For example, it is possible to define a Name element that contains two child elements
(First and Last) and then reuse it in other complex element definitions. Here is an example:

<!--Base element definition -->
<xs:complexType name="Name">
 <xs:sequence>
 <xs:element name="First"/>
 <xs:element name="Last"/>
 </xs:sequence>
</xs:complexType>

<!-- Customer element that reuses it -->
 <xs:complexType name="Customer">
 <xs:complexContent>
 <xs:extension base="Name">
 <xs:sequence>
 <xs:element name="phone" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Student element that reuses it -->
 <xs:complexType name="Student">
 <xs:complexContent>
 <xs:extension base="Name">
 <xs:sequence>
 <xs:element name="school" type="xs:string"/>
 <xs:element name="year" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Import and Include

The import and include elements help to construct a schema from multiple documents and
namespaces. The import element brings in a schema from a different namespace, while the include
element brings in a schema from the same namespace.

When you use include, the target namespace of the included schema must be the same as the target
namespace of the including schema. In the case of import, the target namespace of the included
schema must be different from the target namespace of the including schema.

16 IBM i: Web Services Client for ILE

The syntax for import is:

<xs:import id="ID_DATATYPE" namespace="anyURI_DATATYPE"
 schemaLocation="anyURI_DATATYPE "/>

The syntax for include is:

<xs:include id="ID_DATATYPE" schemaLocation="anyURI_DATATYPE"/>

SOAP primer
SOAP is defined independently of any operating system or protocol and provides a way to communicate
between applications running on different computers, using different operating systems, and with
different technologies and programming languages as long as the SOAP request and response messages
match the message formats that are defined in the WSDL document.

SOAP consists of three parts: An envelope that defines a framework for describing message content and
process instructions, a set of encoding rules for expressing instances of application-defined data types,
and a convention for representing remote procedure calls and responses.

SOAP is, in principle, transport protocol-independent and can, therefore, potentially be used in
combination with a variety of protocols such as HTTP, JMS, SMTP, or FTP. Right now, the most common
way of exchanging SOAP messages is through HTTP.

There are two versions of SOAP: SOAP 1.1 and SOAP 1.2. Both SOAP 1.1 and SOAP 1.2 are W3C
standards. web services can be deployed that support not only SOAP 1.1 but also support SOAP 1.2.
SOAP 1.2 provides a more specific definition of the SOAP processing model, which removes many of the
ambiguities that sometimes led to interoperability problems in the absence of the Web Services-
Interoperability (WS-I) profiles.

The following sections will cover the SOAP 1.1 specification and the SOAP architecture in detail. For more
information on SOAP (including SOAP 1.2), go to the following URL:

https://www.w3.org/TR/soap/

SOAP message structure

A SOAP message, which is an XML document based on the SOAP protocol, consists of four parts:

1. The SOAP <Envelope> element, the root element of a SOAP message, contains an optional SOAP
header and mandatory SOAP body elements. The SOAP protocol namespace prefix (http://
schemas.xmlsoap.org/soap/envelope/) is usually declared in the envelope open tag.

2. The optional and extensible <Header> element describes metadata, such as security, transaction, and
conversational-state information.

3. The mandatory <Body> element contains the XML document of the sender. The sender's XML
document must not contain an XML declaration or DOCTYPE declaration. There are two main
paradigms which the sender's document can adhere to: document-style or RPC-style (more about
these later). The serialization rules for the contents of the body can be specified by setting the
encodingStyle attribute. The standard SOAP encoding namespace is http://schemas.xmlsoap.org/
soap/encoding/.

4. Elements called <faults> can be used by a processing node (SOAP intermediary or ultimate SOAP
destination) to describe any exceptional situations it could encounter that might occur while reading
the SOAP message.

The following sections discusses the major elements of a SOAP message.

Namespaces

Types of web services 17

The use of namespaces plays an important role in SOAP message, because a message can include several
different XML elements that must be identified by a unique namespace to avoid name collision. Especially,
the WS-I Basic Profile 1.0 requires that all application-specific elements in the body must be namespace
qualified to avoid name collision. Table 2 on page 18 shows the namespaces of SOAP and WS-I Basic
Profile 1.0.

Table 2: SOAP namespaces

Prefix Namespace URI Explanation

SOAP-ENV http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1 envelope namespace

SOAP-ENC http://schemas.xmlsoap.org/soap/
encoding/

SOAP 1.1 encoding namespace

http://www.w3.org/2001/XMLSchema-
instance

Schema instance namespace

http://www.w3.org/2001/XMLSchema XML Schema namespace

http://schemas.xmlsoap.org/wsdl WSDL namespace for WSDL framework

http://schemas.xmlsoap.org/wsdl/soap WSDL namespace for WSDL SOAP binding

URN

A unified resource name (URN) uniquely identifies the service to clients. It must be unique among all
services deployed in a single SOAP server, which is identified by a certain network address. A URN is
encoded as a universal resource identifier (URI).

All other addressing information is transport dependent. For example, when using HTTP as the transport,
the URL of the HTTP request points to the SOAP server instance on the destination host.

The SOAP envelope

The basic unit of a web service message is the actual SOAP envelope (see Figure 5 on page 18). This is
an XML document that includes all of the information necessary to process the message.

Figure 5: SOAP envelope

A SOAP message is a (possibly empty) set of headers plus one body. The Envelope element is the root
element of any SOAP message. Generally, it contains the definition for the required envelope namespace.
For example:

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header>
 </env:Header>
 <env:Body>
 </env:Body>
</env:Envelope>

18 IBM i: Web Services Client for ILE

In the example above, you have a simple Envelope, with the namespace specified as SOAP version 1.1.
It includes two sub elements, a Header and a Body.

Let's look at what each of those elements do.

The SOAP header

The Header in a SOAP message is meant to provide information about the message itself, as opposed to
information meant for the application. For example, the Header might include routing information, as it
does in this example shown below:

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header>
 <wsa:ReplyTo xmlns:wsa=
 "http://schemas.xmlSOAP.org/ws/2004/08/addressing">
 <wsa:Address>
 http://schemas.xmlSOAP.org/ws/2004/08/addressing/role/anonymous
 </wsa:Address>
 </wsa:ReplyTo>
 <wsa:From>
 <wsa:Address>
 http://localhost:8080/axis/services/MyService</wsa:Address>
 </wsa:From>
 <wsa:MessageID>ECE5B3F187F29D28BC11433905662036</wsa:MessageID>
 </env:Header>
 <env:Body>
 </env:Body>
</env:Envelope>

In this case you see a WS-Addressing element, which includes information on where the message is going
and to where replies should go.

Headers are optional elements in the envelope. If present, the element must be the first immediate child
element of a SOAP envelope element. All immediate child elements of the header element are called
header entries.

As has been previously stated, headers can include all kinds of information about the message itself. In
fact, the SOAP specification spends a great deal of time on elements that can go in the Header, and how
they should be treated by SOAP intermediaries (applications that are capable of both receiving and
forwarding SOAP messages on their way to the final destination). In other words, the SOAP specification
makes no assumption that the message is going straight from one point to another, from client to server.
It allows for the idea that a SOAP message might actually be processed by several intermediaries, on its
way to its final destination, and the specification is very clear on how those intermediaries should treat
information they find in the Header. That discussion is beyond the scope of this document. However,
there are two predefined header attributes that you should be aware of: SOAP-ENV:mustUnderstand
and SOAP-ENV:actor.

The header attribute SOAP-ENV:mustUnderstand is used to indicate to the service provider that the
semantics defined by the element must be implemented. The value of the mustUnderstand attribute is
either 1 or 0 (the absence of the attribute is semantically equivalent to the value 0):

<thens:qos xmlns:thens="someURI" SOAP-ENV:mustUnderstand="1">3</thens:qos>

In the example above, the header element specifies that a service invocation must fail if the service
provider does not support the quality of service (qos) 3 (whatever qos=3 stands for in the actual
invocation and servicing context).

The header attribute SOAP-ENV:actor is used to identify the recipient of the header information. The
value of the SOAP actor attribute is the URI of the mediator, which is also the final destination of the
particular header element (the mediator does not forward the header). If the actor is omitted or set to
the predefined default value, the header is for the actual recipient and the actual recipient is also the final
destination of the message (body). The predefine value is: http://schemas.xmlsoap.org/soap/
actor/next. If a node on the message path does not recognize a mustUnderstand header and the
node plays the role specified by the actor attribute, the node must generate a SOAP mustUnderstand

Types of web services 19

fault (more on faults later). Whether the fault is sent back to the sender depends on the message
exchange pattern (e.g. request/response) in use.

Now let's look at the actual payload.

The SOAP body

When you're sending a SOAP message, you're doing it with a reason in mind. You are trying to tell the
receiver to do something, or you're trying to impart information to the server. This information is called the
"payload". The payload goes in the Body of the Envelope. It also has its own namespace, in this case
corresponding to the content management system. The choice of namespace, in this case, is completely
arbitrary. It just needs to be different from the SOAP namespace. For example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header>
...
</env:Header>
<env:Body>
 <cms:addArticle xmlns:cms="http://www.ibm.com/cms">
 <cms:category>classifieds</category>
 <cms:subcategory>forsale</cms:subcategory>
 <cms:articleHeadline></cms:articleHeadline>
 <cms:articleText>Vintage 1963 T-Bird.</cms:articleText>
 </cms:addArticle>
</env:Body>
</env:Envelope>

In this case, you have a simple payload that includes instructions for adding an article to the content
management system.

The body element is encoded as an immediate child element of the SOAP envelope element. If a header
element is present, then the body element must immediately follow the header element. Otherwise it
must be the first immediate child element of the envelope element. All immediate child elements of the
body element are called body entries, and each body entry is encoded as an independent element within
the SOAP body element. In the most simple case, the body of a basic SOAP message consists of:

• A message name.
• A reference to a service instance.
• One or more parameters carrying values and optional type references.

Typical uses of the body element include invoking RPC calls with appropriate parameters, returning
results, and error reporting. Fault elements are used in communicating error situations.

The choice of how to structure the payload involves the style and encoding.

Error handling (SOAP faults)

SOAP itself predefines one body element, which is the fault element used for reporting errors. If present,
the fault element must appear as a body entry and must not appear more than once within a body
element.

The XML elements inside the SOAP fault element are different in SOAP 1.1 and SOAP 1.2. In SOAP 1.1,
the <Fault> element contains the following elements:

• <faultcode> is a mandatory element in the <Fault> element. It provides information about the fault
in a form that can be processed by software. SOAP defines a small set of SOAP fault codes covering
basic SOAP faults:

– soapenv:Client, indicating incorrectly formatted messages
– soapenv:Server, for delivery problems
– soapenv:VersionMismatch, which can report any invalid namespaces for envelope element

20 IBM i: Web Services Client for ILE

– soapenv:MustUnderstand, for errors regarding the processing of header content
• <faultstring> is a mandatory element in the <Fault> element. It provides information about the

fault in a form intended for a human reader.
• <faultactor> contains the URI of the SOAP node that generated the fault. A SOAP node that is not

the ultimate SOAP receiver must include the <faultactor> element when it creates a fault. An
ultimate SOAP receiver is not obliged to include this element, but may do so.

• <detail> carries application-specific error information related to the <Body> element. It must be
present if the contents of the <Body> element were not successfully processed. It must not be used to
carry information about error information belonging to header entries. Detailed error information
belonging to header entries must be carried in header entries.

In SOAP 1.2, the <Fault> element contains the following elements:

• <Code> is a mandatory element in the <Fault> element. It provides information about the fault in a
form that can be processed by software. It contains a <Value> element and an optional <Subcode>
element.

• <Reason> is a mandatory element in the <Fault> element. It contains one or more <Text> elements,
each of which contains information about the fault in a different native language.

• <Node> contains the URI of the SOAP node that generated the fault. A SOAP node that is not the
ultimate SOAP receiver must include the <Node> element when it creates a fault. An ultimate SOAP
receiver is not obliged to include this element, but may do so.

• <Role> contains a URI that identifies the role in which the node was operating at the point the fault
occurred.

• <Detail> is an optional element, which contains application-specific error information related to the
SOAP fault codes describing the fault. The presence of the <Detail> element has no significance
regarding which parts of the faulty SOAP message were processed.

Here is an example of a SOAP 1.1 fault response message:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<m:Order xmlns:m="some URI" SOAP-ENV:mustUnderstand="1">
</m:Order>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Not necessary information</faultstring>
 <detail>
 <d:faultdetail xmlns:d = "uri-referrence">
 <msg>application is not responding properly. </msg>
 <errorcode>12</errorcode>
 </d:faultdetail>
 </detail>
 </SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Data model

One of the promises of SOAP is interoperability between different programming languages. That is the
purpose of the SOAP data model, which provides a language-independent abstraction for common
programming language types. It consists of:

• Simple XSD types: Basic data types found in most programming languages such as int, float, and null-
terminated character data (i.e. strings).

• Compound types: There are two kinds of compound types, structs and arrays:

– Structs are named aggregated types. Each element has a unique name, its accessor. An accessor is
an XML tag. Structs are conceptually similar to records in languages, such as RPG, or method-less
classes with public data members in object-based programming languages.

Types of web services 21

– Elements in an array are identified by position, not by name. Array values can be structs or other
compound values. Also, nested arrays (which means arrays of arrays) are allowed.

Let us take a look at an example. Below is a XML schema of a compound datatype named Mobile.

<? xml version="1.0" ?>
<xsd:schema xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 targetNameSpace= "www.mobilephoneservice.com/phonequote">
 <xsd:element name ="Mobile"> 1
 <xsd:complexType> 2
 <xsd:element name="modelNumber" type="xsd:int"> 3
 <xsd:element name="modelName" type="xsd:string"> 4
 <xsd:element name="modelColor"> 5
 <simpleType base="xsd:string">
 <enumeration value="blue" />
 <enumeration value="black" />
 </simpleType>
 </xsd:element>
 </complexType>
 </xsd:element>
</xsd:schema>

In the listing above, line 1 shows the name (Mobile) of our type while line 2 acknowledges that it is a
complex datatype that contains sub-elements named modelNumber, modelName and modelColor. The
sub-element defined in line 3 , modelNumber, has a type of int (that is, modelNumber can take only
integer values). The sub-element defined in line 4 is named modelName and is of type string. The sub-
element defined in line 5 requires a bit more understanding since it has a sub element named
simpleType. Here you are defining a simple type inside the complex type, Mobile. The name of your
simpleType is modelColor and it is an enumeration. It has an attribute, base, carrying the value
xsd:string, which indicates that the simple type modelColor has the functionality of the string type
defined in the SOAP schema. Each <enumeration> tag carries an attribute, value (blue and black).
The enumerated types enable us to select one value from multiple options. Now let us look at how this
translates into a SOAP message.

The listing below is demonstrates the use of compound types in a SOAP message. It shows an envelope
carrying a request in the Body element, in which you are calling the addModel method of an m
namespace. The listing uses the data type Mobile that was defined above. The AddModel method takes
an argument of type Mobile. We're referring Mobile structure with msd namespace reference (see the
xmlns:msd declaration in <SOAP-ENV:Envelope> element). This is an example of employing user
defined data types in SOAP requests.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:msd="www.ibm.com/phonequote">
 <SOAP-ENV:Body>
 <m:addModel xmlns:m="www.ibm.com">
 <msd:Mobile>
 <modelNumber>1</modelNumber>
 <modelName>mlr97</modelName>
 <modelColor>blue</modelColor>
 </msd:Mobile>
 </m:addModel>
 </SOAP-ENV:Body>
<SOAP-ENV:Envelope>

SOAP binding and encoding styles

You'll get deeper into this subject in “WSDL primer” on page 24, but as you create your application, you
will need to decide2 on the structure of the actual payload you're sending back and forth. To that end, let's
take this opportunity to discuss SOAP binding (also referred as programming or communication binding)
and encoding styles.

2 Well, in the case of integrated web services support, the decision has been made for you! But for
completeness we discuss what is available. Integrated web services for i only supports Document/Literal.
To understand what that means, read on.

22 IBM i: Web Services Client for ILE

To simplify the discussion, the following XML message payload is used as an example:

<article>
 <category>classifieds</category>
 <subcategory>forsale</subcategory>
 <articleText>Vintage 1963 T-Bird.</articleText>
</article>

This piece of XML payload can be presented in a SOAP message in two different styles: Remote Procedure
Calls (RPC) and document. RPC style SOAP describes the semantics of a procedure call and its return
value. In this style, the idea is that you're sending a command to the server, such as "add an article", and
you're including the parameters command, such as the article to add and the category to which it should
as child elements of the overall method. This programming style thus adds extra elements to the SOAP
XML to simulate a method call (i.e. the XML payload is wrapped inside an operation element in a SOAP
body). A document style message, on the other hand, has the XML payload directly placed in a SOAP body.
Document style SOAP is described as being one-way or asynchronous, as there is not a concept of a call
and return as in the RPC model. Basically, a document-style message lets you describe an arbitrary XML
document using SOAP.

Both the RPC and document message can be either a literal or encoded message. A literal message
implies that a schema is utilized to provide a description and constraint for an XML payload in SOAP. An
Encoded message implies that the message includes type information. Let us look at some examples.

The example below is a typical RPC/literal example.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header></env:Header>
 <env:Body>
 <addArticle>
 <article>
 <category>classifieds</category>
 <subcategory>forsale</subcategory>
 <articleText>Vintage 1963 T-Bird.</articleText>
 </article>
 </addArticle>
 </env:Body>
</env:Envelope>

The addArticle element is the operation to be invoked. The element article (which contains sub-
elementscategory, subcategory, and articleText) is the input parameters to the operation.

If we include type information in the message as in the example below, we have and example of an RPC/
encoded message.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header></env:Header>
 <env:Body>
 <addArticle>
 <article>
 <category xsi:type="xsd:string">classifieds</category>
 <subcategory xsi:type="xsd:string">forsale</subcategory>
 <articleText xsi:type="xsd:string">Vintage 1963 T-Bird.</articleText>
 </article>
 </addArticle>
 </env:Body>
</env:Envelope>

A document/literal style of message simply involves adding the message:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header></env:Header>
 <env:Body>
 <article>
 <category>classifieds</category>
 <subcategory>forsale</subcategory>
 <articleText>Vintage 1963 T-Bird.</articleText>
 </article>
 </env:Body>
</env:Envelope>

Types of web services 23

In this case, the message itself doesn't include information on the process to which the data is to be
submitted; that is handled by the routing software. For example, all calls to a particular URL or endpoint
might point to a particular operation.

Finally, you could technically use the document/encoded style, but nobody does, so for now, ignore it.

Different trade-offs are involved with each of these styles. However, the Encoded style has been a source
of interoperability problems and is not WS-I compliant, so should be avoided. Although RPC/literal has its
usefulness, the most popular form of binding and encoding styles has become document/literal. The
document/literal style goes a long way in eliminating interoperability problems, and also has proven to be
a good performer while generating the least complex SOAP message.

SOAP response messages

In the previous section the discussion has been about request messages. But what about response
messages? What do they look like? By now it should be clear to you what the response message looks like
for a document/literal message. The contents of the soap:body are fully defined by a schema, so all you
have to do is look at the schema to know what the response message looks like.

But what is the child of the soap:body for the RPC style responses? The WSDL 1.1 specification is not
clear. But WS-I comes to the rescue. WS-I's Basic Profile dictates that in the RPC/literal response
message, the name of the child of soap:body is "... the corresponding wsdl:operation name suffixed
with the string 'Response'." For more information on wsdl:operation, see “WSDL primer” on page 24.

WSDL primer

WSDL (Web Services Description Language) is an XML document for describing web services as a set of
endpoints operating on messages containing either document-oriented or procedure-oriented (RPC)
messages. The operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. Related concrete endpoints are combined into
abstract endpoints or services. WSDL is extensible to allow description of endpoints and their messages,
regardless of what message formats or network protocols are used to communicate. Some of the
currently described bindings are for SOAP 1.1, HTTP POST, and Multipurpose Internet Mail Extensions
(MIME).

There are two versions of the WSDL: WSDL 1.1 and WSDL 2.0. The changes in WSDL 2.0 are generally
made for the purposes of interoperability - constructs that are not legal under WS-I's Basic Profile are
generally forbidden - or to make it easier to use WSDL with extended SOAP specifications.

The rest of the discussion in this chapter will be from the perspective of the WSDL 1.1 specification.
Information on WSDL 1.1 and WSDL 2.0 can be found at the following URLs:

https://www.w3.org/TR/wsdl

https://www.w3.org/TR/wsdl20-primer/

WSDL 1.1 document structure

WSDL conventionally divides the basic service description into two parts (see Figure 6 on page 25): the
service interface and the service implementation. This enables each part to be defined separately and
independently, and reused by other parts.

24 IBM i: Web Services Client for ILE

Figure 6: Basic service description

A service interface definition is an abstract or reusable service definition that can be instantiated and
referenced by multiple service implementation definitions. Think of a service interface definition as an
Interface Definition Language (IDL), Java interface or web service type. This allows common industry-
standard service types to be defined and implemented by multiple service implementers. This is
analogous to defining an abstract interface in a programming language and having multiple concrete
implementations. The service interface contains WSDL elements that comprise the reusable portion of
the service description:

• binding: Describes the protocol, data format, security and other attributes for a particular service
interface (i.e. portType).

• portType: Defines Web service operations. The operations define what XML messages can appear in
the input and output data flows. Think of an operation as a method signature in a programming
language.

• message: Specifies which XML data types constitute various parts of a message and is used to define
the input and output parameters of an operation.

• type: Describes the use complex data types within the message.

The service implementation definition describes how a particular service interface is implemented by a
given service provider. A web service is modeled as a service element. A service element contains a
collection (usually one) of port elements. A port associates an endpoint (for example, a network address
location or URL) with a binding element from a service interface definition.

The service interface definition together with the service implementation definition makes up a complete
WSDL definition of the service. This pair contains sufficient information to describe to the service
requestor how to invoke and interact with the web service. Now lets dive into the details.

Figure 7 on page 26 shows the elements comprising a WSDL document and the various relationships
between them.

Types of web services 25

Figure 7: WSDL 1.1 elements and relationships

The diagram should be read in the following way:

• One WSDL document contains zero or more services. A service contains zero or more port definitions
(service endpoints), and a port definition contains a specific protocol extension.

• The same WSDL document contains zero or more bindings. A binding is referenced by zero or more
ports. The binding contains one protocol extension, where the style and transport are defined, and zero
or more operations bindings. Each of these operation bindings is composed of one protocol extension,
where the action and style are defined, and one to three messages bindings, where the encoding is
defined.

• The same WSDL document contains zero or more port types. A port type is referenced by zero or more
bindings. This port type contains zero or more operations, which are referenced by zero or more
operations bindings.

• The same WSDL document contains zero or more messages. An operation usually points to an input and
an output message, and optionally to some faults. A message is composed of zero or more parts.

• The same WSDL document contains zero or more types. A type can be referenced by zero or more parts.
• The same WSDL document points to zero or more XML Schemas. An XML Schema contains zero or more

XSD types that define the different data types.

The containment relationships shown in the diagram directly map to the XML Schema for WSDL.

Below is an example of a simple, complete, and valid WSDL file. As we will see, even a simple WSDL
document contains quite a few elements with various relationships to each other.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://address.samples"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://address.samples"
 xmlns:intf="http://address.samples"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://address.samples"

26 IBM i: Web Services Client for ILE

 xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="AddressBean">
 <sequence>
 <element name="street" type="xsd:string"/>
 <element name="zipcode" type="xsd:int"/>
 </sequence>
 </complexType>

 <element name="AddressBean" type="impl:AddressBean"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="updateAddressRequest">
 <wsdl:part name="in0" type="intf:AddressBean"/>
 <wsdl:part name="in1" type="xsd:int"/>
 </wsdl:message>
 <wsdl:message name="updateAddressResponse">
 <wsdl:part name="return" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="updateAddressFaultInfo">
 <wsdl:part name="fault" type="xsd:string"/>"
 </wsdl:message>

 <wsdl:portType name="AddressService">
 <wsdl:operation name="updateAddress">
 <wsdl:input message="intf:updateAddressRequest"
 name="updateAddressRequest"/>
 <wsdl:output message="intf:updateAddressResponse"
 name="updateAddressResponse"/>
 <wsdl:fault message="intf:updateAddressFaultInfo"
 name="updateAddressFaultInfo"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="AddressSoapBinding" type="intf:AddressService">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="updateAddress">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="updateAddressRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

 <wsdl:output name="updateAddressResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>

 <wsdl:fault name="updateAddressFaultInfo">
 <wsdlsoap:fault name="updateAddressFaultInfo" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="AddressServiceService">
 <wsdl:port binding="intf:AddressSoapBinding" name="Address">
 <wsdlsoap:address
 location="http://localhost:8080/axis/services/Address"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

So let us begin discussing the various components that make up a WSDL document.

Namespaces

Types of web services 27

WSDL documents begin with a declarative section that lays out two key components. The first declarative
component consists of the various namespace declarations, declared as attributes of the root element
(the second is the types element discussed in “Types” on page 28):

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://address.samples"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://address.samples"
 xmlns:intf="http://address.samples"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...

WSDL uses the XML namespaces listed in Table 3 on page 28.

Table 3: WSDL namespaces

Prefix Namespace URI Explanation

wsdl http://schemas.xmlsoap.org/wsdl/ Namespace for WSDL framework.

soap http://schemas.xmlsoap.org/wsdl/soap/ SOAP binding.

http http://schemas.xmlsoap.org/wsdl/http/ HTTP binding.

mime http://schemas.xmlsoap.org/wsdl/
mime/

MIME binding.

soapenc http://schemas.xmlsoap.org/soap/
encoding/

Encoding namespace as defined by SOAP 1.1.

soapenv http://schemas.xmlsoap.org/soap/
envelope/

Envelope namespace as defined by SOAP 1.1.

xsi http://www.w3.org/2000/10/
XMLSchema-instance

Instance namespace as defined by XSD.

xsd http://www.w3.org/2000/10/
XMLSchema

Schema namespace as defined by XSD.

tns (URL to WSDL file) The this namespace (tns) prefix is used as a
convention to refer to the current document. Do not
confuse it with the XSD target namespace, which is
a different concept.

The first four namespaces are defined by the WSDL specification itself; the next four definitions reference
namespaces that are defined in the SOAP and XSD standards. The last one is local to each specification.
Note that in our example, we do not use real namespaces; the URIs contain localhost.

Types

The types element encloses data type definitions used by the exchanged messages. WSDL uses XML
Schema Definitions (XSDs) as its canonical and built-in type system:

<definitions >
 <types>
 <xsd:schema />(0 or more)
 </types>
</definitions>

The XSD type system can be used to define the types in a message regardless of whether or not the
resulting wire format is XML. There is an extensibility element (placeholder for additional XML elements,

28 IBM i: Web Services Client for ILE

that is) that can be used to provide an XML container element to define additional type information in case
the XSD type system does not provide sufficient modeling capabilities. In our example, the type definition,
shown below, is where we specify that there is a complex type called AddressBean, which is composed
of two elements, street and zipcode. We also specify that the type of the street element is a string
and the type of the zipcode element is a number (int).

...
 <wsdl:types>
 <schema targetNamespace="http://address.samples"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="AddressBean">
 <sequence>
 <element name="street" type="xsd:string"/>
 <element name="zipcode" type="xsd:int"/>
 </sequence>
 </complexType>

 <element name="AddressBean" type="impl:AddressBean"/>
 </schema>
 </wsdl:types>
...

Messages

Messages consist of one or more logical parts. A message represents one interaction between a service
requestor and service provider. If an operation is bidirectional (a call returning a result, for example), at
least two message definitions are used in order to specify the transmission on the way to and from the
service provider:

<definitions >
 <message name="nmtoken"> (0 or more)
 <part name="nmtoken" element="qname"(0 or 1) type="qname" (0 or 1)/>
 (0 or more)
 </message>
</definitions>

The abstract message definitions are used by the operation element. Multiple operations can refer to the
same message definition. Operations and messages are modeled separately in order to support flexibility
and simplify reuse of existing specifications. For example, two operations with the same parameters can
share one abstract message definition. In our example, the messages definition, shown below, is where
we specify the different parts that compose each message. The request message
updateAddressRequest is composed of an AddressBean part and an int part. The response
message updateAddressResponse is composed of a string part. The fault message
updateAddressFaultInfo is composed of a string part.

...
 <wsdl:message name="updateAddressRequest">
 <wsdl:part name="in0" type="intf:AddressBean"/>
 <wsdl:part name="in1" type="xsd:int"/>
 </wsdl:message>
 <wsdl:message name="updateAddressResponse">
 <wsdl:part name="return" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="updateAddressFaultInfo">
 <wsdl:part name="fault" type="xsd:string"/>"
 </wsdl:message>
...

Port types

A port type is a named set of abstract operations and the abstract messages involved:

<wsdl:definitions >
 <wsdl:portType name="nmtoken">
 <wsdl:input name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
 <wsdl:output name="nmtoken"(0 or 1) message="qname"/> (0 or 1)

Types of web services 29

 <wsdl:fault name="nmtoken" message="qname"/> (0 or more)
 </wsdl:portType>
</wsdl:definitions>

Presence and order of the input, output, and fault messages determine the type of message. For example,
for one-way messages the wsdl:fault and wsdl:output operations would be removed. For a request/
response messages, one would include both wsdl:input and wsdl:output operations. It should be
noted that a request-response operation is an abstract notion. A particular binding must be consulted to
determine how the messages are actually sent. For example, the HTTP protocol is a request/response
protocol; however, it does not preclude you from sending one-way messages. It simply means that the
web service must send an HTTP response back to the client. The response will be consumed by the
transport and nothing is propagated back to the client since the response is purely an HTTP response -
that is, no SOAP data is associated with the response.

In our example, the port type and operation definition, shown below, are where we specify the port type,
called AddressService, and a set of operations. In this case, there is only one operation, called
updateAddress. We also specify the interface that the web service provides to its possible clients, with
the input message updateAddressRequest, the output message updateAddressResponse, and the
updateAddressFaultInfo that are used in the transaction.

...
 <wsdl:portType name="AddressService">
 <wsdl:operation name="updateAddress">
 <wsdl:input message="intf:updateAddressRequest"
 name="updateAddressRequest"/>
 <wsdl:output message="intf:updateAddressResponse"
 name="updateAddressResponse"/>
 <wsdl:fault message="intf:updateAddressFaultInfo"
 name="updateAddressFaultInfo"/>
 </wsdl:operation>
 </wsdl:portType>
...

Bindings

A binding contains:

• Protocol-specific general binding data, such as the underlying transport protocol and the
communication style for SOAP.

• Protocol extensions for operations and their messages, such as the URN and encoding information for
SOAP.

Each binding references one port type; one port type can be used in multiple bindings. All operations
defined within the port type must be bound in the binding. The pseudo XSD for the binding looks like this:

<wsdl:definitions >
 <wsdl:binding name="nmtoken" type="qname"> (0 or more)
 <-- extensibility element (1) --> (0 or more)
 <wsdl:operation name="nmtoken"> (0 or more)
 <-- extensibility element (2) --> (0 or more)
 <wsdl:input name="nmtoken"(0 or 1) > (0 or 1)
 <-- extensibility element (3) -->
 </wsdl:input>
 <wsdl:output name="nmtoken"(0 or 1) > (0 or 1)
 <-- extensibility element (4) --> (0 or more)
 </wsdl:output>
 <wsdl:fault name="nmtoken"> (0 or more)
 <-- extensibility element (5) --> (0 or more)
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

As we have already seen, a port references a binding. The port and binding are modeled as separate
entities in order to support flexibility and location transparency. Two ports that merely differ in their
network address can share the same protocol binding.

30 IBM i: Web Services Client for ILE

The extensibility elements <-- extensibility element (x) --> use XML namespaces in order to
incorporate protocol-specific information into the language- and protocol-independent WSDL
specification.

In our example, the binding definition, shown below, is where we specify our binding name,
AddressSoapBinding. The connection is SOAP HTTP, and the style is document. We provide a
reference to our operation, updateAddress; define the input message updateAddressRequest and
the output message updateAddressResponse; and the fault message, updateAddressFaultInfo.
Additionally, the input and output messages of the operation are defined as literal XML in compliance with
the WS-I Basic Profile.

...
 <wsdl:binding name="AddressSoapBinding" type="intf:AddressService">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="updateAddress">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="updateAddressRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

 <wsdl:output name="updateAddressResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>

 <wsdl:fault name="updateAddressFaultInfo">
 <wsdlsoap:fault name="updateAddressFaultInfo" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 ...

In the above example, both input and output messages are specified. Thus, the operation is governed by
the request-response message exchange pattern. If the output message (wsdl:output element) was
removed, you would have one-way message exchange pattern.

Service definition

A service definition merely bundles a set of ports together under a name, as the following pseudo XSD
definition of the service element shows. This pseudo XSD notation is introduced by the WSDL
specification:

<wsdl:definitions >
 <wsdl:service name="nmtoken"> (0 or more)
 <wsdl:port /> (0 or more)
 </wsdl:service>
</wsdl:definitions>

Multiple service definitions can appear in a single WSDL document.

Port definition

A port definition describes an individual endpoint by specifying a single address for a binding:

<wsdl:definitions >
 <wsdl:service > (0 or more)
 <wsdl:port name="nmtoken" binding="qname"> (0 or more)
 <-- extensibility element (1) -->
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

The binding attribute is of type QName, which is a qualified name (equivalent to the one used in SOAP). It
refers to a binding. A port contains exactly one network address; all other protocol-specific information is
contained in the binding.

Types of web services 31

Any port in the implementation part must reference exactly one binding in the interface part.

The <-- extensibility element (1) --> is a placeholder for additional XML elements that can
hold protocol-specific information. This mechanism is required, because WSDL is designed to support
multiple runtime protocols. For SOAP, the URL of the service is specified as the SOAP address here.

In our example, the service and port definition, shown below, is where we specify our service, called
AddressServiceService, that contains a collection of our ports. In this case, there is only one that
uses the AddressSoapBinding and is called Address. In this port, we specify our connection point.

...
 <wsdl:service name="AddressServiceService">
 <wsdl:port binding="intf:AddressSoapBinding" name="Address">
 <wsdlsoap:address
 location="http://localhost:8080/axis/services/Address"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

REST-based web services
REST defines a set of architectural principles by which you can design web services that focus on a
system's resources, including how resource states are addressed and transferred over HTTP by a wide
range of clients written in different languages. REST does not define the technical building blocks of the
Web, such as URIs and HTTP, but rather provides guidelines for the development and use of such
technologies in a manner designed to provide the necessary scalability and flexibility for a distributed
system of global proportions, such as the World Wide Web.

Figure 8: REST-based web services

Core technologies

Several key technologies and standards exist within the web services community:

• HTTP, a communications protocol for the transfer of information on intranets and the World Wide Web.
For information on HTTP, see “HTTP protocol” on page 33.

• Uniform Resource Identifier (URI) provide a simple, consistent and persistent means of identifying and
locating resources wherever they may exist online. For information about URIs, see “Uniform Resource
Identifiers (URIs)” on page 33

• Architectural principles defined by REST. For information on REST, see “REST primer” on page 36.

32 IBM i: Web Services Client for ILE

• XML and/or JSON. For information about XML, see “XML primer” on page 8. For information about
JSON, see “JSON primer” on page 34.

• Swagger, a specification for describing RESTful APIs, has become the defacto standard for describing
RESTful APIs. For information about Swagger, see “Swagger primer” on page 42.

HTTP protocol

Hypertext Transfer Protocol (HTTP) is a communications protocol for the transfer of information on
intranets and the World Wide Web. Its original purpose was to provide a way to publish and retrieve
hypertext pages over the Internet.

HTTP development was coordinated by the World Wide Web Consortium (W3C) and the Internet
Engineering Task Force (IETF), culminating in the publication of a series of Request for Comments (RFCs),
most notably RFC 2616 (June 1999), which defines HTTP/1.1, the version of HTTP in common use.

HTTP is a request/response standard between a client and a server. A client is the user and the server is
the Web site. The client making an HTTP request using a Web browser, spider, or other user tool is
referred to as the user agent. The responding server, which stores or creates resources such as HTML files
and images, is called the origin server. In between the user agent and the origin server may be several
intermediaries, such as proxies, gateways, and tunnels. HTTP is not constrained to using TCP/IP and its
supporting layers, although TCP/IP is the most popular transport mechanism on the Internet. Indeed,
HTTP can be implemented on top of any other protocol on the Internet, or on other networks. HTTP only
presumes a reliable transport. Any protocol that provides such guarantees can be used.

Typically, an HTTP client initiates a request. It establishes a Transmission Control Protocol (TCP)
connection to a particular port on a host (port 80 by default). An HTTP server listening on that port waits
for the client to send a request message. Upon receiving the request, the server sends back a status line,
such as HTTP/1.1 200 OK, and a message of its own, the body of which is perhaps the requested file, an
error message, or some other information.

Resources to be accessed by HTTP are identified using Uniform Resource Identifiers (URIs) (or, more
specifically, Uniform Resource Locators (URLs)) using the http or https URI schemes.

For more information about the HTTP standard, go to the following URL:

http://www.ietf.org/rfc/rfc2616.txt

Uniform Resource Identifiers (URIs)

Universal Resource Identifiers (URIs) are, without question, one of the single most important
characteristics of web-based applications. URIs provide a simple, consistent and persistent means of
identifying and locating resources wherever they may exist online.

An example of an URI is as follows:

http://www.ibm.com/systems/power/software/i/iws/index.html

According to the URI standard, the example is a URI and has several component parts:

• A scheme name (http)
• A domain name (www.ibm.com)
• A path (/systems/power/software/i/iws/index.html)

For more information about the URI standard, go to the following URL:

http://www.ietf.org/rfc/rfc3986.txt

Types of web services 33

JSON primer

JavaScript Object Notation (JSON) is an open standard format for data interchange. Although originally
used in the JavaScript scripting language, JSON is now language-independent, with many parsers
available in many languages.

Compared to XML, JSON has many advantages. Most predominantly, JSON is more suited to data
interchange. XML is an extremely verbose language: every element in the tree has a name, and the
element must be enclosed in a matching pair of tags. Alternatively, JSON expresses trees in a nested
array format similar to JavaScript. This enables the same data to be transferred in a far smaller data
package with JSON than with XML. This lightweight data package lends itself to better performance when
parsing.

JSON can be seen as both human and machine-readable. JSON is an easy language for humans to read,
and for machines to parse.

According to the standard, the JSON syntax is made up of a sequence of tokens. The tokens consist of six
structural characters, strings, numbers, and three literal names. The tokens are logically organized into
data, objects and arrays. Figure 1 on page 34 shows the syntax diagram for JSON text.

JSON text

ws

value

ws

ws

space

horizontal tab

new-line

carriage return

value

ws

object

array

number

string

false
1

true
1

null
1

ws

object

{

,

member

}

member

ws

string

ws

: value

34 IBM i: Web Services Client for ILE

array

[

,

value

]

Notes:
1 The actual literal name: false, true, or null. These values must be lowercase.

Figure 9: JSON text

The following sections provides basic information on JSON. More information about JSON may be found
at:

http://www.rfc-editor.org/rfc/rfc7159.txt

JSON objects

The primary concept in JSON is the object, which is an unordered collection of name/value pairs, where
the value can be any JSON value. JSON objects can be nested, but are not commonly deeply nested.

JSON objects begin with a left brace ({) and ends with a right brace (}). Name/value pairs in the object
are separated by a comma (,). The name and value for a pair is separated by colon (:). The name is a
string (see “JSON strings” on page 36 for more details).

The value may be a JSON object, a JSON array (see “JSON arrays” on page 35 for more details), or one
of the four atomic types shown in Table 4 on page 35:

Table 4: JSON data types

Data type Example

string "someStringValue"

number 3
6.2
-122.026020
9.3e5

boolean true
false

the special "null" value null

The following example shows a simple JSON object:

{
 "isbn": "123-456-222",
 "title": "The Ultimate Database Study Guide",
 "abstract": "What you always wanted to know about databases",
 "price": 28.00
}

JSON arrays

A JSON array is an ordered collections of values. Arrays begin with a left bracket ([) and ends with a right
bracket (]). Values in the array are separated by a comma (,).

Types of web services 35

The following is a simple example of a JSON object that contains arrays:

{
 "category": ["Non-Fiction", "Technology"],
 "ratings": [10, 5, 32, 78, 112]
}

JSON strings

Strings begins and ends with a quotation mark ("). Within the quotation marks any character may be used
except for characters that must be escaped: quotation mark, backslash (\), and the control characters.
Any character may be escaped. In addition, characters between Unicode hexadecimal values 0000
through FFFF may be represented by a six character sequence: backslash, followed by lowercase letter u,
followed by four hexadecimal digits that encode the character's code point.

The following shows examples of JSON strings:

 "category"

 "15\u00f8C"

JSON numbers

JSON numbers are represented in base 10 using decimal digits. It contains an integer component that
may be prefixed with an optional minus sign, which may be followed by a fraction part and/or an exponent
part. Leading zeros are not allowed. A fraction part is a decimal point followed by one or more digits. An
exponent part begins with the letter E in upper or lower case, which may be followed by a plus or minus
sign. The E and optional sign are followed by one or more digits.

The following shows examples of JSON numbers:

 123

 -122.026020

 9.3e5

REST primer
REST was first introduced in 2000 by Roy Fielding at the University of California, Irvine, in his academic
dissertation, "Architectural Styles and the Design of Network-based Software Architectures3," which
analyzes a set of software architecture principles that use the Web as a platform for distributed
computing.

The dissertation suggests that in its purest form, a concrete implementation of a REST web service
follows four basic design principles:

• Expose directory structure-like URIs.
• Use HTTP methods explicitly.
• Be stateless.
• Transfer XML, JavaScript Object Notation (JSON), or both.

The following sections expand on these four principles. For more information about the REST, read
Chapter 5 of Roy Fielding's dissertation, located at the following URL:

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3 The dissertation can be found at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

36 IBM i: Web Services Client for ILE

Expose directory structure-like URIs

The notion of using URIs to identify resources is central to REST style web services; by virtue of having a
URI, resources are part of the Web. From the standpoint of client applications addressing resources, the
URIs determine how intuitive the REST web service is going to be and whether the service is going to be
used in ways that the designers can anticipate.

REST web service URIs should be intuitive to the point where they are easy to guess. Think of a URI as a
kind of self-documenting interface that requires little, if any, explanation or reference for a developer to
understand what it points to and to derive related resources. To this end, the structure of a URI should be
straightforward, predictable, and easily understood.

One way to achieve this level of usability is to define directory structure-like URIs. This type of URI is
hierarchical, rooted at a single path, and branching from it are subpaths that expose the service's main
areas. According to this definition, a URI is not merely a slash-delimited string, but rather a tree with
subordinate and superordinate branches connected at nodes. For example, in a discussion threading
service that gathers topics ranging from RPG to paper, you might define a structured set of URIs like this:

http://www.myservice.org/discussion/topics/{topic}

The root, /discussion, has a /topics node beneath it. Underneath that there are a series of topic
names, such as gossip, technology, and so on, each of which points to a discussion thread. Within this
structure, it's easy to pull up discussion threads just by typing something after /topics/.

In some cases, the path to a resource lends itself especially well to a directory-like structure. Take
resources organized by date, for instance, which are a very good match for using a hierarchical syntax.
This example is intuitive because it is based on rules:

http://www.myservice.org/discussion/2008/12/10/{topic}

The first path fragment is a four-digit year, the second path fragment is a two-digit day, and the third
fragment is a two-digit month. It may seem a little silly to explain it that way, but this is the level of
simplicity we're after. Humans and machines can easily generate structured URIs like this because they
are based on rules. Filling in the path parts in the slots of a syntax makes them good because there is a
definite pattern from which to compose them:

http://www.myservice.org/discussion/{year}/{day}/{month}/{topic}

Some additional guidelines to make note of while thinking about URI structure for a RESTful web service
are:

• Hide the server-side scripting technology file extensions (.jsp, .php, .asp), if any, so you can port to
something else without changing the URIs.

• Keep everything lowercase.
• Substitute spaces with hyphens or underscores (one or the other).
• Avoid query strings as much as you can.
• Learn from popular APIs (Google, Facebook, Twitter, and so on.)

URIs should also be static so that when the resource changes or the implementation of the service
changes, the link stays the same. This allows bookmarking. It's also important that the relationship
between resources that's encoded in the URIs remains independent of the way the relationships are
represented where they are stored.

Designing the URIs for a REST style web service requires special care, as they may be referenced by large
numbers of applications, documents, or bookmarks for many years and thus have to be designed so that
they are stable.

Types of web services 37

Use HTTP methods explicitly

One of the key characteristics of a RESTful web service is the explicit use of HTTP methods in a way that
follows the protocol as defined by RFC 2616. HTTP GET, for instance, is defined as a data-producing
method that's intended to be used by a client application to retrieve a resource, to fetch data from a web
server, or to execute a query with the expectation that the web server will look for and respond with a set
of matching resources.

REST asks developers to use HTTP methods explicitly and in a way that's consistent with the protocol
definition. This basic REST design principle establishes a one-to-one mapping between create, read,
update, and delete (CRUD) operations and HTTP methods. According to this mapping:

• To create a resource on the server, use POST.
• To retrieve a resource, use GET.
• To change the state of a resource or to update it, use PUT.
• To remove or delete a resource, use DELETE.

An unfortunate design flaw inherent in many web APIs is in the use of HTTP methods for unintended
purposes. The request URI in an HTTP GET request, for example, usually identifies one specific resource.
Or the query string in a request URI includes a set of parameters that defines the search criteria used by
the server to find a set of matching resources. At least this is how the HTTP/1.1 RFC describes GET. But
there are many cases of unattractive web APIs that use HTTP GET to trigger something transactional on
the server - for instance, to add records to a database. In these cases the GET request URI is not used
properly or at least not used RESTfully. If the web API uses GET to invoke remote procedures, it looks like
this:

GET /adduser?name=Robert HTTP/1.1

It's not a very attractive design because the web method above supports a state-changing operation over
HTTP GET. Put another way, the HTTP GET request above has side effects. If successfully processed, the
result of the request is to add a new user - in this example, Robert -to the underlying data store. The
problem here is mainly semantic. web servers are designed to respond to HTTP GET requests by
retrieving resources that match the path (or the query criteria) in the request URI and return these or a
representation in a response, not to add a record to a database. From the standpoint of the intended use
of the protocol method then, and from the standpoint of HTTP/1.1-compliant web servers, using GET in
this way is inconsistent.

Beyond the semantics, the other problem with GET is that to trigger the deletion, modification, or addition
of a record in a database, or to change server-side state in some way, it invites web caching tools
(crawlers) and search engines to make server-side changes unintentionally simply by crawling a link. A
simple way to overcome this common problem is to move the parameter names and values on the request
URI into the HTTP request payload (e.g. XML). The resulting tags, an XML representation of the entity to
create, may be sent in the body of an HTTP POST whose request URI is the intended parent of the entity
as follows:

POST /users HTTP/1.1
Host: myserver
Content-Type: application/xml
?xml version="1.0"?>
<user>
 <name>Robert</name>
</user>

The method above is exemplary of a RESTful request: proper use of HTTP POST and inclusion of the
payload in the body of the request. On the receiving end, the request may be processed by adding the
resource contained in the body as a subordinate of the resource identified in the request URI; in this case
the new resource should be added as a child of /users. This containment relationship between the new
entity and its parent, as specified in the POST request, is analogous to the way a file is subordinate to its
parent directory. The client sets up the relationship between the entity and its parent and defines the new
entity's URI in the POST request.

38 IBM i: Web Services Client for ILE

A client application may then get a representation of the resource using the new URI, noting that at least
logically the resource is located under /users as follows:

GET /users/Robert HTTP/1.1
Host: myserver
Accept: application/xml

Using GET in this way is explicit because GET is for data retrieval only. GET is an operation that should be
free of side effects, a property also known as idempotence.

A similar refactoring of a web method also needs to be applied in cases where an update operation is
supported over HTTP GET, as shown below.

GET /updateuser?name=Robert&newname=Bob HTTP/1.1

This changes the name attribute (or property) of the resource. While the query string can be used for such
an operation, and Listing 4 is a simple one, this query-string-as-method-signature pattern tends to break
down when used for more complex operations. Because your goal is to make explicit use of HTTP
methods, a more RESTful approach is to send an HTTP PUT request to update the resource, instead of
HTTP GET, for the same reasons stated previously:

PUT /users/Robert HTTP/1.1
Host: myserver
Content-Type: application/xml
<?xml version="1.0"?>
<user>
 <name>Bob</name>
</user>

Using PUT to replace the original resource provides a much cleaner interface that's consistent with REST's
principles and with the definition of HTTP methods. The PUT request is explicit in the sense that it points
at the resource to be updated by identifying it in the request URI and in the sense that it transfers a new
representation of the resource from client to server in the body of a PUT request instead of transferring
the resource attributes as a loose set of parameter names and values on the request URI. The PUT
request in the example also has the effect of renaming the resource from Robert to Bob, and in doing so
changes its URI to /users/Bob. In a REST web service, subsequent requests for the resource using the
old URI would generate a standard 404 Not Found error.

As a general design principle, it helps to follow REST guidelines for using HTTP methods explicitly by
using nouns in URIs instead of verbs. In a RESTful web service, the verbs - POST, GET, PUT, and DELETE -
are already defined by the protocol. And ideally, to keep the interface generalized and to allow clients to
be explicit about the operations they invoke, the web service should not define more verbs or remote
procedures, such as /adduser or /updateuser. This general design principle also applies to the body of
an HTTP request, which is intended to be used to transfer resource state, not to carry the name of a
remote method or remote procedure to be invoked.

Stateless

REST web services need to scale to meet increasingly high performance demands. Clusters of servers
with load-balancing and failover capabilities, proxies, and gateways are typically arranged in a way that
forms a service topology, which allows requests to be forwarded from one server to the other as needed
to decrease the overall response time of a web service call. Using intermediary servers to improve scale
requires REST web service clients to send complete, independent requests; that is, to send requests that
include all data needed to be fulfilled so that the components in the intermediary servers may forward,
route, and load-balance without any state being held locally in between requests.

A complete, independent request doesn't require the server, while processing the request, to retrieve any
kind of application context or state. A REST web service application (or client) includes within the HTTP
headers and body of a request all of the parameters, context, and data needed by the server-side
component to generate a response. Statelessness in this sense improves web service performance and
simplifies the design and implementation of server-side components because the absence of state on the
server removes the need to synchronize session data with an external application.

Types of web services 39

Figure 10 on page 40 illustrates a stateful service from which an application may request the next page
in a multipage result set, assuming that the service keeps track of where the application leaves off while
navigating the set. In this stateful design, the service increments and stores a previousPage variable
somewhere to be able to respond to requests for next.

Figure 10: Stateful design

Stateful services like this get complicated. Stateful services may require a lot of up-front consideration to
efficiently store and enable the synchronization of session data. Session synchronization adds overhead,
which may impact server performance.

Stateless server-side components, on the other hand, are less complicated to design, write, and distribute
across load-balanced servers. A stateless service not only performs better, it shifts most of the
responsibility of maintaining state to the client application. In a RESTful web service, the server is
responsible for generating responses and for providing an interface that enables the client to maintain
application state on its own. For example, in the request for a multipage result set, the client should
include the actual page number to retrieve instead of simply asking for next (see Figure 11 on page 40).

Figure 11: Stateless design

A stateless web service generates a response that links to the next page number in the set and lets the
client do what it needs to in order to keep this value around. This aspect of RESTful web service design
can be broken down into two sets of responsibilities as a high-level separation that clarifies just how a
stateless service can be maintained:

• Server

– Generates responses that include links to other resources to allow applications to navigate between
related resources. This type of response embeds links. Similarly, if the request is for a parent or
container resource, then a typical RESTful response might also include links to the parent's children
or subordinate resources so that these remain connected.

– Generates responses that indicate whether they are cacheable or not to improve performance by
reducing the number of requests for duplicate resources and by eliminating some requests entirely.
The server does this by including a Cache-Control and Last-Modified (a date value) HTTP
response header.

• Client application

40 IBM i: Web Services Client for ILE

– Uses the Cache-Control response header to determine whether to cache the resource (make a
local copy of it) or not. The client also reads the Last-Modified response header and sends back
the date value in an If-Modified-Since header to ask the server if the resource has changed. This
is called Conditional GET, and the two headers go hand in hand in that the server's response is a
standard 304 code (Not Modified) and omits the actual resource requested if it has not changed since
that time. A 304 HTTP response code means the client can safely use a cached, local copy of the
resource representation as the most up-to-date, in effect bypassing subsequent GET requests until
the resource changes.

– Sends complete requests that can be serviced independently of other requests. This requires the
client to make full use of HTTP headers as specified by the web service interface and to send
complete representations of resources in the request body. The client sends requests that make very
few assumptions about prior requests, the existence of a session on the server, the server's ability to
add context to a request, or about application state that is kept in between requests.

This collaboration between client application and service is essential to being stateless in a RESTful web
service. It improves performance by saving bandwidth and minimizing server-side application state.

REST style web service payloads

A resource representation typically reflects the current state of a resource, and its attributes, at the time a
client application requests it. Resource representations in this sense are mere snapshots in time. This
could be a thing as simple as a representation of a record in a database that consists of a mapping
between column names and XML tags, where the element values in the XML contain the row values. Or, if
the system has a data model, then according to this definition a resource representation is a snapshot of
the attributes of one of the things in your system's data model. These are the things you want your REST
Web service to serve up.

The last set of constraints that goes into a RESTful Web service design has to do with the format of the
data that the application and service exchange in the request/response payload or in the HTTP body. This
is where it really pays to keep things simple, human-readable, and connected.

The objects in your data model are usually related in some way, and the relationships between data
model objects (resources) should be reflected in the way they are represented for transfer to a client
application. In the discussion threading service, an example of connected resource representations might
include a root discussion topic and its attributes, and embed links to the responses given to that topic.

<?xml version="1.0"?>
<discussion date="{date}" topic="{topic}">
 <comment>{comment}</comment>
 <replies>
 <reply from="joe@mail.com" href="/discussion/topics/{topic}/joe"/>
 <reply from="bob@mail.com" href="/discussion/topics/{topic}/bob"/>
 </replies>
</discussion>

And last, to give client applications the ability to request a specific content type that's best suited for
them, construct your service so that it makes use of the built-in HTTP Accept header, where the value of
the header is a MIME type. Some common MIME types used by RESTful services are shown in Table 5 on
page 41.

Table 5: Common MIME types used by RESTful services

MIME-type Content-type

JSON application/json

XML application/xml

This allows the service to be used by a variety of clients written in different languages running on different
platforms and devices. Using MIME types and the HTTP Accept header is a mechanism known as content
negotiation, which lets clients choose which data format is right for them and minimizes data coupling
between the service and the applications that use it.

Types of web services 41

Swagger primer

Swagger is an open specification for defining REST APIs. A Swagger document is the REST API equivalent
of a WSDL document for a SOAP-based web service. The Swagger document specifies the list of resources
that are available in the REST API and the operations that can be called on those resources. The Swagger
document also specifies the list of parameters to an operation, including the name and type of the
parameters, whether the parameters are required or optional, and information about acceptable values
for those parameters. Additionally, the Swagger document can include JSON Schema that describes the
structure of the request body that is sent to an operation in a REST API, and the JSON schema describes
the structure of any response bodies that are returned from an operation.

The integrated web services server supports version 2.0 of the Swagger specification. Information on
Swagger and the version 2.0 of the Swagger specification may be found at the following URLs:

http://swagger.io/

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

42 IBM i: Web Services Client for ILE

Part 2. Web services client for ILE concepts

This part of the book introduces Web Services Client for ILE concepts and architecture, including
installation details and commands.

© Copyright IBM Corp. 2011, 2018 43

44 IBM i: Web Services Client for ILE

Chapter 3. Web services client overview

The Web Services Client for ILE is based on Apache Extensible Interaction System (Axis) version 1.5. Axis
is basically a SOAP engine that represents a framework for constructing and consuming SOAP messages.

The following are the key features of this AXIS framework:

• Flexible messaging framework: It provides a flexible messaging framework that includes handlers,
chain, serializers, and deserializers. A handler is an object processing request, response, and fault flow.
A handler can be grouped together into chains and the order of these handlers can be configured using
a flexible deployment descriptor.

• Data encoding support: Axis provides automatic serialization of a wide variety of data types as per the
XML Schema specifications.

• Client stub generation: Axis includes a tool to generate C or C++ Web service client stubs from a WSDL
file. This tool has been enhanced by IBM so that it also generates RPG Web service client stubs.

• User-defined payloads: IBM has made enhancements that enables users to send user-defined
messages so that payloads other than SOAP messages can be sent and received.

This chapter will give an overview of Web Services Client for ILE, including what specifications and
standards are currently supported, the client architecture, and the programming model.

Supported specifications and standards

The stub-generation portion of the Web Services Client for ILE product has the following capabilities:

• Support for WSDL 1.1 (document literal only)
• SOAP 1.1 is the only supported over-the-wire protocol (as compliant with WS-I 1.1 basic profile)

The following are known limitations and restrictions:

• Dates sent and received must be after midnight 1st January 1970.
• Attachments are not supported.
• WSDL's used against the Integrated Web service client for ILE tooling (wsdl2ws.sh) must be encoded

throughout using UTF-8.
• Web service responses must be in UTF-8 format.
• The following schema-related types and constructs are not supported:

– The use of xsd:list.
– The use of xsd:union.
– Complex content extensions is not supported. There is limited support for simple content extensions.
– The namespace and processContents attributes on xsd:any are not supported. This gives

support equivalent to setting namespace="##any" and processContents="skip".

Client architecture

Figure 12 on page 46 illustrates the underlying architecture of Apache Axis. One of Axis' key features is
the incredible pluggabilty it offers its users. Almost everything in the Axis engine can be replaced with a
customized component, and the single most important component is a handler. More information about

© Copyright IBM Corp. 2011, 2018 45

handlers will be covered in the following sections but for now let's look, at a high level, the core
components of the Axis architecture and what happens on the client.

Figure 12: Axis client-side architecture

The core components of the AXIS Architecture include:

• Axis Engine: This acts like a central controller for other components.
• Handlers and Chains: Handlers are the basic building blocks in the AXIS system. Think of handlers as

pluggable components through which the message will pass, allowing each handler a chance to perform
some action based on the message or even to modify the message. A chain is a special handler that
represents a sequence of other handlers.

• Transport: Provides transport for messages to get into the Axis engine and the return of response
messages to the client. Axis has support for HTTP and HTTPS transports.

Ignoring the cylinders in Figure 12 on page 46 for a moment, the concept here is pretty simple; the client
code will invoke the Axis client, which will construct an outgoing message and send it to a SOAP server
(for example, using HTTP transport). Then a response (or incoming) message is received back, processed
by the Axis client and any results are returned back to the client code.

Now getting back to the cylinders, you'll notice that there are two types of Request (sometimes referred to
as Pre-Processing) Handlers or Chains, and two types of Response (sometimes referred to as Post-
Processing) Handlers or Chains invoked. Axis allows you to place a handler into two different stages of a
message's processing flow:

1. Service-Specific: The handler will be called just when a specific service is invoked.
2. Global: The handler will be invoked for all services invoked.

The triangle in the figure, the Transport Sender, is known as the pivot point. A pivot point is just another
handler, but it indicates the point at which the request becomes a response.

Axis handlers can only modify the SOAP header part of the message.

So what are handlers good for? While it is true that anything you could do in a handler you could also do in
your client-side code, componentizing the logic into handlers gives you several benefits. For one, it allows
you to cleanly separate the business logic from your SOAP processing logic. A good example of this is
adding security to your SOAP requests. With the definition of new security specifications, such as WS-
Security, you'll want to be able to add these new features to your services (or your SOAP environment)
with minimal impact on your code and configuration. By keeping a clean separation between your service

46 IBM i: Web Services Client for ILE

and these add-on features, you can add and remove them as needed. Also, as third-party vendors develop
handlers, you will be able to plug them into your configuration without any changes to your service. And in
fact your service will be totally unaware of their existence.

Client programming model

The Web Services Client for ILE gives client applications the ability to invoke Web services based on the
SOAP 1.1 standard through the HTTP 1.1. or HTTPS SOAP bindings. The client invokes Web service
methods without distinguishing whether those are performed locally or in a remote runtime environment.
Further, the client has no control over the life cycle of the Web service.

There are two distinct ways of using Web Services Client for ILE:

1. Stub-Based Invocation: The first and most commonly used approach is to create a WSDL source file
that describes the communication between the client and server, and then use the wsdl2ws.sh tool
(more on this later) to generate stubs (proxy) that you can use to communicate with the web service
server. The stub-based invocation only supports Web services using the SOAP protocol.

2. API-Based Invocation: The second, more specialized approach, is to use the Web Services Client for
ILE APIs to manage messaging between the client and server directly.

Both of these approaches work well. However, it is much easier to generate stubs to perform Web
services requests simply for the fact that any changes in the WSDL would require a user to manually make
changes to the code, which is more error prone than having the wsdl2ws.sh tool generate the stubs for
you.

Stub-based invocation

The Web Services Client for ILE package provides a Java program that is invoked by the wsdl2ws.sh
QShell script. This tool enables you to turn a WSDL into a C, C++, or RPG stub and data objects that you
can call and pass information to, and that request information from the server and then wait for the
corresponding reply before passing the response data objects back to the client. The stub hides the
internet communication from the application writer. All you need to know is the name of the service, the
method it contains and the structure of any data objects that are passed.

The first step in the process is to generate the stub from the WSDL file, as shown in Figure 13 on page
47.

Figure 13: Process flow between WSDL source file and stubs

Once the stub has been generated, you then create a client application that uses C++ stub method calls (a
client application using a C or RPG stub would call a function). This method (C++ stub) or function (C or
RPG stub) calls a number of underlying methods in the Axis client library, which generates the SOAP
message that communicates with the server. The flow is depicted by Figure 14 on page 48.

Web services client overview 47

Figure 14: Process flow between client and server applications using stubs generated by WSDL2Ws

API-based invocation

The Web Services Client for ILE package provides allows users to use the same APIs used by the
generated stubs to perform SOAP requests. In addition, there are APIs, called the transport APIs, that
allows users to control the data that is sent. The payload is completed generated by the user, and the
response is returned to the client for processing.

The C prototypes for the transport API functions are in the file /QIBM/ProdData/OS/
WebServices/V1/client/include/axis/ITransport.h. The RPG prototypes for the functions are
in the file /QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc. The typical
flow of events when using the transport APIs is as follows:

1. Use the axiscTransportCreate() API to create a transport object. The URL to web service is
specified on the call to the function.

2. Set any transport properties (e.g. connect timeout, HTTP method, HTTP headers, whether payload
needs to be converted to UTF-8, etc.) using the axiscTransportSetProperty() function.

3. Send data (if any) using the axiscTransportSend() function. Data is buffered until the
axiscTransportFlush() is called. The data is automatically converted to UTF-8 unless the
AXISC_PROPERTY_CONVERT_PAYLOAD transport property is set to "false", in which case the data is
sent as-is.

4. Send the request to the client by invoking the axiscTransportFlush() function.
5. Receive the response to the request by calling the axiscTransportReceive() function. This API

must be called even if no data is returned in order to consume the HTTP response to the request,
which includes the HTTP response headers and status code. The data is automatically converted from
UTF-8 to the job CCSID unless the AXISC_PROPERTY_CONVERT_PAYLOAD transport property is set to
"false", in which case the data is returned as-is.

6. If no errors were detected on the call to axiscTransportReceive(), retrieve the HTTP status code
to determine what to do with received data using the axiscTransportGetProperty() API with property to
be retrieved set to AXISC_PROPERTY_HTTP_STATUS_CODE.

7. Destroy the transport object by calling the axiscTransportDestroy() function.

For more information on the transport APIs, see “Transport C APIs” on page 169.

Client-side handlers

48 IBM i: Web Services Client for ILE

As has been indicated previously, you can add web service handlers to the Axis client library to allow
further processing of the SOAP message, either before it is transmitted to the server or after the
corresponding reply has been received from the server.

Web Services Client for ILE supports two basic types of handler:

• The service handler, which is specific to the Web service with which it is associated.
• The global handler, which is called regardless of the Web service port or message name.

A service handler is associated with a particular service/port combination and is only invoked when a
SOAP message with the appropriate destination has been called. A global handler is always invoked,
regardless of the message destination.

Figure 15 on page 49 is an amended version of Figure 14 on page 48 and illustrates the placement of
handlers in the request and response flows.

Figure 15: Process flow between client and server applications using generated stubs, and request and
response handlers

The Web Service Deployment Descriptor (WSDD) file controls what handler is invoked and when it is
invoked.

The pivot point is the name given to the point where a message is either written on to or read from the
wire. The term wire refers to all the underlying components that are responsible for physically sending or
receiving a message on the web. Any handler that works on the request message to be transmitted is a
pre-pivot handler and conversely, any handler that works on the response message after it has been
received is a post-pivot handler.

For pre-pivot handlers, when a request message is being prepared, the handlers are the last link in the
message construction chain, and are invoked just before the message is transmitted, as shown in the flow
diagram depicted in Figure 16 on page 50:

Web services client overview 49

Figure 16: Process flow for pre-pivot handlers

For post-pivot handlers, when a response message is being prepared, the handlers are the first link in the
message deconstruction chain, and are invoked just after the message is received, as shown in the flow
diagram depicted in Figure 17 on page 51:

50 IBM i: Web Services Client for ILE

Figure 17: Process flow for post-pivot handlers

Binding

Web Services Client for ILE supports the following:

• SOAP over HTTP document/literal (WS-I Basic Profile - SOAP 1.1)
• SOAP over HTTPS

Data types

Table 6 on page 52 shows the data types that are supported by Web Services Client for ILE:

Web services client overview 51

Table 6: Supported schema types

Category Schema type(s)

Numeric • byte
• decimal
• double
• float
• int
• integer
• long
• negativeInteger
• nonPositiveInteger
• nonNegativeInteger
• positiveInteger
• unsignedByte
• unsignedInt
• unsignedLong
• unsignedShort
• short

Date/Time/Duration • date
• dateTime
• duration
• gDay
• gMonth
• gMonthDay
• gYear
• gYearMonth
• time

52 IBM i: Web Services Client for ILE

Table 6: Supported schema types (continued)

Category Schema type(s)

String • anyURI
• ENTITY
• ENTITIES
• ID
• IDREFS
• language
• Name
• NCName
• NMTOKEN
• NMTOKENS
• normalizedString
• notation
• QName
• string
• token

Various • base64Binary
• boolean
• hexBinary

In addition to the types in the table above, complex types and arrays of complex types and primitive types
are supported. More information on WSDL/XML to programming language mapping will be discussed
when we talk about the supported stub target languages later on in this document.

SOAP faults

Web Services Client for ILE will map a SOAP fault to a service specific exception. If the SOAP fault does
not map to a service specific exception (i.e. not defined in the WSDL file for the service operation), the
SOAP fault will map to a generic exception. More information on SOAP Fault mapping will be discussed
when we talk about the supported stub target languages later on in this document.

Message exchange patterns

Web Services Client for ILE supports the request-response and one-way message exchange patterns.

For the one-way message exchange pattern, the Web Services Client for ILE expects an HTTP response
from the invoked Web service, since the HTTP protocol is based on a response being returned to an HTTP
request. If the invoked Web service returns a SOAP fault, the Web Services Client for ILE will process the
fault and return it to the client.

Web services client overview 53

54 IBM i: Web Services Client for ILE

Chapter 4. The Web services client for ILE installation
details

This chapter describes the Web services client for ILE package, including what you need to do to install
Web services client for ILE and a description of the various components that make up the Web services
client for ILE package.

Installing Web services client for ILE

Web services client for ILE is included in option 3 (Extended Base Directory Support) of the base
operating system (e.g. 5761SS1 for i 6.1, 5770SS1 for i 7.1, etc.).

In addition to installing base option 3 of the operating system, the following prerequisite products will
also need to be installed:

• System Openness Includes - base option 13 of operating system
• Qshell - base option 30 of operating system
• PASE - base option 33 of operating system
• Digital Certificate Manager - base option 34 of operating system
• IBM Technology for Java SE 7 32 bit
• One or more of the following ILE compilers :

– ILE C++ - option 52 of 57xxWDS. The ILE C++ compiler does not need to be installed if you do not
plan on generating C++ stubs.

– ILE C - option 51 of 57xxWDS. The ILE C compiler does not need to be installed if you do not plan on
generating C or RPG stubs.

– ILE RPG - option 31 of 57xxWDS. The ILE RPG compiler does not need to be installed if you do not
plan on generating RPG stubs.

Note: After installing the various license product options, you should load the latest HTTP Group PTF
since all fixes and enhancements are packaged as part of the HTTP Group PTF. It would also be wise to
load the latest Java group PTF. The various group PTFs for an IBM i release may be found at the IBM
Support Portal.

The Web services client for ILE package
The installation directory for Web Services Client for ILE is /QIBM/ProdData/OS/WebServices/V1/
client. In this chapter, and throughout this documentation, the installation directory is shown as
<install_dir>.

When the package has been installed, the installation directory (<install_dir>) contains the following
directory structure:

© Copyright IBM Corp. 2011, 2018 55

http://www-912.ibm.com/s_dir/sline003.NSF/GroupPTFs
http://www-912.ibm.com/s_dir/sline003.NSF/GroupPTFs

Figure 18: Install directory structure

The following table gives an overview of the contents of each directory:

Table 7: Contents of installed directories

Installed directory Contents

<install_dir>/bin Contains the wsdl2ws.sh and wsdl2rpg.sh QShell scripts that
are used to invoke the Java tool in order to generate Web service
stubs.

<install_dir>/docs Contains the Web Services Client for ILE API documentation in
HTML format.

<install_dir>/etc This directory level contains an example axiscpp.conf
configuration file.

<install_dir>/include Web Services Client for ILE header files, which are required for
building web service specific generated stubs.

<install_dir>/lib Contains all of the built libraries needed for building web service
specific generated stubs.

<install_dir>/prereqs/java The prerequisite Java jar files that are required for the
wsdl2ws.sh and wsdl2rpg.sh QShell scripts.

<install_dir>/samples The location of the samples that accompany Web Services Client
for ILE.

<install_dir>/WSDL2Ws The Java tool that is used to generate Web service stubs.

56 IBM i: Web Services Client for ILE

Chapter 5. Command line tools

Web service client for ILE provides the following commands: wsdl2ws.sh and wsdl2rpg.sh.

The commands can be found in the <install_dir>/bin directory.

The commands must be run from within Qshell. There are several ways to run QShell commands:

• Invoke the fully qualified path name of the command from within QShell (to enter the interactive shell
session you would issue STRQSH CL command). For example,

<install_dir>/bin/wsdl2ws.sh [arguments] WSDL-URI

• Invoke the script from the IBM i command line or from an IBM i CL program. To use this method, run the
STRQSH CL command and specify the fully qualified path name of the script. For example:

STRQSH CMD('<install_dir>/bin/wsdl2ws.sh [arguments] WSDL-URI')

The following sections gives more details of the supported commands.

wsdl2ws.sh command
The wsdl2ws.sh command enables you to generate Web service client stubs (sometimes referred to
service interface stubs or Web service client proxies) from a WSDL file. The wsdl2ws.sh command uses
the WSDL that is passed to it, and any associated XSD files, to create the client stub code.

Synopsis

wsdl2ws.sh [arguments] WSDL-URI

Arguments

Required arguments

WSDL-URI
Specifies the location of the input WSDL file using a Universal Resource Identifier (URI). You can also
use a regular file path if the WSDL file is on the local file system.

Optional arguments

-h, -help
Displays a help message and exits.

-l<c|c++|rpg>
Target language - default is c++. C or RPG stubs can also be generated.

-o<directory>
Sets the root directory for emitted files. Default is the current working directory. If a directory in the
specified path <directory> does not exist, the directory will be created.

-ms<max-string-size>
Maximum size to use when defining RPG character fields to hold string data. Minimum value is 16.
Maximum value for IBM i 5.4 is 650004. Maximum value for IBM i 6.1 and subsequent releases is
80000004. Default is 128. This option is valid only if -lrpg is specified.

-mb<max-binary-size>
Maximum size to use when defining RPG character fields to hold binary data (XSD hexBinary and
base64Binary types). Minimum value is 48. Maximum value for IBM i 5.4 is 650004. Maximum value
for IBM i 6.1 and subsequent releases is 160000004. This option is valid only if -lrpg is specified.

4 Theoretical limit. Actual limit is dependent on system resources and programming language limitations.

© Copyright IBM Corp. 2011, 2018 57

-ma<max-array-size>
Maximum size to use when defining RPG arrays. Minimum value is 1. Maximum value for IBM i 5.4 is
320004. Maximum value for IBM i 6.1 and subsequent releases is 80000004. Default is 20. This
option is valid only if -lrpg is specified.

-s<service-program>
Path to service program to be built using the generated code. For example, -s/QSYS.LIB/MYLIB.LIB/
MYWS.SRVPGM. The path can also point to a library, in which case the name of the service program
will be the prefix (specified by the -p option) appended with 'WS.SRVPGM'. If the option is not
specified, a service program is not built.

-d
Generate service program with debug views. If specified, lowest level of optimization is used. Default
is to generate fully optimized code with no debug views.

-L
Generate spooled file compiler listing. Default is to not generate a compiler listing.

-p<prefix>
1-3 character prefix. The prefix will be used in the names of module objects (*MODULE). It will also be
used in the service program name if a name is not passed on the -s option.

-v
Be verbose - will show exception stack trace when exceptions occur.

-t<timeout>
Specifies how long the command waits, in seconds, for the WSDL-URI to respond before giving up.
The default is 0 (no timeout).

-b<binding-name>
Binding name that will be used to generate stub.

-w<wrapped|unwrapped>
Generate wrapper style or not - default is wrapped. This affects the definition of the Web service
operation that is generated - whether the Web service operation will have one input structure as a
parameter (unwrapped) or whether the individual fields in the structure can be passed as individual
parameters (wrapper-style). In order for an operation to be eligible for wrapper-style, the following
criteria must be met:

• There is at most one single part in input and output messages.
• Each part definition must reference an element.
• The input element must have the same name as the operation.
• The input and output elements have no attributes.

Usage notes

If you are getting exceptions when you specify a URI that uses HTTP with the SSL protocol (HTTPS), you
may need to import the security certificate into the Java runtime environment (JRE) keystore. You will first
have to obtain the certificate and save it to a file in the integrated file system. This typically is done by
using the WSDL URI (e.g. https://lp02ut18:9080/web/services/ConvertTemp?wsdl) in your
web browser and using the browser to view and save the certificate information. The general steps to get
the certificate are as follows:

1. Bring up a browser and use the WSDL URI as the URL and press enter.
2. You should get a security alert. At this point view the certificate.
3. Go to tab or click on link that will allow you to view the certificate details.
4. Export the file (for Internet Explorer ensure format is DER encoded binary X.509 (.CER)) to your

system.

58 IBM i: Web Services Client for ILE

Once the certificate is stored on your system, you will now need to import the certificate using the
keytool command into the keystore for the JRE that is being used by the wsdl2ws.sh tool. For IBM i
6.1 and previous releases, use the following command from within the QShell shell interpreter:

/qopensys/QIBM/ProdData/JavaVM/jdk50/32bit/jre/bin/keytool
-import -trustcacerts -storepass changeit -file <certificate_file>
-keystore /qopensys/QIBM/ProdData/JavaVM/jdk50/32bit/jre/lib/security/cacerts

For IBM i 7.1, use the following command from within the QShell shell interpreter:

/qopensys/QIBM/ProdData/JavaVM/jdk60/32bit/jre/bin/keytool
-import -trustcacerts -storepass changeit -file <certificate_file>
-keystore /qopensys/QIBM/ProdData/JavaVM/jdk60/32bit/jre/lib/security/cacerts

Note: The password used for the -storepass option, changeit, is the default password for the
keystore. It may have been changed on your system.

Examples

1. The following generates RPG stub code in directory /Stub/rpg using URI to WSDL file and compiles
the stub code into a service program:

wsdl2ws.sh -lrpg -o/Stub/rpg -s/qsys.lib/ws.lib/wsrpg.srvpgm
 http://lp02ut18:10021/web/services/ConvertTemp?wsdl

2. The following generates C stub code in directory /Stub/c using path to WSDL file and compiles the
stub code into a service program:

wsdl2ws.sh -lc -o/Stub/c -s/qsys.lib/ws.lib/wsc.srvpgm
 /Stub/ConvertTemp.wsdl

wsdl2rpg.sh command

The wsdl2rpg.sh command has the same options as wsdl2ws.sh with the exception of the -l (target
language) option. Specifying wsdl2ws.sh with -lrpg is the same as using the wsdl2rpg.sh command.

Command line tools 59

60 IBM i: Web Services Client for ILE

Chapter 6. Configuration files

The Axis engine will process the following configuration files:

• The axiscpp.conf file
• The Web Service Deployment Descriptor (WSDD) file

Each will be described in the following sections.

The axiscpp.conf file

The Axis configuration file axiscpp.conf affects the processing of the Axis engine if certain
configuration properties are inserted in the file. The default axiscpp.conf file is located in
<install_dir>/etc and is shown below - a file with no properties defined:

The comment character is '#'
Available directives are as follows

ClientWSDDFilePath: The path to the client WSDD
SecureInfo: The GSKit security information
#

The axiscpp.conf file supports the following properties:

Table 8: List of axiscpp.conf configuration file properties

Property Description

ClientWSDDFilePa
th

Used to define the path to the Web Services Deployment Descriptor (WSDD) file.
The WSDD file contains information on handlers. For example:

ClientWSDDFilePath:/conf/clientHandlers.wsdd

See “The Web services deployment descriptor (WSDD) file” on page 63 for
further details on the WSDD file.

© Copyright IBM Corp. 2011, 2018 61

Table 8: List of axiscpp.conf configuration file properties (continued)

Property Description

SecureInfo Used to define SSL information that is to be used by all Web service clients (i.e.
you are not setting the SSL information programmatically). The property value
contains comma-delimited strings as follows (information should all be on one
line):

SecureInfo:keyRingFile,keyRingPasswordOrStash,keyRingLabel,
v2CipherSpec,v3CipherSpec,tlsCipherSpec,
tlsV11CipherSpec,tlsV12CipherSpec

where:
keyRingFile

Full path and filename to the certificate store file to be used for the secure
session or SSL environment.

keyRingPassword
The password for the certificate store file to be used for the secure session or
SSL environment.

keyRingLabel
The certificate label associated with the certificate in the certificate store to
be used for the secure session or SSL environment.

v2CipherSpec
The list of SSL Version 2 ciphers to be used for the secure session or the SSL
environment. Specifying NONE for this field will disable SSL Version 2 ciphers.
Valid values: 01, 02, 03, 04, 06 or 07.

v3CipherSpec
The list of SSL Version 3/TLS Version 1 ciphers to be used for the secure
session or the SSL environment. Specifying NONE for this field will disable SSL
Version 3 ciphers. Valid values: 00, 01, 02, 03, 04, 05, 06, 09, 35, 0A, 2F, or
35.

tlsCipherSpec
Whether to enable or disable TLS Version 1 ciphers. A value of NONE will
disable the ciphers; any other value will enable the ciphers. By default, the
TLS Version 1 ciphers are enabled.

tlsV11CipherSpec
Whether to enable or disable TLS Version 1.1 ciphers. A value of NONE will
disable the ciphers; any other value will enable the ciphers. By default, the
TLS Version 1.1 ciphers are enabled.

tlsV12CipherSpec
Whether to enable or disable TLS Version 1.2 ciphers. A value of NONE will
disable the ciphers; any other value will enable the ciphers. By default, the
TLS Version 1.2 ciphers are enabled.

For example:

SecureInfo:/sslkeys/myKeyRing.kdb,axis4all,AXIS,NONE,05,NONE

To set the security information programmatically, see the programming
considerations chapter for the programming language you are interested in.

You only need to change this file if you are using handlers or securing your Web service communications
using SSL and you do not want to set SSL information programmatically. If you do need to add properties
to the file, then the following steps must be taken:

1. Create a directory.

62 IBM i: Web Services Client for ILE

2. Copy the <install_dir>/etc directory and directory contents into the newly created directory.

Note: It is important that you copy the directory and not update the configuration file that is shipped
with the product since any updates to the file will be lost when product PTFs are installed.

3. Reveal to the Axis engine the location of updated Axis configuration file by defining the
AXISCPP_DEPLOY environment and by using the CL command ADDENVVAR as follows:

 ADDENVVAR ENVVAR(AXISCPP_DEPLOY) VALUE('<MYINSTALL_DIR>')

where <MYINSTALL_DIR> is the path to the directory created in step 1. The environment variable
must be set in the job where the Web service application is to be run.

The Web services deployment descriptor (WSDD) file

The WSDD file contains the rules governing when the Axis engine must invoke a handler library (i.e.
service program). Service handlers and global handlers are defined in separate sections of the WSDD file.

The WSDD file is an XML style file containing information that the Axis engine uses as it builds request
messages and decodes response messages. A WSDD file has two main sections, one for service handlers
and one for global handlers. For service handlers, each service definition that requires a handler must be
defined with the appropriate handler list given for pre-pivot and post-pivot invocation. For global
handlers, the WSDD file only needs to list those handlers that are to be invoked pre-pivot and post-pivot.

Below is a sample WSDD file:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:C="http://xml.apache.org/axis/wsdd/providers/c"> 1

<!--Service Handler Definitions-->
<service name="Handler" provider="CPP:DOCUMENT" description="Handler"> 2
 <requestFlow> 3
 <handler name="myClientHandlerReq" type="/qsys.lib/samples.lib/handler.srvpgm"/> 4
 </requestFlow>

 <responseFlow> 5
 <handler name="myClientHandlerRes" type="/qsys.lib/samples.lib/handler.srvpgm"/> 6
 </responseFlow>
</service>

<!--Global Handler Definitions-->
<globalConfiguration name="GlobalHandler" provider="CPP:DOCUMENT" description="Global
Handler"> 7
 <requestFlow>
 <handler name="myGlobalHandlerReq" type="/qsys.lib/samples.lib/glbhandler.srvpgm"/>
 </requestFlow>

 <responseFlow>
 <handler name="myGlobalHandlerRes" type="/qsys.lib/samples.lib/glbhandler.srvpgm"/>
 </responseFlow>
</globalConfiguration>

</deployment>

Here is an explanation of the XML element tags in the WSDD file:

Line
Number Description

 1 The deployment tag is the root element.

Configuration files 63

Line
Number Description

 2 The service tag defines the Axis service for which the handlers specified within the
service tag are invoked whenever the web service is used.

The name attribute defines the name of the service and is used by the Axis engine to
determine when the handler is invoked. It does this by comparing the value specified in the
name attribute with the SOAP action (soapAction in WSDL) specified for a service. Thus, the
SOAP action must either appear in the WSDL or set in the client application if the handler is
to be called by the Axis engine. For the example above, the SOAP action must be set to
Handler.

The provider attribute defines the name of the provider for the service and must be set to
CPP:DOCUMENT.

The description attribute defines a comment for this line and is not used by the Axis
engine.

 3 The requestFlow tag defines the start of a list of one or more handlers that are invoked
when a request message is about to be transmitted. The handlers are invoked in the order in
which they appear in the WSDD file.

 4 The handler tag within a requestFlow defines the unique name of a handler to be
invoked, and the type, which is a fully qualified path to the location of the handler.

 5 The responseFlow tag defines the start of a list of one or more handlers that are invoked
when a response message has just been received. The handlers are invoked in the order in
which they appear in the WSDD file.

 6 The handler tag within a responseFlow defines the unique name of a handler to be
invoked, and the type, which is a fully qualified path to the location of the handler.

 7 The globalConfiguration tag defines the handlers that are not specific to a web service
and are called regardless of what web service is used.

The name attribute defines the name of the global handler and is not used by the Axis engine.

The provider attribute defines the name of the provider for the service and must be set to
CPP:DOCUMENT.

The description attribute defines a comment for this line and is not used by the Axis
engine.

64 IBM i: Web Services Client for ILE

Part 3. Using C++ stubs

This part of the document provides details regarding all things related C++ stub programming. If you have
no interest in C++ stub programming, you should skip this part of the document.

© Copyright IBM Corp. 2011, 2018 65

66 IBM i: Web Services Client for ILE

Chapter 7. WSDL and XML to C++ mappings

The wsdl2ws.sh command tool can generate C++ stub code. This chapter will describe the mappings
from WSDL and XML Schema types to C++ language constructs.

Mapping XML names to C++ identifiers
XML names are much richer than C++ identifiers. They can include characters that are either reserved or
not permitted in C++ identifiers. The wsdl2ws.sh command generates unique and valid names for C++
identifiers from the schema element names using the following rules:

1. Invalid characters are replaced by underscore ('_'). Invalid characters include the following characters:

 / ! " # $ % & ' () * + , - . : ; < = > ? @ \ ^ ` { | } ~ []

2. Names that conflict with C++ keywords will have an underscore inserted at the beginning of the name.
For example, an XML element name of register will be generated as a C++ identifer of _register.

3. If a name that is used as a C++ identifier conflicts with a class with the same name, the identifier will
have _Ref appended to the name.

XML schema to C++ type mapping
Table 9 on page 67 specifies the C++ mapping for each built-in simple. The table shows the XML Schema
type and the corresponding the Axis type (column 2), which generally is a typedef to a C++ language built-
in type (column 3).

Table 9: XML to C++ type mapping

Schema Type Axis Type Actual C++ Type

Numeric

xsd:byte xsd__byte signed char

xsd:decimal xsd__decimal double

xsd:double xsd__double double

xsd:float xsd__float float

xsd:int xsd__int int

xsd:integer xsd__integer long long

xsd:long xsd__long long long

xsd:negativeInteger xsd__negativeInteger long long

xsd:nonPositiveInteger xsd__nonPositiveInteger long long

xsd:nonNegativeInteger xsd__nonNegativeInteger unsigned long long

xsd:positiveInteger xsd__positiveInteger unsigned long long

xsd:unsignedByte xsd__unsignedByte unsigned char

xsd:unsignedInt xsd__unsignedInt unsigned int

xsd:unsignedLong xsd__unsignedLong unsigned long long

xsd:unsignedShort xsd__unsignedShort unsigned short

© Copyright IBM Corp. 2011, 2018 67

Table 9: XML to C++ type mapping (continued)

Schema Type Axis Type Actual C++ Type

xsd:short xsd__short short

Date/Time/Duration

xsd:date xsd__date struct tm

xsd:dateTime xsd__dateTime struct tm

xsd:duration xsd__duration long

xsd:gDay xsd__gDay struct tm

xsd:gMonth xsd__gMonth struct tm

xsd:gMonthDay xsd__gMonthDay struct tm

xsd:gYear xsd__gYear struct tm

xsd:gYearMonth xsd__gYearMonth struct tm

xsd:time xsd__time struct tm

String

xsd:anyURI xsd__anyURI char *

xsd:anyType xsd__anyType char *

xsd:ENTITY xsd__ENTITY char *

xsd:ENTITIES xsd__ENTITIES char *

xsd:ID xsd__ID char *

xsd:IDREFS xsd__IDREFS char *

xsd:language xsd__language char *

xsd:Name xsd__Name char *

xsd:NCName xsd__NCName char *

xsd:NMTOKEN xsd__NMTOKEN char *

xsd:NMTOKENS xsd__NMTOKENS char *

xsd:normalizedString xsd__normalizedString char *

xsd:notation xsd__notation char *

xsd:QName xsd__QName char *

xsd:string xsd__string char *

xsd:token xsd__token char *

Other

xsd:base64Binary xsd__base64Binary Implemented as C++ class

xsd:boolean xsd__boolean enum

xsd:hexBinary xsd__hexBinary Implemented as C++ class

The Axis types are defined in the header file <install_dir>/include/axis/AxisUserAPI.hpp. The
struct tm structure used for many of the time-related types can be found in header file time.h.

68 IBM i: Web Services Client for ILE

Simple types

Most of the simple XML data types defined by XML Schema and SOAP 1.1 encoding are mapped to their
corresponding C++ types. You can see the details of the mapping in Table 9 on page 67 above.

One thing to keep in mind is how an element declaration with a nillable attribute set to true for a
built-in simple XML data type is mapped. If the simple type is not already a pointer type (i.e. all the string
types are pointer types), the simple type will be mapped to a pointer type. For example, the following
schema fragment will get mapped to an integer pointer type (i.e. xsd__int *):

<xsd:element name="code" type="xsd:int" nillable="true"/>

In addition, a simple type that is optional (minOccurs attribute set to 0) will also be mapped to a pointer
type if the type is not already a pointer type.

Complex types

XML Schema complex types are mapped to C++ classes with getters and setters to access each element
in the complex type.

Let us look at the mapping that occurs for the following schema fragment:

<xsd:complexType name="Book">
 <sequence>
 <element name="author" type="xsd:string"/>
 <element name="price" type="xsd:float"/>
 </sequence>
 <xsd:attribute name="reviewer" type="xsd:string"/>
</xsd:complexType>

The above example is an example of a complex type that is named Book, and contains two elements,
author and price, in addition to an attribute, reviewer. The complex type will get mapped to the
following C++ class:

class Book
{
 public:
 xsd__string reviewer;
 xsd__string author;
 xsd__float price;

 xsd__string getreviewer();
 void setreviewer(xsd__string InValue, bool deep = true);

 xsd__string getauthor();
 void setauthor(xsd__string InValue, bool deep = true);

 xsd__float getprice();
 void setprice(xsd__float InValue);
 .
 .
 .
};

So let use discuss what is generated. The class name is the name of the complex type. There are setter
and getter methods for elements as well as attributes. The setter methods have an additional parameter,
deep, with a default value of true. This parameter will always be generated for pointer types (but only if
type is simple), and is an indication whether the object should make a deep or shallow copy of the data. A
deep copy means that memory will be allocated and an exact copy of the data will be created and stored
in the object, and when the destructor for the object gets called the memory allocated to store that data
will be deleted. A shallow copy means a copy of the pointer is stored in the object, but the caller still owns
the data and any memory resources associated with the data, so when the destructor of the object is
called the memory will not be deleted (and user must ensure not to delete resources until the object is
reclaimed).

In addition to the Book C++ class, the following functions are generated:

int Axis_Serialize_Book(Book* param, IWrapperSoapSerializer* pSZ, bool bArray=false);
int Axis_DeSerialize_Book(Book* param, IWrapperSoapDeSerializer* pDZ);

WSDL and XML to C++ mappings 69

void* Axis_Create_Book(int nSize=0);
void Axis_Delete_Book(Book* param, int nSize=0);

The Axis_Serialize_Book() and Axis_DeSerialize_Book() functions are used by the Axis engine
to serialize and deserialize elements of type Book. The Axis engine uses the Axis_Create_Book()
function to create the C++ class that will hold the data during deserialization. The nSize parameter is
used to indicate whether a single (i.e. when nSize equals to zero) class is to be returned or an array (i.e.
when nSize greater than zero) of classes is to be returned. The Axis_Delete_Book() is the function
used by client applications to free up C++ objects of type Book that are returned by the Axis engine. In
the case of Axis_Delete_Book(), the nSize parameter is used to indicate whether a single class is to
be deleted or an array of classes is to be deleted.

Arrays

Axis defines the class Axis_Array as the parent class for all arrays. The class is defined in the header
file <install_dir>/include/axis/AxisUserAPI.hpp. The class is depicted below:

class Axis_Array
{
 public:
 Axis_Array();
 Axis_Array(const Axis_Array & original);
 virtual ~Axis_Array();
 void clone(const Axis_Array & original);
 virtual Axis_Array * clone() const;
 void set(void** array, int size, XSDTYPE type);
 void** get(int& size, XSDTYPE& type) const;
 void clear();
 void addElement(void* element);
 protected:
 void** m_Array;
 int m_Size;
 XSDTYPE m_Type;
 bool m_belongsToAxisEngine;
};

To access elements of the array, one would use the get() method, which will return a C-style array.
When calling get() method, two parameters are passed by-reference: the size and type (XSDTYPE is
an enumerator defined in <install_dir>/include/axis/TypeMapping.hpp) parameters. Upon
successful completion of the get() method, size will be set to the number of elements in the array and
type will indicate the element type.

Axis provides array objects for each of the defined simple types. These are defined in <install_dir>/
include/Axis/AxisUserAPIArrays.hpp. An example of a simple array type is xsd__int_Array.

Below is the same schema fragment we have used previously, but we have also increased the number of
authors a book can have to 10 by adding maxOccurs="10" to the author element:

<xsd:complexType name="Book">
 <sequence>
 <element name="author" type="xsd:string" maxOccurs="10"/>
 <element name="price" type="xsd:float"/>
 </sequence>
 <xsd:attribute name="reviewer" type="xsd:string"/>
</xsd:complexType>

For the above XML Schema, the following class is generated:

class STORAGE_CLASS_INFO Book
{
 public:
 xsd__string reviewer;
 class xsd__string_Array* author;
 xsd__float price;

 xsd__string getreviewer();
 void setreviewer(xsd__string InValue, bool deep = true);

 xsd__string_Array* getauthor();
 void setauthor(xsd__string_Array* InValue);

70 IBM i: Web Services Client for ILE

 xsd__float getprice();
 void setprice(xsd__float InValue);

 .
 .
 .
};

As you can see, the string array class is now being used to store the values for the author element.

WSDL to C++ mapping
Now that we understand how the XML Schema types are mapped to Axis-defined language types, we can
now review how a service described in a WSDL document gets mapped to the corresponding C++
representation. The following sections will refer to the GetQuote.wsdl WSDL document that is shipped
as part of the product in directory <install_dir>/samples/getQuote and is listed in “The
GetQuote.wsdl File” on page 205 to illustrate how various WSDL definitions get mapped to C++. You
should note the following:

• GetQuote.wsdl has only one service called GetQuoteService.
• The service only has one port type called StockQuote.
• The StockQuote port type has only one operation called getQuote. The input to the getQuote

operation is a string (the stock identifier) and the output from the operation is a float (the stock's price).

If you want to fully understand the WSDL document structure, see “WSDL 1.1 document structure” on
page 24. Now let us see how various WSDL definitions are mapped. The following table summarizes the
WSDL and XML to C++ mappings:

Table 10: WSDL and XML to C++ mapping summary

WSDL and XML C++

xsd:complexType (structure)

Note: The xsd:complexType can also represent
a C++ exception if referenced by a wsdl:message
for a wsdl:fault.

C++ class.

Nested xsd:element or xsd:attribute C++ class property (i.e. a field in the class with
getter and setter methods)

xsd:complexType (array) C++ Axis array class.

wsdl:message Service interface method signature.

wsdl:portType Service interface.

wsdl:operation Service interface method.

wsdl:binding No direct mapping, affects SOAP communications
style and transport.

wsdl:service No direct mapping.

wsdl:port Used as default Web service location.

Mapping XML defined in wsdl:types

The wsdl2ws.sh command will either use an existing C++ type or generate a new C++ type (a C++ class)
for the XML schema constructs defined in the wsdl:types section. The mappings that the wsdl2ws.sh
command supports is discussed in “XML schema to C++ type mapping” on page 67. In general, the
wsdl2ws.sh command either will ignore constructs that it does not support or issue an error message.

WSDL and XML to C++ mappings 71

If we look at the wsdl:types part of the WSDL document we see that two elements are defined:
getQuote, defined as a complex type with one element of type xsd:string; and getQuoteResponse,
also defined as a complex type with one element of type xsd:float.

...
<wsdl:types>
 <ati:schema elementFormDefault="qualified"
 targetNamespace="http://stock.ibm.com"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ati="http://www.w3.org/2001/XMLSchema">

 <ati:element name="getQuote">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="arg_0_0" type="xsd:string"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>

 <ati:element name="getQuoteResponse">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="getQuoteReturn" type="xsd:float"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>
 </ati:schema>
</wsdl:types>
...

For the WSDL document fragment above, the wsdl2ws.sh command does not generate any new classes
since both elements are defined to be built-in simple types. The xsd:string type is mapped to
xsd__string and the xsd:float type is mapped to xsd__float.

Mapping of wsdl:portType

A port type is a named set of abstract operations and the abstract messages involved. The name of the
wsdl:portType will be used as the name of the Web service proxy (termed service interface) class. All
service interface classes inherit from the Stub class, which is the interface between the service interface
class and the Axis engine. The Stub class header file is located in <install_dir>/include/axis/
client/Stub.hpp.

Now let us see how the wsdl:portType below gets mapped.

...
<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

The wsdl2ws.sh command will generate a C++ class named StockQuote. The service interface class
will contain methods mapped from the wsdl:operation elements defined in the wsdl:portType
(refer to “Mapping of wsdl:operation” on page 73 for further explanation of the mapping of
wsdl:operation). The above WSDL port type definition maps to the following C++ service interface:

class StockQuote : public Stub
{
public:
 StockQuote(const char* pchEndpointUri, AXIS_PROTOCOL_TYPE eProtocol=APTHTTP1_1);
 StockQuote();
public:
 virtual ~StockQuote();
public:
 xsd__float getQuote(xsd__string Value0);
};

One thing to notice about the service interface class is that there are two constructors. If the one without
parameters is used, then the default URL to the Web service will be used, which is whatever is specified in

72 IBM i: Web Services Client for ILE

wsdl:port. If the constructor with parameters is used, you can specify a URL to the Web service in
addition to specifying a transport protocol. However, the only protocol that is supported by Web Services
Client for ILE is HTTP.

Mapping of wsdl:operation

A wsdl:operation within a wsdl:portType is mapped to a method of the service interface. The name
of the wsdl:operation is mapped to the name of the method.

The wsdl:operation contains wsdl:input and wsdl:output elements that reference the request
and response wsdl:message constructs using the message attribute. Each method parameter is defined
by a wsdl:message part referenced from the input and output elements:

• A wsdl:part in the request wsdl:message is mapped to an input parameter.
• A wsdl:part in the response wsdl:message is mapped to the return value.
• If there are multiple wsdl:parts in the response message, they are mapped to output parameters.
• A wsdl:part that is both the request and response wsdl:message is mapped to an inout parameter

The wsdl:operation can contain wsdl:fault elements that references wsdl:message elements
describing the fault (refer to “Mapping of wsdl:fault” on page 74 for more details on wsdl:fault
mapping).

The Web Services Client for ILE supports the mapping of operations that use either a request/response or
one-way (where wsdl:output is not specified in the wsdl:operation element) message exchange
pattern. For the one-way message exchange pattern, the Axis engine expects an HTTP response to be
returned from the Web service. Under normal conditions, the HTTP response would contain no SOAP
data. However, if a SOAP fault is returned by the Web service, the Axis engine will process the fault and
throw a C++ exception.

Below are the wsdl:message and wsdl:portType WSDL definitions in the GetQuote.wsdl document:

...
<wsdl:message name="getQuoteRequest">
 <wsdl:part element="impl:getQuote" name="parameters"/>
</wsdl:message>

<wsdl:message name="getQuoteResponse">
 <wsdl:part element="impl:getQuoteResponse" name="parameters"/>
</wsdl:message>

...
<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

The above wsdl:operation definition gets mapped to the following service interface method:

 xsd__float getQuote(xsd__string Value0);

Mapping of wsdl:binding

The wsdl:binding information is used to generate an implementation specific client side stubs. What
code is generated is dependent on protocol-specific general binding data, such as the underlying
transport protocol and the communication style of SOAP.

There is no C++ representation of the wsdl:binding element.

Mapping of wsdl:port

A wsdl:port definition describes an individual endpoint by specifying a single address for a binding.

WSDL and XML to C++ mappings 73

The specified endpoint will be used in as the default location of the Web service. So in the case of our
example, the URL specified in wsdl:port definition below will be the URL that is used when you
construct a StockQuote object using the StockQuote() constructor.

...
<wsdl:service name="GetQuoteService">
 <wsdl:port name="StockQuote" binding="impl:StockQuoteSoapBinding">
 <wsdlsoap:address
 location="http://localhost:9080/StockQuote/services/GetQuoteService"/>
 </wsdl:port>
</wsdl:service>
...

Mapping of wsdl:fault

Within the wsdl:operation definition you can optionally specify the wsdl:fault element, which
specifies the abstract message format for any error messages that may be returned as a result of invoking
a Web service operation.

The wsdl:fault element must reference a wsdl:message that contains a single message part. As of
this writing, Axis only supports message parts that are xsd:complexType types. The mapping that
occurs is similar to the mapping that occurs when generating code for complex types. However, the C++
class that is generated will inherit from the SoapFaultException class in order to store standard SOAP
fault related information such as the faultcode, faultstring, faultactor, etc (for more information on SOAP
faults, see “Error handling (SOAP faults)” on page 20). The SoapFaultException class header file is
located in <install_dir>/include/axis/SoapFaultException.hpp.

Let us look at an example. If we extend the GetQuote.wsdl WSDL document by adding the following
element in the wsdl:types definitions:

...
<element name="getQuoteFault">
 <complexType>
 <sequence>
 <element name="errorInfo" type="xsd:string"></element>
 <element name="errorReturnCode" type="xsd:int"></element>
 </sequence>
 </complexType>
</element>
...

And also adding a new wsdl:message definition that is referenced in the wsdl:operation and
wsdl:binding definitions:

...
<wsdl:message name="getQuoteFault">
 <wsdl:part element="impl:getQuoteFault" name="fault"/>
</wsdl:message>

<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 <wsdl:fault message="impl:getQuoteFault" name="getQuoteFault"/>
 </wsdl:operation>
</wsdl:portType>

...
<wsdl:binding name="StockQuoteSoapBinding" type="impl:StockQuote">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getQuote">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getQuoteRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

 <wsdl:output name="getQuoteResponse">

74 IBM i: Web Services Client for ILE

 <wsdlsoap:body use="literal"/>
 </wsdl:output>

 <wsdl:fault name="getQuoteFault">
 <wsdlsoap:fault name="getQuoteFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
</wsdl:binding>
...

Now with the changes made above, the type mapping will result in the following C++ SOAP fault exception
class:

class getQuoteFault : public SoapFaultException
{
public:
 xsd__string errorInfo;
 xsd__int errorReturnCode;

 xsd__string geterrorInfo();
 void seterrorInfo(xsd__string InValue, bool deep = true);

 xsd__int geterrorReturnCode();
 void seterrorReturnCode(xsd__int InValue);

 getQuoteFault();
 getQuoteFault(const getQuoteFault & original);

 void reset();
 virtual ~getQuoteFault() throw();

private:
 bool __axis_deepcopy_errorInfo;
};

This exception class will be thrown by the getQuote() method if a Web service returns a SOAP fault that
has an element name that matches getQuoteFault. So what happens to SOAP faults that do not match
any specified in wsdl:fault? That is where the OtherFaultException C++ class comes into play. The
OtherFaultException exception is used to throw SOAP faults that do not match any specified in
wsdl:fault (or if wsdl:fault was not even specified). The class inherits from the
SoapFaultException class and contains the getFaultDetail() method that simply returns the
SOAP fault contents as a string.

More information on exception handling in C++ can be found in “C++ exception handling” on page 85.

WSDL and XML to C++ mappings 75

76 IBM i: Web Services Client for ILE

Chapter 8. Developing a Web services client
application using C++ stubs

This chapter will describe the steps one must go through to develop a Web service client application using
a C++ stub code.

To develop a Web services client application, the following steps should be followed:

1. Generate the client Web service stubs using the wsdl2ws.sh command.
2. Complete the client implementation.
3. (Optional) Create client-side handler.
4. Deploy the application.

The following sections will discuss each of these steps. For illustrative purposes we will be using the
sample code that is shipped as part of the product in directories <install_dir>/samples/getQuote.
We will be using the following files:

Table 11: Files in the samples directory

File name Description

GetQuote.wsdl GetQuote WSDL file.

myGetQuote.cpp Client implementation code written in C++.

Source listings for the client application code can be found at Appendix A, “Code Listings for myGetQuote
Client Application,” on page 205.

Generating the C++ stub code
Before you can create a web service client application, you must first generate the C++ client stub using
the wsdl2ws.sh tool. The wsdl2ws.sh tool uses the WSDL file that is passed to it, and any associated
XSD files referenced in the WSDL file, to create client stubs.

We will be using the GetQuote.wsdl file located in directory <install_dir>/samples/getQuote.
The WSDL file comes from the installation Web Services Samples provided with WebSphere® Application
Server (Version 5.0 or later). This very simple sample provides a good introduction to using wsdl2ws.sh.

To generate the client stub from the WSDL source file, complete the following steps.

1. Create a library called MYGETQUOTE in which the program objects will be stored by issuing the CL
command CRTLIB from the CL command line as follows:

CRTLIB MYGETQUOTE

2. Start a Qshell session by issuing the QSH CL command from the CL command line.
3. Run the wsdl2ws.sh tool to generate the client C++ stub as shown in following example:

<install_dir>/bin/wsdl2ws.sh -o/myGetQuote/CPP
 -s/qsys.lib/mygetquote.lib/wscpp.srvpgm
 <install_dir>/samples/getQuote/GetQuote.wsdl

If you examine the command, you see that we are indicating to the wsdl2ws.sh tool that the generated
stub code should be stored in directory /myGetQuote/CPP, and that a service program, /qsys.lib/
mygetquote.lib/wscpp.srvpgm, should be created using the generated stub code.

© Copyright IBM Corp. 2011, 2018 77

The files generated by the wsdl2ws.sh tool is shown below:

StockQuote.cpp StockQuote.hpp ws.cl

Note that in addition to C++ code being generated, the file ws.cl is also generated. This file is a CL source
file that has the CL commands needed to recreate the service program. You can copy this source file to a
source physical file and create a CL program. Here is the contents of the file:

 PGM
 DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE(MYGETQUOTE)
 DCL VAR(&SRVPGM) TYPE(*CHAR) LEN(10) VALUE(WSCPP)

 QSYS/CRTCPPMOD MODULE(&LIB/wsc0) +
 OPTIMIZE(40) DBGVIEW(*NONE) +
 SRCSTMF('/myGetQuote/CPP/StockQuote.cpp') +
 INCDIR('/QIBM/PRODDATA/OS/WEBSERVICES/V1/CLIENT/INCLUDE') +
 REPLACE(*YES) ENUM(*INT) +
 TEXT('StockQuote.cpp')

 QSYS/CRTSRVPGM SRVPGM(&LIB/&SRVPGM) +
 MODULE(+
 &LIB/wsc0 +
) +
 EXPORT(*ALL) ACTGRP(*CALLER) +
 BNDSRVPGM(QSYSDIR/QAXIS10C) +
 TEXT('ws Web service')

 ENDPGM

Now that the C++ stub code has been created and a service program containing the C++ stub code
created, you can go on to the next step, “Completing C++ client implementation” on page 78.

Completing C++ client implementation
After the client stubs have been generated, the stubs can be used to create a Web service client
application.

We will illustrate what you need to do to create C++ applications using the example of the C++ stub code
generated from GetQuote.wsdl by the wsdl2ws.sh tool as described in “Generating the C++ stub
code” on page 77. However, before we continue, you should note the following points5:

• GetQuote.wsdl has only one service called getQuoteService.
• The service only has one port type called StockQuote.
• The StockQuote port type has only one operation called getQuote.
• The Web service is called StockQuote. The Web service is implemented as a class of the same name.

You can create either a dynamic or static instance of the class and then call any available public
method.

To build the myGetQuote client application, complete the following steps.

1. Change the current working directory to the location of the C++ stub code. Issue the following
command from the CL command line:

cd '/myGetQuote/CPP'

5 If you have not read Chapter 7, “WSDL and XML to C++ mappings,” on page 67 then it would be a good time
to do so prior to reading this section.

78 IBM i: Web Services Client for ILE

2. Copy the sample C++ code the uses the generated stub code from the product samples directory to
the current working directory by issuing the following command from the CL command line:

COPY OBJ('<install_dir>/samples/getQuote/myGetQuote.cpp') TODIR('/myGetQuote/CPP')

3. Change the ServerName and PortNumber in the file copied in the previous step to match your server.
If WebSphere Application Server is on your own machine and the default values have been used,
ServerName is localhost and PortNumber is 9080.

4. Build the client application by using the following commands from the CL command line:

CRTCPPMOD MODULE(MYGETQUOTE/mygetquote)
 SRCSTMF('/myGetQuote/CPP/myGetQuote.cpp')
 INCDIR('/qibm/proddata/os/webservices/v1/client/include')
 ENUM(*INT)

CRTPGM PGM(MYGETQUOTE/MYGETQUOTE)
 MODULE(MYGETQUOTE/MYGETQUOTE)
 BNDSRVPGM(QSYSDIR/QAXIS10C MYGETQUOTE/WSCPP)

When you have finished coding and building your web service client application, you are ready to deploy
and test the application as described in “Deploying the client application” on page 79.

Note: If you want to use one or more handlers with your application, see Chapter 9, “ Creating client-side
handlers,” on page 81.

Deploying the client application
When you have finished coding and building your web service client application, you are ready to deploy
and test the application.

In our example, we have not modified the Axis configuration file axiscpp.conf. However, if we had
modified it (e.g. we were using client-side handlers), we would need to ensure that the AXISCPP_DEPLOY
environment variable points to the directory containing the /etc directory (the axiscpp.conf file would
be located in the /etc directory), as described in “The axiscpp.conf file” on page 61.

The steps below use the example myGetQuote client application, and assume that a GetQuote service is
running. (This service is with the samples supplied with WebSphere Application Server Version 5.0.2 or
later). If you do not have the appropriate service, you must create the service code from the WSDL in the
samples directory.

Once you have confirmed the above prerequisites, run and test the client application by completing the
following steps.

1. Run the myGetQuote application.
2. Check that the myGetQuote application has returned the price of IBM shares in dollars.

The example screen shot below shows the myGetQuote application run from the command line in which
client-side handlers are not being used.

> call MYGETQUOTE/MYGETQUOTE
 The stock quote for IBM is $94.33

If we were had implemented client-side handlers, then we would have seen the following results:

> call MYGETQUOTE/MYGETQUOTE
 Before the pivot point Handler can see the request message.
 Past the pivot point Handler can see the response message.
 The stock quote for IBM is $94.33

Developing a Web services client application using C++ stubs 79

80 IBM i: Web Services Client for ILE

Chapter 9. Creating client-side handlers

This chapter describes how to develop client side handlers6 for use with your Web service client
applications.

Client side handlers are optional. You only need to use handlers if you need to alter the SOAP header of a
request SOAP message before the message is transmitted7, or the SOAP header of a response SOAP
message before the body of the message is deserialized. The important point to remember is that only the
SOAP header can be changed inside a request or response handler.

As has been previously discussed, Web Services Client for ILE supports two basic types of handler:
service handlers, which is specific to the Web service with which it is associated; and global handlers,
which is called regardless of the Web service port or message name. From a coding perspective, there are
no differences between service and global handlers. A service handler is associated with a particular
service/port combination and is only invoked when a SOAP message with the appropriate destination has
been called. A global handler is always invoked, regardless of the message destination.

To allow a handler to be used, you must create or amend the WSDD and axiscpp.conf files to include
the appropriate details, as described in “The Web services deployment descriptor (WSDD) file” on page
63 and “The axiscpp.conf file” on page 61.

Handlers must conform to the rules listed below:

• One or more handlers can be called together for outgoing or incoming requests. They are called in the
order in which they appear in the WSDD file.

• Must be written in C++ language.
• Each handler must be created as an individual shared library (i.e. service program).
• The handler must implement the BasicHandler interface, defined in <install_dir>/include/
axis/BasicHandler.hpp header file.

• Each handler library must have the following export functions:

int GetClassInstance(BasicHandler ** ppClassInstance);
int DestroyInstance(BasicHandler * pClassInstance);

The GetClassInstance() function returns an instance of the handler, while DestroyInstance() is
used to destroy the instance of the handler.

• Handler names must be unique.
• Handlers can only modify the SOAP header part of the message.
• If the WSDL file that you are using does not specify SOAP actions, then these need to be added to your

client application before calling the web service method, if you want the service handler to be invoked.
The method that you use for doing this is setTransportProperty() (C++ Stub class) or
axiscStubSetTransportProperty() (C function).

If the same handler is to be used on the request and response sides, take care to ensure that the handler
is aware of its invoked context (i.e. pre-pivot and post-pivot).

To create client-side handlers, perform the following steps:

1. Implement client-side handler.
2. Create the WSDD file.
3. Create axiscpp.conf file and update file so that it points to WSDD file.

6 An overview of client-side handler concepts can be found at “Client-side handlers” on page 48.
7 There are also APIs that allow you to add SOAP headers, so handlers are not necessarily required if you

want to add headers to a request SOAP message.

© Copyright IBM Corp. 2011, 2018 81

The following sections will discuss each of these steps. For illustrative purposes we will be using the
sample code that is shipped as part of the product in the directory <install_dir>/samples/
handlers. We will be using the following files:

Table 12: Files in the samples/handlers directory

File name Description

client.wsdd The WSDD file that defines the client handler.

myClientHandler.cpp Client handler implementation.

myClientHandler.hpp Client handler implementation header file.

myClientHandlerFactory.cpp Client handler factory implementation.

Source listings for the handler code can be found at Appendix B, “Code Listings for Client Handler,” on
page 213.

Implementing a client-side handler

To create a handler, you first create a client handler header file, a client handler file and client handler
factory file. You can then use these files to build your handler library in the same way as you would any
other library. The example files supplied with Web Services Client for ILE provide templates that you can
use for guidance when you are creating your own handlers.

Since we will not be modifying the sample handler files, we just need to build the service program
containing the handler as follows:

1. Create a library called HANDLERS using the CL command CRTLIB from the CL command line as
follows:

CRTLIB HANDLERS

2. Change the current working directory to the location of the sample handler files. Issue the following
command from the CL command line:

cd '/qibm/proddata/os/webservices/v1/client/samples/handlers'

3. Build the handler service program using the following CL commands:

CRTCPPMOD MODULE(HANDLERS/mychfact) SRCSTMF('myClientHandlerFactory.cpp')
 INCDIR('/qibm/proddata/os/webservices/v1/client/include') ENUM(*INT)

CRTCPPMOD MODULE(HANDLERS/mych) SRCSTMF('myClientHandler.cpp')
 INCDIR('/qibm/proddata/os/webservices/v1/client/include') ENUM(*INT)

CRTSRVPGM SRVPGM(HANDLERS/MYCLH)MODULE(HANDLERS/MYCH HANDLERS/MYCHFACT)
 EXPORT(*ALL) BNDSRVPGM(QSYSDIR/QAXIS10C)

Next step is create a WSDD file, see “Creating a WSDD File” on page 82.

Creating a WSDD File

The WSDD is used by the Axis engine to determine what handler is to be invoked and when is the handler
to be invoked as the SOAP request and response messages are being processed. So we need to create a
WSDD. The code below is an example of a WSDD file that has a service handler that will be called during
the pre-pivot and post-pivot phases.

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:C="http://xml.apache.org/axis/wsdd/providers/c">

82 IBM i: Web Services Client for ILE

<!--Service Handler Definitions-->
<service name="Handler" provider="CPP:DOCUMENT" description="Handler">
 <requestFlow>
 <handler name="myClientHandlerReq" type="/qsys.lib/HANDLERS.lib/MYCLH.srvpgm"/>
 </requestFlow>

 <responseFlow>
 <handler name="myClientHandlerRes" type="/qsys.lib/HANDLERS.lib/MYCLH.srvpgm"/>
 </responseFlow>
</service>

</deployment>

The interpretation of the above file is as follows. We are telling the Axis engine that the handler that is
located in /qsys.lib/HANDLERS.lib/MYCLH.srvpgm should be invoked for the service that sets the
SOAP action to Handler during the pre-pivot and post-pivot phases.

For a detailed description of each tag and the parts that the WSDD file may contain, see “The Web
services deployment descriptor (WSDD) file” on page 63.

Finally, we need to point to the WSDD file in the axiscpp.conf file.

Updating axiscpp.conf file to point to WSDD file

If you are using client side handlers, you must add an additional line to the axiscpp.conf configuration
file, defining the path to the WSDD file. The following example shows the axiscpp.conf file with WSDD
information added.

The comment character is '#'
Available directives are as follows

ClientWSDDFilePath: The path to the client WSDD
SecureInfo: The GSKit security information

ClientWSDDFilePath:/getQuote/client.wsdd

The important line of the above example is the first line after the comments, the ClientWSDDFilePath
definition. When this line appears in the axiscpp.conf file, Web Services Client for ILE uses this
reference to determine which handlers are to be included in the SOAP request/response message parser.

Creating client-side handlers 83

84 IBM i: Web Services Client for ILE

Chapter 10. C++ programming considerations
This chapter covers programming considerations when you begin writing your applications to take
advantage of Web services client for ILE C++ stub code.

C++ exception handling
Web Services Client for ILE uses exceptions to report back any errors that have occurred during the
transmission of a SOAP message. This includes errors that are detected by the Axis engine or SOAP faults
that are returned by the Web service.

In C++ applications, Web service stub methods that are invoked should be within a try block. How many
catch clauses you have depends on how much detail you want and whether there are SOAP faults
defined for the Web service operation that you want to handle separately. So let us take a look at an
example. Below is a wsdl:portType definition called MathOps that has a div operation and has three
SOAP faults defined - DivByZeroStruct, SpecialDetailStruct and OutOfBoundStruct:

...
<wsdl:portType name="MathOps">
 <wsdl:operation name="div">
 <wsdl:input message="impl:divRequest" name="divRequest"/>
 <wsdl:output message="impl:divResponse" name="divResponse"/>
 <wsdl:fault message="impl:DivByZeroStruct" name="DivByZeroStruct"/>
 <wsdl:fault message="impl:SpecialDetailStruct" name="SpecialDetailStruct"/>
 <wsdl:fault message="impl:OutOfBoundStruct" name="OutOfBoundStruct"/>
 </wsdl:operation>
</wsdl:portType>
...

The definition of the SOAP fault messages is as follows:

<complexType name="OutOfBoundStruct">
 <sequence>
 <element name="varString" nillable="true" type="xsd:string"/>
 <element name="varInt" type="xsd:int"/>
 <element name="specialDetail" nillable="true" type="impl:SpecialDetailStruct"/>
 </sequence>
</complexType>
<complexType name="SpecialDetailStruct">
 <sequence>
 <element name="varString" nillable="true" type="xsd:string"/>
 </sequence>
</complexType>
<complexType name="DivByZeroStruct">
 <sequence>
 <element name="varString" nillable="true" type="xsd:string"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varFloat" type="xsd:float"/>
 </sequence>
</complexType>

As has been previously discussed in “Mapping of wsdl:fault” on page 74, each SOAP fault defined in the
WSDL is represented as a generated C++ class. For example, the SOAP fault DivByZeroStruct is
represented by the following C++ class:

class DivByZeroStruct : public SoapFaultException
{
 public: xsd__string varString;
 xsd__int varInt;
 xsd__float varFloat;
 DivByZeroStruct();
 ~DivByZeroStruct() throw();
};

An instance of this exception class is thrown by the fault handler inside the MathOps stub, if such a fault
is returned by the server. If a SOAP fault that is not defined in the WSDL is returned, the fault handler will

© Copyright IBM Corp. 2011, 2018 85

throw an instance of the Axis-defined OtherFaultException exception. If you look at the generated
fault above and the OtherFaultException class you will find that both extend the
SoapFaultException class. So, the client application may catch a specific SOAP fault or any
SoapFaultException. In addition, the SoapFaultException extends AxisException, which the
Axis engine throws when it detects errors in the processing of a SOAP message, such as when the
endpoint URL of the server is invalid.

To sum it all up, a Web service client application can catch the different types of faults that may be thrown
by the stub and decode the contents appropriately. The following example shows how a client application
may catch and process exceptions:

// Attempt to divide by zero.
try
{
 // Create the Web Service with an endpoint URL.
 MathOps ws(pszEndpoint);

 // Call the div method with two parameters.
 // This will attempt to divide 1 by 0.
 int iResult = ws.div(1, 0);

 // Output the result of the division.
 cout << "Result is " << iResult << endl;
}
catch(DivByZeroStruct& dbzs)
{
 // Catch a divide by zero fault
 // This is a user soap fault defined in the WSDL
 cout << "DivByZeroStruct Fault: \"" << dbzs.varString << "\", "
 << dbzs.varInt << ", " << dbzs.varFloat << endl;
}
catch(SpecialDetailStruct& sds)
{
 // Catch a special detail fault
 // This is a user soap fault defined in the WSDL
 cout << "SpecialDetailStruct Fault: \"" << sds.varString << "\"" << endl;
}
catch(OutOfBoundStruct& oobs)
{
 // Catch an out of bounds fault
 // This is a user soap fault defined in the WSDL
 cout << "OutOfBoundStruct Fault: \"" << oobs.varString << "\", " << oobs.varInt
 << ", \"" << oobs.specialDetail->varString << "\"" << endl;
}
catch(SoapFaultException& sfe)
{
 // Catch any other SOAP faults
 cout << "SoapFaultException: " << sfe.getFaultCode() << " " << sfe.what() << endl;
}
catch(AxisException& e)
{
 // Catch an AXIS exception
 cout << "AxisException: " << e.getExceptionCode() << " " << e.what() << endl;
}
catch(exception& e)
{
 // Catch a general exception
 cout << "Unknown Exception: " << e.what() << endl;
}
catch(...)
{
 // Catch any other exception
 cout << "Unspecified Exception: " << endl;
}

C++ memory management
The WSDL specification provides a framework for how information is to be represented and conveyed
from place to place. Web services client for ILE maps this framework to program-language specific data
object, such as classes or structures. The data objects that are dynamically allocated from the storage
heap must be deleted in order to avoid memory leaks. Information is represented by four generic types:

86 IBM i: Web Services Client for ILE

simple types, arrays of simple type, complex types, and arrays of complex type. This section describes
what you need to be aware of in order to avoid memory leaks.

Built-in simple types
There are more than 45 built-in simple types, which are defined in <install_dir>/include/Axis/
AxisUserAPI.hpp. When a type is nillable or optional (that is, minOccurs=”0”), it is defined as a
pointer to a simple type.

The example below shows a typical simple type in a WSDL. The simple type used in this example is
xsd:int, which is mapped to C++ type xsd__int. The extract from the WSDL has an element called
addReturn of type integer. This element is used by the add operation, which uses the addResponse
element to define the type of response expected when the add operation is called.

<element name="addResponse">
 <complexType>
 <sequence>
 <element name="addReturn" type="xsd:int"/>
 </sequence>
 </complexType>
</element>

Later in the WSDL, the addResponse element is the response part for the add method. This produces the
following Web Services Client for ILE web services method prototype from the simple type in the WSDL:

public:
STORAGE_CLASS_INFO xsd__int add(…);

Thus, the user generated application code for this example is as follows:

xsd__int xsd_iReturn = ws.add(…);

When a type is nillable, (that is, nillable=”true”), optional (that is, minOccurs=”0”, or a text type
(such as xsd:string), it is defined as a pointer.

<element name="addResponse">
 <complexType>
 <sequence>
 <element name="addReturn" nillable=”true” type="xsd:int"/>
 </sequence>
 </complexType>
</element>

This produces the following Web Services Client for ILE web services method prototype:

public:
STORAGE_CLASS_INFO xsd__int * add(…);

The user generated application code produced by the nillable simple type in the WSDL is as follows:

xsd__int * xsd_piReturn = ws.add(…);

// Later in the code…

// Delete this pointer and set to NULL.
delete xsd_piReturn;

xsd_piReturn = NULL;

Note: The example above shows the deletion of the return value. Any pointer that Web Services Client for
ILE returns becomes the responsibility of the client application and does not go out of scope if the web
service is deleted. The user application must delete the pointer to the object type once it is no longer
required.

C++ programming considerations 87

Arrays of simple type
Web services client for ILE provides array objects for each of the defined simple types. These are defined
in <install_dir>/include/Axis/AxisUserAPIArrays.hpp. An example of a simple array type is
xsd__int_Array.

The following example shows an extract from a WSDL that has two elements called
simpleArrayRequest and simpleArrayResponse of array type integer. These elements are used by
the simpleArray operation, which uses the simpleArrayRequest element to define the type of
request and simpleArrayResponse element to define the type of response expected when the
simpleArray operation is called.

<xsd:element name="simpleArrayRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="simpleTypeRes" type="xsd:int" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name="simpleArrayResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="simpleTypeReq" type="xsd:int" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Note that the maxOccurs attribute is used in this example. Web services client for ILE creates an array
object for any type that is declared as having maxOccurs greater than one. Later in the WSDL, the
simpleArrayRequest and simpleArrayResponse become the input and output parameters for the
simpleArray method whose prototype is shown below:

public: xsd__int_Array * simpleArray(xsd__int_Array * pValue);

The prototype requires input and output arrays to be created. To avoid memory leaks, these must be
created and managed properly. For information about the generation management and deletion of a
typical input and output array, see the following two subsections:

• “Array types as input parameters” on page 88
• “Array types as output parameters” on page 89

Array types as input parameters
The prototype method requires an input array to be created. This array must be created and managed
properly.

If an array is to be used as an input parameter, then it has to be created and filled.

The following example shows the typical usage of a nillable simple array type required by a generated
stub. The array is an example of the input array to the method. The example assumes that the array
contains three elements whose values are 0, 1 and 2 respectively.

// Need an input array of 3 elements.
int iArraySize = 3;

// Final object type to be passed as an input parameter to the web service.
xsd__int_Array iInputArray;

// Preparatory array that contains the values to be passed. Note that the
// array is an array of pointers of the required type.
xsd__int ** ppiPrepArray = new xsd__int*[iArraySize];

// Loop used to populate the preparatory array.
for(int iCount = 0 ; iCount < iArraySize ; iCount++)
{
// Each element in the array of type pointers is filled with a pointer to an
// object of the required type. In this example we have chosen the value of
// each element to be the same as the current count and so have passed this
// value to the new instance of the pointer.
ppiPrepArray[iCount] = new xsd__int(iCount);

88 IBM i: Web Services Client for ILE

}

// Set the contents of the final object to contain the elements of the
// preparatory array.
iInputArray.set(ppiPrepArray, iArraySize);

… Call the web service(s) that use the input array …

// No longer require iInputArray. Delete the preparatory array held within.
for(int iCount = 0 ; iCount < iArraySize ; iCount++)
{
// Delete each pointer in the pointer array.
 delete ppiPrepArray[iCount];
ppiPrepArray[iCount] = NULL;
}

// Delete the array of pointers and then set the value to NULL so that it
// cannot be reused.
delete [] ppiPrepArray;
ppiPrepArray = NULL;

When the method returns, iInputType can be destroyed. If iInputType was created as a pointer
(piInputType), then the client user code must remember to delete it otherwise the code will have
created a memory leak.

Array types as output parameters
The prototype method requires an output array to be created. This array must be created and managed
properly.

Following on from the example in “Array types as input parameters” on page 88, the following example
shows the client application calling the simpleArray method on the web service and using the returned
array. The following example shows a typical usage of the method produced by the WSDL example of an
array of nillable simple type. The response integer array is not directly accessible. To get the embedded
integer array, the user has to call the get method on the piSimpleResponseArray object as follows:

xsd__int_Array * piSimpleResponseArray = ws.simpleArray(&iInputArray);

int iSize = 0; // Size of the array.

// Pointer to a pointer that will contain the array. Get the contents
// of the response. The return value will be a pointer to a pointer containing
// the array and iSize will contain the number of elements in the array.
// Note that it is a const pointer so cannot be manipulated.
const xsd__int ** ppiIntArray = piSimpleResponseArray->get((int&) iSize);

// Check if the array size greater than zero before processing it!
if(iSize > 0)
{

// For each element of the array...
for(int iCount = 0 ; iCount < iSize ; iCount++)
 {

// Check that that element is not null before use...
 if(ppiIntArray[iCount] != NULL)
 {
 cout <<“Element[” << iCount << “]=“ << *ppiIntArray[iCount] <<endl;
 }
 }
}

// Later in the code...

delete piSimpleResponseArray;

piSimpleResponseArray = NULL;

Notes:

1. The returned pointer is not NULL.
2. The user only needs to delete the object returned by the call to the web service. The client must not

delete any object that is extracted from within this object. For example, in the previous code sample,

C++ programming considerations 89

ppiIntArray must not be deleted by the user as it will be deleted by the parent object
(piSimpleArrayResponse) when that is deleted.

3. If the pointer to the array of pointers to integer values (ppiIntArray) is NULL, then this indicates an
empty array. If this is the case, iSize is equal to zero.

Complex types and arrays of complex type
When complex types are used in a web service, the same rules as for simple types apply.

Complex types

The following example shows classes produced from WSDL with a complex type. As shown in this
example, complex types only take shallow copies of the data when using the set and get methods.

class STORAGE_CLASS_INFO ComplexType
{
public:
 class xsd__string Message;
 class xsd__int MessageSize;

 xsd__string getMessage();
 void setMessage(xsd__string InValue);
 xsd__int getMessageSize();
 void setMessageSize(xsd__int InValue);

The client has to remember that when using pointers to objects, only the pointer is copied and it is not
cloned. For example, if a complex type contains a string, the client can set the contents of the string by
creating a local string and then using the set method on the complex object to copy that string into the
object.

The following example shows restrictions that can be applied when using a complex type:

xsd__int iStringLength = strlen(“Hello World”);
xsd_string myNewString = new char[iStringLength + 1];

strcpy(myNewString, “Hello World”);

myComplexType.setMessage(myNewString);

delete myNewString; // Do this and myComplexType.Message will be left pointing to
 // invalid memory.

Alternatively:

delete myComplexType; // Do this and myNewMessage will be pointing to invalid
 // memory.

The same rules as for simple types apply to the parameters of a complex type when used on a method
call. These rules are as follows:

• The client is responsible for generating the input parameter information and for deleting any objects
created during this process.

• The client is responsible for deleting the output object returned by the method.
• If you have complex objects of the same type and you use the copy constructor, for example:

ComplexType * myNewComplexType = new ComplexType(myExistingComplexType);

then this takes a deep copy of all the member variables from the original object to populate the new
object.

Arrays of complex type

If a WSDL describes a complex type being used within an array, the wsdl2ws.sh tool generates a
corresponding array object using the complex name type suffixed with "_Array".

90 IBM i: Web Services Client for ILE

Deep copying
Web services client for ILE supports deep copying. Deep copying is where, when setting a value on a
complex type, the set method makes a private copy of the original data. Subsequent modification or
deletion of the original data does not affect the complex type, and the application must delete the original
data to prevent memory leaks.

//This is an example of deep copying.
ComplexType * complexType = new ComplexType();
xsd__string aStringType = new char[9];
strcpy(aStringType, "Welcome!");
complexType->setaStringType(aStringType);
// Note: By default deep copying will take place.
delete [] aStringType;
// This object is no longer required by the generated objects so can be deleted
// at the earliest opportunity.

Result result = ws.useComplexType(complexType);

delete complexType;

// This is an example of explicitly deep copying.
ComplexType * complexType = new ComplexType();
xsd__string aStringType = new char[9];
strcpy(aStringType, "Welcome!");
complexType->setaStringType(aStringType, true);
// Note: Use of additional parameter set to 'true' indicates deep copying is to
// take place.
delete [] aStringType;
// This object is no longer required by the generated objects so can be deleted
// at the earliest opportunity.

Result result = ws.useComplexType(complexType);

delete complexType;

Note: Web services client for ILE does not support shallow copying, which is where, when setting a value
on a complex type, the set method maintains a reference (or pointer) to the original data. The original data
should not be modified and must not be deleted during the lifecycle of the complex type (that is, until the
complex type is deleted). The application must delete the original data to prevent memory leaks.

// This is an example of shallow copying
ComplexType * complexType = new ComplexType();
xsd__string aStringType = new char[9];
strcpy(aStringType, "Welcome!");
complexType->setaStringType(aStringType, false);
// Note: Use of additional parameter set to 'false' indicates shallow
// copying is to take place.

Result result = ws.useComplexType(complexType);

delete complexType;
delete [] aStringType;
// This object MUST NOT be deleted until generated object has been deleted.

Summary of rules
There are a number of rules relating to memory management that you must follow when using the C++
stub code generated by the wsdl2ws.sh tool.

1. Objects that are passed to or obtained from the web service method as pointers are the responsibility
of the client application.

2. Objects that are defined as a class hide the objects that they contain and instead have get and set
methods to manipulate the object contents.

3. For objects that are classes and used as inputs, the client application is responsible for the deletion
of these objects when they are no longer required.

4. For objects that are classes and used as outputs, the client application is responsible for the deletion
of these objects when they are no longer required. They must not delete any object that is returned
from a call to the ‘get' method as this is deleted by the parent when the parent object is deleted.

C++ programming considerations 91

5. If a stub is "new"ed (rather than being a stack object), it must be deleted.
6. Return parameters must be deleted when they are one of:

• Complex type
• Array
• String based type rule (see rule 7)
• Nillable
• Optional

7. When deleting string based types, use: delete [] string;. The string based types are:
xsd__string, xsd__normalizedString, xsd__token, xsd__language, xsd__Name, xsd__NCName,
xsd__ID, xsd__IDREF, xsd__IDREFS, xsd__ENTITY, xsd__ENTITIES, xsd__NMTOKEN,
xsd__NMTOKENS, xsd__anyURI, xsd__QName and xsd__NOTATION.

8. The "set(xsd__unsignedByte * data, xsd__int size)" method on xsd__hexBinary and
xsd__base64Binary take a copy of the data. Remember to delete the original data.

9. When using the "xsd__unsignedByte * get(xsd__int & size) const" method on xsd__hexBinary and
xsd__base64Binary do NOT delete the returned pointer, as this pointer is deleted by the destructor
on the xsd__base64Binary or xsd__hexBinary object.

10. When setting members of complex types, the corresponding set method takes a deep copy of the
original data. Remember to delete the original data.

11. If a complex type contains an xsd__hexBinary or an xsd__base64Binary element, which is also
neither nillable nor optional, you must take care when using the generated get method on the
complex type with the get method on the xsd__hexBinary or xsd__base64Binary object. You cannot
use both in a single line of code, for example:

xsd__unsignedByte * data = myComplexType.getElement().get(size);

must be split into two lines of code:

 xsd__base64Binary binaryObject = myComplexType.getElement();
 xsd__unsignedByte * data = binaryObject.get(size);

12. Setting members of complex types directly (that is, not using the corresponding set method) is not
supported and may produce unknown side-effects.

13. When initializing an Array (Axis_Array and its derivates - xsd__<built-in simple type>_Array or
<generated type>_Array) using the set() method takes a deep copy of the data. Remember to delete
the original array elements and the original c-style pointer array.

Securing web service communications in C++ stub code
This section explains how to use Secure Sockets Layer (SSL) to set up security when using C++ stub code.

You can secure your HTTP messages by using SSL, which encrypts the request and response messages
before they are transmitted over the wire.

Note: Handlers are not affected by SSL as they receive the message either before encryption or after
decryption.

Any web service that uses SSL adds the suffix ‘s' for secure to the http name in the URL. For example,
http://some.url.com becomes https://some.url.com.

A secure endpoint URL is an endpoint beginning with ‘https'. To allow secure endpoint URLs to be used,
you must pass security information to the C++ stub. You can do this either by adding the required
information to the “The axiscpp.conf file” on page 61 configuration file, or by configuring the settings for
secure service using the “Stub::SetSecure()” on page 109 Stub class method.

92 IBM i: Web Services Client for ILE

Using secure connections with a proxy server

The integrated web services client gives you the option to send requests to a proxy server. By default, the
connection that is established is unsecure. If you want to establish a secure connection to the proxy
server you will need to invoke the “Call::setTransportProperty()” on page 111 Axis C++ API with the
ENABLE_SSL_OVER_PROXY option.

The integrated web services client also supports SSL tunneling. In SSL tunneling, the client establishes an
insecure connection to the proxy server, and then attempts to tunnel through the proxy server to the
content server over a secure connection where encrypted data is passed through the proxy server
unaltered. The SSL tunneling process is as follows:

1. The client establishes an insecure connection to the proxy server.
2. The client makes a tunneling request. The proxy accepts the connection on its port, receives the

request, and connects to the destination server on the port requested by the client. The proxy replies
to the client that a connection is established.

3. The proxy relays SSL handshake messages in both directions: From client to destination server, and
from destination server to client.

4. After the secure handshake is completed, the proxy sends and receives encrypted data to be
decrypted at the client or at the destination server.

In order for SSL tunneling to occur, the proxy server needs to support SSL tunneling requests, and the web
service endpoint must be a secure endpoint (i.e. https).

Cookies
This section describes the cookie support that Web services client for ILE provides, including getting
cookies from services and adding cookies to other services, and removing cookies from C++ stub
instances.

Cookie attributes

The following table summarizes how Web services client for ILE handles cookie attributes.

Table 13: Behavior of Web services client for ILE with regard to cookie attributes

Attribute Behavior

expires This attribute is ignored. If a server sends a signal to the client asking it to expire a
cookie, the client does not do so. Once set by a server, the client continues to send
cookies on each request using that stub. If a new stub instance is created and used,
then the cookies from the original stub instance are not sent on requests from the new
stub instance.

path This attribute is ignored. Cookies are sent on all requests and not just on requests to a
URI applicable to the path.

domain This attribute is ignored. Cookies have affinity to a stub and are domain neutral.

secure This attribute is ignored. If secure is set on a cookie, this has no effect and the cookie is
sent on all future requests regardless of whether the channel is secure or not.

Use of cookies across multiple stub instances

If cookies are required in a different instance of a stub such as when a login is done on one service and
the login session cookies are required on other services, you can use the APIs in the following example.
This C++ example uses two instances of the calculator service and a login service. The first instance uses
the login service and receives some cookies back representing the session cookies. These cookies are

C++ programming considerations 93

required for interacting with the calculator service in order to authenticate to the server that hosts the
calculator service.

// Call the webservice
LoginService loginService("http://loginserver/loginservice");

// must tell the service to save cookies
loginService.setMaintainSession(true);

// login so that we can get the session cookies back
loginService.login("myusername", "mypassword");

// Store the cookies so they can be given to the Calculator web service as
// authentication.
int currentCookieKey=0;
string cookieKeys[2];
const char* key = loginService.getFirstTransportPropertyKey();
string keyString(key);
if(key)
{
 // Only get the "Set-Cookie" transport properties - as these are
 // what the server sends to the client to set cookies.
 if(keyString.compare("Set-Cookie")==0)
 {
 string valueString(loginService.getCurrentTransportPropertyValue());
 cookieKeys[currentCookieKey++] = valueString;
 }
}

// then the rest of the cookies
while(key = loginService.getNextTransportPropertyKey())
{
 string nextKeyString(key);
 // Only get the "Set-Cookie" transport properties - as these
 // are what the server sends to the client to set cookies.
 if(nextKeyString.compare("Set-Cookie")==0)
 {
 string valueString(loginService.getCurrentTransportPropertyValue());
 cookieKeys[currentCookieKey++] = valueString;
 }
}

// Now we've logged in and stored the cookies we can create the calculator service,
// set the cookies on that stub instance and use the calculator.
Calculator calculator("http://calculatorserver/calculatorservice);
calculator.setMaintainSession(true);
// OK, Now add the previously saved session cookies on to this new service
// as this service does not pick up the cookies from the other stub.
currentCookieKey=0;
while(currentCookieKey< 3)
{
 calculator.setTransportProperty("Cookie",
 cookieKeys[currentCookieKey++].c_str());
}

// Now, when we use the service it will send the session cookies to the server
// in the http message header
// which allows the server to authenticate this instance of the service.
int result = calculator.add(1,2);

// If we continue to use this instance of the calculator stub then the cookies
// will be continue to be sent.
result = calculator.add(1,2);

// If we use a new instance of the calculator then it will fail because we have
// not set the cookies
Calculator newCalculatorInstance("http://calculatorserver/calculatorservice);
// This will fail with an exception because we have not set the authentication
// cookies
result = newCalculatorInstance.add(1,2);

Manipulation of cookies using C++ AXIS APIs

It is sometimes necessary to remove cookies from stub instances.

94 IBM i: Web Services Client for ILE

• To delete a single cookie from a C++ stub instance:

service.deleteTransportProperty(cookiename);

For example:

calculator.deleteTransportProperty("loginCookie");

• To delete all cookies from a C++ stub instance:

service.deleteTransportProperty("Cookie");

Note the capital 'C' in "Cookie".

For example:

calculator.deleteTransportProperty("Cookie");

Floating point numbers in C++ types
This section provides reference information about using floating point numbers with Web services client
for ILE .

The XML specification refers to the IEEE specification for floating point numbers. The specification lists
that float and double have the following precision:

Float type numbers, 1 sign bit, 23 mantissa bits and 8 exponent bits.
Double type numbers, 1 sign bit, 52 mantissa bits and 11 exponent bits.

For float, with a mantissa able to represent any number in the range 1 > x > 1/223, this gives a minimum
accuracy of 6 digits. Similarly, for double, with a mantissa able to represent any number in the range 1 > x
> 1/252, this gives a minimum accuracy of 10 digits.

When displaying floating point numbers, you must ensure that any potential inaccuracies due to rounding
errors, and so on are not visible. Therefore, to ensure the correct level of precision, for float types, instead
of using:

printf("%f", myFloat);

you must use the following formatting command:

printf("%.6g", myFloat);

Similarly, to ensure the correct level of precision for double types, instead of using:

printf("%f", myDouble);

you must use the following formatting command:

printf("%.10g", myDouble);

C++ programming considerations 95

96 IBM i: Web Services Client for ILE

Chapter 11. Troubleshooting C++ client stubs
This chapter is intended to help you learn how to detect, debug, and resolve possible problems that you
may encounter when generating or using C++ stub code.

C++ stub code generation problems

When you use the wsdl2ws.sh tool to generate C++ stub code, the tool will generate an exception for
any error that is encountered. Typical errors include the inability for the tool to resolve to an XSD file used
in the specified WSDL file or a syntactically incorrect WSDL file. You will need to correct the problem and
try running the tool again.

C++ stub code compile problems

If there is a compile problem in C++ stub code, the most likely cause of the problem is the use of an
unsupported construct. The wsdl2ws.sh tool will not always generate an exception when used against a
WSDL file that contains an unsupported WSDL construct. The problem may manifest itself when compiling
the generated stub code. To see what is supported by the tool, see “Supported specifications and
standards” on page 45.

C++ stub code runtime problems

Invoking a Web service operation may result in the Web service returning a SOAP fault as a response.
There can be many reasons for this, and the only sure way to determine where the problem lies is by
examining the generated SOAP request and resulting response.

The Web services client for ILE client engine has a tracing capability that traces the request and response
messages. To learn about the tracing support in Axis, see the “Axis::startTrace()” on page 100 Axis C++
class.

© Copyright IBM Corp. 2011, 2018 97

98 IBM i: Web Services Client for ILE

Chapter 12. Axis C++ core APIs
This chapter summarizes the core (i.e. most commonly used) Axis C++ classes and methods. For a
complete list of the Axis classes and associated methods, copy the file api.zip from /QIBM/
ProdData/OS/WebServices/V1/client/docs/api.zip, unzip it, and view the following file in a
Web browser: api/index.html.

Axis class
Contains methods that affect the Axis client engine, such as methods to initialize and terminate the Axis
runtime, and methods to free allocated memory resources. The Axis C++ class is defined in include file
<install_dir>/include/axis/Axis.hpp.

The following table lists the Axis class methods.

Table 14: Axis class methods

Class methods Description

Axis::initialize() Initializes the Axis runtime.

Axis::terminate() Terminates the Axis runtime.

Axis::AxisDelete() Deletes storage allocated by the Axis engine.

Axis::startTrace() Starts Axis logging.

Axis::stopTrace() Stops Axis logging.

Axis::writeTrace() Writes trace data to Axis log.

Axis::initialize()

static void initialize(bool bIsServer)

Initializes the Axis runtime. Creating a stub also initializes the Axis runtime and deleting the stub
terminates it. So simple applications that only ever use one stub at a time do not need to call these
methods. More complicated applications that initialize multiple stubs, use them and delete them later,
should initialize Axis at the start of their application using Axis::initialize() and terminate Axis at
the very end of their application with Axis::terminate(). Applications that use Axis in multiple
threads should also call Axis::initialize() and Axis::terminate().

Parameters

bIsServer Boolean flag that must be set to false.

Example

The following example initializes the Axis client engine.

Axis::initialize(false);

© Copyright IBM Corp. 2011, 2018 99

Axis::terminate()

static void terminate()

Terminates the Axis runtime.

Example

The following example terminates the Axis client engine.

Axis::terminate();

Axis::AxisDelete()

static void AxisDelete(void* pValue,
 XSDTYPE type)

Deletes storage allocated by the Axis engine.

Parameters

pValue Pointer to storage that is to be deleted.

type The type of storage to be deleted. The XSDTYPE type is an enumerator defined
<install_dir>/include/axis/TypeMapping.hpp.

Example

The following example deletes a pointer that was dynamically allocated by the Axis engine and that is
used to store data with a type of xsd:int.

Axis::AxisDelete(ptr, XSD_INT);

Axis::startTrace()

static int startTrace(const char* logFilePath,
 const char *logFilter=NULL)

Starts Axis logging. This must be done prior to any activity in order to propagate logging attributes to
parser and transport. If there are active transports and parsers, you will not get trace records other than
those associated with the engine and newly instantiated transports and parsers.

A typical trace record will look like the following (following are entry/exit trace records):

[13/11/2008 15:55:55:509] 00007860 transport > HTTPTransport::processHTTPHeader():
[13/11/2008 15:55:55:510] 00007860 transport < HTTPTransport::processHTTPHeader():

A trace record includes a timestamp, a thread ID, the component that is doing the trace, a one character
field indicating Trace type:

 > (entry)
 < (exit)

100 IBM i: Web Services Client for ILE

 X (exception)
 D (debug)

and the method/function name. After which there will be additional trace data. When tracing is enabled,
you will know exactly where an exception is being thrown from. A typical trace record for when an
exception is thrown is as follows:

[13/11/2008 15:55:55:510] 00007860 transport X HTTPTransport::readHTTPHeader():
Line=1851: File=/home/amra/axis/L1.1.0/src/ws-axis/c/src/transport/axis3/HTTPTransport.cpp:
HTTPTransportException - SERVER_TRANSPORT_HTTP_EXCEPTION:
Server sent HTTP error: 'Not Found'

Request and response messages can be traced by enabling transport trace. Here is a example of a
transport trace:

.

.

.
[13/11/2008 15:55:55:280] 00007860 transport D HTTPChannel::writeBytes():
POST /axis HTTP/1.1
Host: 127.0.0.1:13260
Content-Type: text/xml; charset=UTF-8
SOAPAction: ""
Content-Length: 393

[13/11/2008 15:55:55:280] 00007860 transport < HTTPChannel::writeBytes(): Exit with integer
value of 122
[13/11/2008 15:55:55:281] 00007860 transport > HTTPChannel::writeBytes():
[13/11/2008 15:55:55:282] 00007860 transport D HTTPChannel::writeBytes():
<?xml version='1.0' encoding='utf-8' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:div xmlns:ns1="http://soapinterop.org/wsdl">
<ns1:arg_0_0>10</ns1:arg_0_0>
<ns1:arg_1_0>5</ns1:arg_1_0>
</ns1:div>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

.

.

.
[13/11/2008 15:55:55:508] 00007860 transport D HTTPChannel::readBytes():
HTTP/1.1 404 Not Found
Server: WebSphere Application Server/5.1
Content-Type: text/html;charset=UTF-8
Content-Language: en-GB
Transfer-Encoding: chunked

21
Error 404: File not found: null 0

Parameters

logFilePath Pointer to null-terminated character string representing the path to where trace records are
written to.

logFilter Pointer to null-terminated character string representing the trace filter. The string filter is a
semicolon delimited string of possible filters. Possible filters include:

 stub - show trace records generated by stubs
 engine - show trace records generated by engine
 parser - show trace records generated by parser
 transport - show trace records generated by transport
 noEntryExit - do not show entry/exit trace records

The default filter is "stub;engine;parser;transport". Specifying a null pointer or a
null string is equivalent to requesting the default filter.

Axis C++ core APIs 101

Returns

Zero if the method call is successful; otherwise -1 is returned.

Example

See example for the “Axis::writeTrace()” on page 102 method.

Axis::stopTrace()

static void stopTrace()

Stops Axis logging. This should be done as the last step when everything has been cleaned up. Otherwise,
active transports and parsers will continue to trace.

Example

See example for the “Axis::writeTrace()” on page 102 method.

Axis::writeTrace()

static void writeTrace(AXIS_TRACE_TYPE type,
 const char* funcName,
 const char * format,
 ...)

Writes specified data to the Axis log file.

Parameters

type The trace type. AXIS_TRACE_TYPE is an enumerator that can be set to one of the following
values:

 AXIS_TRACE_TYPE_ENTRY=0
 AXIS_TRACE_TYPE_EXIT=1
 AXIS_TRACE_TYPE_EXCEPTION=2
 AXIS_TRACE_TYPE_DEBUG=3

funcName Pointer to null-terminated character string representing class method or function for which
trace record is being written.

format Pointer to null-terminated character string representing the format as defined for the
printf() function.

... Variable number of parameters, the number of which is dependent on the specified format
parameter.

Example

The following example writes a application-defined trace record to the Axis log.

#include "axis/Axis.hpp"
#include "StockQuote.hpp"

#include <iostream>

int main()
{
 Axis::startTrace("/tmp/axis.log");
 Axis::writeTrace(Axis::AXIS_TRACE_TYPE_DEBUG,
 "main-stockQuote", "start %d\n", 1);

102 IBM i: Web Services Client for ILE

 try
 {
 // GetQuoteService web service.
 char * pszEndpoint =
 "http://localhost:40001/StockQuote/services/urn:xmltoday-delayed-quotes";
 StockQuote * pwsStockQuote = new StockQuote(pszEndpoint);

 // Call the 'getQuote' method to find the quoted stock price
 char * pszStockName = "XXX";
 xsd__float fQuoteDollars = pwsStockQuote-> getQuote(pszStockName);

 // Output the quote.
 if(fQuoteDollars != -1)
 {
 cout << "The stock quote for " << pszStockName << " is $"
 << fQuoteDollars << endl;
 }
 else
 {
 cout << "There is no stock quote for " << pszStockName << endl;
 }

 // Delete the web service.
 delete pwsStockQuote;
 }
 catch(SoapFaultException& sfe)
 {
 // Catch any other SOAP faults
 cout << "SoapFaultException: " << sfe.getFaultCode() << " "
 << sfe.what() << endl;
 }
 catch(AxisException& e)
 {
 // Catch an AXIS exception
 cout << "AxisException: " << e.getExceptionCode() << " " << e.what() << endl;
 }

 Axis::stopTrace();

 // Exit.
 return 0;
}

Stub class
This is the client base class to be inherited by all stub classes generated by wsdl2ws.sh tool. This class
acts as the interface between the client application and the Axis engine. The Stub C++ class is defined in
include file <install_dir>/include/axis/client/Stub.hpp.

The following table lists the most commonly used methods.

Table 15: Stub class methods

Class methods Description

Stub::setTransportProperty() Sets transport properties (e.g. HTTP headers).

Stub::getTransportProperty() Gets transport properties (e.g. HTTP headers).

Stub::setTransportTimeout() Sets the transport timeout.

Stub::createSOAPHeaderBlock() Creates and adds a SOAP header block to the stub.

Stub::setMaintainSession() Sets whether to maintain session with service or not.

Stub::setPassword() Sets the password to be used for basic authentication.

Stub::setUsername() Sets the user name to be used for basic authentication.

Stub::setProxy() Sets the proxy server and port for transport.

Axis C++ core APIs 103

Table 15: Stub class methods (continued)

Class methods Description

Stub::setProxyPassword() Sets the password to be used for proxy authentication.

Stub::setProxyUsername() Sets the user name to be used for proxy authentication.

Stub::SetSecure() Sets SSL configuration properties.

Stub::setTransportProperty()

void setTransportProperty(const char * pcKey,
 const char * pcValue)

Sets the specified transport property. Calling this function with the same key multiple times will result in
the property being set to the last value.

Parameters

pcKey Pointer to null-terminated character string representing the transport property to set.

pcValue Pointer to null-terminated character string representing the value of the transport property
corresponding to pcKey.

Example

The following example sets the cookie HTTP header.

stub.setTransportProperty("Cookie", "sessiontoken=123345456");

Stub::getTransportProperty()

const char * getTransportProperty(const char * pcKey,
 bool response = true)

Searches for the transport property with the specified key. The method returns NULL if the property is not
found.

Parameters

pcKey Pointer to null-terminated character string representing the transport property to retrieve.

response Boolean flag, when set to true, searches the response message for the property; and
when set to false searches the request message.

Returns

The value of the property or NULL if it was not found.

Example

The following example retrieves the HTTP cookie header from the response message.

const char *cookie = stub.getTransportProperty("Cookie", true);

104 IBM i: Web Services Client for ILE

Stub::setTransportTimeout()

void setTransportTimeout(long iTimeout)

Sets a specified timeout value, in seconds, to be used when waiting for a response from the Web service.
If the timeout expires before receiving a Web service response, an Axis exception is thrown. A timeout of
zero, which is the default, is interpreted as an infinite timeout.

Parameters

iTimeout An integer that specifies the receive timeout value in seconds.

Example

The following example set the transport timeout to 10 seconds.

stub.setTransportTimeout(10);

Stub::createSOAPHeaderBlock()

IHeaderBlock * createSOAPHeaderBlock(AxisChar * pElemName,
 AxisChar * pNamespace,
 AxisChar * pPrefix)

Creates and adds a SOAP header block (i.e. SOAP header). The returned IHeaderBlock pointer must be
used to add the elements and values of the SOAP header block.

Parameters

pElemNam
e

Pointer to null-terminated character string representing the element tag name of the SOAP
header.

pNamespa
ce

Pointer to null-terminated character string representing the URI of namespace.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace.

Returns

Pointer to SOAP header block object. The ownership of the memory allocated for the object is owned by
the stub.

Example

The following example will generate the following SOAP header:

<wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 SOAP-ENV:mustUnderstand="1"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-12345678">
 <wsse:UserName>admin</wsse:UserName>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">
 admin
 </wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

Axis C++ core APIs 105

Here is the example:

#include "axis/Axis.hpp"
#include "axis/IHeaderBlock.hpp"
#include "axis/BasicNode.hpp"
#include "StockQuote.hpp"

#include <stdio.h>

int main()
{
.
.
.
 StockQuote *stub = new StockQuote("http://9.10.109.164:8088/StockQuote");

 // generate node wsse:Security element, declaring namespaces for wsse and wsu
 IHeaderBlock *phb = stub->createSOAPHeaderBlock(
 "Security",
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "wsse");

 phb->createNamespaceDecl(
 "wsu",
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd");

 phb->createStdAttribute(MUST_UNDERSTAND_TRUE, SOAP_VER_1_1);

 // Generate node wsse:UsernameToken as child node of wsse:Security
 BasicNode *Bnode1=phb->createChild(
 ELEMENT_NODE, "UsernameToken", "wsse", NULL, NULL);

 Bnode1->createAttribute(
 "Id","wsu",NULL,"UsernameToken-12345678");
 phb->addChild(Bnode1);

 // Generate node wsse:Username as child node of wsse:UsernameToken
 // and the associated character node
 BasicNode *Bnode2=phb->createChild(
 ELEMENT_NODE,"UserName","wsse",NULL,NULL);
 Bnode1->AddChild(Bnode2);

 BasicNode *Bnode3=phb->createChild(
 CHARACTER_NODE,NULL,NULL,NULL,"admin");
 Bnode2->addChild(Bnode3);

 // Generate node wsse:Password as child node of wsse:UsernameToken
 // and the associated character node
 Bnode2=phb->createChild(
 ELEMENT_NODE,"Password","wsse",NULL,NULL);
 Bnode2->createAttribute(
 "Type",NULL,NULL,
 "http://docs.oasis-open.org/wss/2004/01/"
 "oasis-200401-wss-username-token-profile-1.0#PasswordText");
 Bnode1->addChild(Bnode2);

 Bnode3=phb->createChild(
 CHARACTER_NODE,NULL,NULL,NULL,"admin");
 Bnode2->addChild(Bnode3);

 // Perform Web service operation
 .
 .
 .
 // Delete the web service.
 delete stub;

 // Exit.
 return 0;
}

106 IBM i: Web Services Client for ILE

Stub::setMaintainSession()

void setMaintainSession(bool bSession)

Sets whether to maintain session with service or not.

Parameters

bSession Boolean flag, when set to true, indicates that session should be maintained with Web
service. When set to false the session will not be maintained.

Example

Following example indicates to the Axis engine that session to Web service should be maintained.

stub.setMaintainSession(true);

Stub::setPassword()

void setPassword(const char * pPassword)

Sets the password to be used for HTTP basic authentication.

Parameters

pPassword Pointer to null-terminated character string representing the password.

Example

Following example sets HTTP basic authentication password.

stub.setPassword("password1");

Stub::setUsername()

void setUsername(const char * pUsername)

Sets the username to be used for HTTP basic authentication.

Parameters

pUsername Pointer to null-terminated character string representing the username.

Example

Following example sets HTTP basic authentication username.

stub.setUsername("user1");

Axis C++ core APIs 107

Stub::setProxy()

void setProxy(const char * pcProxyHost,
 unsigned int uiProxyPort)

Sets the proxy server and port.

Parameters

pcProxyHo
st

Pointer to null-terminated character string representing the host name of proxy server.

uiProxyPort The port the proxy server listening on.

Example

Following example sets proxy host and port information.

stub.setProxy("proxyserver", 40001);

Stub::setProxyPassword()

void setProxyPassword(const char * pPassword)

Sets password to be used for proxy authentication.

Parameters

pPassword Pointer to null-terminated character string representing the password.

Example

Following example sets password for proxy authentication.

stub.setProxyPassword("proxypwd1");

Stub::setProxyUsername()

void setProxyUsername(const char * pUsername)

Sets the username to be used for Proxy authentication .

Parameters

pUsername Pointer to null-terminated character string representing the username.

Example

Following example sets username for proxy authentication.

stub.setProxyUsername("proxyusr1");

108 IBM i: Web Services Client for ILE

Stub::SetSecure()

void SetSecure(char * pKeyRingFile,
 ...)

Sets SSL configuration properties.

Parameters

pKeyRingFile Pointer to null-terminated character string representing the certificate store file to be
used for the secure session or SSL environment. This parameter is ignored if the
application ID parameter is set to a value.

pKeyRingPS (optional) Pointer to null-terminated character string representing the password for the
certificate store file to be used for the secure session or SSL environment. If the
parameter is not passed or is set to the null string, the internal stash file associated
with the user profile that is being used to run the application is used as long as the user
has authority to the certificate store file and the password has been used one time one
the system. To specify any of the subsequent optional parameters, you must pass a
value for this parameter. This parameter is ignored if the application ID parameter is set
to a value.

pKeyRingLbl (optional) Pointer to null-terminated character string representing the certificate label
associated with the certificate in the certificate store to be used for the secure session
or SSL environment. If the parameter is not passed or is set to the null string, the
default certificate label in the specified certificate store file is used for the SSL
environment. To specify any of the subsequent optional parameters, you must pass a
value for this parameter. This parameter is ignored if the application ID parameter is set
to a value.

pV2Cipher (optional) Pointer to null-terminated character string representing the list of SSL
Version 2 ciphers to be used for the secure session or the SSL environment. Specifying
"NONE" for this parameter will disable SSL Version 2 ciphers. To specify any of the
subsequent optional parameters, you must pass a value for this parameter.

pV3Cipher (optional) Pointer to null-terminated character string representing the list of SSL
Version 3/TLS Version 1 ciphers to be used for the secure session or the SSL
environment. Specifying "NONE" for this parameter will disable SSL Version 3 ciphers.
To specify any of the subsequent optional parameters, you must pass a value for this
parameter.

pTLSCipher (optional) Pointer to null-terminated character string indicating whether to enable or
disable the TLS Version 1 ciphers. A value of "NONE" will disable the ciphers; any other
value will enable the ciphers. By default, the TLS Version 1 ciphers are enabled.

pTLSv11Cipher (optional) Pointer to null-terminated character string indicating whether to enable or
disable the TLS Version 1.1 ciphers. A value of "NONE" will disable the ciphers; any
other value will enable the ciphers. By default, the TLS Version 1.1 ciphers are enabled.

pTLSv12Cipher (optional) Pointer to null-terminated character string indicating whether to enable or
disable the TLS Version 1.2 ciphers. A value of "NONE" will disable the ciphers; any
other value will enable the ciphers. By default, the TLS Version 1.2 ciphers are enabled.

pTolerate (optional) Pointer to null-terminated character string indicating whether to tolerate soft
validation errors (expired certificate or certificate not in certificate store). Specify a
value of true to tolerate soft validation errors, or false to not tolerate soft validation
errors. The default is false.

pAppid (optional) Pointer to null-terminated character string indicating the application ID to
use for the SSL environment.

Axis C++ core APIs 109

pFQDN (optional) Pointer to null-terminated character string indicating the fully qualified
domain name that will be used as Server Name Indication (SNI) as defined by RFC
6066.

Usage notes

1. The last parameter must be the NULL pointer.
2. If you indicate that soft validation errors should be tolerated, the application is responsible for the

authentication of the server. It is highly recommended that this option only be used if an alternate
authentication method is used.

3. If SSL communications is to be done by using a path to a keystore file, the user profile the application
is running under must have authority to the file.

4. Digital Certificate Manager (DCM) manages an application database that contains application
definitions. Each application definition encapsulates certificate processing information for a specific
application. As of the IBM i 7.1 release, the application definition also encapsulates some System SSL
attributes for the application. System SSL users know this application definition as an “Application ID.”
Instead of specifying a path to a keystore, you can indicate what application ID to use. You would use
this support to ensure consistency on what SSL attributes to use and if you do not want to give a user
profile access to the system keystore file.

5. Server Name Indication (SNI) when establishing SSL connections, as defined by RFC 6066, allows TLS
clients to provide to the TLS server the name of the server they are contacting. This function is used to
facilitate secure connections to servers that host multiple 'virtual' servers at a single underlying
network address. If the client requested FQDN does not match or no server SNI acknowledgment is
sent, the secure connection will fail.

6. The Web services client for ILE supports secure sessions by using the Global Secure ToolKit (GSKit)
APIs. For the latest information on ciphers, see the gsk_attribute_set_buffer() API usage
notes section at the IBM i Information Center Web site - http://www.ibm.com/systems/i/infocenter/.

7. The following GSK_V3_CIPHER_SPECS values are the SSL Version 3 ciphers and the TLS Version 1
ciphers supported:

 01 = *RSA_NULL_MD5
 02 = *RSA_NULL_SHA
 03 = *RSA_EXPORT_RC4_40_MD5
 04 = *RSA_RC4_128_MD5
 05 = *RSA_RC4_128_SHA
 06 = *RSA_EXPORT_RC2_CBC_40_MD5
 09 = *RSA_DES_CBC_SHA
 0A = *RSA_3DES_EDE_CBC_SHA
 2F = *RSA_AES_128_CBC_SHA (TLS Version 1 only)
 35 = *RSA_AES_256_CBC_SHA (TLS Version 1 only)

8. SSL Version 2 support is disabled IBM i 6.1 and later releases when the operating system is installed
resulting in no SSL Version 2 ciphers being supported. If SSL Version 2 is enabled (not recommended),
the following GSK_V2_CIPHER_SPECS values are the SSL Version 2 ciphers that would be supported if
shipped supported cipher list has not been altered.

 1 = *RSA_RC4_128_MD5
 2 = *RSA_EXPORT_RC4_40_MD5
 4 = *RSA_EXPORT_RC2_CBC_40_MD5

The following GSK_V2_CIPHER_SPECS values are the SSL Version 2 ciphers potentially supported if an
administrator later enables SSL Version 2:

 1 = *RSA_RC4_128_MD5
 2 = *RSA_EXPORT_RC4_40_MD5
 3 = *RSA_RC2_CBC_128_MD5
 4 = *RSA_EXPORT_RC2_CBC_40_MD5
 6 = *RSA_DES_CBC_MD5
 7 = *RSA_3DES_EDE_CBC_MD5

110 IBM i: Web Services Client for ILE

http://www.ibm.com/systems/i/infocenter/

Example

The following example shows a sample client application that configures security information before
calling a web service. To configure the secure setting within your own application, add the code shown in
bold in this example.

int main()
{
 // URL for secure communication. The localhost may require
 // a port number, i.e. localhost:80
 char * pszSecureURL = "https://localhost/Test/services/TestPort";

 // Load instances of the service with secure URL settings.
 ITestService * serviceSecure = new ITestService(pszSecureURL);

 // Initialise the secure settings for the secure service.
 serviceSecure->SetSecure("<Path to KeyRing.kbd>",
 "<stash password or NULL string>",
 "<label>", "NONE", "05", "NONE", NULL);

 // Remainder of application

.

.

 // End of application

 delete serviceSecure;

 return 0;
}

Call class
All stubs generated by the wsdl2ws.sh tool inherits from the Stub C++ class. The Stub C++ class
contains a pointer to an object instantiated from the Call C++ class, which is the actual interface to the
Axis engine. The Call C++ class is defined in include file <install_dir>/include/axis/client/
Call.hpp. In general, the only time you need to access this class is to invoke the
setTransportProperty() method in order to set the socket connect timeout value or to enable HTTP
redirection.

The following table lists the most commonly used methods.

Table 16: Call class methods

Class methods Description

Stub::setTransportProperty() Sets transport properties.

Call::setTransportProperty()

void setTransportProperty(AXIS_TRANSPORT_INFORMATION_TYPE type,
 const char * value)

Sets the specified transport property.

Parameters

Axis C++ core APIs 111

type Enumerator indicating what transport property to set. The information types are defined in
<install_dir>/include/axis/GDefine.hpp. The relevant values are as follows:
ENABLE_AUTOMATIC_REDIRECT

Sets whether the transport is to automatically handle HTTP redirects. By default,
redirects are not handled by the transport. If enabled, auto-redirect will only occur
when going from http to http or https to https.

MAX_AUTOMATIC_REDIRECT
Sets how many redirects to follow if automatic redirection is enabled.

CONNECT_TIMEOUT
Sets a specified timeout value, in seconds, to be used when attempting to connect to
the server hosting the Web service. If the timeout expires before establishing a
connection to the server, an Axis exception is thrown.

ENABLE_SSL_OVER_PROXY
Sets whether or not a secure (SSL) connection should be used when connecting to the
proxy server.

value Pointer to null-terminated character string representing the value of the transport
information to be set. The possible value is dependent on what is specified for the type:

• If the type is ENABLE_AUTOMATIC_REDIRECT, then the possible values are "true" to
enable automatic redirection, or "false" to disable automatic redirection. By default
automatic redirection is disabled.

• If the type is MAX_AUTOMATIC_REDIRECT, then the value represents an integer that
indicates how many redirects to follow. The default is "1". A value less than "1" is the
same as setting value to "0".

• If the type is CONNECT_TIMEOUT, then the value represents an integer that indicates
the connect timeout value in seconds. A value of "0", which is the default, is interpreted
as an infinite timeout.

• If the type is ENABLE_SSL_OVER_PROXY, then the possible values are "true" to use a
secure connection when connecting to a proxy server, or "false" to not use a secure
connection when connecting to a proxy server. The default is "false".

Examples

The following example enables redirection up to a maximum of 5 redirections.

Call *call = stub.getCall();
call->setTransportProperty(ENABLE_AUTOMATIC_REDIRECT, "true");
call->setTransportProperty(MAX_AUTOMATIC_REDIRECT, "5");

The following example sets the connect timeout value to 5 seconds.

Call *call = stub.getCall();
call->setTransportProperty(CONNECT_TIMEOUT, "5");

IHeaderBlock class
Interface class that is inherited by the SOAP header block object. The IHeaderBlock C++ class is
defined in include file <install_dir>/include/axis/IHeaderBlock.hpp.

The following table lists the most commonly used methods.

112 IBM i: Web Services Client for ILE

Table 17: IHeaderBlock class methods

Class methods Description

IHeaderBlock::createNamespaceDec
l()

Creates an attribute and adds it to the header block as a
namespace.

IHeaderBlock::createStdAttribute() Creates a standard header block attribute.

IHeaderBlock::createChild() Creates a child node depending on the given node type.

IHeaderBlock::addChild() Adds a child node to the header block.

IHeaderBlock::createNamespaceDecl()

INamespace * createNamespaceDecl(const AxisChar *pPrefix,
 const AxisChar *pNamespace)

Creates an attribute and adds it to the header block as a namespace.

Parameters

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace.

pNamespa
ce

Pointer to null-terminated character string representing the URI of namespace.

Returns

Pointer to namespace object. The ownership of the memory allocated for the object is owned by the stub.

Example

See example for “Stub::createSOAPHeaderBlock()” on page 105.

IHeaderBlock::createStdAttribute()

IAttribute* createStdAttribute(HEADER_BLOCK_STD_ATTR_TYPE eAttribute,
 SOAP_VERSION eSOAPVers)

Creates and adds a standard SOAP header block attribute.

Parameters

eAttribute Enumerator indicating which of the following attributes are to be set:

ACTOR : Creates actor attribute to point to next.
MUST_UNDERSTAND_TRUE : Creates the mustUnderstand attribute set to "1".
MUST_UNDERSTAND_FALSE: Creates the mustUnderstand attribute set to "0".

eSOAPVers Enumerator indicating the SOAP version. This parameter must always be set to:

SOAP_VER_1_1 : SOAP version 1.1.

The enumerator SOAP_VERSION is defined in <install_dir>/include/axis/
SoapEnvVersions.hpp

Axis C++ core APIs 113

Returns

Pointer to attribute object. The ownership of the memory allocated for the object is owned by the stub.

Example

See example for “Stub::createSOAPHeaderBlock()” on page 105.

IHeaderBlock::createChild()

BasicNode* createChild(NODE_TYPE eNodeType,
 AxisChar *pElemName,
 AxisChar *pPrefix,
 AxisChar *pNamespace,
 AxisChar* pachValue)

Creates an instance of a basic node of the specified type.

Parameters

eNodeType Enumerator indicating one of the following node types:

ELEMENT_NODE=1
CHARACTER_NODE=2

The enumerator NODE_TYPE is defined in <install_dir>/include/axis/
BasicNode.hpp

pElemNam
e

Pointer to null-terminated character string representing the element tag name of the node.
This parameter is ignored for CHARACTER_NODE node types.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace. This parameter is ignored for CHARACTER_NODE node types.

pNamespa
ce

Pointer to null-terminated character string representing the URI of namespace. This
parameter is ignored for CHARACTER_NODE node types.

pachValue Pointer to null-terminated character string representing the value of the node. This
parameter is ignored for ELEMENT_NODE node types.

Returns

Pointer to a basic node object. The ownership of the memory allocated for the object is owned by the
caller until the node is added to the header block.

Example

See example for “Stub::createSOAPHeaderBlock()” on page 105.

IHeaderBlock::addChild()

int addChild(BasicNode* pBasicNode)

Adds a child node to the SOAP header block.

Parameters

pBasicNod
e

Pointer to basic node object to be added to SOAP header block.

114 IBM i: Web Services Client for ILE

Returns

Zero if node was added successfully; otherwise -1 is returned.

Example

See example for “Stub::createSOAPHeaderBlock()” on page 105.

BasicNode class
Interface class that is inherited by a basic node object. The BasicNode C++ class is defined in include file
<install_dir>/include/axis/BasicNode.hpp.

The following table lists the most commonly used methods.

Table 18: BasicNode class methods

Class methods Description

BasicNode::createAttribute() Creates an attribute and adds it to this basic node.

BasicNode::addChild() Adds a child node to the basic node.

BasicNode::createAttribute()

IAttribute* createAttribute(const AxisChar* pAttrName,
 const AxisChar* pPrefix,
 const AxisChar* pNamespace,
 const AxisChar* pValue)

Creates an attribute and adds it to the basic node.

Parameters

pAttrName Pointer to null-terminated character string representing the attribute name.

pPrefix Pointer to null-terminated character string representing the attribute prefix that will be
associated with the specified namespace.

pNamespa
ce

Pointer to null-terminated character string representing the URI of attribute namespace.

pValue The value of the attribute.

Returns

Pointer to created attribute object. The ownership of the memory allocated for the object is owned by the
stub.

Example

See example for “Stub::createSOAPHeaderBlock()” on page 105.

BasicNode::addChild()

int addChild(BasicNode * pBasicNode)

Axis C++ core APIs 115

Adds a basic node as a child node to another basic node.

Parameters

pBasicNod
e

Pointer to basic node to be added as a child node.

Returns

Zero if node was added successfully; otherwise, -1 is returned.

Example

See example for “Stub::createSOAPHeaderBlock()” on page 105.

116 IBM i: Web Services Client for ILE

Part 4. Using C stubs

This part of the document provides details regarding all things related C stub programming. If you have no
interest in C stub programming, you should skip this part of the document.

© Copyright IBM Corp. 2011, 2018 117

118 IBM i: Web Services Client for ILE

Chapter 13. WSDL and XML to C mappings

The wsdl2ws.sh command tool can generate C stub code. This chapter will describe the mappings from
WSDL and XML Schema types to C language constructs.

Mapping XML names to C identifiers
XML names are much richer than C identifiers. They can include characters that are either reserved or not
permitted in C identifiers. The wsdl2ws.sh command generates unique and valid names for C identifiers
from the schema element names using the following rules:

1. Invalid characters are replaced by underscore ('_'). Invalid characters include the following characters:

 / ! " # $ % & ' () * + , - . : ; < = > ? @ \ ^ ` { | } ~ []

2. Names that conflict with C keywords will have an underscore inserted at the beginning of the name.
For example, an XML element name of register will be generated as a C + identifer of _register.

3. If a name that is used as a C identifier conflicts with a structure with the same name, the identifier will
have _Ref appended to the name.

XML schema to C type mapping
Table 19 on page 119 specifies the C mapping for each built-in simple. The table shows the XML Schema
type and the corresponding the Axis type (column 2), which generally is a typedef to a C language built-in
type (column 3).

Table 19: XML to C type mapping

Schema Type Axis Type Actual C Type

Numeric

xsd:byte xsdc__byte signed char

xsd:decimal xsdc__decimal double

xsd:double xsdc__double double

xsd:float xsdc__float float

xsd:int xsdc__int int

xsd:integer xsdc__integer long long

xsd:long xsdc__long long long

xsd:negativeInteger xsdc__negativeInteger long long

xsd:nonPositiveInte
ger

xsdc__nonPositiveInteger long long

xsd:nonNegativeInt
eger

xsdc__nonNegativeInteger unsigned long long

xsd:positiveInteger xsdc__positiveInteger unsigned long long

xsd:unsignedByte xsdc__unsignedByte unsigned char

xsd:unsignedInt xsdc__unsignedInt unsigned int

© Copyright IBM Corp. 2011, 2018 119

Table 19: XML to C type mapping (continued)

Schema Type Axis Type Actual C Type

xsd:unsignedLong xsdc__unsignedLong unsigned long long

xsd:unsignedShort xsdc__unsignedShort unsigned short

xsd:short xsdc__short short

Date/Time/Duration

xsd:date xsdc__date struct tm

xsd:dateTime xsdc__dateTime struct tm

xsd:duration xsdc__duration long

xsd:gDay xsdc__gDay struct tm

xsd:gMonth xsdc__gMonth struct tm

xsd:gMonthDay xsdc__gMonthDay struct tm

xsd:gYear xsdc__gYear struct tm

xsd:gYearMonth xsdc__gYearMonth struct tm

xsd:time xsdc__time struct tm

String

xsd:anyURI xsdc__anyURI char *

xsd:anyType xsdc__anyType char *

xsd:ENTITY xsdc__ENTITY char *

xsd:ENTITIES xsdc__ENTITIES char *

xsd:ID xsdc__ID char *

xsd:IDREFS xsdc__IDREFS char *

xsd:language xsdc__language char *

xsd:Name xsdc__Name char *

xsd:NCName xsdc__NCName char *

xsd:NMTOKEN xsdc__NMTOKEN char *

xsd:NMTOKENS xsdc__NMTOKENS char *

xsd:normalizedStrin
g

xsdc__normalizedString char *

xsd:notation xsdc__notation char *

xsd:QName xsdc__QName char *

xsd:string xsdc__string char *

xsd:token xsdc__token char *

Other

120 IBM i: Web Services Client for ILE

Table 19: XML to C type mapping (continued)

Schema Type Axis Type Actual C Type

xsd:base64Binary xsdc__base64Binary Implemented as C structure:

typedef struct
{
 xsdc__unsignedByte * __ptr;
 xsdc__int __size;
} xsdc__base64Binary;

xsd:boolean xsdc__boolean enum

xsd:hexBinary xsdc__hexBinary Implemented as C structure:

typedef struct
{
 xsdc__unsignedByte * __ptr;
 xsdc__int __size;
} xsdc__hexBinary;

The Axis types are defined in the header file <install_dir>/include/axis/AxisUserAPI.h. The
struct tm structure used for many of the time-related types can be found in header file time.h.

Simple types

Most of the simple XML data types defined by XML Schema and SOAP 1.1 encoding are mapped to their
corresponding C types. You can see the details of the mapping in Table 19 on page 119 above.

One thing to keep in mind is how an element declaration with a nillable attribute set to true for a
built-in simple XML data type is mapped. If the simple type is not already a pointer type (i.e. all the string
types are pointer types), the simple type will be mapped to a pointer type. For example, the following
schema fragment will get mapped to an integer pointer type (i.e. xsdc__int *):

<xsd:element name="code" type="xsd:int" nillable="true"/>

In addition, a simple type that is optional (minOccurs attribute set to 0) will also be mapped to a pointer
type if the type is not already a pointer type.

Complex types

XML Schema complex types are mapped to C structures.

Let us look at the mapping that occurs for the following schema fragment:

<xsd:complexType name="Book">
 <sequence>
 <element name="author" type="xsd:string"/>
 <element name="price" type="xsd:float"/>
 </sequence>
 <xsd:attribute name="reviewer" type="xsd:string"/>
</xsd:complexType>

The above example is an example of a complex type that is named Book, and contains two elements,
author and price, in addition to an attribute, reviewer. The complex type will get mapped to the
following C structure:

typedef struct BookTag {
 xsdc__string reviewer;
 xsdc__string author;
 xsdc__float price;
} Book;

WSDL and XML to C mappings 121

In addition to the Book structure, the following functions are generated:

int Axis_Serialize_Book(Book* param, AXISCHANDLE pSZ, AxiscBool bArray);
int Axis_DeSerialize_Book(Book* param, AXISCHANDLE pDZ);
void* Axis_Create_Book(int nSize=0);
void Axis_Delete_Book(Book* param, int nSize=0);

The Axis_Serialize_Book() and Axis_DeSerialize_Book() functions are used by the Axis engine
to serialize and deserialize elements of type Book. The Axis engine uses the Axis_Create_Book()
function to create the C structure that will hold the data during deserialization. The nSize parameter is
used to indicate whether a single (i.e. when nSize equals to zero) structure is to be returned or an array
(i.e. when nSize greater than zero) of structures is to be returned. The Axis_Delete_Book() is the
function used by client applications to free up C structures of type Book that are returned by the Axis
engine. In the case of Axis_Delete_Book(), the nSize parameter is used to indicate whether a single
structure is to be deleted or an array of structures is to be deleted.

Arrays

Arrays for the C language are patterned after the structure Axisc_Array. The structure is defined in the
header file <install_dir>/include/axis/AxisUserAPI.h. The structure is depicted below:

typedef struct {
 void** m_Array;
 int m_Size;
 AXISC_XSDTYPE m_Type;
} Axisc_Array;

The fields in the structure include: m_Array, which contains the elements of the array; m_Size, which
contains the size of the array; and m_Type, which is an enumerator that gives an indication of the type of
element (AXISC_XSDTYPE type is an enumerator defined in <install_dir>/include/axis/
TypeMapping.h).

Axis provides array structures for each of the defined simple types. These are defined in
<install_dir>/include/axis/AxisUserAPI.h. An example of a simple array type is
xsdc__int_Array.

Below is the same schema fragment we have used previously, but we have also increased the number of
authors a book can have to 10 by adding maxOccurs="10" to the author element:

<xsd:complexType name="Book">
 <sequence>
 <element name="author" type="xsd:string" maxOccurs="10"/>
 <element name="price" type="xsd:float"/>
 </sequence>
 <xsd:attribute name="reviewer" type="xsd:string"/>
</xsd:complexType>

For the above XML Schema, the following structure is generated:

typedef struct BookTag {
 xsdc__string reviewer;
 xsdc__string_Array* author;
 xsdc__float price;
} Book;

As you can see, the string array structure is now being used to store the values for the author element.

WSDL to C mapping
Now that we understand how the XML Schema types are mapped to Axis-defined language types, we can
now review how a service described in a WSDL document gets mapped to the corresponding C
representation. The following sections will refer to the GetQuote.wsdl WSDL document that is shipped
as part of the product in directory <install_dir>/samples/getQuote and is listed in “The

122 IBM i: Web Services Client for ILE

GetQuote.wsdl File” on page 205 to illustrate how various WSDL definitions get mapped to C. You should
note the following:

• GetQuote.wsdl has only one service called GetQuoteService.
• The service only has one port type called StockQuote.
• The StockQuote port type has only one operation called getQuote. The input to the getQuote

operation is a string (the stock identifier) and the output from the operation is a float (the stock's price).

If you want to fully understand the WSDL document structure, see “WSDL 1.1 document structure” on
page 24. Now let us see how various WSDL definitions are mapped.

This section describes the mapping of a service described in a WSDL document to the corresponding C
representation. The table below summarizes the WSDL and XML to C mappings:

Table 20: WSDL and XML to C mapping summary

WSDL and XML C

xsd:complexType (structure)

Note: The xsd:complexType can also represent
an exception if referenced by a wsdl:message for
a wsdl:fault.

C structure.

Nested xsd:element or xsd:attribute C structure field.

xsd:complexType (array) C Axis array structure.

wsdl:message Service interface function signature.

wsdl:portType Service interface function.

wsdl:operation Service interface function.

wsdl:binding No direct mapping, affects SOAP communications
style and transport.

wsdl:service No direct mapping.

wsdl:port Used as default Web service location.

Mapping XML defined in wsdl:types

The wsdl2ws.sh command will either use an existing C type or generate a new C type (a C structure) for
the XML schema constructs defined in the wsdl:types section. The mappings that the wsdl2ws.sh
command supports is discussed in “XML schema to C type mapping” on page 119. As previously stated,
the wsdl2ws.sh command either will ignore constructs that it does not support or issue an error
message.

If we look at the wsdl:types part of the WSDL document we see that two elements are defined:
getQuote, defined as a complex type with one element of type xsd:string; and getQuoteResponse,
also defined as a complex type with one element of type xsd:float.

...
<wsdl:types>
 <ati:schema elementFormDefault="qualified"
 targetNamespace="http://stock.ibm.com"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ati="http://www.w3.org/2001/XMLSchema">

 <ati:element name="getQuote">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="arg_0_0" type="xsd:string"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>

WSDL and XML to C mappings 123

 <ati:element name="getQuoteResponse">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="getQuoteReturn" type="xsd:float"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>
 </ati:schema>
</wsdl:types>
...

For the WSDL document fragment above, the wsdl2ws.sh command does not generate any new
structures since both elements are defined to be built-in simple types. The xsd:string type is mapped
to xsdc__string and the xsd:float type is mapped to xsdc__float.

Mapping of wsdl:portType

A port type is a named set of abstract operations and the abstract messages involved. The name of the
wsdl:portType will be used in the names of the Web service proxy (termed service interface) functions.
A port type is mapped to four functions:

Table 21: Web service proxy C functions

Function name Description

get_<portType-name>_stub Function that is used to get an object representing
the service interface (i.e. the Web service proxy stub).
The type of the object is AXISCHANDLE, which is
defined as a void pointer (i.e. void *). The
AXISCHANDLE is used by Axis to represent different
objects so one must be sensitive to what the object
represents. In this case the object is the interface to
the Axis engine. The operations that can be
performed on the object are listed in the
<install_dir>/include/axis/client/Stub.h
header file.

destroy_<portType-name>_stub Function used to destroy service interface objects
that are obtained by invoking get_<portType-
name>_stub.

get_<portType-name>_Status Function used to get the status of last Web service
operation.

set_<portType-name>_ExceptionHandler Function used to set the exception (i.e. SOAP fault)
handler for the service interface.

Now let us look at a concrete example of how the wsdl:portType below gets mapped.

...
<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

The wsdl2ws.sh command will generate the following C functions:

extern AXISCHANDLE get_StockQuote_stub(const char* pchEndPointUri);
extern void destroy_StockQuote_stub(AXISCHANDLE pStub);
extern int get_StockQuote_Status(AXISCHANDLE pStub);
extern void set_StockQuote_ExceptionHandler(AXISCHANDLE pStub,
 AXIS_EXCEPTION_HANDLER_FUNCT fp);

extern xsdc__float getQuote(AXISCHANDLE pStub, xsdc__string Value0);

124 IBM i: Web Services Client for ILE

The first four C functions shown above are the functions that are generated in support of the service
interface. You see how the wsdl:portType name StockQuote is used in the naming of the functions.
The last C function shown, getQuote(), is mapped from the wsdl:operation element defined in the
wsdl:portType (refer to “Mapping of wsdl:operation” on page 125 for further explanation of the
mapping of wsdl:operation). One thing to note about the get_StockQuote_stub() function, and
that is the default URL to the Web service will be used if get_StockQuote_stub() is invoked with a
NULL value for endpoint parameter. The default URL is whatever is specified in the wsdl:port WSDL
definition.

Mapping of wsdl:operation

A wsdl:operation within a wsdl:portType is mapped to a C function. The name of the
wsdl:operation is mapped to the name of the function. The first parameter is of type AXISCHANDLE
that represents the service interface stub object.

The wsdl:operation contains wsdl:input and wsdl:output elements that reference the request
and response wsdl:message constructs using the message attribute. Each function parameter (except
the first) is defined by a wsdl:message part referenced from the input and output elements:

• A wsdl:part in the request wsdl:message is mapped to an input parameter.
• A wsdl:part in the response wsdl:message is mapped to the return value.
• If there are multiple wsdl:parts in the response message, they are mapped to output parameters.
• A wsdl:part that is both the request and response wsdl:message is mapped to an inout parameter

The wsdl:operation can contain wsdl:fault elements that references wsdl:message elements
describing the fault (refer to “Mapping of wsdl:fault” on page 126 for more details on wsdl:fault
mapping).

The Web Services Client for ILE supports the mapping of operations that use either a request/response or
one-way (where wsdl:output is not specified in the wsdl:operation element) message exchange
pattern. For the one-way message exchange pattern, the Axis engine expects an HTTP response to be
returned from the Web service. Under normal conditions, the HTTP response would contain no SOAP
data. However, if a SOAP fault is returned by the Web service, the Axis engine will process the fault.

Below are the wsdl:message and wsdl:portType WSDL definitions in the GetQuote.wsdl document:

...
<wsdl:message name="getQuoteRequest">
 <wsdl:part element="impl:getQuote" name="parameters"/>
</wsdl:message>

<wsdl:message name="getQuoteResponse">
 <wsdl:part element="impl:getQuoteResponse" name="parameters"/>
</wsdl:message>

...
<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

The above wsdl:operation definition gets mapped to the following service interface function:

 extern xsdc__float getQuote(AXISCHANDLE pStub, xsdc__string Value0);

Mapping of wsdl:binding

The wsdl:binding information is used to generate an implementation specific client side stubs. What
code is generated is dependent on protocol-specific general binding data, such as the underlying
transport protocol and the communication style of SOAP.

WSDL and XML to C mappings 125

There is no C representation of the wsdl:binding element.

Mapping of wsdl:port

A wsdl:port definition describes an individual endpoint by specifying a single address for a binding.

The specified endpoint will be used in as the default location of the Web service. So in the case of our
example, the URL specified in wsdl:port definition below will be the URL that is used if
get_StockQuote_stub() is invoked with a NULL value for endpoint parameter (i.e.
get_StockQuote_stub(NULL)).

...
<wsdl:service name="GetQuoteService">
 <wsdl:port name="StockQuote" binding="impl:StockQuoteSoapBinding">
 <wsdlsoap:address
 location="http://localhost:9080/StockQuote/services/GetQuoteService"/>
 </wsdl:port>
</wsdl:service>
...

Mapping of wsdl:fault

Within the wsdl:operation definition you can optionally specify the wsdl:fault element, which
specifies the abstract message format for any error messages that may be returned as a result of invoking
a Web service operation.

The wsdl:fault element must reference a wsdl:message that contains a single message part. As of
this writing, Axis only supports message parts that are xsd:complexType types. The mapping that
occurs is similar to the mapping that occurs when generating code for complex types.

So what happens when a SOAP fault is received? In order to obtain information about SOAP faults Axis
provides a way where a C client application can register a function that will act as the exception handler.

Recall in the discussion about how the C mapping of wsdl:portType results in four functions being
generated, including a function to set the exception handler for a service interface. For our example, the
GetQuote.wsdl WSDL document, the following exception handler is generated:

...
extern void set_StockQuote_ExceptionHandler(AXISCHANDLE pStub,
 AXIS_EXCEPTION_HANDLER_FUNCT fp);
...

where AXIS_EXCEPTION_HANDLER_FUNCT is a typedef defined in <install_dir>/include/axis/
Axis.h as:

typedef void (* AXIS_EXCEPTION_HANDLER_FUNCT)(int exceptionCode,
 const char *exceptionString,
 AXISCHANDLE pSoapFault,
 void *faultDetail);

When a SOAP fault is encountered (or a non-Fault exception for that matter), the Axis engine will throw an
exception, and the C interfaces to the Axis engine catch the exception and attempts to produce a
SoapFault object and associated fault detail. The C interfaces to the Axis engine then determines if
there is a service interface exception handler and calls the function, passing it the generic exception code
and exception string associated with the exception, in addition to the SoapFault8 object and fault detail
(note that it is possible that there is no SoapFault or fault detail, in which case a NULL pointer is
passed). If there is no service interface exception handler, then the generic exception handler is invoked.
The generic exception handler by default will simply print out the exception string to stderr. However, a

8 Operations that can be done against a SoapFault object are listed in the <install_dir>/include/
axis/ISoapFault.h. There are functions to retrieve information such as the faultcode, faultstring
and faultactor.

126 IBM i: Web Services Client for ILE

client application can override the default exception handler by invoking
axiscAxisRegisterExceptionHandler()9.

More information on exception handling in C can be found in “C exception handling” on page 133.

9 The axiscAxisRegisterExceptionHandler() function is defined in <install_dir>/include/
axis/Axis.h.

WSDL and XML to C mappings 127

128 IBM i: Web Services Client for ILE

Chapter 14. Developing a Web services client
application using C stubs

This chapter will describe the steps one must go through to develop a Web service client application using
a C stub code.

To develop a Web services client application, the following steps should be followed:

1. Generate the client Web service stubs using the wsdl2ws.sh command.
2. Complete the client implementation.
3. (Optional) Create client-side handler.
4. Deploy the application.

The following sections will discuss each of these steps. For illustrative purposes we will be using the
sample code that is shipped as part of the product in directories <install_dir>/samples/getQuote.
We will be using the following files:

Table 22: Files in the samples directory

File name Description

GetQuote.wsdl GetQuote WSDL file.

myGetQuote.c Client implementation code written in C.

Source listings for the client application code can be found at Appendix A, “Code Listings for myGetQuote
Client Application,” on page 205.

Generating the C stub code
Before you can create a web service client application, you must first generate the C client stub using the
wsdl2ws.sh tool. The wsdl2ws.sh tool uses the WSDL file that is passed to it, and any associated XSD
files referenced in the WSDL file, to create client stubs.

We will be using the GetQuote.wsdl file located in directory <install_dir>/samples/getQuote.
The WSDL file comes from the installation Web Services Samples provided with WebSphere Application
Server (Version 5.0 or later). This very simple sample provides a good introduction to using wsdl2ws.sh.

To generate the client stub from the WSDL source file, complete the following steps.

1. Create a library called MYGETQUOTE in which the program objects will be stored by issuing the CL
command CRTLIB from the CL command line as follows:

CRTLIB MYGETQUOTE

2. Start a Qshell session by issuing the QSH CL command from the CL command line.
3. Run the wsdl2ws.sh tool to generate the client C stub as shown in following example:

<install_dir>/bin/wsdl2ws.sh -o/myGetQuote/C
 -lc
 -s/qsys.lib/mygetquote.lib/wsc.srvpgm
 <install_dir>/samples/getQuote/GetQuote.wsdl

If you examine the command, you see that we are indicating to the wsdl2ws.sh tool that C stub code
should be generated and stored in directory /myGetQuote/C, and that a service program, /qsys.lib/
mygetquote.lib/wsc.srvpgm, should be created using the generated stub code.

© Copyright IBM Corp. 2011, 2018 129

The files generated by the wsdl2ws.sh tool is shown below:

StockQuote.c StockQuote.h ws.cl

Note that in addition to C code being generated, the file ws.cl is also generated. This file is a CL source
file that has the CL commands needed to recreate the service program. You can copy this source file to a
source physical file and create a CL program. Here is the contents of the file:

 PGM
 DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE(MYGETQUOTE)
 DCL VAR(&SRVPGM) TYPE(*CHAR) LEN(10) VALUE(WSC)

 QSYS/CRTCMOD MODULE(&LIB/wsc0) +
 OPTIMIZE(40) DBGVIEW(*NONE) +
 SRCSTMF('/myGetQuote/C/StockQuote.c') +
 INCDIR('/QIBM/PRODDATA/OS/WEBSERVICES/V1/CLIENT/INCLUDE') +
 REPLACE(*YES) ENUM(*INT) +
 TEXT('StockQuote.c')

 QSYS/CRTSRVPGM SRVPGM(&LIB/&SRVPGM) +
 MODULE(+
 &LIB/wsc0 +
) +
 EXPORT(*ALL) ACTGRP(*CALLER) +
 BNDSRVPGM(QSYSDIR/QAXIS10CC) +
 TEXT('ws Web service')

 ENDPGM

Now that the C stub code has been created and a service program containing the C stub code created, you
can go on to the next step, “Completing C client implementation” on page 130.

Completing C client implementation
After the client stubs have been generated, the stubs can be used to create a Web service client
application.

We will illustrate what you need to do to create C applications using the example of the C stub code
generated from GetQuote.wsdl by the wsdl2ws.sh tool as described in “Generating the C stub code”
on page 129. However, before we continue, you should note the following points10:

• GetQuote.wsdl has only one service called getQuoteService.
• The service only has one port type called StockQuote.
• The StockQuote port type has only one operation called getQuote.
• The Web service is called StockQuote. So to get an instance of the Web service you would call the
get_StockQuote_stub() function. The handle that is returned by the function should then be used
when calling the Web service operation. To destroy the Web service instance, you would call the
destroy_StockQuote_stub() function.

To build the myGetQuote client application, complete the following steps.

1. Change the current working directory to the location of the C stub code. Issue the following command
from the CL command line:

cd '/myGetQuote/C'

10 If you have not read Chapter 13, “WSDL and XML to C mappings,” on page 119 then it would be a good time
to do so prior to reading this section.

130 IBM i: Web Services Client for ILE

2. Copy the sample C code the uses the generated stub code from the product samples directory to the
current working directory by issuing the following command from the CL command line:

COPY OBJ('<install_dir>/samples/getQuote/myGetQuote.c') TODIR('/myGetQuote/C')

3. Change the ServerName and PortNumber in the file copied in the previous step to match your server.
If WebSphere Application Server is on your own machine and the default values have been used,
ServerName is localhost and PortNumber is 9080.

4. Build the client application by using the following commands from the CL command line:

CRTCMOD MODULE(MYGETQUOTE/mygetquote)
 SRCSTMF('/myGetQuote/C/myGetQuote.c')
 INCDIR('/qibm/proddata/os/webservices/v1/client/include')
 ENUM(*INT)

CRTPGM PGM(MYGETQUOTE/MYGETQUOTE)
 MODULE(MYGETQUOTE/MYGETQUOTE)
 BNDSRVPGM(QSYSDIR/QAXIS10CC MYGETQUOTE/WSC)

When you have finished coding and building your web service client application, you are ready to deploy
and test the application as described in “Deploying the client application” on page 79.

Note: If you want to use one or more handlers with your application, see Chapter 9, “ Creating client-side
handlers,” on page 81.

Deploying the client application
When you have finished coding and building your web service client application, you are ready to deploy
and test the application.

In our example, we have not modified the Axis configuration file axiscpp.conf. However, if we had
modified it (e.g. we were using client-side handlers), we would need to ensure that the AXISCPP_DEPLOY
environment variable points to the directory containing the /etc directory (the axiscpp.conf file would
be located in the /etc directory), as described in “The axiscpp.conf file” on page 61.

The steps below use the example myGetQuote client application, and assume that a GetQuote service is
running. (This service is with the samples supplied with WebSphere Application Server Version 5.0.2 or
later). If you do not have the appropriate service, you must create the service code from the WSDL in the
samples directory.

Once you have confirmed the above prerequisites, run and test the client application by completing the
following steps.

1. Run the myGetQuote application.
2. Check that the myGetQuote application has returned the price of IBM shares in dollars.

The example screen shot below shows the myGetQuote application run from the command line in which
client-side handlers are not being used.

> call MYGETQUOTE/MYGETQUOTE
 The stock quote for IBM is $94.33

If we were had implemented client-side handlers, then we would have seen the following results:

> call MYGETQUOTE/MYGETQUOTE
 Before the pivot point Handler can see the request message.
 Past the pivot point Handler can see the response message.
 The stock quote for IBM is $94.33

Developing a Web services client application using C stubs 131

132 IBM i: Web Services Client for ILE

Chapter 15. C stub programming considerations
This chapter covers programming considerations when you begin writing your applications to take
advantage of Web services client for ILE C stub code.

C exception handling
Web Services Client for ILE uses exceptions to report back any errors that have occurred during the
transmission of a SOAP message. This includes errors that are detected by the Axis engine or SOAP faults
that are returned by the Web service.

When using the C-stub interfaces, errors that occur are reported to the client application by calling an
exception handler function. There are two locations where Web services client for ILE looks for the
exception handler: the stub exception handler and then the generic exception handler.

When C stubs are generated, in addition to functions to get a stub and destroy a stub, there is also a
function to register a stub exception handler.

So let us take a look at an example. Below is a wsdl:portType definition called MathOps that has a div
operation and has three SOAP faults defined - DivByZeroStruct, SpecialDetailStruct and
OutOfBoundStruct:

...
<wsdl:portType name="MathOps">
 <wsdl:operation name="div">
 <wsdl:input message="impl:divRequest" name="divRequest"/>
 <wsdl:output message="impl:divResponse" name="divResponse"/>
 <wsdl:fault message="impl:DivByZeroStruct" name="DivByZeroStruct"/>
 <wsdl:fault message="impl:SpecialDetailStruct" name="SpecialDetailStruct"/>
 <wsdl:fault message="impl:OutOfBoundStruct" name="OutOfBoundStruct"/>
 </wsdl:operation>
</wsdl:portType>
...

The definition of the SOAP fault messages is as follows:

<complexType name="OutOfBoundStruct">
 <sequence>
 <element name="varString" nillable="true" type="xsd:string"/>
 <element name="varInt" type="xsd:int"/>
 <element name="specialDetail" nillable="true" type="impl:SpecialDetailStruct"/>
 </sequence>
</complexType>
<complexType name="SpecialDetailStruct">
 <sequence>
 <element name="varString" nillable="true" type="xsd:string"/>
 </sequence>
</complexType>
<complexType name="DivByZeroStruct">
 <sequence>
 <element name="varString" nillable="true" type="xsd:string"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varFloat" type="xsd:float"/>
 </sequence>
</complexType>

When you generate C stub code, the prototype function for setting the stub exception handler would be:

extern void set_MathOps_ExceptionHandler(AXISCHANDLE pStub,
 AXIS_EXCEPTION_HANDLER_FUNCT fp);

where AXIS_EXCEPTION_HANDLER_FUNCT is a typedef defined in Axis.h as:

typedef void (* AXIS_EXCEPTION_HANDLER_FUNCT)(int exceptionCode,
 const char *exceptionString,

© Copyright IBM Corp. 2011, 2018 133

 AXISCHANDLE pSoapFault,
 void *faultDetail);

When Web services client for ILE throws an exception, the C-stub interfaces catch the exception and
attempts to produce a SoapFault object and associated fault detail. The C-stub interfaces then
determines if there is a stub exception handler and calls the function, passing it the generic exception
code and exception string associated with the exception, in addition to the SoapFault object and fault
detail (note that it is possible that there is no SoapFault or fault detail, in which case a NULL pointer is
passed). If there is no stub exception handler, then the generic exception handler is invoked. The generic
exception handler by default will simply print out the exception string to stderr. However, a client
application can override the default exception handler by invoking the AXIS API
axiscAxisRegisterExceptionHandler().

Each SOAP fault defined in the WSDL is represented as a structure. The generated DivByZeroStruct is
as shown below:

typedef struct DivByZeroStructTag {
 xsdc__string varString;
 xsdc__int varInt;
 xsdc__float varFloat;
} DivByZeroStruct

A pointer to this structure would be passed to an exception handler as the fault detail parameter.

An exception handler would need to obtain the fault object name to determine what the fault detail
parameter represents since each SOAP fault that is defined will represent a different structure. This is
done by calling the axiscSoapFaultGetCmplxFaultObjectName() API. For SOAP faults that are not
defined in the WSDL, the fault detail, if one exists, is simply a character string.

The following example shows how a client application may process exceptions.

// stub exception handler
int exceptionOccurred = 0;
void myExceptionHandler(int exceptionCode,
 const char *exceptionString,
 AXISCHANDLE pSoapFault,
 void *faultDetail)
{
 const char *pcCmplxFaultName;

 exceptionOccurred = 1;

 if (pSoapFault)
 {
 pcCmplxFaultName = axiscSoapFaultGetCmplxFaultObjectName(pSoapFault);
 if(0 == strcmp("DivByZeroStruct", pcCmplxFaultName))
 {
 DivByZeroStruct *dbzs = (DivByZeroStruct *)faultDetail;
 printf("DivByZeroStruct Fault: \"%s\", %d, %.6g\n",
 dbzs->varString, dbzs->varInt, dbzs->varFloat);
 }
 else if (0 == strcmp("SpecialDetailStruct", pcCmplxFaultName))
 {
 SpecialDetailStruct *sds = (SpecialDetailStruct *)faultDetail;
 printf("SpecialDetailStruct Fault: \"%s\"\n", sds->varString);
 }
 else if (0 == strcmp("OutOfBoundStruct", pcCmplxFaultName))
 {
 OutOfBoundStruct *oobs = (OutOfBoundStruct *)faultDetail;
 printf("OutOfBoundStruct Fault: \"%s\", %d, \"%s\"\n",
 oobs->varString, oobs->varInt, oobs->specialDetail->varString);
 }
 else
 {
 printf("SoapFaultException: %s\n", faultDetail);
 }
 }
}

// Attempt to divide by zero.
main()
{
AXISCHANDLE ws;
int iResult;

134 IBM i: Web Services Client for ILE

// Create the Web Service with default endpoint URL.
ws = get_MathOps_stub(NULL);

// register stub exception handler
set_MathOps_ExceptionHandler(ws, myExceptionHandler);

 // Call the div method with two parameters. This will attempt to divide 1 by 0.
iResult = div(ws, 1, 0);

// Output the result of the division.
if (!exceptionOccurred)
 printf("Result is %d\n", iResult);

destroy_MathOps_stub(ws);
}

C memory management
The WSDL specification provides a framework for how information is to be represented and conveyed
from place to place. Web services client for ILE maps this framework to program-language specific data
object, such as structures. The data objects that are dynamically allocated from the storage heap must be
deleted in order to avoid memory leaks. Information is represented by four generic types: simple types,
arrays of simple type, complex types, and arrays of complex type. This section describes what you need to
be aware of in order to avoid memory leaks.

Built-in simple types
There are more than 45 built-in simple types, which are defined in <install_dir>/include/Axis/
AxisUserAPI.h. When a type is nillable or optional (that is, minOccurs=”0”), it is defined as a pointer
to a simple type.

The example below shows a typical simple type in a WSDL. The simple type used in this example is
xsd:int, which is mapped to C type xsdc__int. The extract from the WSDL has an element called
addReturn of type integer. This element is used by the add operation, which uses the addResponse
element to define the type of response expected when the add operation is called.

<element name="addResponse">
 <complexType>
 <sequence>
 <element name="addReturn" type="xsd:int"/>
 </sequence>
 </complexType>
</element>

Later in the WSDL, the addResponse element is the response part for the add method. This produces the
following Web services client for ILE web services function prototype from the simple type in the WSDL:

extern xsdc__int add(...);

Thus, the user generated application code for this example is as follows:

xsdc__int xsdc_iReturn = add(ws, ...);

When a type is nillable, (that is, nillable=”true”), optional (that is, minOccurs=”0″), or a text type
(such as xsd:string), it is defined as a pointer.

<element name="addResponse">
 <complexType>
 <sequence>
 <element name="addReturn" nillable=”true” type="xsd:int"/>
 </sequence>
 </complexType>
</element>

C stub programming considerations 135

This produces the following Web services client for ILE web services function prototype:

extern xsdc__int * add(...);

The user generated application code produced by the nillable simple type in the WSDL is as follows:

xsdc__int * xsdc_piReturn = add(ws, ...);

// Later in the code...
// Delete this pointer and set it to NULL (as it is owned by the client application).
axiscAxisDelete(xsdc_piReturn, XSDC_INT);
xsdc_piReturn = NULL;

Note: The example above shows the deletion of the return value. Any pointer that Web services client for
ILE returns becomes the responsibility of the client application and does not go out of scope if the web
service is deleted. The user application must delete the pointer to the object type once it is no longer
required. For simple types, the pointer must be deleted by invoking axiscAxisDelete().

Arrays of simple type
Web services client for ILE provides array objects for each of the defined simple types. These are defined
in <install_dir>/include/Axis/AxisUserAPI.h. An example of a simple array type is
xsdc__int_Array.

The following example shows an extract from a WSDL that has two elements called
simpleArrayRequest and simpleArrayResponse of array type integer. These elements are used by
the simpleArray operation, which uses the simpleArrayRequest element to define the type of
request and simpleArrayResponse element to define the type of response expected when the
simpleArray operation is called.

<xsd:element name="simpleArrayRequest"> <xsd:complexType> <xsd:sequence>
<xsd:element name="simpleTypeRes" type="xsd:int" maxOccurs="unbounded"/>
</xsd:sequence> </xsd:complexType> </xsd:element>
<xsd:element name="simpleArrayResponse"> <xsd:complexType> <xsd:sequence>
<xsd:element name="simpleTypeReq" type="xsd:int" maxOccurs="unbounded"/>
</xsd:sequence> </xsd:complexType> </xsd:element>

Note that the maxOccurs attribute is used in this example. Web services client for ILE creates an array
object for any type that is declared as having maxOccurs greater than one. Later in the WSDL, the
simpleArrayRequest and simpleArrayResponse become the input and output parameters for the
simpleArray method whose prototype is shown below:

xsdc__int_Array * simpleArray(ws, xsdc__int_Array * pValue);

The prototype requires input and output arrays to be created. To avoid memory leaks, these must be
created and managed properly. For information about the generation management and deletion of a
typical input and output array, see the following two subsections:

• “Array types as input parameters” on page 136
• “Array types as output parameters” on page 137

Array types as input parameters
The prototype function requires an input array to be created. This array must be created and managed
properly.

This array must be created and managed properly. If an array is to be used as an input parameter, then it
has to be created and filled.

The following example shows the typical usage of a nillable simple array type required by a generated
stub. The array is an example of the input array to the function. The example assumes that the array
contains three elements whose values are 0, 1 and 2 respectively.

// Need an input array of 3 elements.
int iArraySize = 3;

136 IBM i: Web Services Client for ILE

// Final object type to be passed as an input parameter to the web service.
xsdc__int_Array iInputArray;

// Preparatory array that contains the values to be passed. Note that the
// array is an array of pointers of the required type.
xsdc__int * ppiPrepArray[3];

// Loop used to populate the preparatory array.
for(iCount = 0 ; iCount < iArraySize ; iCount++) {
// Each element in the array of type pointers is filled with a pointer to an
// object of the required type. In this example we have chosen the value of
// each element to be the same as the current count and so have passed this
// value to the new instance of the pointer.
ppiPrepArray[iCount] = (xsdc__int *)axiscAxisNew(XSDC_INT, 0);
*ppiPrepArray[iCount] = iCount;
}

// Set the contents of the final object to contain the elements of the
// preparatory array.
iInputArray.m_Array = ppiPrepArray;
iInputArray.m_Size = iArraySize;
iInputArray.m_Type = XSDC_INT;

... Call the web service(s) that use the input array ...

// No longer require iInputArray. Delete allocated memory.

for(int iCount = 0 ; iCount < iArraySize ; iCount++) {
axiscAxisDelete(ppiPrepArray[iCount], XSDC_INT);
ppiPrepArray[iCount] = NULL;
 }

When the method returns, iInputType can be destroyed. If iInputType was created as a pointer, then
the client user code must remember to delete it otherwise the code will have created a memory leak.

Array types as output parameters
The prototype method requires an output array to be created. This array must be created and managed
properly.

Following on from the example in “Array types as input parameters” on page 136, the following example
shows the client application calling the simpleArray method on the web service and using the returned
array. The following example shows a typical usage of the method produced by the WSDL example of an
array of nillable simple type.

xsdc__int_Array * piSimpleResponseArray = simpleArray(ws, &InputArray);

 for(iCount = 0 ; iCount < piSimpleResponseArray->m_Size; iCount++)
 {
 if (piSimpleResponseArray->m_Array[iCount] != NULL)
 printf(“Element[%d]=%d\n”, iCount, *piSimpleResponseArray->m_Array[iCount]);
 }

// Later in the code...
axiscAxisDelete(piSimpleResponseArray, XSDC_ARRAY);
piSimpleResponseArray = NULL;

Notes:

1. The returned pointer is not NULL.
2. The user only needs to delete the object returned by the call to the web service. The client must not

delete any object that is extracted from within this object. For example, in the previous code sample,
piSimpleResponseArray->m_Array must not be deleted by the user as it will be deleted when the
container structure is deleted on the call to axiscAxisDelete().

3. If the pointer to the array of pointers to integer values (m_Array) is NULL, then this indicates an empty
array. If this is the case, m_Size is equal to zero.

4. Arrays of simple types, if generated by the web service, must be deleted by a call to
axiscAxisDelete().

C stub programming considerations 137

Complex types and arrays of complex type
When complex types are used in a web service, the same rules as for simple types apply.

Complex types

The following example shows classes produced from WSDL with a complex type. As shown in this
example, complex types are represented as structures in C:

typedef struct ComplexTypeTag
{
 xsdc__string Message;
 xsdc__int MessageSize;
} ComplexType;

For non-simple types, Web services client for ILE produces functions that are used by the serializer and
deserializer when generating the SOAP message and when deserializing data obtained from the Web
service. There is a function to create a complex type, serialize and deserialize a complex type, and to
delete a complex type. For example, the following prototypes of the functions are typical of what is
produced:

extern int Axis_DeSerialize_ComplexType(ComplexType* param, AXISCHANDLE pDZ);
extern void* Axis_Create_ComplexType(int nSize);
extern void Axis_Delete_ComplexType(ComplexType* param, int nSize);
extern int Axis_Serialize_ComplexType(ComplexType* param, AXISCHANDLE pSZ,
AxiscBool bArray);

From the client perspective, the important function is the delete function (in the above example,
Axis_Delete_ComplexType) that is used to delete output generated by a call to a web service function.

The same rules as for simple types apply to a complex type when used on a call to a web service function:

• The client is responsible for generating the input parameter information and for deleting any objects
created during this process.

• The client is responsible for deleting the output object returned by the call to the web service function.
The deletion must be done by invoking the corresponding Axis_Delete_xxxxx() function (where
xxxxx is the datatype of the complex object).

Arrays of complex type

If a WSDL describes a complex type being used within an array, the wsdl2ws.sh tool generates a
corresponding array object using the complex name type suffixed with "_Array".

Summary of rules
There are a number of rules relating to memory management that you must follow when using the C stub
code generated by the wsdl2ws.sh tool.

1. Resources for objects that are passed to or obtained from the web service function call as pointers are
the responsibility of the client application.

2. Stub objects must be destroyed when not needed by calling the associated destroy function.
3. Return parameters must be deleted when they are one of:

• Complex type
• Array
• String based types (for example, xsdc__string, xsdc__Name, and so on)
• Nillable
• Optional
• xsdc__base64Binary or xsdc__hexBinary (see rule 6)

4. Return parameters that are complex types and non-simple type arrays, must be deleted by calling the
appropriate deletion function.

138 IBM i: Web Services Client for ILE

5. Return parameters that are pointer-based simple types must be deleted by calling the
axiscAxisDelete() function.

6. When the return parameter is a simple type of xsdc__base64Binary or xsdc__hexBinary, which
are represented by a structure that contains a pointer and length, the pointer in the structure must be
deleted by calling axiscAxisDelete() function.

Securing web service communications in C stub code
This section explains how to use Secure Sockets Layer (SSL) to set up security when using C stub code.

You can secure your HTTP messages by using SSL, which encrypts the request and response messages
before they are transmitted over the wire.

Note: Handlers are not affected by SSL as they receive the message either before encryption or after
decryption.

Any web service that uses SSL adds the suffix ‘s' for secure to the http name in the URL. For example,
http://some.url.com becomes https://some.url.com.

A secure endpoint URL is an endpoint beginning with ‘https'. To allow secure endpoint URLs to be used,
you must pass security information to the C stub. You can do this either by adding the required
information to the “The axiscpp.conf file” on page 61 configuration file, or by configuring the settings for
secure service using the “axiscStubSetSecure()” on page 161 Axis C API.

Using secure connections with a proxy server

The integrated web services client gives you the option to send requests to a proxy server. By default, the
connection that is established is insecure. If you want to establish a secure connection to the proxy server
you will need to invoke the “axiscStubSetProxySSL()” on page 160 Axis C API.

The integrated web services client also supports SSL tunneling. In SSL tunneling, the client establishes an
insecure connection to the proxy server, and then attempts to tunnel through the proxy server to the
content server over a secure connection where encrypted data is passed through the proxy server
unaltered. The SSL tunneling process is as follows:

1. The client establishes an insecure connection to the proxy server.
2. The client makes a tunneling request. The proxy accepts the connection on its port, receives the

request, and connects to the destination server on the port requested by the client. The proxy replies
to the client that a connection is established.

3. The proxy relays SSL handshake messages in both directions: From client to destination server, and
from destination server to client.

4. After the secure handshake is completed, the proxy sends and receives encrypted data to be
decrypted at the client or at the destination server.

In order for SSL tunneling to occur, the proxy server needs to support SSL tunneling requests, and the web
service endpoint must be a secure endpoint (i.e. https).

Cookies
This section describes the cookie support that Web services client for ILE provides, including getting
cookies from services and adding cookies to other services, and removing cookies from C stub instances.

Cookie attributes

The following table summarizes how Web services client for ILE handles cookie attributes.

C stub programming considerations 139

Table 23: Behavior of Web services client for ILE with regard to cookie attributes

Attribute Behavior

expires This attribute is ignored. If a server sends a signal to the client asking it to expire a
cookie, the client does not do so. Once set by a server, the client continues to send
cookies on each request using that stub. If a new stub instance is created and used,
then the cookies from the original stub instance are not sent on requests from the new
stub instance.

path This attribute is ignored. Cookies are sent on all requests and not just on requests to a
URI applicable to the path.

domain This attribute is ignored. Cookies have affinity to a stub and are domain neutral.

secure This attribute is ignored. If secure is set on a cookie, this has no effect and the cookie is
sent on all future requests regardless of whether the channel is secure or not.

Use of cookies across multiple stub instances

If cookies are required in a different instance of a stub such as when a login is done on one service and
the login session cookies are required on other services, you can use the APIs in the following example.
This C example uses two instances of the calculator service and a login service. The first instance uses the
login service and receives some cookies back representing the session cookies. These cookies are
required for interacting with the calculator service in order to authenticate to the server that hosts the
calculator service.

AXISCHANDLE calculator = NULL;
AXISHANDLE newCalculatorInstance = NULL;
int result;

// Get instance of login service

AXISCHANDLE loginService = get_LoginService_stub("http://loginserver/loginservice");

// must tell the service to save cookies
axiscStubSetMaintainSession(loginService, 1);

// login so that we can get the session cookies back
login(loginService, "myusername", "mypassword");

// Store the cookies so they can be given to the Calculator web service as
// authentication.
int currentCookieKey=0;
char * cookieKeys[2];
const char* key = axiscStubGetFirstTransportPropertyKey(loginService, 1);
char *keyString = (char *)key;
if (key)
{
 // Only get the "Set-Cookie" transport properties - as these are what the server
 // sends to the client to set cookies.
 if(strcmp(keyString, "Set-Cookie")==0)
 {
 const char* valueString = axiscStubGetCurrentTransportPropertyValue(loginService, 1));
 cookieKeys[currentCookieKey++] = (char *)valueString;
 }
}

// then the rest of the cookies
while(key = axiscStubGetNextTransportPropertyKey(loginService, 1))
{
 char *nextKeyString = (char *)key;
 // Only get the "Set-Cookie" transport properties - as these are what the server
 // sends to the client to set cookies.
 if(strcmp(nextKeyString, "Set-Cookie")==0)
 {
 char * valueString = axiscStubGetCurrentTransportPropertyValue(loginService, 1));
 cookieKeys[currentCookieKey++] = valueString;
 }
}

// Now we've logged in and stored the cookies we can create the calculator service,

140 IBM i: Web Services Client for ILE

// set the cookies on that stub instance and use the calculator.
calculator = get_Calculator_stub("http://calculatorserver/calculatorservice);
axiscStubSetMaintainSession(calculator, 1);

// OK, Now add the previously saved session cookies on to this new service
// as this service does not pick up the cookies from the other stub.
currentCookieKey=0;
while(currentCookieKey< 3)
{
 axiscStubSetTransportProperty(calculator, "Cookie",
 cookieKeys[currentCookieKey++]);
}

// Now, when we use the service it will send the session cookies to the server
// in the http message header
// which allows the server to authenticate this instance of the service.
result = add(calculator, 1,2);

// If we continue to use this instance of the calculator stub then the cookies
// will be continue to be sent.
result = add(calculator, 1,2);

// If we use a new instance of the calculator then it will fail because we have
// not set the cookies
newCalculatorInstance = get_Calculator_stub("http://calculatorserver/calculatorservice);

// This will fail with an exception because we have not set the authentication
// cookies
result = add(newCalculatorInstance, 1,2);

Manipulation of cookies using C AXIS APIs

It is sometimes necessary to remove cookies from stub instances.

• To delete a single cookie from a C stub instance:

 axiscStubDeleteTransportProperty(service, cookiename);

For example:

axiscStubDeleteTransportProperty(calculator, "loginCookie");

• To delete all cookies from a C stub instance:

 axiscStubDeleteTransportProperty(service, "Cookie");

For example:

axiscStubDeleteTransportProperty(calculator, "Cookie");

Floating point numbers in C types
This section provides reference information about using floating point numbers with Web services client
for ILE .

The XML specification refers to the IEEE specification for floating point numbers. The specification lists
that float and double have the following precision:

Float type numbers, 1 sign bit, 23 mantissa bits and 8 exponent bits.
Double type numbers, 1 sign bit, 52 mantissa bits and 11 exponent bits.

For float, with a mantissa able to represent any number in the range 1 > x > 1/223, this gives a minimum
accuracy of 6 digits. Similarly, for double, with a mantissa able to represent any number in the range 1 > x
> 1/252, this gives a minimum accuracy of 10 digits.

C stub programming considerations 141

When displaying floating point numbers, you must ensure that any potential inaccuracies due to rounding
errors, and so on are not visible. Therefore, to ensure the correct level of precision, for float types, instead
of using:

printf("%f", myFloat);

you must use the following formatting command:

printf("%.6g", myFloat);

Similarly, to ensure the correct level of precision for double types, instead of using:

printf("%f", myDouble);

you must use the following formatting command:

printf("%.10g", myDouble);

142 IBM i: Web Services Client for ILE

Chapter 16. Troubleshooting C client stubs
This chapter is intended to help you learn how to detect, debug, and resolve possible problems that you
may encounter when generating or using C stub code.

C stub code generation problems

When you use the wsdl2ws.sh tool to generate C stub code, the tool will generate an exception for any
error that is encountered. Typical errors include the inability for the tool to resolve to an XSD file used in
the specified WSDL file or a syntactically incorrect WSDL file. You will need to correct the problem and try
running the tool again.

C stub code compile problems

If there is a compile problem in C stub code, the most likely cause of the problem is the use of an
unsupported construct. The wsdl2ws.sh tool will not always generate an exception when used against a
WSDL file that contains an unsupported WSDL construct. The problem may manifest itself when compiling
the generated stub code. To see what is supported by the tool, see “Supported specifications and
standards” on page 45.

C stub code runtime problems

Invoking a Web service operation may result in the Web service returning a SOAP fault as a response.
There can be many reasons for this, and the only sure way to determine where the problem lies is by
examining the generated SOAP request and resulting response.

The Web services client for ILE client engine has a tracing capability that traces the request and response
messages. To learn about the tracing support in Axis, see the “axiscAxisStartTrace()” on page 146 Axis C
API.

© Copyright IBM Corp. 2011, 2018 143

144 IBM i: Web Services Client for ILE

Chapter 17. Axis C core APIs
This chapter summarizes the core (i.e. most commonly used) Axis C functions. For a complete list of the
Axis functions, copy the file api.zip from /QIBM/ProdData/OS/WebServices/V1/client/docs/
api.zip, unzip it, and view the following file in a Web browser: api/index.html.

The majority of the Axis C APIs operate on pointer objects. All objects in AXIS are mapped to
AXISCHANDLE, which is simply a type definition to a pointer type. Thus, as you code your application, you
should keep in mind what the handle is so you know what APIs you can use against the handle.

For example, when generate a stub instance, you will receive a stub handle. This stub handle can then be
used by Axis APIs that have a name starting with "axiscStub". Similarly, if you create a header block
object, the header block pointer can be used by Axis APIs that have a name starting with
"axiscHeaderBlock".

Axis C APIs
Contains methods that affect the Axis client engine, such as functions to initialize and terminate the Axis
runtime, and functions to free allocated memory resources. The Axis APIs are defined in include file
<install_dir>/include/axis/Axis.h.

The following table lists the Axis APIs.

Table 24: Axis APIs

Function Description

axiscAxisInitialize() Initializes the Axis runtime.

axiscAxisTerminate() Terminates the Axis runtime.

axiscAxisDelete() Deletes storage allocated by the Axis engine.

axiscAxisStartTrace() Starts Axis logging.

axiscAxisStopTrace() Stops Axis logging.

axiscAxisWriteTrace() Writes trace data to Axis log.

axiscAxisInitialize()

void axiscAxisInitialize(AxiscBool bIsServer)

Initializes the Axis runtime. Creating a stub also initializes the Axis runtime and deleting the stub
terminates it. So simple applications that only ever use one stub at a time do not need to call these
methods. More complicated applications that initialize multiple stubs, use them and delete them later,
should initialize Axis at the start of their application using axiscAxisInitialize() and terminate Axis
at the very end of their application with axiscAxisTerminate(). Applications that use Axis in multiple
threads should also call axiscAxisInitialize() and axiscAxisTerminate().

Parameters

bIsServer Integer boolean flag that must be set to 0.

© Copyright IBM Corp. 2011, 2018 145

Example

The following example initializes the Axis client engine.

axiscAxisInitialize(0);

axiscAxisTerminate()

void axiscAxisTerminate()

Terminates the Axis runtime.

Example

The following example terminates the Axis client engine.

axiscAxisTerminate();

axiscAxisDelete()

void axiscAxisDelete(void* pValue,
 AXISC_XSDTYPE type)

Deletes storage allocated by the Axis engine.

Parameters

pValue Pointer to storage that is to be deleted.

type The type of storage to be deleted. The AXISC_XSDTYPE type is an enumerator defined
<install_dir>/include/axis/TypeMapping.h.

Example

The following example deletes a pointer that was dynamically allocated by the Axis engine and that is
used to store data with a type of xsd:int.

axiscAxisDelete(ptr, XSDC_INT);

axiscAxisStartTrace()

int axiscAxisStartTrace(const char* logFilePath,
 const char *logFilter)

Starts Axis logging. This must be done prior to any activity in order to propagate logging attributes to
parser and transport. If there are active transports and parsers, you will not get trace records other than
those associated with the engine and newly instantiated transports and parsers.

A typical trace record will look like the following (following are entry/exit trace records):

[13/11/2008 15:55:55:509] 00007860 transport > HTTPTransport::processHTTPHeader():

146 IBM i: Web Services Client for ILE

[13/11/2008 15:55:55:510] 00007860 transport < HTTPTransport::processHTTPHeader():

A trace record includes a timestamp, a thread ID, the component that is doing the trace, a one character
field indicating Trace type:

 > (entry)
 < (exit)
 X (exception)
 D (debug)

and the method/function name. After which there will be additional trace data. When tracing is enabled,
you will know exactly where an exception is being thrown from. A typical trace record for when an
exception is thrown is as follows:

[13/11/2008 15:55:55:510] 00007860 transport X HTTPTransport::readHTTPHeader():
Line=1851: File=/home/amra/axis/L1.1.0/src/ws-axis/c/src/transport/axis3/HTTPTransport.cpp:
HTTPTransportException - SERVER_TRANSPORT_HTTP_EXCEPTION:
Server sent HTTP error: 'Not Found'

Request and response messages can be traced by enabling transport trace. Here is a example of a
transport trace:

.

.

.
[13/11/2008 15:55:55:280] 00007860 transport D HTTPChannel::writeBytes():
POST /axis HTTP/1.1
Host: 127.0.0.1:13260
Content-Type: text/xml; charset=UTF-8
SOAPAction: ""
Content-Length: 393

[13/11/2008 15:55:55:280] 00007860 transport < HTTPChannel::writeBytes(): Exit with integer
value of 122
[13/11/2008 15:55:55:281] 00007860 transport > HTTPChannel::writeBytes():
[13/11/2008 15:55:55:282] 00007860 transport D HTTPChannel::writeBytes():
<?xml version='1.0' encoding='utf-8' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:div xmlns:ns1="http://soapinterop.org/wsdl">
<ns1:arg_0_0>10</ns1:arg_0_0>
<ns1:arg_1_0>5</ns1:arg_1_0>
</ns1:div>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

.

.

.
[13/11/2008 15:55:55:508] 00007860 transport D HTTPChannel::readBytes():
HTTP/1.1 404 Not Found
Server: WebSphere Application Server/5.1
Content-Type: text/html;charset=UTF-8
Content-Language: en-GB
Transfer-Encoding: chunked

21
Error 404: File not found: null 0

Parameters

logFilePath Pointer to null-terminated character string representing the path to where trace records are
written to.

Axis C core APIs 147

logFilter Pointer to null-terminated character string representing the trace filter. The string filter is a
semicolon delimited string of possible filters. Possible filters include:

 stub - show trace records generated by stubs
 engine - show trace records generated by engine
 parser - show trace records generated by parser
 transport - show trace records generated by transport
 noEntryExit - do not show entry/exit trace records

The default filter is "stub;engine;parser;transport". Specifying a null pointer or a
null string is equivalent to requesting the default filter.

Returns

Zero if the method call is successful; otherwise -1 is returned.

Example

See example for the “axiscAxisWriteTrace()” on page 148 method.

axiscAxisStopTrace()

void axiscAxisStopTrace()

Stops Axis logging. This should be done as the last step when everything has been cleaned up. Otherwise,
active transports and parsers will continue to trace.

Example

See example for the “axiscAxisWriteTrace()” on page 148 method.

axiscAxisWriteTrace()

void axiscAxisWriteTrace(AXISC_TRACE_TYPE type,
 const char* funcName,
 const char * format,
 ...)

Writes specified data to the Axis log file.

Parameters

type The trace type. AXISC_TRACE_TYPE is an enumerator that can be set to one of the
following values:

 AXISC_TRACE_TYPE_ENTRY=0
 AXISC_TRACE_TYPE_EXIT=1
 AXISC_TRACE_TYPE_EXCEPTION=2
 AXISC_TRACE_TYPE_DEBUG=3

funcName Pointer to null-terminated character string representing class method or function for which
trace record is being written.

format Pointer to null-terminated character string representing the format as defined for the
printf() function.

... Variable number of parameters, the number of which is dependent on the specified format
parameter.

148 IBM i: Web Services Client for ILE

Example

The following example writes a application-defined trace record to the Axis log.

#include "axis/Axis.h"
#include "StockQuote.h"

#include <stdio.h>

int main()
{
 char * pszStockName;
 xsdc__float fQuoteDollars;
 AXISCHANDLE pwsStockQuote;
 char * pszEndpoint =
 "http://localhost:40001/StockQuote/services/urn:xmltoday-delayed-quotes";

 axiscAxisStartTrace("/tmp/axis.log");
 axiscAxisWriteTrace(AXISC_TRACE_TYPE_DEBUG,
 "main-stockQuote", "start %d\n", 1);

 pwsStockQuote = get_StockQuote_stub(pszEndpoint);

 if (NULL == pwsStockQuote)
 return -1;

 // Call the 'getQuote' method
 pszStockName = "XXX";
 fQuoteDollars = getQuote(pwsStockQuote, pszStockName);

 // Output the quote. If the stock name is unknown, then getQuote() will
 // return -1. If name was recognized by the server a value is returned.

 if (fQuoteDollars != -1)
 printf("The stock quote for %s is $%f\n", pszStockName, fQuoteDollars);
 else
 printf("There is no stock quote for %s\n", pszStockName);

 // Delete the web service.
 destroy_StockQuote_stub(pwsStockQuote);

 axiscAxisStopTrace();

 // Exit.
 return 0;
}

Stub C APIs
The stub object is returned by the code generated by wsdl2ws.sh tool when you use the service
interface function to create a stub. This object acts as the interface between the client application and the
Axis engine. The stub C APIs are defined in include file <install_dir>/include/axis/client/
Stub.h.

The following table lists the most commonly used functions.

Table 25: Stub C functions

Function Description

axiscStubSetTransportProperty() Sets transport properties (e.g. HTTP headers).

axiscStubGetTransportProperty() Gets transport properties (e.g. HTTP headers).

axiscStubSetTransportConnectTimeout() Sets the transport connect timeout.

axiscStubSetTransportTimeout() Sets the transport timeout.

axiscStubSetTransportAutoRedirect() Sets whether transport is to automatically handle
HTTP redirects.

Axis C core APIs 149

Table 25: Stub C functions (continued)

Function Description

axiscStubCreateSOAPHeaderBlock() Creates and adds a SOAP header block to the stub.

axiscStubAddNamespaceToSOAPHeader() Adds a namespace to the SOAP Header element.

axiscStubClearSOAPHeaderNamespaces() Clears all namespaces from the SOAP Header
element.

axiscStubAddAttributeToSOAPHeader() Adds an attribute to the SOAP Header element.

axiscStubClearSOAPHeaderAttributes() Clears all attributes from the SOAP Header element.

axiscStubAddNamespaceToSOAPBody() Adds a namespace to SOAP Body element.

axiscStubClearSOAPBodyNamespaces() Clears all namespaces from the SOAP Body element.

axiscStubAddAttributeToSOAPBody() Adds an attribute to SOAP Body element.

axiscStubClearSOAPBodyAttributes() Clears all attributes from the SOAP Body element.

axiscStubSetMaintainSession() Sets whether to maintain session with service or not.

axiscStubSetPassword() Sets the password to be used for basic
authentication.

axiscStubSetUsername() Sets the user name to be used for basic
authentication.

axiscStubSetProxy() Sets the proxy server and port for transport.

axiscStubSetProxySSL() Sets the proxy server and port for transport.

axiscStubSetProxyPassword() Sets the password to be used for proxy
authentication.

axiscStubSetProxyUsername() Sets the user name to be used for proxy
authentication.

axiscStubSetSecure() Sets SSL configuration properties.

axiscStubGetSOAPFault() Retrieve the SOAP fault associated with the last
request.

axiscStubSetTransportProperty ()

void axiscStubSetTransportProperty(AXISCHANDLE stub,
 const char * pcKey,
 const char * pcValue)

Sets the specified transport property. Calling this function with the same key multiple times will result in
the property being set to the last value.

Parameters

stub Pointer to stub object.

pcKey Pointer to null-terminated character string representing the transport property to set.

pcValue Pointer to null-terminated character string representing the value of the transport property
corresponding to pcKey.

150 IBM i: Web Services Client for ILE

Example

The following example sets the cookie HTTP header.

axiscStubSetTransportProperty(stub, "Cookie", "sessiontoken=123345456");

axiscStubGetTransportProperty()

const char * axiscStubGetTransportProperty(AXISCHANDLE stub,
 const char * pcKey,
 AxiscBool response)

Searches for the transport property with the specified key. The function returns NULL if the property is not
found.

Parameters

stub Pointer to stub object.

pcKey Pointer to null-terminated character string representing the transport property to retrieve.

response Integer flag, when set to 1, searches the response message for the property; and when set
to 0 searches the request message.

Returns

The value of the property or NULL if it was not found.

Example

The following example retrieves the HTTP cookie header from the response message.

const char *cookie = axiscStubGetTransportProperty(stub, "Cookie", 1);

axiscStubSetTransportConnectTimeout()

void axiscStubSetTransportConnectTimeout(AXISCHANDLE stub,
 long iTimeout)

Sets a specified timeout value, in seconds, to be used when attempting to connect to the server hosting
the Web service. If the timeout expires before establishing a connection to the server, an Axis exception is
thrown. A timeout of zero, which is the default, is interpreted as an infinite timeout.

Parameters

stub Pointer to stub object.

iTimeout An integer that specifies the connect timeout value in seconds.

Example

The following example set the transport connect timeout to 10 seconds.

axiscStubSetTransportConnectTimeout(stub, 10);

Axis C core APIs 151

axiscStubSetTransportTimeout()

void axiscStubSetTransportTimeout(AXISCHANDLE stub,
 long iTimeout)

Sets a specified timeout value, in seconds, to be used when waiting for a response from the Web service.
If the timeout expires before receiving a Web service response, an Axis exception is thrown. A timeout of
zero, which is the default, is interpreted as an infinite timeout.

Parameters

stub Pointer to stub object.

iTimeout An integer that specifies the receive timeout value in seconds.

Example

The following example set the transport timeout to 10 seconds.

axiscStubSetTransportTimeout(stub, 10);

axiscStubSetTransportAutoRedirect()

void axiscStubSetTransportAutoRedirect(AXISCHANDLE stub,
 AxiscBool redirectFlag,
 int maxCount)

Sets whether the transport is to automatically handle HTTP redirects. By default, redirects are not
handled by the transport. If enabled, auto-redirect will only occur when going from http to http or https to
https.

Parameters

stub Pointer to stub object.

redirectFlag Integer boolean flag. When set to zero (the default), automatic redirects will not occur.
When set to a non-zero value, automatic redirects will occur.

maxCount How many redirects to follow. Default is 1. A value less than 1 is the same as setting
redirectFlag to zero.

Example

The following example enables automatic redirects.

axiscStubSetTransportAutoRedirect(stub, 1, 10);

axiscStubCreateSOAPHeaderBlock()

AXISCHANDLE axiscStubCreateSOAPHeaderBlock(AXISCHANDLE stub,
 AxisChar * pElemName,
 AxisChar * pNamespace,
 AxisChar * pPrefix)

152 IBM i: Web Services Client for ILE

Creates and adds a SOAP header block (i.e. SOAP header). The returned AXISCHANDLE is a pointer that
represents a header block object and must be used to add the elements and values of the SOAP header
block.

Parameters

stub Pointer to stub object.

pElemName Pointer to null-terminated character string representing the element tag name of the SOAP
header.

pNamespac
e

Pointer to null-terminated character string representing the URI of namespace.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace.

Returns

Pointer to SOAP header block object. The ownership of the memory allocated for the object is owned by
the stub.

Example

The following example will generate a Security element that is inserted in the SOAP message as a SOAP
header:

#include "axis/Axis.h"
#include "axis/IHeaderBlock.h"
#include "axis/BasicNode.h"
#include "StockQuote.h"

#include <stdio.h>

int main()
{
.
.
.
 AXISHANDLE phb;
 AXISHANDLE Bnode1;
 AXISHANDLE Bnode2;
 AXISHANDLE Bnode3;
 AXISHANDLE stub;

 stub = get_StockQuote_stub("http://9.10.109.164:8088/StockQuote");

 // generate node wsse:Security element, declaring namespaces for wsse and wsu
 phb = axiscStubCreateSOAPHeaderBlock(stub,
 "Security",
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "wsse");

 axiscHeaderBlockCreateNamespaceDeclINamespace(phb,
 "wsu",
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd");

 axiscHeaderBlockCreateStdAttribute(phb, MUST_UNDERSTAND_TRUE, SOAP_VER_1_1);

 // Generate node wsse:UsernameToken as child node of wsse:Security
 Bnode1=axiscHeaderBlockCreateChildBasicNode(phb,
 ELEMENT_NODE, "UsernameToken", "wsse", NULL, NULL);

 axiscBasicNodeCreateAttribute(Bnode1,
 "Id","wsu",NULL,"UsernameToken-12345678");
 axiscHeaderBlockAddChild(phb,Bnode1);

 // Generate node wsse:Username as child node of wsse:UsernameToken
 // and the associated character node
 Bnode2=axiscHeaderBlockCreateChildBasicNode(phb,
 ELEMENT_NODE,"UserName","wsse",NULL,NULL);
 axiscBasicNodeAddChild(Bnode1,Bnode2);

 Bnode3=axiscHeaderBlockCreateChildBasicNode(phb,

Axis C core APIs 153

 CHARACTER_NODE,NULL,NULL,NULL,"admin");
 axiscBasicNodeAddChild(Bnode2,Bnode3);

 // Generate node wsse:Password as child node of wsse:UsernameToken
 // and the associated character node
 Bnode2=axiscHeaderBlockCreateChildBasicNode(phb,
 ELEMENT_NODE,"Password","wsse",NULL,NULL);
 axiscBasicNodeCreateAttribute(Bnode2,
 "Type",NULL,NULL,
 "http://docs.oasis-open.org/wss/2004/01/"
 "oasis-200401-wss-username-token-profile-1.0#PasswordText");
 axiscBasicNodeAddChild(Bnode1,Bnode2);

 Bnode3=axiscHeaderBlockCreateChildBasicNode(phb,
 CHARACTER_NODE,NULL,NULL,NULL,"admin");
 axiscBasicNodeAddChild(Bnode2,Bnode3);

 // Perform Web service operation
 .
 .
 .
 // Delete the web service.
 destroy_StockQuote_stub(stub);

 // Exit.
 return 0;
}

Here is what the Security element looks like when sent out as part of the SOAP request:

<wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 SOAP-ENV:mustUnderstand="1"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-12345678">
 <wsse:UserName>admin</wsse:UserName>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">
 admin
 </wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

axiscStubAddNamespaceToSOAPHeader()

void axiscStubAddNamespaceToSOAPHeader(AXISCHANDLE stub,
 const AxiscChar * pUri,
 const AxiscChar * pPrefix)

Adds a namespace to the SOAP Header element.

Parameters

stub Pointer to stub object.

pUri Pointer to null-terminated character string representing the namespace URI.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace.

Example

154 IBM i: Web Services Client for ILE

The following example will generate a SOAP Header element that declares the namespace myNS with a
value of http://www.myns.com/MyNS and adds an attribute to the SOAP Header element using the
declared namespace:

#include "axis/Axis.h"
#include "StockQuote.h"

#include <stdio.h>

int main()
{
.
.
.
 AXISHANDLE stub;

 stub = get_StockQuote_stub("http://9.10.109.164:8088/StockQuote");

 // Declare namespace for myNS in SOAP Header element
 axiscStubAddNamespaceToSOAPHeader(stub,"http://www.myns.com/MyNS", "myNS");

 // Add attribute to SOAP Header element using declared namespace myNS
 axiscStubAddAttributeToSOAPHeader(stub, "myAttr", "myNS", "myAttrValue");

 // Perform Web service operation
 .
 .
 .
 // Delete the web service.
 destroy_StockQuote_stub(stub);

 // Exit.
 return 0;
}

Here is a partial SOAP request showing the added namespace declaration:

<SOAP-ENV:Header xmlns:myNS="http://www.myns.com/MyNS" myNS:myAttr="myAttrValue">

axiscStubClearSOAPHeaderNamespaces()

void axiscStubClearSOAPHeaderNamespaces(AXISCHANDLE stub)

Clears all namespaces from the SOAP Header element.

Parameters

stub Pointer to stub object.

Example

Following example clears out all namespaces from the SOAP Header element.

axiscStubClearSOAPHeaderNamespaces(stub);

axiscStubAddAttributeToSOAPHeader()

void axiscStubAddAttributeToSOAPHeader(AXISCHANDLE stub,
 const AxiscChar * pLocalname,
 const AxiscChar * pPrefix,
 const AxiscChar * pValue)

Axis C core APIs 155

Adds an attribute to the SOAP Header element.

Parameters

stub Pointer to stub object.

pLocalname Pointer to null-terminated character string representing the attribute name.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified attribute.

pValue Pointer to null-terminated character string representing the value of the attribute.

Example

See example for “axiscStubAddNamespaceToSOAPHeader()” on page 154.

axiscStubClearSOAPHeaderAttributes()

void axiscStubClearSOAPHeaderAttributes(AXISCHANDLE stub)

Clears all attributes from the SOAP Header element.

Parameters

stub Pointer to stub object.

Example

Following example clears out all attributes from the SOAP Header element.

axiscStubClearSOAPHeaderAttributes(stub);

axiscStubAddNamespaceToSOAPBody()

void axiscStubAddNamespaceToSOAPBody(AXISCHANDLE stub,
 const AxiscChar * pUri,
 const AxiscChar * pPrefix)

Adds a namespace to the SOAP Body element.

Parameters

stub Pointer to stub object.

pUri Pointer to null-terminated character string representing the namespace URI.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace.

Example

156 IBM i: Web Services Client for ILE

The following example will generate a SOAP Body element that declares the namespace myNS with a
value of http://www.myns.com/MyNS and adds an attribute to the SOAP Body element using the
declared namespace:

#include "axis/Axis.h"
#include "StockQuote.h"

#include <stdio.h>

int main()
{
.
.
.
 AXISHANDLE stub;

 stub = get_StockQuote_stub("http://9.10.109.164:8088/StockQuote");

 // Declare namespace for myNS in SOAP Header element
 axiscStubAddNamespaceToSOAPBody(stub,"http://www.myns.com/MyNS", "myNS");

 // Add attribute to SOAP Header element using declared namespace myNS
 axiscStubAddAttributeToSOAPBody(stub, "myAttr", "myNS", "myAttrValue");

 // Perform Web service operation
 .
 .
 .
 // Delete the web service.
 destroy_StockQuote_stub(stub);

 // Exit.
 return 0;
}

Here is a partial SOAP request showing the added namespace declaration:

<SOAP-ENV:Body xmlns:myNS="http://www.myns.com/MyNS" myNS:myAttr="myAttrValue">

axiscStubClearSOAPBodyNamespaces()

void axiscStubClearSOAPBodyNamespaces(AXISCHANDLE stub)

Clears all namespaces from the SOAP Body element.

Parameters

stub Pointer to stub object.

Example

Following example clears out all namespaces from the SOAP Body element.

axiscStubClearSOAPBodyNamespaces(stub);

axiscStubAddAttributeToSOAPBody()

void axiscStubAddAttributeToSOAPBody(AXISCHANDLE stub,
 const AxiscChar * pLocalname,
 const AxiscChar * pPrefix,
 const AxiscChar * pValue)

Axis C core APIs 157

Adds an attribute to the SOAP Body element.

Parameters

stub Pointer to stub object.

pLocalname Pointer to null-terminated character string representing the attribute name.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified attribute.

pValue Pointer to null-terminated character string representing the value of the attribute.

Example

See example for “axiscStubAddNamespaceToSOAPBody()” on page 156.

axiscStubClearSOAPBodyAttributes()

void axiscStubClearSOAPBodyAttributes(AXISCHANDLE stub)

Clears all attributes from the SOAP Body element.

Parameters

stub Pointer to stub object.

Example

Following example clears out all attributes from the SOAP Body element.

axiscStubClearSOAPBodyAttributes(stub);

axiscStubSetMaintainSession()

void axiscStubSetMaintainSession(AXISCHANDLE stub,
 AxiscBool bSession)

Sets whether to maintain session with service or not.

Parameters

stub Pointer to stub object.

bSession Integer flag, when set to 1, indicates that session should be maintained with Web service.
When set to 0 the session will not be maintained.

Example

Following example indicates to the Axis engine that session to Web service should be maintained.

axiscStubSetMaintainSession(stub, 1);

158 IBM i: Web Services Client for ILE

axiscStubSetPassword()

void axiscStubSetPassword(AXISCHANDLE stub,
 const char * pPassword)

Sets the password to be used for HTTP basic authentication.

Parameters

stub Pointer to stub object.

pPassword Pointer to null-terminated character string representing the password.

Example

Following example sets HTTP basic authentication password.

axiscStubSetPassword(stub, "password1");

axiscStubSetUsername()

void axiscStubSetUsername(AXISCHANDLE stub,
 const char * pUsername)

Sets the username to be used for HTTP basic authentication.

Parameters

stub Pointer to stub object.

pUsername Pointer to null-terminated character string representing the username.

Example

Following example sets HTTP basic authentication username.

axiscStubSetUsername(stub, "user1");

axiscStubSetProxy()

void axiscStubSetProxy(AXISCHANDLE stub,
 const char * pcProxyHost,
 unsigned int uiProxyPort)

Sets the proxy server and port.

Parameters

stub Pointer to stub object.

pcProxyHos
t

Pointer to null-terminated character string representing the host name of proxy server.

uiProxyPort The port the proxy server listening on.

Axis C core APIs 159

Example

Following example sets proxy host and port information.

axiscStubSetProxy(stub, "proxyserver", 40001);

axiscStubSetProxySSL()

void axiscStubSetProxySSL(AXISCHANDLE stub,
 AxiscBool useSSL)

Sets whether or not a secure (SSL) connection should be used when connecting to the proxy server.

Parameters

stub Pointer to stub object.

useSSL Integer boolean flag. When set to zero (the default), an unsecure connection will be
established when connecting to a proxy server. When set to a non-zero value, a secure
connection will be established when connecting to a proxy server.

Usage notes

1. In order for a secure connection to be established, the API axiscStubSetSecure() must have been
called.

Example

Following example tells the client library to use a secure connection when connecting to a proxy server.

axiscStubSetProxySSL(stub, 1);

axiscStubSetProxyPassword()

void axiscStubSetProxyPassword(AXISCHANDLE stub,
 const char * pPassword)

Sets password to be used for proxy authentication.

Parameters

stub Pointer to stub object.

pPassword Pointer to null-terminated character string representing the password.

Example

Following example sets password for proxy authentication.

axiscStubSetProxyPassword(stub, "proxypwd1");

160 IBM i: Web Services Client for ILE

axiscStubSetProxyUsername()

void axiscStubSetProxyUsername(AXISCHANDLE stub,
 const char * pUsername)

Sets the username to be used for Proxy authentication .

Parameters

stub Pointer to stub object.

pUsername Pointer to null-terminated character string representing the username.

Example

Following example sets username for proxy authentication.

axiscStubSetProxyUsername(stub, "proxyusr1");

axiscStubSetSecure()

void axiscStubSetSecure(AXISCHANDLE stub,
 char * pKeyRingFile,
 ...)

Sets SSL configuration properties.

Parameters

stub Pointer to stub object.

pKeyRingFile Pointer to null-terminated character string representing the certificate store file to be
used for the secure session or SSL environment. This parameter is ignored if the
application ID parameter is set to a value.

pKeyRingPS (optional) Pointer to null-terminated character string representing the password for the
certificate store file to be used for the secure session or SSL environment. If the
parameter is not passed or is set to the null string, the internal stash file associated
with the user profile that is being used to run the application is used as long as the user
has authority to the certificate store file and the password has been used one time one
the system. To specify any of the subsequent optional parameters, you must pass a
value for this parameter. This parameter is ignored if the application ID parameter is set
to a value.

pKeyRingLbl (optional) Pointer to null-terminated character string representing the certificate label
associated with the certificate in the certificate store to be used for the secure session
or SSL environment. If the parameter is not passed or is set to the null string, the
default certificate label in the specified certificate store file is used for the SSL
environment. To specify any of the subsequent optional parameters, you must pass a
value for this parameter. This parameter is ignored if the application ID parameter is set
to a value.

pV2Cipher (optional) Pointer to null-terminated character string representing the list of SSL
Version 2 ciphers to be used for the secure session or the SSL environment. Specifying
"NONE" for this parameter will disable SSL Version 2 ciphers. To specify any of the
subsequent optional parameters, you must pass a value for this parameter.

Axis C core APIs 161

pV3Cipher (optional) Pointer to null-terminated character string representing the list of SSL
Version 3/TLS Version 1 ciphers to be used for the secure session or the SSL
environment. Specifying "NONE" for this parameter will disable SSL Version 3 ciphers.
To specify any of the subsequent optional parameters, you must pass a value for this
parameter.

pTLSCipher (optional) Pointer to null-terminated character string indicating whether to enable or
disable the TLS Version 1 ciphers. A value of "NONE" will disable the ciphers; any other
value will enable the ciphers. By default, the TLS Version 1 ciphers are enabled.

pTLSv11Cipher (optional) Pointer to null-terminated character string indicating whether to enable or
disable the TLS Version 1.1 ciphers. A value of "NONE" will disable the ciphers; any
other value will enable the ciphers. By default, the TLS Version 1.1 ciphers are enabled.

pTLSv12Cipher (optional) Pointer to null-terminated character string indicating whether to enable or
disable the TLS Version 1.2 ciphers. A value of "NONE" will disable the ciphers; any
other value will enable the ciphers. By default, the TLS Version 1.2 ciphers are enabled.

pTolerate (optional) Pointer to null-terminated character string indicating whether to tolerate soft
validation errors (expired certificate or certificate not in certificate store). Specify a
value of true to tolerate soft validation errors, or false to not tolerate soft validation
errors. The default is false.

pAppid (optional) Pointer to null-terminated character string indicating the application ID to
use for the SSL environment.

pFQDN (optional) Pointer to null-terminated character string indicating the fully qualified
domain name that will be used as Server Name Indication (SNI) as defined by RFC
6066.

Usage notes

1. The last parameter must be the NULL pointer.
2. If you indicate that soft validation errors should be tolerated, the application is responsible for the

authentication of the server. It is highly recommended that this option only be used if an alternate
authentication method is used.

3. If SSL communications is to be done by using a path to a keystore file, the user profile the application
is running under must have authority to the file.

4. Digital Certificate Manager (DCM) manages an application database that contains application
definitions. Each application definition encapsulates certificate processing information for a specific
application. As of the IBM i 7.1 release, the application definition also encapsulates some System SSL
attributes for the application. System SSL users know this application definition as an “Application ID.”
Instead of specifying a path to a keystore, you can indicate what application ID to use. You would use
this support to ensure consistency on what SSL attributes to use and if you do not want to give a user
profile access to the system keystore file.

5. Server Name Indication (SNI) when establishing SSL connections, as defined by RFC 6066, allows TLS
clients to provide to the TLS server the name of the server they are contacting. This function is used to
facilitate secure connections to servers that host multiple 'virtual' servers at a single underlying
network address. If the client requested FQDN does not match or no server SNI acknowledgment is
sent, the secure connection will fail.

6. The Web services client for ILE supports secure sessions by using the Global Secure ToolKit (GSKit)
APIs. For the latest information on ciphers, see the gsk_attribute_set_buffer() API usage
notes section at the IBM i Information Center Web site - http://www.ibm.com/systems/i/infocenter/.

7. The following GSK_V3_CIPHER_SPECS values are the SSL Version 3 ciphers and the TLS Version 1
ciphers supported:

 01 = *RSA_NULL_MD5
 02 = *RSA_NULL_SHA
 03 = *RSA_EXPORT_RC4_40_MD5

162 IBM i: Web Services Client for ILE

http://www.ibm.com/systems/i/infocenter/

 04 = *RSA_RC4_128_MD5
 05 = *RSA_RC4_128_SHA
 06 = *RSA_EXPORT_RC2_CBC_40_MD5
 09 = *RSA_DES_CBC_SHA
 0A = *RSA_3DES_EDE_CBC_SHA
 2F = *RSA_AES_128_CBC_SHA (TLS Version 1 only)
 35 = *RSA_AES_256_CBC_SHA (TLS Version 1 only)

8. SSL Version 2 support is disabled IBM i 6.1 and later releases when the operating system is installed
resulting in no SSL Version 2 ciphers being supported. If SSL Version 2 is enabled (not recommended),
the following GSK_V2_CIPHER_SPECS values are the SSL Version 2 ciphers that would be supported if
shipped supported cipher list has not been altered.

 1 = *RSA_RC4_128_MD5
 2 = *RSA_EXPORT_RC4_40_MD5
 4 = *RSA_EXPORT_RC2_CBC_40_MD5

The following GSK_V2_CIPHER_SPECS values are the SSL Version 2 ciphers potentially supported if an
administrator later enables SSL Version 2:

 1 = *RSA_RC4_128_MD5
 2 = *RSA_EXPORT_RC4_40_MD5
 3 = *RSA_RC2_CBC_128_MD5
 4 = *RSA_EXPORT_RC2_CBC_40_MD5
 6 = *RSA_DES_CBC_MD5
 7 = *RSA_3DES_EDE_CBC_MD5

Example

The following C example shows a sample client application that configures security information before
calling a web service. To configure the secure setting within your own application, add the code shown in
bold in this example.

Below is a C example of how to set security information:

int main() {

// URL for secure communication. The localhost may require
// a port number, i.e. localhost:80
char * pszSecureURL = "https://localhost/Test/services/TestPort";

// Load instances of the service with secure URL settings.
AXISCHANDLE serviceSecure = get_ITestService_stub(pszSecureURL);

// Initialise the secure settings for the secure service.
axiscStubSetSecure(serviceSecure, "<path to KeyRing.kbd>",
"<password to stash or NULL string>", "<label>", "NONE", "05", "NONE", NULL);

// Remainder of application
.
.
.
// End of application
destroy_ITestService_stub(serviceSecure);
return 0;
}

axiscStubGetSOAPFault()

AXISHANDLE axiscStubGetSOAPFault(AXISCHANDLE stub)

Returns the SOAP fault object associated with the last operation issued against the stub handle. The
function returns NULL if there is no SOAP fault.

Parameters

Axis C core APIs 163

stub Pointer to stub object.

Returns

The SOAP fault object or NULL if it was not found.

Header block C APIs
The header block object represents a SOAP header block object. The header block C APIs are defined in
include file <install_dir>/include/axis/IHeaderBlock.h.

The following table lists the most commonly used methods.

Table 26: Header block C functions

Function Description

axiscHeaderBlockCreateNamespaceDeclINam
espace()

Creates an attribute and adds it to the header block as
a namespace.

axiscHeaderBlockCreateStdAttribute() Creates a standard header block attribute.

axiscHeaderBlockCreateChildBasicNode() Creates a child node depending on the given node
type.

axiscHeaderBlockAddChild() Adds a child node to the header block.

axiscHeaderBlockCreateNamespaceDeclINamespace()

AXISCHANDLE axiscHeaderBlockCreateNamespaceDeclINamespace(AXISCHANDLE headerBlock,
 const AxisChar *pPrefix,
 const AxisChar *pNamespace)

Creates an attribute and adds it to the header block as a namespace.

Parameters

headerBloc
k

Pointer to header block object.

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace.

pNamespa
ce

Pointer to null-terminated character string representing the URI of namespace.

Returns

Pointer to namespace object. The ownership of the memory allocated for the object is owned by the stub.

Example

See example for “axiscStubCreateSOAPHeaderBlock()” on page 152.

164 IBM i: Web Services Client for ILE

axiscHeaderBlockCreateStdAttribute()

AXISCHANDLE axiscHeaderBlockCreateStdAttribute(AXISCHANDLE headerBlock,
 AXISC_HEADER_BLOCK_STD_ATTR_TYPE eAttribute,
 AXISC_SOAP_VERSION eSOAPVers)

Creates and adds a standard SOAP header block attribute.

Parameters

headerBloc
k

Pointer to header block object.

eAttribute Enumerator indicating which of the following attributes are to be set:

ACTOR : Creates actor attribute to point to next.
MUST_UNDERSTAND_TRUE : Creates the mustUnderstand attribute set to "1".
MUST_UNDERSTAND_FALSE: Creates the mustUnderstand attribute set to "0".

eSOAPVers Enumerator indicating the SOAP version. This parameter must always be set to:

SOAP_VER_1_1 : SOAP version 1.1.

The enumerator AXISC_SOAP_VERSION is defined in <install_dir>/include/axis/
SoapEnvVersions.h

Returns

Pointer to attribute object. The ownership of the memory allocated for the object is owned by the stub.

Example

See example for “axiscStubCreateSOAPHeaderBlock()” on page 152.

axiscHeaderBlockCreateChildBasicNode()

AXISCHANDLE axiscHeaderBlockCreateChildBasicNode(AXISCHANDLE headerBlock,
 AXISC_NODE_TYPE eNodeType,
 AxisChar *pElemName,
 AxisChar *pPrefix,
 AxisChar *pNamespace,
 AxisChar* pachValue)

Creates an instance of a basic node of the specified type.

Parameters

headerBloc
k

Pointer to header block object.

eNodeType Enumerator indicating one of the following node types:

ELEMENT_NODE=1
CHARACTER_NODE=2

The enumerator AXISC_NODE_TYPE is defined in <install_dir>/include/axis/
BasicNode.h

pElemNam
e

Pointer to null-terminated character string representing the element tag name of the node.
This parameter is ignored for CHARACTER_NODE node types.

Axis C core APIs 165

pPrefix Pointer to null-terminated character string representing the prefix that will be associated
with the specified namespace. This parameter is ignored for CHARACTER_NODE node types.

pNamespa
ce

Pointer to null-terminated character string representing the URI of namespace. This
parameter is ignored for CHARACTER_NODE node types.

pachValue Pointer to null-terminated character string representing the value of the node. This
parameter is ignored for ELEMENT_NODE node types.

Returns

Pointer to a basic node object. The ownership of the memory allocated for the object is owned by the
caller until the node is added to the header block.

Example

See example for “axiscStubCreateSOAPHeaderBlock()” on page 152.

axiscHeaderBlockAddChild()

int axiscHeaderBlockAddChild(AXISCHANDLE headerBlock,
 AXISCHANDLE pBasicNode)

Adds a child node to the SOAP header block.

Parameters

headerBloc
k

Pointer to header block object.

pBasicNod
e

Pointer to basic node object to be added to SOAP header block.

Returns

Zero if node was added successfully; otherwise -1 is returned.

Example

See example for “axiscStubCreateSOAPHeaderBlock()” on page 152.

Basic node C APIs
The basic node object is the base object that is used to construct the various nodes of a SOAP header. The
basic node C APIs are defined in include file <install_dir>/include/axis/BasicNode.h.

The following table lists the most commonly used methods.

Table 27: Basic node C functions

Function Description

axiscBasicNodeCreateAttribute() Creates an attribute and adds it to this basic node.

axiscBasicNodeAddChild() Adds a child node to the basic node.

166 IBM i: Web Services Client for ILE

axiscBasicNodeCreateAttribute()

AXISCHANDLE axiscBasicNodeCreateAttribute(AXISCHANDLE basicNode,
 const AxisChar* pAttrName,
 const AxisChar* pPrefix,
 const AxisChar* pNamespace,
 const AxisChar* pValue)

Creates an attribute and adds it to the basic node.

Parameters

basicNode Pointer to basic node object.

pAttrName Pointer to null-terminated character string representing the attribute name.

pPrefix Pointer to null-terminated character string representing the attribute prefix that will be
associated with the specified namespace.

pNamespa
ce

Pointer to null-terminated character string representing the URI of attribute namespace.

pValue The value of the attribute.

Returns

Pointer to created attribute object. The ownership of the memory allocated for the object is owned by the
stub.

Example

See example for “axiscStubCreateSOAPHeaderBlock()” on page 152.

axiscBasicNodeAddChild()

int axiscBasicNodeAddChild(AXISCHANDLE basicNode,
 AXISCHANDLE pBasicNode)

Adds a basic node as a child node to another basic node.

Parameters

basicNode Pointer to basic node object.

pBasicNod
e

Pointer to basic node to be added as a child node.

Returns

Zero if node was added successfully; otherwise, -1 is returned.

Example

See example for “axiscStubCreateSOAPHeaderBlock()” on page 152.

Axis C core APIs 167

SOAP fault C APIs
The SOAP fault object is the base object that is used to construct objects containing SOAP fault
information. The SOAP fault C APIs are defined in include file <install_dir>/include/axis/
ISoapFault.h.

The following table lists the most commonly used methods.

Table 28: SOAP fault C functions

Function Description

axiscSoapFaultGetCmplxFaultObjectName Get the SOAP fault name.

axiscSoapFaultGetFaultactor Get the SOAP fault actor.

axiscSoapFaultGetFaultcode Get the SOAP fault code.

axiscSoapFaultGetFaultstring Get the SOAP fault string.

axiscSoapFaultGetSimpleFaultDetail Get the SOAP fault detail.

axiscSoapFaultGetCmplxFaultObjectName()

const AxiscChar * axiscSoapFaultGetCmplxFaultObjectName(AXISCHANDLE soapFault)

Retrieve the identifier associated with the SOAP fault object.

Parameters

soapFault Pointer to SOAP fault object.

Returns

Pointer to null-terminated string representing the identifier of the SOAP fault. The ownership of the
memory allocated for the object is owned by the stub.

axiscSoapFaultGetFaultactor()

const AxiscChar * axiscSoapFaultGetFaultactor(AXISCHANDLE soapFault)

Retrieve the SOAP fault actor.

Parameters

soapFault Pointer to SOAP fault object.

Returns

Pointer to null-terminated string representing the SOAP fault actor. The ownership of the memory
allocated for the object is owned by the stub.

168 IBM i: Web Services Client for ILE

axiscSoapFaultGetFaultcode()

const AxiscChar * axiscSoapFaultGetFaultcode(AXISCHANDLE soapFault)

Retrieve the SOAP fault code.

Parameters

soapFault Pointer to SOAP fault object.

Returns

Pointer to null-terminated string representing the SOAP fault code. The ownership of the memory
allocated for the object is owned by the stub.

axiscSoapFaultGetFaultstring()

const AxiscChar * axiscSoapFaultGetFaultstring(AXISCHANDLE soapFault)

Retrieve the SOAP fault string.

Parameters

soapFault Pointer to SOAP fault object.

Returns

Pointer to null-terminated string representing the identifier of the SOAP fault string. The ownership of the
memory allocated for the object is owned by the stub.

axiscSoapFaultGetSimpleFaultDetail()

const AxiscChar * axiscSoapFaultGetSimpleFaultDetail(AXISCHANDLE soapFault)

Retrieve the simple fault detail string.

Parameters

soapFault Pointer to SOAP fault object.

Returns

Pointer to null-terminated string representing the fault data as a string.

Transport C APIs
The transport APIs may be used by client applications that want to control what is sent to a server and
what is received from the server. Only textual data may be sent or received. Data sent by a client
application is converted to UTF-8. Data received in response to a client request is assumed to be in
UTF-8. The transport C APIs are defined in include file <install_dir>/include/axis/
ITransport.h.

Axis C core APIs 169

The following table lists the most commonly used functions.

Table 29: Transport C functions

Function Description

axiscTransportCreate() Create a transport object.

axiscTransportDestroy() Destroy a transport object.

axiscTransportReset() Resets the transport object to its initial state.

axiscTransportSetProperty() Sets a transport property.

axiscTransportGetProperty() Gets a transport property.

axiscTransportSend() Send bytes over transport.

axiscTransportFlush() Flush the transport of any buffered data.

axiscTransportReceive() Receive data from the transport.

axiscTransportGetLastErrorCode() Get transport error code from last unsuccessful
transport operation.

axiscTransportGetLastError() Get transport error string from last unsuccessful
transport operation.

axiscTransportCreate()

AXISCHANDLE axiscTransportCreate(const char * uri,
 int protocol)

Creates a transport object.

Parameters

uri
Pointer to null-terminated character string representing the URI that will be used to connect to the
server.

protocol
Transport protocol to use. The protocols supported follows:
AXISC_PROTOCOL_HTTP11

The transport object should be created that uses the Hypertext Transfer Protocol (HTTP) 1.1.

Returns

Pointer to transport object if function call is successful; NULL if transport object cannot be created.

Example

The following example creates a HTTP 1.1 transport object.

AXISHANDLE h = axiscTransportCreate("http://hostname:10035/web/services/ECHOPATH",
 AXISC_PROTOCOL_HTTP11);

170 IBM i: Web Services Client for ILE

axiscTransportDestroy()

int axiscTransportDestroy(AXISCHANDLE tHandle)

Destroys the object created by axiscTransportCreate().

Parameters

tHandle
Pointer to transport object.

Returns

Zero if call to function is successful; -1 on failure. If the function call fails, the transport object is
unusable.

Example

axiscTransportDestroy(tHandle);

axiscTransportReset()

int axiscTransportReset(AXISCHANDLE tHandle,
 const char * uri)

Resets the transport object to its initial state.

Parameters

tHandle
Pointer to transport object.

uri
Pointer to null-terminated character string representing the URI that will be used on the reset of the
transport object. A NULL value will result in the URI that was used on the
axiscTransportCreate() function call to be used.

Returns

Zero if call to function is successful; -1 on failure.

Example

The following example resets the transport object.

axiscTransportReset(tHandle, NULL);

axiscTransportSetProperty()

int axiscTransportSetProperty(AXISCHANDLE tHandle,
 int type,
 ...)

Sets a transport property.

Parameters

Axis C core APIs 171

tHandle
Pointer to transport object.

type
An integer that specifies the property to be set. Possible values:
AXISC_PROPERTY_HTTP_BASICAUTH

Sets the user ID and password that will be used for HTTP basic authentication. The next two
parameters must be pointers to character strings. The first parameter is the user ID, and the
second parameter is the password.

AXISC_PROPERTY_HTTP_HEADER
Sets an HTTP header in the HTTP request. The next two parameters must be pointers to character
strings. The first parameter is the header name, and the second parameter is the header value.

Note: If the content-type HTTP header is not set, the default content type that will be used is:

Content-Type: text/xml; charset=UTF-8

AXISC_PROPERTY_HTTP_METHOD
Sets the HTTP method in the HTTP request. The next parameter must be a pointer to a character
string. The most common HTTP methods include GET, POST, PUT, and DELETE. The default HTTP
method is GET.

AXISC_PROPERTY_HTTP_PROXY
Sets the HTTP proxy information. The next two parameters must be pointers to character strings.
The first parameter is the HTTP proxy host, and the second parameter is the HTTP proxy port.

AXISC_PROPERTY_HTTP_PROXYAUTH
Sets the HTTP proxy authentication information. The next two parameters must be pointers to
character strings. The first parameter is the user ID, and the second parameter is the password.

AXISC_PROPERTY_HTTP_PROXYSSL
Sets whether or not a secure (SSL) connection should be used when connecting to the proxy
server. The next parameter must be a pointer to a character string that is set to either "true" or
"false". A value of "true" indicates that the transport will connect to the proxy server using a
secure channel. A value of "false" indicates that the transport will connect to the proxy server
using an unsecure channel (note that to use a secure channel, the property
AXISC_PROPERTY_HTTP_SSL must be set.)

AXISC_PROPERTY_HTTP_REDIRECT
Sets whether the transport object should follow HTTP redirects. The next parameter must be a
pointer to an integer. If the value is greater than zero, the transport object will follow HTTP
redirects up to the number specified. If the value is less than one, HTTP redirects will not be
followed.

AXISC_PROPERTY_HTTP_SSL
Sets SSL information. Up to ten parameters that are pointers to character strings may be passed:

• Pointer to null-terminated character string representing the certificate store file to be used for
the secure session or SSL environment. This parameter is ignored if the application ID
parameter is set to a value. If SSL communications is to be done by using a path to a keystore
file, the user profile the application is running under must have authority to the file.

• (optional) Pointer to null-terminated character string representing the password for the
certificate store file to be used for the secure session or SSL environment. If the parameter is
not passed or is set to the null string, the internal stash file associated with the user profile that
is being used to run the application is used as long as the user has authority to the certificate
store file and the password has been used one time one the system. To specify any of the
subsequent optional parameters, you must pass a value for this parameter. This parameter is
ignored if the application ID parameter is set to a value.

• (optional) Pointer to null-terminated character string representing the certificate label
associated with the certificate in the certificate store to be used for the secure session or SSL
environment. If the parameter is not passed or is set to the null string, the default certificate

172 IBM i: Web Services Client for ILE

label in the specified certificate store file is used for the SSL environment. To specify any of the
subsequent optional parameters, you must pass a value for this parameter. This parameter is
ignored if the application ID parameter is set to a value.

• (optional) Pointer to null-terminated character string representing the list of SSL Version 2
ciphers to be used for the secure session or the SSL environment. Specifying "NONE" for this
parameter will disable SSL Version 2 ciphers. To specify any of the subsequent optional
parameters, you must pass a value for this parameter.

• (optional) Pointer to null-terminated character string representing the list of SSL Version 3/TLS
Version 1 ciphers to be used for the secure session or the SSL environment. Specifying "NONE"
for this parameter will disable SSL Version 3 ciphers. To specify any of the subsequent optional
parameters, you must pass a value for this parameter.

• (optional) Pointer to null-terminated character string indicating whether to enable or disable the
TLS Version 1 ciphers. A value of "NONE" will disable the ciphers; any other value will enable the
ciphers. By default, the TLS Version 1 ciphers are enabled.

• (optional) Pointer to null-terminated character string indicating whether to enable or disable the
TLS Version 1.1 ciphers. A value of "NONE" will disable the ciphers; any other value will enable
the ciphers. By default, the TLS Version 1.1 ciphers are enabled.

• (optional) Pointer to null-terminated character string indicating whether to enable or disable the
TLS Version 1.2 ciphers. A value of "NONE" will disable the ciphers; any other value will enable
the ciphers. By default, the TLS Version 1.2 ciphers are enabled.

• (optional) Pointer to null-terminated character string indicating whether to tolerate soft
validation errors (expired certificate or certificate not in certificate store). Specify a value of
true to tolerate soft validation errors, or false to not tolerate soft validation errors. The
default is false.

• (optional) Pointer to null-terminated character string indicating the application ID to use for the
SSL environment.

• (optional) Pointer to null-terminated character string indicating the fully qualified domain name
that will be used as Server Name Indication (SNI) as defined by RFC 6066.

Note: The last parameter must be the NULL pointer.

AXISC_PROPERTY_CONNECT_TIMEOUT
Sets the connect timeout value. The next parameter must be a pointer to an integer. If the value is
greater than zero, the value will be used as the maximum time, in seconds, to wait for a
connection to complete. The default value is dependent on TCP/IP system settings.

AXISC_PROPERTY_CONVERT_PAYLOAD_REQUEST
Sets whether data conversion is to occur for the request payload. By default, data that is sent is
converted from the job's coded character set identifier (CCSID) to UTF-8 before it is sent. The next
parameter must be a pointer to a character string that is set to either true or false. If the value
is true, data conversion will occur. If the value is false, data conversion will not occur. The
default value is true.

AXISC_PROPERTY_CONVERT_PAYLOAD_RESPONSE
Sets whether data conversion is to occur for the response payload. By default, data that is received
is converted from UTF-8 to the job's CCSID. The next parameter must be a pointer to a character
string that is set to either true or false. If the value is true, data conversion will occur. If the
value is false, data conversion will not occur. The default value is true.

AXISC_PROPERTY_CONVERT_PAYLOAD
Sets whether data conversion is to occur. By default, data that is sent is converted from the job's
coded character set identifier (CCSID) to UTF-8 before it is sent, and data that is received is
converted from UTF-8 to the job's CCSID. The next parameter must be a pointer to a character
string that is set to either true or false. If the value is true, data conversion will occur. If the
value is false, data conversion will not occur. The default value is true.

Axis C core APIs 173

AXISC_PROPERTY_IO_TIMEOUT
Sets how long to wait on a read request to complete. The next parameter must be a pointer to an
integer. If the value is greater than zero, the value will be used as the maximum time, in seconds,
to wait for a read request to complete. The default value is dependent on TCP/IP system settings.

Returns

Zero if call to function is successful; -1 on failure.

Example

The following example set the transport connect timeout to 10 seconds.

int timeout=10;
int rc = axiscTransportSetProperty(tHandle,
 AXISC_PROPERTY_CONNECT_TIMEOUT, &timeout);

The following example sets SSL information, ensuring that only TLS 1.2 is enabled.

int rc = axiscTransportSetProperty(tHandle, AXISC_PROPERTY_HTTP_SSL,
 "/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KDB",
 "", "",
 "NONE","NONE", "NONE", "NONE", NULL);

axiscTransportGetProperty()

int axiscTransportGetProperty(AXISCHANDLE tHandle,
 int type,
 ...)

Gets a transport property.

Parameters

tHandle
Pointer to transport object.

type
An integer that specifies the property to be retrieved. Possible values:
AXISC_PROPERTY_HTTP_HEADER

Retrieve an HTTP header from the server response. The next two parameters must be pointers.
The first parameter is a pointer to a character string representing the HTTP header to retrieve. The
second parameter must be a pointer to a pointer. If the header to be retrieved is found, the pointer
will be set to the character string pointer representing the header value. The pointer storage is still
owned by the transport object and should not be modified. If the header is not found, the pointer
field will be set to NULL.

Note: In order to retrieve HTTP headers in a response, a function call to
axiscTransportReceive() must have previously been done.

AXISC_PROPERTY_HTTP_HEADERS_RESPONSE
Retrieve list of HTTP header names in the response. The next parameter must be a pointer to a
pointer. The pointer will be set to the character string pointer containing a colon-delimited list of
HTTP header names. The pointer storage is still owned by the transport object and should not be
modified.

Note: In order to retrieve HTTP headers in a response, a function call to
axiscTransportReceive() must have previously been done.

AXISC_PROPERTY_HTTP_STATUS_CODE
Retrieve the HTTP status code that is returned by the server in the response. The next parameter
must be a pointer to a pointer. The pointer will be set to the character string pointer representing

174 IBM i: Web Services Client for ILE

the HTTP status code. The pointer storage is still owned by the transport object and should not be
modified.

Note: In order to retrieve the HTTP status code, a function call to axiscTransportReceive()
must have previously been done.

Returns

Zero if call to function is successful; -1 on failure.

Example

The following example retrieves the HTTP status code.

char *statusCode;
int rc = axiscTransportGetProperty(tHandle,
 AXISC_PROPERTY_HTTP_STATUS_CODE, &statusCode);

axiscTransportSend()

int axiscTransportSend(AXISCHANDLE tHandle,
 const char *buffer,
 int bytesTosend,
 int flags)

Send data to a server.

Parameters

tHandle
Pointer to transport object.

buffer
The pointer to the buffer in which the data that is to be sent is stored.

bytesTosend
Number of bytes to send.

flags
Reserved. Must be set to zero.

Returns

Number of bytes that will be sent if call to function is successful; -1 on failure.

Usage notes

1. By default the AXISC_PROPERTY_CONVERT_PAYLOAD transport property is set to true, which means
the data that is to be sent must be in the coded character set identifier (CCSID) of the job. The data is
converted to UTF-8 before it is sent. If no conversion is to be done you will need to set the
AXISC_PROPERTY_CONVERT_PAYLOAD transport property to false.

2. Every time the function axiscTransportSend() is called, the data that is to be sent is buffered in
the transport object. The data is not actually sent until the axiscTransportFlush() function is
invoked.

3. In the case where there is no data to be sent, axiscTransportFlush() must still be invoked to
initiate request and send any transport specific data (e.g. HTTP headers).

4. If the content-type HTTP header has not been set, the default content type that will be used is:

Content-Type: text/xml; charset=UTF-8

Example

Axis C core APIs 175

The following example send XML data.

char *buffer = "<TEMPIN>2337</TEMPIN>";
int rc = axiscTransportSend(tHandle, buffer, strlen(buffer), 0);

axiscTransportFlush()

int axiscTransportFlush(AXISCHANDLE tHandle)

Flushes the transport of any buffered data. When called, a connection to server is established, the request
is built and sent.

Parameters

tHandle
Pointer to transport object.

Returns

Zero if call to function is successful; -1 on failure.

Usage notes

1. The next function that should be called after a successful invocation of axiscTransportFlush() is
axiscTransportReceive(). This should be done in order to receive any transport-specific protocol
data (e.g. HTTP headers) and to receive the payload, if any. Alternatively, you can also invoke
axiscTransportReset() or axiscTransportDestroy().

axiscTransportReceive()

int axiscTransportReceive(AXISCHANDLE tHandle,
 char *buffer,
 int bufferLen,
 int flags)

Receive data through a transport object.

Parameters

tHandle
Pointer to transport object.

buffer
The pointer to the buffer in which the data that is to be read is stored.

bufferLen
The length of the buffer that will be used to store the data that is read.

flags
Reserved. Must be set to zero.

Returns

Number of bytes received if call to function is successful; -1 on failure.

Usage notes

176 IBM i: Web Services Client for ILE

1. On the first call to axiscTransportReceive(), the transport object will attempt to read all the data
and store the data in the transport object.

2. By default the AXISC_PROPERTY_CONVERT_PAYLOAD transport property is set to true, which means
the data that is received is converted from UTF-8 to the coded character set identifier (CCSID) of the
job. If no conversion is to be done you will need to set the AXISC_PROPERTY_CONVERT_PAYLOAD
transport property to false.

Example

The following example receives data.

char buffer[5001];

// Receive data
rc = axiscTransportReceive(tHandle, buffer, 5000, 0);
if (rc == 0)
 printf("No data to read\n");

while (rc > 0)
{
 bytesRead += rc;
 rc = axiscTransportReceive(t, buffer+bytesRead, 5000-bytesRead, 0);
}

// Dump data to stdout
if (rc == -1)
 printf("Error on read\n");
else if (bytesRead > 0)
{
 buffer[bytesRead] = 0x00;
 printf("Data: \n%s\n\n", buffer);
}

axiscTransportGetLastErrorCode()

int axiscTransportGetLastErrorCode(AXISCHANDLE tHandle)

Retrieves the transport error code from last unsuccessful transport operation. The error codes are listed
in the file <install_dir>/include/axis/AxisException.h.

Parameters

tHandle
Pointer to transport object.

Returns

Last error code from last unsuccessful transport operation.

Example

The following example retrieves error code from transport object.

int rc = axiscTransportGetLastErrorCode(tHandle);
if (rc == SERVER_TRANSPORT_HTTP_EXCEPTION)
{
 rc = axiscTransportGetProperty(t, AXISC_PROPERTY_HTTP_STATUS_CODE, &statusCode);
 if (rc != -1)
 printf("HTTP Status code:%s\n", statusCode);
}

Axis C core APIs 177

axiscTransportGetLastError()

const char * axiscTransportGetLastError(AXISCHANDLE tHandle)

Retrieves the transport error string from last unsuccessful transport operation.

Parameters

tHandle
Pointer to transport object.

Returns

Pointer to character string. Storage is owned by transport and must not be modified.

Example

The following example retrieves error code string from transport object.

const char * errorString = axiscTransportGetLastError(h);
printf(errorString);

178 IBM i: Web Services Client for ILE

Part 5. Using RPG stubs

This part of the document provides details regarding all things related RPG stub programming. If you have
no interest in RPG stub programming, you should skip this part of the document.

© Copyright IBM Corp. 2011, 2018 179

180 IBM i: Web Services Client for ILE

Chapter 18. WSDL and XML to RPG mappings

The wsdl2ws.sh11 command tool can generate RPG stub code.

This chapter will describe the mappings from WSDL and XML Schema types to RPG language constructs.
But first, it should be noted that the RPG stub code is built on top of the C stub code, so anytime you
generate RPG stub code, C stub code will also get generated. You should keep this in mind when reading
about the RPG stub support in Web services client for ILE.

XML names
RPG identifiers are generated from the corresponding C identifiers. For information on how C identifiers
are generated, see “Mapping XML names to C identifiers” on page 119.

XML schema to RPG type mapping
Table 30 on page 181 specifies the RPG mapping for each built-in simple. The table shows the XML
Schema type and the corresponding the Axis RPG type (column 2).

Table 30: XML to RPG type mapping

Schema Type Actual RPG type

Numeric

xsd:byte Implemented as RPG data structure:

D xsd_byte...
D DS qualified based(Template)
D isNil 1n
D value 1a

xsd:decimal Implemented as RPG data structure:

D xsd_decimal...
D DS qualified based(Template)
D isNil 1n
D value 8f

xsd:double Implemented as RPG data structure:

D xsd_double...
D DS qualified based(Template)
D isNil 1n
D value 8f

xsd:float Implemented as RPG data structure:

D xsd_float...
D DS qualified based(Template)
D isNil 1n
D value 4f

11 In this chapter, anything we mention about the wsdl2ws.sh tool also holds true for the wsdl2rpg.sh
tool.

© Copyright IBM Corp. 2011, 2018 181

Table 30: XML to RPG type mapping (continued)

Schema Type Actual RPG type

xsd:int Implemented as RPG data structure:

D xsd_int...
D DS qualified based(Template)
D isNil 1n
D value 10i 0

xsd:integer Implemented as RPG data structure:

D xsd_integer...
D DS qualified based(Template)
D isNil 1n
D value 20i 0

xsd:long Implemented as RPG data structure:

D xsd_long...
D DS qualified based(Template)
D isNil 1n
D value 20i 0

xsd: negativeInteger Implemented as RPG data structure:

D xsd_negativeInteger...
D DS qualified based(Template)
D isNil 1n
D value 20i 0

xsd: nonPositiveInteger Implemented as RPG data structure:

D xsd_nonPositiveInteger...
D DS qualified based(Template)
D isNil 1n
D value 20i 0

xsd: nonNegativeInteger Implemented as RPG data structure:

D xsd_nonNegativeInteger...
D DS qualified based(Template)
D isNil 1n
D value 20u 0

xsd: positiveInteger Implemented as RPG data structure:

D xsd_positiveInteger...
D DS qualified based(Template)
D isNil 1n
D value 20u 0

xsd: unsignedByte Implemented as RPG data structure:

D xsd_unsignedByte...
D DS qualified based(Template)
D isNil 1n
D value 1a

182 IBM i: Web Services Client for ILE

Table 30: XML to RPG type mapping (continued)

Schema Type Actual RPG type

xsd: unsignedInt Implemented as RPG data structure:

D xsd_unsignedInt...
D DS qualified based(Template)
D isNil 1n
D value 10u 0

xsd: unsignedLong Implemented as RPG data structure:

D xsd_unsignedLong...
D DS qualified based(Template)
D isNil 1n
D value 20u 0

xsd: unsignedShort Implemented as RPG data structure:

D xsd_unsignedShort...
D DS qualified based(Template)
D isNil 1n
D value 5u 0

xsd:short Implemented as RPG data structure:

D xsd_short...
D DS qualified based(Template)
D isNil 1n
D value 5i 0

Date/Time/Duration

xsd:date Implemented as RPG data structure named xsd_date. The structure is
defined as follows:

D xsd_date...
D DS qualified based(Template)
D isNil 1n
D value likeds(xsd_tm)

where xsd_time is a data structure defined as:

D xsd_tm DS align qualified based(Template)
D sec 10i 0
D* seconds after the minute (0-61)
D min 10i 0
D* minutes after the hour (0-59)
D hour 10i 0
D* hours since midnight (0-23)
D mday 10i 0
D* day of the month (1-31)
D mon 10i 0
D* months since January (0-11)
D year 10i 0
D* years since 1900
D wday 10i 0
D* days since Sunday (0-6)
D yday 10i 0
D* days since January 1 (0-365)
D isdst 10i 0
D* Daylight Saving Time flag

WSDL and XML to RPG mappings 183

Table 30: XML to RPG type mapping (continued)

Schema Type Actual RPG type

xsd:dateTime Implemented as RPG data structure named xsd_dateTime. The data
structure is defined in the same way as xsd:date.

xsd:duration Implemented as RPG data structure:

D xsd_duration...
D DS qualified based(Template)
D isNil 1n
D value 10i 0

xsd:gDay Implemented as RPG data structure named xsd_gDay. The data structure is
defined in the same way as xsd:date.

xsd:gMonth Implemented as RPG data structure named xsd_gMonth. The data structure
is defined in the same way as xsd:date.

xsd: gMonthDay Implemented as RPG data structure named xsd_gMonthDay. The data
structure is defined in the same way as xsd:date.

xsd:gYear Implemented as RPG data structure named xsd_gYear. The data structure is
defined in the same way as xsd:date.

xsd: gYearMonth Implemented as RPG data structure named xsd_gYearMonth. The data
structure is defined in the same way as xsd:date.

xsd:time Implemented as RPG data structure named xsd_time. The data structure is
defined in the same way as xsd:date.

String

xsd:anyURI Implemented as RPG data structure named xsd_anyURI. For IBM i 6.1 and
later releases the structure is defined as follows:

D xsd_anyURI...
D DS qualified based(Template)
D isNil 1n
D value a varying(4) len(nnnnn)
D reserved 1a

where nnnnn is the size of the character field.

For i 5.4, the RPG data structure would be defined as follows:

D xsd_anyURI...
D DS qualified based(Template)
D isNil 1n
D value nnnnna varying
D reserved 1a

Note: The length that is used when defining the character field is directly
related to the -ms argument on the wsdl2ws.sh tool. See “wsdl2ws.sh
command” on page 57 for further details.

xsd:anyType Implemented as RPG data structure named xsd_anyType. The data structure
is defined in the same way as xsd:anyURI.

xsd:ENTITY Implemented as RPG data structure named xsd_ENTITY. The data structure
is defined in the same way as xsd:anyURI.

xsd:ENTITIES Implemented as RPG data structure named xsd_ENTITIES. The data
structure is defined in the same way as xsd:anyURI.

184 IBM i: Web Services Client for ILE

Table 30: XML to RPG type mapping (continued)

Schema Type Actual RPG type

xsd:ID Implemented as RPG data structure named xsd_ID. The data structure is
defined in the same way as xsd:anyURI.

xsd:IDREFS Implemented as RPG data structure named xsd_IDREFS. The data structure
is defined in the same way as xsd:anyURI.

xsd: language Implemented as RPG data structure named xsd_language. The data
structure is defined in the same way as xsd:anyURI.

xsd:Name Implemented as RPG data structure named xsd_Name. The data structure is
defined in the same way as xsd:anyURI.

xsd:NCName Implemented as RPG data structure named xsd_NCName. The data
structure is defined in the same way as xsd:anyURI.

xsd:NMTOKEN Implemented as RPG data structure named xsd_NMTOKEN. The data
structure is defined in the same way as xsd:anyURI.

xsd:NMTOKENS Implemented as RPG data structure named xsd_NMTOKENS. The data
structure is defined in the same way as xsd:anyURI.

xsd: normalizedString Implemented as RPG data structure named xsd_normalizedString. The data
structure is defined in the same way as xsd:anyURI.

xsd:notation Implemented as RPG data structure named xsd_notation. The data structure
is defined in the same way as xsd:anyURI.

xsd:QName Implemented as RPG data structure named xsd_QName. The data structure
is defined in the same way as xsd:anyURI.

xsd:string Implemented as RPG data structure named xsd_string. The data structure is
defined in the same way as xsd:anyURI.

xsd:token Implemented as RPG data structure named xsd_token. The data structure is
defined in the same way as xsd:anyURI.

Other

xsd: base64Binary Implemented as RPG data structure named xsd_base64Binary. For i 6.1 and
later releases the structure is defined as follows:

D xsd_base64Binary...
D DS qualified based(Template)
D isNil 1n
D value a varying(4) len(nnnnn)

where nnnnn is the size of the character field.

For i 5.4, the RPG data structure would be defined as follows:

D xsd_base64Binary...
D DS qualified based(Template)
D isNil 1n
D value nnnnna varying

Note: The length that is used when defining the character field is directly
related to the -mb argument on the wsdl2ws.sh tool. See “wsdl2ws.sh
command” on page 57 for further details.

WSDL and XML to RPG mappings 185

Table 30: XML to RPG type mapping (continued)

Schema Type Actual RPG type

xsd:boolean Implemented as RPG data structure:

D xsd_boolean...
D DS qualified based(Template)
D isNil 1n
D value 10i 0

xsd:hexBinary Implemented as RPG data structure named xsd_hexBinary. For i 6.1 and
later releases the structure is defined as follows:

D xsd_hexBinary...
D DS qualified based(Template)
D isNil 1n
D value a varying(4) len(1024)

where nnnnn is the size of the character field.

For i 5.4, the RPG data structure would be defined as follows:

D xsd_hexBinary...
D DS qualified based(Template)
D isNil 1n
D value nnnnna varying

Note: The length that is used when defining the character field is directly
related to the -mb argument on the wsdl2ws.sh tool. See “wsdl2ws.sh
command” on page 57 for further details.

The Axis RPG types listed in the table above are defined dynamically as part of the RPG stub code
generation and included in the file <portType>_xsdtypes.rpgleinc, where <portType> is the
wsdl:portType defined in the WSDL and discussed in “WSDL to RPG mapping” on page 188. The
reason that they are defined dynamically is because the string and array length values are obtained from
what you specify on the wsdl2ws.sh command (if you do not specify values default values will be used).

In general, all RPG simple types contain two fields:

• An isNil field, which is defined as an indicator to indicate whether the variable of this type is nil or not,
and

• A value field to store data of the defined type.

Simple types

Most of the simple XML data types defined by XML Schema and SOAP 1.1 encoding are mapped to the
RPG types discussed in the previous section.

The element declaration with a nillable attribute set to true for a built-in simple XML data type is
handled by the isNil field that is contained in all RPG simple types. The isNil field is also used for
simple types that are optional (minOccurs attribute set to 0).

Note: If a WSDL element does not have the nillable attribute set to true or is not optional, the isNil
field is ignored for non-string types.

Complex types

XML Schema complex types are mapped to RPG data structures.

186 IBM i: Web Services Client for ILE

Let us look at the mapping that occurs for the following schema fragment:

<xsd:complexType name="Book">
 <sequence>
 <element name="author" type="xsd:string"/>
 <element name="price" type="xsd:float"/>
 </sequence>
 <xsd:attribute name="reviewer" type="xsd:string"/>
</xsd:complexType>

The above example is an example of a complex type that is named Book, and contains two elements,
author and price, in addition to an attribute, reviewer. The complex type will get mapped to the
following RPG structure:

D Book_t...
D DS qualified based(Template)
D isNil_Book_t 1n
D reviewer likeds(xsd_string)
D author likeds(xsd_string)
D price likeds(xsd_float)

In the example above you see one additional field that is generated, isNil_Book_t. This indicator is a
way to indicate to the Axis engine whether the variable of this type should be nil or not. When used as an
input parameter, setting this field to *ON will result in the nillable attribute set to true for the element
when the request is sent to the Web service. When the data structure is received as a response to a Web
service request, the field should be checked to determine if the element was nil or omitted from the Web
service response. If the field is set to *OFF, then you can be assured that element was returned in the
Web service response.

Arrays

Arrays for the RPG language are defined as a data structure as follows:

D <array_name>...
D DS qualified based(Template)
D isNil_<array_name>...
D 1n
D array likeds(<data-structure-name>)
D dim(<nnnnn>)
D size 10i 0
D type 10i 0

The fields in the structure include:

• isNil_<array_name> field, which is defined as an indicator to indicate to the Axis engine whether the
variable of this type should be nil or not. When used as an input parameter, setting this field to *ON will
result in the nillable attribute set to true for the element when the request is sent to the Web
service. When the data structure is received as a response to a Web service request, the field should be
checked to determine if the element was nil or omitted from the Web service response. If the field is set
to *OFF, then you can be assured that element was returned in the Web service response.

• array field, which contains the elements of the array of type <data-structure-name>. The length
that is used when defining the dimension of the array is directly related to the -ma argument on the
wsdl2ws.sh tool. See “wsdl2ws.sh command” on page 57 for further details.

• size field, which contains the number of valid elements in the array. For example, if an array with a
dimension of 20 has 2 valid elements that should be sent in a Web service request, the size field
should be set to 2.

• type field, which is an indication of the type of element (for example, array of integers, or an array of
user-defined complex structures). Constants for the possible types are defined in the generated
<portType>_xsdtypes.rpgleinc file. There are constants for all the simple types. For example,
XSDC_STRING and XSDC_INT. For complex types, the field should be set to XSDC_USER_TYPE.

WSDL and XML to RPG mappings 187

Web services client for ILE includes provides array data structures for each of the defined simple types,
defined in the generated <portType>_xsdtypes.rpgleinc file. An example of a simple array type is
xsd_int_Array shown below.

D xsd_int_array...
D DS qualified based(Template)
D isNil 1n
D array likeds(xsd_int)
D dim(MAX_ARRAY_LEN)
D size 10i 0
D type 10i 0

Notes:

1. The name isNil does not include the type in the name. This is true for all simple type arrays.
2. The MAX_ARRAY_LEN is a constant that is set to a value that is directly related to the -ma argument on

the wsdl2ws.sh tool. See “wsdl2ws.sh command” on page 57 for further details.

Below is the same schema fragment we have used previously, but we have also increased the number of
authors a book can have to 10 by adding maxOccurs="10" to the author element:

<xsd:complexType name="Book">
 <sequence>
 <element name="author" type="xsd:string" maxOccurs="10"/>
 <element name="price" type="xsd:float"/>
 </sequence>
 <xsd:attribute name="reviewer" type="xsd:string"/>
</xsd:complexType>

For the above XML Schema, the following data structure is generated:

D Book_t DS qualified based(Template)
D isNil_Book_t 1n
D reviewer likeds(xsd_string)
D author likeds(xsd_string_array)
D price likeds(xsd_float)

As you can see, the string array data structure is now being used to store the values for the author
element.

WSDL to RPG mapping
Now that we understand how the XML Schema types are mapped to Axis-defined language types, we can
now review how a service described in a WSDL document gets mapped to the corresponding C
representation. The following sections will refer to the GetQuote.wsdl WSDL document that is shipped
as part of the product in directory <install_dir>/samples/getQuote and is listed in “The
GetQuote.wsdl File” on page 205 to illustrate how various WSDL definitions get mapped to RPG. You
should note the following:

• GetQuote.wsdl has only one service called GetQuoteService.
• The service only has one port type called StockQuote.
• The StockQuote port type has only one operation called getQuote. The input to the getQuote

operation is a string (the stock identifier) and the output from the operation is a float (the stock's price).

If you want to fully understand the WSDL document structure, see “WSDL 1.1 document structure” on
page 24. Now let us see how various WSDL definitions are mapped.

This section describes the mapping of a service described in a WSDL document to the corresponding RPG
representation. The table below summarizes the WSDL and XML to RPG mappings:

188 IBM i: Web Services Client for ILE

Table 31: WSDL and XML to RPG mapping summary

WSDL and XML RPG

xsd:complexType (structure) RPG DS structure.

Nested xsd:element or xsd:attribute RPG DS structure field.

xsd:complexType (array) RPG DS Axis array structure.

wsdl:message Service interface function signature.

wsdl:portType Service interface function.

wsdl:operation Service interface function.

wsdl:binding No direct mapping, affects SOAP communications
style and transport.

wsdl:service No direct mapping.

wsdl:port Used as default Web service location.

Mapping XML defined in wsdl:types

The wsdl2ws.sh command will either use an existing RPG simple type or generate a new RPG type (a DS
structure) for the XML schema constructs defined in the wsdl:types section. The mappings that the
wsdl2ws.sh command supports is discussed in “XML schema to RPG type mapping” on page 181. As
previously stated, the wsdl2ws.sh command either will ignore constructs that it does not support or
issue an error message.

If we look at the wsdl:types part of the WSDL document we see that two elements are defined:
getQuote, defined as a complex type with one element of type xsd:string; and getQuoteResponse,
also defined as a complex type with one element of type xsd:float.

...
<wsdl:types>
 <ati:schema elementFormDefault="qualified"
 targetNamespace="http://stock.ibm.com"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ati="http://www.w3.org/2001/XMLSchema">

 <ati:element name="getQuote">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="arg_0_0" type="xsd:string"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>

 <ati:element name="getQuoteResponse">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="getQuoteReturn" type="xsd:float"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>
 </ati:schema>
</wsdl:types>
...

For the WSDL document fragment above, the wsdl2ws.sh command does not generate any new
structures since both elements are defined to be built-in simple types. The xsd:string type is mapped
to xsd_string and the xsd:float type is mapped to xsd_float.

WSDL and XML to RPG mappings 189

Mapping of wsdl:portType

A port type is a named set of abstract operations and the abstract messages involved. The name of the
wsdl:portType will be used in the names of the Web service proxy (termed service interface) functions.
A port type is mapped to 2 functions:

Table 32: Web service proxy RPG functions

Function name Description

stub_create_<portType-name> Function that is used to get an object (more on this later)
representing the service interface (i.e. the Web service proxy
stub).

stub_destroy_<portType-
name>

Function used to destroy service interface objects that are
obtained by invoking stub_create_<portType-name>.

Now let us look at a concrete example of how the wsdl:portType below gets mapped.

...
<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

The wsdl2ws.sh command will generate the following RPG functions:

D stub_create_StockQuote...
D PR 1N extproc('stub_create_StockQuote@')
D this likeds(This_t)

D stub_destroy_StockQuote...
D PR 1N extproc('stub_destroy_StockQuote@')
D this likeds(This_t)

D stub_op_getQuote...
D PR 1N extproc('getQuote@')
D this likeds(This_t)
D Value0 likeds(xsd_string)
D out likeds(xsd_float)

The stub_create_StockQuote() and stub_destroy_StockQuote() functions shown above are the
functions that are generated in support of the service interface. You see how the wsdl:portType name
StockQuote is used in the naming of the functions. To uses these functions you need to pass in a
variable that is a data structure of type This_t. This type is defined in the generated
<portType>_xsdtypes.rpgleinc file. In this example, the file would be named
StockQuote_xsdtypes.rpgleinc. This variable represents a stub instance once the
stub_create_StockQuote() is called and the function completes successfully. The data structure
This_t is defined as follows:

D This_t DS qualified based(Template)
D endpoint 2048a
D handle *
D excOccurred 1n
D excCode 10i 0
D excString 2048a
D reserved 1024a

where:

• the endpoint field represents the URL of the Web service. The endpoint must be set to a value or
blanks before calling the function to get an instance of the RPG stub. If the endpoint is set to blanks,
then the default URL to the Web service will be used. The default URL is whatever is specified in the
wsdl:port WSDL definition.

190 IBM i: Web Services Client for ILE

• the handle field represents the C stub instance (remember that RPG stub code is built on top of the C
stub code) and is the interface to the Axis engine. This handle would be the variable you pass in all Axis
C APIs that begin "axiscStub". For example, to set an HTTP header "MYHEADER" you would create an
RPG stub instance and invoke the AXIS API axiscStubSetTransportProperty() as follows:

.

.

.
stub_create_StockQuote(WsStub);
axiscStubSetTransportProperty(WsStub.handle:'MYHEADER':'SOMEVALUE');
.
.
.

• the excOccurred field indicate whether a service interface function call was successful or not. The
field will be set to *ON if the function call was not successful, and *OFF if the function call was
successful. For more information on exception handling, see “RPG exception handling” on page 197.

• the excCode field will contain the exception code if excOccurred is set to *ON. Exception codes are
defined <install_dir>/include/Axis.rpgleinc.

• the excString field will contain the exception error message if excOccurred is set to *ON.

The last RPG function shown, stub_op_getQuote(), is mapped from the wsdl:operation element
defined in the wsdl:portType (refer to “Mapping of wsdl:operation” on page 191 for further explanation
of the mapping of wsdl:operation).

Mapping of wsdl:operation

A wsdl:operation within a wsdl:portType is mapped to an RPG function. The name of the
wsdl:operation is used in the generation of the Web service operation function. All Web service
operation functions will start with "stub_op_" followed by the name of the wsdl:operation. The first
parameter is of type This_t that represents the service interface stub object and is discussed in
“Mapping of wsdl:portType” on page 190.

The wsdl:operation contains wsdl:input and wsdl:output elements that reference the request
and response wsdl:message constructs using the message attribute. Each function parameter (except
the first) is defined by a wsdl:message part referenced from the input and output elements:

• A wsdl:part in the request wsdl:message is mapped to an input parameter.
• A wsdl:part in the response wsdl:message is mapped to the return value.

The wsdl:operation can contain wsdl:fault elements that references wsdl:message elements
describing the fault (refer to “Mapping of wsdl:fault” on page 192 for more details on wsdl:fault
mapping).

The Web Services Client for ILE supports the mapping of operations that use either a request/response or
one-way (where wsdl:output is not specified in the wsdl:operation element) message exchange
pattern. For the one-way message exchange pattern, the Axis engine expects an HTTP response to be
returned from the Web service. Under normal conditions, the HTTP response would contain no SOAP
data. However, if a SOAP fault is returned by the Web service, the Axis engine will process the fault.

Below are the wsdl:message and wsdl:portType WSDL definitions in the GetQuote.wsdl document:

...
<wsdl:message name="getQuoteRequest">
 <wsdl:part element="impl:getQuote" name="parameters"/>
</wsdl:message>

<wsdl:message name="getQuoteResponse">
 <wsdl:part element="impl:getQuoteResponse" name="parameters"/>
</wsdl:message>

...
<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">

WSDL and XML to RPG mappings 191

 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

The above wsdl:operation definition gets mapped to the following service interface function:

D stub_op_getQuote...
D PR 1N extproc('getQuote@')
D this likeds(This_t)
D Value0 likeds(xsd_string)
D out likeds(xsd_float)

Mapping of wsdl:binding

The wsdl:binding information is used to generate an implementation specific client side stubs. What
code is generated is dependent on protocol-specific general binding data, such as the underlying
transport protocol and the communication style of SOAP.

There is no RPG representation of the wsdl:binding element.

Mapping of wsdl:port

A wsdl:port definition describes an individual endpoint by specifying a single address for a binding.

The specified endpoint will be used in as the default location of the Web service. So in the case of our
example, the URL specified in wsdl:port definition below will be the URL that is used if
stub_create_StockQuote() is invoked with the endpoint field in the This_t data structure is set to
blanks.

...
<wsdl:service name="GetQuoteService">
 <wsdl:port name="StockQuote" binding="impl:StockQuoteSoapBinding">
 <wsdlsoap:address
 location="http://localhost:9080/StockQuote/services/GetQuoteService"/>
 </wsdl:port>
</wsdl:service>
...

Mapping of wsdl:fault

Within the wsdl:operation definition you can optionally specify the wsdl:fault element, which
specifies the abstract message format for any error messages that may be returned as a result of invoking
a Web service operation.

The wsdl:fault element must reference a wsdl:message that contains a single message part. As of
this writing, Axis only supports message parts that are xsd:complexType types. The mapping that
occurs is similar to the mapping that occurs when generating code for complex types.

So what happens when a SOAP fault is received? When you call a service interface function and a SOAP
fault is encountered (or a non-Fault exception for that matter), the Axis engine will throw an exception,
and the C interfaces to the Axis engine catch the exception and invokes the RPG stub service interface
exception handler, passing it the generic exception code and exception string associated with the
exception. The RPG stub service interface exception handler stores the exception data in global fields.
The service interface function then regains control and checks the fields to see if an exception had
occurred, and if so, copies the exception data to the RPG stub instance that is represented by the This_t
data structure. For more information on the This_t structure, see “Mapping of wsdl:portType” on page
190.

More information on exception handling in RPG can be found in “RPG exception handling” on page 197.

192 IBM i: Web Services Client for ILE

Chapter 19. Developing a Web services client
application using RPG stubs

This chapter will describe the steps one must go through to develop a Web service client application using
a RPG stub code.

To develop a Web services client application, the following steps should be followed:

1. Generate the client Web service stubs using the wsdl2ws.sh command.
2. Complete the client implementation.
3. (Optional) Create client-side handler.
4. Deploy the application.

The following sections will discuss each of these steps. For illustrative purposes we will be using the
sample code that is shipped as part of the product in directories <install_dir>/samples/getQuote.
We will be using the following files:

Table 33: Files in the samples directory

File name Description

GetQuote.wsdl GetQuote WSDL file.

myGetQuote.rpgle Client implementation code written in RPG.

Source listings for the client application code can be found at Appendix A, “Code Listings for myGetQuote
Client Application,” on page 205.

Generating the RPG stub code
Before you can create a web service client application, you must first generate the RPG client stub using
the wsdl2ws.sh tool. The wsdl2ws.sh tool uses the WSDL file that is passed to it, and any associated
XSD files referenced in the WSDL file, to create the client stub code.

We will be using the GetQuote.wsdl file located in directory <install_dir>/samples/getQuote.
The WSDL file comes from the installation Web Services Samples provided with WebSphere Application
Server (Version 5.0 or later). This very simple sample provides a good introduction to using wsdl2ws.sh.

To generate the client stub from the WSDL source file, complete the following steps.

1. Create a library called MYGETQUOTE in which the program objects will be stored by issuing the CL
command CRTLIB from the CL command line as follows:

CRTLIB MYGETQUOTE

2. Start a Qshell session by issuing the QSH CL command from the CL command line.
3. Run the wsdl2ws.sh tool to generate the client RPG stub as shown in following example:

<install_dir>/bin/wsdl2ws.sh -o/myGetQuote/RPG
 -lrpg -ms256 -ma5
 -s/qsys.lib/mygetquote.lib/wsrpg.srvpgm
 <install_dir>/samples/getQuote/GetQuote.wsdl

If you examine the command, you see that we are indicating to the wsdl2ws.sh tool that RPG stub code
should be generated and stored in directory /myGetQuote/RPG, and that a service program, /
qsys.lib/mygetquote.lib/wsrpg.srvpgm, should be created using the generated stub code. In

© Copyright IBM Corp. 2011, 2018 193

addition, we indicate that the maximum string size is 256 bytes and that the maximum array size should
be 5.

The files generated by the wsdl2ws.sh tool is shown below:

StockQuote_util.rpgle StockQuote.cl
StockQuote_util.rpgleinc StockQuote.h
StockQuote_xsdtypes.rpgleinc StockQuote.rpgle
StockQuote.c StockQuote.rpgleinc

Note that in addition to the RPG stub code being generated, C stub code is also generated since the RPG
stub code is built on top of the C stub code.

Here is a description of each RPG file that is generated:

• StockQuote_util.rpgle – RPG utility routines.
• StockQuote_util.rpgleinc – RPG utility routines include.
• StockQuote_xsdtypes.rpgleinc – standard data types include.
• StockQuote.rpgle – RPG Web service implementation code.
• StockQuote.rpgleinc – RPG Web service include.

From an RPG programmer perspective, the only files you would need to look at are the
StockQuote.rpgleinc and StockQuote_xsdtypes.rpgleinc files.

Finally, there is also the file StockQuote.cl that is also generated. This file is a CL source file that has
the CL commands needed to recreate the service program. You can copy this source file to a source
physical file and create a CL program. Here is the contents of the file:

 PGM
 DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE(MYGETQUOTE)
 DCL VAR(&SRVPGM) TYPE(*CHAR) LEN(10) VALUE(WSRPG)

 QSYS/CRTCMOD MODULE(&LIB/wsc0) +
 OPTIMIZE(40) DBGVIEW(*NONE) +
 SRCSTMF('/myGetQuote/RPG/StockQuote.c') +
 INCDIR('/QIBM/PRODDATA/OS/WEBSERVICES/V1/CLIENT/INCLUDE') +
 REPLACE(*YES) ENUM(*INT) +
 TEXT('StockQuote.c')

 QSYS/CRTRPGMOD MODULE(&LIB/wsr1) +
 SRCSTMF('/myGetQuote/RPG/StockQuote.rpgle') +
 OPTIMIZE(*FULL) DBGVIEW(*NONE) +
 REPLACE(*YES) +
 TEXT('StockQuote.rpgle')

 QSYS/CRTRPGMOD MODULE(&LIB/wsr2) +
 SRCSTMF('/myGetQuote/RPG/StockQuote_util.rpgle') +
 OPTIMIZE(*FULL) DBGVIEW(*NONE) +
 REPLACE(*YES) +
 TEXT('StockQuote_util.rpgle')

 QSYS/CRTSRVPGM SRVPGM(&LIB/&SRVPGM) +
 MODULE(+
 &LIB/wsr1 +
 &LIB/wsr2 +
 &LIB/wsc0 +
) +
 EXPORT(*ALL) ACTGRP(*CALLER) +
 BNDSRVPGM(QSYSDIR/QAXIS10CC) +
 TEXT('StockQuote Web service')

 ENDPGM

Now that the RPG and C stub code has been created and a service program containing the RPG and C stub
code is created, you can go on to the next step, “Completing RPG client implementation” on page 195.

194 IBM i: Web Services Client for ILE

Completing RPG client implementation
After the client stubs have been generated, the stubs can be used to create a Web service client
application.

We will illustrate what you need to do to create RPG applications using the example of the RPG stub code
generated from GetQuote.wsdl by the wsdl2ws.sh tool as described in “Generating the RPG stub
code” on page 193. However, before we continue, you should note the following points12:

• GetQuote.wsdl has only one service called getQuoteService.
• The service only has one port type called StockQuote.
• The StockQuote port type has only one operation called getQuote. The corresponding RPG stub

operation (defined in the generated StockQuote.rpgleinc include file) is stub_op_getQuote().
• The Web service is called StockQuote. So to get an instance of the Web service you would call the
stub_create_StockQuote() function. The handle that is returned by the function should then be
used when calling the Web service operation. To destroy the Web service instance, you would call the
stub_destroy_StockQuote() function. (Both these functions are defined in the generated
StockQuote.rpgleinc include file.)

To build the myGetQuote client application, complete the following steps.

1. Change the current working directory to the location of the RPG stub code. Issue the following
command from the CL command line:

cd '/myGetQuote/RPG'

2. Copy the sample RPG code the uses the generated stub code from the product samples directory to
the current working directory by issuing the following command from the CL command line:

COPY OBJ('<install_dir>/samples/getQuote/myGetQuote.rpgle') TODIR('/myGetQuote/RPG')

3. Change the ServerName and PortNumber in the file copied in the previous step to match your server.
If WebSphere Application Server is on your own machine and the default values have been used,
ServerName is localhost and PortNumber is 9080.

4. Build the client application by using the following commands from the CL command line:

CRTRPGMOD MODULE(MYGETQUOTE/mygetquote)
 SRCSTMF('/myGetQuote/RPG/myGetQuote.rpgle')

CRTPGM PGM(MYGETQUOTE/MYGETQUOTE)
 MODULE(MYGETQUOTE/MYGETQUOTE)
 BNDSRVPGM(QSYSDIR/QAXIS10CC MYGETQUOTE/WSRPG)

When you have finished coding and building your web service client application, you are ready to deploy
and test the application as described in “Deploying the client application” on page 195.

Note: If you want to use one or more handlers with your application, see Chapter 9, “ Creating client-side
handlers,” on page 81.

Deploying the client application
When you have finished coding and building your web service client application, you are ready to deploy
and test the application.

12 If you have not read Chapter 18, “WSDL and XML to RPG mappings,” on page 181 then it would be a good
time to do so prior to reading this section.

Developing a Web services client application using RPG stubs 195

In our example, we have not modified the Axis configuration file axiscpp.conf. However, if we had
modified it (e.g. we were using client-side handlers), we would need to ensure that the AXISCPP_DEPLOY
environment variable points to the directory containing the /etc directory (the axiscpp.conf file would
be located in the /etc directory), as described in “The axiscpp.conf file” on page 61.

The steps below use the example myGetQuote client application, and assume that a GetQuote service is
running. (This service is with the samples supplied with WebSphere Application Server Version 5.0.2 or
later). If you do not have the appropriate service, you must create the service code from the WSDL in the
samples directory.

Once you have confirmed the above prerequisites, run and test the client application by completing the
following steps.

1. Run the myGetQuote application.
2. Check that the myGetQuote application has returned the price of IBM shares in dollars.

The example screen shot below shows the myGetQuote application run from the command line in which
client-side handlers are not being used.

> call MYGETQUOTE/MYGETQUOTE
 DSPLY The stock quote for IBM is $94.33

196 IBM i: Web Services Client for ILE

Chapter 20. RPG stub programming considerations
This chapter covers programming considerations when you begin writing your applications to take
advantage of Web services client for ILE RPG stub code.

RPG exception handling
Web Services Client for ILE uses exceptions to report back any errors that have occurred during the
transmission of a SOAP message. This includes errors that are detected by the Axis engine or SOAP faults
that are returned by the Web service.

When using the RPG-stub interfaces, errors that occur are reported to the client application in two ways:

1. A return indicator on the stub function interfaces. If the return indicator is *ON, then the function call
completed successfully. If the return indicator is *OFF, then the function call did not complete
successfully.

2. By interrogating the stub instance handle that is of type This_t. The This_t data structure is as
follows:

D This_t DS qualified based(Template)
D endpoint 2048a
D handle *
D excOccurred 1n
D excCode 10i 0
D excString 2048a
D reserved 1024a

After performing the stub interface function call, you can check the excOccurred field to determine if
an exception occurred. If excOccurred is *ON, then an exception has occurred, and the exception
details can be obtained in the exception code (excCode) and exception string (excString) fields. In
addition, if an exception has occurred you may determine if a SOAP fault is available by using the
axiscStubGetSOAPFault() API and then using the various SOAP fault APIs to get data from the
SOAP fault object.

The following shows how a client application may process exceptions.

.

.
if (stub_create_StockQuote(WsStub) = *ON);

 // Invoke the StockQuote Web service operation.
 stub_op_getQuote(WsStub:Input:Result);
 if (WsStub.excOccurred = *OFF);
 OutputText = 'The stock quote for ' + Input.value
 + ' is ' + %CHAR(Result.value);
 else;
 OutputText = WsStub.excString;

 soapFault = axiscStubGetSOAPFault(WsStub.handle);
 if (soapFault <> *NULL);
 FaultCode = axiscSoapFaultGetFaultcode(soapFault);
 FaultString = axiscSoapFaultGetFaultstring(soapFault);
 FaultActor = axiscSoapFaultGetFaultactor(soapFault);
 FaultDetail = axiscSoapFaultGetSimpleFaultDetail(soapFault);
 endif;
 endif;

 // Display results.
 dsply OutputText;

 // Destroy Web service stubs.
 stub_destroy_StockQuote(WsStub);
endif;
.

© Copyright IBM Corp. 2011, 2018 197

.

.

RPG memory management
The WSDL specification provides a framework for how information is to be represented and conveyed
from place to place. Web services client for ILE maps this framework to program-language specific data
object, such as structures. The RPG stub code does not expose any dynamic storage via pointers, so there
is no memory to manage when coding to the RPG stub code interfaces. The only thing one needs to
ensure is that the instance of the RPG stub that is created is eventually destroyed by calling the destroy
function for the RPG stub.

Securing web service communications in RPG stub code
This section explains how to use Secure Sockets Layer (SSL) to set up security when using RPG stub code.

You can secure your HTTP messages by using SSL, which encrypts the request and response messages
before they are transmitted over the wire.

Note: Handlers are not affected by SSL as they receive the message either before encryption or after
decryption.

Any web service that uses SSL adds the suffix ‘s' for secure to the http name in the URL. For example,
http://some.url.com becomes https://some.url.com.

A secure endpoint URL is an endpoint beginning with ‘https'. To allow secure endpoint URLs to be used,
you must pass security information to the RPG stub. You can do this either by adding the required
information to the “The axiscpp.conf file” on page 61 configuration file, or by configuring the settings for
secure service using the “axiscStubSetSecure()” on page 161 Axis C API.

The following RPG example shows a sample client application that configures security information before
calling a web service. To configure the secure setting within your own application, add the code shown in
bold in this example.

h DFTNAME(MYGETQUOTE)
 /copy StockQuote.rpgleinc
 /copy /QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc

d OutputText s 50
d WsStub ds likeds(This_t)
d Input ds likeds(xsd_string)
d Result ds likeds(xsd_float)
d NULLSTR s 1

 /free
 clear WsStub;

 // URL for secure communication.
 WsStub.endpoint = 'https://localhost/Test/services/TestPort';

 // Get a Web service stub.
 if (stub_create_StockQuote(WsStub) = *ON);
 // Initialise the secure settings for the secure service.
 // Disable SSLv2, SSLv2, TLSv1
 NULLSTR = X'00';
 axiscStubSetSecure(WsStub.handle:
 '/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KDB':
 NULLSTR: NULLSTR:
 'NONE': 'NONE': 'NONE' : *NULL);

 // Remainder of application
 .
 .
 .
 // Destroy Web service stub.
 stub_destroy_StockQuote(WsStub);
 endif;

198 IBM i: Web Services Client for ILE

 *INLR=*ON;
 /end-free

For further information on the SSL parameters, see the “axiscStubSetSecure()” on page 161 Axis C API.

Using secure connections with a proxy server

The integrated web services client gives you the option to send requests to a proxy server. By default, the
connection that is established is unsecure. If you want to establish a secure connection to the proxy
server you will need to invoke the “axiscStubSetProxySSL()” on page 160 Axis C API.

The integrated web services client also supports SSL tunneling. In SSL tunneling, the client establishes an
unsecure connection to the proxy server, and then attempts to tunnel through the proxy server to the
content server over a secure connection where encrypted data is passed through the proxy server
unaltered. The SSL tunneling process is as follows:

1. The client establishes an unsecure connection to the proxy server.
2. The client makes a tunneling request. The proxy accepts the connection on its port, receives the

request, and connects to the destination server on the port requested by the client. The proxy replies
to the client that a connection is established.

3. The proxy relays SSL handshake messages in both directions: From client to destination server, and
from destination server to client.

4. After the secure handshake is completed, the proxy sends and receives encrypted data to be
decrypted at the client or at the destination server.

In order for SSL tunneling to occur, the proxy server needs to support SSL tunneling requests, and the web
service endpoint must be a secure endpoint (i.e. https).

Setting SOAP headers
This section explains how to set SOAP headers when using RPG stub code.

You can set SOAP headers in the RPG stub by using various Axis C APIs.

Say we want to send the following SOAP header in the Web service request:

<wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 SOAP-ENV:mustUnderstand="1"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-12345678">
 <wsse:UserName>admin</wsse:UserName>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">
 admin
 </wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

The following RPG example uses various Axis C APIs to set SOAP header information.

h DFTNAME(MYGETQUOTE)
 /copy StockQuote.rpgleinc
 /copy /QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc

d OutputText s 50
d WsStub ds likeds(This_t)
d Input ds likeds(xsd_string)
d Result ds likeds(xsd_float)
D phb S *
D BNode1 S *
D BNode2 S *
D BNode3 S *
D uriWSSE C 'http://docs.oasis-open.org/wss-
D /2004/01/oasis-200401-wss-wssec-
D urity-secext-1.0.xsd'

RPG stub programming considerations 199

D uriWSU C 'http://docs.oasis-open.org/wss-
D /2004/01/oasis-200401-wss-wssec-
D urity-utility-1.0.xsd'
D uriToken C 'http://docs.oasis-open.org/wss-
D /2004/01/oasis-200401-wss-usern-
D ame-token-profile-1.0#PasswordT-
D ext'

 /free
 clear WsStub;

 // URL for secure communication.
 WsStub.endpoint = 'https://localhost/Test/services/TestPort';

 // Get a Web service stub.
 if (stub_create_StockQuote(WsStub) = *ON);
 // Set SOAP headers.
 // generate node wsse:Security element, declaring namespaces for wsse and wsu
 phb = axiscStubCreateSOAPHeaderBlock(
 WsStub.handle:'Security':uriWSSE:'wsse');
 axiscHeaderBlockCreateNamespaceDeclINamespace(
 phb:'wsu':uriWSU);
 axiscHeaderBlockCreateStdAttribute(phb:
 AXISC_ATTR_MUST_UNDERSTAND_TRUE:
 AXISC_SOAP_VER_1_1);

 // Generate node wsse:UsernameToken as child node of wsse:Security
 Bnode1=axiscHeaderBlockCreateChildBasicNode(phb:
 AXISC_ELEMENT_NODE:'UsernameToken':'wsse':
 *NULL:*NULL);
 axiscBasicNodeCreateAttribute(Bnode1:
 'Id':'wsu':*NULL:'UsernameToken-12345678');
 axiscHeaderBlockAddChild(phb:Bnode1);

 // Generate node wsse:Username as child node of wsse:UsernameToken
 // and the associated character node
 Bnode2=axiscHeaderBlockCreateChildBasicNode(phb:
 AXISC_ELEMENT_NODE:'UserName':'wsse':*NULL:*NULL);
 axiscBasicNodeAddChild(Bnode1:Bnode2);

 Bnode3=axiscHeaderBlockCreateChildBasicNode(phb:
 AXISC_CHARACTER_NODE:*NULL:*NULL:*NULL:'admin');
 axiscBasicNodeAddChild(Bnode2:Bnode3);

 // Generate node wsse:Password as child node of wsse:UsernameToken
 // and the associated character node
 Bnode2=axiscHeaderBlockCreateChildBasicNode(phb:
 AXISC_ELEMENT_NODE:'Password':'wsse':*NULL:*NULL);
 axiscBasicNodeCreateAttribute(Bnode2:
 'Type':*NULL:*NULL:uriToken);
 axiscBasicNodeAddChild(Bnode1:Bnode2);

 Bnode3=axiscHeaderBlockCreateChildBasicNode(phb:
 AXISC_CHARACTER_NODE:*NULL:*NULL:*NULL:'admin');
 axiscBasicNodeAddChild(Bnode2:Bnode3);

 // Remainder of application
 .
 .
 .
 // Destroy Web service stub.
 stub_destroy_StockQuote(WsStub);
 endif;

 *INLR=*ON;
 /end-free

For further information on the Axis C APIs used in this example, see Chapter 17, “Axis C core APIs,” on
page 145.

200 IBM i: Web Services Client for ILE

Floating point numbers in RPG types
This section provides reference information about using floating point numbers with Web services client
for ILE .

The XML specification refers to the IEEE specification for floating point numbers. The specification lists
that float and double have the following precision:

Float type numbers, 1 sign bit, 23 mantissa bits and 8 exponent bits.
Double type numbers, 1 sign bit, 52 mantissa bits and 11 exponent bits.

For float, with a mantissa able to represent any number in the range 1 > x > 1/223, this gives a minimum
accuracy of 6 digits. Similarly, for double, with a mantissa able to represent any number in the range 1 > x
> 1/252, this gives a minimum accuracy of 10 digits.

When displaying floating point numbers, you must ensure that any potential inaccuracies due to rounding
errors, and so on are not visible.

RPG stub programming considerations 201

202 IBM i: Web Services Client for ILE

Chapter 21. Troubleshooting RPG client stubs
This chapter is intended to help you learn how to detect, debug, and resolve possible problems that you
may encounter when generating or using RPG stub code.

RPG stub code generation problems

When you use the wsdl2ws.sh13 tool to generate RPG stub code, the tool will generate an exception for
any error that is encountered. Typical errors include the inability for the tool to resolve to an XSD file used
in the specified WSDL file or a syntactically incorrect WSDL file. You will need to correct the problem and
try running the tool again.

RPG stub code compile problems

Recall that the RPG stub code is built on top of the C stub code. So you may get compile problems when
compiling the C stub code or the RPG stub code.

If there is a compile problem in C stub code, the most likely cause of the problem is the use of an
unsupported construct. The wsdl2ws.sh tool will not always generate an exception when used against a
WSDL file that contains an unsupported WSDL construct. The problem may manifest itself when compiling
the generated stub code. To see what is supported by the tool, see “Supported specifications and
standards” on page 45.

If there is a compile problem in RPG stub code, the most likely cause is one of the following cases:

• The sizes of fields or data structures exceeding the language limits. For example, in IBM i 5.4 the size of
a data structure cannot exceed 65535 bytes, while in i 6.1 the limit is 16773104 bytes. To resolve the
problem, you need to experiment with the wsdl2ws.sh tool arguments that related to field and array
sizes.

• The WSDL specifies two types that reference each other. Here is an example of the generated RPG code
that will not compile:

D Type1_t DS qualified based(Template)
D isNil_Type1_t 1n
D att_kind likeds(xsd_string)
D followings likeds(Type1_Array_t)
D kind likeds(xsd_string)
D index likeds(xsd_int)

D Type1_Array_t DS qualified based(Template)
D isNil_Type1_Array_t...
D 1n
D array likeds(Type1_t)
D dim(20)
D size 10i 0
D type 10i 0

The only way to resolve this kind of problem is by changing the WSDL file so that the cyclic reference is
removed.

RPG stub code runtime problems

Invoking a Web service operation may result in the Web service returning a SOAP fault as a response.
There can be many reasons for this, and the only sure way to determine where the problem lies is by
examining the generated SOAP request and resulting response.

13 Any references to the wsdl2ws.sh is also applicable to the wsdl2rpg.sh tool.

© Copyright IBM Corp. 2011, 2018 203

The Web services client for ILE client engine has a tracing capability that traces the request and response
messages. To enable tracing, the axiscAxisStartTrace() needs to be called. The following is an example of
how tracing is enabled.

h DFTNAME(MYGETQUOTE)
 /copy StockQuote.rpgleinc
 /copy /QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc

d OutputText s 50
d WsStub ds likeds(This_t)
d Input ds likeds(xsd_string)
d Result ds likeds(xsd_float)

 /free

 // Enable trace, specifying trace file
 axiscAxisStartTrace('/tmp/axis.log':*NULL);

 // Remainder of application
 .
 .
 .
 *INLR=*ON;
 /end-free

To learn about the tracing support in Axis, see the “axiscAxisStartTrace()” on page 146 Axis C API.

204 IBM i: Web Services Client for ILE

Appendix A. Code Listings for myGetQuote Client
Application

The myGetQuote sample is a simple stock quote example that is referenced throughout the document.
Table 34 on page 205 shows a list of the files.

Table 34: Client files in the samples directory

File name Description

GetQuote.wsdl GetQuote WSDL file.

myGetQuote.cpp Client implementation code written in CPP.

myGetQuote.c Client implementation code written in C.

myGetQuote.rpgle Client implementation code written in RPG.

All files can be found in <install_dir>/samples/getQuote.

The GetQuote.wsdl File
The following listing is for the GetQuote.wsdl WSDL document:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://stock.ibm.com"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:impl="http://stock.ibm.com"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:types>
 <ati:schema elementFormDefault="qualified"
 targetNamespace="http://stock.ibm.com"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ati="http://www.w3.org/2001/XMLSchema">

 <ati:element name="getQuote">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="arg_0_0" type="xsd:string"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>

 <ati:element name="getQuoteResponse">
 <ati:complexType>
 <ati:sequence>
 <ati:element name="getQuoteReturn" type="xsd:float"></ati:element>
 </ati:sequence>
 </ati:complexType>
 </ati:element>
 </ati:schema>
</wsdl:types>

<wsdl:message name="getQuoteRequest">
 <wsdl:part element="impl:getQuote" name="parameters"/>
</wsdl:message>

<wsdl:message name="getQuoteResponse">
 <wsdl:part element="impl:getQuoteResponse" name="parameters"/>
</wsdl:message>

<wsdl:portType name="StockQuote">
 <wsdl:operation name="getQuote">
 <wsdl:input message="impl:getQuoteRequest" name="getQuoteRequest"/>
 <wsdl:output message="impl:getQuoteResponse" name="getQuoteResponse"/>
 </wsdl:operation>

© Copyright IBM Corp. 2011, 2018 205

</wsdl:portType>

<wsdl:binding name="StockQuoteSoapBinding" type="impl:StockQuote">
 <wsdlsoap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getQuote">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getQuoteRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

 <wsdl:output name="getQuoteResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

<wsdl:service name="GetQuoteService">
 <wsdl:port name="StockQuote" binding="impl:StockQuoteSoapBinding">
 <wsdlsoap:address
 location="http://localhost:9080/StockQuote/services/GetQuoteService"/>
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

The myGetQuote.cpp File
The following listing is for the C++ myGetQuote.cpp source file listing:

 /***/
 /* */
 /* IBM Web Services Client for ILE */
 /* */
 /* FILE NAME: myGetQuote.cpp */
 /* */
 /* DESCRIPTION: main program to call the generated */
 /* StockQuote stub */
 /* */
 /***/
 /* LICENSE AND DISCLAIMER */
 /* ---------------------- */
 /* This material contains IBM copyrighted sample programming source */
 /* code (Sample Code). */
 /* IBM grants you a nonexclusive license to compile, link, execute, */
 /* display, reproduce, distribute and prepare derivative works of */
 /* this Sample Code. The Sample Code has not been thoroughly */
 /* tested under all conditions. IBM, therefore, does not guarantee */
 /* or imply its reliability, serviceability, or function. IBM */
 /* provides no program services for the Sample Code. */
 /* */
 /* All Sample Code contained herein is provided to you "AS IS" */
 /* without any warranties of any kind. THE IMPLIED WARRANTIES OF */
 /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
 /* NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. */
 /* SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED */
 /* WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO */
 /* EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, */
 /* SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE */
 /* CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS */
 /* INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION */
 /* HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF */
 /* THE POSSIBILITY OF SUCH DAMAGES. */
 /* */
 /* <START_COPYRIGHT> */
 /* */
 /* Licensed Materials - Property of IBM */
 /* */
 /* 5724-M08 */
 /* */
 /* (c) Copyright IBM Corp. 2004, 2005 */
 /* All Rights Reserved */
 /* */
 /* U.S. Government Users Restricted Rights - use, */
 /* duplication or disclosure restricted by GSA */
 /* ADP Schedule Contract with IBM Corp. */
 /* */

206 IBM i: Web Services Client for ILE

 /* Status: Version 1 Release 0 */
 /* <END_COPYRIGHT> */
 /* */
 /***/

// Include the WSDL2Ws generated StockQuote.hpp
#include "StockQuote.hpp"

// Include the C++ header file that defines the function cout
#include <iostream>

int main()
{
 try
 {
 // Create a character string that contains the server endpoint URI for the
 // GetQuoteService web service. Then pass the endpoint to the instantiator
 // for the GetQuote class that was generated by the WSDL2Ws tool. The
 // endpoint will pointing to the location of service on Websphere Application
 // Server.
 char * pszEndpoint = "http://<Host>:<PortNumber>/StockQuote/services/urn:xmltoday-
delayed-quotes";
 StockQuote * pwsStockQuote = new StockQuote(pszEndpoint);

 // If your network requires the use of a proxy, then add the following line of
 // code to configure AxisClient.
 /*
 char * pszProxyURL = "<ProxyHost>";
 int iProxyPortNumber = <ProxyPort>;

 pwsStockQuote->setProxy(pszProxyURL, iProxyPortNumber);
 */

 // If you are using handlers, if the WSDL does not identify the SOAP action
 // then you will need to add your SOAP action before calling the web service.
 /*
 char * pszHandlerName = "Handler";

 pwsStockQuote->setTransportProperty(SOAPACTIONHEADER , pszHandlerName);
 */

 // Set the stock name to be quoted by the web service. To test just the
 // web service, XXX is being used. This should return a stock quote of 55.25.
 char * pszStockName = "XXX";

 // Call the 'getQuote' method that is part of the StockQuote web service to
 // find the quoted stock price for the given company whose name is in
 // pszStockName. The result of the quote search will be returned by this
 // method as a xsd__float type.
 xsd__float fQuoteDollars = pwsStockQuote-> getQuote(pszStockName);

 // Output the quote. If the stock name is unknown, then getQuote() will
 // return -1. This name was recognized by the server and a constant value
 // is returned.

 if(fQuoteDollars != -1)
 {
 cout << "The stock quote for " << pszStockName << " is $" << fQuoteDollars << endl;
 }
 else
 {
 cout << "There is no stock quote for " << pszStockName << endl;
 }

 // Delete the web service.
 delete pwsStockQuote;
 }
 catch(SoapFaultException& sfe)
 {
 // Catch any other SOAP faults
 cout << "SoapFaultException: " << sfe.getFaultCode() << " " << sfe.what() << endl;
 }
 catch(AxisException& e)
 {
 // Catch an AXIS exception
 cout << "AxisException: " << e.getExceptionCode() << " " << e.what() << endl;
 }
 catch(exception& e)
 {
 // Catch a general exception
 cout << "Unknown Exception: " << e.what() << endl;
 }

Code Listings for myGetQuote Client Application 207

 catch(...)
 {
 // Catch any other exception
 cout << "Unspecified Exception: " << endl;
 }

 // Exit.
 return 0;
}

The myGetQuote.c File
The following listing is for the C myGetQuote.c source file listing:

 /***/
 /* */
 /* IBM Web Services Client for ILE */
 /* */
 /* FILE NAME: myGetQuote.c */
 /* */
 /* DESCRIPTION: main program to call the generated */
 /* StockQuote stub */
 /* */
 /***/
 /* LICENSE AND DISCLAIMER */
 /* ---------------------- */
 /* This material contains IBM copyrighted sample programming source */
 /* code (Sample Code). */
 /* IBM grants you a nonexclusive license to compile, link, execute, */
 /* display, reproduce, distribute and prepare derivative works of */
 /* this Sample Code. The Sample Code has not been thoroughly */
 /* tested under all conditions. IBM, therefore, does not guarantee */
 /* or imply its reliability, serviceability, or function. IBM */
 /* provides no program services for the Sample Code. */
 /* */
 /* All Sample Code contained herein is provided to you "AS IS" */
 /* without any warranties of any kind. THE IMPLIED WARRANTIES OF */
 /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
 /* NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. */
 /* SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED */
 /* WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO */
 /* EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, */
 /* SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE */
 /* CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS */
 /* INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION */
 /* HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF */
 /* THE POSSIBILITY OF SUCH DAMAGES. */
 /* */
 /* <START_COPYRIGHT> */
 /* */
 /* Licensed Materials - Property of IBM */
 /* */
 /* 5724-M08 */
 /* */
 /* (c) Copyright IBM Corp. 2006, 2006 */
 /* All Rights Reserved */
 /* */
 /* U.S. Government Users Restricted Rights - use, */
 /* duplication or disclosure restricted by GSA */
 /* ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: Version 1 Release 0 */
 /* <END_COPYRIGHT> */
 /* */
 /***/
#include <stdio.h>

#include <axis>

// Include the WSDL2Ws generated StockQuote.h
#include "StockQuote.h"

// Following function is used as stub exception handler
int globalExceptionOccurred = 0;
void StockQuoteExceptionHandler(int errorCode, char * errorString,
 AXISCHANDLE soapFault, void *faultdetail)
{
 if (NULL != soapFault)

208 IBM i: Web Services Client for ILE

 printf("SoapFaultException: %d %s\n",
 axiscSoapFaultGetFaultcode(soapFault),
 axiscSoapFaultGetFaultstring(soapFault));
 else
 printf("AxisException: %d %s\n", errorCode, errorString);

 globalExceptionOccurred = 1;
}

int main()
{
 char * pszStockName;
 xsdc__float fQuoteDollars;

 // Create a character string that contains the server endpoint URI for the
 // GetQuoteService web service. Then pass the endpoint to the instantiator
 // for the GetQuote class that was generated by the WSDL2Ws tool. The
 // endpoint will pointing to the location of service on Websphere Application
 // Server.
 char * pszEndpoint = "http://<Host>:<PortNumber>/StockQuote/services/urn:xmltoday-delayed-
quotes";
 AXISCHANDLE pwsStockQuote = get_StockQuote_stub(pszEndpoint);

 if (NULL == pwsStockQuote)
 return -1;

 // Set the stub exception handler function
 set_StockQuote_ExceptionHandler(pwsStockQuote, StockQuoteExceptionHandler);

 // If your network requires the use of a proxy, then add the following line of
 // code to configure AxisClient.
 /*
 axiscStubSetProxy(pwsStockQuote, "<ProxyHost>", <ProxyPort>);
 */

 // Set the stock name to be quoted by the web service. To test just the
 // web service, XXX is being used. This should return a stock quote of 55.25.
 pszStockName = "XXX";

 // Call the 'getQuote' method that is part of the StockQuote web service to
 // find the quoted stock price for the given company whose name is in
 // pszStockName. The result of the quote search will be returned by this
 // method as a xsd__float type.
 fQuoteDollars = getQuote(pwsStockQuote, pszStockName);

 // Output the quote. If the stock name is unknown, then getQuote() will
 // return -1. If name was recognized by the server a value is returned.

 if (!globalExceptionOccurred)
 {
 if (fQuoteDollars != -1)
 printf("The stock quote for %s is $%f\n", pszStockName, fQuoteDollars);
 else
 printf("There is no stock quote for %s\n", pszStockName);
 }

 // Delete the web service.
 destroy_StockQuote_stub(pwsStockQuote);

 // Exit.
 return 0;
}

The myGetQuote.rpgle File
The following listing is for the RPG myGetQuote.rpgle source file listing:

 h DFTNAME(MYGETQUOTE)

 * *
 * IBM Web Services Client for ILE *
 * *
 * FILE NAME: myGetQuote.rpgle *
 * *
 * DESCRIPTION: Source for GetQuote Web service client *
 * *

Code Listings for myGetQuote Client Application 209

 * LICENSE AND DISCLAIMER *
 * ---------------------- *
 * This material contains IBM copyrighted sample programming source *
 * code (Sample Code). *
 * IBM grants you a nonexclusive license to compile, link, execute, *
 * display, reproduce, distribute and prepare derivative works of *
 * this Sample Code. The Sample Code has not been thoroughly *
 * tested under all conditions. IBM, therefore, does not guarantee *
 * or imply its reliability, serviceability, or function. IBM *
 * provides no program services for the Sample Code. *
 * *
 * All Sample Code contained herein is provided to you "AS IS" *
 * without any warranties of any kind. THE IMPLIED WARRANTIES OF *
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND *
 * NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. *
 * SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED *
 * WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO *
 * EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, *
 * SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE *
 * CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS *
 * INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION *
 * HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF *
 * THE POSSIBILITY OF SUCH DAMAGES. *
 * *
 * <START_COPYRIGHT> *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * 5722-SS1, 5761-SS1, 5770-SS1 *
 * *
 * (c) Copyright IBM Corp. 2010, 2010 *
 * All Rights Reserved *
 * *
 * U.S. Government Users Restricted Rights - use, *
 * duplication or disclosure restricted by GSA *
 * ADP Schedule Contract with IBM Corp. *
 * *
 * Status: Version 1 Release 0 *
 * <END_COPYRIGHT> *
 * *

 *
 /copy StockQuote.rpgleinc

 d OutputText s 50
 d WsStub ds likeds(This_t)
 d Input ds likeds(xsd_string)
 d Result ds likeds(xsd_float)

 *--
 * Web service logic.
 *--

 /free
 // Get a Web service stub. The host and port for the endpoint may need
 // to be changed to match host and port of Web service. Or you can pass
 // blanks and endpoint in the WSDL file will be used.
 clear WsStub;
 WsStub.endpoint =
 'http://<ServerName>:<PortNumber>/StockQuote/services/+
 urn:xmltoday-delayed-quotes';

 // Set the stock name to be quoted by the web service. To test just the
 // web service, XXX is being used. This should return a stock quote.
 clear input;
 Input.value = 'XXX';

 if (stub_create_StockQuote(WsStub) = *ON);

 // Invoke the StockQuote Web service operation.
 if (stub_op_getQuote(WsStub:Input:Result) = *ON);
 OutputText = 'The stock quote for ' + Input.value
 + ' is ' + %CHAR(Result.value);
 else;
 OutputText = WsStub.excString;
 endif;

 // Display results.
 dsply OutputText;

 // Destroy Web service stubs.

210 IBM i: Web Services Client for ILE

 stub_destroy_StockQuote(WsStub);
 endif;

 *INLR=*ON;
 /end-free

Code Listings for myGetQuote Client Application 211

212 IBM i: Web Services Client for ILE

Appendix B. Code Listings for Client Handler

These code samples provide templates that demonstrate how you can create handlers for a client
application. Table 35 on page 213 shows a list of the files.

Table 35: Handler files in the samples directory

File name Description

client.wsdd The WSDD file that defines the client handler.

myClientHandler.hp
p

Client handler implementation header file.

myClientHandler.cp
p

Client handler implementation file.

myClientHandlerFac
tory.cpp

Client handler factory implementation.

All files can be found in <install_dir>/samples/handlers.

The client.wsdd File
The following listing is for the client.wsdd source file:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:C="http://xml.apache.org/axis/wsdd/providers/c">
 <service name="Handler" provider="CPP:DOCUMENT" description="Handler">
 <requestFlow>
 <handler name="myClientHandlereq" type="/qsys.lib/sample.lib/handler.srvpgm"/>
 </requestFlow>
 <responseFlow>
 <handler name="myClientHandlers" type="/qsys.lib/sample.lib/handler.srvpgm"/>
 </responseFlow>
 </service>
</deployment>

The myClientHandler.hpp File
The following listing is for the myClientHandler.hpp source file:

 /***/
 /* */
 /* IBM Web Services Client for C/C++ */
 /* */
 /* FILE NAME: myClientHandler.hpp */
 /* */
 /* DESCRIPTION: Example Client handler header file */
 /* for the Stock Quote sample */
 /* */
 /***/
 /* LICENSE AND DISCLAIMER */
 /* ---------------------- */
 /* This material contains IBM copyrighted sample programming source */
 /* code (Sample Code). */
 /* IBM grants you a nonexclusive license to compile, link, execute, */
 /* display, reproduce, distribute and prepare derivative works of */
 /* this Sample Code. The Sample Code has not been thoroughly */
 /* tested under all conditions. IBM, therefore, does not guarantee */
 /* or imply its reliability, serviceability, or function. IBM */
 /* provides no program services for the Sample Code. */
 /* */
 /* All Sample Code contained herein is provided to you "AS IS" */

© Copyright IBM Corp. 2011, 2018 213

 /* without any warranties of any kind. THE IMPLIED WARRANTIES OF */
 /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
 /* NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. */
 /* SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED */
 /* WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO */
 /* EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, */
 /* SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE */
 /* CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS */
 /* INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION */
 /* HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF */
 /* THE POSSIBILITY OF SUCH DAMAGES. */
 /* */
 /* <START_COPYRIGHT> */
 /* */
 /* Licensed Materials - Property of IBM */
 /* */
 /* 5724-M08 */
 /* */
 /* (c) Copyright IBM Corp. 2004, 2005 */
 /* All Rights Reserved */
 /* */
 /* U.S. Government Users Restricted Rights - use, */
 /* duplication or disclosure restricted by GSA */
 /* ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: Version 1 Release 0 */
 /* <END_COPYRIGHT> */
 /* */
 /***/

#if !defined(_HANDLER_HPP__INCLUDED_)
#define _HANDLER_HPP__INCLUDED_

#include <axis>

AXIS_CPP_NAMESPACE_USE

class myClientHandler : public Handler
{
 public:
 myClientHandler();
 virtual ~myClientHandler();

 // init is called when the Handler is loaded.
 int AXISCALL init();

 // invoke is called when AxisClient is about to send the request SOAP message
 // or when a response message has just been received.
 int AXISCALL invoke(void * pvIMsg);

 // onFault is called if there is a fault with message processing.
 void AXISCALL onFault(void * pvIMsg);

 // fini is called when the Handler is about to unloaded.
 int AXISCALL fini();
};

#endif // !defined(_HANDLER_HPP__INCLUDED_)

The myClientHandler.cpp File
The following listing is for the myClientHandler.cpp source file:

 /***/
 /* */
 /* IBM Web Services Client for C/C++ */
 /* */
 /* FILE NAME: myClientHandler.cpp */
 /* */
 /* DESCRIPTION: Example Client Handler */
 /* for the stock quote sample */
 /* */
 /***/
 /* LICENSE AND DISCLAIMER */
 /* ---------------------- */
 /* This material contains IBM copyrighted sample programming source */
 /* code (Sample Code). */
 /* IBM grants you a nonexclusive license to compile, link, execute, */

214 IBM i: Web Services Client for ILE

 /* display, reproduce, distribute and prepare derivative works of */
 /* this Sample Code. The Sample Code has not been thoroughly */
 /* tested under all conditions. IBM, therefore, does not guarantee */
 /* or imply its reliability, serviceability, or function. IBM */
 /* provides no program services for the Sample Code. */
 /* */
 /* All Sample Code contained herein is provided to you "AS IS" */
 /* without any warranties of any kind. THE IMPLIED WARRANTIES OF */
 /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
 /* NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. */
 /* SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED */
 /* WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO */
 /* EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, */
 /* SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE */
 /* CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS */
 /* INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION */
 /* HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF */
 /* THE POSSIBILITY OF SUCH DAMAGES. */
 /* */
 /* */
 /* <START_COPYRIGHT> */
 /* */
 /* Licensed Materials - Property of IBM */
 /* */
 /* 5724-M08 */
 /* */
 /* (c) Copyright IBM Corp. 2004, 2005 */
 /* All Rights Reserved */
 /* */
 /* U.S. Government Users Restricted Rights - use, */
 /* duplication or disclosure restricted by GSA */
 /* ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: Version 1 Release 0 */
 /* <END_COPYRIGHT> */
 /* */
 /***/

// Include myClientHandler header file to obtain the class definition, etc.
#include "myClientHandler.hpp"

// Include the header file to obtain the BasicHandler object, etc.
#include <axis>
#include <axis>
#include <axis>
#include <iostream>

// myHandler is called when the object is created.
myClientHandler::myClientHandler()
{
}

// ~myClientHandler is called when the object is destroyed.
myClientHandler::~myClientHandler()
{
}

int myClientHandler::invoke(void * pvHandlerMessage)
{
 // Cast the current message into the IMessageData type. This will allow the
 // user to change the SOAP message as appropriate.
 IMessageData * pIMsgData = (IMessageData *) pvHandlerMessage;

 // Check if the SOAP message is just about to be transmitted or has just been
 // received.
 if(pIMsgData->isPastPivot())
 {
 // Yes - the available SOAP message is a response
 cout << "Past the pivot point - Handler can see the response message." << endl;
 }
 else
 {
 // No - the available SOAP message is a request
 cout << "Before the pivot point - Handler can see the request message\n" << endl;
 }

 return AXIS_SUCCESS;
}

void myClientHandler::onFault(void * pvFaultMessage)
{
 // Please leave empty.

Code Listings for Client Handler 215

}

int myClientHandler::init()
{
 return AXIS_SUCCESS;
}

int myClientHandler::fini()
{
 return AXIS_SUCCESS;
}

The myClientHandlerFactory.cpp File
The following listing is for the myClientHandlerFactory.cpp source file:

 /***/
 /* */
 /* IBM Web Services Client for C/C++ */
 /* */
 /* FILE NAME: myClientHandlerFactory.cpp */
 /* */
 /* DESCRIPTION: Example client handler factory */
 /* for the stock quote sample */
 /* */
 /***/
 /* LICENSE AND DISCLAIMER */
 /* ---------------------- */
 /* This material contains IBM copyrighted sample programming source */
 /* code (Sample Code). */
 /* IBM grants you a nonexclusive license to compile, link, execute, */
 /* display, reproduce, distribute and prepare derivative works of */
 /* this Sample Code. The Sample Code has not been thoroughly */
 /* tested under all conditions. IBM, therefore, does not guarantee */
 /* or imply its reliability, serviceability, or function. IBM */
 /* provides no program services for the Sample Code. */
 /* */
 /* All Sample Code contained herein is provided to you "AS IS" */
 /* without any warranties of any kind. THE IMPLIED WARRANTIES OF */
 /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
 /* NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. */
 /* SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED */
 /* WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO */
 /* EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, */
 /* SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE */
 /* CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS */
 /* INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION */
 /* HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF */
 /* THE POSSIBILITY OF SUCH DAMAGES. */
 /* */
 /* <START_COPYRIGHT> */
 /* */
 /* Licensed Materials - Property of IBM */
 /* */
 /* 5724-M08 */
 /* */
 /* (c) Copyright IBM Corp. 2004, 2005 */
 /* All Rights Reserved */
 /* */
 /* U.S. Government Users Restricted Rights - use, */
 /* duplication or disclosure restricted by GSA */
 /* ADP Schedule Contract with IBM Corp. */
 /* */
 /* Status: Version 1 Release 0 */
 /* <END_COPYRIGHT> */
 /* */
 /***/

// Include myClientHandler header file to obtain the class definition, etc.
#include "myClientHandler.hpp"

// Include the header file to obtain the BasicHandler object, etc.
#include <axis>

// External methods available to the loader of this handler library.
extern "C"
{
 // GetClassInstance is passed a pointer to a pointer that will contain the

216 IBM i: Web Services Client for ILE

 // handler object to be created by this factory. Before the handler object is
 // returned, it is wrapped in a BasicHandler object and the handler's
 // initialise method is called.
 STORAGE_CLASS_INFO int GetClassInstance(BasicHandler ** ppClassInstance)
 {
 *ppClassInstance = new BasicHandler();

 myClientHandler * pmyClientHandler = new myClientHandler();

 // Setting functions to zero indicates that the handler is a C++ type
 (*ppClassInstance)->_functions = 0;

 // If the handler was loaded successfully, save the handler object and
 // initialise it.
 if(pmyClientHandler)
 {
 (*ppClassInstance)->_object = pmyClientHandler;

 return pmyClientHandler->init();
 }

 // If the hander was not loaded successfully, then return an error.
 return AXIS_FAIL;
 }

 // DestroyInstance is passed a pointer to a generic BasicHandler object that
 // contains an instance of this type of handler object. The handler is
 // unwrapped from the BasicHandler object whereupon, the handler's finish
 // method is called before deleting the handler and then the BasicHandler
 // wrapper.
 STORAGE_CLASS_INFO int DestroyInstance(BasicHandler * pClassInstance)
 {
 if(pClassInstance)
 {
 //Cast the generic handler object to the specific class.
 myClientHandler * pmyClientHandler = static_cast<myClientHandler> (pClassInstance-
>_object);

 // Call the finish method on the handler. This will allow the handler to
 // 'tidy' before it is deleted.
 pmyClientHandler->fini();

 // Delete the handler objects.
 delete pmyClientHandler;
 delete pClassInstance;

 // Return success.
 return AXIS_SUCCESS;
 }

 // Return error if there was no handler to close down and delete.
 return AXIS_FAIL;
 }
}

Code Listings for Client Handler 217

218 IBM i: Web Services Client for ILE

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2011, 2018 219

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AIX
AIX 5L

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

220 Notices

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Notices 221

222 IBM i: Web Services Client for ILE

Glossary

Ajax
Asynchronous JavaScript And XML. Ajax provides the ability for client-side code to send data to and
retrieve from a server in the background without interfering with the display behavior of the existing
page.

ANSI
American National Standard for Information Systems

API
Application Programming Interface

attachment
Data that is attached to a message on the wire, separately from the SOAP envelope. Attachments are
often used for sending large files or images.

AXISCPP_DEPLOY
Environment variable that points to the installation directory, referred to as <install_dir> in this
documentation.

certificate
A credential used as an identity of proof between the server and client. It consists of a public key and
some identifying information that a certificate authority (CA), an entity to sign certificates, has digitally
signed. Each public key has an associated private key and the server must prove that it has access to
the private key associated with the public key contained within the digital certificate. A self-signed
certificate means it is signed by the server itself. If a self-signed certificate is specified to a server,
clients might not trust the connection. To obtain a signed certificate from a public CA, you need to
generate a Certificate Signing Request (CSR) and send it to the CA. After a certificate is returned, it is
imported to your keystore.

client engine
A set of libraries that are made available at runtime to the client stubs.

DLL
Dynamic Link Library

global handler
A handler that is called regardless of the web service or message name.

GSKit
Global Security Kit, IBM's SSL component

handler
A library component that has the ability to manipulate a SOAP message, thus allowing the user to
customize or extend any message components. Handlers are invoked either just before a request
message is transmitted or just after a response message has been received.

HTTP
HyperText Transfer Protocol.

IBM Toolbox for Java
A library of Java classes supporting client/server and Internet programming model to an IBM i system.

IEEE
Institute of Electrical and Electronic Engineers.

JSON
JavaScript Object Notation. Lightweight data-interchange format that is built on a collection of name/
value pairs alongside ordered lists of values.

keystore
A storage facility for cryptographic keys and certificates. A private key entry in a keystore file holds a
cryptographic private key and a certificate chain for the corresponding public key. A private key entry
can be specified to a server when configuring SSL. A trusted certificate entry contains a public key for

© Copyright IBM Corp. 2011, 2018 223

a trusted party, normally a CA. A trusted certificate is used to authenticate the signer of certificates
provided by a server or client. The keystore types that the Web Administrator for i GUI supports are:
JKS, JCEKS, PKCS12, and CMS. Additionally, the Digital Certificate Manager (DCM) *SYSTEM is also
supported.

pivot point
The point where a message is either written on to or read from the wire.

post-pivot handler
A handler that works on a response message after it has been received.

pre-pivot handler
A handler that works on a request message that is to be transmitted.

RPC
Remote Procedure Call

secure endpoint URL
Endpoint beginning with https

service handler
A handler that is specific to the web service with which it is associated.

SOAP
Simple Object Access Protocol

SSL
Secure Sockets Layer

SSL tunneling
In SSL tunneling, the client establishes an unsecure connection to the proxy server, and then attempts
to tunnel through the proxy server to the content server over a secure connection where encrypted
data is passed through the proxy server unaltered.

TCPIP
Transmission Control Protocol/Internet Protocol

WAR file
A file used to distribute a collection of JavaServer Pages, Java Servlets, Java classes, XML files, static
web pages, and other resources that together constitute a web application.

wire
All the underlying components that are responsible for physically sending or receiving a message on
the web.

WSDD
Web Service Deployment Descriptor. An XML style file containing information that Web Services Client
for C/C++ uses as it builds request messages and decodes response messages.

WSDL
Web Service Description Language. WSDLs are XML files containing all the information relating to
services that are available at a particular location on the internet.

WSDL2Ws
Java tool that converts a WSDL into a set of client stubs that can be called by the client application.

XML
eXtensible Mark-up Language

XML4C
eXtensible Mark-up Language for C/C++

XSD
XML Schema Definition

224 IBM i: Web Services Client for ILE

Index

Special Characters
<install_dir> iii

A
Apache Axis 45
api-based invocation 48
APIs

C
Axis functions 145
Basic node functions 166
Header block functions 164
SOAP fault functions 168
Stub functions 149
Transport functions 170

C++
Axis class 99
BasicNode class 115
Call class 111
IHeaderBlock class 112
Stub class 103

arrays
of complex type 90, 138
of simple type 88, 136

axiscpp.conf file 61

C
ClientWSDDFilePath tag 61
communications

securing in C stub 139
securing in C++ stub 92
securing in RPG stub 198

complex types 90, 138
configuration files

axiscpp.conf file 61
WSDD 63

cookies
support for in C stubs 139
support for in C++ stubs 93

D
deep copying 91
document/literal 22

E
exceptions

SOAP faults represented in C stubs 133
SOAP faults represented in C++ stubs 85
SOAP faults represented in RPG stubs 197

F
floating point numbers 95, 141, 201

H
handlers 46, 48
HTTP

introduction 33
REST 32, 37–39, 41

I
installation

package 55
prerequisites 55

Interoperability 7

J
JSON

introduction 34

M
memory management

rules 91, 138
using C stub code 135
using C++ stub code 86
using RPG stub code 198

N
namespace 27

P
payload

REST 32, 37–39, 41
pivot point 46
Profiles

definition 8

R
REST 32, 37–39, 41
RPG stub instance 190

S
SecureInfo tag 61
securing in C stub 139
securing in C++ stub 92
securing in RPG stub 198
simple types

 225

simple types (continued)
array objects 88, 136
built-in 87, 135

SOAP
body 20
data model 21
encoding styles 22
envelope 18
faults 20
header 19
message structure 17
namespaces 17

SOAP faults
in client C stubs 133
in client C++ stubs 85
in client RPG stubs 197

SOAP headers
setting in RPG stub 199

SSL 61, 92, 139, 198
stateless

REST 32, 37–39, 41
stub-based invocation 47
Swagger

introduction 42

T
This_t, See RPG stub instance
tracing feature

C stub code 143
C++ stub code 97
RPG stub code 203

troubleshooting
C stub code 143
C++ stub code 97
RPG stub code 203

U
Uniform Resource Identification

REST 32, 37–39, 41
URI

introduction 33

W
web service

definition 7, 32
Web services

standards 7
technologies 7, 32

Web services client
client arhitecture 45
limitations 45
overview 45
programming model 47
supported binding 51
supported data types 51
supported specifications 45

WSDD 49, 63
WSDL

bindings 30
document structure 24

WSDL (continued)
introduction 24
messages 29
namespace 27
port definition 31
port types 29
service definition 31
types 28

wsdl2rpg.sh tool 59
wsdl2ws.sh tool

C example 129
C++ example 77
RPG example 193
troubleshooting 97, 143, 203

X
XML

attribute 9
definition 8
document 9
element 9
namespace 10
Naming rules 10

XML schema
complex types 13
elements 12
simple types 12

226

IBM®

	Contents
	Preface
	Part 1. Web service fundamentals
	Chapter 1. What is a web service?
	Why web services?

	Chapter 2. Types of web services
	SOAP-based web services
	XML primer
	Basic rules for creating XML documents
	Naming rules for elements and attribute tags
	Nesting tags
	Understanding XML namespace
	Definition of XML documents

	SOAP primer
	SOAP message structure
	Data model
	SOAP binding and encoding styles

	WSDL primer
	WSDL 1.1 document structure

	REST-based web services
	HTTP protocol
	Uniform Resource Identifiers (URIs)
	JSON primer
	REST primer
	Expose directory structure-like URIs
	Use HTTP methods explicitly
	Stateless
	REST style web service payloads

	Swagger primer

	Part 2. Web services client for ILE concepts
	Chapter 3. Web services client overview
	Supported specifications and standards
	Client architecture
	Client programming model

	Chapter 4. The Web services client for ILE installation details
	Chapter 5. Command line tools
	wsdl2ws.sh command
	wsdl2rpg.sh command

	Chapter 6. Configuration files
	The axiscpp.conf file
	The Web services deployment descriptor (WSDD) file

	Part 3. Using C++ stubs
	Chapter 7. WSDL and XML to C++ mappings
	Mapping XML names to C++ identifiers
	XML schema to C++ type mapping
	WSDL to C++ mapping

	Chapter 8. Developing a Web services client application using C++ stubs
	Generating the C++ stub code
	Completing C++ client implementation
	Deploying the client application

	Chapter 9. Creating client-side handlers
	Chapter 10. C++ programming considerations
	C++ exception handling
	C++ memory management
	Built-in simple types
	Arrays of simple type
	Array types as input parameters
	Array types as output parameters

	Complex types and arrays of complex type
	Deep copying
	Summary of rules

	Securing web service communications in C++ stub code
	Cookies
	Floating point numbers in C++ types

	Chapter 11. Troubleshooting C++ client stubs
	Chapter 12. Axis C++ core APIs
	Axis class
	Stub class
	Call class
	IHeaderBlock class
	BasicNode class

	Part 4. Using C stubs
	Chapter 13. WSDL and XML to C mappings
	Mapping XML names to C identifiers
	XML schema to C type mapping
	WSDL to C mapping

	Chapter 14. Developing a Web services client application using C stubs
	Generating the C stub code
	Completing C client implementation
	Deploying the client application

	Chapter 15. C stub programming considerations
	C exception handling
	C memory management
	Built-in simple types
	Arrays of simple type
	Array types as input parameters
	Array types as output parameters

	Complex types and arrays of complex type
	Summary of rules

	Securing web service communications in C stub code
	Cookies
	Floating point numbers in C types

	Chapter 16. Troubleshooting C client stubs
	Chapter 17. Axis C core APIs
	Axis C APIs
	Stub C APIs
	Header block C APIs
	Basic node C APIs
	SOAP fault C APIs
	Transport C APIs

	Part 5. Using RPG stubs
	Chapter 18. WSDL and XML to RPG mappings
	XML names
	XML schema to RPG type mapping
	WSDL to RPG mapping

	Chapter 19. Developing a Web services client application using RPG stubs
	Generating the RPG stub code
	Completing RPG client implementation
	Deploying the client application

	Chapter 20. RPG stub programming considerations
	RPG exception handling
	RPG memory management
	Securing web service communications in RPG stub code
	Setting SOAP headers
	Floating point numbers in RPG types

	Chapter 21. Troubleshooting RPG client stubs

	Appendix A. Code Listings for myGetQuote Client Application
	The GetQuote.wsdl File
	The myGetQuote.cpp File
	The myGetQuote.c File
	The myGetQuote.rpgle File

	Appendix B. Code Listings for Client Handler
	The client.wsdd File
	The myClientHandler.hpp File
	The myClientHandler.cpp File
	The myClientHandlerFactory.cpp File

	Notices
	Trademarks

	Glossary
	Index
	Special Characters
	A
	C
	D
	E
	F
	H
	I
	J
	M
	N
	P
	R
	S
	T
	U
	W
	X

