
System i

Application Display Programming

Version 6 Release 1

SC41-5715-02

���

System i

Application Display Programming

Version 6 Release 1

SC41-5715-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on

page 705 and the manual IBM eServer Safety Information, G229-9054.

This edition applies to version 6, release 1, modification 0 of IBM i5/OS (product number 5761-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

This edition replaces SC41-5715-01.

© Copyright International Business Machines Corporation 1997, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures xv

Tables xvii

About Application Display

Programming (SC41-5715) xix

Part 1. Building a Sample Display

with Online Help Information 1

Chapter 1. Building a Sample Display

with Online Help Information 3

The Application Display 3

The Online Help Information 3

Part 2. Programming Application

Displays Using Display Files 9

Chapter 2. Defining Your Display in a

Display File 15

Establishing a Display File 15

Determining File Descriptions 16

Field-Level Descriptions 16

Record-Level Descriptions 16

File-Level Descriptions 17

Deciding Whether to Describe Data Inside or

Outside Your Program 17

Externally Described Data 17

Program-Described Data 17

Creating a Display File and Description 18

Changing the File Description 19

Detecting File Description Changes 20

Defining Display Fields and Functions in a Record

Format 21

DDS for Display File 21

Record Format Used by the Program 21

Record Format on the Display 22

Understanding the Field Attribute Characters . . 22

Understanding How Record Format Fields Can

Be Used 22

Defining Function Keys 24

Defining Command Attention (CAnn) and

Command Function (CFnn) Keys 25

Specifying Alternative Keys 26

Passing Information via Indicators 27

Removing Option and Response Indicators

from the Record Area 27

Enabling Different Response Indicators

Simultaneously 28

Setting an Indicator Off 28

Inserting Constant Field Text from a Message

Description 28

Allowing for Right-to-Left Cursor Movement . . 28

Defining Cursor Movement to Input-Capable

Positions Only 29

Defining Cursor Progression for Entry Fields . . 30

Defining Attributes for Entry Fields 30

Protecting Entry Fields Using Edit Masks . . . 31

Specifying Right-to-Left Display Processing . . . 31

Specifying Word Wrap for Fields 32

Specifying Word Wrap for Fields—Tips . . . 33

Emphasizing Fields 33

Adding Color 34

Editing Output Fields 34

Defining Your Own Edit Codes 35

Specifying Valid Screen Sizes 35

Enabling Your Display to Be Printed 36

Defining Windows 37

Using Program-Described Data 38

Defining Input-Only Files 38

Defining Output-Only Files 39

Defining Input and Output Files 39

Chapter 3. Working with Display Files

in an Application 41

Understanding How the System Allocates Resources 41

Opening Display Files 41

Acquiring a Display Station for I/O Operations . . 42

Obtaining Information about Display Files and

Display Stations 43

Obtaining Information about Open and I/O

Operations 43

Obtaining Attribute Information about Display

Stations 43

Sending and Receiving Data 44

Determining Which Record Formats Are Active

on a Display 44

Writing Output to the Display 44

Placing Records on the Display 45

Understanding Which Records Do Not

Occupy Space on the Display 47

Changing Record Formats on a Display . . . 48

Deciding the Order of Record Formats Written

to the Display 49

Overlaying and Erasing Record Formats on a

Display 49

Starting Your Record Format on a Specific

Line 50

Clearing a Specified Number of Lines . . . 53

Rolling Data between Two Lines on a Display 55

Overriding the Attributes or the Content of a

Field 57

Erasing All Unprotected Input and

Output/Input Fields on the Display 61

Resetting Modified Data Tags Associated with

Records on the Display 61

Keeping a Record or Field on a Display . . . 61

© Copyright IBM Corp. 1997, 2008 iii

Deferring the Write Operation Until a Read

Request is Made 63

Specifying Default Values for Fields 64

Indicating Which Mode to Display Records . . 64

Positioning the Cursor after an Output

Operation 65

Returning the Cursor Position to an

Application 66

Returning the Cursor Position Within a Subfile

to an Application 66

Returning the Mode of a Subfile to an

Application 66

Initializing Output/Input Fields 67

Inviting Input to the Display 67

Inviting Input from CL Programs 67

Reading Invited Input from the Display 68

Understanding the Read-From-Invited-Devices 69

Reading-From-Invited-Devices from CL

Programs 69

Reading Input from the Display 70

Unlocking the Keyboard while the Program Is

Processing Data 71

Keeping Input Data 72

Setting an Indicator When Data Is Changed 72

Initializing Records and Unlocking the

Keyboard-Diagram 72

Specifying Validity-Checking Functions . . . 73

Understanding the Limitations on the Number

of Input-Capable Fields 74

Handling Negative Numeric Input Data . . . 75

Understanding How the System Reads Input

from the Display 75

Writing Output and Reading Input at the Same

Time 75

Canceling Input That Was Not Waited For . . . 76

Locking the Keyboard and Positioning the

Cursor During I/O Operations 76

Saving Previously Displayed Information . . . 77

Understanding the Effects of I/O Operations on

Command Keys 79

Avoiding Record Format Problems on the 5250

Display Station 80

Releasing an Acquired Display Station from I/O

Operations 82

Closing Display Files 82

Mapping Display Operations to High-Level

Language Operations 83

Sharing Display Files in the Same Job 84

Understanding the Open Operation for Files

Shared in a Job 84

Understanding the Input/Output Operation for

Files Shared in a Job 84

Understanding the Close Operation for Files

Shared in a Job 85

Chapter 4. Displaying Groups of

Records Using Subfiles 87

Recognizing Subfile Uses 87

Describing Subfiles in Your DDS Source 89

Using a Subfile in a Program 94

Requesting I/O Operations for a Subfile 96

Requesting I/O Operations for a Subfile Record

Format 96

Adding a Record at a Specified Location in a

Subfile 96

Updating an Active Record in the Subfile . . 96

Reading an Active Record at a Specified

Location in the Subfile 97

Reading the Next Changed Record in a Subfile 97

Requesting I/O Operations for a Subfile Control

Record Format 98

Displaying Subfile Records 98

Placing Subfile Records on the Display for

Processing 98

Displaying and Processing Subfile Records at

the Same Time 98

Recognizing Subfile I/O Requests in High-Level

Languages 98

Controlling the Appearance of Subfiles 99

Displaying Horizontal Subfiles with Display Modes 100

Specifying Subfile Size Equal to Page Size 102

Specifying Subfile Size Not Equal to Page Size . . 103

Checking Validity on Subfile Data 104

Displaying Error Messages from Subfiles 105

Positioning the Cursor on the Displayed Subfile 105

Positioning the Cursor Initially 106

Positioning the Cursor When a Roll Key Is Used 106

Positioning the Cursor When a Fold or Truncate

Key Is Used 109

Positioning the Cursor and Rolling When Two

or More Records Are Displayed 109

Understanding Subfile DDS and Program

Logic-Example 113

Chapter 5. Defining Windows with

Display Files 115

Window Terminology 115

DDS Window Keywords 116

Window Representation and Hardware

Configuration 116

Creating Windows 116

Window Definition Records 117

Window Reference Records 117

Window Size and Location 118

Cursor Position 119

Error Messages 119

Subfiles 120

DDS Help Records 120

Defining Window Borders 120

Border Defaults 121

Multiple Border Definitions 121

UIM Help Window Borders 122

Defining a Window Title 122

DDS for a Window Title-Example 123

Reading Data from Windows 123

Changing Window Borders and Contents 124

Moving and Duplicating Windows 124

Making Two Windows Seem Active at Once . . . 124

Making One Window in a Series Stand Out . . . 125

Removing Windows 125

Removing All Windows 125

Removing More Recent Windows 126

iv Application Display Programming V6R1

Improving Application Performance 126

System Save and Restore Operations 126

Response Time 126

Bypassing System Save and Restore Operations 126

USRRSTDSP Keyword Processing and

Interactions 127

Programming Examples 128

Using Basic Window Functions 128

DDS Full-Screen Display and Window

Definitions 128

RPG Display Program 130

Step 1: Display Initial Display 132

Step 2: Display Window 1 132

Step 3: Display Window 2 132

Step 4: Restore Window 1 133

Step 5: Display Initial Display 133

Defining Windows in a Separate Display File 134

DDS Full-Screen Display and Window

Definitions 134

RPG Program Source 134

RPG Program Source for WINPGM 135

Step 1: Display Initial Display 135

Step 2: Display a Window 136

Step 3: Return to the Initial Display 136

Chapter 6. Creating a Graphical Look

for Displays 139

Factors Affecting the Graphical Look 139

Hardware Configuration 139

Enhanced Display Parameter 141

DDS Keywords 142

Creating Menu Bars 144

Defining the Menu-Bar Choices 144

Suppressing the Menu-Bar Separator 145

Defining the Menu-Bar Separator 145

Selection Fields-Overview 146

DDS for Selection Fields-Example 148

Creating a Vertical Single-Choice Selection Field 148

Creating a Vertical Multiple-Choice Selection

Field 149

Creating a Horizontal Selection Field 149

Cursor Movement in a Vertical Selection Field 150

Cursor Movement in a Horizontal Selection

Field 150

Controlling the Selection Indicators in a

Selection Field 151

Creating Pull-Down Menus Using Single-Choice

Selection Fields 152

Controlling the Selection Indicators in a

Pull-Down Menu 154

Defining Accelerator Keys 155

Defining a Menu-Bar Switch Key 156

Defining a Cancel Key 156

Limiting Function When Cursor is Outside a

Pull-Down Menu 157

Selection Lists-Overview 157

DDS for Selection Lists-Example 159

Creating Selection Lists 159

Controlling the Selection Indicators in a

Selection List 160

Scroll Bars-Overview 162

Creating a Scroll Bar 163

DDS for Scroll Bars-Example 164

Scroll Bar Operation 165

Push Buttons-Overview 165

DDS for Push Buttons-Example 166

Creating Push Buttons 166

Controlling the Availability of Choices 167

Auto-Selection in Single-Choice Selection Fields 168

Auto-Enter in Single-Choice Selection Fields . . . 168

Defining Mnemonics 169

Defining Choice Colors and Attributes 170

Continued-Entry Fields-Overview 173

Specifying Word Wrap on Continued-Entry

Fields 173

DBCS Considerations with Continued-Entry

Fields 173

How DBCS Data is Returned for

Continued-Entry Fields 174

Keyboard Functions with Continued-Entry

Fields 174

Character data 174

Field Mark 175

Automatic Shape Determination (ASD)

Processing 175

Delete 175

Erase EOF 176

Erase Input 176

Reverse 176

Close 176

Field Exit 176

Field Plus 176

Field Minus 176

Dup 176

Kanji 177

Character Backspace 177

Character Advance 177

New Line 177

Field Advance 178

Field Backspace 178

Forward Field-Exit Processing 178

Backward Field-Exit Processing 178

How the Menu Bar Interacts with the Application 178

Defining the MNUBARDSP Keyword on the

Application Record 179

Defining the MNUBARDSP Keyword on the

Menu-Bar Record 180

Receiving Input from the Pull-Down Menus . . 181

Receiving Input from Pull-Down Menus

Using the Pull-Down Input Parameter . . . 181

Removing a Pull-Down Menu after Receiving

Input 183

Updating a Pull-Down Menu before Displaying 183

Defining Application Help 184

Defining Choice-Level Help 184

Defining Help for a Field 186

Key Interaction for Menu Bars and Pull-Down

Menus 187

Cursor Movement 188

Pressing the Tab Key 188

Pressing the Cursor Keys 189

Programming Examples 189

Contents v

Using the MNUBARDSP Keyword on the

Application Record 189

Description 191

Using the MNUBARDSP Keyword on the

Menu-Bar Record 192

Description 193

How the Displays Look 193

Simple Hotspots 194

Command Key Emulation 195

Page Up and Page Down Key Emulation . . . 195

Programmable Mouse Buttons-Overview 195

Pointer Device Events 196

AID Codes to be Returned 196

Programmable Mouse Buttons-Benefits 197

Programmable Mouse Buttons Operation . . . 197

Programmable Mouse Buttons-NWS

Considerations 198

Programmable Mouse Buttons-Event Processing

States 198

Programmable Mouse Buttons-Event Processing

Priority 199

Unshifted Left Button Pressed Event

Processing 199

Unshifted Left Button Released Event

Processing 201

Unshifted Left Button Double Click Event

Processing 201

Shifted Left Button Pressed Event Processing 201

Shifted Left Button Released Event

Processing 202

Shifted Right Button Pressed Event

Processing 203

Any Other Pointer Device Event Processing 204

Grid Line Structures-Overview 204

DDS for Grid Line Structures-Example 204

Grid Line Structures and Windows 205

Hardware Requirements for Grid Line

Structures 206

Inserting HTML Tags 206

Resolving HTML Field Overlap 207

Programming Examples 208

Chapter 7. Overriding Display Files

and Display File Attributes 211

Determining Whether or Not to Use Overrides . . 211

Overriding File Attributes in HLL Programs . . . 211

Example 211

Overriding File Names in HLL Programs 212

Example 212

Overriding Both File Names and Attributes in HLL

Programs 213

Example 213

Applying Overrides When Compiling a Program 214

Example 214

Deleting Overrides 215

Displaying Overrides 215

Using File Redirection to Override File Names and

Libraries or File Types 215

Overriding Files with the Same File Types . . . 215

Overriding Files with Different File Types . . . 216

Recognizing Commands That Ignore or Restrict

Overrides 218

Chapter 8. Handling Messages and

Errors for Display Files 221

Creating and Displaying Your Own Messages . . 221

Displaying a Message on the Message Line . . 222

Displaying a Message on the Message Line

When a Subfile Control Record is Written . . . 222

Displaying a Message on the Message Line

Using a Message Field 222

Priorities for Displaying Messages on a Message

Line 222

Displaying Messages in a Field on the Display 223

Displaying Messages on a Program Message

Queue 223

Displaying Error Messages through a Subfile 223

Sounding an Alarm for Messages 226

Automatically Handling Permanent I/O Errors

on Display Stations 226

Analyzing Error Messages Sent from the System 227

Understanding Messages and Message Monitors 227

Understanding Major/Minor Return Codes . . 228

Recovering from Errors 229

Normal Completion 229

Completion with Exceptions 229

Permanent System or File Error 230

Permanent Device or Session Error on I/O

Operation 230

Device or Session Error on Open or Acquire

Operation 231

Recoverable Device or Session Errors on I/O

Operation 231

Chapter 9. Creating and Accessing

Menus Using Display Files 233

Running System and User-Defined Menus 233

Returning to a Menu after Running the GO

command 233

Determining the Previous Menu 233

Using the Cancel and Exit Keys on Menus . . 233

Choosing the Menu That Is Shown at Sign-On

Time 235

Defining Your Own Display File Menus 235

Understanding DDS and Display File

Considerations for Menus 236

Describing Menu Actions in a Message File . . 237

Naming Help Formats for Menus 237

Building a Display File Menu 238

Describing the Menu and Menu Help

Information 239

Creating the Display File 240

Creating the Message File 240

Adding Messages to the Message File . . . 240

Creating the Menu Object 240

Running the Menu 241

Defining Your Own Program Menus 241

Passing Parameters for Program Menus . . . 241

Building a Program Menu 241

Describing the Menu 242

vi Application Display Programming V6R1

Creating the Display File 242

Entering the Source and Creating a CL

Program 242

Creating the Menu 243

Running the Menu 243

Exiting from a Program Menu without

Returning to the Previous Menu 244

Program 1 244

Program 2 244

Avoiding Menu Name Conflict 245

Naming Your Menus 245

Placing Your Menu in a Higher Library in the

Library List 245

Specifying the Library That Contains the Menu 245

Using the Generic Menu Specification 246

Changing the Command Default after

Duplicating a Command 246

Displaying Menu Attributes 246

Changing Menu Attributes 246

Deleting Menus 246

Chapter 10. Using User-Defined Data

Streams 247

Understanding Display Station Differences . . . 247

Understanding User-Defined Data Stream

Limitations 248

Chapter 11. Passing Data between

Programs 251

Passing Data in the Same Routing Step in a Job 251

Passing Data between Routing Steps in a Job . . . 252

Chapter 12. Waiting for Input from a

Display File, an ICF File, and a Data

Queue 255

Chapter 13. Using Alternative

Character Sets and Code Pages . . . 257

System Has Characters Not Normally Displayed

on the Device 257

Device Passes Characters Not Displayed on the

System 258

Specifying Character Translation for Fields . . . 258

Determining the Character Identifier (CHRID)

Value for Your Display 260

Chapter 14. Improving System

Performance with Displays 263

Deferring the Write Operation for a Display File 263

Designating the Primary Screen Size for a Display

File 263

Writing Only One Page of Subfile Records at a

Time 263

Sharing an Open Data Path (ODP) for the Same

Job 264

Sending Records with Input Fields to the Display

in Order 264

Overlapping and Not Deleting Repeatedly Sent

Records 264

Restoring the Display 264

Defining Command Attention Keys Rather Than

Command Function Keys 265

Using the Invite Operation 265

Using Windows 265

Part 3. Programming Application

Displays Using Panel Groups . . . 267

Chapter 15. Improving Productivity

with User Interface Manager 269

Increasing User Productivity 269

Increasing Application Programmer Productivity 269

What to Consider before Using UIM Instead of

Data Description Specifications (DDS) 269

Chapter 16. Introduction to the User

Interface Manager 271

Overview of UIM 271

What the UIM Supports 272

What Is a Panel Group 272

What Is a Menu 272

Creating Objects 273

Elements Within a Panel Group 273

Using the UIM Language Tags 273

Using Dialog Commands 274

Using Control Language (CL) Commands 275

Using an Application Programming Interface (API) 275

Defining a Menu Object Using UIM 276

Creating a Menu Panel 276

Required Tags for a Menu Panel 278

Source for Example Menu 278

Defining a Panel Group Object Using UIM . . . 283

Creating a List Panel 283

Required Tags for a List Panel 285

Source for Example List Panel 286

Application Programming for a List Panel . . . 294

Creating a Confirmation List Panel 295

Required Tags for a Confirmation List Panel . . 296

Source for Example Confirmation Panel . . . 296

Automatic Confirmation Processing 299

Application Programming for Confirmation

Processing 299

Creating a Data Presentation Panel 299

Required Tags for a Data Presentation Panel . . 302

Source for Example Data Presentation Panel . . 302

Application Programming for a Data

Presentation Panel 313

Data Entry Panel 316

Creating a Panel with a Menu Bar 316

Required Tags for a Panel with a Menu Bar . . 318

Source for Example Panel with a Menu Bar . . 318

Application Programming for a Menu Bar Panel 328

Chapter 17. Details of Using User

Interface Manager 329

Opening a UIM Application 329

Defining Dialog Variables 329

Restrictions on Using Dialog Variables 330

Contents vii

Dialog Variable Error Messages 331

Providing Field Values for a Display Panel

Using Dialog Variables 331

Using Variable Pool Services 332

Dialog Variables and Special Values 332

Character Set and Code Page Considerations 332

Displaying 333

Printing 333

Managing a List 334

Defining a List 335

Initializing a List 335

Displaying a List 335

Updating a List 336

Incomplete List Processing 336

Removing and Inserting an Entry from a List 336

Controlling List Entries on a List Display . . . 337

Improving Interactive Response Time for a List

Display 337

Using Action Lists and Selection Lists 338

Using Action Lists 338

Using Selection Lists 339

Using Selection Characters 339

Managing Panel Functions 339

Enabling Conversion to a GUI 340

Scrolling Support 340

Defining Scrollable Areas 340

Defining Function Key Scrolling 341

Scrolling and Error Conditions 341

Scrolling a List Area 341

Scrolling a Menu Area 341

Scrolling an Information Area 342

Scrolling Data Item Groups 342

Scrolling a Text Area 342

Defining Contextual Help 342

Command Line Restrictions 344

Command Line Interpretation 344

Entering Commands That Are Too Long . . . 345

Defining Function Keys 345

Formatting Function Keys 345

Handling Function Keys and VARUPD Value 345

Panel Formatting Concepts 346

When Panel Formatting Is Performed 347

Application Control of Panel Formatting . . . 347

Limits of the Panel Formatter 348

Folding Up Multiple Panels When EXIT Is

Requested 348

Folding Up a List Panel 350

Adding a Pop-Up Window over Another Panel 350

Using Menu Bars 351

Differences Between Pull-Down Menus and

Pop-Up Windows 352

Using Pop-Up Windows 353

Defining Application Windows 354

Adding and Removing Windows 354

Using the Command Line in a Window . . . 355

UIM as a Request Processor Program When

Displaying a Panel 355

Printing Concepts 356

Printing a Print Head Panel 358

Printing a Print Panel 358

Using Blank Lines for Separating 359

Fonts and Highlighting 359

Printing the Trailer 359

Defining Prolog Areas 359

Defining Header Areas 359

Using the Page-Eject Function During Printing 359

Sharing and Overriding Printer Files 360

Printing Double-Byte Character Set (DBCS)

Considerations 360

Commonly Asked UIM Questions 360

Part 4. Programming Help

Displays 361

Chapter 18. Making Online Help

Information Accessible for Your

Display File 363

Enabling the Help Key 364

Choosing between Panel Groups and Records for

Help 364

Defining Which Areas of Your Display Need

Online Help Information 365

Specifying Panel Groups for Help in Your Display

File 367

Defining Panel Groups with Option Indicators 369

Copying QUSRTOOL Examples That Specify

Help Using Panel Groups 370

Specifying Records in Your Display File 370

Defining Records with Option Indicators . . . 371

Entering the Records That Contain the Help

Information 371

Using Records and Documents for Help in the

Same Display File 372

Understanding the Restrictions on Records . . 372

Paging between Help Displays That Use

Records 373

Understanding How the System Pages Help

Displays 373

Displaying Secondary Online Help

Information 374

Determining the Sequence of Secondary

Help 374

Understanding the Restrictions of Records

for Secondary Help 376

Returning Control to Your Program after Pressing

the Help Key 376

Returning Control to Your Program after

Showing the Help Display 376

Returning Control to Your Program without

Showing the Help Display 378

Chapter 19. Making Online Help

Accessible for Your Panel Group . . . 379

Definitions and Explanations 379

Giving Help Panel Groups Access to Index

Search 381

Giving Help Panel Groups Access to A

User-Defined Panel Group 381

Removing Access to F18=More Indexes 382

Help in a List Area 382

viii Application Display Programming V6R1

Coding Help 383

Help in a Menu Area 383

Coding Help 384

Help in a Data Area 385

Coding Help 386

Help in a Menu Bar Area 388

Coding Help 389

Help in a Function Key Area 390

Coding Help 391

Chapter 20. Defining Online Help

Information 393

Defining Online Help Information in a Panel

Group 393

Entering the UIM Source for a Panel Group for

Help 393

Organizing a Panel Group with Help

Modules 393

Using the Information in a Help Module

More Than Once 394

Using a Help Module Contained in a

Different Help Panel Group 394

Emphasizing and Formatting the Text within

a Help Module 395

Defining Paragraphs and Notes 395

Adding Headings 395

Highlighting Text 396

Making Lists 396

Identifying Programming Keywords and

Variables 396

Indicating Structured Text 396

Adding Index Search Tags to a Help Panel

Group 397

Understanding How Index Search Works 397

Deciding Which Topics to Put in Index

Search 399

Defining Index Search Topics and Root

Words 399

Designating Synonyms for Root Words 399

Choosing Root Words and Synonyms for

Index Search Topics 400

Defining an Index Search Hierarchy . . . 400

National Language Considerations . . . 402

Linking Help Modules 402

Designing Your Links 403

Creating Links 404

Creating and Deleting Panel Groups 404

Assigning Panel Groups as Help for Commands 405

Using Panel Groups in a Search Index 405

Creating a Search Index 405

Adding Entries to a Search Index 405

Removing Entries from a Search Index . . . 406

Deleting a Search Index 406

Copying QUSRTOOL Examples That Define

Help in a Panel Group 406

Defining Online Help Information in a DDS Record 406

Part 5. Guidelines for IBM

i5/OS-Style Displays 407

Chapter 21. Designing IBM i5/OS-Style

Displays 409

Using the Displays Example in the QUSRTOOL

Library 409

Recognizing the Example Objects 409

Installing the Example Objects 411

Viewing the Sample Displays, Command, and

Online Help Information 411

Copying the Source for the Example Objects for

Your Own Use 414

Defining Special Functions and Attributes for All

Displays 414

Designing the Single-Choice Menu Display . . . 415

Title 416

Instruction Line 416

Menu Options 416

Menu Selection Entry Field 416

Function Keys 416

Online Help Information 417

General Menu Display Operation 417

Designing the Entry Display 417

Title 417

Instruction Line 418

Prompt Area 418

Field Prompts 418

Entry Fields 419

Descriptive Text Area (Possible Choices

Information) 421

Function Keys 422

Online Help Information 422

General Entry Display Operation 422

Designing the Information Display 422

Title 423

Location Information 423

Prompt Area 1 424

Prompt Area 2 424

Instruction Line 425

Function Keys 425

Online Help Information 425

General Information Display Operation 425

Designing the List Display 425

Title 426

Prompt Area 426

Instruction Line 426

Options Line 427

Column Headings 427

Extended Action Entry Area 428

List Fields 428

Paging Location Information 428

Function Keys 429

Online Help Information 429

General List Display Operation 429

Operating the List Control Field 430

Positioning the List 430

Positioning to Lowercase Names in a List 430

Changing the List Control Field and

Positioning the List 431

Operating the Extended Action Entry Area 431

List Operation When Options Are Specified 433

Cursor Positioning Rules 434

Error Condition Rules 434

Contents ix

List Where Only One Item Can Be Selected 435

List Format in Empty List Situation 435

Defining the Function Key Area for All Displays 436

Optional Command Line and Identifier Field 436

Available Command Line Tool 439

Common Key Assignments 439

Defining Help Information for All Displays . . . 443

Help for the Menu Display 443

Help for the Entry Display 444

Help for the Information Display 445

Help for the List Display 446

Defining and Presenting Messages 447

Designing Common User Access (CUA) Entry

Level Models 449

Entry Dialog Actions 449

Function Key Area and Message Line

Relationship 450

Single-Choice Selection (Menu) 450

Selection Choices and Choice Entry Field . . 451

Guidelines for Single Selection Field

Operation 451

Entry Display 452

Entry Fields 452

Information Display 453

List Display 453

Help Information 454

Part 6. Appendixes 455

Appendix A. UIM Panel Group

Definition Language 457

Tag Content Formatted as Paragraphs 458

Panel Areas 459

Panels 459

Panel Group Objects 459

Help on Panels 460

Panel Group Organization 460

Name Syntax 461

Symbols 461

Comments 463

Imbeds 463

DBCS Graphic Literals 463

Hexadecimal Literals 464

APPFMT (Application Formatted Area) 464

Required Attributes 465

Optional Attribute 465

Application Formatted Data 465

Example: Application Formatted Area 466

BOTINST (Bottom Instruction) 466

Optional Attribute 467

Optional Text 467

CHECK (Validity Checking) 467

Required Attribute 468

Optional Attributes 468

Example: Validity Checking 469

UIM Source 469

CIT (Title Citation) 469

Optional Text 469

Example: Title Citations 469

UIM Source 469

Results 469

CLASS (Class Definition) 470

Required Attributes 471

Optional Attributes 475

Example: Class Definitions 480

UIM Source 480

Display Forms of Numeric Values 481

Display Forms of Character, Date, and Time

Values 482

CMDLINE (Command Line) 483

Required Attribute 483

Optional Attribute 483

Optional Text 483

COND (Condition Definition) 484

Required Attributes 484

Optional Attribute 487

Example: Conditioning an Option 487

UIM Source 487

COPYR (Copyright) 488

Required Text 488

DATA (Data Presentation Area) 488

Required Attribute 489

Optional Attributes 490

Optional Text 491

Print Formatting Considerations 491

Example 1: Data Entry Panel 492

UIM Source 492

Results 493

Example 2: Two-Column Format in a Data Entry

Panel 493

UIM Source 493

Results 494

Example 3: Two Presentation Areas for Data

Items 495

UIM Source 495

Results 496

Example 4: Data Presentation Area with a Menu

Area 496

UIM Source 496

Results 497

Example 5: Data Entry Panel with a Nested

Data Group 497

UIM Source 497

Results 498

DATAC (Data Item Choices) 498

Optional Attribute 498

Optional Text 499

DATACOL (Data Column) 499

Required Attribute 499

Optional Text 499

DATAGRP (Data Group) 500

Optional Attributes 500

Optional Text 501

DATAI (Data Item) 502

Required Attributes 503

Optional Attributes 503

Optional Text 506

DATAIX (Data Item Extender) 507

Required Attributes 508

Optional Attributes 508

DATASLT (Data Selection Field) 510

x Application Display Programming V6R1

Required Attributes 511

Optional Attributes 511

Optional Text 512

Example 1: Data Entry Panel 512

UIM Source 512

Results 513

Example 2: Multiple-Selection Field 514

UIM Source 514

Results 514

DATASLTC (Data Selection Field Choice) 515

Optional Attributes 515

Optional Text 517

DL (Definition List) 517

Optional Attribute 518

Required Tags 518

Optional Tags 518

Example 1: Definition List 518

UIM Source 519

Results 519

Example 2: Compact Definition List 519

UIM Source 519

Results 519

FIG (Figure) 519

Optional Attribute 520

Optional Tag 520

Example: Sample Figure 520

UIM Source 520

Results 520

HELP (Help Module) 521

Required Attribute 521

Optional Attributes 521

Optional Text 522

Example: Help Panel Definition 523

UIM Source 523

Results 523

HP0 through HP9 (Highlighted Phrase) 524

Optional Text 524

H1 through H4 (Heading) 525

Required Text 525

Example: Heading Tags 526

UIM Source 526

Results 526

IMHELP (Imbed Help) 526

Required Attribute 526

Example: Imbedded Help 527

UIM Source 527

IMPORT (Import) 528

Required Attributes 528

Optional Attributes 528

INFO (Information Area) 529

Required Attribute 529

Optional Attributes 529

Optional Text 530

Print Formatting Considerations 530

ISCH (Index Search) 530

Required Attribute 530

Required Text 530

Example: Index Search 531

UIM Source 531

ISCHSUBT (Index Search Subtopic) 531

Required Attribute 531

Example: Index Search Hierarchy 531

UIM Source 532

ISCHSYN (Index Search Synonym) 532

Required Attribute 533

Required Text 533

Example: Index Search Synonyms 533

UIM Source 533

KEYI (Key List Item) 534

Required Attributes 534

Optional Attributes 535

Optional Text 536

Example: Key Definitions 536

UIM Source 536

Results 536

KEYL (Key List) 537

Required Attribute 537

Optional Attribute 537

Example: Key List 537

UIM Source 537

LINES (Unformatted Lines) 538

Optional Text 538

Example: Unformatted Lines 538

UIM Source 538

Results 538

LINK (Hypertext Link Definition) 539

Required Attribute 540

Optional Attributes 540

Conditional Expressions 540

Bidirectional Considerations 542

Example: Hypertext Link 542

UIM Source 542

Results 543

LIST (List Area) 544

Required Attributes 545

Optional Attributes 545

Optional Text 548

Print Formatting Considerations 548

Example 1: List Area 549

UIM Source 549

Results 550

Example 2: List Area with Three Layout

Columns 550

UIM Source 550

Results 551

Example 3: List Area with List Column Groups 551

UIM Source 551

Results 552

Example 4: Dynamic List Column Heading

Formatting 552

UIM Source 552

Results 553

LISTACT (List Action) 554

Required Attributes 555

Optional Attributes 555

Optional Text 558

Confirmation Panel Requirements 558

Confirmation Panel Conventions 559

Example: List Actions 559

UIM Source 559

Results 560

LISTCOL (List Column) 560

Contents xi

Required Attributes 561

Optional Attributes 561

Optional Text 563

Formatting Considerations 564

LISTDEF (List Definition) 565

Required Attributes 565

Optional Attributes 565

LISTGRP (List Column Group) 567

Required Attributes 568

Optional Attribute 568

Optional Text 568

Example: List Column Group 569

UIM Source 569

Results 569

LISTVIEW (List View) 570

Required Attribute 570

Optional Attribute 570

LP (List Part) 571

Example: List Part 572

UIM Source 572

Results 572

MBAR (Menu Bar) 572

Required Attribute 573

Optional Attributes 573

Example: Menu Bar 573

UIM Source 573

Results 574

MBARC (Menu Bar Choice) 575

Required Attributes 575

Required Text 575

MENU (Menu Area) 576

Required Attribute 576

Optional Attribute 577

Optional Text 577

Example 1: Simple Menu Area 577

UIM Source 577

Results 578

Example 2: Menu Area with Groups 578

UIM Source 578

Results 579

MENUGRP (Menu Group) 579

Optional Attribute 580

Optional Text 580

MENUI or MI (Menu Item) 580

Required Attributes 580

Optional Attributes 581

Optional Text 582

NT or NOTE (Note) 582

Optional Text 583

Example: Using a Note 583

UIM Source 583

Results 583

OL (Ordered List) 583

Optional Attribute 584

Required Tag 584

Example: Ordered List 584

UIM Source 584

Results 585

OPTLINE (Option Line) 585

Optional Attribute 585

Optional Text 585

P (Paragraph) 585

Optional Text 586

Example: Paragraph Tag 586

UIM Source 586

Results 586

PANEL (Display Panel) 587

Required Attributes 588

Optional Attributes 588

Optional Text 593

Example: Panel Definition 593

UIM Source 593

Results 594

PARML (Parameter List) 594

Required Tags 595

Example: Parameter List 595

UIM Source 595

Results 595

PC (Paragraph Continuation) 596

Example: Paragraph Continuation 596

UIM Source 596

Results 596

PDACCEL (Pull-Down Accelerator) 596

Required Text 596

PDFLD (Pull-Down Field) 597

Optional Attribute 597

PDFLDC (Pull-Down Field Choice) 598

Required Attributes 598

Optional Attributes 599

Optional Text 601

Confirmation Panel Requirements 601

Confirmation Panel Conventions 601

PK (Programming Keyword) 601

Optional Attribute 602

Required Text 602

PNLGRP (Panel Group) 602

Optional Attributes 603

PRTHEAD (Print Head Panel) 605

Required Attribute 606

Optional Attributes 606

Optional Text 607

Layout of the Title Lines 607

Example: Print Title Line 610

PRTPNL (Print Panel) 610

Required Attribute 610

Optional Attributes 610

Optional Text 611

PRTTRAIL (Print Trailer Message) 611

Required Text 611

Example: Trailer Message 611

UIM Source 611

PV (Programming Variable) 612

Required Text 612

RT (Reverse Text) 612

Example 1: Left-to-Right Formatting on a

Right-to-Left Panel 613

UIM Source 614

Results 614

Example 2: Left-to-Right Formatting on a

Left-to-Right Panel 614

UIM Source 614

Results 614

xii Application Display Programming V6R1

SL (Simple List) 614

Optional Attribute 615

Required Tag 615

Example: Simple Lists 615

UIM Source 615

Results 615

TEXT (Text Area) 616

Required Attribute 616

Optional Attributes 617

Cursor positioning 617

Text Data 617

Example: Text area 620

TI (Translation List Item) 620

Optional Attribute 620

Optional Text 621

TL (Translation List) 621

Optional Attributes 621

Examples: Translation List 622

UIM Source 622

UIM Source 622

TOPINST (Top Instruction) 622

Optional Attribute 623

Optional Text 623

TT (Truth Table) 623

Required Attributes 624

Example: Truth Table 624

UIM Source 624

TTROW (Truth Table Row) 624

Required Attribute 624

UL (Unordered List) 625

Optional Attribute 626

Required Tag 626

Example: Unordered Lists 626

UIM Source 626

Results 626

VAR (Variable Definition) 626

Required Attribute 627

Optional Attributes 627

Dialog Variables Defined by UIM 627

VARRCD (Variable Record Definition) 629

Required Attributes 629

Optional Attributes 630

XH1 through XH4 (Extended Help Headings) . . 630

Required Text 630

Formatting Rules 631

Example: Sample Headings 631

UIM Source 631

Results 631

XMP (Example) 631

Example: Formatting an Example 632

UIM Source 632

Results 632

Appendix B. UIM Dialog Commands 633

The VARUPD Attribute 635

ACTIONS (Menu Bar Cursor Action) 636

Messages 636

CALL (Call Program) 636

Required Parameter 637

VARUPD Value 638

Messages 638

CANCEL 638

Optional Parameter 638

VARUPD Value 638

Messages 638

CHGVIEW (Change View) 639

Parameters 639

VARUPD Value 639

Messages 639

CMD (System Command) 639

Parameter 640

VARUPD Value 640

Messages 640

Hint 640

CMDLINE (Command Line) 640

Parameters 640

Messages 640

DSPHELP (Display Help) 640

Required Parameter 641

Optional Parameter 641

Messages 641

ENTER 641

Parameters 641

VARUPD Value 641

Messages 641

Considerations for Using the ENTER, HELP,

and PROMPT Dialog Commands 641

EXIT (Exit Display) 642

Optional Parameter 642

VARUPD Value 642

Messages 642

EXTHELP (Extended Help) 642

Parameters 642

HELP 643

Parameters 643

VARUPD Value 643

Messages 643

HELPHELP 643

Parameters 643

Messages 643

HELPIDX 643

Parameters 644

Messages 644

HOME (Display Home Menu) 644

Parameters 644

VARUPD Value 644

Messages 644

KEYSHELP 644

Messages 644

MENU 645

Required Parameter 645

Optional Parameter 645

Messages 645

MOREKEYS (Display More Function Keys) . . . 645

Parameters 646

Messages 646

MOVETOP (Move to Top) 646

Parameters 646

VARUPD Value 646

Messages 646

MSG (Display Message) 646

Required Parameter 647

Contents xiii

Optional Parameter 647

VARUPD Value 647

PAGEDOWN 647

Parameters 647

Messages 647

PAGEUP 647

Parameters 648

VARUPD Value 648

Messages 648

PRINT (Print Display) 648

Parameters 648

VARUPD Value 648

Messages 648

PROMPT 648

Parameters 649

VARUPD Value 649

Messages 649

Prompting an Entry Field 649

Prompting an Action List Option or Command 649

PULLDOWN (Display Pull-Down Menu) 650

Parameters 650

RETRIEVE (Retrieve Command String) 650

Parameters 651

VARUPD Value 651

Messages 651

RETURN (Return Control to Application) 651

Required Parameter 651

VARUPD Value 651

Messages 651

Appendix C. Feedback Area Layouts

for Display Files 653

Open Feedback Area 653

Device Definition List 656

I/O Feedback Area 659

Common I/O Feedback Area 659

I/O Feedback Area for Display Files 663

Get Attributes 666

Appendix D. Display File Return

Codes 671

Major Code 00 671

Major Code 02 671

Major Code 03 672

Major Code 04 673

Major Codes 08–11 673

Major Code 34 674

Major Code 80 674

Major Code 81 677

Major Code 82 678

Major Code 83 682

Appendix E. Edit Codes 687

i5/OS Edit Codes 687

Examples of Editing Using i5/OS Edit Codes 688

User-Defined Edit Codes 689

Using User-Defined Edit Codes 690

Example of a User-Defined Edit Code 691

Appendix F. System/36-Compatible

Display Data Management 693

Clearing Lines on the Display 693

Input Data for Display File Records 694

Input Data from the Work Station Controller . . . 694

Self-Check 695

Return Input 695

Erase Input Fields 695

Display Attributes 696

Positioning the Cursor 696

Displaying Messages 697

Put Override 699

Handling Signed Numeric Data 699

Function Keys 700

Help Key Considerations 700

Using Command Keys to Exit Application Help 701

Cancel-Invite Operation 701

Retain Command and Function Keys 702

System/36 Functions Not Supported 702

Restricted DDS Keywords/Functions 703

Notices 705

Programming Interface Information 706

Trademarks 707

Terms and conditions 707

Bibliography 709

System Use 709

Systems Management 709

Application Development 709

Communications and Connectivity 709

Program Enablers 710

Program Interfaces 710

Index 711

xiv Application Display Programming V6R1

Figures

 1. Sample DDS Source for a Display File . . . 21

 2. Record Formats in the Program and on the

Display 22

 3. DDS for Field-Level Cursor Progression 30

 4. DDS for Subfile-Level Cursor Progression 30

 5. Sample DDS for Right-to-Left Display

Processing 31

 6. Sample DDS for Program-to-System Fields 34

 7. Sample DDS for Two Display Sizes 36

 8. Sample DDS for Subfiles for Two Display Sizes 36

 9. Valid Placement of Records on a Screen When

the CLRL Keyword Is Not Used 46

 10. Wrong Placement of Records on Screen When

CLRL Keyword Not Used 47

 11. Replacing Record Formats 49

 12. Sample DDS Source Showing Use of the

SLNO(*VAR) Keyword 52

 13. Sample DDS Source Showing Difference

between CLRL and OVERLAY 55

 14. Sample DDS Source Showing Use of the

PUTOVR Keyword 58

 15. Sample DDS Source Showing Efficient Use of

PUTOVR Keyword 59

 16. Sample DDS Source Showing Another Use of

PUTOVR Keyword 60

 17. Sample DDS Source Showing Use of the

PUTRETAIN Keyword 62

 18. Sample DDS Source Showing Use of the

PUTRETAIN Keyword 63

 19. Sample DDS Source Showing Use of the

DSPMOD Keyword 65

 20. Sample DDS to Show Record Format Problems 81

 21. DDS Keyword Processing Order for Subfile

Control 94

 22. Vertically Displayed Subfile 99

 23. Horizontally Displayed Subfile 99

 24. Horizontally and Vertically Displayed Subfiles

Displayed at the Same Time 100

 25. Sample DDS Using DSPMOD with Subfiles 101

 26. Sample DDS Using SFLSIZ, SFLPAG, and

ROLLUP Keywords 102

 27. Sample DDS for a Variable-Length Record 103

 28. Sample DDS Using the SFLNXTCHG

Keyword 104

 29. Sample DDS for a Message Subfile 105

 30. Sample DDS Using the DSPATR(PC)

Keyword 107

 31. Sample DDS Showing Customer Name Search

Subfile 113

 32. Window Title-Display Example 123

 33. DDS for a Window Title 123

 34. Radio Buttons and Check Boxes 139

 35. Example of a Menu Bar 144

 36. DDS for a Menu Bar 145

 37. Menu Bar on a Graphical Display Station

with Enhanced Interface 146

 38. Menu Bar on a Nongraphical Display Station

with Underline Capability 146

 39. Menu Bar on a Nongraphical Display Station

without Underline Capability 146

 40. Menu Bar on a Display Station without

Enhanced Interface 146

 41. Selection Fields on a Graphical Display

Station with Enhanced Interface 147

 42. Selection Fields on a Nongraphical Display

Station 147

 43. DDS for Single-Choice and Multiple-Choice

Selection Fields 148

 44. Example of DDS for Horizontal Selection

Field 149

 45. DDS for Suppressing Selection Indicators in a

Selection Field 152

 46. Suppressed Selection Indicators in Selection

Field 152

 47. Example of a Pull-Down Menu 152

 48. DDS for a Pull-Down Menu 153

 49. Pull-Down Menu on a Graphical Display

Station with Enhanced Interface 153

 50. Pull-Down Menu on a Nongraphical Display

Station with Underline Capability 154

 51. Pull-Down Menu on a Nongraphical Display

Station without Underline Capability . . . 154

 52. Pull-Down Menu on a Display without

Enhanced Interface 154

 53. DDS for Suppressing Selection Indicators in a

Pull-Down Menu 154

 54. Suppressed Selection Indicators on Graphical

Display Station 155

 55. Suppressed Selection Indicators on

Nongraphical Display Station 155

 56. DDS for Accelerator Keys 156

 57. Accelerators in a Pull-Down Menu 156

 58. DDS for Menu-Bar Switch Key and Cancel

Key 157

 59. Selection Lists on a Graphical Display Station

with Enhanced Interface 158

 60. Selection Lists on a Nongraphical Display

Station with Underline Capability 158

 61. DDS for Selection Lists-Example 159

 62. DDS for Enabling Selection Indicators in a

Selection List 161

 63. Selection Indicators on Graphical Display

Station 161

 64. Scroll Bar on a Graphical Display Station with

Enhanced Interface 162

 65. Scroll Bar on a Nongraphical Display Station

with Underline Capability 163

 66. DDS for Scroll Bars-Example 165

 67. Push Buttons on a Graphical Display Station

with Enhanced Interface 166

 68. Push Buttons on a Nongraphical Display

Station with Underline Capability 166

© Copyright IBM Corp. 1997, 2008 xv

69. Push Buttons on a Nongraphical Display

Station without Underline Capability . . . 166

 70. Push Buttons on a Display Station without

Enhanced Interface 166

 71. DDS for Push Buttons-Example 166

 72. Control Values for the CHCCTL Keyword 167

 73. DDS to Control the Availability of Choices 168

 74. Single-Choice Selection Field with an

Unavailable Choice 168

 75. Examples of Valid DDS for Mnemonics 169

 76. Examples of DDS Not Valid for Mnemonics 169

 77. DDS Using CHCAVAIL and CHCSLT for

Menu-Bar Choices 171

 78. DDS Using CHCAVAIL and CHCUNAVAIL

for Selection Fields 171

 79. DDS Using CHCAVAIL, CHCUNAVAIL, and

CHCSLT for Selection Fields 172

 80. DDS Using CHCAVAIL, CHCUNAVAIL, and

CHCSLT for Single Choice Selection List

Choices 172

 81. DDS Using CHCAVAIL, CHCUNAVAIL, and

CHCSLT for Multiple Choice Selection List

Choices 172

 82. Continued-Entry Fields in Rectangular

Arrangement 173

 83. DDS Using MNUBARDSP on the Application

Record 179

 84. DDS Using MNUBARDSP on the Menu-Bar

Record 180

 85. DDS for Pull-Down Input (PULLINPUT)

Parameter 182

 86. DDS for Return-Field Parameter 184

 87. DDS for Menu-Bar Choice Help 185

 88. DDS for Single-Selection Field Choice Help 185

 89. A help list for a menu bar 186

 90. Help for a Named Field 187

 91. Help for a Constant Field 187

 92. Cursor Locations 187

 93. Grid line structures 204

 94. DDS for Grid Line Structures-Example 205

 95. DDS Coding Before Adding HTML Keyword 208

 96. DDS Coding After Adding HTML Keyword 209

 97. Graphic Image on a 5250 Gateway Display 209

 98. Sample DDS Source for ERRSFL Keyword 224

 99. Sample DDS Source for SFLMSGID Keyword 225

100. DDS Source for Sample Menu Called

PERSMENU 239

101. DDS Source for Program Menu Example 242

102. An Example Menu 277

103. Required UIM tags for a menu panel 278

104. Example List Panel 283

105. Example of Alternate View of List 284

106. Required tags for a list panel 286

107. Example Confirmation List Panel 296

108. Example Data Presentation Panel 300

109. Example Data Presentation Panel after

Scrolling 301

110. Required UIM tags for a data presentation

panel 302

111. Example Panel with a Menu Bar 316

112. Required UIM tags for a panel with a menu

bar 318

113. Example of Job Exit Flag 349

114. Example of Printout 358

115. Sample H Specification in DDS Source 366

116. Sample DDS Source Showing HLPPNLGRP 369

117. Sample DDS Source Showing HLPPNLGRP

and Option Indicators 369

118. Sample DDS Source Showing HLPRCD 371

119. Sample DDS Source Showing HLPRCD and

Option Indicators 371

120. Sample DDS Source with HLPRCD 372

121. Sample DDS Source to Show Secondary Help 375

122. Sample DDS Source to Show HLPCMDKEY 377

123. Sample DDS Source to Show HLPCMDKEY

and Response Indicators 378

124. Index Search Display 381

125. Sample Menu in QUSRTOOL 412

126. Sample Entry Display in QUSRTOOL 412

127. Sample Information Display (Two Pages) in

QUSRTOOL 413

128. Sample List Display in QUSRTOOL 414

129. Sample Application Menu 415

130. Sample Entry Display 417

131. Sample Information Display (Two Pages) 423

132. Sample List Display 425

133. Layout of Display with Location Information 429

134. Example of Processing Priority with List

Display 432

135. Create User Profile Entry Display 437

136. Create Command Display with Additional

Parameters Selected 438

137. Second Display of Additional Parameters 438

138. Work with Members Using PDM Entry

Display 439

139. Help Areas for Entry Displays 445

140. Help Areas for Information Displays 446

141. Help Areas for List Displays 447

142. Example of an Application Menu 451

143. Entry Display 452

144. Example of an Information Display 453

145. Example of a List Display 454

146. Highlighting Classes Allowed in TEXT Area 618

147. Circumventing the Save Command 702

xvi Application Display Programming V6R1

Tables

 1. Names Used in Steps for Creating Sample

Displays 3

 2. More Ways to Create Application Displays 7

 3. More Ways to Create Online Help Information 8

 4. Column positions for sample DDS 21

 5. DDS for Emphasizing Fields 33

 6. PRINT Keyword Results Using Print Key 37

 7. Display Stations Implicitly Acquired When

Display Files Are Opened 42

 8. Information Available from the Get-Attributes

Operation 43

 9. Results of SLNO(*VAR) Values 50

 10. Results from CLRL Example 55

 11. Keywords Ignored If Display Modes Are

Changed 65

 12. Display File Operations Supported by the

Operating System and the Equivalent

High-Level Language Commands 83

 13. Optional Functions for Subfiles 90

 14. Subfile Operations Supported by the System

and Equivalent HLL Commands 98

 15. Functions Supported by Hardware

Configurations A, B, and C 139

 16. Functions Supported by Hardware

Configurations D, E, and F 140

 17. How a Scroll Bar is Sized 164

 18. Scroll Bar Operation 165

 19. Keywords Used to Define Colors and Display

Attributes 170

 20. Values Returned in MNUCHOICE and

PULLINPUT 182

 21. Actions Performed at Different Cursor

Locations 188

 22. File Redirections 216

 23. File Redirection Combinations 217

 24. System Message Number Ranges 228

 25. Major Return Code Definitions 229

 26. Restrictions for Display File Menus 236

 27. Suggestions for Display File Menus 237

 28. Display File and ICF File Entry Field

Attributes 255

 29. CHRID Values 260

 30. Initial Values of Dialog Variable 330

 31. UIM CCSID/CHRID Conversions for Display 333

 32. UIM CCSID/CHRID Conversions for Print 334

 33. Cursor-Sensitive Function Keys Assigned to

Dialog Commands 352

 34. Different Ways to Define Online Help

Information 364

 35. Characteristics of Different Methods of Online

Help Information 364

 36. Help for Sample Display 366

 37. Other DDS Keywords for UIM Help 367

 38. Help for Sample Display Using Panel Groups 368

 39. Help for Sample Display Using HLPRCD 370

 40. Source Members for Displays Example in

QUSRTOOL (Install, Create, and Delete) . . 409

 41. Source Members for Displays Example in

QUSRTOOL (Sample Displays, Command,

and Online Help Information) 410

 42. Objects Created When Creating Example

Objects 411

 43. Required Functions and Attributes of All

i5/OS-Style Displays 414

 44. Optional Functions and Attributes of All

i5/OS-Style Displays 415

 45. Function Key Assignments 439

 46. Type of Help for Each Help Area-Menu

Display 443

 47. DDS Considerations-Help on Menu Displays 444

 48. Type of Help for Each Help Area-Entry

Display 444

 49. DDS Considerations-Help on Entry Displays 445

 50. Type of Help for Each Help Area-Information

Display 445

 51. DDS Considerations-Help on Information

Displays 446

 52. Type of Help for Each Help Area-List Display 446

 53. DDS Considerations-Help on List Displays 447

 54. CUA Entry Dialog Actions 449

 55. Tag Attributes That Can Be Continued 458

 56. Restrictions Associated With Mixed Panels 459

 57. Tags Allowed Between the CLASS and

ECLASS Tag 471

 58. Attribute Summary for Each BASETYPE 475

 59. Tags Allowed Between the DATA and EDATA

Tags 489

 60. Tag Allowed Between the DATASLT and

EDATASLT Tags 511

 61. Tags Allowed Between the DL and EDL Tags 518

 62. Tag Allowed Between the KEYL and EKEYL

Tags 537

 63. Tags Allowed Between the LIST and ELIST

Tags 545

 64. NOCMD and NOEXT Attribute Interaction 557

 65. Emphasis Values 566

 66. Layout Values for Width=80 571

 67. Layout Values for WIDTH=132 571

 68. Layout Values for WIDTH=132 571

 69. Tag Allowed Between the MBAR and EMBAR

Tags 572

 70. Tags Allowed Between the MBARC and

EMBARC Tags 575

 71. Tags Allowed Between the MENU and

EMENU Tags 576

 72. Tag Allowed Between the MENUGRP and

EMENUGRP Tags 580

 73. Tags Allowed Between the NOTE and

ENOTE Tags 582

 74. Tags Allowed Between the OL and EOL Tags 584

© Copyright IBM Corp. 1997, 2008 xvii

75. Tags Allowed Between the PANEL and

EPANEL Tag 587

 76. Layout of UIM finger print 590

 77. Tags Allowed Between the PARML and

EPARML Tags 595

 78. Tags Allowed Between the PDFLD and

EPDFLD Tags 597

 79. Valid Action Text for ACTION Values 598

 80. Tags Allowed Between the PNLGRP and

EPNLGRP Tags 602

 81. Tags Allowed Between the PRTHEAD and

EPRTHEAD Tags 606

 82. First Line of Heading with Print Width 132 607

 83. First Line of Heading with Print Width 80 608

 84. Second Line of Heading with Print Width 132 608

 85. Second Line of Heading with Print Width 132

and time zone 608

 86. Second Line of Heading with Print Width 80 609

 87. Second Line of Heading with Print Width 80

and time zone 609

 88. Tags Allowed Between the PRTPNL and

EPRTPNL Tags 610

 89. Tags Allowed Between the SL and ESL Tags 615

 90. Tag Allowed Between the TL and ETL Tags 621

 91. Tag Allowed Between the TT and ETT Tags 624

 92. Tags Allowed Between the UL and EUL Tags 625

 93. Attributes of UIM-Defined Variables

(Z-Variables) 629

 94. Summary of the Valid Uses of Dialog

Commands 633

 95. Summary of the Effects of Dialog Commands 634

 96. Open Feedback Area 653

 97. Device Definition List 656

 98. Common I/O Feedback Area 659

 99. I/O Feedback Area for Display Files 663

100. Get Attributes 666

101. Summary Chart for i5/OS Edit Codes 687

102. Valid Edit Codes, Source Data, and Edited

Output 689

103. IBM-Supplied Edit Descriptions 689

104. Message Files for MSGID 697

105. Message Files for MSGID 698

xviii Application Display Programming V6R1

About Application Display Programming (SC41-5715)

This book contains information about the following topics:

v Using DDS to create and maintain displays for an application

v Creating and working with display files on the system

v Creating online help information

v Using UIM to define panels and dialogs for an application

Use this book to program for application and help displays. This book does not describe all the DDS

keywords or the configuration of display stations. You may need to refer to other IBM books for more

specific information about a particular topic. For a list of related publications, see “Bibliography” on page

709.

This book should be used by application programmers who create or work with application and help

displays. You should also have knowledge of the source entry utility (SEU) and data description

specifications (DDS).

This book assumes that a device description already exists to describe your display station to the system.

© Copyright IBM Corp. 1997, 2008 xix

xx Application Display Programming V6R1

Part 1. Building a Sample Display with Online Help

Information

Chapter 1. Building a Sample Display with Online

Help Information 3

The Application Display 3

The Online Help Information 3

© Copyright IBM Corp. 1997, 2008 1

2 Application Display Programming V6R1

Chapter 1. Building a Sample Display with Online Help

Information

This chapter outlines the steps you need to do to create a sample display with online help information on

i5/OS. If you are not sure how to do one or more of the steps, see the additional information referred to

in each step.

The Application Display

The sample display is created using a display file (also known as a display device file). A display file is

an object, or named storage space, created by the user that contains the file description. The file

description identifies the display station used and, optionally, the record formats used by the display

station. Record formats describe the characteristics and arrangement of the fields on a display. Record

formats are defined using data description specifications (DDS), which describe data attributes outside

the application program that processes the data.

The Online Help Information

The online help information for the sample display is defined using help panel groups. A panel group is

an object, or named storage space, that contains text to be used as online help information by the user

interface manager. The user interface manager (UIM) is a function of the operating system that provides

online help information for displays, including help for part or all of a display, help for commands, the

index search function (selectable help topics), and hypertext (the capability to link different units of

online help information).

The following table lists the sample names used in the steps:

 Table 1. Names Used in Steps for Creating Sample Displays

Name What It Is

SRCSAM Sample source file

ADMSAM Sample source member for application display

DSPSAM Sample display file

HDMSAM Sample source member for help display

PNLSAM Sample panel group

LIBSAM Sample library that contains source file SRCSAM, display file DSPSAM, and panel

group PNLSAM

The steps show only one way to create a sample display with online help information. Other methods are

discussed at the end of this chapter.

 1. Create the source file SRCSAM using the Create Source Physical File (CRTSRCPF) command; create

the library LIBSAM using the Create Library (CRTLIB) command.

 2. Enter the Start Programming Development Manager (STRPDM) command to begin using the

programming development manager (PDM). When the display appears, select option 3 (Work with

members).

© Copyright IBM Corp. 1997, 2008 3

Programming Development Manager (PDM)

 Select one of the following:

 1. Work with libraries

 2. Work with objects

 3. Work with members

 9. Work with user-defined options

 Selection or command

 ===> 3

 F3=Exit F4=Prompt F9=Retrieve F10=Command entry

 F12=Cancel F18=Change defaults

 (C) COPYRIGHT IBM CORP. 1981, 2007.

Additional Information

The programming development manager (PDM) is the part of the Application Development

ToolSet licensed program that allows users to perform several operations (such as copy, delete,

and rename) from lists of libraries, objects, and members.

 Since the display file (which will be created in step 9) does not actually contain any data, the

DDS source for a display file is entered in a source file. A source file is an object that is made

up of one or more source members, which are the different sets of data that make up your

DDS source.

 More information about the programming development manager is available in the ADTS/400:

Programming Development Manager book.

 3. When the Specify Members to Work With display appears, complete the file and library information

and press the Enter key.

 Specify Members to Work With

 Type choices, press Enter.

 File SRCSAM Name

 Library LIBSAM *LIBL, *CURLIB, name

 Member:

 Name *ALL *ALL, name, *generic*

 Type *ALL *ALL, *BLANK, type, *generic*

 F3=Exit F5=Refresh F12=Cancel

 4. The Work with Members Using PDM display appears.

4 Application Display Programming V6R1

Work with Members Using PDM

 File SRCSAM

 Library LIBSAM Position to

 Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print

 7=Rename 8=Display description 9=Save 13=Change text

 Opt Member Type Text

 (No members match the subsetting criteria)

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

Press F6 on this display to create a new member.

 5. The Start Source Entry Utility display appears. Complete the information on this display and press

the Enter key.

 Start Source Entry Utility (STRSEU)

 Type choices, press Enter.

 Source file > SRCSAM Name, *PRV

 Library > LIBSAM Name, *LIBL, *CURLIB, *PRV

 Source member ADMSAM Name, *PRV, *SELECT

 Source type DSPF Name, *SAME, BAS, BASP, C...

 Text ’description’ DDS for sample display

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Additional Information

The source entry utility (SEU) is a function of the Application Development ToolSet licensed

program that is used to create and change source members. More information about the source

entry utility is available in the ADTS for AS/400: Source Entry Utility book.

 6. Because you are creating a new member, the SEU Edit display appears with a screen of blank lines.

The text on the last line of the display, Member ADMSAM added to file SRCSAM indicates that SEU

added the new member to the file you specified.

Chapter 1. Building a Sample Display with Online Help Information 5

Columns: 1 71 Edit LIBSAM/SRCSAM

 SEU==> ADMSAM

 FMT DPAAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++

 *************** Beginning of data *************************************

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

’’’’’’’

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh

 F10=Top F11=Bottom F24=More keys

Member ADMSAM added to file LIBSAM/SRCSAM.

+

 7. On the SEU edit display, enter the DDS source statements for the new member. Since the instructions

in this chapter allow you to provide online help information for the sample display, make sure your

DDS source includes the necessary DDS keywords to enable and access help.

Additional Information

SEU has many functions available to help you enter your DDS. More information about the

functions of SEU is available in ADTS for AS/400: Source Entry Utility, SC09-2605.

 For information about describing your display using DDS, see “Defining Display Fields and

Functions in a Record Format” on page 21 in this guide. For more information about the DDS

keywords needed for online help information, see Chapter 18, “Making Online Help

Information Accessible for Your Display File.”

 8. When you are finished entering your DDS source, press F3 and complete the information on the Exit

display. Press the Enter key.

 9. To create the new display file, enter the Create Display File (CRTDSPF) command on any command

line. Make sure you specify the source file and member that contains your DDS source:

CRTDSPF FILE(LIBSAM/DSPSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(ADMSAM)

Press the Enter key.

Additional Information

For more information about creating display files, see “Creating a Display File and Description”

on page 18.

10. To add online help information to the sample display, create a second source file member for the

UIM source. You are not required to create the second source member in the same source file that

you created your DDS source in; however, do not use the same source member for both the DDS

and UIM source.

To create the second source file member, repeat steps 2 through 4. When the Start Source Entry

Utility display appears again, continue with step 11.

11. Complete the information on the Start Source Entry Utility display by specifying the following:

6 Application Display Programming V6R1

For this prompt...

Enter this...

Source member

HDMSAM

Source type PNLGRP

Text description

UIM help for sample display

12. On the SEU edit display, enter the UIM source statements for the new member.

Additional Information

For information about defining your online help information using UIM, see “Defining Online

Help Information in a Panel Group” on page 393.

13. When you are finished entering your UIM source, press F3 and complete the information on the Exit

display. Press the Enter key.

14. Enter the Create Panel Group (CRTPNLGRP) command on any command line:

CRTPNLGRP PNLGRP(LIBSAM/PNLSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(HDMSAM)

Press the Enter key.

Additional Information

For more information about panel groups, see “Creating and Deleting Panel Groups” on page

404.

Although one library was used in the previous steps, you are not required to create the different objects

for your displays in the same library.

Other ways of creating your own application displays on the system follow:

 Table 2. More Ways to Create Application Displays

Method Description

Where to Find More

Information

Screen design aid

(SDA)

A function of the Application Development ToolSet licensed

program that helps you design, create, and maintain displays and

menus. SDA allows you to design your displays as you want them

to look and then the system creates the DDS source and a display

file for you.

ADTS for AS/400:

Screen Design Aid

book.

QUSRTOOL A library, which is optionally installable on your system, that

provides you access to examples of various tools and programming

techniques that may help you with application development and

management of your system. The display example in QUSRTOOL

provides four sample displays with online help information. You

can copy the source for these displays into a library of your

choosing and then tailor them for your own use.

“Using the Displays

Example in the

QUSRTOOL Library”

on page 409

UIM panel groups A part of the system that allows you to define panels and dialogs

for your application. The UIM controls the panel’s appearance and

assures consistency with panels developed by IBM®.

Chapter 16,

“Introduction to the

User Interface

Manager,” on page

271

Other ways of creating online help information for your displays follow:

Chapter 1. Building a Sample Display with Online Help Information 7

Table 3. More Ways to Create Online Help Information

Method Description

Where to Find More

Information

Help records DDS keywords that allow you to create your online help

information in the same or a different member as the DDS source

for your application display. This can be accessed from display files

and not the UIM application panels.

“Defining Online

Help Information in a

DDS Record” on page

406 and “Specifying

Records in Your

Display File” on page

370

To compare and contrast the different ways to create online help information, see “Choosing between

Panel Groups and Records for Help” on page 364.

8 Application Display Programming V6R1

Part 2. Programming Application Displays Using Display Files

Chapter 2. Defining Your Display in a Display

File 15

Establishing a Display File 15

Determining File Descriptions 16

Field-Level Descriptions 16

Record-Level Descriptions 16

File-Level Descriptions 17

Deciding Whether to Describe Data Inside or

Outside Your Program 17

Externally Described Data 17

Program-Described Data 17

Creating a Display File and Description 18

Changing the File Description 19

Detecting File Description Changes 20

Defining Display Fields and Functions in a Record

Format 21

DDS for Display File 21

Record Format Used by the Program 21

Record Format on the Display 22

Understanding the Field Attribute Characters . . 22

Understanding How Record Format Fields Can

Be Used 22

Defining Function Keys 24

Defining Command Attention (CAnn) and

Command Function (CFnn) Keys 25

Specifying Alternative Keys 26

Passing Information via Indicators 27

Removing Option and Response Indicators

from the Record Area 27

Enabling Different Response Indicators

Simultaneously 28

Setting an Indicator Off 28

Inserting Constant Field Text from a Message

Description 28

Allowing for Right-to-Left Cursor Movement . . 28

Defining Cursor Movement to Input-Capable

Positions Only 29

Defining Cursor Progression for Entry Fields . . 30

Defining Attributes for Entry Fields 30

Protecting Entry Fields Using Edit Masks . . . 31

Specifying Right-to-Left Display Processing . . . 31

Specifying Word Wrap for Fields 32

Specifying Word Wrap for Fields—Tips . . . 33

Emphasizing Fields 33

Adding Color 34

Editing Output Fields 34

Defining Your Own Edit Codes 35

Specifying Valid Screen Sizes 35

Enabling Your Display to Be Printed 36

Defining Windows 37

Using Program-Described Data 38

Defining Input-Only Files 38

Defining Output-Only Files 39

Defining Input and Output Files 39

Chapter 3. Working with Display Files in an

Application 41

Understanding How the System Allocates Resources 41

Opening Display Files 41

Acquiring a Display Station for I/O Operations . . 42

Obtaining Information about Display Files and

Display Stations 43

Obtaining Information about Open and I/O

Operations 43

Obtaining Attribute Information about Display

Stations 43

Sending and Receiving Data 44

Determining Which Record Formats Are Active

on a Display 44

Writing Output to the Display 44

Placing Records on the Display 45

Understanding Which Records Do Not

Occupy Space on the Display 47

Changing Record Formats on a Display . . . 48

Deciding the Order of Record Formats Written

to the Display 49

Overlaying and Erasing Record Formats on a

Display 49

Starting Your Record Format on a Specific

Line 50

Clearing a Specified Number of Lines . . . 53

Rolling Data between Two Lines on a Display 55

Overriding the Attributes or the Content of a

Field 57

Erasing All Unprotected Input and

Output/Input Fields on the Display 61

Resetting Modified Data Tags Associated with

Records on the Display 61

Keeping a Record or Field on a Display . . . 61

Deferring the Write Operation Until a Read

Request is Made 63

Specifying Default Values for Fields 64

Indicating Which Mode to Display Records . . 64

Positioning the Cursor after an Output

Operation 65

Returning the Cursor Position to an

Application 66

Returning the Cursor Position Within a Subfile

to an Application 66

Returning the Mode of a Subfile to an

Application 66

Initializing Output/Input Fields 67

Inviting Input to the Display 67

Inviting Input from CL Programs 67

Reading Invited Input from the Display 68

Understanding the Read-From-Invited-Devices 69

Reading-From-Invited-Devices from CL

Programs 69

Reading Input from the Display 70

Unlocking the Keyboard while the Program Is

Processing Data 71

© Copyright IBM Corp. 1997, 2008 9

Keeping Input Data 72

Setting an Indicator When Data Is Changed 72

Initializing Records and Unlocking the

Keyboard-Diagram 72

Specifying Validity-Checking Functions . . . 73

Understanding the Limitations on the Number

of Input-Capable Fields 74

Handling Negative Numeric Input Data . . . 75

Understanding How the System Reads Input

from the Display 75

Writing Output and Reading Input at the Same

Time 75

Canceling Input That Was Not Waited For . . . 76

Locking the Keyboard and Positioning the

Cursor During I/O Operations 76

Saving Previously Displayed Information . . . 77

Understanding the Effects of I/O Operations on

Command Keys 79

Avoiding Record Format Problems on the 5250

Display Station 80

Releasing an Acquired Display Station from I/O

Operations 82

Closing Display Files 82

Mapping Display Operations to High-Level

Language Operations 83

Sharing Display Files in the Same Job 84

Understanding the Open Operation for Files

Shared in a Job 84

Understanding the Input/Output Operation for

Files Shared in a Job 84

Understanding the Close Operation for Files

Shared in a Job 85

Chapter 4. Displaying Groups of Records Using

Subfiles 87

Recognizing Subfile Uses 87

Describing Subfiles in Your DDS Source 89

Using a Subfile in a Program 94

Requesting I/O Operations for a Subfile 96

Requesting I/O Operations for a Subfile Record

Format 96

Adding a Record at a Specified Location in a

Subfile 96

Updating an Active Record in the Subfile . . 96

Reading an Active Record at a Specified

Location in the Subfile 97

Reading the Next Changed Record in a Subfile 97

Requesting I/O Operations for a Subfile Control

Record Format 98

Displaying Subfile Records 98

Placing Subfile Records on the Display for

Processing 98

Displaying and Processing Subfile Records at

the Same Time 98

Recognizing Subfile I/O Requests in High-Level

Languages 98

Controlling the Appearance of Subfiles 99

Displaying Horizontal Subfiles with Display Modes 100

Specifying Subfile Size Equal to Page Size 102

Specifying Subfile Size Not Equal to Page Size . . 103

Checking Validity on Subfile Data 104

Displaying Error Messages from Subfiles 105

Positioning the Cursor on the Displayed Subfile 105

Positioning the Cursor Initially 106

Positioning the Cursor When a Roll Key Is Used 106

Positioning the Cursor When a Fold or Truncate

Key Is Used 109

Positioning the Cursor and Rolling When Two

or More Records Are Displayed 109

Understanding Subfile DDS and Program

Logic-Example 113

Chapter 5. Defining Windows with Display Files 115

Window Terminology 115

DDS Window Keywords 116

Window Representation and Hardware

Configuration 116

Creating Windows 116

Window Definition Records 117

Window Reference Records 117

Window Size and Location 118

Cursor Position 119

Error Messages 119

Subfiles 120

DDS Help Records 120

Defining Window Borders 120

Border Defaults 121

Multiple Border Definitions 121

UIM Help Window Borders 122

Defining a Window Title 122

DDS for a Window Title-Example 123

Reading Data from Windows 123

Changing Window Borders and Contents 124

Moving and Duplicating Windows 124

Making Two Windows Seem Active at Once . . . 124

Making One Window in a Series Stand Out . . . 125

Removing Windows 125

Removing All Windows 125

Removing More Recent Windows 126

Improving Application Performance 126

System Save and Restore Operations 126

Response Time 126

Bypassing System Save and Restore Operations 126

USRRSTDSP Keyword Processing and

Interactions 127

Programming Examples 128

Using Basic Window Functions 128

DDS Full-Screen Display and Window

Definitions 128

RPG Display Program 130

Step 1: Display Initial Display 132

Step 2: Display Window 1 132

Step 3: Display Window 2 132

Step 4: Restore Window 1 133

Step 5: Display Initial Display 133

Defining Windows in a Separate Display File 134

DDS Full-Screen Display and Window

Definitions 134

RPG Program Source 134

RPG Program Source for WINPGM 135

Step 1: Display Initial Display 135

Step 2: Display a Window 136

10 Application Display Programming V6R1

Step 3: Return to the Initial Display 136

Chapter 6. Creating a Graphical Look for

Displays 139

Factors Affecting the Graphical Look 139

Hardware Configuration 139

Enhanced Display Parameter 141

DDS Keywords 142

Creating Menu Bars 144

Defining the Menu-Bar Choices 144

Suppressing the Menu-Bar Separator 145

Defining the Menu-Bar Separator 145

Selection Fields-Overview 146

DDS for Selection Fields-Example 148

Creating a Vertical Single-Choice Selection Field 148

Creating a Vertical Multiple-Choice Selection

Field 149

Creating a Horizontal Selection Field 149

Cursor Movement in a Vertical Selection Field 150

Cursor Movement in a Horizontal Selection

Field 150

Controlling the Selection Indicators in a

Selection Field 151

Creating Pull-Down Menus Using Single-Choice

Selection Fields 152

Controlling the Selection Indicators in a

Pull-Down Menu 154

Defining Accelerator Keys 155

Defining a Menu-Bar Switch Key 156

Defining a Cancel Key 156

Limiting Function When Cursor is Outside a

Pull-Down Menu 157

Selection Lists-Overview 157

DDS for Selection Lists-Example 159

Creating Selection Lists 159

Controlling the Selection Indicators in a

Selection List 160

Scroll Bars-Overview 162

Creating a Scroll Bar 163

DDS for Scroll Bars-Example 164

Scroll Bar Operation 165

Push Buttons-Overview 165

DDS for Push Buttons-Example 166

Creating Push Buttons 166

Controlling the Availability of Choices 167

Auto-Selection in Single-Choice Selection Fields 168

Auto-Enter in Single-Choice Selection Fields . . . 168

Defining Mnemonics 169

Defining Choice Colors and Attributes 170

Continued-Entry Fields-Overview 173

Specifying Word Wrap on Continued-Entry

Fields 173

DBCS Considerations with Continued-Entry

Fields 173

How DBCS Data is Returned for

Continued-Entry Fields 174

Keyboard Functions with Continued-Entry

Fields 174

Character data 174

Field Mark 175

Automatic Shape Determination (ASD)

Processing 175

Delete 175

Erase EOF 176

Erase Input 176

Reverse 176

Close 176

Field Exit 176

Field Plus 176

Field Minus 176

Dup 176

Kanji 177

Character Backspace 177

Character Advance 177

New Line 177

Field Advance 178

Field Backspace 178

Forward Field-Exit Processing 178

Backward Field-Exit Processing 178

How the Menu Bar Interacts with the Application 178

Defining the MNUBARDSP Keyword on the

Application Record 179

Defining the MNUBARDSP Keyword on the

Menu-Bar Record 180

Receiving Input from the Pull-Down Menus . . 181

Receiving Input from Pull-Down Menus

Using the Pull-Down Input Parameter . . . 181

Removing a Pull-Down Menu after Receiving

Input 183

Updating a Pull-Down Menu before Displaying 183

Defining Application Help 184

Defining Choice-Level Help 184

Defining Help for a Field 186

Key Interaction for Menu Bars and Pull-Down

Menus 187

Cursor Movement 188

Pressing the Tab Key 188

Pressing the Cursor Keys 189

Programming Examples 189

Using the MNUBARDSP Keyword on the

Application Record 189

Description 191

Using the MNUBARDSP Keyword on the

Menu-Bar Record 192

Description 193

How the Displays Look 193

Simple Hotspots 194

Command Key Emulation 195

Page Up and Page Down Key Emulation . . . 195

Programmable Mouse Buttons-Overview 195

Pointer Device Events 196

AID Codes to be Returned 196

Programmable Mouse Buttons-Benefits 197

Programmable Mouse Buttons Operation . . . 197

Programmable Mouse Buttons-NWS

Considerations 198

Programmable Mouse Buttons-Event Processing

States 198

Programmable Mouse Buttons-Event Processing

Priority 199

Part 2. Programming Application Displays Using Display Files 11

Unshifted Left Button Pressed Event

Processing 199

Unshifted Left Button Released Event

Processing 201

Unshifted Left Button Double Click Event

Processing 201

Shifted Left Button Pressed Event Processing 201

Shifted Left Button Released Event

Processing 202

Shifted Right Button Pressed Event

Processing 203

Any Other Pointer Device Event Processing 204

Grid Line Structures-Overview 204

DDS for Grid Line Structures-Example 204

Grid Line Structures and Windows 205

Hardware Requirements for Grid Line

Structures 206

Inserting HTML Tags 206

Resolving HTML Field Overlap 207

Programming Examples 208

Chapter 7. Overriding Display Files and Display

File Attributes 211

Determining Whether or Not to Use Overrides . . 211

Overriding File Attributes in HLL Programs . . . 211

Example 211

Overriding File Names in HLL Programs 212

Example 212

Overriding Both File Names and Attributes in HLL

Programs 213

Example 213

Applying Overrides When Compiling a Program 214

Example 214

Deleting Overrides 215

Displaying Overrides 215

Using File Redirection to Override File Names and

Libraries or File Types 215

Overriding Files with the Same File Types . . . 215

Overriding Files with Different File Types . . . 216

Recognizing Commands That Ignore or Restrict

Overrides 218

Chapter 8. Handling Messages and Errors for

Display Files 221

Creating and Displaying Your Own Messages . . 221

Displaying a Message on the Message Line . . 222

Displaying a Message on the Message Line

When a Subfile Control Record is Written . . . 222

Displaying a Message on the Message Line

Using a Message Field 222

Priorities for Displaying Messages on a Message

Line 222

Displaying Messages in a Field on the Display 223

Displaying Messages on a Program Message

Queue 223

Displaying Error Messages through a Subfile 223

Sounding an Alarm for Messages 226

Automatically Handling Permanent I/O Errors

on Display Stations 226

Analyzing Error Messages Sent from the System 227

Understanding Messages and Message Monitors 227

Understanding Major/Minor Return Codes . . 228

Recovering from Errors 229

Normal Completion 229

Completion with Exceptions 229

Permanent System or File Error 230

Permanent Device or Session Error on I/O

Operation 230

Device or Session Error on Open or Acquire

Operation 231

Recoverable Device or Session Errors on I/O

Operation 231

Chapter 9. Creating and Accessing Menus

Using Display Files 233

Running System and User-Defined Menus 233

Returning to a Menu after Running the GO

command 233

Determining the Previous Menu 233

Using the Cancel and Exit Keys on Menus . . 233

Choosing the Menu That Is Shown at Sign-On

Time 235

Defining Your Own Display File Menus 235

Understanding DDS and Display File

Considerations for Menus 236

Describing Menu Actions in a Message File . . 237

Naming Help Formats for Menus 237

Building a Display File Menu 238

Describing the Menu and Menu Help

Information 239

Creating the Display File 240

Creating the Message File 240

Adding Messages to the Message File . . . 240

Creating the Menu Object 240

Running the Menu 241

Defining Your Own Program Menus 241

Passing Parameters for Program Menus . . . 241

Building a Program Menu 241

Describing the Menu 242

Creating the Display File 242

Entering the Source and Creating a CL

Program 242

Creating the Menu 243

Running the Menu 243

Exiting from a Program Menu without

Returning to the Previous Menu 244

Program 1 244

Program 2 244

Avoiding Menu Name Conflict 245

Naming Your Menus 245

Placing Your Menu in a Higher Library in the

Library List 245

Specifying the Library That Contains the Menu 245

Using the Generic Menu Specification 246

Changing the Command Default after

Duplicating a Command 246

Displaying Menu Attributes 246

Changing Menu Attributes 246

Deleting Menus 246

Chapter 10. Using User-Defined Data Streams 247

Understanding Display Station Differences . . . 247

12 Application Display Programming V6R1

Understanding User-Defined Data Stream

Limitations 248

Chapter 11. Passing Data between Programs 251

Passing Data in the Same Routing Step in a Job 251

Passing Data between Routing Steps in a Job . . . 252

Chapter 12. Waiting for Input from a Display

File, an ICF File, and a Data Queue 255

Chapter 13. Using Alternative Character Sets

and Code Pages 257

System Has Characters Not Normally Displayed

on the Device 257

Device Passes Characters Not Displayed on the

System 258

Specifying Character Translation for Fields . . . 258

Determining the Character Identifier (CHRID)

Value for Your Display 260

Chapter 14. Improving System Performance

with Displays 263

Deferring the Write Operation for a Display File 263

Designating the Primary Screen Size for a Display

File 263

Writing Only One Page of Subfile Records at a

Time 263

Sharing an Open Data Path (ODP) for the Same

Job 264

Sending Records with Input Fields to the Display

in Order 264

Overlapping and Not Deleting Repeatedly Sent

Records 264

Restoring the Display 264

Defining Command Attention Keys Rather Than

Command Function Keys 265

Using the Invite Operation 265

Using Windows 265

Part 2. Programming Application Displays Using Display Files 13

14 Application Display Programming V6R1

Chapter 2. Defining Your Display in a Display File

A display file defines the format of the information to be presented on a display station, and how that

information is processed by the system on its way to and from the display station. Data description

specifications (DDS) describe the data referred to by a display file.

This chapter tells you about display files, including how to create them and how to provide DDS source

for them to describe your display.

Establishing a Display File

A display file is an object on the system. An object is a named storage space that consists of a set of

characteristics that describe itself and, in the case of a display file, the data. Like other objects on the

system, display files have the following characteristics:

v A display file is named and placed in a library when it is created. The file name and library name

allow you to refer to the display file in your applications.

v Once a display file is created, it can be changed, secured, saved, restored, or deleted.

Before an application program can work with a display station, a display file must be opened to allow

data to flow between the program and the display station.

 A device description, which is a system object that describes the display station to the system, must also

exist for the display station. A device description contains information such as device address, device

type, model number, and features. Device descriptions are usually created by system personnel or, for

locally attached devices, can be created during the automatic configuration of the system.

A program may work with more than one display station at a time by doing one of the following:

v Opening more than one display file

v Opening a display file that allows more than one display station to be attached to an open file

Since a display file does not have a set of data uniquely associated with it, the relationship between the

data and the display file is established when the display file is opened and ends when the display file is

closed.

Application
Program Display Station

Display
File Data

Device
Description

RV2W045-1

© Copyright IBM Corp. 1997, 2008 15

Determining File Descriptions

The file description, which is created at the same time the display file is created, describes the

characteristics of the display file and determines how the display file does the following:

v Controls the display station

v Formats output data from the program for presentation at the display station

v Formats input data from the display station for presentation to the program

A file description determines how a program is able to use the file. If a program attempts to perform an

operation that is inconsistent with the display file description, the system does not allow the operation.

The file description is created and deleted at the same time as the display file it describes. Some parts of

a file description may be changed, either permanently with the Change Display File (CHGDSPF)

command or temporarily with the Override with Display File (OVRDSPF) command.

A file description describes data at three different levels:

v Field level

v Record level

v File level

The following sections describe these levels.

Field-Level Descriptions

A field is the smallest unit of data that is recognized and handled by the data management support of

the system. A field-level description allows you to give the system detailed characteristics of a field, such

as:

v Where on the screen the field is to appear

v What type of data is valid for the field

v Whether the field should be highlighted in some way

v How it will be presented from the program to the system on output and from the system to the

program on input.

v Where each field is relative to the start of a record

v What the characteristics of each field will be while in the system

v Where the data for each field should be acquired from for output

v Where and how input from the display station should be placed so the program can use it

v Whether the field is an input-capable field or output-capable field only

Only field-level descriptions can determine that valid data is specified for individual fields on a display.

Record-Level Descriptions

A record is an ordered set of one or more fields. A record-level description allows you to tell the system

what a particular record looks like, or its record format.

A record-level description is given in one of two ways:

v If field-level descriptions are also used, you identify what fields make up the record format and the order

of these fields within the record format. The system can then perform separate operations on each field

described with a field-level description in the record-level description. For example, one field can be

highlighted while another is not.

v If field-level descriptions are not used, the record format is given by specifying the length of the record.

The system handles the entire record as a unit and cannot perform operations on one part of the record

one way and another part a different way.

16 Application Display Programming V6R1

Since records are used to transfer data between the system and the application program, a record-level

description is required for display files.

File-Level Descriptions

A file is an organized set of zero or more records (a file with zero records is empty). A file-level

description is a description that applies to the file as a whole. For a display file, you can specify the

following in the file-level description:

v What record formats are valid for the display file

v What display station should be usable with the display file

v What graphic character set is to be assumed for the data that will be entered through the display file

Deciding Whether to Describe Data Inside or Outside Your Program

When the detailed description of the display file and the data it refers to is contained in a display file

rather than imbedded in a program, the data is called externally described data. When the data is

described within the source program, the data is called program described data.

Externally Described Data

Externally described data exists independently of any program that uses the file. Using externally

described data, you can produce a detailed and standard description of both the display file and any data

that can be processed through the display file.

To use externally described data, you need to declare that the display file is to be used as an externally

described file. The language compiler or interpreter extracts the file description from the display and then

incorporates it into the program.

There are several advantages to using externally described data:

v Increased programmer productivity. The language automatically describes the record layouts for you

without additional coding. You need to describe records and fields only once (when the file is created).

You can then refer to these fields within the program.

v Ease of file and program maintenance. When fields are added, deleted, or changed, it can be done in one

place instead of maintaining the record layout in each program that uses the file.

v Increased data integrity. Since the fields and records are described in one central location, there is less

chance of programming errors when describing the data in the file to the program. All application

programs using the file will have the same view of the data. Moreover, the system view of the data

becomes the same as the application program view.

v Level checking provided. Level checking is an automatic method used when the program is run that

determines if the file description has changed since the program was last compiled. Depending on the

type of change, the program may only need to be recompiled without modification. This allows better

control over program maintenance. There is more information on the level-checking function in

“Detecting File Description Changes” on page 20.

Program-Described Data

You are not required to use external descriptions to describe your displays in your program. If you do

not use externally described data, you must declare variables in your source program that define to the

compiler or interpreter what the data looks like.

When program-described data is used, the program and the system may not have the same view of the

data:

v If the file does not have any field-level descriptions, the system must operate at the record level. The

only concern in this case is that the record length the program is using is the same as what the system

is using. It need not be, but the system always operates with the record length it has. If the record

length that the system is using differs from the record length the program is using, the system

truncates or pads as necessary.

Chapter 2. Defining Your Display in a Display File 17

v If the file has field-level descriptions but the program does not use them, the system uses the

field-level descriptions even though the program does not. The system expects the program to present

data according to the file description and, conversely, provides data to the program according to the

description.

More information about program-described data is found in “Using Program-Described Data” on page

38.

Creating a Display File and Description

Display files are created using the Create Display File (CRTDSPF) command.

You can define the DDS for your display file in one of two ways:

v Using the screen design aid (SDA) utility

v Entering your own DDS source

You can specify certain attributes about your display file. Information about these attributes is found in

the following:

v “Deferring the Write Operation Until a Read Request is Made” on page 63

v “Saving Previously Displayed Information” on page 77

v CL topic in the i5/OS Information Center

v Security reference

The following illustration compares the two ways to create display files:

18 Application Display Programming V6R1

You may also combine the two methods, creating an initial display using SDA and then tailoring the

generated DDS.

Changing the File Description

After a display file has been created, the file description can be changed:

v To change the file description that was originally specified on the CRTDSPF command, use the Change

Display File (CHGDSPF) command.

v To change the file-level, record-level, or field-level information contained in the DDS source, you must

first update the DDS source and then create the display file again using the CRTDSPF command. A

new display file can be created without deleting the existing display file by specifying REPLACE(YES)

on the CRTDSPF command.

v To change both the CL command file-level descriptions and the DDS source, specify the new values

when you create the display file again.

Changes to display file descriptions are applied according to the following:

v If the file-level description was changed with a CL command, any program that uses the file will

automatically use those new descriptions.

v If the DDS descriptions were changed and the program uses the file as a program-described file, the

system uses the new file-level description. However, if the DDS descriptions were changed and the

Go To Another List

Select one of the following:

1. Work with documents in folder
2. Work with documents to be printed
3. Work with folders
4. Work with nontext document data
5. Work with text profiles

F3=Exit F12=Cancel

-

Selection

Go To Another List

Select one of the following:

1. Work with documents in folder
2. Work with documents to be printed
3. Work with folders
4. Work with nontext document data
5. Work with text profiles

F3=Exit F12=Cancel

-

Selection

Two Ways to Define Display Files

CRTDSPF command compiles DDS and creates
display file object.

Enter your own DDS and then use the
Create Display File (CRTDSPF) Command ...

Design your display as it will look
using the screen design aid (SDA) utility ...

SDA generates DDS and runs the CRTDSPF command.

RV2W000-5

Chapter 2. Defining Your Display in a Display File 19

program uses the file as an externally described file, then the record-level and field-level descriptions

used when the program was compiled may not match the changed file. If the system detects a

mismatch when the program opens the file, an error occurs. See “Detecting File Description Changes.”

You may also temporarily change a file-level description when a display file is opened. More information

about these temporary changes is found in Chapter 7, “Overriding Display Files and Display File

Attributes,” on page 211.

Detecting File Description Changes

When a program that uses externally described files is compiled, the high-level language compiler

extracts the record-level and field-level descriptions for the files referred to in the program and makes

those descriptions part of the compiled program. When you run the program, you can verify that the

descriptions with which the program was compiled are the current descriptions.

The system assigns a unique level identifier for each record format when the file it is associated with is

created. The system uses the following information to determine the level identifier:

v Record format name

v Field name

v Total length of the record format

v Number of fields in the record format

v Field attributes (for example, length and decimal positions)

v Order of the fields in the record format

Display files may also use the number of and order of special fields called indicators to determine the

level identifier.

If you change the DDS for a record format and change any of the items in the preceding list, the level

identifier changes.

To check for changes in the level identifiers when you run your program, specify *YES for the LVLCHK

parameter on the CRTDSPF or CHGDSPF command. When the display file is opened, the level identifiers

of the display file and the file description that is part of the compiled program are compared

format-by-format. If the identifiers differ or if any of the formats specified in the program do not exist in

the file, a message is sent to the program to identify the condition.

If the identifiers differ, either the formats have been changed or your program does not use the changed

formats. If the changed format does affect your program, you may decide to do the following:

v Compile the program again so that the changes are included

v Determine if the changes affect your program before deciding what action to take.

To check the changes to the record format, run one of the following commands:

v Display File Field Description (DSPFFD) command to display the record-level and field-level

descriptions

v Start Source Entry Utility (STRSEU) command to display the source file containing the DDS for the file

v Display File Description (DSPFD) or the DSPFFD command to display the format level identifier

defined in the file

v Display Program References (DSPPGMREF) command to display the format level identifier that was

used when the program was created

20 Application Display Programming V6R1

Defining Display Fields and Functions in a Record Format

A record format in a display file describes both the format of the record as it is used in the application

program and the format of the record when it is displayed (see Figure 2 on page 22).

A record format contains field descriptions, which are defined using data description specifications

(DDS). For each field in a record format, you describe the following:

v Location of the field on the display

v Length of the field

v Type of data contained in the field (character, zoned decimal, or floating point)

v Field type (output, input, or output/input).

Information about DDS keywords

This section describes how DDS keywords are used to describe the information on your display. For

more information about specific DDS keywords, see the DDS topic in the i5/OS Information Center.

DDS for Display File

The following source shows the DDS for a sample display file:

 Table 4 shows the column positions and descriptions for the DDS specifications.

 Table 4. Column positions for sample DDS

Column Definition Starting Position

17 Type of name 17

19 - 28 Field name 19

30 - 34 Length 34

36 - 37 Decimal positions 37

39 - 41 Line location 41

42 - 44 Position location 44

45 - 80 Function 45

Record Format Used by the Program

The program passes the fields in the record in the same order that you described them in the DDS

source.

|...+....1....+....2....+....3....+....:833.+....5....+....6....+....7...

 A R RECORD

 A 3 2’Customer Number:’

 A CUST 5 0 3 20

 A 3 27’Customer Name:’

 A NAME 20 3 44

 A 4 27’Address:’

 A ADDR 20 4 44

 A CITY 20 5 44

 A STATE 2 5 66

 A ZIP 5 0 5 70

Figure 1. Sample DDS Source for a Display File

Chapter 2. Defining Your Display in a Display File 21

Record Format on the Display

The fields are displayed according to the display positions you assigned them in the DDS source.

Understanding the Field Attribute Characters

Each field displayed has a beginning attribute character and an ending attribute character associated

with it that define the displayed field. The beginning character precedes the first character of a field and

is displayed as a blank. The ending attribute character follows the last character of a field and is also

displayed as a blank. For example, if you specify a field for positions 2 through 8, the beginning attribute

character is in position 1 and the ending attribute character is in position 9. These characters are not

included in the field length you specify in DDS. A beginning attribute character can overlap an ending

attribute character; that is, they can occupy the same position on the display. However, nothing else can

overlap the beginning attribute character. Therefore, when you design a display, you must allow one

space for the beginning attribute character of each field. You can use the blank attribute character to

space between fields when they are displayed.

If field-level descriptions are not used, the entire record is treated as a field with a beginning attribute

character and an ending attribute character.

When a record is displayed so that the last field in the record ends in the last position on the line, the

ending attribute character for that field is in the first position of the next line. The beginning attribute

character of the first field in the next record can be superimposed on the ending attribute character. For

example, if the ending attribute character for the last field in record 1 is in position 1 of line 5, the

beginning attribute character for record 2 can also be in position 1 of line 5. In this case, the first record is

not considered to be overlapped. However, if the first field in a record begins in position 1, which means

that the beginning attribute character is in the last position of the preceding line, the previous record is

overlapped and is cleared from the display.

To see the locations of fields in the input records and output records used by the program, see the

printed DDS output produced when you created your display file using the CRTDSPF command.

Understanding How Record Format Fields Can Be Used

The fields you describe in the record format can be used in the following ways:

Note: To see the location of positions on a DDS form, see Table 4 on page 21.

CUST NAME ADDR CITY STATE ZIP

RV2W028-1

1 5 6 25 26 45 46 65 66 67 68 72

Customer Number: 41394 Customer Name: Sorenson and Walton
Address: 500 5th Avenue

New York NY 55555

CUST NAME

ADDR CITY STATE ZIP

RSLH714-0

Figure 2. Record Formats in the Program and on the Display

22 Application Display Programming V6R1

v Input fields are fields that are passed from the display station to the program when the program reads

a record. Input fields can be initialized with a default value (specified in the record format for the

display file). If the user does not change the field and the field is selected for input, the default value is

passed to the program. Input fields that are not initialized are displayed as blanks into which the user

can enter data. By default, input fields are underlined on the display.

Note: Trailing blanks on input fields are replaced by null and not blank characters; therefore, the Insert

key can be used to insert characters in all input fields that end in blanks.

v Output fields are fields that are passed from the program to the display station when the program

writes a record to a display. Output fields contain data provided by the program, not by the user. To

specify an initial value for a named output field, see “Specifying Default Values for Fields” on page 64.

In the case of subfiles, which are special records used to display lists of information, output fields are

returned to the program as if they were output/input fields.

v Output/input fields are fields that are passed from the program when the program writes a record to a

display and are passed to the program when the program reads a record from the display and the field

is selected for input. By default, these fields are underlined on the display. Output/input fields are

usually used when the program displays data that can be changed by a user. To specify an initial value

for a named output field, see “Specifying Default Values for Fields” on page 64.

v Hidden fields are fields that are passed from and to the program but are not sent to the display.

Hidden fields are useful in applications involving subfiles. For example, a subfile record can contain

record key information in a hidden field. The hidden field cannot be seen by the user, but is returned

to the program with the subfile record so that the program can return the record to the database.

v Constant fields are fields that are passed to the display but are unknown to the program. These fields

are unnamed and have their constant values defined in the DDS for the file. DATE, TIME, and

MSGCON are examples of keywords that are allowed only on constant fields and whose constant

values are determined during program run time (DATE and TIME) or DDS compile time (MSGCON).

v Message lines are output fields that are treated as messages.

v Program-to-system fields are output-only fields that are named, numeric or alphanumeric. They are

used to communicate between an application program and the system. Program-to-system fields do not

appear on the display. That is, your program can place data in these fields and the system will use that

data to control its processing on an output operation, but the user cannot see the contents of these

fields.

A field is input-capable if it is an input field or an output/input field. Each input-capable field has a

special attribute called a modified data tag (MDT). The MDT is set on by the display station when any

data is typed into the field. It can also be set on and cleared by the application program.

The maximum number of fields that you can specify for each record format is 32 763. (See

“Understanding the Limitations on the Number of Input-Capable Fields” on page 74 for information on

the number of input-capable fields that can be specified.) The maximum combined length for all fields

and indicators in a record format is 32 763.

The following display shows output fields and input fields displayed in response to a request (in the

form of entering a customer number in an input field) from a user.

Chapter 2. Defining Your Display in a Display File 23

Customer number: 41394

Order number: 41882

Order date: 11/01/81

Order amount: $580.00

A/R balance: $580.00

Enter next customer number: ______

The prompts, Customer number:, Order number:, Order date:, Order amount:, A/R balance:, and Enter next

customer number: are constants. The data associated with these fields (41394, 41882, 11/01/81, $580.00, and

$580.00) is displayed in output fields. The data is passed from the application program to the system, and

the system displays it. The field following the constant Enter next customer number: is an input field. The

user must enter data into this field (the cursor is positioned at the beginning of the input field). Input

fields are underlined by default. Editing of the field is normally defined within DDS.

You must specify the location for each field except when the field is a hidden field, a message line, or a

program-to-system field, or when the field is in a subfile message record format. You cannot specify line

1, position 1 for location, except when you define a record that can start in any line.

The maximum length of a character field or numeric (zoned decimal) field is the number of positions

remaining (relative to the start location of the field) on the display minus 1. Another restriction of the

numeric (zoned decimal) field is that it can be no longer than 31, even if more than 31 positions are

remaining on the display.

Specifications for the fields you describe can be retrieved from a previously described field. The

previously described field can be either in a database file or already defined in the DDS source for the

display file. When you use field-level descriptions from a database file, binary and packed decimal fields

are changed to zoned decimal fields. These fields that you use to define other fields are called reference

fields.

You can define two fields to occupy the same positions on the display, and use option indicators to select

which of the overlapping fields is to be displayed. If more than one overlapping field is selected on the

same output operation, only the first field selected is displayed.

Defining Function Keys

To write an application using a display station, you have to control both the functions of the keys at the

keyboard, and the contents of the display.

24 Application Display Programming V6R1

The Enter key can always be used by the user. So that the user can use the other function keys, you must

specify the following DDS keywords to enable the corresponding function key:

v CAnn, where nn is 1-24

v CFnn, where nn is 1-24

v CLEAR

v HELP (not required if you only need the Help key to retrieve the message help on the display)

v HOME

v PRINT

v ROLLDOWN or PAGEUP (not required to be able to roll a subfile when the subfile page is not equal

to the subfile size)

v ROLLUP or PAGEDOWN (not required to be able to roll a subfile when the subfile page is not equal

to the subfile size)

v MOUBTN (Programmable Mouse Button) allows attention identifiers to be associated with various

pointer device events.

v PSHBTNFLD (Push Button Field) allows an attention ID to be associated with a push button.

To tell which function key is pressed when you perform the read operation, you need to define your

function keys using one of the following:

v Define a response indicator for the function key. A response indicator is an indicator that returns

information back to an application. There are 99 response indicators available to you.

Note: Response indicators are used for more than function keys. For example, you can use them to tell

when the data in a field on the display has changed.

v Examine the input/output feedback area. The input/output feedback area is status information

provided by the system about the operations performed on an opened file. To find out how to get

information from the input/output feedback area, see the manual for the programming language you

are using. See Appendix C, “Feedback Area Layouts for Display Files,” on page 653 for a description of

the information available from the feedback areas.

Defining Command Attention (CAnn) and Command Function (CFnn)

Keys

The command function (CFnn) keys and command attention (CAnn) keys are numbered 1 through 24

and are the same physical set of keys on the keyboard. These keyboard keys are usually labeled Cmdnn

or PFnn or Fnn, where nn is the associated key number. They can be used to set a response indicator or

to perform a certain function.

The different command keys do the following:

Display
Contents

Keyboard
Functions

RV2W001-2

Chapter 2. Defining Your Display in a Display File 25

Command function

A record containing changed fields is returned to the program.

Command attention

A record is returned to the program but the record does not contain the data entered by

the user and no field validation is performed.

If a key is specified as a CFnn key in a file, it cannot also be specified as a CAnn key in the file. Likewise,

if it is specified as a CAnn key, it cannot also be a CFnn key. For example, if function key 01 is specified

as a CAnn key (CA01), you cannot specify CF01 anywhere in the same file.

If a response indicator is specified for a CFnn key and the key is pressed, the response indicator is set on

and passed to the program with the input data. If a response indicator is not specified for a CFnn key,

only the input data is passed.

Note: The input/output feedback area contains the 1-character attention identifier (AID), which also

identifies the key pressed. See Appendix C, “Feedback Area Layouts for Display Files,” on page

653 for a description of the input/output feedback area.

If a response indicator is specified for a CAnn key and the key is pressed, the response indicator is set on

and passed to the program. Fields sent to the display and hidden fields are returned to the program. If a

CFnn key or the Enter key was previously pressed, the input-only field is returned as previously typed

data. If data was never entered into an input-only field, the field is returned as blanks (character field) or

zeros (numeric field). Fields changed by the user since the last time a CFnn key or Enter key was pressed

are not returned.

The use of CAnn keys can cause the input buffer of the program to contain user-entered data that does

not meet the validation specified in the display file. For example, the user enters data and presses a CFnn

key or the Enter key, and the data is validated as defined in your DDS. Input data is processed one field

at a time with data manipulation taking place before the validity checking. If a validity-checking error

occurs, a message is selected and all the other input data is processed. After all input data is processed

and one or more errors have occurred, a message is sent to the user. Then, if the user presses a valid

CAnn key, no changed data is sent from the display. The data is moved from the input buffer save area

to the input buffer. The input buffer now contains the data that is in error. If your program is not going

to process this data when the CAnn key is pressed, you do not have a problem. If this is a problem,

avoid using CAnn keys; only use CFnn keys so that data that is not valid can be detected.

If you want to use CAnn keys, you should not specify the following validity-checking DDS keywords:

 CHECK(M10)

 CHECK(M11)

 CHECK(VN)

 CHECK(VNE)

 CHKMSGID

 COMP/CMP

 RANGE

 VALUES

The Print, Help, Clear, and Home keys operate in the same manner as the CAnn keys. The Roll Up, Roll

Down, Page Up, and Page Down keys operate in the same manner as CFnn keys.

Specifying Alternative Keys

You can also define command attention or command function keys to perform the functions of the Help,

Page Up (or Roll Down) and Page Down (or Roll Up) keys. The function key specified on the keyword

identifies the alternative key to be used.

26 Application Display Programming V6R1

The DDS keywords are:

v ALTHELP: Indicates that the help function will be started when either the Help key or the key

specified on the ALTHELP keyword is pressed. If the ALTHELP keyword is specified but an alternative

key is not specified, the default is CA01. Note that the Help key is an attention key, not a function key,

because it does not return input.

v ALTPAGEUP and ALTPAGEDWN: Indicate that the paging functions will be started when the page

keys or the keys specified on the keywords are pressed. If alternative keys are not specified on the

ALTPAGEUP or ALTPAGEDWN keywords, the defaults are CF07 and CF08, respectively. Note that the

page keys are function keys, because they return input.

The alternative keys specified on the ALTHELP, ALTPAGEUP, and ALTPAGEDWN keywords provide the

same function as the actual keys. For example, if pressing the Help key starts the help function, then

pressing the alternative key defined by the ALTHELP keyword will also start the help function. Likewise,

if pressing the Page Up or Page Down key returns control to the application program, then pressing the

alternative key will also return control to the application program. Both of these examples appear to the

program as if the actual key was pressed.

The user profile option for paging (USROPT(*ROLLKEY)) applies to the PAGEUP, PAGEDOWN,

ALTPAGEUP, ALTPAGEDWN, ROLLUP, and ROLLDOWN keywords.

The alternative help key function does not work when the keyboard is locked. For example, if you type

information into a field that is not input-capable, a controller-detected error occurs and flashing numbers

appear. The Help key can be used to get more information about the error. The function key specified as

the alternative help key will not be valid until the Reset key is pressed, and then the help information

will no longer be available.

Passing Information via Indicators

Indicators are one-character fields that exist either in the input records and output records used by the

program or in a special indicator area. An indicator is on if it has the value 1 and off if it has the value 0.

You can use indicators to pass information from a program to the system or from the system to a

program. You specify how indicators are to be used through the DDS for the display file.

There are two types of indicators for display files:

Option indicators:

Pass information from an application program to the system. These typically are used to

control the processing of a particular record format by the system.

Response indicators:

Pass information from the system to an application program when an input request

completes. Response indicators can inform the program which function keys were

pressed by the user or whether data was changed by the user.

Both option and response indicators can be specified at the file level, record format level, and field level.

Indicators specified at the file level apply to all record formats within the file.

Removing Option and Response Indicators from the Record Area

You can use the Indicator Area (INDARA) keyword to separate the option and response indicators from

the input and output records used by the program. If you use the INDARA keyword, the indicators are

placed in a separate 99-character area; see your appropriate high-level language manual for information

on how this 99-character area is defined.

If you use the same indicator number as both a response indicator and as an option indicator, you can

use the status of the response indicator to set the option indicator for a subsequent output operation. For

example, indicator 15 is used as both a response indicator and an option indicator. If the response

Chapter 2. Defining Your Display in a Display File 27

indicator is on when an input operation is performed on the record format, option indicator 15 is set on

and will be on when an output operation is performed for that record format.

The maximum number of record formats that you can define for a display file is 1024. If you do not use

the INDARA keyword, the maximum number of fields that you can specify depends on the number of

indicators (1 character each) you use and the length of each field you describe. The total combined length

of all fields and indicators in a record format cannot exceed 32 763 characters. If you use the INDARA

keyword to specify a separate indicator area, the maximum number of fields that you can specify

depends only on the length of each field. The total number of all fields cannot exceed 32 763.

Enabling Different Response Indicators Simultaneously

It is possible to have different response indicators for the ROLLUP/ROLLDOWN keywords on record

formats displayed at the same time. For example, record A has specified a roll-up indicator of 52 and

record B has specified a roll-up indicator of 25 and both records are displayed. When a read operation is

requested to record A in your program, the operator presses the Roll Up key which returns control to

your program. Record A is passed to your program with response indicator 52 set on; response indicator

25 is not set. Your program can then do a read operation to record B. When record B is passed to your

program, response indicator 25 is set on; response indicator 52 is not set. Only the response indicator

specified on the record format for which the read operation is done is set. The record format in which the

cursor was located when the Roll Up key was pressed does not affect the setting of the response indicator

associated with the ROLL keyword.

Setting an Indicator Off

An indicator specified on the SETOF or SETOFF keyword becomes a response indicator that is set off and

returned to the program. The indicator is not set off until an input operation is performed. If the same

indicator is specified elsewhere in the record format as a response indicator, the indicator is returned to

the program based on the status of the associated keyword condition. For example, if response indicator

01 is specified both for the SETOF/SETOFF keyword and the CF5 key, indicator 01 is returned in the on

condition when the CF5 key is pressed. If the indicator is specified elsewhere as a response indicator,

there is no need to use the SETOF/SETOFF keyword.

Inserting Constant Field Text from a Message Description

You can specify that the text for constant fields is contained in a message description using the Message

Constant (MSGCON) keyword.

If the message description used for the constant text is shorter than the field on the display, the

remaining portion of the field is padded with blanks. If the message description is longer than the field,

the message description is truncated.

If the messages description does not exist when the DDS is compiled, the file is not created. If you

change the message description, you will have to create the file again if you want the display file to

contain the updated messages.

Allowing for Right-to-Left Cursor Movement

The cursor can be made to move from right to left on the display between fields and in input fields. Two

parameters for the DDS CHECK keyword can be used to do this:

v CHECK (RL): Moves the cursor from right to left in specified nonnumeric input fields or all

nonnumeric input fields on the display.

v CHECK (RLTB): Moves the cursor from right to left between fields.

When using these parameters, remember the following:

v Modulus check digit verification is supported, but the check digit is still the byte to the extreme right

of the field.

28 Application Display Programming V6R1

v A field for which right-to-left cursor movement is specified can occupy more than one line on the

display. However, the cursor still moves from the top of the display to the bottom.

v You cannot use right-to-left cursor movement with user-defined data streams.

Note: If no cursor positioning is specified in the display file or by the program, the cursor is placed in

the input-capable field to the extreme left of the top line.

Defining Cursor Movement to Input-Capable Positions Only

Use the cursor input only (CSRINPONLY) keyword to restrict cursor movement to input-capable

positions only. This keyword affects only the cursor arrow keys. This function moves the cursor to the

first input-capable position on a display in the direction of the arrow key. The user needs to press the

cursor key only once in the appropriate direction to have the cursor move to the input-capable position.

Specify this keyword at the file or record level.

The input-capable positions to which the cursor can move include the following:

v Input field (except protected fields)

v Selection-field choice (except those on which you cannot place the cursor because of its choice control

(CHCCTL) value)

v Selection-list choice (except those on which you cannot place the cursor because of its choice control

(CHCCTL) value)

v Message line (if a message is displayed and the keyboard is not locked).

v Message subfile defined with the subfile message record (SFLMSGRCD) keyword.

Several DDS keywords (such as DSPATR(PC) and CSRLOC) can be used to position the cursor at any

display position. This is true even if the CSRINPONLY keyword is specified. The first subsequent cursor

movement keystroke will move the cursor to a cursorable location. If no cursorable position exists on the

display, the cursor will be positioned to row 1, column 1. Once the cursor has been moved from this

position, pressing the home key repositions the cursor back to its initial position.

If a window is displayed with no input fields, the cursor is positioned at row 1, column 1 of the window.

If a cursor movement key is pressed, the cursor moves to row 1, column 1 of the full display (outside the

window). If the window is defined with *RSTCSR, command keys are not valid outside the window.

Pressing the home key returns the cursor to the window. Pressing any command key or the Enter key

sounds an alarm and returns the cursor to the window. To avoid this problem, consider specifying an

input inhibited input field in the upper corner of the window or specifying *NORSTCSR on the window

keyword.

Notes:

1. If a message subfile is defined with a SFLPAG keyword greater than 1 and the CSRINPONLY

keyword is in effect, any fields that have been turned to reverse image because of an error, will be

turned to unreverse image if the message subfile is rolled to a partial page of messages.

2. Fields that have been turned to reverse image because of an error are turned to unreverse image

when the following conditions are true:

v A message subfile is defined with a SFLPAG keyword greater than 1

v The CSRINPONLY keyword is in effect

v The message subfile is rolled to a partial page of messages
3. When a record is written with the PUTOVR, ERRMSG, or ERRMSGID keywords in effect, the state of

the CSRINPONLY keyword is not changed. If the CSRINPONLY keyword is in effect prior to the

write operation with the PUTOVR, ERRMSG, or ERRMSGID keywords, the CSRINPONLY remains in

effect. This is true regardless of the optioning of the CSRINPONLY keyword on the record assigned

the PUTOVR, ERRMSG, or ERRMSGID keywords. This is also true regardless of the optioning of the

PUTOVR, ERRMSG, or ERRMSGID keywords on the record assigned the CSRINPONLY keyword.

Chapter 2. Defining Your Display in a Display File 29

4. Writing a record with the PROTECT keyword does not affect the input fields associated with

messages when the CSRINPONLY keyword is in effect. Any messages displayed are not protected.

Therefore, the cursor may still be moved the messages.

5. The CSRINPONLY keyword is valid only for display stations attached to a controller that supports an

enhanced interface for nonprogrammable work stations. It is ignored on display stations attached to

other controllers.

Defining Cursor Progression for Entry Fields

The FLDCSRPRG keyword lets the user specify the next field the cursor should move to when the cursor

leaves a field.

The DDS for the field looks like this:

 The parameter for the FLDCSRPRG keyword is the name of the field the cursor will go to when forward

field-exit processing is performed. When the cursor leaves F1 because of a field exit key, it goes to F3. If

the field named with this keyword is optioned off, cursor progression for this field is ignored.

Note: When the cursor leaves a field using backward field-exit processing, the cursor moves to the first

field on the display that has the exited-field name specified on the FLDCSRPRG keyword. For the

DDS in Figure 3, if backward field-exit processing is used to leave field 2, the cursor moves to field

3.

SFLCSRPRG is the keyword used for subfile cursor progression. The DDS for subfiles looks like this:

 The SFLCSRPRG keyword causes the cursor to move from a field in a subfile record to the same field in

the next displayed subfile record. Without SFLCSRPRG, the cursor moves from a field in a record to the

next field in the same record. When the cursor leaves field S1 of the first record of the subfile, it goes to

S1 of the second record of the subfile. Without the SFLCSRPRG keyword, the cursor goes to field S2 of

the first record. When the cursor leaves S2, it goes to S1 of the next record because S2 does not have the

SFLCSRPRG keyword. This keyword is not allowed with subfiles that use field selection. It cannot be

used with horizontal subfiles. When the cursor is on S1 of the last SFL record displayed, the cursor

moves to the next input field below the last SFL record. If there are no remaining SFL fields, the cursor

moves to the top of the display.

Note: The FLDCSRPRG keyword and the SFLCSRPRG keyword are ignored on displays that are attached

to a controller that does not support an enhanced interface for nonprogrammable work stations.

Defining Attributes for Entry Fields

An entry field’s leading field attribute is changed to a specified attribute when the cursor enters the field.

The DDS for the field looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A F1 10A B 3 4FLDCSRPRG(F3)

 A F2 10A B 13 4FLDCSRPRG(F1)

 A F3 10A B 16 4FLDCSRPRG(F2)

Figure 3. DDS for Field-Level Cursor Progression

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFL01 SFL

 A S1 10A B 5 5SFLCSRPRG

 A S2 10A B 5 25

 A R CTL01 SFLCTL(SFL01)

 A SFLPAG(5) SFLSIZ(20) SFLDSP

Figure 4. DDS for Subfile-Level Cursor Progression

30 Application Display Programming V6R1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A F1 10A B 3 4ENTFLDATR(*CURSOR (*DSPATR CS))

 A F2 10A B 13 4ENTFLDATR(*NOCURSOR (*COLOR RED))

ENTFLDATR tells the system to change the attribute of the field when the cursor enters the field.

*CURSOR and *NOCURSOR are used to specify whether the cursor is visible when it enters the field. If

the *NOCURSOR option is specified, the cursor row and column values in the input-output feedback area

indicate the first position in the field. You can also specify a color or an attribute.

Note: The ENTFLDATR keyword is ignored on displays that are attached to a controller that does not

support an enhanced interface for nonprogrammable work stations.

Protecting Entry Fields Using Edit Masks

The EDTMSK keyword is for fields with EDTCDE or EDTWRD keywords. When the field is displayed,

certain areas of the field will be protected. You define which areas to protect.

The DDS for the field looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A F1 6 0B 3 4EDTWRD(’ / / ’)

 A EDTMSK(’ & & ’)

 A F2 6 0B 4 4EDTCDE(Y)

 A EDTMSK(’ & & ’)

The ampersand (&) represents a protected part of the field. A blank represents an unprotected part of the

field. The length of the edit mask must equal the display length of the field. The number of unprotected

positions must at least equal the program length of the field. You must only protect nonnumeric data

because protected data is not returned if the field is changed. Wherever there is an &,; that part is

protected no matter what data is in the field.

The first field has the slash (/) characters protected in a date. For the second field, the / in the date is

always protected.

Keyboard functions on displays attached to a controller that supports an enhanced interface for

nonprogrammable work stations are the same for edit-mask fields as they are for continued-entry fields.

Note: The EDTMSK keyword is ignored on display stations attached to a controller that does not support

an enhanced interface for nonprogrammable work stations.

Specifying Right-to-Left Display Processing

You can specify that records in a display file be written in the right-to-left direction by using the Display

Right-to-Left (DSPRL) keyword. This keyword is allowed only at the file level.

Figure 5 shows an example of the DDS coding.

 The DDS in Figure 5 produces this output on the display:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A DSPRL

 A R RECORD

 A FLD1 20A 5 5’)Customer Name(:’

Figure 5. Sample DDS for Right-to-Left Display Processing

Chapter 2. Defining Your Display in a Display File 31

:(emaN remotsuC)

Notice that the left and right parentheses in the DDS are reversed; this is so they appear correctly on the

display. All symmetrical characters have to be specified in this way.

If your application program uses one display file with the DSPRL keyword and another display file with

the WINDOW keyword, make sure that the display file with the WINDOW keyword also specifies the

DSPRL keyword. Otherwise, the display assumes the orientation of the display file that has the

WINDOW keyword.

If you specify the DSPRL keyword, the cursor moves from right to left when you enter data. Therefore, it

is not necessary to use the CHECK(RL) keyword. If you specify CHECK(RL) and DSPRL, the

CHECK(RL) keyword is ignored.

The DSPRL keyword causes all records in a display file to be written in the right-to-left direction. You

cannot specify that individual records be written in the left-to-right direction.

If you specify the ERRMSG or the ERRMSGID keywords with the DSPRL keyword, the messages

associated with these keywords display in the left-to-right direction.

Specifying Word Wrap for Fields

Word wrap is the function that automatically moves the last word in a field down to the next line in the

field if the word runs beyond the right margin of the field. To specify the word wrap function for a

named field, use the word wrap (WRDWRAP) keyword. This keyword can be used at the file, record, or

field level. It can only be used with input-only (I) or output/input (B) fields.

Notes:

1. This function is available only for display stations attached to a controller that supports an enhanced

interface for nonprogrammable work stations.

2. The Reverse key and the Close key cannot be used in a word wrap field.

3. When word wrap is used and the keyboard is in insert mode, null characters are not shifted to the

right; they are replaced.

Word wrap is not allowed for these fields:

v DBCS-only fields

v Pure fields

v Either fields (with double byte)

v Open fields with SBCS data

Word wrap is not allowed with the following field types or features:

v Signed numeric

v Numeric only

v Digits only

v Magnetic Stripe Reader (DSPATR(OID))

v Light Pen (DSPATR(SP))

v Right-justify

v Mandatory fill

v Self-check (M10F/M11F)

32 Application Display Programming V6R1

v Dup allowed

v Right-to-left cursor movement (CHECK(RL))

v Right-to-left, top-to-bottom cursor movement (CHECK(RLTB))

If all the data cannot fit within a word wrap field without splitting words, the word wrap function for

that field is ignored. The data is written as if word wrap had not been specified. The subsequent

operation of the field is also as if word wrap were not specified.

Word wrap may be specified on fields that are contained on a single line. In this case, when the keyboard

is in insert mode, null characters are not shifted to the right; they are replaced.

Specifying Word Wrap for Fields—Tips

Some things to consider when using the word wrap function:

v The total length of the input field should allow for character positions at the ends of lines or segments

to be used for padding when a wrap occurs. If a field is too short, errors will occur or word wrap will

be turned off.

v The length of each line or segment should be as large, or larger than the longest word that may be

entered in the field. If a line or segment is too short, errors will occur or the data may be shifted down

to the last line or segment.

v Extra blanks that are inserted to make a wrap occur are removed when data is returned to your

program.

Emphasizing Fields

You can emphasize a field of a record on the display by specifying the following in the DDS for the file:

Note: Any function not supported for your display station is ignored.

 Table 5. DDS for Emphasizing Fields

Type of Emphasizing DDS keyword

Underlining a field (the default for input fields) DSPATR(UL)

Placing vertical separators between the characters in a field DSPATR(CS)

Highlighting a field by displaying it with greater intensity than is normally used on

the display

DSPATR(HI)

Reversing the image of a field from light on dark to dark on light or from dark on

light to light on dark

DSPATR(RI)

Making the data in the field invisible to the display station user DSPATR(ND)

Placing the cursor at a specific field DSPATR(PC)

Blinking a field when it is displayed DSPATR(BL)

Another way of specifying attributes for a field is by using a program-to-system field parameter on the

DSPATR keyword. Your application program uses the program-to-system field to set the display

attributes or protection attribute for the field to which the DSPATR keyword applies.

Figure 6 on page 34 shows an example of the DDS coding for program-to-system fields:

Chapter 2. Defining Your Display in a Display File 33

One program-to-system field may be used for multiple fields within a record. Only one

program-to-system field can be used per field. You cannot specify the following attributes using the

program-to-system field:

MDT Set changed data tag when displayed

OID Operator identification

PC Position cursor

SP Select by light pen

For the valid hexadecimal values that your program can pass to the program-to-system field, see the

DDS topic collection in the i5/OS Information Center.

Adding Color

You can design your displays for use on display stations that show color. The DDS keyword COLOR

allows you to specify the following colors for fields: green, white, red, turquoise, yellow, pink, and blue.

This keyword is ignored if it is selected for a field displayed on a display station that does not support

color.

If the COLOR keyword is not specified in the DDS for the display file but the display station is specified

in the display station description as a color display station, displays that you have designed for display

stations that do not support color can also be used for the color display station. The keywords

DSPATR(UL) and DSPATR(RI), if specified on separate fields, function the same as they do for the 5250

display station. However, the keywords DSPATR(CS), DSPATR(HI), and DSPATR(BL) produce the

following colors on a color display station (the specified display attributes CS, HI, and BL are

suppressed):

 Color Produced on the Color Display

Station when No COLOR Keyword

is Specified

Display Attribute

Selected: DSPATR(CS)

Display Attribute

Selected: DSPATR(HI)

Display Attribute

Selected: DSPATR(BL)

Green (normal)

Turquoise X

White X

Red, no blinking X

Red, blinking X X

Yellow X X

Pink X X

Blue X X X

Editing Output Fields

The system provides editing support that makes fields more readable when they are displayed. With the

system editing support, you can do the following:

v Suppress leading zeros

v Punctuate a field with commas and periods to show decimal column and to group digits by threes

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD

 A FLD1 5A 2 2DSPATR(&PFLD1)

 A FLD2 5A 2 9DSPATR(&PFLD2)

 A PFLD1 1A P

 A PFLD2 1A P

Figure 6. Sample DDS for Program-to-System Fields

34 Application Display Programming V6R1

v Show negative values with a minus sign to the left or right

v Show negative values with the letters CR (credit) to the right

v Show zero values as zeros or blanks

v Show asterisks to the left of significant digits to provide asterisk protection

v Show a currency symbol corresponding to the system value QCURSYM

The system provides this editing support with edit codes and edit words. Edit codes are a defined set of

editing patterns. In addition to those provided by the system, you may also define your own edit codes.

You identify edit codes by name, and the system edits a field according to the pattern defined by the

named edit code. Edit words are edit patterns that you define to produce the desired results. Edit codes

cover most commonly used editing requirements. You need to use the edit word support only for those

editing needs not covered by edit codes.

Edit codes are used as follows:

v If your application is using program-described data, your high-level language may allow you to

identify edit codes or create your own edit words.

v If your application is using externally described data, the edit code (EDTCDE) DDS keyword allows

you to identify an edit code, and the edit word (EDTWRD) DDS keyword allows you to define your

own editing pattern.

The system provides several edit codes. The editing patterns defined by these codes are contained in

Appendix E, “Edit Codes.”

Defining Your Own Edit Codes

You can define five edit codes to provide more editing function than is available with the i5/OS edit

codes, and to handle common editing functions that would otherwise require the use of an edit word.

These are called user-defined edit codes. For example, you may need to edit numbers that include

hyphens (like some telephone numbers), or more than one decimal point. You can use user-defined edit

codes for these functions. These edit codes are named QEDIT5, QEDIT6, QEDIT7, QEDIT8, and QEDIT9

and can be referred to in DDS or a high-level language program by number (5, 6, 7, 8, or 9).

These edit codes are created by using the Create Edit Description (CRTEDTD) command. Edit

descriptions are always placed in library QSYS. They cannot be moved or renamed; only one occurrence

of each is allowed. Edit descriptions have an object type of *EDTD.

Even though they are user-defined edit codes, your system comes with a version of each one of them.

You can use these edit descriptions as they are, or you can delete them and create your own. The editing

performed by the IBM-supplied versions of these edit descriptions as well as a definition of the contents

of and the rules for using any user-defined edit code are described in Appendix E, “Edit Codes.”

Before using any of the user-defined edit codes, you should check its contents on your system, since it

may have been changed from the IBM-supplied version. The Display Edit Description (DSPEDTD)

command will display the contents of a user-defined edit code.

Changing a user-defined edit code description does not affect any application or display file that has

already been created using that edit description. If you want your application to use the changed edit

description, you must either create the high-level language program again (if the edit code is referred to

in the program) or create the file again (if the application is using an externally described file that

contains EDTCDE keywords).

Specifying Valid Screen Sizes

In some cases, you can use the following screen size condition names to select keywords and display

locations based on screen size:

Chapter 2. Defining Your Display in a Display File 35

v *DS3, 24 by 80 (5251 Models 11 and 12, 5291, 5292, 3179 Model 2, 3180-2, 3196, and 3197)

v *DS4, 27 by 132 (3180-2; 3197 Models D1, D2, W1, W2; 3477 Models FA, FC, FD, FE, FG, FW; 3487

Models HA, HG, HW, HC)

Note: The capability to display in 27 by 132 mode is allowed on 3180-2, 3197, 3477 Models FA, FC, FD,

FE, FG, FW, and 3487 Models HE, HD, HW, HC display stations attached to a 6040 or 6041 or

2638 local display station controller, or remotely attached to a 5294 or 5394 controller. The

display size for 27 by 132 mode is ignored for the DSPSIZ keyword unless these controllers are

specified.

These condition names can be used to place fields in different locations on different sizes of screens.

However, the fields must still be specified in the same order on each size of screen. For example, the

following DDS formats a display for both a 24 by 80 screen and a 27 by 132 screen:

 Normally, the display files are set up for a 24 by 80 screen (default size). The DSPSIZ keyword specifies

which display sizes are valid for a file and indicates which sizes are the primary and secondary screen

sizes. (The primary screen size is the first or only DSPSIZ value.) On the DSPSIZ keyword, the screen size

can be specified as *DS3, *DS4, 24 80, or 27 132. For example, DSPSIZ (24 80) specifies a screen size of 24

by 80. When primary and secondary display sizes are specified, the display file is validated for both

sizes.

The screen size designated as the primary screen size should be the one with which the display file will

most often be used. A performance benefit will be realized by coding the DSPSIZ keyword in this

manner. Additional processing is performed when the actual screen size is the secondary screen size.

The screen size condition names let you improve the use of a single display file for any size screen. For

example, when you are using subfiles, you can specify 22 records per page for a 24 by 80 screen or 25

records per page for a 27 by 132 screen:

 You can also define your own screen size condition names.

Enabling Your Display to Be Printed

If the Print key is enabled for your display, the user can print the current display by pressing the Print

key. The parameter (or lack of parameter) you specify for the DDS PRINT keyword controls how your

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A DSPSIZ(*DS3 *DS4)

 A .

 A .

 A .

 A R RECORD

 A NAME 20 5 2

 A *DS4 3112

 A ADDR 30 6 2

 A *DS4 4102

Figure 7. Sample DDS for Two Display Sizes

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A DSPSIZ(*DS4 *DS3)

 A .

 A .

 A .

 A SFLPAG(25)

 A *DS3 SFLPAG(22)

 A .

 A .

 A .

Figure 8. Sample DDS for Subfiles for Two Display Sizes

36 Application Display Programming V6R1

display is printed:

 Table 6. PRINT Keyword Results Using Print Key

Parameter Action

No parameter The output goes to the display station printer associated with this display (the

PRINTER parameter on the Create Device Description for Display (CRTDEVDSP)

or Change Device Description for Display (CHGDEVDSP)). If the operation to

the display station printer fails or if there is no display station printer specified,

the output goes to the printer file specified on the PRTFILE parameter on the

display station description. The default for the PRTFILE parameter is QSYSPRT.

File name and, optionally, library

name

The print operation is directed to the specified printer file. If the operation fails,

it is directed to the default printer file, which is specified on the PRTFILE

parameter on the CRTDEVDSP or CHGDEVDSP command.

Response indicator Control returns to the program with the response indicator set on.

*PGM Control returns to the program which must check the attention identifier in the

input/output feedback area to determine which key was pressed.

The PRINT keyword can be used at the file level and also at the record level. When PRINT is specified at

the record level, several records with different forms of the PRINT keyword (or with no PRINT keyword)

may be displayed on the screen at the same time. The last record format written to the screen controls the

use of the Print key for the entire screen.

If you specify the PRINT keyword in any form, the user can print a display containing the message help.

The PRTKEYFMT parameter allows you to control what information is included when you print your

display:

v Output only

v Output with header information (rows and columns)

v Output with border information (title lines, which include the system name, date and time, and

formatted user and display device name)

v Output with both border and header information

The PRTKEYFMT parameter on the Change Job (CHGJOB) and Retrieve Job Attributes (RTVJOBA)

commands allows you to select how you want your Print key output to look.

When you change the device description of a display station printer (by using the CHGDEVPRT

command or the DLTDEVD and CRTDEVPRT commands), you should also change the device description

of the associated display station, using the PRINTER parameter on the CHGDEVDSP command. You

should do this even if the name of the printer, whose device description you changed, remains the same.

Defining Windows

There are applications that could make use of a window on the display to assist the user in entering data.

A window is information that overlays part of the current display and allows the user to read the

information inside the window. The remainder of the display is not overlaid by the window and can still

be read by the user.

You can create windows by using standard DDS or by using user-defined data streams. To use standard

DDS, see Chapter 5, “Defining Windows with Display Files,” on page 115. Examples are also available in

the QUSRTOOL library.

Chapter 2. Defining Your Display in a Display File 37

Using Program-Described Data

You can create a display file without using data description specifications. Such a display file then uses

program-described data, and has no record or field level descriptions of its own.

When you are using program-described data with a display file to communicate with one or more

display stations, only simple display formatting can be performed, and that formatting must be specified

in the high-level language program that is using the file. All field descriptions are defined and all

processing is performed in the program that uses the file. More than one display file can be opened to

the same display station at the same time within the same program, but only two can be used on the

same display station at the same time: one for input and one for output.

When a display file that uses program-described data is opened, the system treats the area on the display

as a single field. That is, the field length is the same as the record length. The record length is defined by

the program that is using the file, and stays the same from the time the file is opened until it is closed.

Indicators cannot be passed when records are passed from the program to a display station, or from the

display station to a program. Also, command keys cannot be used for program-described display files.

The space on the display is assigned to program-described display files as shown in the following

example.

Records for the first file used by the program appear on the first (top) part of the display. Records for the

second file appear on the display immediately following the area used by records in the first file.

 The record from file B starts at the beginning of the first full line after the last line of the record from file

A. If the record from file A does not completely fill its last line, the space is used by neither record and

must be accounted for when calculating the maximum record lengths. In program-described display files,

the maximum record lengths are:

v For an input file, the screen size minus 2

v For an output file, the screen size minus 2

v For an output/input file, the screen size minus 2

v For two files (one output and one input), the screen size minus 3

When a program-described display file is opened, it can be defined as:

v Input only

v Output only

v Input and output

Defining Input-Only Files

When an input-only file is opened, the record is initialized to a single blank field on the screen. The

cursor is positioned at the first position of the field and the user can type in any type of data.

Record from file B

Record from file A

RSLH705-0

First File Used By Program

Second File Used By Program

Unused Area

38 Application Display Programming V6R1

When the program reads the record, the input is passed to the program. The record is not erased from

the screen. The cursor is again positioned at the first position of the record (field) and the keyboard is

unlocked when the program reads the next record. The user can then type in the next record over the

previous record.

Defining Output-Only Files

When an output-only file is opened, the record is initialized to a single blank field on the screen. When

the program writes a record to the file, the record is displayed and the keyboard is locked. The user must

press the Enter key before another record can be written to the file. Subsequent records written to the file

erase the currently displayed record because only one record can be displayed for the output file.

Defining Input and Output Files

When an input and output file is opened, the record is initialized to a single blank field on the screen.

The cursor is positioned at the first position of the file and the user can type in any kind of data.

The program that is using the file can read records or write records in any sequence. Whenever a record

is written to the file, the modified data tag is set off (to indicate that data was not entered into the field)

and the keyboard is unlocked. If the user then enters data into the field, the modified data tag is set on. If

the next operation is a write operation instead of a read operation, the data typed in by the user is

written over and the modified data tag is set off again.

Chapter 2. Defining Your Display in a Display File 39

40 Application Display Programming V6R1

Chapter 3. Working with Display Files in an Application

After you define your display file, you can use it in an application. This chapter discusses the operations

performed when a display file is used in an application.

Understanding How the System Allocates Resources

When a high-level language program uses a display file, several operations require that the system

allocate the resources needed to perform that operation. Allocating file resources causes the system to

obtain a lock on a display file when it is opened. Multiple users then cannot use the same display file in

conflicting ways. For example, the system will not allow you to delete a file while any application

program is using it.

File resources are allocated in two ways:

v The system performs the allocation whenever an operation is requested that requires it. The following

operations for display files require allocation:

– Open: The file resources include the file description and the display station. More information about

the open operation is found in “Opening Display Files.”

– Acquire: The display station is allocated as a resource. More information about the acquire operation

is found in “Acquiring a Display Station for I/O Operations” on page 42.

– Starting a program on a remote system: The file resources include session resources needed for

APPC/APPN.
v If you prefer to ensure that all the resources that are needed by a program are available before the

program is run, you may use the Allocate Object (ALCOBJ) CL command in the job prior to running

the program.

When allocating resources, the system waits for a predefined time if the resources are not immediately

available. If the resources do not become available within the time limit, the following happens:

v If you are using the ALCOBJ command, the command fails.

v If your program is performing a file operation, that operation fails and an error message is sent to the

program message queue.

You may attempt to use the error handling functions of your high-level language to try the operation

again. For example, if an open operation fails because another job is using the display station associated

with the file, you could retry the open operation later when the display station is no longer being used.

The length of time that the system waits when allocating resources is specified on the ALCOBJ command

and on the WAITFILE parameter of the CRTDSPF command. If the ALCOBJ command is used prior to

running a program, then the value of the WAITFILE parameter is ignored because resources are available.

If your application has error handling procedures for display station errors occurring on display files, you

should specify a value other than *IMMED to allow the system to recover from the display station error.

The system recovery procedures for the display station must be completed before your program can

recover from errors due to the allocation of resources.

Opening Display Files

The open operation connects a display file to a program for processing.

When a display file is opened, usually one or more display stations are implicitly acquired, or

automatically prepared for I/O operations, for the display file:

© Copyright IBM Corp. 1997, 2008 41

Table 7. Display Stations Implicitly Acquired When Display Files Are Opened

How the Display File is

Defined When Opened Other Specifications Display Station Implicitly Acquired

Defined with a single

display station

*REQUESTER specified Display station at which the user requested the program

*REQUESTER not specified Display station specified on the DEV parameter of the

CRTDSPF, CHGDSPF, or OVRDSPF command

Defined with multiple

display stations

Opened by a CL program All display stations specified on the DEV parameter of

the CRTDSPF, CHGDSPF, or OVRDSPF command

Opened by any high-level

language other than CL

The first display station specified on the DEV parameter

of the CRTDSPF, CHGDSPF, or OVRDSPF command

Defined with no display

stations

- None

The value specified on the WAITFILE parameter for the CRTDSPF, CHGDSPF, or OVRDSPF command is

used to determine how long the open operation should wait for file resources to become available so they

can be allocated. If a file resource, such as a display station, does not become available and the wait time

specified ends, the open operation fails.

Implicitly acquiring a display station when the file is opened results in the following:

v The screen is cleared completely and the cursor is placed in the upper-left corner of the display.

v The keyboard is unlocked.

Any display station to be implicitly acquired at the open operation must be varied on. Switched-line

display stations can also be acquired if they are in a vary-on-pending state. Also, a display station other

than the *REQUESTER display station cannot be acquired if it is signed on.

Acquiring a Display Station for I/O Operations

The system implicitly acquires, or automatically assigns, a display station to a display file when the

display file is opened. However, you may also acquire additional display stations for your program using

the acquire operation. The acquire operation is used in multiple display file applications or if you are

performing error recovery in your application.

A successful acquire operation results in the following:

v The screen is cleared completely and the cursor is placed in the upper-left corner of the display.

v The keyboard is unlocked.

The value specified for the WAITFILE parameter on the CRTDSPF, CHGDSPF, or OVRDSPF command is

used to determine how long the acquire operation should wait for a display station to become available

so it can be allocated. If a display station does not become available and the wait time ends, no display is

acquired.

A display station cannot be allocated unless it is varied on. Switched-line display stations can be allocated

if they are in a vary-on-pending state. Also, a display station other than the *REQUESTER display station

cannot be allocated if it is signed on.

The system allows only one *REQUESTER display station to be acquired to any display file, including a

multiple-device display file.

If an acquire operation is not successful, the release operation is the only valid operation to the display

station.

42 Application Display Programming V6R1

Obtaining Information about Display Files and Display Stations

You can obtain information about the open and I/O operations performed on an open display file, and

attribute information about a display station you are using.

Obtaining Information about Open and I/O Operations

After a display file is successfully opened, the system keeps track of the status of the file in feedback

areas.

The open feedback area contains information about the display file after it has been successfully opened,

including:

v Name and library of the display file

v Number of rows and columns on the display

v Name and library of the file after overrides have been applied

v Information about the display station defined for the file

The device definition list part of the open feedback area contains information about each device attached

to the display file.

The I/O feedback area contains information about the I/O operations performed on the display file after

it has been successfully opened. The I/O feedback area has two sections:

v The common feedback area contains information about I/O operations that were performed on the

file. This includes the number of operations and the last operation.

v The file-dependent feedback area contains file-specific information for display files, such as the

major/minor return code and the amount of data received from a display station.

As operations are performed on the display file, the feedback area is updated to reflect the latest status.

There is one feedback area for each open file. An exception is for shared files, which share feedback areas

as well as the data path between the program and the file. For more information on shared files, see

“Sharing Display Files in the Same Job” on page 84.

Feedback areas can be used to provide information when errors occur. For example, when an error occurs

with a display file, the program could determine predefined error handling operations based on the

major/minor return code in the file-dependent feedback area. More information on major/minor return

codes is available in Chapter 8, “Handling Messages and Errors for Display Files.”

Some high-level languages on the system allow you to access the status and other information about the

file against which operations are being performed.

See Appendix C, “Feedback Area Layouts for Display Files,” for a description of all the information

available from the feedback areas.

Obtaining Attribute Information about Display Stations

The get-attributes operation allows you to obtain the following information about a specific display

station:

 Table 8. Information Available from the Get-Attributes Operation

Information Details

The specific model of the display

station

Valid only when the display station is acquired to the file

The screen size of the display station Valid only when the display station is acquired to the file

Chapter 3. Working with Display Files in an Application 43

Table 8. Information Available from the Get-Attributes Operation (continued)

Information Details

Device acquired indicator Indicates whether or not the display station is currently acquired to the file

Device invite status Indicates whether or not the display station is invited, and if so whether or

not the display station has data available; valid only when the display

station is acquired to the file

*REQUESTER display station indicator Indicates whether or not the display station is the *REQUESTER display

station

Since the information supplied is also available in the open and input/output feedback areas for the

display station that is implicitly acquired when the file is opened, the get-attributes operation is most

useful for multiple display file applications. For more information on how to perform the get-attributes

operation, see the appropriate high-level language manual.

See Appendix C, “Feedback Area Layouts for Display Files” for a description of all the information

available from the get-attributes operation.

Sending and Receiving Data

All data written to and read from the display by the application program is done with records. Records

consist of fields, which are individual items of data. The high-level languages in which application

programs are written have I/O statements that give data to the system to be written to the display and

receive data from the system that it read from the display in the form of records.

The I/O statements of the high-level languages also refer to record formats, which are defined using

DDS. On output, a record format describes how the data given by the program is to be presented on the

display as well as how the data is to be processed before presenting it. On input, the record format is

used to control some display functions, to extract the program data from all the data which is on the

display, and to present that data back to the application program.

Information about DDS keywords

This section uses DDS keywords that control sending information to and receiving information from

the display. For more information about specific DDS keywords, see the DDS topic collection in the

i5/OS Information Center.

Determining Which Record Formats Are Active on a Display

The system maintains the active record format table, a table of all record formats that are currently on

the display. Read operations may take place against only those record formats that are in the active

record format table. Certain DDS keywords cause records in the table to be altered.

A record format is added to the table when a write operation that contains the record format is

performed. A record format is removed from the table when a read operation can no longer be correctly

performed for this record.

The active record format table is cleared whenever the display is cleared.

Writing Output to the Display

A write operation passes a record from the program to the system. The record format in the display file

contains the information necessary for the system to handle the record. The write operation results in the

following:

44 Application Display Programming V6R1

Placing Records on the Display

One record format can occupy an entire screen or the screen can be divided to display more than one

record format.

If a record is displayed on more than one line, the following rules apply:

v The lines must be consecutive lines on the display. For example, if one record occupies two lines and

the record begins on line 2, the record must continue on line 3.

v Only a beginning attribute character can occupy line 1, position 1.

v If only the ending attribute character for the last field in a record is in position 1 of the next line,

another record format can begin on that same line.

v Only one record can occupy a line on the display at a time. If you want to display a record format that

overlaps one or more lines of a record format already on the display, specify *NO for the clear lines

(CLRL) keyword. CLRL(*NO) clears the common lines before displaying the new record format.

The following three figures show how screens can be divided when the CLRL keyword is not specified:

Writes record
to screen

Unlocks
keyboard

HELLO HELLO

Clears screen

Write Operation

RV2W010-1

Chapter 3. Working with Display Files in an Application 45

RSLH199-0

Record Format A

Figure 9. Valid Placement of Records on a Screen When the CLRL Keyword Is Not Used (Part 1 of 3)

RSLH197-0

Record Format A

Record Format B

Figure 9. Valid Placement of Records on a Screen When the CLRL Keyword Is Not Used (Part 2 of 3)

46 Application Display Programming V6R1

The following figure shows how screens cannot be divided when the CLRL keywords is not specified:

Understanding Which Records Do Not Occupy Space on the Display

The following types of records do not occupy space on a display but are assumed to be at line 0:

v Records with no fields defined

v Records with only hidden, program-to-system, or message fields

Record Format A

Record Format D

Record Format B

RSLH198-0

Figure 9. Valid Placement of Records on a Screen When the CLRL Keyword Is Not Used (Part 3 of 3)

RV2W048-0

(Fields from different record formats cannot be displayed on the same line.)

(Fields from different record formats cannot be displayed on the same line.)

Record Record
Format A Format B

Record Format A

Record Format B

Record Format B

Record Format A

Record Format A

Figure 10. Wrong Placement of Records on Screen When CLRL Keyword Not Used

Chapter 3. Working with Display Files in an Application 47

v Records with the CLRL keyword specified and with no input-capable fields

The system keeps track of only one of these records at a time. If an output operation for a record

assumed to be at line 0 replaces another record assumed to be at line 0, you can no longer issue an input

operation for the replaced record.

Changing Record Formats on a Display

The formats displayed can change while a file is being processed because information on a display can be

deleted when new formats are displayed.

When your program displays a new record format for output or to allow input, the existing display is

usually erased before the new record format is displayed. For example, if three record formats are on the

display at the same time and you write another record to the display, the three record formats on the

display are erased. Several DDS keywords, such as the OVERLAY keyword, let you control the displaying

of records and input fields on input and output operations. For more information about these DDS

keywords, see “Overlaying and Erasing Record Formats on a Display” on page 49 and “Clearing a

Specified Number of Lines” on page 53.

In the following example, the fields are defined for a record format as follows:

v Fields from record format A occupy lines 1 through 4.

v Fields from record format B occupy lines 5 through 7.

v Fields from record format C occupy lines 8 through 10.

v Fields from record format D, which has the CLRL keyword specified for it, occupy lines 5 through 9.

In the following illustration, record formats A, B, and C are displayed first. When record format D is

displayed, it replaces record formats B and C.

48 Application Display Programming V6R1

If record format D did not have the OVERLAY keyword specified for it, the following would have

happened in the previous example:

v Record format A would also have been deleted.

v Lines 5 through 7 of record format B would have remained on the display. The data in any fields of

record format B overlaid by record format D would have been changed. (see “Clearing a Specified

Number of Lines” on page 53 for more information).

Deciding the Order of Record Formats Written to the Display

To improve performance, records containing input fields should be sent to the display station in the order

in which they appear on the display.

In Figure 11, if record formats A and B both contain input fields and appear on the same display, record

format A should be sent to the display first.

Overlaying and Erasing Record Formats on a Display

To avoid erasing the existing display when your program displays a new record format for output or to

allow input, you can specify the OVERLAY keyword. The OVERLAY keyword causes only those records

that are completely or partially overlapping to be erased; all other records remain on the display.

Note: The OVERLAY keyword does not prevent the screen from being erased if it is in effect for the first

write operation after a file is opened unless the DDS keyword ASSUME is specified for any record

format in the display file.

You can use the OVERLAY keyword to display information from your application that needs to be

presented together but naturally falls into two or more pieces. For example, you could use one record

format in your application to present information for a state at the top of a display and another record

format to provide the information for a particular region within that state.

Record format D is displayed

1
2
3
4
5
6
7
8
9
10
11
12

Lines

Record Format A

Record Format B

Record Format C

Record Format A

Record Format D

1
2
3
4
5
6
7
8
9
10
11
12

Lines

RSLH700-0

Figure 11. Replacing Record Formats

Chapter 3. Working with Display Files in an Application 49

To place two or more records on the display at the same time, separate the write operations for your

display from the read operations. Then, when you perform each write operation, the system takes the

data from the record that you have provided it, combines it with the information specified in the record

format, and places it on the display. You can lock the keyboard until the display is ready to perform the

read operations by doing one of the following:

v Specify the LOCK keyword on all the record formats

v Specify *YES for the Defer Write (DFRWRT) parameter for the display file

You can use multiple record formats when you want to present lists of information in a subfile to the

user. A subfile is a group of records that have the same record format and are read from and written to a

display station in one operation. For more information about subfiles, see Chapter 4, “Displaying Groups

of Records Using Subfiles,” on page 87.

To erase certain records from the display when you overlay records, use the ERASE keyword with the

OVERLAY keyword. The following diagram shows the effect of the OVERLAY and ERASE keywords on

an output operation:

�1� Record format B is erased because record format D overlaps it, and record format D is displayed.

Record format D did not use all of the space record format B previously used so it does not

overlap record format C.

�2� Record format B is erased because record format D overlaps it and record format C is erased

because ERASE C is specified. Record format D is displayed, and part of the display is no longer

in use.

Starting Your Record Format on a Specific Line

To start your record format on a specific line, use the starting line number (SLNO) keyword. On the

SLNO keyword, you can specify one of the following:

v The actual starting line number for the record format (a value from 1 to 27). When you specify an actual line

number, the system adjusts the line numbers for all fields in a record by the specified value minus 1.

v A variable starting line number (*VAR), which allows you to specify a starting line number value in your

high-level language program at run time. Depending on the value specified in your program, the

following occurs:

 Table 9. Results of SLNO(*VAR) Values

Value Specified Results

0 or no value specified A starting line number of 1 is assumed.

A

B

C

A

D

C

Not Used

Not Used

Put D
with OVERLAY

Put D
with OVERLAY
and ERASE C

Before After

RV2W032-1

A

D

50 Application Display Programming V6R1

Table 9. Results of SLNO(*VAR) Values (continued)

Value Specified Results

Value exceeds the number of lines on

the screen or is a negative value

The system sends a message to the program and the I/O request is not

performed.

The starting location for the field for

at least one display size is row 1,

column 1

A warning message (severity 10) is issued at file creation time. At run time,

an error message is issued if the screen size being displayed contains a field

starting in row 1, column 1, and the variable starting line number is set to 1

by the program.

Each programming language provides a different way to set and add to the starting line number. See the

appropriate manual for the language you are using.

The system adjusts the line numbers for each field in the record format by the specified value minus 1. If

the resulting line number exceeds the screen size, the field is not displayed. In addition, if any part of a

field goes beyond the last line on the screen, the field is not displayed.

The SLNO keyword cannot be used in a record format that contains the record-level keywords ASSUME,

KEEP, USRDFN, SFL, or SFLCTL, or in a display file that contains the file level keyword PASSRCD.

However, the SLNO keyword may be used with several other DDS keywords:

v If the CLRL keyword is used with the SLNO keyword and the CLRL keyword specifies a number of

lines to clear, clearing starts with the starting line number on the SLNO keyword.

v If you use the SLNO(*VAR) keyword with the OVERLAY keyword but without the CLRL keyword and

then write the record several times, each time with a different starting line number, the previous record

is deleted before the new record is displayed.

v If the SLNO keyword is used with the PUTOVR, PUTRETAIN, ERRMSG, or ERRMSGID keyword in

effect, the system checks the starting line number to determine if the previous output operation to the

record had the same starting line number:

– If the starting line number is the same, the action specified by the PUTOVR, PUTRETAIN, ERRMSG,

or ERRMSGID keyword is performed.

– If the starting line numbers are not the same, the PUTOVR, PUTRETAIN, ERRMSG, or ERRMSGID

keyword is ignored, and the record format is displayed with the lines adjusted by the new value.

The following DDS shows an example of using the SLNO(*VAR) keyword:

Chapter 3. Working with Display Files in an Application 51

In this example, the record format ORDENT contains the prompt for an Order Entry display. When the

user enters a customer number and an order number, the following occurs:

1. The program writes the record format INPFMT to the display, which allows the user to enter an item

number and quantity ordered.

2. After the user enters the item number and the quantity, the program retrieves the description of the

item from a file and writes the record format LINITM to the display.

3. The program writes the INPFMT record format to the display to allow the user to enter another item

number.

The design of this display allows the user to enter the item number and quantity on the same line. As a

line item is entered, the program uses the LINITM record format to build the order on the display. The

SLNO(*VAR) keyword is used so the program can add a line to the display each time the LINITM record

format is written. The CLRL(*NO) keyword has to be specified on the LINITM record format so that the

previous record is not deleted when a new record is written.

When the LINITM record format is first written to the display, the value of *VAR is 1 so the fields are

displayed on line 9. On each successive output operation to this record format, the program adds 1 to the

starting line number so that a new line item is added to the display.

After the user enters two item numbers and quantities, the display looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R ORDENT

 A 1 36’ORDER ENTRY’

 A 3 2’Enter customer number:’

 A CUST 5 B +2

 A 5 2’Enter order number:’

 A ORDNBR 6 B +2

 A 7 2’ITEM NUMBER’

 A 7 18’DESCRIPTION’

 A 7 44’QUANTITY’

 A R LINITM OVERLAY

 A SLNO(*VAR)

 A CLRL(*NO)

 A ITEM 6 0O 9 2

 A DESCRP 20 O 9 18

 A QTYORD 3 0O 9 44

 A R INPFMT OVERLAY

 A 23 2’Enter item number:’

 A ITMNBR 6 0I +2

 A +5’Enter Qty:’

 A QTY 3 0I +2

Figure 12. Sample DDS Source Showing Use of the SLNO(*VAR) Keyword

52 Application Display Programming V6R1

ORDER ENTRY

Enter customer number: 34785

Enter order number: 1J2340

ITEM NUMBER DESCRIPTION QUANTITY

96321 Pliers 115

86768 Saws 125

Enter item number: ___ Enter Qty: ___

The SLNO keyword is most efficient when you want the user to always enter data on the same line and

yet build a display of previously entered records, as shown in the preceding example. However, for a

typical inquiry function where you want to display more than one record at a time, the use of a subfile is

more efficient.

Clearing a Specified Number of Lines

To clear a certain number of lines on the screen before you write a record format to the screen, use the

clear lines (CLRL) keyword. You can specify the CLRL keyword even when the record contains no fields

that are displayed. Clearing begins with the starting line number, and the value specified on the CLRL

keyword determines the number of lines to be cleared (any value from 1 to 27). The starting line number

is determined as follows:

v If the SLNO keyword is not specified, the field locations determine the starting line number.

v If the SLNO(nn) keyword is specified, nn is the starting line number.

v If the SLNO(*VAR) keyword is specified, the starting line number defaults to 1 at the time the display

file is created and can be changed by the application program at the time it is run.

You can also specify the following values to clear specific lines:

Value Lines Cleared

*END All lines from the starting line to the end of the display

*NO Only the lines of the display that are used by the overlapping record format

*ALL All lines of the display. Since the default action is to clear all the lines of the screen, you do not

normally have to specify CLRL(*ALL) unless you also specify a DDS keyword, such as

USRDSPMGT, that changes this default.

Note: When you use the CLRL keyword, you should specify *YES for the RSTDSP parameter on the

CRTDSPF or CHGDSPF command; otherwise, data on the display may be lost if the file is

suspended.

You can use the CLRL(*NO) keyword to prevent an overlapped record from being deleted when the

overlapping record is written to the display. If you use this keyword, any records being displayed that

are to be overlapped are not deleted from the screen; the new record overlays them entirely or partially.

There is a performance advantage to using CLRL(*NO) if you have a display that contains constants and

data that is repeatedly sent to the screen. By sending the constants as a separate format and by using

Chapter 3. Working with Display Files in an Application 53

CLRL(*NO) for the format containing only the data, you can reduce the time required to send the record

format to the display. For example:

 If CLRL(*NO) is specified on record format C, all fields of record format B not overlapped by C remain

on the screen when record format C is written to the screen. If the OVERLAY or PUTOVR keyword were

used for this same situation, record format B would be deleted when record format C is written to the

screen because record format C overlaps record format B.

The following considerations apply to the CLRL keyword when used with other DDS keywords:

v If the CLRL keyword is specified in a record format with input-capable fields, any input-capable fields

in the overlapped records are no longer input-capable. Fields in all other record formats that are not

overlapped remain input-capable. If you do not want these fields to remain input-capable, you should

use the PROTECT keyword on the record format along with the CLRL(nn) keyword.

v Records with the CLRL keyword and with no input-capable fields are assumed to be at line 0. Thus, if

the CLRL(nn) keyword is specified in a record format that has no input-capable fields, all records

already on the display remain on the display and their input-capable fields remain input-capable.

Because records that start at line 0 are not known to the system, the ROLLUP and ROLLDOWN

keywords do not work for these records. Also, these records may not be cleared completely when they

are overlapped by other records that have the OVERLAY keyword specified. The lines needed for the

overlapping record are cleared whereas the lines not needed for the overlapping record remain on the

screen.

v The CLRL(nn) keyword is not allowed in a record format with the record-level keywords ASSUME,

KEEP, USRDFN, SFL, or SFLCTL, or in a display file with the file level keyword PASSRCD.

v The CLRL(nn) keyword is ignored if either the ERRMSG or ERRMSGID keyword is in effect.

v If the CLRL(nn) keyword is used and the PUTOVR or PUTRETAIN keyword is in effect, the clearing of

lines may conflict with the PUTOVR or PUTRETAIN function. The PUTOVR or PUTRETAIN keyword

requires that the fields being overridden be on the display whereas the CLRL(nn) keyword may clear

those fields first. If a record becomes unavailable for input because of the CLRL(nn) keyword, the

input-capable fields remain input-capable if the PUTOVR keyword is in effect. However, the system

issues a message if the program attempts to read such a record. Although the CLRL(nn), CLRL(*NO),

and CLRL(*END) keywords imply the OVERLAY keyword, the following example illustrates the

differences between the CLRL and OVERLAY keywords:

1
2
3
4
5
6
7
8
9
10
11
12

Lines

RSLH701-0

Record Format A (lines 1 through 4)

Record Format B (lines 5 through 8)

Record Format C (lines 7 through 12)

54 Application Display Programming V6R1

The following results occur if the program performs the output operations on the record format in the

following order:

 Table 10. Results from CLRL Example

Order of Record Formats Results

RECORD1 RECORD3

RECORD2A

Lines 4 through 12 are deleted when RECORD2A is written to the display because

RECORD2A overlaps RECORD1 and RECORD3, and only the OVERLAY keyword is

specified for RECORD2A.

RECORD1 RECORD3

RECORD2B

Lines 5 through 8 are cleared before RECORD2B is written to the display because the

CLRL(4) keyword is specified. FLD1 in RECORD1 and any input-capable fields in

RECORD3 (lines 9 through 12) remain on the screen but are no longer input-capable

because part of RECORD1 and RECORD3 is overlapped by RECORD2B.

RECORD1 RECORD3

RECORD4 RECORD2A

RECORD1 remains on the screen when RECORD3 is written to the screen because the

OVERLAY keyword is specified in RECORD3. When RECORD4 is written to the

screen, it uses part of line 11, which is also used by RECORD3, and because

CLRL(*NO) is specified in RECORD4, RECORD3 remains on the screen. However, the

system is no longer aware that RECORD3 is on the screen so when RECORD2A is

written, only lines 4 through 8 are cleared; the part of RECORD3 below line 8 remains

on the screen.

Rolling Data between Two Lines on a Display

If you are using a high-level language program, you can roll the data between two lines on the display

up or down by specifying the allow roll (ALWROL) keyword. The lines vacated by the rolled data are set

to nulls and another record format can be written to those lines.

In your program, you must specify the following:

v The starting line number and the ending line number of the lines to be rolled. The start and end line numbers

define a window on the screen.

v The number of lines to be rolled. If the number of lines to be rolled is positive, the data is rolled up. If the

number of lines to be rolled is negative, the data is rolled down.

v Whether the roll is to be up or down.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD1

 A FLD1 10 I 4 5

 A FLD2 10 I 5 5

 A 5 21’Enter employee number’

 A R RECORD2A OVERLAY

 A FLD3 1 B 5 2

 A 6 2’Required field’

 A 7 2’Enter 1, 2, or N’

 A FLD4 19 O 8 2

 A R RECORD2B CLRL(4)

 A FLD5 1 B 5 2

 A 6 2’Required field’

 A 7 2’Enter 1, 2, or N’

 A FLD6 19 O 8 2

 A R RECORD3 OVERLAY

 A FLD7 10 O 8 15

 A . .

 A . .

 A . .

 A FLD8 10 B 12 4

 A R RECORD4 CLRL(*NO)

 A FLD9 42 I 11 2

Figure 13. Sample DDS Source Showing Difference between CLRL and OVERLAY

Chapter 3. Working with Display Files in an Application 55

In the window, the lines of data are rolled up (or down) by the number of lines you specified in your

program. The data rolled off the window is gone. The input-capable fields of any record format partially

or completely within the window are no longer input-capable. After the roll, your program cannot issue

an input operation to any record format within the window.

The following example shows a display before a program-controlled roll occurs, and the same display

after a program-controlled roll occurs. The following is specified in the program:

v The starting line number is 8

v The ending line number is 18

v The number of lines to be rolled down is 6.

Display before the Roll Operation

 Display after the Roll Down Operation

Line 1

Line 3

Line 8

Line 10

Line 12

Record
format
1

RSLH165-0

UPDATE CUSTOMER ORDER RECORD

To end this program, press CF1

Enter your operator number:

Enter customer number:

Press CF3 to display option menu

56 Application Display Programming V6R1

The ALWROL keyword cannot be used with the file level keyword PASSRCD or with the following

record-level keywords: KEEP, ASSUME, USRDFN, SFL, or SFLCTL.

If the ERRMSG, ERRMSGID, PUTOVR, or PUTRETAIN keyword is in effect for the same output

operation in which the ALWROL keyword is in effect, the system issues message CPF5014. If an

ERRMSG, ERRMSGID, PUTOVR, or record level PUTRETAIN keyword is not in effect, the message is not

issued. However, if the PUTRETAIN keyword is specified at the field level with option indicators, the

message (CPF5014) is issued if the option indicators for the PUTRETAIN keyword are on or off.

Overriding the Attributes or the Content of a Field

To send only some of the data and attributes of a record to the display, use the following keywords:

v Put with explicit override (PUTOVR)

v Override data (OVRDTA)

v Override attribute (OVRATR)

By sending less data or attributes, you can shorten the response time at the display, especially for

remotely attached displays.

When the PUTOVR keyword is specified, the following occurs:

v The display attributes are overridden for those fields with the OVRATR keyword in effect.

v The data content is overridden for those fields with the OVRDTA keyword in effect.

v The output operation functions as if the OVERLAY keyword were also in effect, even if the OVERLAY

keyword is not specified.

The PUTOVR keyword cannot be specified in a record format that contains the PUTRETAIN keyword nor

can it be used for subfile records.

The display attributes that can be overridden by the OVRATR keyword are:

CHECK(ER) End of Record

CHECK(ME) Mandatory enter

Line 1

Line 3

Line 9

Line 11

Line 14

Line 16

Line 18

Previous
lines 8
through 12
after being
rolled down

Unchanged

Record
format
2

RSLH171-0

UPDATE CUSTOMER ORDER RECORD

To end this program, press CF1

Item number ordered:

Quantity ordered:

Enter your operator number: 25

Enter customer number: 12345

Press CF3 to display option menu

Chapter 3. Working with Display Files in an Application 57

DSPATR(MDT)

Set on modified data tag

DSPATR(PR) Protect

DSPATR(BL) Blink

DSPATR(CS) Column separator

DSPATR(HI) High intensity

DSPATR(ND) Nondisplay

DSPATR(PC) Position cursor

DSPATR(RI) Reverse image

DSPATR(UL) Underline

DUP Dup key capable

The following is an example of the PUTOVR keyword.

 The DDS describes a display that allows the user to enter an item number, and to review the item

description, the item price, the warehouse location, and the quantity on hand:

1. On the first output operation, all fields are sent to the display, and all option indicators are off. The

PUTOVR keyword is ignored because the record is not already on the screen. On the first output

operation, the current field values in the program are displayed for the output fields. If your program

has not set any of these fields, the values will be whatever the high-level language used to initialize

the output buffer.

If an output-capable field must always have a specific value on the first output operation, you can use

the DFT or DFTVAL keywords to initialize the field to that value. When used on an output-capable

field with the PUTOVR and OVRDTA keywords the DFT keyword causes the system to place the

default value rather than the program value on the display when the record is first placed on the

display.

2. The user enters an item number. The program sets on indicators 10, 15, 20, and 25 and issues a

write-read operation to display the output fields. On the write operation, the PUTOVR keyword is in

effect because the record is already on the screen. Because the OVRDTA keyword is specified on the

ITMDSC, ITMPRC, WHSLOC, and QTYOH fields and because their option indicators are on, these

fields are the only data sent to the display.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R ITMRVW

 A PUTOVR

 A 1 35’ITEM REVIEW’

 A 3 2’Item number:’

 A ITMNBR 5 B +2

 A 5 2’Item description:’

 A ITMDSC 20 +2

 A 10 OVRDTA

 A 7 2’Item price:’

 A ITMPRC 8 2 +2

 A 15 OVRDTA

 A 9 2’Warehouse location:’

 A WHSLOC 3 +2

 A 20 OVRDTA

 A 11 2’Quantity on hand:’

 A QTYOH 5 0 +2

 A 25 OVRDTA

 A OVRATR

 A N25 30 DSPATR(HI)

Figure 14. Sample DDS Source Showing Use of the PUTOVR Keyword

58 Application Display Programming V6R1

If the user enters another item number and the data for a field already displayed does not change, the

program sets off the option indicator and does not display that field again. For example, assume that

for the second item number, the WHSLOC is the same as for the first item number. On the output

operation to display the information for the second item number, the program sets off indicator 20.

Therefore, the only fields sent to the display are ITMDSC, ITMPRC, and QTYOH because indicators

10, 15, and 25 are on.

For the QTYOH field, the program can change the attributes for the field without changing the data by

setting off indicator 25 and setting on indicator 30 before the output operation.

You can use the option indicators on the OVRDTA keyword to control which fields are sent to the

display. If no option indicators are used, all fields with the OVRDTA keyword specified are sent to the

display on each output operation because the OVRDTA keyword is in effect when the PUTOVR keyword

is in effect. In the preceding example, if no option indicators were used, all four fields would be sent to

the display on each output operation. You can also use the same indicator to control more than one field.

An alternative design for this same application is to use two record formats and send the constants to the

display in one record format and the variables in the other record format. You would have to use the

CLRL(*NO) keyword to prevent the record format containing the constants from being erased. However,

if the record format is already on the display, the use of the PUTOVR keyword provides the most

efficient approach.

The following examples illustrate how to use the PUTOVR keyword for efficient coding:

 In the preceding example, the following happens:

1. If the record format is not currently on the display, the PUTOVR, OVRATR, and OVRDTA keywords

are ignored when the record format is displayed. On subsequent output operations when the record

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R PROMPT

 A CF03(91 ’Return’)

 A PUTOVR

 A ERASEINP

 A OVERLAY

 A 1 28’Efficient Coding Example’

 A 3 2’FLD1’

 A FLD1 5 I 3 7

 A 5 2’FLD2’

 A FLD2 5 5 7

 A OVRDTA

 A 7 2’FLD3’

 A FLD3 5 7 7

 A 15 OVRDTA

 A 9 2’FLD4’

 A FLD4 5 9 7

 A OVRDTA

 A 16 DSPATR(HI)

 A 11 2’FLD5’

 A FLD5 5 11 7DFT(’ABCDE’)

 A OVRDTA

 A 17 DSPATR(HI)

 A 13 2’Constant 1’

 A OVRATR

 A 18 DSPATR(BL)

 A 15 2’Constant 2’

 A OVRATR

 A N19 DSPATR(ND)

 A 17 2’Constant 3’

 A 20 OVRATR DSPATR(RI)

Figure 15. Sample DDS Source Showing Efficient Use of PUTOVR Keyword

Chapter 3. Working with Display Files in an Application 59

format is already on the display and the PUTOVR keyword is in effect, only the fields or constants

defined with the OVRATR or OVRDTA keyword are sent to the display. The ERASEINP keyword is

used because it is the most efficient way to clear all input fields, and the OVERLAY keyword is used

because it is required with the ERASEINP keyword.

2. FLD1 is an input field that is cleared each time the record format is displayed.

3. FLD2 is sent to the display each time the record format is displayed because its associated OVRDTA

keyword is unconditionally specified.

4. FLD3 is sent to the display on the first output operation. On subsequent output operations, FLD3 is

not sent to the display unless indicator 15, which is used to condition the OVRDTA keyword, is on.

5. FLD4 is sent to the display on each output operation because its associated OVRDTA keyword is

unconditionally specified. When the OVRDTA keyword is in effect, the attributes for the field are

always sent to the display. Indicator 16 is used to control the DSPATR(HI) keyword for FLD4.

6. On the first output operation, the default value of ABCDE appears in FLD5. On subsequent output

operations, a value from the program is displayed in FLD5 because its associated OVRDTA keyword

is unconditionally specified. Indicator 17 is used to control the DSPATR(HI) keyword for FLD5.

7. Constant 1 is always displayed, but it is only sent to the display on the first output operation.

However, the attributes for the field are sent to the display each time the record format is written, and

option indicator 18 is used to control whether the field blinks.

8. Constant 2 is sent to the display only on the first output operation. However, the attributes for the

field are sent to the display each time the record format is written, and if option indicator 19 is off,

Constant 2 will not be displayed.

9. Constant 3 is sent to the display only on the first output operation. However, the attributes for this

field are not sent to the display on subsequent output operations unless indicator 20 is on. If option

indicator 20 is on when an output operation is done, Constant 3 is displayed in reverse image, and it

will continue to appear in reverse image regardless of the status of indicator 20 on subsequent output

operations.

The following example shows how the PUTOVR keyword can be used for an application in which the

user enters some information common to a group of records and then repeatedly enters detailed

information relating to specific records in the group.

 In the preceding example, the following happens:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R HEADING TEXT(’Header Display’)

 A SETOF(88 ’ERASEINP CTL’)

 A CF03(91 ’Return’)

 A 1 2’HEADING INFORMATION’

 A DSPATR(HI)

 A 1 60’CF3-End of Program’

 A 2 60’CF2-New heading’

 A HDING 5 I +2

 A R DETAIL TEXT(’Detail display’)

 A OVERLAY

 A PUTOVR

 A PROTECT

 A 88 ERASEINP

 A CF02(92 ’New header’)

 A 8 2’DETAIL DISPLAY’

 A DSPATR(HI)

 A 10 2’Input’

 A FLDA 5 I +2

 A 12 2’Output’

 A FLDB 5 +2DFT(’ ’)

 A OVRDTA

Figure 16. Sample DDS Source Showing Another Use of PUTOVR Keyword

60 Application Display Programming V6R1

1. The program displays the HEADING record format, and then performs an input operation to the

record format to receive the HDING field as input. The SETOF keyword in the HEADING record

format sets off indicator 88, which is used to condition the ERASEINP keyword in the DETAIL record

format.

2. The program then displays the DETAIL record format. Because the OVERLAY keyword is in effect,

the HEADING record format remains on the display. The PROTECT keyword is also in effect so the

input field (HDING) in the HEADING record format is protected. Therefore, the user cannot change

this field when the DETAIL record format is displayed.

3. The ERASEINP keyword is conditioned by option indicator 88. Because indicator 88 is off the first

time the DETAIL record format is displayed, the ERASEINP keyword is not in effect. On subsequent

output operations, indicator 88 is set on and the ERASEINP keyword is in effect. Therefore, FLDA is

cleared on subsequent output operations. The option indicator is used on the ERASEINP keyword so

that it is not in effect the first time the DETAIL record format is displayed. Because the ERASEINP

keyword is processed before the PROTECT keyword, it would clear the HDING field in the

HEADING record format if it were in effect the first time the DETAIL record format is written.

4. FLDB is an output field that is sent to the display on each output operation because the OVRDTA

keyword is specified unconditionally. The DFT keyword with a value of blanks is used so the field

will not contain any data the first time the DETAIL record is displayed for a group.

Erasing All Unprotected Input and Output/Input Fields on the Display

To erase all unprotected input-capable fields, use the erase input (ERASEINP) keyword. The ERASEINP

keyword can only be used with the OVERLAY keyword.

To erase all unprotected input-capable fields that have their modified data tags on, specify *MDTON for

the ERASEINP keyword. To erase all unprotected input-capable fields whether their modified data tags

are on or not, specify *ALL for the ERASEINP keyword.

The ERASEINP keyword can improve response time because it clears fields rather than sends blanks to

the display. If the fields erased at the display do not have their modified data tags set on for the next

read operation, data is returned for those fields from the input save area. This is data saved by the

system from the previous return of the field from the display station.

You can use the INZINP keyword at the record level with ERASEINP(*ALL) and PUTOVR to initialize

the input save area without sending data for the cleared fields to the display.

Resetting Modified Data Tags Associated with Records on the Display

To reset the modified data tags, use the modified data tag off (MDTOFF) keyword. The MDTOFF

keyword, which can only be used with the OVERLAY keyword, is processed before the next record is

displayed.

To reset only the modified data tags of the unprotected fields, specify *UNPR for the MDTOFF keyword.

To reset the modified data tags of all input-capable fields, specify *ALL for the MDTOFF keyword.

Keeping a Record or Field on a Display

The PUTRETAIN keyword is used to reduce the number of characters sent to the display. This keyword

can only be used with the OVERLAY keyword and can be used to change only the display attributes of a

field. Except for not sending data, all other functions are supported when the PUTRETAIN keyword is

specified.

Using the PUTRETAIN keyword at either the record format level or the field level can cause fields from

this record which were previously written to the display to remain on the display even if they are not

selected for this write operation. To avoid this, you can use the PUTRETAIN keyword at the field level

and define the field twice: once with option indicators as you want it to appear in the display, and once

Chapter 3. Working with Display Files in an Application 61

with no option indicators and as a constant with a value of blanks. If the first field is not selected, the

second field is. The second field is displayed so the blanks erase the contents of the field that is not

selected.

Note: The ERRMSG and ERRMSGID keywords function as if the PUTRETAIN keyword were specified at

the record format level. That is, no fields are sent to the display, no field attributes for other fields

are changed, and no command keys are changed when the ERRMSG and ERRMSGID keywords

are in effect.

The following is an example of the PUTRETAIN keyword used at the record format level. The following

DDS describes a student search menu having three options. The option selected is highlighted. For

example, if option 1 is selected, the character string 1. By number is highlighted.

 The following happens:

1. On the first output operation, all fields are sent to the display, and all option indicators are off. The

PUTRETAIN keyword is ignored because the record is not already on the display.

2. The user selects item 1, 2, or 3. When the program receives the input, it sets on indicator 10, 11, or 12,

depending on which item is chosen. If anything other than item 1, 2, or 3 is chosen, the program sets

on indicator 44.

On the next output operation, field 1, 2, or 3 is highlighted, or the input field is in reverse image,

depending on which indicator is on.

The data for all fields is not resent to the display but the field attributes are resent. No data is sent for

constants. To resend attributes for each output field or constant, 4 bytes are needed. To resend

attributes for each input-capable field, 9 bytes are needed. By using the PUTRETAIN keyword, you

reduce the number of characters sent to the display by 96, from 138 to 42. (These numbers do not

include protocol control characters needed to frame data.)

The ERASEINP keyword causes the user’s selection to be erased.

The following is an example of the PUTRETAIN keyword used at the field level. Here, the PUTRETAIN

keyword is used to keep input that is not valid and to reduce the number of characters sent to the

display. The following DDS describes a display containing an item’s name, color, shape, and size, and

asks for quantity. The user can change the values for color, shape, and size.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SELECT OVERLAY

 A PUTRETAIN ERASEINP

 A N44 1 2’STUDENT SEARCH MENU’

 A N44 3 10’1. By number’

 A 10 DSPATR(HI)

 A N44 4 10’2. By name’

 A 11 DSPATR(HI)

 A N44 5 10’3. By address’

 A 12 DSPATR(HI)

 A N44 10 2’Select the number of the item to +

 A search by:’

 A INPUT 1 I 10 47

 A 44 DSPATR(RI)

Figure 17. Sample DDS Source Showing Use of the PUTRETAIN Keyword

62 Application Display Programming V6R1

The following happens:

1. On the first output operation, all indicators are off, so all the constants and the fields except CHOICE

and the constant field following CHOICE are sent to the display.

2. The user enters a quantity. The program sets on indicator 43. When the next output operation occurs,

indicator 43 prevents the second constant field from being resent.

3. When the user is to enter the quantity for another item, the program issues another output operation.

The attributes for the fields QTY, ITEM, COLOR, SHAPE, and SIZE are sent to the display. Field

selection prevents the CHOICE field from being sent to the display.

At least one field, in this case QTY, must be kept to prevent the entire record area from being erased.

4. If the user enters a quantity, color, shape, or size that is not valid, indicator 44 is set on so that the

input fields (QTY, COLOR, SHAPE, and SIZE) are not erased and so that the output field CHOICE is

sent to the display. In addition, the appropriate indicator, 9, 10, 11, or 12, is set on so that the input

field in error blinks and the cursor position is below the field. (The CHOICE field would show the

user valid choices for the field in error.)

5. The CHOICE field and a constant field of blanks are defined for the same location. After the user

enters valid data, indicator 15 is set on, indicator 44 is set off, and the constant field initializes the

CHOICE field to all blanks.

Deferring the Write Operation Until a Read Request is Made

The DFRWRT parameter on the Create Display File (CRTDSPF) or Change Display File (CHGDSPF)

command allows you to specify how the system is to handle write operations. If you specify

DFRWRT(*NO), the program does not regain control until the write operation has displayed the data and

updated the input/output feedback area.

If you specify the default of DFRWRT(*YES) for the file, the program regains control after the output

record is processed. The program can then use the record area where the output was stored to start

processing the next write or write-read operation. The data is actually sent to the display only when a

read or write-read operation is issued or when the FRCDTA DDS keyword is in effect for a write-only

operation.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R CHANGE OVERLAY

 A 1 2’CHANGE MENU’

 A N43 3 2’Change the underlined fields to +

 A change the description.’

 A 4 2’Item:’

 A ITEM 20 O 4 12

 A 44 PUTRETAIN

 A 5 2’Quantity:’

 A QTY 4Y 0I 5 12

 A 44 PUTRETAIN

 A 09 DSPATR(BL PC)

 A 6 2’Color:’

 A COLOR 10 B 6 12

 A 44 PUTRETAIN

 A 10 DSPATR(BL PC)

 A 7 2’Shape:’

 A SHAPE 10 B 7 12

 A 44 PUTRETAIN

 A 11 DSPATR(BL PC)

 A 8 2’Size:’

 A SIZE 10 B 8 12

 A 44 PUTRETAIN

 A 12 DSPATR(BL PC)

 A 44 9 2’Choice:’

 A 44 CHOICE 20 O 9 12

 A 15 9 12’ ’

Figure 18. Sample DDS Source Showing Use of the PUTRETAIN Keyword

Chapter 3. Working with Display Files in an Application 63

Using DFRWRT(*YES) on a display file improves systems performance; however, DFRWRT(*YES) should

not be used in the following circumstances:

v If you want to find out immediately if the write operation was successful. An error associated with a

write operation for a file with DFRWRT(*YES) specified is issued only when the data is actually sent to

the display.

v If the time between the write operation and the read or write-read is long. For example, if the program

does several database operations after the write operation (before it issues a read or write-read

operation), the user will not see the data while the database operations are performed.

v If the file is closed after the write-only operation and the KEEP keyword is not specified. If the display

file has the DDS keyword KEEP specified in any of its records, the data accumulated from the

write-only operation is displayed when the file is closed. However, if the KEEP keyword is not

specified, the data may never be displayed.

The DFRWRT parameter has no effect on the following:

v Write operations using user-defined data streams

v Write operations to display files that use program-described data

v Record formats for which the FRCDTA DDS keyword is in effect

Specifying Default Values for Fields

Both DFT and DFTVAL keywords are used to specify the default values to be displayed for fields.

However, there are differences between the way the two are used.

The DFT keyword can be used with constant, input, output, and output/input fields and cannot be

optioned. When it is used with output or output/input fields the OVRDTA and PUTOVR keywords must

also be specified. If the record is not on the display, this combination of keywords will cause the default

value to be placed on the screen. If the record is already on the display, the PUTOVR keyword is in effect

and the data from the program appears on the display rather than the default value.

The DFTVAL keyword can be used only on output and output/input fields and can be optioned. If it is

in effect on an output operation, the value from the keyword is placed in the field, rather than the value

from the program. If the record is on the display and the PUTOVR and OVRDTA keywords are in effect,

the program value is used rather than the default value.

The DFT and DFTVAL keywords may not be specified on the same field.

Indicating Which Mode to Display Records

Some display stations, for example the 3180-2 display station, support an alternate screen size. You can

specify this alternate size using the DSPMOD keyword. The DSPMOD keyword indicates, for a particular

record, which mode is used to display the record. Any record that does not have the DSPMOD keyword

specified for it is displayed in the default display mode. The default display mode is the first of the *DS3

or *DS4 display sizes on the DSPSIZ keyword.

The DSPMOD keyword is only valid when both *DS3 and *DS4 are specified on the DSPSIZ keyword.

This keyword is valid only at the record level. Option indicators are allowed. The DSPMOD keyword

may not be duplicated in a record.

Note: The capability to display in 27 by 132 mode is allowed on 3180-2, 3197, 3477 Models FA, FC, FD,

FE, FG, FW, and 3487 Models HE, HD, HW, HC display stations attached to a local display station

controller, or remotely attached to a 5294 or 5394 controller. The DSPMOD keyword is ignored

unless these controllers are used.

For example, the following DDS would display RECORD1 in 27 by 132 mode, and RECORD2 in 24 by 80

mode (the default mode set up by the DSPSIZ keyword). RECORD3 will be displayed in 27 by 132 mode

if option indicator 03 is on, or in 24 by 80 mode if option indicator 03 is not on.

64 Application Display Programming V6R1

The use of the DSPMOD keyword can cause the display mode to be changed dramatically. Caution

should be used when specifying the DSPMOD keyword. When a record with DSPMOD active causes the

mode to be changed, all records currently on the display are cleared and deleted from the active record

table. The record with DSPMOD active is then sent to the display. The mode for this record is maintained

on the display as long as the DSPMOD keyword is active. Setting DSPMOD off or a write operation to

another record without DSPMOD causes the display mode to be placed back in the primary display

screen size for the display station.

Using the previous sample DDS source, the DSPMOD keyword gives the following results if records are

written to the screen in the following order:

v RECORD1 is displayed in *DS4 mode.

v The display screen is cleared and RECORD2 is displayed in *DS3 mode.

v If indicator 03 is off, RECORD3 is displayed in *DS3 mode. RECORD2 remains on the display if the

OVERLAY keyword is specified.

v If indicator 03 is on, RECORD2 is cleared and RECORD3 is displayed in *DS4 mode.

Note: When changing display modes, the displayed subfile data is removed from the display. However,

the subfile data is not cleared from the subfile table.

The following keywords are ignored if the display modes have changed:

 Table 11. Keywords Ignored If Display Modes Are Changed

Keywords Additional Information

ALWROL When a record is not on the screen, it cannot be rolled.

ASSUME The records with the ASSUME keyword remain on the screen when the file is

opened. When the display modes change, the records on the screen are

cleared. This is similar to specifying the ASSUME keyword without the

OVERLAY keyword. The display size of the file with the KEEP keyword

must equal the display size of the file with the ASSUME keyword.

CLRL All lines will be cleared by a change in display mode.

ERASEINP/INZINP

ERRMSG

ERRMSGID

KEEP

OVERLAY

PROTECT

PUTOVR

When the display modes change, the record is displayed with PUTOVR not

in effect, even if the record was on the screen before the display modes

changed.

PUTRETAIN

SFLMSG

SFLMSGID

-

Positioning the Cursor after an Output Operation

You can specify where you want the cursor positioned after an output operation by using the CSRLOC or

DSPATR(PC) keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A DSPSIZ(*DS3 *DS4)

 A R RECORD1 DSPMOD(*DS4)

 A R RECORD2

 A R RECORD3

 A 03 DSPMOD(*DS4)

Figure 19. Sample DDS Source Showing Use of the DSPMOD Keyword

Chapter 3. Working with Display Files in an Application 65

On the record-level keyword CSRLOC, you can specify the names of two 3-byte zoned decimal hidden

fields that contain the exact line and position for the cursor location. With the CSRLOC keyword, you can

position the cursor outside the record you are displaying.

The field-level keyword DSPATR(PC) positions the cursor at the first position of the field after the record

is written. However, if the OVERLAY keyword is specified at the record level, the cursor position may be

lost after subsequent write operations.

Note: The cursor is not positioned if the keyboard is unlocked before the output operation.

If both the CSRLOC and DSPATR(PC) keywords are specified, the cursor is positioned by the CSRLOC

keyword. If several fields have DSPATR(PC) keyword specified, the cursor is positioned at the first field

for which the DSPATR(PC) keyword is specified.

If the CSRLOC and DSPATR(PC) keywords are not specified, the cursor is positioned at the first

input-capable field on the display. If there is no input-capable field, the cursor is positioned in the

upper-left corner of the display. However, if the CSRLOC and DSPATR(PC) keywords are not specified

for records containing input-capable fields, the cursor position may be lost if the record is suspended and

then restored. For example, the cursor position may be lost if the F1 (Help) key is pressed after the record

is displayed.

Other DDS functions can affect the write operation. For a write operation to a user-defined data stream

(USRDFN keyword), the functions performed are determined by the user-supplied controls.

Returning the Cursor Position to an Application

You can determine where the cursor was positioned on input by using the RTNCSRLOC (return cursor

location) keyword.

This keyword may be specified in either of two formats:

v Return the name of the record and field in which the cursor is currently positioned. Optionally, a third

parameter may be specified that will contain the relative cursor position within the field.

v Return the row and column position of the cursor relative to the display. Optionally, two additional

parameters return either of the following:

– The row and column position of the cursor relative to the active window (if one exists)

– The location of the cursor at the beginning of a two event mouse button call.

The parameters of these formats are described in the DDS topic collection in the i5/OS Information

Center.

Returning the Cursor Position Within a Subfile to an Application

On input, you can determine where the cursor is located in a subfile by using the SFLCSRRRN (subfile

cursor relative record number) keyword. The relative record number on which the cursor is positioned is

returned in the hidden field specified as the parameter on the keyword. The field must be defined in the

record format as a signed numeric (S in position 35) with a length of 5 with zero decimal places. Also, it

must be a hidden field (H in position 38).

Returning the Mode of a Subfile to an Application

You can use the SFLMODE (subfile mode) keyword to determine whether the subfile was in folded or

truncated mode on input. The mode parameter is required. The SFLMODE keyword is only valid for

subfile control records and the SFLCTL keyword must be specified.

The field specified for the mode parameter is defined in the record format as a 1 character (A in position

35) hidden field (H in position 38). The field is returned with a value of 0 if the subfile is folded and with

a value of 1 if the subfile is truncated. If SFLDROP (subfile drop) or SFLFOLD (subfile fold) is not

specified on the SFLCTL (subfile control) record, the value is always returned as 0.

66 Application Display Programming V6R1

Initializing Output/Input Fields

Device support saves all data read from input-capable fields for records currently on the display in a save

area. The output/input fields within this save area are updated on output operations.

For output operations, the following happens:

v Input-only fields are initialized to zeros (numeric fields), blanks (character fields), or a default value

(DFT keyword) from the display file.

v Output/input fields, hidden fields, and program-to-system fields are initialized to the contents of the

output buffer. If this output operation is caused by the initialize record function (INZRCD keyword),

no output buffer is available. Output/input fields and hidden fields are initialized similar to input-only

fields. Output/input fields are input and output capable.

v Output-only fields are not part of the input buffer unless they are part of a subfile record, in which

case they are saved as if they were output/input fields.

v All response indicators for this record are set off.

Note: For input-capable fields, if the PUTRETAIN or ERASEINP keyword is in effect, the save area for

the field remains unchanged.

Neither the input nor the output buffer is changed during write operations.

Inviting Input to the Display

The invite operation is used to send a request for input to a display station and return to the program

without waiting for the input to arrive. This allows a program to request input from one or more display

stations but continue processing without waiting for any of the display stations to respond. When the

program is ready to process the input, the data can be received from any of the invited display stations

by performing a read-from-invited-devices operation.

The invite operation is done by performing a write operation using a record format with the INVITE

DDS keyword in effect. Refer to the appropriate high-level language manual to determine how to

perform a write operation and how to use indicators to control the INVITE DDS keyword.

Once a display station is invited, the valid operations to receive data from the display station are the

read-from-invited-devices operation and the read(wait) operation directed to a specific display station.

Cancel invite is also a valid operation to an invited display station.

Before a display station can be used for I/O operations in a multiple-device display file, it must be

acquired to the file. A program can direct the invite operation to any display station currently acquired

for the file.

If the multiple-device display file was created with DFRWRT(*YES) specified, an output operation with

the INVITE DDS keyword optioned on will cause the output that has been postponed to be displayed on

the screen before the display station is invited.

If you want to invite a display station but have no data to send to it, perform the output operation with a

record format which contains the INVITE DDS keyword optioned on but has no output-capable fields.

Multiple-display station display files are supported in ILE RPG, ILE COBOL, ILE C/C++, and CL.

Inviting Input from CL Programs

The invite operation is available directly to CL programs through CL commands:

v WAIT(*NO) on RCVF and SNDRCVF Commands:

WAIT(*NO) allows overlapping of I/O operations and the running program, requests for input from

more than one display, and receiving input as it is available. This provides support equivalent to the

invite operation.

Chapter 3. Working with Display Files in an Application 67

On a read operation with the no-wait option, the system sends the request to the display and returns

to the program. However, the requested record is not available when control returns. The purpose of

this operation is to make the display station eligible to send input data while the program performs

other work.

To retrieve the record, issue a WAIT command. The WAIT command issues a read-from-invited-devices

operation. The program waits until data is available from the display station or the WAITRCD time

elapses. Then, the display station name and any input data are passed to the user program. If more

than one read-with-no-wait operation has been issued (each to a different display) and more than one

completes, the WAIT command processes only the first read-with-no-wait operation that is completed.

A WAIT command can be issued to process each of the other read-with-no-wait operations. They are

processed in the order of completion.

When a record containing the INVITE keyword is sent to the display, the operation is handled as a

write-read operation with a no-wait option. The INVITE DDS keyword is ignored on the write-read

operation.

A write-read operation with a no-wait option is the same as a write followed by a read-with-no-wait.

v ENDRCV Command:

The ENDRCV command is used to end a request for input made with the WAIT(*NO) option. The

ENDRCV command ends the input request even if data is available from the display station. If data is

being sent by the display station when the ENDRCV operation is performed, the data is lost. If the

display station is not invited, the application program is signaled with an error.

Reading Invited Input from the Display

The read-from-invited-devices operation provides a means of waiting for and receiving data from any

one of the invited display stations. This method of inviting a display station and then reading from the

invited display station is useful when the application must control the amount of time spent waiting for

the user to respond. When the read-from-invited-devices operation is performed, the program waits for

the time interval specified on the WAITRCD keyword of the CRTDSPF, CHGDSPF, or the OVRDSPF

command. The wait can be ended in the following ways:

v Data becomes available from an invited display station. The display station name, the results of the

operation, and any input data are passed to the program. When data has been received, the display

station is no longer invited and must be invited again by an invite operation if more data is to be

received from the display station by a read-from-invited-devices operation.

v No-display station-invited signal. Indicates that none of the display stations associated with the file are in

the invited condition. Refer to the appropriate high-level language manual for information on how this

will be communicated to the program.

v Job-ended-controlled signal. Indicates that the job that the program is running in is being ended with the

controlled option through the End Job (ENDJOB), End System (ENDSYS), Power Down System

(PWRDWNSYS), or End Subsystem (ENDSBS) command. Refer to the appropriate high-level language

manual for information on how this will be communicated to the program. This occurs only once in a

process no matter how many multiple-device display files are in use. All invited display stations

remain invited.

v No-invited-devices-have-data-available signal. This occurs when no display stations associated with the file

have data available, the WAITRCD time is *IMMED, and none of the previous conditions apply. The

invited display stations remain invited. Refer to the appropriate high-level language manual for

information on how this will be communicated to the program.

v Time-out-on-wait-for-data-from-invited-devices signal. This occurs when the WAITRCD value is a finite

number of seconds, no data became available during that interval, and none of the previous conditions

apply. Refer to the appropriate high-level language manual for information on how this will be

communicated to the program. The invited display stations remain invited.

Also, ILE COBOL provides a means of performing the read-from-invited-devices operation as if

WAITRCD(*IMMED) had been specified. See the ILE COBOL books for information on the NODATA

phrase and its effect on the read-from-invited-devices operation.

68 Application Display Programming V6R1

Understanding the Read-From-Invited-Devices

When the program is ready to process input from one of the invited display stations, it can issue a

read-from-invited-devices operation. This operation waits for a specified time for input to arrive from one

of the invited display stations. The time limit can be specified when the display file is created and can

subsequently be changed or overridden. If no invited display stations respond within the time limit, the

program receives an indication that the time limit expired and can continue processing. If an invited

display station responds within the time limit, the program can determine which display station

responded and the record format used to process the data. The other invited display stations remain

invited and can be sending data. The responding display station can also be invited again by another

invite operation.

A read operation can also be directed to a specific display station. This operation will not complete until

the specified display station responds with data. The display station need not be invited for the read

operation, but, if it is, the program will wait for input and the display station is no longer invited.

v The read-from-invited-devices operation only accepts data from display stations which are currently

invited.

v If more than one display station acquired to the display file has an invite outstanding, a

read-from-invited-devices operation will return the next available record from one of the invited

display stations. If records are received from more than one display station before the

read-from-invited-devices operation, the other records will be kept for a subsequent

read-from-invited-devices operation or for a subsequent read(wait) operation directed to a specific

display station.

v When a display station has responded and the input is received by the read-from-invited-devices

operation, that display station is no longer invited. It can be invited again by another invite operation

but this should not be done until all the record formats on the display with input-capable fields have

been read.

v A record format cannot be specified on the read-from-invited-devices operation. The record format

returned from a display is the same as the last record format written to the display station.

v The timing function associated with the WAITRCD parameter may not force an end to the wait if the

system is processing the Help key. In the following cases, the read-from-invited-devices function will

not end until the user exits from the help information:

– The system is displaying help that is defined by H specifications in the DDS for the display file.

– The system is displaying help for a message when the display station is the requester display station

for the job and the display file specifies MAXDEV(1).

You can force message help to end when the WAITRCD time ends by specifying a value greater than 1

for the MAXDEV parameter on the CRTDSPF or CHGDSPF command.

Reading-From-Invited-Devices from CL Programs: The read-from-invited-devices operation is available

directly to CL programs through CL commands. To retrieve the record, issue a WAIT command. The

WAIT command issues a read-from-invited-devices operation. The program waits until data is available

from the display station or the WAITRCD time elapses. Then, the display station name and any input

data are passed to the user program. If more than one read-with-no-wait operation has been issued (each

to a different display) and more than one completes, the WAIT command processes only the first

read-with-no-wait operation that is completed.

A WAIT command can be issued to process each of the other read-with-no-wait operations. They are

processed in the order of completion.

When a record containing the INVITE keyword is sent to the display, the operation is handled as a

write-read operation with a no-wait option. The INVITE DDS keyword is ignored on the write-read

operation.

A write-read operation with a no-wait option is the same as a write followed by a read-with-no-wait.

Chapter 3. Working with Display Files in an Application 69

Reading Input from the Display

A read operation passes a record from the system to the program. The display file record format contains

the information necessary for the system to handle the record. The user must perform a required action

such as pressing the Enter key or a function key to pass the data to the system. The read operation

results in the following:

 For input operations, the following happens in the order given:

1. For an input-only operation, all response indicators for this record are set off and the read operation is

issued.

2. Character fields received from the display are right- or left-justified and padded with blanks or

truncated as necessary. The default is left-justify, which can be overridden using the AUTO or CHECK

keyword.

3. Numeric fields received from the display have the following done to them:

a. If the field is negative, the zone portion of the units position is set to a D (see “Handling Negative

Numeric Input Data” on page 75).

b. All nonnumeric characters are removed and the numeric characters are compressed.

c. Signed numeric fields are right-justified and numeric-only fields are decimal aligned.

d. The field is padded with zeros or truncated as necessary.

e. Field validation is performed.

All fields received from the display whether they are part of the selected record or not are handled in this

way.

If any field validation errors are detected, a message is sent to the user so that the error can be corrected.

This process is repeated until there are no longer any errors. The save area for the requested record is

then copied into the input buffer.

Note: To process input data for a read operation with no record format name, display station support

uses the last record written to the display that contains at least one of the following:

v Input-only fields

v Output/input fields

v Hidden fields

If no such format is on the display, display station support uses the last format written to the display that

did not contain these kinds of fields, for example, an output-only record that specifies valid command

keys. If no such record exists on the display, an error message is returned to the program.

HELLO

Unlocks
keyboard
(If locked)

Locks keyboard
after user action

Program

Returns data
to program

Read Operation

.

.

.

.

.

RV2W011-2

70 Application Display Programming V6R1

A record does not have to be written to the display before it can be read by the program with the

INZRCD keyword. The system does this the same way an application program performs an output

operation with the exception of the following:

v For an output-only field, no user data is available so the field is initialized to blanks. If the field is

edited, the editing is ignored. If the BLKFOLD keyword is specified, it is ignored.

v For an output/input field, no user data is available so the field is initialized to blanks. If the field is

edited, the editing is ignored. The field actually contains null characters (hexadecimal zeros), which

appear as blanks.

v For a constant or input-only field, the data does not normally come from the output buffer so the field

appears the same as when the program displays it using a write operation.

v For a hidden field, the field is returned on a read operation as blanks (hex 40) if the field is a character

field or zeros (hex F0) if the field is a numeric field.

v For a message, there is no message data so the field is ignored.

v The LOGOUT keyword is ignored.

v The ERRMSG and ERRMSGID keywords are ignored because the record is not already on the display.

v The SFLMSG and SFLMSGID keywords are ignored.

All other fields or keywords are processed as if they were selected on an output operation.

Unlocking the Keyboard while the Program Is Processing Data

The keyboard can be unlocked so that data can be entered into input fields while the program is

processing previously entered input data with the UNLOCK keyword.

Normally, input fields are not erased until after the keyboard is unlocked. On a read operation, input

fields are erased after the keyboard is unlocked only if the UNLOCK keyword is specified and the

GETRETAIN keyword is not specified.

For the 5250 display station, the read operation with the UNLOCK keyword in effect results in the

following:

1. The 5250 display station does a hardware validity check on the fields. If no errors are found, the

following is done:

a. If the UNLOCK keyword is specified without the GETRETAIN keyword or if the

UNLOCK(*ERASE) keyword is specified, all input-capable fields that are changed are cleared.

b. If the UNLOCK keyword is specified with the GETRETAIN keyword or if the

UNLOCK(*MDTOFF) keyword is specified, all modified data tags (MDTs) are reset.

c. If the UNLOCK(*ERASE *MDTOFF) keyword is specified, all input-capable fields that are changed

are cleared and their MDTs are reset.

d. The cursor is repositioned to the field where the user can enter the next record.

e. The keyboard is unlocked.
2. The system validity checks all the fields for all records on the display. If errors are detected, normal

error retry is performed. A user could be typing into the next record when an error message is

displayed.

Note: The error message could refer to data that is no longer on the display because the data was

erased.

3. Control returns to the program.

Notes:

1. If an application program detects input errors and sends error messages to the display, the messages

may refer to input that has been typed over.

Chapter 3. Working with Display Files in an Application 71

2. If the CHANGE keyword is specified and either the UNLOCK keyword is specified without the

GETRETAIN keyword or with the UNLOCK(*ERASE) keyword is specified, the associated response

indicator is set on for the next input record.

3. When a read operation with the UNLOCK keyword (and without the GETRETAIN keyword) or the

UNLOCK(*ERASE) keyword is used for a record while a subfile is on the screen, subfile records may

be returned to the program on a subsequent get-next-changed operation to the subfile even though

the user did not enter data into the subfile record. It is recommended that you use the

UNLOCK(*ERASE *MDTOFF) keyword instead of the UNLOCK keyword (without the GETRETAIN

keyword) or the UNLOCK(*ERASE) keyword. If you must use either of the latter, you should make

sure that your high-level language program compares for blanks to handle the possibility that an

unmodified field containing all blanks is returned to the program.

Keeping Input Data

Input data on a display can be kept after the user presses the Enter key with the GETRETAIN keyword.

The GETRETAIN keyword can only be used with the UNLOCK keyword.

Setting an Indicator When Data Is Changed

A response indicator can be set on when data is entered into an input field or when data is changed in an

output/input field with the CHANGE keyword.

Initializing Records and Unlocking the Keyboard-Diagram

The following diagram shows the effect of INZRCD and UNLOCK keywords on an input operation:

Note: Record formats A, D, and E occupy the same lines.

�1� Record formats B, D, and C are erased if the OVERLAY keyword is not specified for record

format A. Record format A is displayed with constants and initialized input fields. The keyboard

is unlocked. The keyboard is locked after the user satisfies the get operation.

�2� Record formats B, D, and C are erased if the OVERLAY keyword is not specified for record

format E. Record format E is displayed with constants and initialized input fields. The keyboard

is unlocked. After the user satisfies the read operation, the contents of the input fields are erased

and the keyboard is unlocked again.

Note: Even though the UNLOCK keyword is specified, field validity checking, if specified, and

command key verification are performed. Therefore, a user could be typing into the next record

when an error message is sent to the display.

E

B

D

C

A

Not Used

Not Used

Get A
with INZRCD

Get E
with INZRCD
and UNLOCK

Before After

Not Used

Not Used

RV2W033-1

72 Application Display Programming V6R1

Specifying Validity-Checking Functions

Two methods can be used to check the validity of data entered by the user:

v Have the system check the data before it is passed to the application program.

v Have all the input data passed to the application program, which checks the validity of the data.

In either case, if errors are detected, a message is displayed informing the user of the error so that it can

be corrected. If you choose the second method for detecting errors, see “Creating and Displaying Your

Own Messages” on page 221 for information on how your program can display error messages. The rest

of this section gives more information on the first method, when the system detects the errors before

passing the data to your program.

The validity-checking functions you can specify in DDS are:

v Detecting fields in which at least one character must be entered (CHECK(ME) keyword). Blanks are

valid characters. This is referred to as mandatory enter.

v Detecting fields in which every position must contain a character (CHECK(MF) keyword). Blanks are

valid characters. This is referred to as mandatory fill.

v Detecting incorrect data types where character, numeric, or signed numeric data is required.

v Detecting data that is not in the range specified for the field (RANGE keyword).

v Performing comparison checking between data entered and specified constant value (COMP keyword).

v Comparing the data entered to a specific list of valid entries (VALUES keyword).

v Detecting if a valid field or record name was entered in a character field (CHECK(VN) keyword).

v Detecting if a valid object name was entered in a character field (CHECK(VNE) keyword).

v Performing modulus 10 or 11 check digit verification (CHECK(M10) or CHECK(M11) keyword). (Only

one can be specified.)

v Allowing blank-key entries to be processed as if no entry had been made (CHECK(AB) keyword).

CHECK(AB)-Allow Blanks-is ignored if the subfile keyword SFLROLVAL or SFLRCDNBR is also

specified for the field.

v Detecting if a space, a plus sign, or a minus sign is embedded between numeric digits in a numeric

field. Also, detecting if a plus sign or minus sign precede a numeric digit in a numeric field. To detect

such cases, use the Validate Numeric (VALNUM) keyword.

The ERRSFL keyword can be used in addition to the validity checking keywords CHECK(M10 M11 VN

VNE), COMP, RANGE, and VALUES to allow more than one of the error messages associated with the

keywords to be displayed at one time.

When you specify the RANGE, COMP/CMP, VALUES, CHECK(VN), CHECK(VNE), CHECK(M10), or

CHECK(M11) keyword for validity checking and an error is detected by one of these validity checking

functions, the following happens:

1. The keyboard is locked.

2. All fields in error are displayed in reverse image. If a field in error has both the underline (UL)

display attribute and the highlight attribute (HI), its image is not reversed, as this combination of

attributes has the same effect as DSPATR(ND).

3. The cursor is positioned at the beginning of the first field in error.

4. A system-supplied error message for the first field in error is displayed on the error line,

or,

If you have chosen to provide your own error message for a field using the CHKMSGID keyword

and this is the first field in error, then your error message is displayed on the error line.

If your controller is installed with the self-check feature (see the 5250 Functions Reference), the controller

performs validity checking for the CHECK(M10F) and CHECK(M11F) keywords. Errors are detected

when you attempt to move the cursor from the input field rather than when you press the Enter key or a

Chapter 3. Working with Display Files in an Application 73

Command Attention key. The Operator Error Code 00115, rather than a system-supplied or user-specified

message, is displayed in the lower left corner of the display. If the USRDSPMGT keyword is also

specified, CHECK(M10) and CHECK(M11) function as CHECK(M10F) and CHECK(M11F).

If the RANGE, COMP, VALUES, CHECK(VN), or CHECK(VNE) keyword is specified for a field, and data

is entered into that field, the field indicates that it has been changed regardless of attempts by the user to

restore the field after an error. If blanks (for character fields) or zeros (for numeric fields) will fail the

validity checking function, use the CHECK(AB) keyword. This will satisfy the validity checking function.

When you specify validity checking for records that are part of a subfile, each field in the record is

validity checked before it is placed in the subfile from the display. You cannot roll the records until all

fields in error are corrected.

The system only performs validity checking on a field if the field is changed by the user or if its modified

data tag (MDT) is set on using DSPATR(MDT).

Notes:

1. If the user presses the Dup key, any validity checking for a field is ignored. The DUP keyword lets

the user use the Dup key.

2. The value for a numeric field for which the COMP, VALUES, or RANGE keyword is specified is

aligned based on the decimal positions specified for the field and filled with zeros where necessary. If

decimal positions were not entered for the field, the decimal point is assumed to be to the right of the

digit to the extreme right in the value. For example, for a numeric field with length of 5 and decimal

positions of 2, the value 1.2 is interpreted as 001.20 and the value 100 is interpreted as 100.00.

3. When you use the RANGE keyword for validity checking an input field and blanks are entered in the

input field, the value for the input field may not meet the range requirements. Blanks are converted to

zeros for numeric fields and are passed as blanks for character fields. Use the field level keyword

BLANKS to determine when a field is displayed as all blanks. The response indicator on the BLANKS

keyword is set on if the user enters blanks.

Understanding the Limitations on the Number of Input-Capable Fields

For a remote 5250 display station (a display station attached through a remote controller), you can specify

as many as 126 or 256 input fields on one display, depending on the controller model. (The 5294

controller supports 126 input fields; the 5394 controller supports 256 input fields.) Additionally, if either

DSPATR(OID) or DSPATR(SP) is specified, this maximum is reduced by 1 for each three instances of these

keywords. If fewer than three instances occur, it is still reduced by one.

For a local 5250 display station (a display station attached through the local display station controller),

you can specify as many as 256 input fields. Also, if either DSPATR(OID) or DSPATR(SP) is specified, this

maximum is reduced by 1 for each three instances of these keywords. In addition, any use of the

magnetic stripe reader on a local 5250 display station also reduces the maximum number of fields. The

maximum number of fields is calculated as follows:

 A is the number of DSPATR(OID) and DSPATR(SP) fields on the display and B is the length of the

longest expected magnetic stripe input where 125 data characters is the maximum allowed. Magnetic

stripe data not specified as DSPATR(OID) can be entered into any input field.

If the maximum number of input fields is exceeded in any of the preceding cases, message CPF5192 is

issued to the using program.

No maximum-number-of-fields diagnostic is provided during display file creation because the number of

fields and record formats is not known until the program is run.

3+B A
6 3

+

RSLH131-2

rounded up to the next whole number256 -

74 Application Display Programming V6R1

When a subfile record is displayed, the actual number of input-capable fields sent to the display is the

number defined in the record multiplied by the number of subfile records that are displayed.

For remotely attached 3270 displays, the limitation is 126 input fields.

For ASCII displays attached through a protocol converter, the limitations are the same as the controller to

which they are attached.

Handling Negative Numeric Input Data

The negative sign in numeric input data can appear in three forms:

v Hex 60 if the sign is entered using the - (minus) key

v Hex D if the sign is entered using the Field Minus key

v Hex Dn if the sign is entered as an alphanumeric character with a D zone

The hex 60 is treated as a true minus sign if it is to the right of the least significant digit.

The hex D zone is treated as a minus sign if it is the least significant digit. In addition, it is treated as a

significant digit with a value equal to the numeric portion.

Imbedded blanks (between significant digits) are changed to zeros before decimal alignment.

Understanding How the System Reads Input from the Display

When a read operation is issued, the system reads all the records on a display. However, only one record

is passed to the program for each read operation. The system saves all the other records in anticipation of

more read operations.

If each read operation refers to a different record on the display, no action is required of the user.

However, if each read refers not to a different record on the display but to the same record and if the

RTNDTA keyword is not specified, the user must perform an action such as pressing the Enter key or a

CFnn key to start the next read operation because each record entered is passed to the program only

once. If the RTNDTA keyword is specified, the user does not have to perform any action because the

same input buffer that was returned to the program on the previous read operation for the record is

returned again.

The system saves the contents of input-capable fields for records that are active on the display. This saved

data is passed to the user program and can be altered by:

v Initializing the data with a constant on a write operation. A field can be initialized with the value

specified in a DFT keyword.

v Entering data through directly typing the data in or using a light pen to select data. (The MDT for a

field can be set on to simulate user input.)

v Entering data from a program on a write operation. This applies to output/input fields (and

output-only fields for subfiles).

v Initializing the data with blanks (character fields) or zeros (numeric fields) on an output operation for

the same record unless the PUTRETAIN keyword is specified. This applies to input-only fields.

Writing Output and Reading Input at the Same Time

The write-read operation is a combination of a write operation and a read operation to the same record

format in one high-level language statement like the SNDRCVF command in a CL program. It behaves as

if you had specified a read operation immediately following a write operation.

Some high-level languages have a write-read operation which writes information on the display and

reads the user response in one statement. For example, ILE RPG has the execute format (EXFMT)

operation. This kind of operation is useful if you need to both present new information on the display

Chapter 3. Working with Display Files in an Application 75

and request information from the user at the same time. You can also use a write operation followed by a

read operation to the same record format to simulate this operation in languages that do not support a

combined write-read operation.

When this operation is performed, the following happens:

1. The program calls the system display support giving it the data to show on the display and the

record format to use when writing and reading that data.

2. The system combines that data with the information it finds in the record format and constructs the

data stream to be sent to the display.

3. The data stream is then sent to the display and the keyboard is unlocked.

4. The user types the data in the fields which allow input and presses the Enter key or some other

function key.

5. The data is then sent from the display to the system. The system decodes it and extracts only the

information that the application program needs to know and returns that data to the application

program.

When you work with only one record format, this write-read style of working with it is the most

common. On the write portion of the operation, you provide the data that the user will see. On the read

portion, you receive data back that the user has entered or changed.

Canceling Input That Was Not Waited For

The cancel-invite operation is used to cancel the input request issued to a display station that was

previously invited through the invite operation. The input request is canceled by performing a write

operation to the invited display station. One of the following occurs:

v If the write request is received before the user responds to the input request from the invite operation,

the input request is canceled and the record format specified on the write operation is sent to the

display station. If the record format has the option indicator set on for the DDS keyword INVITE, the

display station is invited again.

v If the write request is received after the user responds to the input request from the invite operation,

the input request is not canceled and the write operation fails. The read-from-invited-devices operation

or a read(wait) operation must be issued to receive the available data.

Releasing a display station also implicitly cancels any input requests directed to the display station. If the

display station has data available, the data is lost.

Locking the Keyboard and Positioning the Cursor During I/O

Operations

The following lists what happens to the keyboard when a write, write-read, or read operation is run:

 Operation Keyboard

Write The keyboard is unlocked by default. If the LOCK keyword is specified, the keyboard is

not unlocked.

Write-Read The keyboard is unlocked.

Read The keyboard is unlocked (if locked) before display station user action. After user

action, the keyboard is locked by default. If the UNLOCK keyword is specified, the

keyboard is left unlocked.

Every time the keyboard is unlocked, the cursor is repositioned. In some cases, many write operations

between read operations can cause erratic cursor movement. If the user starts typing before the last write

operation, the cursor is repositioned when the keyboard is unlocked and this can cause confusion for the

user. You can prevent this by using the LOCK keyword. By using the LOCK keyword on each write

76 Application Display Programming V6R1

operation but the last, the keyboard remains locked until the last write operation. This avoids erratic

cursor movement, but prevents the user from starting to type data.

Normally, a user action, such as pressing a valid command key, locks the keyboard.

To specify that the system unlock of the keyboard on the next input operation should not occur, specify

the retain lock status (RETLCKSTS) keyword. This keyword prevents the loss of data when the input

operation is started and data is already being transmitted from the keyboard.

Note: Use the RETLCKSTS keyword only when the keyboard is already unlocked.

To position the cursor with the DSPATR(PC), CSRLOC, or SFLRCDNBR(CURSOR) keyword, the

keyboard must be locked. Only the following conditions on an output operation cause the keyboard to be

locked and must be present for the display station to position the cursor. (An output operation normally

unlocks the keyboard before it ends unless the LOCK keyword is specified so these conditions lock the

keyboard only momentarily.

v Input-capable fields are erased (ERASEINP keyword).

v Modified data tags are reset (MDTOFF keyword).

v Any input-capable field is written to the display.

v The complete display is erased (a write operation without an OVERLAY keyword).

v The 5250 format buffer is reset, which can be the result of:

– A record format with an input-capable field is overlaid or erased.

– A record format with a cursor location specification is overlaid or erased.

– The PROTECT keyword is specified on the record being written.

For the cursor positioning keyword to take effect, the keyboard must go from the lock condition to an

unlocked condition. That is, if the keyboard is unlocked prior to the write operation, the cursor

positioning keyword does not take effect immediately on the write operation. However, there is one

exception. If the keyboard is temporarily locked during an output operation, the cursor positioning

keyword will be in effect if the output operation unlocked the keyboard at the end.

In addition, if any of the preceding conditions happens on a write operation, the keyboard must be

unlocked before any user action either by the same operation or by a following operation (it should be

the last write operation).

A write operation to a subfile never unlocks the keyboard because no input or output is sent to the

display station.

Saving Previously Displayed Information

A display file may be opened to a display station even when another display file is already using that

display station. When an I/O operation is performed to the second display file, the first display file is

suspended.

When a display file is suspended, the information on the display can be saved automatically by the

system if you specify *YES for the RSTDSP parameter on the Create Display File (CRTDSPF) or Change

Display File (CHGDSPF) command. The contents of a display file can then be restored when an I/O

operation is later performed to that display file. If *NO is specified for the RSTDSP parameter, the

application program needs to rewrite the display to show it again.

The RSTDSP parameter lets you overlap a program call, keyboard input, and file I/O processing, as

shown in the following example:

Chapter 3. Working with Display Files in an Application 77

�1� Program 1 issues a write operation to record format RCD Y1 in display file DSPFILY, which

activates display file DSPFILY.

�2� Program 1 issues a write operation to record format RCD X1 in display file DSPFILX, which

suspends display file DSPFILY and activates display file DSPFILX. If RSTDSP(*YES) is specified

for display file DSPFILY, the data displayed on the display station is saved. If RSTDSP(*NO) is

specified instead, the data is lost and the program needs to write the information in RCD Y1

again to show it.

�3� Program 1 issues a read operation to record format RCD Y1, which suspends display file

DSPFILX and restores display file DSPFILY. If the RSTDSP(*YES) parameter is specified for

DSPFILY, then the data displayed on the display station when DSPFILY is suspended can be

restored.

 When RSTDSP(*YES) is specified for a display file, and you are suspending and restoring that display file

because of operations to another display file, some displays may appear to flash on the screen briefly. If a

display file has a record on the display and an I/O operation is done to a second display file, the first file

is suspended and its screen contents are saved. When returning to the first display file, the display file

and its screen contents are restored. If a write operation is done to a different record format in the display

file, the restored display will flash briefly before the output operation is complete. If you are going to

completely rewrite the display contents from your program when going back to the first file, use

RSTDSP(*NO).

You should specify *YES for the RSTDSP parameter in the following situations:

v When you are writing a record that has the following keywords in effect:

– CLRL

– OVERLAY

– PUTOVR

– PUTRETAIN

– ERRMSG

– ERRMSGID

You must ensure that the records that are on the display are the records that these keywords apply to.

If the display file is suspended, the data must be restored to the screen so that the write operations to

the record formats that use these keywords are valid.

Program 1

DSPFILX

RCD X1

Write

Write

Read
RCD Y1

DSPFILY

Display File

Display File

RV2W046-0

78 Application Display Programming V6R1

v When you perform multiple read operations to a record format on the display without intervening

write operations. If you should call a program while processing the data that has been read and that

program presents a display of its own, the subsequent read operation done by your program restores

the display properly.

Saving and displaying data again requires significant system and data transmission overhead. For a

1920-character 5250 display station, approximately 3000 characters are transmitted each time the display

data is saved displayed again. To avoid this overhead, write your application programs to do the

following:

v Make the programs in the application share the same copy of the display file among themselves by

specifying SHARE(*YES) on the display file.

v Perform complete display rewrites each time the programs in the application write to the display. A

complete display rewrite occurs when a record is written to the screen and the OVERLAY keyword is

not used or implied.

Note: If complete display rewrites are not performed and if new input fields, occupying positions on

the screen above the currently displayed fields, are sent to the display, the program receives a

message (CPF5192). This occurs because the 5250 display station requires that new input fields

sent to the display appear in lower positions than input fields currently on the display. In

normal operations, data management performs field processing to satisfy the 5250 requirement.

See “Avoiding Record Format Problems on the 5250 Display Station” on page 80.

When one program that uses a display file with the SHARE(*YES) parameter specified calls another

program that uses the same display file, the display file is not suspended even though both programs

have opened the file. If the display file is not shared, the system maintains separate copies of the display

file for each program and suspends and restores the display files separately.

Since system programs do not specify file sharing, you should specify RSTDSP(*YES) on the CRTDSPF or

CHGDSPF command if your program contains a display file and calls system functions that present

displays. System functions that break into the normal path of an application, however, such as the System

Request Menu or the presentation of break messages, restore the display without RSTDSP(*YES)

specified.

To display saved display data again after a close operation is issued to a suspended file, specify the KEEP

keyword for a record format in the saved display data.

Understanding the Effects of I/O Operations on Command Keys

Read and write operations may or may not affect how the function keys work:

v A write or write-read operation for which no input or output is sent to the display does not affect

which keys are valid. Examples of such operations are a write operation or an update operation to a

subfile record format.

v If a write or write-read operation displays a message by selecting either the ERRMSG or ERRMSGID

keyword, the command keys in effect on that output operation are valid. Therefore, you can specify a

different set of command keys to be valid if an error occurs.

v If only one subfile record format is displayed and the subfile control record format specifies a CAnn or

CFnn key for the SFLDROP keyword, that key remains valid for that function as long as the subfile is

still on the display. In addition, the key specified for the SFLENTER keyword remains valid until

another write or write-read operation is done. At the next output operation, the specifications for that

record apply.

v If two subfile record formats are displayed and both specify the SFLDROP keyword, only the last

SFLDROP keyword is used. There can only be one drop key at a time.

Chapter 3. Working with Display Files in an Application 79

Avoiding Record Format Problems on the 5250 Display Station

Because of the characteristics of the 5250 display stations, certain record format positioning and

operational combinations can produce undesirable results. The following example illustrates a

combination that can cause undesirable results and explains how to avoid these results.

The displays produced and the DDS for the record formats follow:

RSLH166-0

DETAIL
record
format

MI:

State:
Apt:

ZIP: -

First name:Last name:
Street:
City:

Enter all information regarding the subscriber:

CA1-Display state table, CA2-Display subscription table

Alabama
California
Y-More state names, N-No more state names
Enter all information regarding the subscriber:

AL Alaska
CA Delaware

AS Arkansas
DE DST Columbia

AK Arizona
DC Florida

AK
DC

Last name: Doe
Street: 112 Elm Apt: 3A
City: Anytown State: ZIP: -

First name: John MI:E

CA1-Display state table, CA2-Display subscription table

RV2W047-0

STATES
record
format

DETAIL
record
format

80 Application Display Programming V6R1

Assume that the DETAIL record format is on the screen, and the user is entering data for a subscriber.

Because the user does not know the state code for the state to be entered, he or she presses the CA01 key.

Because CA01 is defined as a CAnn key, no data is transmitted to the system when the CA01 key is

pressed. The data, however, remains on the screen. The program detects that the CAnn key was pressed

because response indicator 11 is set on. The program then displays the STATES record format.

Because the STATES record format is physically above the DETAIL record format, the system must resend

the field formats for the input fields in the DETAIL record format. (The system would also resend the

field formats if the STATES record format contained only output-only fields and was replacing the RCDA

record format. In this case, the field formats are resent because a record format (RCDA) with a specific

cursor location is being removed.)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RCDA

 A FLD1 1 I 2 4DSPATR(PC)

 A* STATES record format follows

 A R STATES OVERLAY

 A SNAME1 12 O 1 2

 A SCODE1 2 O 1 15

 A SNAME2 12 O 1 18

 A SCODE2 2 O 1 31

 A SNAME3 12 O 1 34

 A SCODE3 2 O 1 47

 A SNAME4 12 O 1 50

 A SCODE4 2 O 1 63

 A . .

 A . .

 A . .

 A SNAME8 12 O 2 50

 A SCODE8 2 O 2 63

 A 3 2’Y-More state names, N-No more +

 A state names’

 A MORESNAM 1 I 3 48VALUES(’Y’ ’N’)

 A* DETAIL record format follows

 A R DETAIL OVERLAY CA01(11) CA02(12)

 A 4 2’Enter all information regarding +

 A the subscriber:’

 A 5 1’Last name:’ DSPATR(HI)

 A NAMEL 20 I 5 12

 A 5 33’First name:’ DSPATR(HI)

 A NAMEF 13 I 5 45

 A 5 59’MI:’ DSPATR(HI)

 A MI 1 I 5 63

 A 6 1’Street:’ DSPATR(HI)

 A

 A STREET 45 I 6 9

 A 6 55’Apt:’ DSPATR(HI)

 A APT 4 I 6 60

 A 7 1’City:’ DSPATR(HI)

 A CITY 15 I 7 7

 A 7 23’State:’ DSPATR(HI)

 A SCODE 2 I 7 30

 A 7 33’Zip:’ DSPATR(HI)

 A ZIP1 5 I 7 38

 A 7 44’-’

 A ZIP2 4 I 7 46

 A . .

 A . .

 A . .

 A 10 1’CA1-Display state table, +

 A CA2-Display subscription table’

Figure 20. Sample DDS to Show Record Format Problems

Chapter 3. Working with Display Files in an Application 81

The following problems occur because the system resends the field formats for the DETAIL record format:

v All the input fields in the DETAIL record format lose their modified data tags (MDTs). When the

program does the next read to the DETAIL record format (for example, when the user presses the Enter

key), none of the fields typed in before the user pressed the CA01 key are returned to the program.

The program cannot retrieve that typed data even though the data still remains on the screen.

To avoid this problem:

– Avoid using a CAnn key.

– If you must use a CAnn key, avoid writing the format containing the CAnn key to the screen and

then writing another format that is physically placed above the first format if both formats contain

input-capable fields.

– Avoid writing a format to the screen that causes the removal of a format containing a cursor

location specification.
v The highlight attribute for the constant fields (except Last name) is lost. The system does not resend

the field format for output-only fields. However, if an output-only field immediately follows an

input-capable field so that the leading attribute character for the output field is in the same position as

the ending attribute character for the input-capable field, the attribute of the output field reverts to

normal.

To avoid this problem:

– Do not specify an output-only field with special display attributes immediately following an

input-capable field.

– If you must specify an output-only field with special display attributes immediately following an

input-capable field, avoid writing that format to the screen and then writing another format that is

physically placed above the first format if both formats contain input-capable fields.

– Avoid writing a format to the screen that causes the removal of a format containing a cursor

location specification.

Note: The system needs to resend the attributes for the input-capable fields when a subfile is rolled from

a full page to a partial page, a partial page to a full page, or a partial page to a partial page. The

two problems mentioned above may also occur when resending the field attributes.

Releasing an Acquired Display Station from I/O Operations

The release operation makes a display station ineligible for any further I/O operations through a file.

This operation is used in multiple display file applications or if you are performing error recovery in

your program. If the display station being released is invited, the invite is ended. If the invited display

station had data available, the data is lost. The release operation can only be performed on display

stations that are currently acquired to the file.

The release operation can also be used to recover from errors from acquire, I/O, and release operations.

After a display station is released, it must be acquired again with another acquire operation before any

I/O operations can be directed to it. If a program is written to recover from errors by releasing a display

station and then acquiring it again, a value other than *IMMED should be specified on the WAITFILE

keyword. This is because it takes the system a short time to transfer the allocation of a display station

description from a job, to the subsystem, and back again.

Closing Display Files

The close operation makes the display file ineligible for any further I/O operations between the program

and the system. Refer to the appropriate high-level language manual for information on how to start the

close operation.

82 Application Display Programming V6R1

If the display file is not being shared, the close operation also implicitly releases all the display stations

acquired to the file and deallocates any file resources allocated by the open operation or the acquire

operation.

If the close operation is successful, the only valid operation to the file is open. If the close operation fails,

the program should issue the close operation a second time.

Mapping Display Operations to High-Level Language Operations

The following shows the I/O requests supported by the operating system and the equivalent high-level

language operations:

 Table 12. Display File Operations Supported by the Operating System and the Equivalent High-Level Language

Commands

Operation

BASIC

Statements

ILE C/C++

Functions CL Commands

ILE COBOL

Statements

ILE RPG

Operations

Open OPEN fopen, _Ropen OPEN OPEN

Acquire _Racquire ACQUIRE ACQ

Release _Rrelease DROP REL

Get Attributes _Rdevatr ACCEPT POST

Write WRITE fwrite, _Rformat,

_Rpgmdev,

_Rwrite

SNDF WRITE WRITE, output

specifications

Read(wait) READ fread, _Rformat,

_Rpgmdev,

_Rreadn

RCVF

WAIT(*YES)

READ Primary or

secondary file

input, READ

Read READ RCVF WAIT(*NO) READ

Cancel Read ENDRCV

Wait WAIT

Invite fwrite1, _Rformat,

_Rpgmdev,

_Rwrite1

SNDF1 WRITE1 WRITE1

Read from Invited

Device

_Rreadindv READ READ

Cancel Invite fwrite, _Rformat,

_Rpgmdev,

_Rwrite

SNDF WRITE WRITE

Write-Read(wait) _Rwriterd,

_Rformat,

_Rpgmdev

SNDRCVF

WAIT(*YES)

EXFMT

Write-Read(no-
wait)

SNDRCVF

WAIT(*NO)

Close CLOSE, END fclose, _Rclose RETURN,

RCLRSC

CLOSE, CANCEL,

STOP RUN

CLOSE, RETRN

1. This is the write operation of a record format with the INVITE DDS keyword selected.

If an error occurs during an I/O operation to a display file, the major/minor return code field in the file

dependent I/O feedback area may be used to help diagnose the error and determine the error recovery

action needed.

Chapter 3. Working with Display Files in an Application 83

Sharing Display Files in the Same Job

By specifying the SHARE parameter on the CRTDSPF, CHGDSPF, and OVRDSPF commands, you can

specify that more than one program share the same path to the data or the display station. Using the

SHARE parameter allows more than one program to share the file status, positions, and storage area, and

can improve performance by reducing the amount of main storage the job needs and by reducing the

time it takes to open and close the file.

Using the SHARE(*YES) parameter lets an open data path (ODP) be shared between two or more

programs running in the same job. An open data path is the path through which all input/output

operations for the file are performed. It connects the program to a file. If not specified otherwise, every

time a file is opened a new open data path is built. You can specify that if a file is opened more than

once and an open data path is still active for it in the same job, the active ODP for the file can be used

with the current open of the file, and a new open data path does not have to be created. This reduces the

amount of time required to open the file after the first open, and the amount of main storage required by

the job. SHARE(*YES) must be specified for the first open and other opens of the same file for the open

data path to be shared. Specifying SHARE(*YES) for other files depends on the application.

Note: Most high-level language programs process an open or a close operation independent of whether

or not the file is being shared. You do not specify that the file is being shared in the high-level

language program. You indicate that the file is being shared in the same job through the SHARE

parameter. The SHARE parameter is specified only on the create, change, and override file

commands. Refer to your appropriate language manual for more information.

Understanding the Open Operation for Files Shared in a Job

The following items should be considered when opening a file that is shared in the same job by

specifying SHARE(*YES).

v You must make sure that when the shared file is opened for the first time in a job, all the open options

that are needed for subsequent opens of the file are specified. If the open options specified for

subsequent opens of a shared file do not match those specified for the first open of a shared file, an

error message is sent to the program. (You can correct this by making changes to your program to

remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job and PGMA only needs to read the

file. However, PGMA calls PGMB which will delete records from the same shared file. Because PGMB

will delete records from the shared file, PGMA will have to open the file as if it, PGMA, is also going

to delete records. You can accomplish this by using the correct specifications in the high-level language.

(In order to accomplish this in some high-level languages, you may have to use file operation

statements that are never run.) For more details, see your appropriate language manual.

v If you did not specify a library name in the program or the override command (*LIBL is used), the

system assumes that the library list has not changed since the last open of the same shared file with

*LIBL specified. If the library list has changed, you should specify the library name on the override

command to ensure that the correct file is opened.

v Overrides and program specifications specified on the first open of the shared file are processed.

Overrides and program specifications specified on subsequent opens, other than those that change the

file name or the value specified on the SHARE or LVLCHK parameters on the override command, are

ignored.

Understanding the Input/Output Operation for Files Shared in a Job

The system uses the same input/output area for all programs sharing the file, so the order of the

operations is sequential regardless of which program does the operation. For example, if Program A is

reading records sequentially from a file and it reads record 1 just before calling Program B, and Program

B also reads the file sequentially, Program B reads record 2 with the first read operation. If Program B

then ends and Program A reads the next record, it receives record 3. If the file was not being shared,

Program A would read record 1 and record 2, and Program B would read record 1.

84 Application Display Programming V6R1

For display files, the display station remains in the same state as the last I/O operation.

For display and ICF files, programs other than the first program that opens the file may acquire more

display or program display stations or release display or program display stations already acquired to the

open data path. All programs sharing the file have access to the newly acquired display stations, and do

not have access to any released display stations.

Understanding the Close Operation for Files Shared in a Job

The processing done when a program closes a shared file depends on whether there are other programs

currently sharing the open data path. If there are other programs, the main function that is performed is

to detach the program requesting the close from the file. All other programs sharing the file are still

attached to the ODP and can perform I/O operations.

If the program closing the file is the last program sharing the file, then the close operation performs all

the functions it would if the file had not been opened with the share option. This includes releasing any

allocated resources for the file and destroying the open data path.

The function provided by this last close operation is the function that is required for recovering from

certain run-time errors. If your application is written to recover from such errors and it uses a shared file,

this means that all programs that are attached to the file when the error occurs will have to close the file.

This may require returning to previous programs in the program stack and closing the file in each one of

those programs.

Chapter 3. Working with Display Files in an Application 85

86 Application Display Programming V6R1

Chapter 4. Displaying Groups of Records Using Subfiles

A subfile is a group of records that have the same record format and are read from and written to a

display station in one operation. The following sample display shows an example of a subfile:

Information about DDS keywords

This chapter uses DDS keywords to describe subfiles. For more information about specific DDS

keywords, see the DDS topic collection in the i5/OS Information Center.

Recognizing Subfile Uses

Subfiles are useful when multiple records that are alike must be displayed. You can describe a subfile so

that the number of records to be displayed fits on one display or exceeds the number of lines available

on the display.

You can use subfiles for the following purposes:

v Display only, which allows the user to review the subfile records on the display (for example, all the

line items for a particular order number, or a group of records containing customer names and

addresses as shown on the previous sample display).

v Display with selection, which allows the user to request more information about one of the items on

the display. On the first sample display of the following example, the user can request the records for a

particular customer by entering the record number in the record number field. In the second sample

display, the user can request the records for a particular customer by placing an X in the select number

field.

41401 Adam’s Home Repair
41402 Jane’s Radio/TV
41403 Advanced Electronics
41404 Riteway Repair
41405 Fixtures, Inc.
41406 Hall’s Electric

121 Golden Circle
135 Ransam Drive
809 8th Street
443 Western Lane
607 9th Avenue
200 Main Street

Chicago
St Paul
St Paul
New York
Chicago
St Paul

IL
MN
MN
NY
IL
MN

Search code: 41401

NUMBER NAME ADDRESS CITY STATE

CUSTOMER NAME SEARCH

RV2W049-0

Prompt
Record
Format

Subfile

© Copyright IBM Corp. 1997, 2008 87

Enter customer number: 41401

Enter record number: ____

RECORD NUMBER NAME ADDRESS CITY STATE

 01 41401 Adam’s Home Repair 121 Golden Circle Chicago IL

 02 41402 Jane’s Radio/TV 135 Ransom Drive St Paul MN

 03 41403 Advanced Electronics 809 8th Street St Paul MN

 04 41404 Riteway Repair 443 Western Lane New York NY

 05 41405 Fixtures, Inc. 607 9th Avenue Chicago IL

 06 41406 Hall’s Electric 200 Main Street St Paul MN

Enter customer number: 41401

SELECT

RECORD NUMBER NAME ADDRESS CITY STATE

 _ 41401 Adam’s Home Repair 121 Golden Circle Chicago IL

 _ 41402 Jane’s Radio/TV 135 Ransom Drive St Paul MN

 _ 41403 Advanced Electronics 809 8th Street St Paul MN

 _ 41404 Riteway Repair 443 Western Lane New York NY

 _ 41405 Fixtures, Inc. 607 9th Avenue Chicago IL

 _ 41406 Hall’s Electronic 200 Main Street St Paul MN

v Changing information, which allows the user to change one or more of the records in the subfile. The

following sample display allows the user to change the QTY and SHIP values:

 UPDATE SHIP QUANTITY ON ORDERS

Order: 11589 Customer number: 11111 Customer name: Al’Supply

ITEM DESCRIPTION QTY SHIP LOCATION

25764 Pliers 10 10 RST

33624 Hammer 500 250 RST

49821 Pliers 200 200 RST

26837 Wire Cutters 50 25 RST

v Input only without validity checking, which allows the user to enter data as fast as possible; or input

only with validity checking, which allows the user to enter data that is validity checked by the system

or by the program for valid entries. The following sample display shows subfiles for input only:

Enter order number: XXXXX

 ITEM NUMBER QUANTITY

 XXXXX XXX

 XXXXX XXX

 XXXXX XXX

 XXXXX XXX

 XXXXX XXX

 XXXXX XXX

 XXXXX XXX

 _____ ___

v Combination of tasks, which can, for example, allow the user to change data as well as to enter new

records. In the following example, the user can change existing names and addresses or enter new

records.

 CUSTOMER NAME SEARCH

 Search code: 41401

 NUMBER NAME ADDRESS CITY STATE

 41401 Adam’s Home Repair____ 121 Golden Circle_____ Chicago___ IL__

 41402 Jane’s Radio/TV_______ 135 Ransom Drive______ St Paul___ MN__

 41403 Advanced Electronics__ 809 8th Street________ St Paul___ MN__

 _____ ______________________ ______________________ __________ ____

 _____ ______________________ ______________________ __________ ____

 _____ ______________________ ______________________ __________ ____

v Displaying single-choice and multiple-choice selection lists. A single-choice selection list is a

potentially scrollable list from which the user can select one item. A multiple-choice selection list is a

potentially scrollable list from which the user can select one or more items. For more information on

selection lists, see “Selection Lists-Overview” on page 157.

88 Application Display Programming V6R1

Describing Subfiles in Your DDS Source

Each subfile you describe in your DDS source requires two types of record formats: a subfile record

format and a subfile control record format.

v The subfile record format defines the fields in one row of the subfile.

The high-level language program uses the subfile record format to read a subfile, write new records to

a subfile, and update the subfile. Operations to the subfile record format are performed between the

subfile and the high-level language program; the display is not changed on operations to a subfile

record format.

The subfile (SFL) keyword is required on the subfile record format.

v The subfile control record format contains heading information and controls subfile functions such as

size, initialization, and clearing.

The high-level language program performs operations on the subfile control record format to write the

subfile to the display and to read the subfile from the display.

The following DDS keywords are required on a subfile control record format:

– Subfile control (SFLCTL) keyword, which identifies the subfile control record format for the subfile

record format that immediately precedes it

– Subfile size (SFLSIZ) keyword, which specifies the size of the subfile

– Subfile page (SFLPAG) keyword, which specifies the size of the subfile page

– Subfile display (SFLDSP) keyword, which specifies when to begin displaying records in a subfile

The DDS for the subfile record format must precede the DDS for the subfile control record format.

Each subfile has two types of records:

v An active subfile record is a record that has been:

– Added to a subfile by a write operation.

– Initialized as active by the subfile initialize (SFLINZ) keyword.

– Changed when a write or update operation with the subfile next changed (SFLNXTCHG) keyword

in effect was issued to the record.

RV3W077-0

Chapter 4. Displaying Groups of Records Using Subfiles 89

– Changed by the user.
v An inactive subfile record is a record that was:

– Not added to a subfile by the write operation.

– Initialized as inactive by the SFLINZ keyword and the subfile records not active (SFLRNA)

keyword.

You can also perform the following functions on subfiles:

 Table 13. Optional Functions for Subfiles

Function DDS keyword Additional information

Allow a subfile to contain messages

from a program message queue

Subfile message key (SFLMSGKEY),

subfile message record

(SFLMSGRCD), and subfile program

message queue (SFLPGMQ)

See the DDS topic collection in the

i5/OS Information Center for more

information about the subfile message

keywords.

Clear the subfile of all records before

new records are written

Subfile clear (SFLCLR) The subfile is not erased from the

display, however, until the SFLDSP

keyword is in effect on the subfile

control record. If the SFLCLR

keyword is specified for a subfile

with no records, it is ignored.

Control when to display a subfile

control record

Subfile Display Control (SFLDSPCTL)

or SFLDSP

The SFLDSP and SFLDSPCTL

keywords are the only keywords that

cause the contents of the display to

change. The SFLDSPCTL keyword

must be in effect if an input operation

is done to retrieve the status of a

CFnn or CAnn key even if no fields

are displayed.

Delete the subfile to allow another

subfile to be used or to continue

processing the display file with no

subfile used

Subfile delete (SFLDLT) Normally, subfiles should not be

deleted by the program. When the file

containing the subfile is closed, the

subfile is deleted automatically by the

system. However, if the file is shared

and is still open by another program,

the subfile is not deleted, and you

must delete it in your program. You

should only delete a subfile if the

maximum number of subfiles are

already being used and you need to

use another one. The SFLDLT

keyword is ignored if the subfile does

not exist.

Display a page of a subfile by a

record number

Subfile record number (SFLRCDNBR) If CURSOR is specified for the

SFLRCDNBR keyword, the cursor is

placed in the subfile record whose

relative record number is identified

by the contents of this field. The

cursor is positioned at the first

input-capable field in the subfile

record. If there is no input-capable

field, the cursor is positioned at the

first output-only or constant field.

90 Application Display Programming V6R1

Table 13. Optional Functions for Subfiles (continued)

Function DDS keyword Additional information

Display a plus sign (+) in the lower

corner at the extreme right of the

subfile display area (page) when there

are more records than fit on the

display

Subfile end (SFLEND) or

(SFLEND(*PLUS))

The plus sign is replaced by a blank

when the last record is displayed. An

option indicator must be specified

with the SFLEND or SFLEND(*PLUS)

keyword.

Display the word ’More...’ on the line

following the subfile display area

(page) when there are more records

than fit on the display

Subfile end SFLEND(*MORE) The word ’More...’ is replaced by the

word ’Bottom’ when the last record is

displayed. An option indicator must

be specified with the

SFLEND(*MORE) keyword.

Display a scroll bar next to a subfile Subfile end SFLEND(*SCRBAR) For more information, see “Selection

Lists-Overview” on page 157.

Return the relative record number of

the record at the top of the current

page of records

Subfile scroll (SFLSCROLL) For more information, see “Selection

Lists-Overview” on page 157.

Enable a command key to fold or

truncate records in a subfile

Subfile fold (SFLFOLD) or subfile

drop (SFLDROP)

If the SFLFOLD keyword is specified,

the initial display of the records is

folded. If the SFLDROP keyword is

specified, the initial display of the

records is automatically truncated.

Then the user can press the command

key to display the truncated or folded

version, respectively, of the subfile

record. If the page size equals the

subfile size or the subfile fits on one

display line, the specified keyword

(SFLFOLD or SFLDROP) is ignored.

Both SFLFOLD and SFLDROP can be

used on the same subfile. Optional

indicators can be used on these

keywords. The optional indicators are

used to determine which mode the

subfiles are initially displayed in. If

both keywords are optioned on or

optioned off, then the subfile is

initially displayed in folded mode. If

the keyword is optioned off, the

command key can still be used to

display the truncated or folded

version.

Enable the Enter key as the Roll Up

key and enable a command key to

return to the high-level language

program

Subfile enter (SFLENTER) If more than one subfile using

SFLENTER is displayed at the same

time, the only CAnn or CFnn key in

effect as an Enter key is the CAnn or

CFnn key specified for SFLENTER on

the most recently displayed subfile.

The cursor position at the time the

Enter key is pressed determines

which subfile is affected.

Chapter 4. Displaying Groups of Records Using Subfiles 91

Table 13. Optional Functions for Subfiles (continued)

Function DDS keyword Additional information

Initialize a subfile with no active

records even though the subfile is

active

SFLINZ and subfile records not active

(SFLRNA)

A record becomes active when one of

the following happens:

v An output operation is issued to

the subfile for a specific record. The

record is not considered changed

unless the SFLNXTCHG keyword

is used.

v A user enters data into a displayed

record. The record is considered

active and changed.

The records are displayed if the

SFLDSP keyword is in effect. If

default values were specified for

fields in the records, they are

included in the display.

Initialize all records by the field

descriptions in the subfile record

format in the display file

SFLINZ When the SFLINZ keyword is in

effect on an output operation to the

subfile control record (SFLCTL), the

system assumes that all option

indicators on the subfile record are

off; therefore, only those option

indicators that are preceded by N are

in effect. The subfile records are

displayed if SFLDSP is in effect on an

output operation. When the SFLINZ

keyword is in effect on an output

operation, the contents of

input-capable fields without a default

value are handled as follows:

v Numeric fields are initialized to

zeros.

v Character fields are initialized to

blanks.

v Floating point fields are initialized

to nulls.

Return a record to the program when

a get-next-changed operation is

performed

Subfile next changed (SFLNXTCHG) The record is returned even if the

record was not changed by the user

Roll by a specified number of records

instead of by page

Subfile roll value (SFLROLVAL) This field must have the keyboard

shift attribute of signed numeric with

zero decimal positions. It can be up to

4 digits long and must be defined as

an output/input or input-only field.

Specify the number of spaces between

each record on a line when more than

one record is displayed on a line

Subfile line (SFLLIN) This keyword is used for a

horizontally displayed subfile. If the

display file supports more than one

screen size and the SFLLIN keyword

is to apply to the secondary screen

size in addition to the default (or

primary) screen size, screen size

condition names must be specified.

92 Application Display Programming V6R1

Table 13. Optional Functions for Subfiles (continued)

Function DDS keyword Additional information

Write a message to the message line

on the display when your program

does an output operation to the

subfile control record

Subfile message (SFLMSG) and

subfile message ID (SFLMSGID)

See the DDS topic collection in the

i5/OS Information Center for more

information about the message

keywords.

Determines where the cursor is

located in a subfile

Subfile cursor relative record number

(SFLCSRRRN)

The relative record number on which

the cursor is positioned is returned in

the hidden field specified as the

parameter on the keyword.

Specify cursor progression for a

subfile

Subfile cursor progression

(SFLCSRPRG)

The SFLCSRPRG keyword causes the

cursor to move from a field in a

subfile record to the same field in the

next displayed subfile record. For

more information, see “Defining

Cursor Progression for Entry Fields”

on page 30.

Determines whether the subfile was

in folded or truncated mode

Subfile mode (SFLMODE) This is a required parameter and is

only valid for subfile control records

and the SFLCTL keyword must be

specified.

Define a single-choice selection list Subfile single-choice selection list

(SFLSNGCHC)

For more information, see “Selection

Lists-Overview” on page 157.

Define a multiple-choice selection list Subfile multiple-choice selection list

(SFLMLTCHC)

For more information, see “Selection

Lists-Overview” on page 157.

Control the availability of choices in a

selection list

Subfile choice control (SFLCHCCTL) For more information, see “Selection

Lists-Overview” on page 157.

Return all selected choices in a

selection list using the

get-next-changed operation

Subfile return selected choice

(SFLRTNSEL)

For more information, see “Selection

Lists-Overview” on page 157.

The DDS keywords can be specified in any order; however, the subfile record format (SFL) must precede

the subfile control record format (SFLCTL).

You can use option indicators to condition many of the DDS subfile keywords.

You can specify a maximum of 512 subfiles in a display file, since the maximum number of record

formats allowed in a display file is 1024. No more than 12 subfiles can be active at the same time to the

same display station. One or more active subfiles can be displayed at the same time on the display

station. A subfile must contain at least one field that can be displayed, and the subfile record format must

not overlap the subfile control record format. If these records overlap, the display file cannot be created.

All named fields in a subfile record, including fields that are not input-capable, are returned to the

program.

If any input data validity checking is specified for the subfile record, the validity checking is performed

before any roll function is performed. If the data fails validity checking, the roll function is not

performed.

When the relative record number of the record written to the subfile equals the subfile size, the system

sends the program a CPF5003 message indicating that the subfile is full. (Not all records need to be

active; that is, this message is sent even if the only record written to the subfile was the last record in the

subfile.) If the subfile size does not equal the page size and the program then writes more records to the

subfile, the system automatically extends the subfile as additional records are added. The program is not

Chapter 4. Displaying Groups of Records Using Subfiles 93

notified that the subfile has been extended. (A subfile cannot be extended past 9999 records.) Also, if the

subfile size equals the page size, the program is not notified that the subfile is full unless the last record

written to the subfile occupies the last line available on the subfile display area.

Processing of an extended subfile is less efficient because the extended space is not connected with the

subfile. You can avoid extension by specifying a larger subfile size, but you will be wasting space if the

extended space is used very seldom or never.

Figure 21 illustrates the order in which some of the DDS keywords used for subfile control are processed

at run time:

Using a Subfile in a Program

To use a subfile, you perform the following basic operations in your high-level language program:

1. Initialize the subfile. One way to initialize the subfile is to read records from a database file and write

them to the subfile. Place the records in the subfile one at a time until the subfile is full or until there

are no more records.

Yes

Yes

Yes

Yes

Initialize
subfile
(SFLINZ)

Delete
subfile
(SFLDLT)

Clear
subfile
(SFLCLR)

Display
subfile
(SFLDSP)

No

No

No

No

Exit

Initialize
subfile

Subfile
active

Subfile
active

Subfile
active

Display
subfile
(SFLDSP)

Delete
subfile

Clear
subfile

Display
subfile

Display
subfile

Yes

Yes

Yes

Yes

No

No

No

Start

RSLH181-0

No

Figure 21. DDS Keyword Processing Order for Subfile Control

94 Application Display Programming V6R1

2. Send the subfile to the display in one output operation using the subfile control record format.

3. After the user reviews the records, changes them, or enters new records (depending on the function of

the subfile), read the subfile control record format.

4. Process each record in the subfile individually, updating the database file or writing new records to

the database file as required. If the function of the subfile is to update records, the program need only

process the changed records by using the READC operation in ILE RPG or the Read Subfile Next

Modified verb in ILE COBOL.

 A display file that uses subfiles may display only a portion of a subfile at a time. The portion that is

displayed is called a subfile page. The data entered into an input-only field on a subfile display goes to

the subfile when a function key (such as a Roll key) is pressed. The field then displays a value in the

subfile, and what happens when the Enter key is pressed depends on the application code.

Note: In a READC operation in ILE RPG, the data is moved from the subfile to the program. It does not

remove it from the subfile, and it will continue to be displayed in the input-only field as if the

fields were initialized to that value. Otherwise, it would appear that the subfile was empty when

the data was actually there.

If the subfile is processed (for example, by an UPDAT operation in RPG), then the data is removed from

the subfile, and the input-only fields are blanked out, reflecting the true condition of empty fields. This

should be done after the READC operation moves the data to the program.

File

Subfile

Program

I/0 Area

Database
File

RV2W029-3

File

Subfile

Program Display

RV2W030-2

File

Subfile
Program

I/0 Area

RV2W031-2

Data-
base
File

Chapter 4. Displaying Groups of Records Using Subfiles 95

Requesting I/O Operations for a Subfile

An I/O request by a calling program to a subfile record format either writes a record to a subfile or reads

a record from a subfile but never causes actual I/O to the display. To write subfile records to a display,

the program must issue a request to the subfile control record format.

The valid requests that can be made to a subfile depend on whether the request is made to the subfile

record format or the subfile control record format.

Requesting I/O Operations for a Subfile Record Format

By requesting the correct I/O operation for a subfile record format, you can do the following:

v Add a record (passed from a program) to a specified location in a subfile

v Update an active record that already exists in the subfile

v Read an active record at a specified location in the subfile

v Read the next changed record in the subfile that is greater than the relative record number previously

read with a get-relative or get-next-changed operation

Adding a Record at a Specified Location in a Subfile

The put-relative operation adds a record (passed from a program) at a specified location in a subfile.

The location must be a valid relative record number in the subfile. The minimum relative record number

is always 1. If the subfile size equals the subfile page, the maximum relative record number value is the

subfile size value. If the subfile size is greater than the subfile page, the maximum relative record number

value is 9999 because the system automatically extends the subfile as required. In addition, the relative

record number cannot be the number of an active record already in the subfile. The relative record

number is ignored when field selection is specified for the subfile record.

When a put-relative operation adds a record at the last record location (the subfile size value) in the

subfile, a subfile-full condition occurs (message CPF5003). Both ILE RPG and ILE COBOL have special

support for notifying the application program of this condition. See the appropriate high-level language

manual.

The contents of input-capable fields without a default value specified are handled as follows:

v Numeric fields are initialized to zeros

v Character fields are initialized to blanks

v Floating point fields are initialized to nulls

Updating an Active Record in the Subfile

The update operation updates an active record that already exists in the subfile.

The active record must have been read before the update operation by a get request (either get relative or

get-next-changed). No other I/O operations may be performed on the subfile to be updated between the

read and the update. In addition, the subfile being updated may not be displayed again between the read

and the update (for example, using subfile roll or SFLDROP processing).

Notes:

1. Some high-level languages do not allow I/O to any format in the display file between the read and

the update of a single subfile record in the display file. Refer to the documentation for the high-level

language you are using for more information.

2. If field selection is specified for the subfile record, only the fields that were selected when the record

was placed in the subfile can be updated. Selecting different fields will cause results that cannot be

predicted.

96 Application Display Programming V6R1

Reading an Active Record at a Specified Location in the Subfile

The get-relative operation reads an active record at a specified location in the subfile.

The location must be a valid relative record number in the subfile. The entire record, including response

indicators (defined at the file level and on fields in a subfile record), input, output, output/input, and

hidden fields, is passed to the program, the relative record number is placed in the input/output

feedback area, and the record is no longer identified as a changed record. Response indicators defined at

the file level are always returned as off. Response indicators defined on fields in a subfile record, such as

the BLANKS or CHANGE keywords, are returned as on or off depending on the information in the field

at the time the get operation was done.

If the record specified on the get-relative operation is not active, a not valid record number condition

occurs (message CPF5020). This condition becomes a record-not-found condition in some high-level

languages. See the appropriate high-level language manual.

Notes:

1. The get-relative operation and get-next-changed operation both update the relative record number in

the input/output feedback area. Subsequent get-next-changed-record requests retrieve sequentially

changed records greater than this relative record number.

2. The get-relative and get-next-changed operations do not process input data for overlapping fields in a

subfile. The record returned to the program contains the data already existing in the buffer prior to

the read operation for overlapped fields. If this is a problem, use the subfile initialize function to

ensure all subfile fields are cleared.

Reading the Next Changed Record in a Subfile

The get-next-changed operation reads the next changed record in the subfile that is greater than the

relative record number previously read with a get-relative or get-next-changed operation.

If the get-next-changed operation is used as the first read operation, the first changed record in the

subfile is read. The entire record, including response indicators (defined at the file level and on fields in a

subfile record), input, output, output/input, and hidden fields, is passed to the program, the relative

record number is placed in the data management feedback area, and the record is reset to a not changed

record. Response indicators defined at the file level are always returned as off. Response indicators

defined on fields in a subfile record, such as the BLANKS or CHANGE keywords, are returned as on or

off depending on the information in the fields at the time the get operation was done.

If there are no more changed records in the subfile, a message (CPF5037) indicating that the last changed

record has already been retrieved, is sent to the program. See the appropriate high-level language manual

for a description of how this condition is reported to your program.

If a record retrieved by a get-next-changed operation is updated and the SFLNXTCHG keyword is

specified for an updated record, the updated record is set again as a changed record. This allows the

program to ensure that the user has changed the record. For example, if the program detects an error in a

record, it is advantageous to require the user to correct the error. The use of the SFLNXTCHG keyword

allows the program to read that record again on a get-next-changed operation so it can continue to reject

the record until the error has been corrected. The next get-next-changed operation does not retrieve this

updated record. The record cannot be retrieved again with a get-next-changed operation until all the

changed records following it in the subfile have been processed. This is because the changed records are

accessed sequentially and the sequence does not start at the beginning until after the message indicating

that there are no more changed records in the subfile has been sent to the program. A get-next-changed

operation following this message gets the first changed record in the subfile. Because no I/O operation

has been issued to the display, any changed record would be a record that was processed using the

SFLNXTCHG keyword.

Chapter 4. Displaying Groups of Records Using Subfiles 97

Notes:

1. The get-relative operation and get-next-changed operation both update the relative record number in

the input/output feedback area. Subsequent get-next-changed-record requests retrieve sequentially

changed records greater than this relative record number.

2. The get-relative and get-next-changed operations do not process input data for overlapping fields in a

subfile. The record returned to the program contains the data already existing in the buffer prior to

the read operation for overlapped fields. If this is a problem, use the subfile initialize function to

ensure all subfile fields are cleared.

Requesting I/O Operations for a Subfile Control Record Format

By requesting the correct I/O operation for a subfile control record format, you can do the following:

v Display subfile records

v Place the subfile records on the display into the subfile for processing by the program

v Display and process subfile records at the same time

Displaying Subfile Records

You can display subfile records by issuing a write operation to the subfile control record format.

You can control the write operation using the following DDS keywords:

SFLDSP Display the subfile.

SFLDSPCTL Display the subfile control record.

SFLCLR Clear the subfile of active records.

SFLDLT Delete the subfile.

SFLINZ Initialize the subfile with active records, or if the SFLRNA keyword is specified, with

inactive records. When the subfile is initialized, all option indicators in the subfile record

are assumed to be off.

SFLEND Notify the user when the last available record is displayed.

SFLRCDNBR Display the specified page of the subfile.

Note: These keywords are described under “Describing Subfiles in Your DDS Source” on page 89.

Placing Subfile Records on the Display for Processing

A read operation must be issued to a displayed record format in order for the subfile records on the

display to be placed into the subfile for processing by the program. The subfile records from the display

are placed in their corresponding record positions in the subfile.

Displaying and Processing Subfile Records at the Same Time

The write-read operation is a single operation that combines the write and read operations and is more

efficient than a single write operation followed by a single read operation.

Recognizing Subfile I/O Requests in High-Level Languages

Table 14 shows the I/O requests supported by the system and the equivalent high-level language

operations:

 Table 14. Subfile Operations Supported by the System and Equivalent HLL Commands

Operation ILE C/C++ Function ILE RPG Operation

ILE COBOL

Statement BASIC Statement

Put Relative _Rwrited WRITE, output

specifications

WRITE SUBFILE WRITE REC =

98 Application Display Programming V6R1

Table 14. Subfile Operations Supported by the System and Equivalent HLL Commands (continued)

Operation ILE C/C++ Function ILE RPG Operation

ILE COBOL

Statement BASIC Statement

Update _Rupdate UPDAT REWRITE SUBFILE REWRITE REC =

Get Relative _Rreadd CHAIN READ SUBFILE READ REC =

Get Next Changed _Rreadnc READC READ SUBFILE

NEXT MODIFIED

READ MODIFIED

Write _Rwrite WRITE WRITE WRITE

Read _Rread READ READ READ

Write-Read _Rwriterd, _Rformat,

_Rpgmdev

EXFMT

Controlling the Appearance of Subfiles

Records in a subfile can be displayed either vertically or horizontally. In a vertically displayed subfile, a

record is displayed on one or more lines, with each record beginning a new line (see Figure 22). In a

horizontally displayed subfile, a record is complete on one line, and more than one record is displayed on

a line (see Figure 23). You can specify that a subfile is to be displayed horizontally by using the SFLLIN

keyword to define the number of spaces between each subfile record on a display line. Figure 24 on page

100 shows an example of a vertical subfile and a horizontal subfile being displayed at the same time.

.

.

.

.

RSLH702-0

Record 1
Record 2
Record 3
Record 4

Figure 22. Vertically Displayed Subfile

Record1
Record2
Record3
Record4

Record9
Record10
Record11
Record12

Record5
Record6
Record7
Record8

(someotherrecord)

RSLH703-0

Figure 23. Horizontally Displayed Subfile

Chapter 4. Displaying Groups of Records Using Subfiles 99

If a subfile is larger than the space allowed for the subfile on the screen, the user can roll the display

from one group of records in the subfile to another. Each group of records displayed at the same time is

called a page. When you create a display file with a subfile, you must specify the size of the page for a

subfile by specifying the number of records in the page (SFLPAG keyword). Usually page size is based

on the number of lines available on the display. You must also specify the size of the subfile by specifying

the number of records in the subfile (SFLSIZ keyword).

Page size and subfile size can be the same; that is, all records in the subfile fit on one page. When page

size equals subfile size, variable-length subfile records are supported. One record can take up only a

single line while another record can take up more than one display line. Each record is placed in the first

record position available in the subfile; this position is always a new line. In addition, the SFLDROP and

SFLROLVAL keywords are ignored by display station support when page size equals subfile size.

For more information on page size and subfile size, see “Specifying Subfile Size Equal to Page Size” on

page 102 and “Specifying Subfile Size Not Equal to Page Size” on page 103.

If records are to be displayed horizontally, the number of records to be displayed in a subfile (SFLPAG

keyword) is adjusted so that the last line on the screen can be used to display a full line of records. For

example, if the number of spaces between each record on a line (SFLLIN keyword) is specified such that

six records fit on a line and 20 is specified for the page size (SFLPAG keyword), 20 is changed to 24,

which is the nearest multiple of six. The number of records in the subfile (SFLSIZ keyword) is

incremented by the same amount.

Note: For the initial display of a subfile, the more records placed in a subfile before it is displayed, the

slower the response time.

Displaying Horizontal Subfiles with Display Modes

You can use the display mode (DSPMOD) keyword to specify which of the two modes (or display sizes),

24x80 or 27x132, you want to use for your display station.

When changing display modes, the display is cleared but the data is not cleared from the subfile. SFLDSP

or SFLDSPCTL must be in effect for DSPMOD to be active in the control record.

The following example shows how to specify DSPMOD with subfiles:

RSLH704-0

Record1
Record2
Record3
Record4

Record5
Record6
Record7
Record8

RecordA
RecordB
RecordC
RecordD
RecordE

Figure 24. Horizontally and Vertically Displayed Subfiles Displayed at the Same Time

100 Application Display Programming V6R1

In the previous example, if the user’s program turns indicator 10 off and issues a write-read operation to

the subfile control record format (SFLCTLR), the subfile is displayed as follows:

v In 27 by 132 (*DS4) mode, because indicator 10 for the DSPMOD keyword is off.

v Horizontally, because SFLLIN is specified. The SFLLIN value indicates the number of bytes between

records. Because each record is 30 bytes long and the space between each record is 4 bytes long, four

records can be displayed on one horizontal line, (4 x 30) + (3 x 4) = 132 bytes. The subfile is displayed

on three lines because SFLPAG(12) is specified.

The following example shows the subfile displayed in *DS4 mode.

 If the user presses the Enter key, control is returned to the user’s program. If the user’s program turns on

indicator 10 and then issues another write-read operation to the subfile control record format (SFLCTLR),

the subfile is displayed as follows:

v In 24 by 80 (*DS3) mode, because indicator 10 for the DSPMOD keyword is on.

v Horizontally, because SFLLIN is specified for the *DS3 mode. If SFLLIN was not specified for the *DS3

mode, the subfile would have been displayed vertically. If the SFLLIN keyword is to be used for more

than one screen size, a screen size condition name for each secondary screen size is required. Because

each record is 30 bytes long and the space between each record is 6 bytes long, two records can be

displayed on one horizontal line, (2 x 30) + 6 = 66 bytes). The subfile is displayed on six lines because

SFLPAG(12) is specified. To ensure other records are not erased, the SFLPAG may need to be specified

for the secondary screen size.

The following example shows the subfile displayed in *DS3 mode.

 RECORD 1 RECORD 7

 RECORD 2 RECORD 8

 RECORD 3 RECORD 9

 RECORD 4 RECORD 10

 RECORD 5 RECORD 11

 RECORD 6 RECORD 12

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A DSPSIZ(*DS4 *DS3)

 A R SFLR SFL

 A FLD1 8 O 1 5

 A FLD2 7 I 1 16

 A FLD3 7 B 1 24

 A R SFLCTLR SFLCTL(SFLR)

 A SFLDSP

 A SFLDSPCTL

 A SFLSIZ(60)

 A SFLPAG(12)

 A SFLLIN(4)

 A *DS3 SFLLIN(6)

 A 02 SFLEND

 A 10 DSPMOD(*DS3)

 A

 A

Figure 25. Sample DDS Using DSPMOD with Subfiles

 RECORD 1 RECORD 4 RECORD 7 RECORD 10

 RECORD 2 RECORD 5 RECORD 8 RECORD 11

 RECORD 3 RECORD 6 RECORD 9 RECORD 12

Chapter 4. Displaying Groups of Records Using Subfiles 101

Specifying Subfile Size Equal to Page Size

You must specify the size of the subfile and the number of subfile records to be displayed at one time

with the SFLSIZ and SFLPAG keywords. The use of subfile size equals page size is recommended when

the number of subfile records to be displayed will fit on one page or when the number of records to be

placed in the subfile is unknown and large. It is not an efficient use of resources to retrieve many

database records to fill a large subfile if the user normally finds the needed information on the first page.

When subfile size equals page size, the system does not automatically support the use of the Roll Up and

Roll Down keys. If you want the user to roll through the subfile using these keys, you must specify the

ROLLUP or ROLLDOWN keyword in the subfile control record, and your program must handle the roll

up or roll down function.

For example, if a subfile is used to allow the user to search through a long list, you can specify SFLSIZ

equals SFLPAG and ROLLUP on the subfile control record:

 When the user presses the Roll Up key, indicator 20 is set on and control returns to the program. In your

program, you would:

v Clear the subfile (a write operation to the subfile control record with the SFLCLR keyword in effect).

v Use the indicator to control a return to the logic that fills the subfile with another page of records.

v Display the new subfile page.

You could also allow the display station user to press a CFnn key to return to the start of the search.

When the user presses the CFnn key, the associated indicator is set on and control returns to the

program. In your program, you would:

v Clear the subfile.

v Use the indicator to control a return to the logic that built the first subfile page based on the search

code entered. (The program needs to keep the original search code in order to do this.)

Using the ROLLDOWN keyword when subfile size equals page size requires more lines of code in the

program because the program must keep track of the record position in the subfile and in the database

file.

When the subfile size equals page size, you can use field selection and variable-length records in the

subfile. If you use field selection, consider the following:

v If the fields are selected through the use of option indicators, the relative record number is ignored and

each record is placed in the first available record position in the subfile.

v If a record is being updated, the field selection that does not match that on the original output is

ignored. For example, assume that FIELD1 and FIELD2 are selected when the record is placed in the

subfile. If the update selects FIELD2 and FIELD3, fields would overlay the original FIELD1 and

FIELD2 fields, and the results could not be predicted.

v If field selection is specified on the subfile record, the number of records that can be displayed on the

screen depends on the number of fields selected. When field selection is specified, the SFLPAG(value)

keyword specifies the number of screen lines available to display the subfile record. In other cases, the

SFLPAG(value) keyword specifies the number of subfile records that can be displayed at one time.

v The SFLFOLD, SFLDROP, and SFLROLVAL keywords are ignored.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLCTLR SFLCTL(SFLRCD)

 A SFLSIZ(16)

 A SFLPAG(16)

 A ROLLUP(20 ’Roll Up’)

Figure 26. Sample DDS Using SFLSIZ, SFLPAG, and ROLLUP Keywords

102 Application Display Programming V6R1

When variable-length records are used, each record in the subfile is displayed beginning on the first

available line on the page. If you use field selection for variable-length records, each record can take up a

different number of lines on the display. Therefore, the number of records that actually fit in the subfile

depends on the field selection of each record written to the subfile. The following shows an example of

the DDS for a variable-length record:

 When indicator 80 is on, each record in the subfile fits on one line. However, when indicator 80 is off,

each record uses two lines on the display.

Another typical use of variable-length records is where two or more entirely different formats are used to

make up one format. In this case, each field would be separately conditioned by option indicators so that

one record format might use multiple lines while another format uses only one line.

Specifying Subfile Size Not Equal to Page Size

Subfile size not equal to page size should be used when a finite number of records can be placed in the

subfile and that number is small (for example, 50). The SFLSIZ keyword specifies the subfile size. The

system allocates space to contain the subfile records based on the value specified for SFLSIZ. You should

specify a value equal to the number of records that you normally have in the subfile. If your program

places a record with a relative record number larger than the SFLSIZ value into the subfile, the system

extends the subfile to contain it (up to a maximum of 9999 records).

When the subfile size is not equal to the page size, the use of the Roll Up and Roll Down keys is

automatically supported.

To inform the user that there are more records in the subfile, use the SFLEND keyword on the subfile

control record. When SFLEND is in effect (for example, the option indicator is on), a + (plus sign) is

placed in the lower position to the extreme right of the screen on each page except the last page. On the

last subfile page, the + is replaced with a blank.

When the subfile size is not equal to page size, you can use the SFLROLVAL keyword to allow the user

to enter a value to specify how many records should be rolled up or down when the appropriate key is

pressed. If the SFLROLVAL keyword is not used, the subfile is rolled by the SFLPAG value except for

subfiles using SFLFOLD or SFLDROP. If the SFLFOLD or SFLDROP keyword is used, more records are

displayed than the SFLPAG value when records are displayed in the truncated format. For truncated

records, the display rolls by the number of records displayed in the truncated format. When the

SFLROLVAL keyword is used and the Roll Up key is pressed, the uppermost record number in the

displayed subfile is added to the roll value to determine the new uppermost record number. If this value

is greater than the last record in the subfile, the last full page of records is displayed. If the Roll Up key is

pressed when the last subfile page is displayed and the roll value is not less than the page size value, an

error message is issued. If the roll value is less than the page size value, the roll function is performed.

Variable-length records and field selection cannot be used when the subfile size is not equal to the page

size.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLRCD SFL

 A ITMNBR 8Y 0 6 2

 A ITMDSC 15 6 11

 A QTYOH 4 0 6 28

 A LSTPC 7 2 6 39

 A ALLOH 8Y 0 6 49

 A SLSMO 10 2 6 63

 A N80 SLSYR 12 2 7 7

 A N80 CSTYR 12 2 +3

Figure 27. Sample DDS for a Variable-Length Record

Chapter 4. Displaying Groups of Records Using Subfiles 103

A technique to improve performance when you are using a multiple page subfile is to write only one

page of subfile records at a time but use the operating system support to roll through the subfile. To do

this, you need to define the ROLLUP keyword in DDS with a response indicator and also use the

SFLRCDNBR keyword. In your program, you would write the records needed to fill one subfile page and

then display that page. When the user wants to see more records, he or she presses the Roll Up key. The

program then writes another page of records to the subfile, places the relative record number of a record

from the second page into the SFLRCDNBR field, and displays the record.

The second page of subfile records is now displayed, and if the user presses the Roll Down key, the roll

down is handled by the system. If the user presses the Roll Up key while the first page is displayed, the

system will also handle the roll up. The program is notified only when the user attempts to roll up

beyond the records currently in the subfile. The program would then handle any additional roll up

requests in the same manner as for the second page. When you use this technique, the subfile appears to

be more than one page because of the use of the roll keys. Yet, you can maintain good response time

because the program only fills one subfile page before writing it to the display.

Checking Validity on Subfile Data

In addition to the DDS validity checking keywords (CHECK, COMP/CMP, RANGE, and VALUES), you

can also do validity checking on subfile data in your program and require the user to correct the error.

For example, assume that you are using a subfile for an order entry program and you want to check the

item number field to be sure it is a valid order number. You also want to check the quantity ordered field

to ensure there are enough items on hand to fill the order. To do this, you can use the SFLNXTCHG

keyword on the subfile record (SFL) to allow your program to diagnose the errors and require the user to

correct them. The following DDS shows an example of using the SFLNXTCHG keyword:

 When the program detects an error, it sets on the indicator that conditions the SFLNXTCHG keyword

and issues a write operation to the subfile control record with the SFLDSP keyword in effect. The field in

error is displayed in reverse image, and the cursor is positioned at that field. The associated error

message is also displayed. The user then corrects the error.

A decision you must make when using the SFLNXTCHG keyword is whether to allow the user to change

the subfile fields that were not in error. If you do not want the display station user to change those fields

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R ORDENTD

 A 1 30’ORDER ENTRY DISPLAY’

 A 3 2’Enter customer number:’

 A CUST 5 3 25

 A R SFLRCD SFL

 A 61 SFLNXTCHG

 A LINNBR 2 7 4

 A ITMNBR 5 B 7 9

 A 40 DSPATR(RI PC)

 A QTYORD 4 B 7 20

 A 35 DSPATR(RI PC)

 A R SFLCTLR SFLCTL(SFLRCD)

 A SFLSIZ(5)

 A SFLPAG(5)

 A 55 SFLDSP

 A 50 SFLDSPCTL

 A 30 SFLCLR

 A 10 SFLINZ

 A 40 SFLMSG(’Item number not valid’ 40)

 A 35 SFLMSG(’Qty not available’ 35)

Figure 28. Sample DDS Using the SFLNXTCHG Keyword

104 Application Display Programming V6R1

you can protect them with the DSPATR(PR) keyword. For those fields you do not want changed, the

DSPATR(PR) keyword must be in effect only when the SFLNXTCHG keyword is in effect. If you allow

the user to change the fields, you can:

v Define hidden fields for those fields that are to be checked.

v Move the data originally entered by the user into the hidden fields when an error occurs on a subfile.

v Compare the data in the hidden fields to the fields just read to identify which fields have been

changed so you can update the records that have already been processed when the user makes the

changes.

Displaying Error Messages from Subfiles

You can use a subfile to display messages for multiple errors. The messages to be placed in the subfile

are on a program message queue. Each message written to the subfile is displayed on a separate line and

is truncated, if necessary. Each message line contains an attribute character in position 1 that is displayed

as a blank, followed by the message text. For the 24 by 80 display mode, 76 characters are displayed. For

the 27 by 132 display mode, 128 characters are displayed. Because both the message identifier and the

message data are available from the program message queue, message help and substitution text are

supported for the messages placed in a message subfile. If the SFLMSGRCD keyword is specified, the

SFLPGMQ and SFLMSGKEY keywords must also be specified.

The following shows an example of the DDS for a message subfile:

 The SFLRCDNBR(CURSOR) keyword is used to position the cursor at the first displayed character in the

message subfile that is specified in the SFLRCDNBR field so the Roll Up and Roll Down keys will apply

to the message subfile.

For information about sending and receiving messages and about the program message queue, see the

Messages section in the Control language topic collection in the i5/OS Information Center. Message

subfiles are the only kind of subfiles supported for CL programs and for ILE C/C++ programs.

Positioning the Cursor on the Displayed Subfile

The DSPATR(PC) keyword lets you position the cursor for each page of the subfile record that is

displayed. Write and update operations can be used to control DSPATR(PC) for:

v The initial display of subfile records. (A write or write-read operation to the subfile control record

when the SFLDSP and SFLDSPCTL keywords are used.)

v Subfile records displayed using a roll key or a fold or truncate key (SFLDROP or SFLFOLD keywords).

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R MSGSFL SFL

 A SFLMSGRCD(14)

 A MSGKEY SFLMSGKEY

 A PGMQ SFLPGMQ

 A R MSGCTL SFLCTL(MSGSFL)

 A SFLSIZ(8)

 A SFLPAG(8)

 A 50 SFLDSP

 A 55 SFLDSPCTL

 A 60 SFLINZ

 A PGMQ SFLPGMQ

 A NBR 4 0H SFLRCDNBR(CURSOR)

 A

Figure 29. Sample DDS for a Message Subfile

Chapter 4. Displaying Groups of Records Using Subfiles 105

Positioning the Cursor Initially

The cursor is positioned by the first of the following conditions that applies:

v The CSRLOC keyword on the subfile control record.

v The DSPATR(PC) keyword within the records being displayed.

v The DSPATR(PC) keyword within a field in the subfile control record.

v The SFLRCDNBR(CURSOR) keyword within the subfile control record.

v If nothing is specified, the cursor is positioned at the first input-capable field on the display.

Note: If the keyboard is unlocked prior to the output operation that displays the subfile, explicit cursor

positioning is not performed.

Use the keywords in the following order:

v The CSRLOC keyword can be used to position the cursor anywhere on the screen.

v The DSPATR(PC) keyword can be used to position the cursor at any field in the first record displayed

when the output operation specifies the SFLDSP keyword.

v The DSPATR(PC) keyword can be used to position the cursor at any field of the subfile control record.

v The SFLRCDNBR(CURSOR) keyword can be used to position the cursor at the first input-capable field

of the record whose record number is used to select which page is to be displayed first. If no input

fields exist, the cursor is positioned at the first selected output field in that record.

v If neither the DSPATR(PC) nor SFLRCDNBR(CURSOR) keyword is used, the cursor is positioned at the

first input-capable field on the display.

Positioning the Cursor When a Roll Key Is Used

The positioning of the cursor when a roll key is used depends on whether the DSPATR(PC) keyword is

used:

v If the DSPATR(PC) keyword is not used, the cursor is positioned at the same location as when the roll

key was pressed.

v If the DSPATR(PC) keyword is used, the cursor is positioned at the first field in the displayed subfile

records with the DSPATR(PC) keyword in effect.

The following example illustrates both and shows part of the DDS for a subfile in which records are

displayed vertically. Customer number, name, address, city, and state are displayed. A user can change

customer name, address, city, and state. Customer number cannot be changed; it is an output field only.

The DSPATR(PC) keyword has been specified for the customer number field (CUST). Subfile size is 21

and page size is 7.

106 Application Display Programming V6R1

The initial display looks like this:

 The first seven records in the subfile are displayed and the cursor is positioned under the customer

number in the first record. The user moves the cursor to the third record, updates the address for that

customer, and moves the cursor to the customer number of the fourth record:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SUBFIL1 SFL

 A TEXT(’Subfile record’)

 A CUST 5 4 3DSPATR(PC)

 A NAME 20 B 4 10CHECK(LC)

 A ADDR 20 B 4 32CHECK(LC)

 A CITY 20 B 4 54CHECK(LC)

 A STATE 2 B 4 76

 A R FILCTL1 SFLCTL(SUBFIL1)

 A 50 SFLDSPCTL

 A 55 SFLDSP

 A SFLSIZ(21)

 A SFLPAG(7)

 A 60 SFLCLR

 A TEXT(’Subfile control record’)

 A OVERLAY

 A PROTECT

 A CA03(98 ’End of program’)

 A 2 2’NUMBER’

 A 2 10’NAME’

 A 2 32’ADDRESS’

 A 2 54’CITY’

 A 2 76’STATE’

Figure 30. Sample DDS Using the DSPATR(PC) Keyword

NUMBER NAME ADDRESS CITY STATE

41394 Sorensen and Walton
41395 Charland, Inc.
41316 Anderson’s Electric
41397 Morem Motors
41398 Polt Electronics
41399 Clark’s TV
41400 Jim’s Repair

500 5th Avenue
200 Madison Avenue
950 2nd Avenue
1300 Pine Street
240 Walters Place
560 3rd Street
700 4th Avenue

New York
New York
Atlanta
Atlanta
Chicago
Chicago
Chicago

NY
NY
GA
GA
IL
IL
IL

Cursor

RSLH709-0

Chapter 4. Displaying Groups of Records Using Subfiles 107

Now the user presses the Roll Up key to display the next seven records. The cursor is positioned under

the customer number in the first record:

 If the DSPATR(PC) keyword had not been specified and the user pressed the Roll Up key, the cursor

would have been positioned at the fourth record under customer number:

NUMBER NAME ADDRESS CITY STATE

41401 Adam’s Home Repair
41402 Jane’s Radio/TV
41403 Advanced Electronics
41404 Riteway Repair
41405 Fixtures, Inc.
41406 Hall’s Electric
41407 Electric House

121 Golden Circle
135 Ransam Drive
809 8th Street
443 Western Lane
607 9th Avenue
200 Main Street
903 East Place

Cursor

RSLH184-0

Chicago
St Paul
St Paul
New York
Chicago
St Paul
Atlanta

IL
MN
MN
NY
IL
MN
GA

108 Application Display Programming V6R1

Positioning the Cursor When a Fold or Truncate Key Is Used

When you use the SFLFOLD or SFLDROP keyword to assign a CFnn or CAnn key, cursor positioning is

handled the same way as described under “Positioning the Cursor When a Roll Key Is Used” on page

106. The cursor is positioned as specified for all displayed records, including those folded. When you use

the SFLFOLD or SFLDROP keyword to assign a CFnn or CAnn key, the cursor is positioned only for

those fields displayed. Cursor positioning specifications for fields in the folded portion of the record are

ignored.

Positioning the Cursor and Rolling When Two or More Records Are

Displayed

When you display two or more records at the same time, the position of the cursor determines the action

taken when the user presses a roll key, regardless of which record was written to the display last.

The cursor can be positioned in the roll-enabled area of the display or in the area that is not roll-enabled of

the display. A roll-enabled area is:

v A record without subfiles and with the ROLLUP/ROLLDOWN keyword in effect

v A subfile control record with the ROLLUP/ROLLDOWN keyword in effect

v A roll-enabled subfile, which is an active subfile with subfile size greater than page size

v An active subfile with subfile size equal to page size and the ROLLUP/ROLLDOWN keyword in effect

for its subfile control record

Based on the location of the cursor, the action taken when the user presses a roll key is as follows:

v If the cursor is positioned in the roll-enabled area at a roll-enabled subfile or at the subfile control

record for a roll-enabled subfile, the subfile is rolled. If the subfile is at the end of the subfile and the

corresponding ROLLUP/ROLLDOWN keyword is not in effect, the end-of-subfile message is sent to

the user. If the ROLLUP/ROLLDOWN keyword is in effect at the end of the subfile, control returns to

the program.

NUMBER NAME ADDRESS CITY STATE

41401 Adam’s Home Repair
41402 Jane’s Radio/TV
41403 Advanced Electronics
41404 Riteway Repair
41405 Fixtures, Inc.
41406 Hall’s Electric
41407 Electric House

121 Golden Circle
135 Ransam Drive
809 8th Street
443 Western Lane
607 9th Avenue
200 Main Street
903 East Place

Cursor

RSLH185-0

Chicago
St Paul
St Paul
New York
Chicago
St Paul
Atlanta

IL
MN
MN
NY
IL
MN
GA

Chapter 4. Displaying Groups of Records Using Subfiles 109

v If the cursor is positioned in the roll-enabled area at a record without subfiles with the

ROLLUP/ROLLDOWN keyword in effect, at a subfile control record with the ROLLUP/ROLLDOWN

keyword in effect, or at an active subfile with subfile size equal to page size and the

ROLLUP/ROLLDOWN keyword in effect for the subfile control record, control returns to the program.

v If the cursor is not positioned in the roll-enabled area, the system attempts to find the uppermost

roll-enabled area on the display and perform the action indicated, as listed previously. If there is no

roll-enabled area on the display, the command-key-not-valid message is sent to the user.

Note: Records that do not occupy display space (record formats with no fields, with hidden,

program-to-system, or message fields only, or with the CLRL keyword specified and no

input-capable fields; and message subfiles) are assumed to be at line 0. Therefore, these records

are considered to be uppermost on the display, and the system attempts to roll them first.

The following examples illustrate what action is taken, based on the location of the cursor, when two

records are displayed and the user presses a roll key.

In the following example, control returns to the program if the corresponding ROLLUP/ROLLDOWN

keyword is in effect. This occurs because the cursor is positioned at a record without subfiles and with

the ROLLUP/ROLLDOWN keyword in effect.

 In the following example, two subfiles with the subfile size greater than the page size and their control

records are displayed. The user positions the cursor in the bottom subfile control record. The bottom

subfile is rolled because the cursor is positioned at a roll-enabled subfile in the roll-enabled area of the

display.

Cursor

Nonsubfile
Record with
ROLLUP/
ROLLDOWN
in Effect

RV2W050-0

Subfile
with
SFLSIZ>
SFLPAG

NUMBER NAME ADDRESS CITY STATE

41394 Sorensen and Walton
41395 Charland, Inc.
41316 Anderson’s Electric
41397 Morem Motors
41398 Polt Electronics

500 5th Avenue
200 Madison Avenue
950 2nd Avenue
1300 Pine Street
240 Walters Place

New York
New York
Atlanta
Atlanta
Chicago

NY
NY
GA
GA
IL +

Enter next customer number:

110 Application Display Programming V6R1

In the following example, a subfile with the subfile size equal to the page size and the

ROLLUP/ROLLDOWN keyword in effect is written to the display first. A record without subfiles and

without the ROLLUP/ROLLDOWN keyword in effect is then written to the display. If the cursor is

positioned at either the subfile record or the second record, control returns to the program.

 In the following example, the first subfile has a subfile size greater than the page size but the

ROLLUP/ROLLDOWN keyword is not specified. The second subfile has a subfile size equal to the page

size but the ROLLUP/ROLLDOWN keyword is not specified. If the cursor is positioned at the second

subfile, the first subfile is rolled. In this position, the cursor is not in a roll-enabled area; therefore, the

NUMBER NAME ADDRESS CITY STATE

NUMBER NUMBER NUMBER DESCRIPITON QTY Price PRICE
ORDER LINE TOTAL

41401 Adam’s Home Repair
41402 Jane’s Radio/TV
41403 Advanced Electronics
41404 Riteway Repair
41405 Fixtures, Inc.

41401
41401

35900
35400

E35 Motor
F60 Pump

10
25

15.00
20.00

150.00
500.00

1
2

121 Golden Circle
135 Ransam Drive
809 8th Street
443 Western Lane
607 9th Avenue

Cursor

Chicago
St Paul
St Paul
New York
Chicago

IL
MN
MN
NY
IL

Subfile 2
with
SFLSIZ>
SFLPAG

RV2W051-0

Subfile 1
with
SFLSIZ>
SFLPAG+

Cursor

Nonsubfile
Record without
ROLLUP/
ROLLDOWN

RV2W052-0

Subfile
with
SFLSIZ>
SFLPAG

NUMBER NAME ADDRESS CITY STATE

41394 Sorensen and Walton
41395 Charland, Inc.
41316 Anderson’s Electric
41397 Morem Motors
41398 Polt Electronics

500 5th Avenue
200 Madison Avenue
950 2nd Avenue
1300 Pine Street
240 Walters Place

New York
New York
Atlanta
Atlanta
Chicago

NY
NY
GA
GA
IL +

Enter next customer number:

Chapter 4. Displaying Groups of Records Using Subfiles 111

system finds the uppermost roll-enabled area in the display and performs the roll function.

 In the following example, the subfile with a subfile size greater than the page size and without

ROLLUP/ROLLDOWN keyword is written to the display first. The record without subfiles and with

ROLLUP/ROLLDOWN keyword in effect is then written to the display above the subfile. If the cursor is

positioned within the subfile record, the subfile is rolled. If the cursor is not positioned within the subfile

record, the subfile is not rolled and control returns to the program.

NUMBER NAME ADDRESS CITY STATE

NUMBER NUMBER NUMBER DESCRIPITON QTY Price PRICE
ORDER LINE TOTAL

41401 Adam’s Home Repair
41402 Jane’s Radio/TV
41403 Advanced Electronics
41404 Riteway Repair
41405 Fixtures, Inc.

41401
41401

35900
35400

E35 Motor
F60 Pump

10
25

15.00
20.00

150.00
500.00

1
2

121 Golden Circle
135 Ransam Drive
809 8th Street
443 Western Lane
607 9th Avenue

Cursor

Chicago
St Paul
St Paul
New York
Chicago

IL
MN
MN
NY
IL

RV2W053-1

Subfile with
SFLSIZ>
SFLPAG
and without
ROLLUP/
ROLLDOWN

Subfile with
SFLSIZ=
SFLPAG
and without
ROLLUP/
ROLLDOWN

+

Identifiers Highlight Command Prompt Exit Help

==== Top-of-File ====
RTYP CMGR
==== Bottom-of-File ====

Select a Router identifier and press Enter.

RTYP Type of router.
-------- common user ID.
RTDN Default system name.
RMTN Name of Remote LU alias.
LCLN Name of Local LU alias.
MODN Mode name information.

Enter Esc=Cancel F1=Help

RSLH054-0

112 Application Display Programming V6R1

Understanding Subfile DDS and Program Logic-Example

The following shows the DDS that describes the customer name search subfile shown earlier in this

section. The DDS is followed by a description of the logic a program would use to process this subfile.

 The following is an example of the logic a user program would use to process the subfile just shown. A

write-read operation is a combined input and output operation. A read is an input operation. A write is

an output operation. See the appropriate high-level language manual for the operations that can be

performed in the high-level language program.

User Program

 1. Opens a file and issues a write-read operation to the NAMESR record format to prompt for a search

code.

User

 2. Enters a zip code in the search code field. The program uses the search code field as a key field to

find the first database record in the file with that key field. The program will build the subfile using

that record as the first record in the subfile.

User Program

 3. Obtains records (read operation) from the database file and places (write operation to SUBFIL1) them

in the subfile one record at a time until the subfile is full or there are no more records to place in the

subfile.

 4. When all records are in the subfile, issues a write-read operation to the subfile control record format

(FILCTL) with the following:

a. A + (plus sign) is displayed in the lower right corner of the screen when there are more records

than fit on one subfile page. Because the indicator for the SFLEND keyword is on, the system

replaces the + with a blank when the last subfile page is displayed.

b. The indicator for the SFLDSP keyword is on, so the first subfile page is displayed.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A** DISPLAY CUS220D CUSTOMER NAME SEARCH

 A CF03(99 ’End of Program’)

 A R NAMESR OVERLAY

 A 1 29’CUSTOMER NAME SEARCH’

 A 3 2’Search code’

 A SEARCH 5 I 3 15

 A R SUBFIL1 SFL

 A CUST 5 7 2

 A NAME 20 B 7 9

 A ADDR 20 B 7 31

 A CITY 20 B 7 53

 A STATE 2 B 7 75

 A R FILCTL SFLCTL(SUBFIL1)

 A 55 SFLDSPCTL

 A 50 SFLDSP

 A SFLSIZ(18)

 A SFLPAG(6)

 A 50 SFLEND

 A 60 SFLCLR

 A OVERLAY PROTECT

 A RCDNBR 2 0H SFLRCDNBR(CURSOR)

 A 45 5 2’NUMBER’

 A 45 5 9’NAME’

 A 45 5 31’ADDRESS’

 A 45 5 53’CITY’

 A 45 5 75’STATE’

Figure 31. Sample DDS Showing Customer Name Search Subfile

Chapter 4. Displaying Groups of Records Using Subfiles 113

c. The indicator for the SFLDSPCTL keyword is on, so the subfile control record is displayed.

d. The SFLRCDNBR(CURSOR) keyword is specified for a field. The program placed a value of 1 in

this field, so the subfile page that contains relative record number 1 is displayed first and the

cursor is positioned at the first input field in that record. (If no input field exists, the cursor is

positioned at the first selected output field or constant in that record.)

e. The constant field (heading line) indicators are on, so the constants in the subfile control record

are displayed.

f. The OVERLAY and PROTECT keywords are in effect in the subfile control record so that the

prompt (NAMESR) can remain on the display without being changed.

User

 5. Updates displayed records, using the roll keys to display different subfile records as needed. Presses

the Enter key after completing all updates to the subfile.

User Program

 6. Completes the input portion of the write-read operation to the subfile control record format. In this

example, the subfile control record does not contain any input fields. The input portion of the

write-read operation allows the display station user to enter data into the subfile.

 7. Issues the get-next-changed operation to the subfile record to process the first subfile record changed

by the user.

 8. Uses each changed record to update the corresponding database file record.

 9. Repeats steps 7 and 8 until a no-more-modified-records condition exists for step 7. When this

condition is detected, step 10 is performed.

10. Issues a write-read operation to the prompt (NAMESR) to determine if the program should end or

display another group of database records. The OVERLAY keyword is specified, so that the current

display contents for the subfile are left unchanged. If the user presses the CF1 key, which turns on

response indicator 99, the program will close the display file and end. If the user enters another

search code for another group of records to be displayed, step 11 is performed.

11. Issues a write operation to the subfile control record (FILCTL) with the following:

a. The indicator for the SFLCLR keyword is on, so the subfile is cleared of all records (the display is

unchanged).

b. The indicator for the SFLDSP keyword is off, so the contents of the display remains unchanged.

c. The indicator for the SFLDSPCTL keyword is off, so the subfile control record is not displayed

again.
12. Repeats steps 3 through 10. The subfile was cleared (SFLCLR keyword) in step 11 so that new

records can be placed in the subfile. The write operation to the subfile control record in step 4 has

the constant field indicator off so that heading information is not sent to the display again. As long

as the subfile control record remains on the display (no intervening write operations without the

OVERLAY keyword in effect have been performed), the fields do not have to be sent to the display

again.

114 Application Display Programming V6R1

Chapter 5. Defining Windows with Display Files

This chapter explains how to use the specialized DDS window keywords to create windows in your

applications. The DDS window keywords provide the simplest, most flexible method of creating

windows for a variety of purposes. For example, they allow you to use subfiles to present data in

windows, to have the system automatically save and restore the underlying display, and to position data

in the window by referring to positions in the window itself instead of positions on the full screen.

Use the DDS window keywords if your windows must use other DDS functions, such as subfiles, display

attributes, validity checking, and optioning. Also use the DDS window keywords when the window

contains multiple input fields, or if the window location can be varied.

If you have help information defined with DDS and are using the HLPRCD keyword to display it, the

WINDOW keyword can be used to easily display the information in a window.

The following sections describe the terminology used for windows, the functions of the window

keywords, and how to use the keywords for the following tasks:

v Creating windows

v Defining window borders

v Reading data from windows

v Changing window borders and contents

v Moving and duplicating windows

v Making two windows seem active at one time

v Making one window in a series stand out

v Removing windows

v Improving application performance by bypassing system save and restore operations

For examples on using the window keywords, see “Programming Examples” on page 128.

For some applications, you might want to use a different method of creating windows:

v Chapter 20, “Defining Online Help Information,” on page 393 describes how to create help windows

with the user interface manager (UIM). The UIM uses a different language from DDS. However, it

automates many help window functions for you and provides a simple way of adding online help

information to your existing applications.

v The IBM WindowTool/400 PRPQ, SC41-0050, describes how to create windows with the

WindowTool/400 PRPQ. Consider using this program if you use windows primarily to construct

application menus.

v Chapter 6, “Creating a Graphical Look for Displays” describes how to create menu bars, pull-down

menus, selection fields, continued-entry fields, and how to use edit masks using DDS keywords.

Window Terminology

A window is information that overlays part of the display. The user can view information inside the

window and the portion of the display that is not overlayed by the window. However, only the window

is active; the user cannot work with the underlying display. When more than one window is displayed,

only one window is active at a time.

The active window is the window subject to the most recent input or output operation. The active

window appears to be the topmost window on the display. It is the only part of the display with which

the work station user can interact.

© Copyright IBM Corp. 1997, 2008 115

A window remains on the display until your application or the system takes action to remove it.

Removing a window and overlaying a window are different operations. When a window is removed, it

no longer exists on the display, and you can no longer write to or read from it. When a window is

overlayed by another window, it might not be visible to the work station user; however, it is still

available for you to work with.

DDS Window Keywords

Four DDS keywords allow your applications to create and work with windows:

WINDOW (Window)

Creates a window on the display, changes the contents of an existing window, or makes an

existing but inactive window active again.

WDWBORDER (Window Border)

Specifies the color, display attributes, and characters of a window border.

WDWTITLE (Window Title)

Specifies the text, color, and display attributes for a title of a window. The title is embedded in

the top or bottom border of the window.

Note: Not all controllers support text in the bottom border of windows, nor the left and right

alignment of text in the top or bottom border.

RMVWDW (Remove Window)

Removes other windows from the display when a new window is displayed or when an existing

window is redisplayed as the active window.

USRRSTDSP (User Restore Display)

Prevents the i5/OS system from automatically saving and restoring the underlying display when

windows are displayed and removed. In some situations, save and restore operations are

unnecessary; bypassing them speeds up your application. You can also use the USRRSTDSP

keyword to make an earlier window in a series pop up and overlay later windows, and to make

two windows seem active at the same time.

For detailed reference information about each keyword, see the DDS topic collection in the i5/OS

Information Center.

Window Representation and Hardware Configuration

Window borders appear differently, depending on the type of display station and work station controller

you are using.

For more information on how windows appear on different hardware configurations, see “Hardware

Configuration” on page 139.

Creating Windows

The record-level keyword WINDOW allows a record format to be displayed inside a window. A

maximum of 12 windows can be created on a display at one time.

To create a window, write a record that specifies a WINDOW keyword. The first window record you

write must be a window definition record specifying the window size and its location on the display. The

window definition record places the window borders on the display. Then you can write the same

window definition record again or use one or more window reference records to complete the

specifications for the window.

116 Application Display Programming V6R1

Window Definition Records

A window definition record is a record containing a WINDOW keyword that defines the window size

and location. Size and location attributes include the position of the upper left corner of the window

border and the number of rows and columns within the window.

A window definition record must be the first record written for each window you display. It is the record

that actually creates the window and makes it visible on the display. The record can contain the same

types of fields or data found in any typical record. It can also contain a WDWBORDER keyword defining

the window border. (The WDWBORDER keyword can also be used at the file level.)

You can supply all the specifications for the window in the window definition record. You can supply

additional specifications by writing the same window definition record again, as you would when

displaying an error message in the window. You can also supply additional specifications by writing one

or more window reference records after you write the window definition record.

Window Reference Records

Window reference records provide additional data to be placed in the window. They allow you to display

more than one record format in a window.

Each window reference record contains a WINDOW keyword specifying the name of the window

definition record to which it applies. When the window reference record is written, the window

definition record being referred to must be on the display. If the referenced record is not on the display,

then a notify message stating that the window does not exist is returned to the application.

Window reference records do not contain size and position attributes, and any active WDWBORDER

keywords are ignored.

You can use as many window reference records as needed to complete the window. However, you do not

need to write any window reference records to display a window. You can display a window using only

a window definition record.

Chapter 5. Defining Windows with Display Files 117

Window Size and Location

The following diagram shows the parts of a window that is created when a window definition record is

displayed:

 This window is specified as having a depth of 13 rows (also known as lines) and a width of 19 columns

(also known as positions). The usable area inside the window borders is 12 rows deep and 19 columns

wide. Row 13 is reserved for messages; it cannot contain fields.

With its border, the window actually takes up additional rows and columns on the display. All windows

take up two more rows, one each for the top and bottom borders. Most windows also take up six more

columns:

v Two for border attributes

v Two for border characters

v One for the leading window attribute

v One for the continuation attribute on the right.

If a window starts and ends in the first and last columns of the full display, it takes up only four more

columns instead of six. If a window row overlays DBCS fields, that row requires the six columns

mentioned previously plus up to four more columns for DBCS shift-out and shift-in characters on each

side.

The window is positioned by the upper left corner of the border, which has a starting row position equal

to the top border row and a starting column position equal to the left border column. Fields that do not

fit within the window are diagnosed during file compilation. If the SLNO keyword is used and specifies

118 Application Display Programming V6R1

the starting line number, the DDS compiler flags any fields that do not fit within the window. If *VAR is

specified on the SLNO keyword and the run-time starting line number does not allow the entire record to

be displayed, an exception occurs.

The DDS compiler diagnoses window location problems when either the upper left window line or upper

left window position is specified as a constant. A run-time error occurs if a dynamically positioned

window does not fit on the display.

The special value, *DFT, can be specified in place of the start-line and start-position parameters on the

window keyword. *DFT indicates that the system will determine the start line and start position of the

window. The window is positioned relative to the cursor location. The system uses the following

sequence of rules to position the window when *DFT is used:

1. If the window will fit below the cursor position on the display, it is placed there. The top window

border is positioned one row below the cursor. If possible, the left window border is positioned in the

same column as the cursor; if not, the window is positioned as far to the left of the cursor as

necessary for it to fit on the display.

2. If the window will fit above the cursor position, it is placed there. The bottom window border is

positioned one row above the cursor. The window is positioned horizontally as described in step 1.

3. If the window will fit to the right of the cursor position, it is placed there. The right window border is

positioned in the next-to-last column of the display. If possible, the top window border is positioned

in the same row as the cursor; if not, the window is positioned as far above that as necessary for it to

fit on the display.

4. If the window will fit to the left of the cursor position, it is placed there. The right window border is

positioned two columns to the left of the cursor. The window is positioned vertically as described in

step 3.

5. If the window cannot be positioned in any of the above areas, it is placed in the bottom right corner

of the display.

Cursor Position

To position the cursor in a window, use the CSRLOC and DSPATR(PC) keywords in the same way as for

a full-screen display. The cursor is positioned with reference to the upper left corner of the usable area of

the window.

If *RSTCSR is specified on the WINDOW keyword, and the cursor is moved outside the usable area of

the active window, only the Print and Home command function (CF) keys are active. If the work station

user presses any other command function (CF) key, the alarm sounds and the cursor is moved back to its

position for the previous write operation. *RSTCSR is the default.

Note: On display stations attached to a controller that supports an enhanced interface for

nonprogrammable work stations, the cursor can be moved out of a window only with a mouse

when *RSTCSR is specified.

If *NORSTCSR is specified on the WINDOW keyword, the user may move the cursor out of the active

window and use any command function (CF) or command attention (CA) key.

Error Messages

When windows exist on a display and *MSGLIN is specified on the WINDOW keyword for the window,

any error messages are displayed on the last usable line of the active window. The last usable line in the

window is reserved for error messages; no records are displayed there. If the error message is longer than

the line, it is truncated to fit. When windows exist on a display and *NOMSGLIN is specified on the

WINDOW keyword for the window, any error messages are displayed at the bottom of the display or the

location defined by the MSGLOC keyword.

Help is available through the Help key for error messages displayed in windows.

Chapter 5. Defining Windows with Display Files 119

When messages reporting operational and keyboard errors, such as Function key not allowed, are

displayed, the keyboard is locked and the user must press the Error Reset key to continue.

An informational message, stating that mismatching shift-out and shift-in characters were sent to the

display, is placed in the job log under the following circumstances:

v The base display has a DBCS field that spans more than one line.

v A window is displayed and part of the DBCS field from the base display is on the window message

line.

v A function key is pressed that results in an operational or keyboard error.

A few message-related keywords function differently when used for windows:

v The ERRSFL keyword is ignored. Its function is performed only when there are no windows on the

display.

v The MSGLOC keyword is ignored if *MSGLIN is specified on the WINDOW keyword. Its function is

performed only when there are no windows on the display or when *NOMSGLIN is specified on the

WINDOW keyword.

v Messages resulting from the ERRMSGID, ERRMSG, SFLMSG, SFLMSGID, and DDS validity-checking

keywords are displayed in the window but do not lock the keyboard. Such messages do lock the

keyboard when displayed on full-screen displays.

Subfiles

A maximum of 24 subfiles can be active at any one time. A maximum of 12 subfiles can be displayed on

the base display or in a single window at any one time.

If a subfile is displayed in a window and the window is removed from the display, the subfile is not

deleted. The subfile remains active until the display file is closed or you explicitly delete the subfile.

DDS Help Records

If a window definition record is written to the display as a DDS help record, the current display is

suspended as it normally is for application help, and the application help record is written to the display

as a window. To avoid errors when using window records as help records, adhere to these requirements:

v Include the ASSUME keyword in the display file containing the help record. If the ASSUME keyword

is not present, the rest of the display is blank while the help window is displayed.

v Use a value of *YES for the Restore Display (RSTDSP) parameter when creating, changing, or

overriding the display file. When returning from help, RSTDSP(*YES) restores the suspended display

and puts the cursor back where it was when the Help key was pressed.

v Use variable line and position values in your window definition record to allow the operating system

to position the help window dynamically, according to cursor position. The system uses the same

sequence of rules to position the window as if *DFT were specified on the window keyword. These

rules are described in “Window Size and Location” on page 118. If the window definition record

specifies that only the line value or only the position value is variable, the same rules are followed.

However, the constant value is not changed.

Defining Window Borders

You can use the system defaults for your window borders or define them using the WDWBORDER

keyword. This keyword specifies three border components: color, display attributes, and characters. More

than one WDWBORDER keyword can be specified. You can use option indicators with the

WDWBORDER keyword.

You can use the WDWBORDER keyword at the file level, where it applies to each window definition

record in the file, or on individual window definition records. If you use it on window reference records,

a warning message is issued when the file is created.

120 Application Display Programming V6R1

The following sections describe window border defaults, how the system handles multiple window

border definitions, and how to use the WDWBORDER keyword to define UIM help window borders.

Border Defaults

When you do not use the WDWBORDER keyword, the system defaults are as follows:

 Border Element Default

Color Blue on color displays. On noncolor display stations, this

attribute is ignored.

Display attribute Normal (that is, no attributes such as highlighting or

reverse image)

Top and bottom border character Period (.)

Left and right border character Colon (:)

Top left and right corner character Period (.)

Bottom left and right corner character Colon (:)

Note: RUMBA/400 work stations and InfoWindow® II display stations attached to a controller that

supports an enhanced interface have solid-line window borders. For more information, see Table 15

on page 139.

Multiple Border Definitions

When the WDWBORDER keyword is specified at the file level and in a window definition record, the

parameter values of the keyword at the file and record level are combined. If the parameter values

conflict, the record-level parameter value is used. For example, if the following is specified at the file

level:

WDWBORDER((*COLOR RED) (*DSPATR RI))

and the following is specified at the record level:

WINDOW(2 5 10 20) +

WDWBORDER((*COLOR GRN) +

 (*CHAR ’........’))

then the window border consists of green periods in reverse image.

If more than one WDWBORDER keyword is specified at the same level, the parameters for the keywords

that are in effect are combined. If different values are specified for the same parameter, the parameter

value of the first keyword in effect is used. The values for individual components of the border are

determined when a window definition record is written. The border values are determined by the

following hierarchy:

1. Start with system defaults.

2. Override the defaults with any file-level border specifications.

3. Override any file-level border specifications with record-level border specifications.

The process is similar when more than one WDWBORDER keyword is in effect at the same level and the

keywords specify the same WDWBORDER component (color, attribute, or character). The first component

value is used. For example, assume that two WDWBORDER keywords are in effect at the file level:

WDWBORDER((*COLOR GRN

 *CHAR ’........’))

WDWBORDER((*CHAR ’---|||-|’))

and the following is specified at the record level:

WDWBORDER((*COLOR BLU))

Chapter 5. Defining Windows with Display Files 121

then the border component values are determined as follows:

1. Start with the defaults for each component.

2. Override the character component and color component defaults with the file-level values. Because

the character component is specified more than once, use the first character component value

specified.

3. Override the file-level color value with the record-level value.

The window border is constructed using the record-level border color, the first file-level border

characters, and the default border display attributes.

If a single WDWBORDER keyword does not specify all three border components, then those not specified

use the values from any other WDWBORDER keywords in effect; they do not use the defaults. In the

preceding example, this is demonstrated at the record level. Only the color component is specified.

However, because the character component is specified at the file level, the file-level value is used instead

of the default. Because the display attribute component is not specified at the record or file level, the

default is used.

UIM Help Window Borders

You can use the WDWBORDER keyword to specify the border attributes of help windows created with

UIM panel groups. Assume that you are using DDS for full-screen displays and the UIM for help

windows. If a window is on the display when the Help key is pressed, the UIM help window has the

same borders as the DDS window. If no windows are active but the WDWBORDER keyword is specified

at the file level or at the record level of a nonwindow record currently on the display, the system

determines the border attribute and character values for the UIM help window by combining the

file-level, record-level, and default values. Assume that no windows are currently displayed. First, a

nonwindow record with the WDWBORDER keyword specified is written to the display. A UIM help

window is then written to the display. The UIM help window borders use the attributes specified in the

WDWBORDER keyword on the nonwindow record.

Defining a Window Title

Use the window title (WDWTITLE) keyword to specify the text, color, and display attributes for a title of

a window. The title is embedded in the top or bottom border of the window. The length of the title can

be up to the number of positions specified on the window-positions parameter specified on the associated

window definition keyword.

Note: Some controllers do not support text in the bottom border of windows.

The WDWTITLE keyword must be specified on a record that contains a WINDOW keyword (in the

definition format). If a WINDOW keyword that refers to another window is also specified, a warning

message is issued.

Figure 32 on page 123 shows an example of a window title.

122 Application Display Programming V6R1

DDS for a Window Title-Example

 If the window defined by RECORD1 in Figure 33 is written to the display, the title will be whatever text

is contained within the TTL1 field. The title will appear centered in the top border of the window. If

indicator 01 is set off, the text will be green. If indicator 01 is set on, the text will be red.

If the window defined by RECORD2 is written to the display, the the title will be whatever text is

contained within the TTL2 field. The title will appear centered in the top border of the window. The title

will be in reverse image and yellow.

Reading Data from Windows

When windows are on the display, you can receive input only from the active window (that is, the last

window written to the display). If your application reads a window record and the window exists on the

display but is not the active window, then any windows subject to more recent input or output

operations are removed. The window containing the record to be read is restored, becoming the active

window. Then the record is read from the display.

 NONWINDOW DISPLAY RECORD

 Window Title.............

 : :

 : WINDOW #1 :

 : :

 : CUSTOMER NO. nnnnnn : :

 : :

 : NAME: ________________________ :

 : ADDRESS: _____________________ :

 : PHONE: _______________________ :

 : :

 : F12=CANCEL :

 : :

 :...................................:

F3=Xxxx F4=Xxxxxxxx F6=Xxxxx Xxxxx F7=Xxxx F12=CANCEL

Figure 32. Window Title-Display Example

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD1 WINDOW(6 15 18 51)

 A N01 WDWTITLE((*TEXT &TTL1) (*COLOR GRN))

 A 01 WDWTITLE((*TEXT &TTL1) (*COLOR RED))

 A FIELD1 5A B 2 2

 A FIELD2 20A B 8 5

 A TTL1 10A 0P

 A*

 A R RECORD2 WINDOW(8 20 9 30)

 A WDWTITLE((*TEXT &TTL2) +

 A (*COLOR YLW) +

 A (*DSPATR RI))

 A FIELD3 5A B 2 2

 A FIELD4 20A B 8 5

 A TTL2 10A 0P

Figure 33. DDS for a Window Title

Chapter 5. Defining Windows with Display Files 123

If your application attempts to read a window record and the window does not exist on the display, a

notify message stating that the window does not exist is returned. If the application attempts to read a

window record and the window is on the display but the record is not on the display, a message stating

that the record is not on the display is returned.

Changing Window Borders and Contents

To change the contents of a window already on the display, you must write that window’s window

definition record or a window reference record specifying that window to the display. To change the

borders of a window already on the display, you must write that window definition record to the display.

If a window definition record is written to the display and a window with that name already exists on

the display in the same position, a new window is not created. The new record is considered a normal

write operation to the existing window. If the new record specifies different border attributes or

characters, the new attributes or characters are displayed when the record is written.

Moving and Duplicating Windows

If a window definition record is written to the display and a window with that name already exists on

the display in a different position, a new window is created. The new window appears in the specified

position and has the same name as the existing window. To move the window, use the RMVWDW

keyword in the window definition record being written. The existing window with that name and any

other windows on the display are removed when the new window is written. In effect, the window is

moved. If you do not use the RMVWDW keyword, the same window appears on the display in two

different positions.

If a window reference record is written to the display and the specified window is on the display, the

record is written to the most recently created window with the specified name. To write to an earlier

window with that name, use a window definition record specifying the earlier window’s location.

Making Two Windows Seem Active at Once

Although only one window can be truly active at a time, you can make two windows appear to be active

at once. You might use this to display two windows side by side and allow the work station user to

switch back and forth between them.

To make two windows appear active:

1. Set up function keys to perform the switching action for the work station user. For example, you

might provide one key to page through data in the first window and another key to page through

data in the second window.

2. Write the first window to the display.

3. Write the second window to the display using the USRRSTDSP keyword. The USRRSTDSP keyword

keeps the first window from being saved when the second window is displayed. It keeps the second

window from being removed when the user returns to the first window and then keeps the first

window from being removed when the user returns to the second.

You can also use the USRRSTDSP keyword on the first window; it is not required on the first window

because using it on the second window keeps the first window and all subsequent windows from

being saved.

4. Be prepared to rebuild each window when the work station user presses the keys that perform the

switching action. Once the two windows are displayed, you must rebuild each window whenever the

user wants to move to it. The USRRSTDSP keyword keeps both windows from being saved and

restored, so they must be rebuilt at every switch. In effect, the system does not know that the

previous window existed on the display.

124 Application Display Programming V6R1

For more information about the USRRSTDSP keyword, see “Improving Application Performance” on

page 126.

Making One Window in a Series Stand Out

Assume that you display a series of windows that looks like this:

 Now you want to return to Window 3 and make it appear to pop out of the series, so that the display

looks like this:

 To make Window 3 stand out without removing Windows 4 and 5 from the display, take these steps:

1. Specify the USRRSTDSP keyword on Window 4 or any earlier window (that is, Windows 1 through

3). The USRRSTDSP keyword prevents the previous window and any subsequent windows from

being saved.

2. Rebuild Window 3 so that it looks the way it did before Window 4 was first displayed. Because

USRRSTDSP was used, the display was not saved when Window 4 was added to the display or at

any later time. Thus, none of the windows are removed from the display, and Window 3 appears to

pop out of the series.

For more information about the USRRSTDSP keyword, see “Improving Application Performance” on

page 126.

Removing Windows

When a window is removed, it no longer exists on the display, and you can no longer write to or read

from it. The window keywords provide you with several different ways to remove windows. Which

method you use depends on which windows you want to remove and which operation you want to

perform next. The different methods are described in the following sections.

Removing All Windows

Remove all the windows on a display in one of these ways:

1. Write to a nonwindow record. This allows you to remove all existing windows without displaying a

new window.

Chapter 5. Defining Windows with Display Files 125

2. Write to a window record that specifies the RMVWDW keyword. The RMVWDW keyword causes all

other windows on the display to be removed when the specified window is displayed. If there are no

other windows, the RMVWDW keyword is ignored, and no error is returned.

Removing More Recent Windows

To remove more recent windows that are overlaying the window you want to make active, read or write

to the window you want to make active. Assume that Window 3 exists on the display but is not the

active window. Windows 4, 5, and 6 were subject to more recent write operations than Window 3;

therefore, they overlay Window 3. To remove Windows 4, 5, and 6 so that Window 3 is visible and is the

active window, read or write to Window 3.

Improving Application Performance

In some cases, you can improve application performance by using the USRRSTDSP keyword to prevent

the operating system from saving and restoring the display. The following sections describe how the

system performs the operations, and how and when to use the USRRSTDSP keyword.

System Save and Restore Operations

If you do not use the USRRSTDSP keyword, the operating system automatically performs save and

restore operations for your application. Before a window is displayed, the system saves the display,

including any windows not being removed. When windows are removed, the system restores the display.

If a new window is being created on the display, the record that is active when the window is written is

saved, and the entire display remains as background data. Then the new window becomes active. The

saved record can be a window record or nonwindow record; the procedure is the same for both.

If a window record is written to the display to change or redisplay an existing window, any more recent

windows are removed without being saved, the target window is restored, the new record is written, and

the window becomes active.

If a nonwindow record is written to the display, any existing windows are removed without being saved,

the new record is written to the initial display, and the display becomes active.

Response Time

The time needed for the system to perform save and restore operations depends on your communications

setup and on the window being displayed.

The slowest response time occurs during the read and save operations performed when the first window

is added to a display. Assume that the window is of average size and complexity. If the work station is

attached to the system by a twinaxial, local area network (LAN), or other high-speed communications

line, response time is quick. If the work station is attached by a 2400-baud dedicated line, it takes

approximately 10 seconds to complete the read and save operations and then display the window. If the

line speed is increased to 9600 baud, it usually takes about 2.5 seconds.

Other operations, such as saving the display before the second or third window is added, or restoring the

display after windows are removed, take less time.

For more information, including details about other window sizes, terminal types, and line speeds,

consult your marketing representative.

Bypassing System Save and Restore Operations

You can use the USRRSTDSP keyword to bypass system save and restore processing and instead have

your application rebuild the display only when necessary. This technique can improve system

performance and response time for the user of the application. Consider using it when you display only

126 Application Display Programming V6R1

one window at a time and the windows are in a different display file, or when you display a series of

windows in which the user will not return to earlier windows, or when you want more than one window

to seem active at one time.

For example, under the following conditions, the system ordinarily performs two save operations:

v Your application displays only one window at a time.

v The display file is created with RSTDSP(*YES).

v The first window record to overlay the display is located in a separate file.

The first save operation is performed when the display file is suspended. The second save operation is

performed because a window is being displayed. USRRSTDSP eliminates the second, unnecessary save

operation.

To bypass system save and restore processing, take these steps:

1. Create your own procedure to rebuild the display after a window is removed. Be sure to include any

data that the user enters and that must be redisplayed.

2. Specify the record-level USRRSTDSP keyword on the window following the first window you do not

want the system to save. The USRRSTDSP keyword keeps the system from performing save and

restore operations. The USRRSTDSP keyword is allowed only on records containing the WINDOW

keyword; it is ignored on the window reference record.

Once the USRRSTDSP keyword is specified, it remains in effect, even if the option indicator is set off,

until you read or write to either the initial, windowless display or the window that is two windows

before the window on which the USRRSTDSP keyword was specified.

Assume that six windows are on the display and the USRRSTDSP keyword was specified on the

fourth. To turn off USRRSTDSP and have the system resume saving the display, you must write to the

second window. As shown in the diagram, the system has saved only the first two windows:

USRRSTDSP Keyword Processing and Interactions

The USRRSTDSP keyword interacts with other keywords and window-related functions. Before using the

keyword, you should understand the following (assume that the USRRSTDSP keyword is in effect):

v If a window record is written to a window that was saved (window 1 or 2 in the above example), the

saved display is restored, the current record is written to the target window, and the target window

becomes active. At this point, the USRRSTDSP keyword is no longer in effect.

v If a window definition record is written to a window that was not saved (window 3, 4, or 5 in the

above example), it becomes a new window. It is merged with the previous display image and written

to the display. No windows are removed.

v If a window record is read from a window that was not saved (window 3, 4, or 5 in the above

example), an error message is returned to the application.

Chapter 5. Defining Windows with Display Files 127

v If the initial display has been saved and the application writes to a window record specifying the

RMVWDW keyword, any existing windows are removed. The new window is displayed on top of the

initial display. The new window is active, and USRRSTDSP is no longer in effect.

v If the initial display is not saved and the application writes to a window record that specifies the

RMVWDW keyword, all existing windows are removed. The new window is displayed on top of the

initial display. The new window is active, and USRRSTDSP is still in effect.

v If a nonwindow record is written to the display and USRRSTDSP is specified on the first window, then

the window is not removed, and the nonwindow record may overlay all or part of the window.

Programming Examples

The following sections illustrate the basic functions of the window keywords. The first example shows

how to use a variety of window functions. It defines a full-screen display and several windows in one

display file. The second example shows how to create windows for a full-screen display defined in a

separate display file. The third example shows how to simulate menu bar support.

Using Basic Window Functions

The following scenario demonstrates the basic functions of the window keywords. The scenario is

presented in three sections:

v The DDS used to define a full-screen display and windows

v The RPG program used to display the full-screen display and windows

v Discussion and illustration of the results

DDS Full-Screen Display and Window Definitions

The following DDS defines the initial display and two windows used in the scenario:

128 Application Display Programming V6R1

A*--*

A* DISPLAY FILE - DEMOFM

A*--*

A*--*

A* FILE LEVEL KEYWORDS

A*--*

A DSPSIZ(24 80 *DS3)

A HELP

A*

A*--*

A* RECORDS USED IN DEFINING INITIAL DISPLAY

A*--*

A R INITIAL

A CA03(03)

A CA04(04)

A CA06(06)

A CA07(07)

A CA12(12)

A CLRL(*ALL)

A 3 28’NONWINDOW DISPLAY RECORD’

A 6 1’FLD #1:’

A FLD48 30A B 6 9

A 6 43’FLD #2:’

A FLD49 15A B 6 51

A 10 1’FLD #3:’

A FLD50 30A B 10 9

A 10 43’FLD #4:’

A FLD51 15A B 10 51

A 23 1’F3=Xxxx’

A 23 13’F4=Xxxxxxxx’

A 23 29’F6=Xxxxx Xxxxx’

A 23 48’F7=Xxxx’

A 23 59’F12=CANCEL’

A*

Display Files, Examples

Chapter 5. Defining Windows with Display Files 129

RPG Display Program

This RPG program displays the full-screen display and windows defined in the preceding section. Steps 1

through 5 are explained in the sections following the program.

A*--*

A* RECORDS USED IN DEFINING WINDOW1

A*--*

A R WINDOW1 WINDOW(7 3 11 33)

A N01 WDWBORDER((*COLOR GRN))

A 01 WDWBORDER((*COLOR RED))

A 2 13’WINDOW #1’

A 4 2’CUSTOMER NO.’

A FLD1 6A O 4 15

A 4 22’:’

A*

A R REC2WIN1 WINDOW(WINDOW1)

A OVERLAY

A CA12(12)

A 10 2’F12=CANCEL’

A*

A R REC3WIN1 WINDOW(WINDOW1)

A OVERLAY

A 6 2’NAME:’

A FLD2 24A B 6 8

A 7 2’ADDRESS:’

A FLD3 21A B 7 11

A 8 2’PHONE:’

A FLD4 23A B 8 9

A*

A*--*

A* RECORDS USED IN DEFINING WINDOW2

A*--*

A R WINDOW2 WINDOW(9 25 11 32)

A*

A 2 12’WINDOW #2’

A FLD5 22A O 4 6

A FLD6 25A O 5 4

A FLD7 25A O 6 4

A FLD8 25A O 7 4

A*

A R REC2WIN2 WINDOW(WINDOW2)

A OVERLAY

A CA12(12)

A 10 8’Xxxxxxx :’

A FLD9 6A B 10 18

A*

A*--*

Display Files, Examples

130 Application Display Programming V6R1

F***

F* RPG PROGRAM - WINDEMO

F***

FDEMOFM CF E WORKSTN

C***

C* Step 1: Display Initial Display

C***

C EXFMTINITIAL

C***

C* Step 2: Display Window #1

C***

C MOVE ’nnnnnn’ FLD1

C WRITEWINDOW1

C WRITEREC2WIN1

C EXFMTREC3WIN1

C***

C* Step 3: Display Window #2

C***

C MOVEL’Xxxxxxx ’TEMP16 16

C MOVE ’xxxx x x’TEMP16

C MOVELTEMP16 FLD5

C MOVE ’xxxxxx’ FLD5

C*

C MOVEL’xxxxxx x’FLD6

C MOVEL’xx xxxx ’TEMP16

C MOVE ’xxx xxxx’TEMP16

C MOVELTEMP16 TEMP17 17

C MOVE ’ ’ TEMP17

C MOVE TEMP17 FLD6

C*

C MOVEL’xxxx xxx’FLD7

C MOVEL’xxxx x x’TEMP16

C MOVE ’x xxxx x’TEMP16

C MOVELTEMP16 TEMP17

C MOVE ’x’ TEMP17

C MOVE TEMP17 FLD7

C*

C MOVEL’xxxxxxx ’FLD8

C MOVEL’xxxx xxx’TEMP16

C MOVE ’xx xxxxx’TEMP16

C MOVELTEMP16 TEMP17

C MOVE ’.’ TEMP17

C MOVE TEMP17 FLD8

C*

C WRITEWINDOW2

C EXFMTREC2WIN2

C***

C* Step 4: Restore Window #1

C***

C EXFMTREC3WIN1

C***

C* Step 5: Display Initial Display

C***

C READ INITIAL 91

C***

C* End The RPG Program

C***

C SETON LR

C***

Display Files, Examples

Chapter 5. Defining Windows with Display Files 131

Step 1: Display Initial Display

The application creates the initial display without using a window keyword:

 NONWINDOW DISPLAY RECORD

FLD #1: _______________________________ FLD #2: ____________

FLD #3: _______________________________ FLD #4: ____________

F3=Xxxx F4=Xxxxxxxx F6=Xxxxx Xxxxx F7=Xxxx F12=CANCEL

Step 2: Display Window 1

The user types some data on the display and presses the Enter key. The application writes to window

definition record WINDOW1, which creates the window. Then the application adds information to the

window by writing to window reference record REC2WIN1 and performing a write/read operation to

window reference record REC3WIN1.

Before the window is displayed, the system performs a read screen immediate operation to obtain the

display image and saves the underlying display. The system performs a read screen immediate operation

only when the first window is added to the display. It performs a save operation each time a window is

created.

 NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE_____________ FLD #2: DATA ENTERED

 : :

 : WINDOW #1 :

F : : FLD #4: DATA ENTERED

 : CUSTOMER NO. nnnnnn : :

 : :

 : NAME: ________________________ :

 : ADDRESS: _____________________ :

 : PHONE: _______________________ :

 : :

 : F12=CANCEL :

 : :

 :...................................:

F3=Xxxx F4=Xxxxxxxx F6=Xxxxx Xxxxx F7=Xxxx F12=CANCEL

Step 3: Display Window 2

The user types some information and presses the Enter key. The application writes to window definition

record WINDOW2. WINDOW2 is not the active window, and it is not currently on the display; therefore,

Display Files, Examples

132 Application Display Programming V6R1

the system saves the underlying display, associating the saved data with WINDOW1. Then a new

window is created. The application adds information to the window by performing a write/read

operation to window record REC2WIN2.

 NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE______________ FLD #2: DATA ENTERED

 : :

 : WINDOW

F : : : D

 : CUSTOMER NO. nnnnn : WINDOW #2 :

 : : :

 : NAME: MY NAME_____ : Xxxxxxx xxxx x xxxxxxx :

 : ADDRESS: MY ADDRES : xxxxxx xxx xxxx xxx xxxx :

 : PHONE: MY PHONE___ : xxxx xxxxxxx x xx xxxx xx :

 : : xxxxxxx xxxx xxxxx xxxxx. :

 : F12=CANCEL : :

 : : :

 :.................... : Xxxxxxx : ______ :

 : :

 :..................................:

F3=Xxxx F4=Xxxxxxxx F6=Xxxxx Xxxxx F7=Xxxx F12=CANCEL

Step 4: Restore Window 1

The user types some data and presses the Enter key. The application performs a write/read operation to

window record REC3WIN1. The record format name specified on the WINDOW keyword, WINDOW1, is

not the active window. However, the window is currently on the display; therefore, the system restores

the saved display associated with WINDOW1. The restore operation removes WINDOW2, which was

written after WINDOW1. Then REC3WIN1 is written to the restored window.

 NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE____________ FLD #2: DATA ENTERED

 : :

 : WINDOW #1 :

F : : FLD #4: DATA ENTERED

 : CUSTOMER NO. nnnnnn : :

 : :

 : NAME: MY NAME_________________ :

 : ADDRESS: MY ADDRESS___________ :

 : PHONE: MY PHONE_______________ :

 : :

 : F12=CANCEL :

 : :

 :...................................:

F3=Xxxx F4=Xxxxxxxx F6=Xxxxx Xxxxx F7=Xxxx F12=CANCEL

Step 5: Display Initial Display

The user presses the Enter key. The application performs a read operation to the initial display, which

automatically removes the last window from the display.

Display Files, Examples

Chapter 5. Defining Windows with Display Files 133

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE_____________ FLD #2: DATA ENTERED

FLD #3: DATA ENTERED HERE_____________ FLD #4: DATA ENTERED

F3=Xxxx F4=Xxxxxxxx F6=Xxxxx Xxxxx F7=Xxxx F12=CANCEL

Defining Windows in a Separate Display File

The following sections show the DDS code for a full-screen display and window and the procedural steps

needed to use them. In contrast to the preceding example, this example keeps the window records in a

separate display file from the file for the underlying display. This technique allows you to add windows

for items, such as help, to existing applications, without rewriting the display-file code for the

applications.

In the example, the application uses RSTDSP(*NO) to indicate that a save operation should not be done

when a file is suspended. Because displaying a window also performs a save operation, using

RSTDSP(*NO) prevents two save operations from being performed. Because removing the window

restores the screen that was present prior to the window operation, the application is not required to

rebuild the display after window processing. For more information on the USRRSTDSP keyword, see the

notes at the end of the example.

DDS Full-Screen Display and Window Definitions

A*---*

A* DISPLAY FILE DISPLAY1 (RSTDSP=NO DFRWRT=*YES)

A*---*

A R REC1

A 2 21’FIRST RECORD IN FILE’

A 4 17’Current Customer #:’

A FIELD1 6A B 4 38

A*

A R REC2 OVERLAY CA03(03)

A 6 21’SECOND RECORD IN FILE’

A 8 17’Current Customer #:’

A FIELD2 6A B 8 39DSPATR(HI)

A 24 02’CA03=EXIT’

A*---*

RPG Program Source

FDISPLAY1CF E

C WRITEREC1

C WRITEREC2

C RETRY TAG

C READ REC2 90

C 03 GOTO END

Display Files, Examples

134 Application Display Programming V6R1

C CALL ’WINPGM’

C GOTO RETRY

C END TAG

C SETON LR

A*---*

A* DISPLAY FILE DISPLAY2 (RSTDSP=NO)

A*---*

A R WINDOW1 WINDOW(7 4 11 25)

A N01 WDWBORDER((*COLOR GRN))

A 01 WDWBORDER((*COLOR RED))

A 2 9’Window #1’

A *

A R REC2WIN1 WINDOW(WINDOW1)

A CA12(12) OVERLAY

A 4 1’Customer No. nnnnnn:’

A 6 1’Name:’

A FIELD3 19A B 6 7

A 7 1’Address:’

A FIELD4 16A B 7 10

A 8 1’Phone:’

A FIELD5 18A B 8 8

A 10 1’F12=Cancel’

A*---*

A* Dummy record to remove window from display before returning

A*---*

A R RMVWDW CLRL(*NO) OVERLAY FRCDTA

A*---*

A* No I/O will ever be done to this record. This record prevents the

A* display from clearing.

A*---*

A R DUMMY ASSUME

A 11 1’ ’

A*---*

RPG Program Source for WINPGM

FDISPLAY1CF E

C WRITEWINDOW1

C EXFMTREC3WIN1

C WRITERMVWDW

C RETRN

C SETON LR

Step 1: Display Initial Display

The application opens display file DISPLAY1, performs a write operation to record REC1, and performs a

write/read operation to REC2.

Display Files, Examples

Chapter 5. Defining Windows with Display Files 135

FIRST RECORD IN FILE

 Current Customer #: ______

 SECOND RECORD IN FILE

 Previous Customer #: ______

Step 2: Display a Window

The user enters data indicating that a window should be displayed. The application opens window

display file DISPLAY2. This can be done from a separate program such as the one which displayed the

screen in Step 1. The ASSUME keyword on record DUMMY keeps the full-screen display from being

cleared, and the system marks display file DISPLAY2 as suspended. No I/O operation ever needs to be

performed to record DUMMY; it only needs to be present in the file.

The application performs a write operation to record WINDOW1. Display file DISPLAY1 is suspended;

because of the RSTDSP(*NO) setting, no save is performed. Display file DISPLAY2 is restored; because of

the RSTDSP(*NO) setting, no restore data is sent.

The application performs a write operation to record REC2WIN1.

 FIRST RECORD IN FILE

 Current Customer #: xxxxxx

 SECOND RECORD IN FILE

 : : #: xxxxxx

 : Window #1 :

 : :

 : Customer No. nnnnnn: :

 : :

 : Name: ___________________ :

 : Address: ________________ :

 : Phone: __________________ :

 : :

 : F12=Cancel :

 : :

 :...........................:

Step 3: Return to the Initial Display

The user enters data indicating that the application should return to the initial display file, DISPLAY1.

The application performs a write operation to record RMVWDW, which causes the system to remove all

windows from the display. Because the application does not close the DISPLAY2 display file, and the

USRRSTDSP keyword is not specified, then removing the window restores the initial display. The

Display Files, Examples

136 Application Display Programming V6R1

application is not required to rebuild the initial display. The RMVWDW record should contain the

FRCDTA keyword or specify DFRWRT(*NO) when the display file is created.

The application performs a write operation to record REC1. Display file DISPLAY2 is suspended; because

of the RSTDSP(*NO) setting, no save operation is performed. Display file DISPLAY1 is restored; because

of the RSTDSP(*NO) setting, no data is sent.

The application performs a write/read operation to record REC2.

 FIRST RECORD IN FILE

 Current Customer #: ______

 SECOND RECORD IN FILE

 Previous Customer #: ______

Additional notes on this example:

1. If the application closes DISPLAY2 in Step 3, then the application must rebuild the initial display by

performing a write operation to REC1 and then a write/read operation to REC2. This can be avoided

by specifying RSTDSP(*YES) for DISPLAY1.

2. USRRSTDSP can be added to the window record in DISPLAY2. However, if this is done, the user

must either specify RSTDSP(*YES) for DISPLAY1, or rebuild the initial display in Step 3. However, in

Step 3, the application must still write RMVWDW, or the borders of the window are not displayed

properly on the next write operation to the window.

3. The KEEP keyword should be added to the window format both of the following conditions are true:

v The application closes DISPLAY2 in Step 3.

v No I/O is done to file DISPLAY1 prior to opening DISPLAY2 and displaying the window again.

Display Files, Examples

Chapter 5. Defining Windows with Display Files 137

Display Files, Examples

138 Application Display Programming V6R1

Chapter 6. Creating a Graphical Look for Displays

The graphical look is a change in what you see while you run DDS functions. Instead of dotted windows,

you have crisp window borders. Instead of typing numbers in an option column to make a selection, you

can use a mouse or mnemonics. A mnemonic is an underlined character within the text of a choice that

you can type to select the choice. Instead of seeing option numbers, you can see radio buttons or check

boxes. A radio button is a circle that precedes a choice in a single-choice selection field on a graphical

display station. A check box is a square box that precedes a choice in a multiple-choice selection field on

a graphical display station. You can click on radio buttons and check boxes to make choices.

 In addition to a fresher look, the enhanced function includes menu bars and pull-down menus. Instead of

having to simulate a menu bar by using lengthy DDS coding, you can use DDS keywords.

Factors Affecting the Graphical Look

The graphical functions described in this chapter appear differently, depending on the hardware

configuration you have and the value you specify on the enhanced display (ENHDSP) parameter.

Hardware Configuration

Table 15 and Table 16 on page 140 show how each graphical function appears on different configurations.

Letters A through F in the tables identify the configurations; these letters are referred to throughout this

chapter.

 Table 15. Functions Supported by Hardware Configurations A, B, and C

Function

Hardware Configuration

A B C

Graphical User Interface

(GUI) Programmable Work

Stations1

InfoWindow II Display

Station2 Attached to

Controller Supporting

Enhanced Interface3

3477 Display Station

Attached to Controller

Supporting Enhanced

Interface3

Windows9 GUI4 windows and possible

improvement in

performance

Character-based GUI5 and

possible improvement in

performance

Character windows and

possible improvement in

performance

Selection fields and menu

bars

GUI4 Character-based GUI5 Mnemonics, bar selection

cursor

Selection lists Bar selection cursor.

Possible check boxes for

multiple-choice lists.

Possible radio buttons for

single-choice lists.

Bar selection cursor.

Possible check boxes for

multiple-choice lists.

Possible radio buttons for

single-choice lists.

Bar selection cursor. Input

field to the left of list.

Continued-entry fields One field One field One field

1. Undo

2. Mark

3. Copy

.

.

:
:
:
:
:

:
:
:
:
:

RV2W063-0

Undo

Mark

Copy
Undo

Mark

Copy

Figure 34. Radio Buttons and Check Boxes

© Copyright IBM Corp. 1997, 2008 139

Table 15. Functions Supported by Hardware Configurations A, B, and C (continued)

Function

Hardware Configuration

A B C

Graphical User Interface

(GUI) Programmable Work

Stations1

InfoWindow II Display

Station2 Attached to

Controller Supporting

Enhanced Interface3

3477 Display Station

Attached to Controller

Supporting Enhanced

Interface3

Edit masks Yes Yes Yes

Highlighting Yes Yes Yes

Cursor progression Yes Yes Yes

Word spill Yes8 Yes Yes

Simple hotspots Yes Yes No

Scroll bars GUI

4 scroll bars Character-based GUI

5 scroll

bars

*MORE, *PLUS, or character

scroll bars

6

Push buttons Yes Yes Yes

Auto-Selection Yes Yes Yes

Auto-Enter Yes Yes Yes

Programmable Mouse

Buttons

Yes8 Yes No

Grid Lines7 No No No

Notes:

1. For example, RUMBA/400 (Microsoft® Windows® and OS/2®) and AIX® AS/400 Connection Program/6000

Release 2.

2. InfoWindow II display stations: 3486, 3487, 3488.

3. Twinaxial controllers: 5494 Release 1.1, and features 6050, 2661, 9146, and 9148.

4. GUI includes solid-line window borders, selectable background colors, use of a pointer device (for example, a

mouse), mnemonic selection, bar selection cursor, radio buttons (for single-choice selection fields), and check

boxes (for multiple-choice selection fields).

5. Character-based GUI is similar to GUI except that in character-based GUI, constructs are created using characters,

and background colors are not selectable.

6. Scroll bars that appear on display stations without pointing devices are for display purposes only.

7. Grid lines are supported only on DBCS display stations. For the specific hardware required for grid lines, see

“Hardware Requirements for Grid Line Structures” on page 206.

8. RUMBA/400 does not currently support this function.

9. RUMBA/400 does not currently support window footers.

 Table 16. Functions Supported by Hardware Configurations D, E, and F

Function

Hardware Configuration

D E F

5250 Display Station

Attached to Controller

Supporting Enhanced

Interface1

ASCII Display Station

Attached to ASCII

Controller Supporting

Enhanced Interface2

Any Display Station

Attached to Controller Not

Supporting Enhanced

Interface3

Windows7 Character windows and

possible improvement in

performance

Character windows and

possible improvement in

performance

Character windows

Selection fields and menu

bars

Bar selection cursor Bar selection cursor Entry field driven

140 Application Display Programming V6R1

Table 16. Functions Supported by Hardware Configurations D, E, and F (continued)

Function

Hardware Configuration

D E F

5250 Display Station

Attached to Controller

Supporting Enhanced

Interface1

ASCII Display Station

Attached to ASCII

Controller Supporting

Enhanced Interface2

Any Display Station

Attached to Controller Not

Supporting Enhanced

Interface3

Selection lists Bar selection cursor. Input

field to the left of list.

Bar selection cursor. Input

field to the left of list.

Input field to the left of list.

Continued-entry fields One field One field Multiple fields

Edit masks Yes Yes Ignored

Highlighting Yes Yes Ignored

Cursor progression Yes Yes Ignored

Word spill6 Yes Yes Ignored

Simple hotspots No No No

Scroll bars *MORE, *PLUS, or character

scroll bars

4

*MORE, *PLUS, or character

scroll bars

4

*MORE, *PLUS, or character

scroll bars

4

Push buttons Yes Yes Yes

Auto-Selection Yes Yes No

Auto-Enter Yes Yes Yes

Programmable Mouse

Buttons

No No No

Grid Lines5 No No No

Notes:

1. Twinaxial controllers: 5494 Release 1.1, and features 6050, 2661, 9146, and 9148.

2. ASCII controllers that support an enhanced interface: features 6041, 6141, 2637, 9145, 9147.

3. For example: 5250 display stations attached to 5294 and 5394 controllers or features 2638, 6040, and 6140; some

programmable work stations emulating a controller with an attached 5250 display station (for example, System i

Access for Windows).

4. Scroll bars that appear on display stations without pointing devices are for display purposes only.

5. Grid lines are supported only on DBCS display stations. For the specific hardware required for grid lines, see

“Hardware Requirements for Grid Line Structures” on page 206.

6. RUMBA/400 does not currently support this function.

7. RUMBA/400 does not currently support window footers.

Enhanced Display Parameter

The enhanced display (ENHDSP) parameter can be used with the CRTDSPF and CHGDSPF commands.

Use this parameter to specify whether the data being shown at a display station uses the enhanced

capabilities available on the display station.

Normally, DDS windows and CUA® graphical items are rendered using whatever enhanced capabilities

are available on the display station. For example, window borders and menu-bar separators are presented

graphically on a graphical display station.

You can use ENHDSP(*NO) to cause all records defined in the display file to be displayed in

character-based mode, regardless of the capabilities of the display station. When ENHDSP(*NO) is

specified, none of the enhanced capabilities that may be available on a particular display station are used.

That is, records display just as they would on a display station in configuration F in Table 16 on page 140.

Chapter 6. Creating a Graphical Look for Displays 141

The default value for ENHDSP is *YES. Any enhanced capabilities of the display station are taken

advantage of automatically. If you specify ENHDSP(*YES) and you use the default window border and

menu-bar separator, the window border and the menu-bar separator appear as solid lines. If the display

station is attached to a controller that does not support an enhanced interface for nonprogrammable work

stations, ENHDSP(*YES) is ignored. The records in the display file are displayed on that display station

in character-based mode (as if ENHDSP(*NO) were specified).

Writing records from files with ENHDSP(*YES) and files with ENHDSP(*NO) to the same display. If the

record (or records) displayed is from a file with ENHDSP(*YES), the first write operation of a record

(such as a window) from a file with ENHDSP(*NO) causes all menu bars, pull-down menus, and other

windows on the display to change from graphical to character-based. The records from the file with

ENHDSP(*YES) are switched to the ENHDSP(*NO) mode of display.

If the record displayed is from a file with ENHDSP(*NO), a write operation of a record (such as a

window) from a file with ENHDSP(*YES) does not change the presentation of any menu bars, pull-down

menus, or other windows on the display.

Notes:

1. The system file that is used for UIM help is shipped with ENHDSP(*NO). If you use UIM help with a

file that has ENHDSP(*YES) specified, the display will changes from graphical to character-based.

2. Some programmable work stations that support an enhanced interface ignore the window border and

menu-bar separator keywords.

3. If a window is written to the display station such that a border is in column 1, column 80 (for display

size 24 by 80), or column 132 (for display size 27 by 132), the window is always displayed as though

ENHDSP(*NO) were specified.

DDS Keywords

The tasks in this chapter refer to the DDS keywords, but the chapter does not provide all the details

about them. For more information about each keyword, refer to the DDS topic collection in the i5/OS

Information Center.

CCSID (Coded Character Set Identifier)

Specifies that a “G” type field supports UCS-2 Level 1 data instead of DBCS-graphical data.

CHCACCEL (Choice Accelerator Text)

Specifies the text for the accelerator key on a single-choice selection field in a pull-down record.

CHCAVAIL (Choice Color/Display Attribute when Available)

Specifies the color or display attributes to be used when displaying the available choices in a

menu bar or selection field.

CHCCTL (Choice Control)

Controls the availability of the choices for the field.

CHCSLT (Choice Color/Display Attribute when Selected)

Specifies the color or display attributes to be used when displaying a selected choice in a menu

bar.

CHCUNAVAIL (Choice Color/Display Attribute when Unavailable)

Specifies the color or display attributes to be used when displaying the unavailable choices in a

selection field.

CHOICE (Selection Field Choice)

Defines a choice for a selection field.

CNTFLD (Continued-Entry Field)

Defines a field as a continued-entry field. Continued-entry fields are sets of associated entry fields

that are treated by the work station controller as a single-entry field during field data entry and

editing.

142 Application Display Programming V6R1

EDTMSK (Edit Mask)

Defines an edit mask for fields with EDTCDE or EDTWRD keywords.

ENTFLDATR (Entry-Field Attribute)

Defines the leading attribute of the field that changes to a specified attribute whenever the cursor

enters the field. When defined at both the field- and record-level, the field-level specification is

used for the field.

FLDCSRPRG (Cursor Progression Field)

Defines the next field that the cursor moves to when exiting this field.

GRDATR (Grid Line Attribute)

Defines the color and line-type attributes for grid line structures in the file or record.

GRDBOX (Grid Box)

Defines the shape, positioning, and attributes of a box.

GRDCLR (Grid Clear)

Defines a rectangular area on a display within which all grid structures are erased.

GRDLIN (Grid Line)

Defines the shape, positioning, and attributes of a grid line.

GRDRCD (Grid Record)

Specifies that this record defines grid structures. No other display fields are allowed on records

with this keyword.

HLPID (Help Identifier)

Specifies an identifier for the constant in the help for a field.

HTML (Hyper Text Markup Language)

Specifies if a data stream is sent to a 5250 Workstation Gateway display, the HTML tags are sent

along with the data stream. These HTML tags are processed on the HTML browser. This allows

you to update applications to use on the Internet through the World Wide Web.

MLTCHCFLD (Multiple-Choice Selection Field)

Defines a field as a multiple-choice selection field. A multiple-choice selection field is a field that

contains a fixed number of choices from which a user can select multiple choices.

MNUBAR (Menu Bar)

Defines a menu bar. A menu bar is a horizontal list of choices that is followed by a separator line.

MNUBARCHC (Menu-Bar Choice)

Defines a choice for a menu-bar field. A menu-bar choice represents a group of related actions

that the application user can select.

MNUBARDSP (Menu-Bar Display)

Displays the menu bar.

MNUBARSEP (Menu-Bar Separator)

Specifies the color, display attributes, or character used to form the menu-bar separator line.

MNUBARSW (Menu-Bar Switch Key)

Assigns a CA key to the Switch-to-menu-bar key.

MNUCNL (Menu Cancel Key)

Assigns a CA key to be the cancel key for menu bars or pull-down menus.

MOUBTN (Programmable Mouse Button)

Allows an attention indicator (AID) to be associated with various pointer device events.

PSHBTNCHC (Push Button Choice)

Defines a push button within a push button field.

Chapter 6. Creating a Graphical Look for Displays 143

PSHBTNFLD (Push Button Field)

Defines a field as a push button field. A push button field is a field that contains a fixed number

of push buttons. A push button is a button, labeled with text, graphics, or both that represents an

action that starts when a user selects the push button.

PULLDOWN (Pull-Down Menu)

Defines a record as a pull-down menu for a menu bar.

SFLCSRPRG (Subfile Cursor Progression)

Causes the cursor to move to the same input field in the next subfile record when exiting this

field.

SFLCHCCTL (Subfile Choice Control)

Controls the availability of the choices in a selection list.

SFLEND (Subfile End)

Displays a plus sign (+) or text (More... or Bottom) in the lower right location of the subfile. It

can also display a scroll bar.

SFLMLTCHC (Subfile Multiple-Choice Selection List)

Defines a subfile as a multiple-choice selection list. A multiple-choice selection list is a

potentially scrollable list from which the user can select one or more items.

SFLRCDNBR (Subfile Record Number)

Displays the page of the subfile containing the record whose relative record number is in this

field.

SFLRTNSEL (Subfile Return Selected Choice)

Returns all selected choices in a selection list using the get-next-changed operation.

SFLSCROLL (Subfile Scroll)

Returns the relative record number of the subfile record that is at the top of the subfile when

control is given to the application.

SFLSIZ (Subfile Size)

Specifies the number of records in the subfile.

SFLSNGCHC (Subfile Single-Choice Selection List)

Defines a subfile as a single-choice selection list. A single-choice selection list is a potentially

scrollable list from which the user can select one item.

SNGCHCFLD (Single-Choice Selection Field)

Defines a field as a single-choice selection field. A single-choice selection field is a field that

contains a fixed number of choices from which a user can select one choice.

Creating Menu Bars

Figure 35 shows an example of a menu bar, which is a horizontal list of choices that appears at the top of

a display. An optional menu-bar separator appears below the list. When you select a choice from the

menu bar, a pull-down menu appears. A pull-down menu is a group of actions associated with a

menu-bar choice.

Defining the Menu-Bar Choices

A menu bar is a special type of record containing a MNUBAR keyword and one menu-bar field. The

menu-bar field is a numeric field containing one or more MNUBARCHC keywords. The MNUBARCHC

 �File� Edit View Options Help

__

Figure 35. Example of a Menu Bar

144 Application Display Programming V6R1

keywords define the menu-bar choices and the pull-down menus associated with each choice. The menu

bar always displays on the first line. The menu-bar record cannot contain any displayable fields other

than the menu-bar field.

The number of rows occupied by the menu bar is determined by the number of choices, the maximum

lengths of the choice text for all the menu-bar choices, and whether a menu-bar separator is specified. If

you specify a menu-bar separator (the default), the number of rows the menu bar occupies (including the

menu-bar separator) must be less than or equal to 12. If you do not specify a menu-bar separator, the

number of rows the menu bar occupies must be less than or equal to 11. It is not possible to extend the

range of menu-bar choices to line 12. However, you can use line 12 for another record.

If you define a pull-down record that is too large to fit beneath the maximum number of rows occupied

by the menu bar, the file is not created.

Suppressing the Menu-Bar Separator

The default is for a menu-bar separator to display. To suppress the menu-bar separator, specify

MNUBAR(*NOSEPARATOR). If you suppress the menu-bar separator, you cannot specify the menu-bar

separator (MNUBARSEP) keyword.

Defining the Menu-Bar Separator

You can use the system defaults for the menu-bar separator or you can use the MNUBARSEP keyword.

Using MNUBARSEP, you can specify the color and display attributes of the menu-bar separator and the

character that makes up the separator. The default presentation of the menu-bar separator is a solid line

on display stations in configurations A and B in Table 15 on page 139. The default character that makes

up the menu-bar separator is an underline (_) on display stations in configuration C in Table 15 on page

139, and configurations D, E, and F in Table 16 on page 140. For an example of using the MNUBARSEP

keyword, see Figure 36.

Note: The menu-bar separator is used as the top border of the pull-down menus. Its color does not

change when a pull-down menu is displayed. To ensure a consistent appearance for your displays,

use the same color and display attributes for both the menu-bar separator and the pull-down

menu borders.

Figure 36 shows an example of the DDS for a menu bar.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R MENUBAR MNUBAR

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’ +

 A &RTNFLD)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A MNUBARSEP((*COLOR WHT))

 A EDITTXT 20A P

 A RTNFLD 2Y 0H

 A .

 A .

 A .

Figure 36. DDS for a Menu Bar. Assume that field EDITTXT contains the text >Edit.

Chapter 6. Creating a Graphical Look for Displays 145

You can control which menu-bar choices are displayed by specifying option indicators on the

MNUBARCHC keywords. Option indicators are used by the application program to specify if a menu-bar

choice should be displayed (optioned on) or should not be displayed (optioned off). The DDS for option

indicators are shown in Figure 36 on page 145. The application specifies the option indicators as on or off

and then writes the menu-bar record (without MNUBARDSP in effect) to send the option indicators to

the system. If a menu-bar choice is optioned off, the list of choices is compressed. However, the number

of rows occupied by the menu-bar record is not compressed (because records cannot be variable length).

The number of rows occupied by the menu bar is the number of rows needed if all the choices were

displayed plus one row for the menu bar separator. If, through optioning, the list of choices is

compressed so that it is displayed using fewer rows, the separator line is displayed on the line following

the last row of choices. There are blank lines between the menu-bar separator and the next record on the

display.

The text which appears for each choice in a menu-bar comes from either the program-to-system fields

named or the text specified for the choice text parameter of the MNUBARCHC keyword. The number of

rows calculated by the system for the menu-bar record depends on the size of each program-to-system

field or length of choice text. In addition, three spaces are assumed between each choice. Any trailing

blanks in the choice text are removed; the remaining length is used for the calculation. The length of any

program-to-system field is used as is, because trailing blanks can not be anticipated. However, when the

menu-bar record is displayed, any trailing blanks are removed. Therefore, the number of rows actually

occupied could be less than the number calculated. When that occurs, blank lines appear between the

menu-bar separator and the next record on the display.

On display stations in configurations A and B from Table 15 on page 139, the menu bar looks like this:

 On display stations in configuration C from Table 15 on page 139, the menu bar looks like this:

Note: In Figure 38 the first character of each menu bar choice is underlined.

 On display stations in configurations D and E from Table 16 on page 140, the menu bar looks like this:

 On display stations in configuration F from Table 16 on page 140, the menu bar looks like this:

Selection Fields-Overview

There are two types of selection fields: single-choice and multiple-choice.

 �File� Edit View Options Help

__

Figure 37. Menu Bar on a Graphical Display Station with Enhanced Interface

 �File� Edit View Options Help

Figure 38. Menu Bar on a Nongraphical Display Station with Underline Capability

 �File� Edit View Options Help

Figure 39. Menu Bar on a Nongraphical Display Station without Underline Capability

 File Edit View Options Help

Figure 40. Menu Bar on a Display Station without Enhanced Interface

146 Application Display Programming V6R1

Single-choice selection fields and multiple-choice selection fields contain a fixed group of choices

displayed in a vertical or horizontal list. You can select any number of choices from the multiple-choice

selection field. You can only make one choice from the single-choice selection field.

On display stations in configurations A and B from Table 15 on page 139, the selection fields (vertical

format) look like this:

 On display stations in configuration C from Table 15 on page 139 and configurations D, E, and F from

Table 16 on page 140, the selection fields (vertical format) look like this:

RV2W860-1

Figure 41. Selection Fields on a Graphical Display Station with Enhanced Interface

RV2W070-0

Figure 42. Selection Fields on a Nongraphical Display Station

Chapter 6. Creating a Graphical Look for Displays 147

DDS for Selection Fields-Example

Figure 43 shows an example of the DDS for both single-choice and multiple-choice selection fields.

Creating a Vertical Single-Choice Selection Field

You can define the number of choices and the selection numbers for each choice. On display stations in

configurations A and B from Table 15 on page 139, the choices are preceded by radio buttons. This is true

unless *NOSLTIND is specified on the SNGCHCFLD keyword. A blank line appears between choices that

are not sequential. The location that you specify for the single-choice selection field is the location of the

input field (on a character-based nongraphical display). On display stations in configurations A and B

from Table 15 on page 139, the location you specify for the field is the location of the first radio button.

Notes:

1. If you suppress the selection indicators, the location that you specify for the single-choice selection

field is the location of the first character in the first choice.

2. If the single-choice selection field is within a pull-down menu, the location you specify is relative to

the pull-down menu borders.

A single-choice selection field is a numeric field containing a SNGCHCFLD keyword and one or more

CHOICE keywords. The CHOICE keywords define the choices within the single-choice selection field.

Figure 43 shows an example of the keywords to use.

You can have choice numbers up to two digits long. The maximum number you can specify for a choice

is 99. On output, if the field contains a choice number, that choice is the default selection.

The default is for vertical selection fields. You can create a horizontal selection field by using the

*NUMCOL or *NUMROW values on the SNGCHCFLD keyword. See “Creating a Horizontal Selection

Field” on page 149 for more information.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD

 A 2 30’Display Title’

 A 4 5’Single selection field . . . :’

 A F1 2Y 0B 4 40SNGCHCFLD

 A CHOICE(1 ’>One’)

 A CHCCTL(1 &CTLONE1 MSG1111 QUSER/A)

 A 01 CHOICE(2 ’>Two’)

 A CHCCTL(2 &CTLTWO1 &MSG1 &LIB/&MSGF)

 A CHOICE(3 ’T>hree’)

 A CHCCTL(3 &CTLTHR1)

 A CTLONE1 1Y 0H

 A CTLTWO1 1Y 0H

 A CTLTHR1 1Y 0H

 A MSG1 7A P

 A LIB 10A P

 A MSGF 10A P

 A 8 5’Multiple selection field . . . :’

 A F2 2Y 0B 8 40MLTCHCFLD

 A CHOICE(1 ’>One’)

 A CHCCTL(1 &CTLONE2 MSG1112 QUSER/A)

 A 01 CHOICE(2 ’>Two’)

 A CHCCTL(2 &CTLTWO2 &MSG2 &LIB/&MSGF)

 A CHOICE(3 ’T>hree’)

 A CHCCTL(3 &CTLTHR2)

 A CTLONE2 1Y 0H

 A CTLTWO2 1Y 0H

 A CTLTHR2 1Y 0H

 A MSG2 7A P

Figure 43. DDS for Single-Choice and Multiple-Choice Selection Fields

148 Application Display Programming V6R1

Creating a Vertical Multiple-Choice Selection Field

A multiple-choice selection field is a special numeric field containing:

v A MLTCHCFLD keyword to identify it as a multiple-choice selection field. When a user makes a

selection, the field itself contains the number of choices that are selected.

v One or more CHOICE keywords that define the choices.

v A CHCCTL keyword for each choice to define a hidden field for each choice. The hidden field is used

to indicate if the choice was selected. For more information on the CHCCTL keyword, see “Controlling

the Availability of Choices” on page 167.

The default is for vertical selection fields. You can create a horizontal selection field by using the

*NUMCOL or *NUMROW values on the MLTCHCFLD keyword. See “Creating a Horizontal Selection

Field” for more information.

Creating a Horizontal Selection Field

The default orientation for single-choice and multiple-choice selection fields is vertical. To specify a

horizontal field, use the *NUMCOL or *NUMROW values on the SNGCHCFLD and MLTCHCFLD

keywords.

 The following shows how this single-choice selection field would appear on a character-based display,

assuming option indicator 01 is on:

 Flavor . . . _ 1. Chocolate 2. Strawberry

 3. Vanilla 4. Peach

The following shows how this single-choice selection field would appear if *NUMROW 2 were specified:

 Flavor . . . _ 1. Chocolate 3. Vanilla

 2. Strawberry 4. Peach

If the choices are nonsequential, no blank line or blank space is left for the omitted choice as would have

happened with *NUMCOL.

You can optionally specify the number of spaces to appear between the choices by using the *GUTTER

value on the SNGCHCFLD and MLTCHCFLD keywords. The gutter width must be at least 2. If

*GUTTER is not specified, the default number of spaces between choices is 3.

Note: The gutter width includes the beginning and ending attribute of the choices on either side of the

gutter.

The area occupied by the horizontal selection field is determined by the following:

v The number of choices specified

v The length of the longest choice

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD

 A 2 2’Flavor . . . ’

 A F1 2Y 0B 2 16SNGCHCFLD((*NUMCOL 2))

 A CHOICE(1 ’Chocolate ’)

 A 01 CHOICE(2 ’Strawberry ’)

 A CHOICE(3 ’Vanilla ’)

 A CHOICE(4 ’Peach ’)

Figure 44. Example of DDS for Horizontal Selection Field. The *NUMCOL 2 specifies that the field should display in two

columns.

Chapter 6. Creating a Graphical Look for Displays 149

v The width of the gutter

v The number of columns specified

v The longest accelerator text specified (for a horizontal single-choice selection field in a pull-down

menu)

A horizontal selection field must fit within the minimum display size specified for the file (24 x 80 or 27 x

132). If the record is a window or a pull-down menu, the horizontal selection field must fit within the

minimum window size. Other fields may be specified to the right or to the left of a horizontal selection

field. Option indicators can be specified on horizontal selection fields, as they can for other fields.

You can control which choices are displayed at one time by using option indicators on the CHOICE

keywords. Unlike a vertical selection field, if a choice is optioned off, the remaining choices will be

shifted to fill in the space.

Cursor Movement in a Vertical Selection Field

With *NORSTCSR on the SNGCHCFLD and MLTCHCFLD keywords, the cursor keys move the cursor to

the next cursorable choice in the direction of the key that is pressed. The cursor skips null choices and

choices defined as noncursorable. The up arrow key moves the cursor up one choice. The down arrow

key moves the cursor down one choice. If the cursor is on the top choice and the up arrow key is

pressed, the cursor leaves the field. Likewise, if the cursor is on the bottom choice and the down arrow is

pressed, the cursor leaves the field. If the cursor input only (CSRINPONLY) keyword is in effect, the

cursor moves to the next cursorable item on the display above or below the current cursor position. The

cursor left and right keys move the cursor one space to the left or right.

Note: If the selection field is the only field defined within a pull-down menu, the cursor left and right

keys close the present pull-down menu and open the next pull-down menu to the left or right.

To keep the cursor within a selection field, use the *RSTCSR value on the SNGCHCFLD and

MLTCHCFLD keywords. If the cursor up key is pressed when the cursor is on the top choice in the list,

the cursor moves to the last choice in the list. If the cursor down key is pressed when the cursor is on the

bottom choice in the list, the cursor moves to the top choice in the list. If the cursor left key is pressed the

cursor moves up one choice. If the cursor is on the top choice, the cursor moves to the bottom choice. If

the cursor right key is pressed the cursor moves down one choice. If the cursor is on the bottom choice,

the cursor moves to the top choice.

Note: If the selection field is the only field defined within a pull-down menu, the cursor left and right

keys close the present pull-down menu and open the next pull-down menu to the left or right.

Cursor Movement in a Horizontal Selection Field

With *NORSTCSR on the SNGCHCFLD and MLTCHCFLD keywords, the cursor keys move the cursor to

the next cursorable choice in the direction of the key that is pressed. The cursor skips null choices and

choices defined as noncursorable. If the cursor is on the top choice of any column in the field and the up

arrow key is pressed, the cursor leaves the field. Likewise, if the cursor is on the bottom choice of any

column in the field and the down arrow key is pressed, the cursor leaves the field. If the cursor input

only (CSRINPONLY) keyword is in effect, the cursor moves to the next cursorable item on the display

above or below the current cursor position. If the left arrow key is pressed and there is a cursorable item

to the left of the current choice, the cursor moves to the choice. If there is no cursorable item to the left,

the cursor leaves the field. If the right arrow key is pressed and there is a cursorable item to the right of

the current choice, the cursor moves to the choice. If there is no cursorable item to the right, the cursor

leaves the field.

Note:

150 Application Display Programming V6R1

To keep the cursor within a selection field, use the *RSTCSR value on the SNGCHCFLD and

MLTCHCFLD keywords. If the cursor up key is pressed when the cursor is on the top choice in any

column in the field, the cursor moves to one of the following places:

v If there is a cursorable position in a column to the left, the cursor moves to the last choice in that

column.

v If there is not a cursorable position in a column to the left or if there is no column to the left, the

cursor moves to the last cursorable choice in right-most column in the field.

If the cursor down key is pressed when the cursor is on the last choice in any column in the field, the

cursor moves to one of the following places:

v If there is a cursorable position in a column to the right, the cursor moves to the top choice in that

column.

v If there is not a cursorable position in a column to the right or if there is no column to the right, the

cursor moves to the first cursorable choice in left-most column in the field.

If the cursor left key is pressed and there is a cursorable choice to the left of the current choice, the cursor

moves to that choice. If there is no cursorable choice to the left, the cursor moves to the first cursorable

choice in the row above the present row (closest row, right-most choice). If the present row is the top row,

the cursor moves to the right-most choice in the last row.

If the cursor right key is pressed and there is a cursorable choice to the right of the current choice, the

cursor moves to that choice. If there is no cursorable choice to the right, the cursor moves to the first

cursorable choice in the row below the present row (closest row, left-most choice). If the present row is

the bottom row, the cursor moves to the left-most choice in the first row.

Note: The cursor left and right keys will close the present pull-down menu and open the next pull-down

menu to the left or right when the following are true:

v The selection field is the only field defined within a pull-down menu

v There is no cursorable choice to the left or right of the current choice

Controlling the Selection Indicators in a Selection Field

A selection indicator is an indicator that precedes a choice in a selection field or a selection list. It is used

to select the choice or to show that a choice has been selected. An example of a selection indicator is a

radio button. Radio buttons appear before choices in single-choice selection fields and single-choice

selection lists. The default is for selection indicators to appear in selection fields. You can suppress the

selection indicators in a selection field by specifying the *NOSLTIND parameter on the SNGCHCFLD and

MLTCHCFLD keywords.

The *NOSLTIND value is ignored for display stations that are not attached to a controller that supports

an enhanced interface for nonprogrammable work stations. Figure 45 on page 152 is an example of the

DDS to suppress the selection indicators in a selection field.

Chapter 6. Creating a Graphical Look for Displays 151

On display stations in configurations A and B from Table 15 on page 139, the selection fields look like

this:

Creating Pull-Down Menus Using Single-Choice Selection Fields

When you select a choice from the menu bar, a pull-down menu appears. A pull-down menu is a group

of actions associated with a menu bar choice. Figure 47 is an example.

 You must define the pull-down menus and the corresponding menu bar in the same file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD

 A 2 30’Display Title’

 A 4 5’Single selection field . . . :’

 A F1 2Y 0B 4 40SNGCHCFLD(*NOSLTIND)

 A CHOICE(1 ’>One’)

 A 01 CHOICE(2 ’>Two’)

 A CHOICE(3 ’T>hree’)

 A 8 5’Multiple selection field . . . :’

 A F2 2Y 0B 8 40MLTCHCFLD(*NOSLTIND)

 A CHOICE(1 ’>One’)

 A 01 CHOICE(2 ’>Two’)

 A CHOICE(3 ’T>hree’)

Figure 45. DDS for Suppressing Selection Indicators in a Selection Field

RV3W067-0

Figure 46. Suppressed Selection Indicators in Selection Field

Undo
Mark
Copy

RV2W859-1

EditFile View Help

Figure 47. Example of a Pull-Down Menu

152 Application Display Programming V6R1

The last field in any pull-down menu always operates as though the CHECK(FE) (Field Exit) keyword

were specified. This keeps the cursor in the pull-down menu after you enter the input that is in the last

field in the pull-down menu. Then, if you press the Field Exit key with the cursor in the last field, the

field is cleared and the cursor moves to the next pull-down menu. If the last field did not operate with

CHECK(FE), the cursor automatically moves on to the next pull-down menu after you press the Enter

key.

A pull-down record can contain anything that a window record can contain. However, use only

single-choice selection fields or multiple-choice selection fields in a pull-down menu. If you use fields

other than single-choice selection fields or multiple-choice selection fields, the cursor does not move

consistently on all display stations. On display stations attached to a controller that supports an enhanced

interface for nonprogrammable work stations, the cursor-right keys and cursor-left keys display the next

pull-down menu when both of these conditions are true:

v There is only one selection field in the displayed pull-down menu, and

v The cursor is positioned on the selection field.

On display stations attached to a controller that does not support an enhanced interface for

nonprogrammable work stations, the cursor movement keys move the cursor one character position

within the pull-down menu.

Figure 48 is an example of the DDS for a pull-down menu. The figures that follow show how the

pull-down menu appears on each type of display.

Note: Assume that the record PULLDOWN is specified on the MNUBARCHC keyword for the Edit

choice, and that the MARKTXT field contains the text, >Mark.

 On display stations in configurations A and B from Table 15 on page 139, the pull-down menu looks like

this:

 On display stations in configuration C from Table 15 on page 139, the pull-down menu looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R PULLDOWN PULLDOWN

 A F1 2Y 0B 1 1SNGCHCFLD

 A 01 CHOICE(1 ’>Undo ’)

 A CHOICE(2 &MARKTXT)

 A CHOICE(3 ’>Copy ’)

 A

 A :

Figure 48. DDS for a Pull-Down Menu

Undo
Mark
Copy

RV2W859-1

EditFile View Help

Figure 49. Pull-Down Menu on a Graphical Display Station with Enhanced Interface

Chapter 6. Creating a Graphical Look for Displays 153

On display stations in configurations D and E from Table 16 on page 140, the pull-down menu looks like

this:

 On display stations in configuration F from Table 16 on page 140, the pull-down menu looks like this:

Controlling the Selection Indicators in a Pull-Down Menu

A selection indicator is an indicator that precedes a choice in a selection field or a selection list. It is used

to select the choice or to show that a choice has been selected. An example of a selection indicator is a

radio button. Radio buttons appear before choices in single-choice selection fields and single-choice

selection lists. The default is for selection indicators to appear in selection fields. You can suppress the

selection indicators in a pull-down menu by specifying the *NOSLTIND parameter on the PULLDOWN

keyword. Figure 53 is an example of the DDS to suppress the selection indicators in a pull-down menu.

 On display stations in configurations A and B from Table 15 on page 139, the pull-down menu looks like

this:

:
:
: :

:
:

..

Undo
Mark
Copy

1.
2.
3.

..

RV2W065-0

Edit
..

File View Help

.

Figure 50. Pull-Down Menu on a Nongraphical Display Station with Underline Capability

:
:
: :

:
:

..

Undo
Mark
Copy

1.
2.
3.

..

RV2W064-0

File View HelpEdit

.

Figure 51. Pull-Down Menu on a Nongraphical Display Station without Underline Capability

:
:
: :

:
:

..

Undo
Mark
Copy

1.
2.
3.

..

RV3W073-1

File View Help Edit

.

Figure 52. Pull-Down Menu on a Display without Enhanced Interface

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R PULLDOWN PULLDOWN(*NOSLTIND)

 A F1 2Y 0B 1 1SNGCHCFLD

 A 01 CHOICE(1 ’>Undo ’)

 A CHOICE(2 &MARKTXT)

 A CHOICE(3 ’>Copy ’)

Figure 53. DDS for Suppressing Selection Indicators in a Pull-Down Menu

154 Application Display Programming V6R1

On display stations in configuration C from Table 15 on page 139, the pull-down menu looks like this:

 The *NOSLTIND value is ignored for display stations that are not attached to a controller that supports

an enhanced interface for nonprogrammable work stations.

Defining Accelerator Keys

An accelerator key is a function key that starts the application-defined function and is displayed next to

a pull-down menu choice.

You can specify accelerators for a single-choice selection field in a pull-down menu by doing the

following:

1. Specify the necessary CFnn keys.

2. Use the CHCACCEL keyword.

Specify the accelerator text on the CHCACCEL keyword. You can use a P-field to specify the text. Note

that the CHCACCEL keyword does not define the accelerator key itself. You must define the CFnn

keyword for the key and design your application to recognize this key as an accelerator for this choice.

You must also ensure that the text you specify on CHCACCEL correctly reflects the key you have

defined. For example, if you want CF08 to be an accelerator key, specify something like F8 or CF08 on the

CHCACCEL keyword for the appropriate choice.

The accelerator text appears three spaces after the length of the longest choice text in the field.

Because the accelerator key functions even if the pull-down menu is not displayed, you should define the

necessary CFnn keys at the file level. If you define them at the record level, specify them for every record

from which they should be available.

Single-choice selection fields may be defined in any record. However, an accelerator can be defined only

for a single-choice selection field within a pull-down menu. Figure 56 on page 156 is an example.

Undo
Mark
Copy

RV2W857-1

EditFile View Options Help

Figure 54. Suppressed Selection Indicators on Graphical Display Station

:
:
: :

:

:

.

.

Mark
Copy

RV2W066-1

Undo

EditFile View Options Help

.

.

Figure 55. Suppressed Selection Indicators on Nongraphical Display Station

Chapter 6. Creating a Graphical Look for Displays 155

On display stations in configurations A and B from Table 15 on page 139, the pull-down menu looks like

this:

Defining a Menu-Bar Switch Key

A menu-bar switch key alternates the cursor between the menu bar and the application display.

You can define a menu-bar switch key using the MNUBARSW keyword at either the file level or the

record level. If the cursor is in the application record, pressing the menu-bar switch key moves the cursor

to the first choice in the menu bar. Pressing the key again moves the cursor from the menu bar back to its

previous location in the application record. If you move the cursor using the cursor keys from the

application record to the menu bar and then press the menu-bar switch key, the cursor returns to its

initial position on the application record. This is the first input field unless cursor positioning keywords

are specified on the application record. If a pull-down menu is displayed, pressing the menu-bar switch

key cancels the pull-down menu and moves the cursor to the application record.

The system always handles the menu-bar switch key regardless of whether the application or the system

displayed the menu bar. (For more information, see the DDS topic collection in the i5/OS Information

Center.)

For the menu-bar switch key to be active, it must have been active on the last record written to the

display. The easiest way to ensure that the menu-bar switch key will always be active is to specify

MNUBARSW at the file level. If you specify MNUBARSW at the record level, you must specify it on all

records on which it should be active.

Defining a Cancel Key

You can define a cancel key for the menu-bar record and pull-down menu records using the MNUCNL

keyword. You can define them either at the file level or the record level.

A cancel key closes a pull-down menu and moves the cursor to the associated choice on the menu bar.

This is true even if the cursor is not in the pull-down menu. If no pull-down menus are displayed and

the cursor is located within the menu bar, the key cancels the menu bar and moves the cursor back to the

application record. This location is the cursor’s previous location in the application record if the menu-bar

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R PULLEDIT CF04 CF06

 A PULLDOWN

 A F1 2Y 0B 1 1SNGCHCFLD

 A CHECK(ER)

 A 01 CHOICE(1 ’>Undo ’)

 A CHCACCEL(1 ’F4’)

 A CHOICE(2 &MARKTXT)

 A CHCACCEL(2 &F6)

 A CHOICE(3 ’>Copy ’)

 A MARKTXT 20A P

 A F6 2 P

Figure 56. DDS for Accelerator Keys

Undo
Mark
Copy

F4
F6

RV2W855-1

EditFile View Options Help

Figure 57. Accelerators in a Pull-Down Menu

156 Application Display Programming V6R1

switch key was used to move the cursor to the menu bar. If the cursor had been moved to the menu bar

with the cursor keys, this location is the initial location of the cursor within the application record. If no

pull-down menus are displayed and the cursor is located on the application record, the key returns

control to the application program. In this case, the MNUCNL keyword works just as any other key

definition keyword, and includes the ability to return a response indicator.

Like the menu-bar switch key, the cancel key is active only if it was active for the last record written to

the display. The easiest way to ensure that the cancel key will always be active is to specify the

MNUCNL keyword at the file level. If you use the MNUCNL keyword at the record level, you must

specify it on all records on which it should be active.

Figure 58 shows how to use the MNUBARSW keyword and the MNUCNL keyword. The example sets up

command attention key 10 as the menu-bar switch key and command attention key 12 as the cancel key.

(These settings are the defaults.)

Limiting Function When Cursor is Outside a Pull-Down Menu

If *NORSTCSR is specified on the PULLDOWN keyword, the user may move the cursor out of the active

window and use any command function (CF) key. *NORSTCSR is the default.

If *RSTCSR is specified on the PULLDOWN keyword, and the cursor is moved outside the pull-down

menu, only the Print and Home command function (CF) keys are active. If the work station user presses

any other command function (CF) key, the alarm sounds and the cursor is moved back to its position for

the previous write operation.

Selection Lists-Overview

A selection list is a potentially scrollable list from which the user can select an item. There are two types

of selection lists: single-choice and multiple-choice. A single-choice selection list is a potentially

scrollable list from which the user can select one item. A multiple-choice selection list is a potentially

scrollable list from which the user can select one or more items.

Single-choice selection lists and multiple-choice selection lists contain a group of choices displayed in a

vertical list. These choices can be scrolled either by using the Page Up and Page Down keys or by using a

scroll bar. A scroll bar is a part of a display that shows a user that more information is available in a

particular direction and can be moved into view by using a pointing device or the page keys. For more

information on scroll bars, see “Scroll Bars-Overview” on page 162.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A MNUBARSW(CA10) MNUCNL(CA12)

 A R MENUBAR MNUBAR

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A EDITTXT 20A P

 A .

 A .

 A .

Figure 58. DDS for Menu-Bar Switch Key and Cancel Key

Chapter 6. Creating a Graphical Look for Displays 157

You can select any number of choices from the multiple-choice selection list. You can only make one

choice from the single-choice selection list. “Selection Lists-Overview” on page 157 shows an example of

a single-choice selection list, multiple-choice selection list, and scroll bars used with the selection lists.

The DDS in Figure 61 on page 159 produces the following displays:

On display stations in configurations A and B from Table 15 on page 139, the selection lists look like this:

 On display stations in configuration F from Table 16 on page 140, the selection lists (vertical format) look

like this:

RV3W077-0

Figure 59. Selection Lists on a Graphical Display Station with Enhanced Interface

RV3W069-2

Figure 60. Selection Lists on a Nongraphical Display Station with Underline Capability

158 Application Display Programming V6R1

DDS for Selection Lists-Example

The DDS in Figure 61 creates the displays shown in “Selection Lists-Overview” on page 157.

Creating Selection Lists

Selection lists are created using subfiles. For more information on subfiles, see Chapter 4, “Displaying

Groups of Records Using Subfiles.” For each selection list you must specify a subfile record format and a

subfile control record format. Within the subfile record format you must specify an output field for the

text of the choice. You can specify only one output-only field in the record.

To specify a default choice in a selection list, use either the subfile next-changed (SFLNXTCHG) keyword

or a control field. To use the SFLNXTCHG keyword, specify the keyword on the text field within the

subfile record. To use a control field, specify a control field in the subfile record and specify the subfile

choice control (SFLCHCCTL) keyword on the field. The control field can have the following values:

 Control Value Meaning on Output Meaning on Input

0 Available Not selected

1 Selected Selected

2 Unavailable. Cannot place cursor on choice unless

help for choice is available.1,2

3 Unavailable. Placing cursor on choice is allowed.

4 Unavailable. Cannot place cursor on choice even if

help for choice is available.1,2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLRCD SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A F1 11A O 6 10

 A R SFLCTLRCD SFLCTL(SFLRCD)

 A SFLSNGCHC

 A SFLPAG(5) SFLSIZ(&SFLSIZ)

 A SFLDSP SFLDSPCTL

 A ROLLUP(10)

 A 10 SFLEND(*MORE)

 A F3 5S 0H SFLSCROLL

 A F2 4S 0H SFLRCDNBR(CURSOR *TOP)

 A SFLSIZ 5S 0P

 A 1 30’Panel Title’

 A 4 5’Single selection list:’

 A R SFLRCD2 SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A F1 11A O 13 10

 A R SFLCTLRC2 SFLCTL(SFLRCD2)

 A SFLMLTCHC(&NUMSEL *RSTCSR)

 A SFLPAG(5) SFLSIZ(&SFLSIZ)

 A SFLDSP SFLDSPCTL

 A 10 SFLEND(*MORE)

 A ROLLUP(10)

 A F2 4S 0H SFLRCDNBR(CURSOR *TOP)

 A F3 5S 0H SFLSCROLL

 A SFLSIZ 5S 0P

 A NUMSEL 4Y 0H

 A 11 5’Multiple selection list:’

Figure 61. DDS for Selection Lists-Example

Chapter 6. Creating a Graphical Look for Displays 159

Control Value Meaning on Output Meaning on Input

Notes:

1. Applies only to displays attached to a controller that supports an enhanced interface for nonprogrammable work

stations.

2. If the choice is the first choice displayed and there are no other cursorable choices in the list, the choice will be

made unavailable and cursorable. Otherwise, an invalid data stream error would be issued.

The application uses the get-next-changed operation to determine which choices are selected. The

get-next-changed operation returns all of the changed records. If the user deselects a default choice, the

get-next-changed operation returns the deselected choice record because its control value changed. To

have the get-next-changed operation return only the selected choices, specify the subfile return selected

choices (SFLRTNSEL) keyword on the subfile control record. The next get-next-changed operation will

return the selected choice. Then, perform an update operation to the default choice to change its control

value to 0.

On display stations in configurations A and B from Table 15 on page 139, the choices are preceded by

radio buttons (single-choice) and check boxes (multiple-choice). This is true unless *NOSLTIND is

specified on the subfile single-choice selection list (SFLSNGCHC) and multiple-choice selection list

(SFLMLTCHC) keywords. The location that you specify for the first field in the subfile record format is

the location of the input fields (on a character-based nongraphical display). On display stations in

configurations A and B from Table 15 on page 139, the location of the first field is the location of the first

radio button or check box.

Notes:

1. If you suppress the selection indicators, the location that you specify for the first field in the subfile

record format is the location of the first character in the first choice.

2. If the selection list is within a pull-down menu, the location you specify is relative to the pull-down

menu borders.

The SFLSCROLL keyword is used to return the relative record number of the record at the top of the

current page of records. If the user presses Enter, SFLSCROLL returns the relative record number of

record that is currently displayed at the top of the page. If control is returned to the application because

of the ROLLUP keyword, SFLSCROLL returns the relative record number of the last record in the subfile

plus 1. If control is returned to the application because of the ROLLDOWN keyword, SFLSCROLL always

returns 1.

To redisplay the subfile with the correct subfile record at the top of the list of choices, use the subfile

record number (SFLRCDNBR) keyword. Specify SFLRCDNBR(*TOP) as a hidden field and use the

relative record number returned by the SFLSCROLL keyword. Add more records to the subfile and

redisplay the subfile.

Controlling the Selection Indicators in a Selection List

A selection indicator is an indicator that precedes a choice in a selection field or a selection list. It is used

to select the choice or to show that a choice has been selected. An example of a selection indicator is a

radio button. Radio buttons appear before choices in single-choice selection fields and single-choice

selection lists. The default is for selection indicators to not appear in selection lists. You can have the

selection indicators display in a selection list by specifying the *SLTIND parameter on the SFLSNGCHC

and SFLMLTCHC keywords.

The *SLTIND value is ignored for display stations that are not attached to a controller that supports an

enhanced interface for nonprogrammable work stations. Figure 62 on page 161 is an example of the DDS

to enable the selection indicators in a selection list.

160 Application Display Programming V6R1

On display stations in configurations A and B from Table 15 on page 139, the selection list looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLRCD SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A F1 11A O 6 10

 A R SFLCTLRCD SFLCTL(SFLRCD)

 A SFLSNGCHC(*SLTIND)

 A SFLPAG(5) SFLSIZ(&SFLSIZ)

 A SFLDSP SFLDSPCTL

 A ROLLUP(10)

 A 10 SFLEND(*MORE)

 A F3 5S 0H SFLSCROLL

 A F2 4S 0H SFLRCDNBR(CURSOR *TOP)

 A SFLSIZ 5S 0P

 A 1 30’Panel Title’

 A 4 5’Single selection list:’

 A R SFLRCD2 SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A F1 11A O 13 10

 A R SFLCTLRC2 SFLCTL(SFLRCD2)

 A SFLMLTCHC(&NUMSEL *RSTCSR *SLTIND)

 A SFLPAG(5) SFLSIZ(&SFLSIZ)

 A SFLDSP SFLDSPCTL

 A 10 SFLEND(*MORE)

 A ROLLUP(10)

 A F2 4S 0H SFLRCDNBR(CURSOR *TOP)

 A F3 5S 0H SFLSCROLL

 A SFLSIZ 5S 0P

 A NUMSEL 4Y 0H

 A 11 5’Multiple selection list:’

Figure 62. DDS for Enabling Selection Indicators in a Selection List

RV3W0079-0

Figure 63. Selection Indicators on Graphical Display Station

Chapter 6. Creating a Graphical Look for Displays 161

Scroll Bars-Overview

A scroll bar is a part of a display that shows a user that more information is available in a particular

direction and can be moved into view by using a pointing device or the page keys. A scroll bar can be

defined for any subfile. The examples in this section show examples of scroll bars used with a

single-choice selection list and a multiple-choice selection list.

The DDS in Figure 66 on page 165 produces the following displays:

On display stations in configurations A and B from Table 15 on page 139, the selection lists and scroll

bars look like this:

 On display stations in configuration F from Table 16 on page 140, the selection lists (vertical format) look

like this:

RV3W078-0

Figure 64. Scroll Bar on a Graphical Display Station with Enhanced Interface

162 Application Display Programming V6R1

Creating a Scroll Bar

To create a scroll bar, use the scroll bar (*SCRBAR) value on the subfile end (SFLEND) keyword. The

*SCRBAR value creates a graphical scroll bar on graphical display stations. It creates a character scroll bar

on nongraphical display stations. The scroll bar appears to the right of the longest choice in the list. To

have the scroll bar appear further to the right, add blanks to the text for the selection list choices.

In most cases, the number of subfile records represented by the scroll bar is the number of records that

have been written to the subfile. The SFLEND keyword optioned on indicates that no more records will

be written to the subfile. The SFLPAG value is not added to the number of records represented by the

scroll bar. When the bottom of the subfile is reached and the PAGEDOWN keyword is not active, the

scroll bar box is displayed exactly above the lower scroll bar button.

The SFLEND keyword optioned off indicates that more records will be written to the subfile. The

SFLPAG value is added to the number of records represented by the scroll bar. Adding the SFLPAG value

causes the scroll bar to appear as if more subfile records exist after the last subfile record. When the last

subfile record is reached and the PAGEDOWN keyword is active, the scroll bar box is not displayed

exactly above the lower scroll bar button. This indicates there are more records to display. If the

PAGEDOWN keyword is active, control is given back to the application if the user tries to page down or

scroll to the unseen records. The application can then write more records to the subfile.

Note: The SFLPAG value is not added to the number of records represented by the scroll bar when

PAGEDOWN is active and when the number of records written is less than the SFLSIZ value. In

this case, the number of subfile records represented by the scroll bar is the SFLSIZ value. The

SFLSIZ value is used to show the total size of the subfile and allows the application to fill only the

subfile records that the user wants to see.

If the PAGEDOWN keyword is active, no partial pages are displayed. If the user tries to roll to a partial

page, control is given back to the application. The subfile roll value (SFLROLVAL) can override this. For

more information about the SFLROLVAL keyword, see the DDS topic collection in the i5/OS Information

RV3W080-0

Figure 65. Scroll Bar on a Nongraphical Display Station with Underline Capability

Chapter 6. Creating a Graphical Look for Displays 163

Center. If the PAGEDOWN keyword is not active, the SFLPAG value minus 1 is added to the number of

records represented by the scroll bar. Adding the SFLPAG value minus 1 enables a partial page to be

displayed.

Note: If a scroll bar is displayed with a horizontal subfile, you might not be able to use the top scroll

button when the following conditions are true:

v A partial page is reached.

v Records are displayed only in the first column of the horizontal subfile.

See Table 17 for a summary of how the scroll bar is sized under different conditions.

 Table 17. How a Scroll Bar is Sized

If SFLEND

indicator is ...

and

PAGEDOWN

is ...

and the

number of

records

written is ...

then the following values are added (yes or no) to the number

of records represented by the scroll bar

SFLPAG SFLPAG - 1

Relative record

number of last

record SFLSIZ

On

Active

≥SFLSIZ No No Yes No

<SFLSIZ No No No Yes

Not active

≥SFLSIZ No Yes Yes No

<SFLSIZ No Yes Yes No

Off

Active

≥SFLSIZ Yes No Yes No

<SFLSIZ No No No Yes

Not active

≥SFLSIZ Yes Yes Yes No

<SFLSIZ Yes Yes Yes No

DDS for Scroll Bars-Example

The DDS in Figure 66 on page 165 creates the displays shown in “Scroll Bars-Overview” on page 162.

164 Application Display Programming V6R1

Scroll Bar Operation

See Table 18 for a summary of how the scroll bar operates.

 Table 18. Scroll Bar Operation

If the user ... then ...

Clicks once on the top scroll button The subfile is scrolled one record toward the bottom of

the subfile

Clicks once on the bottom scroll button The subfile is scrolled one record toward the top of the

subfile

Clicks once on the shaft above the scroll box or presses

the Page Down key

The subfile is scrolled one page toward the bottom of the

subfile

Clicks once on the shaft below the scroll box or presses

the Page Up key

The subfile is scrolled one page toward the top of the

subfile

Drags the scroll box with the selection button and

releases the selection button

The subfile page is scrolled to correspond to the position

indicated by the scroll box

Push Buttons-Overview

A push button is a button, labeled with text, graphics, or both that represents an action that starts when

a user selects the push button.

The DDS in Figure 71 on page 166 produces the following displays:

On display stations in configurations A and B from Table 15 on page 139, the push buttons look like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLRCD SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A F1 11A O 6 10

 A R SFLCTLRCD SFLCTL(SFLRCD)

 A SFLSNGCHC

 A SFLPAG(5) SFLSIZ(&SFLSIZ)

 A SFLDSP SFLDSPCTL

 A ROLLUP(10)

 A 10 SFLEND(*SCRBAR)

 A F3 5S 0H SFLSCROLL

 A F2 4S 0H SFLRCDNBR(CURSOR *TOP)

 A SFLSIZ 5S 0P

 A 1 30’Panel Title’

 A 4 5’Single selection list:’

 A R SFLRCD2 SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A F1 11A O 13 10

 A R SFLCTLRC2 SFLCTL(SFLRCD2)

 A SFLMLTCHC(&NUMSEL *RSTCSR)

 A SFLPAG(5) SFLSIZ(&SFLSIZ)

 A SFLDSP SFLDSPCTL

 A 10 SFLEND(*SCRBAR *MORE)

 A ROLLUP(10)

 A F2 4S 0H SFLRCDNBR(CURSOR *TOP)

 A F3 5S 0H SFLSCROLL

 A SFLSIZ 5S 0P

 A NUMSEL 4Y 0H

 A 11 5’Multiple selection list:’

Figure 66. DDS for Scroll Bars-Example

Chapter 6. Creating a Graphical Look for Displays 165

On display stations in configuration C from Table 15 on page 139, the push buttons look like this:

 On display stations in configurations D and E from Table 15 on page 139, the push buttons look like this:

 On display stations in configuration F from Table 15 on page 139, the push buttons look like this:

DDS for Push Buttons-Example

The DDS in Figure 71 creates the displays shown in “Push Buttons-Overview” on page 165.

Creating Push Buttons

A push button field is defined with the push button field (PSHBTNFLD) keyword. Each push button field

must contain one or more push button choice (PSHBTNCHC) keywords.

Push buttons can be displayed vertically or horizontally (the default). The *NUMROW value on the

PSHBTNFLD keyword specifies the number of rows to use when displaying the push buttons vertically.

RV3W070-0

Figure 67. Push Buttons on a Graphical Display Station with Enhanced Interface

RV3W071-0

Figure 68. Push Buttons on a Nongraphical Display Station with Underline Capability

RV3W072-0

Figure 69. Push Buttons on a Nongraphical Display Station without Underline Capability

RV3W074-0

Figure 70. Push Buttons on a Display Station without Enhanced Interface

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD

 A

 A PSHFLD1 2Y 0B 23 4PSHBTNFLD(*RSTCSR (*NUMCOL 3))

 A PSHBTNCHC(1 ’F1=>Help’ HELP)

 A PSHBTNCHC(2 &F3 CF03)

 A CHCCTL(2 &CTL)

 A 02 PSHBTNCHC(3 ’F4=>Prompt’ CF04)

 A CHCAVAIL((*COLOR RED))

 A F3 15A P

 A CTL 1Y 0H

Figure 71. DDS for Push Buttons-Example

166 Application Display Programming V6R1

The *NUMCOL value on the PSHBTNFLD keyword specifies the number of columns to use when

displaying the push buttons horizontally. When no parameters are specified on the PSHBTNFLD

keyword, the push buttons are displayed in as many columns that fit on one line.

Use the choice control (CHCCTL) keyword to control the availability of the individual push buttons. Use

the choice available (CHCAVAIL) and choice unavailable (CHCUNAVAIL) keywords to control the color

or attribute of the individual push buttons.

Specify a key for each push button. In the following example, the CF04 key is returned when the

F4=Prompt push button is selected:

 PSHBTNCHC(3 ’F4=>Prompt’ CF04)

If you do not specify a key, Enter is returned when the push button is selected.

The key defined in the push button choice is automatically enabled for the record that contains the push

button field.

The field that contains the push button contains the number of the push button choice that is selected. If

the user presses the key associated with a push button (instead of selecting the push button itself), the

number of the push button is not returned. Zero is returned if no choice is made.

Help can be specified for each push button.

Controlling the Availability of Choices

You can control the availability of the choices in a selection field and push button choices using the

CHCCTL keyword. For information on controlling the availability of choices in selection lists, see

“Creating Selection Lists” on page 159. Specify the name of a hidden field on the CHCCTL keyword.

Your program can set a value in this field to specify whether the choice is available, unavailable, or

selected (multiple-choice selection fields only). Figure 72 describes the control values and their meanings.

Note: The cursor restrictions in Figure 72 apply only to displays attached to a controller that supports an

enhanced interface for nonprogrammable work stations.

Value 1 is ignored for single-choice selection fields, because default selection is done by setting the

selection in the single-choice selection field itself. It is also ignored for push buttons. Value 1 is used for

multiple-choice selection fields to let more than one choice default to the selected choice.

You can also specify a message to be displayed if the user selects an unavailable choice. If you do not

specify a message, the system displays a default message.

Figure 73 on page 168 is an example of the DDS to control the availability of choices showing a

single-choice selection field in an ordinary record:

Control Value Sets Choice to

0 Available (or not selected)

1 Selected

2 Unavailable. Cannot place cursor on choice unless help for choice is available.

3 Unavailable. Placing cursor on choice is allowed.

4 Unavailable. Cannot place cursor on choice even if help for choice is available.

Figure 72. Control Values for the CHCCTL Keyword

Chapter 6. Creating a Graphical Look for Displays 167

On display stations in configuration C from Table 15 on page 139 and configurations D, E, and F from

Table 16 on page 140, the single-choice selection field looks like this:

Auto-Selection in Single-Choice Selection Fields

The auto-selection function allows a user to select a choice in a single-choice selection field by placing

the cursor on the choice and pressing Enter. It is not necessary to select the choice by 1) typing the choice

number, 2) placing the cursor on the choice and pressing the spacebar, or 3) placing the pointer on the

choice and pressing the left mouse button. This is the default for single-choice selection fields in a

pull-down menu. The default for single-choice selection fields that are not in a pull-down menu is

manual selection. The *AUTOSLT parameter on the SNGCHCFLD keyword indicates that the choice

should be automatically selected when Enter is pressed. The *NOAUTOSLT parameter indicates that the

choice must be manually selected. The *AUTOSLTENH parameter indicates that auto-selection is only in

effect for displays attached to a controller that supports an enhanced interface for nonprogrammable

workstations.

Auto-Enter in Single-Choice Selection Fields

The auto-enter function allows a selected choice to be returned to the program when the choice is

selected. It is not necessary to press Enter to return the choice. The *AUTOENT parameter indicates that

the Enter key will be returned as soon as the choice is selected. The choice is automatically returned on

all display stations except where a double-digit selection number is required for any of the choices. The

*NOAUTOENT parameter indicates that the choice will not be returned until the user presses Enter after

selecting the choice. *NOAUTOENT is the default. The *AUTOENTNN parameter indicates that the

choice will be returned as soon as the choice is selected only if numeric selection of the choice is not

required.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R RECORD

 A 2 2’Flavor . . . ’

 A F1 2Y 0B 2 16SNGCHCFLD

 A CHOICE(1 ’>Chocolate ’)

 A CHCCTL(1 &CTLCHOC MSG1112 QUSER/A)

 A 01 CHOICE(2 ’>Strawberry ’)

 A CHCCTL(2 &CTLSTRA &MSG &LIB/&MSGF)

 A CHOICE(3 ’>Vanilla ’)

 A CHCCTL(3 &CTLVANI);

 A CHOICE(5 ’>Peach ’)

 A CTLCHOC 1Y 0H

 A CTLSTRA 1Y 0H

 A CTLVANI 1Y 0H

 A MSG 7A P

 A LIB 10A P

 A MSGF 10A P

Figure 73. DDS to Control the Availability of Choices

 Flavor . . . _ 1. Chocolate

 2. Strawberry

 3. Vanilla

 5. Peach

The choice text, Vanilla, appears gray to indicate it is unavailable.
Figure 74. Single-Choice Selection Field with an Unavailable Choice. Assume that at run time, CTLCHOC and

CTLSTRA are set to 0 (available) and CTLVANI is set to 2 (unavailable).

168 Application Display Programming V6R1

Defining Mnemonics

You can define mnemonics for these items:

v Menu-bar choices

v Selection field choices (single and multiple)

v Selection list choices (single and multiple)

v Push buttons

Define mnemonics using a greater-than (>) character. To identify a mnemonic, place the > character just

before the character that you want to be the mnemonic. The > character is not counted as part of the text

length. If you want to use the > character as a character in the text rather than as a pointer to the

mnemonic, you must use two > characters consecutively. If you specify the > character as the last

character in the text, the > character appears as part of the text and no mnemonic appears. Figure 75 is an

example.

Note: The characters that appear highlighted in this example will be underlined on your display.

The mnemonic cannot be a blank. Only one mnemonic may be specified in the choice text. If more than

one mnemonic is specified, only the first mnemonic is selectable. Figure 76 is an example of incorrect

coding.

 You can select a mnemonic by typing either the uppercase or lowercase mnemonic character. This is true

for all languages. The system uses the monocase rules for the appropriate language to identify the

mnemonic you typed. Double-byte characters cannot be mnemonics.

Because the system does not support both mnemonic and numeric selection for a field, mnemonics work

only when choices are not displayed using numbers.

Keyword Specification Text Appears as

MNUBARCHC(1 PULLFILE ’>File’)

File

MNUBARCHC(2 PULLFIN ’F>inish’)

Finish

CHOICE(1 ’Save >As...’) Save As...

CHOICE(2 ’X >= 1’) X = 1

CHOICE(3 ’X >>>= 1’) X >= 1

You cannot specify the > character as a mnemonic.
Figure 75. Examples of Valid DDS for Mnemonics

Keyword Specification Error

MNUBARCHC(1 PULLFILE ’>File’)

Same mnemonic specified for

MNUBARCHC(2 PULLFIN ’>finish’)

more than one choice.

CHOICE(1 ’S>ave >As...’) Two mnemonic characters

CHOICE(4 ’X >>>= >1’) specified.

Figure 76. Examples of DDS Not Valid for Mnemonics

Chapter 6. Creating a Graphical Look for Displays 169

To determine which configurations support mnemonics, see Table 15 on page 139.

Defining Choice Colors and Attributes

Normally, the system uses the Common User Access® (CUA) default colors and display attributes when

displaying menu-bar choices, selection-field choices, selection list choices, and push button choices. If you

do not want to use these defaults, you can define the colors and attributes to be used for most choices

using the CHCAVAIL, CHCUNAVAIL, and CHCSLT keywords. Table 19 shows which keywords can be

used with each graphical item.

 Table 19. Keywords Used to Define Colors and Display Attributes

Graphical Item

DDS Keyword

CHCAVAIL CHCUNAVAIL CHCSLT

Menu-Bar Choice X X

Selection Fields X X X

Push Buttons X X

Single Choice Selection List X X X

Multiple Choice Selection List X X X

The selection cursor on display stations attached to a controller that supports an enhanced interface for

nonprogrammable work stations uses the reverse image form of the colors and attributes you specify for

each of the choice states. For example, if you specify pink (normal display) for the available choices, the

selection cursor is reverse image pink when it is located on an available choice. If you specify pink

reverse image for the available choices, the selection cursor is pink (normal display). Likewise, if you do

not specify CHCAVAIL, CHCUNAVAIL, or CHCSLT and use the CUA default colors and attributes, the

selection cursor is the reverse image of those colors and attributes.

You can use only the CHCAVAIL keyword and the CHCSLT keyword for menu bars because menu-bar

choices are either available or selected. For selection fields, use only the CHCAVAIL keyword and the

CHCUNAVAIL keyword when you are using selection characters (for example, numbers or radio

buttons). The CHCSLT keyword is ignored in these cases. However, you can use CHCSLT for selection

fields in a pull-down menu on graphical display stations or character-based graphical display stations

when you have specified that the pull-down menu should not contain selection indicators

(PULLDOWN(*NOSLTIND) specified).

You can use only the CHCAVAIL keyword and the CHCUNAVAIL keyword for push buttons because

push button choices are either available or unavailable.

The display-attribute (*DSPATR) parameter specifies the way in which the separator characters display.

The parameter is expressed in this form:

 (*DSPATR value1 <value2 <value3...>>)

The valid values for the display attributes are:

Value Meaning

BL Blink

CS Column separator

HI High intensity

ND Nondisplay

RI Reverse image

UL Underline

170 Application Display Programming V6R1

The default display attribute for unavailable choices in a selection field on monochrome display stations

is normal (or low) intensity. Also, the first character of an unavailable choice on a monochrome display

station is overwritten with an asterisk (*).

Display attributes CS, HI, and BL can cause fields on 5292, 3179, and 3197 Model C1 and C2 display

stations to appear as color fields. Display attributes HI, RI, and UL cause a separator line not to be

displayed. For more information, see the CHCAVAIL keyword, the CHCUNAVAIL keyword, and the

CHCSLT keyword in the DDS topic collection in the i5/OS Information Center.

In Figure 77, the choices in the menu bar are displayed in white on color display stations and in high

intensity on monochrome display stations. When a menu-bar choice is selected, it is displayed in green

on color display stations and reverts to normal (not high intensity) display on monochrome display

stations.

 In Figure 78, the available selection-field choices are displayed in pink on color display stations and in

high intensity on monochrome display stations. The unavailable selection-field choices are displayed in

turquoise on color display stations. On monochrome display stations, the unavailable choices are

displayed with normal (or low) intensity, and the first character in the choices is overwritten with an

asterisk (*).

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R MENUBAR MNUBAR

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A MNUBARSEP((*COLOR WHT))

 A CHCAVAIL((*COLOR WHT) (*DSPATR HI))

 A CHCSLT((*COLOR GRN))

 A EDITTXT 20A P

 .

 .

 .

Figure 77. DDS Using CHCAVAIL and CHCSLT for Menu-Bar Choices

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A F1 2Y 0B 1 1SNGCHCFLD

 A 01 CHOICE(1 ’>Chocolate ’)

 A CHOICE(2 ’>Strawberry ’)

 A CHOICE(3 ’>Vanilla ’)

 A CHCCTL(1 &CTLCHOC MSG1112 QUSER/A)

 A CHCCTL(2 &CTLSTRA &MSG &LIB/&MSGF)

 A CHCCTL(3 &CTLVANI)

 A CHCAVAIL((*COLOR PNK) (*DSPATR HI))

 A CHCUNAVAIL((*COLOR TRQ))

 A CTLCHOC 1Y 0H

 A CTLSTRA 1Y 0H

 A CTLVANI 1Y 0H

 A MSG 7A P

 A LIB 10A P

 A MSGF 10A P

Figure 78. DDS Using CHCAVAIL and CHCUNAVAIL for Selection Fields

Chapter 6. Creating a Graphical Look for Displays 171

In Figure 79, the selection-field choice that is selected is displayed in yellow. If CHECK(ER)

(automatic-enter) is specified on this field, control is returned immediately after selecting the choice.

 In Figure 80, the DDS source for a Single Choice Selection list is shown (the example does not show all

the keywords necessary for a correct subfile definition). Available choices within the list will be displayed

in yellow. Unavailable choices will be displayed in red. The selected choice will be displayed in green.

 In Figure 81, the DDS source for a Multiple Choice Selection list is shown (the example does not show all

the keywords necessary for a correct subfile definition). Available choices within the list will be displayed

in yellow. Unavailable choices will be displayed in red. Any selected choices will be displayed in green.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R PULLDOWN PULLDOWN(*NOSLTIND)

 A F1 2Y 0B 1 1SNGCHCFLD

 A 01 CHOICE(1 ’>Undo ’)

 A CHOICE(2 ’>Mark ’)

 A CHOICE(3 ’>Copy ’)

 A CHCCTL(1 &CTLUNDO MSG1112 QUSER/A)

 A CHCCTL(2 &CTLMARK &MSG &LIB/&MSGF)

 A CHCCTL(3 &CTLCOPY)

 A CHCAVAIL((*COLOR PNK) (*DSPATR HI))

 A CHCUNAVAIL((*COLOR TRQ))

 A CHCSLT((*COLOR YLW))

 A CTLUNDO 1Y 0H

 A CTLMARK 1Y 0H

 A CTLCOPY 1Y 0H

 .

 .

 .

Figure 79. DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Selection Fields

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLREC SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A R SFLCTLRCD SFLCTL(SFLREC)

 A SFLSNGCHC

 A .

 A .

 A .

 A CHCAVAIL((*COLOR YLW))

 A CHCUNAVAIL((*COLOR RED))

 A CHCSLT((*COLOR GRN))

Figure 80. DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Single Choice Selection List Choices

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R SFLREC SFL

 A CTLFLD 1Y 0H SFLCHCCTL

 A R SFLCTLRCD SFLCTL(SFLREC)

 A SFLMLTCHC

 A .

 A .

 A .

 A CHCAVAIL((*COLOR YLW))

 A CHCUNAVAIL((*COLOR RED))

 A CHCSLT((*COLOR GRN))

Figure 81. DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Multiple Choice Selection List Choices

172 Application Display Programming V6R1

Continued-Entry Fields-Overview

A continued-entry field is a set of associated entry fields. Continued-entry fields are supported on

displays attached to any controller. Controllers that support an enhanced interface for nonprogrammable

work stations treat continued-entry fields as single-entry fields while data is being entered and edited in

the fields.

Note: Controllers that do not support an enhanced interface for nonprogrammable work stations treat

continued-entry fields as separate input fields. Insert and delete characters one segment at a time.

When you reach the end of a segment, the cursor does not move automatically to the next

segment.

Figure 82 illustrates the use of continued-entry fields to create a rectangular text entry field. Consider

using this format to avoid using a single input field that wraps across multiple lines.

Note: The empty space at the end of the last line is still part of the continued-entry field. You cannot

define another field in this space.

 A continued-entry field allows a multiple-row entry field to be defined inside of a window or display.

The DDS for the field looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A F1 90A B 3 4CNTFLD(30)

The CNTFLD keyword tells the system that this is a continued-entry field and its parameter tells the

system how wide the field should be. The system breaks the field into columns and uses as many lines as

it needs to reach the specified width.

Specifying Word Wrap on Continued-Entry Fields

To specify the word wrap function for a continued-entry field, use the word wrap (WRDWRAP)

keyword. This keyword can be used at the file, record, or field level.

Note: WRDWRAP cannot be used on DBCS continued-entry fields.

For more information about the WRDWRAP keyword, see “Specifying Word Wrap for Fields” on page 32.

DBCS Considerations with Continued-Entry Fields

DDS supports these DBCS data types:

J Only (only bracketed DBCS characters allowed)

E Either (either only SBCS or only bracketed DBCS characters allowed)

O Open (either SBCS or bracketed DBCS characters allowed - mixed)

G Graphic/Pure (only nonbracketed DBCS characters allowed)

These data types will have the following restrictions:

J The width of each continued-entry field segment must be an even number of at least 4 bytes.

Enter Text . . . __

 __

 __

 __

 __

Figure 82. Continued-Entry Fields in Rectangular Arrangement

Chapter 6. Creating a Graphical Look for Displays 173

E The width of each continued-entry field segment must be an even number of at least 4 bytes.

O The width of each continued-entry field segment must be at least 4 bytes wide.

G The width of each continued-entry field segment must be an even number of at least 4 bytes.

The length of the DBCS continued-entry field must account for the SO/SI character pairs that bracket the

DBCS data on each segment of the continued-entry field. The following total field lengths are required to

ensure the field data fits into DBCS continued-entry fields:

J or E (with DBCS data)

Data Length + (Number of segments - 1) * 2

O Data Length + (Number of segments - 1) * 3

G or E (with SBCS data)

Data Length

Note: The (Number of segments - 1) * 3 portion of the calculation in the second equation allows for the

SO/SI sets that must bracket the DBCS data on the segments of the continued-entry field after the

first segment. Additional consideration is made for the possibility that a NULL must be placed at

the end of a segment wherever a DBCS character would be split.

How DBCS Data is Returned for Continued-Entry Fields

If the field is a DBCS-only or DBCS-either (with DBCS data) field, the following data is not returned to

the application

v The extra SO characters at the start of the middle and last segments

v The extra SI characters at the end of the first and middle segments

If the field is a DBCS-open field, the following are removed before the field is returned to the application:

v All single byte subfields at the end of a segment which consist only of one null or are empty. This is to

remove any SO/SI pairs that most likely have been automatically inserted as a result of double byte

data falling on a segment boundary. Removing the extra SI/SO characters occurs for all hardware

regardless of whether the controller supports an enhanced interface for nonprogrammable work

stations.

v Single byte nulls that end a segment if the following is true:

– The number of nulls is three or less

– The previous character is not an SI character or null

– The next segment begins with an SO character

This is to remove any nulls that most likely have automatically been inserted as a result of double byte

data falling on a segment boundary.

Keyboard Functions with Continued-Entry Fields

The system processes local keyboard functions specified within the continued-entry fields on a display

station attached to a controller that supports an enhanced interface for nonprogrammable work stations

by the following definitions:

Character data

In replace mode, there is no unique character data processing. When character data is entered in the last

character position of the first or one of the middle fields in the set, the cursor moves to the first character

position of the next field in the set. When character data is entered in the last character position of the

last field in the continued fields, forward field-exit processing is performed (see “Forward Field-Exit

Processing” on page 178).

In insert mode and cursor direction matches field direction, the following actions occur when a character

data key is pressed:

174 Application Display Programming V6R1

v The null in the last character position of the last field in the continued-entry fields is deleted. If there is

no null in the last position of this field, operator error 0012 is posted.

v All field data within the continued-entry fields at (and logically following) the current cursor location

are shifted one position. Each data character in the last character position of the current and remaining

fields (except the last) in the set is shifted to the first character position of the following field.

v The data character entered is written at the cursor location.

v The cursor advances to the next cursor position.

v For DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields, the two nulls in the last two

character positions (before the SI for DBCS-only or DBCS-either fields) of the last segment of the

continued field are deleted. If there are not nulls in the last two positions of that segment, operator

error 0012 is posted. Otherwise, all field data (not including the SO or SI characters) within the set of

field segments at and logically following the current cursor location is shifted two positions in the

cursor direction. Each double byte character in the last two character positions of the current and

remaining segments (except the last) is moved to the first two character positions of the following

segment. The DBCS character entered is written at the cursor location, and the cursor advances to the

next double byte cursor position.

v For DBCS-open fields the data in the continued field segments, at and to the right of the cursor, is

copied into one continuous buffer. The inserted character is placed at the start of the buffer. All single

byte nulls are removed from the buffer, and the data is shifted toward the beginning of the buffer. All

adjacent SI/SO character pairs (that is, empty single byte subfields) are also removed from the buffer.

The data is again shifted toward the beginning of the buffer. The data is then placed back into the

continued field one character at a time, according to the algorithm for writing data into a DBCS-open

continued field. The remaining character positions are replaced with nulls. The cursor also advances to

the next character position. If all the data in the buffer cannot fit into the continued field, operator

error 0012 is posted, and the field data and cursor position are not changed.

In insert mode and cursor direction does not match field direction, the insert takes place within a

subfield. The insert is the same as if the field and cursor direction matched, but the insert is performed

within the subfield. The extent of a subfield is defined as follows:

v When the cursor direction is right-to-left, the subfield extends from the cursor to the first null logically

following the cursor. If there is no such null, the subfield includes all positions logically following the

cursor.

v When the cursor direction is left-to-right, the subfield extends from the cursor to the first null logically

following the cursor. If there is no such null, the subfield includes all positions logically following the

cursor.

Field Mark

Processed the same as character data.

Automatic Shape Determination (ASD) Processing

For Arabic, ASD occurs if the cursor direction is right-to-left.

Delete

If the delete key is pressed within a continued-entry field and the cursor direction matches the field

direction, the following actions occur:

v All field data within the continued-entry fields logically following the current cursor location is shifted

toward the cursor one position. Each data character in the first character position of the remaining

fields in the set is shifted to the last character position of the preceding field.

v A null is written in the last character position in the continued-entry fields.

v For DBCS-only, DBCS-either (with DBCS data), and DBCS-pure continued fields, all field data (not

including the SO and SI characters) within the set of field segments logically following the current

cursor location is shifted toward the cursor two positions. Each DBCS character in the first double byte

Chapter 6. Creating a Graphical Look for Displays 175

character position of the remaining segments is moved to the last double byte character position of the

preceding segment. A double byte null is written in the last double byte character position of the last

segment.

v For DBCS-open fields, the data in the set of field segments, at and to the right of the cursor, is copied

into one continuous buffer. The deleted character or subfield is removed from the start of the buffer. In

addition, all single byte nulls are removed from the buffer, and the data is shifted toward the

beginning of the buffer. All adjacent SI/SO character pairs (that is, empty single byte subfields) are also

removed from the buffer. The data is again shifted toward the beginning of the buffer. The remaining

data, then, is placed back into the continued field one character at a time, according to the algorithm

for writing data into a DBCS-open continued field. The remaining character positions are replaced with

nulls.

If the delete key is pressed within a continued field when the cursor direction and field direction do not

match, the delete is performed within a subfield. The definition for subfields is the same as for the insert

key.

Erase EOF

All field positions at (and logically following) the current cursor location within the continued-entry

fields are nulled. In DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields, the SO and SI

characters are not nulled out. In DBCS-open fields, an SI character may additionally be written at the

current cursor location if the erase began in a double byte subfield.

Erase Input

All field positions of all changed fields are nulled. This includes all continued-entry field segments if any

continued-entry field segment has been changed. In DBCS-only, DBCS-either (with DBCS data), and

DBCS-pure fields, the SO and SI characters are not nulled out.

Reverse

The cursor direction is reversed. If the preceding keystroke was not a cursor movement key, the cursor is

repositioned to the new first character position of the current segment.

Close

The close key operates on a single continued field segment. All embedded nulls are removed. The cursor

direction is set to the field direction. The remaining characters are shifted to begin at the first character

position of the continued field segment. The remainder of the segment is padded with nulls and the

cursor is placed logically following the last non-null character.

Field Exit

Pressing the Field Exit key within a continued-entry field causes the following actions to occur:

v All field data within the continued-entry fields at (and logically following) the current cursor location

are nulled. In DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields, the SO and SI

characters are not nulled out. In DBCS-open fields, an SI character may additionally be written at the

current cursor location if the nulling began in a double byte subfield.

v Forward field-exit processing is performed (see “Forward Field-Exit Processing” on page 178).

Field Plus

Processed the same as Field Exit.

Field Minus

Not allowed. Operator error 0016 is posted.

Dup

Pressing the Dup key within a continued-entry field causes the following actions to occur:

v All field data within the continued-entry fields at (and logically following) the current cursor location

are set to the Dup character (1C). In DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields,

the SO and SI characters are not replaced with the Dup character. In DBCS-open fields, the cursor must

176 Application Display Programming V6R1

be on the very first character (whether it is a single byte or double byte character) when the Dup key is

pressed. Every character of every segment is replaced with the Dup character (’1C’) including all SO

and SI characters. If the cursor is not on the first character, operator error 0019 is posted.

v Forward field-exit processing is performed (see “Forward Field-Exit Processing” on page 178).

Kanji

The Kanji key causes the following actions to occur when pressed within a DBCS-either continued field:

v If the cursor is not at the first field position (when in single byte mode) of the first segment, or at the

second field position (when in double byte mode) of the first segment, operator error 0062 is posted.

v Otherwise, if the field is currently in double byte mode, it is placed into single byte mode by replacing

every character position of every segment with nulls. The cursor is also placed at the first field position

of the first segment.

v Otherwise, if the field is currently in single byte mode, it is placed into double byte mode by replacing

every character position of every segment with nulls, and writing SO and SI characters at the start and

end of each field segment respectively. The cursor is also placed in the first segment immediately

following the shift out character.

In DBCS-open continued fields, the Kanji key inserts either a SO/SI character pair, or an SI/SO character

pair as is currently done for non-continued open fields. For continued fields, this insert is performed

using the same algorithm that characters are inserted into an DBCS-open continued field. However, when

a SI/SO pair is inserted, the empty single byte subfield that is created is not immediately removed. The

cursor is also placed under the second shift character and the keyboard goes into insert mode.

Character Backspace

Pressing the Character Backspace key in the first position (or first DBCS character in any DBCS-pure,

DBCS-only, or DBCS-either field) of the first segment, moves the cursor to the last position of the

previous field. (The previous field could be a continued-entry field. The cursor moves to the last position

of the last segment which could be further down on the display.) If the resulting cursor position is in a

DBCS-open, DBCS-only, or DBCS-either field, any SI character at the last position is skipped. Pressing the

Character Backspace key in the first position in a segment (or first DBCS character in DBCS-pure,

DBCS-only, or DBCS-either fields in double byte mode) other than the first segment, moves the cursor to

the last position of the previous segment. If that resulting position is on a DBCS-only or DBCS-either field

SI character, the SI character is skipped. In addition, within DBCS-open fields, single byte subfields at the

end of a non-last segment are skipped by character backspace if they consist only of 1 null character. This

is to skip nulls that most likely have been automatically inserted when splitting DBCS data on segment

boundaries.

Character Advance

Pressing the Character Advance key in the last position (or last double byte character in DBCS-pure,

DBCS-only, or DBCS-either fields in double byte mode) of the last segment, moves the cursor to the first

position of the next field. Pressing the Character Advance key in the last position (or last double byte

character in DBCS-pure, DBCS-only, or DBCS-either fields in double byte mode) of a segment other than

the last segment, moves the cursor to the first position of the next segment. If the resulting position is on

a DBCS-only or DBCS-either field SO character, the SO character is skipped. In DBCS-open fields, single

byte subfields at the end of a segment are skipped if they consist of only one null. This is to skip nulls

that most likely have been automatically inserted when splitting DBCS data on segment boundaries.

New Line

Pressing the New Line key generally moves the cursor to the next position on the display that allows a

cursor. If the cursor is in a continued-entry field and an additional continued-entry field segment is on

the next row or a subsequent row, the cursor moves to the first position of that segment. If the

continued-entry field is also a highlighted field with an invisible text cursor, then pressing the New Line

key exits the continued-entry field. If the resulting position is in a new DBCS-open, DBCS-only, or

DBCS-either field segment of the same field, any S0 character at the resulting cursor location is skipped.

When the cursor moves into a continued-entry field because the New Line key was pressed, the cursor is

Chapter 6. Creating a Graphical Look for Displays 177

always positioned in the first position of the first segment. Pressing the New Line key never moves the

cursor into a middle or last continued-entry field segment.

Field Advance

Field Advance performs forward field-exit processing (see “Forward Field-Exit Processing”).

Field Backspace

When pressed while the cursor is not in the first position (or first DBCS character in a DBCS-pure,

DBCS-only, or DBCS-either field) of the first segment, the cursor moves to the first position (or first DBCS

character in a DBCS-pure, DBCS-only, or DBCS-either field) of the first segment. Otherwise, Field

Backspace performs backward field-exit processing (see “Backward Field-Exit Processing”).

Forward Field-Exit Processing

The system does not validate field data when the cursor exits continued-entry fields because mandatory

fill and self-check functions are not supported.

If the continued-entry fields are specified as automatic-enter or forward-edge trigger, the system performs

automatic-enter or forward-edge trigger processing for the last position of the last segment.

If cursor progression is specified on the first continued-entry field segment, the cursor moves to the

cursor-progression target field when it exits any of the continued-entry field segments.

If cursor progression is not specified on the first continued-entry field segment, and the cursor exits the

continued-entry field in the forward direction, the cursor skips any subsequent segments of the

continued-entry field and moves to the next nonprotected field. The next nonprotected field is

determined by exiting the first continued field segment, independent of which segment contained the

cursor. If the resulting position is in a DBCS-open, DBCS-only or DBCS-either field, any SO character at

the first position is skipped. The cursor is placed at the second position.

Note: If a continued-entry field is also defined as a highlighted field, the system restores the leading-field

attribute of each segment when the cursor exits the field.

Backward Field-Exit Processing

When exiting the field backward, the cursor skips any previous segments of the continued-entry field and

moves to the previous nonprotected field. Cursor progression may cause the cursor to move to a different

field. The previous nonprotected field is determined by exiting the first continued field segment,

independent of which segment contained the cursor. If the resulting position is in a DBCS-open,

DBCS-only or DBCS-either field, any SO character at the first position is skipped. The cursor is placed at

the second position.

Note: DBCS support within continued-entry fields are available for displays attached to any controller.

However, the keyboard functions are only available for displays connected to a controller that

supports an enhanced interface for nonprogrammable work stations.

How the Menu Bar Interacts with the Application

The MNUBARDSP keyword is used to display a menu bar. The MNUBARDSP keyword can be used on

an application record (the record that defines the application display) or on a menu-bar record. Option

indicators can be used on the MNUBARDSP keyword to control when the menu bar is displayed. If

MNUBARDSP is used on the application record, several optioned MNUBARDSP keywords can be

specified so that the application can display different menu bars for the same record. If more than one

MNUBARDSP keyword is in effect, the system uses the first one.

178 Application Display Programming V6R1

Defining the MNUBARDSP Keyword on the Application Record

When the MNUBARDSP keyword is used on the record that defines the application display, the system

handles all menu-bar operations for the application. The system returns the number of the menu-bar

choice selected in a hidden field that is specified on the MNUBARDSP keyword and defined in the

application record. If no menu-bar choice is selected, 0 is returned in the hidden field.

 The DDS in Figure 83 causes the following to happen:

1. The application writes any pull-down menu records or menu-bar records that have output to be

supplied by the application.

2. The application does a write-read operation to the record with the MNUBARDSP keyword.

3. The system displays the menu bar identified by the MNUBARDSP keyword and handles all

interaction between the menu bar and the pull-down menu.

4. If the user selects a menu-bar choice and enters input in the pull-down menu, the system returns the

number of the menu-bar choice selected in the choice-hidden field specified on MNUBARDSP.

The system displays the menu-bar record first and then performs the write-read operation to the

application record. The active function keys and command keys are those defined on the application

record and not those defined on the menu-bar record. If you want to use the MNUCNL keyword or the

MNUBARSW keyword, define them at the file level or on the application record.

Ordinarily, writing a record to the display without the OVERLAY keyword causes the entire display to be

erased before the record is displayed. The system displays the menu-bar record followed by the

application record as if they were logically one record. The system automatically prevents the application

record from erasing the menu-bar record. In Figure 83, when the system writes the application record, it

clears the entire display except for the menu-bar record. The menu-bar record is always processed as

though it contains the OVERLAY keyword regardless of any other specifications. For example, if the

CLRL keyword is specified on the menu-bar record, it is not used when the menu-bar record is

processed. The OVERLAY keyword and the CLRL keyword are processed normally for the application

record; however, the menu-bar record is not cleared.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP ALTHELP CF03

 A MNUBARSW(CA10) MNUCNL(CA12)

 A R MENUBAR MNUBAR

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 :

 :

 A R APPSCR MNUBARDSP(MENUBAR &MNUCHOICE)

 A FIELD1 10A B 10 12

 A FIELD2 5S 0B 14 12

 A 24 1’F1=Help F3=Exit +

 A F10=Actions F12=Cancel ’

 A MNUCHOICE 2Y 0H

Figure 83. DDS Using MNUBARDSP on the Application Record

Chapter 6. Creating a Graphical Look for Displays 179

Defining the MNUBARDSP Keyword on the Menu-Bar Record

If you use the MNUBARDSP keyword on the record containing the menu bar, the application controls

when the menu bar is displayed. The system continues to handle any pull-down menu interaction that

takes place, and returns the number of the menu-bar choice selected in the menu-bar field itself. If no

menu-bar choice was selected, 0 is returned in the menu-bar field. The application must both write the

menu-bar record to display the menu bar and read the menu-bar record to determine what choice, if any,

was selected.

 Following is one scenario using the DDS in Figure 84.

1. The application writes the menu-bar record, with the MNUBARDSP keyword active, to display the

menu bar.

2. The application does a write-read operation to the application record.

3. The system handles any interaction between the menu bar and the pull-down menu.

4. On input, the application receives the application record.

5. The application reads the menu-bar record to determine which menu-bar choice, if any, was selected.

The only active command keys and function keys are those defined on the application record and not

those defined on the menu-bar record. If you want to use the MNUCNL keyword or the MNUBARSW

keyword, define them at the file level or on the application record.

Following is another scenario using the DDS in Figure 84.

1. The application writes the application record.

2. The application performs a write-read operation to the menu-bar record, with the MNUBARDSP

keyword active, to display the menu bar.

3. The system handles any interaction between the menu bar and the pull-down menu.

4. On input, the application receives the menu-bar record and determines which menu-bar choice, if any,

was selected.

5. The application can also read the application record to receive any input entered on the display.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP ALTHELP CF03

 A MNUBARSW(CA10) MNUCNL(CA12)

 A R MENUBAR MNUBAR OVERLAY

 A 01 MNUBARDSP

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A EDITTXT 20A P

 :

 :

 A R APPSCR OVERLAY

 A FIELD1 10A B 10 12

 A FIELD2 5S 0B 14 12

 A 24 1’F1=Help F3=Exit +

 A F10=Actions F12=Cancel ’

Figure 84. DDS Using MNUBARDSP on the Menu-Bar Record

180 Application Display Programming V6R1

The only command keys and function keys that are valid are those defined on the menu-bar record. If

you want to use the MNUCNL keyword or the MNUBARSW keyword, define them at the file level or on

the menu-bar record.

Receiving Input from the Pull-Down Menus

If a pull-down menu record contains output data, it must be written before writing the menu-bar record.

For example, option indicators may be set or output fields may be filled in. These pull-down menu

records are not displayed when written; the system processes and saves the record output until the menu

bar is displayed.

A menu-bar record may also be written without being displayed. If the system attempts to write a

pull-down menu record or a menu-bar record (without the MNUBARDSP keyword optioned on) while

the corresponding menu bar is displayed, an error occurs and the record is not written.

When a valid attention identifier (AID) key (other than the cancel key and the menu-bar switch key) is

pressed when a pull-down menu is displayed, control is returned to the application and input may be

received from the pull-down menu. The valid AID keys that return input are the Enter key and any CFxx

keys that are defined on the pull-down menu record. (A CAxx key returns control to the application, but

does not return input.) Keys that are defined for the background display are not valid unless they are

also defined on the pull-down menu record. Therefore, define the background keys and the pull-down

menu keys once at the file level.

Once a valid AID key (one that returns input) is pressed for a pull-down menu, the application receives

input for the record being read (either the application record or the menu-bar record). By looking at the

menu-bar choice number that is returned in this record, the application can determine which pull-down

menu record has input. The application then must read that pull-down menu record. No I/O operation is

done to the display; the input from the pull-down menu is returned to the application and the pull-down

menu remains displayed.

Receiving Input from Pull-Down Menus Using the Pull-Down Input Parameter

When one or more of the pull-down menu records contain only one single-choice selection field, you can

use the pull-down input (PULLINPUT) parameter on the MNUBARDSP keyword. This lets you receive

the single-selection field choice along with the menu-bar choice, instead of reading the pull-down menu

record to receive the single-selection field choice.

Figure 85 on page 182 illustrates the use of the PULLINPUT parameter on the MNUBARDSP keyword.

Chapter 6. Creating a Graphical Look for Displays 181

When the PULLINPUT parameter is specified on the MNUBARDSP keyword, one of the following values

will be returned to the application:

Note: The value is returned in the hidden field (PULLINPUT in Figure 85) you have defined in the

record with the MNUBARDSP keyword.

PULLINPUT Contents Meaning

0 No selection made.

n Choice n in the pull-down menu was selected.

-1 Pull-down menu record contains something other than one single-choice

selection field. You must read the pull-down menu record to receive its

contents.

Table 20 shows the values that are returned in the MNUCHOICE field and the PULLINPUT field using

the DDS in Figure 85.

 Table 20. Values Returned in MNUCHOICE and PULLINPUT

Menu-Bar Choice Selected

Value Returned in Appropriate Field

MNUCHOICE PULLINPUT

File 1 -1

Edit (no selection made in pull-down menu) 2 0

Edit (Copy choice in pull-down menu selected) 2 1

View 3 -1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP ALTHELP CF03

 A MNUBARSW(CA10) MNUCNL(CA12)

 A R MENUBAR MNUBAR

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A MNUBARCHC(2 PULLEDIT +

 A ’>Edit ’)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A R PULLFILE PULLDOWN

 A 2 1’File name . . . ’

 A FNAME 10A I 2 18

 A R PULLEDIT PULLDOWN

 A F1 2Y 0B 1 1SNGCHCFLD

 A CHOICE(1 ’>Copy ’)

 A CHOICE(2 ’>Delete ’)

 A R PULLVIEW PULLDOWN

 A F1 2Y 0B 1 1SNGCHCFLD

 A CHOICE(1 ’>All ’)

 A CHOICE(2 ’>Some... ’)

 A F2 2Y 0B 4 1SNGCHCFLD

 A CHOICE(1 ’By >date ’)

 A CHOICE(2 ’By >subject ’)

 A R APPSCR MNUBARDSP(MENUBAR &MNUCHOICE +

 A &PULLINPUT)

 A FIELD1 10A B 10 12

 A FIELD2 5S 0B 14 12

 A 24 1’F1=Help F3=Exit +

 A F10=Actions F12=Cancel ’

 A MNUCHOICE 2Y 0H

 A PULLINPUT 2S 0H

Figure 85. DDS for Pull-Down Input (PULLINPUT) Parameter

182 Application Display Programming V6R1

Removing a Pull-Down Menu after Receiving Input

After the application receives input from a pull-down menu, it may remove the pull-down menu under

certain conditions. For example, the application removes the pull-down menu when the application

writes or reads (1) a non-window record (in the same display file) or (2) a window record (in the same

display file) that contains the RMVWDW keyword. The pull-down menu remains on the display if the

application writes or reads a window record (without RMVWDW). This allows the application, UIM help,

or application help to write a help window to the display without removing the pull-down menu.

To remove a pull-down menu and present another non-window application display, the application

writes the appropriate application record, and the pull-down menu is removed.

To remove the pull-down menu and keep the current application display (perhaps updated), the

application performs another write-read (or read) operation to the current (or changed) application

record.

To remove the pull-down menu and display a window, the application writes a window with the

RMVWDW keyword specified.

To remove the pull-down menu and call another program, the application writes to a dummy record and

then calls the other program.

To leave the pull-down menu on the display and present a window (perhaps a help window), the

application writes the window record (without RMVWDW).

A pull-down menu remains on the display while UIM help is displayed in a window. A pull-down menu

also remains on the display while application help is displayed if the application help record is a window

and does not have the RMVWDW keyword specified.

Updating a Pull-Down Menu before Displaying

You can enable your application to update a pull-down menu using the return-field parameter on the

MNUBARCHC keyword. The pull-down menu is updated after a menu-bar choice is selected and before

the pull-down menu is displayed. The return-field parameter is a hidden field that returns the number of

the choice selected for the application to (1) determine that control was returned before the pull-down

menu was displayed rather than because input was entered in the pull-down menu, and (2) determine

which pull-down menu record to update and write.

Chapter 6. Creating a Graphical Look for Displays 183

For the DDS in Figure 86, if the user selects menu-bar choice 1 or 4, control is returned to the application

with the choice number set in the RTNFLD field. The menu-bar field or the choice field in the application

record contains 0, indicating no pull-down menu input was received. The application must read the

menu-bar record to get the contents of the RTNFLD field. The application then updates the pull-down

menu record for that choice and writes it. The application must read the menu-bar record or the

application record to request the display. After control has been returned for updating the pull-down

menu, the next record written must be the pull-down menu specified on the MNUBARCHC keyword. In

this example, if choice 1 was selected, record PULLFILE must be written; if choice 4 was selected, record

PULLOPT must be written. The system then displays the pull-down menu for the choice and resumes

control of the menu bar and pull-down menu interaction. A read operation to a pull-down menu is not

allowed until input has been received for the pull-down menu. A write-read operation is never allowed.

Defining Application Help

You can define application help for menu-bar choices, selection-field choices, named fields, constant

fields, menu bars, and pull-down menus.

Defining Choice-Level Help

You can define help for menu-bar choices, single-choice selection fields, and multiple-choice selection

fields using the HLPARA keyword. Figure 87 on page 185 is an example of the DDS coding for menu-bar

choice help.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A R MENUBAR MNUBAR

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’ &RTNFLD)

 :

 :

 A MNUBARCHC(4 PULLOPT +

 A ’>Options ’ +

 A &RTNFLD)

 :

 A RTNFLD 2Y 0H

 :

 A R PULLFILE

 A PULLDOWN

 A F1 2Y 0B 1 1SNGCHCFLD

 :

 :

 A R PULLOPT

 A PULLDOWN

 A F1 2Y 0B 1 1SNGCHCFLD

 :

 :

Figure 86. DDS for Return-Field Parameter

184 Application Display Programming V6R1

Figure 88 is an example of the DDS coding for single-selection field choice help.

 Use the *FLD special value on the HLPARA keyword to indicate that the help area is for a field.

Following *FLD, specify the name of the field for which you are defining help. Following the name of the

field, specify the number of the choice for which you are defining help.

The help area that you specify for a choice is the area that the choice text occupies (plus the attribute byte

positions on either side). If compression occurs, the help area moves with the choice. When a choice is

optioned off, the help specification for that choice is also optioned off because the help area for that

choice does not exist.

As with any help specification, the text for choice-level help can be defined using DDS records (HLPRCD

keyword) or UIM panel groups (HLPPNLGRP).

Help specifications must define help areas within the area encompassed by the menu-bar record or the

pull-down record.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP

 A R MENUBAR MNUBAR

 A H HLPARA(*FLD MNUFLD 1)

 A HLPRCD(FILEHLP LIB/FILE)

 A H HLPARA(*FLD MNUFLD 2)

 A HLPRCD(EDITHLP LIB/FILE)

 A H HLPARA(*FLD MNUFLD 3)

 A HLPRCD(VIEWHLP LIB/FILE)

 A H HLPARA(*FLD MNUFLD 4)

 A HLPRCD(OPTHLP LIB/FILE)

 A H HLPARA(*FLD MNUFLD 5)

 A HLPRCD(HLPHLP HLPLIB/HLPFILE)

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A EDITTXT 10 P

Figure 87. DDS for Menu-Bar Choice Help

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP

 A R PULLEDIT CF04 CF06

 A WDWBORDER((*CHAR ’+-+||+-+’))

 A PULLDOWN

 A H HLPARA(*FLD F1 1)

 A HLPRCD(UNDOHLP LIB/FILE)

 A H HLPARA(*FLD F1 2)

 A HLPRCD(MARKHLP LIB/FILE)

 A H HLPARA(*FLD F1 3)

 A HLPRCD(COPYHLP LIB/FILE)

 A F1 2Y 0B 1 1SNGCHCFLD

 A CHECK(ER)

 A 01 CHOICE(1 ’>Undo ’)

 A CHOICE(2 ’>Mark ’)

 A CHOICE(3 ’>Copy ’)

Figure 88. DDS for Single-Selection Field Choice Help

Chapter 6. Creating a Graphical Look for Displays 185

If you use UIM help, item-specific help for a menu-bar choice includes the help modules for the

menu-bar choice and its pull-down menu. If you use DDS, item-specific help for the menu-bar choice is

the help for the menu-bar choice. The help area for the menu-bar choice includes the text for the choice

plus one space on each side of the text. The middle space between the choices is part of the extended

help area.

Item-specific help for menu bars is displayed when the cursor is located in one of the following areas:

v A menu-bar choice (if there is help for that choice).

v Anywhere within an active pull-down record that does not include an active help area. When the

cursor is on the pull-down menu border, item-specific help is displayed for the menu-bar choice item.

Item-specific help for a pull-down menu choice is displayed when the cursor is in an active help area in

the pull-down menu. The help area for a pull-down menu choice starts on the first digit of the number

and ends at the border of the selection field. Help for pull-down menus and menu bars are part of the

extended help for the display. When the pull-down menu is displayed, all help areas are active except the

ones that are overlapped by the pull-down menu. Help for overlapped areas can be viewed only in

extended help. If a base display help area is partially overlapped by a pull-down menu, the part of the

help area that is not overlapped is still active.

There are two help lists; one for the base display and one for the menu bar and its pull-down menus. The

help list for the menu bar is created when the menu bar is displayed. The help list is destroyed when the

menu bar is removed from the display. For an example of a help list for a menu bar, see Figure 89. The

help list is updated when the menu bar or pull-down menu is written again. When the cursor is in a

menu bar or pull-down menu, the menu-bar help list is searched for item-specific help. The menu-bar

help list is considered above the base-display help list. When extended help is displayed, help for menu

bars and pull-down menus is presented immediately after general help. Base display help is presented

after menu-bar help and pull-down menu help. If DDS help is used and the user initially selects

pull-down menu help, the user then can page up to see menu-bar help and page down to see

base-display help.

Defining Help for a Field

Help can be defined for a field or constant using the HLPARA keyword. For a named field, specify the

help area using the *FLD special value and the name of the field. For a constant field, specify the help

area using the *CNST special value and an identifier for the constant field. The identifier you specify on

the HLPARA keyword should be the same as the value specified on the HLPID keyword for the constant

field.

Figure 89. A help list for a menu bar

186 Application Display Programming V6R1

When the display file is created, the actual help area coordinates are determined by the DDS compiler.

These coordinates are shown in the expanded source section of the DDS listing (unless the field is a

choice field).

If the field or constant field location or length is changed and the file is re-created, the help area for the

field is updated to reflect the new location or length.

Key Interaction for Menu Bars and Pull-Down Menus

Figure 92 shows an example of a display you might create with a menu bar and a pull-down menu.

Capital letters A, B, C, D, and E indicate possible cursor locations.

 Table 21 on page 188 describes the actions that are performed when certain keys are pressed at the cursor

locations.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP

 A R RECORD

 A H HLPARA(*FLD FIELD)

 A HLPRCD(FIELDHLP LIB/FILE)

 A FIELD 10A B 5 5

Figure 90. Help for a Named Field

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP

 A R RECORD

 A H HLPARA(*CNST 1)

 A HLPRCD(HLPCNST1 LIB/FILE)

 A 2 2’Constant field’ HLPID(1)

Figure 91. Help for a Constant Field

 �A�File�A� Edit �B� View Options Help �B�

--------+---------------------+---

 | _ 1.�C�Undo �C�|

 | �D� �D�

 | 3. Copy F10 |

 +---------------------+

 E F1=Help F3=Exit F9=View all F10=Actions F11=Copy

Figure 92. Cursor Locations

Chapter 6. Creating a Graphical Look for Displays 187

Table 21. Actions Performed at Different Cursor Locations

Cursor Location

Action Performed When Appropriate Key Is Pressed

Help Cancel Menu-Bar Switch Enter

�A� Help for File

menu-bar choice is

displayed. (Includes

help for the

pull-down menu.)

Pull-down menu is

removed. Cursor

moves to Edit

menu-bar choice.

Pull-down menu is

removed. Cursor

returns to display

work area.

File pull-down menu

is displayed; Edit

pull-down menu is

removed.

�B� Extended help is

displayed.

Pull-down menu is

removed. Cursor

moves to Edit

menu-bar choice.

Pull-down menu is

removed. Cursor

returns to display

work area.

Cursor not on menu bar

choice message is

displayed. Cursor

does not move.

�C� Help for Undo choice

is displayed.

Pull-down menu is

removed. Cursor

moves to Edit

menu-bar choice.

Pull-down menu is

removed. Cursor

returns to display

work area.

If user made a

selection, control

returns to application.

If not, cursor moves

to input field and

message to make a

selection is sent.

�D� Help for Edit

menu-bar choice is

displayed. (Includes

help for the

pull-down menu.)

Pull-down menu is

removed. Cursor

moves to Edit

menu-bar choice.

Pull-down menu is

removed. Cursor

returns to display

work area.

If user made a

selection, control

returns to application.

If not, cursor moves

to input field and

message to make a

selection is sent.

�E� Help for function

keys is displayed.

Pull-down menu is

removed. Cursor

moves to Edit

menu-bar choice.

Pull-down menu is

removed. Cursor

returns to display

work area.

If user made a

selection, control

returns to application.

If not, sound beep

and cursor moves to

input field.

Cursor Movement

You can move the cursor on the application displays that you create using the Tab key or the Cursor

keys.

Pressing the Tab Key

Pressing the tab key moves the cursor from field to field on the display, progressing from left to right and

top to bottom.

On display stations in configuration F from Table 16 on page 140, the following is true:

v The Menu-bar choices are individual fields.

v The single-choice selection field is one field.

v The multiple-choice selection fields are individual fields.

Pressing the Tab key for one of these displays when no pull-down menu is displayed moves the cursor

from choice to choice in the menu bar. Then, the cursor moves from input field to input field on the rest

of the display. When a pull-down menu is displayed on one of these displays, pressing the Tab key does

the following:

1. Moves the cursor from choice to choice in the menu bar.

2. Skips over the choice selected.

188 Application Display Programming V6R1

3. Moves the cursor from input field to input field within the pull-down menu.

4. Moves the cursor back to the first choice in the menu bar (the pull-down menu for that choice is not

automatically displayed).

While the pull-down menu is displayed, you cannot enter data in the input fields on the base display nor

can you tab to the input fields.

On display stations in configurations A, B, and C from Table 15 on page 139, and configurations D and E

from Table 16 on page 140, the menu bar is a single field. If no pull-down menu is displayed, pressing

the Tab key moves the cursor from choice to choice within the menu bar. The cursor performs a

wraparound. When a menu-bar choice is selected, the cursor is placed in the first input field within the

pull-down menu. Pressing the Tab key moves the cursor from input field to input field within the

pull-down menu and then moves the cursor to the next menu-bar choice. While the pull-down menu is

displayed, you cannot enter data in the input fields on the base display nor can you tab to the input

fields on the base display.

Pressing the Cursor Keys

On display stations in configuration F from Table 16 on page 140, pressing a cursor key moves the cursor

one position in the appropriate direction.

On display stations in configurations A, B, and C from Table 15 on page 139, and configurations D and E

from Table 16 on page 140, the cursor moves differently depending on the type of field it is in.

v In the menu bar, pressing the cursor-right or cursor-left keys moves the cursor from choice to choice.

The cursor does not perform a wraparound.

v In the base display, pressing any cursor key moves the cursor one position in the appropriate direction.

v When the cursor is positioned on a selection field, see:

– “Cursor Movement in a Vertical Selection Field” on page 150.

– “Cursor Movement in a Horizontal Selection Field” on page 150.

Programming Examples

Following are examples of the DDS required to display a menu bar and a pull-down menu with a

description of how the DDS coding works.

Using the MNUBARDSP Keyword on the Application Record

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP ALTHELP CF03

 A MNUBARSW(CA10) MNUCNL(CA12)

 A CF04(04) CF06(06)

 A R MENUBAR MNUBAR

 A H HLPARA(*FLD MNUFLD 1)

 A HLPRCD(FILEHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 2)

Chapter 6. Creating a Graphical Look for Displays 189

A HLPRCD(EDITHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 3)

 A HLPRCD(VIEWHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 4)

 A HLPRCD(OPTHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 5)

 A HLPRCD(HELPHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD)

 A HLPRCD(MNUBARHLP HLPLIB/HLPFILE)

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’ &RTNFLD)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A MNUBARSEP((*COLOR WHT))

 A CHCAVAIL((*COLOR YLW) (*DSPATR HI))

 A CHCSLT((*COLOR GRN))

 A EDITTXT 20A P

 A RTNFLD 2Y 0H

 A R PULLEDIT

 A PULLDOWN

 A H HLPARA(*FLD F1 1)

 A HLPRCD(UNDOHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD F1 2)

 A HLPRCD(MARKHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD F1 3)

 A HLPRCD(COPYHLP HLPLIB/HLPFILE)

 A F1 2Y 0B 1 1SNGCHCFLD

 A CHECK(ER)

 A 01 CHOICE(1 ’>Undo ’)

 A CHOICE(2 &MARKTXT)

 A CHOICE(3 ’>Copy ’)

 A CHCCTL(1 &CTLUNDO MSG1112 QUSER/A)

 A CHCCTL(2 &CTLMARK &MSG &LIB/&MSGF)

 A CHCCTL(3 &CTLCOPY)

 A CHCACCEL(1 ’F4’)

 A CHCACCEL(2 ’F6’)

 A CHCAVAIL((*COLOR WHT))

 A CHCUNAVAIL((*COLOR BLU))

 A MARKTXT 20A P

 A CTLUNDO 1Y 0H

 A CTLMARK 1Y 0H

 A CTLCOPY 1Y 0H

 A MSG 7A P

 A LIB 10A P

 A MSGF 10A P

 A R PULLOPT

 A PULLDOWN

 A H HLPARA(*FLD F1 1)

 :

 :

190 Application Display Programming V6R1

Description

In the example using the MNUBARDSP keyword on the application record, the application does a

write-read operation to the APPSCR record. This causes the MENUBAR record and the APPSCR record to

be displayed. Because the field EDITTXT in the MENUBAR record contains the text >Edit, Edit is

displayed as the text for the second menu-bar choice.

Note: The E in Edit will be underlined on your display.

Pressing the F10 key provides quick access to the menu bar (which is always active). Pressing F10 moves

the cursor to the first choice in the menu bar. Pressing F10 again (or F12) moves the cursor back to where

it was on the application display. On display stations in configuration F from Table 16 on page 140,

pressing the Tab key moves the cursor from choice to choice in the menu bar. The cursor skips over any

menu-bar choice that is selected. It then moves from input field to input field on the entire display. On

display stations in configurations A, B, and C from Table 15 on page 139, and configurations D and E

from Table 16 on page 140, when the cursor is located within a menu bar, the cursor movement keys or

the Tab key moves the cursor from choice to choice within the menu bar.

If the user selects the Edit action, the system displays the pull-down menu record (PULLEDIT).

CHECK(ER) specifies automatic-enter. When the user types a value in F1, control is returned to the

application without the user having to press the Enter key. If the user presses F4 or F6, control is also

returned to the application.

Because the application performed a write-read operation to the APPSCR record, the APPSCR record is

returned to the application. Field MNUCHOICE contains a 2 to identify that menu-bar choice 2 was

selected. The PULLINPUT field contains the single-selection field choice (the contents of F1) of the

PULLEDIT record.

If the user selects the Options action, control is returned to the application, with 4 set in field RTNFLD

and 0 set in field MNUCHOICE. The application determines from the 0 in field MNUCHOICE that

control has been returned for pull-down menu update. The application reads record MENUBAR to obtain

the choice number set in field RTNFLD. The application updates the record PULLOPT and then writes

record PULLOPT. The system then displays PULLOPT as the pull-down menu for the options choice. The

system resumes control of the menu bar interaction when the application performs a read operation to

the APPSCR record.

On display stations in configurations A and B from Table 15 on page 139, the menu bar separator and the

pull-down menus display as solid lines.

On display stations in configuration C from Table 15 on page 139, and configurations D, E, and F from

Table 16 on page 140), the menu-bar separator is made up of dashes. The side and bottom borders of the

pull-down menu are made up of colons and periods, respectively.

On display stations in configuration C from Table 15 on page 139, each menu-bar choice has a mnemonic.

On display stations in configurations A and B from Table 15 on page 139, each single-selection field

 A F1 2Y 0B 1 1SNGCHCFLD

 :

 :

 A R APPSCR MNUBARDSP(MENUBAR &MNUCHOICE +

 A &PULLINPUT)

 A FIELD1 10A B 10 12

 A FIELD2 5S 0B 14 12

 A 24 1’F1=Help F3=Exit +

 A F10=Actions F12=Cancel ’

 A MNUCHOICE 2Y 0H

 A PULLINPUT 2S 0H

Chapter 6. Creating a Graphical Look for Displays 191

choice in the PULLEDIT pull-down menu has a mnemonic. This is true unless ENHDSP(*NO) is specified

on the CRTDSPF command or CHGDSPF command). In this example, the mnemonic has been set up to

be the first character in each of the choices.

Using the MNUBARDSP Keyword on the Menu-Bar Record

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A HELP ALTHELP CF03(03)

 A MNUBARSW(CA10) MNUCNL(CA12 12)

 A CF04(04) CF06(06)

 A R MENUBAR MNUBAR

 A 01 MNUBARDSP

 A H HLPARA(*FLD MNUFLD 1)

 A HLPRCD(FILEHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 2)

 A HLPRCD(EDITHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 3)

 A HLPRCD(VIEWHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 4)

 A HLPRCD(OPTHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD MNUFLD 5)

 A HLPRCD(HELPHLP HLPLIB/HLPFILE)

 A MNUFLD 2Y 0B 1 2

 A MNUBARCHC(1 PULLFILE +

 A ’>File ’)

 A 02 MNUBARCHC(2 PULLEDIT +

 A &EDITTXT)

 A MNUBARCHC(3 PULLVIEW +

 A ’>View ’)

 A 04 MNUBARCHC(4 PULLOPT +

 A ’>Options ’ &RTNFLD)

 A MNUBARCHC(5 PULLHELP +

 A ’>Help ’)

 A MNUBARSEP((*COLOR WHT) +

 A (*CHAR ’-’))

 A EDITTXT 20A P

 A RTNFLD 2Y 0H

 A R PULLEDIT

 A PULLDOWN

 A H HLPARA(*FLD F1 1)

 A HLPRCD(UNDOHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD F1 2)

 A HLPRCD(MARKHLP HLPLIB/HLPFILE)

 A H HLPARA(*FLD F1 3)

 A HLPRCD(COPYHLP HLPLIB/HLPFILE)

 A F1 2Y 0B 1 1SNGCHCFLD

 A 01 CHOICE(1 ’>Undo ’)

 A CHOICE(2 &MARKTXT)

 A CHOICE(3 ’>Copy ’)

 A CHCCTL(1 &CTLUNDO MSG1112 QUSER/A)

 A CHCCTL(2 &CTLMARK &MSG &LIB/&MSGF)

 A CHCCTL(3 &CTLCOPY)

 A CHCACCEL(1 ’F4’)

 A CHCACCEL(2 ’F6’)

192 Application Display Programming V6R1

Description

In the example using the MNUBARDSP keyword on the menu-bar record, the application writes the

MENUBAR record to display the menu bar. The application then performs a write-read operation to the

APPSCR record to display the application display.

As in the previous example, F10 provides quick access to the menu bar (which is always active). Pressing

F10 moves the cursor to the first choice in the menu bar. Pressing F10 again (or F12) moves the cursor

back to where it was on the application display.

On display stations in configuration F from Table 16 on page 140, pressing the Tab key moves the cursor

from choice to choice in the menu bar and from input field to input field on the entire display. The cursor

skips over any menu-bar choice that is selected.

When the cursor is located within a menu bar on display stations in configurations A, B, and C from

Table 15 on page 139, and configurations D and E from Table 16 on page 140, the cursor movement keys

or the Tab key moves the cursor from choice to choice within the menu bar.

If the user selects the Edit action, the system displays the pull-down menu record (PULLEDIT). Because

CHECK(ER) is not specified on field F1, the user enters a value by typing the choice number and

pressing the Enter key, or by pressing F4 or F6. When a value is entered or an accelerator key is pressed,

control is returned to the application. Because the application was doing a write-read operation to the

APPSCR record, the APPSCR record is returned to the application. The application must then read the

MENUBAR record to determine the choice selected (2 is returned in field MNUFLD). Because the

input-field parameter was not specified on the MNUBARDSP keyword, the application reads record

PULLEDIT to receive the pull-down menu input.

How the Displays Look

On display stations in configurations A and B from Table 15 on page 139, the display looks like this:

 A MARKTXT 20A P

 A CTLUNDO 1Y 0H

 A CTLMARK 1Y 0H

 A CTLCOPY 1Y 0H

 A MSG 7A P

 A LIB 10A P

 A MSGF 10A P

 A

 A R PULLOPT

 A PULLDOWN

 A H HLPARA(*FLD F1 1)

 :

 :

 A F1 2Y 0B 1 1SNGCHCFLD

 :

 :

 A

 A R APPSCR

 A FIELD1 10A B 10 12

 A FIELD2 5S 0B 14 12

 A 24 1’F1=Help F3=Exit +

 A F10=Actions F12=Cancel ’

Chapter 6. Creating a Graphical Look for Displays 193

On display stations in configuration C from Table 15 on page 139, the display looks like this:

 On display stations in configurations D and E from Table 16 on page 140, the display looks like this:

 On display stations in configuration F in Table 16 on page 140, the display looks like this:

Simple Hotspots

Controllers that support an enhanced interface for nonprogrammable work stations provide simple

hotspots. A hotspot is an area of a display that, when clicked on, performs a function. You must have a

display station with a mouse. Hotspots are available on configurations A and B from Table 15 on page

139. On InfoWindow II display stations, the hotspot must be selected with the left mouse button.

The following hotspots are provided by controllers that support an enhanced interface for

nonprogrammable work stations:

 Command key emulation

 Page Up and Page Down key emulation

 Enter key emulation

Undo
Mark
Copy

F4
F6

RV2W855-1

EditFile View Options Help

:
:
: :

:
:

..

Mark
Copy

2.
3.

..

F6

RV2W067-0

1. Undo F4

File View Options HelpEdit

.

:
:
: :

:
:

. . .

Mark
Copy

2.
3.

..

F6
1. Undo F4

RV2W068-1

.

EditFile View Options Help

:
:
: :

:
:

. . .

Mark
Copy

2.
3.

Edit
..

F6

File View Options Help

1. Undo F4

RV3W075-0

.

194 Application Display Programming V6R1

The user can perform the Enter function on InfoWindow II display stations by double-clicking the left

mouse button.

Command Key Emulation

When the user clicks on a command key, the pointer device cursor must be between the first and last

characters (inclusive) of the command key. When the user selects the command key, the keyboard locks

and the command key is processed. The function performed is defined by DDS. The system performs the

function as if the actual command key had been pressed. This includes setting response indicators.

When the user clicks on a command key, the system scans the command key text to the left until it finds

one of the following:

 An attribute

 Two blanks

 Two nulls

 A blank and a null

 Column one of the row

After finding the beginning of the command key text string, the system scans the text to the right until it

finds a match with one of the following:

Fx= x can be 1 to 9.

Fyx= y can be 0, 1, or 2. If y is 0, x can be 1 to 9. If y is 1, x can be 0 to 9. If y is 2, x can be 0 to 4.

PFx= x can be 1 to 9.

PFyx= y can be 0, 1, or 2. If y is 0, x can be 1 to 9. If y is 1, x can be 0 to 9. If y is 2, x can be 0 to 4.

PFx x can be 1 to 9.

PFyx y can be 0, 1, or 2. If y is 0, x can be 1 to 9. If y is 1, x can be 0 to 9. If y is 2, x can be 0 to 4.

After the system finds a match, it performs the command key function.

Page Up and Page Down Key Emulation

The user can click on the plus (+) and minus (−) characters to page down (roll up) and page up (roll

down), respectively. When the user clicks on the + or − characters, the keyboard locks and a Roll Up AID

key and Roll Down AID key is generated. The function performed is defined by DDS. The system

performs the function as if the actual key had been pressed.

One way to implement this function is to do the following:

1. Specify *MORE on the Subfile End (SFLEND) keyword.

This causes the display file to use the text defined on the CPX6AB2 and CPX6AB1 messages. The

default text for these messages is More ... and Bottom, respectively.

2. Change the text for the CPX6AB2 message to More: +/-.

3. Change the text for the CPX6AB1 message to Bottom: -.

Programmable Mouse Buttons-Overview

The programmable mouse buttons function allows attention indicators (AIDs) to be associated with

various pointer device events. AID codes are normally associated with various command keys on the

keyboard. These keys are used to communicate action requests from the user to the system or application.

Some command keys that generate AIDs are Enter, Help, Rollup, Rolldown, and the 24 command

attention or function keys. Single event AIDs and two event AIDs can be programmed. Up to 18 pairs of

pointer device events and associated AIDs may be defined. These events consist of 3 buttons with 3

events each (up, down, and double click) in two keyboard states (shifted and unshifted).

Chapter 6. Creating a Graphical Look for Displays 195

A single event AID definition would also associate an AID code with a single pointer device event

whereas the two event AID definition would also associate an AID with two consecutive pointer device

events.

Use the programmable mouse button (MOUBTN) keyword to associate a command key or Event-ID with

one or two pointer device events. This keyword can be specified at the file or record level.

Notes:

1. This function is available only for displays attached to a controller that supports an enhanced

interface for nonprogrammable work stations.

2. The only pointer device supported is a mouse or a device that emulates a mouse.

Pointer Device Events

With a three button mouse, there are 18 pointer device events possible: 3 buttons with 3 events each (up,

down, double click) in two keyboard states (shifted and unshifted). The pointer device events are:

v Left button pressed

v Left button released

v Left button double click

v Right button pressed

v Right button released

v Right button double click

v Middle button pressed

v Middle button released

v Middle button double click

v Shifted left button pressed

v Shifted left button released

v Shifted left button double click

v Shifted right button pressed

v Shifted right button released

v Shifted right button double click

v Shifted middle button pressed

v Shifted middle button released

v Shifted middle button double click

Notes:

1. The Shift key or Shift Lock key must be held down for a shifted pointer device event. Caps Lock state

and Shift Lock state are not considered shifted. Releasing the Shift key does not reset Caps Lock state

or Shift Lock state if used for a shifted pointer device event.

2. The nonprogrammable work station (NWS) has a setup option to switch the functions of the left and

right buttons within the NWS. The system has no knowledge of this. This provides the concept of left-

and right-handed mice. For this document, all references to the mouse buttons assumes a

right-handed mouse where the left and right buttons follow the usual definitions for left and right.

AID Codes to be Returned

The AID associated with a pointer device event may be any currently supported AID or a host-defined

AID value between X'70' and X'7F'. The following AIDs are supported:

X'31' - X'3C' CA/CF01-CA/CF12 (Cmd 1 - 12)

X'70' - X'7F' E00-E15 (EVENTS)

X'B1' - X'BC' CA/CF13-CA/CF24 (Cmd 13 - 24)

196 Application Display Programming V6R1

X'BD' CLEAR (Clear)

X'F1' Enter or Record Advance

X'F3' HELP (Help - not in error state)

X'F4' ROLLDOWN (Page Down)

X'F5' ROLLUP (Page Up)

X'F6' PRINT (Print)

X'F8' HOME (Record Backspace)

Programmable Mouse Buttons-Benefits

Mouse buttons can be used for such things as reordering the layering of windows and selecting objects.

For example, an application programmer can program middle button down as a single event AID to

enable window reordering when multiple windows are on a display. When the user presses the middle

button, the cursor moves to the pointer device cursor location and the host-defined AID is returned. The

application uses the host-defined AID to recognize a reorder request. If the row and column cursor

address indicates that the pointer device event occurred within an overlaid window, the windows can be

reordered. If the row and column cursor address indicates that the pointer device event did not occur

within an overlaid window, the application can ignore the AID or post a message.

Note: If the EVENT IDs (E00-E15) are used, you may consider defining equivalent functions to be

performed using the keyboard. For example, you may allow the user to position the text cursor

and press a function key to perform a function equivalent to pressing a mouse button. This would

enable functions on displays attached to controllers that do not support an enhanced interface for

nonprogrammable work stations and on nonprogrammable displays without pointer devices.

Programmable Mouse Buttons Operation

When a pointer device event is performed that has been programmed as a single event and no other

function has higher priority, the following occurs:

1. The keyboard is locked (as it is for function keys).

2. The cursor is moved to the pointer device cursor location.

3. The specified AID is returned to the host.

4. If the AID or moving the cursor normally results in validation of entry field data, the data is

validated.

5. If the specified AID normally returns inbound entry field data, inbound entry field data is included.

The format of the inbound data is like typical inbound data.

6. Control is returned to the application.

There will be no way for the application to differentiate between the pointer device event and the

corresponding command key. However, the pointer device event may be associated with an EVENT

ID (E00-E15) that is not also associated with any command key. This provides a way to detect a

pointer device event.

When a two event pointer device event is performed, the system looks for the leading edge event. When

the leading edge event is received, the following occurs:

Note: Inbound data is not returned until the trailing edge event occurs.

1. A programmable-two-event state is entered.

2. A marker box is drawn around the location of the pointer device cursor on nonprogrammable work

stations capable of displaying a marker box. The marker box appears as 4 blue lines around the

character.

Chapter 6. Creating a Graphical Look for Displays 197

3. The pointer device color is changed to white on nonprogrammable work stations capable of

displaying white.

4. The system looks for the trailing edge event.

Keystrokes and host data streams will cancel the programmable-two-event state. Some pointer device

events are ignored while waiting for the trailing edge event. For more information, see “Programmable

Mouse Buttons-NWS Considerations.” When the trailing edge event is received, the following occurs:

1. The marker box is erased

2. The pointer device cursor color is changed to input inhibited

3. The keyboard is locked

4. The text cursor is moved to the location of the pointer device cursor

If the specified host-defined AID normally returns inbound entry field data, inbound data is included.

The ending row and column location is returned.

Note: The RTNCSRLOC keyword can also be used to retrieve the starting location of the cursor. This

may be different from the ending cursor location when using a two event definition.

Using programmable mouse buttons can prohibit other pointer device functions on the display. For

example, the copy and paste function has a lower priority than the programmable mouse buttons for the

shifted left button press and release. For more information on the priority of pointer device events, see

“Programmable Mouse Buttons-Event Processing Priority” on page 199.

Programmable Mouse Buttons-NWS Considerations

Many of the pointer device events result in either the text cursor being moved or an AID being sent to

the host. If the text cursor was in an entry field, entry field requirements (for example, mandatory fill) are

checked before the text cursor is allowed to move or an AID is sent. This could result in an error code

being posted and the pointer device event would not be processed. For example, the 0014 error code may

be posted indicating that a mandatory fill field contains a null.

The NWS passes an event to the system any time a button is pressed or released. It passes a double-click

event to the system if a button is pressed, released, and pressed again within a user-specified double click

time. The system sees a button pressed event, button released event, and a double click event, and

eventually a button released event.

A pointer device event will be ignored by the system if any of the following are true:

v The keyboard is locked. An exception is single event programmable mouse buttons which can be

defined to be queued if the keyboard is locked.

v The keyboard is in system request state or ss message state.

v The keyboard is in operator error state. An exception is the left button down and shifted left button

down which can reset an operator error.

v The display is in WP mode.

v The system has any stored type ahead keystrokes.

v The system does not have a pending read. An exception is single event programmable mouse buttons.

When the keyboard is unlocked, the system normally has a pending read. However, 3270DE sometimes

unlocks the keyboard without a pending read. Processing a pointer device event could be confusing in

this case.

Programmable Mouse Buttons-Event Processing States

Pointer device event processing can be in various states. The following events, when received in an

unexpected state, cause the state of the pointer device event processing to be reset:

v Most mouse button events (except as noted)

198 Application Display Programming V6R1

v Most keyboard events (not shift key make/break, for example)

v All host display updates

The state is reset as follows:

v If the scroll bar drag and drop state is active, the drag and drop state is reset and the scroll bar is

re-written to the original state.

v If the copy and paste state is active, the copy and paste state is reset and the ending point indication is

removed from the display.

v If the programmable mouse buttons two-event state is active, the state is reset and no AID is posted.

The follow events are ignored in the two-event state so as not to reset the state when that would not

be the desired effect:

– A mouse button release event associated with the leading edge event.

– A mouse button press event which must be generated to get to the trailing edge event. The trailing

edge must be the button release or double click on the same button and shift state.

– A mouse button release event which must be generated to get to the trailing edge event. The trailing

edge must be the double click on the same button and shift state.

Mouse button events which cause states to be reset are not processed any further. Keyboard events and

host screen updates are processed as usual after resetting any mouse event processing state.

Programmable Mouse Buttons-Event Processing Priority

This section describes the event processing priorities for the following events:

v Unshifted left button pressed

v Unshifted left button released

v Unshifted left button double clicked

v Shifted left button pressed

v Shifted left button released

v Shifted right button pressed

v All other events

Unshifted Left Button Pressed Event Processing

If the shift key is not down and the system receives a left button pressed event, the system determines

the position of the pointer device cursor and performs exactly one of the following functions, checking in

the order listed:

1. If an operator error is on the display, the pointer device cursor can be used to reset the operator error.

Depending on the position of the pointer device cursor, one of the following functions is performed:

a. If the pointer device cursor is on the operator error line, then the same function is performed as if

the user pressed the Reset key. The reset function is also performed if the pointer device cursor is

on the last line of the display and the separately displayable operator error line line is being used

(line 25 or line 28).

b. Otherwise, the pointer device event is ignored and the following checks are not done.
2. If the pointer device cursor is on a selection field choice:

a. If the choice is a cursorable choice, the cursor is moved to the location of the pointer device cursor.

A selection cursor is created. The function of a Spacebar key is performed (this includes posting

operator error 0084 if the choice is unavailable). The cursor must be somewhere between the first

text attribute and the last text attribute in the choice. If selection indicators are used, the cursor

must be somewhere between the selection indicator attribute and the last text attribute in the

choice.

b. If on a noncursorable or null choice, the cursor is not moved and operator error 0084 is posted.

Chapter 6. Creating a Graphical Look for Displays 199

3. If the pointer device cursor is on a scroll bar character (arrow character or shaft character), a roll AID

may be sent to the host. If a roll AID is sent to the host the field MDT is set on. The text cursor may

be moved to the position of the pointer device cursor. This depends on one of the following:

v The setting of the ″move the cursor to the scroll bar on a pointer device interaction″ flag in the

Define Scroll Bar command

v The position of the cursor if this scroll bar is associated with a selection field

The keyboard is locked (as if the user pressed a normal AID key).

a. If the pointer device cursor is in the shaft above the slider, a Roll Down AID with a scroll

increment of X'00000000' is sent to the host. Similarly, if the pointer device cursor is in the shaft

below the slider, a Roll Up AID is sent.

b. If the pointer device cursor is on the top arrow character and the slider is not already at the top of

the scroll bar, a Roll Down AID with a scroll increment of X'00000001' is sent to the host. Similarly,

if the pointer device cursor is on the bottom arrow character and the slider is not already at the

bottom of the scroll bar, a Roll Up AID with a scroll increment of X'00000001' is sent to the host. If

the pointer device cursor is on the top arrow character and the slider is already at the top of the

scroll bar, the left button pressed is ignored. The bottom arrow character functions similarly.

c. If the pointer device cursor is on the slider, a drag and drop function should be started (scroll bar

slider drag and drop state). The NWS is told to pass pointer device cursor movement to the

system. In scroll bar drag and drop state, for each movement event, the system calculates the row

of the pointer device cursor and compares this value with the last row which was processed. If the

row values are different, the scroll bar characters are re-written. The slider is re-positioned within

the shaft. If the pointer device cursor moved up one row, the slider is moved up one row. If the

pointer device cursor is moved up more rows than exist in the shaft above the slider, the slider is

moved to the top of the scroll bar shaft. When the left button is released, the drop function is

performed; see Left Button Released for a description of the roll AID request. If any pointer event

other than left button released occurs, or if any keyboard key is pressed, or if any screen update is

done by the host, the following occurs:

v The scroll bar characters are re-written to their original state

v The scroll bar slider drag and drop state is reset

v No roll AID is sent

v The MDT is not set
4. If the pointer device cursor is in a light pen field (first field position through the last field position),

the system treats the event as if a light pen tip switch were activated at the position of the pointer

device cursor.

5. If this mouse button event has been programmed with the Programmable Mouse Buttons structured

field, the event is handled as described above.

6. If the pointer device cursor is on a simple hot spot, a hot spot function is performed. Hot spots enable

a pointer device to partially drive older applications. In order to be considered a hot spot, the pointer

device cursor must not be in an entry field. The hot spot functions for unshifted left button pressed

events are:

v Command Key emulation. For more information, see “Command Key Emulation” on page 195.

v Page Up and Page Down Key Emulation. For more information, see “Page Up and Page Down Key

Emulation” on page 195.

v Enter key emulation. For more information, see “Unshifted Left Button Double Click Event

Processing” on page 201.
7. If pull-down cancel mode is active, the cursor is moved to the position of the pointer device cursor,

the keyboard is locked (treated like a normal AID), and the specified AID is returned to the host.

Pull-down cancel mode is active if a selection field was written to the display and a Pull-Down

Cancel AID was specified in the Define Selection Field major structure.

Note: Pull-down cancel mode is lower priority than hot spots because pull-down menus could have

command keys or More -/+ inside them.

200 Application Display Programming V6R1

8. Otherwise, the cursor is moved to the location of the pointer device cursor. The cursor could be a text

cursor or a selection cursor (for a highlighted entry field). The system allows the text cursor to move

to a noncursorable text location even if cursor movement to input-capable positions only is set on.

Unshifted Left Button Released Event Processing

If the shift key is not down and the system receives a left button released event, the system determines

the position of the pointer device cursor and performs exactly one of the following functions, checking in

the order listed:

1. If scroll bar slider drag and drop state is active, the scroll bar characters may be updated. For more

information on scroll bars, see “Unshifted Left Button Pressed Event Processing” on page 199. If the

row position of the pointer device cursor is different than the row position when the slider was last

written, the scroll bar characters should be written. If the final slider position is different than the

original slider position (when the drag and drop was started), the following occurs:

a. The MDT is set on

b. The text cursor may be moved to the scroll bar slider

c. A Roll AID is sent to the host with a scroll increment indicating the number of rows or columns to

be scrolled

d. The keyboard is locked (treated like a normal AID)

The specific AID depends on the direction the slider moved. If the slider did not move, no AID is

sent. In all cases, the scroll bar slider drag and drop state is reset.

2. If this mouse button event has been programmed with the Programmable Mouse Buttons structured

field, the event is handled as described above.

3. Otherwise, the pointer device event is ignored.

Unshifted Left Button Double Click Event Processing

If the shift key is not down and the system receives a left button double click event, then the system

determines the position of the pointer device cursor and performs exactly one of the following functions,

checking in the order listed:

1. If this mouse button event has been programmed with the Programmable Mouse Buttons structured

field, the event is handled as described above.

2. Otherwise, if the previous left button pressed event simply positioned the cursor, the keyboard is

locked and the Enter AID is sent to the host. This is a hot spot function.

3. Otherwise, the unshifted left button double click event is ignored.

Note: The user must have done one of the following:

v Selected a selection field choice

v Operated against a scroll bar

v Caused a pointer device selectable AID

v Selected a hot spot (for example, a command key)

v Caused some other left button pressed event function, other than the default action of simply

positioning the cursor.

Shifted Left Button Pressed Event Processing

If the shift key is down and the system receives a left button pressed event, the system determines the

position of the pointer device cursor and performs exactly one of the following functions, checking in the

order listed:

1. If an operator error is on the display, the pointer device cursor can be used to reset the operator error.

Depending on the position of the pointer device cursor, one of the following functions is done:

a. If the pointer device cursor is on the operator error line, then the same function is performed as if

the user pressed the Reset key. The reset function is also performed if the pointer device cursor is

on the last line of the display and the separately displayable operator error line line is being used

(line 25 or line 28).

Chapter 6. Creating a Graphical Look for Displays 201

b. Otherwise, the pointer device event is ignored and the following checks are not performed.
2. If this mouse button event has been programmed with the Programmable Mouse Buttons structured

field, the event is handled as described above.

3. Otherwise, a copy and paste function (frequently called cut and paste) is started. The copy and paste

state is set. The location of the pointer device cursor is marked to indicate an end point of the select.

A line is drawn above and below the character location of the pointer device cursor. If any other

pointer device event other than shifted left button released occurs, or the user presses any key, or any

data is received from the host, the copy and paste state is reset and the two lines are removed. When

the shifted left button is released, copy and paste processing continues (see “Shifted Left Button

Released Event Processing”) for later use in a paste operation (see “Shifted Right Button Pressed

Event Processing” on page 203).

Shifted Left Button Released Event Processing

If the shift key is held down and the system receives a left button released event, the system determines

the position of the pointer device cursor and performs exactly one of the following functions, checking in

the order listed:

1. If copy and paste state is active, the user has now marked the second end point of the copy. The

second end point is marked by drawing three lines around the second end point and adding one line

around the first end point. This looks like square brackets enclosing the copy data. The user can mark

either the starting or ending point first. Then, the marked copy data is stored in the display (for

example, 348X NWS) for later use (see “Shifted Right Button Pressed Event Processing” on page 203).

For performance reasons, the copy and paste data will be copied from the display to the

system-managed buffer in the display (without crossing the twinaxial cable). Some formatting may be

done by the system to the copy and paste data after the data has been copied within display memory:

v If the display is a SBCS display (not capable of DBCS) and the data was copied from a non-display

area, the system writes a non-display attribute over the first position of the copy and paste data. A

non-display area is an area in which a non-display attribute was in effect for the copy and paste

data.

v If the display is a DBCS display, but not capable of DBCS-pure fields, the following formatting

takes place:

Note: Support for DBCS-pure fields includes supports extended SO/SI attributes which do not

require a screen position.

– If the first byte of copy and paste data is DBCS data (preceded by a SO character) and the

starting point of the DBCS data is the second byte of a DBCS character, the starting point of the

copy is decreased by one position (to include the entire character).

– If the last byte of copy and paste data is DBCS data and the ending point of the DBCS data is

the first byte of a DBCS character, the ending point of the copy is increased by one position (to

include the entire character).

– If the first byte of copy and paste data is DBCS data (preceded by a SO character), the system

writes an SO ahead of the first byte of copy and paste data.

– If the last byte of copy and paste data is DBCS data, the system writes an SI after the last byte of

copy and paste data.

– If the data was copied from a non-display area, the system writes a non-display attribute over

the first non-SO/SI character in the copy and paste data. If the character in the copy and paste

data is a DBCS character, the system writes two non-display attributes over the first two

non-SO/SI characters.

The end point indications on the display should be reset when one of the following occurs:

v Any key is pressed other than the four cursor movement keys. The system allows the user to move

the text cursor without resetting the end points.

v Another pointer device event occurs.

v The host updates the display.

202 Application Display Programming V6R1

The copy and paste data is lost only when the NWS powers down or the user completes the copy

portion of another copy and paste operation.

2. If this mouse button event has been programmed with the Programmable Mouse Buttons structured

field, the event is handled as described above.

Shifted Right Button Pressed Event Processing

The system performs exactly one of the following functions, checking in the order listed:

1. If this mouse button event has been programmed with the Programmable Mouse Buttons structured

field, the event is handled as described above.

2. If the system receives a right button pressed event and the user has previously selected data for a

copy and paste operation, the system auto-keys the selected data at the location of the text cursor.

This is done independently of the location of the pointer device cursor. The system performs the

following steps:

v If the text cursor is not in an entry field, operator error X'0005' is posted.

v The copy and paste data is read from the display into main storage. The length of the data read is

the smaller of the length of the copy and paste data, and the length of data which will fit into the

entry field.

Note: Continued fields are considered a single entry field.

v Data following a non-display attribute is converted to blanks, until another non-display attribute is

found.

v Attributes are converted to blanks.

v GUI-like characters are converted to blanks.

v Nulls are converted to blanks.

v The system will perform all normal field checks (for example, digits only, alphanumeric only, and

so on). This could result in an operator error. If an operator error is posted, no data following the

point of the error is pasted.

v If the field is a monocase field, the data is monocased.

v If the display is a DBCS display and the field is a DBCS field, the following processing takes place:

– If the field is a DBCS-only field, the copy and paste data must begin with an SO (otherwise,

operator error ″0092″ is posted). The DBCS characters are placed into the field until the field

ending SI is found, or an SI is found in the copy and paste data. The SO and SI characters are

not pasted.

– If the field is a DBCS-either field, the copy and paste data must be the proper format or operator

error 0092 is posted. Operator error 0092 indicates that either no SO character is allowed (if the

field is SBCS), or that the data must start with an SO character (if the field is DBCS). DBCS paste

is just like describe above for a DBCS-only field.

– If the field is a DBCS-pure field, the copy and paste data must begin with an SO (otherwise,

operator error ″0092″ is posted). The DBCS characters are placed into the field until the end of

the field is found, or an SI is found in the copy and paste data. The SO and SI characters are not

pasted.

– If the field is a DBCS-open field, the copy and paste data is auto-keyed into the field. If the copy

and paste data starts with an SO character, the SO is pasted if the cursor is under a DBCS

character. If the cursor is under an SBCS character, the SO is not pasted. If the copy and paste

data does not start with an SO character, an SI will be pasted if the cursor is under a DBCS

character. If the last character in the field is a DBCS character, the system will reserve room for

an SI after the last DBCS character.
v If the user is in replace mode and the paste data is too long to fit in the entry field, as much data is

placed in the field as possible, the cursor is placed in the last position of the entry field, and

operator error 0012 is posted.

Chapter 6. Creating a Graphical Look for Displays 203

v If the user is in insert mode and the paste data requires more positions than the number of nulls at

the end of the entry field, as much data is placed in the field as possible, the cursor is placed on the

last export character, and operator error 0012 is posted.

Note: The copy and paste data is never reset. The user is allowed to paste the most recent copy and

paste data multiple times.

3. If the user has not previously selected data for a copy and paste operation, the system will ignore the

event.

Any Other Pointer Device Event Processing

1. If the mouse button event has been programmed using the Programmable Mouse Buttons structured

field, the event is handled as described above.

2. Otherwise, the event is ignored.

Grid Line Structures-Overview

Grid line structures include horizontal lines, vertical lines, and boxes. They can only be displayed on

DBCS display stations. For details on the required hardware, see “Hardware Requirements for Grid Line

Structures” on page 206. An example of grid line structures appears in Figure 93.

The grid line keywords also allow you to do the following:

v Clear grid lines within a specified rectangle

v Erase a specified grid line structure

v Control the attributes of grid line structures such as color and line type

DDS for Grid Line Structures-Example

The DDS in Figure 94 on page 205 creates the grid line structure in Figure 93.

Figure 93. Grid line structures

204 Application Display Programming V6R1

Notes:

1. It is recommended to add a CHGINPDFT keyword to an input/output field when a grid line

structure is defined directly under the field.

2. In general, grid line structures are written in the order that they are coded in the display file.

3. If a display file is created or changed to nonenhanced display (ENHDSP *NO), no grid line records

are written to the display.

When record GRDREC is written with option indicator 96 on, the GRDCLR keyword causes all grid line

structures on the screen to be cleared. The remainder of the keywords are then processed in the order

that they are coded. If the program-to-system field CNTL1 contains a 1, the first GRDBOX keyword is

ignored. If CNTL1 contains 0, a PLAIN box grid is displayed. This box begins at row 3, column 10. It has

a depth of 4 rows and a width of 20 columns. The box has a thick line type and is red. If CNTL1 contains

-1, the grid line structure at the defined position is erased and all other grid line structures on the display

are left intact.

If the program-to-system field CNTL2 contains 1, the second GRDBOX keyword is ignored. If CNTL2

contains 0, a horizontally and vertically ruled box is displayed. This box begins at row 10, column 2. It

has a depth of 10 rows and a width of 60 columns. The box has a horizontal rule every 2 rows and a

vertical rule every 15 columns. Because there are no attributes defined on the GRDBOX keyword, the

attributes default to those defined on the GRDATR keyword at the file level. These attributes are a solid

line type and color blue. If CNTL1 contains -1, the grid line structure at the defined position is erased

and all other grid line structures on the display are left intact.

Grid line structures are defined in records separate from other data fields. Grid line records are displayed

independent of all other data records. Grid line records are also cleared independent of other data

records. If the device file has DFRWRT(*YES), all records written are buffered until a GET operation is

done. This includes all grid line records. A READ or PUTGET operation cannot be done to a grid line

record because there is no possible input for the grid line record. The FRCDTA keyword is allowed on

grid line records. In this case, the grid line record written is immediately displayed regardless of the

DFRWRT keyword.

Grid Line Structures and Windows

If a grid line structure is on the display when a GUI window is displayed, the controller removes all grid

lines under the window prior to displaying the window. If grid lines are on the display when a non-GUI

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A GRDATR((*COLOR BLU) (*LINTYP SLD))

 A

 A R GRDREC GRDRCD

 A 96 GRDCLR

 A GRDBOX((*POS (3 10 4 20)) +

 A (*TYPE PLAIN) +

 A (*COLOR RED) (*LINTYP THK) +

 A (*CONTROL &CNTL1))

 A

 A GRDBOX((*POS (10 2 10 60)) +

 A (*TYPE HRZVRT 2 15) +

 A (*CONTROL &CNTL2))

 A CNTL1 1S 0P

 A CNTL2 1S 0P

 A

 A R REC1

 A

 A FIELD1 7A B 15 5CHGINPDFT

 A

 A FIELD2 7A B 18 35CHGINPDFT

Figure 94. DDS for Grid Line Structures-Example

Chapter 6. Creating a Graphical Look for Displays 205

window (for example, a UIM help window) is displayed, all grid lines are removed from the display.

When the window is removed from the display, the display is restored including all grid line structures.

A grid line record can define a window or specify a window reference record. When a grid line structure

is defined with a window, all start- row and start-column parameters are relative to the start of the

window. This includes both the start-row and start-column parameters defined with DDS and the

start-row and start-column values set at run time with program-to-system fields. A grid line structure can

be displayed outside of the window. The depth, width, and length parameters will truncate to the end of

the display if they are too large for the display size.

If a window is displayed, writing a grid line record to the base display causes the window to be removed

unless the USRRSTDSP keyword is defined on the window record. The base screen is restored prior to

displaying the grid line structures.

Hardware Requirements for Grid Line Structures

Grid line support requires DBCS hardware. This hardware should have the capability of running

Japanese DOS. Japanese DOS is supported by the following PS/55 systems:

v 5523-S, 5523-V, 8551-S

v 5535-S (laptop)

v 5530-T/V/W, 5541-T, 5551-S/TV/W, 5561-W (desktop)

v 5571-T/V, 5580-W/Y (floorstanding model)

Note: PS/1 and PS/2® systems do not support Japanese DOS.

For the desktop and floorstanding PS/55 systems, the Japanese keyboard (5576-001/002/003/A01) and

DBCS-capable display (5574) are required. The 5530 system has an integrated display. As a twinaxial

communication adapter, 5250 adapter/A (ID#65X1092) is required.

The system can sense if the attached display is capable of displaying grid line structures. If a grid line

record is written to a display that does not support grid line structures, the record is ignored. However,

window keywords on the grid line record are processed.

Grid line structures (non-field level file) can be printed using the Print Screen key if the printer supports

DBCS.

Inserting HTML Tags

The World Wide Web (or Web for short) is a graphical interface that provides access to an enormous

amount of information available on the Internet. The Web allows Internet users to access documents that

contain text and non-text objects (such as video, sound, graphics, and so on). The documents can contain

“links” (hyperlinks) to other documents that may also contain links to other documents. The text within a

Web document that contains hyperlinks is called hypertext. The chain of reference from document to

document is virtually endless since all documents can link to other documents.

You can tailor documents on the Web to present multimedia information from a variety of sources

allowing end users to optionally access the information identified by the links.

With the DDS support of the 5250 Workstation Gateway, you can change existing applications to enable

them for the Internet through the World Wide Web. The 5250 Workstation Gateway translates all 5250

data streams to an HTML (Hypertext Markup Language) document and exports the document from the

system. You can insert HTML tags into a display file that allow graphic capabilities of the client web

browser to be utilized with only minor changes to the display file source.

206 Application Display Programming V6R1

The HTML keyword is given a row/col position in the DDS file. However, row and column positioning

has no meaning in an HTML document. The row and column in the display file determines the order of

HTML tags in the HTML document that is created. For example, an HTML keyword at row 2/column 4

appears before an HTML keyword with a row 2/column 6 position. HTML keywords with the exact

same row and column position will be placed into the HTML document in the same order in which they

are defined in the DDS file.

Resolving HTML Field Overlap

The following examples show where the HTML will appear when you use the following coding:

Example 1

The HTML field has a starting column 2 before an output field. The HTML will appear before the field.

 A 01 FLD1A 20 O 15 7DFTVAL(’Output Field’)

 A 01 15 5HTML(’<p>HTML code’)

will result in:

 HTML code

 Output Field

Example 2

The HTML field has a starting column 1 before an output field, meaning that the HTML starts at the

attribute byte of the output field. The HTML will appear before the field.

 A 01 FLD1A 20 O 15 6DFTVAL(’Output Field’)

 A 01 15 5HTML(’<p>HTML code’)

will result in:

 HTML code

 Output Field

Example 3

The HTML field has a starting column equal to an output field. The HTML will appear before the first

character of the field.

 A 01 FLD1A 20 O 15 6DFTVAL(’Output Field’)

 A 01 15 6HTML(’<p>HTML code’)

will result in:

 HTML code Output Field

Example 4

The HTML field has a starting column 1 past the starting column of an output field. The HTML will

appear after the 1st character of the output field.

 A 01 FLD1A 20 O 15 6DFTVAL(’Output Field’)

 A 01 15 7HTML(’<p>HTML code’)

will result in:

 OHTML codeutput Field

Example 5

The HTML field has a starting column 1 past the ending column of an output field, meaning that it

overlaps the ending attribute. The HTML will appear after the last character of the output field.

Chapter 6. Creating a Graphical Look for Displays 207

A 01 FLD1A 20 O 15 6DFTVAL(’Output Field’)

 A 01 15 27HTML(’<p>HTML code’)

will result in:

 Output FieldHTML code

Example 6

The HTML field has a starting column 2 past the ending column of an output field. The HTML will

appear after the output field.

 A 01 FLD1A 20 O 15 6DFTVAL(’Output Field’)

 A 01 15 28HTML(’<p>HTML code’)

 will result in:

 Output Field

 HTML code

Notes:

1. Merging of HTML and DDS fields does not occur for input fields. Merging occurs only for output

fields.

2. HTML tags are inserted into the data stream if the device query indicates that the device is a 5250

Workstation Gateway virtual terminal. Otherwise for normal displays, the HTML tags are ignored.

Programming Examples

You can add the IMG HTML keyword to an existing display file and show a graphic image along with

the display as the following examples show.

Figure 95 shows an example of the DDS before adding HTML keyword

 Figure 96 on page 209 shows an example of the DDS after adding HTML Keyword

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A

 A FILE LEVEL KEYWORDS

 A

 A DSPSIZ(24 80 *DS3)

 A CA03(03)

 A

 A

 A R REC1

 A CA01(01)

 A CA02(02)

 A 5 30’Description’

 A DSPATR(HI)

 A DSPATR(UL)

 A 5 13’Item’

 A DSPATR(HI)

 A DSPATR(UL)

 A 5 65’Price’

 A DSPATR(HI)

 A DSPATR(UL)

 A FLD001 10A O 6 13

 A FLD002 25A O 6 30

 A FLD003 6A O 6 65

 A 1 36’Catalog’

Figure 95. DDS Coding Before Adding HTML Keyword

208 Application Display Programming V6R1

On 5250 Gateway display stations, you can see the following graphic image if you use the DDS source in

Figure 96.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A

 A FILE LEVEL KEYWORDS

 A

 A DSPSIZ(24 80 *DS3)

 A CA03(03)

 A

 A

 A R REC1

 A CA01(01)

 A CA02(02)

 A 5 30’Description’

 A DSPATR(HI)

 A DSPATR(UL)

 A 5 13’Item’

 A DSPATR(HI)

 A DSPATR(UL)

 A 5 65’Price’

 A DSPATR(HI)

 A DSPATR(UL)

 A FLD001 10A O 6 13

 A FLD002 25A O 6 30

 A FLD003 6A O 6 65

 A 7 2HTML(’<img src="http://www.ice.com +

 A /bin/sundae.gif’)

 A 1 36’Catalog’

Figure 96. DDS Coding After Adding HTML Keyword

Figure 97. Graphic Image on a 5250 Gateway Display

Chapter 6. Creating a Graphical Look for Displays 209

Restrictions

The 5250 Gateway reserves the F1 function key as General Help. F1 cannot be redefined for other

uses.

Due to limitations of the web browser, the 5250 Gateway does not support many of the graphic

structures that DDS allows.

The following keywords are allowed, but are not supported. Attempting to display them will have

unpredictable results.

Windows (WINDOW keyword)

Menubars (MNUBAR keyword)

Pulldown (PULLDN Keyword)

Selection Lists (SFLMLTCHC/SFLSNGCHC keywords)

Selection Fields (SNGCHCFLD/MLTCHCFLD keywords)

PushButtons (PSHBUTTON keyword)

Scrollbars (SCRBAR keyword)

Continued Entry Fields (CNTENTFLD keyword)

210 Application Display Programming V6R1

Chapter 7. Overriding Display Files and Display File Attributes

You can use overrides to temporarily change a file name, a device name associated with the file, or some

of the other attributes of a file. Overrides allow you to make minor changes to the way a program

functions or to select the data on which it operates without having to recompile the program.

Determining Whether or Not to Use Overrides

The following properties of overrides will help you decide if overrides are appropriate for the task you

want to perform:

v Overrides remain in effect only for the job, program, or display station session in which they are

issued. They do not permanently change the attributes of a file.

v Overrides have no effect on other jobs that may be running at the same time.

v Overrides that are to be applied must be specified either before the file is opened by a program or

before a program that opens the file is compiled.

v Override commands may be entered interactively from a display station or as part of a batch job.

v Override commands may be included in a control language (CL) program, or they may be issued from

other programs via a call to the program QCMDEXC.

v Overrides allow you to make minor changes to the way a program functions or for selecting the data

on which it operates, without having to recompile the program.

Overriding File Attributes in HLL Programs

File attributes are built as a result of the following:

Create file commands

These commands build file attributes when the file is first created.

Program using the files

At compile time, the user program can specify some of the file attributes. (The attributes that can

be specified depend on the high-level language in which the program is written.)

Override commands

At program run time, these commands can override the file attributes previously built by the

merging of the file description and the file parameters specified in the user program.

The simplest form of overriding a file in a high-level language (HLL) program is to override some

attributes of the file using the Override with Display File (OVRDSPF) command.

Example

You create a display file named DISPLAY33 using the Create Display File command:

CRTDSPF FILE(QGPL/DISPLAY33) SRCFILE(DDSFILE1) +

 DEV(STATION1) IGCDTA(*YES) WAITFILE(30) LVLCHK(*NO)

Your application program specifies display file DISPLAY33 with STATION50 for the display station and

*NO for the IGCDTA parameter, which determines double-byte character processing.

Before you run the application program, you want to change the display station to STATION23 and wait

file time to 45 seconds. The override command looks like this:

OVRDSPF FILE(DISPLAY33) DEV(STATION23) WAITFILE(45)

© Copyright IBM Corp. 1997, 2008 211

When the application program opens the file, the file overrides, program-specified attributes, and file

attributes are merged to form the open data path (ODP), which is used during the running of the

program to manage access to the file and to manage its attributes. File overrides have precedence over

program-specified attributes. Program-specified attributes have precedence over file-specified attributes.

In this example, when the file is opened, the following is used:

v Display station STATION23

v A double-byte character processing value of *NO

v A wait file time of 45 seconds

v The level identifiers of the records formats are not checked when the file is opened.

The following illustration explains the previous example:

Overriding File Names in HLL Programs

Another simple form of overriding a file in a high-level language program is to change the file that is

used by the program. This may be useful for files that have been moved or renamed after the program

has been compiled. Use the OVRDSPF command for file name overrides also.

Example

You want the output from your application program to be displayed using the display file DISPLAY12

instead of the display file DISPLAY33 (DISPLAY33 is specified in the application program). Before you

run the program, enter the following:

OVRDSPF FILE(DISPLAY33) TOFILE(DISPLAY12)

The file DISPLAY12 must have been created by a CRTDSPF command before it can be used.

The following illustration explains the previous example:

Program A

Program-Specified
Attributes Open Data Path

File DISPLAY33

DEV(STATION50)
IGCDTA(*NO)

DEV(STATION23)
WAITFILE(45)

.

.

.
Open
DISPLAY33
.
.
.

Override Command

Display

RV2W016-3

SRCFILE(DDSFILE1)
DEV(STATION23)
IGCDTA(*NO)
WAITFILE(45)
LVLCHK(*NO)

LVLCHK(*NO)

SRCFILE(DDSFILE1)
DEV(STATION1)
IGCDTA(*YES)
WAITFILE(30)

212 Application Display Programming V6R1

You might want to override a file with a file that has a different file type; for example, you might want to

override a display file with a diskette file using the Override Diskette File (OVRDKTF) command. To

determine whether your file can be overridden with a file that has a different file type, see the

information under “Using File Redirection to Override File Names and Libraries or File Types” on page

215. More information about overriding with different file types is available in the Files and file systems

topic collection in the i5/OS Information Center.

Overriding Both File Names and Attributes in HLL Programs

This form of overriding a file in a high-level language program is simply a combination of overriding file

attributes and overriding file names or types. With this form of override, you can override the file that is

to be used in a program and you can also override the attributes of the overriding file. Use the OVRDSPF

command to override both the display file name and attributes.

Example

You want the output from your application program to be displayed using the display file REPORTS

instead of the display file OUTPUT. (OUTPUT is specified in the application program.) In addition to

having the application program use the display file REPORTS, you wish to override the wait file time to

50 seconds.

Assume the file REPORTS was created with the following command:

CRTDSPF FILE(REPORTS) SRCFILE(DDSFILE1) SRCMBR(MEMBER1) WAITFILE(25)

Before you run the program, type the following command:

OVRDSPF FILE(OUTPUT) TOFILE(REPORTS) WAITFILE(50)

Then call the application program. The display file REPORTS is used with a wait file time of 50 seconds.

Note that the single override command used in the previous example is not equal to the following two

override commands:

Override 1 OVRDSPF FILE(OUTPUT) TOFILE(REPORTS)

Override 2 OVRDSPF FILE(REPORTS) WAITFILE(50)

.

.

.

.

Program

Record
format

DISPLAY33 output

Display
file
DISPLAY33

Use display file DISPLAY33
Before
Override:

RV2W006-2

.

.

.

.

Program

Use display file DISPLAY33

DISPLAY33 output

DISPLAY12 output

Record
format

Display
file
DISPLAY12

Display
file
DISPLAY33

After
Override:

RV2W007-2

Chapter 7. Overriding Display Files and Display File Attributes 213

Only one override is applied for each call level for an open operation of a particular file. If you want to

override the file that is used by the program and also override the attributes of the overriding file from

one call level, you must use a single command. If two overrides are used, override 1 causes the output to

be displayed using the display file REPORTS, but override 2 is ignored.

Applying Overrides When Compiling a Program

Overrides may be applied at the time a program is being compiled for either of two purposes:

v To select the display file

v To provide external data definitions for the compiler to use in defining the record formats to be used

on I/O operations

Overrides to the source file are handled just like any other override. They may select another file, another

member of a database file, or change other file attributes.

Overrides may also be applied to files that are used within the program being compiled, if they are being

used as externally described files in the program. These files are not opened at compile time, and thus

the overrides are not applied in the normal manner. These overrides are used at compile time only to

determine the file name and library that will be used to define the record formats and fields for the

program to use I/O operations. Any other file attributes specified on the override are ignored at compile

time. It is necessary that these file overrides be active at compile time only if the file name specified in

the source for the program is not the file name that contains the record formats that the application

needs.

The file name that is opened when the compiled program is run is determined by the file name that the

program source refers to, changed by whatever overrides are in effect at the time the program runs. The

file name used at compile time is not kept. The record formats in the file that is actually opened must be

compatible with those used when the program was compiled. Obviously, the easiest way to assure record

compatibility is to have the same overrides active at run time that were active at compile time. If your

program uses externally described data and a different field level file is used at run time, it is usually

necessary to specify LVLCHK(*NO) on the override. See “Using File Redirection to Override File Names

and Libraries or File Types” on page 215 for details.

Example

Assume that the source for the program INVENTORY, which has a wait file time of 15 seconds, contains

an open to the display file LISTOUT:

Override 1 OVRDBF FILE(RPGSRC) TOFILE(SRCPGMS) MAXRCDLEN(77)

Override 2 OVRDSPF FILE(OUTPUT) TOFILE(REPORTS)

 CALL PGM(A)

 Program A

Override 3 OVRDSPF FILE(LISTOUT) TOFILE(OUTPUT)

Override 4 OVRDBF FILE(RPGSRC) WAITFILE(30)

 CRTRPGPGM PGM(INVENTORY) SRCFILE(RPGSRC)

 RETURN

Override 5 OVRDSPF FILE(LISTOUT) TOFILE(REPORTS) IGCDTA(*YES)

 CALL PGM(INVENTORY)

The program INVENTORY opens the display file REPORTS in place of display file LISTOUT and allows

DBCS data.

214 Application Display Programming V6R1

The program INVENTORY is created (compiled) from database file SRCPGMS and allows a maximum

record length of 77 characters. Override 4 (applied first) overrides an optional file attribute. Override 1

(applied last) causes the file RPGSRC to be overridden with the database file SRCPGMS and a maximum

record length of 77 characters.

The program INVENTORY is created with the display formats from the file REPORTS. Override 3

(applied first) causes the file LISTOUT to be overridden with OUTPUT. Override 2 (applied last)

overrides OUTPUT with REPORTS. Other attributes may be specified here, but it is not necessary because

only the record formats are used at compile time.

At run time, override 3 is no longer active, because program A has ended. Therefore override 2 has no

effect on LISTOUT. However, override 5, which is active at run time, replaces LISTOUT with REPORTS

and allows DBCS data. Because the same file is used for both compilation and run-time, level checking

may be left on.

Deleting Overrides

If you want to delete an override, you can use the Delete Override (DLTOVR) command.

If you use the DLTOVR command in an application that either calls or transfers control to other

programs, the override might or might not be deleted. More information about deleting overrides in

application programs is available in the Files and file systems topic collection in the i5/OS Information

Center.

Displaying Overrides

You can display all file overrides or file overrides for a specific file using the Display Override (DSPOVR)

command.

If you use the DSPOVR command to display the overrides used by an application that either calls or

transfers control to other programs, you can control which overrides are displayed. More information

about displaying overrides used in application programs is available in the Files and file systems topic

collection in the i5/OS Information Center.

Using File Redirection to Override File Names and Libraries or File

Types

File redirection refers to using overrides to change the file name and library or the type of the file to be

processed. For example, you can substitute one display file for another or change from using an ICF file

to using a display file. The system may or may not support file redirection. Refer to “Recognizing

Commands That Ignore or Restrict Overrides” on page 218 for rules on how the system processes

overrides.

Overriding Files with the Same File Types

When you replace the file that is used in a program with another file of the same type, the new file is

processed in the same manner as the original file. If a field level file, or any other file containing

externally described data is redirected, it usually is necessary to either specify LVLCHK(*NO) or

recompile the program. With level checking turned off, it is still necessary that the record formats in the

file be compatible with the records in the program. If the formats are not compatible, the results cannot

be predicted.

Chapter 7. Overriding Display Files and Display File Attributes 215

Overriding Files with Different File Types

If you change to a different type of file, the device-dependent characteristics are ignored and records are

read or written sequentially. Some device parameters must be specified in the new device file or the

override. Defaults are taken for others. The effect of specific redirection combinations is described later in

this section.

Any attributes specified on overrides of a different file type than the final file type are ignored. The

parameters SPOOL, SHARE, and SECURE are exceptions to this rule. They will be accepted from any

override applied to the file, regardless of device type.

Some redirection combinations present special problems due to the specific characteristics of the device.

In particular:

v File redirection is not recommended for save files.

v Display files and ICF files that use multiple devices (MAXDEV or MAXPGMDEV > 1) can be

redirected only to a display file or ICF file.

v Redirecting a display file to any other file type, or another file type to a display file, requires that the

program be recompiled with the override active if there are any input-only or output-only fields. This

is necessary because the display file omits these fields from the record buffer in which they are not

used, but other file types do not.

Table 22 summarizes valid file redirections:

 Table 22. File Redirections

To-File

From-File

Printer ICF Diskette Display Database Tape

Printer O* O O O O O

ICF

O

I/O

 O

 I

 O

 I

I/O

 O

 I

 O

 I

 O

 I

Diskette O O

 I

 O

 I

 O

 I

 O

 I

 O

 I

Display

O

I/O

 O

 I

 O

 I

I/O

 O

 I

 O

 I

 O

 I

Database O O

 I

 O

 I

 O

 I

 O

 I

 O

 I

Tape O O

 I

 O

 I

 O

 I

 O

 I

 O

 I

Legend:

 I=input file

 O=output file

 I/O=input/output file

 *=redirection to a different type of printer

To use this chart, identify the file type to be overridden in the FROM-FILE columns and the file type

overriding in the TO-FILE column. The intersection specifies an I or O or both, meaning that the

substitution is valid for these two file types when used as input files or as output files.

For instance, you can override a diskette output file with a tape output file, and a diskette input file with

a tape input file. The chart refers to file type substitutions only. That is, you cannot change the program

function by overriding an input file with an output file.

216 Application Display Programming V6R1

The following chart describes the specific defaults taken and what is ignored for each redirection

combination involving display files:

 Table 23. File Redirection Combinations

From To Specific Defaults Taken and What Is Ignored

Printer Display Records are written to the display with each record overlaying the

previous record. For program-described files, you can request each

record using the Enter key. Printer control information is ignored.

ICF input Display Records are retrieved from the display one at a time. Type in the

data for each record and press the Enter key when the record is

complete.

ICF output Display Records are written to the display with each record overlaying the

previous record.

ICF input/output Display Input records are retrieved from the display one at a time. Type in

the data for each record and press the Enter key when the record is

complete. Output records are written to the display with each

record overlaying the previous input or output record. Input and

output records are essentially independent of each other and may be

combined in any manner.

Diskette input Display Records are retrieved from the display one at a time. Type in the

data for each record and press the Enter key when the record is

complete. A non-field-level display file must be specified. Diskette

label information is ignored.

Diskette output Display Records are written to the display with each record overlaying the

previous record. You can request each output record using the Enter

key.

Display input ICF Records are retrieved from the ICF file one at a time.

Diskette Records are retrieved in sequential order. Diskette label information

must be provided in the diskette file or on an override command.

Database Input records are retrieved.

Tape Records are retrieved in sequential order. Tape label information

must be specified in the tape file or on an override command.

Display output ICF Records are written to the ICF file one at a time.

Database Records are written to the database in sequential order.

Diskette The amount of data written on diskette is dependent on the

exchange type of the diskette. Diskette label information must be

provided in the diskette file or on an override command.

Tape Records are written on tape in sequential order. Tape label

information must be specified in the tape file or on an override

command.

Printer Records are printed and folding or truncating is performed as

specified in the printer file.

Display input/output ICF Input records are retrieved from the

Database input

(sequentially

processed)

Display Records are retrieved from the display one at a time. Type in the

data for each record and press the Enter key when the record is

complete. A non-field-level display file must be specified.

Database output

(sequentially

processed)

Display Records are written to the display with each record overlaying the

previous record. You can request each output record using the Enter

key.

Tape input Display Records are retrieved from the display one at a time. Type in the

data for each record and press the Enter key when the record is

complete. A non-field-level display file must be specified. Tape label

information is ignored.

Tape output Display Records are written to the display with each record overlaying the

previous record. You can request each output record using the Enter

key.

Chapter 7. Overriding Display Files and Display File Attributes 217

Recognizing Commands That Ignore or Restrict Overrides

The following commonly used commands ignore overrides entirely:

v ADDLFM

v ADDPFM

v ALCOBJ

v APYJRNCHG

v CHGOBJOWN

v CHGPTR

v CHGSBSD

v CHGXXXF (all change file commands)

v CLRPFM

v CLRSAVF

v CPYIGCTBL

v CRTDKTF

v CRTDUPOBJ

v CRTAUTHLR

v CRTSBSD

v CRTTAPF

v DLCOBJ

v DLTF

v DLTAUTHLR

v DSPDBR

v DSPFD

v DSPFFD

v DSPJRN

v EDTOBJAUT

v EDTDLOAUT

v ENDJRNPF

v GRTOBJAUT

v INZPFM

v MOVOBJ

v RGZPFM

v RMVJRNCHG

v RMVM

v RNMOBJ

v RSTUSRPRF

v RVKOBJAUT

v SAVCHGOBJ

v SAVLIB

v SAVOBJ

v SAVPGMPRD

v SAVSAVFDTA

v SAVSYS

v SBMDBJOB

218 Application Display Programming V6R1

v SIGNOFF

v STRDBRDR

v STRJRNPF

Overrides are not applied to any system files that are opened as part of an end-of-routing step or

end-of-job processing. For example, overrides cannot be specified for the job log file. In some cases, when

you need to override something in a system file, you may be able to change it through a command other

than an override command. For example, to change the output queue for a job log, the output queue

could be changed before sign-off using the OUTQ parameter on the Change Job (CHGJOB) command to

specify the name of the output queue for the job. If the printer file for the job log contains the value *JOB

for the output queue, the output queue is the one specified for the job.

The SRCFILE and SRCMBR parameters on the following commands are affected by overrides: overrides

for the SRCFILE

v CRTCMD

v CRTICFF

v CRTDSPF

v CRTLF

v CRTPF

v CRTPRTF

v CRTSRCPF

v CRTTBL

v CRTXXXPGM (All create program commands. These commands also use overrides to determine which

file will be opened by a compiled program. See “Applying Overrides When Compiling a Program” on

page 214 for more information.)

The OPNQRYF command is affected by the following override parameters: TOFILE, MBR, SEQONLY,

LVLCHK, and INHWRT.

The following commands allow overrides, but do not allow changing the MBR to *ALL:

v CPYFRMPCD

v CPYTOPCD

The following commands do not allow overrides to be applied to the display files they use. Overrides to

the printer files they use should not change the file type or the file name. Various restrictions are placed

on changes that may be made to printer files used by these commands, but the system cannot guarantee

that all combinations of possible specifications will produce an acceptable report.

DMPOBJ and DMPSYSOBJ

In addition to the preceding limitations, these commands do not allow overrides to the file they

dump.

DSPXXXXXX

All display commands. The display commands that display information about a file do not allow

overrides to that file.

DSPIGCDCT and EDTIGCDCT

Message file can be overridden.

GO

PRTXXXXXX

All print commands.

QRYDTA

Chapter 7. Overriding Display Files and Display File Attributes 219

TRCXXX

All trace commands.

WRKXXXXXX

All work-with commands.

220 Application Display Programming V6R1

Chapter 8. Handling Messages and Errors for Display Files

This chapter covers the following:

v Creating and displaying your own messages

v Analyzing error messages sent from the system

Creating and Displaying Your Own Messages

You can create and display your own messages on i5/OS. These messages may indicate that a processing

error has occurred, that incorrect input has been entered, or simply that the keyboard is temporarily

locked while the system processes a lengthy request.

You can specify the following message handling functions for display files:

v Display a message on the message line

v Display a message on the message line when a subfile control record is written

v Define a message line

v Display messages in a field on the display

v Display messages in a program message queue

 You can also do the following:

v Display error messages on the message line using a system-supplied error subfile

v Have the system automatically handle jobs that are about to receive a permanent I/O error

System message support

Message line

My menu

F3=Exit
Order not found

Output field

My menu

Order not found

F3=Exi t

Subfile
Message 1
Message 2
Message 3

Ways to show
messages on
the display

RV2W005-2

MSGID keyword

ERRMSG and ERRMSGID keywords

© Copyright IBM Corp. 1997, 2008 221

Information about DDS keywords

This section uses DDS keywords to define and display messages. For more information about

specific DDS keywords, see the DDS topic collection in the i5/OS Information Center.

Displaying a Message on the Message Line

You can specify that a message is to be displayed on the message line with the ERRMSG or ERRMSGID

keyword. For a message defined as a constant, use the ERRMSG keyword; message help is not supported

for these kinds of messages. For a message defined in a message file, use the ERRMSGID keyword. When

you use these keywords, the keyboard locks and the user must press the Reset key to clear the message

from the display and continue.

When you use ERRMSG, the record that you want to present the message for must already be on the

display. If it is not, the ERRMSG function is not performed.

When you use the ERRMSG keyword to present a message, that message is written to the message line of

the display, which is usually the line at the bottom of the screen, depending on the software you use to

connect your server to your clients. The user would then press the Reset key to clear the message from

the display and unlock the keyboard to continue typing. You provide the text of the message right on the

ERRMSG keyword. When you write a record that has the ERRMSG keyword in effect, it causes that

message to appear. Typically, you would use an option indicator to cause the ERRMSG keyword to take

effect. When the application program turns on an option indicator, the keywords that have that option

indicator specified in the DDS then take effect. In this case, an application program would leave an

indicator that optioned an ERRMSG keyword off until the message needed to be displayed.

The ERRMSGID and SFLMSGID keywords have an optional parameter for message data (msg-data). You

can use this parameter to define a program-to-system field that contains the message data (substitution

text). For more information about how the message data parameter works, refer to the Send Program

Message CL command in the Control language topic collection in the i5/OS Information Center.

Note: When you use the ERRMSG or ERRMSGID keyword, you should specify RSTDSP(*YES) on the

CRTDSPF or CHGDSPF command; otherwise, data might be lost if the display file is suspended.

Displaying a Message on the Message Line When a Subfile Control

Record is Written

You can specify that messages are to be displayed on the message line when a subfile control record is

written using the SFLMSG or SFLMSGID keyword. If the message is a constant, use the SFLMSG

keyword; if it is defined in a message file, use the SFLMSGID keyword. The restrictions on these

keywords are the same as ERRMSG and ERRMSGID.

Displaying a Message on the Message Line Using a Message Field

You can specify a message field (M in position 38). The value from this output field will appear on the

message line. The value in the field is specified by the application program in the output buffer. The

length of this field should not exceed 78 positions if the message is to be displayed on a 24 by 80 screen,

or 130 positions if the message is to be displayed on a 27 by 132 screen. Message help and substitution

variables are not supported for a message line.

Priorities for Displaying Messages on a Message Line

The message displayed on the message line is determined by the following order of priority (1 is the

highest):

1. ERRMSG

222 Application Display Programming V6R1

2. ERRMSGID

3. SFLMSG

4. SFLMSGID

5. Position 38 in DDS is M

In addition, you can change the line on which messages are displayed by using the MSGLOC keyword. If

not specified otherwise, the message line is the last line on the display. If you use the MSGLOC keyword,

the new message line applies to messages that are displayed for validity-checking errors and keys that

are not valid as well as to user-defined messages.

Notes:

1. If the MSGLOC keyword is not specified, and a display station capable of displaying 27 lines is

attached to a local display station controller or attached to a remote 5294 or 5394 controller, the

default values are:

v Line 28 for the 27 by 132 screen size

v Line 25 for the 24 by 80 screen size
2. If line 25 is specified for the 24 by 80 mode, either because the default was used or line 25 was

specified in the MSGLOC keyword, the message actually appears on line 24 unless the display is

capable of displaying the message on line 25.

3. The normal system display for message help gives the user access to extended help (by pressing the

Help key again), and may allow the user to use F10 to display all messages in the job log. The

message help display used for a display station other than the job requester display station or for a

display station associated with a multi-display file does not provide these functions.

Displaying Messages in a Field on the Display

You can specify that messages are to be displayed in a field on the display using the MSGID keyword.

The message is truncated if it is longer than the MSGID field. The message is padded with blanks if it is

shorter than the MSGID field.

When the MSGID keyword is used, the keyboard is not locked because the field on which it is specified

is a normal output-capable field. Message help and substitution variables are not supported for the

MSGID keyword.

Displaying Messages on a Program Message Queue

You can specify that messages that are contained on a program message queue are to be displayed by

using the SFLMSGRCD, SFLMSGKEY, and SFLPGMQ keywords. When you use subfile support for

messages, you can display more than one message at a time, and the keyboard does not lock when the

message is being displayed. Because the messages specified here are from the program message queue,

both message help and substitution text are supported. See “Displaying Error Messages from Subfiles” on

page 105 for more information. See the Messages section in the Control language topic collection in the

i5/OS Information Center for information about message queues and sending messages.

Displaying Error Messages through a Subfile

The ERRSFL (error subfile) keyword can be used to indicate that the error messages associated with

ERRMSG, ERRMSGID, SFLMSG, and SFLMSGID keywords will be displayed on the message line using a

system-supplied error subfile.

The ERRSFL keyword can be used in addition to the ERRMSG and ERRMSGID or SFLMSG and

SFLMSGID keywords to allow a user to roll through a subfile of error messages. One error message is

displayed at a time. The user’s program handles the validity checking of the fields, setting on the option

indicators for the appropriate message to be sent for the fields in error. The system handles putting the

message associated with the field in error in the error subfile, and displaying the error messages.

Chapter 8. Handling Messages and Errors for Display Files 223

The ERRSFL keyword can also be used to put error messages into an error subfile when the system

handles validity checking. Error messages are put into the error subfile when input fails the validity

check for the following reasons:

v DDS keywords CHECK(M10 M11 VN VNE), COMP, RANGE, and VALUES

v Floating point operations

v More than one decimal point is entered in a field that has one or more decimal positions

v Either too many or too few decimal positions are entered in a field that has one or more decimal

positions

The messages can be viewed by paging through the error subfile. Only one error message is displayed at

a time. When the error subfile is displayed, the keyboard is not locked. It is not necessary to press the

Reset key prior to correcting the fields in error.

If there is a record format currently displayed that covers the line defined to be the message line, the

ERRSFL keyword is ignored.

When both validity checking and ERRMSG/ERRMSGID or SFLMSG/SFLMSGID are used on the screen

at the same time, the resulting errors are not all present in the error subfile at the same time. When the

write operation is done, the messages from ERRMSG, ERRMSGID, SFLMSG, and SFLMSGID are present

in the error subfile. After data is typed and validity checking errors occur, the error subfile is cleared and

only the validity checking errors are present.

Following is an example of how the ERRSFL keyword can be used:

 In this example, assume that RCD1 is currently on the display. When validating the input data, your

program detects several errors and sets on the option indicators 11, 21, and 30. On the subsequent output

operation:

v FIELD1, FIELD2, and FIELD3 are displayed in reverse image.

v The cursor is located in position 2, 3 (start of FIELD1).

v The keyboard is not locked.

v An error subfile is displayed on line 24. The subfile contains three records: Error Msg 1, the MSG2

message, and the MSG4 message. The user can page through the messages, and by placing the cursor

on the message line and pressing the Help key, view the message help for MSG2 or MSG4. Message

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A MSGLOC(24)

 A ERRSFL

 A R RCD1

 A FIELD1 5A B 2 3

 A 10 ERRMSGID(MSG0001 MSGF1 10 &MDTA1)

 A 11 ERRMSG(’Error Msg 1’ 11)

 A FIELD2 10A B 3 3

 A 20 ERRMSG(’Error Msg 2’ 20)

 A 21 ERRMSGID(MSG0002 MSGF1 21)

 A 22 ERRMSGID(MSG0003 MSGF1 22 &MDTA3)

 A FIELD3 2A B 4 3

 A 30 ERRMSGID(MSG0004 MSGF1 30)

 A MDTA1 78A P

 A MDTA3 78A P

 A

 A

 A

 A

 A

 A

Figure 98. Sample DDS Source for ERRSFL Keyword

224 Application Display Programming V6R1

CPF9897, which indicates that no help information is available, is displayed if the cursor is not located

on the message line when the user is attempting to view the message help of MSG2 or MSG4.

v If the Help key is pressed on the message line for Error Msg 1, the message help for message CPF9897

appears. The message help explains that no message help is available.

v On the subsequent display of RCD1, the error subfile is cleared of the previous error messages.

The following is a DDS example of defining the SFLMSGID keyword in a display file:

 Assume that CTLRCD1 and CTLRCD2 are on the display. When validating the input data, your program

detects several errors and sets on the option indicators 11 and 21. On the subsequent output operation:

v The cursor is located in position 2, 3 (start of SFLRCD1).

v The keyboard is not locked.

v An error subfile is displayed on line 24. The subfile contains two records: Error Msg 1 and the message

of SFL0002. The user can page through the messages, and by placing the cursor on the message line

and pressing the Help key, view the message help for SFL0002. If the Help key is pressed on the

message line for Error Msg 1, the message help for message CPF9897 appears, which explains that no

help information is available.

v On the subsequent display of CTLRCD1 and CTLRCD2, the error subfile is cleared of the previous

error messages.

The SFLEND keyword is specified on the ERRSFL subfile control record. An error is issued and the

keyboard is locked if the user attempts to roll beyond the top or bottom of the file.

The following considerations apply to the ERRSFL keyword, except when used with the ERRMSG and

ERRMSGID keywords and the SFLMSG and SFLMSGID keywords:

v When the error subfile is displayed (that is, there are one or more fields in error), pressing a Roll key

results in the error subfile being rolled, regardless of the cursor position at the time or whether other

subfiles are currently displayed.

v When processing errors from validity check, the error subfile is built every time a valid command key,

Roll key, or Enter key is pressed and errors occur.

v When a valid command key or Enter key is pressed, the message for the first field in error is always

displayed.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A MSGLOC(24)

 A ERRSFL

 A R SFLRCD1 SFL

 A SFL1 5A B 2 3

 A R CTLRCD1 SFLCTL(SFLRCD1)

 A SFLPAG(1)

 A SFLSIZ(15)

 A SFLDSP SFLDSPCTL

 A 10 SFLMSGID(SFL0001 USERMSGF 10)

 A 11 SFLMSG(’Error Msg 1’ 11)

 A R SFLRCD2 SFL

 A SFL2 7A O 4 3DFT(’FIELD 2’)

 A R CTLRCD2 SFLCTL(SFLRCD2)

 A SFLPAG(1)

 A SFLSIZ(15)

 A SFLDSP SFLDSPCTL

 A 20 SFLMSG(’Error Msg 2’ 20)

 A 21 SFLMSGID(SFL0002 USERMSGF 21)

 A

 A

Figure 99. Sample DDS Source for SFLMSGID Keyword

Chapter 8. Handling Messages and Errors for Display Files 225

v If the error subfile is rolled and the field that corresponds to the message that was displayed when the

Roll key was pressed is valid, the error subfile is displayed with the message of the first field in error.

v If the error subfile is rolled and the field that corresponds to the message that was displayed when the

Roll key was pressed is not valid, the error subfile is rolled to the next field in error.

v When rolling through the error subfile, the cursor is positioned in the field corresponding to the error

message being displayed.

v If no fields are in error and a Roll key is pressed, a roll is attempted on the subfile and a roll error

message is displayed (assuming no other area that can be rolled is encountered first). See Chapter 4,

“Displaying Groups of Records Using Subfiles,” on page 87 for more information about rolling subfiles.

v If the program writes a record and the user presses a Roll key after typing data that is not valid, the

error subfile is built and the error message for the first field in error is displayed.

Sounding an Alarm for Messages

To sound an audible alarm when an active ERRMSG, ERRMSGID, SFLMSG, or SFLMSGID keyword is

detected or when a validity check message is displayed, specify the MSGALARM keyword. This keyword

is allowed at the file or record level. The alarm sounds for only a short time.

The MSGALARM keyword can be used on any record in a display file, including subfile control records.

The MSGALARM keyword can also be used with the ERRSFL keyword.

Note: If the MSGALARM and ALARM keywords are specified and active on the same record format, the

alarm sounds only once.

If the SFLMSG or SFLMSGID keyword is active and both the MSGALARM and ALARM keywords

are specified, an alarm is sounded. If no message is displayed, the ALARM keyword and not the

MSGALARM keyword is responsible for sounding the alarm.

Automatically Handling Permanent I/O Errors on Display Stations

Permanent I/O errors on display stations can be handled automatically when you use the

device-recovery-action job attribute. The Device Recovery Action (DEVRCYACN) parameter of the

Change Job (CHGJOB) command indicates a system action for jobs that are about to receive a permanent

I/O error (such as a display station being powered off). You can use the following parameter values:

*DSCMSG When the I/O error occurs, the system runs a Disconnect Job (DSCJOB) command to

suspend the job. The user remains disconnected until signing on again to the same

display. The job is resumed at the point just after the I/O operation. Display data

management sets the major/minor return code to 83E1 and sends a CPF509F message to

the program message queue. These indicate that the display has been cleared and is again

available for use.

*DSCENDRQS

This option also runs the DSCJOB command when an I/O error occurs, but when the job

is resumed, the system runs the End Request (ENDRQS) command to give control to the

most recent request-processing program.

*ENDJOB When an I/O error occurs, the job ends automatically and its priorities are lowered to

conserve system resources.

*ENDJOBNOLIST

Again, the job ends automatically and its priorities are lowered to conserve system

resources. However, no job log is produced for the job.

When an I/O error occurs (especially in the case of a communications line failing for several active jobs

at once), using the device-recovery-action job attribute can save system resources. Also, the

device-recovery-action job attribute makes the job of coding for I/O errors easier. Once the display station

is recovered, the user application can continue at the point the error occurred by using the *DSCMSG and

226 Application Display Programming V6R1

*DSCENDRQS values. For *DSCMSG, if the major/minor return code is 83E1 after an I/O operation, the

program needs to assume that the display is blank. The program must branch back to the point at which

the first I/O operation to the display is done. For *DSCENDRQS, the request-processing program receives

control when connecting to the job again. This is similar to selecting option 2 on the System Request

menu. No error recovery is performed for *MSG or *DSCMSG until an I/O operation is performed to the

device in error. For all other values, the recovery occurs immediately when the error occurs.

The device-recovery-action job attribute works only for *REQUESTER display stations and does not apply

to batch jobs, pass-through jobs, or work-station-function jobs.

Analyzing Error Messages Sent from the System

This section describes error conditions that an application program might encounter during its operation

and the provisions that can be made within the program itself to try to deal with these conditions. The

Debugging CL programs and procedures section in the Control language topic collection in the i5/OS

Information Center discusses how to use the debug functions to resolve unexpected errors encountered in

the application programs. Also, the Troubleshooting topic collection describes the programs that are

available for analyzing and reporting system errors and hardware failures.

Errors can be detected when a file is opened, when a program device is acquired or released, during I/O

operations to a file, and when the file is closed. When appropriate, the system will automatically try to

run a failing operation again, up to a retry limit. When a retry is successful, neither operator nor program

action is required. Errors that can affect the processing of the program may be reported in any or all of

the following ways:

v A notify, status, diagnostic, or escape message may be sent to the program message queue of the

program using the file. These messages may also appear in the job log, depending on the message

logging level set for the job.

v A notify, status, diagnostic, or escape message may be sent to the operator message queue (QSYSOPR)

or the history message queue (QHST).

v A file status code may be returned by the high-level language.

v A major/minor return code is returned in the I/O feedback area for display files.

v Information regarding the error may be saved in the system error log for use by the problem analysis

and resolution programs.

v An alert message may be sent to an operator at another system in the network.

v The normal program flow may be interrupted and control may be transferred to an error-handling

subroutine, or other language operations may occur. For additional information about how to handle

run-time errors, see the appropriate high-level language manual.

Only some of these are significant to a program that is attempting error recovery.

Not all file errors allow programmed error recovery. Some errors are considered permanent; that is, the

file, device, or program cannot work until some corrective action is taken. This might involve resetting

the device by varying it off and on again, or correcting an error in the device configuration or the

application program. Some messages and return codes are used to inform the user or the application

program of conditions that are information rather than errors, such as change in the status of a

communications line, or system action taken for an unexpected condition. In many cases, it is possible for

the application program to test for an error condition and take some preplanned recovery action which

allows the program to continue without intervention from the user.

Understanding Messages and Message Monitors

Displayed messages are the primary source of information for anyone who is testing a new application. A

message usually contains more specific information than the file status code, the indicators, or the

major/minor return code. The control language allows messages to be monitored so that the CL program

can intercept a message and take corrective action. See the Messages section in the Control language

Chapter 8. Handling Messages and Errors for Display Files 227

topic collection in the i5/OS Information Center for more information about message types and message

monitors. In most high-level languages, either the file status code or major/minor return code (described

in the following section) is a more convenient source of information.

Message numbers are assigned in categories to make it easier for a program to monitor for any of a

group of related messages. The following message number ranges are assigned for file error messages:

 Table 24. System Message Number Ranges

Message IDs Operation Message Type

CPF4001-40FF Open Diagnostic and status.

CPF4101-43FF Open Escapes that make the file unusable.

CPF4401-44FF Close Diagnostic and status.

CPF4501-46FF Close Escapes that make the file unusable.

CPF4701-48FF I/O, Acquire, and Release Notify with a default reply of cancel, status and

escapes that do not make the file or device

unusable.

CPF4901-49FF I/O, Acquire, and Release Notify with a default reply of ignore.

CPF5001-50FF I/O, Acquire, and Release Notify with a default reply of cancel.

CPF5101-53FF I/O, Acquire, and Release Escapes that make the file or device unusable.

CPF5501-56FF I/O, Acquire, and Release Escapes that make the file or device unusable.

Some status messages, CPF4018 for example, are preceded by a diagnostic message that provides

additional information. Diagnostic messages may be kept in the job log, depending on the message

logging level of the job. If a CL program monitors for CPF4018, CPF5041, or similar messages, it can

retrieve the accompanying diagnostic message from the program message queue.

If an error occurs for which an escape message is issued and the message is not monitored, your program

will be ended and the message displayed in the operator message queue. Status messages may also be

monitored, but if they are not monitored, the program continues. Most high-level languages except CL

monitor for all the file errors that are likely to be encountered, and provide some standard recovery.

Depending on the severity of the error, the high-level language may simply end the program and issue a

message of its own. Alternatively, you may code an error recovery routine to handle errors that are

anticipated in that particular application.

Within these error-handling routines, it is usually necessary to examine the file status or major/minor

return codes to determine the cause of the error. The manuals for the language you are using explain

how to access file status and major/minor return codes. The language manuals also explain the file status

codes as they are defined for each language.

Understanding Major/Minor Return Codes

Major/minor return codes are used to report errors and certain status information for display files. They

are usually stated as four characters: the first two referring to the major code and the second two

referring to the minor code. The major code indicates the general type of error, and the minor provides

further detail. Minor codes, except zero, have the same or a similar meaning, regardless of the major code

with which they are combined.

The application program can test the return code after each I/O operation. If the major return code is 00,

the operation completed successfully and the minor return code contains status information that indicates

whether a read or a write operation should be performed next. A major return code of 04 or above

indicates that an error occurred. The program may test for any specific errors for which programmed

recovery is attempted. The application program may test for a specific condition by comparing the major

and minor codes as a unit, or may identify a class of conditions by testing the major code alone.

228 Application Display Programming V6R1

Most major/minor return codes are accompanied by any one of several message numbers, for which the

typical recovery action is similar. File status codes are defined by the individual languages and may be

set based on the major/minor return codes.

The following table defines the major return codes. Appendix D, “Display File Return Codes” contains

specific definitions of the major and minor return codes as they are used for display files and the

message numbers associated with each.

 Table 25. Major Return Code Definitions

Code Definition

00 The operation requested by your program completed successfully. The minor includes state

information, such as change direction.

02 Input operation completed successfully, but job is being ended (controlled). The minor includes state

information.

03 Successful input operation, but no data was received. The minor includes state information.

04 Error occurred because an output operation was attempted while data was waiting to be read.

08 An acquire operation failed because the device has already been acquired or the session has already

been established.

11 A read-from-invited-program-devices operation failed because no device or session was invited.

34 An input exception occurred. The data length or record format was not acceptable for the program.

80 A permanent system or file error, which cannot be recovered from, occurred. Programmer action is

required to correct the problem.

81 A permanent device or session error, which cannot be recovered from, occurred during an I/O

operation.

82 A device or session error occurred during an open or acquire operation. Recovery may be possible.

83 A device or session error occurred during an I/O operation. Recovery may be possible.

Recovering from Errors

The following sections describe the error recovery action that is appropriate for each group of major

return codes.

Normal Completion

A major/minor return code of 0000 indicates that the operation requested by your program was

completed successfully. Most of the time, no message is issued. In some cases, a diagnostic message

might be used to inform the user of some unusual condition that the system was able to handle, but

which might be considered an error under some conditions. For example, a parameter that is not valid

might be ignored, or some default action taken.

Completion with Exceptions

Several rather specific major return codes have been assigned to conditions for which a specific response

from the application program is appropriate.

A major return code of 02 indicates that the requested input operation completed successfully, but the job

is being ended (controlled). The application program should complete its processing as quickly as

possible. The controlled cancel is intended to allow programs time to end in an orderly manner. If your

program does not end within the time specified on the ENDJOB command, the job will be ended by the

system without further notice.

A major return code of 03 indicates that an input operation completed successfully without transferring

any data. For some applications, this might be an error condition, or it might be expected when the user

Chapter 8. Handling Messages and Errors for Display Files 229

presses a function key instead of entering data. It might also indicate that all the data has been processed,

and the application program should proceed with its completion processing. In any case, the contents of

the input buffer in the program should be ignored.

A major/minor code of 0309 is used to indicate that no data was received and the job is being ended

(controlled). A major/minor code of 0310 indicates that there is no data because the specified wait time

has ended. Other minor return codes accompanying the 02 or 03 major code are the same as for a 00

major code, indicating communications status and the operation to be performed next.

A major return code of 04 indicates that an output exception occurred. Specifically, your program

attempted to send data when there was data waiting to be received. This is probably the result of not

handling the minor return code properly on the previous successful completion. Your program can

recover by simply receiving the incoming data and then repeating the write operation.

A major return code of 34 indicates that an input exception occurred. The received data was either too

long or incompatible with the record format. The minor return code indicates what was wrong with the

received data, and whether the data was truncated or rejected. Your program can probably handle the

exception and continue. If the data was rejected, you may be able to read it by specifying a different

record format.

Two other return codes in this group, 0800 and 1100, are both usually the result of application

programming errors, but are still recoverable. 0800 indicates that an acquire operation failed because the

device has already been acquired or the session has already been established. 1100 indicates that the

program attempted to read from invited devices with no devices invited. In both cases, the request that is

not valid is ignored, and the program may continue.

No message is issued with a 02 major code or most minor codes with the 03 major code, but the other

exceptions in this group are usually accompanied by a message in the CPF4701-CPF47FF or

CPF5001-CPF50FF range.

Permanent System or File Error

A major return code of 80 indicates a serious error affecting the file. The application program must close

the file and reopen it before attempting to use it again, but recovery is unlikely until the problem causing

the error is found and corrected. To reset an error condition in a shared file by closing it and opening it

again, all programs sharing the open data path must close the file. This may require returning to previous

programs in the program stack and closing the shared file in each of those programs. You should refer to

the text of the accompanying message to determine what action is appropriate for the particular error.

Within this group, several minor return codes are of particular interest. A major/minor code of 8081

indicates a serious system error for which an APAR probably will be required. The message sent with the

major/minor return code may direct you to run the Analyze Problem (ANZPRB) command to obtain

more information.

A major/minor code of 80EB indicates that incompatible options or options that are not valid were

specified in the display file or as parameters on the open operation. In most cases you can close the file,

end the program, correct the parameter that is not valid with an override command, and run the

program again. The override command affects only the job in which it is issued. It allows you to test the

change easily, but you may eventually want to change or re-create the display file as appropriate to make

the change permanent.

Permanent Device or Session Error on I/O Operation

A major return code of 81 indicates a serious error affecting the device or session. This includes hardware

failures affecting the device, communications line, or communications controller. It also includes errors

due to a device being disconnected or powered off unexpectedly and abnormal conditions that were

discovered by the device and reported back to the system. Both the minor return code and the

accompanying message provide more specific information regarding the cause of the problem.

230 Application Display Programming V6R1

Depending on the file type, the program must either close the file and open it again, release the device

and acquire it again, or acquire the session again. To reset an error condition in a shared file by closing it

and opening it again, all programs sharing the open data path must close the file. In some cases, the

message may instruct you to reset the device by varying it off and on again. It is unlikely that the

program will be able to use the failing device until the problem causing the error is found and corrected,

but recovery within the program may be possible if an alternate device is available.

Some of the minor return codes in this group are the same as those for the 82 major return code. Device

or line failures may occur at any time, but an 81 major code occurs on an I/O operation. This means that

your program had already established a link with the device or session. Therefore, some data may have

been transferred, but when the program is started again, it starts from the beginning. A possible

duplication of data could result.

Message numbers accompanying an 81 major code may be in the range indicating either an I/O or a

close operation. A device failure on a close operation simply may be the result of a failure in sending the

final block of data, rather than action specific to closing the file. An error on a close operation may result

in the file being left partially closed. Your error recovery program should respond to close failures with a

second close operation. The second close will always complete, regardless of errors.

Device or Session Error on Open or Acquire Operation

A major return code of 82 indicates that a device or session error occurred during an open or acquire

operation. Both the minor return code and the accompanying message will provide more specific

information regarding the cause of the problem.

Some of the minor return codes in this group are the same as those for the 81 major return code. Device

or line failures may occur at any time, but an 82 major code indicates that the device or session was

unusable when your program first attempted to use it. Thus no data was transferred. The problem may

be the result of a configuration or installation error.

Depending on the minor return code, it may be appropriate for your program to recover from the error

and try the failing operation again after some waiting period. The number of times you try should be

specified in your program. It may also be possible to use an alternate or backup device or session

instead.

Message numbers accompanying an 82 major code may be in the range indicating either an open or an

acquire operation. If the operation was an open, it is necessary to close the partially opened file and

reopen it to recover from the error. If the operation was an acquire, it may be necessary to do a release

operation before trying the acquire again. In either case, the file wait time should be specified long

enough to allow the system to recover from the error.

Recoverable Device or Session Errors on I/O Operation

A major return code of 83 indicates that an error occurred in sending data to a device or receiving data

from the device. Recovery by the application program is possible. Both the minor return code and the

accompanying message provide more specific information regarding the cause of the problem.

Most of the errors in this group are the result of sending commands or data that are not valid to the

device, or sending valid data at the wrong time or to a device that is not able to handle it. The

application program may recover by skipping the failing operation or data item and going on to the next

one, or by substituting an appropriate default. There may be a logic error in the application.

Chapter 8. Handling Messages and Errors for Display Files 231

232 Application Display Programming V6R1

Chapter 9. Creating and Accessing Menus Using Display Files

This chapter describes user-defined menus and tells you how to create them and use them with system

menus.

The first two types of user-defined menus can be created using the information in this chapter:

Display file menus

Menus that use a display defined by data description specifications (DDS) to present a menu

format. The menu functions are controlled by a message file containing the commands used to

run each of the menu options.

Program menus

Menus that use a high-level language program to present the menu format and provide the

functions necessary to run the menu options.

UIM menus

Menus that a menu object defined by the user interface manager (UIM) panel group definition

language. For more information on defining your own menus using the UIM, see “Defining a

Menu Object Using UIM” on page 276.

Information about CL commands

Some of the examples in this chapter use CL commands. For more information about specific CL

commands, see the Control language topic collection in the i5/OS Information Center.

Running System and User-Defined Menus

Menus that consist of *MENU object types are run using the Go to Menu (GO) command. The GO

command allows you to specify either a particular menu or a generic menu name. If you specify a

generic name, you are shown the Work with Menus display, which shows all the menus available for

your use. From this list, you can choose a menu to run.

Returning to a Menu after Running the GO command

Using the Return Point (RTNPNT) parameter of the GO command, you can specify whether or not you

want to return to the menu from which the command was entered after running the menu specified by

the GO command.

Determining the Previous Menu

A menu is placed on an internal menu stack before it is run. If a stack is not available for the menu, one

is created. When the Cancel key is pressed for a menu, the previous menu in the stack is shown. Each

menu stack is 10 elements (menus) deep. When the eleventh menu is placed on the menu stack, the first,

or oldest, menu is removed from the stack. This menu cannot be returned to by using the Cancel key.

Using the Cancel and Exit Keys on Menus

In the following example, a series of menus is presented using both the menu options and the GO

command.

1. From the i5/OS Main Menu, GO PROGRAM RTNPNT(*YES) is typed on the command line. Specifying

RTNPNT(*YES) here means that the Main Menu will be used as a return point.

© Copyright IBM Corp. 1997, 2008 233

MAIN Main Menu

 System XXXXXXXX

Select one of the following:

 1. User tasks

 2. Office tasks

 3. General system tasks

 4. Files, libraries, and folders

 5. Programming

 6. Communications

 7. Define or change the system

 8. Problem handling

 9. Display a menu

 90. Sign off

Selection or Command

===> GO PROGRAM RTNPNT(*YES)___

__

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F23=Set initial menu

2. Next, by typing GO PROBLEM RTNPNT(*NO) on the command line of the Programming menu and

pressing the Enter key, the Problem Handling menu is shown. The Programming menu is not set as a

return point.

PROGRAM Programming

 System XXXXXXXX

Select one of the following:

 1. Programmer’s menu

 2. Programming Development Manager

 3. Utilities

 4. Programming language debug

 5. SQL pre-compiler

 6. Question and answer

 7. IBM product information

 8. Copy screen image

 50. System/36 programming

 70. Related commands

Selection or Command

===> GO PROBLEM RTNPNT(*NO)__

__

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F16=System main menu

234 Application Display Programming V6R1

PROBLEM Problem Handling

 System XXXXXXXX

Select one of the following:

 1. Question and answer

 2. Work with problems

 3. Network problem handling

 4. Display system operator messages

 5. Display the history log

 6. System service tools

 60. More problem handling options

 70. Related commands

Selection or Command

===>___

__

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F16=System main menu

3. In this example, if the Cancel key is pressed while viewing the Problem Handling menu, the user is

returned to the Programming menu because the Programming menu is the preceding display on the

menu stack. If F3 (Exit) is pressed while viewing the Problem Handling menu, the user is returned to

the Main Menu, because the Main Menu is the most recent display from which a GO command was

entered with RTNPNT(*YES).

Note that since the default value for the RTNPNT parameter is *YES, GO PROBLEM will have the same

effect as GO PROBLEM RTNPNT(*YES).

Pressing either F3 (Exit) or F12 (Cancel) while viewing the help for a menu returns the user to the menu

itself.

Choosing the Menu That Is Shown at Sign-On Time

To specify a menu as your initial menu, or the first menu you see when you sign on, press F23 when the

menu is shown. F23 sets the initial menu attribute in your user profile. Unless your initial program

requests some other menu, the menu selected by pressing F23 is shown as the initial menu the next time

you sign on.

Note: You can only use this key if LMTCPB(*NO), which allows you to change the initial menu, is

specified in your user profile.

See the Security reference for information about initial menus and limited users.

Defining Your Own Display File Menus

Display file menus consist of three parts:

v A DDS-defined display file to define the way the menu looks at the display station

v A message file to define what action is taken when any of the menu options are selected

v A menu object (*MENU) that contains the menu

Help is available on display file menus for the following:

Commands Command help is shown by typing the command on the command line, then pressing

the Help key.

Chapter 9. Creating and Accessing Menus Using Display Files 235

Function keys Help for function keys is shown by moving the cursor to the function area and pressing

the Help key.

Messages Help for messages is shown by moving the cursor to a message and pressing the Help

key.

Help for the menu options may also be provided using DDS. See “Naming Help Formats for Menus” on

page 237 for more about help information.

Information about DDS keywords

More information about the specific DDS keywords used in this chapter is found in the DDS topic

collection in the i5/OS Information Center.

Understanding DDS and Display File Considerations for Menus

Several restrictions exist for the DDS used in defining a menu:

 Table 26. Restrictions for Display File Menus

Affected Area Restriction

Display size The menu format and the associated help record formats for the menu in the display

file must have a display size of 24 rows by 80 columns, DSPSIZ(*DS3) in DDS.

Display file and record

format names

The menu record format name must be the same as the display file name.

Help format names Help format names must follow the convention #Hxxyy, described in “Naming Help

Formats for Menus” on page 237. The help record format is limited to 150 items.

Note: The symbol preceding Hxxyy is a number sign.

Indicator area A separate indicator area (INDARA keyword) must be declared in the DDS for the

display.

Subfile use Subfiles cannot be used.

Allowed lines Only the first 21 lines of the display should be described. Only the first 21 lines of the

help display should be described. Lines 22 and 23 are used with long command lines;

system messages are shown on line 24. (Line 23 is used with short command lines and

line 24 is used for messages.)

The following lines can be used when a function key legend is requested:

v For a long command line with no function key legend, lines 1 through 21

v For a long command line with a function key legend, lines 1 through 19

v For a short command line with no function key legend, lines 1 through 22

v For a short command line with a function key legend, lines 1 through 20

v For no command line with no function key legend, lines 1 through 21

v For no command line with a function key legend, lines 1 through 19

Keyboard locking The LOCK record level keyword should be used to prevent the keyboard from

unlocking before the display is shown.

Paging The Allow Roll (ALWROL) record level keyword cannot be specified.

Deferring the write

operation

DFRWRT(*NO) is required on the CRTDSPF command when creating a display file

menu. DFRWRT(*NO) ensures the menu format is displayed when the menu is run.

236 Application Display Programming V6R1

The following suggestions can also be used to help you define your menu using DDS:

 Table 27. Suggestions for Display File Menus

Affected Area Option

Restoring the display The RSTDSP(*NO) is optional on the CRTDSPF command, but may significantly

improve system performance if specified.

Menu and display station

alias

An alias can be used for the name of the menu and for the name of the display station

(for the System/36™ environment). When issuing the CRTMNU command, you can

specify a different name than the name used in the DDS. This way, the name of the

display station identifier will be displayed with the menu. By giving the menu a

different name, you can use the GO command to find that menu.

Describing Menu Actions in a Message File

Message files are used to describe what action is taken when a menu option is selected. Commands

controlling the action to be taken are usually placed in the message. In some cases, the command string

may be too long to fit in the message. In these cases, the message contains the message identifier for the

message; the command is then placed in the message help.

Messages used in display file menus must be named using the message prefix USR. The remaining four

digits of the message identifier correspond to the menu option number.

For example, if option 3 on a given display file menu is:

3. Personnel Menu

then the message describing the action taken when 3 is entered on the command line uses identifier

USR0003. The message could contain any command, such as ’GO PERSMENU RTNPNT(*NO)’.

See “Creating and Displaying Your Own Messages” on page 221 for more information about messages.

Naming Help Formats for Menus

Help formats for display file menus are named using the form:

#Hxxyy

where:

 The symbol preceding Hxxyy is a number sign.

 xx is the number of the first menu option to which the help information applies

 yy is the number of the last menu option to which the help information applies

For example, #H0103 could be used to name help that applies to menu options 1 through 3. #H0202 names

the help that applies to menu option 2.

#H0000 names the extended help for the menu.

The help formats may be described in any order in the DDS. The system sorts the help formats in

ascending order when the menu is run.

If two or more help format names apply to the same option, only the first help format (as sorted by the

system) will be shown when Help is requested for that option. For example, if the following help formats

are given:

#H0000

#H0101

#H0205

#H0306

#H0707

Chapter 9. Creating and Accessing Menus Using Display Files 237

Typing 3 on the command line (to select option 3) and pressing the Help key will show the help

designated #H0205. In this example, #H0306 can be viewed using the Page Down key, but will be shown

directly only by requesting help for option 6.

Similarly, by moving the cursor to the command line and pressing the Help key with no option typed on

the command line, the user is shown extended help for the menu (#H0000). The cursor movement keys

can be used to look through the other help formats for the menu options.

The following example shows a menu with five options. The names of the help formats and the menu

options to which they apply are shown following the example.

PERSMENU Personnel Menu

Select one of the following:

 1. Departments menu

 2. Education menu

 3. Benefits menu

 4. Job openings

 5. Job applicants

Selection or Command

===>__

Help Name Contents

#H0000 General help for the Personnel Menu (PERSMENU)

#H0101 Help for option 1, Departments menu

#H0202 Help for option 2, Education menu

#H0303 Help for option 3, Benefits menu

#H0405 Help for options 4 and 5, Job openings and Job applicants

The help information for the menu options can be shown by typing the option number on the command

line and pressing the Help key, or by pressing Help (extended help for the menu), and then using the

Page Down key to page through the help for the options.

Building a Display File Menu

The following steps allow you to create a display file (*DSPF) menu:

1. Describing the menu and menu help information

2. Creating the display file

3. Creating the message file

4. Adding messages to the message file

5. Creating the menu

6. Running the menu

The following sections explain each step in detail.

238 Application Display Programming V6R1

Describing the Menu and Menu Help Information

DDS is used to describe both the appearance and the help for the menu.

The following DDS is for the sample display called PERSMENU. The first record format (PERSMENU) is

used to describe the appearance of the menu when displayed. Five menu options are listed, starting in

position 7 of lines 5 through 9.

Five more record formats are shown: #H0000, #H0101, #H0202, #H0303, and #H0405. Each of these is

used to provide help information for the menu and its options. Following the system convention

described above (see “Naming Help Formats for Menus” on page 237), #H0000 is used to provide

extended help for the menu. The other record formats provide help for the menu options.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A* PERSONNEL MENU (PERSMENU) SPECIFICATION

 A*

 A PRINT DSPSIZ(*DS3)

 A INDARA

 A*

 A R PERSMENU LOCK

 A 1 02’PERSMENU’

 A 1 29’PERSONNEL MENU’

 A 3 02’SELECT ONE OF THE FOLLOWING:’

 A 5 07’1. DEPARTMENTS MENU’

 A 6 07’2. EDUCATION MENU’

 A 7 07’3. BENEFITS MENU’

 A 8 07’4. JOB OPENINGS’

 A 9 07’5. JOB APPLICANTS’

 A 21 02’SELECTION OR COMMAND’

 A*

 A R #H0000 LOCK

 A 1 02’GENERAL’

 A 2 26’HELP FOR THE PERSONNEL MENU

 A 3 02’THIS IS THE GENERAL HELP’

 A

 A

 A 3 27’FOR THE PERSONNEL MENU.’

 A*

 A R #H0101 LOCK

 A 1 02’HELP1’

 A 1 26’HELP FOR OPTION 1’

 A 3 02’THIS IS THE HELP’

 A 3 19’FOR OPTION 1.’

 A*

 A R #H0202 LOCK

 A 1 02’HELP2’

 A 1 26’HELP FOR OPTION 2’

 A 3 02’THIS IS THE HELP’

 A 3 19’FOR OPTION 2.’

 A*

 A R #H0303 LOCK

 A 1 02’HELP3’

 A 1 26’HELP FOR OPTION 3’

 A 3 02’THIS IS THE HELP’

 A 3 19’FOR OPTION 3.’

 A*

 A R #H0405 LOCK

 A 1 02’HELP45’

 A 1 26’HELP FOR OPTIONS 4 AND 5’

 A 3 02’THIS IS THE HELP’

 A 3 19’FOR OPTIONS 4 AND 5.’

 A*

Figure 100. DDS Source for Sample Menu Called PERSMENU

Chapter 9. Creating and Accessing Menus Using Display Files 239

Creating the Display File

To create the display file for the menu, enter the following command:

CRTDSPF FILE(PERLIB/PERSMENU) +

 SRCFILE(USERLIB/SFPERS) +

 DFRWRT(*NO) +

 RSTDSP(*NO)

The DDS source member, PERSMENU, in the source file SFPERS in library PERLIB, is used to create the

display file for the PERSMENU menu.

Creating the Message File

Enter the following Create Message File (CRTMSGF) command to create a message file called

PERSMENU (same name as record format):

CRTMSGF MSGF(PERLIB/PERSMENU) +

 TEXT(’Message file of commands for menu PERSMENU.’)

The message file will be used to contain messages describing the actions taken when the various menu

options are selected.

Adding Messages to the Message File

The Add Message Description (ADDMSGD) command is used to add messages to the message file. The

messages describe the different actions taken when various menu options are selected.

The MSGID parameter of each ADDMSGD command is in the form USRxxxx, where xxxx is the menu

option number. The MSG parameter contains the command to run the menu option.

In the following example, the MSG parameters of the first three messages contain commands to run

menus (using the GO command); the last two messages contain commands which will call programs

(using the CALL command) when either of those menu options are selected from the menu.

ADDMSGD MSGID(USR0001) MSGF(PERLIB/PERSMENU) +

 MSG(’GO DEPTMENU RTNPNT(*NO)’)

ADDMSGD MSGID(USR0002) MSGF(PERLIB/PERSMENU) +

 MSG(’GO EDUCMENU RTNPNT(*NO)’)

ADDMSGD MSGID(USR0003) MSGF(PERLIB/PERSMENU) +

 MSG(’GO BENEMENU RTNPNT(*NO)’)

ADDMSGD MSGID(USR0004) MSGF(PERLIB/PERSMENU) +

 MSG(’CALL JOBOPEN’)

ADDMSGD MSGID(USR0005) MSGF(PERLIB/PERSMENU) +

 MSG(’CALL JOBAPPS’)

Creating the Menu Object

Enter the following Create Menu (CRTMNU) command to create the menu object:

CRTMNU MENU(PERLIB/PERSMENU) TYPE(*DSPF) DSPF(*MENU) +

 MSGF(*MENU) DSPKEY(*NO) CMDLIN(*LONG) +

 TEXT(’Personnel menu’)

The DSPKEY parameter specifies whether the function key legend is shown at the bottom of the menu

when the menu is displayed. *NO specifies that the function key legend is not shown at the bottom of

the menu. *YES specifies that the function key legend is shown at the bottom of the menu. You do not

have the option to display only certain function keys.

The CMDLIN parameter specifies the length of the command line to be displayed. *LONG specifies a

153-byte long command line. *SHORT specifies a 73-byte long command line. *NONE specifies a 4-byte

option line in place of a command line.

Note: Note that for both the DSPF and MSGF parameters, the value *MENU was specified. *MENU

specifies that the name of the display or message file is the same as the name of the menu. Display

and message file names do not have to have the same name as the menu.

240 Application Display Programming V6R1

Running the Menu

The new display file menu can now be run using the GO command:

GO PERSMENU

PERSMENU Personnel Menu

Select one of the following:

 1. Departments menu

 2. Education menu

 3. Benefits menu

 4. Job openings

 5. Job applicants

Selection or Command

===>__

Defining Your Own Program Menus

Program menus provide an alternative to display file and system menus by using the GO command to

call a program. The user has complete control of the display and function of the program menu through

the program.

Passing Parameters for Program Menus

Three parameters are passed to the program when the menu is run:

v The 10-character name of the menu object

v The 10-character name of the library containing the menu object

v A 2-character binary return code

All three parameters must be declared as variables in the program. The return code determines how the

program menu is exited, simulating the function keys found on IBM-supplied menus. The four possible

values are:

 Binary Return Code Hex Equivalent Description

0 0000 Call the program (display the menu) again

-1 FFFF Exit function requested

-2 FFFE Previous function requested

-4 FFFC Home function requested (display the initial menu)

Note: The hexadecimal values shown above are used for those high-level languages (such as CL) that do

not support binary numbers. CL programs should use a 2-byte character variable.

Building a Program Menu

This example shows how a program (*PGM) menu is created. The following steps will be shown and

described in detail:

Chapter 9. Creating and Accessing Menus Using Display Files 241

1. Describing the menu

2. Creating the display file

3. Entering source and creating a CL program to control the menu function

4. Creating the menu

5. Running the menu

Describing the Menu

The program menu is designed using data description specifications (DDS) to describe the menu’s

appearance. The following DDS is for the sample display called PGMMENU.

Creating the Display File

Create the display file using the Create Display File (CRTDSPF) command:

CRTDSPF FILE(QGPL/PGMDDS) SRCFILE(USERLIB/SOURCE1)

The DDS source file called SOURCE1 is used to create the display file for the PGMMENU menu.

Entering the Source and Creating a CL Program

You can use the following CL program to control the menu function. (See the CL programming section of

the Control language topic collection in the i5/OS Information Center for more information about

entering CL source.) Note that you can use any high-level language supported by the system to control a

menu.

 PGM PARM(&MENUNAME &MENULIB &ACTION) /* Begin the program and +

 indicate that 3 parameters will be passed to it when +

 called. The parameters include 1) The menu name, 2) +

 The menu library name 3) The action desired by this +

 program on return. */

 DCL VAR(&MENUNAME) TYPE(*CHAR) LEN(10) /* Menu name */

 DCL VAR(&MENULIB) TYPE(*CHAR) LEN(10) /* Menu library name */

 DCL VAR(&ACTION) TYPE(*CHAR) LEN(2) /* Action variable */

 DCLF FILE(QGPL/PGMDDS) RCDFMT(MENUFMT) /* Display file */

 CHGVAR VAR(&DSPMNUN) VALUE(&MENUNAME) /* Set the menu name on the +

 menu */

 SNDRCVF DEV(*FILE) RCDFMT(MENUFMT) /* Display the menu at the +

 display station */

 CHGVAR VAR(&ACTION) VALUE(X’0000’) /* Indicate the menu should +

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 A DSPSIZ(*DS3)

 A PRINT

 A CA03(01)

 A CA12(02)

 A HOME(03)

 A INDARA

 A R MENUFMT BLINK OVERLAY

 A DSPMNUN 10A O 1 2

 A 1 72 TIME

 A 1 31’EXAMPLE PROGRAM MENU’

 A DSPATR(HI)

 A 2 2’SELECT ONE OF THE FOLLOWING:’

 A 3 5’1.’ DSPATR(HI)

 A 3 10’DISPLAY LIBRARY LIST (DSPLIBL)’

 A 4 5’2.’ DSPATR(HI)

 A 4 10’WORK WITH ACTIVE JOBS (WRKACTJOB)’

 A 5 5’3.’ DSPATR(HI)

 A 5 10’WORK WITH YOUR JOB (WRKJOB)’

 A 6 5’90.’ DSPATR(HI)

 A 6 10’RETURN’

 A 23 2’OPTION:’

 A OPTION 3 I 23 12DSPATR(PC)

Figure 101. DDS Source for Program Menu Example

242 Application Display Programming V6R1

be displayed again */

 /***/

 /* Handle function keys */

 /***/

 IF COND(&IN01 *EQ ’1’) THEN(CHGVAR VAR(&ACTION) +

 VALUE(X’FFFF’)) /* If F3 was pressed, set action +

 to EXIT */

 IF COND(&IN02 *EQ ’1’) THEN(CHGVAR VAR(&ACTION) +

 VALUE(X’FFFE’)) /* If F12 was pressed, set action +

 to PREVIOUS */

 IF COND(&IN03 *EQ ’1’) THEN(CHGVAR VAR(&ACTION) +

 VALUE(X’FFFC’)) /* If HOME was pressed, set action +

 to HOME */

 /***/

 /* Handle menu options */

 /***/

 IF COND(&OPTION *EQ ’1’) THEN(DSPLIBL) /* If the menu user +

 has selected option 1, then display the library list */

 IF COND(&OPTION *EQ ’2’) THEN(WRKACTJOB) /* If the menu user +

 has selected option 2, then display the active jobs */

 IF COND(&OPTION *EQ ’3’) THEN(WRKJOB) /* If the menu user +

 has selected option 3, then display the current job. */

 IF COND(&OPTION *EQ ’90’) THEN(CHGVAR VAR(&ACTION) +

 VALUE(X’FFFE’)) /* If the menu user has selected option +

 90, then set the action to previous. */

 ENDPGM /* End the program */

Create the CL program using the Create CL Program (CRTCLPGM) command:

CRTCLPGM PGM(QGPL/PGMCL) SRCFILE(USERLIB/SOURCE1)

Creating the Menu

Create the program menu using the Create Menu (CRTMNU) command:

CRTMNU MENU(QGPL/PGMMENU) TYPE(*PGM) PGM(QGPL/PGMCL)

Running the Menu

The new display file menu can now be run using the GO command:

GO PGMMENU

 PGMMENU EXAMPLE PROGRAM MENU 09:02:51

 SELECT ONE OF THE FOLLOWING:

 1. DISPLAY LIBRARY LIST (DSPLIBL)

 2. WORK WITH ACTIVE JOBS (WRKACTJOB)

 3. WORK WITH YOUR JOB (WRKJOB)

 90. RETURN

 OPTION: ___

Chapter 9. Creating and Accessing Menus Using Display Files 243

Exiting from a Program Menu without Returning to the Previous Menu

When you code a TYPE(*PGM) menu to go from one program menu to another and use the

RTNPNT(*NO) parameter, you need to tell the menu driver when to exit the original menu.

The program menu needs to communicate with the menu driver when F3 is pressed. If the program

menu is coded to go to program MENU2, with a RTNPNT(*NO), it has to be able to convey information

between programs and to convey information to the menu driver to tell it what should be done. You can

use data queues to communicate between the programs. For more information about data queues, see the

CL programming section in the Control language topic collection in the i5/OS Information Center. The

following example shows how to communicate between program menus if you want to use the

RTNPNT(*NO) parameter to go from one menu to another.

Program 1

 PGM

 DCL VAR(&FLDLEN) TYPE(*DEC) LEN(5 0) VALUE (10)

 DCL VAR(&FIELD) TYPE(*CHAR) LEN(10)

 DCL VAR(&WAIT) TYPE(*DEC) LEN(5 0) VALUE(0) /* Don’t wait */

 .

 .

 /* Handle the function keys on the menu */

 IF COND(&IN03 *EQ ’1’) + /* F3=Exit pressed */

 THEN(DO)

 /* Delete the Data Queue */

 DLTDTAQ DTAQ(QGPL/DTAQ1)

 /* Create the Data Queue */

 CRTDTAQ DTAQ(QGPL/DTAQ1) MAXLEN(10) +

 TEXT(’Test Data Queue’)

 GOTO SNDDQ /* Send info to data queue*/

 ENDDO

 .

 /* Handle the options on the menu */

 IF COND(&OPTION *EQ 1) +

 THEN(GO MENU(*LIBL/MENU2) RTNPNT(*NO)

 .

 .

 /* Returned from menu 2 after F3 or F12 pressed */

 CALL PGM(QRCVDTAQ) PARM(QGPL DTAQ1 &FLDLEN &FIELD &WAIT)

 IF COND((&FLDLEN *NE 0) *AND (&FIELD *EQ ’EXIT ’))

 THEN(GOTO SNDDQ)

 ELSE GOTO END

 .

 .

SNDDQ:DO

 /* Change the variable so the menu driver will know to */

 /* exit and send information to the data queue to */

 /* communicate to next program what happened */

 CHGVAR VAR(&ACTION) VALUE(X’FFFF’)

 CHGVAR VAR(&FLDLEN) VALUE(4)

 CHGVAR VAR(&FIELD) VALUE(’EXIT ’)

 CALL PGM(QSNDDTAQ) PARM(QGPL DTAQ1 *FLDLEN &FIELD)

 GOTO END

 ENDDO

END: ENDPGM

Program 2

 PGM

 DCL VAR(&FLDLEN) TYPE(*DEC) LEN(5 0) VALUE (10)

 DCL VAR(&FIELD) TYPE(*CHAR) LEN(10)

 DCL VAR(&WAIT) TYPE(*DEC) LEN(5 0) VALUE(0) /* Don’t wait */

 .

 .

 /* Handle the function keys on the menu */

 IF COND(&IN03 *EQ ’1’) + /* F3=Exit pressed */

244 Application Display Programming V6R1

THEN(DO)

 /* Delete the Data Queue */

 DLTDTAQ DTAQ(QGPL/DTAQ1)

 /* Create the Data Queue */

 CRTDTAQ DTAQ(QGPL/DTAQ1) MAXLEN(10) +

 TEXT(’Test Data Queue’)

 GOTO SNDDQ /* Send info to data queue*/

 ENDDO

 .

 .

 /* Handle the options on the menu */

 IF COND(&OPTION *EQ 1) +

 THEN(GO MENU(*LIBL/MENU2) RTNPNT(*NO)

 .

 .

 /* Returned from menu 2 after F3 or F12 pressed */

 CALL PGM(QRCVDTAQ) PARM(QGPL DTAQ1 &FLDLEN &FIELD &WAIT)

 IF COND((&FLDLEN *NE 0) *AND (&FIELD *EQ ’EXIT ’))

 THEN(GOTO SNDDQ)

 ELSE GOTO END

 .

 .

SNDDQ:DO

 /* Change the variable so the menu driver will know to */

 /* exit and send information to the data queue to */

 /* communicate to next program what happened */

 CHGVAR VAR(&ACTION) VALUE(X’FFFF’)

 CHGVAR VAR(&FLDLEN) VALUE(4)

 CHGVAR VAR(&FIELD) VALUE(’EXIT ’)

 CALL PGM(QSNDDTAQ) PARM(QGPL DTAQ1 *FLDLEN &FIELD)

 GOTO END

 ENDDO

END: ENDPGM

Avoiding Menu Name Conflict

Because high-level system menus are named by full words, there is some potential for conflict with

user-defined menu names. For example, if you use the CRTMNU command to create a menu called

MAIN, there may be a conflict with the system-supplied menu, MAIN. If you use the GO command to

call that menu (GO MAIN), the system menu MAIN will probably be shown, because it resides in the

QSYS library. A conflict can also occur if a future release contains a new system menu that has the same

name as a menu you created during the previous release.

Naming Your Menus

To avoid naming conflicts with system command menus, you should avoid menu names that start with

CMD. The system command menu names use the format CMDxxxxxxx, where xxxxxxx is any subject or verb

used in CL command names.

Placing Your Menu in a Higher Library in the Library List

All branches to system menus from other system menus use the library list search order. Use of the

library list search order allows multilingual support for the system menus. It also allows you to override

a system menu by placing your own version of it in a library higher on the search order than library

QSYS.

Specifying the Library That Contains the Menu

You can avoid menu name conflict by specifying the library that contains the menu you want to run. For

example, you can use GO MENU(*USRLIBL/menu-name) to call user-defined menus, and use GO

MENU(*LIBL/menu-name) to call system menus.

Chapter 9. Creating and Accessing Menus Using Display Files 245

Using the Generic Menu Specification

When working interactively, you can use a generic menu specification on the GO command to avoid

menu name conflict. In an example given earlier (see “Avoiding Menu Name Conflict” on page 245), a

potential conflict existed between system and user-defined menus called MAIN. By specifying GO

MAIN*, the system will display a list of all menu names that start with MAIN in your library list and

allow you to select which menu you want.

Changing the Command Default after Duplicating a Command

You can use the Create Duplicate Object (CRTDUPOBJ) command to create a duplicate of the GO

command for calling user-defined menus. The following example creates a duplicate of the GO command

called GOUSR:

CRTDUPOBJ OBJ(GO) FROMLIB(QSYS) OBJTYPE(*CMD) NEWOBJ(GOUSR) TOLIB(QGPL)

Next, use the Change Command Default (CHGCMDDFT) command to change the command default for

the MENU parameter to use library *USRLIBL rather than *LIBL:

CHGCMDDFT CMD(QGPL/GOUSR) NEWDFT(’MENU(*USRLIBL/*N)’)

With the MENU parameter default changed to *USRLIBL, the GOUSR command will bypass system

menus and find only those menus in the user portion of your library list.

Displaying Menu Attributes

The Display Menu Attributes (DSPMNUA) command can be used to show the attributes of a menu

object. These include:

v The menu type (*UIM, display file, or program menu)

v The display and message files used by display file (*DSPF) menus

v The programs used by program (*PGM) menus

v The current (CURLIB) and product (PRDLIB) libraries associated with the menu

v The text describing the menu object

Changing Menu Attributes

The Change Menu (CHGMNU) command can be used to change the attributes of a menu object without

having to re-create the object. The attributes which can be changed are:

v The current (CURLIB) and product (PRDLIB) libraries for all menu types

v The descriptive text for all menu types

v The display and message files used by display file (*DSPF) menus

v The programs used by program (*PGM) menus

Deleting Menus

The Delete Menu (DLTMNU) command can be used to delete menu objects from a library. The DLTMNU

command can be used to delete only the menu object. Referenced display and message files (used by

display file menus) and programs (used by program menus) can also be deleted.

DLTMNU is a generic command. For example, all menus in a library called OELIB could be deleted using

the command, DLTMNU OELIB/*ALL.

As another example, if only those menus in OELIB whose names started with ACC were to be deleted,

the command, DLTMNU OELIB/ACC* could be used.

246 Application Display Programming V6R1

Chapter 10. Using User-Defined Data Streams

Instead of having the system control and process the 5250 display data stream, you can control and

process it. To do so, you must use the USRDFN keyword in the DDS for a display file. The data is sent to

the display station using a normal output operation that uses the name of the record format containing

the USRDFN keyword. When input data is received after the output operation, your program must

determine through the input record area what was received from the display station.

Note: You should be careful when using this support because error conditions can cause an apparent

i5/OS malfunction.

When you use the USRDFN keyword at the record level, the format does not contain any fields.

Therefore, the buffer length of the file defaults to the length of the longest normal record or 100

(whichever is greater). If the user-defined data stream is longer than this default buffer length, you

should perform the following steps to obtain a larger buffer length:

v Define an externally described file, and create the program using this file and a record format in that

file. The format should not have response indicators defined for it. This includes file-level indicators

that are spread to all record formats. Any fields in the format should be defined with a field use of both

(input and output).

v Create a second file and specify LVLCHK(*NO). The second file should have two record formats:

– A format with the same name as the format in the first file and which contains the USRDFN

keyword.

– A format with one field in it. The length of this field must be as long as the longest user-defined

data stream that is to be sent to the screen.
v When you run the program, override the first file with the second display file.

Information about 5250 Display Data Streams

For information about coding 5250 display data streams, see the following manuals:

v IBM 5250 Information Display System Functions Reference, SA21-9247

v IBM 5494 Remote Control Unit Functions Reference, SC30-3533

Understanding Display Station Differences

If you use user-defined data streams, you should be aware of the following differences between local

display stations (those attached to the display station controller) and remote display stations (those

attached to remote display station controllers).

v For local display stations, a start-of-header order length greater than 11 causes the negative response

hex 1005012B to be sent. No negative response is sent for remote display stations.

v For local display stations, do not accept more than four field control words for each input-field

definition. More than four causes the negative response hex 10050130 to be sent. No negative response

is sent for remote display stations.

v For local display stations, self-check fields can be as long as 33 bytes for signed numeric fields and 32

bytes for all other fields. If the length is exceeded, the status response hex 00000287 is sent to the user

when he or she tries to exit the self-check field. For remote display stations, all fields can be 33 bytes.

v Two forms of the Request Maintenance Statistics command are supported for remote display stations:

(1) requests that the error log area be reset, and (2) requests that the error log area not be reset. For

local display stations, the error log area is always reset.

© Copyright IBM Corp. 1997, 2008 247

Understanding User-Defined Data Stream Limitations

The output record area for a user-defined record format must contain the following in the order specified:

1. Display-station-specific information (required by the system), which causes the system to send the

display-station-specific data stream to the display station.

2. Display-station-specific data stream, which is sent to the display station.

The USRDFN keyword is specified at the record format level and excludes for that record format most

other functions such as the use of indicators and all field-related functions. However, the display file can

contain other record formats not containing the USRDFN keyword, and the record formats can be used in

any order by a program. When you use such a display file, you should be aware of the following:

v When the system write routine recognizes a user-defined request, it disregards all previous requests to

the display. At the completion of the user-defined request, the system assumes that a single record

format is on the screen and that this is the record format containing the USRDFN keyword. All erasing,

all resetting, and unlocking of the keyboard is your responsibility. The next I/O request can be another

user-defined request or a normal field-level request.

v A normal field-level request after a user-defined request is handled as follows:

– If the OVERLAY keyword is not specified, the screen is erased before the request is run.

– If the OVERLAY keyword is specified, only the portion of the display needed (entire lines) is erased.

– The 5250 format buffer is reset, which means that all input fields are changed to output-only fields.

The system assumes that only this record format exists on the screen. All previous requests are

disregarded.

v Help specifications are allowed in user-defined record formats.

v When the USRDFN keyword is specified in a record format, no fields can be defined for that record

format. The only valid keywords are:

 File Level Record Format Level

KEEP ALTNAME

OPENPRT HELP

PASSRCD HLPCLR

PRINT HLPRTN

INVITE

PRINT

TEXT

v The user-defined data stream can alter the CFnn and CAnn keys and the location of the message line

in the display. However, display station support assumes they are the same as when they were last set.

v All display files that contain user-defined data streams should be opened as both input and output

files. This is because read and write commands in the data stream are not dependent on write and read

requests.

The output data stream should start with an escape character hex 04 and be followed by a clear unit hex

40 or write to display command hex 11.

The output buffer must include information needed to send and receive the appropriate line controls. The

buffer format for a 5250 display station is:

 Byte Contents

0-1 Send data length (in hexadecimal), defines the output data stream length

2-3 Receive data length (in hexadecimal), defines the maximum input data length

248 Application Display Programming V6R1

Byte Contents

4 Requested function

 Hex 51 Send (WP mode)

Hex 53 Send/Receive (WP mode)

Hex 61 Send (3270 data stream)

Hex 63 Send/Receive (3270 data stream)

Hex 71 Send

Hex 73 Send/Receive

5-n Output data stream

v The 3270 Model 4 display station supports a display size of 43 lines by 80 columns. If you have a 3270

Model 4 display station, you can use function codes 61 and 63 to write to all 43 lines.

v For 3270 Model 4 display stations that are using function code 61 or 63, the system displays status

messages on line 43. Any data that is on line 43 when a status message is displayed is replaced by the

status message.

v If you are using function code 61 or 63 and press the key that is defined as the System Request key, the

key is returned to the application program instead of displaying the System Request menu. If you need

access to the system request function when using function code 61 or 63, you can define the Attention

key to display the System Request menu. Before starting the application that uses function codes 61

and 63, specify:

SETATNPGM SET(*ON) PGM(QSYS/QWSSYSRQ)

When the Attention key is pressed, the System Request menu is displayed.

This support prohibits the use of a read operation except after a write-read(nowait) operation. A

write-read operation that sends a read command and specifies the receive data length performs the

operation normally performed with a read request. The write-read function can be performed by doing

one of the following:

 Operation ILE RPG ILE COBOL Control Language

Write-read(wait) EXFMT SNDRCVF WAIT(*YES)

Write-read(nowait) WRITE with INVITE, READ WRITE with INVITE, READ SNDRCVF WAIT(*NO)

Both the write-read(wait) and the write-read(nowait) operations are a combination of a write operation

and a read operation to the same record format. When using the write-read(wait) operation, control does

not return to the program until input is received from the display device. The write-read(nowait)

operation is used to send a request for input to a display device and return to the program without

waiting for the input to arrive. This allows a program to request input from one or more devices, and

continue processing without waiting for any of the devices to respond. For each I/O request, you must

make sure that the function byte and the send depth actually reflect the data stream sent. The receive

length must be long enough to accommodate all data returned by the display station. If any of these is

wrong, unexpected or unacceptable functions may happen. For example, if the function byte indicates a

send to the display station and the data stream specifies a read modified command, the system sends the

data stream to the display station and no read is performed.

On input operations, the input buffer of the program contains the data received from the display station.

For example, when a read modified completes, the input buffer contains an aid identification (AID) byte

and the cursor address followed by each changed field. Each changed field is preceded by the buffer

address order and field location on the screen.

All AID bytes are accepted by display station support for user-defined data streams. If the Print key is

pressed, the system attempts to perform the print function.

Chapter 10. Using User-Defined Data Streams 249

All write and write-read operations must specify the record format name. A read operation that specifies

the name of a record format that contains the USRDFN keyword and is not one of the appropriate read

operations for the display station causes an exception to be issued.

Each request to a 5250 display station can contain more than one command. Each command must be

requested using the appropriate system operation identified as follows:

Operation

Output Buffer

Send Length

(Bytes 0-1)

Output Buffer

Receive Length

(Bytes 2-3)

Output Buffer Request

Function (Byte 4)

Output Buffer Command

(Bytes 5-n)

Write nn 0 71 (Send) Clear unit

Clear format table

Write to display

Write error line

Restore

Roll

Copy

Write-

Read

nn nn 73 (Send/Receive) Clear unit

Clear format table

Write to display

Write error line

Restore

Roll

Read input fields

Read MDT fields

Read immediate

Save

250 Application Display Programming V6R1

Chapter 11. Passing Data between Programs

You can use the system I/O operations to pass data between programs both in the same routing step of a

job or across routing steps.

Passing Data in the Same Routing Step in a Job

To pass data between programs in the same routing step, you can either share the file between the

programs, or you can use the KEEP and ASSUME DDS keywords to share a file between programs. The

programs must open the same file and the file must be designated as a shared file. (See “Sharing Display

Files in the Same Job” on page 84.) Because the programs share the file, the read operations are

performed as described under “Reading Input from the Display” on page 70 and “Understanding How

the System Reads Input from the Display” on page 75.

You can also use the KEEP and ASSUME keywords to pass data between programs. The data is written

to the display by the first program, and used from the display by the second.

You can use the KEEP keyword to keep data on the display for review after the program has ended, or

you can use it to pass data between programs.

Normally, when a file is closed, the current display is cleared. However, you can control this by using the

KEEP keyword. If a record that is on the display when the file is closed has the KEEP keyword specified,

the system saves the name of the first such record to support passing data. Using this keyword alone,

you cannot support processing of passed data, you must also use the ASSUME keyword in the display

file opened by the next program.

The ASSUME keyword causes a read operation to a specific record format name to be valid when no

preceding write operation to that record format name (or any other record format) has occurred since the

display file was opened. The following shows a typical example of what happens when the ASSUME

keyword is specified:

1. Program PGM1 issues a write operation to the record format PGM1ANY in the display file DSPFIL1

and calls program PGM2. PGM1ANY specifies the LOCK keyword.

2. PGM2 opens DSPFIL2 and issues a read operation to record format PGM2ANY. The ASSUME

keyword is specified. Input data is read from the display and processed by record format PGM2ANY.

Records from record formats having the ASSUME keyword specified cannot overlay one another on the

display. In addition, all records must have at least one field that is displayed.

When the system reads assumed records from the display, only fields whose modified data tags (MDTs)

are on are returned. (This assumes that either the DSPATR(MDT) keyword was specified for the field on

the last output operation or the user has typed in the field.) When the ASSUME keyword is in effect, the

data returned to the program is as follows:

v For input-only and output/input fields with their MDTs on, the changed data is returned.

v For other input-capable fields, blanks are returned for character fields and zeros are returned for

numeric fields.

In addition, only those fields received whose line and position on the display match the field of an

assumed record are processed. The data is processed using the field descriptions in the assumed record,

independent of how the fields were written to the display.

For the 5250 display station, the first write operation or write-read operation after the file is opened sends

a CA and CFnn key specification to the display station. Because there is no write operation after an open

© Copyright IBM Corp. 1997, 2008 251

when using the ASSUME keyword, the CFnnkey specification remains as it was left by the last

application. The CA and CFnnkey specification in this file will not be used until after the first write

operation to the file.

After the file is opened and the first write operation is issued, the display will be erased if the OVERLAY

keyword is not specified. When the OVERLAY keyword is specified, all input-capable fields on the

display become output-only fields. After the first write operation, assumed records cannot be read by a

program.

Fields not received from the assumed records on the display are returned to the user program as follows:

 Field Initialized To

Field with DFT keyword used Value specified in DFT keyword

Character field (no DFT keyword) Blanks

Numeric field (no DFT keyword) Zero

Hidden field Zero

Passing Data between Routing Steps in a Job

The following example shows the steps used in passing display data between programs in different

routing steps. Note the use of the KEEP, ASSUME, and PASSRCD keywords. Programs PGM1 and PGM2

are user programs started by the subsystem SBS using different routing entries. PGM1 and PGM2 run in

different routing steps but are both contained in the job 000618/QUSER/WSN01.

252 Application Display Programming V6R1

�1� The user signs on and SBS starts a routing step based on the routing data. The first program in

the routing step is PGM1.

�2� PGM1 opens the display file DSPFIL1.

�3� PGM1 interacts with the user and issues the following before ending:

v A write operation to DSPFIL1 with the record format name PGM2RD. The KEEP keyword is

specified in the record format PGM2RD.

v A close operation to DSPFIL1. The information displayed on WSN01 is not cleared because the

KEEP keyword is specified in record format PGM2RD.

PGM1 then ends by issuing a RRTJOB command specifying routing data that will cause SBS to

call PGM2.

�4� SBS starts a new routing step based on the data supplied by PGM1 in the RRTJOB command.

�5� PGM2 opens the display file DSPFIL2.

�6� PGM2 performs a read operation to DSPFIL2 with or without the record format name PGM2ANY.

If the record format name is not specified, the system tries to use the record format PGM2RD to

process the data because the KEEP keyword was specified (in step 5). To do so, record format

PGM2RD must exist in DSPFIL2, but it does not have to be identical to record format PGM2RD

PGM1 DSPFIL1 PGM2

Routing
Step

Routing
Step

OOO618/QUSER/WSN01

Open DSPFIL2
Read ...

Close DSPFIL2

Open DSPFIL1

Write PGM2RD
Close DSPFIL1

Subsystem

R PGM2ANY

R PGM2RDR PGM2RD

DSPFIL2

Display FileDisplay File ProgramProgram

RV2W044-2

Chapter 11. Passing Data between Programs 253

in DSPFIL1; only the fields that are required by PGM2 must be identical. (If a field is returned

from the display station for which no field description exists in PGM2ANY, the field is ignored. If

the field description requires validation and the data received fails the validity check, PGM2

reissues a read operation to allow the current user to correct the data.) If a record format is not

specified or if record format PGM2RD does not exist in DPSFIL2 or does not have the ASSUME

keyword specified, the data passed to the display station via the KEEP keyword cannot be

processed. (The ASSUME keyword must be specified for the record format used to process

passed data.)

�7� PGM2 processes the data and issues a close operation to DSPFIL2, which clears the display.

 When PGM2 ends, its routing step ends and the display returns to the control of SBS which

shows the sign-on display.

254 Application Display Programming V6R1

Chapter 12. Waiting for Input from a Display File, an ICF File,

and a Data Queue

You can use data queues for a program that waits for data on a display file, an ICF file, and a data queue

at the same time (in any combination). When you specify the DTAQ parameter for the following

commands:

v Create Display File (CRTDSPF) command

v Change Display File (CHGDSPF) command

v Override with Display File (OVRDSPF) command

v Create ICF File (CRTICFF) command

v Change ICF File (CHGICFF) command

v Override ICF File (OVRICFF) command

You can indicate a data queue that will have entries placed on it when any of the following occurs:

v An enabled command key or Enter key is pressed from an invited display station.

v Data becomes available from an invited ICF session.

By using the IBM-supplied QSNDDTAQ program, jobs running on the system can also place entries on

the same data queue as the one specified in the DTAQ parameter.

An application program uses the IBM-supplied QRCVDTAQ program to receive each entry placed on the

data queue and then processes the entry based on whether it was placed there by a display file, by an

ICF file, or by the QSNDDTAQ program. For a display file, the application then issues a read or

read-from-invited-devices operation to receive the data. For more information about the QRCVDTAQ

function and syntax, and examples of waiting on one or more files and a data queue, refer to the CL

programming section in the Control language topic collection in the i5/OS Information Center.

The display file and ICF file entry that is put on the data queue is 80 characters long and contains the

field attributes described in Table 28. Therefore, the data queue that is specified using the commands

listed above must have a length of at least 80 characters.

Entries placed on the data queue by jobs using QSNDDTAQ are defined by the user.

 Table 28. Display File and ICF File Entry Field Attributes

Position Data Type Meaning

1 through 10 Character The type of file that placed the entry on the data queue. This field

will have one of two values:

 *ICFF (ICF file)

 *DSPF (display file)

If the job receiving the data from the data queue has only one

display file or one ICF file open, then this is the only field that

needs to be used to determine what type of entry has been

received from the data queue.

11 through 12 Binary Unique identifier for the file. The value of the identifier is the

same as the value in the open feedback area for the file. This field

should be used by the program receiving the entry from the data

queue only if more than one file with the same name is placing

entries on the data queue.

© Copyright IBM Corp. 1997, 2008 255

Table 28. Display File and ICF File Entry Field Attributes (continued)

Position Data Type Meaning

13 through 22 Character The name of the display or ICF file. This is the name of the file

actually opened, after all overrides have been processed, and is

the same as the file name found in the open feedback area for the

file. This field should be used by the program receiving the entry

from the data queue only if more than one display file or ICF file

is placing entries on the data queue.

23 through 32 Character The library where the file is located. This is the name of the

library, after all overrides have been processed, and is the same as

the library name found in the open feedback area for the file. This

field should be used by the program receiving the entry from the

data queue only if more than one display file or ICF file is placing

entries on the data queue.

33 through 42 Character The program device name, after all overrides have been processed.

This name is the same as that found in the program device

definition list of the open feedback area. For file type *DSPF, this

is the name of the display station where the command or Enter

key was pressed. For file type *ICFF, this is the name of the

program device where data is available. This field should be used

by the program receiving the entry from the data queue only if

the file that placed the entry on the data queue has more than one

device or session invited prior to receiving the data queue entry.

43 through 80 Character Reserved

256 Application Display Programming V6R1

Chapter 13. Using Alternative Character Sets and Code Pages

In multinational environments, data in one national character set may need to be displayed or entered on

display stations that support another national character set. This is particularly true of characters with

accents and other characters with diacritical marks (such as c with a cedilla, n with a tilde, and u with an

umlaut). In this section, these characters are called extended alphabetics.

For example, assume that a physical file on the system contains data in the Basic French code page, and

includes an é (e with an acute accent). In the Basic French character set, this character is hex C0. The data

could have been entered on a display station that can handle the character or could have been sent to this

system from another system over a communications line.

Note: On some display stations, extended alphabetics can be entered on the keyboard (by pressing Cmd,

then the key to its right with two diacritical marks on it, then the 2 hexadecimal digits that

represent that character).

 When the hex C0 is sent to a display station that does not recognize hex C0 as é, the hex C0 is not

displayed as é. For example, a display station that recognizes the U.S. code page displays hex C0 as { (a

left brace). The é is at code point 51 in the U.S. code page. To properly display é, the hex C0 must be

converted to hex 51 for display on a U.S. basic display station.

With the IBM-supplied conversion tables, the system can convert most extended alphabetics, but not all.

If an extended alphabetic character does not have a clearly preferable equivalent, the system converts the

character to a (-) hyphen.

System Has Characters Not Normally Displayed on the Device

The case of an output/input field shows how character conversion occurs at a display station.

 Assume that a record in a physical file contains a field with the value Renée. An application program

reads the record from the physical file, and writes a record containing the data to the display file. One

way to achieve character conversion is in the DDS for the display file, the output/input field in which

Physical File

Containing
Hex C0 (e)

Display
Station

RV2W036-3

© Copyright IBM Corp. 1997, 2008 257

Renée appears has the Character Identifier (CHRID) keyword specified.

1This keyword asks the system to

perform character conversion if needed. Character conversion is needed if the CHRID parameter value

for the display file differs from the CHRID value of the display station. In this case, character translation

is needed because the display file has CHRID(288 297), which is the basic French code page and

character set, and the device description has CHRID(101 37), which is the basic U.S. code page and

character set.

When displaying the data, the system converts the hex C0 to hex 51, and Renée appears on the display. If

no conversion occurred, Ren{e would appear on the screen.

On input, one of the following occurs:

v If the modified data tag (MDT) is turned on for the field (this happens when the user types into the

field or if the DSPATR(MDT) keyword is in effect for the field) the contents of the field are converted

from the device CHRID to the CHRID parameter value specified on the Display File (DSPF) command

and is returned to the program.

v If the modified data tag (MDT) is not turned on for the field, the saved contents of the field (with

original, untranslated, data) is returned to the program.

Another way to achieve character conversion on a file basis is to specify the *JOBCCSID value on the

CHRID parameter for the Create Display File (CRTDSPF), the Change Display File (CHGDSPF), or the

Override Display File (OVRDPSF) commands. More information about *JOBCCSID is in “Specifying

Character Translation for Fields”

Device Passes Characters Not Displayed on the System

If the user can enter data not normally displayed on the system (for instance, a user on a

French-language display station in Montreal dials up a remote line to a system in Toronto with display

stations that cannot display extended alphabetics), no change occurs when the data is sent to the system.

The program can read data from the French-language display station and write it to a physical file.

However, when another user on the Toronto system displays data from the physical file, the system

attempts to translate the data for the display station that cannot display extended alphabetics.

Specifying Character Translation for Fields

If the CHRID keyword is specified on a field, character conversion occurs only if the CHRID parameter

value in the display file is different from the CHRID value in the device description.

1. The CHRID parameter on the display file is set by the CHRID parameter on the CRTDSPF, CHGDSPF,

or OVRDSPF command. The CHRID parameter can have one of the following values:

 *DEVD (the default): Use the CHRID parameter specified on the device description on which the

application is currently running. No character conversion occurs. Any CHRID keywords specified

in the DDS are ignored.

 *SYSVAL: Use the character set and code page specified in the system value QCHRID on which

the application is currently running. Specify the CHRID keyword in the DDS for the display file

fields that will need conversion. Constants are not converted.

 *JOBCCSID: Use the character set and code page specified by the job. This allows named fields

and unnamed (constant) fields to be automatically translated when the job CCSID or the display

file CCSID does not match the device description CHRID. If the job CCSID does not match the

device description CHRID, named fields are translated from the job CCSID to the device

description CHRID on output and conversely on input. If the display file CCSID does not match

the device description CHRID, data in the display file is translated from the display file CCSID to

1. If *JOBCCSID is specified by the CHRID parameter on the CRTDSPF, CHGDSPF, or OVRDSPF commands, the DDS keyword

CHRID is ignored. For more information, see the description for *JOBCCSID in “Specifying Character Translation for Fields.”

258 Application Display Programming V6R1

the device description CHRID on output. When *JOBCCSID is specified, the DDS CHRID keyword

is ignored. Use the No Coded Character Set Identifier (NOCCSID) keyword on named and

unnamed fields that you do not want translated.

 Character set and code page: Use the character set and code page specified. See Table 29 on page

260 for the list of valid values.
2. The CHRID value on the device description is set by the CHRID parameter on the Create Device

Description Display (CRTDEVDSP) or Change Device Description Display (CHGDEVDSP) command.

This parameter can have one of the following values:

 *SYSVAL: Use the character set and code page specified in the system value QCHRID.

 *KBDTYPE: Use the character set and code page specified in the keyboard language prompt

(KBDTYPE). This value corresponds to the keyboard language identifier.

 Character set and code page: Use the character set and code page specified. See Table 29 on page

260 for the list of valid values.

When dealing with UCS-2 Level 1 data from a physical file, you need to convert this data to EBCDIC

before the system displays the data on the screen. To accomplish this conversion, place the DDS CCSID

keyword at either the file level, record level, or field level to enable the conversion of UCS-2 data from

the UCS-2 CCSID value specified with the keyword to the device CHRID on output. On input, the data is

converted from the device CHRID to the UCS-2 value. For more information, see the UCS-2 Level 1

considerations for DDS topic in the i5/OS Information Center.

Another conversion that occurs every time data is displayed is converting the hex “3F” character to the

hex “1F” character on output and conversely on input. The Character Data Representation Architecture

(CDRA) specifies the hex “3F” character as a replacement character. This character is also a field attribute

definition for the 5250 data stream specification. Translation to convert hex “3F” character to hex “1F”

character for output is done for all fields whether *JOBCCSID translation is active or inactive. Use the

NOCCSID keyword to prevent translation at the field level.

When character conversions are necessary, the system uses a conversion table in library QUSRSYS to

convert the data. The name of the conversion table used is derived from parts of the source and target

CCSID for which the table is needed as shown in the following example:

Chapter 13. Using Alternative Character Sets and Code Pages 259

IBM supplies a number of tables in library QUSRSYS to handle conversion among the most frequently

used combinations of character sets and code pages. If you need to tailor the way characters are

converted, you can create your own table in library QUSRSYS, using the Create Table (CRTTBL)

command to do the conversion. To determine what conversion tables are available to use, look in the

QUSRSYS library for object type *TBL.

Determining the Character Identifier (CHRID) Value for Your Display

The CHRID value specified should be based on the attributes of the display station. The table below

shows CHRID values that are appropriate for each display station keyboard type. For some display

stations, you do not need to specify the KBDTYPE parameter, but the KBDTYPE value for the equivalent

keyboard can be used to determine the CHRID value for the display station:

 Table 29. CHRID Values

Language/Country or Region Keyboard Type (KBDTYPE) Limited CHRID Full CHRID

International and US ASCII INB 103 038 697 500

Multinational AGI BLI CAI DMI FAI FNI FQI

ICI INI ITI JEI NEI NWI PRI SFI

SGI SPI SSI SWI UKI USI

697 500

Arabic CLB 235 420

Austria/Germany AGB 265 273 697 273

Belgium Multinational BLI 697 500

Canada/French CAB 277 260 341 260

Cyrillic CYB 960 880

Denmark/Norway DMB NWB 281 277 697 277

Finland/Sweden FNB SWB 285 278 697 278

France FAB FQB 288 297 697 297

Greece GKB 218 423

CHRID(288 297)

CHRID(288 297)

Device Description

Device Description

Translation Table Used: Q037288297

On Input:

Display File

Display File

CHRID(101 037)

CHRID(101 037)

Translation Table Used: Q297101037

On Output:

RV2W038-3

260 Application Display Programming V6R1

Table 29. CHRID Values (continued)

Language/Country or Region Keyboard Type (KBDTYPE) Limited CHRID Full CHRID

Hebrew NCB 941 424

Iceland ICB 697 871

Italy ITB 293 280 697 280

Japan/English JEB 297 281 697 281

Japan/Kanji JKB (For Personal System/55,

5295 and 3477-J display stations)

332 290

Japan/Katakana KAB (For 5251, 5291, 5292, and

3180 Katakana display stations)

332 290

Korean KOB 933 833

Latin 2 ROB 959 870

Netherlands NEB 697 037

Portugal PRB 301 037 697 037

Simplified Chinese RCB 936 836

Spain SPB 305 284 697 284

Spanish Speaking SSB 309 284 697 284

Switzerland/French Multinational SFI 697 500

Switzerland/German

Multinational

SGI 697 500

Thai THB 938 838

Traditional Chinese TAB 101 037

Turkey TKB 965 905

United Kingdom/English UKB 313 285 697 285

United States/English USB 101 037 697 037

Countries of the former

Yugoslavia

YGI 959 870

Chapter 13. Using Alternative Character Sets and Code Pages 261

262 Application Display Programming V6R1

Chapter 14. Improving System Performance with Displays

System performance is improved by doing the following:

v Minimizing the number of bytes sent and received when designing a display. For example, to reduce

the number of fields on an application display:

– Split a display with many fields into more than one display.

– Consider removing fields which were added to help with development, testing, or problem

reporting.
v Taking advantage of the system functions that reduce the number of bytes sent to and received from

the display station. This chapter describes some of these system functions.

Deferring the Write Operation for a Display File

The DFRWRT parameter on the Create Display File (CRTDSPF) or Change Display File (CHGDSPF)

command allows you to delay the writing of data to the display until needed. Deferring the write

operation is useful when the final display shown at the display station is formed by several record

formats being written to the display.

Using DFRWRT(*YES) on a display file improves systems performance in some cases.

More information on the Defer Write parameter can be found in “Deferring the Write Operation Until a

Read Request is Made” on page 63.

Designating the Primary Screen Size for a Display File

Normally, the display files are set up for a 24 by 80 screen (default size). The DSPSIZ keyword specifies

which display sizes are valid for a file and indicates which sizes are the primary and secondary screen

sizes. (The primary screen size is the first or only DSPSIZ value.) On the DSPSIZ keyword, the screen size

can be specified as *DS3, *DS4, 24 80, or 27 132. For example, DSPSIZ (24 80) specifies a screen size of 24

by 80.

The screen size designated as the primary screen size should be the one with which the display file will

most often be used. A performance benefit will be realized by coding the DSPSIZ keyword in this

manner. Additional processing is performed when the actual screen size is the secondary screen size.

Writing Only One Page of Subfile Records at a Time

A technique to improve performance when you are using a multiple page subfile is to write only one

page of subfile records at a time but use the i5/OS support to roll through the subfile. To do this, you

need to define the ROLLUP keyword in DDS with a response indicator and also use the SFLRCDNBR

keyword. In your program, you would write the records needed to fill one subfile page and then display

that page. When the user wants to see more records, he or she presses the Roll Up key. The program then

writes another page of records to the subfile, places the relative record number of a record from the

second page into the SFLRCDNBR field, and displays the record.

The second page of subfile records is now displayed, and if the user presses the Roll Down key, the roll

down is handled by the system. If the user presses the Roll Up key while the first page is displayed, the

system will also handle the roll up. The program is notified only when the user attempts to roll up

beyond the records currently in the subfile. The program would then handle any additional roll up

requests in the same manner as for the second page. When you use this technique, the subfile appears to

be more than one page because of the use of the roll keys. Yet, you can maintain good response time

because the program only fills one subfile page before writing it to the display.

© Copyright IBM Corp. 1997, 2008 263

Sharing an Open Data Path (ODP) for the Same Job

i5/OS data management support offers a close level of sharing within a job that allows more than one

program to share the same path to the data or display station. By specifying *YES for the SHARE

parameter on the Create Display File (CRTDSPF) command, the Change Display File (CHGDSPF)

command, and the override file commands, more than one program can share the file status, positions,

and storage area. Performance is improved by reducing the amount of main storage the job needs and the

time it takes to open and close the file.

Note: To use SHARE(*YES) to improve performance, you need to define many record formats within the

display file. However, the program may not use all the record formats in the display file, even

though the program has work storage allocated for all the record formats defined in the display

file. This causes the PAG storage associated with the job to be larger, which can adversely affect

performance.

More information about sharing open data paths is found in “Sharing Display Files in the Same Job” on

page 84.

Sending Records with Input Fields to the Display in Order

Records containing input fields should be sent to the display station in the order in which they appear on

the display. This technique provides better performance than if record formats with input fields are sent

randomly or in some other order.

Overlapping and Not Deleting Repeatedly Sent Records

You can use the CLRL(*NO) keyword to prevent an overlapped record from being deleted when the

overlapping record is written to the display. If you use this keyword, any records being displayed that

are to be overlapped are not deleted from the screen; the new record overlays them entirely or partially.

There is a performance advantage to using CLRL(*NO) if you have a display that contains constants and

data that is repeatedly sent to the screen. By sending the constants as a separate format and using

CLRL(*NO) for the format containing only the data, you can reduce the time required to send the record

format to the display.

The use of the PUTOVR keyword causes only those fields for which the OVRDTA or OVRATR keyword

have been specified to be sent to the display when a subsequent write or write-read operation is issued to

the same record format.

You can also use the OVERLAY keyword to clear only that portion of the display affected by the record

format being written.

You can use ERASEINP to improve response time by causing the display to clear fields instead of

requiring blanks to be sent to the display. If the fields erased at the display do not have their modified

data tags set on for the next read operation, data is returned for those fields from the input save area.

This is data saved by the system from the previous return of the field from the display station.

You can use the INZINP keyword at the record level with ERASEINP(*ALL) and PUTOVR to initialize

the input save area without sending data for the cleared fields to the display.

Restoring the Display

When *YES is specified for the Restore Display (RSTDSP) parameter, an image of the current display is

saved when the display is suspended. When the display file is activated again, the saved image is used to

restore the display to its appearance before being suspended.

264 Application Display Programming V6R1

The RSTDSP(*YES) parameter must be specified for the following keywords. If the parameter is not

specified, data on the display can be lost if the file is suspended.

v CLRL

v OVERLAY

v PUTOVR

v PUTRETAIN

v ERRMSG

v ERRMSGID

If none of the previous keywords are used, you can improve performance by specifying *NO for the

RSTDSP parameter.

Defining Command Attention Keys Rather Than Command Function

Keys

Command attention (CAnn) keys return only the indication of the key pressed and not data. Command

function (CFnn) keys cause all input data to be returned. If you only need to detect a function key and

do not need to return data from the display, define keys as command attention keys.

Using the Invite Operation

The invite operation, specified by the INVITE keyword, allows the program to be responsive to various

display station and system events. The invite operation also allows the program to process between the

last WRITE and READ operations.

Using Windows

DDS-described windows may improve performance because they only affect the portion of the display

where they are placed.

Chapter 14. Improving System Performance with Displays 265

266 Application Display Programming V6R1

Part 3. Programming Application Displays Using Panel

Groups

Chapter 15. Improving Productivity with User

Interface Manager 269

Increasing User Productivity 269

Increasing Application Programmer Productivity 269

What to Consider before Using UIM Instead of

Data Description Specifications (DDS) 269

Chapter 16. Introduction to the User Interface

Manager 271

Overview of UIM 271

What the UIM Supports 272

What Is a Panel Group 272

What Is a Menu 272

Creating Objects 273

Elements Within a Panel Group 273

Using the UIM Language Tags 273

Using Dialog Commands 274

Using Control Language (CL) Commands 275

Using an Application Programming Interface (API) 275

Defining a Menu Object Using UIM 276

Creating a Menu Panel 276

Required Tags for a Menu Panel 278

Source for Example Menu 278

Defining a Panel Group Object Using UIM . . . 283

Creating a List Panel 283

Required Tags for a List Panel 285

Source for Example List Panel 286

Application Programming for a List Panel . . . 294

Creating a Confirmation List Panel 295

Required Tags for a Confirmation List Panel . . 296

Source for Example Confirmation Panel . . . 296

Automatic Confirmation Processing 299

Application Programming for Confirmation

Processing 299

Creating a Data Presentation Panel 299

Required Tags for a Data Presentation Panel . . 302

Source for Example Data Presentation Panel . . 302

Application Programming for a Data

Presentation Panel 313

Data Entry Panel 316

Creating a Panel with a Menu Bar 316

Required Tags for a Panel with a Menu Bar . . 318

Source for Example Panel with a Menu Bar . . 318

Application Programming for a Menu Bar Panel 328

Chapter 17. Details of Using User Interface

Manager 329

Opening a UIM Application 329

Defining Dialog Variables 329

Restrictions on Using Dialog Variables 330

Dialog Variable Error Messages 331

Providing Field Values for a Display Panel

Using Dialog Variables 331

Using Variable Pool Services 332

Dialog Variables and Special Values 332

Character Set and Code Page Considerations 332

Displaying 333

Printing 333

Managing a List 334

Defining a List 335

Initializing a List 335

Displaying a List 335

Updating a List 336

Incomplete List Processing 336

Removing and Inserting an Entry from a List 336

Controlling List Entries on a List Display . . . 337

Improving Interactive Response Time for a List

Display 337

Using Action Lists and Selection Lists 338

Using Action Lists 338

Using Selection Lists 339

Using Selection Characters 339

Managing Panel Functions 339

Enabling Conversion to a GUI 340

Scrolling Support 340

Defining Scrollable Areas 340

Defining Function Key Scrolling 341

Scrolling and Error Conditions 341

Scrolling a List Area 341

Scrolling a Menu Area 341

Scrolling an Information Area 342

Scrolling Data Item Groups 342

Scrolling a Text Area 342

Defining Contextual Help 342

Command Line Restrictions 344

Command Line Interpretation 344

Entering Commands That Are Too Long . . . 345

Defining Function Keys 345

Formatting Function Keys 345

Handling Function Keys and VARUPD Value 345

Panel Formatting Concepts 346

When Panel Formatting Is Performed 347

Application Control of Panel Formatting . . . 347

Limits of the Panel Formatter 348

Folding Up Multiple Panels When EXIT Is

Requested 348

Folding Up a List Panel 350

Adding a Pop-Up Window over Another Panel 350

Using Menu Bars 351

Differences Between Pull-Down Menus and

Pop-Up Windows 352

Using Pop-Up Windows 353

Defining Application Windows 354

Adding and Removing Windows 354

Using the Command Line in a Window . . . 355

UIM as a Request Processor Program When

Displaying a Panel 355

Printing Concepts 356

© Copyright IBM Corp. 1997, 2008 267

Printing a Print Head Panel 358

Printing a Print Panel 358

Using Blank Lines for Separating 359

Fonts and Highlighting 359

Printing the Trailer 359

Defining Prolog Areas 359

Defining Header Areas 359

Using the Page-Eject Function During Printing 359

Sharing and Overriding Printer Files 360

Printing Double-Byte Character Set (DBCS)

Considerations 360

Commonly Asked UIM Questions 360

268 Application Display Programming V6R1

Chapter 15. Improving Productivity with User Interface

Manager

Using the user interface manager (UIM) can improve user and application programmer productivity.

Increasing User Productivity

The UIM controls the panel’s appearance and assures consistency with panels developed by IBM. This

gives an application a consistent user interface which increases user productivity.

Increasing Application Programmer Productivity

Application programmer productivity is increased by using the UIM to create panels. The application

programmer can describe the contents of a panel without specifying all the details. The format of the

panel’s elements is handled automatically by the UIM. For more information on the panel elements that

UIM handles, see “What the UIM Supports” on page 272.

Using the UIM language tags allows the application programmer to ″link″ an option number or function

key to a specific command or program. Then, when a user selects an option or presses a function key, the

UIM automatically handles running the command or program. The UIM also handles scrolling through a

multiple-page panel. The Major Command Groups menu is an example of a multiple-page panel.

What to Consider before Using UIM Instead of Data Description

Specifications (DDS)

The UIM and DDS each use a different source language to create interactive displays. Display functions

in interactive applications can be built using DDS, a combination of DDS and UIM, or only UIM. With

DDS, the application programmer can customize display screens, and with UIM, the display screens are

automatically formatted resulting in a consistent appearance. In addition, the UIM performs more dialog

management functions than DDS, so using UIM results in less application programming.

The UIM supports the following types of display screens (or panels). Each one can be scrollable or

nonscrollable:

v List

v Menu

v Information

v Data entry

For more information on creating these display screens, see Chapter 16, “Introduction to the User

Interface Manager,” on page 271.

Consider the following before using UIM:

v If you are creating a new application, the UIM simplifies making display screens standard.

v If you are rewriting an old application, evaluate the effort involved to rewrite the display screens

versus the productivity benefits already described. In some cases, conversion to UIM may not be

warranted unless a major redesign or rewrite of an application is required for other reasons.

v Because UIM was designed for 525x nonprogrammable workstations, using UIM does not appreciably

simplify converting an application oriented to a programmable workstation except by ensuring

standard display screens.

© Copyright IBM Corp. 1997, 2008 269

v If an application program makes extensive use of database files, UIM does not take advantage of file

descriptions the way DDS does.

v Using UIM to create data panels should be for low frequency and low volume output/input.

Nonscrollable data entry applications with high frequency and volume of interactions should consider

using display files created from DDS for the best performance. This is because the UIM does not accept

high frequency and high volume keyboard input as quickly as DDS does. That is, the UIM may not be

able to accept keyboard input as quickly as the user can type it. However, a keyboard with type-ahead

function may compensate for this.

The following lists some of the advantages and differences between using UIM or DDS:

v UIM Advantages

– Uses same standards as system so no need to redefine standards. User applications work the same

way as the system panels. UIM formats panels based on what you want displayed.

– List processing offers ability to process commands, to prompt or call programs easily from a list

panel, to specify programs for UIM to call after option is selected, and allows more efficient list

entry access or update processing.

– Operates well with languages that efficiently process structures.

– Provides for more modular programming techniques (one program can process all incomplete list

exit calls, open all applications, and so on).

– Offers ability to condition menu options

– Formats and handles scrolling of large areas without user program intervention (data, list, info,

menu, and function key areas, for example).
v DDS Advantages

– Provides more flexibility in screen design

– SDA helps in initial formatting

– Ability to use UIM help or help in folders

– Ability to take advantage of GUI windows

– Subfile processing

– Use of EDTCDE and EDTWRD and user-defined editing

– Faster for smaller applications since set-up time is less.

For additional factors to consider when using UIM, see “Choosing between Panel Groups and Records

for Help” on page 364.

270 Application Display Programming V6R1

Chapter 16. Introduction to the User Interface Manager

This chapter gives an introduction to the user interface manager (UIM) that IBM uses to develop the

i5/OS panels. It explains what the UIM provides to make creating and managing panels easy and also

gives the panels the look of an i5/OS panel.

For detailed information on the UIM, see Chapter 17, “Details of Using User Interface Manager,” on page

329.

For information on using the examples mentioned in this chapter, see source member T0011INF in source

file QATTINFO in library QUSRTOOL.

Overview of UIM

The i5/OS UIM is a part of the system that allows you to define panels and dialogs for your application

and provides the following support:

v A tag-based language for describing data and panels.

v A compiler to create panel group objects and menu objects using the tag-based language.

v A set of application programming interfaces (APIs) to use as panel group objects to display and print

panels.

v The UIM also provides the following functions:

– Dialog commands for screen management

– Contextual online help

– Index search

– Pop-up windows

– Menu bars

– Command line for entering CL commands

– Tailoring of the contents of a panel for different users or environments

– Fast paths through menu networks

– Double-byte character set (DBCS) languages

– Bidirectional (BIDI) language support

– Graphical user interface (GUI) support

– UCS-2 support

UIM supports common panel types, such as menus, information displays, list displays, and entry

displays. When all display types and interfaces are consistent, users adapt more quickly to new

applications.

UIM applications can coexist with and share the requester display device with other open display files

that are not under UIM control. However, a UIM panel and a DDS-defined record format cannot appear

on the display at the same time. When a UIM panel replaces a DDS panel or vice versa, the system

suspends operations of one file or panel group and restores the display as needed.

© Copyright IBM Corp. 1997, 2008 271

What the UIM Supports

When you design a panel, the UIM provides the correct placement and format of many panel elements,

such as:

v Panel name

v Panel title

v Separator lines

v Column headings

v Entry fields

v Command line

v Message line

v Function keys

v Pop-up windows

v Menu bars

v Pull-down menus

In addition, the UIM provides the following support:

v Correct placement of the cursor

The user interface style has several rules for positioning the cursor which UIM supports.

v Cursor-sensitive help information

Depending on where the cursor is located when the Help key is pressed, the user interface style has

rules for what type of help information is displayed.

v Scrolling

v Fast paths through menu networks

v National language considerations to make translating easier

v Windows for help information and application panels

v 132-column panels

v Left-to-right and right-to-left (bidirectional) national language formatting

v Hypertext links

v Control over left-to-right and right-to-left orientation of text

v Ability to create online help information

v Ability to enable a panel for conversion to a graphical user interface (GUI)

What Is a Panel Group

A panel is a visual presentation of data on the screen. A panel group is an object that contains a

collection of display formats, print formats, or help information. The system-recognized identifier for the

object type is *PNLGRP.

For detailed information on the panel group (PNLGRP) language tag, see “PNLGRP (Panel Group)” on

page 602.

What Is a Menu

A menu is an object that contains the definition of a panel which contains one or more options. The user

can select an option from the panel in order to start using a program or command, or to go to another

menu. The system-recognized identifier for the object type is *MENU.

272 Application Display Programming V6R1

i5/OS provides the GO command to display a menu. Therefore, no application program is necessary to

display and handle the user interaction for a menu.

You can define the following types of menus using the Create Menu (CRTMNU) command.

*DSPF

An existing display file (*DSPF) and message file (*MSGF) are used to display the menu.

*PGM i5/OS calls an application-defined program to display the menu. The program is responsible for

displaying the menu to the user and processing options requested by the user.

*UIM The menu object is created using a member in a source file that contains a description of the

menu. The source describes the menu using the UIM tags.

This chapter discusses how to create a *UIM type of menu. For information on how to create a *DSPF or

*PGM type of menu, see Chapter 9, “Creating and Accessing Menus Using Display Files,” on page 233.

Creating Objects

The UIM creates and changes the following objects:

v Panel group objects

v Menu objects

v Search index objects

The panel group and menu objects contain panel definitions and online help information. A menu object

(*MENU), which contains a panel group definition, is created using the TYPE(*UIM) parameter on the

Create Menu (CRTMNU) command. The panel group and menu objects are created using a tag-based

language that specifies definitions for UIM elements.

The UIM creates search index objects that contain search terms extracted from online help information. A

search index object makes it more efficient for a user to locate specific online information using the index

search function.

Elements Within a Panel Group

The tag-based language used to define the panels, menus, and online help also supports definitions of

symbolic elements that include the following:

v Variable classes

v Data elements that can be accessed through the UIM application programming interface (API), such as

dialog variables and lists

v Variable records that define buffers passed by application programs

v Conditional expressions that must be true if certain processing is to take place

v Key lists containing the definition of function keys

v Menu bars containing the definition of one or more pull-down menus

v Panel definitions containing one or more areas to present data, information, lists, and menus

v Online help text modules

Using the UIM Language Tags

The language tags are an easy-to-use function for defining panels. Using the language tags helps

application programmers create consistent appearing panels. For more information on the language tags,

see Appendix A, “UIM Panel Group Definition Language,” on page 457.

Chapter 16. Introduction to the User Interface Manager 273

Using Dialog Commands

Dialog commands are special functions, recognized only by the UIM, that allow the user to navigate

through the panels.

Following is a list of the dialog commands and the functions they perform:

ACTIONS Alternates the cursor position between the panel and the menu bar; removes, if shown, a

pull-down menu from the panel.

CALL Calls an application program to perform a function.

CANCEL Backs up one panel (returns to the previous panel).

CHGVIEW Changes the displayed view of a list by switching defined sets of columns to be shown.

CMD Submits an i5/OS CL command (or System/36 environment OCL command) to the

system for processing.

CMDLINE Displays a pop-up window with a command line.

DSPHELP Displays a module of help text.

ENTER Initiates processing of an action; submits panel input for processing.

EXIT Returns the user from a group of displays or menus.

EXTHELP Displays the extended help text for the panel.

HELP Displays help information for the panel, based on the position of the cursor.

HELPHELP Displays information about how to use the help facilities.

HELPIDX Initiates the index search function for the application to allow the user to make a search

request.

HOME Displays the initial (home) menu of the job.

KEYSHELP Displays the help for the function keys shown on the displayed panel.

MENU Displays a subsequent menu as a result of selecting a menu item or pressing a function

key.

MOREKEYS Displays an additional set of active function keys and their descriptions; used when all

keys cannot be shown at once.

MOVETOP Moves a cursor-selected line to the top of the scrollable information area.

MSG Displays a message on the message line.

PAGEDOWN Pages (scrolls) forward by one panel.

PAGEUP Pages (scrolls) backward by one panel.

PRINT Prints all the information shown on the current display.

PROMPT Prompts (seeks input) for commands, action list options, or entry fields.

PULLDOWN Displays the pull-down menu for the first choice shown on the menu bar.

RETRIEVE Retrieves and displays the previously entered command.

RETURN Returns control (and a return value) to an application for processing.

Note: To provide the Refresh/Redisplay function for an application, use the RETURN

dialog command.

For detailed information on the dialog commands, see Appendix B, “UIM Dialog Commands.”

274 Application Display Programming V6R1

Using Control Language (CL) Commands

The following CL commands are used to work with panel groups, menus, and index search:

v ADDSCHIDXE (Add Search Index Entry)

v CHGMNU (Change Menu)

v CHGSCHIDX (Change Search Index)

v CRTMNU (Create Menu)

v CRTPNLGRP (Create Panel Group)

v CRTSCHIDX (Create Search Index)

v DLTMNU (Delete Menu)

v DLTPNLGRP (Delete Panel Group)

v DLTSCHIDX (Delete Search Index)

v DSPMNUA (Display Menu Attributes)

v GO (Go to Menu)

v RMVSCHIDXE (Remove Search Index Entry)

v STRSCHIDX (Start Search Index)

v WRKSCHIDXE (Work Search Index Entry)

For detailed information about the CL commands, see the Control language topic collection in the i5/OS

Information Center.

Using an Application Programming Interface (API)

The UIM provides several API services. The service calls to the UIM consist of the following:

v Application services

v Variable pool services

v List services

v Display services

v Print services

The application services consist of the following:

v Open Display Application (QUIOPNDA)

v Open Print Application (QUIOPNPA)

v Close Application (QUICLOA)

The variable pool services consist of the following:

v Get Dialog Variable (QUIGETV)

v Put Dialog Variable (QUIPUTV)

The list services consist of the following:

v Add List Entry (QUIADDLE)

v Add List Multiple Entries (QUIADDLM)

v Get List Entry (QUIGETLE)

v Get List Multiple Entries (QUIGETLM)

v Update List Entry (QUIUPDLE)

v Remove List Entry (QUIRMVLE)

v Delete List (QUIDLTL)

v Set List Attributes (QUISETLA)

Chapter 16. Introduction to the User Interface Manager 275

v Retrieve List Attributes (QUIRTVLA)

The display services consist of the following:

v Display Panel (QUIDSPP)

v Display Help (QUHDSPH)

v Add Pop-up Window (QUIADDPW)

v Remove Pop-up Window (QUIRMVPW)

v Set Screen Image (QUISETSC)

v Display Long Text (QUILNGTX)

The print services consist of the following:

v Print Panel (QUIPRTP)

v Print Help (QUHPRTH)

v Add Print Application (QUIADDPA)

v Remove Print Application (QUIRMVPA)

For details on the APIs, see the Application programming interfaces topic collection in the i5/OS

Information Center.

Defining a Menu Object Using UIM

Using the UIM, you can create a *UIM type of menu object. The menu object contains the definition of a

menu panel with one or more options. To create a *UIM type of menu, do the following.

1. Create a member in a source physical file.

2. Enter the UIM tag source to describe the menu using a source editor, such as the Source Entry Utility

(SEU). An example menu exists in member T0011MN2 in file QATTUIM in library QUSRTOOL. You

can copy this example to use as a template to create your own menu.

3. Use the Create Menu (CRTMNU) command to create the menu object using the tag source as input.

Here is an example of using the CRTMNU command.

 CRTMNU MENU(MYLIB/MYMENU) TYPE(*UIM) SRCFILE(MYLIB/QMNUSRC)

The source member defaults to the name of the menu being created.

Creating a Menu Panel

The panel shown in Figure 102 on page 277 is an example menu. If you need more information on

creating help for a menu area, see “Help in a Menu Area” on page 383.

276 Application Display Programming V6R1

The reference numbers in the example menu do not appear on the display. They are shown for

illustration purposes and also appear in the UIM tag source shown in “Source for Example Menu” on

page 278. These reference numbers show the portions of the source which define text and information

that appear on the menu.

�1� The panel identifier is defined by declaring the UIM-defined Z-variable, ZMENU, using the VAR

tag and specifying the Z-variable to be used as the panel identifier on the PANELID attribute of the

PANEL tag.

�2� The panel title is defined as text following the period of the PANEL tag.

�3� The system name is shown because the TOPSEP=SYSNAM attribute was specified on the PANEL

tag.

�4� The top instruction line is defined as text following the period of the top instruction (TOPINST)

tag.

�5� Each option on the menu is defined using the menu item (MENUI) tag. The option number is

defined using the OPTION attribute and the text following the option number is defined as text

following the MENUI tag.

�6� The command line is defined using the command line (CMDLINE) tag. The command line

prompt text is defined as text following the CMDLINE tag. The UIM automatically provides the

arrow (===>) for every command line.

 An option line can be defined by using the option line (OPTLINE) tag instead of the CMDLINE

tag. In this case, the user enters option numbers, but is not allowed to enter system commands.

�7� Each function key is defined using a key list item (KEYI) tag. The text, including the function key

name, is defined as text following the period of the KEYI tag.

 All function keys for a panel are defined by placing the KEYI tags between a key list (KEYL) and

EKEYL tag. The name specified on the NAME attribute of the KEYL tag is also specified on the KEYL

attribute of the PANEL tag.

 Some function keys, such as the Enter key, do not have text specified for the KEYI tag. In this

case, no text appears on the display. However, all function keys must be defined using the KEYI

tag so the UIM knows what action is assigned for each key and what help module should be

displayed when help is displayed for the function keys.

�8� The copyright message is defined as text following the period of the copyright (COPYR) tag. The

 T0011MN2 �1� Example Menu �2�

 �3� System: SYSNAMXX

 Select one of the following: �4�

 1. Work with members in a file �5�

 2. Work with record definitions

 Selection or command �6�

 ===> ___

__

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel �7�

 (C) COPYRIGHT YOUR COMPANY NAME HERE, 1992. �8�

Figure 102. An Example Menu

Chapter 16. Introduction to the User Interface Manager 277

copyright message is displayed once when the user initially sees the menu. The message is not

shown when the menu is redisplayed after processing an option or command.

This example menu is not defined as scrollable because it contains only two options. If you need to

define a scrollable menu, change SCROLL=NO to SCROLL=YES on the MENU tag and add one menu

item (MENUI) tag for each additional menu option. You also need to define a new help module for each

menu option.

Required Tags for a Menu Panel

Figure 103 shows the required tags for creating a UIM menu panel. For an example of the required and

optional tags, see “Source for Example Menu.”

Note: The tags in Figure 103 require attributes. These attributes are not shown. Without these attributes,

the example in Figure 103 will not compile. For a description of the required attributes for these

required tags, see Appendix A, “UIM Panel Group Definition Language.”

Source for Example Menu

This is a listing of the tag source for the menu shown in Figure 102 on page 277. The entire source can be

found in member T0011MN2 in source file QATTUIM in library QUSRTOOL.

.* ---

.*

.* Beginning of menu source.

.*

.* ---

:PNLGRP DFTMSGF=t0011msgf2

 SUBMSGF=t0011msgf2.

.*

.* ---

.* Copyright statement appears when the menu is initially displayed.

Figure 103. Required UIM tags for a menu panel

278 Application Display Programming V6R1

.* ---

:COPYR. �8�

(C) COPYRIGHT YOUR COMPANY NAME HERE, 1992.

.*

.* ---

.* UIM Z-variable to be used as the panel identifier

.* ---

:VAR NAME=ZMENU. �1�

.*

.* ---

.* Define keys for the menu

.* ---

:KEYL NAME=menukeys �7�

 HELP=keyl.

:KEYI KEY=F1

 HELP=helpf1

 ACTION=HELP.

:KEYI KEY=F3

 HELP=exit

 ACTION=’EXIT SET’

 VARUPD=NO.

F3=Exit �7�

:KEYI KEY=F4

 HELP=prompt

 ACTION=PROMPT.

F4=Prompt

:KEYI KEY=F9

 HELP=retrieve

 ACTION=RETRIEVE.

F9=Retrieve

:KEYI KEY=F12

 HELP=cancel

 ACTION=’CANCEL SET’

 VARUPD=NO.

F12=Cancel

:KEYI KEY=F24

 HELP=morekeys

 ACTION=MOREKEYS.

F24=More keys

:KEYI KEY=ENTER

 HELP=enter

 ACTION=ENTER.

:KEYI KEY=HELP

 HELP=help

 ACTION=HELP.

:KEYI KEY=HOME

 HELP=home

 ACTION=HOME.

:KEYI KEY=PAGEDOWN

 HELP=pagedown

 ACTION=PAGEDOWN.

:KEYI KEY=PAGEUP

 HELP=pageup

 ACTION=PAGEUP.

:KEYI KEY=PRINT

 HELP=print

 ACTION=PRINT.

:EKEYL.

.*

.* ---

.* Define Example Menu panel

Chapter 16. Introduction to the User Interface Manager 279

.* ---

:PANEL NAME=xmpmenu

 HELP=’menu/help’

 KEYL=menukeys �7�

 ENTER=’MSG CPD9817 QCPFMSG’

 PANELID=ZMENU �1�

 TOPSEP=SYSNAM. �3�

Example Menu �2�

.*

.* -------------------------------------

.* Define the menu area

.* -------------------------------------

:MENU DEPTH=’*’

 SCROLL=NO

 BOTSEP=SPACE.

:TOPINST.Select one of the following: �4�

.*

.* -------------------------------------

.* Specify the action to be taken for each option

.* -------------------------------------

:MENUI OPTION=1 �5�

 ACTION=’CMD ?t0011cm2’

 HELP=’menu/option1’.

Work with members in a file

.*

:MENUI OPTION=2

 ACTION=’CMD ?t0011cm3’

 HELP=’menu/option2’.

Work with record definitions

.*

:EMENU.

.*

.* -------------------------------------

.* Use a command line and allow commands and option numbers

.* -------------------------------------

:CMDLINE SIZE=LONG. �6�

Selection or command

.*

:EPANEL.

.*

.*

.* ---

.* Define help modules for the menu panel

.* ---

:HELP NAME=keyl. Function Keys - Help

:XH3.Function keys

:EHELP.

.*

:HELP NAME=helpf1.

:PARML.

:PT.F1=Help

:PD.

Provides additional information about using the display or a

specific field on the display.

:EPARML.

:EHELP.

.*

:HELP NAME=exit.

:PARML.

:PT.F3=Exit

:PD.

Ends the current task and returns to the display from which the

task was started.

:EPARML.

:EHELP.

.*

:HELP NAME=prompt.

280 Application Display Programming V6R1

:PARML.

:PT.F4=Prompt

:PD.

Provides assistance in entering or selecting a command.

:EPARML.

:EHELP.

.*

:HELP NAME=retrieve.

:PARML.

:PT.F9=Retrieve

:PD.

Displays the last command you entered on the command line and

any parameters you included. Pressing this key once, shows the

last command you ran. Pressing this key twice, shows the

command you ran before that and so on.

:EPARML.

:EHELP.

.*

:HELP NAME=cancel.

:PARML.

:PT.F12=Cancel

:PD.

Returns to the previous menu or display.

:EPARML.

:EHELP.

.*

:HELP NAME=morekeys.

:PARML.

:PT.F24=More keys

:PD.

Shows additional function keys.

:EPARML.

:EHELP.

.*

:HELP NAME=enter.

:PARML.

:PT.Enter

:PD.

Submits information on the display for processing.

:EPARML.

:EHELP.

.*

:HELP NAME=help.

:PARML.

:PT.Help

:PD.

Provides additional information about using the display.

:EPARML.

:EHELP.

.*

:HELP NAME=home.

:PARML.

:PT.Home

:PD.

Goes to the menu that was shown after you signed on the system.

This menu is either the initial menu defined in your user

profile or the menu you requested from the Sign-On display.

:EPARML.

:EHELP.

.*

:HELP NAME=pagedown.

:PARML.

:PT.Page Down (Roll Up)

:PD.

Moves forward to show additional information for this display.

:EPARML.

:EHELP.

Chapter 16. Introduction to the User Interface Manager 281

.*

:HELP NAME=pageup.

:PARML.

:PT.Page Up (Roll Down)

:PD.

Moves backward to show additional information for this display.

:EPARML.

:EHELP.

.*

:HELP NAME=print.

:PARML.

:PT.Print

:PD.

Prints information currently shown on the display.

:EPARML.

:EHELP.

.*

:HELP NAME=’menu/help’.

Example Menu - Help

:P.

The Example Menu shows an example of a menu created using the UIM.

:XH3.

How to Use a Menu

:P.

To select a menu option, type the option number and press Enter.

:P.

To run a command, type the command and press Enter. For assistance

in selecting a command, press F4 (Prompt) without typing anything.

For assistance in entering a command, type the command and press F4

(Prompt). To see a previous command you entered, press F9

(Retrieve).

:P.

To go to another menu, use the Go to Menu (GO) command. Type GO

followed by the menu ID, then press the Enter key. For example, to

go to the User Tasks (USER) menu, type GO USER and press the Enter

key. The menu ID is shown in the upper left corner of the menu.

For assistance in entering the GO command, type GO and press F4

(Prompt). If you do not know the entire menu name you can use a

generic name. For example, GO US* will show a list of all menus

that start with US.

:EHELP.

.*

:HELP NAME=’menu/option1’.

Option 1 - Help

:XH3.Option 1. Work with members in a file

:P.

Select this option to work with the members in a file. You will be

prompted for the name of the file.

:EHELP.

.*

:HELP NAME=’menu/option2’.

Option 2 - Help

:XH3.Option 2. Work with record definitions

:P.

Select this option to work with record definitions for a file.

You will be prompted for the name of the file.

:EHELP.

.*

.*

.*

.* ---

.* End of menu source

.* ---

:EPNLGRP.

282 Application Display Programming V6R1

Defining a Panel Group Object Using UIM

Using the UIM, you can create a panel group object. The panel group object can contain the definitions

for dialog variables, lists, panels and help modules. To create a panel group object, do the following.

1. Create a member in a source physical file.

2. Enter the UIM tag source to describe the panel group using a source editor such as the Source Entry

Utility (SEU). An example panel group exists in member T0011PN2 in file QATTUIM in library

QUSRTOOL. You can copy this example to use as a template to create your own panel group.

3. Use the Create Panel Group (CRTPNLGRP) command to create the panel group object using the tag

source as input. Here is an example of using the CRTPNLGRP command.

 CRTPNLRP PNLGRP(MYLIB/MYPNLGRP) SRCFILE(MYLIB/QPNLSRC)

The source member defaults to the name of the panel group being created.

Creating a List Panel

Any of the ″Work with...″ panels are list panels. In this example, the Work with File Members panel is

used. Defining the list panel is similar to defining a subfile in DDS, but the UIM determines the

appearance of the panel.

The panel shown in Figure 104 shows an example of a mixed panel with a list area. The panel is mixed

because it contains two types of areas: a data presentation area at the top and a list area at the bottom.

The data presentation area at the top consists of the fields which identify the file and library name. The

list area begins with the instruction line, Type options, press Enter and ends with the scroll information

(More...).

In this example, the panel contains a special type of list area called an action list. An action list is a list

which contains an option column. The user types in allowed option numbers to perform actions against

the object represented by the entry in the list. If you need more information on creating list panel help,

see “Help in a List Area” on page 382.

 The panel shown in Figure 105 on page 284 is an alternate view shown when the user presses F11

(Display names only) on the panel shown in Figure 104. The alternate view shown here uses a

multiple-column layout. The panel is divided into four layout columns of equal size. The Opt and Member

columns appear in each layout column. The alternate view shows four times as many list entries as the

 Work with File Members �1�

 File XXXXXXXXXX F4 for list �2�

 Library XXXXXXXXXX library, *CURLIB, *LIBL

 Type options, press Enter. �3�

 3=Copy 4=Remove 5=Display 7=Reorganize 8=Member description �4�

 9=Clear

 Opt Member Type Text �5�

 _ __________ �6�

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 _ XXXXXXXXXX XXXXXXXXXX XXX

 �7� More...

 Parameters for options 3 and 5 or command �8�

 ===> __

 F3=Exit F4=Prompt F9=Retrieve F11=Display names only F12=Cancel �9�

Figure 104. Example List Panel

Chapter 16. Introduction to the User Interface Manager 283

original view, but does not show the Type and Text columns for each entry.

 The reference numbers in the example panel do not appear on the display. They are shown for

illustration purposes and also appear in the UIM tag source shown in “Source for Example List Panel” on

page 286. These reference numbers show which portions of the source define text and information which

appears on the panel.

�1� The panel title is defined as text following the period of the display panel (PANEL) tag.

�2� The text for the file and library name is defined as text following the period of the data item

(DATAI) tag. The file name and library name are dialog variable values. Each dialog variable is

defined using the variable definition (VAR) tag. The name of the dialog variable is specified on

the VAR attribute of the DATAI tag. The possible choices text for each input field is defined as text

following the period of the data item choices (DATAC) tag.

 The file name and library are formatted as a qualified object name because GRPSEP=QINDENT is

specified on the data group (DATAGRP) tag which surrounds the two DATAI tags.

 The dialog variables for the file name and library name are defined using the VAR tags at �A�

and �B�, respectively.

�3� The instruction line is defined as text following the period of the top instruction (TOPINST) tag.

�4� Each list option is defined using the list action (LISTACT) tag. The text, including the option

number with the equal sign, is defined as text following the period of the LISTACT tag.

�5� The column heading for each column is defined as text following the period of the list column

(LISTCOL) tag. The VAR attribute of the LISTCOL tag identifies the name of the dialog variable

whose value is displayed under the column heading.

 The dialog variable name specified, must be defined using the VAR tag. The dialog variable name

must also be specified on the VARS attribute of the list definition (LISTDEF) tag for the list

appearing in the panel.

 The dialog variables for the option, member name, member type, and description text are defined

using the VAR tags at �C�, �D�, �E�, and �F�, respectively.

 The names of these variables also appear in the VARS attribute of the LISTDEF tag at �G�. The

name of the list definition must be specified on the LISTDEF attribute of the list area (LIST) tag at

�H�.

 Work with File Members �1�

 File XXXXXXXXXX F4 for list �2�

 Library XXXXXXXXXX library, *CURLIB, *LIBL

 Type options, press Enter. �3�

 3=Copy 4=Remove 5=Display 7=Reorganize 8=Member description �4�

 9=Clear

 Opt Member Opt Member Opt Member Opt Member �5�

 _ __________ �6�

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX _ XXXXXXXXXX

 �7� More...

 Parameters for options 3 and 5 or command �8�

 ===> __

 F3=Exit F4=Prompt F9=Retrieve F11=Display descriptions F12=Cancel �9�

Figure 105. Example of Alternate View of List

284 Application Display Programming V6R1

�6� The extended action entry that appears immediately below the column headings is defined by

specifying EXTACT=YES on the LIST tag. Each column which has an input field in the extended

action entry must specify EXTACT=YES on the LISTCOL tag.

 The extended action entry allows the user to perform actions without having to scroll to a

specific entry in the list.

 Each list option defined by the LISTACT tag, specifies whether the action is allowed to be

performed against the extended action entry, the list entries appearing below the extended action

entry, or both. This specification is made using the ACTFOR attribute of the LISTACT tag.

�7� The scroll information, More... and Bottom, are shown because the list area is defined as

scrollable because the SCROLL attribute defaults to YES on the LIST tag.

�8� The command line is defined using the command line (CMDLINE) tag. The command line

prompt text is defined as text following the period of the CMDLINE tag. The UIM automatically

provides the arrow (===>) for every command line.

 The command line can be used to enter parameters for list options. Before processing list options,

the UIM places the contents of the command line into a dialog variable. The dialog variable can

be:

v Substituted into a CL command specified as the action to perform on a LISTACT tag

v Used by an exit program specified as the action to perform on the LISTACT tag

v Used by the application program when it is performing the actions for the list

The dialog variable used to contain parameters from the command line is defined using the VAR

tag at �I�. It is also specified on the PARMS attribute of the list area (LIST) tag at �J�. The UIM

places the contents of the command line in the dialog variable specified by the PARMS attribute

before beginning list option processing.

 Then the dialog variable is used as a substitution variable in a command string on a LISTACT tag

at �K�.

�9� Each function key is defined using the key list (KEYL) tag. The text, including the function key

name, is defined as text following the period of the KEYI tag.

 All function keys are defined by placing the KEYI tags between the key list (KEYL) and EKEYL

tags. The name specified on the NAME attribute of the KEYL tag is also specified on the KEYL

attribute of the PANEL tag.

 Some function keys, such as Enter, do not have text specified for the KEYI tag. In this case, no

text appears on the display. However, all function keys must be defined using the KEYI tag so

the UIM knows what action is assigned to each key and what help module to use when help is

displayed for the function keys.

Required Tags for a List Panel

Figure 106 on page 286 shows the required tags for creating a UIM list panel. For an example of the

required and optional tags, see “Source for Example List Panel” on page 286.

Note: The tags in Figure 106 on page 286 require attributes. These attributes are not shown. Without

these attributes, the example in Figure 106 on page 286 will not compile. For a description of the

required attributes for these required tags, see Appendix A, “UIM Panel Group Definition

Language.”

Chapter 16. Introduction to the User Interface Manager 285

Source for Example List Panel

This is a partial listing of member T0011PN2 in source file QATTUIM in library QUSRTOOL.

.* ---

.*

.* Beginning of panel group source.

.*

.* ---

:PNLGRP DFTMSGF=t0011msgf2

 SUBMSGF=t0011msgf2.

.*

.* The import tag specifies that all help is to be found

.* in panel group T0011HL2 searching the library list.

:IMPORT NAME=’*’

 PNLGRP=t0011hl2.

.*

.* ---

.* Define all variable classes

.* ---

.* -----------------

.* Option

.* Note: Need WIDTH=1 to preserve column alignment on confirmation panel.

:CLASS NAME=optcl

 BASETYPE=’ACTION’

 WIDTH=1.

:ECLASS.

Figure 106. Required tags for a list panel

286 Application Display Programming V6R1

.* -----------------

.* Object name

:CLASS NAME=namecl

 BASETYPE=’OBJNAME 10’.

:ECLASS.

.* -----------------

.* Library name

:CLASS NAME=libcl

 BASETYPE=’OBJNAME 10’.

:TL.

:TI VALUE=’"*LIBL"’.*LIBL

:TI VALUE=’"*CURLIB"’.*CURLIB

:ETL.

:ECLASS.

.* -----------------

.* File attribute

:CLASS NAME=attrcl

 BASETYPE=’CHAR 10’

 CASE=UPPER.

:ECLASS.

.* -----------------

.* Descriptive text

:CLASS NAME=textcl

 BASETYPE=’IGC 50’

 SUBST=QUOTED.

:ECLASS.

.* -----------------

.* Source type

:CLASS NAME=srctypcl

 BASETYPE=’CHAR 10’.

:ECLASS. ...
 Additional CLASS tags in member T0011PN2 are not shown here ...
.* -----------------

.* Command line parameters

:CLASS NAME=parmcl

 BASETYPE=’CHAR 255’.

:ECLASS.

.* -----------------

.* Exit program specification for CALL dialog command

:CLASS NAME=exitcl

 BASETYPE=’CHAR 20’.

:ECLASS.

.* -----------------

.* View number

:CLASS NAME=vwnumcl

 BASETYPE=’BIN 15’.

:ECLASS.

.* -----------------

.* Classes for pad variables in variable record definitions.

:CLASS NAME=pad1cl

 BASETYPE=’CHAR 1’.

:ECLASS.

:CLASS NAME=pad2cl

 BASETYPE=’CHAR 2’.

:ECLASS.

:CLASS NAME=pad10cl

 BASETYPE=’CHAR 10’.

:ECLASS.

:CLASS NAME=pad13cl

 BASETYPE=’CHAR 13’.

Chapter 16. Introduction to the User Interface Manager 287

:ECLASS.

:CLASS NAME=pad48cl

 BASETYPE=’CHAR 48’.

:ECLASS.

:CLASS NAME=pad50cl

 BASETYPE=’CHAR 50’.

:ECLASS.

.*

.* ---

.* Define all dialog variables

.* ---

.*

.* -------------------------------------

.* Variables for file and library

.* -------------------------------------

.* -----------------

.* File name

:VAR NAME=file �A�

 CLASS=namecl.

.* -----------------

.* Library name

:VAR NAME=lib �B�

 CLASS=libcl.

.* -----------------

.* attributes

:VAR NAME=fattr

 CLASS=attrcl.

.* -----------------

.*

.* -------------------------------------

.* Variables for list of members

.* -------------------------------------

.* -----------------

.* option for list of members

:VAR NAME=mopt �C�

 CLASS=optcl.

.* -----------------

.* Object name

:VAR NAME=mbr �D�

 CLASS=namecl.

.* -----------------

.* member type

:VAR NAME=mtype �E�

 CLASS=attrcl.

.* -----------------

.* Descriptive text

:VAR NAME=mtext �F�

 CLASS=textcl. ...
 Additional VAR tags in member T0011PN2 are not shown here ...
.*

.* -------------------------------------

.* Variable for command line parameters

.* -------------------------------------

.* -----------------

.* Command line parameters

:VAR NAME=parms �I�

 CLASS=parmcl.

.*

.* -------------------------------------

.* Variables for specifying CALL/exit programs

.* -------------------------------------

.* -----------------

.* Program to call for all UIM exits

:VAR NAME=exitpgm

288 Application Display Programming V6R1

CLASS=exitcl.

.*

.* -------------------------------------

.* Variables for controlling list views

.* -------------------------------------

.* -----------------

.* View number for list of members

:VAR NAME=mbrview

 CLASS=vwnumcl. ...
 Additional VAR tags in member T0011PN2 are not shown here ...
.*

.* -------------------------------------

.* Variables for padding in variable record definitions.

.* Padding is needed in variable records so the layout

.* of the record matches a list format returned from

.* an API. The pad variables are used as placeholders for

.* variables not used in the API format or for reserved space

.* in the API format.

.* -------------------------------------

:VAR NAME=pad1

 CLASS=pad1cl.

:VAR NAME=pad2

 CLASS=pad2cl.

:VAR NAME=pad10

 CLASS=pad10cl.

:VAR NAME=pad13

 CLASS=pad13cl.

:VAR NAME=pad48

 CLASS=pad48cl.

:VAR NAME=pad50

 CLASS=pad50cl.

.*

.* ---

.* Define a variable record for file, library and file attribute

.* ---

:VARRCD NAME=filelib

 VARS=’file lib fattr’

 NOGET=’fattr’

 .

.*

.* ---

.* Define a variable record for exit program

.* ---

:VARRCD NAME=exitprog

 VARS=’exitpgm’

 .

.*

.* ---

.* Define a variable record for list of members.

.* The layout of this record is designed to match the

.* List Database File Members API (QUSLMBR) format name MBRL0200.

.* ---

:VARRCD NAME=mbrl0200

 VARS=’mbr mtype pad13 pad13 mtext’

 NOPUT=’pad13’

 NOGET=’mtype pad13 mtext’

 Additional VARRCD tags in member T0011PN2 are not shown here ...
.*

.*

.* ---

.* Define a list of members

Chapter 16. Introduction to the User Interface Manager 289

.* ---

�G�

:LISTDEF NAME=mbrlist

 VARS=’mopt mbr mtype mtext’

 MSGID=USR0101. ...
 Additional LISTDEF tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define all conditions

.* ---

.* -----------------

.* Condition for physical files

:COND NAME=pf

 EXPR=’fattr="PF "’.

.* -----------------

.* Conditions for views of members list

:COND NAME=mbrview1

 EXPR=’mbrview=0’.

:COND NAME=mbrview2

 EXPR=’mbrview=1’. ...
 Additional COND tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define truth table to specify that mbrview1 and mbrview2

.* are mutually exclusive conditions

.* This will cause UIM to reserve only one line of function

.* keys on the work with members panel

.* ---

:TT NAME=mbrtt

 CONDS=’mbrview1 mbrview2’.

:TTROW VALUES=’ 1 0 ’.

:TTROW VALUES=’ 0 1 ’.

:ETT. ...
 Additional TT tags in member T0011PN2 are not shown here
 All MBAR tags in member T0011PN2 are not shown here ...
.*

.*

.* ---

.* Define keys for work with members panel

.* ---

:KEYL NAME=mbrkeys �9�

 HELP=keyl.

:KEYI KEY=F1

 HELP=helpf1

 ACTION=HELP.

:KEYI KEY=F3

 HELP=exit

 ACTION=’EXIT SET’

 VARUPD=NO.

F3=Exit

:KEYI KEY=F4

 HELP=prompt

 ACTION=PROMPT

 PRIORITY=30.

F4=Prompt

:KEYI KEY=F9

 HELP=retrieve

290 Application Display Programming V6R1

ACTION=RETRIEVE

 PRIORITY=35.

F9=Retrieve

:KEYI KEY=F11

 HELP=mbrviewname

 ACTION=CHGVIEW

 PRIORITY=25

 COND=mbrview1.

F11=Display names only

:KEYI KEY=F11

 HELP=mbrviewdesc

 ACTION=CHGVIEW

 PRIORITY=25

 COND=mbrview2.

F11=Display descriptions

:KEYI KEY=F12

 HELP=cancel

 ACTION=’CANCEL SET’

 VARUPD=NO.

F12=Cancel

:KEYI KEY=F24

 HELP=morekeys

 ACTION=MOREKEYS.

F24=More keys

:KEYI KEY=ENTER

 HELP=enter

 ACTION=ENTER.

:KEYI KEY=HELP

 HELP=help

 ACTION=HELP.

:KEYI KEY=PAGEDOWN

 HELP=pagedown

 ACTION=PAGEDOWN.

:KEYI KEY=PAGEUP

 HELP=pageup

 ACTION=PAGEUP.

:KEYI KEY=PRINT

 HELP=print

 ACTION=PRINT.

:EKEYL. ...
 Additional KEYL tags in member T0011PN2 are not shown here ...
.*

.*

.* ---

.* Define Work with Members panel

.* ---

:PANEL NAME=wrkmbr

 HELP=’wrkmbr/’

 KEYL=mbrkeys �9�

 TT=mbrtt

 ENTER=’RETURN 500’

 TOPSEP=SPACE.

Work with File Members �1�

.*

.* -------------------------------------

.* Define a data presentation area to display the

.* library/file name whose members are listed.

.* -------------------------------------

:DATA DEPTH=3

 SCROLL=NO

 LAYOUT=1

 BOTSEP=SPACE

 COMPACT

 .

Chapter 16. Introduction to the User Interface Manager 291

.* -------------------------------------

.* Divide the layout width into two columns.

.* The first column is for the prompt text with leader dots.

.* The second column is for the variable values.

:DATACOL WIDTH=22.

:DATACOL WIDTH=12.

:DATACOL WIDTH=’*’.

.* -------------------------------------

.* Display qualified file name

:DATAGRP GRPSEP=QINDENT

 HELP=’wrkmbr/filelib’

 COMPACT

 .

:DATAI VAR=file �2�

 USAGE=INOUT

 PROMPT=’CALL exitpgm’

 .

File

:DATAC.F4 for list

:DATAI VAR=lib

 USAGE=INOUT

 .

Library

:DATAC.library, *CURLIB, *LIBL

:EDATAGRP.

.*

:EDATA.

.*

.* -------------------------------------

.* Define the list area

.* -------------------------------------

:LIST DEPTH=’*’ �7�

 LISTDEF=mbrlist �H�

 ACTOR=UIM

 EXTACT=YES �6�

 MAXHEAD=4

 MAXACTL=3

 VIEW=mbrview

 PARMS=parms �J�

 BOTSEP=SPACE.

:TOPINST.Type options, press Enter. �3�

.*

.* -------------------------------------

.* Specify the action to be taken for each option

.* -------------------------------------

:LISTACT OPTION=3

 ACTFOR=BOTH �6�

 NOCMD=PROMPT

 NOEXT=PROMPT

 HELP=’wrkmbr/cpyf’

 ENTER=’CMD CPYF ?*FROMFILE(&lib/&file)’

 ENTER=’ ?*FROMMBR(&mbr) &parms’ �K�

 PROMPT=’CMD ?CPYF ?*FROMFILE(&lib/&file)’

 PROMPT=’ ?*FROMMBR(&mbr) &parms’ �K�

 EXTENTER=’CMD ?CPYF ?*FROMFILE(&lib/&file)’

 EXTENTER=’ ??FROMMBR(&mbr) &parms’ �K�

 EXTPROMPT=’CMD ?CPYF ?*FROMFILE(&lib/&file)’

 EXTPROMPT=’ ??FROMMBR(&mbr) &parms’. �K�

3=Copy �4�

.*

:LISTACT OPTION=4

 ACTFOR=LISTE

 HELP=’wrkmbr/rmvm’

 ENTER=’CMD RMVM FILE(&lib/&file) MBR(&mbr)’

 PROMPT=’CMD ?RMVM ?*FILE(&lib/&file) ?*MBR(&mbr)’

 USREXIT=’CALL exitpgm’.

4=Remove

292 Application Display Programming V6R1

.*

:LISTACT OPTION=5

 COND=pf

 ACTFOR=BOTH

 NOEXT=PROMPT

 HELP=’wrkmbr/dsppfm’

 ENTER=’CMD DSPPFM FILE(&lib/&file) MBR(&mbr) &parms’

 PROMPT=’CMD DSPPFM ?*FILE(&lib/&file) ?*MBR(&mbr) &parms’

 EXTPROMPT=’CMD DSPPFM ?*FILE(&lib/&file) ??MBR(&mbr) &parms’.

5=Display

.*

:LISTACT OPTION=7

 COND=pf

 ACTFOR=BOTH

 HELP=’wrkmbr/rgzm’

 ENTER=’CMD RGZPFM FILE(&lib/&file) MBR(&mbr)’

 PROMPT=’CMD ?RGZPFM ?*FILE(&lib/&file) ?*MBR(&mbr)’.

7=Reorganize

.*

:LISTACT OPTION=8

 ACTFOR=BOTH

 HELP=’wrkmbr/dspfd’

 ENTER=’CALL exitpgm’

 PROMPT=’CALL exitpgm’.

8=Member description

.*

:LISTACT OPTION=9

 COND=pf

 ACTFOR=LISTE

 HELP=’wrkmbr/clrm’

 ENTER=’CMD CLRPFM FILE(&lib/&file) MBR(&mbr)’

 PROMPT=’CMD ?CLRPFM ?*FILE(&lib/&file) ?*MBR(&mbr)’.

9=Clear

.*

.*

.* -------------------------------------

.* Define the columns and headings to display

.* -------------------------------------

:LISTCOL VAR=mopt

 USAGE=INOUT

 EXTACT=YES �6�

 HELP=’wrkmbr/option’

 MAXWIDTH=6.

Opt �5�

:LISTCOL VAR=mbr

 USAGE=OUT

 EXTACT=YES

 HELP=’wrkmbr/mbr’

 MAXWIDTH=10.

Member

:LISTCOL VAR=mtype

 USAGE=OUT

 HELP=’wrkmbr/type’

 MAXWIDTH=10.

Type

:LISTCOL VAR=mtext

 USAGE=OUT

 HELP=’wrkmbr/text’

 MAXWIDTH=’*’.

Text

.*

.* -------------------------------------

.* Define multiple views for F11 to toggle between

.* -------------------------------------

:LISTVIEW COLS=’mopt mbr mtype mtext’.

:LISTVIEW COLS=’mopt mbr’ layout=4.

.*

Chapter 16. Introduction to the User Interface Manager 293

:ELIST.

.*

.* -------------------------------------

.* Use a command line and allow parameters to be given

.* -------------------------------------

:CMDLINE SIZE=SHORT. �8�

Parameters for options 3 and 5 or command

.*

:EPANEL. ...
 Additional PANEL tags in member T0011PN2 are not shown here ...
.*

.* ---

.* End of panel group source

.* ---

:EPNLGRP.

Application Programming for a List Panel

An example of an application program to display the list panel shown in Figure 104 on page 283 can be

found in member T0011CP2 in source file QATTSYSC in library QUSRTOOL. This is an ILE C/C++

program which calls the appropriate UIM application programming interfaces (APIs) to display the panel.

A general example of an RPG application using the UIM APIs can be found in QUSRTOOL. Refer to

member T0011INF in source file QATTINFO in library QUSRTOOL. See Chapter 21, “Designing IBM

i5/OS-Style Displays,” on page 409 for more information on using the examples.

To write a program in any language to display the example list panel, the program should do the

following:

1. Call the Open Display Application (QUIOPNDA) API to open the panel group. The panel group must

already be created using the Create Panel Group (CRTPNLGRP) command.

2. Set up a buffer containing the values for the following dialog variables:

FILE A CHAR 10 variable which is the name of the file.

LIB A CHAR 10 variable which is the name of the library where the file resides.

FATTR

A CHAR 10 variable which is the file attribute of the file. This variable is used to condition on

list options which are only allowed for physical files.
3. Call the Put Dialog Variable (QUIPUTV) API to change the contents of the dialog variables using

variable record FILELIB and the buffer initialized in the previous step.

4. Set up a buffer containing a value for the following dialog variable:

EXITPGM

A CHAR 20 variable which identifies the program to be called as a UIM exit program. For

extended program model (EPM) languages, this BASETYPE attribute of the CLASS tag used to

define the EXITPGM dialog variable must be changed to a CHAR 130 dialog variable.

 For information on how this dialog variable must be set, see the description of the CALL

dialog command in Appendix B, “UIM Dialog Commands,” on page 633.
5. Call the Put Dialog Variable (QUIPUTV) API to change the contents of the dialog variable using

variable record EXITPROG and the buffer initialized in the previous step.

6. Create a user space that receives a list of members in a file using the Create User Space (QUSCRTUS)

API. The members in a file are retrieved using the List Database File Members (QUSLMBR) API. If

the application programming language supports pointers, use the Retrieve Pointer to User Space

(QUSPTRUS) API to obtain a pointer to the contents of the user space. Then, the application program

can directly manipulate the data. Otherwise, use the Retrieve User Space (QUSRTVUS) API to obtain

294 Application Display Programming V6R1

the contents of the user space. For a description of these APIs, see the Application programming

interfaces topic collection in the i5/OS Information Center.

7. For every member in the file to be displayed, complete the following steps. A list of the members in a

file can be retrieved using the List Database File Members (QUSLMBR) API. For a description of this

API, see “List Database File Members (QUSLMBR) API” in the Application programming interfaces

topic collection.

a. Set up a buffer containing values for the following dialog variables:

MBR A CHAR 10 variable which is the member name.

MTYPE

A CHAR 10 variable which is the member type.

PAD13

A CHAR 13 reserved space in the buffer.

PAD13

A CHAR 13 reserved space in the buffer.

MTEXT

A CHAR 50 variable which is the descriptive text for the member.

Note: The layout of this buffer is designed to match the layout of the entries in the user space

returned by the QUSLMBR API using the MBRL0200 format. Therefore, instead of setting

up a buffer, the application program can pass the buffer as it exists in the user space.

The two PAD13 variables are used to tell the UIM to ignore two variables in the MBRL0200

format returned by the QUSLMBR API. The variables are the creation date and time and the

last source change data and time.

b. Call the Add List Entry (QUIADDLE) API to add a list entry to the list named MBRLIST using

variable record MBRL0200 and the buffer initialized in the previous step.
8. Call the Display Panel (QUIDSPP) API to display panel WRKMBR. The UIM returns control to the

application when one of the following occurs:

v The user presses the Enter key without typing any list options or a command on the command line.

The program variable passed as the function requested parameter to the QUIDSPP API is set to 500.

This is done because ENTER=’RETURN 500’ is specified on the PANEL tag which defines the

WRKMBR panel.

v The user presses the F12 (Cancel) key. The program variable passed as the function requested

parameter to the QUIDSPP API is set to -8. This is the value defined for the CANCEL dialog

command.

v The user presses the F3 (Exit) key. The program variable passed as the function requested

parameter to the QUIDSPP API is set to -4. This is the value defined for the CANCEL dialog

command.
9. Call the Close Application (QUICLOA) API to close the UIM application. This frees up the system

resources used by the UIM application.

Creating a Confirmation List Panel

Options on an action list panel that perform destructive operations should use a confirmation panel to

allow the user to confirm or cancel the request before it is performed. A confirmation panel should be

provided for actions such as 4=Remove and 9=Clear shown in the example panel in Figure 104 on page

283.

An example of a confirmation panel is shown in Figure 107 on page 296. This confirmation panel is used

when the user types option 4 on the panel shown in Figure 104 on page 283.

Chapter 16. Introduction to the User Interface Manager 295

The confirmation panel appears similar to the action list panel with the following exceptions:

v The instructions tell the user to confirm or cancel the option.

v The displayed list is for output only. The user cannot change any of the option numbers.

v The F3 (Exit) key is not allowed from a confirmation panel.

v There is no command line on a confirmation panel.

When the user presses the F11 key to change to a different view, the view of the action list panel is

changed when it is redisplayed. This is done because the same dialog variable is specified on the VIEW

attribute of the LIST tag for both the action list panel and the confirmation panel.

Required Tags for a Confirmation List Panel

The required tags for a confirmation list panel are basically the same as those required for a list panel

which are described in Figure 106 on page 286. However, the LISTACT tag is not required.

Source for Example Confirmation Panel

To define this confirmation panel, additional source needs to be added to the source shown in “Source for

Example List Panel” on page 286. The following are excepts from member T0011PN2 in source file

QATTUIM in library QUSRTOOL. First, a new list definition needs to be made. This list definition

contains a copy of the list entries being confirmed. The confirmation list contains the same dialog

variables as are contained in the list of members. The following list definition (LISTDEF) tag should be

placed after the LISTDEF tag at �G�.

.*

.* ---

.* Define a list of members for confirmation panels

.* ---

:LISTDEF NAME=mbrconf

 VARS=’mopt mbr mtype mtext’.

Next, function keys need to be defined for the confirmation panel. Confirmation panels should not allow

F3 (Exit). The following key list (KEYL) tag should be placed after the KEYL tag, shown in “Source for

Example List Panel” on page 286.

.*

.* ---

.* Define keys for confirm remove of members

 Confirm Remove of Members

 File : XXXXXXXXXX

 Library : XXXXXXXXXX

 Press Enter to confirm your choices for 4=Remove.

 Press F12 to return to change your choices.

 Opt Member Type Text

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 4 XXXXXXXXXX XXXXXXXXXX XXX

 More...

 F11=Display names only F12=Cancel

Figure 107. Example Confirmation List Panel

296 Application Display Programming V6R1

.* ---

:KEYL NAME=mconfkeys

 HELP=keyl.

:KEYI KEY=F1

 HELP=helpf1

 ACTION=HELP.

:KEYI KEY=F11

 HELP=altview

 ACTION=CHGVIEW

 COND=mbrview1.

F11=Display names only

:KEYI KEY=F11

 HELP=altview

 ACTION=CHGVIEW

 COND=mbrview2.

F11=Display descriptions

:KEYI KEY=F12

 HELP=cancel

 ACTION=’CANCEL SET’

 VARUPD=NO.

F12=Cancel

:KEYI KEY=F24

 HELP=morekeys

 ACTION=MOREKEYS.

F24=More keys

:KEYI KEY=ENTER

 HELP=enter

 ACTION=ENTER.

:KEYI KEY=HELP

 HELP=help

 ACTION=HELP.

:KEYI KEY=PAGEDOWN

 HELP=pagedown

 ACTION=PAGEDOWN.

:KEYI KEY=PAGEUP

 HELP=pageup

 ACTION=PAGEUP.

:KEYI KEY=PRINT

 HELP=print

 ACTION=PRINT.

:EKEYL.

The confirmation panel needs to be defined. The following source should be placed after the EPANEL

tag, shown in “Source for Example List Panel” on page 286.

.*

.* ---

.* Define panel for confirm remove of members from WRKMBR panel

.* ---

:PANEL NAME=confrmvm

 HELP=’confrmvm/’

 KEYL=mconfkeys

 TT=mbrtt

 ENTER=’RETURN 100’

 TOPSEP=space.

Confirm Remove of Members

.*

.* -------------------------------------

.* Define a data presentation area to display the

.* library/file name whose members are listed.

.* -------------------------------------

:DATA DEPTH=3

 SCROLL=NO

 LAYOUT=1

 BOTSEP=SPACE

 COMPACT

 .

Chapter 16. Introduction to the User Interface Manager 297

.* -------------------------------------

.* Divide the layout width into two columns.

.* The first column is for the prompt text with leader dots.

.* The second column is for the variable values.

:DATACOL WIDTH=22.

:DATACOL WIDTH=’*’.

.* -------------------------------------

.* Display qualified file name

:DATAGRP GRPSEP=QINDENT

 HELP=’wrkmbr/filelib’

 COMPACT

 .

:DATAI VAR=file

 USAGE=OUT

 .

File

:DATAI VAR=lib

 USAGE=OUT

 .

Library

:EDATAGRP.

.*

:EDATA.

.*

.* -------------------------------------

.* Define the list area

.* -------------------------------------

:LIST DEPTH=’*’

 MAXHEAD=4

 LISTDEF=mbrconf

 VIEW=mbrview.

:TOPINST.Press Enter to confirm your choices for 4=Remove.

:TOPINST.Press F12 to return to change your choices.

.*

.* -------------------------------------

.* Define the columns of the list

.* -------------------------------------

:LISTCOL VAR=mopt

 USAGE=OUT

 HELP=’confrmvm/option’

 MAXWIDTH=6.

Opt

:LISTCOL VAR=mbr

 USAGE=OUT

 HELP=’wrkmbr/mbr’

 MAXWIDTH=10.

Member

:LISTCOL VAR=mtype

 USAGE=OUT

 HELP=’wrkmbr/type’

 MAXWIDTH=10.

Type

:LISTCOL VAR=mtext

 USAGE=OUT

 HELP=’wrkmbr/text’

 MAXWIDTH=’*’.

Text

.*

.* -------------------------------------

.* Define multiple views for F11 to toggle between

.* -------------------------------------

:LISTVIEW COLS=’mopt mbr mtype mtext’.

:LISTVIEW COLS=’mopt mbr’ layout=4.

.*

:ELIST.

:EPANEL.

298 Application Display Programming V6R1

Automatic Confirmation Processing

The UIM provides support to automatically perform confirmation processing. This support is available

when the UIM is in control of processing list options by specifying ACTOR=UIM on the LIST tag that

defines the action list.

To have the UIM perform confirmation processing for a list option, specify the name of the confirmation

panel on the CONFIRM attribute of the list action (LISTACT) tag that defines the option to be confirmed.

The following UIM source shows the LISTACT tag for option 4 with the CONFIRM attribute specifying the

name of the confirmation panel.

.*

:LISTACT OPTION=4

 ACTFOR=LISTE

 HELP=’wrkmbr/rmvm’

 CONFIRM=confrmvm

 ENTER=’CMD RMVM FILE(&lib/&file) MBR(&mbr)’

 PROMPT=’CMD ?RMVM ?*FILE(&lib/&file) ?*MBR(&mbr)’

 USREXIT=’CALL exitpgm’.

4=Remove

.*

For more information about defining a confirmation panel using the CONFIRM attribute, see “LISTACT

(List Action)” on page 554.

When the UIM processes list options and finds an option with the CONFIRM attribute specified, the UIM

does the following:

1. Deletes the list specified on the LISTDEF attribute of the LIST tag in the confirmation panel.

2. Finds all entries in the action list with an option number the same as the option number being

confirmed, and copies these entries to the confirmation list.

3. Displays the confirmation panel.

4. Remembers that the option number has been confirmed by the user if the user presses the Enter key.

The confirmed options are processed in the order they appear in the action list. No further

confirmation processing is done for this option number until the user types the option number for

additional entries in the action list.

5. Stops processing list options, if the user presses the F12 (Cancel) key, and redisplays the action list

panel showing the first entry with the option number that was not confirmed.

Application Programming for Confirmation Processing

When ACTOR=UIM is specified on the LIST tag in the action list panel, there is no application

programming needed because the UIM performs all confirmation processing.

When ACTOR=CALLER is specified on the LIST tag in the action list panel, the application program that

processes the list options should perform confirmation processing similar to the UIM processing as

described in “Automatic Confirmation Processing.”

Creating a Data Presentation Panel

Data presentation panels are used to display user data or allow input of user data in connection with an

option on a list panel. When data input/output is scrollable and low in frequency and volume, UIM

simplifies creating consistent data presentation panels.

The following shows the coding to create the Display Member Description display from the Work with

File Members display.

The panel shown in Figure 108 on page 300 shows an example of a data presentation panel. This panel is

shown as a result of using option 5 on the panel shown in Figure 104 on page 283.

Chapter 16. Introduction to the User Interface Manager 299

This panel contains two data presentation areas. The first area is using a vertical layout with two layout

columns. This area shows the file, library, and member name. The second area also uses a vertical layout,

but only one layout column. This area shows the detail information for the member identified in the first

area. If you need more information on creating help for a data presentation panel, see “Help in a Data

Area” on page 385.

 The second area is defined as a scrollable area because there are more items to show than will fit on a

display at one time. The UIM automatically handles scrolling when the user presses the Page Up

(Rolldown) or Page Down (Rollup) keys. When the Page Down operation is performed, the contents of

the second data presentation area is replaced with the next set of items to show. This results in the panel

shown in Figure 109 on page 301.

Notice that the contents of the first area remain the same when the second area is scrolled. The scroll

operation only applies to one area of the panel based on the location of the cursor. Also, because the first

area is not defined as scrollable, the scroll operation does not apply to that area even when the cursor

position is within the area.

 Display Member Description �1�

 File : XXXXXXXXXX Member : XXXXXXXXXX �2�

 Library : XXXXXXXXXX

 Type of file : PF �3�

 Remote file : No

 Allow ODP sharing : Yes

 Source type : XXXXXXXXXX

 Last source change date and time : 11/11/11 11:11:11

 Creation date and time : 11/11/11 11:11:11

 Change date and time : 11/11/11 11:11:11

 Number of records : 111111111

 Deleted records : 111111111

 Data space size : 111111111

 Access path size : 111111111

 �4� More...

 F3=Exit F12=Cancel �5�

Figure 108. Example Data Presentation Panel

300 Application Display Programming V6R1

The reference numbers in the example panel do not appear on the display. They are shown for

illustration purposes and also appear in the UIM tag source shown in “Source for Example Data

Presentation Panel” on page 302. These reference numbers show which portions of the source define text

and information which appears on the panel.

�1� The panel title is defined as text following the period of the display panel (PANEL) tag.

�2� In the first data area, the text for the file, library, and member name is defined as text following

the period of the data item (DATAI) tag. The file, library, and member names are dialog variable

values. Each dialog variable is defined using the variable definition (VAR) tag. The name of the

dialog variable is specified on the VAR attribute of the DATAI tag.

 The file name and library are formatted as a qualified object name because GRPSEP=QINDENT is

specified on the data group (DATAGRP) tag which surrounds the two DATAI tags.

 The dialog variables for the file name and library name and member name are defined using the

VAR tags at �A�, �B�, and �C�, respectively.

 This data presentation area is defined by specifying LAYOUT=2 on the DATA tag that defines the

area. This is shown at �D�.

�3� In the second data area, the text for each item is defined as text following the period of the

DATAI tag. The value for each item is a dialog variable value. Each dialog variable is defined

using the VAR tag. The name of the dialog variable is specified on the VAR attribute of the DATAI

tag.

 Several items in the area show date and time values. This is done by specifying the dialog

variable for the date value on the VAR attribute of the DATAI tag and specifying the dialog

variable for the time value on the VAR attribute of the data item extender (DATAIX) tag.

 The date and time dialog variables are defined by specifying BASETYPE=DATE and

BASETYPE=TIME on the class definition (CLASS) tag used to define the variables. This is shown at

�E�. The UIM formats the date and time variables according to the date format and separator

attributes and the time separator attribute of the job.

�4� The scroll information, More... and Bottom, is shown because the list area is defined as scrollable.

SCROLL=YES is specified on the DATA tag.

�5� Each function key is defined using the key list item (KEYI) tag. The text, including the function

key name, is defined as text following the period of the KEYI tag.

 Display Member Description �1�

 File : XXXXXXXXXX Member : XXXXXXXXXX �2�

 Library : XXXXXXXXXX

 Save date and time : 11/11/11 11:11:11 �3�

 Restore date and time : 11/11/11 11:11:11

 Expiration date and time : 11/11/11 11:11:11

 Number of days used : 111111111

 Date last used : 11/11/11

 Use reset date : 11/11/11

 Text : XXX

XXXXXXXXX

 �4� Bottom

 F3=Exit F12=Cancel �5�

Figure 109. Example Data Presentation Panel after Scrolling

Chapter 16. Introduction to the User Interface Manager 301

All function keys are defined by placing the KEYI tags between the key list (KEYL) and EKEYL

tags. The name specified on the NAME attribute of the KEYL tag is also specified on the KEYL

attribute of the PANEL tag.

 Some function keys, such as Enter, do not have text specified for the KEYI tag. In this case, no

text appears on the display. However, all function keys must be defined using the KEYI tag so

the UIM knows what action is assigned to each key and what help module to use when help is

displayed for the function keys.

Required Tags for a Data Presentation Panel

Figure 110 shows the required tags for creating a UIM data presentation panel. For an example of the

required and optional tags, see “Source for Example Data Presentation Panel.”

Note: The tags in Figure 110 require attributes. These attributes are not shown. Without these attributes,

the example in Figure 110 will not compile. For a description of the required attributes for these

required tags, see Appendix A, “UIM Panel Group Definition Language.”

Source for Example Data Presentation Panel

This is a partial listing of the member T0011PN2 in source file QATTUIM in library QUSRTOOL.

.* ---

.*

.* Beginning of panel group source.

.*

.* ---

:PNLGRP DFTMSGF=t0011msgf2

Figure 110. Required UIM tags for a data presentation panel

302 Application Display Programming V6R1

SUBMSGF=t0011msgf2.

.*

.* The import tag specifies that all help is to be found

.* in panel group T0011HL2 searching the library list.

:IMPORT NAME=’*’

 PNLGRP=t0011hl2.

.*

.* ---

.* Define all variable classes

.* ---

.* -----------------

.* Option

.* Note: Need WIDTH=1 to preserve column alignment on confirmation panel.

:CLASS NAME=optcl

 BASETYPE=’ACTION’

 WIDTH=1.

:ECLASS.

.* -----------------

.* Object name

:CLASS NAME=namecl

 BASETYPE=’OBJNAME 10’.

:ECLASS.

.* -----------------

.* Library name

:CLASS NAME=libcl

 BASETYPE=’OBJNAME 10’.

:TL.

:TI VALUE=’"*LIBL"’.*LIBL

:TI VALUE=’"*CURLIB"’.*CURLIB

:ETL.

:ECLASS.

.* -----------------

.* File attribute

:CLASS NAME=attrcl

 BASETYPE=’CHAR 10’

 CASE=UPPER.

:ECLASS.

.* -----------------

.* Descriptive text

:CLASS NAME=textcl

 BASETYPE=’IGC 50’

 SUBST=QUOTED.

:ECLASS.

.* -----------------

.* Source type

:CLASS NAME=srctypcl

 BASETYPE=’CHAR 10’.

:ECLASS.

.* -----------------

.* Date

:CLASS NAME=datecl �E�

 BASETYPE=’DATE’.

:TL.

:TI VALUE=’" "’.

:TI VALUE=’"0000000"’.

:ETL.

:ECLASS.

.* -----------------

.* Time

:CLASS NAME=timecl �E�

Chapter 16. Introduction to the User Interface Manager 303

BASETYPE=’TIME’.

:TL.

:TI VALUE=’" "’.

:TI VALUE=’"000000"’.

:ETL.

:ECLASS.

.* -----------------

.* Yes or No flag class

:CLASS NAME=yesnocl

 BASETYPE=’CHAR 1’

 WIDTH=3.

:TL.

:TI VALUE=’"0"’.No

:TI VALUE=’"1"’.Yes

:ETL.

:ECLASS.

.* -----------------

.* Type of file

:CLASS NAME=typfcl

 BASETYPE=’CHAR 1’

 WIDTH=2.

:TL.

:TI VALUE=’"0"’.PF

:TI VALUE=’"1"’.LF

:ETL.

:ECLASS.

.* -----------------

.* Binary 31

:CLASS NAME=bin31

 BASETYPE=’BIN 31’.

:ECLASS. ...
 Additional CLASS tags in member T0011PN2 are not shown here ...
.* -----------------

.* Classes for pad variables in variable record definitions.

:CLASS NAME=pad1cl

 BASETYPE=’CHAR 1’.

:ECLASS.

:CLASS NAME=pad2cl

 BASETYPE=’CHAR 2’.

:ECLASS.

:CLASS NAME=pad10cl

 BASETYPE=’CHAR 10’.

:ECLASS.

:CLASS NAME=pad13cl

 BASETYPE=’CHAR 13’.

:ECLASS.

:CLASS NAME=pad48cl

 BASETYPE=’CHAR 48’.

:ECLASS.

:CLASS NAME=pad50cl

 BASETYPE=’CHAR 50’.

:ECLASS.

.*

.* ---

.* Define all dialog variables

.* ---

.*

.* -------------------------------------

.* Variables for file and library

.* -------------------------------------

.* -----------------

.* File name

:VAR NAME=file �A�

 CLASS=namecl.

304 Application Display Programming V6R1

.* -----------------

.* Library name

:VAR NAME=lib �B�

 CLASS=libcl.

.* -----------------

.* attributes

:VAR NAME=fattr

 CLASS=attrcl.

.* -----------------

.*

.* -------------------------------------

.* Variables for list of members

.* -------------------------------------

.* -----------------

.* option for list of members

:VAR NAME=mopt

 CLASS=optcl.

.* -----------------

.* Object name

:VAR NAME=mbr �C�

 CLASS=namecl.

.* -----------------

.* member type

:VAR NAME=mtype

 CLASS=attrcl.

.* -----------------

.* Descriptive text

:VAR NAME=mtext

 CLASS=textcl.

.*

.* -------------------------------------

.* Variables for member description

.* -------------------------------------

.* -----------------

.* Source type

:VAR NAME=mbrsrc

 CLASS=srctypcl.

.* -----------------

.* Creation date

:VAR NAME=mbrcrtdat

 CLASS=datecl.

.* -----------------

.* Creation time

:VAR NAME=mbrcrttim

 CLASS=timecl.

.* -----------------

.* Member last source change date

:VAR NAME=mbrschgdat

 CLASS=datecl.

.* -----------------

.* Member last source change time

:VAR NAME=mbrschgtim

 CLASS=timecl.

.* -----------------

.* Member remote source file indicator

:VAR NAME=mbrsrcfil

 CLASS=yesnocl.

.* -----------------

.* Member remote file indicator

:VAR NAME=mbrremote

 CLASS=yesnocl.

.* -----------------

.* Member type of file

:VAR NAME=mbrtypf

 CLASS=typfcl.

.* -----------------

.* Member ODP sharing

Chapter 16. Introduction to the User Interface Manager 305

:VAR NAME=mbrodpshr

 CLASS=yesnocl.

.* -----------------

.* Member current number of records

:VAR NAME=mbrcurrec

 CLASS=bin31.

.* -----------------

.* Member number of deleted records

:VAR NAME=mbrdltrec

 CLASS=bin31.

.* -----------------

.* Member data space size

:VAR NAME=mbrspcsiz

 CLASS=bin31.

.* -----------------

.* Member access path size

:VAR NAME=mbracpsiz

 CLASS=bin31.

.* -----------------

.* Number of database file members

:VAR NAME=mbrdbfmbrs

 CLASS=bin31.

.* -----------------

.* Member change date.

:VAR NAME=mbrchgdat

 CLASS=datecl.

.* -----------------

.* Member change time

:VAR NAME=mbrchgtim

 CLASS=timecl.

.* -----------------

.* Member save date

:VAR NAME=mbrsavdat

 CLASS=datecl.

.* -----------------

.* Member save time

:VAR NAME=mbrsavtim

 CLASS=timecl.

.* -----------------

.* Member restore date

:VAR NAME=mbrrstdat

 CLASS=datecl.

.* -----------------

.* Member restore time

:VAR NAME=mbrrsttim

 CLASS=timecl.

.* -----------------

.* Member expiration date

:VAR NAME=mbrexpdat

 CLASS=datecl.

.* -----------------

.* Member expiration time

:VAR NAME=mbrexptim

 CLASS=timecl.

.* -----------------

.* Member number of days used

:VAR NAME=mbrdysuse

 CLASS=bin31.

.* -----------------

.* Member date last used

:VAR NAME=mbrlastuse

 CLASS=datecl.

.* -----------------

.* Member use reset date

:VAR NAME=mbrrsetdat

 CLASS=datecl.

.* -----------------

306 Application Display Programming V6R1

...
 Additional VAR tags in member T0011PN2 are not shown here ...
.*

.* -------------------------------------

.* Variables for padding in variable record definitions.

.* Padding is needed in variable records so the layout

.* of the record matches a list format returned from

.* an API. The pad variables are used as placeholders for

.* variables not used in the API format or for reserved space

.* in the API format.

.* -------------------------------------

:VAR NAME=pad1

 CLASS=pad1cl.

:VAR NAME=pad2

 CLASS=pad2cl.

:VAR NAME=pad10

 CLASS=pad10cl.

:VAR NAME=pad13

 CLASS=pad13cl.

:VAR NAME=pad48

 CLASS=pad48cl.

:VAR NAME=pad50

 CLASS=pad50cl. ...
 The first VARRCD tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define a variable record for list of members.

.* The layout of this record is designed to match the

.* List Database File Members API (QUSLMBR) format name MBRL0200.

.* ---

:VARRCD NAME=mbrl0200

 VARS=’mbr mtype pad13 pad13 mtext’

 NOPUT=’pad13’

 NOGET=’mtype pad13 mtext’

 .

.*

.* ---

.* Define a variable record for member description.

.* The layout of this record is designed to match the

.* Retrieve Member Description API (QUSRMBRD) format name MBRD0200.

.* ---

:VARRCD NAME=mbrd0200

 VARS=’pad48 mbrsrc mbrcrtdat mbrcrttim mbrschgdat’

 VARS=’mbrschgtim pad50 mbrsrcfil mbrremote mbrtypf’

 VARS=’mbrodpshr pad2 mbrcurrec mbrdltrec mbrspcsiz’

 VARS=’mbracpsiz mbrdbfmbrs mbrchgdat mbrchgtim mbrsavdat’

 VARS=’mbrsavtim mbrrstdat mbrrsttim mbrexpdat mbrexptim’

 VARS=’mbrdysuse mbrlastuse mbrrsetdat’

 NOPUT=’pad48 pad50 pad2’

 NOGET=’pad48 pad50 pad2’

 Additional VARRCD tags in member T0011PN2 are not shown here
 All LISTDEF tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define all conditions

.* ---

.* -----------------

Chapter 16. Introduction to the User Interface Manager 307

.* Condition for physical files

:COND NAME=pf

 EXPR=’fattr="PF "’. ...
 Additional COND tags in member T0011PN2 are not shown here ...
.* -----------------

.* Condition for source files

:COND NAME=srcpf

 EXPR=’mbrsrcfil="1"’.

.* -----------------

.* Condition for member in a physical file

:COND NAME=mbrpf

 EXPR=’mbrtypf="0"’.

.* -----------------

.* Condition for member in a logical file

:COND NAME=mbrlf

 EXPR=’mbrtypf="1"’. ...
 Additional COND tags in member T0011PN2 are not shown here
 All TT tags in member T0011PN2 are not shown here
 All MBAR tags in member T0011PN2 are not shown here
 The first KEYL tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define basic key for panels without a command line

.* or multiple views.

.* ---

:KEYL NAME=basickeys �5�

 HELP=keyl.

:KEYI KEY=F1

 HELP=helpf1

 ACTION=HELP.

:KEYI KEY=F3

 HELP=exit

 ACTION=’EXIT SET’

 VARUPD=NO.

F3=Exit

:KEYI KEY=F12

 HELP=cancel

 ACTION=’CANCEL SET’

 VARUPD=NO.

F12=Cancel

:KEYI KEY=F24

 HELP=morekeys

 ACTION=MOREKEYS.

F24=More keys

:KEYI KEY=ENTER

 HELP=enter

 ACTION=ENTER.

:KEYI KEY=HELP

 HELP=help

 ACTION=HELP.

:KEYI KEY=PAGEDOWN

 HELP=pagedown

 ACTION=PAGEDOWN.

:KEYI KEY=PAGEUP

 HELP=pageup

308 Application Display Programming V6R1

ACTION=PAGEUP.

:KEYI KEY=PRINT

 HELP=print

 ACTION=PRINT.

:EKEYL. ...
 The first PANEL tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define Display Member Description panel

.* ---

:PANEL NAME=dspmbr

 HELP=’dspmbr/’

 KEYL=basickeys �5�

 ENTER=’RETURN 500’

 TOPSEP=SPACE.

Display Member Description �1�

.*

.* -------------------------------------

.* Define a data presentation area to display the

.* library/file and member name whose description is displayed.

.* -------------------------------------

:DATA DEPTH=3

 SCROLL=NO

 LAYOUT=2 �D�

 BOTSEP=SPACE

 COMPACT

 .

.* -------------------------------------

.* Divide the layout width into two columns.

.* The first column is for the prompt text with leader dots.

.* The second column is for the variable values.

:DATACOL WIDTH=22.

:DATACOL WIDTH=’*’.

.* -------------------------------------

.* Display qualified file name

:DATAGRP GRPSEP=QINDENT

 HELP=’dspmbr/filelib’

 COMPACT

 .

:DATAI VAR=file �2�

 USAGE=OUT

 .

File

:DATAI VAR=lib �2�

 USAGE=OUT

 .

Library

:EDATAGRP.

.* -------------------------------------

.* Display member name

:DATAI VAR=mbr �2�

 HELP=’dspmbr/mbr’

 USAGE=OUT

 .

Member

.*

:EDATA.

.*

.* -------------------------------------

.* Define a data presentation area to display the

.* member definition.

.* -------------------------------------

:DATA DEPTH=’*’

 SCROLL=YES �4�

Chapter 16. Introduction to the User Interface Manager 309

LAYOUT=1

 BOTSEP=SPACE

 .

.* -------------------------------------

.* Divide the layout width into two columns.

.* The first column is for the prompt text with leader dots.

.* The second column is for the variable values.

:DATACOL WIDTH=35.

:DATACOL WIDTH=’*’.

.* -------------------------------------

.* Display information about the file

:DATAGRP GRPSEP=NONE

 COMPACT

 .

.* -------------------------------------

.* Display type of file

:DATAI VAR=mbrtypf �3�

 HELP=’dspmbr/mbrtypf’

 USAGE=OUT

 .

Type of file

.* -------------------------------------

.* Display remote file

:DATAI VAR=mbrremote

 HELP=’dspmbr/mbrremote’

 USAGE=OUT

 .

Remote file

.* -------------------------------------

.* Display ODP sharing

:DATAI VAR=mbrodpshr

 HELP=’dspmbr/mbrodpshr’

 USAGE=OUT

 .

Allow ODP sharing

:EDATAGRP.

.* -------------------------------------

.* Display information only if file is a source file

:DATAGRP GRPSEP=NONE

 COMPACT

 COND=srcpf

 .

.* -------------------------------------

.* Display source type

:DATAI VAR=mbrsrc

 HELP=’dspmbr/mbrsrc’

 USAGE=OUT

 .

Source type

.* -------------------------------------

.* Display last source change date and time

:DATAI VAR=mbrschgdat

 HELP=’dspmbr/mbrschgdt’

 USAGE=OUT

 .

Last source change date and time

:DATAIX VAR=mbrschgtim

 USAGE=OUT

 .

:EDATAGRP.

.* -------------------------------------

.* Display create and change information

:DATAGRP GRPSEP=NONE

 COMPACT

 .

.* -------------------------------------

.* Display creation date and time

310 Application Display Programming V6R1

:DATAI VAR=mbrcrtdat

 HELP=’dspmbr/mbrcrtdt’

 USAGE=OUT

 .

Creation date and time

:DATAIX VAR=mbrcrttim

 USAGE=OUT

 .

.* -------------------------------------

.* Display change date and time

:DATAI VAR=mbrchgdat

 HELP=’dspmbr/mbrchgdt’

 USAGE=OUT

 .

Change date and time

:DATAIX VAR=mbrchgtim

 USAGE=OUT

 .

:EDATAGRP.

.* -------------------------------------

.* Display information about the size of the member

:DATAGRP GRPSEP=NONE

 COMPACT

 .

.* -------------------------------------

.* Display current records for physical file member

:DATAI VAR=mbrcurrec

 COND=mbrpf

 HELP=’dspmbr/mbrcurrec’

 USAGE=OUT

 .

Number of records

.* -------------------------------------

.* Display current index entries for logical file member

:DATAI VAR=mbrcurrec

 COND=mbrlf

 HELP=’dspmbr/mbrcurrec’

 USAGE=OUT

 .

Number of index entries

.* -------------------------------------

.* Display deleted records

:DATAI VAR=mbrdltrec

 HELP=’dspmbr/mbrdltrec’

 USAGE=OUT

 .

Deleted records

.* -------------------------------------

.* Display data space size for physical file member

:DATAI VAR=mbrspcsiz

 COND=mbrpf

 HELP=’dspmbr/mbrspcsiz’

 USAGE=OUT

 .

Data space size

.* -------------------------------------

.* Display access path size

:DATAI VAR=mbracpsiz

 HELP=’dspmbr/mbracpsiz’

 USAGE=OUT

 .

Access path size

.* -------------------------------------

.* Display database file members for logical file member

:DATAI VAR=mbrdbfmbrs

 COND=mbrlf

 HELP=’dspmbr/mbrdbfmbrs’

Chapter 16. Introduction to the User Interface Manager 311

USAGE=OUT

 .

Number of database file members

:EDATAGRP.

.* -------------------------------------

.* Display save restore information

:DATAGRP GRPSEP=NONE

 COMPACT

 .

.* -------------------------------------

.* Display save date and time

:DATAI VAR=mbrsavdat �3�

 HELP=’dspmbr/mbrsavdt’

 USAGE=OUT

 .

Save date and time

:DATAIX VAR=mbrsavtim �3�

 USAGE=OUT

 .

.* -------------------------------------

.* Display restore date and time

:DATAI VAR=mbrrstdat

 HELP=’dspmbr/mbrrstdt’

 USAGE=OUT

 .

Restore date and time

:DATAIX VAR=mbrrsttim

 USAGE=OUT

 .

:EDATAGRP.

.* -------------------------------------

.* Display expiration date

:DATAI VAR=mbrexpdat

 HELP=’dspmbr/mbrexpdt’

 USAGE=OUT

 .

Expiration date and time

:DATAIX VAR=mbrexptim

 USAGE=OUT

 .

.* -------------------------------------

.* Display usage information

:DATAGRP GRPSEP=NONE

 COMPACT

 .

.* -------------------------------------

.* Display number of days used

:DATAI VAR=mbrdysuse

 HELP=’dspmbr/mbrdysuse’

 USAGE=OUT

 .

Number of days used

.* -------------------------------------

.* Display date last used

:DATAI VAR=mbrlastuse

 HELP=’dspmbr/mbrlastuse’

 USAGE=OUT

 .

Date last used

.* -------------------------------------

.* Display use reset date

:DATAI VAR=mbrrsetdat

 HELP=’dspmbr/mbrrsetdat’

 USAGE=OUT

 .

Use reset date

:EDATAGRP.

312 Application Display Programming V6R1

.* -------------------------------------

.* Display text description

:DATAI VAR=mtext

 HELP=’dspmbr/text’

 USAGE=OUT

 .

Text

.*

:EDATA.

.*

:EPANEL. ...
 Additional PANEL tags in member T0011PN2 are not shown here ...
.*

.* ---

.* End of panel group source

.* ---

:EPNLGRP.

Application Programming for a Data Presentation Panel

An example of an application program to display the data presentation panel shown in Figure 108 on

page 300 can be found in member T0011CP3 in file QATTSYSC in library QUSRTOOL. This is an ILE

C/C++ program which calls the appropriate UIM application programming interfaces (APIs) to display

the panel. This program is called by the UIM to process option 5 (Display) from the example list panel

shown in Figure 104 on page 283.

A general example of an RPG application written using the UIM APIs can be found in QUSRTOOL. Refer

to member T0011RP5 in source file QATTRPG in library QUSRTOOL.

To write a program in any language to display the example data presentation panel, the program should

do the following:

1. If the program is not called by the UIM to process option 5 from the example list panel shown in

Figure 104 on page 283, the program should first do the following. For example, this would be the

case if the user could display the member description directly by using a CL command.

a. Call the Open Display Application (QUIOPNDA) API to open the panel group. The panel group

must already be created using the Create Panel Group (CRTPNLGRP) command.

b. Set up a buffer containing the values for the following dialog variables:

FILE A CHAR 10 variable which is the name of the file.

LIB A CHAR 10 variable which is the name of the library where the file resides.

FATTR

A CHAR 10 variable which is the file attribute of the file. This variable is used to

condition on list options which are only allowed for physical files.
c. Call the Put Dialog Variable (QUIPUTV) API to change the contents of the dialog variables using

variable record FILELIB and the buffer initialized in the previous step.

d. Set up a buffer containing values for the following dialog variables:

MBR A CHAR 10 variable which is the member name.

MTYPE

A CHAR 10 variable which is the member type.

PAD13

A CHAR 13 reserved space in the buffer.

PAD13

A CHAR 13 reserved space in the buffer.

Chapter 16. Introduction to the User Interface Manager 313

MTEXT

A CHAR 50 variable which is the descriptive text for the member.

Note: The layout of this buffer is designed to match with the layout of the entries in the user

space returned by the QUSLMBR API. Therefore, instead of setting up a buffer, the

application program can pass the buffer as it exists in the user space.

e. Call the Put Dialog Variable (QUIPUTV) API to change the contents of the dialog variables using

variable record MBRL0200 and the buffer initialized in the previous step.

Note: If the program is called by the UIM to process option 5 from the example list panel, the file

name and library name were already set by the application program before displaying the list

panel. Also, when the UIM performs list option processing, the MBR, MTYPE, and MTEXT

dialog variables will already be set to the values from the list entry which calls the application

program to process option 5.

2. Set up a buffer containing values for the following dialog variables:

PAD48 A CHAR 48 reserved space in the buffer.

MBRSRC A CHAR 10 variable which is the source type for the member.

MBRCRTDAT A CHAR 7 variable which is the creation date for the member in the form required for

BASETYPE=DATE dialog variables.

MBRCRTTIM A CHAR 6 variable which is the creation time for the member in the form required

for BASETYPE=TIME dialog variables.

MBRSCHGDAT

A CHAR 7 variable which is the source changed date for the member in the form

required for BASETYPE=DATE dialog variables.

MBRSCHGTIM

A CHAR 6 variable which is the source changed time for the member in the form

required for BASETYPE=TIME dialog variables.

PAD50 A CHAR 50 reserved space in the buffer.

MBRSRCFIL A CHAR 1 variable indicating whether or not the member is in a source file (″0″=no,

″1″=yes).

MBRREMOTE

A CHAR 1 variable indicating whether or not the member is in a remote file (″0″=no,

″1″=yes).

MBRTYPF A CHAR 1 variable indicating whether the member is in a physical or logical file

(″0″=physical ″1″=logical).

MBRODPSHR

A CHAR 1 variable indicating whether or not ODP sharing is allowed for the member

(″0″=no, ″1″=yes).

PAD2 A CHAR 2 reserved space in the buffer.

MBRCURREC

A BINARY 4 variable containing the number of records in the member.

MBRDLTREC A BINARY 4 variable containing the number of deleted records in the member.

MBRSPCSIZ A BINARY 4 variable containing the size of the space for the member.

MBRACPSIZ A BINARY 4 variable containing the access path size for the member.

MBRDBFMBRS

A BINARY 4 variable containing the number of database file members for this logical

file member.

314 Application Display Programming V6R1

MBRCHGDAT

A CHAR 7 variable which is the last changed date for the member in the form

required for BASETYPE=DATE dialog variables.

MBRCHGTIM

A CHAR 6 variable which is the last changed time for the member in the form

required for BASETYPE=TIME dialog variables.

MBRSAVDAT A CHAR 7 variable which is the date the member was last saved in the form required

for BASETYPE=DATE dialog variables.

MBRSAVTIM A CHAR 6 variable which is the time the member was last saved in the form required

for BASETYPE=TIME dialog variables.

MBRRSTDAT A CHAR 7 variable which is the date the member was last restored in the form

required for BASETYPE=DATE dialog variables.

MBRRSTTIM A CHAR 6 variable which is the time the member was last restored in the form

required for BASETYPE=TIME dialog variables.

MBREXPDAT A CHAR 7 variable which is the date of expiration for the member in the form

required for BASETYPE=DATE dialog variables.

MBREXPTIM A CHAR 6 variable which is the time of expiration for the member in the form

required for BASETYPE=TIME dialog variables.

MBRDYSUSE A BINARY 4 variable containing the number of days the member has been used.

MBRLASTUSE

A CHAR 7 variable which is the date the member was last used in the form required

for BASETYPE=DATE dialog variables.

MBRRSETDAT

A CHAR 7 variable which is the date the use information was reset for the member in

the form required for BASETYPE=DATE dialog variables.

Note: The layout of this buffer is designed to match with the layout of the data returned by the

Retrieve Member Description (QUSRMBRD) API using format name MBRD0200. Therefore,

instead of setting up a buffer, the application program can pass the buffer as it is returned by

the API.

3. Call the Put Dialog Variable (QUIPUTV) API to change the contents of the dialog variables using

variable record MBRD0200 and the buffer initialized in the previous step.

4. Call the Display Panel (QUIDSPP) API to display panel WRKMBR. The UIM returns control to the

application when one of the following occurs:

v The user presses the Enter key without typing any list options or a command on the command line.

The program variable passed as the function requested parameter to the QUIDSPP API is set to 500.

This is done because ENTER=’RETURN 500’ is specified on the PANEL tag which defines the

WRKMBR panel.

v The user presses the F12 (Cancel) key. The program variable passed as the function requested

parameter to the QUIDSPP API is set to -8. This is the value defined for the CANCEL dialog

command.

v The user presses the F3 (Exit) key. The program variable passed as the function requested

parameter to the QUIDSPP API is set to -4. This is the value defined for the CANCEL dialog

command.
5. If the program is not called by the UIM to process option 5 from the example list panel shown in

Figure 104 on page 283, the program should do the following.

a. Call the Close Application (QUICLOA) API to close the UIM application. This frees up the system

resources being used by the UIM application.

Chapter 16. Introduction to the User Interface Manager 315

Data Entry Panel

A data entry panel is a form of data presentation panel where the user is allowed to enter new values for

one or more of the dialog variables displayed. The USAGE attribute of the data item (DATAI) and data

item extender (DATAIX) tags defines whether or not the user is allowed to enter a new value for the

dialog variable displayed by the tag.

When USAGE=INOUT is specified, the user is allowed to enter a new value for the dialog variable. For

data areas using a vertical layout, the leader dots following the descriptive text for the item end with a

period instead of a colon. A colon is used for data items which do not allow input.

When the UIM returns control from the Display Panel (QUIDSPP) API and the function requested

parameter contains the value specified for the RETURN dialog command on the ENTER attribute of the

display panel (PANEL) tag, the application program uses the Get Dialog Variable (QUIGETV) API to

retrieve the values for the dialog variables changed by the user.

Creating a Panel with a Menu Bar

A menu bar can be defined for any full-screen panel. The menu bar acts as an extension of the panel and

contains definitions of choices for the menu bar. Each choice in the menu bar has a pull-down menu

defined. When the user selects the menu bar choice, the UIM displays the pull-down menu in a window

below the menu bar. Each choice within the pull-down menu represents an action which can be

performed. In this example, a Work with File Members panel is defined using a menu bar. This panel is

functionally similar to the panel shown in “Creating a List Panel” on page 283. Although the panel

appears slightly different from the example list panel, this example panel using a menu bar performs the

same function.

The panel shown in Figure 111 shows an example of an action list panel which also has a menu bar. This

example explains how the menu bar is defined and how it interacts with the rest of the panel definition.

This example does not describe how to define the action list portion of the panel. For more information

on creating an action list, see “Creating a List Panel” on page 283. If you need more information on

creating help for a menu bar area, see “Help in a Menu Bar Area” on page 388.

The example panel is shown with a pull-down menu displayed. The pull-down is active because the user

selected entries in the list and pressed the Enter key.

 Member View Help �1�

-.-----------------------------------.--

 : __ 3. Copy... �2� : File Members

 : 4. Remove... :

 : 5. Display... : F4 for list

 : : library, *CURLIB, *LIBL

 : 7. Reorganize :

 : 8. Member description... :

 : 9. Clear... :

 : :

 : 90. Exit �3� F3 : XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 :...................................: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 _ XXXXXXXXXX XXXXXXXXXX XX

 / XXXXXXXXXX XXXXXXXXXX XX

 / XXXXXXXXXX XXXXXXXXXX XX

 _ XXXXXXXXXX XXXXXXXXXX XX

 _ XXXXXXXXXX XXXXXXXXXX XX

 / XXXXXXXXXX XXXXXXXXXX XX

 _ XXXXXXXXXX XXXXXXXXXX XX

 More...

 Parameters for options 3 and 5 or command

 ===> __

 F3=Exit F4=Prompt F9=Retrieve F10=Actions F12=Cancel

Figure 111. Example Panel with a Menu Bar

316 Application Display Programming V6R1

The reference numbers in the example panel do not appear on the display. They are shown for

illustration purposes and also appear in the UIM tag source shown in “Source for Example Panel with a

Menu Bar” on page 318. These reference numbers show which portions of the source define text and

information which appears on the panel.

�1� Each choice in the menu bar is defined using a menu bar choice (MBARC) tag. The choice shown

on the panel is defined as text following the period of the MBARC tag.

 All choices for a menu bar are defined by placing the MBARC tags between the menu bar

(MBAR) and EMBAR tags. The name specified on the NAME attribute of the MBAR tag is also

specified on the MBAR attribute of the PANEL tag.

�2� Each option in the pull-down menu is defined using the pull-down field choice (PDFLDC) tag.

The option number is defined using the OPTION attribute and the text following the option

number is defined as text following the period of the PDFLDC tag.

 All choices for a pull-down menu are defined by placing the PDFLDC tags between the

pull-down field (PDFLD) and EPDFLD tags. The PDFLDC and EPDFLDC tags are placed

between a MBARC and EMBARC tag.

�3� An accelerator key description shown along the right side of the pull-down menu is defined as

text following the period of the PDACCEL tag. An accelerator is a key which performs the same

function as an option in a pull-down menu. The PDACCEL tag is placed immediately after the

PDFLDC tag for the option to which the accelerator applies.

From this panel, the application user can perform operations against entries in the list using either of the

following methods:

v When the user selects entries in the list and presses the Enter key, the UIM displays the pull-down

menu for the member choice in the menu bar. This is done because SELECT=PULLDOWN is specified

on the PANEL tag shown at �A�.

When the user selects option 3, 4, 5, 7, 8 or 9 from the pull-down menu, the UIM performs the action

defined for that option once for each list entry selected by the user. The UIM does this because

ACTFOR=LIST is specified on the PDFLDC tag at �B�. The UIM makes these options unavailable when

the users displays the pull-down menu without selecting any entries in the list.

When the user selects option 90 from the pull-down menu, the UIM returns control to the application

program that displayed the panel. The UIM does this because ACTFOR=PANEL is specified on the

PDFLDC tag at �C�. Because EXIT is specified for the ACTION attribute on the PDFLDC tag, the UIM

returns control to the calling program with an indication that the user requested Exit.

v When the user types option numbers next to the desired list entries and presses the Enter key, the UIM

performs the action for each option. The UIM does this because ACTOR=UIM is specified on the list area

(LIST) tag at �D� and a list action (LISTACT) tag at �E� specifies the action for the UIM to perform for

each option number.

Note that in this case, no text is shown on the panel describing the option numbers for the list. This is

because no text is specified following the period of the LISTACT tags. The primary interface defined

for this panel is to select entries in the list and then choose an action from a pull-down menu. The list

option numbers are available as a faster alternative for more experienced users. Although the list

option numbers do not appear on the panel, they are described in the help shown when the Help key

is pressed with the cursor positioned in the input column of the list.

For this example, the actions for the option numbers in the pull-down menu are the same as the

actions for the option numbers that can be entered in the list. This design is recommended for a

consistent user interface, but the UIM does not prevent the application developer from defining an

action in a pull-down menu that is different from the action for a list option with the same option

number.

Chapter 16. Introduction to the User Interface Manager 317

Required Tags for a Panel with a Menu Bar

Figure 112 shows the required tags for creating a UIM panel with a menu bar. For an example of the

required and optional tags, see “Source for Example Panel with a Menu Bar.”

Note: The tags in Figure 112 require attributes. These attributes are not shown. Without these attributes,

the example in Figure 112 will not compile. For a description of the required attributes for these

required tags, see Appendix A, “UIM Panel Group Definition Language.”

Source for Example Panel with a Menu Bar

This is a partial listing of member T0011PN2 in source file QATTUIM in library QUSRTOOL.

.* ---

.*

.* Beginning of panel group source.

.*

.* ---

:PNLGRP DFTMSGF=t0011msgf2

 SUBMSGF=t0011msgf2.

Figure 112. Required UIM tags for a panel with a menu bar

318 Application Display Programming V6R1

.*

.* The import tag specifies that all help is to be found

.* in panel group T0011HL2 found by searching the library list.

:IMPORT NAME=’*’

 PNLGRP=t0011hl2.

.*

.* ---

.* Define all variable classes

.* ---

.* -----------------

.* Option

.* Note: Need WIDTH=1 to preserve column alignment on confirmation panel.

:CLASS NAME=optcl

 BASETYPE=’ACTION’

 WIDTH=1.

:ECLASS.

.* -----------------

.* Object name

:CLASS NAME=namecl

 BASETYPE=’OBJNAME 10’.

:ECLASS.

.* -----------------

.* Library name

:CLASS NAME=libcl

 BASETYPE=’OBJNAME 10’.

:TL.

:TI VALUE=’"*LIBL"’.*LIBL

:TI VALUE=’"*CURLIB"’.*CURLIB

:ETL.

:ECLASS.

.* -----------------

.* File attribute

:CLASS NAME=attrcl

 BASETYPE=’CHAR 10’

 CASE=UPPER.

:ECLASS.

.* -----------------

.* Descriptive text

:CLASS NAME=textcl

 BASETYPE=’IGC 50’

 SUBST=QUOTED.

:ECLASS.

.* -----------------

.* Source type

:CLASS NAME=srctypcl

 BASETYPE=’CHAR 10’.

:ECLASS. ...
 Additional CLASS tags in member T0011PN2 are not shown here ...
.* -----------------

.* Command line parameters

:CLASS NAME=parmcl

 BASETYPE=’CHAR 255’.

:ECLASS.

.* -----------------

.* Exit program specification for CALL dialog command

:CLASS NAME=exitcl

 BASETYPE=’CHAR 20’.

:ECLASS.

Chapter 16. Introduction to the User Interface Manager 319

.* -----------------

.* View number

:CLASS NAME=vwnumcl

 BASETYPE=’BIN 15’.

:ECLASS.

.* -----------------

.* Classes for pad variables in variable record definitions.

:CLASS NAME=pad1cl

 BASETYPE=’CHAR 1’.

:ECLASS.

:CLASS NAME=pad2cl

 BASETYPE=’CHAR 2’.

:ECLASS.

:CLASS NAME=pad10cl

 BASETYPE=’CHAR 10’.

:ECLASS.

:CLASS NAME=pad13cl

 BASETYPE=’CHAR 13’.

:ECLASS.

:CLASS NAME=pad48cl

 BASETYPE=’CHAR 48’.

:ECLASS.

:CLASS NAME=pad50cl

 BASETYPE=’CHAR 50’.

:ECLASS.

.*

.* ---

.* Define all dialog variables

.* ---

.*

.* -------------------------------------

.* Variables for file and library

.* -------------------------------------

.* -----------------

.* File name

:VAR NAME=file

 CLASS=namecl.

.* -----------------

.* Library name

:VAR NAME=lib

 CLASS=libcl.

.* -----------------

.* attributes

:VAR NAME=fattr

 CLASS=attrcl.

.* -----------------

.*

.* -------------------------------------

.* Variables for list of members

.* -------------------------------------

.* -----------------

.* option for list of members

:VAR NAME=mopt

 CLASS=optcl.

.* -----------------

.* Object name

:VAR NAME=mbr

 CLASS=namecl.

.* -----------------

.* member type

:VAR NAME=mtype

 CLASS=attrcl.

.* -----------------

.* Descriptive text

:VAR NAME=mtext

 CLASS=textcl.

320 Application Display Programming V6R1

...
 Additional VAR tags in member T0011PN2 are not shown here ...
.*

.* -------------------------------------

.* Variable for command line parameters

.* -------------------------------------

.* -----------------

.* Command line parameters

:VAR NAME=parms

 CLASS=parmcl.

.*

.* -------------------------------------

.* Variables for specifying CALL/exit programs

.* -------------------------------------

.* -----------------

.* Program to call for all UIM exits

:VAR NAME=exitpgm

 CLASS=exitcl.

.*

.* -------------------------------------

.* Variables for controlling list views

.* -------------------------------------

.* -----------------

.* View number for list of members

:VAR NAME=mbrview

 CLASS=vwnumcl. ...
 Additional VAR tags in member T0011PN2 are not shown here ...
.*

.* -------------------------------------

.* Variables for padding in variable record definitions.

.* Padding is needed in variable records so the layout

.* of the record matches a list format returned from

.* an API. The pad variables are used as placeholders for

.* variables not used in the API format or for reserved space

.* in the API format.

.* -------------------------------------

:VAR NAME=pad1

 CLASS=pad1cl.

:VAR NAME=pad2

 CLASS=pad2cl.

:VAR NAME=pad10

 CLASS=pad10cl.

:VAR NAME=pad13

 CLASS=pad13cl.

:VAR NAME=pad48

 CLASS=pad48cl.

:VAR NAME=pad50

 CLASS=pad50cl.

.*

.* ---

.* Define a variable record for file, library and file attribute

.* ---

:VARRCD NAME=filelib

 VARS=’file lib fattr’

 NOGET=’fattr’

 .

.*

.* ---

.* Define a variable record for exit program

.* ---

:VARRCD NAME=exitprog

 VARS=’exitpgm’

 .

Chapter 16. Introduction to the User Interface Manager 321

.*

.* ---

.* Define a variable record for list of members.

.* The layout of this record is designed to match the

.* List Database File Members API (QUSLMBR) format name MBRL0200.

.* ---

:VARRCD NAME=mbrl0200

 VARS=’mbr mtype pad13 pad13 mtext’

 NOPUT=’pad13’

 NOGET=’mtype pad13 mtext’

 Additional VARRCD tags in member T0011PN2 are not shown here ...
.*

.*

.* ---

.* Define a list of members

.* ---

:LISTDEF NAME=mbrlist

 VARS=’mopt mbr mtype mtext’

 MSGID=USR0101. ...
 Additional LISTDEF tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define all conditions

.* ---

.* -----------------

.* Condition for physical files

:COND NAME=pf

 EXPR=’fattr="PF "’.

.* ---

.* Conditions for views of members list

:COND NAME=mbrview1

 EXPR=’mbrview=0’.

:COND NAME=mbrview2

 EXPR=’mbrview=1’. ...
 Additional COND tags in member T0011PN2 are not shown here
 All TT tags in member T0011PN2 are not shown here ...
.*

.* ---

.* Define menu bar for work with members panel

.* ---

:MBAR NAME=mbarmbr �1�

 HELP=’mbarmbr/’

 .

:MBARC HELP=’mbarmbr/member’

 .

Member �1�

:PDFLD.

:PDFLDC OPTION=3

 ACTFOR=LIST �B�

 HELP=’mbarmbr/cpyf’

 ACTION=’CMD CPYF ?*FROMFILE(&lib./&file.)’

 ACTION=’ ?*FROMMBR(&mbr.) &parms.’

 .

Copy... �2�

.*

:PDFLDC OPTION=4

322 Application Display Programming V6R1

ACTFOR=LIST

 HELP=’mbarmbr/rmvm’

 ACTION=’CMD RMVM FILE(&lib./&file.) MBR(&mbr.)’

.* CONFIRM=confrmvmmb

 USREXIT=’CALL exitpgm’

 .

Remove...

.*

:PDFLDC OPTION=5

 COND=pf

 ACTFOR=LIST

 HELP=’mbarmbr/dsppfm’

 ACTION=’CMD DSPPFM FILE(&lib./&file.) MBR(&mbr.) &parms.’

 .

Display...

.*

:PDFLDC OPTION=7

 COND=pf

 ACTFOR=LIST

 HELP=’mbarmbr/rgzm’

 ACTION=’CMD RGZPFM FILE(&lib./&file.) MBR(&mbr.)’

 .

Reorganize

.*

:PDFLDC OPTION=8

 ACTFOR=LIST

 HELP=’mbarmbr/dspfd’

 ACTION=’CALL exitpgm’

 .

Member description...

.*

:PDFLDC OPTION=9

 COND=pf

 ACTFOR=LIST

 HELP=’mbarmbr/clrm’

.* CONFIRM=confclrmmb

 ACTION=’CMD CLRPFM FILE(&lib./&file.) MBR(&mbr.)’

 .

Clear...

.*

:PDFLDC OPTION=90

 ACTFOR=PANEL �C�

 HELP=’mbarmbr/exit’

 ACTION=’EXIT SET’

 VARUPD=NO

 .

Exit

:PDACCEL.F3 �3�

:EPDFLD.

:EMBARC.

.*

:MBARC HELP=’mbarmbr/view’

 .

View

:PDFLD.

:PDFLDC OPTION=1

 ACTFOR=PANEL

 HELP=’mbarmbr/view2’

 AVAIL=mbrview1

 ACTION=CHGVIEW

 .

Names only

:PDACCEL.F11

:PDFLDC OPTION=2

 ACTFOR=PANEL

 HELP=’mbarmbr/view1’

 AVAIL=mbrview2

Chapter 16. Introduction to the User Interface Manager 323

ACTION=CHGVIEW

 .

Names and descriptions

:PDACCEL.F11

:EPDFLD.

:EMBARC.

.*

:MBARC HELP=’mbarmbr/help’

 .

Help

:PDFLD.

:PDFLDC OPTION=1

 ACTFOR=PANEL

 HELP=’mbarmbr/helphelp’

 ACTION=helphelp

 .

Help for help...

:PDFLDC OPTION=2

 ACTFOR=PANEL

 HELP=’mbarmbr/exthelp’

 ACTION=exthelp

 .

Extended help...

:PDFLDC OPTION=3

 ACTFOR=PANEL

 HELP=’mbarmbr/keyshelp’

 ACTION=keyshelp

 .

Keys help...

:PDFLDC OPTION=4

 ACTFOR=PANEL

 HELP=’mbarmbr/about’

 ACTION=’DSPHELP about’

 .

About...

:EPDFLD.

:EMBARC.

:EMBAR. ...
 The first KEYL tags in member T0011PN2 are not shown here ...
.*

.*

.* ---

.* Define keys for work with members panel with a menu bar

.* The keys are the same but some do not have descriptions

.* ---

:KEYL NAME=mbrkeysmb

 HELP=keyl.

:KEYI KEY=F1

 HELP=helpf1

 ACTION=HELP.

:KEYI KEY=F3

 HELP=exit

 ACTION=’EXIT SET’

 VARUPD=NO.

F3=Exit

:KEYI KEY=F4

 HELP=prompt

 ACTION=PROMPT

 PRIORITY=30.

F4=Prompt

:KEYI KEY=F9

 HELP=retrieve

 ACTION=RETRIEVE

 PRIORITY=35.

324 Application Display Programming V6R1

F9=Retrieve

:KEYI KEY=F10

 HELP=actions

 ACTION=ACTIONS

 PRIORITY=40.

F10=Actions

:KEYI KEY=F11

 HELP=mbrviewname

 ACTION=CHGVIEW

 COND=mbrview1.

:KEYI KEY=F11

 HELP=mbrviewdesc

 ACTION=CHGVIEW

 COND=mbrview2.

:KEYI KEY=F12

 HELP=cancel

 ACTION=’CANCEL SET’

 VARUPD=NO.

F12=Cancel

:KEYI KEY=F24

 HELP=morekeys

 ACTION=MOREKEYS.

F24=More keys

:KEYI KEY=ENTER

 HELP=enter

 ACTION=ENTER.

:KEYI KEY=HELP

 HELP=help

 ACTION=HELP.

:KEYI KEY=PAGEDOWN

 HELP=pagedown

 ACTION=PAGEDOWN.

:KEYI KEY=PAGEUP

 HELP=pageup

 ACTION=PAGEUP.

:KEYI KEY=PRINT

 HELP=print

 ACTION=PRINT.

:EKEYL. ...
 Additional KEYL tags in member T0011PN2 are not shown here
 The first PANEL tags in member T0011PN2 are not shown here ...

.*

.*

.* ---

.* Define Work with Members panel with a menu bar to process options

.* ---

:PANEL NAME=wrkmbrmbar

 HELP=’wrkmbr/’

 MBAR=mbarmbr �1�

 KEYL=mbrkeysmb

 ENTER=’RETURN 500’

 SELECT=PULLDOWN �A�

 TOPSEP=SPACE.

Work with File Members

.*

.* -------------------------------------

.* Define a data presentation area to display the

.* library/file name whose members are listed.

.* -------------------------------------

:DATA DEPTH=3

 SCROLL=NO

 LAYOUT=1

Chapter 16. Introduction to the User Interface Manager 325

BOTSEP=SPACE

 COMPACT

 .

.* -------------------------------------

.* Divide the layout width into two columns.

.* The first column is for the prompt text with leader dots.

.* The second column is for the variable values.

:DATACOL WIDTH=22.

:DATACOL WIDTH=12.

:DATACOL WIDTH=’*’.

.* -------------------------------------

.* Display qualified file name

:DATAGRP GRPSEP=QINDENT

 HELP=’wrkmbr/filelib’

 COMPACT

 .

:DATAI VAR=file

 USAGE=INOUT

 CSRLOC=NO

 PROMPT=’CALL exitpgm’

 .

File

:DATAC.F4 for list

:DATAI VAR=lib

 USAGE=INOUT

 CSRLOC=NO

 .

Library

:DATAC.library, *CURLIB, *LIBL

:EDATAGRP.

.*

:EDATA.

.*

.* -------------------------------------

.* Define the list area

.* -------------------------------------

:LIST DEPTH=’*’

 LISTDEF=mbrlist

 ACTOR=UIM �D�

 MAXHEAD=4

 MAXACTL=3

 VIEW=mbrview

 PARMS=parms

 BOTSEP=SPACE.

:TOPINST.Select members using /, press Enter.

.*

.* -------------------------------------

.* Specify the action to be taken for each option

.* -------------------------------------

:LISTACT OPTION=3 �E�

 NOCMD=PROMPT

 HELP=’wrkmbr/cpyf’

 ENTER=’CMD CPYF ?*FROMFILE(&lib./&file.)’

 ENTER=’ ?*FROMMBR(&mbr.) &parms.’

 PROMPT=’CMD ?CPYF ?*FROMFILE(&lib./&file.)’

 PROMPT=’ ?*FROMMBR(&mbr.) &parms.’.

.*

:LISTACT OPTION=4

 HELP=’wrkmbr/rmvm’

.* CONFIRM=confrmvmmb

 ENTER=’CMD RMVM FILE(&lib./&file.) MBR(&mbr.)’

 PROMPT=’CMD ?RMVM ?*FILE(&lib./&file.) ?*MBR(&mbr.)’

 USREXIT=’CALL exitpgm’.

.*

:LISTACT OPTION=5

 COND=pf

 HELP=’wrkmbr/dsppfm’

326 Application Display Programming V6R1

ENTER=’CMD DSPPFM FILE(&lib./&file.) MBR(&mbr.) &parms.’

 PROMPT=’CMD DSPPFM ?*FILE(&lib./&file.) ?*MBR(&mb.r) &parms.’.

.*

:LISTACT OPTION=7

 COND=pf

 HELP=’wrkmbr/rgzm’

 ENTER=’CMD RGZPFM FILE(&lib./&file.) MBR(&mbr.)’

 PROMPT=’CMD ?RGZPFM ?*FILE(&lib./&file.) ?*MBR(&mbr.)’.

.*

:LISTACT OPTION=8

 HELP=’wrkmbr/dspfd’

 ENTER=’CALL exitpgm’

 PROMPT=’CALL exitpgm’.

.*

:LISTACT OPTION=9

 COND=pf

 HELP=’wrkmbr/clrm’

.* CONFIRM=confclrmmb

 ENTER=’CMD CLRPFM FILE(&lib./&file.) MBR(&mbr.)’

 PROMPT=’CMD ?CLRPFM ?*FILE(&lib./&file.) ?*MBR(&mbr.)’.

.*

.*

.* -------------------------------------

.* Define the columns and headings to display

.* -------------------------------------

:LISTCOL VAR=mopt

 USAGE=INOUT

 HELP=’wrkmbr/option’

 MAXWIDTH=6.

:LISTCOL VAR=mbr

 USAGE=OUT

 HELP=’wrkmbr/mbr’

 MAXWIDTH=10.

Member

:LISTCOL VAR=mtype

 USAGE=OUT

 HELP=’wrkmbr/type’

 MAXWIDTH=10.

Type

:LISTCOL VAR=mtext

 USAGE=OUT

 HELP=’wrkmbr/text’

 MAXWIDTH=’*’.

Text

.*

.* -------------------------------------

.* Define multiple views for F11 to toggle between

.* -------------------------------------

:LISTVIEW COLS=’mopt mbr mtype mtext’.

:LISTVIEW COLS=’mopt mbr’ layout=4.

.*

:ELIST.

.*

.* -------------------------------------

.* Use a command line and allow parameters to be given

.* -------------------------------------

:CMDLINE SIZE=SHORT.

Parameters for options 3 and 5 or command

.*

:EPANEL. ...
 Additional PANEL tags in member T0011PN2 are not shown here ...
.*

Chapter 16. Introduction to the User Interface Manager 327

.* ---

.* End of panel group source

.* ---

:EPNLGRP.

Application Programming for a Menu Bar Panel

An example of an application program to display the panel shown in Figure 111 on page 316 can be

found in member T0011CP2 in source file QATTSYSC in library QUSRTOOL. This is an ILE C/C++

program which calls the appropriate UIM application programming interfaces (APIs) to display the panel.

The application program should do the processing described in “Application Programming for a List

Panel” on page 294.

A general example of an RPG program can be found in member T0011INF in source file QATTINFO in

library QUSRTOOL.

328 Application Display Programming V6R1

Chapter 17. Details of Using User Interface Manager

This chapter explains the structure of the i5/OS user interface manager (UIM) and provides an overview

of its objects and functions.

Opening a UIM Application

An application program must first open a UIM application that uses the panel group to access dialog

variables, lists, and panel definitions. An application is opened by the Open Display Application

(QUIOPNDA) or Open Print Application (QUIOPNPA) APIs and closed by the Close Application

(QUICLOA) API. A UIM application is managed much like an open file. It is meaningful only for a

particular call for reclaim resources processing, and it is automatically closed as necessary by the reclaim

resources function or by cleanup processing at the end of a job.

When an application is opened, UIM assigns each application an application handle. A handle is a

variable that represents an object, an instance of an application using some function, or a processing

session. This handle must be specified as an input parameter to all APIs that operate with the application.

The same panel group object can be associated with more than one open application in the same job, but

each application contains a completely independent set of dialog variables, active lists, and internal

control information that define the state of the UIM application.

Defining Dialog Variables

A dialog variable is a UIM element that contains a value. This value can be referred to and updated by

programs that use the open application and by the UIM when it performs functions such as displaying

panels to the user.

The dialog variables contained in an open application are determined by the panel group object

associated with the application. Dialog variables are defined using the variable definition (VAR) language

tag in the source for a panel group. Special dialog variables defined by UIM have names that begin with

the letter Z and are referred to as Z-variables. For more information on the VAR language tag, see “VAR

(Variable Definition)” on page 626. For more information on Z-variables, see “Dialog Variables Defined by

UIM” on page 627.

Every open application associated with a particular panel group object contains a complete set of all the

dialog variables defined in the panel group, including whatever Z-variables are defined in the tag

language for that panel group. The set of all dialog variables in an application is called the variable pool

for the application. UIM is not able to communicate directly with a program’s storage to get the values of

its variables. The program can use the variable pool to communicate to UIM what it would like to

display on the panel. When a panel is to be displayed, UIM retrieves the values from the variable pool

and displays them on the panel. When the user updates the fields on the panel, UIM reads the values

from the panel and places them into the variable pool for the user program to retrieve and act upon.

Because each open application has its own variable pool, each time a user program wishes to gain access

to the dialog variables in an application, it must provide the variable pool APIs with the application

handle that was assigned by the QUIOPNDA API.

For more information on variable pools, see “Using Variable Pool Services” on page 332. The dialog

variables are used to display panel field values that are not constant text. The dialog variables are also

used to tailor the format of the panel using the condition definition (COND) tag. For more information

on the COND tag, see “COND (Condition Definition)” on page 484.

© Copyright IBM Corp. 1997, 2008 329

The definition of each dialog variable specifies a base data type value that controls both the form of the

internal storage of the variable and its editing characteristics on the display. The following base type

values are supported:

v Character

v IGC

v Graphic

v Binary (numeric)

v Packed and zoned decimal

v Date

v Time

v Action (list option or selection)

v Name

v Object name

v Pointer

The class definition (CLASS) language tag defines a class of dialog variables to be associated with a base

data type, specific validity checking, and display value translation functions. Validity checking is done

only for values entered by the user in an input field on a display. The validity checking is not done for

values provided by an application program through an API. For more information on the CLASS tag, see

“CLASS (Class Definition)” on page 470.

A translation function allows the application program to operate with internal values. The values are

automatically mapped by the UIM to and from specified character string values, when displayed or

printed. An example of this is the months in a year. The application program reference the values 1

through 12, but the user sees only the names of the months on the display. For more information on the

translation function, see “TL (Translation List)” on page 621.

When the application is initially opened, every dialog variable in the application has an initial value. For

dialog variables defined by the application programmer, the initial value is determined by the base type

as follows:

 Table 30. Initial Values of Dialog Variable

Dialog Variable Initial Value

Numeric 0

Date and Time 0

Character Single-byte blanks

IGC Single-byte blanks

Graphic Double-byte blanks

Pointer Null

Z-variable Defined by the definition of the variable (see “Defining Dialog Variables” on

page 329)

Any dialog variable that is referenced without a set value is assigned the initial value, whether the

reference is made by an application program or by the UIM.

Restrictions on Using Dialog Variables

A dialog variable should not be used for the value of more than one display item per panel as multiple

input fields, because the results might be undesirable. This means that when used as input fields, no

dialog variable should be named on multiple data item (DATAI), data item extender (DATAIX), or list

330 Application Display Programming V6R1

column (LISTCOL) tags that are part of the same panel definition without conditioning. This ensures that

the same dialog variable does not appear on the display in more than one place.

Because the variable pool exists until the application is closed, the UIM, and all programs that use the

application, can determine the last value assigned to any dialog variable in the pool. Once the application

program assigns the value of a dialog variable, it never needs to be assigned again as long as it does not

need to be changed. Similarly, once an input value is accepted from the user and stored in a dialog

variable, that value continues to be available until the variable is updated by either an application

program or the user.

Dialog Variable Error Messages

By defining a variable of basetype char 1 on the ERRVAR attribute of the VAR tag, the user may indicate

to UIM that a variable is in error by using the Put Dialog Variable (QUIPUTV) API to set this variable to

(X“F1”). When this happens, the field in error is highlighted and the cursor is positioned to the first input

field that is in error. The application program reports the cause of the error and requests that the UIM

display the messages to the user using the message reference key parameter of the Display Panel

(QUIDSPP) API.

All variables in error in the open application are reset when the next dialog command is processed by the

UIM. Exceptions to this are the Menu Bar Cursor Action (ACTIONS), Command Line (CMDLINE),

Change View (CHGVIEW), HELP, Display More Function Keys (MOREKEYS), Move to Top (MOVETOP),

PAGEUP, PAGEDOWN, Print Screen (PRINT), and Retrieve Command String (RETRIEVE) dialog

commands. The error status for each dialog variable is reset when control returns from the Display Panel

(QUIDSPP) API or when control is passed from the UIM to a program or command identified by a menu

item, action list, pull-down choice, or function key item.

When a function key is pressed or a pull-down choice is selected that performs an action where

VARUPD=YES was specified, ((see “KEYI (Key List Item)” on page 534), and “PDFLDC (Pull-Down Field

Choice)” on page 598), the UIM validates the values of all entered (changed) input fields. If an error is

found, the panel is displayed again with the fields in error highlighted and one or more messages is

issued. The values of the dialog variable associated with the input fields are not changed until the user

enters a correct value.

The application developer can specify that some function keys and pull-down choices operate without

updating the variable pool by using VARUPD=NO. If control returns to the program that ran the

QUIDSPP API for such a function, all values entered by the user are lost. If the requested function causes

the UIM to call a program or system command, all input field values are stored internally by the UIM in

such a way that they can be shown when control returns to the UIM and the panel is displayed again.

These input values are stored locally for the panel being displayed. Any panel that is presented using the

same open application by a program or command with VARUPD=NO specified, displays the values of all

dialog variables as they exist in the variable pool. However, if VARUPD=YES is specified, the updated

value is used instead of the stored value when control returns and the original panel is displayed again.

Providing Field Values for a Display Panel Using Dialog Variables

The tag language allows you to use dialog variables to provide field values for a display panel and

substitution values for a CL command that is called by the UIM for a pull-down choice, menu choice,

function key, or action list selection. Whenever a dialog variable is referred to in one of these ways, the

internal value stored in the variable pool is converted to an external form determined by the editing rules

for the variable base type and any translation list defined for the variable class.

When the external form of a dialog variable contains characters that are incorrect for a display device, the

UIM converts the incorrect characters to hexadecimal 1F characters ("). When the external form of a

dialog variable contains characters that are incorrect for a printer, the UIM converts the incorrect

characters to the replacement characters in effect for the printer file, or to blanks when RPLUNPRT(*NO)

is in effect for the printer file.

Chapter 17. Details of Using User Interface Manager 331

Incorrect display characters are characters with hexadecimal values equal to hexadecimal FF or less than

40, not including hexadecimal 00, 0E, and 0F. Incorrect printer characters are the same as the incorrect

display characters, except that hexadecimal 00 is also incorrect. This conversion does not take place on

variable values that have been translated with a translation list.

If the dialog variable that contained the incorrect characters is used as an input field and retrieved with

the Get Dialog Variable (QUIGETV) API by the program, the incorrect characters might be changed to

hexadecimal 3F. This occurs if the user modifies the field or presses the Help key.

When the UIM displays a panel, it retrieves the current value for all variable fields from the variable pool

or from list entries. If the user types a value in an input field, the UIM validates and translates the value

according to the CLASS attribute of the associated dialog variable, and then stores the value in the dialog

variable or associated list entry. The application program can determine the value entered by the user by

using the Get Dialog Variable (QUIGETV) or the Get List Entry (QUIGETLE) API to retrieve the dialog

variable value.

Using Variable Pool Services

The Get Dialog Variable (QUIGETV) and Put Dialog Variable (QUIPUTV) APIs are the primary interfaces

for application programs to retrieve and update dialog variables. When a dialog variable is updated, the

attributes of the new value must match the base type of the dialog variable. When a dialog variable is

retrieved, the value is always returned to the application program in the internal form specified by the

base type of the dialog variable. On the call to the variable pool services APIs, a variable record is

required. A variable record, defined using the VARRCD tag in the UIM panel group source, defines a

group of dialog variables that may be updated or accessed together in one call to the APIs.

No data conversion or validity checking is done when variable values are retrieved or updated using the

QUIGETV and QUIPUTV APIs. For more information on these APIs, see the APIs topic

Some of the dialog variables defined by UIM, referred to as Z-variables, can be retrieved but not

modified. The tag language does not allow a variable with only read access to be used as an input field

on a panel definition. The UIM returns an exception to an application program if it attempts to update

such a Z-variable using the QUIPUTV API.

Dialog Variables and Special Values

Variables with a BASETYPE of TIME defined with the ZONE option can have special values for the time

zone. See the “CLASS (Class Definition)” on page 470 tag for more information. Either a user at a display

station or the application can specify the special values. The UIM resolves these special values when the

value is placed into the variable pool. Therefore, the variable will contain the resolved value, and not the

special value as entered, on the next operation that retrieves the value of this variable.

So a user at a display station may enter the value ″01:30:00 *LCL″ into a data item. When another data

item on the panel displays the same variable or the application retrieves the value of the dialog variable,

the value will appear as ″01:30:00 CST″. Similarly, if the application updates the dialog variable with the

special value, and retrieves it again, the value will have changed. Be aware of this behavior if your

application uses the special time zone values.

Character Set and Code Page Considerations

Data that is always stored in a specific character set and code page can be converted to another character

set and code page when it is displayed or printed by the UIM. If your application has data that must be

converted, do one the following:

v Code CHRID=PNLGRP on the CLASS tag of the variables that need to be converted. See “CLASS

(Class Definition)” on page 470. Then, specify the number of the graphic character set and code page of

332 Application Display Programming V6R1

your data on the CHRID parameter of the Create Panel Group (CRTPNLGRP) command that is used to

create your panel. For more information about the CRTPNLGRP command, see the Control language

topic collection in the i5/OS Information Center.

v On the CHRID parameter of the Create Panel Group (CRTPNLGRP) command that is used to create

your panel, specify *JOBCCSID. For more information about the CRTPNLGRP command, see the

Control language topic collection in the i5/OS Information Center.

Displaying

The UIM compares the character set and code page of the device to the character set and code page of

the panel group. If they are different, then outbound and inbound conversion tables are used to convert

the appropriate dialog variables. If a conversion table is not available, then the Open Display Application

(QUIOPNDA) API sends a diagnostic message and continues.

Display operations for Arabic and Hebrew bidirectional panel groups, which have BIDI=LTR or

BIDI=RTL specified on the panel group (PNLGRP) tag, are only allowed when the device is configured to

use code page 420 or 424.

See Table 31

 Table 31. UIM CCSID/CHRID Conversions for Display

Type of Data

Panel Group CHRID

XXX *JOBCCSID *DEVD

Panel group constant text No conversion. Convert from panel group

primary source file CCSID

to device CCSID.

No conversion.

Variable with

CHRID=PNLGRP on

CLASS tag

Convert from XXX to

device CHRID.

Convert from job CCSID to

device CCSID.

No conversion.

Variable without

CHRID=PNLGRP on

CLASS tag

No conversion. Convert from job CCSID to

device CCSID.

No conversion.

Printing

The UIM compares the character set and code page of the printer file to the character set and code page

of the panel group. If they are different, an outbound conversion table is used to translate the appropriate

dialog variables. If CHRID(*DEVD) is specified for either the panel group or the printer file, no

conversion of the dialog variables is done. If a translation table is not available, the Open Display

Application (QUIOPNDA) or the Add Print Application (QUIADDPA) API sends a diagnostic message

and continues.

When a printer file is printed on a printer device, the character set and code page of the printer file is

compared to the character set and code page that is loaded in the printer. If they are different, all the

printer file data, including the constant text from the UIM tags, is translated to the character set and code

page of the printer.

To minimize the number of times that character set and code page translations takes place, specify the

same CHRID value on both your printer file and your panel group.

Print operations for Arabic and Hebrew bidirectional panel groups, which have BIDI=LTR or BIDI=RTL

specified on the panel group (PNLGRP) tag, must have code page 420 or 424 specified for the printer file.

Also, any call to the QUIADDPA API for a bidirectional panel group must have the same code page

specified for the printer file as is used by the display device.

See Table 32 on page 334

Chapter 17. Details of Using User Interface Manager 333

Table 32. UIM CCSID/CHRID Conversions for Print

Print File CHRID

Panel Group CHRID or Menu CHRID

XXX *JOBCCSID *DEVD

YYY Panel group constant text: no

conversion.

Panel group constant text:

convert from panel group

primary source file CCSID to

YYY.

Panel group constant text: no

conversion.

Variables with

CHRID=PNLGRP on CLASS

tag: convert from XXX to

YYY.

Variables with

CHRID=PNLGRP on CLASS

tag: convert from job CCSID

to YYY.

Variables with

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: convert from job CCSID

to YYY.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

*JOBCCSID Panel group constant text: no

conversion.

Panel group constant text:

convert from panel group

primary source file CCSID to

job CCSID.

Panel group constant text:

convert from panel group

primary source file CCSID to

job CCSID.

Variables with

CHRID=PNLGRP on CLASS

tag: convert from XXX to job

CCSID.

Variables with

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables with

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

*DEVD Panel group constant text: no

conversion.

Panel group constant text:

convert from panel group

primary source file CCSID to

job CCSID since variables are

in job CCSID and device

CCSID is unknown.

Panel group constant text: no

conversion.

Variables with

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables with

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables with

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

Variables without

CHRID=PNLGRP on CLASS

tag: no conversion.

Managing a List

A UIM list is a sequential set of list entries. Each entry contains a copy of the value for one or more

dialog variables. The entries in a list can be presented to the user in a scrollable area of a display. The

UIM provides application programming interfaces (API) that allow an application program to perform

the following operations on lists:

v Add a new entry between any two entries in the list.

v Add an entry at the beginning or end of the list.

v Update the values in a list entry.

v Remove a list entry.

v Position the current entry pointer for the list to a specific entry; several position options are available.

v Set and retrieve list attributes that control UIM processing when the list is displayed.

v Delete an active list. (Remove all entries from a list and make the list inactive for the application.)

334 Application Display Programming V6R1

Defining a List

The definition for each list using the list definition (LISTDEF) language tag is specified in the source for

the panel group object. Attributes of the list definition (LISTDEF) tag specify the name of the list and

what dialog variables should be associated with the list (that is, what variable values are to be stored in

each list entry). For more information on the LISTDEF tag, see “LISTDEF (List Definition)” on page 565.

Each entry in a list contains a copy of the values of all dialog variables associated with the list. The

values of the dialog variable are copied into a list entry when the entry is first added to the list using the

Add List Entry (QUIADDLE) or Add List Multiple Entries (QUIADDLM) API, and whenever the entry is

updated using the Update List Entry (QUIUPDLE) API. The values in a list entry can be copied into the

corresponding dialog variables when the entry is retrieved using the Get List Entry (QUIGETLE) or Get

List Multiple Entries (QUIGETLM) API.

Initializing a List

All UIM APIs for processing lists require the program to specify the list name on the list object definition

(LISTDEF) tag in order to identify the target list for the operation. Each list defined in a panel group is

either active or inactive for each open application using the panel group. Each list is initially inactive

when an application is opened using the Open Display Application (QUIOPNDA) or Open Print

Application (QUIOPNPA) API. A list becomes inactive when it is deleted using the Delete List

(QUIDLTL) API. A list may be active in multiple different open applications using the same panel group.

A list becomes active when the first entry is added to the list using the Add List Entry (QUIADDLE), or

Add List Multiple Entries (QUIADDLM) API, or when the list attributes are set using the Set List

Attribute (QUISETLA) API.

The maximum size of a list is approximately 16MB. The maximum number of entries that can be added

to a list is based on the size of each entry. You can estimate the size of your list using the following

calculations:

1. Add the following values:

v The size of the entry

v An overhead value of 19 bytes for each entry

v A variable overhead of between 5 and 15 bytes for each entry
2. Divide the result value into 16MB (16 777 216 bytes) minus 4096 bytes (the object’s header on i5/OS)

For example, if you have defined a value of 94 bytes for each list entry, you might make the following

calculation:

(16 777 216 - 4096)/(94 bytes + 19 bytes + 5 bytes) =

16 773 120 / 118 =

142,145 entries

Displaying a List

When a panel containing a list area is displayed, entries from the list are used to build a display area that

appears to the user as a table. Each list area is associated with one list definition (see “LIST (List Area)”

on page 544) and contains an independent selection of columns to display. For more information on the

LISTCOL language tag, see “LISTCOL (List Column)” on page 560. A list can be referred to by more than

one list area. The list area allows one list to be presented on different panels within the same open

application. If more than one list area exists in a panel definition, a different list must be used for each

list area.

Use the LISTCOL tag to specify the specific values presented in a list area. A list area can present all the

values in the associated list entries, or it can present only a subset of the values available in each list

entry. The list area the user sees contains a row for each list entry and a column for each field specified in

a LISTCOL tag in the definition of each view of the list area.

Chapter 17. Details of Using User Interface Manager 335

You can define a list area to present the values associated with only one list entry per display line or with

multiple list entries per display line. When multiple entries are shown on each display line, the display is

formatted in multiple layouts with entries presented in order from top to bottom within layout columns,

and from left to right between layout columns. See “Example 2: List Area with Three Layout Columns”

on page 550.

Updating a List

Values of list entries are used to fill the display for all fields in the list area; see “LISTCOL (List Column)”

on page 560. The user can update any input fields on the display, including those in the list area. If the

value specified by the user satisfies all validity checks for the associated dialog variable, the

corresponding value in the list entry is updated with the value specified by the user.

The UIM APIs provided to retrieve, add, and update list entries all operate by using the dialog variables

associated with the list. No support is provided to directly establish or change values of list entries

without referencing dialog variables. Every time a list entry is retrieved, added, or updated, the entire set

of values for dialog variables is copied to or from the list entry. When the UIM refers to or updates list

entries, such as processing user options in an action list, it can also update values of dialog variables that

correspond with the list columns.

Note: When working with an action list you should take care during incomplete list processing. To avoid

undesirable results, the action dialog variable should be included in the VARRCD for the list entry

and updated in the same way as the other variables in the variable record. If you don’t do this,

you run the risk of updating each new list entry (during incomplete list processing) with the value

of the last option that was entered on the panel. For example, you have a list panel with 12 entries.

You enter option “4” on one entry and scroll down. The incomplete list exit is called to add more

entries to the list. The option dialog variable has a value of “4”, so each entry that is added may

now have a “4” in the option field.

Each entry inserted in a list is assigned an identifier, called a list entry handle, that uniquely identifies

the entry within the active list until the entry is removed from the list. The identifier is meaningful only

for a particular combination of open application, active list, and list entry instances. An identifier has no

meaning in any other open UIM application, or even in the same application if the list or the entry is

deleted and then created again. Undesirable results are possible if an identifier is used outside of this

definition.

Incomplete List Processing

When adding entries to an action list during incomplete list processing, take care to ensure the option

field contains the appropriate value (usually blanks) at the time the QUIADDLE or QUIADDLM API is

called. If you are using a VARRCD, the option variable should be part of the VARRCD.

Removing and Inserting an Entry from a List

After an entry is removed from a list, it can no longer be accessed by the application program, and it

does not appear even as a blank line in a list area on a panel. When a new entry is added to a list, the

UIM can assign the same list entry handle for that entry that was used for an entry that was previously

removed from the list. An identifier value has no relationship to the logical position of the entry within

the sequence defined for the entries in the list.

The UIM maintains a current entry pointer for each active list to use as a reference point for list-entry

operations. The list entry manipulation APIs support a list entry handle parameter. This parameter

returns to the application program the identifier where the current entry pointer for the list was

positioned at the end of the operation. The UIM sets the current entry point to:

v The entry just added by the Add List Entry (QUIADDLE) or Add list Multiple Entries (QUIADDLM)

API

336 Application Display Programming V6R1

v The list entry requested by the Get List Entry (QUIGETLE) or Get List Multiple Entries (QUIGETLM)

API, or left unchanged if the requested entry is not found or not available

v The entry that preceded the entry removed by the Remove List Entry (QUIRMVLE) API

The current entry point is unchanged by the Update List Entry (QUIUPDLE) API.

The Get List Entry (QUIGETLE), Get List Multiple Entries (QUIGETLM), and Remove List Entry

(QUIRMVLE) APIs may set the current entry pointer position to either the top or bottom of the list. The

top is the position that is always logically before the first entry in the list, and the bottom is the position

that is always logically after the last entry in the list. Each of these positions has a special identifier value

for the list entry handle, but because the top and bottom are not ″real″ entries, they cannot be updated or

removed from the list. The application program receives an error if it attempts to insert an entry before

the top of the list or after the bottom of the list.

Controlling List Entries on a List Display

The application program can control what list entry appears as the topmost entry in a list area on a panel

by setting the display position attribute to a valid list entry handle before the Display Panel (QUIDSPP)

API is run. For example, this function can be used to position to a particular list entry specified by the

user. When the display position attribute is not set by the Set List Attributes (QUISETLA) API between

the time the list is initialized and the first time the list is displayed, the UIM presents the first entry at the

top of the list area in the panel. For more information on the Display Panel (QUIDSPP) API, see the APIs

topic.

The display position attribute is updated whenever the user moves to a new page of the list. Any time

the application program removes the entry identified by the display position attribute, the display

position attribute is automatically updated to refer to the entry preceding the one removed. If there is no

entry before the one removed, the display position attribute is set to the top of the list, and the next

display of the panel presents the first entry at the top of the list area in the panel.

When an entry is added or updated in a list, the error state of every dialog variable associated with the

list is saved with the list entry. The processing described in “Defining Dialog Variables” on page 329 for

dialog variables in error state is also used for list entry values that are in error state. This processing

concerns how validation errors are detected by the UIM and how the VARUPD attribute of the key item

(KEYI) and pull-down field choice (PDFLDC) tags affects updating list values.

Improving Interactive Response Time for a List Display

To improve interactive response for a list display, the UIM list processing allows an application program

(the incomplete list exit program) to build only part of a list before it is shown to the user. Because the

UIM handles scrolling lists as part of displaying a panel, without returning to the program that ran the

Display Panel (QUIDSPP) API, the application program must tell the UIM whether the entries in the list

represent only the top, middle, or bottom part of the complete list. If the program calls the Set List

Attribute (QUISETLA) API to set the list contents attribute to a value other than ALL, and if the user

attempts to page to list entries that are available to the application but not yet added to the list, the UIM

calls an application program to add more list entries. The application program is also called by the UIM

as part of Get List Entry (QUIGETLE) or Get List Multiple Entries (QUIGETLM) API processing if the

specified entry is not found but might exist in the part of the list that has not yet been added.

When a panel is displayed that contains a list area and the associated list is either not active or contains

no entries, the user sees a blank list area and a message indicates that there are no entries in the list.

However, if the list attributes are set to indicate that the list is not complete, an application program is

called to add entries to the list. The panel is not displayed to the user until either enough entries are

added to the list to present a full display page or the application program marks the list as complete at

either the top or the bottom. The application program is called not only when the list is empty but any

time there are not enough entries in an incomplete list to fill a list area on the panel.

Chapter 17. Details of Using User Interface Manager 337

Using Action Lists and Selection Lists

The UIM supports the following types of lists:

v Action list

v Selection list

v Output only list

v Input/output list

Using Action Lists

An action list is a list area where the user can type option numbers to perform actions against one or

more entries in the list. The definition of the UIM list displayed as an action list must include a variable

defined with BASETYPE=ACTION specified on the CLASS tag. This variable is referred to as the action

variable of the list.

To define an action list area, the application developer must specify ACTOR=UIM or ACTOR=CALLER on the

LIST tag. In addition, one LISTACT tag must be defined for each option number that can be entered by

the user.

For an ACTOR=UIM action list, each LISTACT tag specifies the action the UIM performs when the user

types the option number and presses the Enter key. The application developer can also define an action

the UIM performs when the user presses a key assigned to the PROMPT dialog command. Two types of

actions can be performed: run a CL command, or call a program. If the action to be performed is to run a

CL command, an action-list exit program might be needed to update the list after the CL command has

performed the function for the option. No interface between UIM and a CL command allows the program

called by the CL command to obtain the application handle. Therefore, if the program called by the CL

command performs a change or delete operation, an action-list exit program is required to update the list.

For an ACTOR=CALLER action list, there is no specification of an action. When the user types the option

number and presses the Enter key or a function key assigned to the PROMPT dialog command, the UIM

returns control to the application program. The function requested parameter contains a value which

indicates that the application program should perform the actions associated with the options selected by

the user.

Having the UIM as the actor for the action list is the preferred method because of the following benefits:

v The UIM performs all actions entered by the user.

v The UIM automatically displays a confirmation panel for destructive actions, such as option 4 to delete

an object. No application program code needs to be written to provide confirmation support.

v The UIM redisplays the action list panel in cases where an action does not complete successfully. When

the UIM receives an escape message, the UIM redisplays the list with the cursor located on the option

number. The option number is shown in error. When the Exit (F3) or Cancel (F12) function is requested

from a panel displayed as a result of the list option, the UIM redisplays the panel as appropriate. For

more information about the UIM processing a request for Exit and Cancel when displaying an action

list, see “Folding Up a List Panel” on page 350.

When the application program is the actor for an action list, the above processing must be done by the

application program.

When a panel contains an action list and a menu bar, pull-down choices can be defined within the menu

bar which operate against each selected entry in the action list. When at least one pull-down choice is

defined which operates against selected list entries, the UIM allows the user to select entries by typing a

valid selection character. The user selects one or more entries in the list, selects a pull-down menu from

the menu bar, and then selects a choice from the pull-down menu. The UIM performs the selected

pull-down choice for each entry selected by the user.

338 Application Display Programming V6R1

Using Selection Lists

A selection list is a list area in which the user can type a selection character for one or more entries in

the list. A selection list is defined to allow the user to select a single entry or multiple entries in the list.

A selection list can be used for the following purposes:

v Allow the user to select an object or value from a previously displayed entry field. This type of

selection list is displayed when the user positions the cursor to an entry field and requests the

PROMPT dialog command. The F4 key is recommended to be assigned to the PROMPT dialog

command.

v Allow the user to select entries and then perform an action defined in a pull-down menu from the

menu bar.

The definition of the UIM list displayed as a selection list must include a variable defined with

BASETYPE=ACTION specified on the CLASS tag. This variable is referred to as the action variable of the

list. When the user enters a valid selection character for a list entry, the UIM sets the action variable for

that entry to 1000. A value of 1000 for an action variable always indicates that the list entry is selected.

When a panel contains a selection list and a menu bar, pull-down choices can be defined within the

menu bar which operate against each selected entry in the list. The user selects one or more entries in the

list, selects a pull-down menu from the menu bar, and then selects a choice from the pull-down menu.

The UIM performs the selected pull-down choice for each entry selected by the user.

Using Selection Characters

The user selects entries in an action list panel that contains a menu bar or a selection list panel by typing

a slash (/), or country-designated selection character, in the option or selection field for the desired list

entries. The country-designated selection character is determined for each panel group when the panel

group is created. The UIM retrieves the first level text of message CPX5A0C in the CCSID of the panel

group source file. The first two characters of this message are stored in the panel group object. These

characters are the allowed uppercase and lowercase country-designated selection characters for selection

lists and multiple-choice selection fields defined in the panel group.

If *JOBCCSID is specified for the CHRID attribute when the panel group is created, the

country-designated selection characters are converted at run time from the panel group source file CCSID

to the job CCSID. This enables the comparison to be done in an equivalent CCSID.

Managing Panel Functions

The UIM supports the following panel management functions:

v Enabling panel conversion to a graphical user interface (GUI)

v Scrolling

v Limiting user capabilities

v Defining contextual help

v Command line restrictions

v Defining function keys

v Formatting panels

v Folding up panels when exit is requested

v Folding up list panels

v UIM as a request processor when displaying a panel

All operations performed by the UIM are done in a single process called a routing step. It is the

application developer’s responsibility to consider the effects of things such as recursion, locks, and static

storage, for each of the following functions:

Chapter 17. Details of Using User Interface Manager 339

v Function key action

v Menu or action list option

v Pull-down choice

v Exit program

v Command entered by the user on a command line

The UIM does not guarantee that the call-sensitive effects of programs and CL commands, such as

overrides and the Set Attention Program (SETATNPGM) command, are preserved when commands are

run from a panel in any of the ways listed above. The effect of any command that scopes its function to

the program call that used the command might be lost by the time the next command or program is

called. This is because the UIM call to the function that was scoped was destroyed in the interim.

Enabling Conversion to a GUI

The UIM supports encoding information in the panel which allows a client program to convert your

panels to a graphical user interface (GUI).

You can use the ENBGUI attribute on the PANEL or PNLGRP tag to specify whether you want the

encoded information included in your panels. More information on how to set this attribute can be found

in “PANEL (Display Panel)” on page 587 and “PNLGRP (Panel Group)” on page 602.

Scrolling Support

The UIM supports page up and page down scrolling of all panel information, data presentation, list, and

menu areas. Multiple scrollable areas can be defined on a single panel; the UIM imposes no order on

them. However, using scrollable menus is discouraged because of usability.

No left-to-right scrolling of text is provided, but the Change View (CHGVIEW) dialog command for lists

can be used to show more fields.

Defining Scrollable Areas

To use the UIM scroll function, the panel must have at least one scrollable area and have function keys

defined to perform the PAGEUP and PAGEDOWN dialog commands. For more information on the

PAGEUP and PAGEDOWN dialog commands, see Appendix B, “UIM Dialog Commands,” on page 633.

Panels with scrollable areas must have function keys assigned to the PAGEUP and PAGEDOWN dialog

commands because the UIM does not automatically enable any function keys. Normally these are the

Page Up and Page Down keys,2 but if you use a function key, F7 and F8 are recommended. The UIM

does not prevent assigning different function keys to the PAGEUP and PAGEDOWN dialog commands,

but it does not allow assigning the engraved page keys to anything other than their implied functions

which is page up and page down.

Scrolling status information is also managed by the UIM and is displayed at the bottom of each scrollable

area.

The message line is under UIM control. A plus sign (+) on the message line indicates that more messages

can be viewed by pressing the Page Down key. Because you can scroll a message area, the function keys

for scrolling should always be defined.

2. On a 5250 keyboard, these are the Rolldown and Rollup keys respectively.

340 Application Display Programming V6R1

Defining Function Key Scrolling

The UIM handles all scroll- and page-key functions for UIM-defined panels; these functions cannot be

overridden by the application. However, you can define other function keys that work much like scroll

keys.

When a function key assigned to the PAGEUP or PAGEDOWN dialog command is pressed, the UIM

scrolls the appropriate amount for the panel type. This is always a ″page,″ but the UIM tries to avoid

having data item groups, menu item groups, and selection fields split across page boundaries.

The position of the cursor determines which area to scroll. If the cursor is not in a scrollable area (except

for a pull-down menu), the scroll request applies to the topmost scrollable area on the display. If the

cursor is in a scrollable area, the scroll request applies to that area. The bounds of the scrollable area are

the top and bottom line of that area as defined by the menu area (MENU), data presentation area

(DATA), list area (LIST), and information area (INFO) language tags. For more information on these

language tags, see Appendix A, “UIM Panel Group Definition Language,” on page 457. Titles and

instruction lines are part of the area but not part of the scrollable portion of the area.

The command line is not considered part of a scrollable area, but it may be associated with a particular

area on the screen. For example, a panel with a scrollable menu area has a command line and it is

associated with the menu. However, for scrolling purposes, the command line is not part of the area.

Scrolling and Error Conditions

The message line always exists and is always the last scrollable area on the screen so the scroll function

keys must always be active.

When scrolling the message line, the UIM does not perform any validity checking or updating of the

dialog variables. When scrolling any other area, validity checking or updating of the dialog variables is

performed on all input fields on the screen. The scroll function is not performed if an error is found. All

input and output fields on the screen must be correct before the scroll operation can proceed.

If a page key is pressed and the operation cannot be performed, a message is displayed. For example, a

message is shown if a display is already at the top when the Page Up key is pressed. The alarm sounds

when trying to scroll the message line past its top or bottom.

Scrolling a List Area

List processing allows an incomplete list to be displayed. If the Page Down key is pressed and the

remainder of the incomplete list does not fill the list area, the UIM calls the specified application program

that handles incomplete lists. This program adds additional entries to the list or marks the list as

complete at the bottom, then the program returns to the UIM. The UIM knows an incomplete list by the

setting of the contents attribute of lists on the Set List Attributes (QUISETLA) API. Once the list is

complete, the UIM handles scrolling without application program intervention.

A list might be incomplete at both the top and bottom. If a list has missing information above the current

location, pressing the Page Up key causes the same type of processing.

Scrolling a Menu Area

The UIM attempts to keep menu item groups together but splits the group if it does not fit in the defined

area. Any individual menu item or text for a menu group must fit within the available scrollable space or

the panel group is not created successfully.

Chapter 17. Details of Using User Interface Manager 341

Scrolling an Information Area

Using the Move to Top (MOVETOP) dialog command moves a cursor-selected line to the top of the

scrollable information area. This allows the user to position the information in the most readable manner.

For more information on the MOVETOP dialog command, see “MOVETOP (Move to Top)” on page 646.

Scrolling Data Item Groups

The UIM keeps data item groups together if possible. A group is split only if it does not fit within a

column of the data area. When a data item group is nested inside another data item group and the outer

group must be split, the UIM still attempts to keep the inner groups together. If a selection field does not

fit in a column of the data area, the panel group is not created.

Data presentation areas can also be presented in multiple columns and the columns are filled from left to

right. Generally, scrollable data presentation areas should not be defined with a two-column layout

because the usability is poor.

Scrolling a Text Area

Scrolling for a text area must be handled by the text area exit program. UIM does not handle scrolling for

text areas. When a key assigned to a scrolling dialog command is pressed and the text area should be

scrolled, UIM calls the text area exit program. On return, the UIM redisplays the panel. The text area exit

program should change the value of the dialog variable for the text area in order to scroll the text area.

A general panel exit program should be used to diagnose if the user has scrolled too far. If the user has

scrolled too far, the general panel exit should send an appropriate message followed by the special

message to cancel the determined action. For the message to cancel the determined action, see the section

on the general panel exit program in the APIs topic.

Defining Contextual Help

Contextual help is provided jointly by the UIM and the system help function. Using the tag language, a

panel is defined to associate help modules with different areas on the screen. When the Help key is

pressed, the UIM determines which help modules to display.

When defining a panel, the user can associate help text with the following areas:

v Entire panel

v Menu bar

v Menu bar choice

v Pull-down field choice

v Specific menu item

v Specific data item

v Specific data selection field

v Choice for data selection field

v Specific list column

v List column group

v Specific function key

v Specific option in an action list

v Data group

v Data area

When the Help key is pressed, the UIM displays the help text depending primarily on where the cursor

is. The rules are as follows:

342 Application Display Programming V6R1

Cursor Position Help Selection Rules

On a menu item Help for that menu item is displayed.

In a list column Help for that column is displayed.

The left and right boundaries of a column are defined by the left and right edge

of the field or heading, whichever is greater, plus one blank on either side. The

top and bottom boundaries of a column are defined by the first line of the

heading or column group heading and the last line where a list entry may be

displayed.

Help can be associated with a list column group rather than the individual

entries. In this case, positioning within the group gives help for the entire group

regardless of the specific column the cursor is in. Boundaries of column groups

are defined by the sum of the individual column boundaries plus any separators

between columns of the group.

If the column for which help is being displayed is the option column of an

action list, the help displayed includes the help specified for the list column and

the help specified for each active list action.

On any line in the

function-key-definition area

Help for all active function keys is displayed.

On a message line with a message

displayed

Help for that message is displayed. Help for a message is provided by the

Additional Message Information display. Help for a message does not use a help

module in a panel group.

On a menu bar choice Help for that menu bar choice and all currently active pull-down choices for that

menu bar choice is displayed.

On a pull-down choice Help for that pull-down choice is displayed.

In a pull-down input field Help for the menu bar choice (see ″On a menu bar choice″ above) that the

pull-down is associated with is displayed. If a valid pull-down choice is entered

in the field, help for that pull-down choice is displayed.

On a command line The displayed help depends on the contents of the command line.

If the command line is associated with a menu area and the command line

contains a number, help for that menu item is displayed as if the cursor were

placed on that menu item. Help is available for any active menu item regardless

of whether it is displayed.

If the command line is assumed to contain a command, help for that command

is displayed.

If the command line is being treated as a parameter line, extended panel help is

displayed.

If the command line is blank, extended panel help is displayed.

On a data item If help is specified for the data item, that specific help is displayed.

If no help was specified on the data item, the data item is part of a group, and if

help was specified at the group level, then data group help is displayed.

If no help was specified on the item, the data item is not part of a group, or if no

group help was specified, and help was specified on the area, then area-level

help is presented.

On a data group heading The same rules apply as when the cursor is on a data item. Help is presented for

the lowest level (group, area, or extended panel).

In a data area If help is available for the area, that level of help is displayed. Otherwise,

extended panel help is displayed.

Chapter 17. Details of Using User Interface Manager 343

Cursor Position Help Selection Rules

Any other position If none of the above conditions are met, extended panel help is displayed. This is

true whenever the cursor is on the title line, any instruction line, and most blank

spaces. Whenever there is no specific help to display, extended help is displayed.

Although HELP for a specific action on a list option or function key is never displayed, help text is

individually defined for them. This allows conditioning of active options and function keys. The

displayed help describes only the active function keys or options.

Command Line Restrictions

The UIM allows two sizes for a command line:

v A short command line is one line

v A long command line is two lines

Depending on whether the command line is short or long, the UIM formats and displays the command

line to occupy the one or two lines preceding the function key area. This position remains unchanged

regardless of scrolling, item conditioning, or the number of list entries.

Command lines are defined by the command line (CMDLINE) language tag. For more information on the

CMDLINE tag, see “CMDLINE (Command Line)” on page 483. The UIM allows specifying this tag on

any panel, but does not require it.

When a command line is defined for a panel, it is recommended that the F4 key be assigned to the

PROMPT dialog command and the F9 key be assigned to the RETRIEVE dialog command. This allows

the user to prompt for commands entered on the command line and to retrieve previously entered

commands. For more information on dialog commands, see Appendix B, “UIM Dialog Commands,” on

page 633, and for more information on defining function keys, see “KEYL (Key List)” on page 537.

The UIM sometimes associates the command line with one area on the panel. If a menu area is present,

the command line is associated with the menu area. If an action list is present, the command line is

associated with the action list. If neither is present, the command line is not associated with an area on

the panel. The UIM does not allow two menu areas, two action lists, or a combination of these within a

single panel. Also, command lines and menu option lines are mutually exclusive. For more information

on the option line (OPTLINE) tag, see “OPTLINE (Option Line)” on page 585.

Command Line Interpretation

Command lines are used to select a menu option, to run i5/OS or System/36 Environment commands,

and to specify parameters used in conjunction with options on an action list. The UIM selectively

interprets the character strings entered on the command line.

Many dialog commands do not require any input on the command line. The following conditions assume

the action is one requiring the UIM to know the command line contents. These actions are for the

ENTER, HELP, and PROMPT dialog commands. For more information on the Enter, Help, and Prompt

functions, see Appendix B, “UIM Dialog Commands,” on page 633.

v For a command line associated with a menu, the UIM examines the first nonblank set of characters. If

it is composed of only digits (hexadecimal F0 through F9), the command line is assumed to select a

menu item. Otherwise, the command line is treated as containing a command.

v For a command line associated with an action list, the command line is assumed to contain parameters

if any option is selected on any action list entry. Otherwise, the command line is treated as if it

contains a command.

v For a command line associated with a panel that contains neither a menu nor an action list, the

command line is always assumed to contain a command.

344 Application Display Programming V6R1

Exactly what function is performed next depends on what function key is pressed. For details, see the

descriptions of the ENTER, HELP, and PROMPT dialog commands.

Entering Commands That Are Too Long

Commands that are too long for the command line can still be submitted by prompting for them. If the

command causes an exception, the command line is displayed with the current command contents. If the

full command string is too long for the command line, the display shows as much as possible and

replaces the last three characters on the displayed command line with ellipses (...) to indicate

continuation. The UIM still maintains the full command string internally.

Any changes to the command line causes the UIM to discard the internal version and treat the changed

command line as a new request. If no change is made and the command is prompted or submitted, the

internal version is not reset and is submitted as the new command string. Modification is based on a

character comparison of the command line contents.

Defining Function Keys

The UIM does not automatically enable function keys; the application developer is responsible for

enabling the correct set of function keys and ensuring that the correct functions are assigned to each.

Function keys are defined with the key list (KEYL) and key list item (KEYI) language tags. For more

information on these language tags, see Appendix A, “UIM Panel Group Definition Language,” on page

457. The UIM requires that engraved keys be assigned to their dialog command equivalent. The Help,

Enter, Page Up, Page Down, Print, and Home keys must be assigned their respective dialog commands.

With the exception of the PRINT dialog command, this does not prevent assigning these dialog

commands to other keys as well. For example, it is recommended that the HELP dialog command be

assigned to the F1 key as well as the Help key. The PRINT dialog command can be assigned only to the

Print key and cannot be conditioned.

F1 through F24 can be assigned to any of the dialog commands except PRINT and MOREKEYS. The

MOREKEYS dialog command can be assigned only to F24.

Formatting Function Keys

When a panel is created, the UIM determines the worst-case display of function keys and their

descriptions and then allocates one or two lines accordingly. Two lines is the maximum amount of room

available to display function keys. Then this space is fixed. For example, if the UIM determines that two

lines are required for a specific set of conditions, then two lines are always used, even if some conditions

cause only one line of description for the function keys.

Handling Function Keys and VARUPD Value

The dialog command assigned to a function key determines the function of that particular key. For more

information on handling function keys, see Appendix B, “UIM Dialog Commands,” on page 633.

Function keys that are inactive due to conditioning are treated as if they are not defined. If the user

presses a function key that is not defined, a message is displayed to indicate that the key is not allowed.

When help is displayed for the function key area, no help information is displayed for inactive keys.

When defining a function key, the VARUPD attribute of the key list item (KEYI) or pull-down field choice

(PDFLDC) language tag defines whether dialog variables and list entry values should be updated with

user entered values when the function key is pressed or when the pull-down choice is selected. If any

fields on the panel fail validity checking, the action associated with the function key or pull-down choice

is not performed.

Chapter 17. Details of Using User Interface Manager 345

Although most dialog commands have a predefined, unchangeable value for VARUPD, some dialog

commands do not. When a function key is assigned to one of these dialog commands, processing of that

request depends on the value of VARUPD.

When VARUPD=YES is specified, all values keyed in by the user must pass validity checks. If any values

fail the validity checks, the following occurs:

v Any dialog variable that does not pass validity checking is not updated.

v The specified function is not performed.

v The general exit program for the panel, if specified, is not called.

v The UIM displays the same panel again with the appropriate error messages.

When VARUPD=NO is specified, the following occurs:

v No validity checking is performed and no dialog variables are updated.

v If specified, the general exit is called. This assumes that the dialog command to be performed is one

for which the exit program is normally called.

v The specified function is performed unless the general exit program indicates that the UIM should not

perform the function. For more information on exit programs, see the APIs topic.

When VARUPD=NO is specified for a dialog command, which causes the UIM to return control to the

application program, variable values entered by a user are not available to the application program. The

values are stored for the panel and can be shown again by using the redisplay parameter of the Display

Panel (QUIDSPP) API. For more information on this, see theAPIs topic. When VARUPD=NO is specified

on the CMD and CALL dialog commands, the UIM saves the screen copies of dialog variables and uses

them when the panel is displayed again after the specified action completes.

Note that when VARUPD=NO is specified on the CMD and CALL dialog commands, any modification of

dialog variables or list entries causes the saved version to be lost. The saved version for any field is used

if the underlying dialog variable has not changed since the field was saved. For lists, the saved version of

a variable in a list entry is used unless one of the following occurs:

v Underlying list entry has changed

v List entry changed position on the screen

v List view has changed

If a change was made, the saved version is lost and a new displayed value is derived from the dialog

variable or list entry.

For example, assume dialog variable VARX is present on panel PANELX and is modified by the user just

before pressing a function key using the CALL dialog command where VARUPD=NO. If the target of

that CALL dialog command modified VARX, the saved version is lost. When the UIM displays the panel

again after the call returns, the displayed version of VARX is based on the modification. This allows

actions, which are unrelated to the current panel, to be performed without requiring the panel contents to

pass all validity checks. VARUPD=NO should not be used with CMD or CALL dialog commands if the

intended action is to use the same panel or any of its associated dialog variables, lists, or conditioning

dialog variables.

Panel Formatting Concepts

When formatting UIM panels, keep the following in mind:

v The application developer does not define the format of a panel in terms of rows and columns. Instead,

the UIM interprets the descriptions of the tag language and then determines where to place each

element in a panel. For example, the display panel (PANEL) tag contains a description of the panel

title, but no explicit definition of where the title should be displayed. The UIM determines that the title

346 Application Display Programming V6R1

should be centered within the panel width, intensified, and treated as mixed case. The same concept

applies to all other areas of the panel, though most other examples are much more complex.

v The UIM performs as much formatting as possible when the panel group is created, but the actual

placement for many panel elements is determined at run time. This allows the UIM to consider screen

depth and other run-time circumstances. For example, the UIM allows menu items to be conditionally

displayed. These conditions are evaluated when a panel is displayed, and the format of the menu area

is based on the results.

When Panel Formatting Is Performed

There is a difference between panel formatting and panel contents. Panel formatting refers to the

organization of the various areas on the panel. Panel contents refers to the values of fields as dictated by

dialog variable contents.

Panel formatting takes place when the panel group is compiled and again at run time.

Most decisions are made when the panel group is compiled and the information is kept in the panel

group object. Those formatting decisions that cannot be made when the panel group is compiled are

made during Display Panel (QUIDSPP) API processing.

An example of this distinction is a data item that is conditioned. All details about the prompt text layout,

number of leader dots, field position, and formatting of possible choices are performed when the panel is

created.

At run time, the QUIDSPP API processing determines whether or not the item should be displayed by

evaluating the conditions and builds an internal format. Within an application defined by the Open

Display Application (QUIOPNDA) and Close Application (QUICLOA) APIs, each panel has only one

internal format at any time. The internal format is built the first time the panel is displayed, and the

format is kept for subsequent use until the application is closed.

This does not mean that the internal format cannot change within an application. Most of the internal

format does not change, but some panel elements such as menu items, list actions, and function keys, are

conditioned by the application. The effect of changes to these areas are evaluated each time the panel is

displayed, and then the format is updated.

Because the UIM performs many functions, such as submitting commands and calling programs, before

returning control to the application that called the QUIDSPP API, the specified panel can be presented to

the user several times. Each time the panel is displayed, the UIM reevaluates the panel formatting. For

example, pressing a function key causes an application program to be called. When the application

program returns control to the UIM, the UIM displays the panel again, but only after checking to see if

the application program changed the conditions that affected the internal format. For example, if the

QUIDSPP API is called to display a panel with a menu area on it, and the application program changed a

dialog variable affecting the conditioning of some of the menu items, when the UIM displays the menu

area again, it reflects the changes.

Application Control of Panel Formatting

The language tags allows the application developer to control panel formatting in the following ways:

v By specifying part of the formatting, such as column widths, vertical versus horizontal presentation of

data areas, and depths of the areas. These specifications are fixed when the panel is compiled and

cannot be changed at run time by the application. This allows you to select alternate formatting

techniques and it gives the UIM information that helps reduce run-time processing.

v By specifying run-time conditioning. Dialog variables can be used to condition menu items, menu item

groups, action list options, function keys, data items, pull-down choices, data selection fields, selection

field choices, and data item groups. In most cases, these conditions are evaluated every time a panel is

displayed to determine what should be included in the display.

Chapter 17. Details of Using User Interface Manager 347

Conditioning can be based on any of the following:

v Application defined dialog variable.

v UIM defined dialog variable.

v Existence of an object on the system or the user’s authority to an object on the system.

v User class of the application user.

v Conditioning can be based on the setting of a user profile, a user class, or the Limit User Capability

(ZLMTCPB) dialog variable. For more information on dialog variables, see “Dialog Variables Defined

by UIM” on page 627.

For more information on defining conditions, see “COND (Condition Definition)” on page 484.

The UIM allows additional control over conditioning. The panel definition can specify which conditions

are evaluated only once, when first needed, or at all times. The purpose of this is primarily related to

performance. Most items are conditioned on things that are or should be fixed when the panel is first

displayed, such as a user profile and authorization. Specifying that these conditions be evaluated only

once avoids unnecessarily evaluating the conditions.

Limits of the Panel Formatter

The UIM provides a formatter designed to handle most normal formatting requirements. However, the

formatter is not always able to match the results of manual formatting because the formatter is

constrained by the run-time environment and also must handle generalized input. An example of this is

formatting descriptions of function keys. Manual formatting might include changing the wording to

achieve the best alignment and balance. The UIM does not have the option of changing the text length or

assuming a balanced set of lengths.

Generally, the closer information is packed on a panel, the less likely the UIM formatter can match what

manual formatting might achieve.

Folding Up Multiple Panels When EXIT Is Requested

To support the ability of an application to fold up multiple panels and programs as part of processing a

single exit request, the operating system maintains a flag for each job indicating whether or not exit is

requested. This exit flag is used in combination with the user task parameter on the Display Panel

(QUIDSPP) API to cause the exit request to fold up multiple panels.

There are two ways the application program can turn on the exit flag:

1. Specify the SET parameter on the EXIT dialog command. When the UIM performs the EXIT dialog

command with the SET parameter, it turns on the job’s exit flag. For more information on the EXIT

dialog command, see Appendix B, “UIM Dialog Commands,” on page 633.

2. Set the UIM-defined variable ZEXIT to ″1″ using the Put Dialog Variable (QUIPUTV) API. By setting

this Z-variable, the UIM turns on the job’s exit flag. The UIM automatically turns off the exit flag

when it begins processing actions.

Whenever the UIM regains control after performing a panel-defined action, such as submitting a

command assigned to a function key or calling a program because a menu item is selected, the job’s exit

flag is checked. If the flag is on and the panel is displayed as an old user task (user task parameter on

the QUIDSPP API), the UIM returns control to the calling application at that point. Also, the

function-requested parameter of the QUIDSPP API contains an indication that the panel display ended

due to the EXIT dialog command.

If the job’s exit flag is off or the panel is displayed as a new user task, nothing special happens. The UIM

turns off the exit flag and displays the panel again.

348 Application Display Programming V6R1

If the action performed is not panel-defined, for example, when a command is entered on the command

line, the exit flag is always turned off, and the processing is not affected by whether the panel is

displayed as a new or old user task.

An example of how the exit flag works follows; Figure 113 illustrates the example. Assume that program

PGMX, displays PANELX that has a function key assigned to the CALL dialog command. Assume also

that the program that is called, PGMY, displays another panel called PANELY. Now assume that PANELX

is displayed as an old user task, the function key is pressed, and PANELY is displayed. From PANELY,

the user presses the function key assigned to the EXIT dialog command using the SET parameter and

control returns to PGMY. When the EXIT dialog command is processed, the UIM turns on the exit flag. If

PGMY now returns control to the UIM, the UIM returns control to PGMX with an indication that the

EXIT dialog command was requested. In effect, two panels are bypassed via a single exit request.

 If the function key on PANELY assigned to the EXIT dialog command does not use the SET parameter,

the UIM displays PANELX again because the job’s exit flag is not turned on.

For more information about APIs, see the Application programming interfaces topic collection in the

i5/OS Information Center.

PGMX

PANELX

PGMY

PANELY

(old user task)

Job
Exit
Flag
On

QUIDSPP

QUIDSPPEXIT

RV2W058-0

Figure 113. Example of Job Exit Flag

Chapter 17. Details of Using User Interface Manager 349

Folding Up a List Panel

For panels displayed as a result of processing a list option on an action list panel, the CANCEL, EXIT

and ENTER dialog commands should work as follows.

The operating system maintains a flag for each job indicating whether or not cancel is requested. This

flag is similar to the flag described for exit processing; see “Folding Up Multiple Panels When EXIT Is

Requested” on page 348. However, the cancel flag is not used to bypass more than one panel, and it is

not used in conjunction with the user task parameter on the Display Panel (QUIDSPP) API.

There are two ways the application program can turn on the cancel flag:

1. Specify the SET parameter on the CANCEL dialog command. When the UIM performs the CANCEL

dialog command with the SET parameter, it turns on the job’s cancel flag. (For more information on

the CANCEL dialog command with the set parameter, see Appendix B, “UIM Dialog Commands,” on

page 633.)

2. Set the UIM defined variable, ZCANCEL, to ″1″ using the QUIPUTV API. By setting this Z-variable,

the UIM turns on the job’s cancel flag.

It is the application developer’s responsibility to ensure that pressing the Cancel key stops processing of

list actions and displays the action list panel again at the point where processing was stopped. If another

panel can be displayed as a result of processing a list option, the job’s cancel flag should be turned on

when the Cancel key is pressed by specifying the SET parameter on the CANCEL dialog command.

When the UIM performs action-list processing, it checks the cancel flag after each list action completes.

When the UIM finds that the flag is on, it stops processing the remaining list options and displays the list

again. The option field for the list entry just processed is cleared and the options of list entries whose

action was not attempted are left in the list. The UIM only checks the cancel flag after processing a list

action.

It is the application developer’s responsibility to ensure that pressing the Exit key stops the processing of

list actions and either redisplays the action list panel at the point where processing was stopped or exits

the action list panel. If another panel can be displayed as a result of processing a list option, the job’s exit

flag should be turned on when the Exit key is pressed by specifying the SET parameter on the EXIT

dialog command. When the UIM performs action list processing, it checks the exit flag after each list

action completes. When the UIM finds that the flag is on, it stops processing the remaining list options

and the following occurs:

v If the action list panel is displayed as a new user task, the panel is displayed again.

v If the action list panel is displayed as an old user task, the panel is not displayed again, and control is

returned to the program that displayed the action list panel with a return function indicating EXIT was

used.

In either case, the option field for the list entry just processed is cleared and the options of list entries

whose action was not attempted are left in the list. The UIM also checks the job’s exit flag when it gets

control back after processing menu options, function keys and pull-down menu choices. For more

information, see “Folding Up Multiple Panels When EXIT Is Requested” on page 348.

It is the application developer’s responsibility to ensure that pressing the Enter key continues the

processing of list actions. When neither the cancel flag nor the exit flag is on, the next list action is

processed.

Adding a Pop-Up Window over Another Panel

You can add pop-up windows over another panel in one of the following ways:

v Use the CALL dialog command to have the UIM call an application exit program so it can add and

display the window. To achieve consistent results from the End Request (ENDRQS) command, this is

the recommended design.

350 Application Display Programming V6R1

v Use the RETURN dialog command to have the UIM return to the program that displayed the

underlying panel so it can add and display the window.

The UIM does not become a request processor program when displaying a panel in a pop-up window

that has a menu or action list unless the panel also has a command line. This is true even when the

window is displayed over a primary panel that has a command line, action list, or menu area.

When the UIM becomes a request processor program while displaying a full-screen panel, and the

application is designed to use the CALL dialog command to add and display a pop-up window, the

program stack contains the UIM request processor program for the full-screen panel. However, when the

application is designed to use the RETURN dialog command to add and display a window, the program

stack does not contain the UIM request processor program. Therefore, the ENDRQS command causes

different results depending on the internal design of the application.

As a general guideline, you should avoid designing long-running functions that run as a result of a list

option or menu option from a pop-up window, unless your program is a request processor at appropriate

times.

If your program becomes a request processor program and displays one or more pop-up windows by

using a design that relies on the RETURN dialog command, then the code needs to clean up the window

stack if the function that displayed a window is canceled by the ENDRQS command. When this happens,

the Remove Pop-up Window (QUIRMVPW) API must be called once for each window to be removed

from the application window stack.

If your program becomes a request processor program and displays one or more pop-up windows by

using a design that relies on the CALL dialog command, then the UIM cleans up the window stack

automatically if the function that displayed a window is canceled by the ENDRQS command.

For more information about a request processor program, see the Control language topic collection in the

i5/OS Information Center.

Using Menu Bars

A menu bar is located at the top of a panel and extends the entire width of the panel. Menu bars are

allowed only on panels that are 24 by 80 bytes or 27 by 132 bytes and are not allowed within a pop-up

window.

The menu bar contains a list of choices that users may request. The choices are listed horizontally on one

to three lines with three blanks between all choices.

When a user selects a choice by pressing the Enter key, a pull-down menu is displayed directly below the

menu bar. From this menu, the user may select one choice.

Each choice in a pull-down menu does one of the following:

v Performs an action against the panel or an area of the panel as a whole. In this case, the UIM performs

the action once each time the choice is selected by the user.

v Performs an action against each entry selected in an action list or selection list on the panel. In this

case, the UIM performs the action once for each selected list entry. The user selects an entry or an

action on a selection list by entering a slash (/) or country-designated selection character next to the

desired entry.

For more information on defining menu bars, see the following language tags in Appendix A, “UIM

Panel Group Definition Language,” on page 457.

v PANEL (Display Panel)

v MBAR (Menu Bar)

Chapter 17. Details of Using User Interface Manager 351

v MBARC (Menu Bar Choice)

v PDFLD (Pull-down Field)

v PDFLDC (Pull-Down Field Choice)

Differences Between Pull-Down Menus and Pop-Up Windows

A pull-down menu visually appears similar to a pop-up window. While pull-down menus and pop-up

windows overlay a portion of the underlying panel image, a pop-up window is a separate application

panel and a pull-down menu is an extension of the panel which contains the menu bar.

Visually, a pull-down menu appears different from a pop-up window in the following ways:

v The separator line appearing below the menu bar is always used as the top border of the pull-down

menu. The border for a pop-up window is never part of the underlying panel.

v A pull-down menu does not have a title. A pop-up window can have a title.

v A pull-down menu does not have function key descriptions and a pull-down menu never overlays the

function key descriptions of the underlying panel. Pop-up windows usually have function key

descriptions and a window can overlay the function key descriptions of the underlying panel.

v A pull-down menu does not have a message line and any messages displayed as a result of the user

interacting with the pull-down menu appear in the message line of the underlying panel. A pop-up

window always contains a message line and any messages displayed as a result of interaction with the

pop-up window appear in the message line of the pop-up window.

Pull-down menus and pop-up windows also differ in how the user is allowed to interact with each. The

differences are as follows:

v When a pull-down menu is displayed, pressing the cursor tab key moves the cursor to the first

unselected choice within the menu bar. Press the tab key again to move the cursor to the next

unselected choice, until the cursor is moved back to the pull-down menu. When a pop-up window is

displayed, pressing the cursor tab key moves the cursor to the next input field defined within the

pop-up window. The tab key never moves the cursor outside the border of the pop-up window.

v When a pull-down menu is displayed, all the function keys defined for the underlying panel are active.

Each function key performs the same function as if the pull-down menu was not displayed with the

following exceptions:

– The Enter key, or any other key assigned to the ENTER dialog command, is used to process the

action assigned to the pull-down choice number selected by the user.

– Any key assigned to the CANCEL dialog command causes the pull-down menu to be removed and

the underlying panel to be redisplayed. Normally, F12 is the key assigned to the CANCEL dialog

command.

– The Page Down and Page Up keys, or any other key assigned to the PAGEDOWN or PAGEUP

dialog commands, are not allowed when the cursor is within the pull-down menu.

– Any key assigned to the PROMPT dialog command is not allowed when the cursor is within the

pull-down menu. Normally, F4 is the key assigned to the PROMPT dialog command.

For cursor-sensitive function keys, the user is allowed to move the cursor outside the border of the

pull-down menu and press the function key. In this case, the UIM removes the pull-down menu and

processes the action assigned to the function key as if the pull-down menu was not displayed at the

time the user pressed the function key. Cursor-sensitive function keys are any keys assigned to the

dialog commands in the following table. The dialog commands in the table are usually assigned to the

keys as shown.

 Table 33. Cursor-Sensitive Function Keys Assigned to Dialog Commands

Dialog Command That May Have a Cursor-Sensitive

Function Key Assigned Dialog Command Is Usually Assigned to This Key

HELP Help

352 Application Display Programming V6R1

Table 33. Cursor-Sensitive Function Keys Assigned to Dialog Commands (continued)

Dialog Command That May Have a Cursor-Sensitive

Function Key Assigned Dialog Command Is Usually Assigned to This Key

PAGEDOWN Page Down

PAGEUP Page Up

MOVETOP (move to top) F10

CHGVIEW (change view) F11

PROMPT F4

As an example, assume that a pull-down menu is displayed. If the user moves the cursor to a field in

the underlying panel, outside the border of the pull-down menu, and presses the Help key, the UIM

removes the pull-down menu and displays the contextual help defined for the field.

When a pop-up window is displayed, only the function keys defined for the panel displayed within

the window are active. When any function key is pressed and the cursor is located outside the border

of the pop-up window, the window is redisplayed and the alarm sounds to indicate that the cursor is

not allowed outside the window.

Further differences between pull-down menus and pop-up windows are in how the application developer

can control them. Following are the differences:

v A pull-down menu can only contain a list of numbered choices. The application developer defines each

choice, which appears in the pull-down menu, and also assigns an action for each choice. When the

user selects one of the choices, the UIM performs the action defined for that choice. A pop-up window

can contain any panel element, which can appear in a full-screen panel, with the following exceptions.

– A pop-up window cannot contain a field (dialog variable) which spans multiple lines of the display.

Every field must fit within the width of the window.

– A pop-up window cannot contain a menu bar.
v Based on user interaction, the UIM decides when a pull-down menu is displayed and removed. The

application program cannot control when a pull-down menu is displayed or removed; nor can the

application program control the location or size of the pull-down menu when it is displayed. The

application program has control over when and where a pop-up window is displayed and removed.

For more information about displaying pop-up windows, see “Adding and Removing Windows” on

page 354. The size of a pop-up window is specified by the application developer by specifying the

WIDTH and DEPTH attributes on the PANEL tag for the panel to be displayed in the window.

Using Pop-Up Windows

A pop-up window is information that overlays part of the display. The user can view information inside

the window and the portion of the screen that is not overlayed by the window. However, only the

window is active; the user cannot work with the underlying panel. When more than one window is

displayed, only one window is active at a time.

Following are some principles of pop-up windows:

v Windows contain a message line, and if the message exceeds the boundary of the window, the message

is truncated. To indicate the message is truncated, an ellipsis (...) is added to the end of the message. To

see the rest of the message, place the cursor on the message line of the window and press the Help

key.

v When a window is displayed, its size and location cannot be changed.

v The cursor is positioned in the active window. If the user moves the cursor outside the active window

and presses any function key except Print, the display alarm sounds and the cursor moves back to its

previous window location.

v When you leave a window, you are returned to the underlying display at the location where you were

before you requested the window.

Chapter 17. Details of Using User Interface Manager 353

v The Print key applies to the entire display, not just to the current window.

Defining Application Windows

Application-defined windows can be displayed over UIM and DDS panels.

Application-defined means that the application developer defines the exact size of the window on the

display panel (PANEL) tag on the panel group source. The location of the window is specified when the

application program calls the Add Pop-Up Window (QUIADDPW) API.

Adding and Removing Windows

The UIM maintains a stack to keep track of windows. Windows can be added to the stack in one of the

following ways:

v The UIM adds windows to the stack in order to display help information and command line windows.

v The application developer can request that a window be added to the stack to display a window.

Windows can be removed from the stack internally by the UIM or by the application developer.

Adding and removing windows is controlled by the application program, but the UIM provides a set of

APIs to manipulate these windows.

To display a window, an application program must first use the Add Pop-Up Window (QUIADDPW) API

to inform the UIM that the next display is for a window. A window displaying a selection list should use

field-adjacent positioning, while a window displaying a prompt for positioning a list should use offset

positioning.

The QUIADDPW API call does not specify the panel to be displayed in the window. It specifies only the

location information necessary to position the window.

A window can be added to a display only after a full-screen panel is determined. A full-screen panel is

determined by calling the Display Panel (QUIDSPP) or Set Screen Image (QUISETSC) API. Once a

full-screen panel is displayed within an application, a window can be added to the application.

To position a selection list window using field-adjacent positioning, the programmer must specify the

name of the field for which the selection window is being displayed. When a panel is displayed within

the window, the UIM uses a set of general window positioning rules to position the window so that, if

possible, the window does not overlay the specified field.

For a window displaying the prompt for positioning a list, offset positioning should be specified on the

Add Pop-Up Window (QUIADDPW) API call. The upper left corner of the window is positioned below

and indented to the right of the upper left corner of the underlying panel.

Once a window is added to the display, the Display Panel (QUIDSPP) API is used to display a panel

within the window. When the QUIDSPP API is called, the UIM performs the following operations:

1. Determines the actual location for the window. The location is determined according to the location

information provided by the call to the QUIADDPW API.

2. Formats the panel.

3. Merges the newly formatted panel and window border with the underlying panel image.

4. Displays the merged panel output.

The end user must interact with the most recently displayed window before interacting with any other

underlying panel or window.

354 Application Display Programming V6R1

Use the Remove Pop-Up Window (QUIRMVPW) API to remove windows from the display. A window

cannot be removed if the UIM is currently processing an action or running an exit program for the panel

displayed in the window. Multiple windows can be removed at one time.

The QUIRMVPW API does not cause the UIM to automatically display the underlying panel again. The

panel is displayed again without the window on the next call to the QUIDSPP API, or when the UIM

automatically displays a panel again after processing a function or running an exit program.

Using the Command Line in a Window

A command line in a window allows the user to enter commands without requiring any reserved space

on the panel for a permanent command line. The UIM provides support to display a command line in a

window. For UIM application panels, this is done by assigning a function key to the CMDLINE dialog

command. The F9 key is recommended. The CMDLINE dialog command is also allowed as the action for

a choice in a pull-down menu. When a function key or pull-down field choice is assigned to the

CMDLINE dialog command, the key or choice can be conditioned based on the ZLMTCPB dialog

variable. Doing this only allows the user to get to the command line window if the user does not have

limited capabilities.

For DDS panels, a command line window can be provided by calling the QUSCMDLN API.

Keep the following in mind when using a command line in a window:

v A pop-up window is displayed when the user presses a function key causing the Command Line

(CMDLINE) dialog command to process. The cursor is placed on the first position of the command line

and the user can use the command line to enter any system commands.

v The UIM provides a panel definition for the window and puts it at the bottom of the display.

v Neither the size nor the location of the window for the command line can be changed. The user must

remove the window by pressing the Enter key or the F12 (Cancel) function key. Running a command

does not remove the window.

The following example shows a command line pop-up window used on a display.

 ..

 : Command :

 : :

 : ===> __ :

 : F4=Prompt F9=Retrieve F12=Cancel :

 : :

 :..:

UIM as a Request Processor Program When Displaying a Panel

Sometimes the UIM becomes a request processor program when displaying a panel. When the UIM

becomes a request processor program, your application is isolated from commands entered on the

command line. For example, if the End Request (ENDRQS) command is used to cancel a command

entered on the command line, the UIM handles the end request and the application program is not

ended. The following types of panels cause the UIM to automatically become a request processor:

v Any panel with a command line. The UIM is required to be a request processor when submitting a

command from a command line. When the panel has a command line, the UIM becomes a request

processor program so that all functions it performs for the panel work consistently for the End Request

(ENDRQS) command.

v A full-screen panel with an action list. Most action list panels have a command line to allow

parameters for list options. So for consistency, the UIM becomes a request processor program for all

full-screen panels with an action list. This allows ACTOR=UIM action lists without a command line to

Chapter 17. Details of Using User Interface Manager 355

work in the same way as those that have one when the ENDRQS command is requested while a list

option is being processed. This allows a user to perform the ENDRQS command to cancel a

long-running option without also canceling the action list panel and the program that displayed it. Any

unprocessed list options are left pending in the action list when the ENDRQS command is used to

cancel a UIM-processed list option.

If you code ACTOR=CALLER for an action list, you should consider having your code become a

request processor program for consistency with the UIM.

v A full-screen panel with a menu area. Most menu panels have a command line. For consistency, the

UIM becomes a request processor program for all panels with a menu area. This allows menu panels

without a command line to work in the same way as those that have one when the ENDRQS

command is requested while a menu option is being processed. This allows a user to perform the

ENDRQS command to cancel a long-running option without also canceling the menu panel and the

program that displayed it.

If you code the RETURN dialog command for a menu item, you should consider having your code

become a request processor program for consistency with the UIM.

For more information about a request processor program, see the Control language topic collection in

the i5/OS Information Center.

Printing Concepts

The UIM allows applications to define and generate printed output to the level required for the

OUTPUT(*PRINT) parameter on a CL command. This support provides a hardcopy form of information

in a format similar to that displayed by the UIM, but it does not allow for generalized printing via the

UIM.

The application developer does not need to provide a print panel and a display panel. However, it is

recommended that both print and display panels be placed in the same panel group. For printing panels,

use the Print Panel (QUIPRTP) API.

A panel group can be opened for either display or print. Once a panel group has been opened for

display, it can also be used to produce printed output. The Add Print Application (QUIADDPA) API is

provided to open a printer file for an already open display application, and the Remove Print Application

(QUIRMVPA) API closes the printer file that was opened with the QUIADDPA API.

For more information about APIs, see the Application programming interfaces topic collection in the

i5/OS Information Center.

The UIM tag language is used to define print head panels and print panels. The print head panel, created

with the print head (PRTHEAD) tag, defines the header information that is printed at the top of each

page. The print panel, created with the print panel (PRTPNL) tag, defines the different panel areas to be

printed. Both the print head panels and print panels must be printed for the same open application.

Consider the following points when you create help text:

v Some tags truncate a line of text if the text does not fit into the print area.

v Other tags (for example, XMP) wrap the text to the next line.

v The UIM allows only 72 columns of data.

When you nest tags, you must also factor in the width of the nested lines. For example, if you define an

unordered list and include an example in one of the list items, the text for the example is indented two

bytes to the right of the text in the list item.

The following areas make up a printed listing and the example that follows is how it would look:

Title The title consists of two lines printed at the top of every page. The title lines contain information

356 Application Display Programming V6R1

such as the output title, time and date, system name, product information, and page number. All

of the information in the title lines is defined by the print head panel.

Prolog (Optional.) The prolog section is printed only on the first page and comes right after the title lines.

The prolog section is used for such things as indicating what parameters were specified to print

the output. The prolog section is defined as the portion of the print head panel that has

TYPE=PROLOG specified on the data presentation area (DATA) or information area (INFO) tag.

Header

(Optional.) The header section is used to print the same data on every page. This data usually

includes things such as the file name, library, and member name for which information is printed.

This section comes after the prolog on the first page and after the title lines on all remaining

pages. The header section is defined as the portion of the print head panel that has

TYPE=NORMAL specified or defaulted.

Page body

The page body is made up of one or more panels of information. These panels of information

appear very similar to panels that are used to display information on a display. These panels can

contain data, information, and list areas. Menu areas and selection fields cannot be defined for

printing. Because there is no such thing as a scrollable print panel, all information and data

associated with the panel is printed via the Print Panel (QUIPRTP) API.

Trailer The trailer is a single line of text that is printed after the last panel area on the last page. This

trailer usually says something like

E N D O F L I S T I N G

or

E N D O F S O U R C E

Chapter 17. Details of Using User Interface Manager 357

Printing a Print Head Panel

When a print head (PRTHEAD) panel is printed by calling the Print Panel (QUIPRTP) API, the heading is

formatted and saved until a print panel is printed.

Printing a Print Panel

When a print panel (PRTPNL) is printed by calling the Print Panel (QUIPRTP) API, the UIM:

1. Formats one page of data and prints it.

2. Formats the next page of data and prints it.

3. Formats page by page until the entire panel is printed.

4. Formats and prints the last part of the panel on a partial page. The next call to the QUIPRTP API

causes the rest of the partial page to be formatted and printed, assuming that no page eject is

requested. If the first area of this next panel does not fit on one page, this area is printed on the next

page. This causes the panel title, top separator, and area title, if one exists, to be printed on the next

page.

Header same as page 1

Page body

Page 1

Page 2 Title same as page 1
Title same as page 1

same as page 1

Page body

data, information, list areas

RV2W059-2

Prologue (optional)
what parameters
were specified

Header (optional)
file name, library,
member name

(consists of one or more panels)

Trailer (End of Listing)

Title time/date, system name
Title product information,

page number

Figure 114. Example of Printout

358 Application Display Programming V6R1

Using Blank Lines for Separating

A single blank line is inserted in the following places by the UIM:

v After the second title line of every page

v After list column and group headings

v After data column headings

v Before the trailer line

Fonts and Highlighting

Only printer files created without using a DDS source may be used by the UIM. No special fonts are

supported. The H1 through H4 heading tags are printed as normal text with no highlighting or

underlining. H1 headings are centered.

The HP0 through HP9 highlighting phrase tags are not allowed in print panel definitions. Highlighting,

underline, and double strike are not supported. (A double strike is when the printer prints a letter and

then prints the same character or another character in the same position.)

Printing the Trailer

The one-line trailer is specified using the print trailer message (PRTTRAIL) tag in a print head panel. This

is a one-line statement such as: ’E N D O F L I S T I N G’. It is printed at the end of an

application’s printout when the Remove Print Application (QUIRMVPA) or Close Application

(QUICLOA) API is called.

Defining Prolog Areas

A print head panel (PRTHEAD) is used to define the prolog and header sections. The print head panel

can contain only information and data areas. List areas are not allowed.

With TYPE=PROLOG specified, the prolog section consists of one or more data areas, one or more

information areas, or a combination of both. The prolog section is printed only from the first print head

panel that is printed for each open printer file. An attempt to print a print head panel containing a prolog

section causes an escape message if the print head panel is not the first one printed for an open printer

file.

Defining Header Areas

With TYPE=NORMAL specified, the header section is made up of one or more data areas, one or more

information areas, or a combination of both. The total depth of the information and data areas in the

header section must be less than or equal to six lines.

The minimum page length is 18 lines. To ensure that there is room for data on each page, with the

possible exception of the first, the UIM limits the combined total depth of the prolog and header sections

to 14 lines. If these maximums are not followed, a compile-time error message occurs.

A title line must be printed at the top of every page, so the UIM requires that a print head panel be

printed before any other print panels. The Print Panel (QUIPRTP) API needs to be called only once for

the print head panel for each printer file. After that, the same header information is printed on each page

of the printer file. To change the header information, call the QUIPRTP API again for the same or

different print head panel.

Using the Page-Eject Function During Printing

An automatic page eject occurs when a print head panel is printed after printing a print panel. However,

even if eject is specified on the print panel (PRTPNL) tag, when the next print panel is printed, it does

not cause a second page eject.

Chapter 17. Details of Using User Interface Manager 359

When a print head panel is processed by the Print Panel (QUIPRTP) API, it is not actually printed until

another QUIPRTP API is called for a print panel. Therefore, if the QUIPRTP API is called for five

different print head panels before the QUIPRTP API is called for a print panel, only the last print head

panel affects the listing.

Sharing and Overriding Printer Files

The UIM allows multiple UIM applications to print to the same printer file by opening the printer file for

sharing. However, the UIM does not share information between multiple UIM applications.

If multiple UIM applications are printing to the same printer file, it is possible to have more than one

prolog section per printer file, because a prolog section, if there is one, is printed once per open

application.

Care must be taken when working with a shared file to avoid inadvertently sharing with a higher or

previous program in the program stack. Sharing a printer file between a UIM application and an

application using a DDS record format file does not work. The shared file is closed when the last

application sharing the shared file uses a Close Application (QUICLOA) or Remove Print Application

(QUIRMVPA) API.

The printer file is opened to allow most overrides.

Printing Double-Byte Character Set (DBCS) Considerations

The UIM checks the TXTMODE attribute of the panel group (PNLGRP) tag to determine if double-byte data

might be printed. If it might be printed, the UIM opens the printer file to contain DBCS data. For more

information about DBCS, see Double-byte character set support in the i5/OS Information Center.

Commonly Asked UIM Questions

Here are some commonly asked questions which relate to exit programs and call programs:

v What are exit programs and call programs?

– Exit programs—UIM provides the ability for the user to define programs that are called after normal

processing has completed in those cases where further processing on the data is required. For

example, a general panel exit is allowed to do more specific validity checking on the panel than

what UIM functions will handle.

– Call programs—Call programs are programs that are written by the user to be called by UIM for

such items as processing a function key, a pull-down option, or list option. This processing may

include refreshing a list panel, calling another program to display a more detailed panel or to

update a file with the information entered, and so on.
v What is the difference between an exit program and a call program?

– An exit program is called after normal processing is complete and a call program is called as part of

the normal processing. Normal processing refers to processing items such as ACTION, ENTER, and

PROMPT actions on a LISTACT tag.

360 Application Display Programming V6R1

Part 4. Programming Help Displays

Chapter 18. Making Online Help Information

Accessible for Your Display File 363

Enabling the Help Key 364

Choosing between Panel Groups and Records for

Help 364

Defining Which Areas of Your Display Need

Online Help Information 365

Specifying Panel Groups for Help in Your Display

File 367

Defining Panel Groups with Option Indicators 369

Copying QUSRTOOL Examples That Specify

Help Using Panel Groups 370

Specifying Records in Your Display File 370

Defining Records with Option Indicators . . . 371

Entering the Records That Contain the Help

Information 371

Using Records and Documents for Help in the

Same Display File 372

Understanding the Restrictions on Records . . 372

Paging between Help Displays That Use

Records 373

Understanding How the System Pages Help

Displays 373

Displaying Secondary Online Help

Information 374

Determining the Sequence of Secondary

Help 374

Understanding the Restrictions of Records

for Secondary Help 376

Returning Control to Your Program after Pressing

the Help Key 376

Returning Control to Your Program after

Showing the Help Display 376

Returning Control to Your Program without

Showing the Help Display 378

Chapter 19. Making Online Help Accessible for

Your Panel Group 379

Definitions and Explanations 379

Giving Help Panel Groups Access to Index

Search 381

Giving Help Panel Groups Access to A

User-Defined Panel Group 381

Removing Access to F18=More Indexes 382

Help in a List Area 382

Coding Help 383

Help in a Menu Area 383

Coding Help 384

Help in a Data Area 385

Coding Help 386

Help in a Menu Bar Area 388

Coding Help 389

Help in a Function Key Area 390

Coding Help 391

Chapter 20. Defining Online Help Information 393

Defining Online Help Information in a Panel

Group 393

Entering the UIM Source for a Panel Group for

Help 393

Organizing a Panel Group with Help

Modules 393

Using the Information in a Help Module

More Than Once 394

Using a Help Module Contained in a

Different Help Panel Group 394

Emphasizing and Formatting the Text within

a Help Module 395

Defining Paragraphs and Notes 395

Adding Headings 395

Highlighting Text 396

Making Lists 396

Identifying Programming Keywords and

Variables 396

Indicating Structured Text 396

Adding Index Search Tags to a Help Panel

Group 397

Understanding How Index Search Works 397

Deciding Which Topics to Put in Index

Search 399

Defining Index Search Topics and Root

Words 399

Designating Synonyms for Root Words 399

Choosing Root Words and Synonyms for

Index Search Topics 400

Defining an Index Search Hierarchy . . . 400

National Language Considerations . . . 402

Linking Help Modules 402

Designing Your Links 403

Creating Links 404

Creating and Deleting Panel Groups 404

Assigning Panel Groups as Help for Commands 405

Using Panel Groups in a Search Index 405

Creating a Search Index 405

Adding Entries to a Search Index 405

Removing Entries from a Search Index . . . 406

Deleting a Search Index 406

Copying QUSRTOOL Examples That Define

Help in a Panel Group 406

Defining Online Help Information in a DDS Record 406

© Copyright IBM Corp. 1997, 2008 361

362 Application Display Programming V6R1

Chapter 18. Making Online Help Information Accessible for

Your Display File

Application help is a function provided by the system that lets you define online help information for

the records in a display file and then presents that help to the user when the Help key is pressed.

The following illustration shows what happens when the Help key is pressed and online help

information is available and accessible:

Note: Caution is advised when using application help with multiple display stations acquired to the file

because all display stations wait for the completion of the application help display.

To provide online help information for your display, you need to do the following:

v Add to your display file the necessary DDS keywords to make online help information accessible for

your display. This chapter provides instructions for adding these keywords.

F1

User presses Help key

Display file suspended

Online help information displayed

Display file is displayed

User exits help display

F12 Enter
oror

F3

RV2W018-4

Help XXX

Display
File

Display
File Display

Display

© Copyright IBM Corp. 1997, 2008 363

v Define the help information that the user sees using either a panel group, document, or record.

Chapter 20, “Defining Online Help Information,” on page 393 provides instructions for defining the

help information.

Consider the following points when you create help text:

v Some tags truncate a line of text if the text does not fit into the display area.

v Other tags (for example, XMP) wrap the text to the next line.

v The size of the display (24 x 80 or 27 x 132) determines how many columns are allowed.

When you nest tags, you must also factor in the width of the nested lines. For example, if you define an

unordered list and include an example in one of the list items, the text for the example is indented two

bytes to the right of the text in the list item.

Information about DDS keywords

For more information about the DDS keywords described in this chapter, see the Data description

specifications topic collection in the i5/OS Information Center.

Enabling the Help Key

If online help information is available for your display, you must enable the Help key on the keyboard.

To enable the Help key, specify the HELP keyword at the file or record level of your DDS source.

Choosing between Panel Groups and Records for Help

You can define online help information by using one of the following:

 Table 34. Different Ways to Define Online Help Information

Method Description

Panel group Objects into which user interface manager (UIM) source is entered

Records A set of DDS keywords contained in a source file member

Each method has characteristics that can help you choose the method that will work best for you. The

following table lists these characteristics and the method or methods that they apply to:

 Table 35. Characteristics of Different Methods of Online Help Information

Characteristic Panel Groups Records

Accessible through H specifications for DDS-described displays X X

Allows cursor-sensitive help X X

Allows extended help X X

Index search function available X

Windows used X

Hypertext linking available X

Used by system displays X

Can be used for command help X

Word processing functions, such as spell checking, available X (See note.)

Bookmark and exit function available (allows you to return to the same

location in the help the next time you press the Help key)

Allows printing of help information X X

364 Application Display Programming V6R1

Table 35. Characteristics of Different Methods of Online Help Information (continued)

Characteristic Panel Groups Records

Index for displayed information available

Table of contents for displayed information available

Can be placed in same member as display source X

Same source type as display source X

QUSRTOOL example available X

Option indicators allowed X X

Supports DBCS online help information X X

Right-to-left and left-to-right orientation of text X

Supported for acquired devices X

Defining Which Areas of Your Display Need Online Help Information

You can define the display file so that you supply the online help information for all or part of a display,

as represented by the shaded areas in the following figure:

�1� Contextual help Information for rectangular areas that are defined by a record or part of a record

format. Contextual information describes one or more fields on a display.

�2� Extended help All information for the entire display, beginning with the information about the

purpose and use of the display and followed by contextual help for each field. Extended help is

displayed when you press the Help key on an area of the display that does not have contextual

help defined for it. If your online help information is defined using panel groups, you can also

reach extended help from contextual help by pressing F2.

 The cursor location is determined when the Help key is pressed. If the Help key is enabled and the

cursor is in any active help area, the online help information associated with that help area is displayed.

Each help area on a display is defined in the DDS source using the following:

H specification

Defines help for the containing record. An H in column 17 of the DDS source indicates a help

specification level. The help specifications are defined before the first field in the record.

Help Area (HLPARA) keyword

Defines a help area by giving the upper-left row column and lower-right row column of the

rectangular area. These coordinates must be located in the screen area, but are not required to be

in the record area.

 If *RCD is specified for the HLPARA keyword, the help is associated with the entire record area,

which includes all columns in the lines occupied by the record. When the cursor is located in the

record area and the Help key is pressed, the online help information from the record on the

HLPRCD keyword is displayed.

RV2W020-2

Chapter 18. Making Online Help Information Accessible for Your Display File 365

Help (HLPxxx) keyword

Defines whether a panel group (HLPPNLGRP), document (HLPDOC), or record format

(HLPRCD) contains the actual online help information that you see when you press the Help key.

The following illustration shows how H specifications are entered in your DDS source:

 This sample DDS defines help for a record. The required variables for the help keyword depend on

whether HLPxx is defined as a HLPPNLGRP, HLPDOC, or HLPRCD keyword. Only one help keyword

can be defined for the file, but you can specify one or more H specifications for a record.

The order of H specifications is important because the first match found is selected. Therefore, the more

specific HLPARA locations should be listed first.

The following sample display is defined with two record formats, HEADER and SINFO:

 The following table shows one way to define the online help information for the sample display:

 Table 36. Help for Sample Display

Location on Display Location in DDS Source Description of Help Provided

Lines 5-7 Entire record format HEADER Help is specified for the whole record

Line 15 First line in record format SINFO Help is specified for the line only

Line 16 Second line in record format SINFO Help is specified for the line only

Line 17 Third line in record format SINFO Help is specified for the line only

Remaining lines Areas in display file that are not defined with

record formats

Help is specified for the whole file

Depending on the help method you plan to use, continue with any of the following to define H

specifications in your DDS source:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 H HLPARA(*RCD)

 HLPxxx(required-variables)

Figure 115. Sample H Specification in DDS Source

Record
SINFO
(lines 15-17)

Record
HEADER
(lines 5-7)

RV2W022-3

366 Application Display Programming V6R1

Panel groups (UIM)

“Specifying Panel Groups for Help in Your Display File”

Records (DDS)

“Specifying Records in Your Display File” on page 370

To compare and contrast the different ways to create online help information, see “Choosing between

Panel Groups and Records for Help” on page 364.

Specifying Panel Groups for Help in Your Display File

The HLPPNLGRP keyword in DDS identifies the panel group that contains online help information for a

display. The HLPPNLGRP keyword may be specified in an H specification or at the file level. To use the

HLPPNLGRP keyword, you need to know the name of the help module and the name of the panel group

and library that contains that help module.

Several other DDS functions are available for use with panel groups. The functions and their associated

DDS keywords are described in the following table:

 Table 37. Other DDS Keywords for UIM Help

Function DDS keyword Description

Defining the name of the help screen HLPTITLE The text to be displayed on the first line of

the help display is defined with the file- or

record-level DDS keyword HLPTITLE (Help

Title). This text should be the name of the

display that is displayed when the Help key

is pressed. The HLPTITLE keyword must be

used in the display file. This keyword is used

only on full-screen displays of help when no

help title is specified in the help source.

Indicating full-screen online help information HLPFULL Using the DDS file-level HLPFULL (Help

Full) keyword, the UIM-defined online help

information for the application is displayed

in a full-screen replacement display rather

than in a window.

When the HLPFULL keyword is not

specified, the help is displayed in a window

unless the user’s profile specifies otherwise.

Excluding panel group help as secondary

help information

HLPEXCLD The HLPEXCLD keyword excludes a help

panel group with a duplicate name from

being displayed within extended help. To do

this, place HLPEXCLD on all but the first H

specification that names an identical help

panel group. HLPEXCLD indicates that the

information associated with the H

specification is not displayed as part of the

extended help.

When the HLPEXCLD keyword is not

specified, extended help consists of the

information associated with both the file-level

HLPPNLGRP keyword (if any) and the

HLPPNLGRP keywords on all active H

specifications.

At least one help panel group name must not

specify the HLPEXCLD keyword.

Chapter 18. Making Online Help Information Accessible for Your Display File 367

Table 37. Other DDS Keywords for UIM Help (continued)

Function DDS keyword Description

Enabling the Index Search function HLPSCHIDX The Index Search function is enabled, and the

search index object used for the Index Search

function is specified by the file-level DDS

keyword HLPSCHIDX (Help Search Index).

Using the sample display from “Defining Which Areas of Your Display Need Online Help Information”

on page 365, the following online help information is defined for each help area:

 Table 38. Help for Sample Display Using Panel Groups

Location on Display Location in DDS Source

Name of Help Module in Panel Group

SMPPNL in Library SMPLIB

Lines 5-7 Entire record format HEADER HLPCMPY

Line 15 First line in record format SINFO HLPADDR

Line 16 Second line in record format SINFO HLPCITY

Line 17 Third line in record format SINFO HLPST

All shaded areas Areas in display file that are not defined with

records

SUPHELP

The following DDS source shows how the help areas are defined for the sample display using panel

groups:

Record
SINFO
(lines 15-17)

Record
HEADER
(lines 5-7)

RV2W023-5

368 Application Display Programming V6R1

The file-level help in SUPHELP provides extended help for the display (when the cursor is not located in

the record area for either HEADER or SINFO) because HLPARA(*RCD) is the location specified on the H

specification.

The panel groups that contain the online help information must be created by using the UIM source from

a source file member. More information about creating panel groups is found in “Defining Online Help

Information in a Panel Group” on page 393.

Note: HLPPNLGRP and HLPRCD are not allowed in the same display file; HLPPNLGRP and HLPDOC

are also not allowed in the same display file.

Defining Panel Groups with Option Indicators

The HLPPNLGRP keyword can be specified with option indicators. In the following example, assume the

SINFO record has indicator 90 on and the cursor is in the help area defined for the H specification. When

the Help key is pressed, the panel group HELP1 is displayed. If indicator 90 is off, panel group HELP2 is

displayed.

The DDS for this file is:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 HELP

 HLPPNLGRP(SUPHELP SMPLIB/SMPPNL)

 HLPTITLE(’ADD,UPDATE,DISPLAY SUPPLIER’)

 R HEADER OVERLAY

 H HLPARA(*RCD)

 HLPPNLGRP(HLPCMPY SMPLIB/SMPPNL)

 5 25’ADD, UPDATE, DISPLAY SUPPLIER’

 7 10’ENTER NEW OR EXISTING NAME:’

 CONAME 10A I 7 47

 R SINFO OVERLAY PROTECT

 H HLPARA(15 1 15 79)

 HLPPNLGRP(HLPADDR SMPLIB/SMPPNL)

 H HLPARA(16 1 16 79)

 HLPPNLGRP(HLPCITY SMPLIB/SMPPNL)

 H HLPARA(17 1 17 79)

 HLPPNLGRP(HLPST SMPLIB/SMPPNL)

 15 10’ADDRESS:’

 ADDR 30A B 15 32

 16 10’CITY:’

 CITY 10A B 16 32

 17 10’STATE:’

 STATE 2A B 17 32

Figure 116. Sample DDS Source Showing HLPPNLGRP

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 HELP

 R HEADER OVERLAY

 5 25’ADD, UPDATE, DISPLAY SUPPLIER’

 7 10’ENTER NEW OR EXISTING NAME’

 CONAME 10A I 7 47

 R SINFO OVERLAY PROTECT

 H HLPARA(15 9 15 61)

 90 HLPPNLGRP(HELP1 SMPLIB/SMPPNL)

 H HLPARA(15 9 15 61)

 N90 HLPPNLGRP(HELP2 SMPLIB/SMPPNL)

 15 10’ADDRESS’

 ADDR 30A B 15 32

Figure 117. Sample DDS Source Showing HLPPNLGRP and Option Indicators

Chapter 18. Making Online Help Information Accessible for Your Display File 369

Copying QUSRTOOL Examples That Specify Help Using Panel Groups

The QUSRTOOL library provides four sample DDS-described displays that access online help information

using panel groups. You can copy the source for these sample displays into a library of your choosing

and then tailor them for your own use. For more information about these sample displays, see “Using the

Displays Example in the QUSRTOOL Library” on page 409.

Specifying Records in Your Display File

The source of the online help information that is identified by a help record in DDS source is specified

with the help-specification or file-level DDS keyword HLPRCD (Help Record).

HLPRCD and HLPPNLGRP are not allowed in the same display file.

Using the sample display from “Defining Which Areas of Your Display Need Online Help Information”

on page 365, the following online help information is defined for each help area:

 Table 39. Help for Sample Display Using HLPRCD

Location on Display Location in DDS Source Name of Record Format that Contains Help

Lines 5-7 Entire record format HEADER Record format HLPCMPY

Line 15 First line in record format SINFO Record format HLPADDR

Line 16 Second line in record format SINFO Record format HLPCITY

Line 17 Third line in record format SINFO Record format HLPST

All shaded areas Areas in display file that are not defined with

help record

Record format SUPHELP

The following DDS source shows how the help areas are defined for the sample display using help

records:

Record
SINFO
(lines 15-17)

Record
HEADER
(lines 5-7)

RV2W023-5

370 Application Display Programming V6R1

The file level help is used to provide general help for the display when the cursor is not located in any of

the defined help areas for either HEADER or SINFO.

You are not required to define each help area with a different record. This means that the same record

may be used to define one or more help areas on a display, including the help area that defines the entire

display.

Defining Records with Option Indicators

The HLPRCD keyword can be specified with option indicators. In the following example, assume the

SINFO record is put with indicator 90 on and the cursor is in the help area defined for the H

specification. When the Help key is pressed, the record HELP#1 is displayed. If indicator 90 is off, the

record HELP#2 is displayed.

The DDS for this file is:

Entering the Records That Contain the Help Information

The records that give the actual online help information may be included in the same file as the DDS

source for the application display. The records may also be contained in a different file. If the records are

contained in a different file, the file and the library that contains the file must be identified on the

HLPRCD keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 HELP

 HLPRCD(SUPHELP)

 R HEADER OVERLAY

 H HLPARA(*RCD)

 HLPRCD(HLPCMPY)

 5 25’ADD, UPDATE, DISPLAY SUPPLIER’

 7 10’ENTER NEW OR EXISTING NAME:’

 CONAME 10A I 7 47

 R SINFO OVERLAY PROTECT

 H HLPARA(15 1 15 61)

 HLPRCD(HLPADDR)

 H HLPARA(16 1 16 41)

 HLPRCD(HLPCITY)

 H HLPARA(17 1 17 33)

 HLPRCD(HLPST)

 15 10’ADDRESS:’

 ADDR 30A B 15 32

 16 10’CITY:’

 CITY 10A B 16 32

 17 10’STATE:’

 STATE 2A B 17 32

Figure 118. Sample DDS Source Showing HLPRCD

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 HELP

 R HEADER OVERLAY

 5 25’ADD, UPDATE, DISPLAY SUPPLIER’

 7 10’ENTER NEW OR EXISTING NAME’

 CONAME 10A I 7 47

 R SINFO OVERLAY PROTECT

 H HLPARA(15 9 15 61)

 90 HLPRCD(HELP#1)

 H HLPARA(15 9 15 61)

 N90 HLPRCD(HELP#2)

 15 10’ADDRESS’

 ADDR 30A B 15 32

Figure 119. Sample DDS Source Showing HLPRCD and Option Indicators

Chapter 18. Making Online Help Information Accessible for Your Display File 371

Regardless of where the information is contained, the DDS source for the previous example looks like the

following:

Using Records and Documents for Help in the Same Display File

HLPRCD and HLPDOC are allowed in the same display file; however, the following considerations

apply:

v When the Help key is pressed with the cursor location in a help area described by a document, that

document is the only help displayed when the roll keys are used. No other document or help records

are displayed.

v When the Help key is pressed with the cursor location in a help area described by a record, the normal

sequencing used for records is followed with documents being ignored.

v The HLPDOC and HLPRCD keywords cannot both be specified at the file level or on the same H

specification.

v The HLPBDY keyword cannot be specified with the HLPDOC keyword. For more information about

the HLPBDY keyword, see “Displaying Secondary Online Help Information” on page 374.

Understanding the Restrictions on Records

The following restrictions apply when using the record form of application help:

v The application program does not control the displaying of the records. When the Help key is pressed,

the system controls the displaying of help. Because the system does not control the buffers or hidden

message line areas of the application program, the following takes place:

– Output fields in the record formats are displayed as blanks.

– The ALIAS keyword is allowed but ignored.

– CSRLOC and MSGID are processed by the system, but the hidden and program-to-system fields are

not passed from the application program.
v No input is returned to the user program:

– Input-capable fields on a record are displayed with underlines; however, no input is returned to the

application program. Any input typed in an input field is lost when application help is finished.

– Response indicators are not returned.
v Help records can contain H specifications, but they are ignored.

v Option indicators are assumed to be off.

v Screen size conditioning can be used.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 R SUPHELP

 2 5’TO ADD, UPDATE, OR DISPLAY -

 THE SUPPLIER NAME AND -

 ADDRESS, ENTER THE SUPPLIER -

 NAME. ITS CURRENT ADDRESS, -

 IF ANY, WILL BE SHOWN AND MAY -

 BE UPDATED.’

 R HLPCMPY

 2 5’ENTER THE FIRST 10 -

 CHARACTERS OF THE COMPANY’

 R HLPADDR

 2 5’ENTER THE NEW OR CHANGED -

 ADDRESS.’

 R HLPCITY

 2 5’ENTER THE FIRST 10 -

 CHARACTERS OF THE CITY’

 R HLPST

 2 5’ENTER THE 2 CHARACTER ABBR -

 FOR THE STATE.’

Figure 120. Sample DDS Source with HLPRCD

372 Application Display Programming V6R1

v Only the following keywords are active when specified for records:

 COLOR

 DATE

 DFT

 DSPATR

 DSPSIZ

 MSGCON

 MSGLOC

 TEXT

 SLNO (constant value). If SLNO(*VAR) is specified, 1 is used for the starting line number.

 SYSNAME

 TIME

 USER

All other display file keywords, though allowed, do not make sense for records and may or may not be

processed while displaying the help.

Paging between Help Displays That Use Records

If you use records to define help information, the first display that appears when the Help key is pressed

is called primary help. When a Roll Up or Roll Down key is pressed on a primary help display,

secondary help is shown.

Understanding How the System Pages Help Displays

The system maintains a list of all active H specifications from record formats that are on the display. This

list of H specifications is called the help list. The H specifications on the front of the help list are the first

to be searched when the user presses the Help key.

Pressing the Help key in a help area on the display does the following:

�1� Suspends the display file.

�2� Searches the list of active help areas to find the first one in the list that contains the cursor

location when the Help key is pressed.

�3� Opens the display file that contains the help record and displays the information.

�4� Allows the user to roll forward or backward through the online help information.

The order and content of the H specifications in the list are determined by the following:

v When a record format is added to the display, the H specifications for that record format are placed on

the front of the list.

v If the record format contains more than one H specification, they are added to the help list in the order

in which they are defined in the display file.

H

H

H

H

H

RV2W019-3

Help XXXDisplay
Display
File

Chapter 18. Making Online Help Information Accessible for Your Display File 373

v The help list is cleared either when a record format is written that clears the display, or when one is

written that has the HLPCLR keyword enabled.

v If a record has the OVERLAY keyword in effect, has H specifications, or completely or partially

overlaps another record already on the display, the help list is updated in different ways. The following

table describes the type of help-list updating for records for each combination of the three factors:

 Overlay H Specifications Overlaps Help List Update

No No N/A Help list is cleared.

No Yes N/A Help list is cleared and H specifications

for the record are added to the help list.

Yes No No Help list is not changed.

Yes No Yes H specifications are removed from the

help list if they are within the boundaries

of the record being written.

Yes Yes No H specifications for the record are added

to the help list. H specifications are

removed from the help list if they are

within the boundaries of any H

specification in the record being added.

Yes Yes Yes H specifications are removed from the

help list if they are within the boundaries

of the record being written. Then the H

specifications for the record are added to

the list. Finally, H specifications are

removed from the help list if they are

within the boundaries of any H

specification in the record being added.

Note: An H specification with *NONE specified for the help area is removed from the help list when the

first H specification with a help area defined above it is removed. If a help specification with

*NONE specified for its help area is the first help specification, then it is only removed when the

help list is cleared or when a help specification with a help area is placed above this help

specification. This H specification is removed when the one above it is removed.

Displaying Secondary Online Help Information

The record formats that are displayed as secondary help come from the same help group, or if none is

available there, from the same help sublist as the record format that is currently displayed.

A help group is defined with the HLPSEQ keyword and consists of those record formats that have the

same group name specified. The HLPSEQ keyword allows you to specify the help group name and the

help sequencing number. The help sequencing number specifies the order in which the help will be

displayed. If two record formats that are in different display files happen to have the same group name,

they are still considered to be in separate help groups. Record formats that do not have a HLPSEQ

keyword specified are considered to be groups of one.

A help sublist contains all of those H specifications defined between help boundaries. The HLPBDY

keyword partitions the help list into sublists by defining help boundaries. (The H specification that has

the HLPBDY keyword coded is considered to be before the boundary.) Sublists are important when using

the roll keys to look at more online help information.

Determining the Sequence of Secondary Help: Depending on whether you are using the Roll Up or

Roll Down key, the system selects secondary help as follows:

1. A help record format that is in the same help group as the current help record format and has the

next highest help sequencing number (if the Roll Up key is pressed) or next lowest help sequencing

number (if the Roll Down key is pressed) is selected.

374 Application Display Programming V6R1

2. If the current help record format already has the highest help sequencing number (if the Roll Up key is

pressed) or the lowest help sequencing number (if the Roll Down key is pressed) in the group, the

help sublist is searched for the next H specification that does not refer to the same help group as the

currently displayed record format.

Notes:

a. To prevent including unexpected help, it is recommended that the HLPBDY keyword be specified

on the last H specification in each record of the application display file. This defines one sublist

for each record that has help. However, if multiple records are on the screen, this may not be

desirable. In this case, the HLPBDY keyword should be in effect only on the last record put to the

screen.

b. Because this second method works only when a sublist can be identified, it is not used if the

primary help was the default record format for the file (for example, if it was selected from the

file-level HLPRCD keyword).
3. Searching in the sublist continues until the boundary of the sublist is reached. The search then wraps

to the other end of the sublist and continues until the current H specification being displayed is

reached.

4. If no H specification that has a satisfactory HLPRCD is found, the record format in the help display

file that has the same help group name and the lowest help sequence number (if the Roll Up key is

pressed) or the highest help sequence number (if the Roll Down key is pressed) is selected. This

method always finds a match because the current help format always meets this criteria if no other

format does.

In the following example, the fields and HLPARA keywords are not specified because neither has an

effect on the order of secondary information:

 The sample file HELPFILE contains the following record formats with HLPSEQ keywords coded as

shown:

 RECORD KEYWORD SPECIFICATION

HELP HLPSEQ(GROUPA 1)

HELP1 HLPSEQ(GROUPA 2)

HELP11 HLPSEQ(GROUPA 3)

HELPSCR1 HLPSEQ(GROUPB 1)

HELPSCR2 HLPSEQ(GROUPB 2)

HELP2SRC

Note that the help record formats HELP and HELPSCR2 are not referred to in the application display file.

Because they are not referred to in this way, they are not primary help, but they are displayed as

secondary help as follows:

Sequence 1:

 Primary help format HELP11

 Press Roll Down HELP1

 Press Roll Down HELP

 Press Roll Down HELP11

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 HELP

 HLPRCD(HELP11)

 R RECORD1

 H HLPRCD(HELP1)

 H HLPRCD(HELPSCR1)

 HLPBDY

 H HLPRCD(HELP2SRC)

 HLPBDY

Figure 121. Sample DDS Source to Show Secondary Help

Chapter 18. Making Online Help Information Accessible for Your Display File 375

In this first sequence, HELP1 is shown when the Roll Down key is pressed because this is the previous

help record format in GROUPA. Similarly, HELP is shown when Roll Down is pressed the second time.

When Roll Down is pressed the third time, the end of the help group is reached. HELP11 is then selected

again because it is the last help record format in the original help group.

Sequence 2:

 Primary help format HELPSCR1

 Press Roll Up HELPSCR2

 Press Roll Up HELP1

 Press Roll Down HELP

The second sequence starts with HELPSCR1 being displayed as the primary help record format. Pressing

Roll Up causes HELPSCR2 to be displayed because it is the next help record format in GROUPB. Rolling

up again runs off the end of the group and HELP1 is found because it is the next help record format

found, after wrapping, in the sublist that contains HELPSCR1. Pressing Roll Down now causes HELP to

be displayed because it is the previous entry in GROUPA.

Sequence 3:

 Primary help format HELP2SRC

 Press Roll Up or Down HELP2SRC

Because HELP2SRC is not in a help group and is the only one in its sublist, HELP2SRC is to be shown

when rolling in either direction.

Understanding the Restrictions of Records for Secondary Help: The following restrictions apply when

using the record form of application help:

v Application help controls all function keys when a help record is displayed:

– The Roll Up key is enabled and causes the next record to be displayed according to the rules for

displaying secondary help.

– The Roll Down key is enabled and causes the previous record to be displayed according to the rules

for secondary help.

– The Enter key is enabled and causes a return to the application program. Any CAnn or CFnn key

enabled for the record will also cause a return to the application program. All other function keys,

including the Help key, are ignored.
v Records with the USRDFN, SFL, and SFLCTL keywords may not be used as records. When a display

file is created, a diagnostic is issued if the HLPSEQ keyword is found on a record with one of these

keywords. When the application is running, error reset message CPD4050 is issued if a record with one

of these keywords is used as help. The help record is not displayed.

The KEEP and ASSUME keywords should be avoided on records because they cause results that

cannot be predicted.

Returning Control to Your Program after Pressing the Help Key

Depending on how you code your DDS, you can return control to your program in one of two ways after

you press the Help key:

v You can display online help information and then return control to the program.

v You can return control to the program immediately without displaying the online help information.

Returning Control to Your Program after Showing the Help Display

Use the help command key (HLPCMDKEY) keyword to return control to your application program from

the application help record format after a command attention (CAnn) or command function (CFnn) key

has been pressed. A CFnn key returns data to the application program, while a CAnn key does not return

data to the application program.

376 Application Display Programming V6R1

The command key must apply to both the application record format and the application-help record

format. If a CAnn or CFnn key does not apply to the application-help record format, the HLPCMDKEY

keyword is ignored.

The following DDS source, which uses help records, shows how the HLPCMDKEY keyword is specified:

 If the user is on the application help display that uses the previous data description specifications, the

following happens when the various keys are pressed:

v The CF04 key, which is specified only on the application record format, acts the same as the Enter key.

v The CMD3 key acts the same as the Enter key. Corresponding CAnn or CFnn keys must be specified

on both the application-help record format and application record format for control to return to the

program.

v The CA01 key returns control to the application program.

In the next example, response indicators are used. When a response indicator is specified on a CAnn or

CFnn key on the application record format (for example, CF12(12)), the response indicator is returned

after the application-help record format is displayed. When a response indicator is specified on a CAnn

or CFnn key on the application-help record format (for example, CF01(11)), the response indicator is

ignored.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 R APPRCD CA01

 CA03

 CF04

 HELP

 H HLPRCD(HELPRCD)

 HLPARA(1 1 24 80)

 8 2’THIS IS THE APPLICATION’

 9 2’RECORD FORMAT’

 INPUT1 10 B 12 10

 INPUT2 10 B 13 10

 INPUT3 10 B 14 20

 *

 R HELPRCD HLPCMDKEY

 CA01

 CF03

 8 2’SPECIFY COMPANY NAME’

 9 2’SPECIFY STREET’

 10 2’SPECIFY CITY, STATE, ZIP’

Figure 122. Sample DDS Source to Show HLPCMDKEY

Chapter 18. Making Online Help Information Accessible for Your Display File 377

Returning Control to Your Program without Showing the Help Display

Use the HLPRTN keyword to immediately return control to your program (instead of displaying help)

when the Help key is pressed.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 R APPRCD CA01

 CA03

 CF12(12)

 HELP

 H HLPRCD(HELPRCD)

 HLPARA(1 1 24 80)

 8 2’THIS IS THE APPLICATION’

 9 2’RECORD FORMAT’

 INPUT1 10 B 12 10

 INPUT2 10 B 13 10

 INPUT3 10 B 14 20

 *

 R HELPRCD HLPCMDKEY

 CF01(11)

 CF12

 8 2’SPECIFY COMPANY NAME’

 9 2’SPECIFY STREET’

 10 2’SPECIFY CITY, STATE, ZIP’

Figure 123. Sample DDS Source to Show HLPCMDKEY and Response Indicators

378 Application Display Programming V6R1

Chapter 19. Making Online Help Accessible for Your Panel

Group

The Help key on most keyboards is either a key specifically labeled Help, or it is a key defined to work

as a Help key and labeled with another name. This varies among keyboards, but the F1 key is commonly

defined as an alternate for the Help key.

When the user presses the Help key, a sequence of events occur, as illustrated by the following diagram:

 When the user presses the Help key, the current panel is suspended by the UIM and a help panel is

displayed with information about a specific item, group of items, area on a panel, or the entire panel.

When the user has read the displayed help, the user presses the F3, F12, or Enter key to return to the

current panel before the Help key was pressed.

Definitions and Explanations

Help for a panel is constructed from help modules referred to in the panel definition. The UIM requires

you to define online help information for panels in a panel group, and presents the help to the user when

the HELP dialog command is requested.

User exits help display

F3 F12
or Enter

User presses Help key

Online help information displayed

F1

1

Current UIM
panel is
displayed

If the cursor is on a hypertext link when you press the
Enter key, instead of returning to the current UIM panel,
you are taken to the hypertext information.

1

or

or
Help

Help XXX

RV2W061-2

UIM Panel

© Copyright IBM Corp. 1997, 2008 379

The user requests the HELP dialog command by pressing a key assigned to it. Typically, the engraved

Help key and the F1 key are assigned to the HELP dialog command. In this section, the term Help key

refers to any key which is assigned to the HELP dialog command.

Online help information is the information displayed to the user when the Help key is pressed on the

keyboard. The level of help displayed depends on the location of the cursor when the user presses the

Help key.

Help is always available for the entire panel. This help is known as extended help, which is the general

information for a panel. Extended help begins with information about the purpose and use of the panel

and is followed by contextual help for each item on the panel. Extended help includes contextual help for

items that do not currently show on the screen, but which can be shown by using the Page Up and Page

Down keys. (Contextual help provides information about a single item or group of related items where

the cursor is positioned when the user requests help.) An item is excluded from extended help when the

item is not currently active for the panel by using the COND attribute for a specific item on the panel.

Extended help is displayed when the Help key is pressed for an area of the screen that does not have

contextual help defined. It is also displayed when the user presses F2 (Extended help) while viewing

contextual help.

The extended help is defined on the HELP attribute of the display panel (PANEL) tag. This attribute

identifies the help module containing the beginning of the extended help for the panel.

When coding online help for a panel, the tag which actually contains the information that is displayed

when the user presses the Help key is the help module (HELP) tag. For more information on the

attributes of this tag, see “HELP (Help Module)” on page 521.

To code for help in a panel, the HELP attribute must be specified on the tag for which the help is

provided. The name of the help module containing the help information is specified on the HELP attribute

of a tag.

The help module identified on a HELP attribute exists in the same panel group or menu where that HELP

attribute appears, or in another panel group. When the panel group or menu is created, the UIM

compiler determines the panel group in which the UIM will find the help module when the Help key is

pressed by finding a help module name that matches the name specified on the HELP attribute in one of

the following places:

1. If the panel group or menu being created contains a matching name on the NAME attribute of a HELP

tag, the help module is found in the same panel group or menu when the Help key is pressed.

2. If the panel group or menu being created contains a matching name on the NEWNAME attribute of an

import (IMPORT) tag, the help module is found in the panel group specified on the PNLGRP attribute

of the IMPORT tag.

3. If the panel group or menu being created contains an IMPORT tag with NAME=’*’ specified, the help

module is found in the panel group specified on the PNLGRP attribute of the IMPORT tag.

If all of the above are not true, the UIM compiler reports an error message and the panel group or menu

is not created.

When specifying the name of a help module, apostrophes are not necessary unless characters other than

A through Z, a through z, and 0 through 9 are used. If any other keyboard characters are used,

apostrophes are required. For example, in a name specifying HELP=’key/enter’, the apostrophes are

required because the slash (/) is not an alphabetic character or a numeral. For more information on the

rules for names, see “Name Syntax” on page 461.

380 Application Display Programming V6R1

Giving Help Panel Groups Access to Index Search

Index search provides access to user created search indexes. You can give a UIM help panel group access

to these search indexes using the :SCHIDX parameter on the :PNLGRP tag. Here is an example of the

UIM coding to give a help panel group access to index search:

:PNLGRP SCHIDX=search index ...
:PANEL. ...
:EPANEL. ...
:EPNLGRP.

The :SCHIDX parameter causes the F11=Search Index key to display on the help panel for the UIM panel.

Pressing F11=Search Index displays the index search main display as shown in Figure 124. The search

index specified on the :SCHIDX parameter will be the search index displayed on the index search screen.

Giving Help Panel Groups Access to A User-Defined Panel Group

The help panels provides access to a user-created panel group. This user-defined panel group object

(*PNLGRP) must be called QGUHISF9, contain a panel called USERDEF, be located in the user’s library

list, and the user must have *USE authority to this object. If the above criteria is met, a function key,

F9=User defined menu will appear on all UIM help and search index panels. This panel group is

intended to be set up in a menu format (similar to the Information Assistant menu that appears when the

user presses F13 from a help panel). An example panel group would be:

:PNLGRP.

:KEYL NAME=mainkeys help=helpname.

:KEYI KEY=f1 HELP=helpname ACTION=’help’.

F1=Help

:KEYI KEY=f3 HELP=helpname ACTION=’exit’ VARUPD=no.

F3=Exit

:KEYI KEY=f12 HELP=helpname ACTION=’cancel’ VARUPD=no.

F12=Cancel

:KEYI KEY=f24 HELP=helpname ACTION=’morekeys’.

F24=More keys

:KEYI KEY=enter HELP=helpname ACTION=’enter’.

:KEYI KEY=help HELP=helpname ACTION=’help’.

 Search Index

 Type options, press Enter. (+ indicates an expandable topic)

 5=Display topic 6=Print topic 7=Expand topic 8=Compress topic

 Opt Topic

 Title of this index

 _ Main Help Topic

 _ Help number 1

 _ Help number 3

 _ Help number 4

 _ Help number 2

 _ Help number 3

 Bottom

 Or type search words and press Enter. (* indicates a topic match)

__

 F3=Exit help F5=All topics F6=Main topics F11=Hide structure

 F12=Cancel F13=Information Assistant F18=More indexes F24=More keys

Figure 124. Index Search Display

Chapter 19. Making Online Help Accessible for Your Panel Group 381

:KEYI KEY=print HELP=helpname ACTION=’print’.

:EKEYL.

:PANEL NAME=userdef HELP=helpname KEYL=mainkeys TOPSEP=sysnam

 ENTER=’MSG CPD9817’.

User’s Info Assist Menu

:MENU DEPTH=’*’ BOTSEP=space SCROLL=no.

:TOPINST.To select one of the following, type its number below and

press Enter:

:MENUI HELP=helpname OPTION=1 ACTION=’cmd dsplibl’.

Display user’s library list

:EMENU.

:OPTLINE.Type a menu option below

:EPANEL.

:HELP name=helpname.Option 1 - Help

help text for given help name

:EHELP.

:EPNLGRP.

Removing Access to F18=More Indexes

To not allow users the ability to change the search indexes they are using, create a data area called

QUHISF18 in the user’s library list. The user must have at least *USE authority to this data area. Creating

this data area will condition off the F18=More indexes function key on the Search Index panel.

Help in a List Area

A list area displays the contents of a UIM list. The list consists of rows and columns of variable

information, which appear in a table format. The following screen is an example of a panel using a list

area to display a list of eight rows.

For this panel, the user may enter numbers 2, 4, 5, 7, or 8 in the Opt column to specify an action to be

performed against one of the rows in the list.

 Spooled Files

 Type options, press Enter.

 2=Change 4=Cancel 5=Display 7=Hold 8=Release

 -----Created------

 Opt File Nbr User Pty Date Time

 _ ffffffffff nnnn uuuuuuuuuu p mm/dd/yy hh:mm:ss

 _ ffffffffff nnnn uuuuuuuuuu p mm/dd/yy hh:mm:ss

 _ ffffffffff nnnn uuuuuuuuuu p mm/dd/yy hh:mm:ss

 _ ffffffffff nnnn uuuuuuuuuu p mm/dd/yy hh:mm:ss

Help in a list area must be defined at the group level and at the column level for columns which are not

part of a group.

Group Level Help

To define help at the group level, specify the HELP attribute on the list group (LISTGRP) tag. This

attribute identifies the help module which explains the group of columns in the list.

Column Level Help

To define help at the column level in a list area, specify the HELP attribute on the list column

(LISTCOL) tag. This attribute identifies online help information which explains the purpose of the

column in the list.

 The HELP attribute is not allowed if the column is part of a list column group defined by the LISTGRP

tag, but is required if the column is not part of a group.

382 Application Display Programming V6R1

The HELP attribute of the list action (LISTACT) tag identifies the help module which explains the list

action. The online help information for all active list actions is displayed as part of the contextual

help for the action column.

Coding Help

The following source shows how help is defined for the sample panel with a list area shown above. All

help modules for this sample list area are imported from panel group *LIBL/EXAMPL2. When the cursor

is positioned on the Opt column, the ’splf/option’ help module is displayed, followed by these help

modules:

v ’splf/change’

v ’splf/cancel’

v ’splf/display’

v ’splf/hold’

v ’splf/release’

When the cursor is positioned on either the Date or Time column, the ’splf/created date time’ help

module is displayed. With the cursor on any other column, the help module identified on the LISTCOL

tag is displayed.

:import name=’*’ pnlgrp=’*libl/example2’. ...
:listact option=2 help=’splf/change’ enter=’call listactpgm’.2=Change

:listact option=4 help=’splf/cancel’ enter=’call listactpgm’.4=Cancel

:listact option=5 help=’splf/display’ enter=’call listactpgm’.5=Display

:listact option=7 help=’splf/hold’ enter=’call listactpgm’.7=Hold

:listact option=8 help=’splf/release’enter=’call listactpgm’.8=Release ...
:listcol var=option help=’splf/option’ usage=inout maxwidth=6.Opt

:listcol var=filenam help=’splf/file_name’ usage=out maxwidth=12.File

:listcol var=filenbr help=’splf/file_number’ usage=out maxwidth=6.Nbr

:listcol var=usernam help=’splf/user_name’ usage=out maxwidth=12.User

:listcol var=filepty help=’splf/file_priority’ usage=out maxwidth=6.Pty

:listgrp col=filecrt help=’splf/created_date_time’.Created

:listcol var=filedat usage=out maxwidth=8.Date

:listcol var=filetim1 usage=out maxwidth=8.Time

:elistgrp.

:listview cols=’option filenam filenbr usernam filepty filecrt’.

Help in a Menu Area

A menu area contains one or more items, each of which contains an option number and a description of

an action which can be performed. To select an option, the user enters the number of the option on the

command or option line and presses the Enter key. The following screen is an example of a panel with a

menu area.

This panel has six options the user can choose, and each option has a brief description of the action it

performs. The option number chosen by the user is entered on the Selection line.

Chapter 19. Making Online Help Accessible for Your Panel Group 383

Work with Files

 System: xxxxxxxx

 Select one of the following:

 1. Display file attributes

 2. Display file contents

 3. Change ownership

 4. Change authorizations

 5. Delete

 6. Backup to tape

 Selection

 _

Help in a menu area must be defined at the item level.

Item Level Help

To define help for a menu area, specify the HELP attribute on the menu item (MENUI) tag. This

attribute identifies the help module which explains the purpose of the menu item.

 The online information identified by the HELP attribute is displayed when help is requested while the

cursor is positioned on the text for the menu item, or while the cursor is on the command or option

line and a valid menu item number has been entered.

Coding Help

The following source shows how help is defined for the sample panel shown on page 384.

Reference numbers (�n�) are used in this example to show the relationship between referring to a help

module using the HELP attribute of a tag, and the definition of the help module using the HELP tag.

:menui option=1 help=’option/display_attr’ action=’call menuipgm’ �1�

 .Display file attributes

:menui option=2 help=’option/display_cont’ action=’call menuipgm’ �2�

 .Display file contents

:menui option=3 help=’option/change_owner’ action=’call menuipgm’ �3�

 .Change ownership

:menui option=4 help=’option/change_auth’ action=’call menuipgm’ �4�

 .Change authorizations

:menui option=5 help=’option/delete’ action=’call menuipgm’ �5�

 .Delete

:menui option=6 help=’option/backup_tape’ action=’call menuipgm’ �6�

 .Backup to tape ...
:help name=’option/display_attr’ �1�

 .Display File Attributes - Help

:xh3.1. Display file attributes

:p.Choose this option to display the attributes associated with this file.

The attributes include all the information about the definition of the file.

:ehelp.

:help name=’option/display_contents’ �2�

 .Display File Contents - Help

:xh3.2. Display file contents

:p.Choose this option to display the data contained in this file.

:ehelp.

:help name=’option/change_owner’ �3�

384 Application Display Programming V6R1

.Change Ownership - Help

:xh3.3. Change ownership

:p.Choose this option to change the owner of this file.

You are prompted to enter the name of the new owner.

:ehelp.

:help name=’option/change_auth’ �4�

 .Change Authorizations - Help

:xh3.4. Change authorizations

:p.Choose this option to change the list of users

who have authority to access this file.

You are prompted for the user names and authorizations for the file.

:ehelp.

:help name=’option/delete’ �5�

 .Delete - Help

:xh3.5. Delete

:p.Choose this option to delete this file.

The file and all the data in the file is erased from the system

and the storage used by the file is made available for other use.

:ehelp.

:help name=’option/backup_tape’ �6�

 .Backup to Tape - Help

:xh3.6. Backup to tape

:p.Choose this option to

save a copy of this file on a magnetic tape.

You are prompted for more information about how to back up the

file on the tape.

:ehelp.

Help in a Data Area

A data area contains one or more data entry items whose variable information may be changed by the

user. A data area can also contain output items whose variable information can be viewed by the user but

cannot be changed. The following screen is an example of a panel with a data area.

 Sample Entry Panel

 Type choices, press Enter:

 File name __________ Name of document to be printed

 Type style for

 printing 1 1=Prestige Elite (12 pitch)

 2=Courier (10 pitch)

 3=Essay Standard (proportional)

 4=Essay Bold (proportional)

Help in a data area must be defined for every item at one of three levels.

Area Level Help

To define help at the area level, specify the HELP attribute on the data presentation area (DATA) tag.

This attribute identifies the help module which explains all items in the area.

 If no HELP attribute is specified on the DATA tag, a help module name must be associated with each

item in the area by specifying the HELP attribute on the data group (DATAGRP), the data item

(DATAI), and data selection field (DATASLT) tags.

 To provide the user with easy access to the online information for a data area with the

LAYOUT=HORIZ attribute specified on the DATA tag, specify the HELP attribute on the DATA tag

instead of the HELP attribute on the individual DATAI tags.

Group Level Help

To define help at the group level, specify the HELP attribute on the DATAGRP tag. This attribute

identifies the help module that explains all items in the group.

Chapter 19. Making Online Help Accessible for Your Panel Group 385

If no HELP attribute is specified on the DATA tag or on any outer or nested DATAGRP tags, the HELP

attribute is required on all DATAI and DATASLT tags within the group.

Item Level Help

To define help at the item level, specify the HELP attribute on the DATAI or DATASLT tag. This

attribute identifies the help module that explains the data item or selection field.

 If no HELP attribute is specified on the DATA tag or on DATAGRP tags containing a data item, the

HELP attribute is required on the DATAI and DATASLT tags.

 To provide the user with easy access to the online information for a LAYOUT=HORIZ data area, use the

HELP attribute on the DATA tag instead of the HELP attribute on the individual DATAI tags in the

horizontal area.

 The HELP attribute applies to all data item extender (DATAIX) tags associated with a data item.

 If the HELP attribute is specified on the DATASLT tag, the HELP attribute can also be specified for each

choice on the DATASLTC tag. If the HELP attribute is specified on a DATASLTC tag within a selection

field, all DATASLTC tags within that selection field must have the HELP attribute specified.

 For multiple-choice selection fields, the online information identified for each choice is included as

part of the contextual help displayed when the cursor is positioned anywhere within the selection

field.

 For single-choice selection fields, the online information identified for each choice is displayed when

help is requested while the cursor is positioned on the text of the choice. This online information is

also included as part of the contextual help displayed when the cursor is positioned within the

selection field but not on the text for one of the choices within the field. This includes occurrences

when the cursor is positioned on the prompt text for the selection field or in the entry field for the

selection field. If the cursor is in the entry field and a valid choice is entered, when help is requested,

the help for that choice is displayed.

Coding Help

The following source shows how help is defined for the sample data area panel shown previously. All the

help modules for this sample data area are imported from panel group *LIBL/DATAXMP.

...
:import name=’*’ pnlgrp=’*libl/dataxmp’. ...
:datai var=filename help=’print/filename’ usage=inout.File name

:datac.Name of document to be printed

:datai var=typestyle help=’print/style’ usage=inout.Type style for printing

:datac.1=Prestige Elite (12 pitch)

:datac.2=Courier (10 pitch)

:datac.3=Essay Standard (proportional)

:datac.4=Essay Bold (proportional)

:datai var=leftmarg help=’print/left_margin’ usage=inout.Left margin

:datac.Number of spaces from the left edge of the paper (1-20)

:datai var=copies help=’print/copies’ usage=inout.Copies

:datac.Number of copies (1-99)

:datai var=duplex help=’print/duplex’ usage=inout.Duplex

:datac.1=Yes (Print both sides of paper)

:datac.2=No (Print one side only) ...

The following source defines the help modules in panel group *LIBL/DATAXMP. These help modules are

imported when the Help key is pressed for the previous sample data area.

...
:help name=’print/filename’.File Name - Help

:xh3.File name

:p.Enter the name of document to be printed.

:ehelp.

:help name=’print/style’.Type Style for Printing - Help

386 Application Display Programming V6R1

:xh3.Type style for printing

:p.Enter one of the following to select the type style.

:parml.

:pt.1

:pd.A 12 pitch elite style is used.

:pt.2

:pd.A 10 pitch courier style is used.

:pt.3

:pd.A proportional essay standard style is used.

:pt.4

:pd.A proportional essay bold style is used.

:eparml.

:ehelp.

:help name=’print/left_margin’.Left Margin - Help

:xh3.Left margin

:p.Enter a number from 1 to 20 for the number of spaces from

the left edge of the paper to the beginning of the printed text.

:ehelp.

:help name=’print/copies’.Copies - Help

:xh3.Copies

:p.Enter a number from 1 to 99 for the number of copies of the

document to be printed.

:ehelp.

:help name=’print/duplex’.Duplex - Help

:xh3.Duplex

:p.Enter one of the following to select whether or not to print on

both sides of the paper.

:parml.

:pt.1

:pd.Print text on both sides of the paper.

:pt.2

:pd.Print text only on one side of the paper.

:eparml.

:ehelp. ...

The following example panel shows the file name and library name in a data area with a horizontal

layout.

 Work with File Members

 File: FILE01 Library: QGPL

The following source shows how help is defined for the sample data area shown above. This is an

example of providing area level help. When the cursor is positioned anywhere on the line containing the

file name, help for the file name and library are displayed.

Reference numbers (�n�) are used in this example to show the relationship between a reference to a help

module using the HELP attribute of a tag, and the definition of the help module using the HELP tag.

...
:data depth=2 help=’file_and_library’ layout=horiz. �1�

:datai var=filename usage=out.File

:datai var=library usage=out.Library

:edata. ...
:help name=’file_and_library’.File and Library - Help �1�

:xh3.File and library

Chapter 19. Making Online Help Accessible for Your Panel Group 387

:p.The qualified name of the file whose members are being displayed.

:ehelp. ...

The following example panel shows a qualified file name and a record name in a data area with a

two-column, vertical layout.

 Work with Field Definitions

 File FILE Record MASTER01

 Library . . . QGPL

The following source shows how help is defined for the sample data area shown above. This includes

providing group level help for the qualified file name. When the cursor is positioned on the file or

library, help for the qualified file name is displayed. When the cursor is positioned on the record name,

help for the record name is displayed.

Reference numbers (�n�) are used in this example to show the relationship between referring to a help

module using the HELP attribute of a tag, and the definition of the help module using the HELP tag.

...
:data depth=3 layout=2.

:datacol width=16.

:datacol width=’*’.

:datagrp grpsep=qindent help=’library/file’ compact. �1�

:datai var=filename usage=out.File

:datai var=library usage=out.Library

:edatagrp.

:datai var=record help=record usage=out.Record �2�

:edata. ...
:help name=’library/file’.File and Library - Help �1�

:xh3.File and library

:p.The qualified name of the file whose field definitions are displayed.

:ehelp.

:help name=record.Record - Help �2�

:xh3.Record

:p.The name of the record whose field definitions are displayed.

:ehelp.

Help in a Menu Bar Area

A menu bar area is located at the top of the panel and contains choices which give the user access to

actions available for the panel. To select a choice in the menu bar, the user positions the cursor on the

desired choice and presses the Enter key. After the user selects a choice in a menu bar, a pull-down menu

appears below the menu bar containing choices for actions against the panel.

This partial screen contains an example of a menu bar area. The menu bar is the line near the top of the

panel, listing File and Help as choices for the user. The user may select one of the choices to display the

pull-down menu for that choice. The second screen in this example shows the pull-down menu displayed

after selecting File.

388 Application Display Programming V6R1

File Help

 --

 Work with Programs

 System: ROCH0001

 Type choices, press Enter.

 2=Change 4=Delete 5=Display

 Opt Program Library Text

 _ PPPPPPPPPP LLLLLLLLLL Description textxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 _ PPPPPPPPPP LLLLLLLLLL Description textxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 _ PPPPPPPPPP LLLLLLLLLL Description textxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

When File is selected, a pull-down menu appears containing choices for actions for the panel. The actions

available in the pull-down menu are Change, Delete, Display, and Exit. A pull-down menu with another

list of actions appears when the user selects the Help menu bar choice while in the menu bar.

 File _Help

 -.-------------------.--

 : 2. Change : Work with Programs

 : : System: ROCH0001

 : 4. Delete : er.

 : 5. Display : 5=Display

 : 6. Exit F3 :

 :...................: y Text

 _ PPPPPPPPPP LLLLLLLLLL Description textxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 _ PPPPPPPPPP LLLLLLLLLL Description textxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 _ PPPPPPPPPP LLLLLLLLLL Description textxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Contextual help for a menu bar choice includes help for the choice on the menu bar, as well as help for

each active choice in the pull-down menu for that menu bar choice. Help in a menu bar area must be

defined at the menu bar choice level and at the pull-down choice level.

Menu Bar Choice Level Help

To define help at the menu bar choice level, specify the HELP attribute on the menu bar choice

(MBARC) tag. This attribute identifies the help module which explains the purpose of the menu bar

choice.

Pull-Down Choice Level Help

To define help at the pull-down choice level, specify the HELP attribute on the pull-down field choice

(PDFLDC) tag. This attribute identifies the help module which explains the purpose of the pull-down

choice.

Coding Help

The following source shows how help is defined for the first menu bar choice and the pull-down menu

shown on page 389.

Reference numbers (�n�) are used in this example to show the relationship between referring to a help

module using the HELP attribute of a tag, and the definition of the help module using the HELP tag.

...
:mbarc help=’mbarpgm/file’.File �1�

:pdfld.

:pdfldc option=2 help=’mbarpgm/file/change’ �2�

 action=’cmd ?CHGPGM PGM(&var2./&var1.)’

 actfor=list.Change

:pdfldc option=4 help=’mbarpgm/file/delete’ �3�

 action=’cmd DLTPGM PGM(&var2./&var1.)’

 actfor=list confirm=confpgm usrexit=’call exitpgm’.Delete

:pdfldc option=5 help=’mbarpgm/file/display’ �4�

 action=’cmd DSPPGM PGM(&var2./&var1.)’

 actfor=list.Display

:pdfldc option=6 help=’mbarpgm/file/exit’ action=’exit set’ �5�

Chapter 19. Making Online Help Accessible for Your Panel Group 389

varupd=no.Exit

:pdaccel.F3

:epdfld.

:embarc. ...
:help name=’mbarpgm/file’.File - Help �1�

:xh3.File

:p.Select this choice to display a pull-down menu containing options

to perform against selected programs.

:ehelp.

:help name=’mbarpgm/file/change’.Change - Help �2�

:parml.

:pt.Change

:pd.Choose this option to change attributes of the selected

programs.

This choice is not available if no programs were selected

from the list.

:eparml.

:ehelp.

:help name=’mbarpgm/file/delete’.Delete - Help �3�

:parml.

:pt.Delete

:pd.Choose this option to delete the selected programs.

This choice is not available if no programs were selected

from the list.

:eparml.

:ehelp.

:help name=’mbarpgm/file/display’.Display - Help �4�

:parml.

:pt.Display

:pd.Choose this option to display the attributes of the selected

programs.

This choice is not available if no programs were selected

from the list.

:eparml.

:ehelp.

:help name=’mbarpgm/file/exit’.Exit - Help �5�

:parml.

:pt.Exit

:pd.Choose this option to end the current task and return

to the display from which the task was started.

:eparml.

:ehelp.

Help in a Function Key Area

A function key area is located at the bottom of the panel and contains descriptions of the actions

available to the user when the user presses a function key. The function key area appears on most panels.

The following partial screen contains an example of a function key area for function keys F3, F4, F9, and

F12. The descriptions for these keys are listed in the function key area, which contains the text F3=Exit,

F4=Prompt, F9=Retrieve, and F12=Cancel.

 Selection or command

 ===> ___

__

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

390 Application Display Programming V6R1

Contextual help for the function key area includes help for the entire list of keys, as well as help for each

active function key. This includes function keys which do not have text displayed on the panel. Help in a

function key area can be defined at the area level and must be defined at the item level.

Area Level Help

To define help at the area level, specify the HELP attribute on the key list (KEYL) tag. This attribute

identifies the help module which explains the purpose of the function key area as a whole.

Item Level Help

To define help at the item level, specify the HELP attribute on the key item (KEYI) tag. This attribute

identifies the help module which explains the purpose of the function key.

Coding Help

The following source shows how help is defined for the function key area shown on page 390. The help

module, fkey, contains no help information. This help module only provides a title for contextual help for

the function key area and a heading for the function keys in extended help. There is no title or extended

help heading tag in the help for each function key because the contextual help is for the entire function

key area, not for an individual key.

Reference numbers (�n�) are used in this example to show the relationship between referring to a help

module using the HELP attribute of a tag, and the definition of the help module using the HELP tag.

...
:keyl name=keys help=fkey. �1�

:keyi key=f3 help=’fkey/exit’ action=’exit set’ varupd=no.F3=Exit �2�

:keyi key=f4 help=’fkey/prompt’ action=prompt.F4=Prompt �3�

:keyi key=f9 help=’fkey/retrieve’ action=retrieve.F9=Retrieve �4�

:keyi key=f12 help=’fkey/cancel’ action=’cancel set’ varupd=no.F12=Cancel �5�

:keyi key=enter help=’fkey/enter’ action=enter. �6�

:keyi key=help help=’fkey/help’ action=help. �7�

:keyi key=pagedown help=’fkey/pagedown’ action=pagedown. �8�

:keyi key=pageup help=’fkey/pageup’ action=pageup. �9�

:keyi key=print help=’fkey/print’ action=print. �10�

:ekeyl. ...
:help name=’fkey’.Function Keys - Help �1�

:xh3.Function keys

:ehelp.

:help name=’fkey/exit’. �2�

:parml.

:pt.F3=Exit

:pd.Ends the current task and returns you to the display from

which the task was started.

:eparml.

:ehelp.

:help name=’fkey/prompt’. �3�

:parml.

:pt.F4=Prompt

:pd.Provides assistance in entering or selecting a command.

:eparml.

:ehelp.

:help name=’fkey/retrieve’. �4�

:parml.

:pt.:F9=Retrieve

:pd.Shows the last command you entered on the command line,

along with any parameters you included. By pressing this key

once, you receive the last command you ran. By pressing this

key twice, you receive the next to last command that you ran,

and so on.

:eparml.

:ehelp.

:help name=’fkey/retrieve’. �5�

:parml.

:pt.F12=Cancel

Chapter 19. Making Online Help Accessible for Your Panel Group 391

:pd.Returns to the previous menu or display.

:eparml.

:ehelp.

:help name=’fkey/enter’ �6�

:parml.

:pt.Enter

:pd.Submits information on the display for processing.

:eparml.

:ehelp.

:help name=’fkey/help’ �7�

:parml.

:pt.Help

:pd.Provides more information about using the display.

:eparml.

:ehelp.

:help name=’fkey/pagedown’ �8�

:parml.

:pt.Page Down or Roll Up

:pd.Moves forward to show additional information for this display.

:eparml.

:ehelp.

:help name=’fkey/pageup’ �9�

:parml.

:pt.Page Up or Roll Down

:pd.Moves backward to show additional information for this display.

:eparml.

:ehelp.

:help name=’fkey/print’ �10�

:parml.

:pt.Print

:pd.Prints the information currently shown on the display.

:eparml.

:ehelp. ...

392 Application Display Programming V6R1

Chapter 20. Defining Online Help Information

When the Help key is pressed and the DDS source for your display file specifies that online help

information is available for the display, the system shows the information referred to by the panel group

or document or, if you used DDS, contained in the record.

The following sections in this chapter tell you how to create the actual information that the user sees:

v “Defining Online Help Information in a Panel Group”

For more information on creating online help using the UIM, see Chapter 19, “Making Online Help

Accessible for Your Panel Group,” on page 379 and Part 3, “Programming Application Displays Using

Panel Groups,” on page 267.

v “Defining Online Help Information in a DDS Record” on page 406

If the DDS source for your display does not specify that online help information is accessible for your

display, go to Chapter 18, “Making Online Help Information Accessible for Your Display File.”

Defining Online Help Information in a Panel Group

The user interface manager (UIM) uses panel groups to access online help information. The online help

information in panel groups may be used in several ways:

v Display help

v Command help

v Index search topics

To use panel groups for online help information, you must specify them in the DDS source for your

application display. If you plan to use panel groups for help but have not yet specified them in your DDS

source, see “Specifying Panel Groups for Help in Your Display File” on page 367.

Entering the UIM Source for a Panel Group for Help

Like display files that are created by compiling DDS source, panel groups are created by compiling UIM

source. The UIM source for a panel group is entered in a source file member. The source type for all

panel groups is *PNLGRP. Steps for creating and entering data in a source file member are found in

Chapter 1, “Building a Sample Display with Online Help Information.”

UIM tags, which always begin with a colon (:) and end with a period (.), are used to help format and

identify the information. Detailed information about UIM tags is found in Appendix A, “UIM Panel

Group Definition Language.”

Organizing a Panel Group with Help Modules

The UIM source for every panel group, whether used for display help, command help, or an index search

topic, starts with a :PNLGRP tag and ends with an :EPNLGRP tag.

Units of help information, known as help modules, are defined in the panel group between the :PNLGRP

and :EPNLGRP tags. Each help module starts with a named :HELP tag and ends with an :EHELP tag, as

follows:

:PNLGRP.

:HELP name=firsthelp.Title of First Help Module

:P.

Information for first help module

:EHELP.

:HELP name=secondhelp.Title of Second Help Module

© Copyright IBM Corp. 1997, 2008 393

:P.

Information for second help module.

:EHELP.

:EPNLGRP.

A panel group may contain one or more help modules. The help module name, which is the value for the

name attribute on the :HELP tag, identifies the help module and must be unique for each help module in

the panel group. The text that follows the period (.) on the :HELP tag is used as the title when the online

help information is displayed.

Using the Information in a Help Module More Than Once

The :IMHELP tag allows information to be imbedded, which means that information that is used more

than once can be defined in one help module and then used within another help module, as follows:

:PNLGRP.

:HELP name=pacific.Pacific Ocean

:P.

The Pacific Ocean is the largest ocean in the

world.

:IMHELP name=ocean.

:EHELP.

:HELP name=atlantic.Atlantic Ocean

:P.

The Atlantic Ocean separates North and South America from

Europe and Africa.

:IMHELP name=ocean.

:EHELP.

:HELP name=ocean.

:P.

An ocean is one of the five large bodies of salt water, which

together cover nearly three-fourths of the world.

:EHELP.

:EPNLGRP.

Note: The :P tag used in the previous UIM source indicates the start of a paragraph. More information

on the :P tag is available in Appendix A, “UIM Panel Group Definition Language.”

When the user sees the online help information in the previous example, the definition of ocean is the

second sentence for the definitions of both the Pacific Ocean and the Atlantic Ocean.

Using a Help Module Contained in a Different Help Panel Group

If the help module that contains the repeated information is contained in a different panel group, an

:IMPORT tag is needed. The :IMPORT tag identifies the panel group that contains the needed help

module and makes that panel group available for use within the current panel group. The :IMPORT tag

is placed after the :PNLGRP tag and before the first :HELP tag in the panel group that refers to the help

module.

First panel group (named PNLSAM1):

:PNLGRP.

:IMPORT pnlgrp=pnlsam2 name=ocean.

:HELP name=pacific.Pacific Ocean

:P.

The Pacific Ocean is the largest ocean in the

world.

:IMHELP name=ocean.

:EHELP.

:HELP name=atlantic.Atlantic Ocean

:P.

The Atlantic Ocean separates North and South America from

Europe and Africa.

:IMHELP name=ocean.

:EHELP.

:EPNLGRP.

394 Application Display Programming V6R1

Second panel group (named PNLSAM2):

:PNLGRP.

:HELP name=ocean.

:P.

An ocean is one of the five large bodies of salt water, which

together cover nearly three-fourths of the world.

:EHELP.

:EPNLGRP.

Emphasizing and Formatting the Text within a Help Module

Panel markup tags are UIM tags used within help modules to help format and emphasize the

information. More detailed information about the panel markup tags, including examples that show how

the tags are used, is found in Appendix A, “UIM Panel Group Definition Language.”

Defining Paragraphs and Notes: The following panel markup tags format blocks of text into paragraphs

or notes:

 Function UIM Tags Use

Notes :NT and :ENT :NOTE and

:ENOTE

A note with one or more paragraphs. A note begins with Note:

and usually refers to something in the text that precedes it.

Displayed note text is indented.

Paragraphs :P A block of text that forms a paragraph. Paragraph text is

separated from other paragraphs and text by a blank line.

Paragraph continuation :PC Continuation of a paragraph that has been interrupted by

another panel markup tag, such as a figure, example, or list.

When you specify paragraph continuation for text, paragraph

formatting returns.

Adding Headings: The following panel markup tags identify associated text as headings:

 Function UIM Tags Use

Extended help

headings

:XH1 through :XH4 Conditional headings for main topic and subtopics of

information. (When displaying contextual help, the first

extended help heading tag is ignored so that its text is not

shown.) Headings are useful for separating and organizing

sections of text. Displayed heading text is highlighted and

placed on its own line.

Headings :H1 through :H4 Main topics and subtopics of information. Headings are useful

for separating and organizing sections of text. Displayed

heading text is highlighted and placed on its own line.

HELP name = pacific.

HELP name = atlantic.

HELP name = ocean.

RV2W056-2

Panel group
PNLSAM1

Panel group
PNLSAM2

Chapter 20. Defining Online Help Information 395

Highlighting Text: The following panel markup tags allow you to highlight text:

 Function UIM Tags Use

Highlighted phrases :HP0 through :HP9 and

:EHP0 through :EHP9

A word or phrase to be highlighted. Text may be highlighted to

emphasize it from the surrounding text. Depending on the tag,

displayed highlighted text may be shown normal, underlined,

brightened or colored differently, in reverse image, or a

combination of these effects.

Title Citation :CIT and :ECIT The title of a publication. Publication titles are underlined when

displayed.

Making Lists: You may organize your text in lists using the following panel markup tags:

 Function UIM Tags Use

Definition List :DL and :EDL (starts and

ends list); :DTHD and

:DDHD (provides column

headings): :DT and :DD

(identify terms and their

definitions)

A list of words or phrases and their corresponding definitions,

descriptions, or explanations. When definition lists are

displayed, each term appears in the left column with its

definition across from it in the right column.

List part :LP A comment or explanation that applies to a part of a list. A list

part allows you to enter text after a list item without making

the text part of the previous list item and without interrupting

the list. List part text is not indented when displayed.

Ordered list of items :OL and :LI and :EOL An ordered list of items. Items in an ordered list are preceded

by numbers or alphabetic letters to show sequence or order.

Displayed list items in an ordered list are indented.

Parameter list :PARML and :EPARML Parameter terms and descriptions. The parameter list is

commonly used to define programming keywords and

variables. The parameter term is shown in the left column; its

definition appears indented on the line following the term.

Simple list :SL and :LI and :ESL List of items. Simple lists are commonly used when list items

are contained on one line and no sequence is required. List

items in a simple list are indented only and not preceded by

numbers, letters, hyphens, or dashes.

Unordered list :UL and :LI and :EUL Unordered list of items. Unordered lists are commonly used

when sequence is not required for the items in the list. List

items in an unordered list are indented and preceded by the

lowercase letter o, a hyphen, or a dash.

Identifying Programming Keywords and Variables: The following panel markup tags allow you to

highlight programming keywords and variables, and are often used with the parameter list tags:

 Function UIM Tags Use

Programming keyword :PK and :EPK A programming keyword. Programming keywords are used to

explain the elements of programming syntax. Programming

keywords are highlighted and, if specified as a default also,

underlined.

Programming variable :PV and :EPV A programming variable. Programming variables are used to

explain the elements of programming syntax. Programming

variables are underlined when displayed.

Indicating Structured Text: If you want text to be displayed as it is entered, you can use the following

panel markup tags:

396 Application Display Programming V6R1

Function UIM Tags Use

Example :XMP and :EXMP An area of text that is displayed exactly as it is entered.

Examples are commonly used to show sample computer input

or output. Displayed example text is indented.

Figures :FIG and :EFIG A diagram, chart, or other illustration. If desired, figures may

be displayed with captions.

Unformatted lines :LINES and :ELINES An area of text that is displayed exactly as it is entered.

Unformatted lines are used for any text that needs to be

displayed without being concatenated.

For more information on the language tags, see Appendix A, “UIM Panel Group Definition Language,”

on page 457.

Adding Index Search Tags to a Help Panel Group

Help panel groups may also contain index search modules. Index search supplements the help

information that is provided for each display. To use the information in help panel groups for the index

search function, you need to add the appropriate UIM tags to your help modules.

Understanding How Index Search Works: Users can access the index search function from any display

help that specifies that the index search function is available.

When the user presses the Help key from a working display, help information is displayed. On all help

displays that support the index search function, F11=Index search is active. When the user presses F11,

the Index Search display appears. This display shows a list of main topics in the topic hierarchy. It has an

input field at the bottom for search words.

The user can browse or print any topic in the list or type a word (or words) on the input field. To view

one or more topics, the user types a 5 in the option field beside the topic title and presses the Enter key.

To print one or more topics, the user types a 6 in the option field.

A plus sign (+) next to a topic means that the user can expand the topic to show its subtopics in the

hierarchy using option 7 (Expand topic). Or, the user can use option 8 (Compress topic) to compress a

topic so that the subtopics are no longer shown.

If the user types a word or words on the input field, the index search function matches the words with

synonym tables, and presents a list of topics that match the search words entered.

The following illustration shows how the index search function is accessed from display help:

Chapter 20. Defining Online Help Information 397

The user may also reach the index search function by using the Start Search Index (STRSCHIDX)

command. The STRSCHIDX command lets a user access search indexes without using the Help key or

F11.

Bookkeeping

Amount

Receivable

Owed

Net

. . . .

. . . .

. . . .

Cursor-
sensitive
help

How to Use Help

Types of
help and how
to get it

User presses Help key

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

HELP Receivable

XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX XXXXXXXXX
XXXXXXXX XXXXXXXXX
XXXXXXXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXX

Application Display

Help Display

If using UIM help facility

User presses Help key

User
displays
topic

User presses Index Search key

Select topic:

Select topic:

Enter words to find
Topic D

Enter words to find
Topic D

Topic A
Topic B
Topic C

Topic D

Index Search

Index Search

User
enters
search
words

HELP Glossary

Information
about topic

RV3W130-0

398 Application Display Programming V6R1

Deciding Which Topics to Put in Index Search: Index search topics usually consist of conceptual,

procedural, and reference information.

Conceptual information usually answers the question “Why?” Conceptual information includes overviews,

rationales, advantages, comparisons and contrasts, and diagrams.

Procedural information answers the question “How do I . . . ?” Procedural information always consists of a

series of steps.

Reference Information typically answers the question “What is . . . ?” Reference information includes

definitions, examples, commands, tables, prerequisites, and cautions.

Defining Index Search Topics and Root Words: The :ISCH tag defines the title of a topic in the index

and specifies the root words that serve as the link between the topic and the search words (synonyms)

entered by the user. The tag appears immediately after the :HELP tag to which it refers. There can only

be one :ISCH tag within a single help module.

For each :ISCH tag, there can be several lines of root words, provided that the total number of root words

is no more than 50. If more than one line of root words is used, ROOTS= must be repeated at the beginning

of the second line and subsequent lines:

:PNLGRP.

:HELP name=entry1.

:ISCH ROOTS=’root1 root2 root3 root4 root5’

ROOTS=’root6 root7 root8 root9 root10’

ROOTS=’root11 root12 root13 ... root50’.

Title of First Topic

:P.

This is the first index search module in this panel group.

:EHELP.

:EPNLGRP.

The root words on all lines must be enclosed in apostrophes and a period must be placed only at the end

of the last line of root words. The topic title follows the period on the :ISCH tag and may be placed on

the line immediately following the period.

Designating Synonyms for Root Words: The :ISCHSYN tag defines the words (synonyms) that, if

entered by a user, match a specific root word. If a word that is entered by a user is a synonym for a root

word, then a match is found for each topic whose :ISCH tag contains that root.

If you want a word that is used as a root word to be used as a synonym as well, you must include the

word as a synonym on the :ISCHSYN tag. For example:

:ISCHSYN ROOT=’ocean’.ocean water sea

The synonyms for the :ISCHSYN tag must be entered on one line, and at least one :ISCHSYN tag must

exist for each root word. If more than one line is needed, more :ISCHSYN tags may be entered for the

same root word.

UIM does not differentiate between synonyms entered in uppercase, lowercase, or mixed case. For this

reason, it is not necessary to repeat synonyms to cover all the different cases.

You may use alphabetic or numeric characters for synonyms; however, the following characters

(including their hexadecimal equivalents) are not allowed to be used as a synonym or part of a synonym:

. (period)

((left parenthesis)

) (right parenthesis)

Chapter 20. Defining Online Help Information 399

; (semicolon)

, (comma)

? (question mark)

: (colon)

The :ISCHSYN tags may be placed anywhere in the panel group, but to make maintenance easier, place

them all in one area (such as at the beginning of your panel group or in a panel group object that

contains only :ISCHSYN tags).

The following example shows some :ISCHSYN tags and the :ISCH tags that use them:

:PNLGRP.

:ISCHSYN ROOT=’ocean’.ocean water sea

:ISCHSYN ROOT=’lake’.lake water pond

:ISCHSYN ROOT=’definition’.definition define description what

:ISCHSYN ROOT=’definition’.summary concept information explanation

:HELP name=’defocean’.

:ISCH ROOTS=’definition ocean’.

Definition of ocean

:P.

An ocean is one of the five large bodies of salt water, which

together cover nearly three-fourths of the world.

:EHELP.

:HELP name=’deflake’.

:ISCH ROOTS=’definition lake’.

Definition of lake

:P.

A lake is a body of standing water that is enclosed by land.

:EHELP.

:EPNLGRP.

Choosing Root Words and Synonyms for Index Search Topics: The following tips help you decide

which words to use as root words and synonyms for your index search topics:

v Design the root words as building blocks that can be put together in different combinations for

different topics.

v The significant words in the title of a topic provide a good start on an appropriate set of root words for

the topic.

v Use only one form of a word as a root word if all forms of the word have the same synonyms.

v If two similar words have the same synonyms, use only one of the words as a root word, not both.

v There will be cases where it is appropriate to use two separate root words that have many common

synonyms.

v Include all synonyms that seem reasonable for the root word.

v Remember that the root words are only used to connect synonyms with help topics.

v You may have to create a special root word that applies to only one topic or a few specific topics, but

these special root words should be the exception, not the rule.

v For topics whose titles include an abbreviation, the abbreviation and the major words making up the

abbreviation should all be used as root words.

v Either uppercase or lowercase may be used.

v Use comment lines liberally to clarify the context in which particular root words are to be used.

v If the root word is a real word, include the same word as a synonym for the root word.

v You may want to include misspellings of commonly misspelled words as synonyms.

Defining an Index Search Hierarchy: The index search subtopic (ISCHSUBT) tag identifies the help

modules within the same panel group that are subtopics under the preceding topic specified on an index

search (ISCH) tag. The ISCHSUBT tag must appear after the ISCH tag. Any help module that is not

400 Application Display Programming V6R1

identified by an ISCHSUBT tag is a primary topic in the index search hierarchy. Therefore, if no

ISCHSUBT tags are used, all help modules are primary topics and there is no hierarchy.

The TOPIC attribute on the ISCHSUBT tag is used to define the subtopics for a topic. The order in which

the help modules appear on the TOPICS attribute is the order in which they are displayed in the index

search hierarchy. For more information on the rules for help module names, see “Name Syntax” on page

461.

A topic can be the subtopic of more than one topic.

Topics can be nested to no more than 16 levels.

The following example shows how the ISCH tags and ISCHSUBT tags work together to form an index

search hierarchy:

:PNLGRP.

:HELP name=mainhelp.

:ISCH roots=’root words’.

Main Help Topic

:ISCHSUBT topics=’help1’

 topics=’help2’. ...
:EHELP.

:HELP name=help1.

:ISCH roots=’root words’.

Help number 1

:ISCHSUBT topics=’help3 help4’. ...
:EHELP.

:HELP name=help2.

:ISCH roots=’root words’.

Help number 2

:ISCHSUBT topics=’help3’ ...
:EHELP.

:HELP name=help3.

:ISCH roots=’root words’.

Help number 3 ...
:EHELP.

:HELP name=help4.

:ISCH roots=’root words’.

Help number 4 ...
:EHELP.

:EPNLGRP.

This UIM source creates the following index search hierarchy:

Chapter 20. Defining Online Help Information 401

Search Index

 Type options, press Enter. (+ indicates an expandable topic)

 5=Display topic 6=Print topic 7=Expand topic 8=Compress topic

 Opt Topic

 Title of this index

 _ Main Help Topic

 _ Help number 1

 _ Help number 3

 _ Help number 4

 _ Help number 2

 _ Help number 3

 Bottom

 Or type search words and press Enter. (* indicates a topic match)

__

 F3=Exit help F5=All topics F6=Main topics F11=Hide structure

 F12=Cancel F13=Information Assistant F18=More indexes F24=More keys

National Language Considerations: The index search function can be used with either double-byte

character support (DBCS) or single-byte character support (SBCS) data. When DBCS data is used, the

device from which it is requested must be capable of entering and presenting the data in DBCS. The

object which contains the index search data is marked as containing DBCS data when appropriate. The

system determines if the device is capable of handling the DBCS data.

When the data is being prepared for DBCS format and the index search function is used with that data,

consider the following:

v When the index search data is prepared for a DBCS system, the synonyms entered on the ISCHSYN

tag must be in double-byte character mode. That is, the first byte after the tag must be a shift-out

character and the last byte of the data must be a shift-in character. The system does not convert data

on the ISCHSYN tag to double-byte.

v Words must be separated by a single-byte blank. From 1 to 19 double-byte characters may be combined

to form a word. Intervening shift-out and shift-in characters are allowed, but are ignored by index

search.

v The words that are used to link the ISCH and ISCHSYN tags (the ROOTS attribute of the ISCH tag and

the ROOT attribute of ISCHSYN tag) must be identical and should not be entered in DBCS.

v Search words can be entered in either single-byte mode or double-byte mode. Single-byte blanks can be

entered to separate the words.

When the search words are shown on the screen, the double-byte character representation (the character

that was actually used in the search) is shown. Special processing takes place so that index search is not

case sensitive. The search words from the ISCHSYN tag are uppercased using a translation table for the

code page that is specified with the TXTCHRID attribute of the PNLGRP tag. If the search words are DBCS,

they are not uppercased. Shift-out and shift-in characters are treated as blanks during parsing; leading

and trailing blanks are removed. All SBCS words are uppercased using a translation table for the code

page of the device description. For more information about DBCS, see Double-byte character set support

in the i5/OS Information Center.

Linking Help Modules

Hypertext is a structure of related help modules that are linked together by their common areas. The

linking allows users to select one or more help modules of interest from another help module. A help

module that links to one or more help modules is called an information node.

402 Application Display Programming V6R1

Without hypertext, the only way you can access help is through the associated display or the command

prompter. You cannot go directly from one help module to another unless a link, an association between

two information nodes, exists that makes each help module a node in a hypertext network.

 Similarly, the only way you can access an index search topic is through the index search function. You

cannot go directly from one index search topic to another.

 These restrictions make it difficult for you, first, to determine what related information exists and, second,

to access the information conveniently. Hypertext makes it possible for you to identify relationships

among information nodes so that you and other users can easily access the information you need.

Designing Your Links: The structure of your hypertext nodes determines the relationships among the

different nodes.

Relationships that involve hierarchy (such as those between a task and its subtasks or between a

command and its parameters) can be expressed as subordinate nodes below a larger node that they relate

to, in the same way that an organization chart represents the management structure.

Relationships that do not involve hierarchy (such as those between a procedural node and a reference

node or between two similar procedures) can be expressed as clusters of nodes.

If you are designing a complex hypertext structure, the following questions may help you make design

decisions about what to link to what:

v “What don’t I understand here?”

v “What words are unfamiliar?”

v “What conceptual information is assumed?”

v “What else do I need to know to complete my task?”

v “What is the next task I want to do after this one?”

v “What other tasks are similar to this one?”

RV2W014-2

Display
1

Display
2

Display
3

Help Help Help

- Topic A
- Topic B
- Topic C

Topic CTopic BTopic A

RV3W131-0

Index
Search

Chapter 20. Defining Online Help Information 403

v “What would a graphical representation of this information look like?”

v “What is a specific example of this general information?”

v “What other displays or commands are related to this one?”

You are allowed as many links as you want from any one information node; however, it is not essential

that each information node be linked to another node. A link implies a clear logical relationship. If the

relationship is not clear and logical, no link should exist.

Creating Links: A hypertext reference phrase is a word or phrase that identifies a selectable hypertext

link. The reference phrase is emphasized (with high intensity or color or underlining or a combination of

these, depending on the display station). The hypertext reference phrase tells the user that there is more

information at the other end of the link.

To create a hypertext link, use the :LINK tag to mark the beginning of the reference phrase. Use the

corresponding :ELINK tag to mark the end of the reference phrase.

You define a link in one direction only, from node A to node B. The link back from node B to node A is

not defined by a :LINK tag. However, the user can return from node B to node A by pressing F12. The

user can also press F6 to display a list of the titles of nodes previously displayed, then position the cursor

next to a title on that list and press Enter to return to and display the selected node again.

The following example uses the :LINK tag to create a link from one help module to another help module:

:HELP NAME=’wrkjob’.Work with Jobs - Help

:XH3.Work with jobs

:P.

The Work with Jobs display shows you the status of your

:LINK PERFORM=’DSPHELP job pnlgrp1’.

jobs.

:ELINK.

:EHELP.

The following display shows how the preceding example would look to the user:

 Note that the reference phrase is emphasized when displayed. It is also preceded by three blanks for an

attribute byte, a one-character field, and another attribute byte. By using the Tab key to place the cursor

on this field, the user can see the additional information about the highlighted word or phrase by

pressing the Enter key.

Creating and Deleting Panel Groups

The Create Panel Group (CRTPNLGRP) command creates panel groups for help displays. In the

following example, the panel group named PNLSAM in library LIBSAM is created by using source file

member HDMSAM in the same library.

CRTPNLGRP PNLGRP(LIBSAM/PNLSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(HDMSAM)

The Delete Panel Group command (DLTPNLGRP) deletes panel groups from the system. In the following

example, the panel group named PNLSAM in library LIBSAM is deleted:

DLTPNLGRP PNLGRP(LIBSAM/PNLSAM)

 Work with Jobs - Help

The Work with Jobs display shows you the status of your jobs.

404 Application Display Programming V6R1

Assigning Panel Groups as Help for Commands

Panel groups can be created as help for command parameters that may be prompted.

The first help module, which contains extended help for the command, is specified for the Help identifier

parameter for the Create Command (CRTCMD) command. Each additional help item in the panel group

corresponds to a parameter in the command. Only one help module can exist for each parameter that can

be prompted.

For a help module to be associated with a parameter, the :HELP name must use the following

convention:

:HELP name=’help-identifier/parameter-name’.

where help-identifier is the name specified for the Help identifier parameter in the Create Command

(CRTCMD) command, and parameter-name is the name of the parameter that the help module describes.

The following example shows one way to organize a panel group for command help:

:PNLGRP.

:HELP name=startcmd.

:P.

The text for this help module is used as the

extended help for the command.

:EHELP.

:HELP name=’startcmd/parameter1’.

:P.

This help item is used for information about the first

parameter.

:EHELP.

:HELP name=’startcmd/parameter2’.

:P.

This help item is used for information about the second

parameter.

:EHELP.

:EPNLGRP.

Using Panel Groups in a Search Index

Panel groups that contain :ISCH, :ISCHSYN, and :ISCHSUBT tags can be added as entries in a search

index. To find out how to access the index search function, see “Understanding How Index Search

Works” on page 397.

Creating a Search Index

The Create Search Index (CRTSCHIDX) command creates a search index object. Search index entries that

provide the reference to the online help information contained in one or more panel group objects may be

added to this object. These referenced panel groups can be added and removed from the search index.

In the following example, a search index object named ACCOUNTING is created in the current library:

CRTSCHIDX SCHIDX(ACCOUNTING)

 TITLE(’Accounting Help Index’)

 TEXT(’Accounting Help Index’)

Adding Entries to a Search Index

The Add Search Index Entry (ADDSCHIDXE) command causes a search index object to build references

to the root words and synonyms for each help module in a panel group that contains an ISCH tag. The

help modules in the panel group then become entries in the search index object.

When a search index object refers to several panel groups as entries, the order that the panel groups are

added into the search index object determines the order the entries are displayed when search index

Chapter 20. Defining Online Help Information 405

function is shown. Similarly, the order of the help modules in a panel group define the order in which

those topics appear in the search index. If the panel group defines a hierarchy, then the topics appear in

the order defined by the hierarchy.

A limit of 1000 panel groups may be added to a search index object. Only one type of panel group may

be added to a search index object. That is, a search index object cannot contain panel groups that use the

ISCHSUBT tag and panel groups that do not use the ISCHSUBT tag.

In the following example, the panel group named PAYROLL is added to the search index named

ACCOUNTING. Both the panel group object and the search index object must exist in the library list.

ADDSCHIDXE SCHIDX(ACCOUNTING) PNLGRP(PAYROLL)

Removing Entries from a Search Index

The Remove Search Index Entry (RMVSCHIDXE) command removes the references to a panel group from

the search index object. The RMVSCHIDXE command removes references to a panel group object that

was added using the ADDSCHIDXE command.

In the following example, entries for the panel group PAYROLL are removed from the search index

ACCOUNTING. The search index object is found by searching the library list.

RMVSCHIDXE SCHIDX(ACCOUNTING) PNLGRP(PAYROLL)

Deleting a Search Index

The Delete Search Index (DLTSCHIDX) command deletes a search index object from the system. The

DLTSCHIDX command does not delete any panel groups that are referred to by the search index object.

In the following example, a search index object named ACCOUNTING is deleted from the library where

the object is first found in the library list.

DLTSCHIDX SCHIDX(ACCOUNTING)

Copying QUSRTOOL Examples That Define Help in a Panel Group

The QUSRTOOL library provides sample DDS-described displays that access online help information

using panel groups. You can copy these examples into a library of your choosing and then tailor them for

your own use. For more information about these sample displays, see “Using the Displays Example in

the QUSRTOOL Library” on page 409.

Defining Online Help Information in a DDS Record

You can use DDS records for the online help information for your display.

The record formats that give the actual online help information may be included in the same member as

the DDS source for the application display. The record formats may also be contained in a different

display file. An example of DDS source used for online help information is shown in “Entering the

Records That Contain the Help Information” on page 371.

406 Application Display Programming V6R1

Part 5. Guidelines for IBM i5/OS-Style Displays

Chapter 21. Designing IBM i5/OS-Style Displays 409

Using the Displays Example in the QUSRTOOL

Library 409

Recognizing the Example Objects 409

Installing the Example Objects 411

Viewing the Sample Displays, Command, and

Online Help Information 411

Copying the Source for the Example Objects for

Your Own Use 414

Defining Special Functions and Attributes for All

Displays 414

Designing the Single-Choice Menu Display . . . 415

Title 416

Instruction Line 416

Menu Options 416

Menu Selection Entry Field 416

Function Keys 416

Online Help Information 417

General Menu Display Operation 417

Designing the Entry Display 417

Title 417

Instruction Line 418

Prompt Area 418

Field Prompts 418

Entry Fields 419

Descriptive Text Area (Possible Choices

Information) 421

Function Keys 422

Online Help Information 422

General Entry Display Operation 422

Designing the Information Display 422

Title 423

Location Information 423

Prompt Area 1 424

Prompt Area 2 424

Instruction Line 425

Function Keys 425

Online Help Information 425

General Information Display Operation 425

Designing the List Display 425

Title 426

Prompt Area 426

Instruction Line 426

Options Line 427

Column Headings 427

Extended Action Entry Area 428

List Fields 428

Paging Location Information 428

Function Keys 429

Online Help Information 429

General List Display Operation 429

Operating the List Control Field 430

Positioning the List 430

Positioning to Lowercase Names in a List 430

Changing the List Control Field and

Positioning the List 431

Operating the Extended Action Entry Area 431

List Operation When Options Are Specified 433

Cursor Positioning Rules 434

Error Condition Rules 434

List Where Only One Item Can Be Selected 435

List Format in Empty List Situation 435

Defining the Function Key Area for All Displays 436

Optional Command Line and Identifier Field 436

Available Command Line Tool 439

Common Key Assignments 439

Defining Help Information for All Displays . . . 443

Help for the Menu Display 443

Help for the Entry Display 444

Help for the Information Display 445

Help for the List Display 446

Defining and Presenting Messages 447

Designing Common User Access (CUA) Entry

Level Models 449

Entry Dialog Actions 449

Function Key Area and Message Line

Relationship 450

Single-Choice Selection (Menu) 450

Selection Choices and Choice Entry Field . . 451

Guidelines for Single Selection Field

Operation 451

Entry Display 452

Entry Fields 452

Information Display 453

List Display 453

Help Information 454

© Copyright IBM Corp. 1997, 2008 407

408 Application Display Programming V6R1

Chapter 21. Designing IBM i5/OS-Style Displays

If you use data description specifications (DDS) to implement your displays, this chapter shows the

format of each i5/OS system display type, giving the position and characteristics of all key display

elements, both constants and data fields. In addition, this chapter describes the common actions assigned

to function keys across the system. However, if you use the user interface manager (UIM) to implement

your displays, the UIM provides the correct formatting and placement for you. For more information on

UIM, see Part 3, “Programming Application Displays Using Panel Groups,” on page 267.

By using the guidelines in this chapter, your displays will be compatible with the Systems Application

Architecture® (SAA®) environment, which makes significant use of the IBM Systems Application

Architecture Common User Access (CUA) rules and guidelines that apply to display stations.

Using the Displays Example in the QUSRTOOL Library

The purpose of the QUSRTOOL library, which is optionally installable on the base operating system, is to

provide you access to examples of various tools and programming techniques that may help you with

application development and management of your system.

Before you can use any of these program examples, the save files in which they are packaged must first

be changed into source physical files. This may have already been done for you; if not, an UNPACKAGE

tool is provided to do it for you. For instructions for unpackaging the files, see member TTTINFO in

source physical file QATTINFO. (You can use the DSPPFM command to display the physical file

member.)

Source physical file QATTINFO contains all the information you’ll need to get started. For each example

program in the QUSRTOOL library, there is a member in QATTINFO that describes the tool and how to

install it.

The displays example in the QUSRTOOL library gives you access to four sample displays and a sample

command. Online information is available for the displays and the command and includes the index

search function and hypertext links.

Recognizing the Example Objects

The sample displays tool in QUSRTOOL is made up of several members that will help you install, create,

and delete the objects used by the example:

 Table 40. Source Members for Displays Example in QUSRTOOL (Install, Create, and Delete)

Source Member Source File Object Type Description

T0011INF QATTINFO N/A Primary documentation member that tells

you what to do to install the example

objects in a library of your choosing. The

documentation may be viewed using the

DSPPFM command, CPYF to a printer, or

using the SEU display function.

T0011CRT QATTCL *PGM Installation program for creating all the

example #1 objects

T0011CR2 QATTCL *PGM Installation program for creating all the

example #2 objects

T0011CR5 QATTCL *PGM Installation program for creating all the

example #3 objects

© Copyright IBM Corp. 1997, 2008 409

Table 40. Source Members for Displays Example in QUSRTOOL (Install, Create, and Delete) (continued)

Source Member Source File Object Type Description

T0011DCL QATTCL *PGM Program that shows the example display file

with its four sample displays, command,

and online help information

T0011DLT QATTCMD *CMD Command to delete all the example objects

for example #1

T0011DC2 QATTCMD *CMD Command to delete all the example objects

for example #2

T0011DC5 QATTCMD *CMD Command to delete all the example objects

for example #3

T0011DEL QATTCL *PGM Program used by the T0011DLT command

to delete the example objects for example #1

T0011DL2 QATTCL *PGM Program used by the T0011DC2 command

to delete the example objects for example #2

T0011DL5 QATTCL *PGM Program used by the T0011DC5 command

to delete the example objects for example #3

The sample displays, command, and online help information are contained in the following members of

QUSRTOOL:

 Table 41. Source Members for Displays Example in QUSRTOOL (Sample Displays, Command, and Online Help

Information)

Source Member Source File Object Type Description

T0011CMD T0011CM2

T0011CM3 T0011CM5

QATTCMD *CMD Sample commands

T0011CLP T0011CP2

T0011CP3 T0011CP5

QATTCL *PGM Command processing program (CPP) used

by the sample command

T0011CHL QATTUIM *PNLGRP Online help information for the sample

command

TOO11DDS QATTDDS *FILE Example display file that contains the DDS

source for a sample i5/OS-style menu, entry

display, information display, and list display

T0011DHL QATTUIM *PNLGRP Online help information for the example

display file for example #1

T0011IDX QATTUIM *PNLGRP Online help information referred to by the

index search object

T0011DD5 QATTDD5 *FILE Source for physical file for example #3.

T0011HL2 QATTUIM *PNLGRP Online help for example #2.

T0011MN2 QATTUIM *MENU Menu for example #2.

T0011PNI QATTUIM *PNLGRP Panel group for example #3 (contains

various declarations).

T0011PN2 QATTUIM *PNLGRP Panel group for example #2.

T0011PN5 QATTUIM *PNLGRP Panel group for example #3.

T0011PN6 QATTUIM *PNLGRP Online help for example #3.

T0011RA5 QATTRPG *PGM List option processing program for example

#3.

T0011RE5 QATTRPG *PGM General panel exit program for example #3.

410 Application Display Programming V6R1

Table 41. Source Members for Displays Example in QUSRTOOL (Sample Displays, Command, and Online Help

Information) (continued)

Source Member Source File Object Type Description

T0011RF5 QATTRPG *PGM Program to process F4 for example #3.

T0011RF6 QATTRPG *PGM Function key processor for example #3.

T0011RI6 QATTRPG *PGM RPG PLISTs used by programs for example

#3.

T0011RI7 QATTRPG *PGM VARRCD definitions used by programs for

example #3.

T0011RL5 QATTRPG *PGM Incomplete list processing exit program for

example #3.

T0011RP5 QATTRPG *PGM Main program for example #3.

T0011RP6 QATTRPG *PGM F4 prompt processor for example #3.

The other objects are not contained in the QUSRTOOL library but are created when you create the

example objects into your library:

 Table 42. Objects Created When Creating Example Objects

Source Member Object Type Description

T0011IDX *SCHIDX Search index object

T0011MSGFL *MSGF Message file used when creating the sample command and

display file

Installing the Example Objects

To install the displays example, follow the installation instructions in T0011INF. The install programs

place all the example objects in a library of your choosing.

Viewing the Sample Displays, Command, and Online Help Information

You can view the sample displays, command, and online help information after installing the example

objects. To view the samples, enter the following commands:

v To view the sample menu, enter:

CALL PGM(your-library/T0011DCL) PARM(MENU)

The sample menu appears:

Chapter 21. Designing IBM i5/OS-Style Displays 411

Press the Help key to view the online help information for the display. The online help information

shown depends on where the cursor is located when you press the Help key.

v To view the sample entry display, enter:

CALL PGM(your-library/T0011DCL) PARM(ENTRY)

The sample entry display appears.

Press the Help key to view the online help information for the display. The online help information

shown depends on where the cursor is located when you press the Help key.

v To view the sample information display, enter:

CALL PGM(your-library/T0011DCL) PARM(INFO)

 Go To Another List

 Select one of the following:

 1. Work with documents in folder

 2. Work with documents to be printed

 3. Work with folders

 4. Work with nontext document data

 5. Work with text profiles

 Selection

 _

 F3=Exit F12=Cancel

Figure 125. Sample Menu in QUSRTOOL

 Merge Options

 Revising profile : PROFILE

 Type choices, press Enter.

 Place on job queue _ Y=Yes, N=No

 For choice Y=Yes:

 Send completion message . . _ Y=Yes, N=No

 Job description __________ Name, F4 for list

 Library __________ Name, *LIBL

 Adjust/paginate option _ 1=Do not adjust

 2=Line ending only

 3=Line and page ending

 Multiple line report _ Y=Yes, N=No

 Collect footnotes

 in merged document _ Y=Yes, N=No

 F3=Exit F12=Cancel F15=Merge data options

Figure 126. Sample Entry Display in QUSRTOOL

412 Application Display Programming V6R1

The sample information display appears:

Press the Help key to view the online help information for the display. The online help information

shown depends on where the cursor is located when you press the Help key.

v To view the sample list display, enter:

CALL PGM(your-library/T0011DCL) PARM(LIST)

The sample list display appears:

 View Document Details Page 1 of 2

 Creation date : oooooooo

 Document : oooooooooooo

 Document description . . : ooo

 Subject : ooo

 ooooooooooo

 Change formats/

 options : o Y=Yes, N=No

 Authors : oooooooooooooooooooo ooooooooooooooooooo

 Keywords : ooo

 oo

 ooo

 Document class : oooooooooooooooo

 Print as labels : o Y=Yes, N=No

 Press Enter to continue.

 F3=Exit F12=Cancel

 View Document Details Page 2 of 2

 Project : oooooooooo

 Reference : ooo

oooooooooo

 Status : oooooooooooooooooooo

 Document date : oooooooo

 Expiration date : oooooooo

 Sent to : ooo

ooooooooo

 Date action due : oooooooo

 Date action

 completed : oooooooo

 Mark for

 offline storage . . . : o 1=Do not mark

 2=Mark and keep

 3=Mark and delete document content

 4=Mark and delete document

 Press Enter to continue.

 F3=Exit F12=Cancel

Figure 127. Sample Information Display (Two Pages) in QUSRTOOL

Chapter 21. Designing IBM i5/OS-Style Displays 413

Press the Help key to view the online help information for the display. The online help information

shown depends on where the cursor is located when you press the Help key.

v To view the index search function, do the following:

1. Type the command to show any of the displays shown in Figure 125 on page 412, Figure 126 on

page 412, Figure 127 on page 413, or Figure 128.

2. Press the Help key to show the help for the display.

3. Press F11 to use the index search function.

4. Press F5 to show all the topics available in index search.

5. You can choose to view any topic shown in the list. The second topic in the list contains a hypertext

link. The fourth topic in the list uses the same panel group as the help for the command.
v To view the sample command, enter T0011CMD:

Press the Help key to view the online help information for the command. The online help information

shown depends on where the cursor is located when you press the Help key.

Copying the Source for the Example Objects for Your Own Use

You can tailor the example objects for your own use after you copy the source from the QUSRTOOL

source file. There are basically two different ways that you can copy the source from the QUSRTOOL

source file:

v You can copy one member at a time using the browse/copy services function of SEU.

v You can copy all members from a QUSRTOOL source file (for example, all CL source members

contained in QATTCL) at one time using the Copy Source File (CPYSRCF) command.

Defining Special Functions and Attributes for All Displays

The following functions and attributes are required for all i5/OS-style displays:

 Table 43. Required Functions and Attributes of All i5/OS-Style Displays

Function Description

Online help information Available from every display using the Help key and a command attention (CAnn)

key as an alternative Help key. The default for the alternative Help key is CA01, which

assigns the help function to F1 (the CUA designated Help key).

 Work with Documents in Folders

 Folder . . . __

 Position to ____________ Starting character(s)

 Type options (and Document), press Enter.

 1=Create 2=Revise 3=Copy 4=Delete 5=View

 6=Print 7=Rename 8=Details 9=Print options 10=Send

 11=Spell 12=File remote 13=Paginate 14=Authority

 Opt Document Document Description Revised Type

 __ ____________

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Search for document

 F11=Display names only F12=Cancel F13=End search F24=More keys

Figure 128. Sample List Display in QUSRTOOL

414 Application Display Programming V6R1

Table 43. Required Functions and Attributes of All i5/OS-Style Displays (continued)

Function Description

Blinking cursor Blinks as long as the record appears on the display screen.

Command function keys

CF03 and CF12

Allows the corresponding function keys (F3 and F12) to be active on the display

Help clearing Ensures that only the current help is available.

The following functions and attributes are optional for all i5/OS-style displays:

 Table 44. Optional Functions and Attributes of All i5/OS-Style Displays

Function Description

Print key Allows the user to print a display

Page Up and Page Down

(Roll Up or Roll Down) keys

Allows the user to page the message subfile

Alternative Page Up and

Alternative Page Down

(Alternative Roll Up and

Alternative Roll Down) keys

Assigns a command function (CFnn) key as an alternative paging key (default keys are

CF07 and CF08, respectively)

Keyboard locking Avoids unlocking the keyboard until the system has finished writing the display and is

ready for input.

Designing the Single-Choice Menu Display

An i5/OS system menu shows a list of choices from which the user can select one choice. It always has a

title, an instruction, a list of choices, and a labeled field for typing the number of the choice selected.

Figure 129 shows an example of a menu.

 Before you continue designing this display, define the required and, if desired, optional functions and

attributes found in “Defining Special Functions and Attributes for All Displays” on page 414.

 Go To Another List

 Select one of the following:

 1. Work with documents in folder

 2. Work with documents to be printed

 3. Work with folders

 4. Work with nontext document data

 5. Work with text profiles

 Selection

 _

 F3=Exit F12=Cancel

Figure 129. Sample Application Menu

Chapter 21. Designing IBM i5/OS-Style Displays 415

For information about viewing this sample display or copying the source for your own use, see “Using

the Displays Example in the QUSRTOOL Library” on page 409.

Title

The title should be centered on line 1, in mixed case, and displayed in high intensity.

Instruction Line

The guidelines for an instruction line are as follows:

v The instruction line is located on line 3 and begins in position 2. It tells the user to choose between the

options listed on the display.

v The instruction line format for a menu is:

Select one of the following:

Note that the instruction line ends in a colon.

v All instruction lines on system displays are specified as blue on color displays.

v Leave line 4 blank and begin the menu options on line 5.

Menu Options

The guidelines for menu options are as follows:

v Begin the options following one blank line after the instruction line.

v List the options (one per line) starting in position 7 for options 1 through 9 and position 6 for options

10 and above. The option number is followed by a period and is not highlighted.

v Limit the number of options to a maximum of 10 wherever possible.

v Options are single-spaced and in numeric order. A gap in the numeric sequence is indicated by one

blank line, regardless of how many numbered options are missing.

v Capitalize the first letter of the first word of the option text; the remaining words should be capitalized

as appropriate for a sentence.

v There is no punctuation at the end of each line of the option text.

v If Sign-off is an option on a menu, it should have option number 90.

v Existing option numbers should not change when new options are added.

Menu Selection Entry Field

The guidelines for the menu selection entry field are as follows:

v The length of a menu selection entry field is one position for option numbers 1 through 9, and two

positions for option numbers 10 or greater (up to 99).

v The menu selection entry field is located in a fixed position relative to the function key area. It begins

in position 7 on the second line above the top (or only) line of the function key area.

v The selection prompt is on the line above the menu selection entry field and begins in position 2.

v The text of the selection prompt is:

Selection

v The line immediately above the top line of the function key area is blank.

Function Keys

Guidelines for defining the function key area are available in “Defining the Function Key Area for All

Displays” on page 436.

416 Application Display Programming V6R1

Online Help Information

Online help information for this sample display using the user interface manager (UIM) is available in

QUSRTOOL. For information on how to use the source in QUSRTOOL, see “Using the Displays Example

in the QUSRTOOL Library” on page 409.

Guidelines for defining the online help information are available in “Help for the Menu Display” on page

443.

General Menu Display Operation

Following is a summary of what happens when the user presses the Enter key with or without making

any entries on the menu:

v If there is no entry in the selection entry field, the menu remains on the display (no-operation

instruction) and an informational message is displayed, if the keyboard is not locked. For example:

Enter option number or command. Press Help for details.

v If the value entered was not a valid menu option, a message such as:

Value entered is not a valid menu selection

should be issued.

v If there is an entry that is determined to be a valid option, the requested action is processed.

Designing the Entry Display

Entry displays let users type in entry field, and are typically used to provide the system parameters and

options associated with an action request. Figure 130 shows an example of an entry display.

 Before you continue designing this display, define the required and, if desired, optional functions and

attributes found in “Defining Special Functions and Attributes for All Displays” on page 414.

For information about viewing this sample display or copying the source for your own use, see “Using

the Displays Example in the QUSRTOOL Library” on page 409.

Title

The title should be centered on line 1, in mixed case, and displayed in high intensity.

 Merge Options

 Type choices, press Enter.

 Place on job queue _ Y=Yes, N=No

 Send completion message _ Y=Yes, N=No

 Job description __________ Name, F4 for list

 Library __________ Name, *LIBL

 Adjust/paginate option _ 1=Do not adjust

 2=Line ending only

 3=Line and page ending

 Multiple line report _ Y=Yes, N=No

 Collect footnotes

 in merged document _ Y=Yes, N=No

 F3=Exit F4=Prompt F12=Cancel

Figure 130. Sample Entry Display

Chapter 21. Designing IBM i5/OS-Style Displays 417

Instruction Line

The guidelines for an instruction line are as follows:

v The first character of each instruction line begins in position 2.

v The instruction line for an entry display is a mandatory field in mixed case characters. The format is

one of the following, depending on what is to be entered:

 Type choices, press the Enter key.

 Type changes, press the Enter key.

 Type information, press the Enter key.

v The top instruction line for an entry display ends in a period.

v All instruction lines on system displays are specified as blue on color displays.

v Although a single instruction (one sentence) is recommended, two instructions are allowed. Each

instruction should fit on a single line with the first character of each line beginning in position 2. There

is no blank line between the instructions. For example,

 Type choices, press Enter.

 Press F16 to send.

v A single instruction can have a maximum length of two lines. The line that is carried over is indented

two spaces (begins in position 4).

 Type information to define the...............

 of the distribution list, press Enter.

Prompt Area

In general, the columns containing the field prompts and entry fields should be on the left half of the

display, and the column containing the list of possible choices should be on the right half of the display.

If all the prompts for a request cannot be shown in the prompt area of a single display, make paging of

the prompt area possible.

Field Prompts

The guidelines for field prompts are as follows:

v Field prompts are in normal sentence capitalization and are located to the left of the field they identify.

v The first letter of the first word of the prompt should be uppercase; the remaining text should be

lowercase, unless grammatically incorrect to do so.

v There is no punctuation at the end of the prompt.

v A series of periods (dots) is used to connect the field prompt and the input field.

v Dots are spaced every other character. The farthest right dot is in the last position within the column

width specified for the field prompt, and the dots are placed every other position back to the prompt

text. There must be three blank spaces between the farthest right dot and the input field the prompt

identifies.

v The closest dot to the prompt text is two or three positions after the prompt (minimum of one blank

between prompt text and dot).

v For input fields, there should be room for two or more dots; otherwise dots should not be shown.

Prompt . . . _______ (room for at least 2 dots)

Long prompt _______ (no room for 2 dots)

v Indentation of field prompts and their corresponding input fields is allowed to show a level of

hierarchy.

v The field prompt column is separated from the column containing the input field by 3 character

positions (blanks).

v When two or more lines of field prompts are presented, the starting positions of the prompts, the dots,

and the input fields are aligned.

v Field prompts on entry displays are preceded by an instruction line beginning in position 2. The field

prompts start in position 4.

For example:

418 Application Display Programming V6R1

Type changes, press Enter.

 Customer name ______________________________

 Customer address ______________________________

 Telephone number _____________

The instruction line is separated from the first field prompt by one blank line.

v If field prompt text carries over to a second line, it is indented an additional two spaces. The input

field is after the last line.

Record format

 of file ______________________________

v The use of leader dots with an unformatted (continuous) entry field that carries over to multiple lines

is the same as with standard formatting. If the field carries over to another line, however, it must

extend to position 80 and carry over to position 1 on the following line.

 Cause ___

v Entry fields formatted on a line-by-line basis should occupy individual lines beginning with the line

following the prompt. The entry fields should be indented two positions from the beginning of the

prompt.

The prompt is not followed by leader dots. Never use leader dots unless the field being identified is on

the same line.

Memo

v When a single piece of data to be entered has multiple parts, the parts can be put on one line if they

are understood by the user and considered one piece of data.

Social security number ___ __ ____

Row/column ___ ___

A From/To date in a field prompt should be formatted as two fields on one line as follows:

Date filed From __/__/__ To __/__/__ MM/DD/YY

Document date From __/__/__ To __/__/__ MM/DD/YY

v Any indication of the type of value (for example, Name), range of value (for example, 1 to 99), or

specific value (for example, Y=Yes, N=No) should not appear with the field prompt, but should be

shown only in the possible choices area.

v For a qualified name hierarchy, indent both the prompt text and the entry field by two positions.

v Indent prompts under a group heading by two positions. A group heading has no corresponding input

field. The group heading should be followed by a colon. It can extend to more than one line, but only

one level of indent is allowed.

v Do not show an entry field if the value on the display is not meaningful. If entry fields are

conditionally meaningful, place conditionally valid prompts on a display separate from the prompt

they are dependent on.

As an alternative, the prompt can be indented under a group heading that defines the conditions. For

example:

 Place on job queue _ Y=Yes, N=No

 For choice Y=Yes:

 Send completion message _ Y=Yes, N=No

Entry Fields: A required entry field requires the user to type a value. Such a field cannot be supported by

a default. An optional entry field does not require the user to type a value. The program can always get a

value for an optional entry field by defining a default.

Chapter 21. Designing IBM i5/OS-Style Displays 419

Entry fields take two forms. The first form requests a user-supplied value, like a name, descriptive text,

or address. Frequently, these fields can accept a value from a list of values of variable length and

contents. When such a list of valid choices exists, F4 should be supported to allow the user to request the

list and simply choose from it.

 File __________ Name, F4 for list

The second type of entry field supports a selection from a fixed set of choices. CUA calls this a Selection

field. If only one choice can be selected, the choices should be numbered. For example:

 Type style 1 1=Prestige elite (12 pitch)

 2=Courier (10 pitch)

 3=Essay standard

The only exceptions to numbering the choices are when the answers are Yes or No and when the choice

value has significance to the user by itself.

If the list of values is longer than five lines, F4 should be supported.

When the prompt requires a Yes or No response, Y and N should be valid entries. For example:

 Duplex Y Y=Yes, N=No

When a display first appears, the cursor should be positioned on the first entry field that the user will

type into. This is usually the first field unless a field specified on an earlier display is carried over to this

display.

On some entry displays it is desirable to indicate previous user entries in an entry field. For example, if a

user typed some command values prior to requesting prompting, those user-supplied values would be

flagged on the prompt.

The greater than symbol (>) is used as the indication. In the entry display format, there are three blank

spaces between the last leader dot and the beginning of the input field. The > is placed in the middle

space of those three blank spaces.

Rules for Entry Fields: The following rules apply to the entry fields themselves:

v Required fields cannot have a default. A subvalue of a required specification can have a default. For

example, a file name parameter is required. No default file name is defined but a default library

qualification of the file name can be provided.

v Required entry fields must be displayed in high intensity. The field prompt and possible choices

information are in normal intensity. If a value is entered in error the value should be shown again in

reverse image and underlined.

v Optional entry fields should be normal intensity.

v Wherever possible, optional entry fields should have a defined and displayed default value.

v Starting positions for entry fields must be left-justified and aligned (unless there are hierarchical fields).

v If defined, default values should appear in the input fields. Values shown in fields are left-justified,

including numbers that are displayed as character values (see Figure 130 on page 417). When values

shown in fields are specified as numeric, they are right-justified.

v User-supplied values typed in the entry fields override the default values.

v Use the underline attribute to indicate the length of the entry field. The indicated length should be the

same as the maximum number of characters that can be entered.

v The entry field can extend into the possible choices information and even carry over into the field

prompt area on subsequent lines if needed. If an unformatted, or continuous, field carries over to

another line, it must extend to position 80 and carry over to position 1 on the following line. For

example:

420 Application Display Programming V6R1

Message text ______________________________________

 __

 __

If a list of possible choices is appropriate for an extended length input field (see “Descriptive Text Area

(Possible Choices Information)” on page 421), the choices may be shown after the input field or

accessed through F4.

v Echoed errors (incorrect values in input fields) are displayed again in reverse image. The keyboard

should be unlocked so that the user can correct the error without having to press Error Reset before

making the correction. The cursor should be positioned at the first field in error.

Note: If reverse image is used in a highlighted input field (for example, a required field), the highlight

attribute should be turned off (changed to normal intensity) to avoid a no display situation with

5250 display stations.

v If a field supports F4 for a list of choices, F4 must remain available if an error is made in the field. This

is important in helping the user correct the error.

If the entry display can be paged and the first error is on the currently displayed fields, show the

display as is without special positioning. If the first error is not on the currently displayed fields,

position the first error at the top of the area that can be paged.

Descriptive Text Area (Possible Choices Information): Possible Choices information should be shown

in the description area to the right of entry fields for which only a predefined set of values or a limited

range of values is allowed . If the number of values is too great to be shown, or if the values are

dynamic, as in a list of document names, F4 should be supported. The phrase F4 for list must appear as

Possible Choices information for that field. (If F4 is supported for all fields on the display, F4 for list does

not have to appear for each field.) A description of the values should also be provided in the Help

information supporting the entry field.

The following rules apply to Possible Choices information:

v Information for all entry fields on a display should have the same starting position.

v Choices are separated by one comma and one blank if shown in a horizontal character string.

 Y=Yes, N=No

 QDKT, QTAPE1, QTAPE2, *SAVF

 Name, *ALL

Choices are aligned on the left and on separate lines if shown vertically. No comma or other

punctuation is shown at the end of any line.

 Y=Yes

 N=No

 1=Prestige elite (12 pitch)

 2=Courier (10 pitch)

 3=Essay standard (proportional)

 4=Essay bold (proportional)

v Capitalize the first word on either side of the equal sign, regardless of whether it is the first value, last

value, or only value. For example:

 1-255, Blank=Entire instruction

 Blank=Entire instruction, *NONE=None of instruction

v Specific values that can be typed are shown in uppercase.

 Files __________ Name, *NONE

v Yes and No should be specified by Y=Yes, N=No.

v Use ’generic*’ to indicate that generic names must be followed by an asterisk.

For example:

 Files __________ Name, generic*

v Identify key numeric ranges. For example:

 0-99

Chapter 21. Designing IBM i5/OS-Style Displays 421

If the range is not important, do not include it. For example, if there is no limit to the value, do not

show anything.

v If a numeric value is being prompted and the value must be in specific units, identify the type of units.

For example:

 Time in seconds

v In a series of possible choices without space to show all the values, show the most useful beginning

with the default and ending with an ellipsis.

v Show a word in quotation marks only when the value being prompted needs to be in quotation marks.

Function Keys

Guidelines for defining the function key area are available in “Defining the Function Key Area for All

Displays” on page 436.

Online Help Information

Online help information for this sample display using the user interface manager (UIM) is available in

QUSRTOOL. For information on how to use the source in QUSRTOOL, see “Using the Displays Example

in the QUSRTOOL Library” on page 409.

Guidelines for defining the online help information are available in “Help for the Entry Display” on page

444.

General Entry Display Operation

The guidelines for entry display operations are as follows:

v If a user blanks out a field that has a default, return the default to the field when you show the display

again after other checking is completed. Do not issue an error message. The function of the display is not

performed so the user can accept or change the returned default.

v If a user blanks out an optional field that does not have a default, leave the field blank. Do not issue an

error message. Processing can occur as appropriate.

v If a user blanks out a required field that has no default, a message such as

Library name is required

is displayed.

v The other fields on the display screen are checked for errors when a field is blanked out and the Enter

key is pressed. In some cases, returning the default may cause an error, depending on another field on

the display screen. When these errors occur, error messages should be displayed.

v In all cases, if required values are not supplied or there is no valid entries, the display is shown again

with an error message indicating what is needed. Fields that have an entry that is not valid or that

require an entry are shown in reverse image. If all fields have valid entries or defaults, the display is

processed and the dialog proceeds to the next logical display defined for the Enter action.

Designing the Information Display

Information displays show protected information. Figure 131 on page 423 shows a two-part information

display. This example shows a series of output fields that are identified or labeled by field prompts.

422 Application Display Programming V6R1

Before you continue designing this display, define the required and, if desired, optional functions and

attributes found in “Defining Special Functions and Attributes for All Displays” on page 414.

For information about viewing this sample display or copying the source for your own use, see “Using

the Displays Example in the QUSRTOOL Library” on page 409.

Title

The title should be centered on line 1, in mixed case, and displayed in high intensity.

Location Information

Location information for a multiple-part display is right-aligned on line 1 and is in the form:

Page xx of xx

 View Document Details Page 1 of 2

 Creation date : oooooooo

 Document : oooooooooooo

 Document description . . : ooo

 Subject : ooo

 ooooooooooo

 Change formats/

 options : o Y=Yes, N=No

 Authors : oooooooooooooooooooo ooooooooooooooooooo

 Keywords : ooo

 oo

 ooo

 Document class : oooooooooooooooo

 Print as labels : o Y=Yes, N=No

 Press Enter to continue.

 F3=Exit F12=Cancel

 View Document Details Page 2 of 2

 Project : oooooooooo

 Reference : ooo

oooooooooo

 Status : oooooooooooooooooooo

 Document date : oooooooo

 Expiration date : oooooooo

 Sent to : ooo

ooooooooo

 Date action due : oooooooo

 Date action

 completed : oooooooo

 Mark for

 offline storage . . . : o 1=Do not mark

 2=Mark and keep

 3=Mark and delete document content

 4=Mark and delete document

 Press Enter to continue.

 F3=Exit F12=Cancel

Figure 131. Sample Information Display (Two Pages)

Chapter 21. Designing IBM i5/OS-Style Displays 423

Prompt Area 1

The guidelines for field prompts are as follows:

v Field prompts are in normal sentence capitalization and are located to the left of the field they identify.

v Field prompts for output fields are not preceded by an instruction line and begin in position 2.

v A series of periods (dots) and a colon are used to connect the field prompt and the output field.

v The colon is in the last position within the column width specified for the field prompt, and the dots

are placed every other position back to the prompt text. The closest dot to the prompt text is two or

three positions after the prompt (minimum of one blank between prompt text and dot).

v The field prompt column is separated from the column containing the output field by 3 character

positions (blanks).

v When two or more lines of field prompts are presented, the dots and colons on each line are aligned

vertically.

v Output fields are always preceded by a colon, and have no underline attributes marking the field

length.

v If the prompt requires more than one line, indent the second line two positions. The output field is

after the last line.

Record format

 of file : ______________________________

v For output fields, dots should be used if there is room for one or more in addition to the colon. The

colon is required. There must be one blank space before the colon in the output field format.

Prompt . . . : Xxxxxxx (room for more than 1 dot)

Med prompt . : Xxxxxxx (room for 1 dot only)

Long prompt : Xxxxxxx (no room for 1 dot)

v Indentation of field prompts and their corresponding output fields is allowed to show a level of

hierarchy.

v When two or more lines of field prompts are presented, the starting positions of the prompts, the dots

and colons, and the output fields are aligned.

v The use of leader dots and the colon with an unformatted (continuous) output field that carries over to

multiple lines is the same as with standard formatting. The second and subsequent lines, in the case of

output fields, are indented by two positions from the beginning of the prompt text.

Cause : Xxx

 xxxxxxxxxxxxx. Xxxx.

v Output fields formatted on a line-by-line basis should occupy individual lines beginning with the line

following the prompt. The output fields should be indented two positions from the beginning of the

prompt.

The prompt is followed by a colon with no intervening blank. The prompt is not followed by leader

dots. Never use leader dots unless the field being identified is on the same line.

Buckslip:

 Xxx

 Xxx

 Xxx

 Xxx

v When the information to be shown has multiple parts, the parts can be put on one line if they are

understood by the user and considered as one piece of data.

Social security number . . . : XXX XX XXXX

Row/column : 27 43

Prompt Area 2

The prompts on the second part of the information display follow the same format as those on the first

part of the display.

424 Application Display Programming V6R1

Instruction Line

Multipart information displays use an instruction line that tells the user how to continue or end the

dialog with the display. For example:

Press Enter to continue.

This bottom instruction line is placed one blank line after the last line of information or one blank line

above the first function key line.

Function Keys

Guidelines for defining the function key area are available in “Defining the Function Key Area for All

Displays” on page 436.

Online Help Information

Online help information for this sample display using the user interface manager (UIM) is available in

QUSRTOOL. For information on how to use the source in QUSRTOOL, see “Using the Displays Example

in the QUSRTOOL Library” on page 409.

Guidelines for defining the online help information are available in “Help for the Information Display”

on page 445.

General Information Display Operation

This output information has been set up as separate information displays that the user progresses

through by pressing the Enter key. A paging model can also be used. When the Enter key is pressed, the

dialog proceeds to the next logical display. The instruction Press Enter to continue should be shown on

the display.

Designing the List Display

List displays show a list of items from which users may select one or more and then specify one or more

actions to perform on those items. Figure 132 is an example of a list display with entry fields. This is

called a mixed display. A mixed display is a display that combines different types of display elements.

 Work with Documents in Folders �1�

 Folder . . . �2�___

 Position to �3�___________ Starting character(s)

 Type options (and Document), press Enter. �4�

 1=Create 2=Revise 3=Copy 4=Delete 5=View �5�

 6=Print 7=Rename 8=Details 9=Print options 10=Send

 11=Spell 12=File remote 13=Paginate 14=Authority

 Opt Document Document Description Revised Type �6�

 __ ____________ �7�

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo �8�

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 �9� Bottom

 F3=Exit F4=Folder list F5=Refresh F6=Print list �10�

 F9=Goto F10=Search for document F12=Cancel

Figure 132. Sample List Display

Chapter 21. Designing IBM i5/OS-Style Displays 425

Reference Key

Display Element

�1� Title

�2� List control field

�3� Position to field

�4� Instruction line

�5� Options line

�6� Column heading

�7� Extended action entry area

�8� List field

�9� Paging location information

�10� Function keys

 Before you continue designing this display, define the required and, if desired, optional functions and

attributes found in “Defining Special Functions and Attributes for All Displays” on page 414.

For information about viewing this sample display or copying the source for your own use, see “Using

the Displays Example in the QUSRTOOL Library” on page 409.

Title

The title should be centered on line 1, in mixed case, and displayed in high intensity.

Prompt Area

In Figure 132 on page 425, the prompt area consists of the list control field and the Position to field.

The guidelines for field prompts are as follows:

v Field prompts are in normal sentence capitalization and are located to the left of the field they identify.

v A series of periods (dots) is used to connect the field prompt and the input field. The farthest right dot

is in the last position within the column width specified for the field prompt, and the dots are placed

every other position back to the prompt text. The closest dot to the prompt text is two or three

positions after the prompt (minimum of one blank between prompt text and dot).

v The field prompt column is separated from the column containing the input or output field by 3

character positions (blanks).

v When two or more lines of field prompts are presented, the farthest right dots should be vertically

aligned if possible.

v Field prompts that are not preceded by an instruction line (on some mixed displays) begin in position

2.

v Input fields have underline attributes marking their length.

Instruction Line

The guidelines for the instruction line are as follows:

v The first character of an instruction line begins in position 2.

v There is no blank line between an instruction line and a following options line.

v The top instruction line for a list display ends in a period.

v If the instruction line is preceded by any information, such as an entry field, it must be separated from

that information by one blank line.

v The instruction line for a standard action list is as follows:

426 Application Display Programming V6R1

Type options, press Enter.

v The instruction line for an action list with an extended action entry is as follows:

Type options (and Xxxx), press Enter.

where Xxxx identifies the type of item the list contains, such as Dictionary, Document, and so on.

v When an instruction line followed by an options line is used with a list, the instruction and option

combination is separated from the list column headings by one blank line.

v All instruction lines on system displays are specified as blue on color displays.

Options Line

The guidelines for the options line are as follows:

v The options line begins in position 4.

v Each listed option has its first letter in uppercase and is preceded by a number and equal sign with no

intervening spaces. A minimum of two spaces must be left between listed options.

v Three lines of options is the maximum (it is recommended that the options line be held to two lines).

When options extend to more than one line, the digits are vertically aligned. List displays can have up

to three lines of options if preferable to a switch to the F23=More options function.

v Use full word names for option labels (for example, 5=Display jobs, 8=Save library).

v If more options are not shown, put an ellipsis after the last option shown and support and show

F23=More options to switch a second set of option descriptions into the instruction area.

v Use the following standardized list action codes:

1 Select (used on the display resulting from pressing F4). Selects for return of value to entry field

where F4 was pressed. Do not use to select an action. The other action codes for the actual

action should be used. This is only used when an object or item in the list is just being chosen.

1 Create. Used on lists with an extended action entry in the list, reserved for Create on all Work

with... displays.

2 Change or Edit.

3 Copy or Hold.

4 Delete or End.

5 Display or Work with the actual object represented and its content. If it is an object with

content, display or work with the content. If it is a description, display or work with the

attributes it describes.

6 Print or Release.

7 Rename.

8 Display attributes or Detail (the secondary display option) Work with ... attributes or Detail

(the secondary work with).

9 Run.
v Work with... actions should be assigned to 5 or 8 if they are not needed for Display actions. If both are

used, 9 or 12 may be used for the work with option.

v The option numbers supported for any list display must be listed in order, but gaps are allowed in the

sequence.

v If the option field is 2 characters (because of the number of options), typing a one-digit selection code

in either position of the field should be accepted.

Column Headings

The guidelines for column headings are as follows:

v Column headings are required on list displays and must be in mixed case.

Chapter 21. Designing IBM i5/OS-Style Displays 427

v Column headings should be left-justified over the corresponding data if the data is character or

character and numeric. Column headings over numeric data only is right-justified. When the heading

is longer than the data, it should be centered over the data.

v The column heading for the option field should be Option. (Option can be abbreviated Opt when space

is limited.)

v Columns should be separated by no fewer than two spaces and no more than seven spaces.

v Column headings can occupy a maximum vertical size of three lines.

Extended Action Entry Area

In the extended action entry area, the first line under the column headings is an entry area that cannot be

paged. The entry area contains an option field and an identifier field. The identifier field is an input field

with its length indicated by underline attributes and is the same length as the corresponding output

fields on those lines of the list that can be paged. For example:

 Opt Document Document Description Revised Type

 __ ____________

Both fields have the attributes of entry fields: underline plus reverse image and cursor positioning in case

of errors.

List Fields

The farthest left column in the list area is the Option column. It contains input fields (underlined) 1 or 2

characters long, depending on the number of options available. One-character entries are accepted in

either position for two-character input fields.

The column to the right of the Option column should contain the information for identifying the list item

or for sequencing (if the list is ordered). This column usually names the item.

Lists can be described using subfiles (see Chapter 4, “Displaying Groups of Records Using Subfiles”). Use

of subfiles, however, does not support the descriptive paging information used by the system interface at

the bottom of the area to be paged.

In the sample list display shown in Figure 132 on page 425, the fields on the available list lines are

described using five fields on a line and nine lines in each field. The program then loads the successive

nine-line blocks of data as the user pages through the file.

The fields in the Option column have the attributes of entry fields. The fields in the other columns, being

defined as input/output (B), have the protect attribute to prevent user access.

Paging Location Information

Whenever the user is on any part other than the last part of an area that can be paged, the phrase

More... appears highlighted (high intensity) in the location information field on the bottom separator

line. When the user is on the last display of an area that can be paged, More... is replaced by Bottom.

The location information field is defined as the seven farthest right display positions of the bottom

separator line. More... and Bottom are right-aligned in this field.

When multiple areas on a mixed display can be paged, each requires its own paging information.

Figure 133 on page 429 shows the layout of a display with location information.

428 Application Display Programming V6R1

Each allowable constant is conditioned by an indicator. The program must display the correct constant,

depending on the status of the paging.

Function Keys

Guidelines for defining the function key area are available in “Defining the Function Key Area for All

Displays” on page 436.

Online Help Information

Online help information for this sample display using the user interface manager (UIM) is available in

QUSRTOOL. For information on how to use the source on QUSRTOOL, see “Using the Displays Example

in the QUSRTOOL Library” on page 409.

Guidelines for defining the online help information are available in “Help for the Information Display”

on page 445.

General List Display Operation

The processing priority of a mixed list display when the Enter key is pressed is as follows:

v The list control field (folder, dictionary, and so on) at the top of the display

v The Position to prompt

v The extended action entry area

v Options within the list proper

Error diagnosis follows this same sequence.

On this type of mixed list display, the list control field at the top of the display normally contains the

name of the object (folder, dictionary, and so on) whose contents are being displayed. By changing the

name, for example to another valid folder name, the user is essentially issuing a display command for the

contents of the newly specified folder. When the user presses the Enter key, the list display area is then

replaced with a new list display.

01 Display Title

02 Top Separator Line

03 Display Body

04

05 - - - - - - - - - - - - start of paging area - - - - - - - - - - - - - - -

06

07

08

09

10

11

16

12

13

14

15

17

18

19

20

21 - - - - - - - - - - - - -end of paging area- - - - - - - - - - - - - - - -

22 Bottom Separator Line More...

23 Function Key Area

24 Message Area

Figure 133. Layout of Display with Location Information

Chapter 21. Designing IBM i5/OS-Style Displays 429

Operating the List Control Field

The list control field specifies what the list contains. For example, by changing the list control field from

FOLDER1 to FOLDER2 and pressing the Enter key, the user gets a new list that displays the contents of

FOLDER2.

The guidelines for the operation of the list control field are as follows:

v Once a list of items is displayed, changing the name of the list in the list control field while selections

within the list are pending causes an error message. The pending selections are saved and the list

control field with the changed name is in reverse image. The error message must include the name that

was changed so the user can change the name back, if desired.

Blanking out the name simply results in the name being restored when the list is displayed again after

pending operations are completed.

v If a list of items from folder A is being displayed and there are no pending selections entered in the

list, the user may obtain a list of items from folder B by changing folder A to folder B in the list control

field and pressing the Enter key.

v While a list of items from folder A is being displayed with no pending requests, the user may perform

a specific function on a particular item in folder B by changing folder A to folder B, typing in the

selected option number and the identifier in the extended action entry area, and then pressing the

Enter key. After the option is performed, the folder B list is displayed.

v If folder A is changed to folder B in the list control field and the Enter key is not pressed, and then a

page/roll operation is attempted (with or without selections pending), the page/roll is not performed,

an error message is shown, and the list control field is in reverse image.

Positioning the List

The guidelines for positioning the list are as follows:

v The Position to function is used for quick repositioning of the list.

– If the user specifies the character S as the starting point, the resulting list starts with the first S item

and includes all items after that as well, not just the items beginning with S. When positioning to S,

if the list contains AA, BB, SA, SB, the list is positioned to SA.

– Once the list has been repositioned, the Page Up and Page Down keys can still be used to page to

any other items in the list.

– The special values *TOP and *BOT are supported to position the list to the beginning or end.

– If no items are found that begin with the characters entered, the list is positioned beginning with the

item immediately preceding the requested position.
v After a Position to function, the item to which the list is positioned should be at the top of the list area,

the cursor should be on the first option field that follows the input-capable field (if one exists), and the

Position to field should be blanked out.

v The Position to field is not checked for being a valid syntax name or a direct match on a name in the

list. Instead, the user is positioned in the list where the entered string would fit based on collating

sequence rules (the user can enter A& to position to where A& is in the collating sequence).

v Position to field entries in the list option column are ignored. If the user types characters into this

prompt and presses the Enter key while operations are pending in the list area of the list, the list is

repositioned and the selections are saved, just as if a page/roll key had been pressed.

Positioning to Lowercase Names in a List

If you support a Position to prompt for your list, and the items in the list have lowercase characters, you

should follow these rules to let the user position the list to those items:

v If the input in the Position to field does not begin with double quotation marks (″), the input should be

folded to uppercase and positioned to the name closest to that uppercase name.

v If the input in the Position to field begins with double quotation marks (″b or ″b″), the list should be

positioned to the name closest to ″b.

430 Application Display Programming V6R1

If the user types the ending quotation marks (″b″), you must strip them off so that list positions to the

name beginning with the double quotation marks (″b). Otherwise, it will look for ″b″ in the collating

sequence.

v If double quotation marks are used on a string that has no special or lowercase characters that would

require quotation marks, they are removed, and the list is positioned to the name that is not marked by

quotation marks.

Using the following list,

 "aa"

 "bb"

 AAAAA

 BBBBB

– Position to ″b and Position to ″b″ should both put ″bb″ at the top of the list.

– Position to ″AAA,″ Position to ″AAA, and Position to AAA should all put AAAAA at the top of the

list.

Changing the List Control Field and Positioning the List

Options for positioning the list include:

v If the list control field is changed to a valid value (a new list can be shown), and a value is typed in

the Position to field, show the new list positioned according to the Position to field.

v If the list control field is changed to a value that is not valid and a value is typed in the Position to

field:

– Display the same list

– Reverse image the list control field and show the message

– Position to field remains as typed; list is not positioned

Operating the Extended Action Entry Area

The guidelines for the operation of the extended action entry area are as follows:

v The cursor is initially positioned on the option field of the extended action entry area. The cursor

returns to this position after either of the following operations:

– Position to

– Any paging operation
v Figure 134 on page 432 shows the processing priority used by the system when the Create function is

used with an extended action entry area:

Chapter 21. Designing IBM i5/OS-Style Displays 431

v Specifying the Create option on any list line other than the extended action entry area results in an

error.

v Specifying the Create option creates a single new list item identified by the user (using the extended

action entry area). If the program requires other user-supplied information to create the list item, it

must present the user with an entry display on which to supply that information.

v The user can enter any of the other options valid for that list using the extended action entry area. The

user must identify the list item the action is to be performed against by typing the name of that item in

the input field on the extended action entry area.

v Options entered in the extended action entry area are valid against any item in the list proper. The user

can perform an option against any item identified in the list proper.

v In the extended action entry area, if an option is entered and an identifier is not, an error message

should state that no function can be performed unless an identifier is specified. There are two

exceptions:

– The identifier is one of the items prompted for on an accompanying entry display that is always

presented to the user

– The program supports creating a temporary object (for example, a query) that can be named later
v If an identifier is entered and an option is not, no operation is performed against the contents of the

identifier field.

v The identifier field can contain a defaulted value. When list processing is performed, the option field in

the extended action entry area is restored to blanks. The identifier field, however, can keep a defaulted

value.

Are
other options

(if any) in
list

valid?

Error.
Create is not done.

Create field goes to reverse image.
Error message.
List is not repositioned to existing item.

Create is done.
Other options (if any) specified
in list are performed.

List is positioned.
No create is done.
Other options (if any) are not processed.

Does
the item

to create already
exist?

Is
there a

"Position to"
value?

Yes

RV3W066-0

Yes

Yes

No

No

No

Figure 134. Example of Processing Priority with List Display

432 Application Display Programming V6R1

List Operation When Options Are Specified

The following rules cover the general operation of lists that have options (actions) specified against items

(objects) in the list.

List processing should follow these general rules:

v The sequence of list processing should match the sequence in which the list items are presented on the

display screen; that is, proceeding from the top line to the bottom line (and from left to right if there is

more than a single item on a line).

v After processing, the same view of the list that was presented before processing should be shown again

(unless an error occurs).

Specific rules for list operations are as follows:

v The user can choose the same or different options for more than one list item. The choices can be made

on any of the item displays that can be paged. Options are not processed until the Enter key is pressed

(on the list display itself or on an entry display that was displayed after the Prompt key was pressed).

v There should not be a limit on the number of options that can be typed on a list (except the Select

option).

v If the user does not have the proper authority to perform the operation, display such a message on the

message line.

v Operations are performed in the order shown in the list area.

Note: Some operations supported on list displays (Delete is an example) can be grouped together on a

separate display when presented for confirmation. Confirmation is given on the group of

operations, but then each operation is performed in the order shown in the list.

v When list processing has completed, after having started from a page other than the first, the user is

returned to the same page of the list, and the list position does not change (unless an error occurs).

However, if the top entry of the page was removed as a result of a delete operation, the list is

positioned such that the next remaining entry prior to the deleted entry is at the top of the list.

When processing is completed, after being started from the first page, the list is positioned with the

current top entry in the list, even if entries were added to or deleted from the beginning of the list.

v The page/roll keys are used to move forward and backward through the list. Pressing a page/roll key

causes a full page roll (all items are replaced).

v Even if a list allows a user to perform only one operation, the user should be allowed to roll even after

one item has been chosen, because processing will not occur until the Enter key is pressed.

v When a page/roll key is pressed, any selections made should be saved (the operations should not be

performed).

v Lists that can page will not wraparound at the beginning or end of the list.

v If multiple display operations are being performed, they should be done one at a time, with

completion of each indicated by the user pressing the Enter key on the last display.

v If the user interrupts list processing before it is finished (for example, by pressing F3 or F12 from an

interim display), the list is shown with all processed options blanked out (in the Option column). All

unprocessed options are still marked. The option that was being processed when F3 or F12 was

pressed (the one where the cursor was positioned), is considered processed and, therefore, is

unmarked.

v If no processing errors occur, all operations are completed prior to the list being shown again.

v If a processing error is detected, processing is interrupted at that point to allow the user to handle the

error. The list can be displayed again with the option field corresponding to the error in reverse image

and the cursor positioned to that field. A separate display may also be presented that allows the user

to handle the error. The appropriate error message is always presented on the message line. When the

user has resolved the error condition, list processing is started again.

v If multiple errors are detected, the list is displayed again with all option fields corresponding to the

errors in reverse image. The cursor is positioned to the first field in error.

Chapter 21. Designing IBM i5/OS-Style Displays 433

If the list display can be paged and the first error is on the currently displayed fields, show the display

as is without special positioning. If the first error is not on the currently displayed fields, position the

first error at the top of the area that can be paged.

v You can elect to have applications either dynamically update the list as the operations in the Option

column are performed, or wait to display the updated list until the user presses F5=Refresh. Each

option is described as follows:

– A dynamic update of the list can be done if the number of entries in the list is not large and the

update can occur as operations are performed without a significant delay.

– If the number of entries is large and updating the list would result in a noticeable delay, the list

should be updated only when the user presses F5=Refresh. If dynamic updating is not used, the

entries that the user has operated on (by entering an option next to one or more), and therefore

changed, should be annotated as to what operation has been performed on them. The annotation

should be made in a status field to the right of the entry. Annotation should only be made by type

of operation (for example, operations that change the item or its status, such as Delete or Change,

should be annotated; operations such as Display should not.) No annotation should be made on an

entry where the operation failed. The annotation should indicate the type of operation performed on

the item. Show (Ended) if the entry was ended, (Held) if held, (Changed) if changed, or (Released)

if released. Abbreviations that correspond to the operation performed, such as Cnl, Hld, Chg, Rls, can

be used if needed.

Cursor Positioning Rules

Cursor positioning rules are as follows:

v When a list display is initially shown, position the cursor to the option field for the first item in the

list. Follow this rule even when there are some secondary fields (for example Position to) at the top of

the display.

v When a list is presented after a position list or a page/roll function, position the cursor to the first

option field in the list area. After a position list function, the item to which the list is to be positioned

should be at the top of the list area and the cursor should be in the option field for that item.

v When another view of the list is presented, the cursor should remain on the entry where it was (unless

the cursor was not in the list area originally; then it is positioned at the first item in list).

v After selected operations have been performed and the list reappears, the following rules apply:

– The user should always return to the same page of the list from which the Enter key was pressed.

This is the primary rule.

– Place the cursor by the last item selected. If that item is not on the current display, place the cursor

by the first item on the current display.

– If the list was positioned at the top before the Enter key was pressed, the list should stay at the top

when processing is complete. For example, if an item was added to the beginning of the list,

position the list to start with the new item. The user expects to see the top of the list if positioned to

the top.

– When errors are detected, position the cursor in the first option in error (options in error should be

in reverse image). The list should be positioned again only if the entry that caused the error is not

on the current display page.

Error Condition Rules

Error condition rules are as follows:

v When a page/roll key is pressed, option number fields are checked for entries that are valid.

v When an Exit or Refresh function is performed, the entries on the display are not processed, and errors

are not returned to the user.

v If errors occur, the option field corresponding to the error is in reverse image, the cursor is positioned

to that field, and the appropriate error message appears on the message line.

434 Application Display Programming V6R1

If the list display is can be paged and the first error is on the currently displayed fields, show the

display as is without special positioning. If the first error is not on the currently displayed fields,

position the first error at the top of the area that can be paged.

v If the first error is on the currently displayed fields, show the display as is without special positioning.

If the first error is not on the currently displayed fields, position the first error at the top of the area

that can be paged.

v Each product can have an internal limit for the number of selections that can be made from a list at

one time. If the user exceeds this limit, display an error message. This error message should include

these items:

– The fact that the maximum number of allowed selections has been exceeded.

– The amount by which this maximum number was exceeded (so the user knows how many

selections to remove).

When this message is presented, the pending selections should not be in reverse image.

v Issue the following errors if the user attempts to page past the top or bottom of an area that can be

paged:

– Top message

Message Text: Already at top of area.

Cause: You pressed a key to move backward in an area. However, you cannot move in that

direction because you are already at the top of that area.

Recovery: If you want to move displayed information backward in another area, move the cursor to

that area and press either the Page Up key or the Roll Down key again.

– Bottom message

Message Text: Already at bottom of area.

Cause: You pressed a key to move forward in an area. However, you cannot move in that direction

because you are already at the bottom of that area.

Recovery: If you want to move displayed information forward in another area, move the cursor to

that area and press either the Page Down key or the Roll Up key again.

List Where Only One Item Can Be Selected

If more than one item is selected and the Enter key is pressed:

v List is shown again with all selections still marked

v All selections are in reverse image

v Issue the message: Only one selection allowed

If one or more items are selected and a Roll key is pressed:

v No message is issued

v Roll is performed

List Format in Empty List Situation

If the user requests a list of items and there are no items available, the rules are as follows:

1. Start the text in column 4 on the second line following the list area column headers (leave one blank

line). If only one list line is available, place the text on the line immediately following the column

headers.

 Opt Document Date Text

 _ __________

 ...blank line...

 (No documents in folder)

2. The attributes of the text should be of normal emphasis and normal color (green).

3. If the Help key is pressed while the cursor is anywhere in the list area, processing should be done as

though the list is not empty (online help information is available for the columns).

Chapter 21. Designing IBM i5/OS-Style Displays 435

4. The text should be generic and state that the list is empty, but should not state the reason. The text

should be in parentheses.

5. The text should begin with No xxxxxxxx where xxxxxxxx identifies what is not displayed. The phrase

should not be followed with a period, because it is not a full sentence. For example:

(No objects in library)

6. If information about why the list is empty is desired, present it in a message on the message line.

Defining the Function Key Area for All Displays

The guidelines for the function key area are as follows:

v List active key assignments from left to right in numeric order, beginning at position 2. Active F keys

cannot be omitted (with the exception of F1) unless they are displayed by the More keys function, in

another set of keys. Capitalize only the first letter of the first word in the function descriptions.

v Leave three spaces between key assignments unless more are needed for alignment.

v When function keys are displayed on two lines, align the key assignments on the left (on F) if possible.

 F3=Xxxxxxxxx F4=Xxxxx F5=Xxxxxxxxxxx F6=Xxxxxxxxxxxx

 F7=Xxxxxxx F12=Xxxxxxx F13=Xxxxxxx

v Display the keys in ascending numeric sequence (gaps in the sequence can exist).

v If one line of a two-line function key area contains a function key description that is very long (that is,

forces a gap of up to seven blanks), this description may span two or more function key descriptions

on the other line for the purpose of alignment. For example:

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 F13=Information Assistant F16=System main menu

v If all the active keys cannot be displayed in two lines, support F24=More keys. The guidelines for what

to display are:

– Enter, Help, and the Roll or Page keys should not be displayed.

– Display active function keys in multiple one-line or two-line sets. Use F24=More keys to see the next

set of function keys in the function key area of a display. All sets must reserve the same number of

lines, one or two.

 F3=Xxxxxxxxx F4=Xxxxx F5=Xxxxxxxxxxx F6=Xxxxxxxxxxxx

 F7=Xxxxxxx F12=Xxxxxxx F24=More keys

– F3=Exit and F12=Cancel must be shown in the primary set (and only in that set). Only F24 is

displayed in all sets.

– Although the function keys should be in numeric sequence in each set, the application can

determine which keys are in each set. The functions displayed in the primary set should be those

that are used the most.
v Displayed function keys on system displays are specified as blue on color displays.

Optional Command Line and Identifier Field

You have probably seen other system menus with a slightly different format. Figure 129 on page 415

shows a menu from within an application, and is the type of menu you should create. System menus

have an additional system identifier in the upper left corner. This is used as a name in conjunction with the

GO command. Such names have to be present as object names in system tables.

The system uses names in this identifier field only on menus accessed by the GO command. Using this

identifier field on application menus could confuse the user because the names would not work with the

GO command. A user can access the system menus, given the menu identifier. Using the GO command, a

user can specify a particular menu, by the menu identifier, or, if a particular menu is not known, a

generic identifier can be used. In this case, the user is shown the Work with Menus display and from this

list, can specify a menu to run. For more information on how to create display file menus, see Chapter 9,

“Creating and Accessing Menus Using Display Files,” on page 233.

436 Application Display Programming V6R1

System menus also use a command line as the entry field for menu selection. The only command area

support DDS provides is to allow you to define an entry field (with accompanying field prompt) into

which a command could be entered. You write all code to support this entry area as a command area,

including passing the command to the system, handling the Prompt function, handling the Retrieve

function, and handling help for the command. “Available Command Line Tool” on page 439 provides

information on a command line function available in the QUSRTOOL library to assist in putting a

command line on an application display.

To support commands from within an application, make one or more system displays with a command

line available or provide a command line on one or more application displays.

Note: If the commands change something the application is dependent on, results that cannot be

predicted can occur.

With the i5/OS system you can limit command entry to the system commands and application

commands you want. Typically, this is the best approach for the user. You can limit the user to special

commands by specifying *YES for the Limit capabilities prompt on the Create User Profile (CRTUSRPRF)

display, as in Figure 135. You can then create commands with the Create Command (CRTCMD)

command. Specify *YES for the Allow limited users prompt to make the command available to limited

users as in Figure 136 on page 438 and Figure 137 on page 438.

Note: Most commands are shipped with ALWLMTUSR(*NO). See the Limit capabilities (LMTCPB) prompt

on the Create User Profile (CRTUSRPRF) display for a list of ALWLMTUSR(*YES) commands. You

can change IBM-supplied commands with the Change Command (CHGCMD) command. If you

change an IBM-supplied command you must keep track of your changes in a control language

(CL) program because the commands are replaced with each release.

 Create User Profile (CRTUSRPRF)

 Type choices, press Enter.

 User profile __________ Name

 User password *USRPRF___ Name, *USRPRF, *NONE

 Set password to expired *NO_ *NO, *YES

 User class *USER__ *USER, *SYSOPR, *PGMR...

 Current library __________ Name, *NONE

 Initial program to call *NONE_____ Name, *NONE

 Library __________ Name, *LIBL, *CURLIB

 Initial menu MAIN______ Name, *SIGNOFF

 Library *LIBL_____ Name, *LIBL, *CURLIB

 Limit capabilities *YES____ *NO, *PARTIAL, *YES

 Text ’description’ *BLANK_____________________________________

 Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

Figure 135. Create User Profile Entry Display

Chapter 21. Designing IBM i5/OS-Style Displays 437

If your application uses commands, you should define an entry field (with accompanying field prompt)

on the display. To match the i5/OS system, command lines should appear as follows:

 Selection or command

 ===> __

v The one-line command line begins in position 7 on the line immediately above the function key area

and ends in position 79 on the same line.

v The command line is identified by a command line prompt, beginning in position 2. If the command

line is used to enter either the menu selection or a command, the text of the prompt is:

Selection or command

v The command entry arrow (===>) is in positions 2 through 5 of the first line of the command line.

v The command entry arrow (===>) is normal intensity like the command line.

 Create Command (CRTCMD)

 Type choices, press Enter.

 Command __________ Name

 Library *CURLIB___ Name, *CURLIB

 Program to process command . . . __________ Name

 Library *LIBL_____ Name, *LIBL, *CURLIB

 Source file QCMDSRC___ Name

 Library *LIBL_____ Name, *LIBL, *CURLIB

 Source member *CMD______ Name, *CMD

 Text ’description’ *SRCMBRTXT_________________________________

 Additional Parameters

 Validity checking program . . . *NONE_____ Name, *NONE

 Library __________ Name, *LIBL, *CURLIB

 Mode in which valid *ALL______ *ALL, *PROD, *DEBUG, *SERVICE

 + for more values ________

 More...

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 136. Create Command Display with Additional Parameters Selected

 Create Command (CRTCMD)

 Type choices, press Enter.

 Where allowed to run *ALL______ *ALL, *BATCH, *INTERACT...

 + for more values ________

 Allow limited users *YES *NO, *YES

 Maximum positional parameters . *NOMAX 0-75, *NOMAX

 Message file for prompt text . . *NONE_____ Name, *NONE

 Library *LIBL_____ Name, *LIBL, *CURLIB

 Message file QCPFMSG___ Name

 Library *LIBL_____ Name, *LIBL, *CURLIB

 Current library *NOCHG____ Name, *NOCHG, *CRTDFT

 Product library *NOCHG____ Name, *NOCHG, *NONE

 Authority *USE______ Name, *USE, *ALL, *CHANGE...

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 137. Second Display of Additional Parameters

438 Application Display Programming V6R1

Available Command Line Tool

General-Use Programming Interface

The QUSCMDLN program can be used to display a pop-up window that contains a command line.

The command line can be used to enter system commands. QUSCMDLN can be called by any user

program. More information about QUSCMDLN is available in the APIs topic

End of General-Use Programming Interface

 The QUSRTOOL library on the i5/OS system contains a command line function and documentation to

assist in putting a command line function on an application display (member CMDLINE, in file

QATTINFO, in QUSRTOOL). One way to access this function is by using the Work with Members Using

PDM (WRKMBRPDM) display, shown in Figure 138.

Common Key Assignments

Table 45 summarizes common function key assignments and indicates when each key is used. The keys

identified as CUA can be used only for the function defined. If the function is not available, the key

should not be used for another function.

Non-CUA keys are keys commonly used on the system for a particular function. If the function is

available on a display, the key assignment given should be used for compatibility with system key

assignments. If the function is not being used, you can use the key assignment for an application-specific

function.

 Table 45. Function Key Assignments

Name Key CUA Usage/Function

Help F1 Yes Active on all displays, but not shown on the display. F1 is also

mapped to the Help function but is not displayed in the function

key area.

 Work with Members Using PDM (WRKMBRPDM)

 Type choices, press Enter.

 File QUSRTOOL *PRV, name

 Library QATTINFO__ *PRV, name, *LIBL, *CURLIB

 Member CMDLINE____ *PRV, name, *generic*...

 Member type *ALL_______ *PRV, name, *generic*...

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 138. Work with Members Using PDM Entry Display

Chapter 21. Designing IBM i5/OS-Style Displays 439

Table 45. Function Key Assignments (continued)

Name Key CUA Usage/Function

Set 1/Set 2 F2 Yes Required when applications need more function keys than can be

assigned to the 24 numbered keys. F1=Help, F2=Set n, F3=Exit,

F9=Retrieve/command, and F12=Cancel are required in both sets of

function keys.

Exit F3 Yes Usually active and shown on all displays. F3 exits the application or

a unit of work within the application. If the application is exited, the

user is returned to the display from which the application was

requested. If a unit of work within an application is exited, the user

is returned to a predefined point within the application that serves

as a point of focus for requesting work (usually a primary menu).

User input is normally discarded; however, if pressing the Exit key

could cause loss of data and require extensive user effort to retrieve

or reconstruct, an exit display should be provided to give the user

the option of saving the data before exiting.

The Exit function must be available on all displays except:

v Displays used for confirmation of the delete action

v List display shown as a result of pressing F4

v Exit displays provided to give the user the option of saving the

data before exiting

The following describes the use of the Exit key for specific display

types:

v Menu. If the menu is part of a dialog that began with a primary

menu or the initial menu after sign-on (for example, the primary

or initial menu is the first menu on the current menu stack),

returns to this primary or initial menu. Pressing the Exit key from

the primary menu exits the current dialog and returns to the

display from which the dialog was entered.

v List display. Returns to the menu or other display from which the

list display was requested. User input is discarded.

v Entry display. Returns to the menu or other display from which

the entry display (or set of entry displays) was requested. User

input is discarded. However, an exit display can be provided to

give the user the option of saving the entries or changes.

v Information display. Returns to the menu or other display from

which the information display (or set of information displays)

was requested.

v Any help display. Returns to the display from which help was

originally requested.

440 Application Display Programming V6R1

Table 45. Function Key Assignments (continued)

Name Key CUA Usage/Function

Prompt F4 Yes Should be supported whenever the display contains an entry field

for which the valid entries are known but are not shown on the

display. F4 provides a list of selectable values (usually a list of

names) related to the field where the cursor is currently positioned.

When the user selects one or more values from the list, those values

are used as input values for the field.

If F4 is pressed and the function is not supported for the field

containing the cursor, the user receives an error message.

If the function is supported for the field containing the cursor and

either a default value exists or the user makes an entry in the field,

the value in the field is kept and the list is displayed. If the user

selects a value from the list, this value replaces the previous value in

the field. If the user does not select a value, the previous value is

kept.

If the user leaves the field blank and presses F4, the list is also

displayed for a value to be selected.

When a command is typed on a system command line and F4 is

pressed, a prompt for the command (an entry display with input

fields for the command parameters) is displayed.

Refresh F5 Yes Should be used where the Refresh function is appropriate. F5 can

start resetting defaults on an entry display, or update (refresh)

system output being displayed. The using program determines what

is appropriate depending on the display type:

v Menu and help display. Not usually used.

v Entry display. Clears user input and shows the display again

with the original values provided at the time the display was first

shown. The cursor is repositioned at the first logical input field on

the display. If the entry fields are on a display that can be paged,

Refresh should position the cursor at the beginning of the list of

entry fields.

v List display. Clears user input and updates the display to show

the current status. Refresh should maintain the same position in

the list. The list should be shown again with the entry that was at

the top of the list page when F5 was pressed still at the top of the

list page, and with the cursor positioned at the top list item.

v Display with output-only fields (data output items). Updates the

information variable fields to show the current values. If the

information variable fields are in a display that can be paged,

Refresh should maintain the same position in the list of fields.

Chapter 21. Designing IBM i5/OS-Style Displays 441

Table 45. Function Key Assignments (continued)

Name Key CUA Usage/Function

Summary of list positioning rules with the Refresh function:

1. The display is shown again with the entry that was at the top of

the display still at the top of the display.

2. If that entry no longer exists, the entry following it is shown at

the top of the display.

3. When the first entry in the list was at the top, the first entry is

shown at the top again (even though it may be a new first

entry).

4. If the entry that was at the top of the display no longer exists

and there are no entries following it, the display is shown with

the first entry of the entire set of values at the top of the display.

5. If the location-determining attributes of the entry at the top of

the display have changed, the list is shown with the entries

starting where the old entry would have been.

Create F6 No Optional. F6 is used for the Create function on a list display that has

not converted to the combination list with 1=Create. However, using

a combination list is preferred on the i5/OS system. Summary of

uses for F6:

v May be requested with the cursor in any position.

v Go to separate display in which additional object(s) can be

defined.

v On completion, show list display from which Create request was

made again.

v Show created object(s) sorted into the list.

v Requests that were pending at the time F6 was pressed should

not be processed, but should still be pending.

Note: When a very large number of new entries can be added,

such as with Add Entries to a Distribution List, it may be a good

application decision to not allow an Add or Create function until

other pending requests are completed. In this case, a message can

be issued when F6 is requested and other requests are pending.

Retrieve F9 Yes Required on all panels or pop-up windows with a command line.

Command F9 Yes Used to display a pop-up window containing a command line.

Cancel F12 Yes Must be active and shown on all displays. F12 returns to the

previous logical display. It provides the basic navigation function of

backing up one step in the interface, as described for the following

displays:

v Menu. Backs up to the previous menu or other display from

which the menu was directly started. Any user input is discarded.

v Entry and List displays. Backs up to the previous display. User

input is discarded. (If significant data would be lost, an exit

display should be shown.)

v Information displays. Backs up to the display previously shown.

Note: If a set of information (including input or output fields) can

logically be presented in a paging format, use a display that can

be paged instead of the Enter and Cancel keys for forward and

backward navigation through the information.

This function must be available on all displays, except when a

logical Cancel function is precluded by other factors. An example is

when only the Exit function is appropriate because the user must

first verify (using an exit display) whether data is to be saved or

not.

442 Application Display Programming V6R1

Table 45. Function Key Assignments (continued)

Name Key CUA Usage/Function

XXXX Main Menu F16 No Optional for applications. F16 must be active and shown on system

menus. It provides a direct path to the system or application

primary menu. A target menu other than the system main menu

must be explicitly stated. This key would normally be used within

an application to provide a direct path to the application main

menu. When this key is pressed, any user input is discarded. If F3

or F12 is pressed on the target menu, the user is returned to the

display where F16 was pressed.

Top of list F17 No Optional on displays that can be paged. F17 pages to the top or

beginning (same as *TOP in the Position to field). This key should be

supported when the Position to field is not present.

Bottom of list F18 No Optional on displays that can be paged. F18 pages to the bottom or

end (same as *BOT in the Position to field). This key should be

supported when the Position to field is not present.

Left F19 Yes Should be operational on all displays with a horizontal area that can

be paged. There are no common columns of information between

successive views.

Right F20 Yes Should be operational on all displays with a horizontal area that can

be paged. There are no common columns of information between

successive views.

More options F23 No Optional. List displays only. Use F23 to display the next set of

options in the instruction area of a list display. Use when the first

set of options shown in up to three lines is not complete. It is

recommended that an ellipsis be shown after the last option in the

options area if other options exist that cannot be seen until F23 is

pressed. The most important functions are shown first, and the less

frequently used options are shown after F23 is pressed.

More keys F24 No Optional. Use F24 to see more active function keys in the function

key area of a display. Use when all key descriptions will not fit in

the two-line function key area.

Defining Help Information for All Displays

Help for i5/OS system displays consists of specific information on fields where the cursor is positioned,

and, when the cursor is positioned anywhere else, general information on what the display is for and

how the user interacts with it.

Help on the system also includes a system help index. This section describes the type of help support for

fields provided by the system for each display type.

Help for the Menu Display

The following table and illustration describe the help information for each menu help area:

 Table 46. Type of Help for Each Help Area-Menu Display

Cursor Position Help Information UIM Tag

On line containing option number

and description

What function each option performs HELP element of MENUI tag

In function key area Function performed by each function

key turned on for the display

HELP element of KEYL and KEYI tag

Chapter 21. Designing IBM i5/OS-Style Displays 443

Table 46. Type of Help for Each Help Area-Menu Display (continued)

Cursor Position Help Information UIM Tag

Any other display position Beginning of general help for display

(user can page through all help for

display, which includes description of

how to use the entry line)

HELP element of PANEL tag

On command line with no entries Entry at beginning of general help for

panel (user can page through all help

for display)

HELP element of PANEL tag

On command line with option

number entered

What function each option performs HELP element of MENUI tag

 The following table gives the DDS considerations for help on menu displays:

 Table 47. DDS Considerations-Help on Menu Displays

Item Help Area Area Covered

Each menu option From position 1 to the farthest right display position on the line containing the

option number and the option text

Function key area From position 1 on the first line of the function key descriptions to the farthest

right display position on the last line of the function key descriptions

The remainder of the display is defined as the general help area.

Help for the Entry Display

The following table and illustration describe the help information for each entry display help area:

 Table 48. Type of Help for Each Help Area-Entry Display

Cursor Position Help Information UIM Tag

On input field or descriptive lines

associated with input fields (data

entry item)

Use of each possible entry in input

field

HELP element of DATAI tag

= = = t o p = = =

What panel does

How to get help

.

.

.

Menu Panel
Select one of the following:

1. Option 1 description

2. Option 2 description

3. Option 3 description

n. Option n description
= =

.

.
..
.

.

F2=xxx F3=xxx . . . Fn=xxx

Extended
Help

Cursor in

contextual

help area

Cursor not on
any area defined
with contextual
help

Using command line

What option 1 does

What option 2 does

What option 3 does

What option n does

RV2W027-4

From contextual help,
user can press F2 to go
to extended help.

Function keys

= = = b o t t o m = = =

Contextual
Help

444 Application Display Programming V6R1

Table 48. Type of Help for Each Help Area-Entry Display (continued)

Cursor Position Help Information UIM Tag

In function key area Function performed by each function

key turned on for the display

HELP element of KEYL tag

Any other display position Beginning of general help for display

(user can page through all help for

display)

HELP element of PANEL tag

 The following table gives the DDS considerations for help on menu displays:

 Table 49. DDS Considerations-Help on Entry Displays

Item Help Area Area Covered

Each item From position 1 on the first line of the item text to the farthest right display

position on the last line of either (1) the input field(s) or (2) the possible choices

text, whichever occupies the most lines (see Figure 139).

Function key area From position 1 on the first line of the function key descriptions to the farthest

right display position on the last line of the function key descriptions

The remainder of the display is defined as the general help area.

Help for the Information Display

The following table and illustration describe the help information for each information display help area:

 Table 50. Type of Help for Each Help Area-Information Display

Cursor Position Help Information

In output field or descriptive lines

associated with output field.

Meaning of output field. (A data output field is an area on a display consisting

of descriptive text and an associated output field into which variable data is

written at display time.)

In function key area Function performed by each function key turned on for the display

Any other display position Beginning of general help for display (user can page through all help for

display)

= = = t o p = = =

What panel does

How to get help

Help for aaaa

Help for bbbb

Help for cccc

.

.

.

Help for nnnn

Function keys

= = = b o t t o m = = =

Entry Panel

nnnn . .

F2=xxx F3=xxx . . . Fn=xxx

bbbb . .

cccc . .
...

...

Cursor in

contextual

help area

Extended
Help

Contextual
Help

From contextual help,
user can press F2 to
go to extended help.

Cursor not on
any area defined
with contextual
help

RV2W026-6

Item Choice Position Choices

aaaa . .

Figure 139. Help Areas for Entry Displays

Chapter 21. Designing IBM i5/OS-Style Displays 445

The following table gives the DDS considerations for help on information displays:

 Table 51. DDS Considerations-Help on Information Displays

Item Help Area Area Covered

Data output items From position 1 to the farthest right display position on the line (see Figure 140)

Function key area From position 1 on the first line of the function key descriptions to the farthest

right display position on the last line of the function key descriptions

The remainder of the display is defined as the general help area.

Help for the List Display

The following table and illustration describe the help information for each list display help area:

 Table 52. Type of Help for Each Help Area-List Display

Cursor Position Help Information UIM Tag

In input field or descriptive lines

associated with input fields

Use of each possible entry in input

field

HELP element of LISTCOL tag

In specific column Meaning and use of column. This

includes how to use that entry field

(for example, creating a list entry or

performing an action against a list

entry without paging to it) for the

column containing the extended

action entry.

HELP element of LISTCOL tag

In function key area Function performed by each function

key turned on for the display

HELP element of KEYL tag

Any other display position Beginning of general help for display

(user can page through all help for

display)

HELP element of PANEL tag

= = = t o p = = =

What panel does

How to get help

Help for aaaa

Help for bbbb

Help for cccc

.

.

.

Help for nnnn

Function keys

= = = b o t t o m = = =

nnnn . .

F2=xxx F3=xxx . . . Fn=xxx

...
...

Cursor in

contextual

help area

Information Panel

From contextual help,
user can press F2 to
go to extended help.

Contextual
Help

Extended
Help

Cursor not
on any
area defined
with
contextual
help

: zzzzz

: wwwww

bbbb . . : xxxxx

cccc . . : yyyyy

RV2W043-5

Item Choice Position Choices

aaaa . .

Figure 140. Help Areas for Information Displays

446 Application Display Programming V6R1

The following table gives the DDS considerations for help on list displays:

 Table 53. DDS Considerations-Help on List Displays

Item Help Area Area Covered

Each column From the farthest left position on the first line of the column heading to the

farthest right position on the last line of column data. The farthest left position is

defined as the farthest left character position of either the longest heading line or

the data column, whichever is wider. The farthest right position is defined as the

farthest right character position of either the longest heading line or the data

column, whichever is wider. (See Figure 141).

Function key area From position 1 on the first line of the function key descriptions to the farthest

right display position on the last line of the function key descriptions

The remainder of the display is defined as the general help area.

Defining and Presenting Messages

For compatibility with the system, an application should present an error message any time a user types

a selection or actual value that is not allowed. The message itself should provide as much information as

possible to allow users to continue processing. On the system, messages appear on the bottom line of the

display.

= = = t o p = = =
Extended
Help

Contextual
Help

From contextual help,
user can press F2 to
go to extended help.

Cursor not on
any area defined
with contextual
help

List Panel

0 AAA BBB CCC NNN
...xxx xxx xxx xxx

xxx xxx xxx xxx

F2=xxx F3=xxx . . . Fn=xxx

. . . .
.
.

.

.
.
.

.

.

Position cursor, enter choices
1=xxx 2=xxx 3=xxxxx 4=xxxx

.

.

. How to use panel

How to get help

Option column and
text for all option
list actions

Column AAA

Column BBB

Column CCC

.

.

.

Column NNN

Function keys

= = = b o t t o m = = =

RV2W025-3

Cursor in

contextual

help area

Figure 141. Help Areas for List Displays

Chapter 21. Designing IBM i5/OS-Style Displays 447

Messages should be supported by help information that gives an expanded description of the error (if

necessary) and a remedy to the problem. In general, the help information should state what happened

and, if possible, what to do if an action is required. The highest priority should be given to a statement of

action required.

The user can request help for the message being displayed by moving the cursor to the message line and

pressing the Help key. Message help is presented on a separate display and can extend to more than one

display if needed.

The DDS keyword ERRMSG is easy to use, but locks the keyboard and lets the user see only one

message at a time. This option is acceptable if there are only a few messages. However, to keep the user’s

interaction with the message easy, the goals are to:

v Not make the user unlock the keyboard to respond to the message

v Provide a formatted display that can be paged for additional message information

To accomplish this, you should use a subfile containing messages from a program message queue

(SFLMSGKEY, SFLMSGRCD, and SFLPGMQ keywords) rather than use the ERRMSG, ERRMSGID,

SFLMSGID, and SFLMSG keywords.

To provide messages that tell the user what is correct, not simply that an entry is not valid, validity

checking in your program is recommended over using the CHECK, RANGE, VALUES, and COMP

keywords in DDS. When these keywords are used, a message tells the user that what is entered is not

valid, but no explanation or indication of what is valid is given.

Message presentation on the system adheres as closely as possible to the following rules:

v Detected input errors result in an error message and the function is not performed.

v Error messages are shown on the display where the values that are not valid or options were entered.

The error message does not appear on a separate display started by the data entered and the Enter

action.

v When errors are detected on data entered on a display, the display is shown again with:

– The first value(s) in error visible. In the case of a display that cannot be paged, the display is shown

again with the erroneous values still in the fields where they were entered. For the display that can

be paged where the user only entered values on one display page of values, the display is shown

again as it appeared when the Enter key was pressed. For the display that can be paged where the

user has paged and entered values on multiple pages, the display is shown again with the first page

of values that contains an error.

– The erroneous values are shown in reverse image (if the display station supports this).

Note: If reverse image is used in a highlighted input field, the highlight attribute should be turned

off (changed to normal intensity) to avoid a no display situation with 5250 display stations.

– The cursor is positioned on the first field with a value in error.

– The keyboard is not locked.
v When multiple errors are detected on data entered on a display:

– Error messages for all errors on the display can be viewed, one at a time, on the message line using

the roll/page key.

– If multiple messages are waiting, the last three positions of the message line contain ″b+b″ (b

indicates blank) in high intensity to indicate additional messages are present. The roll/page keys

allow viewing the other messages. To page through the messages, the user moves the cursor to the

message line and presses the appropriate roll/page key.

– When multiple messages are presented, the messages are in the same order as the values in error

appear on the display.

448 Application Display Programming V6R1

– When the user takes the appropriate corrective action (pressing a key, for example), the error

message is removed. Only messages for errors that have not been corrected are present on the

message line or waiting to be viewed.
v If a user requests help for an item other than the message (the cursor is not on the message line when

the user presses the Help key), the message remains on the display when the user returns from the

Help displays.

Designing Common User Access (CUA) Entry Level Models

CUA has defined the entry model to guide the programmer of an existing simple, transaction-oriented

application in redesigning the user interface of that application to use some of the standard interface

components defined by CUA. The key difference between entry and the other CUA models is that entry

is action oriented and follows an action-object process sequence. Other CUA models have an object-action

orientation.

The CUA entry model closely resembles the existing i5/OS interface. The user is typically asked to select

an action or task from a menu or list and then indicate the object to which that action applies.

Entry Dialog Actions

Certain CUA entry dialog actions must be shown in the function key area when they are available on the

display area. Table 54 summarizes CUA entry dialog actions indicating the function key assignments and

when each key is used. If the function is not available, the key should not be used for another function.

 Table 54. CUA Entry Dialog Actions

Function Key Usage Requirements

Enter Enter Active on all displays, but not shown in function key area

Help F1, Help Help must be active on all displays, but is not shown on the display.

F1 must also be mapped to the Help function. F1 is not shown in the

function key area.

CUA screens should have F1 turned on for help; however, DDS also

allows the Help key to be assigned to this function.

Exit F3 Must be active and shown on all displays except:

v Confirmation displays.

v List display that appear as a result of the user pressing F4.

v Exit displays that result from the user pressing F3=Exit where the

decision is made as to save or not.

v Pop-up windows

Prompt F4 Must be supported whenever the display contains an entry field for

which the valid entries are known but cannot be shown in the

possible choice description area. Required on any display with a

command line.

Refresh F5 Required on action list displays (except selection lists) and strongly

recommended on other list displays. Should be used on other

displays where the refresh function is appropriate.

Backward Page Up, F7 Must be operational on all displays with an area that can be paged.

Not shown in function key area. Page up shows the previous page

of data.

CUA displays should have Page up turned on for paging; however,

DDS also allows F7 to be assigned to this function.

Chapter 21. Designing IBM i5/OS-Style Displays 449

Table 54. CUA Entry Dialog Actions (continued)

Function Key Usage Requirements

Forward Page Down, F8 Must be operational on all displays with an area that can be paged.

Not shown in function key area. Page down shows the next page of

data.

CUA displays should have the Page Down key turned on for paging;

however, DDS also allows F8 key to be assigned to this function.

Retrieve F9 Required on all displays with a command line.

Command F9 Used to display a pop-up command line.

Cancel F12 Must be active and shown on all displays except:

v When the previous display was a prompt for a function that had

already been processed.

v On a display where only the Exit function is appropriate because

the user must not be allowed to exit without first verifying (by

way of an Exit display) whether data is to be saved.

Left F19 Must be operational on all displays with a horizontal area that can

be paged. There are no common columns of information between

these successive views.

Right F20 Must be operational on all displays with a horizontal area that can

be paged. There are no common columns of information between

these successive views.

Function Key Area and Message Line Relationship

The entry model has the message line placed as a separator between other display areas and the function

key area, and command area if used. A command line would be above the function key area and below

the message line.

The guidelines for the function key area do not change, except for placement. A single line of function

keys is on line 24. Two lines of function keys occupy lines 23 and 24. The message area is on the line

immediately above the function keys.

Single-Choice Selection (Menu)

A CUA single-choice selection field displays a list of choices from which the user can select one choice.

The display always has a title, an instruction, a list of choices, and a labeled field for typing the number

of the choice selected. Figure 142 on page 451 shows an example of a CUA single-choice selection field on

a display.

450 Application Display Programming V6R1

Selection Choices and Choice Entry Field

The guidelines for selection choices and the choice entry field are as follows:

v Begin the choices one blank line after the instruction line.

v A choice entry field is on line 5 preceding the first choice. The length of a choice entry field is one

position if the number of choices is less than 10, two positions if any choice numbers are 10 or greater

(up to 99).

v The choice entry field starts in position 2.

v List the choices (one per line) starting in position 4 if the number of options is nine or less. The

number is followed by a period and is not highlighted.

v If any choice number exceeds 9, the choice entry field requires 2 characters (in positions 2 and 3).

Option numbers 1 through 9 start in position 6, and numbers 10 and higher start in position 5.

Guidelines for Single Selection Field Operation

The single selection field allows two methods of interaction. The user can enter the number of the choice

in the choice entry field and press the Enter key, or can move the cursor directly to the desired choice

and press the Enter key.

Use the following rules:

v If the cursor is in the choice entry field, or 1 character position to the right (position 3 or 4), process the

choice in the choice entry field.

v If the cursor is not in or immediately to the right of the choice entry field, and the choice entry field

contains a blank, process the choice on the same line as the cursor.

v If the cursor is not in or immediately to the right of the choice entry field, the choice entry field is not

blank (a value has been entered), and the value in the field is not the same as the choice being selected,

present a message that asks the user to choose between the choice being pointed at and the choice

indicated by the value in the choice entry field.

 Go To Another List

 Select one of the following:

 _ 1. Work with documents in folder

 2. Work with documents to be printed

 3. Work with folders

 4. Work with nontext document data

 5. Work with text profiles

 F3=Exit F12=Cancel

Figure 142. Example of an Application Menu

Chapter 21. Designing IBM i5/OS-Style Displays 451

Entry Display

Entry displays let users type in entry fields, and are typically used to indicate the system parameters and

options associated with an action request. Figure 143 shows an example of an entry display.

Entry Fields

CUA entry fields take two forms. The first form is an entry field that requests a user-supplied value, like

a name, descriptive text, or address. Frequently, these fields can accept a value from a list of values that

is of variable length and contents. When such a list of valid choices exists, support F4 to allow the user to

request the list and simply choose from it.

Using descriptive text (F4 for list) is preferred method for identifying a field supporting F4. As an

alternative, CUA specifies a plus sign (+) to follow the entry field (with one intervening blank for an

attribute byte) if the field supports F4.

 File __________ + Name

The second type of entry field supports a selection from a fixed set of choices. CUA calls this a Selection

field. If only one choice can be selected, number the choices. For example:

 Type style _ 1. Prestige elite (12 pitch)

 2. Courier (10 pitch)

 3. Essay standard

The user selects by either moving the cursor or typing in the entry field (see “Guidelines for Single

Selection Field Operation” on page 451).

If the list of values is more than can be shown in one to five lines, support F4.

CUA discourages prompts that are phrased to require selection of a Yes or No response. For example, for

setting printing options, instead of using:

 Duplex _ 1. Yes

 2. No

CUA recommends:

 One or both sides . . _ 1. Both sides

 2. One side

 Merge Options

 Type choices, press Enter.

 Job queue _ 1. Placed on job queue

 2. Not on job queue

 Completion message _ 1. Message sent

 2. Message not sent

 Job description __________ + Name

 Library __________ Name, *LIBL

 Adjust/paginate option _ 1. Do not adjust

 2. Line ending only

 3. Line and page ending

 Report line format _ 1. Multiple lines

 2. No multiple lines

 Footnotes _ 1. Collected

 2. Not collected

 F3=Exit F4=Prompt F12=Cancel

Figure 143. Entry Display

452 Application Display Programming V6R1

Selection choices are aligned on the left and shown on separate lines. No comma or other punctuation is

shown at the end of any line.

 _ 1. Prestige elite (12 pitch)

 2. Courier (10 pitch)

 3. Essay standard (proportional)

 4. Essay bold (proportional)

Information Display

A CUA version of the information display shown could be paged instead of being in two parts as the

example shown in Figure 131 on page 423. Also, the explanatory information for Yes and No would not

be required because Yes and No would not have been used for the entry function for which this

information display is based. See “List Display” for a discussion of CUA paging information. Figure 144

shows an example of the sample information display in CUA format.

List Display

Like the information display, a CUA version of the sample list display would differ primarily in the

display of paging information. Figure 145 on page 454 shows an example of a list display.

CUA uses the word More followed by a colon and then paging symbols to indicate additional information

exists outside the visible area, and the direction to page to see that information.

If the user can page in all four directions, backward, forward, left, and right, reserve space for all four

paging symbols. If the user can page in only two directions, reserve space for two. Symbols are not

shown if the user cannot page in the direction they represent; blanks are shown instead.

The four paging symbols are:

< indicates there is information to the left

– indicates there is information backward

+ indicates there is information forward

> indicates there is information to the right

 View Document Details

 More: +

 Creation date : oooooooo

 Document : oooooooooooo

 Document description . . : ooo

 Subject : ooo

 ooooooooooo

 Change formats/

 options : ooooooooooooooo

 Authors : oooooooooooooooooooo ooooooooooooooooooo

 Keywords : ooo

 oo

 ooo

 Document class : oooooooooooooooo

 Print as labels : ooooooooooo

 Project : oooooooooo

 Reference : ooo

oooooooooo

 F3=Exit F12=Cancel

Figure 144. Example of an Information Display

Chapter 21. Designing IBM i5/OS-Style Displays 453

According to CUA, the following paging indicators can be used instead of More: - + for alternative text

paging indicators:

Top Above the area that is paged when users view the beginning of the information

More Above the area that is paged when users can page backward

Bottom Below the area that is paged when users view the end of the information

More Below the area that is paged when users can page forward

Note: This technique takes extra lines above and below the area that will be paged.

Using CUA defined paging information is not possible when using subfiles. The application program

itself must handle the paging. See “List Fields” on page 428 for more information.

The paging method used should be cursor independent when the information is paged in fixed amounts.

Help Information

CUA help information resembles i5/OS help information by having a number of defined functions

available from every help display via function keys. These function keys and their functions are:

 F1=Help for help

 F2=Extended help

 F3=Exit

 F5=Tutorial

 F9=Keys help

 F11=Help index

 F14=Tutorial

These functions cannot be provided by DDS using function keys from help displays. For information on

DDS capabilities for help information, see “Defining Help Information for All Displays” on page 443.

 Work with Documents in Folders

 Folder . . . __

 Position to ____________ Starting character(s)

 Type options (and Document), press Enter.

 1=Create 2=Revise 3=Copy 4=Delete 5=View

 6=Print 7=Rename 8=Details 9=Print options 10=Send

 11=Spell 12=File remote 13=Paginate 14=Authority

 More: -+

 Opt Document Document Description Revised Type

 __ ____________

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 __ oooooooooooo ooooooooooooooooooooooooooooooooooo oooooooo oooooooooo

 F3=Exit F4=Folder list F5=Refresh F6=Print list

 F9=Goto F10=Search for document F12=Cancel

Figure 145. Example of a List Display

454 Application Display Programming V6R1

Part 6. Appendixes

© Copyright IBM Corp. 1997, 2008 455

456 Application Display Programming V6R1

Appendix A. UIM Panel Group Definition Language

This appendix describes the UIM panel group definition language. Following some introductory material

on the nature of the language syntax and the structure of the panel group definitions, the actual

statements of the language, the tags, are defined. The tag definitions in this chapter are organized

alphabetically.

A sample syntax diagram is shown below:

 The TAGNAME specifies the name of the tag. This sample tag has two attributes: VATTR, for value

attribute; and KATTR, for keyword attribute. The second attribute in this example is shown on the alternate

branch to indicate that it is an optional attribute. This attribute can have one of three values: DEFAULT,

VALUE1, and VALUE2.

DEFAULT is the value used when you do not specify a value for the KATTR attribute. If there is a default

value, it appears on the group choice line above the attribute name, as DEFAULT appears on the line

above the KATTR attribute name. Instead of using the DEFAULT value, you may choose either VALUE1 or

VALUE2. These values are entered as shown in the syntax diagram.

The value is a value you enter, as specified for that attribute. An attribute value must be enclosed with

apostrophes (') when it contains characters other than A through Z or 0 through 9, and it must be

contained on one source line. To enter an apostrophe in a value surrounded by apostrophes, type the

apostrophe twice.

The tag-content is text associated with that tag that may be displayed or printed for the user. It is

designed to allow national language translation.

The period at the end of the tag and before the tag content is known as the markup/content separator.

This separator is required for all tag markup.

The source for a panel group can be entered in either lowercase, uppercase, or mixed case characters. The

UIM converts the tag names, attribute names, and attribute values to uppercase as appropriate during the

compile process. For example, the following uses of the example tag, TAGNAME, are equivalent

specifications:

:TAGNAME VATTR=VALUE.

:tagname vattr=value.

:Tagname Vattr=Value.

Tag attributes do not need to be specified in the order specified in the syntax diagram. For example, the

following uses of the example tag, TAGNAME, are equivalent specifications:

:tagname vattr=value kattr=value1.

:tagname kattr=value1 vattr=value.

Sometimes it is necessary to continue the attribute of a tag to another source line. However, not all

attributes can be continued. The attributes in the following table are the only ones that can be continued.

�� :TAGNAME VATTR = value

DEFAULT

KATTR

=

VALUE1

VALUE2

 .

tag-content
 ��

© Copyright IBM Corp. 1997, 2008 457

Table 55. Tag Attributes That Can Be Continued

Attribute Tag

ACTION KEYI

ACTION MENUI

ACTION PDFLDC

COLHEAD LISTCOL

COLS LISTVIEW

CONDS TT

EMPHASIS LISTDEF

ENTER LISTACT

ENTER PANEL

EXPR COND

EXTENTER LISTACT

EXTPROMPT LISTACT

LINKWHEN LINK

NOGET VARRCD

NOPUT VARRCD

PERFORM LINK

PROMPT LISTACT

PROTECT LISTDEF

RANGE CHECK

REL CHECK

ROOTS ISCH

TOPICS ISCHSUBT

UNLESSn LINK

VALUES CHECK

VALUES TTROW

VARS LISTDEF

VARS VARRCD

To continue an attribute, repeat the attribute on the next source line, as in the following example:

:TAGNAME

 VATTR='value1 value2 value3'

 VATTR='value4 value5 value6'

 VATTR='value7 value8 value9'.

tag-content

A maximum of fifty attribute names can be specified for any tag, including each repeated attribute name.

Tag Content Formatted as Paragraphs

The period (.), question mark (?), and exclamation point (!) are sentence-ending characters. Depending on

the national language requirements, one or more blanks are placed after each of the sentence-ending

characters that end a UIM source line when the panel group or menu object is created. The number of

blanks can be from one to six, and is specified in the message text of the CPI6AB9 message in the

message file QCPFMSG.

The following example shows how the CPI6AB9 message works.

:p.This is the first sentence.

This is the second! This is the third.

In this example, :p. is the tag name. The :p. tag does not require attributes. There are three spaces

between the second sentence and the third sentence because of national language requirements. If the

CPI6AB9 message is set to xx, this paragraph appears this way to the UIM after it is compiled:

Tag Language

458 Application Display Programming V6R1

This is the first sentence. This is the

second! This is the third.

There are two spaces between the first and second sentences. There are three spaces between the second

and third sentences.

Because the CPI6AB9 message affects the amount of space that follows the end of a source line, if the

CPI6AB9 message is changed to xxx, there will be three spaces between each sentence in the previous

example.

Note: The CPI6AB9 message should already be translated to the proper number of x’s for your country

or region.

Panel Areas

The five types of panel areas are menu, information, data, list, and text areas. A mixed panel is

constructed by using two or more of these areas within the same panel.

The restrictions associated with mixed panels are listed in Table 56.

 Table 56. Restrictions Associated With Mixed Panels

Menu Info Data

Non-

Action

List

Action

List Text

Menu No Yes Yes Yes No No

Info Yes Yes Yes Yes Yes No

Data Yes Yes Yes Yes Yes No

Non-

Action

List

Yes Yes Yes Yes Yes No

Action

List

No Yes Yes Yes No No

Text No No No No No No

All of these area types can be scrolled. Scrolling, as well as presentation of the appropriate scroll location

information, is handled by the UIM for menu, information, data, and list areas. Scrolling for text areas is

handled by the text area user exit program.

Panels

A panel is made up of one or more panel areas, each of which has a specific layout and function. Specific

panels are usually categorized according to the nature of their application areas, such as information

panels, menu panels, list panels, and text panels.

Panel Group Objects

A panel group is a logical grouping of panels that can correspond to a software product, a command, or

a related collection of commands or other services. It can contain panels of any type. Panel groups

provide a context for names of panels, variables, list definitions, and help modules.

Tag Language

Appendix A. UIM Panel Group Definition Language 459

Help on Panels

Help for a panel is constructed from help modules referred to in the panel definition. Extended help for a

panel is a concatenation of the help for the panel, the menu bar, items in all areas in the order of their

definitions, and function keys in the order of their definitions.

Panel Group Organization

The following list shows the required order of tags in the UIM source for panel groups and menus.

Panel Group Outline: Panel Group (PNLGRP)

v Prolog section

 Copyright statement (COPYR)

 Import statements (IMPORT)

 Class definitions (CLASS)

 Variable definitions (VAR)

 Variable Record Definitions (VARRCD)

 List definitions (LISTDEF)

 Condition definitions (COND)

 Truth table definitions (TT)

 Menu bar definitions (MBAR)

 Key list definitions (KEYL)
v Body section

 Display panel definitions (PANEL)

3

- Area definitions (MENU, INFO, DATA, LIST, TEXT)

- Command and option line definitions (CMDLINE, OPTLINE)
 Print head panel definitions (PRTHEAD)

3

- Area definitions (INFO, DATA)

- Print trailer message (PRTTRAIL)
 Print panel definitions (PRTPNL)

3

- Area definitions (INFO, DATA, LIST)
 Help module definitions (HELP)

3

A UIM menu, created with the Create Menu (CRTMNU) command, is a special form of panel group.

These menus are limited to the following panel group tags:

UIM Menu Outline: Panel Group (PNLGRP)

v Prolog section

 Copyright statement (COPYR)

 Import statements (IMPORT)

 Variable definitions (VAR)

 Condition definitions (COND)

 Truth table definitions (TT)

 Menu Bar (MBAR)

 Key list definitions (KEYL)

3. PANEL, PRTHEAD, PRTPNL, and HELP tags can be used in any order.

4. The PANEL and HELP tags can be used in any order.

Tag Language

460 Application Display Programming V6R1

v Body section

 Panel definitions (PANEL)

4

- Area definitions (MENU, INFO, DATA)

- Command and option line definitions (CMDLINE, OPTLINE)
 Help module definitions (HELP)

4

Name Syntax

There are several elements, identified with tags, within a panel group that can be named so that they can

be referred to from other elements within that panel group, such as classes, dialog variables, lists, and

conditions. The application program can also refer to named elements by passing the name to the UIM as

a parameter on an application programming interface (API) call. These elements have a NAME attribute on

the tags that define them. These names may be up to 10 characters long and can contain only the

characters A through Z and 0 through 9. The first character of a name must be an A through Z character.

Names of help modules defined by the HELP tag can be up to 32 characters long and are defined in the

same name space as other elements. As a result, a help module and another element cannot have the

same name in a panel group. They can contain the characters A through Z, 0 through 9, slash (/), and

underscore (_). If the name contains a slash or an underscore, it must be enclosed between apostrophes.

The first character of a help name must be an A through Z character, a slash, or an underscore.

Because all names are stored in the panel group object in uppercase format, lowercase alphabetic

characters (a through z) are converted to uppercase alphabetic characters (A through Z). When the name

of an element is passed to the UIM through an application program interface, the name must be passed

in uppercase characters.

Because these names stay within the panel group and reside in the same name space, a dialog variable

and a UIM list cannot have the same name.

There is an occasional need to refer to object names in the panel group source. These names must obey

the rules for i5/OS object names. They must be enclosed between apostrophes when they contain

characters other than A through Z and 0 through 9.

Symbols

A symbol is a name that can be replaced with something else while the panel group is compiling. All

symbols use an ampersand (&), followed by the symbol name, followed by a period. Symbols must

appear in the text following the period of a tag.

Symbols can be entered in either uppercase or lowercase.

The following symbols are defined by the UIM:

&. Creates an ampersand (&) without triggering symbol processing. This symbol is used when an

ampersand is needed in the text of a tag. If this symbol is not used, the UIM replaces the symbol

name with its actual value.

�� &. ��

&colon.

Creates a colon (:) without triggering tag processing. This symbol is used when a colon is needed

in the text of a tag.

�� &colon. ��

Tag Language

Appendix A. UIM Panel Group Definition Language 461

&cont. Forces the concatenation of the next source line with the current source line. Concatenation occurs

only when the symbol is the last character in a source line. No visible symbol is created for the

&cont. symbol.

 When the &cont. symbol is used to continue the two parts of a double-byte character set (DBCS)

word, both the ending shift-in character of the first line and the starting shift-out character of the

second line are discarded.

 The &cont. symbol is useful with a figure, a line, or an example. The symbol can be used when a

CIT, HPn, or LINK tag would cause the resulting source line to be longer than the length of the

source record.

 Here is an example of how to use the &cont. symbol.

:LINES.

Text to be continued &cont.

:LINK perform=’dsphelp hyper’

linkwhen=’chkusrcls("*PGMR")’.&cont.

reference phrase&cont.

:ELINK.&cont.

more text on line.

:ELINES.

�� &cont. ��

&msg(msgid,msgf,lib,NOSUB).

The compiler extracts the first-level message text for the message MSGID from the message file

MSGF in library LIB and substitutes the text in place of this symbol. The values *LIBL and

*CURLIB, without single quotation marks, can be specified for the library. The message text is

retrieved in the CCSID of the panel group source file without any substitution variables.

 The message file defaults to the message file specified on the SUBMSGF attribute of the PNLGRP

tag. If SUBMSGF is not specified, the message file must be specified in the symbol.

 The NOSUB option causes the compiler to not substitute blanks for replacement variables found

in the extracted message.

�� &msg(msgid

,msgf

).

,lib

,NOSUB

 ��

&period.

Creates a period (.) in the text. This symbol is used when a period is needed in column one of the

text without triggering control word processing.

�� &period. ��

&slr. Creates a right slash (/) in the text. This symbol is used if a right slash is needed in column one

of the tag source. If this symbol is not used, right slashes in column one of the source file can

cause problems if the source file is part of the input stream for a batch job.

�� &slr. ��

Tag Language

462 Application Display Programming V6R1

Comments

In addition to markup done with tags, comments can also be inserted into the source of the panel group.

Typically, comments are used to describe the content of the file, or to give information as to the structure,

format, date, author, and so on.

Comments begin with a period followed by an asterisk (.*). They must be used in columns one and two

of the source record. They are ignored by the compiler, but are listed in the source listing. They are not

preserved in the panel group object. An example using comments follows:

.**

.* panel group xxx.xxx

.* author X. X. Xxxxxxx

.* change history 9/18/92 (xxx) Created

.**

:pnlgrp
:epnlgrp.

Imbeds

Source from other files can be brought into a panel group at the time the panel group is compiled. This

allows you to create a panel group or menu from multiple source file members. Imbeds are done with the

.IM control word. An example using imbeds follows:

.im member1

The member (member1) in the file named in the include file (INCFILE) parameter on the Create Panel

Group (CRTPNLGRP) or Create Menu (CRTMNU) command is opened and processed as if it appeared in

the original source file. Imbeds can be nested up to 10 deep; attempting to nest deeper than 10 results in

an error and the panel group or menu object is not created.

DBCS Graphic Literals

DBCS graphic literals are supported by the UIM to support processing of strings of literal characters of

DBCS graphic data. The syntax of the literals follows:

��

�

(1)

(2)

(3)

″

shift-out

D

shift-in

″

g

��

Notes:

1 Shift-out is X'0E'

2 D is one DBCS character

3 Shift-in is X'0F'

The value must be enclosed in apostrophes because it contains special characters.

All strings of literal characters coded on UIM tags that are compared against a DBCS graphic field must

be in the form of DBCS graphic literals. The shift-out and shift-in characters are removed from the

graphic strings before the comparison is performed.

Caution should be used when literals are compared to input-capable graphic fields. You must realize that

on a nongraphic DBCS device, there are two fewer bytes available for input. As a result, you should

always use literals that are two bytes less than the maximum length of the entry field of the DBCS

graphic variable.

Tag Language

Appendix A. UIM Panel Group Definition Language 463

When DBCS graphic characters are used after the period of a tag, (such as on the translation list item (TI)

tag) a graphic literal should not be used. What should be used is everything between and not including

the quotation marks in the diagram above.

Hexadecimal Literals

Hexadecimal data can be entered in attributes wherever a character string literal is allowed. The syntax of

hexadecimal literals follows:

��

�

(1)

″

xx

″

x

��

Notes:

1 xx is a pair of hexadecimal digits (0 through 9, a through f, or A through F)

The following example shows how to code a hexadecimal value for a translation item.

:TI value='"01"x'.*YES

:TI value='"02"x'.*NO

The value must be enclosed in apostrophes because it contains special characters.

APPFMT (Application Formatted Area)

 The application formatted area (APPFMT) tag is an optional tag which defines an area in the upper right

corner of a menu area to be formatted by the application. Only one APPFMT tag can be specified in each

menu area. It must immediately follow the menu area (MENU) and top instruction (TOPINST) tags.

The application formatted area is part of the menu area, appearing at the right edge of the menu area

and ending one character position before the right edge of the panel. The width is determined by the

WIDTH attribute of this tag. The application formatted area extends from the blank line following the top

instruction lines of the menu area to the number of lines defined in the DEPTH attribute of this tag. A

two-byte separator is maintained between the menu item descriptions and the application formatted area.

If the depth of the application formatted area is less than the depth of the menu area, the area below the

application formatted area and to the right of the menu area is blank. The depth of the application

formatted area may not be greater than the depth of the menu area.

If the menu area is scrollable, the scroll indicators appear to the left of the separator between the menu

area and the application formatted area. You cannot scroll the application formatted area, even if you can

scroll the menu area.

The application formatted data is described in “Application Formatted Data” on page 465.

Extended help for the panel is displayed if the Help key is pressed while the cursor is in the application

formatted area.

�� :APPFMT VAR = dialog-variable-name WIDTH = area-width DEPTH = area-depth �

�
USREXIT

=

’CALL program-reference’

.
 ��

Tag Language

464 Application Display Programming V6R1

Required Attributes

VAR=dialog-variable-name

The name of the dialog variable containing the application formatted area. Define the dialog variable

using a class definition (CLASS) tag with a BASETYPE of CHAR x, where x equals the product of the

area width times the area depth.

 You can use the exit program for application formatted data, specified on the USREXIT attribute of this

tag, to update this dialog variable each time the panel is displayed. The UIM uses the value of the

dialog variable as the application formatted data, described in “Application Formatted Data.”

WIDTH=area-width

The width, in characters, for the application formatted area associated with the menu area. The width

specified must be an integer in the range of 1 to 40, or the panel width minus 17, whichever is less.

DEPTH=area-depth

The depth, in lines, of the application formatted area. This depth must be no greater than the number

of lines available for the body of the menu. The body of the menu is the area between and excluding

the top instruction line and the bottom instruction line or bottom separator.

Optional Attribute

USREXIT='CALL program-reference'

The exit program for application formatted data, called to update the value of the dialog variable

containing the application formatted data each time the panel is displayed.

 For a description of the CALL dialog command, see Appendix B, “UIM Dialog Commands,” on page

633.

 For a description of the interface between the UIM and the exit program for application formatted

data, see the Application programming interfaces topic collection in the i5/OS Information Center.

Application Formatted Data

The dialog variable containing the application formatted data is specified on the VAR attribute of this tag.

The contents of this variable is viewed by the UIM as a d by w array of characters, where d is the depth

and w is the width of the application formatted area. Each row of the array is displayed as one line of the

application formatted area.

Any character within the data can be a selection character for a highlighting class. Only output and text

classes are allowed in an application formatted area; no input fields are allowed. The class selection

applies to the following characters up to another class selection character or the end of the row,

whichever occurs first. The UIM sets the highlighting class to normal text at the beginning of each row of

the area.

The selection characters for highlighting are in the range of X'01' through X'06'. The following selection

characters for highlighting are recognized by the UIM:

X'01' Normal variable output

X'02' De-emphasized variable output

X'03' Emphasized variable output

X'04' Normal text

X'05' De-emphasized text

X'06' Emphasized text

The UIM replaces each class selection character with the appropriate display attributes for the class.

Other character values in the ranges X'01' through X'06', and X'10' through X'3F', as well as X'FF', are

APPFMT Tag

Appendix A. UIM Panel Group Definition Language 465

converted to X'1F', appearing as a reverse image box on the screen. Characters X'00' (null), X'0E' (shift-out

for double-byte), X'0F' (shift-in for double-byte), and X'40' through X'FE' (normal, displayable characters),

are passed unchanged to the screen.

The UIM inserts a normal text attribute before each line of the application formatted area and a

field-ending attribute after each line of the application formatted area. This effectively isolates the

application formatted area from the rest of the panel with respect to highlighting attributes.

No character set and code page conversion is done on the application formatted data. If conversion is

necessary, it must be done by the application.

When the UIM calls the exit program to format the application area of a menu, it passes a value which

identifies the BIDI attribute on the panel group (PNLGRP) tag and the code page number of the display

device.

The NBRSHAPE and SYMSWAP attributes of the CLASS tag used for the application formatted area are

determined from the class of the dialog variable containing the application formatted data.

Example: Application Formatted Area

 OfficeVision/400

 System: SYSNAMXX

 Select one of the following:

 1. Calendars Time: 9:09

 2. Mail

 3. Send message February 1992

 4. Send note S M T W T F S

 5. Documents and folders 1

 6. Word processing 2 3 4 5 6 7 8

 7. Directories/distribution lists 9 10 11 12 13 14 15

 8. Decision support 16 17 18 19 20 21 22

 9. Administration 23 24 25 26 27 28 29

 90. Sign off

 Bottom

 Press ATTN to suspend a selected option.

 Selection

 F3=Exit F12=Cancel F19=Display messages

 (C) COPYRIGHT IBM CORP. 1985, 1991.

BOTINST (Bottom Instruction)

 The bottom instruction (BOTINST) tag specifies the bottom instruction lines for an area of the panel. This

tag appears immediately before the ending tag for the area. You can use multiple bottom instruction tags

to present multiple instruction lines if the tag contains instruction text after the period. If multiple tags

are coded, no blank lines appear between the text on different tags. Only one bottom instruction tag is

allowed per area if the INST attribute is used on this tag.

If you do not specify a BOTINST tag for an area, no instruction line is allocated for the area.

�� :BOTINST

INST

=

dialog-variable-name

.

instruction-text

 ��

APPFMT Tag

466 Application Display Programming V6R1

For menus and information areas, a blank line is always left between the body of the area and the

instruction lines. If you can scroll the area, a blank line is reserved for the scroll information between the

body of the area and the bottom instruction. For information about how instruction lines are formatted

with respect to the body of data and list areas, see the BODYSEP attribute in “DATA (Data Presentation

Area)” on page 488 and “LIST (List Area)” on page 544.

Optional Attribute

INST=dialog-variable-name

The name of a dialog variable that contains the bottom instruction text to be displayed. The dialog

variable must be defined with a width less than or equal to the width specified on the panel tag

minus 2. If the INST attribute is used, no instruction-text can be specified for this tag.

 Dialog variables must be defined with a BASETYPE of CHAR, IGC, or BIN on the class definition

(CLASS) tag.

 The error state of the dialog variable is not used for determining the highlighting of the text.

 Special formatting for IGC. (The abbreviation IGC is used in commands and keywords to represent

double-byte character set functions.) When a dialog variable with a BASETYPE of IGC is specified on

the CLASS tag, the UIM does special formatting. If the dialog variable value begins with a shift-out

character (X'0E'), the UIM shifts the value one byte to the left to preserve vertical alignment with

other lines.

Optional Text

instruction-text

The text appearing as bottom instructions for the area. The text is an implied paragraph. When the

display is formatted, any text that does not fit onto one display line is formatted on multiple lines as

necessary and indented two display positions. The text can be a maximum of 255 characters, and can

contain only the reverse text (RT) tag. The instruction text is required unless the INST attribute is

specified on this tag.

CHECK (Validity Checking)

 The validity checking (CHECK) tag is used within a class definition to specify validity checks associated

with variables of that class.

Validity checking occurs on input of the variable value and after translation list processing. If a

translation list is specified for this class and can be applied to an input value, no validity checking is

performed on the translated input value. If the translation list is not applicable and indicates no error, the

validity checks defined by this tag are applied to the input value. For more information on using the

CHECK tag with translation lists, see “TI (Translation List Item)” on page 620 and “TL (Translation List)”

on page 621.

�� :CHECK MSGID = message-identifier

MSGF

=

’

qualified-message-file-name

’
 �

�

�

RANGE

=

’

value1 value2

’

�

REL

=

’

relop value

’

 �

�

�

VALUES

=

’

value

’

.

 ��

BOTINST Tag

Appendix A. UIM Panel Group Definition Language 467

At least one RANGE, REL, or VALUE attribute of this tag must be coded. If more than one validity check is

coded on the tag, the value must pass only one of the check attributes to be accepted for this check. If

more than one CHECK tag is used, a value must pass all the check tags to be accepted. Operations from

multiple attributes are ORed together.

Required Attribute

MSGID=message-identifier

The message identifier of the error message displayed to the user if a validity check fails. The

message should have no substitution variables defined, because the UIM does not supply

replacement text when the message is sent.

Optional Attributes

MSGF='qualified-message-file-name'.

The message file that contains the message specified on the MSGID attribute of this tag. If the DFTMSGF

attribute is not specified on the panel group (PNLGRP) tag, this attribute must be specified.

RANGE='value1 value2'

A range check is valid for both character and numeric types. The check passes if the value entered by

the user is greater than or equal to value1 and less than or equal to value2. This attribute can be

specified more than once.

 Each value must be numeric or character to match the BASETYPE of the variable as specified on the

class definition (CLASS) tag, and cannot be a dialog variable. All character values must be enclosed

in quotation marks. If the BASETYPE of this class is TIME, a time zone value must not be specified.

REL='relop value'

A relational check is valid for both numeric and character types. This attribute can be specified more

than once.

 Each value must be numeric or character to match the BASETYPE of the variable as specified on the

CLASS tag, and cannot be a dialog variable. All character values must be enclosed in quotation

marks. If the BASETYPE of this class is TIME, a time zone value must not be specified.

 Relational operators are listed below. All operators are valid for both character and numeric types.

The check is affected by the CASE and BLANKS attributes of the CLASS tag.

= Equal. The check passes if the value entered by the user is equal to this literal value.

¬= Not equal. The check passes if the value entered by the user is not equal to this literal value.

> Greater than. The check passes if the value entered by the user is greater than this literal

value.

< Less than. The check passes if the value entered by the user is less than this literal value.

>= Greater than or equal. The check passes if the value entered by the user is greater than or

equal to this literal value.

<= Less than or equal. The check passes if the value entered by the user is less than or equal to

this literal value.

 The relational operator may be specified as =, ¬=, >, <, >=, or <=, if the code page of the source maps

the not character ([) to X'5F'. Otherwise, it is suggested that the special values *EQ, *NE, *GT, *LT,

*GE, or *LE be used, respectively, for the relational operator.

VALUES='value1 value2 ... value-n'

A values check is valid for both character and numeric types. The check passes if the value entered

by the user is equal to one of the values in the list. Checking on character values is affected by the

CASE and BLANKS attributes of the CLASS tag. The VALUES attribute can be specified more than once,

and up to 50 values can be specified for this tag.

CHECK Tag

468 Application Display Programming V6R1

Each value must be numeric or character to match the BASETYPE of the variable as specified on the

CLASS tag, and cannot be a dialog variable. The values in the list are separated by blanks. All

character values must be enclosed in quotation marks. If the BASETYPE of this class is TIME, a time

zone value must not be specified.

Example: Validity Checking

UIM Source

:CHECK RANGE=’1 10’ REL=’= 99’ MSGID=USR0234.

:CHECK REL=’< 5’ REL=’> 10’ MSGID=USR1234.

:CHECK VALUES=’"*YES" "*NO"’

MSGID=MMM0001 MSGF=USRMSGF.

The range check allows values 1 through 10, or 99, for any variables of the class to which it applies. The

relational check allows values less than 5 or greater than 10. The values check accepts two special values.

CIT (Title Citation)

 The title citation (CIT) tag identifies the title of a publication and requires a matching end tag. This tag is

only allowed in information areas and help areas. Title citations are underscored for online and printed

text, and can occur anywhere in the text.

The CIT and ECIT tags must be specified on word boundaries. If the two characters immediately

following the ECIT tag are a punctuation mark and a blank, the UIM extends the emphasis attribute to

include the punctuation mark. This allows the punctuation mark and the title to be displayed using the

same emphasis.

Optional Text

title-text

Although the title to be cited is not required, the tag has no meaning when no title is specified.

Example: Title Citations

UIM Source

:P.For more information about the UIM,

see the :cit.Application Display Programming:ecit. book.

Results

For more information about the UIM,

see the Application Display Programming book.

�� :CIT . :ECIT.

title-text
 ��

CHECK Tag

Appendix A. UIM Panel Group Definition Language 469

CLASS (Class Definition)

 The class definition (CLASS) tag defines variable types in variable pools and on panels. Attributes of the

CLASS tag define the data type for the class of the dialog variable and the validity checking necessary for

all variables of that class. The attributes of this tag also determine the methods for mapping an internal

dialog variable of a particular class to or from a displayed form.

Other tags can be nested within the CLASS tag. These tags are listed in the following table. The table

defines the order in which the tags must appear and specifies on which page more information can be

found about each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

�� :CLASS NAME = class-name BASETYPE = ’ CHAR n ’

’

IGC

n

’

OPEN

EITHER

’

GRAPHIC

w c

’

CHAR

POS

’

NAME

n

’

SIMPLE

GENERIC

’

OBJNAME

n

’

SIMPLE

GENERIC

POSTO

’

BIN

b

’

’

PACKED

t f

’

’

ZONED

t f

’

’

PTR

’

’

DATE

’

’

TIME

’

ZONE

’

ACTION

’

 �

�
WIDTH

=

display-width

CHRID

=

NONE

PNLGRP

SHIFT

=

NONE

UPPER

 �

�
CASE

=

MIXED

UPPER

BLANKS

=

RESPECT

IGNORE

SUBST

=

DISPLAY

QUOTED

 �

�
BIDI

=

PNLGRP

LTR

RTL

CONTXTREV

=

NO

YES

NBRSHAPE

=

PNLGRP

ARABIC

HINDI

 �

�
SYMSWAP

=

NO

.

:ECLASS.

YES

 ��

CLASS Tag

470 Application Display Programming V6R1

Table 57. Tags Allowed Between the CLASS and ECLASS Tag

Tag Name Order Page

TL (Translation list) 1 621

CHECK (Validity checking) 2 467

Required Attributes

NAME=class-name

The name assigned to the class. For more information on the rules for naming, see “Name

Syntax” on page 461.

BASETYPE

The base data type for variables in the class. The BASETYPE for a class determines the internal

storage representation and basic input and output editing characteristics for variables of a class.

CHAR n

Variables of this class are character strings of a fixed length. The number of bytes, n, is from 1

to 32 767.

IGC n [OPEN | EITHER]

Variables of this class are fixed-length character strings which may contain double-byte data

surrounded by shift-out and shift-in characters. The number of bytes, n, is from 4 to 32 767.

 OPEN indicates that variables defined with this class can contain both single-byte and

double-byte data.

 EITHER indicates that variables defined with this class can contain single-byte or double-byte

data, but not both. If EITHER is specified, the number of bytes, n must be an even number.

 The CASE attribute on this tag is not allowed for IGC classes. For IGC classes, processing for

CHRID=PNLGRP on this tag depends on whether or not the field value contains double-byte

character set (DBCS) data.

 A dialog variable with a BASETYPE of IGC can be presented on a device that is not

DBCS-capable, as long as the panel group object in which the variable is declared does not

have TEXTMODE=DBCS specified on the panel group (PNLGRP) tag. This allows the same panel

group object and application to support both single-byte character set (SBCS) and DBCS field

values as long as the predefined text in the panel group is only SBCS.

GRAPHIC w c [CHAR | POS]

Variables of this class can contain only DBCS characters which are not surrounded by

shift-out and shift-in characters or UCS-2 characters. The number of DBCS characters or

UCS-2 characters, w, is from 1 to 16 383 (1 DBCS character equals 2 bytes). The CCSID, c,

should only contain a CCSID using the UCS-2 encoding scheme.

 CHAR indicates that the values specified for the optional width value are specified in

number of UCS2 characters. If the optional width value is not specified, the default is set to 2

times w. This parameter is only allowed when a UCS2 CCSID has been specified.

 POS indicates that the values specified for the optional width value are specified in number

of display positions. If the width attribute is not specified, the default width is set to the

value specified for w. This parameter is only allowed when a UCS2 CCSID has been

specified.

 The contents of a GRAPHIC dialog variable must only be DBCS data or UCS-2 data. When

GRAPHIC is specified on this tag and the CCSID parameter is not specified, the field will

contain graphic DBCS data. When GRAPHIC is specified on this tag and the CCSID parameter

is specified with a CCSID using the UCS-2 encoding scheme, the field will contain UCS-2

data. In both cases, shift-out and shift-in characters are not placed in the variable pool by

either the application or the UIM. On output, the UCS-2 data will be converted from the

CLASS Tag

Appendix A. UIM Panel Group Definition Language 471

specified UCS-2 CCSID to the CCSID of the device. On input, the data will be converted from

the device CCSID to the specified UCS-2 CCSID.

 When the CCSID parameter is specified, several restrictions are enforced. First, all graphic

fields using the CCSID parameter will not be allowed to span multiple lines on a print panel.

The COND tag will be limited to comparing other variables of the same UCS-2 Level 1

encoding scheme. UCS-2 dialog variables will not be allowed on the CMD dialog command.

Also, the following tags will not be allowed.

v CHECK tag

v TI tag

Like current graphic DBCS support, each UCS2 character is two bytes long. Since the length

of data displayed on the device after a conversion from a UCS2 CCSID to the device CCSID

is dependent upon what CCSID the device is capable of, the WIDTH attribute can be used to

provide a more accurate field width. This allows you to bypass the default field width to

either avoid truncation of field data or to increase the display space on the screen by

decreasing the field length.

 When the optional WIDTH attribute is not specified in conjunction with the GRAPHIC

basetype with the CCSID parameter and the POS special value is not specified, the number

of characters on the screen is two times the number of UCS2 characters. When the WIDTH

attribute is specified in conjunction with the GRAPHIC basetype with the CCSID parameter,

this value is used for the field length instead of default field width.

 If POS has been specified in conjunction with the CCSID parameter, the value entered for the

WIDTH attribute represents the number of display positions required to display the value.

 If CHAR has been specified in conjunction with the CCSID parameter, the value entered for

the WIDTH attribute represents the number of UCS2 characters that would be displayed on

the screen. The same is true if neither CHAR nor POS was specified.

 For example, a panel group contains the following line:

 :class name=example

 basetype=’graphic 10 X’ width=Y.

v X is the UCS-2 CCSID that the data is stored as. Y is the width of this field. If Y was not

specified, then the length of the field on the screen is 20 (two times the number of UCS-2

characters).

v If you know that the UCS-2 data is constructed from single-byte data, then the field width,

Y, could be specified as five UCS-2 characters so that the field would have a width of 10

single-byte characters on the screen.

v If you know that the UCS-2 data is constructed from double-byte data, then the field

width, Y, could be specified as 11 UCS-2 characters so that the field would have a length of

22 single-byte characters on the screen. This would allow space for the shift-out and

shift-in characters.

Consider the following equivalent definitions:

:class name=example1 basetype=’graphic 10 13488 pos’ width=20.

:class name=example2 basetype=’graphic 10 13488 char’ width=10.

:class name=example3 basetype=’graphic 10 13488’.

The definitions create classes that contain 10 UCS2 characters, which would be displayed in

20 positions on the panel.

 Consider another set of definitions for the same output:

CLASS Tag

472 Application Display Programming V6R1

:class name=example1 basetype=’graphic 10 13488 pos’ width=10.

:class name=example2 basetype=’graphic 10 13488 char’ width=5.

:class name=example3 basetype=’graphic 10 13488’ width=5.

The definitions in this example define classes that contain 10 UCS2 characters, which would

be displayed in 10 display positions on the panel.

 On output, field data that is longer than the specified field length will be truncated. On

input, if too many characters are entered into the UCS-2 field, then the field will be reverse

image and an error appears on the error line stating that too many characters were entered.

The maximum number of characters to enter will be displayed in the error message.

NAME n [SIMPLE | GENERIC]

Use a BASETYPE of NAME for System/38™ names and names which follow the same rules as

System/38 object names, such as names of record formats.

 Lowercase characters (a through z) are converted to uppercase characters (A through Z)

according to the same rules that commands follow. For more information about converting

lowercase characters to uppercase characters, see the Control language topic collection in the

i5/OS Information Center.

 The number of bytes, n, is from 1 to 255.

 SIMPLE indicates that the name entered must be allowed as a simple i5/OS name.

 GENERIC indicates that the name must be a syntactically correct i5/OS generic name.

 A translation list must be specified in the class definition if blanks or any other name value

that is not valid is allowed as an input value for a dialog variable of this BASETYPE.

OBJNAME n [SIMPLE | GENERIC | POSTO]

Use a BASETYPE of OBJNAME for i5/OS object names. SIMPLE indicates that the name

entered must be a single i5/OS object name.

 GENERIC indicates that the name must be a syntactically correct i5/OS generic object name.

 POSTO indicates that the name is used for a position-to field, and does not have to be a

syntactically correct i5/OS name. Lowercase characters (a through z) are converted to

uppercase characters (A through Z) unless the name is enclosed in double quotation marks.

The number of bytes, n, is from 1 to 255.

 When POSTO is specified, if the first and last character of the name is a double quotation

mark, the last double quote is removed from the name. If the first character is not a quotation

mark, all lowercase characters (a through z) are converted to uppercase characters (A through

Z). When POSTO is specified, the name does not have to be a valid object name.

 A translation list must be specified in the class definition if blanks or any other name value

that is not valid is allowed as an input value for a dialog variable of this BASETYPE. For

example, a translation list is necessary when *LIBL should be an allowed value for a variable

containing the library name. For an example of a translation list, see “TL (Translation List)”

on page 621.

 The CASE attribute on this tag cannot be specified for an object name class. The UIM

automatically adds or removes delimiter characters (quotation marks) and converts lowercase

input values to uppercase as necessary.

BIN b

Variables of this BASETYPE are signed and unsigned binary numbers. The number of bits, b, is

either 15, 16, 31, 32, or 64.

 ’BIN 15’ and ’BIN 31’ are signed binary numbers. ’BIN 16’ and ’BIN 32’ are unsigned binary

numbers.

CLASS Tag

Appendix A. UIM Panel Group Definition Language 473

’BIN 15’ is the same as BINARY(2) and ’BIN 31’ is the same as BINARY(4), as is described in

the Application programming interfaces topic collection in the i5/OS Information Center.

 ’BIN 64’ is an unsigned binary number.

PACKED t f

Variables of this class are packed decimal numbers. The number of digits, t, is from 1 to 63.

The number of decimal positions, f, is from 0 to t.

ZONED t f

Variables of this class are zoned decimal numbers. The number of digits, t, is from 1 to 63.

The number of decimal positions, f, is from 0 to t.

PTR

Variables of this class are pointers. Any variables of this BASETYPE cannot be displayed or

printed. The data pointed to by a PTR variable can be displayed in a text area. For more

information on text areas, see “TEXT (Text Area)” on page 616.

DATE n

The variable is a 7- or 8-byte string representing the date in the form cyymmdd or yyyymmdd.

The representation is determined by the number n. A value of 2 for n indicates the cyymmdd

format (the default value). A value of 4 for n indicates the yyyymmdd format. The date

abbreviations are represented as follows.

 For two-digit years:

c Century. Zero indicates years 19xx and one indicates the years 20xx.

yy Year

mm Month

dd Day

For four-digit years:

yyyy Year

mm Month

dd Day

TIME [ZONE]

A value of the base TIME class is a 6-byte string representing the time in the form hhmmss.

The time abbreviations are represented as follows:

hh Hours

mm Minutes

ss Seconds

The optional ZONE attribute indicates that the time value supports an additional 10-byte time

zone value.

zzzzzzzzzz

Time zone

With the optional ZONE attribute, the value is then a 16-byte string that represents the time in

the form hhmmsszzzzzzzzzz

 Time zones are not validated, no kind of time zone conversion is supported, and the time

zone can be entirely blank. Literal TIME values specified in the CHECK or COND expressions, or

on the VALUES attribute of the TI tag cannot have a time zone value. Time zones are specified

only by the application, or from user input.

CLASS Tag

474 Application Display Programming V6R1

In addition, two special values are supported:

*LCL The local time zone is used.

*SYS The time zone of the system is used.

For example, a variable can contain the value 135900*LCL, indicating a time of 13 hours, 59

minutes, and 0 seconds in the local time zone.

 These special values are resolved before the value is updated in the variable pool.

ACTION

The variable is a 2-byte binary number with the same internal form as BIN 15, used as the

option column for an action list or the selection column for a selection list.

 When a variable with this BASETYPE is specified for the VAR attribute on a list column

(LISTCOL) tag for an action list, the UIM determines the width of the input field based on

the maximum OPTION attribute value specified for any list action (LISTACT) tag in the area.

 Table 58. Attribute Summary for Each BASETYPE

BASETYPE

Default

WIDTH

Attribute

Minimum

WIDTH

Attribute

Maximum

WIDTH

Attribute

Default

SHIFT

Attribute

Default

CASE

Attribute

Default

BLANKS

Attribute

BIN 15 6 1 255 UPPER UPPER IGNORE

BIN 16 5 1 255 UPPER UPPER IGNORE

BIN 31 11 1 255 UPPER UPPER IGNORE

BIN 32 10 1 255 UPPER UPPER IGNORE

BIN 64 20 1 255 UPPER UPPER IGNORE

CHAR n n n 32767 NONE MIXED RESPECT

IGC n n n 32767 NONE MIXED RESPECT

GRAPHIC w w w 16383 NONE MIXED RESPECT

GRAPHIC w c w w/2 16383 NONE MIXED RESPECT

NAME n n n 255 UPPER UPPER IGNORE

OBJNAME n n n 255 NONE See text IGNORE

PACKED t f where t=f t+3 f+3 255 UPPER n/a n/a

PACKED t f where t[=f

and f>0

t+2 f+2 255 UPPER n/a n/a

PACKED t f where t[=f

and f=0

t+1 1 255 UPPER n/a n/a

ZONED t f where t=f t+3 f+3 255 UPPER n/a n/a

ZONED t f where t[=f and

f>0

t+2 f+2 255 UPPER n/a n/a

ZONED t f where t[=f and

f=0

t+1 1 255 UPPER n/a n/a

DATE 2 8 8 255 UPPER n/a n/a

DATE 4 10 10 255 UPPER n/a n/a

TIME 8 8 255 UPPER n/a n/a

ACTION 6 (See text) 1 255 UPPER UPPER IGNORE

Optional Attributes

WIDTH=display-width.

The width of a display field in which values of this class are presented. For a BASETYPE of GRAPHIC,

this value is the number of DBCS characters or UCS-2 characters. The defaults and allowable values

for the display width depend on the BASETYPE attribute, as specified in Table 58.

CLASS Tag

Appendix A. UIM Panel Group Definition Language 475

For variables that use this class, a value larger than the default for the BASETYPE may be needed to

support the external display form of values appearing in a translation list. For more information on

translation lists, see “TL (Translation List)” on page 621.

CHRID=NONE | PNLGRP

If the CHRID parameter on the CRTPNLGRP command is *JOBCCSID, the compiler issues a warning

message and the CHRID attribute on the CLASS tag is ignored. All variables are converted from the

job CCSID to the device CHRID when *JOBCCSID is specified.

 If NONE is specified, the data is assumed to be in the correct character set and code page for the

display or printer device.

 If PNLGRP is specified, the data associated with this class is interpreted with the character set and

code page specified on the CHRID parameter on the CRTPNLGRP control language command. For

devices that do not allow the downloading of this code page to handle the display of such data,

character conversion occurs on both output and input for variables of this class. The conversion table

for such cases is determined by the following rules:

 Character set Code page

Panel group xxx yyy

Device aaa bbb

Output conversion table = QUSRSYS/Qyyyaaabbb

Input conversion table = QUSRSYS/Qbbbxxxyyy

 If the conversion table is not found, no conversion takes place. This conversion is done before any

validity checking or inbound processing of a translation list.

 For a BASETYPE of GRAPHIC, CHRID=PNLGRP is not allowed on this tag. The UIM does not perform

character set and code page conversion on GRAPHIC fields containing DBCS data because there is no

single-byte part of a GRAPHIC field. For GRAPHIC fields containing UCS-2 data, conversions will

occur only between the specified UCS-2 CCSID and the device CCSID.

 When CHRID=PNLGRP is specified for a class with BASETYPE of IGC, the UIM converts only the

single-byte portion of the field. No conversion is done on the DBCS portion of the field.

SHIFT=NONE | UPPER

If NONE is coded, no special keyboard shift is used for fields of this class.

 If UPPER is coded, the keyboard is shifted to uppercase for data entry for display input fields

associated with variables of this class. The default keyboard shift is determined by the BASETYPE. For

a summary of the BASETYPE and corresponding default, see Table 58 on page 475.

CASE=MIXED | UPPER

MIXED indicates that characters from any field of this class are preserved when assigned to the

variable pool.

 UPPER indicates that lowercase characters (a through z) are uppercased before assignment to the

pool. This translation takes place after any processing for the CHRID attribute on this tag and before

any validity checking or inbound processing of a translation list. For a BASETYPE of GRAPHIC,

CASE=UPPER is not allowed. The default case is determined by the BASETYPE. For a summary of the

BASETYPE and corresponding default, see Table 58 on page 475.

BLANKS=RESPECT | IGNORE

RESPECT indicates that blanks in the input field are preserved when the value is assigned to the

variable pool.

 IGNORE indicates that the value is left justified when it is assigned to the variable pool. The default

is determined by the BASETYPE. The processing to remove leading blanks takes place after any

processing for the CHRID and CASE attributes on this tag, and before validity checking or inbound

processing of a translation list. For a summary of the BASETYPE and corresponding default, see

Table 58 on page 475.

CLASS Tag

476 Application Display Programming V6R1

When BLANKS=IGNORE is specified for a BASETYPE of IGC, only leading SBCS blanks are removed

from the field value. The processing to remove leading blanks stops at the first shift-out character in

the field.

SUBST=DISPLAY | QUOTED

If DISPLAY is specified, the substitution values used on the CMD dialog command for this class of

variables is the same as their displayed values.

 If QUOTED is specified, the substitution values used on the CMD dialog command for this class of

variables are enclosed in apostrophes, and apostrophes within the values are doubled. Values

translated with the translation list (TL) tag are not quoted.

BIDI=PNLGRP | LTR | RTL

Sets the left-to-right or right-to-left orientation for variables of this class. This attribute is ignored

when BIDI=NONE is specified on the PNLGRP tag.

 PNLGRP indicates that the parameter from the BIDI attribute on the PNLGRP tag should be used to

set the orientation for variables of this class.

 LTR indicates that a left-to-right orientation should be used for variables of this class.

 RTL indicates that a right-to-left orientation should be used for variables of this class.

 The orientation defaults to PNLGRP for classes with a BASETYPE of CHAR and IGC. Orientation

defaults to LTR for classes with a BASETYPE of NAME, OBJNAME, BIN, PACKED, ZONED, DATE,

TIME, and ACTION.

 The cursor direction is reversed for any input field which has an orientation opposite the panel’s

orientation. The cursor direction can be changed later when the CONTXTREV attribute of this tag is

processed.

CONTXTREV=NO | YES

Specifies that a context-sensitive reversal is performed for bidirectional variables of this class. This

attribute is ignored when BIDI=NONE is specified on the PNLGRP tag.

 For CONTXTREV=NO, when the orientation of a variable does not match the orientation of the panel

group, the value for each display line of the variable is reversed before it is displayed. On entry, the

contents of each display line of a field that has an orientation opposite to the panel is also reversed

before it is moved from the display field to the variable pool. NO is the default.

 For CONTXTREV=YES, the contents of dialog variables are checked to determine the ultimate display

orientation of the variable. The dialog variable value is checked before it is displayed. If the dialog

variable is used in an input field, the value is checked again before the input value is copied to the

variable pool. A description of the checking follows:

v When BIDI=LTR is specified on the PNLGRP tag,

– The dialog variable is inverted if and only if the dialog variable value contains at least one

Arabic or one Hebrew alphabetic character, or if it contains no Latin characters and BIDI=RTL is

specified on the CLASS tag.
v When BIDI=RTL is specified on the PNLGRP tag,

– The dialog variable is inverted if and only if the dialog variable value does not contain any

Arabic or Hebrew alphabetic characters, and if either it contains Latin characters or BIDI=LTR is

specified on the CLASS tag.

The Arabic and Hebrew code pages used to determine if the variable must have its display

orientation flipped are described as follows:

v For code page 420

– The following hex values represent Arabic characters: 42 through 49, 51, 52, 55 through 59, 62

through 69, 70 through 79, 80, 8A through 8F, 90, 9A through 9F, A0, AA through AF, B0 through

B5, B8 through BF, CB, CD, CF, D0, and DA through DE.

CLASS Tag

Appendix A. UIM Panel Group Definition Language 477

– The following hex values represent Latin characters: 6F, 81 through 89, 91 through 99, A2

through A9, C1 through C9, D1 through D9, DF, E2 through EB, ED, EE, EF, F0 through F9, and

FB through FE.

– The remaining characters are not considered to be Arabic and Latin.
v For code page 424

– The following hex values represent Hebrew characters: 41 through 49, 51 through 59, 62 through

69, and 71.

– The following hex values represent Latin characters: 81 through 89, 91 through 99, A2 through

A9, C1 through C9, D1 through D9, E2 through E9, and F0 through F9.

– The remaining characters are not considered to be Hebrew and Latin.

For a CONTXTREV=YES input field, the initial cursor direction is determined the same way as for a

CONTXTREV=NO input field. Then it is further processed and redetermined, based on the results of the

following content inversion:

v BIDI=LTR is specified on the PNLGRP tag:

– When BIDI=LTR is specified on the CLASS tag:

- The cursor direction is inverted if and only if the content of the dialog variable is inverted.
– When BIDI=RTL is specified on the CLASS tag:

- The cursor direction is inverted if and only if the content of the dialog variable is not inverted

and if it contains at least one Latin alphabetic character. (This prevents the inversion of the

cursor direction in an empty field.)
v BIDI=RTL is specified on the PNLGRP tag:

– When BIDI=LTR is specified on the CLASS tag:

- The cursor direction is inverted if and only if the content of the dialog variable is not inverted.
– When BIDI=RTL is specified on the CLASS tag:

- The cursor direction is inverted if and only if the content is inverted and if the variable

contains at least one Latin alphabetic character. (This prevents the inversion of the cursor

direction in an empty field.)

For a detailed summary of how CONTXTREV=YES works for various fields and panels, see the

following decision tree.

CLASS Tag

478 Application Display Programming V6R1

NBRSHAPE=PNLGRP | ARABIC | HINDI

Controls the display shape of application-generated numbers for bidirectional variables of this class.

This attribute is ignored when BIDI=NONE is specified on the PNLGRP tag, or when any code page

other than 420 (Arabic) is used by the display device.

 When PNLGRP is specified, the parameter from the NBRSHAPE attribute on the PNLGRP tag should be

used for variables of this class. PNLGRP is the default.

 When ARABIC is specified, the normal digits X'F0' through X'F9' are used for numbers.

 When HINDI is specified, the translation of digits is performed with a set of two translation tables

defined for each national language. The first table is used for output operations, and the second table

is used for input operations.

 The NBRSHAPE attribute allows the application program to not know the actual code points used to

display the numeric digits.

Result 1:

Result
3

No Yes

No

RTL

Result
2

LTR

Result
1

RTL

Result
4

RTL

LTR

RTL LTR

Result
3

Result
2

Result
4

RTL LTR

Right-to-left
cursor motion.
Invert value
of dialog
variable.

Result 2: Result 3:
Left-to-right
cursor motion.

Result 4:
Left-to right
cursor motion.
Invert value
of dialog
variable.

Right-to-left
cursor motion.

LTR

Yes

PNLGRP
BIDI attribute

PNLGRP
BIDI attribute

PNLGRP
BIDI attribute

CLASS
BIDI attribute

CLASS
BIDI attribute

Result
1

Are Any
Arabic or Hebrew

Characters Found?

Are Any Latin
Characters

Found?

RV2W060-0

CLASS Tag

Appendix A. UIM Panel Group Definition Language 479

SYMSWAP=NO | YES

Controls the exchange of symmetric characters for bidirectional variables of this class. This attribute is

ignored when BIDI=NONE is specified on the PNLGRP tag. An example of two pairs of symmetric

characters are:

 ’(’ with ’)’

 ’<’ with ’>’

When YES is specified, the symmetric character exchange is performed for both input and output

operations on any field displayed with a right-to-left orientation. The situations where this can occur

are:

v CONTXTREV=NO is specified on this tag for a variable that has a right-to-left orientation.

v CONTXTREV=YES is specified on this tag for a variable that has a right-to-left orientation, and the

contents of the field causes the resulting field orientation to stay right-to-left.

v CONTXTREV=YES is specified on this tag for a variable that has a left-to-right orientation, and the

contents of the field causes the resulting field orientation to change to right-to-left.

When SYMSWAP=NO is specified, symmetric character exchanges are not performed. NO is the default.

 The complete list of symmetric characters for Hebrew (code page 424) is:

(with) Right and left parentheses, 4D with 5D

{ with } Right and left braces, C0 with D0

[with] Right and left square brackets, BA with BB

< with > Less than and greater than signs, 4C with 6E

! with @ Double less than and double greater than signs, 8A with 8B

 The complete list of symmetric characters for Arabic (code page 420) is:

(with) Right and left parentheses, 4D with 5D

< with > Less than and greater than signs, 4C with 6E

 All symmetric characters generated by the UIM are processed as if SYMSWAP=YES is specified. At this

time, the symmetric characters include:

> Greater than symbol. Used to mark menu options and used in the command line prompt

() Right and left parentheses symbols. Used around an empty list message.

Example: Class Definitions

UIM Source

.* Class of options whose only legal values

.* are Y, N, and blank.

.* These values are translated to an

.* internal form.

 :class name=option

 basetype=’bin 15’

 case=upper width=1.

 :tl msgid=MMM1234.

 :ti value=1.Y

 :ti value=2.N

 :ti value=3.

 :etl.

 :eclass.

 .*

 .* class of object names or the special

 .* value *all

 :class name=object

CLASS Tag

480 Application Display Programming V6R1

basetype=’objname 10 generic’.

 :tl.

 :ti value=’"*ALL"’.*ALL

 :etl.

 :eclass.

 .*

 .* Class of options from 1-5 or 7-9,

 .* in a field of width 1.

 :class name=listoption

 basetype=’bin 15’ width=1.

 :check range=’1 5’ range=’7 9’.

 :eclass.

Display Forms of Numeric Values

Numbers are usually displayed without leading zeros. If the absolute value of the number is less than

one, a leading zero before the decimal point is supplied or suppressed, based on the value of the job’s

decimal format separator attribute. Numbers are signed only if the number is negative. A decimal point is

displayed only if there are fractional digits. The decimal point character used is the one defined by the

job’s decimal format separator attribute. Numbers are displayed preserving all fraction digits.

If a value is too large to fit in the display field on output, the field is filled with plus signs. If a field

consists entirely of plus signs on entry, no validity checks are performed on the field and the value of the

variable in the variable pool is left unchanged.

Numeric literals must be of the form:

��

+

-

�

digit

�

.

digit

��

or

��

+

-

�

digit

�

.

digit

��

A comma may be used in place of a period for decimal point on input. If conversion to the internal form

loses significant digits, the field is considered in error and the UIM displays an error message to the user

without altering the contents of the variable pool. All nonzero digits after the decimal point are

considered significant, and attempts to truncate result in an error. Leading zeros before the decimal point

and trailing zeros after the decimal point are not considered significant. If a sign is not supplied, the

value is assumed to be positive.

Binary values can also be translated to character strings on output and from character strings on entry. In

this case, the value specified for the WIDTH attribute on this tag must allow for the width of the translated

character string specified on the translation list item (TI) tag. For more information on translation lists,

see “TL (Translation List)” on page 621 and “TI (Translation List Item)” on page 620.

Any variable with a BASETYPE of ACTION is handled with editing rules for a numeric value, except that a

zero value is displayed as blanks, and a zero input value is not valid. Plus signs are not allowed on entry.

Translation lists and validity check processing are not allowed for variables whose BASETYPE is ACTION.

Some examples of the display for numeric values are shown in the following table.

CLASS Tag

Appendix A. UIM Panel Group Definition Language 481

BASETYPE WIDTH Internal Value Displayed Value Notes

BIN 15 1 1 1

BIN 15 1 -1 + (Value too large to

display)

BIN 15 5 1 1

BIN 15 5 -1 -1

BIN 15 5 -3456 -3456

BIN 15 5 -32768 +++++ (Value too large to

display)

BIN 16 5 65535 65535

BIN 31 10 2147483645 2147483645

BIN 31 9 2147483645 +++++++++ (Value too large to

display)

BIN 32 10 4294967295 4294967295

BIN 32 9 4294967295 +++++++++ (Value too large to

display)

BIN 64 20 18446744073709551615 18446744073709551615

BIN 64 20 18446744073709551615 +++++++++ (Value too large to

display)

PACKED 2 2 .45 .45 Calculated field width is

5

PACKED 2 2 -.45 -.45 Calculated field width is

5

PACKED 5 2 000.45 0.45 Calculated field width is

7

PACKED 5 2 -000.45 -0.45 Calculated field width is

7

PACKED 5 2 8 000.45 0.45

PACKED 5 2 8 -000.45 -0.45

PACKED 5 2 8 123.45 123.45

PACKED 5 2 8 -123.45 -123.45

PACKED 5 2 4 -123.45 ++++ (Value too large to

display)

PACKED 5 2 4 003.45 3.45

PACKED 5 0 00001 1 Calculated field width is

6

PACKED 5 0 00000 0 Calculated field width is

6

PACKED 5 0 -00000 0 Calculated field width is

6

PACKED 5 0 -00001 -1 Calculated field width is

6

Display Forms of Character, Date, and Time Values

Character values are displayed as they appear from the variable pool, padding with nulls on the right as

necessary. If the value entered into the input field is not translated using a translation list, an error is

reported to the user and the dialog variable is not updated if the value is longer than the BASETYPE of the

variable after trailing blanks are removed. Only trailing SBCS blanks are removed; DBCS blanks are

considered significant.

Dates are always displayed in the form specified by the date format and date separator of the current job.

When a date is entered by a user, it must be in the format specified by the date format of the current job,

but the separator characters specified by the date separator of the current job are optional. Because the

date formats do not allow the entry of the century digit, it is assumed to be 0 if the year number is

greater than 40. If the year number is less than or equal to 40, the century digit is assumed to be 1.

CLASS Tag

482 Application Display Programming V6R1

For those fields that are defined as ’DATE 4’, the user must enter the date with the full four-digit year. If

the user enters a date with only a two-digit year, the date will be flagged as not valid.

Times are always displayed in a 24-hour time format, with the time separator as specified by the time

separator of the current job. The separator characters specified by the time separator of the current job are

optional. If a time is entered without a time separator, either four or six digits must be supplied.

If the time value contains a time zone, the time zone value is separated from the rest of the value by a

single blank character. Upon input, the time zone value must be separated from the rest of the time value

with a single space; otherwise, an error is signaled.

CMDLINE (Command Line)

 The command line (CMDLINE) tag specifies that the panel has a command line and provides additional

command line information. This tag is allowed only for display panels. A command line may appear on

any panel and may be independent of all areas on the panel, or it may be associated with an action list or

menu area on the panel.

Only system commands can be entered on the command line, unless the panel contains a menu area or

an action list area. If the panel contains a menu area, the user enters either a menu option or a command

on the command line. For an action list, the user enters a string that is either run as a command or acts

as parameter information for action list processing.

This tag must be the final tag in the panel, and is placed just before the end of the display panel. The

CMDLINE tag and the option line (OPTLINE) tag are mutually exclusive.

Required Attribute

SIZE=SHORT | LONG

A SHORT command line takes up only one line of the display and fills up that line.

 A LONG command line takes up two lines on the display.

 SIZE=SHORT must be specified if a panel width other than 80 bytes (or 132 bytes) is specified on the

display panel (PANEL) tag. SIZE=LONG is valid only for a 27-row by 132-byte panel or a 24-row by

80-byte panel.

 When BIDI=RTL is specified on the panel group (PNLGRP) tag, all SIZE=LONG command lines are

automatically formatted by the compiler to a one-line command line with a blank line separator

between the command line and the function key area.

Optional Attribute

NAME=command-line-name

The name associated with the command line. This name can be used later with the Add Pop-Up

Window (QUIADDPW) API to position a window near the command line.

 For more information on the rules for naming, see “Name Syntax” on page 461.

Optional Text

instruction-text

The text appearing as instructions for the command line. The text is an implied paragraph.

�� :CMDLINE SIZE = SHORT LONG

NAME

=

command-line-name
 .

instruction-text
 ��

CLASS Tag

Appendix A. UIM Panel Group Definition Language 483

When the display is formatted, any text that does not fit on one display line is formatted on multiple

lines as necessary and indented two display positions. The text can be a maximum of 255 characters

and can only contain the reverse text (RT) tag. If no text is provided, no instruction line is displayed

above the command line.

COND (Condition Definition)

 The condition definition (COND) tag defines a condition that must be true if certain processing is to take

place. Other tags may refer to this condition, which is evaluated before a panel is displayed. If the

condition is true, the action or formatting specified by the referring tag is performed.

Required Attributes

NAME=condition-name

The name of the condition specified in the expression. The name must be unique within the panel

group.

 For more information on the rules for naming, see “Name Syntax” on page 461.

EXPR='conditional-expression'.

A conditional expression is a true or false expression in the following form:

��

�

�

 *AND

*OR

A

(

A

)

*NOT

(

A

)

��

where A is an operand which can be one of the following:

v A conditional expression

v A comparison between a dialog variable and a literal value

v A comparison between two dialog variables

v A built-in function

When operand A is a conditional expression, the *AND and *OR logic becomes more complex.

 The logical OR character (|) can be used in place of *OR, the ampersand character (&); can be used

in place of *AND, and the logical NOT character (¬) can be used in place of *NOT. Since the logical

OR and logical NOT characters are not in the invariant character set, their use is not recommended.

For code page 00037, the common USA code page, the hexadecimal value of the logical OR character

is X'4F', and the hexadecimal value of the logical NOT character is X'5F'. The UIM compiler uses

these hexadecimal values regardless of the code page of the source.

 When operand A is a comparison between a dialog variable and a literal value, or between two

dialog variables, it must be in the following form:

�� dialog-variable-name

literal-value
 relational-operator dialog-variable-name

literal-value
 ��

�� :COND NAME = condition-name EXPR = ’ conditional-expression ’ �

�
EVAL

=

ALWAYS

.

ONCE

 ��

CMDLINE Tag

484 Application Display Programming V6R1

The relational operator may be specified as =, ¬=, >, <, >=, or <=, if the code page of the source maps

the not character ([) to X'5F'. Otherwise, it is suggested that the special values *EQ, *NE, *GT, *LT,

*GE, or *LE be used, respectively for the relational operator.

 Comparisons may take place only between items of matching BASETYPE and precision as defined on

the class definition (CLASS) tag. Comparisons between two literals are not allowed.

 Character string literals must be enclosed in double quotation marks ("). The UIM does not

automatically uppercase character strings.

 If the BASETYPE of the class is TIME, a time zone value must not be specified.

 Hexadecimal strings are allowed as character strings. Hexadecimal strings cannot be used for

comparison with dialog variables defined with a BASETYPE of GRAPHIC on the CLASS tag. For more

information about specifying hexadecimal strings, see “Hexadecimal Literals” on page 464.

 For a comparison between a dialog variable whose BASETYPE is GRAPHIC (as defined on the CLASS

tag) and a literal, a double-byte character set (DBCS) graphic literal must be used. For more

information about specifying a DBCS graphic literal, see “DBCS Graphic Literals” on page 463.

 Numeric literals must be of the form:

��

+

-

�

digit

�

.

digit

��

or

��

+

-

�

digit

�

.

digit

��

where d is a digit from 0 through 9.

 This attribute is repeatable so that an expression can span several lines.

 When operand A is a built-in function, it can be used as follows:

CHKOBJ

Evaluates to true if the object is found on the system and the current job possesses at least the

level of authorization to the object specified by the authorities. Arguments must be character

strings enclosed in double quotation marks ("). The object name follows i5/OS object naming

conventions. The object type is any of the allowable object types for the DSPOBJD command and

the authorities must be a single value or a list of authorizations to be checked for. The values of

these authorizations are separated by blanks. The following syntax diagram illustrates the

authorities and how to use them:

�� CHKOBJ (obj-name

″

obj-name

″

,

 ″ obj-type ″ �

COND Tag

Appendix A. UIM Panel Group Definition Language 485

�

�

,

″

*CHANGE

″

)

*ALL

*USE

*EXCLUDE

*AUTLMGT

(1)

*OBJEXIST

*OBJMGT

*OBJOPR

*OBJALTER

*OBJREF

*ADD

*DLT

*READ

*UPD

*EXECUTE

 ��

Notes:

1 Each value can be used only once, with a maximum of 7.

If no authorities are specified, no authorization check is performed and the function becomes an

existence check.

CHKPGM

The CHKPGM function accepts a qualified program name to be called as an exit program from

UIM. If the program is not able to be called, the function evaluates to false. The exit program will

determine if the function should be set to true or false and return an indicator to UIM. The

program name must be enclosed in double quotation marks (″). The *LIBL special value can be

used in place of the library name. If no library name is entered, *LIBL is the default.

 The following syntax diagram illustrates the valid argument values for the CHKPGM function:

�� CHKPGM (″ pgm-name ″) ��

CHKUSRCLS

The user class argument specified for the function is compared to the user class parameter from

the user profile of the current job. The function evaluates to true if the user profile has the same

or greater value than the function argument. The function argument must be enclosed in double

quotation marks (").

 The following syntax diagram illustrates the valid argument values for the user class:

�� CHKUSRCLS (*SECOFR)

*SECADM

*PGMR

*SYSOPR

*USER

 ��

CHKOBJ("OBJECT","*FILE","*USE")

CHKOBJ("PANELGRP","*PNLGRP")

 *AND CHKUSRCLS("*PGMR")

CHKOBJ("DOCUMENT","*DOC","*READ *UPD")

 *OR CHKUSRCLS("*SYSOPR")

COND Tag

486 Application Display Programming V6R1

*NOT(CHKOBJ("PROGRAM","*PGM"))

CHKPGM("*LIBL/PROGRAM")

CHKPGM("PROGRAM")

Optional Attribute

EVAL=ALWAYS | ONCE

Indicates whether or not the expression specified on the EXPR attribute of this tag must be evaluated

every time the condition is referred to, or if it needs to be evaluated only once.

 If EVAL=ALWAYS is used, the expression is evaluated to determine a new truth value every time the

condition is referred to. All EVAL=ALWAYS conditions in a panel group or menu are evaluated each

time a panel or menu is displayed. ALWAYS is the default.

 If EVAL=ONCE is specified, the expression is evaluated only once for every open application that uses

the panel group. The UIM only evaluates the expression for a condition of this type the first time the

condition is referred to. Every reference after the first one uses the same truth value determined by

the first reference. ONCE may be specified to improve performance for conditions that do not change

while the application is open, particularly if the expression requires the evaluation of a function (like

CHKOBJ) that may be costly.

Example: Conditioning an Option

The following example shows how the COND tag might be used to condition menu items. The first

condition uses a complex expression which is split onto two source lines. The second condition checks for

the application user’s authority to use a menu on the system, and the third condition checks for the user

class of the application user.

UIM Source

 ...
 :cond name=a

 expr=’(var1 = 100 *AND var2 > 0)’

 expr=’*OR *NOT(var3 = 0)’.

 :cond name=b

 expr=’chkobj("MENU2","*MENU","*READ, *UPD")’.

 :cond name=c

 expr=’chkusrcls("*PGMR")’.

 ...
 :menui

 cond=a

 help=’option1/help’

 action=’CMD CALL PGM01’

 option=1.Run report

 :menui

 cond=b

 help=’option2/help’

 action=’MENU MENU2’

 option=2.Administration

 :menui

 cond=c

 help=’option30/help’

 action=’MENU UTIL’

 option=30.Utilities

COND Tag

Appendix A. UIM Panel Group Definition Language 487

...

COPYR (Copyright)

 The copyright (COPYR) tag provides a way to present a copyright notice. Only one COPYR tag is

allowed. The copyright notice is displayed in the message area of the first panel displayed after the panel

group is opened. This tag must be coded immediately after the panel group (PNLGRP) tag.

Required Text

notice-text

The text of the copyright notice that is displayed. The text must be between 1 to 76 characters.

DATA (Data Presentation Area)

�� :COPYR . notice-text ��

Syntax for Display Panels:

�� :DATA DEPTH = area-depth

’

*

’

HELP

=

help-module-name
 �

�
SPACE

BOTSEP

=

NONE

RULE

NO

SCROLL

=

YES

 �

�
1

LAYOUT

=

2

HORIZ

0

MAXHEAD

=

1

2

3

4

 �

�
SPACE

BODYSEP

=

INDENT

BOTH

NONE

COMPACT
 . :EDATA.

area-title
 ��

COND Tag

488 Application Display Programming V6R1

The data presentation area (DATA) tag describes a data presentation area in a panel. This tag is allowed

for display panels and print panels. This area can be used for data entry items or output data items, or

any combination of the two.

Other tags can be nested within the DATA tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 59. Tags Allowed Between the DATA and EDATA Tags

Tag Name Order Use Page

TOPINST (Top instruction

line)

1 D 622

DATACOL (Data column) 2 B 499

DATAGRP (Data item

group)

3 B 500

DATAI (Data item) 3 B 502

DATASLT (Data selection

field)

3 D 510

BOTINST (Bottom

instruction line)

4 D 466

Required Attribute

DEPTH=area-depth | '*'

The depth of the area in lines, including separators if any are specified. This attribute is required for

display panels but is not allowed for print panels. If '*' is specified, the space remaining on the

display after all else is allocated is given to this area. Only one area in the panel may have '*' coded.

Syntax for Print Panels:

�� :DATA

SPACE

BOTSEP

=

NONE

RULE

1

LAYOUT

=

2

HORIZ

 �

�
0

MAXHEAD

=

1

2

3

4

SPACE

BODYSEP

=

INDENT

BOTH

COMPACT

NONE

 �

�
NORMAL

TYPE

=

PROLOG

 . :EDATA.

area-title
 ��

DATA Tag

Appendix A. UIM Panel Group Definition Language 489

Optional Attributes

HELP=help-module-name

Identifies online information explaining all items in the area. This attribute is allowed only for

display panels. The help module name may be a name imported from another panel group, but must

follow the rules for names outlined earlier in this chapter. For more information on the rules for

naming, see “Name Syntax” on page 461.

 A single help module name must be associated with every item in the area. If the HELP attribute is

specified on the DATA tag, the help applies to all groups and items in the area, and the HELP attribute

is not allowed on any data group (DATAGRP), data item (DATAI), data selection field (DATASLT),

and data selection field choice (DATASLTC) tags in the area.

 If no HELP attribute is specified on the DATA tag, a help module name must be associated with each

item in the area by specifying the HELP attribute on the DATAGRP tags or the DATAI and DATASLT

tags.

 To provide the user with easy access to the online information for a data area with the

LAYOUT=HORIZ attribute specified on this tag, specify the HELP attribute on the DATA tag instead of

the HELP attribute on the individual DATAI tags.

BOTSEP=SPACE | NONE | RULE

Defines the bottom separator for the data presentation area. If SPACE is specified, a line of spaces is

used. SPACE is the default.

 NONE indicates that no separator line exists.

 RULE indicates that a line of underscored spaces is used.

SCROLL=NO | YES

Specifies whether or not the area is scrollable. This attribute is allowed only for display panels. NO

indicates that the area is not scrollable. NO is the default.

 YES indicates that the data presentation area is scrollable. SCROLL=YES is not allowed when

LAYOUT=HORIZ is specified. A line of spaces is used by the UIM to provide a line for the scroll

information. If BOTSEP=SPACE, only one line of spaces is used unless this area also contains bottom

instructions.

LAYOUT=1 | 2 | HORIZ

Indicates either the number of layout columns for a vertically formatted area or that a horizontal

format should be used.

 For LAYOUT=1, there is only one column of data items. For panels with WIDTH=80 bytes on the panel

definition (PANEL) tag, the single column of data items is in positions 2 through 79. For panels with

WIDTH=132, the single column of data items is in positions 2 through 131.

 For LAYOUT=2, two layout columns of equal width are used for data items. The data items specified

within the area appear in order, from top to bottom within a layout column and from left to right

between layout columns. For panels with WIDTH=80, the two layout columns are in positions 2

through 38 and 43 through 79. For panels with WIDTH=132, the two layout columns of data items are

in positions 2 through 64 and 69 through 131.

 For LAYOUT=HORIZ, the data fields are listed horizontally across the width of the panel, with five

spaces between items. This layout is useful if only two or three short values are necessary. It should

be limited to a single display line, because the UIM does not vertically align items appearing on

different lines within the area.

MAXHEAD=0 | 1 | 2 | 3 | 4

The maximum number of lines that can be used for column headings. The column headings are

specified using the data column (DATACOL) tag. From zero to four lines can be specified. Zero is the

default, meaning that no column headings are allowed. Only MAXHEAD=0 is valid for a data

DATA Tag

490 Application Display Programming V6R1

presentation area with a horizontal layout, because column headings are not allowed in horizontal

presentation. For more information on column headings, see “DATACOL (Data Column)” on page

499.

 When column headings are used, you may want to provide expansion space for national language

translation by specifying a MAXHEAD value larger than the number of heading lines required. If this is

not done, expansion space must be provided within the column widths determined by the DATACOL

tag.

BODYSEP=SPACE | INDENT | BOTH | NONE

The type of visual separation distinguishing the body of the area from other elements on the display,

particularly any top and bottom instruction lines within the area.

 SPACE leaves a blank line after the last top instruction line and before the first bottom instruction

line. Items in the body of the area begin in the leftmost position of the layout column. They are not

indented with respect to instruction lines. If the area contains no top or bottom instruction lines, no

blank lines are reserved before or after the area body.

 INDENT is used to indent items in the body of the area by two bytes from the leftmost position in

the layout column where the instruction lines begin. If the area contains top or bottom instruction

lines, no blank line is reserved between the instructions and the area body except if the area is

scrollable. If the area is scrollable, a blank line is reserved to provide a line for the scroll information.

 BOTH leaves a blank line after the last top instruction line and before the first bottom instruction

line, and also indents items in the body of the area by two bytes from the leftmost position in the

layout column where the instruction lines begin. If the area contains no top or bottom instruction

lines, no blank lines are reserved before or after the area body.

 NONE does not leave a blank line between the instruction line and the body, and does not indent the

body with respect to the layout column except if the area is scrollable. If the area is scrollable, a blank

line is reserved to provide a line for the scroll information.

COMPACT

If COMPACT is specified, no blank lines are left between column headings and all items and outer

groups in the area. If COMPACT is not specified, a blank line appears after the area column headings

and between all items and outer groups.

TYPE=NORMAL | PROLOG

Indicates whether or not this data area is a prolog area. The prolog area is printed only once after the

title line on the first page. This attribute is allowed only for the print head panel (PRTHEAD) tag.

NORMAL is the default value.

Optional Text

area-title

The title of the area. If no text is specified, no title line is allocated to the area. The text must appear

on the same or next line as the tag, can contain only the reverse text (RT) tag, and is a maximum of

55 characters long.

Print Formatting Considerations

Printed data areas are formatted similarly to data areas that are displayed, with the following exceptions:

v When printing, there is a minimum of two lines of data entries on a page besides the data group

headings and the data column headings.

v If two lines of data entries do not fit on a page, a page eject occurs and the data entries are printed on

the next page.

For formatting of data areas with LAYOUT=2, the UIM balances the data entries across the page and

ignores keep processing.

DATA Tag

Appendix A. UIM Panel Group Definition Language 491

This format may not look good in some cases, but LAYOUT=2 data areas should only be used on small data

areas or when the user is not concerned about keep processing.

If there are data column headings, they are repeated on each page if the data area is continued onto

another page.

Example 1: Data Entry Panel

The following example shows a sample data entry panel. The panel has 5 prompts; 4 prompts have

defaults supplied to the calling program by previously setting the dialog variables for the function.

UIM Source

:panel name=entry1

 help=hentry1

 topsep=space

 keyl=keys

 .Sample Entry Panel

:data depth=’*’

 maxhead=2.

:topinst.Type choices, press Enter:

:datacol width=20.Item

:datacol width=10.Choice

:datacol width=’*’.’Possible Choices’

:datai usage=inout

 help=hfname

 var=fname.File name

:datac.Name of document to be printed

:datai usage=inout

 help=hstyle

 var=prtstyle.Type style for printing

:datac.1=Prestige Elite (12 pitch)

:datac.2=Courier (10 pitch)

:datac.3=Essay Standard (proportional)

:datac.4=Essay Bold (proportional)

:datai usage=inout

 help=hmargn

 var=margin.Left margin

:datac.Number of spaces from the left

edge of the paper (1-20)

:datai usage=inout

 help=hcopy

 var=copies.Copies

:datac.Number of copies (1-99)

:datai usage=inout

 help=hduplx

 var=duplex.Duplex

:datac.1=Yes (Print both sides of paper)

:datac.2=No (Print one side only)

:edata.

:epanel.

DATA Tag

492 Application Display Programming V6R1

Results

 Sample Entry Panel

 Type choices, press Enter:

 Item Choice Possible Choices

 File name Name of document to be printed

 Type style for

 printing 1 1=Prestige Elite (12 pitch)

 2=Courier (10 pitch)

 3=Essay Standard (proportional)

 4=Essay Bold (proportional)

 Left margin 6 Number of spaces from the left edge of

 the paper (1-20)

 Copies 1 Number of copies (1-99)

 Duplex 1 1=Yes (Print both sides of paper)

 2=No (Print one side only)

F3=Exit F12=Cancel

Example 2: Two-Column Format in a Data Entry Panel

The following example shows a data area using two-column format containing output items, and a form

of data entry field that has no prompt.

UIM Source

:panel name=panelx

 help=helpx

 topsep=space

 keyl=keys

 .Another Sample Panel

:data depth=14 layout=2.

:datacol width=’24’.

:datacol width=’*’.

:datagrp compact.Compact data group

:datai usage=out

 help=hvar1

 var=var1.First element

:datai usage=out

 help=hvar2

 var=var2.Second element

:edatagrp.

:datai usage=out

 help=hvar3

 var=var3.Third element

:datagrp grpsep=qindent

 compact.

:datai usage=out

 help=hvar4

 var=var4.Fourth element

:datai usage=out

 help=hvar5

 var=var5.Fifth element

:datai usage=out

 help=hvar6

 var=var6.Sixth element

:edatagrp.

:datagrp compact.Another compact group

:datai usage=out

 help=hvar7

 var=var7.Seventh element

DATA Tag

Appendix A. UIM Panel Group Definition Language 493

:datai usage=out

 help=hvar8

 var=var8.Eighth element

:datai usage=out

 help=hvar9

 var=var9.Ninth element

:edatagrp.

:datagrp help=hvar1012

 grpsep=none compact.

:datai usage=out

 var=var10.Tenth element

:datai usage=out

 var=var11 cond=cond11.

:datai usage=out

 var=var12 cond=cond12.

:edatagrp.

:datagrp grpsep=none

 compact.

:datai usage=out

 help=hvar13

 var=var13.Thirteenth element

:datai usage=out

 help=hvar14

 var=var14.Fourteenth element

:datai usage=out

 help=hvar15

 var=var15.Fifteenth element

:edatagrp.

:edata.

:data depth=3

 bodysep=none.

:datacol width=0.

:datacol width=’*’.

:datagrp.Sixteenth element

:datai usage=inout

 help=hvarx

 var=varx.

:edatagrp.

:edata.

:epanel.

Results

 Another Sample Panel

 Compact data group: Another compact group:

 First element . . . : XXXXXXXXXX Seventh element . . : XXXXXXXX

 Second element . . . : XXXXXXXXXX Eighth element . . . : XXXXXXXX

 Ninth element . . . : XXXX

 Third element : XXXXXXXX

 Tenth element : XXXXXXXX

 Fourth element : XXXXXXXX XXXXXXXX

 Fifth element . . . : XXXXXXXX XXXXXXXX

 Sixth element . . . : XXXXXXXX

 Thirteenth element . . : XXXXXXXX

 Fourteenth element . . : XXXXXXXX

 Fifteenth element . . : XXXXXXXX

 Sixteenth element:

 F3=Exit F12=Cancel

DATA Tag

494 Application Display Programming V6R1

Example 3: Two Presentation Areas for Data Items

The following two examples show three data areas, which are initialized from the dialog variables in the

variable pool. The first two areas are aligned horizontally, and the third area is formatted vertically.

UIM Source

:panel name=xmp3

 keyl=x1

 help=hxmp3

 .Data Item Extenders

:data depth=2

 layout=horiz

 botsep=space.

:datai usage=out

 var=date

 help=hdatetime.Date and time

:dataix usage=out

 var=time

 newline=no

 itemsep=1.

:edata.

:data depth=2

 layout=horiz

 botsep=space.

:datai usage=out

 var=jobname

 help=hdatetime.Job name

:dataix usage=out

 var=user

 newline=no

 itemsep=1.

:dataix usage=out

 var=jobnbr

 newline=no itemsep=1.

:edata.

:data depth=’*’

 layout=1

 botsep=space

 compact.

:datacol width=0.

:datacol width=’*’.

:datagrp grpsep=indent

 help=dependptfs

 compact.Dependent PTFs

:datai usage=out

 var=ptf1.

:dataix usage=out

 var=ptf2.

:dataix usage=out

 var=ptf3.

:dataix usage=out

 var=ptf4

 newline=yes.

:dataix usage=out

 var=ptf5.

:edatagrp.

:edata.

:epanel.

DATA Tag

Appendix A. UIM Panel Group Definition Language 495

Results

 Data Item Extenders

 Date and time: 12/31/99 12:59:59

 Job name: DSP01 QSECOFR 012345

 Dependent PTFs:

 XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 F3=Exit F12=Cancel

Example 4: Data Presentation Area with a Menu Area

UIM Source

:panel name=xxx

 keyl=x1

 help=hxxx

 .Work with Files

:data depth=2

 layout=horiz.

:datai var=fname

 help=’filename’.File

:datai var=lname

 help=’libname’.Library

:edata.

:menu depth=’*’.

:topinst.Select one of the following:

:menui action=’return 1’

 help=’hoption1’

 option=1.Display file attributes

:menui action=’return 2’

 help=’hoption2’

 option=2.Display file contents

:menui action=’return 3’

 help=’hoption3’

 option=3.Change ownership

:menui action=’return4’

 help=’hoption4’

 option=4.Change authorizations

:menui action=’return 5’

 help=’hoption5’

 option=5.Destroy

:menui action=’return 6’

 help=’hoption6’

 option=6.Backup to tape

:emenu.

:optline.Selection

:epanel.

DATA Tag

496 Application Display Programming V6R1

Results

 Work with Files

 System: xxxxxxxx

 File: MEMO47123 Library: QGPL

 Select one of the following:

 1. Display file attributes

 2. Display file contents

 3. Change ownership

 4. Change authorizations

 5. Destroy

 6. Backup to tape

 Selection

 _

 F3=Exit F12=Cancel

Example 5: Data Entry Panel with a Nested Data Group

UIM Source

:panel name=nestg

 help=helpn

 topsep=space

 keyl=keys

 .Nested Data Group

:data depth=’*’

 scroll=no.

:topinst.Type choices, press Enter.

:datacol width=40.

:datacol width=10.

:datacol width=’*’.

:datagrp compact

 grpsep=none.

:datai usage=inout

 help=hjobq

 var=jobq.Place on job queue

:datac.Y=Yes, N=No

.* The following "datagrp" tag is

.*needed to cause indentation for

.* the "For choice Y=Yes" data group.

:datagrp compact

 grpsep=indent.

:datagrp compact

 grpsep=indent.For choice Y=Yes:

:datai usage=inout

 help=hcmpmsg

 var=cmpmsg.Send completion message

:datac.Y=Yes, N=No

:edatagrp.

:edatagrp.

:edatagrp.

:epanel.

DATA Tag

Appendix A. UIM Panel Group Definition Language 497

Results

 Nested Data Group

 Type choices, press Enter.

 Place job on job queue Y=Yes, N=No

 For choice Y=Yes:

 Send completion message Y=Yes, N=No

 F3=Exit F12=Cancel

DATAC (Data Item Choices)

 The data item choices (DATAC) tag provides the text for the possible choices column of a data

presentation area. This tag is allowed for display panels and print panels. It is not valid if only two data

column (DATACOL) tags are specified for the area, or if LAYOUT=HORIZ is specified on the data

presentation area (DATA) tag for the area.

The DATAC tag must appear after the corresponding data item (DATAI) tag. More than one DATAC tag

may be specified after the DATAI tag to provide several lines of text. If no DATAC tags are entered, no

text exists in the possible choices column for the data item.

Optional Attribute

CHOICE=dialog-variable-name

The name of a dialog variable containing the choices text to be displayed. The dialog variable must

be defined with a width less than or equal to the width specified on the third DATACOL tag for the

data area, the possible choices column. If the CHOICE attribute is used, no text-for-choices can be

specified after the period of this tag.

 Dialog variables must be defined with a BASETYPE of CHAR, IGC, or BIN on the class definition

(CLASS) tag.

 The error state of the dialog variable is not used for determining the highlighting of the text.

 Special formatting for IGC. (The abbreviation IGC is used in commands and keywords to represent

double-byte character set functions.) When a dialog variable with a BASETYPE of IGC is specified on

the CLASS tag, the UIM does special formatting. If the variable value begins with a shift-out

character (X'0E'), the UIM shifts the value one byte to the left to preserve vertical alignment with data

choices on other lines.

�� :DATAC

CHOICE

=

dialog-variable-name
 .

text-for-choices
 ��

DATA Tag

498 Application Display Programming V6R1

Optional Text

text-for-choices

The text is an implied paragraph. Lines are formatted as necessary onto multiple lines within the

column and indented two spaces from the beginning of the column. The text is a maximum of 255

characters and can only contain the reverse text (RT) tag. The text-for-choices is required unless the

CHOICE attribute is specified on this tag.

DATACOL (Data Column)

 The data column (DATACOL) tag specifies the width of the item, choice, and possible choices columns,

and can also provide column headings. This tag is allowed for display panels and print panels. It is not

valid if LAYOUT=HORIZ is specified for the data presentation area. It must appear after the data

presentation area (DATA) tag for the area and before the first data item (DATAI), data selection field

(DATASLT), or data group (DATAGRP) tag.

Two or three DATACOL tags must be specified when the LAYOUT attribute of on the DATA tag specifies 1

or 2. If only two DATACOL tags are used, the area has no possible choices column and no data item

choices (DATAC) tags are allowed in the area. If three DATACOL tags are specified, all three columns are

allocated, including the possible choices column.

Required Attribute

WIDTH=column-width | '*'

The width, in bytes, for the column. The width specified must be a positive integer, and the sum of

the widths of the columns and separators in the data presentation area must not exceed the width of

the layout column determined by the DATA tag. WIDTH=0 is allowed only for the first DATACOL tag;

it formats the area without an item column for data item or data selection field prompt text.

 If '*' is coded, the remainder of the area width is used for the column. Only one DATACOL in the

area may have '*' specified. A three-column separator is maintained between columns, except when

WIDTH=0 is specified for the first DATACOL tag. In this case, the item column is not allocated and

there is no separator in front of the choice column.

 The value for any data item may span columns, but must begin on the correct column boundary. The

possible choices text for that item, assuming three DATACOL tags are specified, begins in the location

assigned to the possible choices. This possible choices text may be on the same or next line as the

data item field.

Optional Text

column-heading

The column heading placed above the data items in the data area. If no column heading is specified,

none is displayed.

 The text may appear on more than one line and can contain only the reverse text (RT) tag. Each word

of the column heading is placed on a new line. If multiple words are necessary in a line of the

column heading, they must be enclosed in apostrophes ('). Each word or quoted string must fit

within the column width defined by the WIDTH attribute on this tag. The maximum number of words

or quoted strings allowed is specified by the MAXHEAD attribute on the DATA tag. Column headings

are not allowed if MAXHEAD=0 is used for the data area.

 The column headings are left-justified. If no column heading text is specified on any DATACOL tag

for the area, no lines are reserved on the display for heading information.

�� :DATACOL WIDTH = column-width .

’

*

’

column-heading
 ��

DATAC Tag

Appendix A. UIM Panel Group Definition Language 499

DATAGRP (Data Group)

 The data group (DATAGRP) tag is used to group data items and data selection fields in a data

presentation area. This tag is allowed for display panels and print panels. One data group may be nested

within another data group; up to four levels of data group nesting are allowed, including the outermost

group. This tag is not valid if LAYOUT=HORIZ is specified for the data presentation area (DATA) tag.

The UIM does keep processing for data item groups. When data groups are nested within other data

groups, keep processing is done for all the groups. If an outer group must be split, keep processing is

attempted for groups nested within it. If the number of lines required for an entire group exceeds the

number of lines remaining in the layout column, the entire group is forced to the next column. In the

case of single-column layout, the entire group is forced to the next scrollable page. Any data group that

becomes too large for one layout column begins at the top of one column and continues onto as many

columns or pages as required for all items.

Optional Attributes

HELP=help-module-name

Identifies online information explaining all items in the group. This attribute is allowed only for

display panels. The help module name may be a name imported from another panel group, but must

follow the rules for names outlined earlier in this chapter. For more information on the rules for

naming, see “Name Syntax” on page 461.

 A single help module name must be associated with every item in the area. If the HELP attribute is

specified on the DATA tag, the help applies to all groups and items in the area, and the HELP attribute

is not allowed on any data group (DATAGRP), data item (DATAI), data selection field (DATASLT),

and data selection field choice (DATASLTC) tags in the area.

 If the HELP attribute is specified on the DATAGRP tag, the help applies to all items in the group, and

the HELP attribute is not allowed on any DATAI, DATASLT, DATASLTC, or nested DATAGRP tags

within the data group.

Syntax for Display Panels:

�� :DATAGRP

HELP

=

help-module-name

NAME

=

data-group-name
 �

�
INDENT

GRPSEP

=

QINDENT

NONE

COND

=

condition-name
 �

� . :EDATAGRP.

COMPACT

group-heading
 ��

Syntax for Print Panels:

�� :DATAGRP

INDENT

GRPSEP

=

QINDENT

NONE

COND

=

condition-name
 �

� . :EDATAGRP.

COMPACT

group-heading
 ��

DATAGRP Tag

500 Application Display Programming V6R1

If no HELP attribute is specified on the DATA tag or on any outer or nested DATAGRP tags, the HELP

attribute is required on all DATAI and DATASLT tags within the group.

NAME=data-group-name

The name associated with the group. This name can be used with the Add Pop-Up Window

(QUIADDPW) API to position a window near this data group. This attribute is allowed only for

display panels.

 For more information on the rules for naming, see “Name Syntax” on page 461.

GRPSEP=INDENT | NONE | QINDENT

Specifies what type of visual separation should be used to distinguish the items in the group.

 INDENT is used to indent the left-most column, prompt, or value for every data item, group heading

of a nested data group, or data selection field within the group by two positions. Only the left-most

column is indented. The group heading is not indented.

 QINDENT is used to indent each data item or nested data group or data selection field, except the

first one in the group. The first item or imbedded group within this data item group are not

indented. All other items, fields, and imbedded groups are indented. Both the prompt column and

the value column of a data item or data selection field are indented by two positions. The group

heading of an nested data group and all items within it are indented by two positions.

 The determination of which data items, selection fields and groups are indented is made when the

panel group is created and is unaffected by conditioning. This option presents data items in the same

format the control language (CL) prompter uses for qualified names. Because qualified name

indenting of a value would be backward for a BIDI=RTL panel group, the value column is not

indented when QINDENT is specified for a BIDI=RTL panel group. The prompt text of each item

after the first one is still indented.

 NONE does not indent any data items, data selection fields, or nested data item groups in the group.

This option is not recommended when group heading text is specified. It can be used to group

related data items, data item groups, and data selection fields together without a group heading. It

does this by defining a compact group of items and nested groups in a non-compact area.

COND=condition-name

The group is displayed or printed only if the condition specified is true. All tags within the group

appear only if this data group appears. The condition must be defined in the panel group prolog

with the condition definition (COND) tag.

COMPACT

If COMPACT is specified, then no blank lines are left between individual items or nested data group

headings. If this data group is nested inside another data group for which COMPACT is specified,

COMPACT is implied for this data group whether it is specified or not.

Optional Text

group-heading

The heading placed above the data items of the group. The text occupies only one line of the panel,

but may span several columns. The text must appear on the same line or next line as the tag and can

only contain the reverse text (RT) tag.

 If the text is omitted, no lines are allocated on the display for a group heading, but the items between

the DATAGRP and EDATAGRP tags are processed as a group with respect to keep processing on the

display and other UIM operations.

 A colon is added to the end of the text if one is not already specified and if there is room for it.

DATAGRP Tag

Appendix A. UIM Panel Group Definition Language 501

DATAI (Data Item)

The data item (DATAI) tag defines an item placed in a data presentation area. This tag is allowed for

display panels and print panels.

The data item extender (DATAIX) tag can be used to specify additional dialog variables, which are

displayed as part of the data item. The data selection choices (DATAC) tag can be used to specify

Syntax for Display Panels:

�� :DATAI VAR = dialog-variable-name USAGE = OUT

INOUT
 �

�
HELP

=

help-module-name

NAME

=

data-item-name
 �

�
BEFORE

PMTLOC

=

ABOVE

AFTER

CHCLOC

=

ABOVE

 �

�
LEFT

ALIGN

=

RIGHT

START

END

JUSTIFY

=

LEFT

RIGHT

START

END

 �

�
NO

REQUIRED

=

YES

YES

CSRLOC

=

NO

YES

DISPLAY

=

NO

 �

�
NO

AUTOENTR

=

YES

COND

=

condition-name
 �

�
PROMPT

=

’

action-text

’

DSPVALUE

=

dialog-variable-name
 �

� .

data-item-text
 ��

Syntax for Print Panels:

�� :DATAI VAR = dialog-variable-name

USAGE

=

OUT
 �

�
BEFORE

PMTLOC

=

ABOVE

AFTER

CHCLOC

=

ABOVE

 �

�
LEFT

ALIGN

=

RIGHT

START

END

JUSTIFY

=

LEFT

RIGHT

START

END

 �

�
COND

=

condition-name
 .

data-item-text
 ��

DATAI Tag

502 Application Display Programming V6R1

possible choices text, which is displayed as part of the data item. The DATAIX and DATAC tag are

considered part of the DATAI tag with respect to formatting, conditioning, scrolling, and help.

Note that the prompt, field and extenders, and possible choices text must fit within the data area. The

UIM does not allow an individual data item to be split while scrolling.

Required Attributes

VAR=dialog-variable-name

The name of the dialog variable constructing the data item. The current value of the dialog variable is

displayed or printed.

 If the item appears in an area with LAYOUT=1 specified on the data presentation area (DATA) tag, its

value can exceed the width of the choice column. In this case, the value is presented as a single field

that wraps onto as many display lines as necessary. If LAYOUT=2 is specified on the DATA tag, the

width of the value must fit between the starting position determined from the second data column

(DATACOL) tag and the ending position for the layout column.

 For a data presentation area specified with LAYOUT=HORIZ, if there are already data items on the

display line and if the length of the prompt plus the value does not fit on the current line and allow

a five column separator between data items, the prompt and values are placed on the next display

line. For horizontal layout, the prompt plus the value must fit on a single line of the panel.

USAGE=OUT | INOUT

Indicates the display use of the data item. This attribute is required for display panels and is optional

for print panels.

 USAGE=OUT defines an output data item. OUT indicates that the variable displayed is for output only

and cannot be changed by the user.

 USAGE=INOUT defines a data entry item. INOUT indicates that the variable is for data entry and can

be changed by the user.

Optional Attributes

HELP=help-module-name

Identifies online information which explains the data item. This attribute is allowed only for display

panels. The name of the help module can be a name imported from another panel group, but must

follow the rules for names outlined earlier in this chapter. For more information on the rules for

names, see “Name Syntax” on page 461.

 A single help module name must be associated with every item in the area. If the HELP attribute is

specified on the DATA tag, the help applies to all groups and items in the area, and the HELP attribute

is not allowed on any data group (DATAGRP) and DATAI tags in the area.

 If the HELP attribute is specified on the DATAGRP tag, the help applies to all data items in the group

and the HELP attribute is not allowed on DATAI tags within the group.

 If no HELP attribute is specified on the DATA tag or on DATAGRP tags containing a data item, the

HELP attribute is required on the DATAI tag.

 To provide the user with easy access to the online information for a LAYOUT=HORIZ data area, use the

HELP attribute on the DATA tag instead of the HELP attribute on the individual DATAI tags in the

horizontal area.

 The HELP attribute applies to all DATAIX tags associated with this data item.

NAME=data-item-name

The name associated with the item. This name can be used with the Add Pop-Up Window

(QUIADDPW) API to position a window near this data item. This attribute is allowed only for

display panels.

DATAI Tag

Appendix A. UIM Panel Group Definition Language 503

For more information on the rules for naming, see “Name Syntax” on page 461.

PMTLOC=BEFORE | ABOVE

Governs the placement of the variable value in relationship to the prompt text for the data item.

 BEFORE indicates that the prompt text is placed before (to the left of) the variable value. The variable

value begins on the line the prompt text ended on.

 ABOVE indicates that the prompt text is placed above the data item variable. The variable is

indented two spaces from the beginning of the prompt text. ABOVE is not allowed when

LAYOUT=HORIZ is specified on the DATA tag.

 If the prompt text is placed above the data item variable as a result of ABOVE, the ALIGN attribute on

this tag is not used for formatting.

 All data item extenders placed on a new line as a result of NEWLINE=CALC or NEWLINE=YES on the

DATAIX tag begin in the same column as the data item variable.

CHCLOC=AFTER | ABOVE

Governs the placement of the data choices text in relationship to the variable value for the data item.

 AFTER indicates that the data choices text is placed after the variable value. This is either on the

same line or on the line below the end of the variable value.

 ABOVE indicates that the data choices text is placed above the data item variable. ABOVE is allowed

only if PMTLOC=ABOVE is specified. This attribute is not allowed when LAYOUT=HORIZ is specified on

the DATA tag.

 This attribute governs placement of data choices text only for DATAC tags immediately following the

DATAI tag. DATAC tags following a DATAIX tag are not affected by this attribute.

ALIGN=LEFT | RIGHT | START | END

Governs how the display value of the variable is positioned within the choice column defined by the

second DATACOL tag.

 ALIGN=LEFT positions the leftmost character of the display value with the left edge of the choice

column.

 ALIGN=RIGHT positions the rightmost character of the display value with the right edge of the choice

column. ALIGN=RIGHT is not allowed when LAYOUT=HORIZ is specified on the DATA tag. If the

width of the display value, set by the WIDTH attribute on the class definition (CLASS) tag, exceeds the

width of the choice column, ALIGN=RIGHT will work the same way as ALIGN=LEFT.

 START is a synonym for LEFT, and END is a synonym for RIGHT.

JUSTIFY=LEFT | RIGHT | START | END

Governs how the dialog variable is edited into the display value. The default for this attribute is the

same value as was specified on the ALIGN attribute for this tag.

 For JUSTIFY=LEFT, the dialog variable is left-justified into the display value and leading blanks are

preserved.

 For JUSTIFY=RIGHT, the dialog variable is right-justified into the display value and trailing blanks

are stripped.

 START is a synonym for LEFT, and END is a synonym for RIGHT.

REQUIRED=NO | YES

Indicates whether or not the item is required. This attribute is allowed only for display panels. NO

indicates that the item is not required.

 YES indicates that the item is required on the display and that the field is highlighted accordingly.

YES is only valid if USAGE=INOUT is specified on this tag for the data item.

DATAI Tag

504 Application Display Programming V6R1

When REQUIRED=YES is coded, no explicit checks are made for user entry. However, REQUIRED=YES

causes the UIM to do input editing and validity check processing, even if the user does not enter

anything into the field. This allows you to use the validity checking (CHECK) tag to ensure that the

user enters data into a required field.

CSRLOC=YES | NO

Indicates whether or not the cursor is allowed on the input field when the UIM does default cursor

positioning. This attribute is allowed only for display panels.

 YES does not guarantee that the cursor is placed on the input field; it only indicates to the UIM that

the cursor may be placed on the input field when the UIM does default cursor positioning.

 NO indicates that the cursor should not be placed on the field. CSRLOC=NO is intended for input

fields such as the position-to field found in a data area above a list area. The cursor should not be

placed on a position-to field when the panel is first displayed or after a position-to operation

completes. When CSRLOC=NO is coded, it is still possible for the UIM to place the cursor on the field

when default cursor positioning is performed. This may occur in the following situations:

v All input fields on the current page of the panel are marked with CRSLOC=NO.

v The input field is marked in error.

v The cursor positioning under an application program’s control specifies that the cursor should be

placed on the field.

The CSRLOC attribute applies to all DATAIX tags associated with this data item.

DISPLAY=YES | NO

Indicates whether or not the contents of the field are visible when the panel is displayed. This

attribute is allowed only for display panels.

 YES indicates that the field is visible.

 NO indicates that the field is not visible. DISPLAY=NO is intended for input fields, such as a

password field, which should not be visible.

AUTOENTR=NO | YES

Indicates whether or not the field is an automatic enter input field. This attribute is allowed only for

display panels. An automatic enter input field returns from the device to the host when the user

enters a character, including a blank, into the last position of the field. This has the same effect as the

user pressing the Enter key.

 NO indicates that the field is not an automatic enter field.

 YES indicates that the field is an automatic enter field. If YES is specified, USAGE=INOUT must also be

specified on this tag.

 Although the UIM does not restrict its usage, AUTOENTR=YES is intended for input fields that are one

character wide.

COND=condition-name

The item is in effect on a display only if the condition specified is true. All associated DATAC and

DATAIX tags are displayed only if this data item appears on the display. The condition must be

defined in the panel group with the condition definition (COND) tag.

PROMPT='action-text'

The action occurring when F4=List is requested through the PROMPT dialog command. This attribute

is allowed only for display panels. The PROMPT attribute is only allowed when USAGE=INOUT is

specified for this data item. The valid forms of action-text are:

v ’CALL program-reference’

For a description of the interface between the UIM and the exit program for the cursor-sensitive

prompt, see the Application programming interfaces topic collection in the i5/OS Information

Center.

DATAI Tag

Appendix A. UIM Panel Group Definition Language 505

v ’RETURN positive-integer’

For a description of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

DSPVALUE=dialog-variable-name

The dialog variable containing the current data entered in this data item. This attribute is allowed

only for display panels and when the PROMPT attribute is coded on this tag. This variable is updated

regardless of whether or not VARUPD processing is performed. The variable pool is updated based on

the VARUPD attribute used to define the function key. This updating is independent of the display

value variable processing.

 The dialog variable specified must be defined on the CLASS tag as a CHAR or IGC variable whose

length is the same as the width of the dialog variable specified on the VAR attribute of this tag. No

translation list processing or value checking is performed for the value before it is placed in this

variable. Character set and code page conversion are performed for this variable if the class of the

variable named on the VAR attribute of this tag specifies that character set and code page conversion

should be performed.

Optional Text

data-item-text

The text describing the data item. The text may appear on more than one line and can only contain

the reverse text (RT) tag.

 If the item appears in a data item group, it is indented as specified by the GRPSEP attribute on the

DATAGRP tag. If the text is too long to fit in the prompt column, it is formatted onto additional lines

as necessary to fit within the item column and is indented two spaces.

 If no text is specified, the data value appears without a prompt. Prompt text should be specified for

all DATAI tags, except for the following special cases:

v When the data item is described completely by the instruction or group heading text appearing

above the item.

v When the data item contains a value that is a logical continuation of the value for a data item

appearing immediately before it in the panel. Conditioning may be used to present only as many

lines on the panel as there are values available.

The set of DATAI tags presenting this type of information should always be specified in a data

group to ensure that the UIM keeps related values together on the display, and to present

appropriate information in extended help for the panel. Prompt text should be specified for the

first data item in the group, or heading text should be specified on the DATAGRP tag to describe

the entire group. Help should be specified for the group or for the entire area.

When data groups are not used, the UIM may present items in different layout columns or even on

different scrollable pages. If the same help module is specified for multiple data items, extended

help for the panel repeats the online information for each item on the panel.

DATAI Tag

506 Application Display Programming V6R1

DATAIX (Data Item Extender)

The data item extender (DATAIX) tag provides an additional dialog variable to be associated with a data

item (DATAI) tag. This tag is allowed for display panels and print panels.

The DATAIX tags must appear after the corresponding DATAI tag. More than one DATAIX tag may be

specified after the DATAI tag to provide several dialog variables. If no DATAIX tags are entered, only one

dialog variable, specified on the DATAI tag, appears for the data item.

The DATAIX and data choices (DATAC) tags can be specified in any order. The order in which they are

specified determines where they appear in relationship to the dialog variable of the DATAI tag.

Syntax for Display Panels:

�� :DATAIX VAR = dialog-variable-name USAGE = OUT

INOUT
 �

�
CALC

NEWLINE

=

NO

YES

2

ITEMSEP

=

item-separator-value

 �

�
LEFT

ALIGN

=

RIGHT

START

END

JUSTIFY

=

LEFT

RIGHT

START

END

 �

�
NO

REQUIRED

=

YES

YES

DISPLAY

=

NO

 �

�
PROMPT

=

’

action-text

’

DSPVALUE

=

dialog-variable-name
 �

�
NO

AUTOENTR

=

YES

.

 ��

Syntax for Print Panels:

�� :DATAIX VAR = dialog-variable-name

USAGE

=

OUT
 �

�
CALC

NEWLINE

=

NO

YES

2

ITEMSEP

=

item-separator-value

 �

�
LEFT

ALIGN

=

RIGHT

START

END

JUSTIFY

=

LEFT

.

RIGHT

START

END

 ��

DATAIX Tag

Appendix A. UIM Panel Group Definition Language 507

Required Attributes

VAR=dialog-variable-name

The name of the additional dialog variable displayed with the previous DATAI tag. The current value

of the dialog variable is displayed or printed.

 For a LAYOUT=1 data presentation area, the display value can exceed the width of the panel. In this

case, the value is presented as a single field that wraps onto as many lines as necessary. For a

LAYOUT=2 data presentation area, the display value must fit on one line.

 For a LAYOUT=HORIZ data presentation area, the data item prompt, value, and all DATAIX values

must all fit on a single line of the panel. If there are already data items on one line of the panel and if

the prompt text and dialog variable for the DATAI tag plus the value of this dialog variable do not fit

on the current line and still allow a five-column separator between data items, the entire data item,

including this item extender, are placed on the next line of the panel.

USAGE=OUT | INOUT

The display use of the data item. This attribute is required for display panels but is optional for print

panels.

 USAGE=OUT defines an output data item. OUT indicates that the variable displayed is for output only

and cannot be changed by the user.

 USAGE=INOUT defines a data entry item. INOUT indicates that the variable is for data entry and can

be changed by the user.

Optional Attributes

NEWLINE=CALC | NO | YES

Governs the placement of the variable for the data item extender in relationship to the variable value

for the data item, possible choices text, and previously-defined data item extenders.

 NEWLINE=CALC indicates that the UIM determines the placement of the variable. The variable is

placed on the same line as the previous dialog variable if all of the following conditions are true:

v The variable fits within the value column, defined by the second data column (DATACOL) tag of

the current line.

v The DATAIX tag is not immediately followed by a DATAC tag.

v The current line is not wrapped from the previous line

If any of the above conditions are not true, the data item extender is placed on the next display or

print line. It is positioned according to the ALIGN attribute of this tag.

 When NEWLINE=CALC is specified in a data presentation area with LAYOUT=HORIZ specified, the value

is placed on the same line as the previous value.

 NEWLINE=NO indicates that the value should be placed on the same line and to the right of the

previous value. The previous value is the dialog variable for either the DATAI tag or a previous

DATAIX tag. If the DATAIX tag appears immediately after a DATAC tag, NEWLINE=NO is not allowed.

 NEWLINE=YES indicates that the value should be placed on the next display or print line. NEWLINE=YES

is not allowed for data presentation areas with LAYOUT=HORIZ specified.

ITEMSEP=2 | item-separator-value

Indicates how many spaces separate the dialog variable of this data item extender and the previous

dialog variable.

 For data presentation areas with LAYOUT=1 or LAYOUT=2, the maximum value for this attribute is the

width of the choice column, as defined by the second DATACOL tag. For data presentation areas

with LAYOUT=HORIZ specified, the maximum value for this attribute is 5. The default value is 2, and

the minimum value is 1.

DATAIX Tag

508 Application Display Programming V6R1

The ITEMSEP attribute is not allowed when NEWLINE=YES is specified on this tag, and has no effect

when NEWLINE=CALC is specified and the extender variable is placed on a new line.

ALIGN=LEFT | RIGHT | START | END

Governs how the display value is positioned within the choice column defined by the second

DATACOL tag.

 If the dialog variable is preceded by the dialog variable for the DATAI tag or by a previous DATAIX

tag, the ALIGN attribute has no effect on the position of the display value within the choice column.

 If the dialog variable is the first variable on the display or print line, the ALIGN attribute formats text

as follows:

v ALIGN=LEFT positions the leftmost character of the display value with the left edge of the choice

column.

v ALIGN=RIGHT positions the rightmost character of the display value with the right edge of the

choice column. If the width of the display value exceeds the width of the choice column,

ALIGN=RIGHT works the same as ALIGN=LEFT.

ALIGN=RIGHT is not allowed for data presentation areas with LAYOUT=HORIZ specified.

 START is a synonym for LEFT and END is a synonym for RIGHT.

JUSTIFY=LEFT | RIGHT | START | END

Governs how the dialog variable is edited into the display value. The default for this attribute is the

same value as was specified or defaulted to on the ALIGN attribute of this tag.

 For JUSTIFY=LEFT, the dialog variable is left-justified into the display value. Leading blanks are

preserved.

 For JUSTIFY=RIGHT, the dialog variable is right-justified into the display value and trailing blanks

are stripped.

 START is a synonym for LEFT and END is a synonym for RIGHT.

 The JUSTIFY attribute is ignored for variables defined as UCS-2.

REQUIRED=NO | YES

NO indicates that the item is not required. This attribute is allowed only for display panels.

 YES indicates that the item is required on the display and that the field is highlighted accordingly.

YES is only valid if USAGE=INOUT is specified for the data item extender.

 When REQUIRED=YES is coded, no explicit checks are made for user entry. REQUIRED=YES causes the

UIM to perform input editing and validity check processing, even if the user does not enter anything

into the field. This allows you to use the validity checking (CHECK) tag to ensure that the user enters

data into a required field.

DISPLAY=YES | NO

Indicates whether or not the field is visible when the panel is displayed. This attribute is allowed

only for display panels. YES indicates that the field is visible.

 NO indicates that the field is not visible. DISPLAY=NO is intended for input fields such as a password

field, which should not be visible.

PROMPT='action-text'

The action occurring when F4=List is requested through the PROMPT dialog command. This attribute

is allowed only for display panels, and when USAGE=INOUT is specified on this tag for this data item

extender. The valid forms of action text are:

v ’CALL program-reference’ For a description of the interface between the UIM and the exit program

for the cursor-sensitive prompt, see the Application programming interfaces topic collection in the

i5/OS Information Center.

v ’RETURN positive-integer’

DATAIX Tag

Appendix A. UIM Panel Group Definition Language 509

For a description of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

DSPVALUE=dialog-variable-name

The dialog variable containing the current data entered into this data item extender. This attribute is

allowed only for display panels and when the PROMPT attribute is coded on this tag.

 This variable is updated regardless of whether or not VARUPD processing is performed. The variable

pool is updated based on the VARUPD attribute used to define the function key. This updating is

independent of the display value variable processing.

 The dialog variable specified must be defined on the class definition (CLASS) tag as a CHAR or IGC

variable whose length is the same as the width of the dialog variable specified on the VAR attribute of

this tag.

 No translation list processing or value checking is performed for the value before it is placed in this

variable. Character set and code page conversion are performed for this variable if the class of the

variable named on the VAR attribute of this tag specifies that character set and code page conversion

should be performed.

AUTOENTR=NO | YES

Indicates whether or not the field is an automatic enter input field. This attribute is allowed only for

display panels. An automatic enter input field returns from the device to the host when the user

enters a character, including a blank, into the last position of the field. This has the same effect as the

user pressing the Enter key.

 NO indicates that the field is not an automatic enter field. This is the default value.

 YES indicates that the field is an automatic enter field. If YES is specified, USAGE=INOUT must also be

specified on this tag. Although the UIM does not restrict its usage, AUTOENTR=YES is intended for

input fields that are one character wide.

DATASLT (Data Selection Field)

 The data selection field (DATASLT) tag defines a selection field in the data presentation area. This tag is

allowed only for display panels.

The DATASLT may be a single- or multiple-choice selection field. The selection field is fixed in content

and number of choices. A data selection field can only be specified when LAYOUT=1 or 2 on the data

presentation area (DATA) tag.

The data selection field choice (DATASLTC) tag specifies the choices for the selection field. The

DATASLTC tag is part of the DATASLT tag with respect to formatting, conditioning, scrolling, and help.

�� :DATASLT TYPE = SINGLE

MULTI

VAR

=

dialog-variable-name

HELP

=

help-module-name
 �

�
NAME

=

selection-field-name

PMTLOC

=

BEFORE

ABOVE

REQUIRED

=

NO

YES

 �

�
AUTOENTER

=

NO

YES

COND

=

condition-name
 �

� . :EDATASLT.

selection-field-prompt-text
 ��

DATAIX Tag

510 Application Display Programming V6R1

The prompt, field, and choices must fit within the data area. The UIM does not allow a selection field to

be split while scrolling.

Other tags can be nested within the DATASLT tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 60. Tag Allowed Between the DATASLT and EDATASLT Tags

Tag Name Order Use Page

DATASLTC (Data selection

field choice)

1 D 515

Required Attributes

TYPE=SINGLE | MULTI

Specifies whether or not the selection field is a selection field for single or multiple choices.

 SINGLE indicates that the selection field is for a single choice.

 MULTI indicates that the selection field is for multiple choices.

Optional Attributes

VAR=dialog-variable-name

The name of the dialog variable used to construct the single-choice selection field. This attribute is

required for TYPE=SINGLE. The variable is presented on the display if TYPE=SINGLE, and must be

declared with a BASETYPE of BIN(31) on the class definition (CLASS) tag. This variable contains the

option number of the choice selected by the user. If no choices are selected, the variable returns a

zero. The current value of the dialog variable is presented on the display.

 If TYPE=MULTI is specified on this tag, this attribute is not allowed.

HELP=help-module-name

Identifies online information explaining the purpose of the data selection field. The name of the help

module may be a name imported from another panel group, but the name must follow the rules for

names outlined earlier in this chapter. For more information on the rules for names, see “Name

Syntax” on page 461.

 A single help module name must be associated with every item in the area. If the HELP attribute is

specified on the DATA tag, the help applies to all groups and items in the area, and the HELP attribute

is not allowed on any data group (DATAGRP) and DATASLT tags in the area.

 If the HELP attribute is specified on the DATAGRP tag, the help applies to all data selection fields in

the group, and the HELP attribute is not allowed on DATASLT tags within the group.

 If no HELP attribute is specified on the DATA tag nor on DATAGRP tags containing a data selection

field, the HELP attribute is required on the DATASLT tag.

NAME=selection-field-name

The name associated with the selection field. This name can be used later with the Add Pop-Up

Window (QUIADDPW) API to position a window associated with this selection field. For more

information on the rules for naming, see “Name Syntax” on page 461.

DATASLT Tag

Appendix A. UIM Panel Group Definition Language 511

PMTLOC=BEFORE | ABOVE

Governs the placement of the prompt text in relationship to the input field associated with the

selection field.

 BEFORE indicates that the prompt text is placed before (to the left of) the variable value of the data

field. The variable value begins on the same line on which the prompt text ended. BEFORE is the

default.

 ABOVE indicates that the prompt text is placed above the data item variable. The variable is

indented two spaces from the beginning of the prompt text.

REQUIRED=NO | YES

This attribute is allowed only for TYPE=SINGLE. NO indicates that the field is not required. NO is the

default value.

 YES indicates that the field is required on the display, and the field is highlighted accordingly. When

REQUIRED=YES is coded, no explicit checks are made for user entry. However, YES causes the UIM to

perform input editing and validity check processing even if the user does not enter anything into the

field. This allows you to use the validity checking (CHECK) tag to ensure that the user enters data

into a required field. REQUIRED=YES cannot be specified when TYPE=MULTI is specified on this tag.

AUTOENTR=NO | YES

Indicates whether or not the field is an automatic enter input field. An automatic enter input field

returns the screen from the device to the host when the user enters a character, including a blank,

into the last position of the field. This has the same effect as the user pressing the Enter key.

 NO indicates that the field is not an automatic enter field. This is the default value.

 YES indicates that the field is an automatic enter field. Although the UIM does not restrict its usage,

AUTOENTR=YES is intended to be used only on input fields that are one character wide. YES is not

allowed when TYPE=MULTI is specified on this tag.

COND=condition-name

The selection field is displayed only if the condition specified is true. Associated DATASLTC tags are

displayed only if this selection field appears on the display. The condition must be defined in the

panel group with the condition definition (COND) tag.

Optional Text

selection-field-prompt-text

The text which describes the selection field. The text may appear on more than one line and can

contain only the reverse text (RT) tag. The length of the text is 255 bytes or less.

 If the selection field appears in a data item group, it is indented as specified by the GRPSEP attribute

on the DATAGRP tag. If the text is too long to fit in the prompt column, it is formatted on the

following lines as necessary to fit within the column and indented two spaces from the beginning of

the first line.

 If no text is specified, the selection field appears without a prompt. Prompt text should be specified

for all DATASLT tags, except for when the selection field is described completely by the instruction or

group heading text appearing above the item.

Example 1: Data Entry Panel

The example shows a sample data entry panel. The panel has 2 selection fields with the defaults supplied

by the calling program by previously setting the dialog variables for the function.

UIM Source

:class name=select

 basetype=’bin 31’.

:var name=prtstyle

 class=select.

DATASLT Tag

512 Application Display Programming V6R1

:var name=duplex

 class=select. ...
:panel name=entry1

 help=hentry1

 topsep=space

 ...

 .Sample Entry Panel

:data depth=’*’

 bodysep=both.

:topinst.Type choices, press Enter.

:datacol width=30.

:datacol width=’*’.

:dataslt help=hstyle

 var=prtstyle

 type=single

 .Type style for printing

:datasltc help=hstylep

 option=1

 .Prestige elite (12 pitch)

:datasltc help=hstylec

 option=2

 .Courier (10 pitch)

:datasltc help=hstylees

 option=3

 .Essay standard (proportional)

:datasltc help=hstyleeb

 option=4

 .Essay bold (proportional)

:edataslt.

:dataslt type=single

 help=hduplx

 var=duplex

 .Duplex

:datasltc help=hduplxy

 option=1

 .Print both sides of paper

:datasltc help=hduplxn

 option=2

 .Print one side only

:edataslt.

:edata.

:epanel.

:invellip.

Results

 Sample Entry Panel

 Type choices, press Enter.

 Type style for printing . . . 1 1. Prestige elite

 2. Courier (10 pitch)

 3. Essay standard (proportional)

 4. Essay bold (proportional)

 Duplex 1 1. Print both sides of paper

 2. Print one side only

In this example, the PRTSTYLE and DUPLEX dialog variables must be BIN 31, and the option value

selected is returned to the calling program in these variables.

DATASLT Tag

Appendix A. UIM Panel Group Definition Language 513

Example 2: Multiple-Selection Field

This example shows a multiple-selection field. The user selects the values by typing a slash (/) or the

country-designated character into the entry field preceding the desired options. More than one heading

option may be selected.

UIM Source

:class name=sfield

 basetype=’char 1’.

:var name=hdoptsb

 class=sfield.

:var name=hdoptsu

 class=sfield.

:var name=hdoptsuc

 class=sfield.

:var name=hdoptssn

 class=sfield.

:var name=hdoptstm

 class=sfield.

:var name=hdoptsdt

 class=sfield.

:panel name=xxx

 keyl=x1.Heading Options

:data depth=’*’

 bodysep=both.

:topinst.Select one or more

choices, press Enter.

:datacol width=30.

:datacol width=’*’.

:dataslt type=multi

 help=haward.Heading options

:datasltc var=hdoptsb

 help=hbold.Bold

:datasltc var=hdoptsu

 help=hundl.Underline

:datasltc var=hdoptsuc

 help=hupperc.Uppercase

:datasltc var=hdoptssn

 help=hsecn.Section numbers

:datasltc var=heoptstm

 help=htime.Time

:datasltc var=hdoptsdt

 help=hdate.Date

:edataslt.

:edata.

Results

 Heading Options

 System: xxxxxxxx

 Select one or more choices, press Enter.

 Heading options _ Bold

 _ Underline

 _ Uppercase

 _ Section numbers

 _ Time

 _ Date

If the user chooses Underline, Section numbers, and Date in this example, the value in the dialog variables

are:

v hdoptsb=0

v hdoptsu=1

DATASLT Tag

514 Application Display Programming V6R1

v hdoptsuc=0

v hdoptssn=1

v hdoptstm=0

v hdoptsdt=1

DATASLTC (Data Selection Field Choice)

 The data selection field choice (DATASLTC) tag defines a possible choice for a single- or multiple-choice

selection field. This tag is allowed only for display panels. It is not valid if LAYOUT=HORIZ is specified on

the data presentation area (DATA) tag for the area.

The DATASLTC tags must appear after the corresponding data selection field (DATASLT) tag and at least

one DATASLTC tag must be specified between the DATASLT and the EDATASLTC tags. The DATASLTC

tag defines the choices for the selection field.

Optional Attributes

CHOICE=dialog-variable-name

The name of a dialog variable containing the possible choices text to be displayed. The dialog

variable must be defined so that the text fits on a single line.

 Dialog variables must be defined with a BASETYPE of CHAR, IGC, or BIN on the class definition

(CLASS) tag.

 The error state of the dialog variable is not used for determining the highlighting of the text.

 If the CHOICE attribute is specified, the text-for-choices cannot be specified.

 Special formatting for IGC. (The abbreviation IGC is used in commands and keywords to represent

double-byte character set functions.) When a dialog variable with a BASETYPE of IGC is specified on

the CLASS tag, the UIM does special formatting. If the variable value begins with a shift-out

character (X'0E'), the UIM shifts the value one character to the left to preserve vertical alignment with

data choices on other lines.

OPTION=option-number

The number assigned to this option. Option numbers are integers in the range of 1 to 99. This

attribute is required if specified within a DATASLT tag that has TYPE=SINGLE specified, but cannot

be used if TYPE=MULTI is specified.

 Selection field choices are displayed in the order defined in the selection field. If the numbering of

two choices is not consecutive, a blank line is automatically placed between the two choices. If two

choices have the same option number and both are conditioned-on at the same time, the choice

defined first is displayed.

�� :DATASLTC

CHOICE

=

dialog-variable-name

OPTION

=

option-number
 �

�
VAR

=

dialog-variable-name

HELP

=

help-module-name

COND

=

condition-name
 �

�
AVAIL

=

condition-name

AVLMSGID

=

message-identifier
 �

�
AVLMSGF

=

’

qualified-message-file-name

’
 .

text-for-choices
 ��

DATASLT Tag

Appendix A. UIM Panel Group Definition Language 515

VAR=dialog-variable-name

The name of the dialog variable used to indicate whether or not the selection field choice is selected.

This attribute is required for TYPE=MULTI. The variable must be declared with a BASETYPE of CHAR 1

on the CLASS tag.

 If the choice is not selected, the value of the dialog variable is ’0’. If the choice is selected, a value of

’1’ is returned in the dialog variable. If the current value of the variable is ’1’ when the screen is

displayed, a slash (/) is displayed on the screen. The user may enter either a slash or the

country-designated character and a ’1’ is returned to the user. Whichever character is used for

selection by the user is shown when the panel is redisplayed. If the current value of the dialog

variable is something other than ’1’ when the panel is displayed, the variable is presented as

unselected.

 The VAR attribute is required if TYPE=MULTI on the DATASLT tag. If TYPE=SINGLE is specified, the

VAR attribute is not allowed.

HELP=help-module-name

Identifies online information explaining the purpose of the selection field choice. The name of the

help module may be a name imported from another panel group, but must follow the rules for

names outlined earlier in this chapter. For more information on the rules for names, see “Name

Syntax” on page 461.

 This attribute is allowed only when the HELP attribute is specified on the DATASLT tag that contains

this DATASLTC tag.

 If the HELP attribute is specified on a DATASLTC tag within a selection field, all DATASLTC tags

within that selection field must have the HELP attribute specified.

 For multiple-choice selection fields with SELECT=MULTI specified on the DATASLT tag, the online

information identified by this attribute is included as part of the contextual help displayed when the

cursor is positioned anywhere within the selection field.

 For single-choice selection fields with SELECT=SINGLE specified on the DATASLT tag, the online

information identified by this attribute is displayed when help is requested while the cursor is

positioned on the choice text for this tag. This online information is also included as part of the

contextual help displayed when the cursor is positioned within the selection field but not on the text

for one of the choices within the field. This includes when the cursor is positioned on the prompt text

for the selection field or in the entry field for the selection field. If the cursor is in the entry field and

a valid choice is entered, when help is requested, the help for that choice is displayed.

COND=condition-name

The selection field choice is in effect on the panel only if the condition specified is true. The condition

must be defined in the panel group prolog with the condition definition (COND) tag. When the

choice is conditioned-off, the selection field choice does not appear in the selection field and the help

for the choice is not included in requests to display help.

AVAIL=condition-name

The name of a condition indicating whether or not the selection field choice is available. The

condition must be defined in the panel group prolog with the COND tag.

 When the condition is true, the selection field choice is available. When the condition is false, the

selection field choice is not available. Any condition specified on the COND attribute on this tag takes

precedence over this attribute.

 Unavailable choices are displayed with a color change and an asterisk (*) overlaying the first part of

the choice option number.

 The AVAIL attribute cannot be specified if the selection field is specified as TYPE=MULTI on the

DATASLT tag.

DATASLTC Tag

516 Application Display Programming V6R1

AVLMSGID=message-identifier

The message identifier of the message displayed when the selection field choice is selected when it is

not available as specified by the AVAIL attribute on this tag. This attribute is allowed only when the

AVAIL attribute is specified.

 If this attribute is not specified, the UIM displays a default message stating that the choice is not

currently available.

AVLMSGF='qualified-message-file-name'

The message file name containing the message identifier. This attribute is allowed when the AVLMSGID

attribute on this tag is specified. If the DFTMSGF attribute is not specified on the panel group

(PNLGRP) tag and the AVLMSGID attribute on this tag is specified, this attribute must be specified.

Optional Text

text-for-choices

This text is an implied paragraph. When the display is formatted, any text that does not fit onto one

line is formatted on the following lines and indented two columns. The text can be a maximum of

255 characters and can only contain the reverse text (RT) tag. Text-for-choices is required unless the

CHOICE attribute is specified on this tag.

DL (Definition List)

 The definition list (DL) is a list of words or phrases and their corresponding definitions, descriptions, or

explanations. This tag requires a matching end tag. A definition list is only allowed in information areas

and help areas.

The terms being defined and their definitions are identified by the definition term (DT) tag and the

definition description (DD) tag. A heading for the column of terms and the column of definitions can be

identified by the definition term heading (DTHD) tag and the definition description heading (DDHD)

tags, respectively.

Definition lists can occur anywhere in text; they can be nested within other lists or definition lists, and

other lists can be nested within definition lists.

Two DT or DD tags cannot be used consecutively.

Other tags can be nested within the DL tag. These tags are listed in the following table. The table defines

the order in which the tags must appear, indicates which tags can be used in display panels only, print

panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

�� :DL .

COMPACT

:DTHD

.

definition-term-header

:DDHD

.

definition-header
 �

�

�

:DT

.

definition-term

:DD

.

definition

:EDL.

��

DATASLTC Tag

Appendix A. UIM Panel Group Definition Language 517

Table 61. Tags Allowed Between the DL and EDL Tags

Tag Name Order Use Page

FIG (Figure) 1 B 519

LINES (Unformatted lines) 1 B 538

XMP (Example) 1 B 631

NT (Note) 1 B 582

P (Paragraph) 1 B 585

PC (Paragraph

continuation)

1 B 596

LP (List part) 1 B 571

OL (Ordered list) 1 B 583

SL (Simple list) 1 B 614

UL (Unordered list) 1 B 625

PARML (Parameter list) 1 B 594

DL (Definition list) 1 B 517

Optional Attribute

COMPACT

Formats the list without the blank line between the items.

Required Tags

DT.definition-term

The text for the definition term. The term formats the way it is entered, in highlight phrase 2 (HP2).

 The term is assumed to be 10 single-byte character set (SBCS) characters or 4 double-byte character

set (DBCS) characters, and starts at position 2 relative to the left margin. If the term is longer than the

assumed number of characters, it is extended into the description line.

DD.definition

The text for the definition. The description of the term is an implied paragraph and can contain text

items. Additional paragraphs can be inserted following the description paragraph, using the

paragraph (P) tag.

 The description starts at position 14 relative to the left margin, unless the term extends into the

description area.

Optional Tags

DDHD.definition-header

The text for the definition header. The header formats the way it is entered, in highlight phrase 2

(HP2).

DTHD.definition-term-header

The text for the definition term header. The header formats the way it is entered, in highlight phrase

2 (HP2).

Example 1: Definition List

This example illustrates how a definition list with headings will format.

DL, DT, DD, DTHD, DDHD Tags

518 Application Display Programming V6R1

UIM Source

:DL.

:DTHD.Term

:DDHD.Description

:DT.DL

:DD.This is a sample

definition list term

and description.

:DT.EDL

:DD.Here is another.

:EDL.

Results

Term Description

DL This is a sample definition list term and description.

EDL Here is another.

Example 2: Compact Definition List

This is a definition list using the COMPACT attribute.

UIM Source

:DL compact.

:DT.COMPACT

:DD.This causes the list

to be compacted, so the

blank lines are removed.

:DT.ANOTHER

:DD.Here is another.

:EDL.

Results

COMPACT This causes the list to be compacted, so the blank lines are removed.

ANOTHER Here is another.

 Care should be taken when using unformatted lines (LINES), figure (FIG), and example (XMP) tags

within a definition list, because text that does not fit on one line wraps to column one of the next line.

Lines and figures start at the current left margin and examples are indented four spaces from the current

left margin. The current left margin changes when nested lists are formatted. If there is an information

source containing the LINES, FIG, or XMP tag imbedded at various locations, including within lists, it

may not look the same each time.

FIG (Figure)

 The figure (FIG) tag identifies a diagram, chart, or other illustration. This tag requires a matching end tag.

The figure tag is only allowed in information areas and help areas. A figure can also contain a figure

caption, which is identified by the figure caption (FIGCAP) tag.

Figures turn off automatic formatting, so the text is formatted the same way it is entered. The figure

formats where it is entered, across the full width of the screen or window.

�� :FIG

RULE

FRAME

=

NONE

 . figure-content

:FIGCAP

.

figure-caption-text
 :EFIG. ��

DL, DT, DD, DTHD, DDHD Tags

Appendix A. UIM Panel Group Definition Language 519

Care should be taken when using figures within lists, because figure text that does not fit on one line

wraps to column one of the next line.

Figures are always formatted with the left margin set to column 2. The formatting width is two columns

less than the width specified on the help module. When the FIG tag appears in an information area, the

formatting width initially is two bytes less than the width specified on the panel tag.

The figure caption begins at the left margin. There are two spaces between the figure tag, ″Figure:″, and

the figure caption text if either the figure tag or the figure caption text are single-byte characters. There

are four spaces between the figure tag and the figure caption if both are double-byte characters. If the

figure caption does not fit on one line, it wraps onto the second line starting at position 4 relative to the

left margin.

Optional Attribute

FRAME=RULE | NONE

The type of frame to put around the figure. RULE is the default. A row of hyphens is displayed

above and below the figure.

 NONE indicates that no frame is used; a blank line is placed ahead of and behind the figure.

Optional Tag

FIGCAP.figure caption text

A caption for the figure, if needed. The caption may appear on more than one line in the source. The

FIGCAP tag must appear immediately before the EFIG tag.

Example: Sample Figure

This example shows how text formats the way it is entered with a FIG tag, and how a FIG tag can

specify a frame to set the figure off from the rest of the text.

UIM Source

:FIG frame=rule.

some

 sample

 text

:FIGCAP.A Sample Figure

:EFIG.

Results

some

 sample

 text

Figure: A Sample Figure

FIG, FIGCAP Tags

520 Application Display Programming V6R1

HELP (Help Module)

 The help module (HELP) tag indicates the beginning of a help module. An EHELP tag must be specified

at the end of the help module. A help module can be used for help displays and for index search topics.

For more information on the index search function, see “ISCH (Index Search)” on page 530. Help

modules may also be linked to each other. For more information on how help modules may be linked

together, see “LINK (Hypertext Link Definition)” on page 539.

Any tag that has a HELP attribute may refer to this module.

Required Attribute

NAME=help-module-name

The name of this help module. For more information on the rules for naming, see “Name Syntax” on

page 461.

 This name can be referred to from:

v The HELP attribute on UIM panel definition tags.

v The NAME attribute on an import (IMPORT) tag.

v The NAME attribute on an imbed help (IMHELP) tag within another help module.

v The TOPICS attribute on an index search subtopic (ISCHSUBT) tag.

v The HLPPNLGRP keyword in data description specifications (DDS) specifications.

v A control language (CL) command definition.

v The help identifier array parameter on the Display Help (QUHDSPH) API.

v The DSPHELP dialog command.

The maximum length of the value for the NAME attribute is 32 characters. A slash (/) can be used in

the name as a delimiter or separator character. The slash is used to separate a command name from a

parameter name when naming a help module for commands. If the slash is used, the name must be

enclosed in apostrophes ('). Help modules may not be nested.

Optional Attributes

WIDTH=’*’ | help-window-depth

The width of the help window when it is displayed. A value specified for the WIDTH attribute must

include 2 bytes of space for the right and left margin. The minimum width is 32 bytes, and the

maximum width is 74 bytes.

 Help modules that are displayed as full screen or in an extended help window are indented by 4

bytes. Therefore, the formatting width is 6 bytes less than the width. For example, a help module

formatted with the maximum width of 74 bytes has a formatting width of 68 bytes.

 The UIM does not increase or decrease the width of the window if a value other than ’*’ is specified.

The width should be specified only if the text between the HELP and EHELP tags depends on a

window of a particular width.

�� :HELP NAME = help-module-name

’*’

WIDTH

=

help-window-width

 �

�
’*’

DEPTH

=

help-window-depth

.

:EHELP.

help-title-text

 ��

HELP Tag

Appendix A. UIM Panel Group Definition Language 521

If the help is for the function keys or a list area and if WIDTH=’*’, the UIM uses a width of 38 bytes. If

the help is for a menu area or data area, the UIM uses a width of 60 bytes. The UIM finds a location

for the window using this width, then expands the window to a size which displays the online

information in the most appropriate fashion.

 The width used is that of the first HELP tag found when the UIM assembles the online help

information.

DEPTH=’*’ | help-window-depth

The depth of the help window when it is displayed. The value specified for the depth may not be

less than nine lines, and must include the following:

v One line for a help title

v One line for a top separator line

v One line for a bottom separator

v Two lines for the function keys

v One line for the message line

For help displayed in a pop-up window, the maximum value for the DEPTH attribute is 21.

 The UIM does not increase or decrease the depth of a window if a value other than ’*’ is specified. A

specific depth should be specified only if the text between the HELP and the EHELP tags depends on

a particular window width.

 If the help is for a data area, menu area, or the function keys, and if DEPTH=’*’, the UIM chooses a

depth of 9. If the help is for a list area, the UIM chooses a depth of 14. The UIM finds a location for

the window using this depth, then expands the window to a size designed to display the online help

information in the most appropriate fashion.

 The depth used is that of the first HELP tag found when the UIM assembles the online help

information.

Optional Text

help-title-text

The title used on the help panel. The text must appear on the same or next line as the tag and can

only contain the reverse text (RT) tag. If the help-title-text is longer than the pop-up window width,

the title text is truncated to the width of the pop-up window. If the value for the WIDTH attribute on

this tag is greater than 57 or equal to ’*’, the maximum length of the help-title-text is 55 characters.

Otherwise, the maximum length is the value specified for the WIDTH attribute minus two.

 The help panel title displayed depends on whether contextual or extended help is requested and

whether the help is displayed as a full screen or in a pop-up window.

 Help information presented in pop-up windows is titled as follows:

v For contextual help, the title of the HELP tag for the associated item is used. If no title is defined

on the HELP tag, a default title of ″Help″ is used.

v For extended help, the title from the first HELP tag for the panel is used. If no title is defined on

the HELP tag, the default title or the full display title of the QUHDSPH API is used.

If the text for the help title is longer than the pop-up window width, the title text is truncated at a

word boundary to the width of the pop-up window. The default title or the full display title of the

QUHDSPH API is used.

 Help information presented in full screen mode is titled as follows:

v For contextual help, the title from the HELP tag is used.

v For extended help, the title from the first HELP tag is used.

v If no title is defined on the HELP tag, the default title or the full display title of the QUHDSPH

API is used.

HELP Tag

522 Application Display Programming V6R1

Help modules must be coded so that each module can be individually formatted. Help modules must

begin with one of the following tags:

DL Definition list

FIG Figure

H1-H4 Headings

IMHELP Imbed help

ISCH Index search

LINES Unformatted lines

NT Note

OL Ordered list

P Paragraph

PARML Parameter list

SL Simple list

UL Unordered list

XH1-XH4 Extended help headings

XMP Example

Example: Help Panel Definition

This example shows how a help panel is defined and how the text is displayed.

UIM Source

:help name=hmain.Main System Menu - Help

:p.

This panel allows you to ...

 (extended description of the panel)

:ehelp.

Results

 HELP Main System Menu

 This panel allows you to ...

 __

HELP Tag

Appendix A. UIM Panel Group Definition Language 523

HP0 through HP9 (Highlighted Phrase)

 These highlighted phrase (HP0-HP9) tags identify a word or phrase which is highlighted. All HPn tags

require matching end tags. These tags are only allowed in help areas and in information areas that are

not in the print head (PRTHEAD) or print panel (PRTPNL) tags.

The HPn and EHPn tag phrase should be specified on word boundaries. If the two characters

immediately following the EHPn tag are a punctuation mark and a blank, the UIM automatically extends

the emphasis attribute to include the punctuation mark. This allows the punctuation mark and the text

associated with it to be displayed using the same emphasis.

Highlighting tags may be nested. For example, :HP1.text:HP2.text2:EHP2.text3:EHP1. is valid.

Optional Text

text

Although the word or phrase to be highlighted is not required, the tag has no meaning when no text

is specified.

�� :HP0. :EHP0.

text

:HP1.

:EHP1.

text

:HP2.

:EHP2.

text

:HP3.

:EHP3.

text

:HP4.

:EHP4.

text

:HP5.

:EHP5.

text

:HP6.

:EHP6.

text

:HP7.

:EHP7.

text

:HP8.

:EHP8.

text

:HP9.

:EHP9.

text

 ��

HP0 through HP9 Tags

524 Application Display Programming V6R1

H1 through H4 (Heading)

 The heading (H1-H4) tags identify main topics and subtopics of information. These tags are only allowed

in information areas and help areas.

In a help area, text after the headings is indented four spaces from the margin to separate the headings

from the text. In an information area, text formats flush left, against the left margin.

Headings have one blank line formatted before and after the heading text.

Specific formatting rules are as follow:

H1 Centers and formats text as underscored and highlighted, like the HP3 tag. This tag causes a page

eject when it appears in a printed help module.

H2 Left justifies and formats text as underscored and highlighted, like the HP3 tag.

H3 Left justifies and formats text as highlighted text, like the HP2 tag.

H4 Left justifies and formats text as underscored, like the HP1 tag.

Required Text

heading-text

The text for the heading. The text of a heading must be entered on a single line and is formatted as

Bold, underlined

Green, reverse image

Green

Tag Color Device Formatting Monochrome Device Formatting

HP0

HP1

HP2

HP3

HP4

HP5

HP6

HP7

HP8

HP9

Green

Green, underscored

White

White, reverse image

White, reverse image

Normal, reverse image

High intensity, reverse image

Normal

High intensity, underscored

Underscored

Normal Normal

Underlined

Normal

Underlined

Underlined

Bold, underlined

Bold, underlinedHigh intensity, reverse image

Normal, reverse image

RV2W062-0

White, underscored

High intensity

Print Formatting
For Help

Bold

UnderlinedGreen, underscore, reverse image Underscore, reverse image

White, reverse image

�� :H1 . heading-text

:H2

:H3

:H4

 ��

H1 through H4 Tags

Appendix A. UIM Panel Group Definition Language 525

entered. It cannot contain any other tags. A common practice is to enter the text according to the

current publishing style, with significant words in initial caps.

Example: Heading Tags

This example illustrates how the different headings are justified and formatted.

UIM Source

:H1.A One Heading

:p.Here’s a paragraph.

:H2.A Two Heading

:p.Another paragraph.

:H3.A Three Heading

:p.Still another paragraph.

:H4.A Four Heading

:p.Still another paragraph.

Results

A One Heading

Here’s a paragraph.

A Two Heading

Another paragraph.

A Three Heading

Still another paragraph.

A Four Heading

Still another paragraph.

IMHELP (Imbed Help)

 The imbed help (IMHELP) tag imbeds a help module within a help module. A help module begins with

a help (HELP) tag, and ends with an end help (EHELP) tag.

Required Attribute

NAME=help-module-name

The name of a help module imbedded where this tag occurs. For more information on the rules for

naming, see “Name Syntax” on page 461. The name must be the name of another help module

defined within the same panel group, or it must be imported from another panel group using the

import (IMPORT) tag. IMHELP tags have a nesting limit of 16.

 If the index search (ISCH) or index search synonym (ISCHSYN) tags are a part of the embedded help

module, they are not part of the module where the IMHELP tag occurs.

 An active highlight phrase (HPn) tag is not allowed when an IMHELP tag is coded. Any active HPn

tags must be ended with EHPn tags before coding the IMHELP tag.

 The imbed help (IMHELP) tag can be imbedded with the following tags:

�� :IMHELP NAME = help-module-name . ��

H1 through H4 Tags

526 Application Display Programming V6R1

v Definition list (DL). The IMHELP tag must be preceded by a DD (definition) tag, or the text of the DD

tag.

v Imbedded help (IMHELP).

v Note (NT).

v Ordered list (OL). The IMHELP tag must be preceded by a LI (list item) tag, or the text of the LI tag.

v Parameter list (PARML). The IMHELP tag must be preceded by a PD (parameter definition) tag, or the

text of the PD tag.

v Simple list (SL). The IMHELP tag must be preceded by a LI (list item) tag, or the text of the LI tag.

v Unordered list (UL). The IMHELP tag must be preceded by a LI (list item) tag, or the text of the LI tag.

Text cannot directly follow the IMHELP tag. Any tag allowed in the construct, except for the HPn

(highlighted phrase), RT (reverse text), or PK (programming keyword) tags, can be used to satisfy this

requirement.

Example: Imbedded Help

This example uses imported help for the help on function keys. A second help panel imports commonly

used information within a list item.

UIM Source

:HELP name=’menu1’.

:H2.Purpose of MENU1

Menu1 is intended for the use of... ...
:IMHELP name=’keydefs’. ...
:EHELP. ...
:HELP name=’keydefs’.

:PARML.

:PT.F1=Help

:PD.This key...

:PT.F3=Exit

:PD.This key...

:EPARML.

:EHELP.

:HELP name=’lib1’.

:P.The valid values for library are:

:ol.

:li.APP1LIB

:li.APP2LIB

:li.Any IBM-supplied library.

:imhelp name=’ibmlib’.

:p.

Some of the above libraries ...

:li.APP3LIB ...
:eol.

:ehelp.

:HELP name=’ibmlib’.

:ol.

:li.QSYS

:li.QUSRSYS ...
:eol.

:ehelp.

IMHELP Tag

Appendix A. UIM Panel Group Definition Language 527

IMPORT (Import)

 The import (IMPORT) tag makes help modules defined in another panel group object available in the

current panel group. This tag must appear in the prolog section of the panel group source following the

panel group (PNLGRP) tags and the copyright (COPYR) tag. An IMPORT tag must be specified before

any references by other tags to the help modules it defines.

This tag may also assign a private name to the imported help module. If a private name is assigned, the

private name replaces the imported name in the scope of the current panel group. This allows names to

be imported that would have conflicted with other names within the current panel group.

Required Attributes

NAME=imported-name | '*'

The internal name of the help module imported for use within the current panel group. For more

information on the rules for naming, see “Name Syntax” on page 461.

 If '*' is coded, all unresolved names are assumed to be imported from this panel group. Only one

IMPORT tag may be coded with NAME='*'.

PNLGRP=panel-group-name

The name of the panel group that contains the help module specified by NAME. This is an i5/OS object

name which obeys all object name rules. This name may be fully qualified.

Optional Attributes

NEWNAME=SAME | private-name

A new name used instead of the imported name within the current panel group. The new name

suppresses the visibility of the imported name and serves as its replacement. Only NEWNAME=SAME is

allowed when NAME='*' is specified.

PRDLIB=product-library-name

The name of the library added into the library search list as a product library, used to locate the

panel group defining the help module specified by the NAME attribute on this tag. This attribute is not

allowed when the PNLGRP attribute is fully qualified.

 The product library is only used when imbedding help information using the imbed help (IMHELP)

tag. The product library is ignored when referring to a help module using the HELP attribute on other

UIM tags.

�� :IMPORT NAME = imported-name

’

*

’
 PNLGRP = panel-group-name �

�
SAME

NEWNAME

=

private-name

.

PRDLIB

=

product-library-name

 ��

IMPORT Tag

528 Application Display Programming V6R1

INFO (Information Area)

 An information area (INFO) tag provides textual information to explain the operation of an application or

panel. This tag is allowed for display panels and print panels. It can construct a detailed instruction area

on a panel.

Information areas are formatted with a width of 72 columns unless the width attribute on the panel tag is

less than 74 columns. In this case, the information area is formatted with a width of two columns less

than the width attribute on the panel tag.

Required Attribute

DEPTH=area-depth | '*'

The depth of the area in lines, including separators if any are specified. This attribute is required for

display panels, but not allowed for print panels. If '*' is specified, the space remaining on the display

after other panel elements are allocated is given to this area. Only one area in the panel may have '*'

coded.

Optional Attributes

BOTSEP=SPACE | NONE | RULE

Defines the bottom separator for the information area. If SPACE is specified, a line of spaces is used.

 NONE indicates that no separator line exists.

 If RULE is specified, a line of underscored spaces is used.

SCROLL=NO | YES

Indicates whether or not this area is scrollable. This attribute is allowed only for display panels. NO

indicates that the area is not scrollable.

 YES indicates that the area is intended to be scrollable. For a SCROLL=YES area, a line of spaces is

used by the UIM to provide a line for the scroll information. If BOTSEP=SPACE is specified also, one

line is used for both the separator and the scroll information line.

Syntax for Display Panels:

�� :INFO DEPTH = area-depth

’

*

’

SPACE

BOTSEP

=

NONE

RULE

 �

�
NO

SCROLL

=

YES

 . :EINFO.

area-title
 ��

Syntax for Print Panels:

�� :INFO

SPACE

BOTSEP

=

NONE

RULE

NORMAL

TYPE

=

PROLOG

 �

� . :EINFO.

area-title
 ��

INFO Tag

Appendix A. UIM Panel Group Definition Language 529

TYPE=NORMAL | PROLOG

Indicates whether or not this information area is a prolog area. The prolog area is printed only once

after the title line on the first page. This attribute is allowed only for the print head (PRTHEAD) tag.

This attribute is valid only when the INFO tag appears between the PRTHEAD and the EPRTHEAD

tags for information areas in a PRTHEAD panel. NORMAL is the default value.

Optional Text

area-title

The title of the area. If no text is specified, no title line is allocated to the area. The text must appear

on the same or next line as the tag, can contain only the reverse text (RT) tag, and cannot exceed a

maximum length of 55 characters long.

Print Formatting Considerations

Printed information areas are formatted like displayed areas, except when four lines of an information

area do not fit on a page when printing. If this is the case, a page eject occurs and the information area is

printed on the next page. Information areas are formatted to a width of 72 columns, as is done for

information areas on display panels, regardless of the width specified on the PRTHEAD or print panel

(PRTPNL) tag.

ISCH (Index Search)

 The index search (ISCH) tag identifies the text displayed by the index search function if the user enters a

word that matches a synonym. The ISCH tag is only allowed in source code for panel group objects and

is not allowed in the source for menu objects. The placement of the ISCH tag determines the help module

displayed when the index entry is selected. The ISCH tags should appear immediately after the help

module (HELP) tag it refers to.

Required Attribute

ROOTS=’root-word-list’

A list of up to 50 root words that apply to the index entry. Each root word may be up to 20

characters and can contain only the characters A through Z, a through z, and 0 through 9. One or

more blanks must be specified between words, so the entire list must be enclosed in apostrophes. The

ROOTS attribute may be repeated, allowing you to define more root words for an index entry than fits

on one source line.

 The root words serve as a link between the ISCH tags and the index search synonym (ISCHSYN)

tags, and do not appear to the user. To allow the user to search for an index entry, each root word

specified here must have a matching root word on an ISCHSYN tag.

Required Text

index-entry-text

The text of the index entry presented when one of the synonym words is selected. The text may

contain up to 72 characters but can not contain other tags. It must appear on the same or next line as

the period which ends the tag definition and cannot span two lines in the source.

 If the index entry is a subtopic, the index-entry-text is indented two spaces from the text of the first

higher index entry in the hierarchy of index entries.

 The text which is provided is used as the topic title when topics are presented for selection. If no text

is specified on the HELP tag of the topic, the text provided on the ISCH tag is also used as the panel

�� :ISCH ROOTS = ’root-word-list’ . index-entry-text ��

INFO Tag

530 Application Display Programming V6R1

title when the topic is selected for presentation. When used as a panel title, no more than 55

characters of the text is shown. If the text contains more than 55 characters, it is truncated at a blank

and an ellipse (...) is placed after the text to indicate that truncation has occurred.

Example: Index Search

This example shows some ISCHSYN tags and the ISCH tags that use them:

UIM Source

:ISCHSYN ROOT=’copy’.copy copying copies

:ISCHSYN ROOT=’delete’.delete deleting deletes

:ISCHSYN ROOT=’delete’.remove removes removing

:ISCHSYN ROOT=’folder’.folder folders

:ISCHSYN ROOT=’folder’.document documents ...
:help name=fldcpy.

:ISCH ROOTS=’copy folder’.Copying folders ...
:ehelp.

:help name=flddlt.

:ISCH ROOTS=’delete folder’.

Deleting folders

:ehelp.

ISCHSUBT (Index Search Subtopic)

 The index search subtopic (ISCHSUBT) tag identifies the help modules within the same panel group that

are subtopics under the preceding topic specified on an index search (ISCH) tag. The ISCHSUBT tag must

appear after the ISCH tag. This tag is repeatable.

Any help module with an ISCH tag that is not identified by an ISCHSUBT tag is a primary topic in the

index search hierarchy. Therefore, if no ISCHSUBT tags are used, all help modules are primary topics and

there is no hierarchy in the index search. The ISCHSUBT tag is allowed only in source code for panel

group objects; it is not allowed in the source code for menu objects.

Required Attribute

TOPICS=’help-module-name-list’

Identifies the help modules within the same panel group that are subtopics under the preceding topic

specified on an index search (ISCH) tag. The order in which the help modules appear on the TOPICS

attribute is the order in which they are displayed in the index search hierarchy. A help topic name

cannot be specified twice in this list. For more information on the rules for help modules names, see

“Name Syntax” on page 461. This attribute is repeatable.

 A topic can be the subtopic of more than one topic.

 Topics can be nested to no more than 16 levels.

Example: Index Search Hierarchy

The following example shows how the ISCH tags and ISCHSUBT tags work together to form an index

search hierarchy:

�� :ISCHSUBT TOPICS = ’help-module-name-list’ . ��

ISCH Tag

Appendix A. UIM Panel Group Definition Language 531

UIM Source

:HELP name=mainhelp.

:ISCH roots=’root words’.

Main Help Topic

:ISCHSUBT topics=’help1’

 topics=’help2’. ...
:EHELP.

:HELP name=help1.

:ISCH roots=’root words’.

Help number 1

:ISCHSUBT topics=’help3 help4’. ...
:EHELP.

:HELP name=help2.

:ISCH roots=’root words’.

Help number 2

:ISCHSUBT topics=’help3’ ...
:EHELP.

:HELP name=help3.

:ISCH roots=’root words’.

Help number 3 ...
:EHELP.

:HELP name=help4.

:ISCH roots=’root words’.

Help number 4 ...
:EHELP.

This UIM source creates the following index search hierarchy:

Title of this index

 Main Help Topic

 Help number 1

 Help number 3

 Help number 4

 Help number 2

 Help number 3

ISCHSYN (Index Search Synonym)

 The index search synonym (ISCHSYN) tag identifies the variations and synonyms for the root words

used in the index search function. The ISCHSYN tag is only allowed in source for panel group objects

and is not allowed in the source for menu objects.

The text must be entered on one line. If more than one line is needed, multiple ISCHSYN tags may be

coded. This text, when combined with the index search (ISCH) tag, determines the index entries

displayed when the user enters words for the index search function.

The ISCHSYN tags build a table of synonyms, which serves as a link to the ISCH tags. As words are

entered for an index search, they are matched with the words in the synonym table to link to the entries

displayed.

�� :ISCHSYN ROOT = root-word . synonym-words ��

ISCHSUBT Tag

532 Application Display Programming V6R1

There is no restriction on the placement of the ISCHSYN tags, but to make maintenance and translation

easier, they should be placed in one area, such as the beginning of the panel group or in a panel group

object which contains only ISCHSYN tags.

Required Attribute

ROOT='root-word'

The root word to which the synonyms apply. If a real word is used for the root word, like “copy”,

that word should also be entered in the synonym-words field.

 The root word is used in the ROOTS attribute of the ISCH tag and may be up to 20 characters. A root

word can contain only the characters A through Z, a through z, and 0 through 9.

Required Text

synonym-words

Special Format. Specifies variations and synonyms for the root word. The synonym words must be

separated by blanks. If additional synonyms are needed for a root word, additional ISCHSYN tags

should be entered specifying the same root word. The additional synonyms are added to the previous

synonyms.

 Each synonym word must be 40 characters or less and can contain no spaces. It cannot contain a

period, left or right parenthesis, a semicolon, a comma, question mark, or colon.

 Different languages have a larger or smaller number of synonyms for each word. To provide

meaningful results, the translation of a root word must be done by providing a list of synonym

words and by not translating each English synonym.

 The UIM automatically handles lowercase, single-byte character set (SBCS) synonym words the same

way as uppercase words, using the code page specified on the TXTCHRID attribute of the panel group

(PNLGRP) tag.

Example: Index Search Synonyms

This example shows several ISCHSYN tags and how they are referred to by ISCH tags.

UIM Source

:pnlgrp... ...
:ISCHSYN ROOT=’copy’.copy copying

:ISCHSYN ROOT=’copy’.duplicate duplicating

:ISCHSYN ROOT=’copy’.model

:ISCHSYN ROOT=’root1’.remove removing

:ISCHSYN ROOT=’root1’.delete deleting

:ISCHSYN ROOT=’root1’.trash discard

:ISCHSYN ROOT=’folder’.folder folders

:ISCHSYN ROOT=’folder’.document documents

:ISCHSYN ROOT=’folder’.data information ...
:help name=fldcpy.

:ISCH ROOTS=’copy folder’.Copying a folder

:h2.Copying a Folder ...
:ehelp. ...
:help name=flddlt.

:ISCH ROOTS=’root1 folder’.Deleting a folder

:h2.Deleting a folder ...
:ehelp.

In this example, the ISCHSYN tags builds a synonym table containing the following entries:

ISCHSYN Tag

Appendix A. UIM Panel Group Definition Language 533

Root Word Synonym Words

copy copy copying duplicate duplicating model

root1 remove removing delete deleting trash discard

folder folder folders document documents data information

The ISCH tag for the “Copying a folder” entry points to the “copy” and “folder” search synonym lists.

When the user requests ″copy folders,″ the entry is found and displayed because ″copy″ and ″folders″ are

both listed as matches in the ISCHSYN table. If the user entered ″copy folders,″ ″folders, copy,″ or

″copying documents,″ the entry ″Copying a folder″ is displayed.

KEYI (Key List Item)

 The key list item (KEYI) tag defines a single function key. This tag must occur between the KEYL and

EKEYL tags. It assigns displayable text for a specified key and identifies the action to take place when

that key is pressed.

Required Attributes

KEY=key-name

The names for the engraved or software defined function keys are Attn, Enter, F1-F24, Help, Home,

Print, Pagedown, Pageup, and Sysreq.

HELP=help-module-name

The associated help module for the key description. The help module name may be a name imported

from another panel group, but it must follow the rules for names outlined earlier in this chapter. For

more information on the rules for naming, see “Name Syntax” on page 461.

ACTION='action-text'

The action occurring when the function key is pressed. This attribute is conditionally required. For

certain keys, the ACTION attribute must not be specified since the UIM does not handle that particular

key. For all other keys, the ACTION attribute is required.

 The valid forms of action text are:

v ’ACTIONS’

v ’CALL program-reference’ For a description of the interface between the UIM and the function key

CALL program, see the Application programming interfaces topic collection in the i5/OS

Information Center.

v ’CANCEL’

v ’CHGVIEW’

v ’CMD command-string’ Any dialog variable in the command string must be preceded by an

ampersand to denote variable substitution.

v ’CMDLINE’

�� :KEYI KEY = key-name HELP = help-module-name

ACTION

=

’

action-text

’
 �

�
COND

=

condition-name

YES

VARUPD

=

NO

PRIORITY

=

priority-number
 �

� .

key-description-text
 ��

ISCHSYN Tag

534 Application Display Programming V6R1

v ’ENTER’

v ’EXIT’

v ’HELP’

v ’HOME’

v ’MENU qualified-menu-name RTNPNT|NORTNPNT’

v ’MOREKEYS’

v ’MOVETOP’

v ’PRINT’

v ’PROMPT’

v ’RETRIEVE’

v ’RETURN positive-integer’

v ’PAGEUP’

v ’PAGEDOWN’

For a description of each of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

 Engraved key assignments are enforced by the compiler. These keys are the keys listed, except for F1

through F24. If engraved keys are assigned anything but their corresponding dialog function (or no

action in certain cases), a compile error results. The following is a list of the engraved keys and their

corresponding actions:

Key Action

Attn No action

Enter ’ENTER’

Help ’HELP’

Home ’HOME’

Print ’PRINT’

Pageup ’PAGEUP’

Pagedown ’PAGEDOWN’

Sysreq No action

Optional Attributes

COND=condition-name

The key is in effect on the panel only if the condition specified is true. The condition must be defined

in the panel group with the condition definition (COND) tag.

VARUPD=YES | NO

If YES is coded, validity checking occurs and the variable pool is updated with values entered by the

user before the action takes place.

 If NO is coded, the action is performed immediately and no variable pool updating occurs. If the

VARUPD attribute is not specified and the EXIT or CANCEL dialog command is specified on the ACTION

attribute of this tag, a warning message is generated at compile time stating that VARUPD=YES is

assumed. This is done as a reminder to you, because you may not want to check for valid input data

before allowing the user to exit a screen through these dialog commands. To avoid this message,

specify VARUPD=YES or VARUPD=NO on the key assignment.

 If no ACTION attribute is specified, this attribute is ignored.

PRIORITY=priority-number

The order in which keys should be displayed when the MOREKEYS dialog command is performed.

KEYI Tag

Appendix A. UIM Panel Group Definition Language 535

Key items with a lower number priority are displayed before key items with a higher number

priority. A specified priority number must be greater than or equal to one and less than or equal to

99.

 If a priority is not specified for a key, the default value depends on the action specified:

Action Default

EXIT 1

CANCEL 2

All others 99

No action 99

 The PRIORITY attribute is used only within a key list that has ACTION=MOREKEYS specified on one of

the KEYI tags. Otherwise, the priority attribute is ignored.

Optional Text

key-description-text

The displayable description for the associated key. For example, "F5=Refresh" or "F12=Cancel". If no

text is specified, a description of the key is not displayed on the panel, although the key is active. The

text must appear on the same or next line as the tag and can only contain the reverse text (RT) tag.

 The function key area is formed by concatenating the text from the various key list items, with each

key separated by at least three spaces. If the text does not fit on the rest of a line, it is placed on the

next line.

Example: Key Definitions

The following example defines the function keys F3, F5, F11, and F12.

UIM Source

:keyl name=keylist

 help=hkeylist.

:keyi key=f3

 action=’exit set’

 help=exit

 .F3=End task

:keyi key=f5

 action=’return 5’

 help=refresh

 .F5=Refresh

:keyi key=f11

 action=chgview

 help=chgview

 .F11=Alternate view

:keyi key=f12

 action=’cancel set’

 help=cancel

 .F12=Cancel

:ekeyl.

Results

 F3=End task F5=Refresh F11=Alternate view F12=Cancel

KEYI Tag

536 Application Display Programming V6R1

KEYL (Key List)

 The key list (KEYL) tag indicates the beginning of a list of key definitions. Each list may be referred to by

one or more panel definitions. An EKEYL tag must be specified at the end of the key list.

Other tags can be nested within the KEYL tag. These tags are listed in the following table. The table

defines the order in which the tags must appear and specifies on which page more information can be

found for each tag.

 Table 62. Tag Allowed Between the KEYL and EKEYL Tags

Tag Name Order Page

KEYI (Key list item) 1 537

Required Attribute

NAME=key-list-name

The name assigned to the key list. For more information on the rules for naming, see “Name Syntax”

on page 461.

Optional Attribute

HELP=help-module-name

Identifies online help information explaining the purpose of the function keys. The name of the help

module can be a name imported from another panel group, but must follow the rules for names

outlined earlier in this chapter. For more information on the rules for names, see “Name Syntax” on

page 461.

Example: Key List

This is an example of a key list.

UIM Source

An example of a key list follows:

:keyl name=keylist.

:keyi key=f1

 help=’key/helpf1’

 action=help.

:keyi key=f3

 help=’key/exit’

 action=’exit set’.F3=Exit

:keyi key=f12

 help=’key/cancel’

 action=’cancel set’.F12=Cancel

:keyi key=f24

 help=’key/morekeys’

 action=morekeys.F24=More keys

:keyi key=enter

 help=’key/enter’

 action=enter.

:keyi key=help

 help=’key/help’

 action=help.

:keyi key=pagedown

 help=’key/pagedown’

�� :KEYL NAME = key-list-name

HELP

=

help-module-name
 . :EKEYL. ��

KEYL Tag

Appendix A. UIM Panel Group Definition Language 537

action=pagedown.

:keyi key=pageup

 help=’key/pageup’

 action=pageup.

:keyi key=print

 help=’key/print’

 action=print.

:ekeyl.

LINES (Unformatted Lines)

 The unformatted lines (LINES) tag identifies an area of user-controlled line entry where the lines are not

automatically concatenated. Text is formatted the same way it is entered. This tag is only allowed in

information areas and help areas. The LINES tag requires a matching end tag.

Note: Care should be taken when using unformatted lines within lists, because text that does not fit on

one line wraps to column one of the next line. The current left margin changes when nested lists

are being formatted. If there is online help information containing unformatted lines imbedded at

various locations, including within lists, it may not look the same each time.

Help modules displayed in full-screen format or in an extended help window are indented by 4 bytes.

Therefore, the formatting width initially is 6 bytes less than the width specified on the help module.

When the LINES tag appears in an information area, the formatting width initially is two bytes less than

the width specified on the panel tag.

Optional Text

unformatted-lines

Although the text for the unformatted lines is not required, the tag has no meaning when no text is

specified.

Example: Unformatted Lines

This example illustrates how text is formatted the same way it is entered.

UIM Source

:LINES.

First line

Second line

:ELINES.

Results

First line

Second line

�� :LINES. :ELINES.

unformatted-lines
 ��

KEYL Tag

538 Application Display Programming V6R1

LINK (Hypertext Link Definition)

 The hypertext link definition (LINK) tag identifies the reference phrase text which is the anchor of a static

hypertext link. A reference phrase may appear in any UIM help area, but may not appear in an

information area. This tag requires a matching end tag. It also identifies action taken when the reference

phrase is selected. The only type of action supported is to display a help module.

The LINK and ELINK tag must be specified on word boundaries. If the two characters immediately

following the ELINK tag are a punctuation mark and a blank, the UIM automatically extends the

emphasis attribute to include the punctuation mark. This allows the punctuation mark and the text

associated with it to be displayed using the same emphasis.

On a monochrome device, the reference phrase text is displayed as highlighted, underscored text. On a

color device, the reference phrase text is displayed as underscored, yellow text. Because of hardware

limitations, the underscore is not visible on a PS/2 computer or on a personal computer with a color

device.

The only tag that can be used within a link tag is the reverse text (RT) tag. LINK tags may not be used

within other LINK tags, but may be used within any of the following tags:

CIT Title citation

DD Definition

FIG Figure

FIGCAP Figure caption text

HPn Highlighted phrase

LI List item

LINES Unformatted lines

LP List part

NT Note

P Paragraph

PC Paragraph continuation

PD Parameter description

PK Programming keyword

PV Programming variable

�� :LINK PERFORM = ’action-text’

UNLESS1

=

’conditional-expression’

UNLESS2

UNLESS3

UNLESS4

 �

�
THENDO1

=

’action-text’

THENDO2

THENDO3

THENDO4

LINKWHEN

=

’conditional-expression’
 �

� . :ELINK.

hypertext-phrase
 ��

LINK Tag

Appendix A. UIM Panel Group Definition Language 539

XMP Example

Required Attribute

PERFORM='action-text'

The action occurring when the reference phrase is selected and all of the condition expressions for the

UNLESSn attributes have evaluated to false. The valid form of action text is:

v ’DSPHELP help-module-name [panel-group-name]’

Note: The brackets in the action text above indicate that the panel group name is optional. They are

not required in the UIM source.

For a description of the DSPHELP action, see Appendix B, “UIM Dialog Commands,” on page 633.

Optional Attributes

UNLESSn='conditional-expression'.

The only allowed values for n are 1 through 4.

 The UNLESSn and THENDOn attributes must be coded as pairs. The expressions on the UNLESSn attributes

are evaluated in numeric order. If one evaluates to true, the corresponding THENDOn action is

performed and all higher-numbered UNLESSn and THENn attributes and the PERFORM attribute on this

tag are ignored.

 For information on using conditional expressions with the UNLESSn attribute, see “Conditional

Expressions.”

THENDOn='action-text'

The only allowed values for n are 1 through 4.

 This attribute specifies the action occurring when the reference phrase is selected and the conditional

expression for the corresponding UNLESSn attribute evaluates to true and all the conditional

expressions for the lower-numbered UNLESSn attributes evaluate to false.

 The UNLESSn and THENDOn attributes must be coded as pairs. The UNLESSn attributes are evaluated in

numeric order. If one evaluates to true, the corresponding THENDOn action is performed and all

higher-numbered UNLESSn attributes and the PERFORM attribute on this tag are ignored.

 The valid form of action text is:

v ’DSPHELP help-module-name [panel-group-name]’

Note: The brackets in the option text above indicate that the panel group name is optional. They are

not required in the UIM source.

For a description of the DSPHELP action, see Appendix B, “UIM Dialog Commands,” on page 633.

LINKWHEN='conditional-expression'.

When the LINKWHEN expression evaluates to true or is not coded, the reference phrase is made

available and a user is allowed to select it. When the LINKWHEN expression evaluates to false, the

reference phrase is not activated and may not be selected.

 For more information on using conditional expressions with the LINKWHEN attributes, see “Conditional

Expressions.”

Conditional Expressions

Although the set of conditions that can be formed with the LINKWHEN attribute is identical to the set of

conditions that can be formed with the UNLESSn attributes, the significance of those conditions is different.

The LINKWHEN attribute activates or deactivates the LINK tag, while the UNLESSn attribute selects the action

performed when an active LINK tag is selected. A conditional expression is a true or false expression in

the following form:

LINK Tag

540 Application Display Programming V6R1

��

�

�

A

(

A

)

*NOT

(

A

)

��

where A is an operand which can be one of the following:

v A conditional expression

v A built-in function

The logical OR character (|) can be used in place of *OR, the ampersand character (&); can be used in

place of *AND, and the logical NOT character (¬) can be used in place of *NOT. Because the logical OR

and logical NOT characters are not in the invariant character set, their use is not recommended. For code

page 00037, the common USA code page, the hexadecimal value of the logical OR character is X'4F', and

the hexadecimal value of the logical NOT character is X'5F'. The UIM compiler uses these hexadecimal

values regardless of the code page of the source.

There are three built-in functions:

CHKOBJ

Evaluates to true if the object is found on the system and the current job possesses at least the level

of authorization to the object specified by the authorities. Arguments must be character strings

enclosed in double quotation marks ("). The object name follows i5/OS object naming conventions.

The object type is any of the allowable object types for the DSPOBJD command and the authorities

must be a single value or a list of authorizations to be checked for. The values of these authorizations

are separated by blanks. The following syntax diagram illustrates the authorities and how to use

them:

�� CHKOBJ (obj-name

″

obj-name

″

,

″

obj-type

″

�

,

″

*CHANGE

″

)

*ALL

*USE

*EXCLUDE

*AUTLMGT

(1)

*OBJEXIST

*OBJMGT

*OBJOPR

*OBJALTER

*OBJREF

*ADD

*DLT

*READ

*UPD

*EXECUTE

 ��

Notes:

1 Each value can be used only once, a maximum of 7

If no authorities are specified, no authorization check is performed and the function becomes an

existence check.

 When a program adopts the authority of its owner, that authority is normally used to authorize

operations performed by that program. However, when help is requested, those adopted authorities

are ignored while the UIM displays the online help information. Therefore, no adopted authorities are

used when the CHKOBJ function is used on the UNLESS or LINKWHEN attributes on the LINK tag.

LINK Tag

Appendix A. UIM Panel Group Definition Language 541

For more information about programs adopting the authority of the owner, see the

USRPRF(*OWNER) parameter on the CRTCLPGM command.

CHKPGM

The CHKPGM function accepts a qualified program name to be called as an exit program from UIM.

If the program is not able to be called, the function evaluates to false. The exit program will

determine if the function should be set to true or false and return an indicator to UIM. The program

name must be enclosed in double quotation marks (″). The *LIBL special value can be used in place

of the library name. If no library name is entered, *LIBL is the default.

 The following syntax diagram illustrates the valid argument values for the CHKPGM function:

�� CHKPGM (″ pgm-name ″) ��

CHKUSRCLS

The user class argument specified for the function is compared to the user class parameter from the

user profile of the current job. The function evaluates to true if the user profile has the same or

greater value than the function argument. The function argument must be enclosed in double

quotation marks (").

 The following syntax diagram illustrates the valid argument values for the user class:

�� CHKUSRCLS (*SECOFR)

*SECADM

*PGMR

*SYSOPR

*USER

 ��

Examples of conditional expressions follow:

CHKOBJ("OBJECT","*FILE","*USE")

CHKOBJ("PANELGRP","*PNLGRP")

 *AND CHKUSRCLS("*PGMR")

CHKOBJ("DOCUMENT","*DOC","*READ *UPD")

 *OR CHKUSRCLS("*SYSOPR")

*NOT(CHKOBJ("PROGRAM","*PGM"))

CHKPGM("*LIBL/PROGRAM")

CHKPGM("PROGRAM")

Bidirectional Considerations

The value of the BIDI attribute on the panel group (PNLGRP) tag of all possible panel groups that can be

reached by taking hypertext links should be the same. If they are not the same, it is possible that the

resulting screen or pop-up window is displayed with the opposite orientation when a reference phrase is

selected.

Example: Hypertext Link

This example shows how hypertext links can be used to provide definitions for terms.

UIM Source

 :HELP NAME=’hyper/help’.Hypertext in i5/OS

 :P.

 Hypertext lets users explore

 the online help information in a way that is most

 natural for them.

 Hypertext links can be used within :LINK

 PERFORM=’DSPHELP item/specific/help’

LINK Tag

542 Application Display Programming V6R1

.item specific help:ELINK.,

 :LINK PERFORM=’dsphelp extended/help’

 .extended help:ELINK., and

 :LINK PERFORM=’dsphelp index/search’

 .index search help:ELINK..

 :EHELP.

 :HELP NAME=’item/specific/help’

 .Definition of Item Specific Help

 :P.

 Item specific help is . . .

 :EHELP.

 :HELP NAME=’extended/help’

 .Definition of Extended Help

 :P.

 Extended help is . . .

 :EHELP.

 :HELP NAME=’index/search’

 .Definition of Index Search

 :P.

 Index search allows you to tell the

 system to search for specific information.

 Index search information is made more

 useful by the addition of

 :LINK PERFORM=’dsphelp hyper/help’

 .hypertext:ELINK. because

 it allows you to link to additional help

 topics.

 :EHELP.

Results

 ..

 : Hypertext on i5/OS :

 : :

 : Hypertext lets users explore the online information in a way :

 : that is most natural for them. Hypertext links can be used :

 : within item specific help, extended help, and :

 : index search help. :

 : Bottom :

 : F2=Extended help F10=Move to top F11=Index search :

 : F12=Cancel F13=User support F24=More keys :

 : :

 :..:

When the cursor is moved to INDEX SEARCH HELP and the Enter key is pressed, the following screen is

shown.

 ..

 : Definition of Index Search :

 : :

 : Index search allows you to tell the system to search for specific :

 : information. Index search information is made more useful by the :

 : addition of > hypertext because it allows you to link to :

 : additional help topics. :

 : Bottom :

 : F6=Viewed topics F10=Move to top F11=Index search :

 : F12=Cancel F13=User support F24=More keys :

 : :

 :..:

LINK Tag

Appendix A. UIM Panel Group Definition Language 543

LIST (List Area)

The list area (LIST) tag defines a list area on a panel.

Syntax for Display Panels:

�� :LIST DEPTH = area-depth

’*’
 LISTDEF = list-name �

�
SPACE

BOTSEP

=

NONE

RULE

YES

SCROLL

=

NO

0

MAXHEAD

=

1

2

3

4

 �

�
SPACE

BODYSEP

=

INDENT

BOTH

NONE

VIEW

=

dialog-variable-name
 �

�
NONE

ACTOR

=

UIM

CALLER

NO

EXTACT

=

YES

 �

�
NONE

SELECT

=

SINGLE

MULTI

2

MAXACTL

=

1

3

 �

�
PARMS

=

dialog-variable-name

HEADSIZE

=

dialog-variable-name
 �

� . :ELIST.

area-title
 ��

Syntax for Print Panels:

�� :LIST LISTDEF = list-name

SPACE

BOTSEP

=

NONE

RULE

 �

�
0

MAXHEAD

=

1

2

3

4

SPACE

BODYSEP

=

INDENT

BOTH

NONE

 �

�
VIEW

=

dialog-variable-name

HEADSIZE

=

dialog-variable-name
 �

� . :ELIST.

area-title
 ��

LIST Tag

544 Application Display Programming V6R1

This tag is allowed for display panels and print panels, except for the print head panel (PRTHEAD) tag.

A list area consists of an arbitrary number of rows of like columns, and can be scrolled up and down if

the number of rows exceeds the area in which the list is displayed.

A list area presents a view of a UIM list, which is manipulated by the UIM application programming

interfaces (APIs). UIM lists are named and described by the list definition (LISTDEF) tag. The UIM

displays the entries in the list, handling the scroll operations which allow the user to see all the entries.

The area may have multiple views, which are selected by the CHGVIEW dialog command. The

CHGVIEW dialog command can be assigned to a function key which alternates between the views.

Other tags can be nested within the LIST tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 63. Tags Allowed Between the LIST and ELIST Tags

Tag Name Order Use Page

TOPINST (Top instruction

line)

1 D 622

LISTACT (List action) 2 D 554

LISTGRP (List column

group)

3 B 567

LISTCOL (List column) 3 B 560

LISTVIEW (List view) 4 B 570

BOTINST (Bottom

instruction line)

5 D 466

Required Attributes

DEPTH=area-depth | '*'

This attribute is required for display panels but is not allowed for print panels. The depth of the area

in lines, including separators if any are specified. If '*' is specified, the space remaining on the display

after all other panel elements are allocated is given to this area. Only one area in the panel may have

'*' coded.

LISTDEF=list-name

The name of the UIM list from which the data for this list area is taken. The list must be defined in

the panel group using the LISTDEF tag.

Optional Attributes

BOTSEP=SPACE | NONE | RULE

Defines the bottom separator for the list area. If SPACE is specified, a line of spaces is used.

 NONE indicates that no separator line exists.

 If RULE is specified, a line of underscored spaces is used as a separator line.

SCROLL=YES | NO

Indicates whether or not the list area is scrollable. This attribute is allowed only for display panels.

LIST Tag

Appendix A. UIM Panel Group Definition Language 545

YES indicates that the list area is intended to be scrollable. For SCROLL=YES, a line of spaces is used

by the UIM to provide a line for the scroll information.

 NO indicates that the list is not scrollable. Ordinarily, NO would not be used, but for short lists it can

be specified to disable the scrolling keys for the list area.

 If BOTSEP=SPACE is specified and there are no bottom instructions for both the separator and scroll

information line, one line is used.

MAXHEAD= 0 | 1 | 2 | 3 | 4

The maximum number of lines for column headings. From 0 to 4 lines can be specified. The default is

0, indicating that no column headings are allowed. For more information on column headings, see

“LISTCOL (List Column)” on page 560. This attribute includes any heading line required by the

column group headings.

 When column headings are used, provide expansion space for national language translation by

specifying a MAXHEAD value larger than the number of heading lines required. If this expansion space

is not provided, it must be provided within the column width determined by the MAXWIDTH attribute

of each list column (LISTCOL) tag.

 This attribute cannot be specified if the HEADSIZE attribute on this tag is specified for use with

variable column headings.

BODYSEP=SPACE | INDENT | BOTH | NONE

The type of visual separation distinguishing the body of the area from other elements in the area,

particularly any top and bottom instruction lines within the area.

 SPACE leaves a blank line after the top instruction lines and before the bottom instruction lines. List

columns in the body of the area begin in the leftmost position of the layout column and are not

indented with respect to instruction lines. If the area contains no top or bottom instruction lines, no

blank lines are reserved before or after the area body.

 INDENT is used to indent list columns in the body of the area by two positions from the leftmost

position in the layout column where the instruction lines begin. If the area contains top or bottom

instruction lines, no blank line is reserved between the instructions and the area body except if the

area is scrollable. If the area is scrollable, a blank line is reserved for the scroll information.

 BOTH leaves a blank line after the top instruction lines and before the bottom instruction lines, and

indents the body two positions from the leftmost position in the layout column where the instruction

lines begin. If the area contains no top or bottom instruction lines, no blank lines are reserved before

or after the area body.

 NONE does not leave a blank line between instruction lines and the body and does not indent the

body with respect to the layout column except if the area is scrollable. If the area is scrollable, a blank

line is reserved to provide a line for the scroll information.

VIEW=dialog-variable-name

This is a BIN 15 dialog variable which determines the view of the list which appears to the user.

Valid values are 0 through one less than the number of views defined. The UIM changes this variable

to match the number of the view that is active (where 0 is the first view) when the value is not valid

or when the CHGVIEW dialog command is run for the list area.

 The first list view (LISTVIEW) tag for the list area defines view 0, the second LISTVIEW tag for the

list area defines view 1, and so on for each LISTVIEW tag in the list area.

 For more information on list views, see “LISTVIEW (List View)” on page 570. The VIEW attribute must

be specified if more than one LISTVIEW tag is specified for the list area.

ACTOR=NONE | UIM | CALLER.

If ACTOR=NONE is used, the list is not an action list. This attribute is allowed only for display panels.

No list action (LISTACT) tags can be specified and the UIM does not do action list processing for the

list area.

LIST Tag

546 Application Display Programming V6R1

If ACTOR=UIM is specified, the actions indicated by the LISTACT tags are performed by the UIM and

must have the ENTER attribute specified.

 If ACTOR=CALLER, the actions indicated by the LISTACT tags must be performed by the calling

program of the display panel (QUIDSPP) API.

EXTACT=NO | YES

Specifies whether or not an action list has extended action capability. This attribute is allowed only

for display panels. With an extended action list, the first line below the column headings is used for

an extended action entry. This line contains the action option column, along with input-capable fields

for additional list columns.

 The user can enter a list action option in the option field for the extended action entry, along with

data in the other columns. The action identified by the list action tag is performed using the data

entered for the other list columns. The data entered into the extended action entry columns does not

have to match the data in an existing list entry.

 EXTACT=NO indicates that the list does not have extended action capability.

 EXTACT=YES indicates that the list does have extended action capability. This is allowed only if

ACTOR=UIM or ACTOR=CALLER is specified on this tag. The action list option column and at least one

other list column defined in each list view must be defined for extended action use with EXTACT=YES

on the LISTCOL tag. Any LISTACT tags which can operate on the extended action field must have

ACTFOR=BOTH or ACTFOR=EXTACTE specified.

 When a panel is displayed which has an extended action list but the list is not currently active in the

open application, the list is activated by the QUIDSPP API.

SELECT=NONE | SINGLE | MULTI

If SELECT=NONE is used, the list is not a selection list. This attribute is allowed only for display

panels.

 If SELECT=SINGLE is specified, the list area is a single-choice selection list. When a single-choice

selection list is displayed, a period (.) precedes each list entry. The user can select only one list entry

by typing the slash (/) or the country-designated character over the period.

 If SELECT=MULTI is specified, the list is a multiple-choice selection list. Multiple list entries may be

chosen by entering the slash (/) or the country-designated character into the entry field preceding

each list entry to select. To deselect a choice, the user should type a blank over, or delete the slash or

country-designated character, in the list entry.

 A value of 1000 is set in the action variable for the selected list entries.

 ACTOR=NONE must be specified or made a default on this tag if the value of SELECT is either SINGLE

or MULTI. An action variable must be declared for each view of the list.

MAXACTL= 2 | 1 | 3

The maximum number of lines used for list action descriptions. From 1 to 3 lines can be specified; 2

is the default. Only as many list action lines as needed are used. This attribute is allowed only for

display panels.

 The only time that MAXACTL=1 would be useful is when there are two or more list actions and you do

not want two lines of list actions after national language translation.

 When the UIM formats the first two list action lines, it attempts to align the start of each action with

the line above or below it. This is done by moving text a few columns to the right on either the first

or second line. When the text for the third list action line is formatted, the text for the first two lines

is not moved, but the UIM tries to align the text on the third line with the text on the second line.

PARMS=dialog-variable-name

This attribute must name a CHAR 255 dialog variable, used by the UIM to store parameter

information for action list processing. This attribute is allowed only for display panels and is only

valid when the ACTOR attribute on this tag has a value other than NONE. It must be used when the

LIST Tag

Appendix A. UIM Panel Group Definition Language 547

list area operates in conjunction with a command line on the same panel. This provides a way for the

user to specify parameters that affect action list processing.

 The UIM stores the contents of the command line in this variable when the command line contains

parameters for action list processing. The UIM sets the variable to blanks before action list processing

when the command line does not contain parameter information.

 This dialog variable is intended for use in the action string for a CMD dialog command specified on

the ENTER, EXTENTER, PROMPT, or EXTPROMPT attribute on the LISTACT tag.

Note: This variable only contains command line contents when the command line is interpreted as

specifying parameters for action list processing. It does not provide generalized access to the

contents of the command line.

HEADSIZE=dialog-variable-name

This dialog variable specifies the number of dialog variables specified on the COLHEAD attribute of the

LISTCOL tag that should be used for the list column headings. This attribute is not allowed if

MAXHEAD is specified.

 This dialog variable can only contain the values 0 through 10, as these are the valid number of lines

for heading text. If this dialog variable is not a valid value from 0 through 10, the maximum of 10 is

used. When using the dialog variables from the list specified on the COLHEAD attribute of the LISTCOL

tag, the variables are used in the order defined on the COLHEAD attribute. This dialog variable must be

defined with a BASETYPE of ’BIN 15’ on the class definition (CLASS) tag.

 The dialog variables on the HEADSIZE attribute and the COLHEAD attribute of the LISTCOL tag are

evaluated like normal dialog variables. It is recommend that you set the HEADSIZE dialog variable

before calling the QUIDSPP API and not change it when changing from one view to another. It is up

to the application programmer to not let the list and headings shift up and down on panels.

 This attribute may not be specified if the list area contains list column groups.

Optional Text

area-title

The title of the area. If no text is specified, no title line is allocated to the area. The text must

appear on the same or next line as the tag, can only contain the reverse text (RT) tag, and cannot

exceed a maximum length of 55 characters.

Print Formatting Considerations

Printed list areas are formatted like those displayed with the following changes:

v Printing always starts with the first entry in the list.

v For lists which are incomplete at the top, the UIM starts printing with the first entry in the list and

does not require the list to be marked complete at the top.

v For lists which are incomplete at the bottom, the UIM formats and prints until it runs out of list

entries, then calls the exit program for processing the incomplete list for more entries. In general, the

exit program is asked for a large number of list entries, and if the list is not marked complete at the

bottom, the exit program is called again for more list entries.

v For layouts greater than one, the UIM formats as many entries as can be printed on one page, then

prints that page. If there are not enough entries to fill up a page, the entries are balanced across the

layout columns. There is always a minimum of two entries in the first column before putting entries

into subsequent columns. This helps the user understand how to read the list. For example, a list with

LAYOUT=2 and only two list entries would print as follows:

 Column 1 Column 2

 xxxxxxxx

 xxxxxxxx

LIST Tag

548 Application Display Programming V6R1

For list panels, there must be room for a minimum of two lines of list entries on a page besides the

column headings. If two lines of list entries do not fit on a page, a page eject occurs and the list entries

are printed on the next page. The following example would need to fit on one page, or a new page

would be used.

 Column 1 Column 2

 xxxxxxxx xxxxxxxxxx

 xxxxxxxx xxxxxxxxxx

List column headings and group headings are repeated on each page if the list area is continued onto

another page.

Example 1: List Area

This example shows an action where the UIM performs the action requested by the user.

UIM Source

:listdef name=outflist

 vars=’opt fil nbr usr pri pg sts co’.

:panel topsep=space

 ...

 .Output Files

:list depth=’*’

 listdef=outflist

 maxhead=2

 actor=uim

 parms=pvar.

:topinst.Type options, press Enter.

:listact

 enter=’CMD CHGSPLFA FILE(&FIL)’

 enter=’JOB(&USR/&SPID) SPLNBR(&NBR) &PVAR’

 help=opt2

 option=2.2=Change

:listact

 enter=’CMD CNLSPLF FILE(&FIL)’

 enter=’JOB(&USR/&SPID) SPLNBR(&NBR)’

 help=opt4

 option=4.4=Cancel

:listact

 enter=’CMD DSPSPLF FILE(&FIL)’

 enter=’JOB(&USR/&SPID) SPLNBR(&NBR)’

 help=opt5

 option=5.5=Display

:listact

 enter=’CMD HLDSPLF FILE(&FIL)’

 enter=’JOB(&USR/&SPID) SPLNBR(&NBR)’

 help=opt7

 option=7.7=Hold

:listact

 enter=’CMD RLSSPLF FILE(&FIL)’

 enter=’JOB(&USR/&SPID) SPLNBR(&NBR)’

 help=opt8

 option=8.8=Release

:listcol var=opt

 usage=inout

 maxwidth=6

 help=hopt.Opt

:listcol var=fil

 usage=out

 maxwidth=10

 help=hfil.File

:listcol var=nbr

 usage=out

 maxwidth=6

 help=hnbr.Nbr

:listcol var=usr

LIST Tag

Appendix A. UIM Panel Group Definition Language 549

usage=out

 maxwidth=10

 help=huser.User

:listcol var=pri

 usage=out

 maxwidth=6

 help=hpri.Pty

:listcol var=pg

 usage=out

 maxwidth=8

 help=hpg.Pages

:listcol var=sts

 usage=out

 maxwidth=10

 help=hsts.Status

:listcol var=co

 usage=out

 maxwidth=10

 help=hco.Copies

:listview layout=1

 cols=’opt fil nbr usr pri pg sts co’.

:elist.

:cmdline size=short.Parameters or command:

:epanel.

Results

 Output Files

 Type options, press Enter.

 2=Change 4=Cancel 5=Display 7=Hold 8=Release

 OPT FILE NBR USER PTY PAGES STATUS COPIES

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 _ ffffffffff nnnn uuuuuuuuuu p nnnn xxxx nnnn

 More...

 Parameters or command:

 ===> ___

 F3=Exit F12=Cancel

Example 2: List Area with Three Layout Columns

This example shows a list area where three entries appear in each row of the display.

UIM Source

:listdef name=dist

 vars=’name node’.

:panel panel-attributes.Distribution

:list listdef=dist

 depth=8

 maxhead=1.

:listcol var=name

 usage=inout

 maxwidth=10

 help=hxxyy1.Name

:listcol var=node

LIST Tag

550 Application Display Programming V6R1

usage=inout

 maxwidth=10

 help=hxxyy2.Node

:listview layout=3

 cols=’name node’.

:elist.

:epanel.

Results

 Distribution

 Name Node Name Node Name Node

 __________ __________ __________ __________ __________ __________

 __________ __________ __________ __________ __________ __________

 __________ __________ __________ __________ __________ __________

 __________ __________ __________ __________ __________ __________

 __________ __________ __________ __________ __________ __________

 __________ __________ __________ __________ __________ __________

 More...

 F3=Exit F12=Cancel

Example 3: List Area with List Column Groups

This example shows how list columns can be grouped together.

UIM Source

:listdef name=auth

 vars=’user oper mgmt exist’

 vars=’read add update delete’.

:panel panel-attributes.User Authorizations

:list listdef=auth

 depth=’*’

 maxhead=3.

:listcol var=user

 usage=out

 maxwidth=10

 help=huser

 .User Name

:listgrp col=objrights

 help=hobjaut.Object Rights

:listcol var=oper

 usage=out

 maxwidth=7

 .Oper

:listcol var=mgmt

 usage=out

 maxwidth=7

 .Mgmt

:listcol var=exist

 usage=out maxwidth=7

 .Exist

:elistgrp.

:listgrp col=dtarights

 help=hdtaaut.Data Rights

LIST Tag

Appendix A. UIM Panel Group Definition Language 551

:listcol var=read

 usage=out

 maxwidth=7

 .Read

:listcol var=add

 usage=out

 maxwidth=7

 .Add

:listcol var=update

 usage=out

 maxwidth=7

 .Upd

:listcol var=delete

 usage=out

 maxwidth=7

 .Dlt

:elistgrp.

:listview layout=1

 cols=’user objrights dtarights’

:elist.

:epanel.

Results

 User Authorizations

 System: XXXXXXXX

 -----Object Rights----- --------Data Rights---------

 User Name Oper Mgmt Exist Read Add Upd Dlt

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 XXXXXXXXXX X X X X X X X

 More...

 F3=Exit F12=Cancel

Example 4: Dynamic List Column Heading Formatting

This example shows how the column headings are contained in dialog variables.

UIM Source

:listdef name=xmp4

 vars=’var1 var2 var3’.

:panel panel-attributes.

Example of Dynamic Column Headings

:list listdef=xmp4

 depth=’*’

 headsize=colhsize.

:listcol var=var1

 usage=inout

 maxwidth=10

 colhead=’A B C D E F’.

:listcol var=var2

 usage=inout

 maxwidth=14

LIST Tag

552 Application Display Programming V6R1

colhead=’G H’.

:listcol var=var3

 usage=inout

 maxwidth=10

 colhead=’I J K L’.

:listview layout=1

 cols=’var1 var2 var3’.

:elist.

:epanel.

Note: In this example, A B C D E F G H I J K and L are dialog variables that would each be set to one

line of column heading text. In the screen that follows, the actual text appears instead of the dialog

variable names. COLHSIZE is also a dialog variable, and in this example it is set equal to 4.

Results

 Example of Dynamic Column Headings

 A I

 B J

 C G K

 D H L

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 __________ ______________ __________

 F3=Exit F12=Cancel

LIST Tag

Appendix A. UIM Panel Group Definition Language 553

LISTACT (List Action)

 The list action (LISTACT) tag defines an operation which takes place on individual items of a list. This

tag is allowed only for display panels. Options entered by a user are not actually run until an Enter or

Prompt function key is pressed, allowing the user to select several list items while using the Page Up or

Page Down keys.

If ACTOR=UIM is specified on the list area (LIST) tag, all actions indicated by LISTACT tags are performed

by the UIM. These actions must have the ENTER attribute specified, and may also have the PROMPT and

USREXIT attributes specified. If ACTOR=CALLER is specified on the LIST tag, the actions are handled by the

program which called the Display Panel (QUIDSPP) API. In this case, none of the following attributes can

be specified on the LISTACT tag:

v CONFIRM

v ENTER

v PROMPT

v USREXIT

v EXTENTER

v EXTPROMPT

v NOEXT

v EXTMSGID

v EXTMSGF

There is no way to have the UIM perform some actions and the calling program perform others.

When the CMD dialog command is used as the action performed for the extended action entry in an

action list, the command text should be a Control Language command, not a System/36 Environment

OCL command. The value *N is substituted in the command text for any dialog variable from the

extended action entry that has a blank value. An exception to this is when NOEXT=MSG is specified on

�� :LISTACT HELP = help-module-name OPTION = number

BOTH

ACTFOR

=

LISTE

EXTACTE

 �

�
CONFIRM

=

panel-name

ENTER

=

’

action-text

’

EXTENTER

=

’

action-text

’
 �

�
PROMPT

=

’

action-text

’

EXTPROMPT

=

’

action-text

’

ENTER

NOCMD

=

PROMPT

 �

�
ENTER

NOEXT

=

PROMPT

MSG

USREXIT

=

’

CALL

program-reference

’
 �

�
EXTMSGID

=

message-identifier

EXTMSGF

=

’

qualified-message-file-name

’
 �

�
COND

=

condition-name

AVAIL

=

condition-name

AVLMSGID

=

message-identifier
 �

�
AVLMSGF

=

’

qualified-message-file-name

’
 .

action-description
 ��

LISTACT Tag

554 Application Display Programming V6R1

this tag, indicating that the command should not be submitted when any of the values for the extended

action entry are blank. This consideration applies to the following attributes of this tag:

v ENTER

v PROMPT

v EXTENTER

v EXTPROMPT

Required Attributes

HELP=help-module-name

Identifies the associated help module for this list action. The online help information for all

actively-conditioned list actions is always added to the online help information for the action column.

OPTION=number

The value associated with the option selected for this item in the list. The value must be an integer

value in the range of 1 through 999. The action field variable must be defined with a BASETYPE of

ACTION on the class definition (CLASS) tag. The values of the action field are automatically limited

to the valid options by the UIM. An error occurs when the user enters a number in the action field

for which there is no active LISTACT tag.

Optional Attributes

ACTFOR=BOTH | LISTE | EXTACTE

Indicates whether the list action defined is allowed for the existing list entries, the extended action

entry, or both. The default is BOTH.

 If LISTE is specified, the action defined is valid only in the action fields associated with the existing

list entries on the display.

 EXTACTE indicates that the action defined is valid only in the action field for the extended action

entry. For example, ACTFOR=EXTACTE might be used for Option 1=Create, because the create option

is not allowed for an existing entry.

CONFIRM=panel-name

The confirmation panel displayed before the list action is performed. The confirmation panel must

give the user the option to confirm or not confirm the list action. If the action is confirmed, the

appropriate actions from the ENTER, EXTENTER, and USREXIT attributes of this tag are performed. If the

action is not confirmed, none of those actions are performed.

 The actions coded on the PROMPT and EXTPROMPT attributes of this tag are not confirmed. The prompt

screen that results from the PROMPT and EXTPROMPT actions serves as the confirmation panel, allowing

users to change their minds and cancel the action. The confirmation panel must be another panel

defined within this panel group.

 The CONFIRM attribute is only allowed when ACTOR=UIM is specified in the LIST tag.

 When the CONFIRM attribute is specified, EXTACT=YES is specified on the LIST tag and if ACTFOR=BOTH

or ACTFOR=EXTACTE is specified on this tag, NOEXT=MSG must also be specified on this tag.

 A maximum of 20 different LISTACT tags for a single action list may specify the CONFIRM attribute.

This does not impose any restriction on the number of list entries that any one of the actions may be

applied to.

 For more information on required and recommended conventions for this attribute, see “Confirmation

Panel Requirements” on page 558 and “Confirmation Panel Conventions” on page 559.

ENTER='action-text'

Specifies the action occurring when the list action is requested through the ENTER dialog command.

This attribute is required if ACTOR=UIM is specified on the LIST tag. The valid forms of action-text

are:

LISTACT Tag

Appendix A. UIM Panel Group Definition Language 555

v ’CALL program-reference’ For a description of the interface between the UIM and the exit program

for an action list option, see the Application programming interfaces topic collection in the i5/OS

Information Center.

v ’CMD command-string’ Any dialog variable name in the command string must be preceded by an

ampersand and should be ended with a period to denote variable substitution.

For a description of each of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

 This attribute is repeatable, allowing the construction of long command strings.

 The PARMS attribute on the LIST tag identifies a dialog variable that can be substituted into a

command string on the CMD dialog command. Additional functions are provided for list actions

which use the CMD dialog command. When parameters from the command line are substituted into

a command string, the parameters from the command line override the same parameter defined in

the command string if the parameter in the command string is preceded by the ″?<″ or ″??″ selective

prompting characters.

 This function allows a prompt for a command to show the parameter values from the command line,

or to show the current parameter values for the object when an overriding parameter is not on the

command line. When the ″?<″ or ″??″ selective prompting characters are used, it is your responsibility

to have the current parameter values substituted into the command string.

EXTENTER='action-text'

Specifies the action occurring when the list action for the extended action field is requested through

the ENTER dialog command. This attribute is not allowed when ACTFOR=LISTE is specified on the

LISTACT tag, or when EXTACT=NO is specified on the LIST tag.

 The syntax and usage of this attribute is the same as the ENTER attribute for this tag. If the EXTENTER

attribute is not specified, the action specified on the ENTER attribute is used.

PROMPT='action-text'

Specifies the action occurring when the list action is requested through the PROMPT dialog

command. The valid forms of action text are:

v ’CALL program-reference’ For a description of the interface between the UIM and the exit program

for an action list option, see the Application programming interfaces topic collection in the i5/OS

Information Center.

v ’CMD command-string’ Any dialog variable name in the command string must be preceded by an

ampersand to denote variable substitution.

For a description of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

 This attribute is repeatable, allowing the construction of long command strings.

 The PARMS attribute on the LIST tag identifies a dialog variable that can be substituted into a

command string on the CMD dialog command. Additional command submission support is activated

for list actions which use the CMD dialog command. When parameters from the command line are

substituted into a command string, the parameters from the command line override the same

parameter defined in the command string if the parameter in the command string is preceded by the

″?<″ or ″??″ selective prompting characters.

 This function allows a prompt for a command to show the parameter values from the command line,

or to show the current parameter values for the object when an overriding parameter is not on the

command line. When the ″?<″ or ″??″ selective prompting characters are used, it is your responsibility

to have the current parameter values substituted into the command string.

EXTPROMPT='action-text'

Specifies the action occurring when the list action for the extended action field is requested through

LISTACT Tag

556 Application Display Programming V6R1

the PROMPT dialog command. The EXTPROMPT attribute is not allowed when ACTFOR=LISTE is

specified on the LISTACT tag, when EXTACT=NO is specified on the LIST tag, or when the PROMPT

attribute is not specified on this tag.

 The syntax and use of this attribute is the same as for the PROMPT attribute on this tag. If the

EXTPROMPT attribute is not specified, the action specified on the PROMPT attribute is used.

NOCMD=ENTER | PROMPT

Specifies the action the UIM performs for the ENTER dialog command when the command line is

blank.

 ENTER indicates that the action on the ENTER attribute of this tag should be performed.

 PROMPT indicates that the action on the PROMPT attribute of this tag should be performed.

 This allows you to have a command prompted when the command line is empty, but not prompted if

the command line contains parameters.

 For an explanation of how this attribute interacts with the NOEXT attribute of this tag, see Table 64.

NOEXT=ENTER | PROMPT | MSG

Specifies the action the UIM should perform for the ENTER dialog command when one or more of

the input fields on the extended action entry are blank.

 ENTER indicates that the action on the EXTENTER attribute of this tag should be performed.

 PROMPT indicates that the action on the EXTPROMPT attribute of this tag should be performed.

 MSG indicates that no action should be performed and that the message specified on the EXTMSGID

attribute of this tag should be sent to the user. When MSG is specified, the EXTMSGID attribute is

required.

 For an explanation of how this attribute interacts with the NOCMD attribute, see Table 64. This table

shows how the NOCMD and NOEXT attributes operate when the command line is blank and one or more

of the input fields on the extended action entry are blank.

 Table 64. NOCMD and NOEXT Attribute Interaction

NOCMD NOEXT Result

ENTER ENTER EXTENTER attribute is used

PROMPT ENTER EXTPROMPT attribute is used

ENTER PROMPT EXTPROMPT attribute is used

PROMPT PROMPT EXTPROMPT attribute is used

ENTER MSG EXTMSGID message is displayed

PROMPT MSG EXTMSGID message is displayed

 This table is used only when all of the following are true:

1. A list action option is being processed for the extended action entry.

2. The command line is blank.

3. One or more of the input fields on the extended action entry are blank.

USREXIT='CALL program-reference'

Specifies the list exit program the UIM calls to update or delete this list entry after the action defined

in either the ENTER, EXTENTER, PROMPT, or EXTPROMPT attribute of this tag is performed. The program is

passed information that includes an indication of whether the option succeeded or failed.

 For a description of the CALL dialog command, see Appendix B, “UIM Dialog Commands,” on page

633.

 For a description of the interface between the UIM and the program for an action list, see the

Application programming interfaces topic collection in the i5/OS Information Center.

LISTACT Tag

Appendix A. UIM Panel Group Definition Language 557

EXTMSGID='message-identifier'

The message identifier of the message displayed when the action defined by this tag cannot be

performed because one or more input fields on the extended action entry are blank. This attribute is

required when NOEXT=MSG is specified on this tag; it is not allowed otherwise.

EXTMSGF='qualified-message-file-name'

The message file name that contains the message identifier. The attribute is allowed only when the

EXTMSGID attribute is specified on this tag. If the DFTMSGF attribute is not specified on the panel group

(PNLGRP) tag, this attribute must be specified when the EXTMSGID attribute on this tag is specified.

COND=condition-name

The list action is in effect on the panel only if the condition specified is true. The condition must be

defined in the panel group prolog with the condition definition (COND) tag. If the conditions for all

LISTACT tags are false, the action column still appears on the display, but no option numbers are

valid. It is up to you to ensure that some options remain valid for the list.

AVAIL=condition-name

The list action is available only if the condition specified evaluates to true. The condition must be

defined in the panel group prolog with the COND tag.

 Unavailable actions are displayed with an asterisk (*) overlaying the first part of the action

description. Online help information is displayed for unavailable list actions.

 When the condition is true, the list action is available. When the condition is false, the list action is

not available. Any condition specified on the COND attribute takes precedence over this attribute.

AVLMSGID=message-identifier

The message identifier of the message displayed when a number is entered and is not available as

specified by the AVAIL attribute of this tag. This attribute is allowed only when the AVAIL attribute is

specified.

 If this attribute is not specified, the UIM displays a default message stating that the option number is

not currently available.

AVLMSGF='qualified-message-file-name'

The message file name that contains the message identifier. The attribute is allowed only when the

AVLMSGID attribute of this tag is specified. If the DFTMSGF attribute is not specified on the PNLGRP tag,

this attribute must be specified when the AVLMSGID attribute on this tag is specified.

Optional Text

action-description

The text shown as part of the top instructions for the list area. If no text is supplied, none is listed in

the instruction part of the list area for this action. The text must appear on the same or next line as

the tag and can only contain the reverse text (RT) tag.

 The instruction line is formed by concatenating the text from the various list actions, separated by

three spaces. If the text does not fit on the rest of a line, it is placed on the next line.

Confirmation Panel Requirements

The panel named on the CONFIRM attribute of this tag must follow these conventions:

v The ENTER attribute on the display panel (PANEL) tag of the confirmation panel must have

’RETURN 100’ coded. This indicates to the UIM that the action is confirmed by the user.

v No ACTION attribute on a key list item (KEYI) tag can be assigned to the RETURN dialog command,

because the UIM is handling the display of the panel and is not able to interpret the returned value.

v The confirmation panel must have a list area.

v The list used as the confirmation list must not be the same list displayed in the action list panel.

v The confirmation panel must not have a menu bar, action list, command line, or menu area.

LISTACT Tag

558 Application Display Programming V6R1

Confirmation Panel Conventions

The panel named in the CONFIRM attribute of this tag should follow these conventions:

v It should have title text and top instructions to describe the panel.

v It should have a single list area with a list definition containing the same (or a subset of) the columns

defined in the original action list.

v The list should be scrollable.

v If the action list has multiple views, the confirmation list should also have multiple views and the

same dialog variable should be used for the view variable on both lists. The confirmation panel should

have a function key defined for the CHGVIEW dialog command. When the same view variable is used

for both lists, it allows a change view operation on the confirmation panel to change the view of the

action list panel when it is redisplayed.

v It should have function key definitions for the ENTER, CANCEL, PAGEDOWN, PAGEUP, HELP, and

PRINT dialog commands.

v If a general exit program is defined, it should avoid making changes to the action list and avoid

changing condition values that affect the redisplay of the original action list panel.

v The list used on the confirmation panel should not be used on anything but a confirmation panel,

because the UIM deletes and changes the contents of that list. If multiple confirmation panels are used

within a UIM application, they use the same list definition.

v Most of the help information for the action list panel can be used for the confirmation panel, but

separate help information should be provided for the action column and the extended help.

v The class definition for the list option variable defined with a BASETYPE of ACTION on the CLASS tag

should have a WIDTH attribute on the CLASS tag to accommodate the largest list action option on the

action list panel. For example, if the largest option number on the action list panel is 12, WIDTH=2

should be specified on the class definition for the action variable. This ensures that the option number

is displayed in the same position under the column heading on the confirmation panel as it was on the

action list panel.

v Only the values for the input capable fields of the extended list action entry will be displayed on the

confirmation panel. All other columns will be shown as blanks even though there may be a value

there.

Example: List Actions

This example shows how the action options on a display are defined.

UIM Source

:listact option=2

 help=’option/2’

 enter=’CALL CHGPGM’

 .2=Change

:listact option=4

 help=’option/4’

 enter=’CALL DLTPGM’

 confirm=CONFDLT

 .4=Delete

:listact option=5

 help=’option/5’

 enter=’CALL DSPPGM’

 .5=Display

LISTACT Tag

Appendix A. UIM Panel Group Definition Language 559

Results

 Type choices, press Enter.

 2=Change 4=Delete 5=Display

LISTCOL (List Column)

Syntax for Display Panels:

�� :LISTCOL VAR = list-object-variable-name �

� MAXWIDTH = column-width

’*’
 USAGE = OUT

INOUT
 �

�
HELP

=

help-module-name

COL

=

column-identifier
 �

�
NAME

=

list-column-name

JUSTIFY

=

LEFT

RIGHT

START

END

 �

�
NO

EXTACT

=

YES

PROMPT

=

’

action-text

’
 �

�
DSPVALUE

=

dialog-variable-name
 �

�
COLHEAD

=

’

dialog-variable-name-list

’

YES

DISPLAY

=

NO

 �

�
YES

AUTOSKIP

=

NO

.

column-heading

 ��

LISTACT Tag

560 Application Display Programming V6R1

The list column (LISTCOL) tag defines a column that may belong to any of several list views. This tag is

allowed for display panels and print panels. It specifies the dialog variable, whether the field allows the

user to enter data or is for output only, the column width, and the column heading.

Required Attributes

VAR=list-object-variable-name

The name of the variable from the underlying list object to display in this column.

MAXWIDTH=column-width | '*'

The maximum width of the column. The width may allow for translation of the column heading into

other languages. The minimum size for a column heading is four characters. Specification of a width

longer than that defined in the class definition (CLASS) tag allows more room for the formatting of

column headings, but does not allow more data to be entered into the field. Specification of a width

shorter than the class width on the CLASS tag is allowed only for CHAR, IGC, or certain TIME

variables, and is not allowed for input columns.

 Only the time zone portion of a TIME variable can be truncated. So the ZONE option must have been

specified on the BASETYPE of the class definition for the TIME variable and the width specified for the

LISTCOL must be greater than or equal to 8.

 If ’*’ is coded, the remainder of the area width is used for the column, and values in that column can

be truncated. Only one column may have ’*’ coded. A warning message is put in the compiler listing

if the column with ’*’ specified is not the last column of all views. A two- to five-character separator

is maintained between columns.

USAGE=OUT | INOUT

The display use of the column. This attribute is required for display panels, but is optional for print

panels.

 USAGE=OUT defines an output data column. OUT indicates that the variable displayed is for output

only and cannot be changed by the user.

 USAGE=INOUT defines a data entry column. INOUT indicates that the variable is for data entry and

can be changed by the user. USAGE=INOUT fields are not allowed for print panels, but are required

for the action column of an active list.

Optional Attributes

HELP=help-module-name

Identifies online help information which explains the purpose of the column in this list. This attribute

is allowed only for display panels. The help module name may be a name imported from another

Syntax for Print Panels:

�� :LISTCOL VAR = list-object-variable-name �

� MAXWIDTH = column-width

’*’

USAGE

=

OUT
 �

�
COL

=

column-identifier

JUSTIFY

=

LEFT

RIGHT

START

END

 �

�
COLHEAD

=

’

dialog-variable-name-list

’
 .

column-heading
 ��

LISTCOL Tag

Appendix A. UIM Panel Group Definition Language 561

panel group, but must follow the rules for names outlined earlier in this chapter. For more

information on the rules for names, see “Name Syntax” on page 461.

 The HELP attribute is not allowed if this column is part of a list column group defined by the list

group (LISTGRP) tag, but is required if the column is not part of a group.

COL=column-identifier

The identifier of the column, which can be referred to in the COLS attribute on the list view

(LISTVIEW) tag. If the identifier is not supplied, it defaults to the dialog variable name specified on

the VAR attribute of this tag. These names are in a separate name space from all other names and are

meaningful only within the list area, not to the panel group.

 A list column identifier cannot be specified and no default column name is assumed if the column is

part of a list column group defined by the LISTGRP tag.

NAME=list-column-name

The name associated with the column. For more information on the rules for naming, see “Name

Syntax” on page 461.

 This name can be used with the Add Pop-Up Window (QUIADDPW) API to position a window near

this list column. This attribute is allowed only for display panels.

 If the list column is part of a list column group defined by the LISTGRP tag and both the LISTCOL

and LISTGRP tags have the NAME attribute specified, the list column name is set in the dialog variable

specified on the CSRNAME attribute of the display panel (PANEL) tag when the cursor is anywhere in

the list column. The list group name is set for the CSRNAME attribute on the PANEL tag when the

cursor is positioned between columns or on an unnamed list column within the named list group.

For a description of the CSRNAME attribute, see “PANEL (Display Panel)” on page 587.

JUSTIFY=LEFT | RIGHT | START | END

Indicates whether the dialog variable values should be left-justified or right-justified within the list

column. If the ALIGN attribute of this tag is omitted, the default right-justifies values for numeric

dialog variables and left-justifies nonnumeric dialog variables.

 Leading blanks are preserved when the dialog variable is left-justified. Right-justification strips all

trailing blanks. The UIM rules for editing a numeric dialog variable produces a displayable value

which does not contain any leading blanks.

 A common case where you might want to override the alignment default is for a column of values

whose BASETYPE is defined as numeric on the CLASS tag, but whose displayable values are

sometimes special values generated through a translation list. For more information on translation

lists, see “TL (Translation List)” on page 621.

 START is a synonym for LEFT and END is a synonym for RIGHT.

EXTACT=NO | YES

Specifies whether or not this list column is input-capable for the extended action entry. This attribute

is allowed only for display panels.

 EXTACT=NO specifies that this list column does not have an input-capable field in the extended action

entry.

 EXTACT=YES specifies that this list column does have an input-capable field in the extended action

entry. When EXTACT=YES is specified on the list area (LIST) tag, EXTACT=YES must be specified on at

least two columns in each list view, including the action column.

 Any column with EXTACT=YES specified must be in every view of the list area.

PROMPT='action-text'

The action occurring when F4=List is requested through the PROMPT dialog command. This attribute

is allowed only for display panels. This attribute is not allowed for a dialog variable defined with a

BASETYPE of ACTION on the CLASS tag or for any USAGE=OUT list columns on this tag. The valid forms

of action text are:

LISTCOL Tag

562 Application Display Programming V6R1

v ’CALL program-reference’ For a description of the interface between the UIM and the exit program

for a cursor-sensitive prompt, see the Application programming interfaces topic collection in the

i5/OS Information Center.

v ’RETURN positive-integer’

For a description of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

DSPVALUE='dialog-variable-name'

The dialog variable containing the current data entered in the list entry which contains the cursor.

This attribute is allowed only for display panels and when the PROMPT attribute is coded on this tag.

This variable is updated regardless of whether or not the variable pool is updated. The variable pool

is updated based on the VARUPD attribute of the key item (KEYI) or pull-down field choice (PDFLDC)

tag. This updating is independent of the normal updating of the variable pool.

 The dialog variable specified must be defined on the CLASS tag as a CHAR or IGC variable whose

length is the same as the width of the dialog variable specified on the VAR attribute of this tag. No

translation processing or validity checking is performed for the value before it is placed in this

variable. Character set and code page conversion is performed for this variable if the class of the

variable named on the VAR attribute of this tag specifies that the character set and code page

conversion should be performed.

COLHEAD='dialog-variable-name-list'

A list of dialog variables separated by blanks, specifying the column heading placed above the list

items in the list area. Up to ten dialog variables can be specified. These dialog variables must have a

BASETYPE of CHAR or IGC specified on the CLASS tag, and must have a width greater than or equal

to the class width of the dialog variable specified on the VAR attribute of this tag, and less than or

equal to the width specified on the MAXWIDTH attribute of this tag. All variables specified on a single

COLHEAD attribute must be defined with the identical class.

 Each dialog variable is used as a line of column heading text. The UIM does no aligning or

justification on the contents of these dialog variables.

 If this attribute is used, column heading text cannot be specified after the period for this tag, the

MAXHEAD attribute must not be specified on the LIST tag, but the HEADSIZE attribute of the LIST tag

must be specified.

 This attribute may not be used on list columns that are part of list column groups.

DISPLAY=YES | NO

Indicates whether or not the fields in the list column are visible when the panel is displayed. This

attribute is allowed only for display panels. YES indicates that the fields in the list column are visible.

 NO indicates that the fields in the list column are not visible. NO can only be specified for a column

in the list when USAGE=INOUT is specified on this tag and ACTOR=NONE is specified on the LIST tag.

AUTOSKIP=YES | NO

Indicates whether or not the cursor should automatically move to the next input field when data is

entered in the last position of the list column field. This attribute is allowed only for display panels.

YES is the default.

 YES indicates that the cursor automatically moves to the next input field.

 NO indicates that the cursor does not automatically move to the next input field. NO can only be

specified for a column in the list when USAGE=INOUT is specified on this tag and ACTOR=NONE is

specified on the LIST tag.

Optional Text

column-heading

The column heading placed above the column in the reserved part of the list area. If no column

heading or the COLHEAD attribute is specified, no column heading is displayed.

LISTCOL Tag

Appendix A. UIM Panel Group Definition Language 563

The text may appear on more than one line and can only contain the reverse text (RT) tag.

 Each word of the column heading is placed on a new line. If multiple words are necessary in a line of

the column heading, they must be enclosed in apostrophes ('). Each word or quoted string must fit

within the maximum column width defined by the MAXWIDTH attribute of this tag. The maximum

number of words or quoted strings allowed is specified by the MAXHEAD attribute on the LIST tag.

Column headings are not allowed if MAXHEAD=0 is used for the list area.

 Column headings are justified according to the JUSTIFY attribute of this tag only if they are specified

as text. No justification is done when the COLHEAD attribute is specified on this tag.

 If no column heading text or COLHEAD attribute is specified on any LISTCOL tag for the area, no lines

are reserved on the display for heading information.

Formatting Considerations

When the width of the column data is less than the width of the column heading text, the column data is

centered under the column heading text. If the data does not center evenly under the heading, the

additional space is placed on the right for JUSTIFY=LEFT and on the left for JUSTIFY=RIGHT. The

following example shows all three situations:

Center Data Align Left Align Right

 xxxxxxx xxxxxxx nnnnnnnn

 xxxxxxx xxxxxxx nnnnnnnn

 xxxxxxx xxxxxxx nnnnnnnn

 xxxxxxx xxxxxxx nnnnnnnn

When the width of the column data is greater than the width of the column heading text, the column

heading text is adjusted to the left for JUSTIFY=LEFT and to the right for JUSTIFY=RIGHT. The following

example shows these situations:

 Align Left Align Right

 xxxxxxxxxxxx nnnnnnnnnnnnn

 xxxxxxxxxxxx nnnnnnnnnnnnn

 xxxxxxxxxxxx nnnnnnnnnnnnn

 xxxxxxxxxxxx nnnnnnnnnnnnn

If the column heading text requires more than one line, the shorter lines of text are centered with respect

to the longest line. If the shorter lines do not center evenly under the longer lines, the additional space is

on the right for JUSTIFY=LEFT and on the left for JUSTIFY=RIGHT. The following example shows all

situations:

 Line Up Line Up Line Up Line Up

 Line Up Head Head Head Head

 Right Right Right Right Left

 nnnnnnnn nnnnnnn nnn nnnnnnnnn xx

 nnnnnnnn nnnnnnn nnn nnnnnnnnn xx

 nnnnnnnn nnnnnnn nnn nnnnnnnnn xx

 nnnnnnnn nnnnnnn nnn nnnnnnnnn xx

LISTCOL Tag

564 Application Display Programming V6R1

LISTDEF (List Definition)

 The list definition (LISTDEF) tag defines UIM lists which are data structures maintained by the UIM.

These lists contain the data for list areas presented on the display. UIM lists consist of a variable number

of rows. Each row contains one or more columns, and each column in the row contains a copy of one

dialog variable value. These lists are manipulated by the program using the UIM application

programming interfaces (APIs). Lists may be shared among panels which contain list areas.

Required Attributes

NAME=list-name

The name of the list object. This name must be unique within the panel group. For more information

on the rules for naming, see “Name Syntax” on page 461.

VARS='dialog-variable-list'

The list of up to 50 variables which make up the columns of the list. All dialog variables in this list

must be previously defined using the variable definition (VAR) tag in this panel group. Not all of

these variables need to be displayed in a view defined with the list view (LISTVIEW) tag. The

variable names in the list are separated by blanks.

 The UIM automatically determines what column is used for action list or selection list processing by

identifying the variable specified on the VARS attribute and defined with a BASETYPE of ACTION on

the class definition (CLASS) tag. An action column is required for each list view when an ACTOR or

SELECT value other than NONE is specified, or when SELECT=SINGLE or MULTI is specified on the

list area (LIST) tag. Only one column of a list may be specified as an action column.

Optional Attributes

CHGVAR=dialog-variable-name

Specifies that any list entry values entered by the user must be compared to values already in the list

entry. This attribute also indicates where the comparison result should be stored. The dialog variable

specified must be one of the variables listed on the VARS attribute of this tag, and must be defined

with a BASETYPE of CHAR 1 on the CLASS tag.

 List values are compared using the internal form of each dialog variable rather than its display form.

If any values in the list entry are changed, the list value associated with the dialog variable specified

on this attribute is set to '1'. If all the new list values are equal to the old list values, no special

processing is performed; the dialog variable specified for this attribute is not changed.

Note: The dialog variable specified on this attribute is set to '1' each time the user changes the list

entry, scrolls the list, or uses some other function key. The list value associated with the dialog

�� :LISTDEF NAME = list-name VARS = ’ dialog-variable-list ’ �

�
CHGVAR

=

dialog-variable-name

MSGID

=

message-identifier
 �

�
MSGIDVAR

=

dialog-variable-name

MSGF

=

’

qualified-message-file-name

’
 �

�
PRTFLAG

=

dialog-variable-name

EMPHASIS

=

’

dialog-variable-emphasis-list

’
 �

�
PROTECT

=

’

dialog-variable-usage-list

’
 . ��

LISTDEF Tag

Appendix A. UIM Panel Group Definition Language 565

variable specified on this attribute is set to '1' twice if a value in the list is changed, the list is

scrolled, scrolled back again to the original position, and the list entry is changed back to its

original value.

An application program can use the list value for the dialog variable specified on this attribute to

determine which list entries are changed by the user. The application is responsible for setting and

resetting the list entry value to something other than '1'. It does this by updating the list entry after

the input values are processed and before the list is redisplayed to make the comparison reliable.

MSGID=message-identifier

The message identifier of a message that is displayed to the user when the UIM list is empty. If no

message identifier is specified with either the MSGID or MSGIDVAR attribute on this tag, no message is

displayed when the list is empty. The MSGID and the MSGIDVAR attributes cannot both be used on the

same LISTDEF tag.

MSGIDVAR=dialog-variable-name

A dialog variable containing the message identifier of a message displayed to the user when the UIM

list is empty. The dialog variable specified must be defined with a BASETYPE of ’CHAR 7’ on the

CLASS tag. If no message identifier is specified with either the MSGID or MSGIDVAR attribute on this

tag, no message is displayed when the list is empty. The MSGID and the MSGIDVAR attributes cannot

both be used on the same LISTDEF tag.

MSGF='qualified-message-file-name'

The message file name containing the message identifier specified on the MSGID or MSGIDVAR attribute.

The attribute is allowed only when the MSGID or MSGIDVAR attribute is specified on this tag. If the

DFTMSGF attribute is not specified on the panel group (PNLGRP) tag, this attribute must be specified

when the MSGID or MSGIDVAR attribute on this tag is specified.

PRTFLAG=dialog-variable-name

Specifies the name of a dialog variable in the list definition containing a character printed on the first

character of each list entry. For each list entry printed, the character stored in the dialog variable is

printed on the first column. The dialog variable specified must be one of the variables listed on the

VARS attribute of this tag, and must be defined on the CLASS tag with a BASETYPE of CHAR 1 and a

width of 1. This attribute is intended to be used for output listing applications where a special

character needs to be printed in column one.

EMPHASIS='dialog-variable-emphasis-list.'

The list of dialog variables containing the emphasis or color associated with each of the variables

listed on the VARS attribute of this tag. The number of items in the list must be the same as the

number of dialog variables specified on the VARS attribute. Only one emphasis is allowed for each

variable listed, but a particular emphasis value may apply to more than one variable. A value of ’*’

should be specified to indicate that normal emphasis should be used with the corresponding variable

listed on the VARS attribute, and also used for list columns not displayed in any list view.

 The dialog variables specified on this attribute cannot be one of the variables listed on the VARS

attribute of this tag.

 Each variable in the list must be defined with a BASETYPE of CHAR 1 on the CLASS tag. When an

entry is added to the list or an existing entry is updated, the values for these variables determine the

emphasis used when that entry is displayed. The following table shows the values that can control

the emphasis.

 Table 65. Emphasis Values

Value Output Field Input Field

0 Normal Normal

1 Emphasize Emphasize

2 De-emphasize Normal

 Normal and de-emphasis are the same on a monochrome device.

LISTDEF Tag

566 Application Display Programming V6R1

If a dialog variable listed in this attribute has a value specified other than one of the above values,

normal emphasis is used. If this attribute is not specified, normal emphasis is used.

 This attribute does not control emphasis during printing.

PROTECT='dialog-variable-usage-list'

The list of dialog variables containing the value used to override the USAGE attribute of the list

column (LISTCOL) tag for each of the variables listed on the VARS attribute of this tag. The number of

items in the list must be the same as the number of dialog variables specified on the VARS attribute.

Only one protection value is allowed for each variable listed, but a particular protection value may

apply to more than one variable.

 A value of ’*’ should be specified to indicate that there is no override for the USAGE attribute on the

LISTCOL tag for the corresponding variable listed on the VARS attribute. A value of ’*’ is also used for

list columns not displayed in any list view.

 The dialog variables specified on this attribute cannot be one of the variables listed on the VARS

attribute.

 Each variable in the list must be defined with a BASETYPE of CHAR 1 on the CLASS tag. When an

entry is added to the list or an existing entry is updated, the values for these variables determine the

protection whenever that entry is displayed. This attribute overrides the USAGE attribute from the

LISTCOL tag. The valid values for the dialog variables specified on this attribute are as follows:

’1’ The variable use is output-only.

’0’ The use is controlled by the USAGE attribute on the LISTCOL tag.

 Changing a list option field for an action list or selection list to output-only does not affect list

processing. If the action field contains an option number or selection value but is displayed as

output-only, the option is processed.

 If a dialog variable listed in this attribute is not specified or has a value specified other than ’1’ or ’0’,

the use is controlled by the USAGE attribute of the LISTCOL tag.

LISTGRP (List Column Group)

Syntax for Display Panels:

�� :LISTGRP COL = column-identifier HELP = help-module-name �

�
NAME

=

list-column-group-name
 �

�
*

COLSEP

=

N

.

:ELISTGRP.

group-heading

 ��

Syntax for Print Panels:

�� :LISTGRP COL = column-identifier �

�
*

COLSEP

=

N

.

:ELISTGRP.

group-heading

 ��

LISTDEF Tag

Appendix A. UIM Panel Group Definition Language 567

The list column group (LISTGRP) tag groups columns in a list area together under a single heading that

applies to all the columns. This tag is allowed for display panels and print panels. Columns may be

defined within the list area that do not belong to any list column group. This tag cannot be used in a list

area if MAXHEAD=0 is specified on the list area (LIST) tag for the area.

There are some restrictions on the kinds of columns that can exist within a column group.

v The action column of the list cannot be in a column group.

v All or none of the columns can have column headings.

v Column groups cannot be nested.

v At least one column must be defined within a column group.

Required Attributes

COL=column-identifier.

The identifier of the column group, which is referred to in the COLS attribute on the list view

(LISTVIEW) tag. These names are in a separate name space from all other names and are meaningful

only within the list area, not within the panel group.

HELP=help-module-name

Identifies online help information which explains the purpose of the column group in this list. This

attribute is required for display panels; it is not allowed for print panels. The help module name may

be a name imported from another panel group, but must follow the rules for names outlined earlier

in this chapter. For more information on the rules for names, see “Name Syntax” on page 461.

Optional Attribute

NAME=list-column-group-name

The name associated with the group. This attribute is allowed only for display panels. For more

information on the rules for naming, see “Name Syntax” on page 461. This name can be used with

the Add Pop-Up Windows (QUIADDPW) API to position a window near this list column group.

COLSEP=* | N

The number of spaces by which to separate columns in a list column group. COLSEP=* causes UIM to

calculate the width of the column separator. The calculated width is between 2 and 5 spaces.

COLSEP=N can be any positive number. When choosing a value for N, keep in mind the widths of the

columns. This attribute does not affect the space between list column groups and other list columns.

It also does not affect the space following selection columns in list column groups.

Optional Text

group-heading

The group heading text placed above the column group in the heading part of the list area. This

heading must fit on one line over the columns in the group. It is centered over the group of columns

and has a graphic indication of the number of columns over which it spans. The headings of the

columns in a column group may span different numbers of lines. The group heading appears on the

line immediately above the tallest column heading of the group.

 No column in a column group may have MAXWIDTH=’*’ specified on the list column (LISTCOL) tag.

The columns and the separators between the columns define the width allocated for the group

heading. The group heading must be no longer than this width.

 If no column headings are specified on any of the columns of the group, the group heading appears

immediately above the column data.

 The text must appear on the same or next line as the tag and can only contain the reverse text (RT)

tag.

LISTGRP Tag

568 Application Display Programming V6R1

Example: List Column Group

This example uses a column separator of 1.

UIM Source

:listdef name=list1

 vars=’seq colname more table text’.

:panel panel-attributes.Select and Sequence Columns

:list listdef=list1

 depth=’*’

 maxhead=3.

:topinst.Type sequence numbers (1-999) to select

columns, press Enter.

:listcol var=seq

 usage=inout

 maxwidth=3

 help=hseq.Seq

:listgrp col=column

 colsep=1

 help=hlistgrp.

:listcol var=colname

 usage=out

 maxwidth=18.Column

:listcol var=more

 usage=out

 maxwidth=1.

:elistgrp.

:listcol var=table

 usage=out

 maxwidth=20

 help=htable.Table

:listcol var=text

 usage=out

 maxwidth=25

 help=htext.Text

:listview layout=1

 cols=’seq column table text’.

:elist.

:epanel.

Results

 Select and Sequence Columns

 Type sequence numbers (1-999) to select columns, press Enter.

 Seq Column Table Text

 ___ EXTRALONGCOLUMNNAM > TABLE DESCRIPTION TEXT DESCRIPTION

 ___ SHORTCOLUMNNAME TABLE DESCRIPTION TEXT DESCRIPTION

 Bottom

 F3=Exit F4=Prompt F12=Cancel

LISTGRP Tag

Appendix A. UIM Panel Group Definition Language 569

LISTVIEW (List View)

 The list view (LISTVIEW) tag defines one of the views of a list presented in a list area. This tag is

allowed for both display panels and print panels.

Multiple list views can be defined in an area and can be changed using the CHGVIEW dialog command,

which can be assigned to a function key or to a pull-down choice. If there is more than one list view on

the panel and the CHGVIEW dialog command is performed, the list area with the cursor in it changes

views.

The view may also be established in a program by changing the value of the dialog variable specified on

the VIEW attribute on the list area (LIST) tag. Views are numbered consecutively from zero to one less

than the number of LISTVIEW tags defined in this area. The first LISTVIEW tag for the list area defines

view zero, the second LISTVIEW tag defines view one, and so on for each LISTVIEW tag in the list area.

If the ACTOR attribute on the LIST tag has a value other than NONE, the action column of the list must

appear in all views of the list area for the panel. If the SELECT attribute on the LIST tag has a value other

than NONE or MULTI, the action column of the list must appear in all views of the list area.

Although multiple views can be defined for a print panel, only the view identified by the VIEW attribute

on the LIST tag is printed when the Print Panel (QUIPRTP) API is called. To print more than one view,

the QUIPRTP API must be called multiple times, updating the view dialog variable between each call to

QUIPRTP.

Required Attribute

COLS='column-identifier-list'

A list of column or column group identifiers which are separated by blanks. This list identifies

columns and groups that are part of this view.

 All variables used in this view must be distinct.

Optional Attribute

LAYOUT=1 | number-of-layout-columns

Indicates whether more than one set of columns should be presented on the display at one time. If

the width of columns defined by the COLS attribute of this tag is small, it may be possible to position

more than one set of the columns on the display or page.

 The format used for multiple-column layout divides the entire display or page width into layout

columns of equal size, with a separator of at least three characters between layout columns. All list

columns specified on the COLS attribute of this tag must fit within a single layout column.

 For all panels with WIDTH=132 on the display panel (PANEL) or print panel (PRTPNL) tags, a value

from 1 through 10 is allowed. For panels with WIDTH less than 132, a value from 1 through 6 is

allowed.

 The following tables show the available column width and what positions are used for each layout

column, depending on the value of the LAYOUT attribute. The first table applies to all panels with

WIDTH=80 specified on the PANEL or PRTPNL tags. The second table applies to panels with WIDTH=132

specified.

�� :LISTVIEW COLS = ’column-identifier-list’

1

LAYOUT

=

number-of-layout-columns

.

 ��

LISTVIEW Tag

570 Application Display Programming V6R1

Table 66. Layout Values for Width=80. Layout column widths and positions for panels with WIDTH=80.

Layout

Layout

Width

Layout 1

Column

Positions

Layout 2

Column

Positions

Layout 3

Column

Positions

Layout 4

Column

Positions

Layout 5

Column

Positions

Layout 6

Column

Positions

1 78 2-79

2 37 2-38 43-79

3 24 2-25 29-52 56-79

4 17 2-18 22-38 42-58 62-78

5 13 2-14 18-30 34-46 50-62 66-78

6 10 2-11 15-24 28-37 41-50 54-63 67-76

 Table 67. Layout Values for WIDTH=132. Layout column widths and positions for panels with WIDTH=132.

Layout

Layout

Width

Layout 1

Column

Positions

Layout 2

Column

Positions

Layout 3

Column

Positions

Layout 4

Column

Positions

Layout 5

Column

Positions

Layout 6

Column

Positions

1 130 2-131

2 63 2-64 69-131

3 41 2-42 46-86 90-130

4 30 2-31 35-64 68-97 101-130

5 23 2-24 28-50 54-76 80-102 106-128

6 19 2-20 24-42 46-64 68-86 90-108 112-130

 Table 68. Layout Values for WIDTH=132. Layout column widths and positions for panels with WIDTH=132.

Layout Layout Width

Layout 7 Column

Positions

Layout 8 Column

Positions

Layout 9 Column

Positions

Layout 10

Column Positions

7 16 97-112

8 13 66-78 82-94

9 11 86-96 100-110 114-124

10 10 80-89 93-102 106-115 119-128

If a WIDTH of less than 80 or a width between 81 and 131 is specified on the PANEL tag, the following

algorithm can be used to determine the layout width:

1. Subtract 2 from the width of the panel.

2. Subtract 3*(layout-1) from the result of step 1. This is the total separator space between the layouts.

3. Divide the result of step 2 by the layout; do not round up. This is the layout width.

4. If the remainder from step 3 is greater than (layout-1), the separator between the layouts is 4.

Otherwise, the separator space is 3.

LP (List Part)

 The list part (LP) tag identifies a comment or an explanation applying to a part of a list. This tag is only

allowed in information areas and help areas. It can be placed anywhere within the list.

�� :LP . list-part-text ��

LISTVIEW Tag

Appendix A. UIM Panel Group Definition Language 571

The text following the LP tag starts at the left margin of the current level of the list. It is not numbered or

lettered. When used with the ordered list (OL) tag, the LP tag does not interrupt or increase the ordered

sequence.

Example: List Part

This example uses a list part tag to keep the flow of the list from being interrupted.

UIM Source

:ol.

:li.First item

:lp.This is a list part.

:li.Second item

:eol.

Results

1. First item

This is a list part.

2. Second item

MBAR (Menu Bar)

 The menu bar (MBAR) tag defines a menu bar area of a panel. The menu bar appears as the topmost

element in a panel and consists of one or more menu bar choices. When the user positions the cursor at a

menu bar choice and requests the ENTER dialog command, the pull-down menu for the selected menu

bar choice is displayed below the text for the menu bar choice.

The resulting pull-down menu contains a selection field which has one or more pull-down choices. The

user is allowed to choose only one pull-down menu choice. Each selection field has one or more

pull-down menu choices.

All menu bars must be defined after any conditional statements and before the key lists.

When a menu bar is specified for a panel with a list action column, a slash (/) or country-designated

selection character may be entered on the list action column to indicate the elements the menu bar choice

is to act against. The slashes are processed in the same top-to-bottom processing as in normal list action

processing. The slash (/) is not allowed on the extended action entry of an action list.

Other tags can be nested within the MBAR tag. These tags are listed in the following table. This table

defines the order in which the tags must appear and specifies on what page more information can be

found for each tag.

 Table 69. Tag Allowed Between the MBAR and EMBAR Tags

Tag Name Order Page

MBARC (Menu bar choice) 1 575

�� :MBAR NAME = menu-bar-name

HELP

=

help-module-name

1

MAXBARL

2

.

:EMBAR.

3

 ��

LP Tag

572 Application Display Programming V6R1

Required Attribute

NAME=menu-bar-name

The name assigned to the menu bar. For more information on the rules for naming, see “Name

Syntax” on page 461.

Optional Attributes

HELP=help-module-name

The name of the help information explaining the purpose of the menu bar. The help module name

may be a name imported from another panel group, but must follow the rules for names outlined

earlier in this chapter. For more information on the rules for names, see “Name Syntax” on page 461.

MAXBARL=1 | 2 | 3

The maximum number of lines that can be used for the descriptions of the menu bar. From 1 to 3

lines can be specified; 1 is the default. Only as many menu bar lines as needed up to the maximum

number allowed by MAXBARL are used. If all the menu bar choices do not fit in the number of lines

specified, a compiler error results.

Example: Menu Bar

This example defines the menu bar seen on the Work with Programs panel.

UIM Source

.* Menu bar for Work with Programs panel

:mbar name=mbarpgm

 help=’mbarpgm/’

 .

.*

.* Menu bar choice for the "File" pull-down

:mbarc help=’mbarpgm/file’

 .File

:pdfld.

:pdfldc option=2

 help=’mbarpgm/file/change’

 action=’cmd ?CHGPGM PGM(&var2/&var1)’

 actfor=list

 .Change

:pdfldc option=4

 help=’mbarpgm/file/delete’

 action=’cmd DLTPGM PGM(&var2/&var1)’

 actfor=list

 confirm=confpgm

 usrexit=’call exitpgm’

 .Delete

:pdfldc option=5

 help=’mbarpgm/file/display’

 action=’cmd DSPPGM PGM(&var2/&var1)’

 actfor=list

 .Display

:pdfldc option=6

 help=’mbarpgm/file/exit’

 action=exit

 varupd=no

 .Exit

:pdaccel.F3

:epdfld.

:embarc.

.*

.* Menu bar choice for the "Help" pull-down

:mbarc help=’mbarpgm/help’

 .Help

:pdfld.

:pdfldc option=1

MBAR Tag

Appendix A. UIM Panel Group Definition Language 573

help=’mbarpgm/help/helphelp’

 action=helphelp

 varupd=no

 .Help for help...

:pdfldc option=2

 help=’mbarpgm/help/help’

 action=exthelp

 varupd=no

 .Extended help...

:pdfldc option=3

 help=’mbarpgm/help/keyshelp’

 action=keyshelp

 varupd=no

 .Keys help...

:pdfldc option=4

 help=’mbarpgm/help/schidx’

 action=helpidx

 varupd=no

 .Help index...

:pdfldc option=5

 help=’mbarpgm/help/about’

 action=’call logopgm’

 varupd=no

 .About...

:epdfld.

:embarc.

:embar.

Results

 File Help

 --

 Work with Programs

 System: SYSTEM01

 Select items in list, press F10 to select action.

 Opt Program Library Text

 PPPPPPPPP1 LLLLLLLLLL Description text

 PPPPPPPPP2 LLLLLLLLLL Description text

 PPPPPPPPP3 LLLLLLLLLL Description text

 PPPPPPPPP4 LLLLLLLLLL Description text

The File pull-down is displayed as shown below.

 File Help

 -.-------------------.--

 : 2. Change : Work with Programs

 : : System: SYSTEM01

 : 4. Delete : ress F10 to select action.

 : 5. Display :

 : 6. Exit F3 : y Text

 :...................: LLLL Description text

 PPPPPPPPP2 LLLLLLLLLL Description text

 PPPPPPPPP3 LLLLLLLLLL Description text

 PPPPPPPPP4 LLLLLLLLLL Description text

The Help pull-down is displayed as shown below.

MBAR Tag

574 Application Display Programming V6R1

File Help

 --------.------------------------.--

 : 1. Help for help... : with programs

 : 2. Extended help... : System: SYSTEM01

 Select : 3. Keys help... : select action.

 : 4. Help index... :

 Opt Pr : 5. About... :

 PP :........................: ption text

 PPPPPPPPP2 LLLLLLLLLL Description text

 PPPPPPPPP3 LLLLLLLLLL Description text

 PPPPPPPPP4 LLLLLLLLLL Description text

When F10 (ACTIONS) is pressed, the cursor is positioned in the space before the first menu bar choice.

When a menu bar choice is selected, the cursor is located at the pull-down field and the tab key moves to

the first unselected menu bar choice. Repeated pressing of the tab key moves the cursor through the

menu bar area and then back to the pull-down menu.

MBARC (Menu Bar Choice)

 The menu bar choice (MBARC) tag defines one choice within a menu bar. The end of the menu bar

choice must be indicated with an EMBARC tag.

Other tags can be nested within the MBARC tag. These tags are listed in the following table. This table

defines the order in which the tags must appear and specifies on what page more information can be

found for each tag.

 Table 70. Tags Allowed Between the MBARC and EMBARC Tags

Tag Name Order Page

PDFLD (Pull-down field) 1 597

PDFLDC (Pull-down field choice) 2 598

Required Attributes

HELP=help-module-name

The name of the help information explaining the purpose of the menu bar choice. The help module

name may be a name imported from another panel group, but must follow the rules for names

outlined earlier in this chapter. For more information on the rules for names, see “Name Syntax” on

page 461.

Required Text

menu-bar-choice-text

The displayable description for the menu bar choice. The text must appear on the same line or the

next line as the tag, the text can contain only the reverse text (RT) tag, and the text must be no longer

than 32 bytes.

 The menu bar is formed by concatenating the text from the various menu bar choices. If the text does

not fit on the rest of a line, it is placed on the next line. The menu bar is limited to the number of

lines specified on the MAXBARL attribute on the MBAR tag.

�� :MBARC HELP = help-module-name . menu-bar-choice-text :EMBARC. ��

MBAR Tag

Appendix A. UIM Panel Group Definition Language 575

The text is displayed with a tabable space in front of it. When the tab keys are used to position the

cursor at one of the menu bar choices, the cursor appears one character to the left of the text. Two

spaces are placed between each text field for the menu bar. The visual result has three spaces

between choices.

MENU (Menu Area)

 The menu area (MENU) tag defines a menu area. This tag is allowed only for display panels. The end of

the menu area must have a EMENU tag.

The menu area is included in the panel with all the other areas that are defined on the panel. Only one

menu area may be present on any panel.

Either the command line (CMDLINE) tag or the option line (OPTLINE) tag must be specified for a menu

panel. The user selects a menu option by entering the option number on the command line or option line.

Other tags can be nested within the MENU tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 71. Tags Allowed Between the MENU and EMENU Tags

Tag Name Order Use Page

TOPINST (Top instruction

line)

1 D 622

APPFMT (Application

formatted area)

2 D 464

MENUGRP (Menu column

group)

3 D 579

MENUI (Menu item) 3 D 580

BOTINST (Bottom

instruction line)

4 D 466

Required Attribute

DEPTH=area-depth | '*'

The depth of the area in lines, including separators if any are specified.

�� :MENU DEPTH = area-depth

’*’

SPACE

BOTSEP

=

NONE

RULE

 �

�
NO

SCROLL

=

YES

.

:EMENU.

area-title

 ��

MBARC Tag

576 Application Display Programming V6R1

If '*' is specified, the space remaining on the display after everything else is allocated is given to this

area. Only one area in the panel may have '*' coded.

Optional Attribute

BOTSEP=SPACE | NONE | RULE

Defines the bottom separator for the menu area. If SPACE is specified, a line of spaces is used.

 NONE indicates that no separator line exists.

 If RULE is specified, a line of underscored spaces is used as a separator line.

SCROLL=NO | YES

NO indicates that the menu is not scrollable.

 YES indicates that the menu area is intended to be scrollable. Ordinarily YES should not be used, but

longer, scrollable menus can be constructed with SCROLL=YES. For a SCROLL=YES area, a line of spaces

is used by the UIM to provide a line for the scroll information. If BOTSEP=SPACE is also specified on

this tag, only one line of spaces is used unless this area also contains bottom instructions.

Optional Text

area-title

The title of the area. If no text is specified, no title line is allocated to the area. The text must appear

on the same or next line as the tag, the text can contain only the reverse text (RT) tag, and cannot

exceed a maximum length of 55 characters.

Example 1: Simple Menu Area

This example defines a menu area with three options.

UIM Source

:panel name=main

 help=’menu/main’

 keyl=small

 panelid=zmenu

 topsep=space

 .My Main Menu

:menu depth=’*’.

:topinst.Select one of the following:

:menui help=MNUSER

 option=1

 action=’MENU X’

 .Display menu X

:menui help=MNSYS

 option=2

 action=’MENU SYSOPR’

 .System operations

:menui help=MNOFF

 option=90

 action=’CMD SIGNOFF’

 .Sign off

:emenu.

:cmdline size=long.Selection or command

:epanel.

MENU Tag

Appendix A. UIM Panel Group Definition Language 577

Results

 MAIN My Main Menu

 Select one of the following:

 1. Display menu X

 2. System operations

 90. Sign off

 Selection or command

 ===> __

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Example 2: Menu Area with Groups

This example has three menu areas, each of which has options that can be chosen.

UIM Source

:panel name=cfg2

 help=’menu/cfg2’

 panelid=zmenu

 keyl=small

 .Configuration Templates

:menu depth=’*’.

:topinst.Select one of the following:

:menugrp.Local Hardware:

:menui help=’opt/lcl/wsprt’

 option=1

 action=’MENU LCLWSPRT’

 .Work stations and printers

:menui help=’opt/lcl/ctl’

 option=2

 action=’MENU LCLCTL ’

 .Controllers

:menui help=’opt/lcl/tapdkt’

 option=3

 action=’MENU LCLTAPDKT’

 .Tape drives and diskette drives

:emenugrp.

:menugrp.Remote Hardware:

:menui help=’opt/rmt/wsprt’

 option=4

 action=’MENU RMTWSPRT’

 .Work stations and printers

:menui help=’opt/rmt/ctl’

 option=5

 action=’MENU RMTCTL ’

 .Controllers

:menui help=’opt/rmt/tapdkt’

 option=6

 action=’MENU RMTTAPDKT’

 .Tape drives and diskette drives

:emenugrp.

:menugrp.Communications Support:

MENU Tag

578 Application Display Programming V6R1

:menui help=’opt/cmn/lines’

 option=7

 action=’MENU CMNLINES’

 .Communications lines

:menui help=’opt/cmn/ctl’

 option=8

 action=’MENU CMNCTL ’

 .Communications controllers

:emenugrp.

:emenu.

:cmdline size=long.Selection or command

:epanel.

Results

 CFG2 Configuration Templates

 System: xxxxxxxx

 Select one of the following:

 Local Hardware:

 1. Work stations and printers

 2. Controllers

 3. Tape drives and diskette drives

 Remote Hardware:

 4. Work stations and printers

 5. Controllers

 6. Tape drives and diskette drives

 Communications Support:

 7. Communications lines

 8. Communications controllers

 Selection or command

 ===> ___

__

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

MENUGRP (Menu Group)

 The menu group (MENUGRP) tag groups menu items of a menu area together and supplies a heading

for the group. This tag is allowed only for display panels.

If the number of lines required to display the first two items of the menu group exceeds the number of

lines remaining in the current page, the entire group is forced to the next page. When all items in the

menu group are not completely displayed on one page, the group is continued onto as many pages as

required to display all items.

Other tags can be nested within the MENUGRP tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

�� :MENUGRP

COND

=

condition-name
 . :EMENUGRP.

group=heading
 ��

MENU Tag

Appendix A. UIM Panel Group Definition Language 579

Table 72. Tag Allowed Between the MENUGRP and EMENUGRP Tags

Tag Name Order Use Page

MENUI (Menu item) 1 D

580

Optional Attribute

COND=condition-name

The group is displayed and active on the panel only if the condition specified is true. If the condition

is false, the entire group is not shown. The condition must be defined in the panel group prolog with

the condition definition (COND) tag.

Optional Text

group-heading

The heading placed above the menu items of the group. The text must appear on the same or next

line as the tag and can only contain the reverse text (RT) tag. The group heading always appears on

one display line beginning in column four.

MENUI or MI (Menu Item)

Required Attributes

HELP=help-module-name

Identifies online information explaining the purpose of the menu item. The help module name may

be a name imported from another panel group, but must follow the rules for names outlined earlier

in this chapter. For more information on the rules for names, see “Name Syntax” on page 461.

 The online information identified by this attribute is displayed when help is requested while the

cursor is positioned on the text for this tag or while the cursor is on the command or option line and

a valid menu item number has been entered.

OPTION=option-number

The number to assign this option. Option numbers are integers in the range 0 through 999.

 The menu items are displayed in the order defined for the menu area. If the numbering of two items

is not consecutive, a blank line is automatically placed between the two items.

ACTION='action-text'

The action occurring when the menu item is selected by the user. The valid forms of action-text are:

v ’CALL program-reference’

�� :MENUI or MI HELP = help-module-name OPTION = option-number ACTION = ’action-text’ �

�
NAME

=

menu-item-name

COND

=

condition-name

AVAIL

=

condition-name
 �

�
AVLMSGID

=

message-identifier

AVLMSGF

=

qualified-message-file-name
 �

�
MARKER

=

condition-name

ITEM

=

dialog-variable-name
 �

� .

menu-item-description-text
 ��

MENUGRP Tag

580 Application Display Programming V6R1

v ’CANCEL’

v ’CMD command-string’ Any dialog variable name in the command string must be preceded by an

ampersand and should be ended with a period to denote variable substitution.

v ’EXIT’

v ’MENU qualified-menu-name RTNPNT|NORTNPNT’

v ’RETURN positive-integer’

For a description of each of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

Optional Attributes

NAME=menu-item-name

The name associated with the menu item. This name can be used with the Add Pop-Up Window

(QUIADDPW) API to position a window near this menu item. For more information on the rules for

naming, see “Name Syntax” on page 461.

COND=condition-name

The menu item is in effect on the panel only if the condition specified is true. The condition must be

defined in the panel group prolog with the condition definition (COND) tag.

AVAIL=condition-name

The name of a condition indicating to the UIM whether or not the menu item is available for

selection by the user. The condition must be defined in the panel group prolog with the COND tag.

 Unavailable menu items are displayed with an asterisk (*) overlaying the first part of the menu item

number.

 When the condition is true, the menu item is available. When the condition is false, the menu item is

not available. Any condition specified on the COND attribute of this tag takes precedence over this

attribute.

AVLMSGID=message-identifier

The message identifier of the message displayed when the pull-down choice is selected but is not

available as specified by the AVAIL attribute of this tag. This attribute is allowed only when the AVAIL

attribute is specified.

 If this attribute is not specified, the UIM displays a default message stating that the choice is

currently not available.

AVLMSGF='qualified-message-file-name'

The message file name containing the message identifier. This attribute is allowed only when the

AVLMSGID attribute is specified on this tag. If the DFTMSGF attribute is not specified on the panel group

(PNLGRP) tag, and if the AVLMSGID attribute is specified on this tag, then this attribute must be

specified.

MARKER=condition-name

The name of a condition indicating whether or not the menu item is marked with a greater than sign

(>). The marker is displayed only if the condition specified is true. The condition must be defined in

the panel group prolog with the COND tag.

 When the condition is true, a greater than sign is displayed to the left of the option number of the

menu item. When the condition is false, the line is blank before the option number of the menu item.

If this attribute is omitted, no marker appears on the menu item.

ITEM=dialog-variable-name

The name of a dialog variable containing the text for the menu item description when the panel is

displayed. The dialog variable may be defined with a BASETYPE of CHAR, IGC, or BIN on the class

definition (CLASS) tag. The declared length of the dialog variable must be no longer than what fits

on one line of the panel, starting in column 10. Allowance must be made if there is an application

formatted area.

MENUI or MI Tag

Appendix A. UIM Panel Group Definition Language 581

If this attribute is used, no menu-item-description-text can be specified after the period for this tag.

Optional Text

menu-item-description-text

The descriptive text accompanying the option and shown on the menu. The text may appear on more

than one line in the source. The text can contain only the reverse text (RT) tag, and cannot exceed 70

characters in length.

 The item description text begins in column 10 of the panel. The option number, a period, and one

blank appear immediately before the item description text. The item number begins in column 7, 6, or

5, depending on whether the option number has 1, 2, or 3 digits. The text is formatted onto

additional lines as necessary, and the additional lines are not indented two spaces to fit on the panel.

NT or NOTE (Note)

 The note (NT) tag identifies a single- or multiple-paragraph note. This tag must have a matching end tag.

You can also use :NOTE and :ENOTE in place of the :NT and :ENT tags. These tags are only allowed in

information areas and help areas. Notes cannot be nested.

Notes can occur anywhere in text that a paragraph is allowed. They can contain any basic text items, but

cannot contain headings, figures, lines, examples, or any type of list. If this tag has not been ended when

a heading tag is encountered, the note ends and a warning message is issued by the compiler.

The note is an implied paragraph. It is formatted as a block and indented 6 spaces from the current

margin. The word Note, formatted in highlight phrase 2 (HP2) and followed by a colon, begins the

paragraph. There are two spaces between the note tag and the text if either the note tag or the text are

single-byte characters. There are four spaces between the note tag and the text if both are double-byte

characters.

A note is aligned with the text of a list item when used within a list.

Other tags can be nested within the NOTE tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 73. Tags Allowed Between the NOTE and ENOTE Tags

Tag Name Order Use Page

P (Paragraph) 1 B 585

PC (Paragraph

continuation)

1 B 596

�� :NT. or :NOTE. :ENT. or :ENOTE.

note-text
 ��

MENUI or MI Tag

582 Application Display Programming V6R1

Optional Text

note-text

Although the text of the note is not required, the tag has no meaning when text is not specified.

Example: Using a Note

The note tag makes important information stand out in a paragraph, as in this example.

UIM Source

:P.Here’s a paragraph.

:NT.

Here’s the first paragraph

of the note.

:P.

Here’s the second paragraph

of the note.

:ENT.

:P.Here’s a paragraph.

Results

Here’s a paragraph. Note: Here’s the first paragraph of the note.

Here’s the second paragraph of the note.

Here’s a paragraph.

OL (Ordered List)

 The ordered list (OL) tag identifies an ordered list of items. It requires a matching end tag. These tags are

only allowed in information areas and help areas.

Ordered lists can occur anywhere in text and can be nested within other lists.

Note: Care should be taken when using unformatted lines (LINES), figure (FIG), and example (XMP) tags

within ordered lists, because text that does not fit on one line wraps to column one of the next

line. Lines and figures start at the current left margin, and examples are indented four spaces from

the current left margin. The current left margin changes when nested lists are formatted. If online

help information has the LINES, FIG, or XMP tag imbedded at various locations, including within

lists, it may not look the same each time.

The OL tag is formatted as a hanging, indented list, with the item identifier (1,2,...a,b,...) at position four

relative to the left margin. The text begins at position eight relative to the left margin.

Ordered lists are identified in a formatted document by sequential numbers or letters, depending on the

definition for each level. The levels of definition are as follows:

1. 1., 2., 3., . . .,11., 12., . . ., 99.

2. a., b., c., . . ., z., aa., bb., . . ., zz.

3. 1), 2), 3), . . .,11), 12), . . ., 99)

4. a), b), c), . . ., z), aa), bb), . . ., zz)

��

:OL

.

COMPACT

�

:LI.

item-text

:EOL.

��

NT or NOTE Tag

Appendix A. UIM Panel Group Definition Language 583

Any additional levels repeat the sequence from the beginning.

Other tags can be nested within the OL tag. These tags are listed in the following table. The table defines

the order in which the tags must appear, indicates which tags can be used in display panels only, print

panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 74. Tags Allowed Between the OL and EOL Tags

Tag Name Order Use Page

FIG (Figure) 1 B 519

LINES (Unformatted lines) 1 B 538

XMP (Example) 1 B 631

NT (Note) 1 B 582

P (Paragraph) 1 B 585

PC (Paragraph

continuation)

1 B 596

LP (List part) 1 B 571

OL (Ordered list) 1 B 583

SL (Simple list) 1 B 614

UL (Unordered list) 1 B 625

PARML (Parameter list) 1 B 594

DL (Definition list) 1 B 517

Optional Attribute

COMPACT

This attribute formats the list without a blank line between items.

Required Tag

:LI.item-text

The text for the list item. The text is preceded by a number or a letter and a period.

Example: Ordered List

This example has two ordered lists, one imbedded within the other. The second ordered list uses the

COMPACT attribute.

UIM Source

Some normal text...

:ol.

:li.First item (number)

:ol.

:li.First item (letter)

:li.Second item (letter)

:eol.

:li.Second item (number)

:eol.

OL, LI Tags

584 Application Display Programming V6R1

Results

Some normal text...

1. First item (number)

 a. First item (letter)

 b. Second item (letter)

2. Second item (number)

OPTLINE (Option Line)

 The option line (OPTLINE) tag specifies that a panel has a menu option field as opposed to a command

line which allows commands or options to be entered. This tag is allowed only for display panels. The

OPTLINE tag can be used only on a panel that has a menu area.

Any text associated with this tag is used as an instruction line, appearing immediately above the option

field on the panel.

This tag must be the final tag in a panel, placed just before the EPANEL tag. The command line

(CMDLINE) tag and the OPTLINE tag are mutually exclusive.

Optional Attribute

NAME=option-line-name

The name associated with the option line. This name can be used with the Add Pop-Up Window

(QUIADDPW) API to position a window near the option line. For more information on the rules for

naming, see “Name Syntax” on page 461.

Optional Text

instruction-text

The text appearing as instructions for the option line. This text is an implied paragraph.

 When the display is formatted, any text that does not fit onto one display line is formatted on the

following blank lines and indented two columns. The text can be a maximum of 255 characters and

can contain only the reverse text (RT) tag. If no text is provided, no instruction line is allocated or

displayed above the option line.

P (Paragraph)

 The paragraph (P) tag identifies a paragraph, which is one or more sentences related by their subject

matter. This tag is only allowed in information areas and help areas.

Paragraphs can occur anywhere in text and can contain text items. A matching end tag is not allowed; a

paragraph is ended by another paragraph or by a higher-level element.

Each paragraph is formatted as a block of text without indenting the first line. One blank line separates

paragraphs from other text items.

�� :OPTLINE

NAME

=

option-line-name
 .

instruction-text
 ��

�� :P. paragraph-text ��

OL, LI Tags

Appendix A. UIM Panel Group Definition Language 585

Paragraphs inserted within a list align with the text of the list item.

Optional Text

Although the paragraph text is not required, the tag has no meaning when text is not specified.

Example: Paragraph Tag

This example illustrates how the paragraph tag is used.

UIM Source

:P.Here’s a paragraph.

Lines are formatted to

fill the column.

:P.Here’s another

paragraph.

Results

Here’s a paragraph. Lines are formatted to fill the column.

Here’s another paragraph.

P Tag

586 Application Display Programming V6R1

PANEL (Display Panel)

 The display panel (PANEL) tag is opened using the PANEL tag and closed using the EPANEL tag. It

contains tags to define one or more panel area definitions.

Other tags can be nested within the PANEL tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 75. Tags Allowed Between the PANEL and EPANEL Tag

Tag Name Order Use Page

DATA (Data presentation

area)

1 D 488

INFO (Information area) 1 D 529

�� :PANEL NAME = panel-name HELP = help-module-name KEYL = key-list-name �

�
PANELID

=

dialog-variable-name

TITLE

=

dialog-variable-name
 �

�
80

WIDTH

=

panel-width

FIT

DEPTH

=

panel-depth

MBAR

=

menu-bar-name
 �

�
1

MSGL

=

2

3

4

SYSNAM

TOPSEP

=

SPACE

RULE

DATETIME

NONE

DATE

=

dialog-variable-name
 �

�
TIME

=

dialog-variable-name

PNLGRP

ENBGUI

=

NO

YES

ENTER

=

’

action-text

’
 �

�
SELECT

=

’

action-text

’

USREXIT

=

’

CALL

program-reference

’
 �

�
TT

=

truth-table-name

CSRVAR

=

dialog-variable-name
 �

�
CSRPOS

=

dialog-variable-name

CSRLST

=

dialog-variable-name
 �

�
CSREID

=

dialog-variable-name

CSRNAME

=

dialog-variable-name
 �

� . :EPANEL.

panel-title-text
 ��

PANEL Tag

Appendix A. UIM Panel Group Definition Language 587

Table 75. Tags Allowed Between the PANEL and EPANEL Tag (continued)

Tag Name Order Use Page

LIST (List area) 1 D 544

MENU (Menu area) 1 D 576

TEXT (Text area) 1 D 616

CMDLINE (Command line) 2 D 483

OPTLINE (Option line) 2 D 585

Required Attributes

NAME=panel-name

The name of the panel. For more information on the rules for naming, see “Name Syntax” on page

461.

HELP=help-module-name

The name of a help module containing the beginning of the extended help for the panel.

KEYL=key-list-name

The name of a key list for the panel.

Optional Attributes

PANELID=dialog-variable-name

The name of a dialog variable containing the text for the panel identifier when the panel is displayed.

The dialog variable must be defined on a class definition (CLASS) tag with BASETYPE=’CHAR 10’,

’NAME 10’, or ’OBJNAME 10’. The UIM displays the contents of the variable in the upper left corner

of the panel. If this attribute is omitted, no panel identifier appears on the display.

 To specify a panel identifier for a menu created by using the Create Menu (CRTMNU) command, the

dialog variable for ZMENU should be declared with PANELID=ZMENU on the PANEL tag. The value

of the ZMENU dialog variable is displayed as the panel identifier.

TITLE=dialog-variable-name

The name of a dialog variable containing the text for the panel title. The dialog variable must be

defined with a display width of 55 or the width of the panel minus 2, whichever is less. A translation

list may be used to provide the panel title.

 The UIM trims trailing blanks from the string and centers the resulting text in the panel title area of

the display. If this attribute is used, no panel-title-text can be specified.

 For a pop-up panel, the declared length of the dialog variable must be equal to the width of the

pop-up panel minus 2 bytes, and less if PANELID or TOPSEP=DATETIME is specified on this tag for the

panel.

WIDTH=80 | panel-width

The width of the panel. If the width is not specified, the panel width defaults to 80 bytes. The

specified width must contain 2 bytes of space for the left and right margins. A panel with WIDTH=80

results in 78 bytes of space for panel data.

 The maximum width supported for a panel displayed as a full screen is 132 bytes. The maximum

width supported for a pop-up window depends on what size screen the device supports. On a device

that supports 24 rows by 80 bytes, 74 bytes is the maximum width of a pop-up window. On a device

that supports 27 rows by 132 bytes, 126 bytes is the maximum width of a pop-up window. The

minimum width for a pop-up window is 20 bytes.

DEPTH=FIT | panel-depth

The depth of the panel. If the depth is not specified, the panel depth defaults to FIT. If DEPTH=FIT, the

PANEL Tag

588 Application Display Programming V6R1

UIM uses the depth of the device at display time to determine the depth of the panel. When

DEPTH=FIT, the compiler verifies that all panel elements fit within 24 lines.

 The specified depth includes:

v One line for a panel title

v One line of area data

v One or two lines for function key descriptions

v One line for the message line

The maximum supported depth is 27 lines for a panel displayed in a full display. The maximum

supported depth for a pop-up panel depends on what the display device can support. On a device

that can only support 24 rows by 80 bytes, the maximum depth of a pop-up window is 21 lines. On a

device that can support 27 rows by 132 bytes, the maximum depth of a pop-up window is 24 lines.

 The minimum allowed depth is 5 lines.

MBAR=menu-bar-name

The name of the menu bar used on the panel. This attribute is not allowed on confirmation panels or

panels that will be used as pop-up windows.

 Menu bars are only allowed on panels defined with one of the following sizes:

v WIDTH=80 or 132 bytes, and DEPTH=FIT

v WIDTH=80 bytes, DEPTH=24 lines

v WIDTH=132 bytes, DEPTH=27 lines

MSGL=1 | 2 | 3 | 4

The number of message lines that should appear on this panel. One message line is the default.

TOPSEP=SYSNAM | SPACE | RULE | DATETIME | NONE

Defines the top separator for the panel. If SYSNAM is specified, the separator line contains only the

system name.

 If SPACE is specified, a line of spaces is used.

 If RULE is specified, a line of underscored spaces is used. RULE cannot be specified if the MBAR

attribute is specified on this tag.

 If DATETIME is specified, the separator line contains the date and time from the dialog variables

identified on the DATE and TIME attributes of this tag. DATETIME also causes the system name to be

on the right side of the title line. When date and time is used as the top separator for the panel, it

should not be used to provide a current time clock. This function should be used to show the date

and time in which the important data on the panel is collected or generated.

 NONE indicates that no separator line exists.

 Values other than TOPSEP=SPACE or NONE may cause undesirable results when the panel width is

less than 80.

DATE=dialog-variable-name

The name of a dialog variable containing a date displayed on the top separator for the panel. This

attribute is required when TOPSEP=DATETIME is specified on this tag. The dialog variable must be

defined with BASETYPE=’DATE’ on the CLASS tag.

TIME=dialog-variable-name

The name of a dialog variable containing a time displayed on the top separator for the panel. This

attribute is required when TOPSEP=DATETIME is specified. The dialog variable must be defined with

BASETYPE=’TIME’ on the CLASS tag.

 If the dialog variable can have a time zone value associated with it, the time value will be trimmed of

blanks on the right and then right-justified on the screen. If the dialog variable’s time zone value is

blank, no time zone value is displayed.

PANEL Tag

Appendix A. UIM Panel Group Definition Language 589

ENBGUI=PNLGRP | NO | YES

Specifies whether the panel is enabled for conversion to a graphical user interface (GUI) by a client

program.

 When ENBGUI=YES is specified, the UIM includes information about the layout and content of the

panel in the 5250 data stream. This information is used by client programs to create the graphical

interface on the client. Table 76 describes the information that is included in the 5250 data stream:

 Table 76. Layout of UIM finger print

Byte Value and Description

0 Hex 27 - Non-display attribute

1 Hex 40 - Blank

2 Hex 20 - Terminating attribute

3 Reserved

4 Hex 00 - Panel BIDI=NONE or LTR

Hex 40 - Panel BIDI=RTL

5 Hex 00 - Panel does not contain a list area

Hex 40 - Panel might contain a list area

6 Hex 00 - Panel does not contain a menu area

Hex 40 - Panel might contain a menu area

7 Hex 00 - Panel does not contain a help area

Hex 40 - Panel might contain a help area

This includes the UIM Help (UH) panels as well as application panels containing a :TEXT

area.

8 Hex 00 - Panel does not contain any other areas

Hex 40 - Panel might contain one or more other areas

Other types of areas are :DATA (input and/or output), :INFO (similar to help).

9 Hex 27 - Non-display attribute

10 Hex 40 - Blank

11 Hex 20 - Terminating attribute

 When ENBGUI=NO is specified, the UIM does not include the extra information in the data stream.

ENTER='action-text'

The default enter action for the panel, occurring when the Enter key is pressed and no UIM-defined

action, such as menu or action list processing, is necessary. If this attribute is omitted, the panel is

redisplayed to the user with no message or error indication. The valid forms of action text are:

v ’CALL program-reference’ For a description of the interface between the UIM and the program for a

function key CALL, see the Application programming interfaces topic collection in the i5/OS

Information Center.

v ’CMD command-string’ Any dialog variable name in the command string must be preceded by an

ampersand to denote variable substitution.

v ’MSG message-identifier [qualified-message-file-name]’

v ’RETURN positive-integer’

For a description of each of these dialog commands, see Appendix B, “UIM Dialog Commands,” on

page 633.

SELECT='action-text'

The default selection action for the panel, occurring when items are selected in a selection list or an

PANEL Tag

590 Application Display Programming V6R1

action list and no action is selected from the menu bar. If this attribute is not specified, the panel is

displayed to the user with no message or error indication. The valid forms of action text are:

v ’ACTIONS’

v ’MSG message-identifier [qualified-message-file-name]’

v ’PULLDOWN’

v ’RETURN positive-integer’

The PULLDOWN and ACTIONS dialog commands cannot be specified if the MBAR attribute is not

specified on this tag.

USREXIT='CALL program-reference'

A general exit program called each time the user presses a function key or the Enter key after dialog

variables and list entries are updated and before any action specified on the key list item (KEYI), list

action (LISTACT), pull-down field choice (PDFLDC), or menu item (MENUI) tag is performed.

 The program is passed parameters that include what function is requested by the user. The exit

program may do application-defined validity checks, change the display position attribute of lists that

appear on the screen, or both. If the exit program sends a CPF6A02 status message to the UIM, the

UIM redisplays the panel without performing the normal action processing.

 The panel is redisplayed without calling this exit program if validity check errors associated with the

CLASS, validity checking (CHECK), or translation list (TL) tags are detected, or if the user presses an

inactive function key. If the user presses a function key defined with VARUPD=NO on the KEYI tag, the

values entered on the panel by the user are not available to this program. They are only stored

internally in the UIM.

 For a description of the CALL dialog command, see Appendix B, “UIM Dialog Commands,” on page

633.

 For a description of the interface between the UIM and the general exit program, see the Application

programming interfaces topic collection in the i5/OS Information Center.

TT=truth-table-name

The name of a truth table defined by the truth table (TT) tag, specifying what combinations of truth

values may occur for conditions defined by condition definition (COND) tags while the application is

running.

 The table specified may contain any subset or superset of the conditions referred to by tags in the

panel definition. Only the truth value combinations specified in the table, augmented by worst-case

assumptions for any truth values not specified in the table, are considered in evaluating whether or

not the panel definition is usable. The table should not exclude any truth value combination that

could occur when the panel is displayed. If a valid truth value combination is omitted, a panel group

object may create without error and have undesirable results when panels are displayed. For

example, the UIM may fail to show panel elements that are conditioned-on for display. For more

information about truth tables, see “TT (Truth Table)” on page 623.

 If this attribute is omitted, all combinations of truth values are considered possible. This causes the

tag language compiler to make worst-case assumptions for all conditions in evaluating whether or

not the panel definition is valid.

CSRVAR=dialog-variable-name

This attribute must name a CHAR 10 dialog variable which is used by the UIM to contain either the

name of the dialog variable or the name of the command line where the cursor is or will be

positioned.

 The UIM updates this variable after the panel is displayed and before the general exit program or

any action routines are called. It contains the name of the dialog variable associated with the field, or

the name of the command line (if named) where the cursor is positioned on exit from the panel. If

the cursor is not in a field or on a named command line, the CSRVAR dialog variable is set to blanks.

PANEL Tag

Appendix A. UIM Panel Group Definition Language 591

The Display Panel (QUIDSPP) API supports an option that allows the application program to control

the initial cursor position by setting the dialog variables associated with the CSRVAR, CSRPOS, CSRLST,

and CSREID panel attributes before the panel is displayed. If the CSRVAR dialog variable does not

contain the name of a dialog variable or command line displayed on the panel, the UIM default

cursor positioning is used and no error is reported.

 If a data item is defined using data item extenders, the CSRVAR attribute contains the name of the

extender dialog variable if the cursor is positioned within the extender field. If the cursor is

positioned between fields, CSRVAR is set to the name of the dialog variable specified on the VAR

attribute of the data presentation area (DATA) tag, and the CSRPOS dialog variable is set to zero.

CSRPOS=dialog-variable-name

This attribute must name a BIN 15 dialog variable used by the UIM to contain the character position

within the field identified by the CSRVAR attribute on this tag where the cursor is or will be

positioned.

 The UIM updates this variable after the panel is displayed, before the panel exit program or any

action routines are called. It contains the position within a field where the cursor is positioned on exit

from the panel. If the cursor is not in a field, the dialog variable is set to zero. If the cursor is

positioned in a text area associated with the field, such as a prompt label or column heading for a list

area, the CSRVAR attribute contains the name of the dialog variable for the corresponding data item or

list column, and the CSRPOS dialog variable is set to zero.

 The QUIDSPP API supports an option which allows the using program to control the initial cursor

position by setting the dialog variables associated with the CSRVAR, CSRPOS, CSRLST, and CSREID

attributes on this tag before the panel is displayed. If the CSRPOS attribute identifies a position that is

not valid for the display field, the UIM default cursor positioning is used and no error is reported.

CSRLST=dialog-variable-name

This attribute must name a CHAR 10 dialog variable used by the UIM to contain the name of the list

where the cursor is or will be positioned.

 The UIM updates this variable after the panel is displayed, before the panel exit program or any

action routines are called. It contains the name of the list associated with the list area where the

cursor is positioned on exit from the panel. If the cursor is not in a list area, the dialog variable is set

to blanks.

 The QUIDSPP API supports an option that allows the using program to control initial cursor position

by setting the dialog variables associated with the CSRVAR, CSRPOS, CSRLST, and CSREID attributes of

this tag before the panel is displayed. If the CSRLST attribute is not blank and does not contain the

name of a list displayed on the panel, the UIM default cursor positioning is used and no error is

reported.

CSREID=dialog-variable-name

This attribute must name a CHAR 4 dialog variable used by the UIM to contain the list entry handle

within the list identified by the CSRLST attribute where the cursor is or will be positioned.

 The UIM updates this variable after the panel is displayed, before the panel exit program or any

action routines are called. It contains the list entry identifier where the cursor was positioned on exit

from the panel. If the cursor was not in any list entry, the CSREID dialog variable is set to X'00'. If the

cursor was positioned in a text area associated with a list column, such as a column heading, the

CSRLST attribute contains the name of the corresponding list and the CSREID dialog variable is set to

X'00'.

 The QUIDSPP API supports an option that allows the using program to control the initial cursor

position by setting the dialog variables associated with the CSRVAR, CSRPOS, CSRLST, and CSREID

attributes of this tag before the panel is displayed. If the CSREID attribute identifies an unusable

position that does not specify a list entry displayed on the panel, the UIM default cursor positioning

is used and no error is reported.

PANEL Tag

592 Application Display Programming V6R1

CSRNAME=dialog-variable-name

This attribute must name a CHAR 10 dialog variable used by the UIM to contain the name of the

item where the cursor is positioned.

 The UIM updates this variable after the panel is displayed, before the panel exit program or any

action routines are called. It contains the name of the item where the cursor is positioned on exit from

the panel. If the cursor was not on any item, the CSRNAME dialog variable is set to blanks.

 The value of this variable may be used to position pop-up windows adjacent to a field using the Add

Pop-Up Window (QUIADDPW) API.

Optional Text

panel-title-text

The title used on this panel. The text must appear on the same or next line as the tag. The text cannot

contain other tags, and is limited in length based on the width of the panel. The panel-title-text may

be no more than 55 bytes long and is required unless the TITLE attribute is specified on this tag.

Example: Panel Definition

This example defines a panel and sets up the elements used within the panel.

UIM Source

:panel name=main

 help=hmain

 panelid=zmenu

 keyl=small

 .My Main Menu

:menu depth=’*’.

:topinst.Select one of the following:

:menui help=MNUSER option=1

 action=’CMD MENU X’

 .Display menu X

:menui help=MNSYS

 option=2

 action=’CMD MENU SYSOPR’

 .System operations

:menui help=MNOFF

 option=90

 action=’CMD SIGNOFF’

 .Sign off

:emenu.

:cmdline size=long.Selection or command

:epanel.

PANEL Tag

Appendix A. UIM Panel Group Definition Language 593

Results

 MAIN My Main Menu

 System: SYSTEM01

 Select one of the following:

 1. Display menu X

 2. System operations

 90. Sign off

 Selection or command

 ===> __

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

PARML (Parameter List)

 The parameter list (PARML) tag identifies parameter terms and descriptions. These tags are only allowed

in information areas and help areas. This tag requires a matching end tag. The terms defined and their

definitions are identified by the parameter term (PT) tag and the parameter definition (PD) tag,

respectively.

Note: Care should be taken when using unformatted lines (LINES), figure (FIG), and example (XMP) tags

within parameter lists because text that does not fit on one line wraps to column one of the next

line. Lines and figures start at the current left margin, and examples are indented four spaces from

the current left margin. The current left margin changes when nested lists are formatted. If there is

online help information containing lines, figures, or examples imbedded at various locations,

including within lists, it may not look the same each time.

Parameter lists can occur anywhere in text; they can be nested within other lists, and other lists can be

nested within parameter lists. Two PT or two PD tags cannot be used consecutively.

Nested PARML tags increase the current left margin by four.

Other tags can be nested within the PARML tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

��

:PARML.

�

:PT.

parameter-term

:PD.

description

:EPARML.

��

PANEL Tag

594 Application Display Programming V6R1

Table 77. Tags Allowed Between the PARML and EPARML Tags

Tag Name Order Use Page

FIG (Figure) 1 B 519

LINES (Unformatted lines) 1 B 538

XMP (Example) 1 B 631

NT (Note) 1 B 582

P (Paragraph) 1 B 585

PC (Paragraph

continuation)

1 B 596

LP (List part) 1 B 571

OL (Ordered list) 1 B 583

SL (Simple list) 1 B 614

UL (Unordered list) 1 B 625

PARML (Parameter list) 1 B 594

DL (Definition list) 1 B 517

Required Tags

PT.parameter-term

The parameter term. The term formats in highlight phrase 2 (HP2) and can contain the programming

keyword (PK) or programming variable (PV) tags.

 The term appears on a line by itself, starting at position four relative to the current left margin.

PD.parameter-description

The description of the parameter. It can also contain the PK and PV tags.

 The definition is printed on the following line, with the paragraph indented eight spaces from the

current left margin. It is an implied paragraph and can contain any text items. Additional paragraphs

can be inserted following the description paragraph by using the paragraph tag.

Example: Parameter List

This example uses a parameter list to define terms or parameters.

UIM Source

:PARML.

:PT.TERM

:PD.This is a description of

the term. :PK.Term:EPK. is

a programming keyword.

:PT.:PK def.DEFAULT:EPK.

:PD.This is a sample default

parameter.

:PT.:PV.variable:EPV.

:PD.This is a parameter variable.

:EPARML.

Results

TERM

This is a description of the term. Term is a programming keyword.

DEFAULT

This is a sample default parameter.

PARML, PT, PD Tags

Appendix A. UIM Panel Group Definition Language 595

variable

This is a parameter variable.

PC (Paragraph Continuation)

 The paragraph continuation (PC) tag identifies the continuation of a paragraph that has been interrupted

by another document element. This tag is allowed only in information areas and help areas.

A paragraph continuation usually occurs after a figure, example, or a list. It indicates that the following

text is a continuation of the paragraph interrupted by a figure, example, or list.

A matching end tag is not allowed. A paragraph continuation is implicitly ended by another paragraph or

by a higher-level element.

Example: Paragraph Continuation

The paragraph continuation tag continues the paragraph after the interruption of an example.

UIM Source

:p.If you enter the following

command

:xmp.

WRKSPLF

:exmp.

:pc.a listing of all my spool files

appears on the

terminal.

Results

If you enter the following command

WRKSPLF

a listing of all my spool files appears on the terminal.

PDACCEL (Pull-Down Accelerator)

 The pull-down choice accelerator (PDACCEL) tag defines text to be displayed as the accelerator key for a

pull-down choice.

This tag defines only the text displayed. It does not automatically define the function key. It is your

responsibility to define the function key with the key list item (KEYI) tag to perform the action defined

for the pull-down choice accelerator.

Required Text

accelerator-text

The displayable description for the accelerator key. The text must appear on the same or next line as

the tag. The text cannot contain any other tags, and cannot exceed 4 bytes in length.

�� :PC. paragraph-continuation-text ��

�� :PDACCEL . accelerator-text ��

PARML, PT, PD Tags

596 Application Display Programming V6R1

The accelerator text is displayed to the right of its pull-down choice. The first character of each

accelerator in the pull-down field is left-aligned two spaces after the longest text for any pull-down

choice.

PDFLD (Pull-Down Field)

 The pull-down field (PDFLD) tag defines a selection field within the menu bar pull-down. A pull-down

field consists of one or more pull-down choices. The pull-down fields are formatted according to the IBM

Systems Application Architecture (SAA) basic interface.

A single pull-down field can be defined for one menu bar choice between the menu bar choice (MBARC)

and the EMBARC tags. The largest option number allowed for a pull-down choice is 99. The number of

pull-down choices allowed to be specified between the PDFLD tag and the EPDFLD tag is determined by

how many choices fit on the screen, based on conditioning. The maximum number of pull-down choices

active at one time is determined by what fits on a screen.

Other tags can be nested within the PDFLD tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 78. Tags Allowed Between the PDFLD and EPDFLD Tags

Tag Name Order Use Page

PDACCEL (Pull-down

choice accelerator)

1 D 596

PDFLDC (Pull-down field

choice)

1 D 598

Optional Attribute

NAME=pull-down-field-name

The name associated with the pull-down field. For more information on the rules for naming, see

“Name Syntax” on page 461.

�� :PDFLD

NAME

=

pull-down-field-name
 . :EPDFLD. ��

PDACCEL Tag

Appendix A. UIM Panel Group Definition Language 597

PDFLDC (Pull-Down Field Choice)

 The pull-down field choice (PDFLDC) tag defines one choice within a pull-down field. A pull-down field

consists of one or more pull-down choices.

Required Attributes

OPTION=option-number

The number assigned to this option. Option numbers are integers in the range of 1 through 99.

 The pull-down choices are displayed in the order defined in the pull-down field. If the numbering of

two choices is not consecutive, a blank line is automatically placed between the two choices.

HELP=help-module-name

Identifies help information explaining the purpose of the pull-down field choice. The name of the

help module may be a name imported from another panel group, but must follow the rules for

names outlined earlier in this chapter. For more information on the rules for names, see “Name

Syntax” on page 461.

 The online information identified by this attribute is displayed when help is requested while the

cursor is positioned on text for this tag. This online information is also included as part of the

contextual help displayed when the cursor is positioned on the text for the menu bar choice for this

pull-down menu, or when the cursor is positioned within the pull-down menu but not on the text for

one of the choices. If the cursor is in the entry field and a valid choice has been entered when help is

requested, the help for that choice is displayed.

ACTION='action-text'

The action occurring when the pull-down choice is selected.

 Table 79. Valid Action Text for ACTION Values

Dialog Command ACTFOR=PANEL ACTFOR=LIST

CALL X X

CHGVIEW X

CMD X X

CMDLINE X

DSPHELP X

EXIT X

EXTHELP X

�� :PDFLDC OPTION = option-number HELP = help-module-name ACTION = ’ action-text ’ �

�
PANEL

ACTFOR

=

LIST

CONFIRM

=

internal-panel-name
 �

�
USREXIT

=

’

CALL program-reference

’

VARUPD

=

YES

NO

COND

=

condition-name
 �

�
AVAIL

=

condition-name

AVLMSGID

=

message-identifier
 �

�
AVLMSGF

=

’

qualified-message-file-name

’

CHOICE

=

dialog-variable-name
 �

� .

pull-down-choice-text
 ��

PDFLDC Tag

598 Application Display Programming V6R1

Table 79. Valid Action Text for ACTION Values (continued)

Dialog Command ACTFOR=PANEL ACTFOR=LIST

HELPHELP X

HELPIDX X

KEYSHELP X

MENU X

RETRIEVE X

RETURN X X

For a description of each of these actions, see Appendix B, “UIM Dialog Commands,” on page 633.

Optional Attributes

ACTFOR=PANEL | LIST

If PANEL is specified, the pull-down choice performs actions against the whole panel.

 If LIST is specified, the pull-down choice performs actions against items in a selection list or in an

action list.

 When LIST is specified on a pull-down choice and if the user has not selected a list to be processed,

the pull-down choice is displayed with an asterisk (*) overlaying the option number to indicate that

the pull-down choice is not available.

CONFIRM=internal-panel-name

The name of the confirmation panel displayed before the action is performed. This attribute is

allowed only when ACTFOR=LIST and ACTION=CALL or ACTION=CMD is specified on this tag. The

confirmation panel must give the user the option to confirm or not confirm the action. If the action is

confirmed, the appropriate actions from this tag are performed. If the action is not confirmed, none of

those actions are performed.

 The confirmation panel must be another panel defined within this panel group.

 For a list of the recommended and required conventions for this attribute, see “Confirmation Panel

Requirements” on page 601 and “Confirmation Panel Conventions” on page 601.

USREXIT='CALL program-reference'

Specifies the exit program for the action list program called to update the list entries after the action

defined in the ACTION attribute is performed. This attribute is allowed only when ACTFOR=LIST and

ACTION=CALL or ACTION=CMD is specified on this tag. The program is passed information that

includes the name of the list and an indication of whether the option succeeded or failed.

 For a description of the CALL dialog command, see Appendix B, “UIM Dialog Commands,” on page

633.

 For a description of the interface between the UIM and the exit program for action lists, see the

Application programming interfaces topic collection in the i5/OS Information Center.

VARUPD=YES | NO

This attribute is allowed only when PANEL is specified on the ACTFOR attribute for this tag. When

ACTFOR=LIST is specified, variable pool updating is performed. If YES is specified, validity checking

occurs and the variable pool is updated before the action takes place.

 If NO is specified, the action is performed immediately and no variable pool updating occurs.

 Dialog Command VARUPD Values

CALL YES | NO

CHGVIEW YES

CMD YES | NO

CMDLINE NO

PDFLDC Tag

Appendix A. UIM Panel Group Definition Language 599

Dialog Command VARUPD Values

DSPHELP NO

EXIT NO | YES

EXTHELP NO

HELPHELP NO

KEYSHELP NO

HELPIDX NO

MENU YES

RETRIEVE NO

RETURN YES | NO

Note: The default value is based on the ACTION attribute. The first value is the default value.

COND=condition-name

The pull-down choice is in effect on the panel only if the condition specified evaluates to true. The

condition must be defined in the panel group prolog with the condition definition (COND) tag. When

the choice is conditioned-off, it does not appear in the pull-down and the help for the choice is not

included in requests to display help.

AVAIL=condition-name

The name of a condition used by the UIM to determine whether or not the pull-down choice is

available. The condition must be defined in the panel group prolog with the COND tag.

 When the condition is true, the pull-down choice is available. When the condition is false, the

pull-down choice is not available. Any condition specified on the COND attribute of this tag takes

precedence over this attribute.

 Unavailable choices are displayed with a color change on color devices and an asterisk (*) overlaying

the first part of the choice option number.

AVLMSGID=message-identifier

The message identifier of the message displayed when the pull-down choice is selected when it is not

available as specified by the AVAIL attribute. This attribute is allowed only when the AVAIL attribute is

specified on this tag. If this attribute is not specified, the UIM displays a default message stating that

the choice is currently not available.

AVLMSGF='qualified-message-file-name'

The message file name containing the message identifier. This attribute is allowed only when the

AVLMSGID attribute is specified on this tag. If the DFTMSGF attribute is not specified on the panel group

(PNLGRP) tag, and if the AVLMSGID attribute on this tag is specified, this attribute must be specified.

CHOICE=dialog-variable-name

The name of a dialog variable containing the pull-down choice text to be displayed. The dialog

variable must be defined with a width less than or equal to 32 bytes. If this attribute is used, no

pull-down-choice-text can be specified.

 Dialog variables must be defined with a BASETYPE of CHAR, IGC, or BIN on the class definition

(CLASS) tag.

 The error state of the dialog variable is not used for determining the highlighting of the text.

 Special formatting for IGC. (The abbreviation IGC is used in commands and keywords to represent

double-byte character set functions.) When a dialog variable with a BASETYPE of IGC is specified on

the CLASS tag, the UIM does special formatting. If the variable value begins with a shift-out

character (X'0E'), the UIM shifts the value 1 byte to the left to preserve vertical alignment with

choices on other lines.

PDFLDC Tag

600 Application Display Programming V6R1

Optional Text

pull-down-choice-text

The descriptive text shown in the pull-down field. The text may appear on a single line in the source.

The text can contain only the reverse text (RT) tag, and cannot exceed 32 bytes in length. The

pull-down-choice-text is required unless the CHOICE attribute is specified on this tag.

 For a pull-down choice, the option number, a period, and one blank appears immediately before the

choice description text. The NBRSHAPE attribute of the PNLGRP tag explains how option numbers are

presented when BIDI=LTR or when BIDI=RTL is specified on the PNLGRP tag.

Confirmation Panel Requirements

The panel named on the CONFIRM attribute of this tag must follow these conventions:

v The ENTER attribute on the display panel (PANEL) tag of the confirmation panel should have ’RETURN

100’ coded. This indicates to the UIM that the action is confirmed by the user.

v No ACTION attribute on a key list item (KEYI) tag can be assigned to the RETURN action, because the

UIM is handling the display of the panel and is unable to interpret the returned value.

v The confirmation panel must have a list area.

v The list used as the confirmation list must not also be used on the action list panel.

v The confirmation panel must not have an action list, a command line, a menu area, or a menu bar.

Confirmation Panel Conventions

The panel named on the CONFIRM attribute of this tag should follow these conventions:

v It should have title text and top instructions as appropriate to describe the panel.

v It should have a single list area with a list definition that contains the same (or a subset of) columns

defined in the original action or selection list.

v The list should be scrollable.

v If the action list has multiple views, the confirmation list should also have multiple views and the

same dialog variable should be used for the view variable on both lists. The confirmation panel should

also have a function key defined for the CHGVIEW dialog command. This allows a change view

operation on the confirmation panel to change the view of the action or selection list panel when it is

redisplayed.

v The confirmation panel should have function key definitions for the ENTER, CANCEL, PAGEUP,

PAGEDOWN, HELP, and PRINT dialog commands.

v If a general exit program is defined, it should avoid making changes to the list or condition values that

affect the redisplay of the original panel.

v The list used on the confirmation panel should not be used on anything but a confirmation panel,

because the UIM deletes and changes the contents of that list. If multiple confirmation panels are used

within a UIM application, they can share the same list.

v Most of the online help information for the action list panel can be used for the confirmation panel, but

separate help information should be provided for the action column and for the extended panel help.

PK (Programming Keyword)

 The programming keyword (PK) tag identifies a programming keyword. This tag is only allowed in

information areas and help areas. It requires a matching end tag.

�� :PK

DEF
 . programming-keyword-text :EPK. ��

PDFLDC Tag

Appendix A. UIM Panel Group Definition Language 601

A programming keyword can occur anywhere in text. It helps explain the elements of programming

syntax and is frequently used within parameter lists. For more information on parameter lists, see

“PARML (Parameter List)” on page 594.

The PK and EPK tag phrase must be specified on word boundaries. If the two characters immediately

following the EPK tag are a punctuation mark and a blank, the UIM automatically extends the emphasis

attribute to include the punctuation mark. This allows the punctuation mark and the text associated with

it to be displayed with the same emphasis.

Optional Attribute

DEF

Specifies that the programming keyword is a default value. The programming keyword formats in

highlight phrase 2 (HP2) unless the DEF attribute is specified. If the DEF attribute is specified, the

programming keyword formats as highlight phrase 3 (HP3).

Required Text

programming-keyword-text

Specifies the programming keyword.

PNLGRP (Panel Group)

 The panel group (PNLGRP) tag begins the definition of a panel group. Only one PNLGRP tag is allowed

and a matching EPNLGRP tag is required.

Other tags can be nested within the PNLGRP tag. These tags are listed in the following table. This table

defines the order in which the tags must appear and specifies on which page more information can be

found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 80. Tags Allowed Between the PNLGRP and EPNLGRP Tags

Tag Name Order Page

COPYR (Copyright) 1 488

ISCHSYN (Index search synonym) any 532

IMPORT (Import) 2 528

�� :PNLGRP

SCHIDX

=

qualified-object-name

NO

ENBGUI

=

YES

SBCS

TXTMODE

=

DBCS

 �

�
TXTCHRID

=

’

character-set code-page

’

NONE

BIDI

=

LTR

RTL

ARABIC

NBRSHAPE

=

HINDI

 �

�
DFTMSGF

=

qualified-message-file-name

SUBMSGF

=

’

qualified-message-file-name

’
 �

� . :EPNLGRP. ��

PK Tag

602 Application Display Programming V6R1

Table 80. Tags Allowed Between the PNLGRP and EPNLGRP Tags (continued)

Tag Name Order Page

CLASS (Class definition) 3 470

VAR (Variable definition) 4 626

VARRCD (Variable record definition) 5 629

LISTDEF (List definition) 6 565

COND (Condition definition) 7 484

TT (Truth table) 8 623

MBAR (Menu bar) 9 572

KEYL (Key list) 10 537

PANEL (Display panel) 11 587

PRTHEAD (Print head panel) 11 605

PRTPNL (Print panel) 11 610

HELP (Help module) 11 521

Optional Attributes

SCHIDX=qualified-object-name

The index search object used when the index search function is requested from the help modules for

panels defined in this panel group. If SCHIDX is not specified, the index search function is not

accessible when help modules are displayed for panels in this panel group. This attribute has no

effect on help modules defined in the panel group unless panels in the panel group use the help

modules.

ENBGUI=NO | YES

Specifies the default value for enabling a client program for all panels in the panel group. This

attribute establishes the value when ENBGUI=PNLGRP is specified or defaulted on the PANEL tag.

 When ENBGUI=YES is specified for a panel, the UIM includes information about the layout and

content of the panel in the 5250 data stream. This information is used by a client program to create

the graphical interface on the client. Table 76 on page 590 describes the information that is included

in the 5250 data stream.

 When ENBGUI=NO is specified for a panel, the UIM does not include the extra information in the data

stream.

TXTMODE=SBCS | DBCS

Specifies whether a single-byte character set (SBCS) or double-byte character set (DBCS) is used in the

tag text. If DBCS is specified, the tag text must have the shift-in or shift-out characters to indicate the

start and end of DBCS text.

 A panel group object for which TXTMODE=DBCS is specified can only be used on a display station and

system capable of handling DBCS information. An attempt to display a DBCS menu, open a DBCS

panel group object, or present DBCS help information on a device that does not support DBCS results

in an exception.

TXTCHRID='character-set code-page'

Specifies the character set and code page for SBCS text data in the panel group source. This

information is used for synonyms defined using the index search synonym (ISCHSYN) tag. For more

information on this tag, see “ISCHSYN (Index Search Synonym)” on page 532. If this attribute is

omitted, all text must be on the index search (ISCH) and ISCHSYN tags to be in the character set and

code page specified by the QCHRID system value at the time the panel group is created.

PNLGRP Tag

Appendix A. UIM Panel Group Definition Language 603

The TXTCHRID attribute specifies the code page and character set of the text information in the panel

group source. It must not be confused with the CHRID parameter on the CRTPNLGRP command,

which controls the way dialog variables with CHRID=PNLGRP specified on the class definition

(CLASS) tag are handled when the dialog variable value is sent to or from the display station.

BIDI=NONE | LTR | RTL

Indicates the orientation of the panels in the panel group. NONE indicates that the panels in the

panel group should be displayed in a single direction with a left-to-right orientation. NONE is the

default and is required when TXTMODE=DBCS is specified on this tag.

 When BIDI=NONE is coded, the following items are ignored:

v The NBRSHAPE attribute on this tag

v The BIDI, NBRSHAPE, CONTXTREV, and SYMSWAP attributes on the CLASS tag

v All reverse text (RT) tags

LTR indicates that the panels in the panel group are bidirectional and should be displayed with a

left-to-right orientation.

 RTL indicates that the panels in the panel group are bidirectional and should be displayed with a

right-to-left orientation.

 When either LTR or RTL is specified for a panel group, the work station controller enables the hot

key to flip the panel so that the user can flip the panel if necessary. When RTL is specified, the

controller automatically flips all panels of the panel group as they are displayed.

 The normal use of LTR is for panels written in a left-to-right language with a small amount of

right-to-left language text in it. The normal use of RTL is for panels written in a right-to-left language

with a small amount of text in a left-to-right language.

 The UIM does not allow a LTR or RTL panel to be used on a display device that does not have the

correct code page for bidirectional languages. Hebrew uses code page 424 and Arabic uses code page

420.

 The value of this attribute of all possible panel groups that can be reached through hypertext links

should be the same. If they are not the same when a reference phrase is selected, the resulting screen

or pop-up window may be displayed with the opposite orientation.

NBRSHAPE=ARABIC | HINDI

This attribute is ignored when BIDI=NONE is specified on this. The NBRSHAPE attribute controls the

display shape of UIM-generated numbers. This attribute is ignored except when code page 420

(Arabic) is being used.

 When ARABIC is specified, the normal digits, X'F0' through X'F9', are used for numbers. ARABIC is

the default.

 When HINDI is specified, the translation of digits is performed with a translation table defined for

each national language.

 Digits that come from the panel group source or from messages are not affected by the NBRSHAPE

attribute because they are expected to already be translated to the correct character. The numbers that

are affected by the NBRSHAPE attribute are:

v Numbers generated by the UIM for menu items

v Numbers generated by the UIM for ordered list numbers

v Numbers generated by the UIM for pull-down field choices

v Page number information on a print panel and printed help information

Numbers that are not affected by the NBRSHAPE attribute are:

PNLGRP Tag

604 Application Display Programming V6R1

v The digits used in the system name

v Messages displayed on the message line

v Copyright dates on the message line

v Product number information on a print panel and in printed help information

Because the Hindi zero looks like a period, the format of the number in front of a menu item or

pull-down choice is 'n)' instead of 'n.', where 'n' is the menu item or choice option number.

DFTMSGF= qualified-message-file-name

The default message file used when a message file is not specified for a message identifier on any of

the following tags:

CHECK Validity checking

LISTDEF List definition

TL Translation list

DATASLTC Data selection field

PDFLDC Pull-down field choice

LISTACT List action

MENUI Menu item

If the corresponding message file attribute is not specified on any of these tags when the MSGID

attribute is specified for this tag, this attribute is required.

SUBMSGF= qualified-message-file-name

The default message file used when a message file is not specified on the &msg symbol.

PRTHEAD (Print Head Panel)

 A print head panel (PRTHEAD) tag contains tags defining heading information and data used with a

UIM print application. A print heading panel establishes the prolog section printed after the title line on

the first page and the header data printed at the top of every page. The prolog and header sections can

be made up of data and information areas. A PRTHEAD panel causes an automatic page eject.

Other tags can be nested within the PRTHEAD tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

�� :PRTHEAD NAME = panel-name

PRODINFO

=

dialog-variable-name
 �

�
PRTDATE

=

dialog-variable-name

PRTTIME

=

dialog-variable-name
 �

�
TITLE

=

dialog-variable-name

TT

=

truth-table-name

80

WIDTH

=

132

 �

�
OBJ

=

dialog-variable-name

OBJLIB

=

dialog-variable-name
 �

� . :EPRTHEAD.

page-title-text
 ��

PNLGRP Tag

Appendix A. UIM Panel Group Definition Language 605

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 81. Tags Allowed Between the PRTHEAD and EPRTHEAD Tags

Tag Name Order Use Page

DATA (Data presentation

area)

1 P 488

INFO (Information area) 1 P 529

PRTTRAIL (Print trail) 2 P 611

Required Attribute

NAME=panel-name

The name of the print head panel. For more information on the rules for naming, see “Name Syntax”

on page 461.

Optional Attributes

PRODINFO=dialog-variable-name

The name of a dialog variable containing the product information printed on the second title line of

the print output.

 The dialog variable must be defined with a BASETYPE of CHAR or IGC on the class definition

(CLASS) tag, and the maximum width is 22 bytes.

PRTDATE=dialog-variable-name

The name of a dialog variable containing the date printed on the page title. If this attribute is

specified, the PRTTIME attribute must also be specified on this tag. If this attribute is not specified, the

UIM uses the current system date when the Open Print Application (QUIOPNPA) API or the Add

Print Application (QUIADDPA) API is called.

 The dialog variable must be defined with a class that has a BASETYPE of DATE on the CLASS tag.

PRTTIME=dialog-variable-name

The name of a dialog variable containing the time printed on the page title. The dialog variable must

be defined with a class that has a BASETYPE of TIME on the CLASS tag. If this attribute is specified,

the PRTDATE attribute must also be specified on this tag. If this attribute is not specified, the UIM uses

the local time when the QUIOPNPA API or the QUIADDPA API is called.

 For an 80 column print width and a dialog variable that can contain a time zone, the time zone

portion of this dialog variable is ignored. However, the time zone value can be displayed if the OBJ

and OBJLIB attributes are omitted from this tag.

TITLE=dialog-variable-name

The name of a dialog variable containing the text for the page title line. The dialog variable must be

defined on a CLASS tag with a display width of 55. A translation list may be used to provide the

panel title or the width of the panel minus two, whichever is less. The dialog variable may also be

defined with a BASETYPE of CHAR 55 or IGC 55 on the CLASS tag. The UIM trims trailing blanks

from the string and centers the resulting text in the page title area. If this attribute is used, no

title-text can be specified.

TT=truth-table-name

The name of a truth table specifying what combinations of truth values may occur at run time when

the panel head is formatted.

 The table specified on this tag may contain a subset of the conditions referred to by tags in the print

head panel. Only the truth value combinations specified in the table, augmented by worst-case

PRTHEAD Tag

606 Application Display Programming V6R1

assumptions for any truth values not specified in the table, are considered in evaluating whether or

not the print head panel is valid. The table should not exclude any truth value combination that

could occur when the print head panel is formatted at run time. If a valid truth value combination is

omitted, a panel group object may create without error and produce undesirable results when panels

are printed.

 If this attribute is omitted, all combinations of truth values are considered possible. This causes the

tag language compiler to make worst-case assumptions for all conditions in evaluating whether or

not the print head panel is valid.

WIDTH=80 | 132

Defines the width, in bytes, of the PRTHEAD panel. The default value is 80 bytes.

OBJ=dialog-variable-name

The name of a dialog variable containing the name of the object whose information is printed on the

title line of the printout. If this attribute is not specified, an object name is not printed.

 If the OBJLIB attribute on this tag is specified, the class for this dialog variable must be defined with a

width of 10 characters. If the OBJLIB attribute is not specified, the class for this dialog must be

defined with a width of 1 to 21 characters.

OBJLIB=dialog-variable-name

The name of a dialog variable containing the name of the library where the specified object from the

OBJ attribute on this tag is found. This library name is printed on the title line of the printout. If this

attribute is not specified, a library name is not printed.

 You are responsible for the validity of the data contained in the OBJ and OBJLIB attributes. The UIM

does not perform validity checking on these variables. If only the OBJ attribute is specified, only the

OBJ is printed. However, if only the OBJLIB attribute is specified, a message is issued at compile time.

 The class for this dialog variable must be defined with a width of 10 characters.

Optional Text

page-title-text

The title used on the title line. The text must appear on the same line or next line as the tag. The text

can only contain the reverse text (RT) tag, and cannot exceed 55 characters in length. The

page-title-text is required unless the TITLE attribute is specified on this tag.

Layout of the Title Lines

The title lines for the PRTHEAD tag appear on the top two lines of each printed page. The placement of

fields in the title lines depends on the width specified on this tag.

 Table 82. First Line of Heading with Print Width 132

Data Start Column Length

Title See note. Max. 55

 Separator See note. 4

″Page″ (with expansion) See note. Max. 11

 Separator 125 2

Page number 127 4

 Separator 131 2

Note: The start column for this data is variable. The title is centered between the left margin and the separator

following the title.

PRTHEAD Tag

Appendix A. UIM Panel Group Definition Language 607

Table 83. First Line of Heading with Print Width 80

Data Start Column Length

Title See note. Max. 55

 Separator See note. 4

″Page″ (with expansion) See note. Max. 11

 Separator 73 2

Page number 75 4

 Separator 79 2

Note: The start column for this data is variable.

 Table 84. Second Line of Heading with Print Width 132

Data Start Column Length

Product information 1 22

 Separator 23 Min. 55

Library See note. Max. 10

 Slash See note. 1

Object See note. Max. 10

 Separator 99 4

System name 103 8

 Separator 111 2

Date 113 8

 Separator 121 2

Time 123 8

 Separator 131 2

Note: The library and object are formatted as OBJLIB/OBJ with trailing blanks stripped from the OBJLIB and OBJ

values. The OBJLIB/OBJ aggregate is right-justified against the separator before the system name.

 Table 85. Second Line of Heading with Print Width 132 and time zone

Data Start Column Length

Product information 1 22

 Separator 23 Min. 55

Library See notes 1 and 2. Max. 10

 Slash See notes 1 and 2. 1

Object See notes 1 and 2. Max. 10

 Separator See note 2. 4

System name See note 2. 8

 Separator See note 2. 2

Date See note 2. 8

 Separator See note 2. 2

Time See note 2. 8

 Separator See note 2. 1

Time zone See note 2. Max. 10

PRTHEAD Tag

608 Application Display Programming V6R1

Table 85. Second Line of Heading with Print Width 132 and time zone (continued)

Data Start Column Length

 Separator 131 2

Notes:

1. The library and object are formatted as OBJLIB/OBJ with trailing blanks stripped from the OBJLIB and OBJ

values. The OBJLIB/OBJ aggregate is right-justified against the separator before the system name.

2. Trailing blanks are stripped from the time zone and all information starting with the library up to and including

the time zone is right-justified against the separator before the end of the heading.

 Table 86. Second Line of Heading with Print Width 80

Data Start Column Length

Product code 1 Max. 22

 Separator 23 Min. 3

Library See note. Max. 10

 Slash See note. 1

Object See note. Max. 10

 Separator 47 4

System name 51 8

 Separator 59 2

Date 61 8

 Separator 69 2

Time 71 8

 Separator 79 2

Note: The library and object are formatted as OBJLIB/OBJ with trailing blanks stripped from the OBJLIB and OBJ

values. The OBJLIB/OBJ aggregate is right-justified against the separator before the system name.

In order to print a time zone on a panel with an 80 column print width, the OBJ and OBJLIB attributes

must be omitted.

 Table 87. Second Line of Heading with Print Width 80 and time zone

Data Start Column Length

Product code 1 Max. 22

 Separator 23 Min. 1

System name See note. 8

 Separator See note. 2

Date See note. 8

 Separator See note. 2

Time See note. 8

 Separator See note. 1

Time zone See note. Max. 10

 Separator See note. 2

Note: Trailing blanks are stripped from the time zone, and all information starting with the system name up to and

including the time zone is right-justified against the separator before the end of the heading.

PRTHEAD Tag

Appendix A. UIM Panel Group Definition Language 609

Example: Print Title Line

The following example has a title line for output with a width of 132 bytes. The title is from the print

head panel or the first print panel. The page text and page number are provided by the UIM.

Either the UIM or the application can provide the date and time. The application must use the PRTDATE

and PRTTIME attributes on the PRTHEAD tag to specify a date and time. If the PRTDATE and PRTTIME

attributes are not specified, the UIM uses the system date and time when the QUIOPNPA API or the

QUIADDPA API is called. The date and time are formatted using the job attributes.

 This is an Example of a Print Title Line Page 1

5722SS1 V5R4M0 060210 QNETUSER/EXAMPLE SYSTEM01 02/10/06 11:09:04

PRTPNL (Print Panel)

 A print panel (PRTPNL) tag contains tags to define one or more area definitions for a print panel. It

requires a matching EPRTPNL tag.

Other tags can be nested within the PRTPNL tag. These tags are listed in the following table. The table

defines the order in which the tags must appear, indicates which tags can be used in display panels only,

print panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 88. Tags Allowed Between the PRTPNL and EPRTPNL Tags

Tag Name Order Use Page

DATA (Data presentation

area)

1 P 488

INFO (Information area) 1 P 529

LIST (List area) 1 P 544

Required Attribute

NAME=panel-name

The name of the print panel. For more information on the rules for naming, see “Name Syntax” on

page 461.

Optional Attributes

TITLE=dialog-variable-name

The name of a dialog variable containing the text for the panel title when the panel is printed. The

�� :PRTPNL NAME = panel-name

TITLE

=

dialog-variable-name

TT

=

truth-table-name
 �

�
80

WIDTH

=

132

.

:EPRTPNL.

title-text

 ��

PRTHEAD Tag

610 Application Display Programming V6R1

dialog variable must be defined with a class that has a width of 55. The UIM trims trailing blanks

from the string and centers the resulting text in the title line of the print panel. If this attribute is

used, no title-text can be specified.

TT=truth-table-name

The name of a truth table that specifies what combinations of truth values may occur at run time

when the panel is printed.

 The table specified on this tag may contain a subset of the conditions referred to by tags in the print

panel. Only the truth value combinations specified in the table, augmented by worst-case

assumptions for any truth values not specified in the table, are considered in evaluating whether or

not the print panel definition is valid. The table should not exclude any truth value combination that

could occur when the print panel is printed. If a valid truth value combination is omitted, a panel

group object may create without error and produce undesirable results when panels are printed.

 If this attribute is omitted, all combinations of truth values are considered possible. This causes the

tag language compiler to make worst-case assumptions for all conditions in evaluating whether or

not the print panel is valid.

WIDTH=80 | 132

Defines the width, in bytes, of the print panel. The default value is 80 bytes.

Optional Text

title-text

The title used on this print panel. The text must appear on the same or next line as the tag. The text

can only contain the reverse text (RT) tag, and cannot exceed 55 characters in length. The title-text is

not allowed if the TITLE attribute is specified on this tag.

PRTTRAIL (Print Trailer Message)

 The print trailer message (PRTTRAIL) tag is allowed only within the print head panel (PRTHEAD) tag,

appearing immediately before the EPRTHEAD tag. The trailer message is printed at the end of the print

listing. If no trailer is specified, no default trailer is printed.

Note: The trailer is only printed when the printer file is closed by using the option for a normal close on

either the Close Application (QUICLOA) API or the Remove Application (QUIRMVPA) API. The

trailer is not printed if the application is closed using the option for an abnormal close.

Required Text

trailer-message-text

The text appearing at the end of the print listing. This text can be entered without leading or trailing

asterisks (*). The UIM adds asterisks before and after the text.

 The text can be a maximum of 106 bytes for WIDTH=132 and a maximum of 54 bytes for WIDTH=80,

specified on a PRTHEAD tag. The text can contain only the reverse text (RT) tag.

Example: Trailer Message

This example shows what kind of text a print trailer message might have.

UIM Source

 :prttrail.E N D O F L I S T I N G

�� :PRTTRAIL. trailer-message-text ��

PRTPNL Tag

Appendix A. UIM Panel Group Definition Language 611

PV (Programming Variable)

 The programming variable (PV) tag identifies a programming variable. It requires a matching end tag.

These tags are only allowed in information areas and help areas. It is frequently used within parameter

lists. For more information on parameter lists, see “PARML (Parameter List)” on page 594.

A programming variable can occur anywhere in the text to help explain the elements of programming

syntax.

The PV and EPV tag phrase must be specified on word boundaries. If the two characters immediately

following the EPV tag are a punctuation mark and a blank, the UIM automatically extends the emphasis

attribute to include the punctuation mark. This allows the punctuation mark and the text associated with

it to be displayed using the same emphasis.

Required Text

programming-variable

The programming variable. The text formats in highlight phrase 1 (HP1).

RT (Reverse Text)

 The reverse text (RT) tag indicates that the enclosed text has an orientation opposite to the orientation of

the panel group. This tag is ignored for panel groups with BIDI=NONE specified on the panel group

(PNLGRP) tag. On a BIDI=RTL panel group, text in a left-to-right language is placed between the RT and

ERT tags, while on a BIDI=LTR panel group, text in a right-to-left language is placed between the RT and

ERT tags.

With the import (IMPORT) tag, it is possible to combine help information from panel groups that have

BIDI=RTL specified with help information from panel groups that have BIDI=LTR specified. This is not

recommended, but when it does occur, the user needs to use the hot key sequence for the work station

controller to flip the screen to read the help information with the opposite orientation. Any text within

the RT and ERT tags is formatted correctly for its panel group orientation. Therefore, when the RT tag is

used for text that is imported into help information with the opposite orientation, the imported text is

also readable when the screen is flipped.

Unlike the highlight phrase tags, the RT tag is allowed within the text of most tags. The following tags

allow an imbedded RT tag:

BOTINST Bottom instructions

CIT Title citation

CMDLINE Command line

DATA Data area

DATASLTC Data selection choices

DATAGRP Data group

DATAI Data item

�� :PV. programming-variable :EPV. ��

�� :RT. reverse-direction-text :ERT. ��

PV Tag

612 Application Display Programming V6R1

DD Definition

DDHD Definition header

DT Definition term

DTHD Definition term header

FIGCAP Figure caption text

Hn Headings

HPn Highlighted phrase

INFO Information area

KEYI Key list item

LINK Hypertext link definition

LIST List area

LISTACT List action

LISTGRP List group

LI List item

LP List part

MBARC Menu bar choice

MENU Menu area

MENUI Menu item

NT Note

OPTLINE Option line

P Paragraph

PC Paragraph continuation

PD Parameter description

PT Parameter term

PRTHEAD Print head panel

PRTPNL Print panel

PRTTRAIL Print trailer message

PDFLDC Pull-down field choice

TOPINST Top instruction line

The RT tag cannot be used within a figure (FIG), unformatted lines (LINES), or an example (XMP) tag.

No tag is allowed between an RT tag and its matching ERT tag.

Blanks found between an RT tag and its matching ERT tag are preserved. This includes the trailing blank

at the end of each source line. Therefore, starting a source line with an ERT tag is not recommended.

Example 1: Left-to-Right Formatting on a Right-to-Left Panel

This example illustrates left-to-right source formatted and displayed on a right-to-left panel.

RT Tag

Appendix A. UIM Panel Group Definition Language 613

UIM Source

:P.For more information see the

:CIT.:RT.IBM i5/OS User Interface

Manager Reference Manual:ERT.:ECIT.

which you can find in your library.

Results

IBM i5/OS User eht ees noitamrofni erom roF

uoy hcihw Interface Manager Reference Manual

 .yrarbil ruoy ni dnif nac

Example 2: Left-to-Right Formatting on a Left-to-Right Panel

This example illustrates left-to-right source formatted and displayed on a left-to-right panel.

UIM Source

:P.This is an example of some

:RT.PRETEND HEBREW TEXT:ERT.

imbedded within some real

English text.

Results

This is an example of some DNETERP

TXET WERBEH imbedded within some

real English text.

SL (Simple List)

 The simple list (SL) tag identifies a list of items. It requires a matching end tag. These tags are only

allowed in information areas and help areas.

Simple lists can occur anywhere in text and can be nested within other lists.

Care should be taken when using the unformatted lines (LINES), figure (FIG), and example (XMP) tags

within simple lists, because text that does not fit on one line wraps to column one of the next line. Lines

and figures start at the current left margin, and examples are indented four spaces from the current left

margin. The current left margin changes when nested lists are formatted. If there is help information

containing the LINES, FIG, or XMP tags imbedded at various locations, including within lists, it may not

look the same each time and can cause undesirable results.

Simple lists are formatted as hanging, indented lists, with no item identifier.

Other tags can be nested within the SL tag. These tags are listed in the following table. The table defines

the order in which the tags must appear, indicates which tags can be used in display panels only, print

panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

��

:SL

.

COMPACT

�

:LI.

item-text

:ESL.

��

RT Tag

614 Application Display Programming V6R1

Table 89. Tags Allowed Between the SL and ESL Tags

Tag Name Order Use Page

FIG (Figure) 1 B 519

LINES (Unformatted lines) 1 B 538

XMP (Example) 1 B 631

NT (Note) 1 B 582

P (Paragraph) 1 B 585

PC (Paragraph

continuation)

1 B 596

LP (List part) 1 B 571

OL (Ordered list) 1 B 583

SL (Simple list) 1 B 614

UL (Unordered list) 1 B 625

PARML (Parameter list) 1 B 594

DL (Definition list) 1 B 517

Optional Attribute

COMPACT

The list is formatted with no blank line between the items.

Required Tag

:LI.item-text

The text for the list item. The text is indented four spaces from the current margin.

Example: Simple Lists

This example uses two simple lists, one imbedded within the other. The second simple list uses the

COMPACT attribute.

UIM Source

Some normal text...

:sl.

:li.First item

:sl.

:li.First item

:li.Second item

:esl.

:li.Second item

:esl.

Results

Some normal text...

First item

 First item

 Second item

Second item

SL, LI Tags

Appendix A. UIM Panel Group Definition Language 615

TEXT (Text Area)

 The text area (TEXT) tag defines a text area in a panel to be formatted by the application. Only one TEXT

tag can be specified in each panel. Menu bars and command lines are allowed, however, no other areas

can be defined in the panel.

The width of this area is determined by the WIDTH attribute of the PANEL tag which this area is defined

in.

The depth of this area is the depth of the panel. The depth of the panel is determined by the DEPTH

attribute of the PANEL tag which this area is defined in. The DEPTH value is reduced by any lines used for

other parts of the panel such as a menu bar lines, the panel title line, the command lines, the function

key line(s), and the message line(s). See the PANEL tag for a description of these dimensions.

The data passed to the UIM to be displayed in this area is described in the “Text Data” on page 617

section below.

If the Help key is pressed while the cursor is in the text area extended help for the panel is displayed.

Required Attribute

VAR=dialog-variable-name

The name of the dialog variable containing the data, or a pointer to the data, for the text area. Define

the dialog variable using a class definition (CLASS) tag with basetype of CHAR X or PTR. The

CHRID=PNLGRP attribute is not allowed on the class definition for this dialog variable.

 The data in the dialog variable is viewed by the UIM as a d by w array of characters, where d is the

depth and w is the width of the text area. Each row of the array is displayed as one line of the text

area.

 If the dialog-variable-name has a BASETYPE of CHAR on its CLASS tag, this dialog variable contains the

data for the text area.

 If the dialog-variable-name has a BASETYPE of PTR on its CLASS tag, this dialog variable contains a

pointer to the data for the text area. The data pointed to by this pointer is viewed by UIM the same

as for a dialog variable with a BASETYPE of CHAR. Any exception the UIM receives while accessing

this data will result in an escape message sent to the calling program.

 The dialog variable can be declared as any size. If there is not enough data to fill the text area the

remainder of the text area will be blank. If there is more than enough data to fill the text area only

the data needed to fill the text area will be used.

 You can use the exit program for the text area, specified on the USREXIT attribute of this tag, to

update this dialog variable each time the panel is displayed. The UIM uses the value of the dialog

variable to work with the data for the text area as described in “Text Data” on page 617. The value of

the dialog variable depends on the BASETYPE attribute on the CLASS tag of the dialog variable.

 The size of the text area can vary depending on the number of rows taken up by the function keys.

This is important to remember when coding for multiple languages or conditioning function keys

with the condition (COND) tag.

�� :TEXT VAR = dialog-variable-name USREXIT = ’CALL program-reference’ �

�
ROW

=

dialog-variable-name

COL

=

dialog-variable-name
 . ��

TEXT Tag

616 Application Display Programming V6R1

USREXIT='CALL program-reference'

The exit program called to update the value of the dialog variable on the VAR attribute each time the

panel is displayed.

 This area is considered scrollable by the UIM. If the user presses a key assigned to a scrolling dialog

command and the text area should be scrolled (as opposed to other scrollable areas on the panel), the

UIM calls the user exit program. On return the UIM redisplays the panel. For a description of the

user exit program structure passed by the UIM, see the Application programming interfaces topic

collection in the i5/OS Information Center.

 A general panel exit program should be used to diagnose if the user has scrolled too far. If the user

has scrolled too far, the general panel exit should send an appropriate message followed by the

special message to cancel the determined action. For a description of the general panel exit program

structure passed by the UIM, see the Application programming interfaces topic collection in the

i5/OS Information Center. If this is done, the message telling the user that he has scrolled too far

displays only once. If the text area exit sends the message, it might be displayed on the screen longer

than desired.

 For a description of the CALL dialog command, see Appendix B, “UIM Dialog Commands,” on page

633.

Optional Attributes

ROW=dialog-variable-name

The row of the cursor. Define the dialog variable using a class definition (CLASS) tag with BASETYPE

of BIN(31).

 The dialog variables for the row and column can be set by the application before calling the UIM to

set the location of the cursor within the text area. The first character of the first row in the text area

would be row 1 and column 1. A value of zero in either of the dialog variables tells the UIM to use

default cursor positioning.

 When the UIM returns to the application, it will set these dialog variables to the row and column

where the cursor was positioned in the text area when the user exited the panel. If the cursor was not

within the text area when the user exited the panel the row and column dialog variables will both be

zero.

COL=dialog-variable-name

The same as ROW except this is the column of the cursor.

Cursor positioning

The cursor position in a panel with a text area depends on many things. The following is a prioritized list

for where the cursor will be positioned. The first item that holds true will position the cursor.

1. If the ROW and COL attributes are used on the TEXT tag and the value of the dialog variables are valid

when the panel is displayed, the cursor is positioned at that row and column.

2. If the panel has a command line the cursor is positioned at the command line.

3. If the panel has a menu bar the cursor is positioned at the first menu bar choice.

4. If the text area has tabable highlighting classes the cursor is positioned at the first one.

5. If none of the above position the cursor the cursor will be positioned at the upper left corner of the

panel or pop-up window.

Text Data

Any character within the data can be a selection character for a highlighting class. Only output data is

allowed in a text area; no input fields are allowed. The highlighting of the text applies to the characters

following the class selection character up to another class selection character or the end of the area,

whichever occurs first.

TEXT Tag

Appendix A. UIM Panel Group Definition Language 617

The following table describes the selection characters for highlighting that are recognized by the UIM:

X’01’

X’02’

X’03’

X’04’

X’05’

X’06’

X’07’

X’11’

X’12’

X’13’

X’14’

X’15’

X’16’

X’17’

X’19’

X’1A’

X’1B’

X’1C’

X’1D’

X’1E’

X’1F’

X’21’

X’22’

X’23’

X’24’

X’25’

X’26’

X’27’

X’31’

X’32’

X’33’

X’34’

X’35’

X’36’

X’37’

X’39’

X’3A’

X’3B’

X’3C’

X’3D’

X’3E’

X’3F’

01

02

03

04

05

06

07

17

18

19

20

21

22

23

25

26

27

28

29

30

31

33

34

35

36

37

38

39

49

50

51

52

53

54

55

57

58

59

60

61

62

63

Blue

Green

Turquoise*

Red

Pink

Yellow*

White

Blue underscore

Green underscore

Turquoise underscore *

Red underscore

Pink underscore

Yellow underscore *

White underscore

Blue tab

Green tab

Turquoise tab *

Red tab

Pink tab

Yellow tab *

White tab

Blue underscore tab

Green underscore tab

Turquoise underscore tab *

Red underscore tab

Pink underscore tab

Yellow underscore tab *

White underscore tab

Blue reverse image

Green reverse image

Blue reverse image tab

Green reverse image tab

Turquoise reverse image tab

Red reverse image tab

Pink reverse image tab

Yellow reverse image tab

White reverse image tab

Turquoise reverse image

Red reverse image

Pink reverse image

Yellow reverse image

White reverse image

*

*

*

*

Normal

Normal

Normal

High Intensity

Normal

High intensity

High intensity

Normal underscore

Normal underscore

Normal underscore

High intensity underscore

Normal underscore

High intensity underscore

High intensity underscore

Normal tab

Normal tab

Normal tab

High intensity tab

Normal tab

High intensity tab

Normal underscore tab

Normal underscore tab

Normal underscore tab

High intensity underscore tab

Normal underscore tab

High intensity underscore tab

High intensity underscore tab

Normal reverse image

Normal reverse image

Normal reverse image

High intensity reverse image

Normal reverse image

High intensity reverse image

High intensity reverse image

Normal reverse image tab

Normal reverse image tab

Normal reverse image tab

High intensity reverse image tab

Normal reverse image tab

High intensity reverse image tab

High intensity reverse image tab

High intensity tab

Hexadecimal Value Decimal Value Color Display Monochrome Display

RV3W081-0* On some displays this highlighting class will display column separators
and the blank character will look like a small box on the screen.

Figure 146. Highlighting Classes Allowed in TEXT Area

TEXT Tag

618 Application Display Programming V6R1

The UIM replaces each class selection character with the appropriate display attributes for the class.

Other character values in the ranges X'10' through X'3F', as well as X'FF', are converted to X'1F',

appearing as a reverse image box on the screen. Characters X'00' (null), X'0E' (shift-out for double-byte),

X'0F' (shift-in for double-byte), and X'40' through X'FE' (normal, displayable characters), are passed

unchanged to the screen.

For best appearance you should not place text in the first and last column of a panel. This also allows

you to highlight the first word in any row easily.

If you are trying to create a tabable phrase of a particular color do not use blanks between the words of

the phrase. You should use the non-tabable highlighting class of the same color. This will give you the

most effective display on all work stations.

When a panel is displayed with tabable highlighting classes in the text area the cursor is not

automatically located on the first one. If you want this to happen you must use the ROW and COL

attributes of this tag to set the location of the cursor.

If one or more tabable highlight classes are placed next to each other in the data only the last one will

allow tabbing. The others will be ignored. The maximum number of tabable fields is 240. It may be less if

there are other input capable or tabable fields on the display such as the command line or menu bar

choices.

If any highlighting class is placed in the last column of the last row in a full screen panel or in the last

column of any row in a pop-up window, it will be ignored.

For pop-up windows highlighting classes never continue on the next line. You must use another

highlighting class if you want it to continue.

If a panel smaller than the device is displayed without adding a pop-up window first, highlighting

classes continue into the blank space to the right of the panel on the screen. To turn off these highlighting

classes use other highlighting classes at the end of each row that look like blank space.

No character set and code page conversion is done on the text area data. The application should provide

the data in the correct character set and code page for the device.

When the UIM calls the exit program to format the text area, it passes a value which identifies the BIDI

attribute on the panel group (PNLGRP) tag and the code page number of the display device.

If the NBRSHAPE and SYMSWAP attributes are used on the CLASS tag for the text area dialog variable they

will be ignored.

If DBCS data is used the application is fully responsible to make sure it displays properly. An error will

occur if you attempt to display half of a DBCS character or if one of the IGC shift characters (X'0E', X'0F')

is missing.

TEXT Tag

Appendix A. UIM Panel Group Definition Language 619

Example: Text area

 Computer bug

 ..

 ..

 ..

 ..

 ..

 ..

\\\..

((():..

///..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 F3=Exit F12=Cancel

TI (Translation List Item)

 The translation list item (TI) tag specifies a list item in a translation list. This tag must occur between

translation list (TL) and ETL tags. The item is translated on output to the panel and on input to the

variable pool.

Optional Attribute

VALUE='internal-value'.

The internal value for the dialog variable in the variable pool. This internal value is not subject to

validity checks defined by the validity checking (CHECK) tag for this class. If the same internal value

is specified more than once in the list, the first item in the list is chosen for translation on output.

 If the BASETYPE of this class is BIN, as specified on the class definition (CLASS) tag, the value may be

specified in either integer or hexadecimal notation. If the BASETYPE specified on the CLASS tag is

CHAR, IGC, DATE, TIME, NAME, or OBJNAME, the value may be specified in either string or

hexadecimal string notation. Strings are implicitly padded on the right with blanks, but no implicit

padding is done for hexadecimal notation.

 If the internal value is specified in string or hexadecimal notation, the value must be enclosed in

quotation marks in addition to apostrophes. For example, an internal value of *YES must be specified

as VALUE=’″*YES″’.

 If the BASETYPE of this class is TIME, a time zone value must not be specified.

 Omitting the VALUE attribute leaves the internal dialog variable value unchanged when the user enters

the displayed-value specified as tag content after the period. A TI tag of this type has no effect on the

way internal values are presented to the user for display.

�� :TI

VALUE

=

’internal-value’
 .

displayed-value
 ��

TEXT Tag

620 Application Display Programming V6R1

Optional Text

displayed-value

The value appearing on the panel or entered by the user. The comparisons done by the UIM to

determine what internal value to use for an external value specified by the user may be changed by

the CASE and BLANKS attributes of the CLASS tag. If the same external value appears more than once

in the list, the first item is used for translation on entry. If no value is specified, a display value of

blanks is used.

TL (Translation List)

 The translation list (TL) tag allows the specification of a translation list for a class, shielding the variable

pool from the values actually entered on the display. Values with a BASETYPE of CHAR, IGC, DATE,

TIME, NAME, OBJNAME, or that are numeric on the class definition (CLASS) tag can have a translation

list. Only one translation list is allowed for each class. Translation occurs before any validity checks are

performed.

Other tags can be nested within the TL and ETL tags. These tags are listed in the following table. This

table defines the order in which the tags must appear and specifies on which page more information can

be found for each tag.

 Table 90. Tag Allowed Between the TL and ETL Tags

Tag Name Order Page

TI (Translation list item) 1 620

Optional Attributes

CASE=UPPER | MIXED

UPPER indicates that lowercase characters (a through z) in an input field value are converted to

uppercase characters (A through Z) before comparison to the external value for each translation list

item. This conversion to uppercase occurs after any conversion for the CASE attribute on the CLASS

tag, but has no effect on the value assigned to the dialog variable or list entry if no matching

translation list item is found. It also does not change the external display value specified on each

translation list item (TI) tag; the text on the TI tag must be specified in uppercase to get a match.

 MIXED indicates that an input value is compared as it is entered with the external value specified on

each TI tag.

MSGID=message-identifier

The message identifier of the message sent if the translation fails because the user entered a value not

specified in the list. If this attribute is not specified, the UIM assumes that the entered value is valid

as it is entered and passes the value on to validity checking for the class.

MSGF='qualified-message-file-name'

The message file containing the message sent for this error if the translation fails. If the DFTMSGF

attribute is not specified on the panel group (PNLGRP) tag, this attribute must be specified if the

MSGID attribute is specified on this tag.

�� :TL

UPPER

CASE

=

MIXED

MSGID

=

message-identifier
 �

�
MSGF

=

’qualified-message-file-name’
 . :ETL ��

TI Tag

Appendix A. UIM Panel Group Definition Language 621

Examples: Translation List

This example shows how a translation list is defined.

UIM Source

:tl msgid=MMM0001 msgf=’*LIBL/QCPFMSG’.

:ti value=1.Blue

:ti value=1.BLUE

:ti value=2.Red

:ti value=2.RED

:ti value=3.Green

:ti value=3.GREEN

:ti value=4.Turquoise

:ti value=4.TURQUOISE

:etl.

On entry, Blue, due to the default CASE=UPPER and the uppercase version of the translation item, is

mapped to the value 1. On output, 1 is mapped to the value Blue, which is mixed case, because the first

matching translation list item is always used. Notice that because the integer notation is used for the

value, the BASETYPE on the CLASS tag that this translation list applies to must be numeric.

This is an example of a class definition and a translation list for a dialogue variable that allows a valid

i5/OS library name (*LIBL, *CURLIB, or blanks).

UIM Source

:class name=objlibc

 basetype=’objname 10’.

:tl.

:ti value=’"*LIBL"’.*LIBL

:ti value=’"*CURLIB"’.*CURLIB

:ti value=’" "’.

:etl.

:eclass.

TOPINST (Top Instruction)

 The top instruction (TOPINST) tag of an area specifies the top instruction lines. This tag is valid for all

areas, but is allowed only for display panels. It appears immediately after the introducing tag for the

area.

Multiple top instruction tags may be used to present multiple lines of instructions if the TOPINST tag

contains instruction-text. If multiple TOPINST tags are coded, no blank lines appear between the text on

different tags. Only one top instruction tag is allowed per area if an INST attribute variable is used for

this tag.

For menus, a blank line is always left between the body and the instruction lines area. For more

information about how instruction lines are formatted with respect to the body of certain areas, see the

BODYSEP attribute in “DATA (Data Presentation Area)” on page 488.

If no TOPINST tag is specified for an area, no text is used for the instruction line and the line is not

allocated in the area.

�� :TOPINST

INST

=

dialog-variable-name
 .

instruction-text
 ��

TL Tag

622 Application Display Programming V6R1

Optional Attribute

INST=dialog-variable-name

The name of a dialog variable containing the top instruction text displayed. The dialog variable must

be defined with a width less than or equal to the width specified on the panel tag minus two. If this

attribute is used, no instruction-text can be specified for this tag.

 Dialog variables must be defined with a BASETYPE of CHAR, IGC, or BIN on the class definition

(CLASS) tag.

 The error state of the dialog variable is not used for determining the highlighting of the text.

 Special formatting for IGC. The abbreviation IGC is used in commands and keywords to represent

double-byte character set (DBCS) functions. When a dialog variable with a BASETYPE of IGC is

specified on the CLASS tag, the UIM does special formatting. If the variable value begins with a

shift-out character (X'0E'), the UIM shifts the value 1 byte to the left to preserve vertical alignment

with other lines.

Optional Text

instruction-text

The text appearing as top instructions for the area. The text is an implied paragraph. When the

display is formatted, any text that does not fit onto one display line is formatted onto additional lines

as necessary and indented two positions. The text can be a maximum of 255 characters, and can only

contain the reverse text (RT) tag. The instruction text is required unless the INST attribute is specified

on this tag.

TT (Truth Table)

 The truth table (TT) tag begins the definition of a truth table used by the compiler when processing panel

definitions. The TT tag must occur in the prolog section of the panel group after the condition definition

(COND) tags and before any menu bar (MBAR) tags. You should use a truth table to assert to the UIM

which conditions are mutually exclusive.

During compilation of a panel group, a panel is formatted once for each row of a truth table. Using the

truth value for each condition, the compiler checks if the panel definition is valid. If a panel element is

conditioned using the COND attribute on this tag, and if that condition is not mentioned in the truth table,

it is assumed to have a true value by the compiler.

The name of a truth table must be specified on the TT attribute of the display panel (PANEL), print panel

(PRTPNL), or print head panel (PRTHEAD) tag for the compiler to use the truth table for panel

verification.

After the compile, if the truth table is wrong and the conditioning causes more panel elements to be

active in an area than can be displayed, only the elements that fit are displayed, and no exception is

reported.

Other tags can be nested within the TT tag. These tags are listed in the following table. This table defines

the order in which the tags must appear and specifies on which page more information can be found for

each tag.

�� :TT NAME = truth-table-name CONDS = ’ condition-name-list ’ . :ETT. ��

TOPINST Tag

Appendix A. UIM Panel Group Definition Language 623

Table 91. Tag Allowed Between the TT and ETT Tags

Tag Name Order Page

TTROW (Truth table row) 1 624

Required Attributes

NAME='truth-table-name'

The name of the truth table. For more information on the rules for naming, see “Name Syntax” on

page 461. This name is referred to by all panels which use this truth table for compile-time checking.

This name must be unique within the panel group.

CONDS='condition-name-list'.

A list of condition names separated by blanks. Each condition in the list must have been previously

defined with the COND tag. The rows of the truth table are defined with the truth table row

(TTROW) tag. Each item in the VALUES attribute of the TTROW tag corresponds positionally with the

condition specified in this attribute. A maximum of 50 condition names can be specified.

Example: Truth Table

If conditions A, B, and C are known to be mutually exclusive on panel X, this example would illustrate

how to assert this to the compiler.

UIM Source

:tt name=tt1 conds=’A B C’.

:ttrow values=’1 0 0’.

:ttrow values=’0 1 0’.

:ttrow values=’0 0 1’.

:ett.

TTROW (Truth Table Row)

 The truth table row (TTROW) tag defines a row in a truth table used by the compiler when processing

panel definitions. The TTROW tag must occur between the truth table (TT) and ETT tags in the prolog

section of the panel group.

During compilation of a panel group, a panel is formatted once for each row of a truth table, and the

truth value for each condition is used to check if the panel definition is valid. A truth table can describe

which of the conditions that control the formatting of a panel are mutually exclusive. If a condition is

used within the panel definition and is not mentioned in the truth table, it is assumed to be true for the

purposes of compile time checking; this is the same as specifying an asterisk (*) in the VALUES attribute on

this tag.

Required Attribute

VALUES='condition-value-list'.

The value of each condition used by the compiler to check the panel definition. Each item in the

VALUES attribute of the TTROW tag corresponds positionally with the condition specified in this

attribute. The following values can be used for the condition:

0 The condition is false.

1 The condition is true

* No truth value is specified. The compiler assumes the value is true for a worst case.

�� :TTROW VALUES = ’ condition-value-list ’ . ��

TT Tag

624 Application Display Programming V6R1

The items in the list of condition values are separated by blanks. The number of items in the list must

equal the number of items in the CONDS attribute of the TT tag.

UL (Unordered List)

 The unordered list (UL) tag identifies an unordered list of items. The UL tag requires a matching end tag.

These tags are only allowed in information areas and help areas.

Unordered lists can occur anywhere in text and can be nested within other lists.

Note: Care should be taken when using the unformatted lines (LINES), figure (FIG), and example (XMP)

tags within unordered lists, because text that does not fit on one line wraps to column one of the

next line. Lines and figures start at the current left margin and examples are indented four spaces

from the current left margin. The current left margin changes when nested lists are formatted. If

there is help information containing the LINES, FIG, or XMP tag imbedded at various locations,

including within lists, it may not look the same each time and can cause undesirable results.

Unordered lists are formatted as hanging, indented lists, with the item identifier at the current left

margin. There are three levels of item identifiers for nested, unordered lists:

v Bullets (lowercase letter o)

v Hyphens (-)

v Dashes (--).

These levels are repeated for more than three levels of nested, unordered lists.

Other tags can be nested within the UL tag. These tags are listed in the following table. The table defines

the order in which the tags must appear, indicates which tags can be used in display panels only, print

panels only, or both (specified by a D, P, or B, respectively), and specifies on which page more

information can be found for each tag.

When more than one tag is listed with the same order number, all tags of that number can be mixed in

any order. However, a tag with a higher order number cannot precede a tag with a lower order number.

For example, a tag with an order number of three cannot precede a tag with an order number of one or

two.

 Table 92. Tags Allowed Between the UL and EUL Tags

Tag Name Order Use Page

FIG (Figure) 1 B 519

LINES (Unformatted lines) 1 B 538

XMP (Example) 1 B 631

NT (Note) 1 B 582

P (Paragraph) 1 B 585

PC (Paragraph

continuation)

1 B 596

LP (List part) 1 B 571

OL (Ordered list) 1 B 583

��

:UL

.

COMPACT

�

:LI.

item-text

:EUL.

��

TTROW Tag

Appendix A. UIM Panel Group Definition Language 625

Table 92. Tags Allowed Between the UL and EUL Tags (continued)

Tag Name Order Use Page

SL (Simple list) 1 B 614

UL (Unordered list) 1 B 625

PARML (Parameter list) 1 B 594

DL (Definition list) 1 B 517

Optional Attribute

COMPACT

The list is formatted without a blank line between the items.

Required Tag

:LI.item-text

The text for the list item. This text is preceded by the item identifier; the text is indented four spaces

from the current margin.

Example: Unordered Lists

This example uses two unordered lists, one imbedded within the other. The second unordered list uses

the COMPACT attribute.

UIM Source

Some normal text...

:ul.

:li.First item (bullet)

:ul.

:li.First item (hyphen)

:li.Second item (hyphen)

:eul.

:li.Second item (bullet)

:eul.

Results

Some normal text...

• First item (bullet)

 - First item (hyphen)

 - Second item (hyphen)

• Second item (bullet)

VAR (Variable Definition)

 The variable definition (VAR) tag declares a dialog variable in the panel group. The VAR tag does not

allow nested tags and must be placed after the last class definition (CLASS) tag and before the first

variable record definition (VARRCD) tag.

�� :VAR NAME = variable-name

CLASS

=

class-name
 �

�
ERRVAR

=

error-status-variable-name
 . ��

UL, LI Tags

626 Application Display Programming V6R1

A value for each dialog variable exists in the variable pool for an application opened using this panel

group. The dialog variables communicate values to and from panels when the panels are presented to the

user. Dialog variable values are set and retrieved using the UIM application programming interfaces

(APIs).

The VAR tag defines all Z-variables, as well as other dialog variables used by an application. Only

variables defined by a VAR tag in the panel group source are available in an open application.

Required Attribute

NAME=variable-name

The name of a dialog variable. This name must be unique within the panel group. For more

information on the rules for naming, see “Name Syntax” on page 461.

Optional Attributes

CLASS=class-name

The name of the class to which this variable belongs. The class must have been previously defined in

the panel group.

 The class definition for all Z-variables is determined by the UIM, so this attribute cannot be specified

on the VAR tag for a Z-variable. A class must be specified for other variables declared in the panel

group.

ERRVAR=error-status-variable-name

The name of a dialog variable, automatically defined by the UIM with a BASETYPE of CHAR 1 on the

CLASS tag. The error status variable must not be defined by another VAR tag. This name must also

be unique within the panel group.

 This dialog variable contains the error status of the variable defined by this tag. This attribute is used

with the Put Dialog Variable (QUIPUTV) API and the Get Dialog Variable (QUIGETV) API.

 During the QUIPUTV API, the current value of the error variable determines the error status. A value

of 1 (X'F1') indicates that the dialog variable specified on the NAME attribute on this tag is in error. A

value other than 1 (X'F1') indicates that the dialog variable is not in error. If the error status variable

is updated during the same QUIPUTV API request as its associated dialog variable, the new value of

the error status variable is used.

 During the QUIGETV API for either the NAME dialog variable or the ERRVAR dialog variable, the

value of the error status variable is set to 1 (X'F1') if the dialog variable specified on the NAME attribute

of this tag is in error. Otherwise, the value of the error status variable is set to zero (X'F0').

Note: Simply updating the ERRVAR dialog variable does not set the error state of the dialog variable

specified in the VAR attribute of this tag. The VAR dialog variable must be updated using the

QUIPUTV API to change its error state.

The error dialog variable cannot be referred to any place in the panel group source where dialog

variables can normally be specified.

Dialog Variables Defined by UIM

The UIM defines a set of dialog variables that can be automatically available in the variable pool for

every open application. The variables must be defined using the variable definition (VAR) tag in order to

be available in the variable pool. These variables can be referenced by user programs (see the QUIGETV

API) and in panel definitions, and some can be modified by user programs (see the QUIPUTV API) to

control UIM processing functions. Dialog variables are not allowed for input fields on any panel.

All dialog variables defined by the UIM have names that begin with the letter Z. If you define a dialog

variable for your application with the same name as a UIM dialog variable, you receive a warning

VAR Tag

Appendix A. UIM Panel Group Definition Language 627

message. The message states that you do not have access to the UIM dialog variable with the same name.

However, you are allowed to use the dialog variable that you defined. The following is a description of

all UIM-defined dialog variables:

ZCANCEL Indicates whether the CANCEL function is requested and is set as follows:

0 The CANCEL function was not requested.

1 The CANCEL function is requested.

This Z-variable can be changed by the calling (application) program using the QUIPUTV

API. Changing this dialog variable results in changing the job’s cancel flag. For more

information on the cancel flag, see “Folding Up a List Panel” on page 350.

ZDBCS Indicates whether the job is currently in DBCS mode, and is set as follows:

0 The job is not in DBCS mode.

1 The job is in DBCS mode.

ZDSPSIZ Indicates the maximum size of the display that the device is capable of displaying and is

set as follows:

*DS3 The largest size panel the device can display is 24 x 80.

*DS4 The largest size panel the device can display is 27 x 132. This device can also

display panels of size 24 x 80.

ZEXIT Indicates whether the EXIT function was requested and is set as follows:

0 The EXIT function is not requested.

1 The EXIT function is requested.

This Z-variable can be changed by the calling (application) program using the Put Dialog

Variable API service. Changing this dialog variable results in changing the job’s exit flag.

For more information on the job’s exit flag, see “Folding Up Multiple Panels When EXIT

Is Requested” on page 348.

ZJOB Simple name of the current job (the first qualifier of the job name).

ZJOBNBR Job number of the current job (the last qualifier of the job name).

ZLMTCPB Indicates the limits to which the user controls the initial program, initial menu, current

library, and Attention key handling program values and is set as follows:

*NO

*PARTIAL

*YES

ZMENU Name of the menu object currently displayed by the UIM. This dialog variable can be

used only in definitions of *MENU objects.

ZMNULIB The name of the library that contains the menu object currently displayed by the UIM.

This dialog variable can be used only in definitions of *MENU objects.

ZSYSNAM Current system name retrieved from the SYSNAM network attribute.

ZUSER User profile name for the current job (which is also the middle qualifier of the job name).

Z36ENV Indicates whether the job is currently running in the System/36 environment and is set as

follows:

0 The job is not running in the System/36 environment.

1 The job is running in the System/36 environment.

VAR Tag

628 Application Display Programming V6R1

Table 93. Attributes of UIM-Defined Variables (Z-Variables)

Name Base Type Length

Program

Modifiable Description

ZCANCEL CHAR 1 Yes Indicates whether the CANCEL function is required

ZDBCS CHAR 1 No Indicates whether the job is in DBCS mode

ZDSPSIZ CHAR 4 No Indicates the maximum size of display

ZEXIT CHAR 1 Yes Indicates whether the EXIT function is requested

ZJOB OBJNAME 10 No Job name of the current job (first qualifier)

ZJOBNBR CHAR 6 No Job number of the current job

ZLMTCPB CHAR 10 No Limits the capabilities the user has

ZMANMNU CHAR 1 No Mandatory menu job flag

ZMENU OBJNAME 10 No Name of the menu object

ZMNULIB OBJNAME 10 No Name of the library containing the menu object

ZSYSNAM CHAR 8 No Current system name

ZUSER OBJNAME 10 No User profile name

Z36ENV CHAR 1 No Indicates if running in the System/36 environment

VARRCD (Variable Record Definition)

 The variable record definition (VARRCD) tag does not allow nested tags, and must be placed after the

last variable definition (VAR) tag and before the first list definition (LISTDEF) tag.

When data is passed between a calling program and the variable pool, a variable buffer is used. The

variable buffer contains values for one or more dialog variables. A VARRCD tag defines which dialog

variables are in the variable buffer as well as the sequence the variables appear in the variable buffer.

The VARRCD tag must be used to define a variable record definition for use with the Get Dialog Variable

(QUIGETV) API and the Put Dialog Variable (QUIPUTV) API requests. Only variables defined by a VAR

tag in the panel group source may appear in the variable record definition.

Required Attributes

NAME=variable-record-name

The name of a variable record definition. This name must be unique within the panel group. For

more information on the rules for naming, see “Name Syntax” on page 461.

VARS='variable-list'

A list of up to 256 dialog variables which make up the variable record. All dialog variables in this

variable list must be previously defined using the VAR tag. The dialog variable names in the list are

separated by one or more blanks.

 The order in which the variable names appear in the variable list is the order the variable values

must appear in the variable buffer of the calling program when the QUIPUTV and QUIGETV APIs

are called.

�� :VARRCD NAME = variable-record-name VARS = ’ variable-list ’ �

�
NOPUT

=

’

variable-list

’

NOGET

=

’

variable-list

’
 . ��

VAR Tag

Appendix A. UIM Panel Group Definition Language 629

The variables must appear contiguously in the variable buffer for the calling program. The UIM

makes no boundary alignment adjustments when calculating the offsets to variables within the buffer.

 If any read-only Z-variables are listed in the VARS attribute of this tag, they must also appear in the

NOPUT attribute of this tag.

Optional Attributes

NOPUT='variable-list'

A list of up to 256 variables which should not be processed when the QUIPUTV API is requested. All

variables in this variable list must appear in the variable list specified on the VARS attribute of this

tag. The variable names in the list are separated by blanks.

 Using this attribute, you can specify that only a subset of the variables in the variable buffer should

be copied to the variable pool during the QUIPUTV API.

 If this attribute is not specified, all variables specified on the VARS attribute of this tag are copied from

the variable buffer to the variable pool during the QUIPUTV API.

NOGET='variable-list'

A list of up to 256 variables which should not be processed when the QUIGETV API is requested. All

variables in this variable list must appear in the variable list specified on the VARS attribute of this

tag. The variable names in the list are separated by blanks.

 Using this attribute, you can specify that only a subset of the variables in the variable buffer should

be copied from the variable pool during the QUIGETV API.

 If this attribute is not specified, all variables specified on the VARS attribute of this tag are copied from

the variable pool to the variable buffer during the QUIGETV API.

XH1 through XH4 (Extended Help Headings)

 The extended help heading (XH1-XH4) tag identifies the heading used over contextual help when it is

displayed as part of an extended panel help, including help for index search topics. This tag must appear

within a help module (HELP) tag and EHELP boundary and is not allowed on the information (INFO)

tag. The text associated with this tag is used as the heading text.

This tag allows headings to appear with help information, based on whether the text is displayed for

extended panel help or for contextual help. The text from XHn tags always appears in extended panel

help. The text also appears in contextual help if any tag containing help information precedes the XHn

tag, or the contextual help is displayed in a full screen and no help panel title is specified on the HELP

tag.

In all cases of contextual help, with the exception of the two previously mentioned, the text from the XHn

tag does not appear when the XHn tag is the first tag used for contextual help.

Required Text

extended-help-heading-text

The text associated with this tag is used as a heading when the help item is used in extended panel

help. The text must be on the same or next line as the period ending the tag.

�� :XH1. extended-help-heading-text

:XH2.

:XH3.

:XH4.

 ��

VARRCD Tag

630 Application Display Programming V6R1

Formatting Rules

Headings have one blank line formatted before and after them. The heading tag generates a blank line

before the heading, and the tag following the heading generates the space after the heading.

Specific formatting rules follow:

XH1 Centers, underscores and highlights text (HP3). This tag causes a page eject when it appears in a

printed help module.

XH2 Left-justifies, underscores, and highlights text (HP3).

XH3 Left-justifies and highlights text (HP2).

XH4 Left-justifies and underscores text (HP1).

Example: Sample Headings

This example shows how extended help headings are highlighted and justified.

UIM Source

:XH1.Main Subject

:p.Here’s a paragraph.

:XH2.Topic

:p.Another paragraph.

:XH3.Subtopic

:p.Still another paragraph.

:XH4.A Four Heading

:p.Still another paragraph.

Results

Main Subject

Here’s a paragraph.

Topic

Another paragraph.

Subtopic

Still another paragraph.

A Four Heading

Still another paragraph.

XMP (Example)

 The example (XMP) tag identifies an example of computer input or output. The XMP tag requires a

matching end tag. These tags are only allowed in information areas and help areas.

Examples can occur anywhere in text, except in other examples. The body of an example is composed of

the text between the XMP tag and the EXMP tags.

The normal formatting of text is suspended within an example; that is, the lines are not concatenated.

�� :XMP. :EXMP. ��

XH1 through XH4 Tags

Appendix A. UIM Panel Group Definition Language 631

Note: Care should be taken when using examples within lists, because example text that does not fit on a

line wraps to column one of the next line. The current left margin changes when nested lists are

formatted. If there is help information containing examples imbedded at various locations,

including within lists, it may not look the same each time and can cause undesirable results. An

example is indented 4 spaces from the current margin. Help modules displayed in full-screen

format or in an extended help window are indented by 4 bytes. Therefore, the formatting width

initially is 10 bytes less than the width specified on the help module. When the XMP tag appears

in an information area, the formatting width initially is 6 bytes less than the width specified on the

panel tag.

Example: Formatting an Example

This example illustrates how to use an example.

UIM Source

Some normal text...

:xmp.

This is an example

right here

:exmp.

Results

Some normal text...

This is an example

right here

XMP Tag

632 Application Display Programming V6R1

Appendix B. UIM Dialog Commands

Dialog commands are special functions, recognized only by the UIM, that equate actions entered by a

user with screen management functions. Dialog commands differ from CL commands in that they cannot

be entered on a command line nor are they valid outside the scope of the UIM.

Exactly what function the UIM performs for each dialog command depends largely on the type of screen

being presented and other attributes defined by the function key, key list item (KEYI), menu item

(MENUI), list action (LISTACT), or pull-down field choice (PDFLDC) language tags. For more

information on the language tags, see Appendix A, “UIM Panel Group Definition Language,” on page

457.

Some dialog commands are defined in terms of the content of the current command line, the position of

the cursor, and the type of screen. Dialog commands also affect messages specified by the application, by

the condition evaluation, and by calling the general exit. For example, some dialog commands cause

condition evaluation to be bypassed, while others cause the calling of the general exit to be bypassed.

Dialog commands can be assigned to the following:

v Menu items

v Function keys

v Options on action lists

v Hypertext links

v Pull-down field choices

v ENTER and SELECT attributes of the PANEL tag

Not all dialog commands are allowed in all of these situations. For example, the dialog commands

PAGEUP and PAGEDOWN cannot be assigned to options of an action list because they apply to the

entire screen, and not to an individual list entry.

For a summary of the valid uses of the dialog commands, see Table 94. For a summary of the effect of the

different dialog commands, see Table 95 on page 634. Later in this appendix, there is a detailed

description of each dialog command.

 Table 94. Summary of the Valid Uses of Dialog Commands

Dialog

Command

Name

Valid Uses

Function

Key

Pull-down

Menu

Choices Menu Item List Action

ENTER on

PANEL Tag

SELECT on

PANEL Tag

Hypertext

Link Action

ACTIONS X X3

CALL X X X X X

CANCEL X X

CHGVIEW X X2

CMD X X X X X

CMDLINE X X2

DSPHELP X2 X

ENTER X

EXIT X X2 X

EXTHELP X2

© Copyright IBM Corp. 1997, 2008 633

Table 94. Summary of the Valid Uses of Dialog Commands (continued)

Dialog

Command

Name

Valid Uses

Function

Key

Pull-down

Menu

Choices Menu Item List Action

ENTER on

PANEL Tag

SELECT on

PANEL Tag

Hypertext

Link Action

HELP X

HELPHELP X2

HELPIDX X2

HOME X

KEYSHELP X2

MENU X X2 X

MOREKEYS X

MOVETOP X

MSG X X

PAGEDOWN X

PAGEUP X

PRINT X

PROMPT1 X

PULLDOWN X3

RETRIEVE X X2

RETURN X X X X X

Notes:

1 PROMPT becomes CALL or RETURN when processing a cursor-sensitive prompt defined by the PROMPT

attribute of a DATAI, DATAIX, or LISTCOL language tag.

2 Valid only when ACTFOR=PANEL is specified on the PDFLDC tag.

3 Valid only when MBAR attribute is specified on the PANEL tag.

 Table 95. Summary of the Effects of Dialog Commands

Dialog

Command

Name

Effects

VARUPD on KEYI or PDFLDC Tag1

Stop

Displaying

User

Messages2

Evaluate

Conditions

Call General

Exit

ACTIONS No No No No

CALL Yes or No Yes Yes Yes

CANCEL Yes or No Yes N/A Yes

CHGVIEW Yes Yes Yes Yes

CMD Yes or No Yes Yes Yes

CMDLINE No No No No

DSPHELP No No No No

ENTER Yes N/A3 N/A3 N/A3

EXIT Yes or No Yes N/A Yes

EXTHELP No No No No

HELP No No No No

Dialog Commands

634 Application Display Programming V6R1

Table 95. Summary of the Effects of Dialog Commands (continued)

Dialog

Command

Name

Effects

VARUPD on KEYI or PDFLDC Tag1

Stop

Displaying

User

Messages2

Evaluate

Conditions

Call General

Exit

HELPHELP No No No No

HELPIDX No No No No

HOME Yes Yes Yes Yes

KEYSHELP No No No No

MENU Yes Yes Yes Yes

MOREKEYS No No No No

MOVETOP Yes No No No

MSG N/A Yes Yes Yes

PAGEDOWN Yes6 No No Yes6

PAGEUP Yes6 No No Yes6

PRINT No No No No

PROMPT5 Yes or No Yes Yes Yes

PULLDOWN No No No No

RETRIEVE No No No No

RETURN Yes or No Yes N/A Yes

Default4 N/A Yes Yes Yes

Notes:

1 VARUPD attribute applies only when the action is assigned to a function key or pull-down choice. When

ACTFOR=LIST is specified on the PDFLDC tag, VARUPD is YES.

2 The UIM stops displaying messages generated by an application (user messages) when another function is

about to start. HELP can become a function if the help is for a command and the user directly starts the

prompt and processing of the command from the help screen.

3 These ENTER values are not applicable (N/A) because ENTER always equates with another function by

the time these actions are performed.

4 The UIM displays the panel again for the default ENTER or SELECT action.

5 PROMPT becomes CALL or RETURN when processing a cursor-sensitive prompt defined by the PROMPT

attribute of a DATAI, DATAIX, or LISTCOL language tag.

6 When PAGEUP and PAGEDOWN apply to the message area, an information area, or a menu area, these

values are not applicable.

The VARUPD Attribute

One of the main qualifiers of a function is the VARUPD attribute of the KEYI (key list item) and PDFLDC

(pull-down field choice) language tag. This attribute defines whether or not dialog variables and list

entries should be updated with values entered by the user. It also defines whether the function associated

with the key should be processed if errors are detected while validity checking the values of input fields

on the display. Most dialog commands assume a particular value for VARUPD that cannot be overridden by

the panel definition. The following is a summary of the effect of VARUPD:

Dialog Commands

Appendix B. UIM Dialog Commands 635

Type of Action

Effect of VARUPD Attribute

VARUPD=YES VARUPD=NO

Returning control to the

application that called the

QUIDSPP API.

All validity checking is

performed, and dialog variables

and list entries are updated

when correct. When one or

more variables fail the validity

checking, the panel is displayed

again with error messages.

No validity checking is performed and no

updates are made to the dialog variables and

list entries. Changes made to the input field by

the user since the last operation are lost. The

values entered by the user can sometimes be

recovered by calling QUIDSPP and specifying

yes on the redisplay parameter. For more

information, see the APIs topic .

An action performed under the

control of the UIM without

returning to the application

All validity checking is

performed, and dialog variables

and list entries are updated

when correct. When one or

more variables fail the validity

checking, the panel is displayed

again with error messages.

No validity checking is performed and no

updates are made to the dialog variables and

list entries. Contents of the input fields are

saved by the UIM and are used when

displaying the panel again, providing updates

have not been made that make the saved values

obsolete. For example, changing a dialog

variable that was displayed on the saved panel

causes the saved value to be discarded and the

new value shown when the panel is displayed

again.

ACTIONS (Menu Bar Cursor Action)

 Alternates the cursor position between the panel and the menu bar. The Common User Access (CUA)

guidelines recommend this function be assigned to F10.

When the ACTIONS function key is pressed, the UIM saves the information where the cursor was located

and moves the cursor to the first choice on the menu bar. If the ACTIONS function key is pressed again,

the cursor returns to its previous location before it was moved to the menu bar. If the user moves the

cursor to the menu bar area using the cursor movement keys (arrow keys) and then presses the

ACTIONS function key, the UIM determines the best position for the cursor.

Messages

No messages are issued by the UIM during processing.

CALL (Call Program)

 Calls an application program and allows applications to link programs and screens together.

The call function calls by address, by name, or by an extended program model (EPM) call.

For best performance, use call by address. If call by address is not feasible, use the call by name or an

EPM call with a library qualified program name (do not use *LIBL).

�� ACTIONS ��

�� CALL dialog-variable-name ��

Dialog Commands

636 Application Display Programming V6R1

For a description of the interface between the UIM and the program being called, see the section called

″User Interface Management EXIT Program″ in the The APIs topic . The CALL dialog command can be

used with the following:

v Menu item action

v Function key action

v Action list option

v Action list exit

v General panel exit

v Default enter action

v Application format exit

v Contextual prompt exit

v Pull-down choice action

The CALL dialog command cannot be used on menu objects created using the Create Menu (CRTMNU)

command, but can be used within a panel group object created using the Create Panel Group

(CRTPNLGRP) command. If calling a program is the desired result of a menu option in an external

menu, use the CMD dialog command to submit the CALL CL command. The user must have the proper

authority to the CALL CL command and the program being called.

Required Parameter

dialog-variable-name

Specifies a dialog variable containing the call information as described below for each of the three

types of call.

Call by address

This type of call is used within i5/OS system programs to allow calls of other system

modules. Define the specified dialog variable with BASETYPE=’PTR’. When the call function is

requested, the dialog variable must contain a system pointer to the program. Ensure the

proper authority is contained in the pointer.

Call by name

Allows calling an application program using a qualified name of a program object. Define the

specified dialog variable with BASETYPE=’CHAR 20’. When the call function is requested, the

first 10 characters of the dialog variable must contain the name of the program object. The

second 10 characters must contain the name of the library where the program resides. The

program and library names should be left justified and put in uppercase unless a quoted

object name is used.

Call by extended program model (EPM)

This type of call allows calling an entry point in an EPM language program. The UIM uses

the QPXXCALL interface to make the call. Define the specified dialog variable with

BASETYPE=’CHAR 130’. When the call function is requested, the dialog variable must contain

the following:

Characters Contents

1-20 The name of the EPM program object and the name of the library that the

object resides in

21-120 The name of the external entry point to be called

121-130 The name of the environment to which the entry point belongs

Because UIM is simply passing this information to the QPXXCALL language interface

program, ensure that the contents of the dialog variable adhere to the requirements defined

by QPXXCALL. When UIM calls the QPXXCALL program, the EPM environment is implicitly

started and remains active until explicitly deleted.

CALL Command

Appendix B. UIM Dialog Commands 637

Note: There is a high performance overhead for calling an EPM program. If possible, call by

address or call by name instead. The support for calling an EPM program is provided

for cases where, due to application design, an EPM program is used as the target of

the CALL dialog command.

VARUPD Value

The CALL dialog command does not have a predefined VARUPD value. When CALL is assigned to a

function key, the VARUPD value of the function key dictates whether or not to perform validity checking

and then updates the dialog variables.

Messages

The following errors may be encountered during processing:

v Program not found.

v Not authorized to specified program.

v Number of parameters for specified program is not valid.

v Program saved with STG(*FREE).

v Any exception signalled by the QPXXCALL language interface program.

The UIM does not stop processing if these errors occurred on a call for the general panel exit, on a call

for the list action exit, and on application formatted area calls.

For all other types of calls, the UIM ends the action it was performing. In most cases, this involves

displaying the panel again with an error message indicating that the program call was not successful.

CANCEL

 Backs up one screen and is used with a menu item action or a function key action.

If the current screen was called by the QUIDSPP API, the function parameter contains an indication that

CANCEL was requested.

If the current screen is a menu called from the previous screen via the menu fast-path function (for

example, entering GO on the command line), the UIM displays the previous screen.

Optional Parameter

NOSET|SET

Indicates whether the cancel flag is set. NOSET means that the cancel flag is not set; this is the

default value. SET means that the cancel flag is set. For more information on the cancel flag, see

“Folding Up a List Panel” on page 350.

VARUPD Value

CANCEL does not have a predefined VARUPD value. When CANCEL is assigned to a function key, the

VARUPD value of the function key determines whether or not to perform validity checking and then

updates the dialog variables.

Messages

No messages are issued during processing.

��

CANCEL
 NOSET

SET

��

CALL Command

638 Application Display Programming V6R1

CHGVIEW (Change View)

 Changes the displayed view of a list and can only be assigned to a function key or a pull-down field

choice action.

If there are several columns of information that a user needs to see, and all the columns do not fit on the

display, you can change the view so the user sees one set of columns and then another set of columns.

This continues until all the columns of information are viewed.

You can specify several different ways to present a list area on the LISTVIEW language tag and which

columns belong to each view. List views are numbered sequentially starting with 0. For example, if a list

areas has five presentation views, the views are numbered from 0 to 4. The first LISTVIEW tag in the

panel source for the list area defines view 0, the second LISTVIEW tag in the panel source for the list area

defines view 1, and so on for all LISTVIEW tags in the list area.

With the CHGVIEW dialog command, you can switch views. The function operates in a circular fashion.

For example, if the current view is 3, CHGVIEW presents view 4 (if there is a view 4), or back to view 0

if there is not a view 4. Applications can specifically select a view by changing the dialog variable coded

on the VIEW attribute of the LIST tag. The UIM also modifies this dialog variable whenever the

CHGVIEW dialog command is performed.

Which list the request applies to depends on the cursor position. The rules are very similar to those for

the PAGEDOWN and PAGEUP dialog commands.

v If the cursor is in a list area defined as having multiple views, the request applies to that area.

v If the cursor is not in a list area defined as having multiple views, the request applies to the first list

area on the screen that does have multiple views.

Parameters

None

VARUPD Value

The CHGVIEW dialog command always operates with VARUPD=YES and the following occurs:

v Validity checking is always performed.

v Valid values are processed and the dialog variables are updated.

v Any failures from validity checking prevent changing the view and the screen is displayed again with

the appropriate error messages.

Messages

No messages are issued during processing unless there are errors from a validity check.

CMD (System Command)

 Submits a CL or OCL command to the system command.

�� CHGVIEW ��

�� CMD command-text ��

CHGVIEW Command

Appendix B. UIM Dialog Commands 639

Parameter

command-text

All text following the CMD dialog command is treated as a command and is submitted to the system

for processing. Whether the command is native or System/36 environment is determined by the

system, not by the UIM.

 The command string may contain the names of dialog variables to be substituted into the command

string before the UIM submits the command to the system. Each dialog variable name must be

preceded by an ampersand (&); and followed by a period (.). Although the ending period is not

required, its use is recommended to avoid ambiguity.

 Before submitting the command, the UIM performs substitution for dialog variables. Each dialog

variable specified as part of the command string is replaced by its displayable value. This value is

always calculated from the current value of the dialog variable.

VARUPD Value

The CMD dialog command does not have a predefined VARUPD value. When CMD is assigned to a

function key or pull-down field choice, the VARUPD attribute on the KEYI or PDFLDC language tag

dictates whether or not to perform validity checking and then updates the dialog variables. Because

substituting commands depends on the values of dialog variables, care should be taken when using

VARUPD=NO.

Messages

No messages are issued during processing unless there are errors from a validity check.

Hint

Because these commands are not logged to the job log, it is sometimes difficult to discover and correct

command syntax errors. One way to see the command after all dialog variables have been substituted is

to make the command the value of the message on a SNDMSG command as follows:

SNDMSG MSG (command here) TOUSR (*REQUESTER)

CMDLINE (Command Line)

 Displays a pop-up window containing a command line on the bottom of the display.

Parameters

None

Messages

No messages are issued during processing.

DSPHELP (Display Help)

 Displays a specified UIM help module.

�� CMDLINE ��

�� DSPHELP help-module-name

panel-group

product-library

 ��

CMD Command

640 Application Display Programming V6R1

Required Parameter

help-module-name

Specifies the name of the help module to be displayed.

Optional Parameter

qualified-panel-group-name

Specifies the name of the panel group containing the help module. If it is not specified, then 1) the

help module must be from the same panel group that contains the DSPHELP dialog command, or 2)

the help module must be imported from another panel group by using an IMPORT tag.

product-library

Specifies the name of a library which becomes the product library when the help module is

displayed. This parameter is only used when the DSPHELP dialog command is used for a hypertext

link action.

Messages

No messages are issued during processing.

ENTER

 Allows processing of an action and is only allowed on the Enter key.

For more information, see “Considerations for Using the ENTER, HELP, and PROMPT Dialog

Commands.”

Parameters

None

VARUPD Value

The ENTER dialog command always operates with VARUPD=YES and the following occurs:

v Validity checking is always performed.

v Valid values are processed and the dialog variables are updated.

v Any failures from validity checking stop the operation. The display is shown again with the

appropriate error messages.

Messages

Any messages resulting from submitting or canceling the commands are displayed on the message line.

Additional messages can be sent if validity-checking errors are encountered.

Considerations for Using the ENTER, HELP, and PROMPT Dialog

Commands

The actions performed for ENTER, HELP, and PROMPT depend heavily on the type of display and

contents of the command line. These dialog commands can be assigned only to function keys, and they

have different characteristics than other dialog commands. These dialog commands are more like action

qualifiers; things used to determine or modify a more concrete action like a system command string.

For example, an action list panel describes several actions that are performed, based on the contents of

various fields. The ENTER and PROMPT dialog commands, and to a lesser extent HELP dialog

�� ENTER ��

DSPHELP Command

Appendix B. UIM Dialog Commands 641

commands, are initially requested, but serve only to describe how the rest of the panel is interpreted.

They are not sufficient by themselves to describe what should be done.

Some important aspects to remember when reading descriptions of these dialog commands are:

v A menu with a command line can contain a selection from a menu item or a command. If the first

nonblank character string is unquoted and contains only numeric values, it is interpreted as a menu

item. Otherwise, it is assumed to be a command.

v An action list with a command line can contain parameter strings or commands. If any entry on an

action list is selected, any string in the command line is treated as a parameter list. Otherwise, it is

treated as a command.

EXIT (Exit Display)

 Allows the user to back out of groups of displays.

If the current display was displayed using QUIDSPP API, the UIM sets the function requested parameter

indicating that the EXIT dialog command was requested. It is up to the application to determine what

must be done next.

If the current display is a menu called from a series of displays, the UIM presents the display where the

MENU command was initially requested. The EXIT dialog command backs completely out of a series of

menus.

Optional Parameter

NOSET|SET

Indicates whether the job’s exit flag is set. NOSET means that the exit flag is not set; this is the

default. SET means that the exit flag is set. For more information on the exit flag, see “Folding Up

Multiple Panels When EXIT Is Requested” on page 348.

VARUPD Value

The EXIT dialog command does not have a predefined VARUPD value although the user interface style

implies VARUPD=NO should normally be used. When EXIT is assigned to a function key or pull-down

choice, the VARUPD value of the function key dictates whether or not to perform validity checking and

then updates the dialog variables.

Messages

No messages are issued during processing.

EXTHELP (Extended Help)

 Displays the extended help for the panel.

Parameters

None

��

EXIT
 NOSET

SET

��

�� EXTHELP ��

ENTER Command

642 Application Display Programming V6R1

HELP

 Displays help information. The Common User Access (CUA) guidelines recommend assigning this to the

Help and F1 keys.

The specific action taken (and help text displayed) depends on the screen type, cursor position, and so

on. For the UIM rules, see “Defining Contextual Help” on page 342, and for more information on the

specific attributes, see “Considerations for Using the ENTER, HELP, and PROMPT Dialog Commands” on

page 641.

Parameters

None

VARUPD Value

It is always VARUPD=NO. No validity checking is performed on the current contents of the current

panel and no updates to dialog variables are made.

Messages

The message Help information is not available can be issued during processing and can occur if the

user chooses to delete or not install help text supplied by the system.

Additional messages are also possible when help is requested for a specific command on a command

line. Possible messages might be that the command does not exist, or the user might not have authority

to it. If these messages are issued, they appear as the first message in the message area. Messages

describing other conditions on the screen can still be viewed by scrolling forward.

HELPHELP

 Displays information about how to use the help facilities for contextual help, extended help, help on

function keys, and the help index from help panels. The HELPHELP dialog command can be coded only

on pull-down choices for menu bars.

Parameters

None

Messages

No messages are issued during processing.

HELPIDX

�� HELP ��

�� HELPHELP ��

�� HELPIDX ��

HELP Command

Appendix B. UIM Dialog Commands 643

Begins the index search function for the SCHIDX attribute specified on the panel group tag. Users may

select a topic in the index to be displayed or printed. The HELPIDX dialog command can be coded only

on pull-down choices for menu bars.

Parameters

None

Messages

No messages are issued during processing.

HOME (Display Home Menu)

 Displays the job’s home menu. This menu is added to the stack of menus. It does not imply returning to

the beginning of the stack of menus. The HOME dialog command can be used only on function keys.

Note: HOME is allowed only on panels containing a menu area.

Parameters

None

VARUPD Value

The HOME dialog command always operates with VARUPD=YES and the following occurs:

v Validity checking is always performed.

v Valid values are processed and the dialog variables are updated.

v Any failures from validity checking prevent the operation and the screen is displayed again with the

appropriate error messages.

Messages

No messages are issued during processing.

KEYSHELP

 Displays the help for the function keys on the displayed panel. The Common User Access (CUA)

guidelines recommend assigning this to the F1 key.

Messages

No messages are issued during processing.

�� HOME ��

�� KEYSHELP ��

HELPIDX Command

644 Application Display Programming V6R1

MENU

 Displays a subsequent menu as a result of selecting a menu item or pressing a function key.

Required Parameter

qualified-menu-name

Specifies the qualified name of the menu to be displayed.

Optional Parameter

RTNPNT|NORTNPNT

This parameter indicates whether the current menu is considered a return point when the dialog

command is requested. This parameter functions the same as the return point (RTNPNT) parameter

of the GO CL command. RTNPNT indicates that the current menu is returned when the Exit key is

pressed; this is the default. No return point (NORTNPNT) indicates to not return to the current menu

when the Exit key is pressed.

 This parameter has no effect when it is coded in a panel group object using the Create Panel Group

(CRTPNLGRP) command. It is meaningful only when it is used in a menu object created using the

Create Menu (CRTMNU) command.

Messages

No messages are issued during processing.

MOREKEYS (Display More Function Keys)

 Displays an additional list of active function keys when they cannot all fit on the panel. The action of the

MOREKEYS dialog command can be assigned only to Function Key F24. When it is, it cannot be

conditioned using the COND attribute of the key item (KEYI) language tag.

If an application codes ACTION=MOREKEYS on the KEYI tag, the UIM manages the situation if all of

the function key descriptions do not fit on the panel at once.

When a panel is displayed with a KEYL (Key List) language tag using the MOREKEYS dialog command,

the UIM gathers a list of all currently active function keys. This is based on the priority assigned to each

key item on the PRIORITY attribute of the KEYI language tag. The UIM attempts to fit as many of the

function keys as possible in the function key area of the panel.

If not all of the function key descriptions fit in the area, the UIM enables the function key assigned to the

MOREKEYS dialog command and places the descriptions of the function keys on the panel. If all of the

descriptions of the function keys fit, the function key assigned to the MOREKEYS dialog command is not

enabled.

If a user presses the function key assigned to the MOREKEYS dialog command, the UIM starts where it

left off in the key list and gathers as many active descriptions of function keys that fit in the function key

area in order of priority. The function key assigned to the MOREKEYS dialog command is enabled.

��

MENU

qualified-menu-name
 RTNPNT

NORTNPNT

��

�� MOREKEYS ��

MENU Command

Appendix B. UIM Dialog Commands 645

This process continues until the end of the key list is reached. If the MOREKEYS dialog command is

selected again, the UIM starts back at the beginning of the key list and begins processing the MOREKEYS

dialog command again.

Parameters

None

Messages

No messages are issued during processing.

MOVETOP (Move to Top)

 Moves a cursor-selected line to the top of the scrollable information area.

When a function key assigned to this dialog command is pressed, the UIM moves the line containing the

cursor to the top of the scrollable area. If the cursor is on a blank line inserted by the UIM (paragraph

separators, and so on), the next line is moved to the top of the scrollable area.

The MOVETOP dialog command applies only to information areas, and is intended primarily to allow

users of online text to position the information in the most readable manner. For example, an entire chart

positioned on one display is easier to read than a chart that appears on two displays.

Parameters

None

VARUPD Value

The MOVETOP dialog command operates with VARUPD=YES (except when scrolling the message line)

and the following occurs:

v Validity checking is always performed.

v Valid values are processed and the dialog variables are updated.

v Any failures from validity checking prevent the operation and the panel is displayed again with the

appropriate error messages.

Messages

The UIM can issue Cursor not positioned on valid line.

MSG (Display Message)

 Displays a message on the message line. It can only be assigned as the default enter action or the default

selection action to perform when the Enter key is pressed, and the UIM cannot find any other specific

function to perform.

One intended use of this dialog command is to inform the user that they must select an option or press a

function key.

�� MOVETOP ��

�� MSG message-id

qualified-message-file-name
 ��

MOREKEYS Command

646 Application Display Programming V6R1

Required Parameter

message-id

Specifies the message identifier of the message to be displayed.

Optional Parameter

qualified-message-file-name

Specifies the qualified name of the message file containing the message. It defaults to the message file

specified on the DFTMSGF attribute of the PNLGRP tag.

VARUPD Value

Because the MSG dialog command can only be specified on the ENTER attribute of the PANEL tag, VARUPD

has no meaning. The VARUPD value is defined by the function key assigned to the ENTER action.

PAGEDOWN

 Scrolls forward by one screen or panel and can be assigned to only a function key.

When processing incomplete lists, selecting scroll areas, and specifying VARUPD=YES, the process is the

same for the PAGEDOWN dialog command as it is for the PAGEUP dialog command.

Parameters

None

Messages

UIM can issue Already at bottom of area.

Additional messages can be sent if validity checking encounters errors.

PAGEUP

 Scrolls backward by one screen or panel and can be assigned to only a function key.

If a full scrollable area of data is available to the UIM, or the scrollable area is complete, scrolling is

performed without intervention of the application. If the scrollable area is an action list with selected

actions, none are performed at this time.

A special case exists where an incomplete list is displayed and the PAGEUP scroll results in an

incomplete panel. In this case, the UIM calls the program specified to add additional list entries or mark

the list complete.

For screens and panels with multiple scrollable areas, the position of the cursor determines what is

scrolled. The rules are as follows:

v If the cursor is in a scrollable area, that area is selected. The message line is considered a scrollable

area.

�� PAGEDOWN ��

�� PAGEUP ��

MSG Command

Appendix B. UIM Dialog Commands 647

The boundaries of a scrollable area are defined by the top and bottom line of a menu, information, list,

or data area, although not all information in that area (such as instruction lines) is actually scrolled.

v If the cursor is outside a scrollable area, the first scrollable area on the panel (top to bottom) is selected

for scrolling.

Parameters

None

VARUPD Value

PAGEUP operates with VARUPD=YES except when scrolling the message line, and the following occurs:

v Validity checking is always performed.

v Valid values are processed and the dialog variables are updated.

v Any failures from validity checking prevent scrolling and the panel is displayed again with the

appropriate error messages.

When scrolling the message line, the PAGEUP dialog command operates as if VARUPD=NO is in effect.

Fields need not be correct and dialog variables are not updated.

Messages

UIM can issue Already at top of area.

Additional messages can be sent if validity checking encounters errors.

PRINT (Print Display)

 Prints the current display and can be assigned only to the 5250 PRINT key.

Parameters

None

VARUPD Value

Does not apply.

Messages

No messages are issued during processing unless errors are found during validity checking.

PROMPT

 Prompts for commands, action list options, and entry fields and can be assigned only to function keys. Its

specific function depends on the following:

v Type of screen being managed

v Location of the cursor

v Contents of the command or parameter line

�� PRINT ��

�� PROMPT ��

PAGEUP Command

648 Application Display Programming V6R1

Parameters

None

VARUPD Value

For more information, see “Prompting an Entry Field” and “Prompting an Action List Option or

Command.”

Messages

Any messages resulting from submitting or canceling the commands are displayed on the message line.

In addition, the UIM can issue the following messages:

v The prompt attempt for the menu item was not valid.

v Cursor is in a location where the prompt function is not allowed.

Additional messages can be sent if errors from validity checking are encountered.

Prompting an Entry Field

The prompt function becomes a CALL or RETURN function based on the prompt definition specified on

the PROMPT attribute of the associated panel definition tag. Prompting an entry field should be assigned to

the F4 key.

When prompting an entry field, VARUPD processing is done if it is specified on the definition of the

function key.

If VARUPD=YES is specified for the function key, the following occurs:

v Validity checking is always performed

v Valid values are processed and the dialog variables are updated

v Any failures from validity checking prevent prompting and the panel is displayed again with the

appropriate error messages.

If VARUPD=NO is specified for the function key, the application program can get access to the keyed

data that is not verified by using the DSPVALUE attribute of the tag where the prompt was defined.

For more information about entry field prompting, see the description of the PROMPT attribute for the

following tags found in Appendix A, “UIM Panel Group Definition Language,” on page 457.

v Data item (DATAI)

v Data item Extender (DATAIX)

v List column (LISTCOL)

Prompting an Action List Option or Command

When prompting an option on an action list or command line, the PROMPT dialog command always

operates with VARUPD=YES and the following occurs:

v Validity checking is always performed.

v Valid values are processed and the dialog variables are updated.

v Any failures from validity checking prevent prompting and the panel is displayed again with the

appropriate error messages.

The prompt function results in either submitting a command string to the system or calling an

application program. This occurs according to the following rules:

v If the command line contains a menu item, an error is sent. The UIM does not support prompting for

menu items.

PROMPT Command

Appendix B. UIM Dialog Commands 649

v If the cursor is on the command line or in the option column and if the panel has an action list panel

with options specified, the UIM selects the PROMPT action associated with each selected option. The

PROMPT action can either be to submit a command to the system or to call an application program.

If an option is selected that does not have a defined prompt action, action list processing stops, and the

panel is displayed again with an error message. The error message indicates that the user cannot

prompt for the selected option. In this case, the selected option number is displayed with error

emphasis.

The contents of the command line are parameters for the list action. These parameters can be accessed

by defining a dialog variable for the UIM to update. The update is with the contents of the command

line when the action list is processed. For more information see the LIST tag in Appendix A, “UIM

Panel Group Definition Language,” on page 457

Each individual option receives a separate prompt. The UIM does not apply information added during

prompting from one command to another.

When the prompt action is to call an application program, the option is processed without prompting

by the UIM. When the UIM calls the application program, an indication is given that the user

requested the prompt function. It is the responsibility of the application program to provide its own

version of prompting.

v If the command line contains a command, the command is submitted for prompting and processing.

The command can then be run or canceled through normal prompter functions. Depending on the

environment the job is running in, the system can pass the command to the System/36 environment or

REXX.

If the command line was blank (a subclass of assuming it contains a command), the Major Command

Groups menu is displayed.

For additional information about the PROMPT dialog command, see “Considerations for Using the

ENTER, HELP, and PROMPT Dialog Commands” on page 641.

PULLDOWN (Display Pull-Down Menu)

 Displays the first pull-down menu of the menu bar.

Parameters

None

RETRIEVE (Retrieve Command String)

 Displays the previously entered command.

The UIM keeps a series of commands entered on command lines. When the RETRIEVE dialog command

is issued, the previous command is displayed on the command line. If the RETRIEVE dialog command is

issued again before any other function is performed, the next most recent command is displayed.

Menu item selections and parameter strings cannot be retrieved. Also, commands submitted via the CMD

dialog command cannot be retrieved.

�� PULLDOWN ��

�� RETRIEVE ��

PROMPT Command

650 Application Display Programming V6R1

Parameters

None

VARUPD Value

The RETRIEVE dialog command always operates with VARUPD=NO. No validity checking is performed

on the contents of the current panel and no updates are made to the dialog variables.

Messages

No messages are issued during processing.

RETURN (Return Control to Application)

 Provides the application with a method of handling function keys, menu items, and pull-down choices by

having the UIM return control to the application with the appropriate indication.

Note: To provide the Refresh/Redisplay function for an application, use the RETURN dialog command.

The effect of the RETURN dialog command can be obtained for action lists by using the ACTOR attribute

of the LIST tag. This attribute determines whether or not the UIM should handle the action list.

Required Parameter

n This parameter specifies a numeric value from 1 through 32767. This value is returned to the

application, on the function requested parameter of QUIDSPP API, when the RETURN function is

encountered.

VARUPD Value

The RETURN dialog command does not have a predefined VARUPD value. When RETURN is assigned to a

function key, the VARUPD value of the function key determines whether or not to perform validity

checking and then updates the dialog variables.

Messages

No messages are issued during processing unless errors are found during validity checking.

�� RETURN n ��

RETRIEVE Command

Appendix B. UIM Dialog Commands 651

652 Application Display Programming V6R1

Appendix C. Feedback Area Layouts for Display Files

This appendix contains Product-Sensitive Programming Interface and Associated Guidance Information.

Tables in this section describe the open and I/O feedback areas associated with any opened display file.

The following information is presented for each item in these feedback areas:

v Offset, which is the number of bytes from the start of the feedback area to the location of each item.

v Data Type.

v Length, which is given in number of bytes.

v Contents, which is the description of the item and the valid values for it.

For information about feedback area layouts for files other than display files, see the Files and file

systems topic collection in the i5/OS Information Center.

The support provided by the high-level language you are using determines how to access this

information and how the data types are represented. See your high-level language manual for more

information.

Open Feedback Area

The open feedback area is the part of the open data path (ODP) that contains general information about

the file after it has been opened. It also contains file-specific information for display files, plus

information about each device defined for the file. This information is set during open processing and

may be updated as other operations are performed.

 Table 96. Open Feedback Area

Offset Data Type Length Contents

0 Character 2 Open data path (ODP) type:

DS Display, tape, ICF, save, printer file not being spooled, or diskette

file not being spooled.

DB Database member.

SP Printer or diskette file being spooled or inline data file.

2 Character 10 Name of the file being opened. If the ODP type is DS (for display files),

this is the name of the display file.

12 Character 10 Name of the library containing the file. For an inline data file, the value is

*N.

22 Character 10 Not applicable to displays.

32 Character 10 Not applicable to displays.

42 Binary 2 Not applicable to displays.

44 Binary 2 Maximum record length.

46 Character 2 Not applicable to displays.

48 Character 10 Not applicable to displays.

58 Binary 4 Reserved.

62 Binary 4 Reserved.

© Copyright IBM Corp. 1997, 2008 653

Table 96. Open Feedback Area (continued)

Offset Data Type Length Contents

66 Binary 2 File type:

1 Display

2 Printer

4 Diskette

5 Tape

9 Save

10 DDM

11 ICF

20 Inline data

21 Database

68 Character 3 Reserved.

71 Binary 2 Number of lines on a display screen.

73 Binary 2 Number of positions on a display screen.

75 Binary 4 Not applicable to displays.

79 Character 2 Not applicable to displays.

81 Character 1 Not applicable to displays.

82 Character 1 Not applicable to displays.

83 Character 10 Reserved.

93 Character 10 Reserved.

103 Binary 2 Not applicable to displays.

105 Binary 2 Maximum number of records that can be read or written in a block when

using blocked record I/O.

107 Binary 2 Not applicable to displays.

109 Binary 2 Blocked record I/O record increase. Number of bytes that must be added

to the start of each record in a block to address the next record in the

block.

111 Binary 4 Reserved.

115 Character 1 Miscellaneous flags.

Bit 1: Reserved.

Bit 2: File with sharing

0 File was not opened with sharing.

1 File was opened with sharing (SHARE(*YES)).

Bits 3-5: Not applicable to displays.

Bit 6: Field-level descriptions

0 File does not contain field-level descriptions.

1 File contains field-level descriptions.

Bit 7: DBCS-capable file

0 File is not DBCS-capable.

1 File is DBCS-capable.

Bit 8: Not applicable to displays.

654 Application Display Programming V6R1

Table 96. Open Feedback Area (continued)

Offset Data Type Length Contents

116 Character 10 For display files, this is the name of the display device description that is

the requesting program device.

This field is supplied only when a device name of *REQUESTER is being

attached to the display file by an open or acquire operation. Otherwise,

this field contains *N.

126 Binary 2 File open count. If the file has not been opened with sharing, this field

contains a 1. If the file has been opened with sharing, this field contains

the number of programs currently attached to this file.

128 Binary 2 Reserved.

130 Binary 2 Not applicable to displays.

132 Character 1 Miscellaneous flags.

Bits 1-4: Not applicable to displays.

Bit 5: Separate indicator area

0 Indicators are in the I/O buffer of the program.

1 Indicators are not in the I/O buffer of the

program. The DDS keyword, INDARA, was

used when the file was created.

Bit 6: User buffers

0 System creates I/O buffers for the program.

1 User program supplies I/O buffers.

Bit 7: Reserved.

Bit 8: Not applicable to displays.

133 Character 2 Open identifier. The value is unique for a full open operation (SHARE

(*NO)) of a file or the first open operation of a file opened with

SHARE(*YES). It allows you to match this file to an entry on the associated

data queue.

135 Binary 2 The field value is the maximum record format length, including both data

and file-specific information such as: option indicators, response indicators,

source sequence numbers, and program-to-system data. If the value is zero,

then use the field at offset 44.

137 Binary 2 Not applicable to displays.

139 Character 1 Miscellaneous flags.

Bits 1-3: Not applicable to displays.

Bit 4: CCSID character substitution

0 No substitution characters will be used during

CCSID data conversion.

1 Substitution characters may be used during

CCSID data conversion.

Bits 5-8: Reserved.

140 Character 6 Reserved.

146 Binary 2 Number of devices defined for this ODP. For displays, this is determined

by the number of devices defined on the DEV parameter of the Create

Display File (CRTDSPF) command.

148 Character Device name definition list. See “Device Definition List” on page 656 for a

description of this array.

Appendix C. Feedback Area Layouts for Display Files 655

Device Definition List

The device definition list part of the open feedback area is an array structure. Each entry in the array

contains information about each device attached to the file. The number of entries in this array is

determined by the number at offset 146 of the open feedback area. The device definition list begins at

offset 148 of the open feedback area. The offsets shown for it are from the start of the device definition

list rather than the start of the open feedback area.

 Table 97. Device Definition List

Offset Data Type Length Contents

0 Character 10 Program device name. For display files, the value is the name of the device

description.

10 Character 50 Reserved.

60 Character 10 Device description name. For display files, the value is the name of the

device description.

656 Application Display Programming V6R1

Table 97. Device Definition List (continued)

Offset Data Type Length Contents

70 Character 1 Device class. For displays, the device class is hex 01.

Device type.

hex 07 5251 Display Station

hex 0B 5291 Display Station

hex 0D 5292 Display Station

hex 12 5555-B01 Display Station

hex 13 3270 Display Station

hex 15 Graphic-capable device

hex 16 Financial terminal

hex 17 3180 Display Station

hex 19 3277 DHCF Device

hex 26 3179-2 Display Station

hex 27 3196-A Display Station

hex 28 3196-B Display Station

hex 33 3197-C1 Display Station

hex 34 3197-C2 Display Station

hex 35 3197-D1 Display Station

hex 36 3197-D2 Display Station

hex 37 3197-W1 Display Station

hex 38 3197-W2 Display Station

hex 39 5555-E01 Display Station

hex 3E 3476-EA Display Station

hex 3F 3477-FG Display Station

hex 40 3278 DHCF device

hex 41 3279 DHCF device

hex 42 ICF finance device

hex 43 Retail communications device

hex 44 3477-FA Display Station

hex 45 3477-FC Display Station

hex 46 3477-FD Display Station

hex 47 3477-FW Display Station

hex 48 3477-FE Display Station

hex 4D Network Virtual Terminal display station

hex 51 5555-C01 Display Station

hex 52 5555-F01 Display Station

hex 56 3476-EC Display Station

Appendix C. Feedback Area Layouts for Display Files 657

Table 97. Device Definition List (continued)

Offset Data Type Length Contents

71 Character 1

hex 58 5555-G01 Display Station

hex 59 5555-G02 Display Station

hex 5D 3486-BA Display Station

hex 5F 3487-HA Display Station

hex 60 3487-HG Display Station

hex 61 3487-HW Display Station

hex 62 3487-HC Display Station

72 Binary 2 Number of lines on the display screen.

74 Binary 2 Number of positions in each line of the display screen.

76 Character 2 Bit flags.

Bit 1: Blinking capability.

0 Display is not capable of blinking.

1 Display is capable of blinking.

Bit 2: Device location.

0 Local device.

1 Remote device.

Bit 3: Acquire status. This bit is set even if the device is

implicitly acquired at open time.

0 Device is not acquired.

1 Device is acquired.

Bit 4: Invite status.

0 Device is not invited.

1 Device is invited.

Bit 5: Data available status (only if device is invited).

0 Data is not available.

1 Data is available.

Bit 6: Not applicable to displays.

Bit 7: Requesting program device.

0 Not a requesting program device.

1 A requesting program device.

658 Application Display Programming V6R1

Table 97. Device Definition List (continued)

Offset Data Type Length Contents

Bit 8: DBCS device.

0 Device is not capable of processing double-byte

data.

1 Device is capable of processing double-byte

data.

Bits 9-10: Reserved.

Bit 11: DBCS keyboard.

0 Keyboard is not capable of entering double-byte

data.

1 Keyboard is capable of entering double-byte

data.

Bits 12-16: Reserved.

78 Character 1 Not applicable to displays.

79 Character 1 Not applicable to displays.

80 Character 50 Reserved.

I/O Feedback Area

The results of I/O operations are communicated to the program using i5/OS messages and I/O feedback

information. The I/O feedback area is updated for every I/O operation unless your program is using

blocked record I/O. In that case, the feedback area is updated only when a block of records is read or

written. Some of the information reflects the last record in the block. Other information, such as the count

of I/O operations, reflects the number of operations on blocks of records and not the number of records.

See your high-level language manual to determine if your program uses blocked record I/O.

The I/O feedback area consists of two parts: a common area and a file-dependent area.

Common I/O Feedback Area

 Table 98. Common I/O Feedback Area

Offset Data Type Length Contents

0 Binary 2 Offset to file-dependent feedback area.

2 Binary 4 Write operation count. Updated only when a write operation completes

successfully. For blocked record I/O operations, this count is the number of

blocks, not the number of records.

6 Binary 4 Read operation count. Updated only when a read operation completes

successfully. For blocked record I/O operations, this count is the number of

blocks, not the number of records.

10 Binary 4 Write-read operation count. Updated only when a write-read operation

completes successfully.

14 Binary 4 Other operation count. Number of successful operations other than write,

read, or write-read. Updated only when the operation completes

successfully. This count includes update, delete, force-end-of-data,

force-end-of-volume, change-end-of-data, release record lock, and

acquire/release device operations.

18 Character 1 Reserved.

Appendix C. Feedback Area Layouts for Display Files 659

Table 98. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

19 Character 1 Current operation.

hex 01 Read or read block or read from invited devices

hex 02 Read direct

hex 03 Read by key

hex 05 Write or write block

hex 06 Write-read

hex 07 Update

hex 08 Delete

hex 09 Force-end-of-data

hex 0A Force-end-of-volume

hex 0D Release record lock

hex 0E Change end-of-data

hex 0F Put delete

hex 11 Release device

hex 12 Acquire device

20 Character 10 Name of the record format just processed, which is either:

v Specified on the I/O request, or

v Determined by default or format selection processing

For display files, the default name is either the name of the only record

format in the file or the previous record format name for the record written

to the display that contains input-capable fields. Because a display file may

have multiple formats on the display at the same time, this format may not

represent the format where the last cursor position was typed.

660 Application Display Programming V6R1

Table 98. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

30 Character 2 Device class:

Byte 1:

hex 00 Database

hex 01 Display

hex 02 Printer

hex 04 Diskette

hex 05 Tape

hex 09 Save

hex 0B ICF

Byte 2 (if byte 1 contains hex 01 for displays):

hex 07 5251 Display Station

hex 0B 5291 Display Station

hex 0D 5292 Display Station

hex 12 5555-B01 Display Station

hex 13 3270 Display Station

hex 15 Graphic-capable device

hex 16 Financial terminal

hex 17 3180 Display Station

hex 19 3277 DHCF device

hex 26 3179-2 Display Station

hex 27 3196-A Display Station

hex 28 3196-B Display Station

hex 33 3197-C1 Display Station

hex 34 3197-C2 Display Station

hex 35 3197-D1 Display Station

hex 36 3197-D2 Display Station

hex 37 3197-W1 Display Station

hex 38 3197-W2 Display Station

hex 39 5555-E01 Display Station

hex 3E 3476-EA Display Station

hex 3F 3477-FG Display Station

hex 40 3278 DHCF device

hex 41 3279 DHCF device

hex 42 ICF finance device

hex 43 Retail communications device

hex 44 3477-FA Display Station

hex 45 3477-FC Display Station

Appendix C. Feedback Area Layouts for Display Files 661

Table 98. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

hex 46 3477-FD Display Station

hex 47 3477-FW Display Station

hex 48 3477-FE Display Station

hex 4D Network Virtual Terminal display station

hex 51 5555-C01 Display Station

hex 52 5555-F01 Display Station

hex 56 3476-EC Display Station

hex 58 5555-G01 Display Station

hex 59 5555-G02 Display Station

hex 5D 3486-BA Display Station

hex 5E 3486-BG Display Station

hex 5F 3487-HE Display Station

hex 60 3487-HD Display Station

hex 61 3487-HW Display Station

hex 62 3487-HC Display Station

32 Character 10 Device name. For displays, the name of the device for which the operation

just completed.

42 Binary 4 Length of the record processed by the last I/O operation.

46 Character 80 Reserved.

126 Binary 2 Number of records retrieved on a read request for blocked records or sent

on a write or force-end-of-data or force-end-of-volume request for blocked

records.

128 Binary 2 For output, the field value is the record format length, including

first-character forms control, option indicators, source sequence numbers,

and program-to-system data. If the value is zero, use the field at offset 42.

For input, the field value is the record format length, including response

indicators and source sequence numbers. If the value is zero, use the field

at offset 42.

130 Character 2 Reserved.

132 Binary 4 Not applicable to displays.

136 Character 8 Reserved.

662 Application Display Programming V6R1

I/O Feedback Area for Display Files

 Table 99. I/O Feedback Area for Display Files

Offset Data Type Length Contents

0 Character 2 Flag bits.

Bit 1: Cancel-read indicator.

0 The cancel-read operation did not cancel the

read request.

1 The cancel-read operation canceled the read

request.

Bit 2: Data-returned indicator.

0 The cancel-read operation did not change the

contents of the input buffer.

1 The cancel-read operation placed the data from

the read-with-no-wait operation into the input

buffer.

Bit 3: Command key indicator.

0 Conditions for setting this indicator did not

occur.

1 The Print, Help, Home, Roll Up, Roll Down, or

Clear key was pressed. The key is enabled with

a DDS keyword, but without a response

indicator specified.

Bits 4-16: Reserved.

Appendix C. Feedback Area Layouts for Display Files 663

Table 99. I/O Feedback Area for Display Files (continued)

Offset Data Type Length Contents

2 Character 1 Attention indicator byte (AID). This field identifies which function key was

pressed. This field will always contain the value hex F1 to imitate the Enter

key being pressed on a display device. For display files, this field will

contain the 1-byte hexadecimal value returned from the device.

Hex Codes Function Keys

hex 31 1

hex 32 2

hex 33 3

hex 34 4

hex 35 5

hex 36 6

hex 37 7

hex 38 8

hex 39 9

hex 3A 10

hex 3B 11

hex 3C 12

hex B1 13

hex B2 14

hex B3 15

hex B4 16

hex B5 17

hex B6 18

hex B7 19

hex B8 20

hex B9 21

hex BA 22

hex BB 23

hex BC 24

hex BD Clear

hex F1 Enter/Rec Adv

hex F3 Help (not in operator-error mode)

hex F4 Roll Down

hex F5 Roll Up

hex F6 Print

hex F8 Record Backspace

hex 3F Automatic Enter (for Selector Light Pen)

3 Character 2 Cursor location (line and position). Updated on input operations that are

not subfile operations that return data to the program. For example, hex

0102 means line 1, position 2. Line 10, position 33 would be hex 0A21.

664 Application Display Programming V6R1

Table 99. I/O Feedback Area for Display Files (continued)

Offset Data Type Length Contents

5 Binary 4 Actual data length. The length of the record format processed by the I/O

operation.

9 Binary 2 Relative record number of a subfile record. Updated for a subfile record

operation. For input operations, updated only if data is returned to the

program. If multiple subfiles are on the display, this offset will contain the

relative record number for the last subfile updated.

11 Binary 2 Indicates the lowest subfile relative record number currently displayed in

the uppermost subfile display area if the last write operation was done to

the subfile control record with SFLDSP specified. Updated for roll up and

roll down operations. It is reset to zero when an output operation is

performed to any format other than the subfile control format that initially

set this value. Not set for message subfiles.

13 Binary 2 Total number of records in a subfile. Updated on a put-relative operation

to any subfile record. The number is set to zero on a write or write-read

operation to any subfile control record with the SFLINZ keyword optioned

on. If records are put to multiple subfiles on the display, this offset will

contain the total number of records for all subfiles assuming that no write

or write-read operations were performed to any subfile control record with

the SFLINZ keyword optioned on.

15 Character 2 Cursor location relative to active DDS WINDOW keyword (line and

position). Updated on input operations that are not subfile operations that

return data to the program. The cursor location is based off the usable

positions within the window. For example, hex 0C13 means line 12,

position 19.

17 Character 17 Reserved.

34 Character 2 Major return code.

00 Operation completed successfully.

02 Input operation completed successfully, but job is being canceled

(controlled).

03 Input operation completed successfully, but no data received.

04 Output exception.

08 Device already acquired.

11 Read from invited devices was not successful.

34 Input exception.

80 Permanent system or file error.

81 Permanent session or device error.

82 Acquire or open operation failed.

83 Recoverable session or device error.

36 Character 2 Minor return code. For the values for a display file, see Appendix D,

“Display File Return Codes,” on page 671.

38 Character 8 Not applicable to displays.

46 Character 1 Not applicable to displays.

47 Character 1 Reserved.

48 Character 1 Not applicable to displays.

49 Character 10 Not applicable to displays.

59 Character 4 Reserved.

63 Character 8 Not applicable to displays.

71 Character 9 Reserved.

Appendix C. Feedback Area Layouts for Display Files 665

Get Attributes

Performing the get attributes operation allows you to obtain certain information about a specific display

device.

 Table 100. Get Attributes

Offset Data Type Length Contents

0 Character 10 Program device name.

10 Character 10 Device description name. Name of the device description associated with

this entry.

20 Character 10 User ID.

30 Character 1 Device class. For displays, the device class is D.

31 Character 6 Device type:

3179 3179 Display Station

317902 3179-2 Display Station

3180 3180 Display Station

3196A 3196-A1/A2 Display Station

3196B 3196-B1/B2 Display Station

3197C1 3197-C1 Display Station

3197C2 3197-C2 Display Station

3197D1 3197-D1 Display Station

3197D2 3197-D2 Display Station

3197W1 3197-W1 Display Station

3197W2 3197-W2 Display Station

3270 3270 Display Station

3476EA 3476-EA Display Station

3476-EC 3476-EC Display Station

3477FA 3477-FA Display Station

3477FC 3477-FC Display Station

3477FD 3477-FD Display Station

3477FE 3477-FE Display Station

3477FG 3477-FG Display Station

3477FW 3477-FW Display Station

666 Application Display Programming V6R1

Table 100. Get Attributes (continued)

Offset Data Type Length Contents

525111 5251 Display Station

5291 5291 Display Station

5292 5292 Display Station

529202 5292-2 Display Station

5555B1 5555-B01 Display Station

5555C1 5555-C1 Display Station

5555E1 5555-E01 Display Station

5555F1 5555-F1 Display Station

5555-G1

5555-G01 Display Station

5555-G2

5555-G02 Display Station

3486BA

3486-BA Display Station

3486BG

3486-BG Display Station

3487HC

3487-HC Display Station

3487HD

3487-HD Display Station

3487HE

3487-HE Display Station

3487HW

3487-HW Display Station

DHCF77

3277 DHCF device

DHCF78

3278 DHCF device

DHCF79

3279 DHCF device

37 Character 1 Requesting program device. This flag indicates whether this entry is

defining a *REQUESTER device.

N Not a *REQUESTER device (communications source device).

Y A *REQUESTER device (communications target device).

38 Character 1 Acquire status. Set even if device is implicitly acquired at open time.

N Device is not acquired.

Y Device is acquired.

39 Character 1 Invite status.

Y Device is invited.

N Device is not invited.

40 Character 1 Data available.

Y Invited data is available.

N Invited data is not available.

Appendix C. Feedback Area Layouts for Display Files 667

Table 100. Get Attributes (continued)

Offset Data Type Length Contents

41 Binary 2 Number of rows on display.

43 Binary 2 Number of columns on display.

45 Character 1 Display allow blink.

Y Display is capable of blinking.

N Display is not capable of blinking.

46 Character 1 Online/offline status.

O Display is online.

F Display is offline.

47 Character 1 Display location.

L Local display.

R Remote display.

48 Character 1 Display type.

A Alphanumeric or Katakana.

I DBCS.

49 Character 1 Keyboard type of display.

A Alphanumeric or Katakana keyboard.

I DBCS keyboard.

50 Character 1 Not applicable to displays.

51 Character 1 Not applicable to displays.

52 Character 1 Not applicable to displays.

53 Character 8 Not applicable to displays.

61 Character 8 Not applicable to displays.

69 Character 8 Not applicable to displays.

77 Character 8 Not applicable to displays.

85 Character 8 Not applicable to displays.

93 Character 8 Not applicable to displays.

101 Character 1 Controller information.

N Display is not attached to a controller that supports an enhanced

interface for nonprogrammable work stations.

1 Display is attached to a controller (type 1)

5 that supports an

enhanced interface for nonprogrammable work stations.

2 Display is attached to a controller (type 2)

5 that supports an

enhanced interface for nonprogrammable work stations.

3 Display is attached to a controller (type 3)

5 that supports an

enhanced interface for nonprogrammable work stations.

102 Character 1 Color capability of display.

Y Color display

N Monochrome display

103 Character 1 Grid line support by display.

Y Display supports grid lines

N Display does not support grid lines

104 Character 1 Not applicable to displays.

105 Character 8 Not applicable to displays.

113 Character 31 Reserved.

668 Application Display Programming V6R1

5.

Type 1 Controllers available at V2R2 which support such things as windows, selection fields, scroll bars, and continued cursor

progression.

Type 2 Controllers available at V2R3. These support all of the V2R2 functions as well as menu bars, continued-entry fields, edit

masks, and simple hotspots.

Type 3 Controllers available at V3R1. These support all of the V2R2 and V2R3 functions. They also support text in the bottom

border of windows.

Appendix C. Feedback Area Layouts for Display Files 669

670 Application Display Programming V6R1

Appendix D. Display File Return Codes

This section contains descriptions of all major and minor return codes for display files. These return

codes are set in the I/O feedback area of the display file. The return codes report the results of each

operation. The appropriate return code is available to the application program that issued the operation.

The program then checks the return code and acts accordingly. Refer to your high-level language manual

for information about how to access these return codes.

The return code is a four-digit value: the first two digits contain the major code, and the last two digits

contain the minor code. With some return codes, a message is also sent to the job log or the operator

message queue (QSYSOPR). You can refer to the message for additional information.

Major Code 00

 Major Code 00–Operation completed successfully.

Description: The operation issued by your program completed successfully.

Action: Continue with the next operation.

Code Description/Action

0000 Description: For input operations performed by your program, 0000 indicates that some

data was received on a successful input operation.

 For output operations performed by your program, 0000 indicates that the last output

operation completed successfully.

 Action: Your program may continue. One of the messages listed below may have been

issued to warn of an unusual condition that may be significant to your program even

though it is not an error.

 Messages:

 CPF4018 (Status)

 CPF4019 (Diagnostic)

 CPF4054 (Diagnostic)

 CPF4082 (Diagnostic)

 CPF4410 (Diagnostic)

 CPF5003 (Status)

 CPF5508 (Diagnostic)

Major Code 02

 Major Code 02–Input operation completed successfully, but your job is being ended (controlled).

Description: The input operation issued by your program was completed successfully. However, your job is being

ended (controlled).

Action: Your program should complete its display processing as soon as possible to allow your program to

complete in an orderly manner. The system eventually changes a job ended (controlled) to a job ended (immediate)

and forces all processing to stop for your job.

Code Description/Action

© Copyright IBM Corp. 1997, 2008 671

0200 Description: On a successful input operation, an indication was received that a job ended

(controlled) request is pending. Also, 0200 indicates that some data was received.

 Action: Your program may continue. However, the recommended action is to complete

the display processing and end the program, because the system will eventually cancel

your job and cause all processing to stop for your job.

Major Code 03

 Major Code 03–Input operation completed successfully, but no data received.

Description: The input operation was completed successfully, but no data was received.

Action: Check the minor return code for additional information, and continue with the next operation.

Code Description/Action

0300 Description: No data was received on a successful input operation. Examples of

conditions causing this are no data being available on a get-relative or a get-next-changed

operation to a subfile record format.

 Action: Continue with whatever processing is appropriate. For example, if your program

issued a get-next-changed operation to a subfile record format, then a 0300 indicates that

there are no more subfile records changed by the user and no more user input data to

process.

 Messages:

 CPF5017 (Notify)

 CPF5020 (Notify)

 CPF5037 (Notify)

0309 Description: Your program is being ended (controlled). No data was received.

 This return code is only applicable to the read-from-invited-devices operation.

 Action: Your program can continue processing. However, the recommended action is to

complete the display processing and end the program, because the system will eventually

cancel your job and cause all processing to stop for your job.

 Messages:

 CPF4741 (Notify)

0310 Description: The time interval specified by the WAITRCD value for the display file has

ended.

 This return code is only applicable to the read-from-invited-devices operation.

Note: Because no device is associated with the completion of this operation, the device

name in the I/O feedback area contains an *N.

Action: Issue the operation to perform the intended function after the specified time

interval has ended. For example, if you are using the time interval to control the length of

time to wait for data, you can then issue another read-from-invited-devices operation to

receive the data.

 Messages:

 CPF4742 (Status)

 CPF4743 (Status)

672 Application Display Programming V6R1

Major Code 04

 Major Code 04–Output exception occurred.

Description: An output exception occurred because your program attempted to send output when it should have

been receiving the data that had already been sent by the display. Your data, associated with this output operation,

was not sent to the display. Your program can attempt to send its output later.

Action: Issue an input operation to receive the data.

Code Description/Action

0412 Description: An output exception occurred because your program attempted to send data

when it should have been receiving the data that had already been sent by the display.

Your program data was not sent and should be sent later, after the data from the display

has been received.

 Action: Issue an input operation to receive the data.

 Messages:

 CPF4737 (Notify)

Major Codes 08–11

 Major Codes 08 and 11–Miscellaneous program errors occurred.

Description: The operation just attempted by your program was not successful. The operation may have failed

because it was issued at the wrong time.

Action: Refer to the individual return code descriptions for the appropriate recovery actions.

Code Description/Action

0800 Description: The acquire operation just performed was not successful. It tried to acquire a

device that had already been acquired.

 Action: If the display device requested by the original acquire operation is the one

needed, your program can begin using it because it is already available. If a different

device is required, issue another acquire operation for a different device name.

 Messages:

 CPD4077 (Diagnostic)

 CPF50A0 (Status)

1100 Description: The read-from-invited-devices operation was not successful because no

devices were invited.

 Action: Issue an invite function followed by a read-from-invited-devices operation.

 Messages:

 CPF4740 (Notify)

Appendix D. Display File Return Codes 673

Major Code 34

 Major Code 34–Input exception occurred.

Description: The input operation attempted by your program was not successful. The data received was too long

for the record format specified on the input operation.

Action: Refer to the individual return code descriptions for the appropriate recovery actions.

Code Description/Action

3431 Description: The input operation issued by your program was not successful because the

length of the data received from the display exceeds the receive data length specified in

the user-defined data stream. The data received is truncated.

 This return code is only applicable to input operations using a record format specifying a

user-defined data stream (USRDFN DDS keyword).

 Action: Close the device file and end your program. Then, change your program so that

the input record length is at least as long as the data record to be received.

 Messages:

 CPF5062 (Notify)

Major Code 80

 Major Code 80–Permanent system or file error (not recoverable).

Description: A file or system error that is not recoverable has occurred. Recovery is unlikely until the problem

causing the error has been corrected.

Action: The following general actions can be taken by your program for each 80xx return code. Other specific

actions are given in each return code description.

v Continue processing without the display.

v Close the device file and open the file again. If the operation is still unsuccessful, try it again only a limited

number of times. (The number of times should be specified in your program.)

v End.

Code Description/Action

8081 Description: The operation was not successful because a system error condition was

detected.

 Action: Your display device may need to be varied off and then on again. Your program

can either:

v Continue processing without the display device.

v Close the device file and open the file again.

v End.

Messages:

CPF4182 (Escape) CPF5416 (Escape)

CPF4510 (Escape) CPF5418 (Escape)

CPF5192 (Escape) CPF5423 (Escape)

CPF5257 (Escape) CPF5429 (Escape)

CPF5403 (Escape) CPF5431 (Escape)

674 Application Display Programming V6R1

CPF5404 (Escape) CPF5433 (Escape)

CPF5405 (Escape) CPF5434 (Escape)

CPF5408 (Escape) CPF5441 (Escape)

CPF5409 (Escape) CPF5447 (Escape)

CPF5410 (Escape) CPF5455 (Escape)

CPF5411 (Escape) CPF5456 (Escape)

CPF5414 (Escape) CPF5507 (Escape)

CPF5415 (Escape)

8082 Description: The operation was not successful because the display device is unusable.

This may occur because a cancel reply has been taken to an error recovery message for

the device or because the display has been held by a Hold Communications Device

(HLDCMNDEV) command. No operations should be issued to the device.

 Action: Communications with the display cannot be resumed until the device has been

reset to a varied-on state. If the device has been held, use the Release Communications

Device (RLSCMNDEV) command to reset the device. If the device is in an error state,

vary the device off and then on again. Once the device is reset, normal operation can be

started by opening the display device file again. Your program can either:

v Continue processing without the display device.

v Close the device file and open the file again.

v End.

Messages:

 CPF4354 (Escape)

 CPF5269 (Escape)

80A6 Description: A Systems Network Architecture (SNA) unbind operation was not successful

on a close or release operation. This may be the result of a device configuration error. The

device may be unusable. No operations should be issued to the device.

 Action: Refer to the device response code in the accompanying error message to

determine the cause of the failure. Vary the device off and then on again to reset the

error. Correct the error and try your program again.

 Messages:

 CPF4527 (Escape)

80B3 Description: The open operation was not successful because the display file is not

available. The file cannot be opened again until the necessary resources are available.

 Action: Your program can wait for the display file to become available, then issue

another open operation. Otherwise, you may continue other processing or end the

program.

 Consider increasing the WAITFILE parameter with the Change Display File (CHGDSPF)

command or Override with Display File (OVRDSPF) command to allow more time for

the file to become available.

 Messages:

 CPF4128 (Escape)

80C0 Description: An error that is not recoverable has occurred on the display device.

 Action: Your display devices may need to be varied off and then on again. Your program

can either:

Appendix D. Display File Return Codes 675

v Continue processing without the display station.

v Close the device file and open the file again.

v End.

Messages:

CPF5103 (Escape) CPF5420 (Escape)

CPF5192 (Escape) CPF5421 (Escape)

CPF5412 (Escape) CPF5430 (Escape)

CPF5413 (Escape) CPF5437 (Escape)

CPF5419 (Escape) CPF5439 (Escape)

80EB Description: An open operation was not successful because an open option that is not

valid or a combination of options that is not valid was specified in your program, in the

display file, or in an override command.

 Action: Close the display file, correct the problem, and open the file again. See the

individual messages to determine what options are not valid.

 Messages:

CPF4062 (Escape) CPF4345 (Escape)

CPF4129 (Escape) CPF5151 (Escape)

CPF4148 (Escape) CPF5510 (Escape)

CPF4156 (Escape) CPF5511 (Escape)

CPF4163 (Escape) CPF5512 (Escape)

CPF4169 (Escape) CPF5513 (Escape)

CPF4191 (Escape) CPF5552 (Escape)

CPF4238 (Escape)

80ED Description: The open operation was not successful because the record format

descriptions in the file have changed since your program was compiled.

 Action: Close the file and end the program. Determine whether the changes affect your

application program. If they do, recompile the program. If the changes do not affect your

program, the file should be changed or overridden to LVLCHK(*NO). When

LVLCHK(*NO) is specified, the system does not compare the record format descriptions.

 Messages:

 CPF4131 (Escape)

80F8 Description: An operation to a file was not successful because the file is marked in error.

 Action: Close the file. Refer to messages in the job log to determine what errors occurred.

Take the appropriate action for those errors.

 Messages:

CPF4132 (Escape) CPF5129 (Escape)

CPF4213 (Escape) CPF5144 (Escape)

CPF4550 (Escape) CPF5427 (Escape)

676 Application Display Programming V6R1

Major Code 81

 Major Code 81–Permanent device error (not recoverable).

Description: A device-related error that is not recoverable occurred during an I/O operation. Any attempt to

continue using this display device will probably fail again until the cause of the problem is found and corrected, but

operations directed to other display devices associated with the file should be expected to work.

Action: The following general actions can be taken for each 81xx return code. Other specific actions are given in

each return code description.

v Continue processing without the display device.

v Release the device or close the file, correct the problem, and acquire the device again or open the file. If the

operation is still unsuccessful, try it again only a limited number of times. (The number of times should be

specified in your program.)

v End.

Several return codes indicate that an error condition must be corrected by varying the device off and on again.

Code Description/Action

8181 Description: A system error condition was detected during the I/O operation to the

device.

 Action: Release the device in error or close the file. You may need to vary the device off

and on again to clear the error. Determine the cause of the failure from the accompanying

message. Check for any system operator messages indicating that additional corrective

action must be performed. Open the file again or acquire the device to continue.

 Messages:

 CPF4553 (Escape)

 CPF4725 (Escape)

 CPF5105 (Escape)

 CPF5189 (Escape)

 CPF5254 (Escape)

8191 Description: The operation was not successful because a permanent line error occurred,

and the system operator took a recovery option in response to the line error message.

(You can find out what type of line error occurred by asking the system operator.) The

device has been marked unusable.

 Action: Release the device in error or close the file. Vary the device off and on again to

clear the error. Open the file again or acquire the device to continue.

 Messages:

 CPF4526 (Escape)

 CPF4542 (Escape)

 CPF4551 (Escape)

 CPF5128 (Escape)

 CPF5143 (Escape)

 CPF5198 (Escape)

8197 Description: An error condition that is not recoverable was detected at the device. An

example of such an error is the user turning off the display device.

Appendix D. Display File Return Codes 677

Action: Release the device in error or close the file. The display device may need to be

varied off and then on again to clear the error. Refer to the accompanying error message

for additional information regarding the source of the specific error detected. Open the

file or acquire the device again to continue.

 Messages:

CPF4149 (Escape) CPF5106 (Escape)

CPF4197 (Escape) CPF5140 (Escape)

CPF4524 (Escape) CPF5143 (Escape)

CPF4533 (Escape) CPF5199 (Escape)

CPF4538 (Escape) CPF5265 (Escape)

CPF5047 (Escape)

81C2 Description: The operation issued by your program was not successful because the

Systems Network Architecture (SNA) session with the display is not active.

 Action: Release the device or close the file. Vary the device off and on again to clear the

error. Open the file or acquire the device again to continue.

 Messages:

 CPF5170 (Escape)

 CPF5422 (Escape)

Major Code 82

 Major Code 82–Open or acquire operation failed.

Description: An attempt to open the display file or acquire the display device was not successful. The error may be

recoverable or permanent, but is limited to the specific display device. Recovery is unlikely until the problem

causing the error has been corrected.

Action: The following general actions can be taken for each 82xx return code. Other specific actions are given in

each return code description. You can either:

v Continue processing without the device.

v Release the device or close the file, correct the problem, and acquire the device or open the file again. A

subsequent operation could be successful if the error occurred because of some temporary condition such as the

device being in use at the time.

If the operation is still unsuccessful, try it again only a limited number of times. (The number of times should be

specified in your program.)

– If the attempted operation was an acquire operation, release the device and issue the acquire operation again.

– If the attempted operation was an open operation, close the file and issue the open operation again.

v End.

Several return codes indicate that an error condition must be corrected by changing a value in the file. To change a

parameter value for the file, use the Change Display File (CHGDSPF) or Override with Display File (OVRDSPF)

command.

Code Description/Action

8281 Description: A system error condition was detected on an open or acquire operation. The

file may previously have been in error, or the file could not be opened due to a system

error.

678 Application Display Programming V6R1

Action: Determine the cause of the failure from the accompanying message. Check for

any system operator messages indicating that additional corrective action must be

performed.

 The display device may need to be varied off and then on again to clear the error. Your

program can either:

v Continue processing without the display device.

v Release the device or close the file, correct the problem, and acquire the device or open

the file again.

v End.

Messages:

CPF4168 (Escape) CPF5410 (Escape)

CPF4182 (Escape) CPF5411 (Escape)

CPF4221 (Escape) CPF5424 (Escape)

CPF5105 (Escape) CPF5447 (Escape)

CPF5254 (Escape) CPF5455 (Escape)

CPF5257 (Escape) CPF919E (Escape)

8282 Description: The open or acquire operation was not successful because the display device

is unusable. This may occur because a cancel reply has been taken to an error recovery

message for the device or because the display has been held by a Hold Communications

Device (HLDCMNDEV) command. No operations should be issued to the device.

Communications with the display cannot be resumed until the device has been reset to a

varied-on state.

 Action: Close the display device file. If the device has been held, use the Release

Communications Device (RLSCMNDEV) command to reset the device. If the device is in

an error state, vary the device off and then on again. Once the device is reset, start

normal operation by opening the display device file again.

 Messages:

 CPF4171 (Escape)

 CPF4354 (Escape)

 CPF5548 (Escape)

8291 Description: A permanent line error occurred on an open or acquire operation. The

device has been marked unusable.

 Action: Release the device in error or close the file. Vary the device off and on again to

clear the error. Open the file again to continue.

 Messages:

 CPF4146 (Escape)

 CPF4179 (Escape)

 CPF4193 (Escape)

 CPF4291 (Escape)

 CPF5198 (Escape)

 CPF5260 (Escape)

8297 Description: The open or acquire operation has ended abnormally due to an error

condition detected at the display device that is not recoverable. An example of such an

error is the user turning off the display device.

Appendix D. Display File Return Codes 679

Action: Release the device in error or close the file. The display device may need to be

varied off and then on again to clear the error. Refer to the accompanying error message

for additional information regarding the source of the specific error detected. Open the

file or acquire the device again to continue.

 Messages:

 CPF4192 (Escape)

 CPF5047 (Escape)

 CPF5106 (Escape)

 CPF5140 (Escape)

 CPF5143 (Escape)

 CPF5199 (Escape)

82A6 Description: The open or acquire operation failed because the Systems Network

Architecture (SNA) bind command was not successful.

 Action: Ensure that the display device with which your program is communicating is

configured properly. Refer to the device response codes in the accompanying error

message for additional information regarding the specific error detected.

 Messages:

 CPF4124 (Escape)

 CPF4190 (Escape)

 CPF5103 (Escape)

 CPF5517 (Escape)

82A8 Description: The acquire operation was not successful because the maximum number of

devices allowed for the display file has been reached.

 Action: Your program can recover by releasing a different device and issuing the acquire

operation again. If more devices are needed, close your file and increase the MAXDEV

value in the display file.

 Messages:

 CPF4745 (Escape)

 CPF5041 (Status)

 CPD4757 (Diagnostic)

82A9 Description: The acquire operation was not successful because the requesting program

device is not available. The requesting program device may not be available because your

program is not running in an interactive job.

 Action: Your program can continue without the display, attempt to use a different display

device, or end.

 If your program needs to use the requesting program device, make sure that it runs in an

interactive job.

 Messages:

 CPF4366 (Escape)

 CPF5381 (Escape)

82AA Description: The open or acquire operation was not successful because the display device

description was not found.

 Action: Your program can continue without the display, attempt to use a different display

device, or end.

680 Application Display Programming V6R1

Verify that the name of the display device was correctly specified in the DEV parameter

on the CRTDSPF, CHGDSPF, CRTDEVDSP, or OVRDSPF command.

 Messages:

 CPF4103 (Escape)

 CPF4747 (Escape)

82AB Description: The open or acquire operation was not successful because the display device

was not varied on.

 Action: Your program can continue without the display, attempt to acquire a different

display device, or end. Vary on the display device and attempt the open or acquire

operation again.

 If you want your program to continue with the same display, release the device or close

the file, correct the problem, and acquire the device or open the file again.

 Messages:

 CPF4285 (Escape)

 CPF5333 (Escape)

82B3 Description: The open or acquire operation was not successful because the display device

you are acquiring is in use in another process.

 Action: Wait for the display device to become available, then issue the acquire operation

again. Otherwise, you may continue other processing without the display, or end the

program.

 You can use the Work with Configuration Status (WRKCFGSTS) command to determine

which job is using the display device.

 Consider increasing the WAITFILE parameter of the CHGDSPF or OVRDSPF command

to allow more time for the device to become available.

 Messages:

 CPF4109 (Escape)

 CPF4130 (Escape)

 CPF4282 (Escape)

 CPF5217 (Escape)

 CPF5332 (Escape)

82EE Description: An open or acquire operation was attempted to a device that is not

supported for a display file.

 Your program is attempting to acquire a device that is not a valid display device; or it is

trying to acquire the requesting program device, but the requesting program device for

the job is a communications device, not a display device.

 Action: Your program can continue without the display, attempt to acquire a different

display device, or close the file and end.

 Verify that the name of the display device was specified correctly on the CHGDSPF,

CRTDEVDSP, CRTDSPF, or OVRDSPF command.

 If your program was attempting to acquire the requesting program device, verify that

your program is running in an interactive job so that the requesting program device is a

display device.

 Messages:

 CPF4105 (Escape)

 CPF4223 (Escape)

Appendix D. Display File Return Codes 681

CPF4760 (Escape)

 CPF5038 (Escape)

82EF Description: An open or acquire operation was attempted for a device that the user is not

authorized to or that is in service mode.

 Action: Your program can continue without the display, attempt to acquire a different

display device, or end.

 If the operation was an open operation, close the file, correct the problem, and then issue

the open operation again. If the operation was an acquire operation, correct the problem

and issue the acquire operation again.

 For authority errors, obtain authority to the device from your security officer or device

owner. If the device is in service mode, the system service tools (SST) function is

currently using the device. Wait until the device is available to issue the operation again.

 Messages:

 CPF4104 (Escape)

 CPF4186 (Escape)

 CPF5278 (Escape)

 CPF5279 (Escape)

82F8 Description: Your program attempted an acquire operation to a device that is marked in

error due to a previous error during an I/O or acquire operation.

 Action: Release the device or close the file, correct the previous error, and acquire the

device or open the file again.

 Messages:

 CPF5293 (Escape)

Major Code 83

 Major Code 83–Device error occurred (recoverable).

Description: An error occurred during an I/O operation, but the display device is still usable. Recovery within your

program might be possible.

Action: The following general actions can be taken for each 83xx return code. Other specific actions are given in

each return code description.

v Continue processing without the display device.

v Correct the problem and continue processing with the display device. If the attempt to recover from the operation

is unsuccessful, try it again only a limited number of times. (The number of times should be specified in your

program.)

v End.

Several return codes indicate that an error condition must be corrected by changing a value in the display file. To

change a parameter value for the file, use the Change Display File (CHGDSPF) or Override with Display File

(OVRDSPF) command.

Code Description/Action

830B Description: Your program has attempted to issue an input or output operation either

before the device was acquired or after it was released.

 Your program may have improperly handled a permanent device or acquire failed error.

682 Application Display Programming V6R1

Action: Verify that your program tries no input or output operation with a display device

that is not connected to the file and that return codes from acquire or I/O operations are

handled properly.

 Messages:

CPD4079 (Diagnostic) CPF5070 (Escape)

CPF4739 (Status) CPF5170 (Escape)

CPF5067 (Escape) CPF5217 (Escape)

CPF5068 (Escape)

831D Description: The operation just attempted by your program was rejected because a

parameter was not valid, out of limits, or missing.

 Action: Your program can bypass the failing step and continue, or close the file and end.

Refer to the accompanying message to determine what parameter was incorrect. Correct

the error in your program before attempting to try the operation again.

 Messages:

CPF4912 (Notify) CPF5021 (Notify)

CPF5002 (Notify) CPF5218 (Escape)

CPF5008 (Notify) CPF5302 (Escape)

CPF5012 (Notify) CPF5303 (Escape)

CPF5014 (Notify) CPF5398 (Escape)

831E Description: The operation just issued by your program was not valid or a combination

of operations that is not valid was specified. The error may have been caused by one of

the following:

v Either your program issued an operation with an unrecognized code, or the operation

specified by the code or DDS keyword is not supported by the display.

v A combination of operations or keywords that is not valid was requested.

v A user-defined data stream contained a command that is not valid for the display.

Action: Your program can bypass the operation that is not valid and continue, or close

the file and end. Refer to the accompanying message to determine why the operation was

rejected. Correct the error in your program before attempting to try the failing operation

again.

 Messages:

CPF4564 (Escape) CPF5055 (Notify)

CPF5005 (Notify) CPF5056 (Notify)

CPF5011 (Notify) CPF5059 (Notify)

CPF5039 (Notify) CPF5066 (Notify)

CPF5045 (Notify) CPF5149 (Escape)

CPF5051 (Notify)

831F Description: A length that is not valid was specified on the operation.

 On an output operation, your program has tried to send a data record having a length

that exceeds the maximum record length allowed for the display device. The data has

been truncated.

Appendix D. Display File Return Codes 683

Action: Issue the output operation again with a smaller output length. The record length

for a non-field-level display file cannot exceed the display size. The record length for any

display file must be no greater than 32 763 characters.

 Messages:

 CPF4010 (Diagnostic)

 CPF4078 (Diagnostic)

8322 Description: The attempted operation is not valid in the current state. Either a write

operation was attempted while your program was not in the send state or a subfile

operation was attempted when the subfile was not active.

 Action: Your program can bypass the operation that is not valid and continue, or close

the file and end. Correct the sequence of operations in your program before attempting to

run the job again.

 Messages:

 CPF5013 (Notify)

 CPF5060 (Notify)

832D Description: Your program attempted an operation that is not valid when an invite

operation is outstanding. Once you have issued an invite or get-no-wait operation,

another invite operation cannot be issued for the same display device until the first invite

has been completed by a read or read-from-invited-devices operation.

 Action: Issue an input operation to receive the data that was invited before issuing

another invite operation. Otherwise, close the file and end. If a coding error in your

program caused the error, correct the sequence of operations in your program.

 Messages:

 CPF5052 (Notify)

8343 Description: An attempt was made to add another record to a subfile after the subfile

was full.

 Action: Your program can clear the subfile, or continue without adding more records to

the subfile. Otherwise, close the file and end.

 Increase the subfile length in the DDS statements. If a coding error in your program

caused the error, correct your program.

 Messages:

 CPF5043 (Notify)

83E0 Description: Your program attempted to issue an operation using a record format that

was not defined for the display file, or omitted the record format name.

 Action: Check the name of the record format in your program to be sure it is correct.

Then check that the record format is defined properly in the DDS for the file.

 Messages:

 CPF5022 (Notify)

 CPF5023 (Notify)

 CPF5053 (Notify)

 CPF5054 (Notify)

83E1 Description: An error occurred during an I/O operation. The requesting program device

was set to automatically disconnect your program. The same user signed on to the same

display device, so the program was started up again. The display was cleared of any data

present when the error occurred.

684 Application Display Programming V6R1

Action: Branch to a normal starting point in your program and rewrite the display. There

is no need to perform a close or open operation on the display files that were active

when the error occurred.

 Messages:

 CPF509F (Notify)

83E8 Description: Your CL program issued an End Receive (ENDRCV) command when there

is no outstanding read-with-no-wait operation.

 Action: Your program can issue an output operation to continue sending, issue an input

operation to begin receiving, or close the file and end. Correct the error in your program

before attempting to repeat the failing operation.

 Messages:

 CPF4910 (Notify)

83F6 Description: Your program sent data to the display that is not valid. The data type may

not be correct for the field in which it is used.

 Action: Check the name of the record format in your program to be sure it is correct.

Verify that the data definition statements in your program match the output record

defined in the DDS for the file. Correct the error in your program before attempting to

repeat the failing operation.

 Messages:

 CPF5063 (Notify)

 CPF5216 (Escape)

 CPF5301 (Escape)

83F8 Description: Your program attempted an I/O operation to a device that is marked in

error due to a previous error during an I/O or acquire operation.

 Action: Release the device or close the file, correct the previous error, and acquire the

device or open the file again.

 Messages:

 CPF5293 (Escape)

Appendix D. Display File Return Codes 685

686 Application Display Programming V6R1

Appendix E. Edit Codes

i5/OS Edit Codes

The following table summarizes the functions provided by i5/OS edit codes.

 Table 101. Summary Chart for i5/OS Edit Codes

Edit Codes

Commas1

Displayed

Decimal

Points1

Displayed

Sign

Displayed

When

Negative

Value

Blank Value

of

QDECFMT

System

Value

I Value of

QDECFMT

System

Value

J Value of

QDECFMT

System

Value

Leading

Zero

Suppressed

1 Yes Yes No sign .00 or 0 ,00 or 0 0,00 or 0 Yes

2 Yes Yes No sign Blanks Blanks Blanks Yes

3 Yes No sign .00 or 0 ,00 or 0 0,00 or 0 Yes

4 Yes No sign Blanks Blanks Blanks Yes

A Yes Yes CR .00 or 0 ,00 or 0 0,00 or 0 Yes

B Yes Yes CR Blanks Blanks Blanks Yes

C Yes CR .00 or 0 ,00 or 0 0,00 or 0 Yes

D Yes CR Blanks Blanks Blanks Yes

J Yes Yes −(Minus) .00 or 0 ,00 or 0 0,00 or 0 Yes

K Yes Yes −(Minus) Blanks Blanks Blanks Yes

L Yes −(Minus) .00 or 0 ,00 or 0 0,00 or 0 Yes

M Yes −(Minus) Blanks Blanks Blanks Yes

N Yes Yes −(Minus) .00 or 0 ,00 or 0 0,00 or 0 Yes

O Yes Yes −(Minus) Blanks Blanks Blanks Yes

P Yes −(Minus) .00 or 0 ,00 or 0 0,00 or 0 Yes

Q Yes −(Minus) Blanks Blanks Blanks Yes

Y2 Yes

Z3 Yes

© Copyright IBM Corp. 1997, 2008 687

Table 101. Summary Chart for i5/OS Edit Codes (continued)

Edit Codes

Commas1

Displayed

Decimal

Points1

Displayed

Sign

Displayed

When

Negative

Value

Blank Value

of

QDECFMT

System

Value

I Value of

QDECFMT

System

Value

J Value of

QDECFMT

System

Value

Leading

Zero

Suppressed

Notes:

1 The QDECFMT system value determines the decimal point character (period in U.S. usage), the character

used to separate groups of three digits (comma in U.S. usage), and the type of zero suppression (depending

on comma and period placement). For more information on the QDECFMT system value, see the Work

Management book.

2 The Y edit code suppresses the farthest left zero of a date field that is three to six digits long, and it

suppresses the two farthest left zeros of a field that is seven positions long. The Y edit code also inserts

slashes (/) between the month, day, and year according to the following pattern:

 nn/n

 nn/nn

 nn/nn/n

 nn/nn/nn

 nnn/nn/nn

If the DATE keyword is specified with EDTCDE(Y), the separator character used is the job attribute,

DATSEP. The slash (/) is the default DATSEP. If, at file creation time, DATFMT is JUL (Julian), the date is

normally formatted as nn/nnn and EDTCDE(Y) is not valid.

3 The Z edit code removes the sign (plus and minus) from a numeric field. The sign of the units position is

changed to a hexadecimal F before the field is written.

Note: Edit code X can be specified but has no effect on display files and is ignored. The system operates

with a preferred sign of F, which is equivalent to using edit code X. Edit code X causes a blank

keyboard shift (position 35) to default to numeric only (attribute Y), but has no other effect on the

display file and is ignored for all other processing. The display length of the field is determined by

the keyboard shift and not by edit code X (the default numeric-only Y attribute may add 1 position

to the field for decimals).

Examples of Editing Using i5/OS Edit Codes

The following table shows valid edit codes with examples of unedited source data and edited output.

Zero suppression and decimal characters are determined by the system value QDECFMT. The date

separator character is determined by the job attribute DATSEP. In this figure, QDECFMT is assumed to

equal x, and DATSEP is assumed to equal /.

688 Application Display Programming V6R1

Table 102. Valid Edit Codes, Source Data, and Edited Output

Edit Codes

Positive

Number– Two

Decimal

Positions

Positive

Number– No

Decimal

Positions

Negative

Number–

Three Decimal

Positions1

Negative

Number– No

Decimal

Positions1

Zero Balance–

Two Decimal

Positions1

Zero Balance–

No Decimal

Positions1

Unedited 1234567 1234567 xxxx.125– xxxx.125– xxxxxx xxxxxx

1 12,345.67 1,234,567 .125 125 .00 0

2 12,345.67 1,234,567 .125 125

3 12345.67 1234567 .125 125 .00 0

4 12345.67 1234567 .125 125

A 12,345.67 1,234,567 .125CR 125CR .00 0

B 12,345.67 1,234,567 .125CR 125CR

C 12345.67 1234567 .125CR 125CR .00 0

D 12345.67 1234567 .125CR 125CR

J 12,345.67 1,234,567 .125− 125− .00 0

K 12,345.67 1,234,567 .125− 125−

L 12345.67 1234567 .125− 125− .00 0

M 12345.67 1234567 .125− 125−

N 12,345.67 1,234,567 −.125 −125 .00 0

O 12,345.67 1,234,567 −.125 −125

P 12345.67 1234567 −.125 −125 .00 0

Q 12345.67 1234567 −.125 −125

Y2 123/45/67 123/45/67 0/01/25 0/01/25 0/00/00 0/00/00

Z3 1234567 1234567 125 125

Notes:

1 The x represents a blank.

2 The Y edit code suppresses the farthest left zero of a date field that is three to six digits long, and it

suppresses the two farthest left zeros of a field that is seven positions long. For more information, see the

second footnote in Table 101 on page 687.

3 The Z edit code removes the sign (plus or minus) and suppresses leading zeros.

User-Defined Edit Codes

You can define five edit codes to provide more editing function than is available with the i5/OS edit

codes, and to handle common editing functions that would otherwise require the use of an edit word.

You can define your own edit codes using the Create Edit Description (CRTEDTD) command.

 Table 103. IBM-Supplied Edit Descriptions

Description QEDIT5 Edit Codes1 QEDIT6 Edit Codes1 QEDIT7 Edit Codes1 QEDIT8 Edit Codes1 QEDIT9 Edit Codes1

Integer mask xxx,xxx,xxx,xxx,xx0 xxx,xxx,xxx,xxx,xx0 xxx,xxx,xxx,xxx,x0x xxx,xxx,xxx,xxx,x0x 0xx-xx-xx

Decimal point . (period) . (period) . (period) . (period) . (period)

Fraction mask xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx None

Fill character x x x x x

Floating currency

symbol

None None None $ None

Appendix E. Edit Codes 689

Table 103. IBM-Supplied Edit Descriptions (continued)

Description QEDIT5 Edit Codes1 QEDIT6 Edit Codes1 QEDIT7 Edit Codes1 QEDIT8 Edit Codes1 QEDIT9 Edit Codes1

Zero balance Replace with fill

character

Replace with fill

character

Normal editing rules Normal editing rules Normal editing rules

Negative status CR - (minus sign) - (minus sign) - (minus sign) None

Positive status DR None None None None

Left constant None None $ None None

Right constant None x* None None None

:

1 The x represents a blank.

An edit description contains the following items:

Integer mask Describes the editing of the integer portion of a field. All characters except blank, zero,

and ampersand (&); are treated as constants:

v Blank means to replace the blank with a digit if zero suppression has ended; otherwise,

replace the blank with the fill character.

v The zero to the farthest left means to replace the zero with a digit and end zero

suppression. All other zeros are treated as constants.

v Ampersand means to replace the & with a blank.

Decimal point Defines what character is used as the decimal point. By default, a period (.) is used.

Fraction mask Describes the editing of the fraction portion of a field. Ampersand is the same as for the

integer mask. All zeros are treated as constants and all blanks are replaced with digits (no

fill character is used).

Fill character Defines what character is used in each position of a result that is zero-suppressed. By

default, a blank is used.

Floating currency symbol

Defines the floating currency symbol to be used to edit the field.

Zero balance Specifies how zero values are to be edited. They can be edited using the fill character or

the integer and fraction masks.

Negative status

Defines the characters that are to follow the edited result of a field if the field is negative.

Positive status

Defines the characters that are to follow the edited result of a field if the field is positive

or zero.

Left constant Defines a constant that is to be the portion to the farthest left of the edited result of a

field.

Right constant

Defines a constant that is to be the portion to the farthest right of the edited result of a

field.

Using User-Defined Edit Codes

The following rules apply to using edit descriptions. These rules are affected by the length and decimal

positions of the field being edited.

v The field to be edited is aligned by the integer and fraction masks.

v The entire integer mask is not always used. The integer mask is truncated on the left side immediately

before the farthest left significant digit or farthest left, or forced, zero.

v The decimal point immediately follows the integer mask and the fraction mask immediately follows

the decimal point. If no decimal point is used, the fraction mask immediately follows the integer mask.

690 Application Display Programming V6R1

v The entire fraction mask is not always used. The fraction mask is truncated on the right side

immediately following the farthest right significant digit.

v The width of the edited result is equal to the total of the following:

– Length of left constant

– Length of floating currency symbol

– Length of truncated integer mask

– Length of decimal point (which is always 1 unless no decimal point is used)

– Length of truncated fraction mask

– Length of negative or positive status value (whichever is longer)

Note: If the text you specify for negative status is a different length than the one for positive status,

the CRTEDTD command pads the shorter value with blanks. This makes the shorter value

equal in length to the longer value.

– Length of right constant
v If either the integer mask or fraction mask does not contain enough digit replace characters for the

field to be edited, the field is not edited and is ignored.

Example of a User-Defined Edit Code

The following Create Edit Description (CRTEDTD) command shows how to create an edit description to

edit a numeric field and indicate if the value is a credit or debit (x indicates a blank):

CRTEDTD EDTD(5) INTMASK(’xxx,xxx,xx’)

 FRACMASK(’xxxx’) NEGSTS(’DEBITx’)

 POSSTS(’CREDIT’) LFTCNS(’$’)

 RGTCNS(’xB**’)

The field that uses the previous edit description contains the value 001234 and has two decimal positions.

The edited field looks like this:

$xx12.34CREDITx**

Note that when you create an edit description, you specify only the number (5, 6, 7, 8, or 9) that is

associated with the edit code. The system automatically affixes QEDIT to the number you specify. (In the

preceding example, EDTD(5) was specified. This would then be QEDIT5.)

Appendix E. Edit Codes 691

692 Application Display Programming V6R1

Appendix F. System/36-Compatible Display Data Management

This appendix describes how to use i5/OS display data to provide functions that are compatible with the

System/36 environment. Additional information about System/36 compatibility can be found in the Data

description specifications topic collection in the i5/OS Information Center.

In order to migrate System/36 applications that use display devices, i5/OS display data management has

functions that allow the operating system to work like System/36 work station data management. The

level of compatibility with the System/36 depends on the following:

v The User Display Management (USRDSPMGT) keyword

This keyword is automatically put in the DDS source when the $SFGR utility or the Create System/36

Display File (CRTS36DSPF) CL command converts SFGR source to DDS source. Specifying this

keyword indicates that the System/36 work station data management function is to be used instead of

display data management functions.

For example, the USRDSPMGT keyword specifies that the cursor is positioned as it is on the

System/36. If the USRDSPMGT keyword is not specified, the cursor is positioned according to the

display data management rules.

v The programming language used to write the program

To get application-level System/36 compatibility, the programs must be written in

System/36-compatible RPG II or System/36-compatible COBOL.

For example, if a program is written in a System/36-compatible language, the file status codes set by

the high-level language and return codes set by data management are the same as the System/36. If a

program is not written in a System/36-compatible language, the file status codes and return codes are

the i5/OS values.

v The environment where the application runs

To get environment-level System/36 compatibility, the programs must run in the System/36

environment.

For example, if an application running in the System/36 environment uses the MSGID DDS keyword

to display the message from a user message file, the message file used is the message file specified on

the USER1 parameter of the MEMBER OCL statement. If this same application is not run in the

System/36 environment, the message file used is a message file named USR1 in the job’s library list.

The remainder of this appendix contains a section for each display data management topic you may need

to know about if you are interested in System/36 compatibility. Where appropriate, each topic contains

the following information:

v How System/36 supports the function.

v How the default display data management supports the function.

v How to get the System/36-compatible function with i5/OS display data management, including which

of the three level-of-compatibility items previously listed is required to get the compatible function.

Clearing Lines on the Display

When a System/36 application writes the first record in a job, System/36 work station data management

clears the display before displaying the application data. The System/36 function is provided on the

i5/OS system for the first write operation in a System/36-environment job if the program is written in a

System/36-compatible language or the display file contains the USRDSPMGT keyword. The System/36

Environment Programming book describes starting and ending a System/36-environment job.

© Copyright IBM Corp. 1997, 2008 693

i5/OS display data management normally clears the display when a display file is opened; System/36

work station data management does not. The System/36 function is provided by the operating system for

programs written in a System/36-compatible language or that open a display file that specifies the

USRDSPMGT keyword.

Applications can clear all or just parts of the display by using the clear line (CLRL) keyword. The CLRL

keyword is automatically put in the DDS source when the System/36 environment converts the SFGR

source to DDS. The value generated for the number of lines to clear is based on the value in columns 19

and 20 of the SFGR S specification.

Because some of the i5/OS and System/36-compatible display-clearing functions are different, the

following DDS keywords cannot be used in display files that specify the USRDSPMGT keyword:

v ERASE

v PUTRETAIN

v KEEP

v ASSUME

Also, the OVERLAY keyword is ignored for programs written in a System/36-compatible language and

for display files that specify the USRDSPMGT keyword.

Input Data for Display File Records

On the System/36, only one record with input fields can be displayed. For example, if an application on

the System/36 writes record REC1 and then record REC2, only the last record written (REC2) has

input-capable fields. When REC1 is written, the input fields defined by REC1 are input-capable. When

REC2 is written, REC1 fields are then no longer input-capable, and the input fields defined by REC2 are

input-capable.

With the default i5/OS display data management support, many different records with input fields can

be displayed at the same time. For example, record REC1 (which occupies lines 1 through 12) and record

REC2 (which occupies lines 21 through 24) can be displayed at the same time. The application program

can read data from either record. Only the data for the input-capable fields defined by the specific record

is returned. In the previous example, if the application program needs to get all the data from all the

input-capable fields on the display, the application has to issue two read operations: one for REC1 and

one for REC2.

i5/OS display data management allows only one record with input fields for programs written in a

System/36-compatible language or for display files that specify the USRDSPMGT keyword.

Input Data from the Work Station Controller

The System/36 work station controller returns the data for all input-capable fields. With the default

i5/OS display data management support, the work station controller returns only data from the display

for the input-capable fields that the display station operator has changed.

i5/OS display data management provides the System/36 function with the Modified Data Tag (MDT)

value of the DSPATR DDS keyword. The DSPATR(MDT) keyword is automatically put in the DDS source

for every input-capable field when the System/36 environment converts SFGR source to DDS. This

keyword sets on an indicator in the work station controller that makes the work station controller act as

if the field with DSPATR(MDT) was changed by the display station operator. Because this keyword is

specified for all input-capable fields, all the input data is returned to the system and to the program

when the program issues a read operation.

694 Application Display Programming V6R1

Self-Check

On System/36, if a field specifies modulus 10 or modulus 11 self-checking (column 30 of SFGR D

specification), the work station controller verifies that valid data is entered into the field. If a display

station operator enters an incorrect modulus 10 or modulus 11 number for a field, the work station

controller displays a blinking four-digit error code, and the user must enter data into the field again.

i5/OS display data management support for self-check, which uses the CHECK(M10) and CHECK(M11)

DDS keywords, verifies that the field has a valid modulus 10 or modulus 11 number when you press the

Enter key or another function key. This verification is used in place of issuing an error message as you

type data into the field. If the CHECK(M10F) or CHECK(M11F) keyword is specified, the workstation

controller verifies that valid data is entered into the field as described in the previous paragraph.

If a display file contains the CHECK(M10) or CHECK(M11) DDS keyword and also the USRDSPMGT

keyword, display data management, like the System/36, issues an error message as you type the data.

The DDS keywords CHECK(M10F) and CHECK(M11F) are not allowed with the USRDSPMGT keyword.

Return Input

System/36 work station data management has support to indicate to an application program whether any

fields on the display have been changed by the display station operator. To use this support, the SFGR

source must specify N for return input (column 22) in the SFGR S specification. If N is specified and the

user does not change any fields on the display, all blanks are received as input data for a read operation.

i5/OS display data management provides the System/36 support. If the CHANGE keyword is specified

at the record level without a response indicator in a display file that specifies the USRDSPMGT keyword,

and the program doing the read operation is written in a System/36-compatible language, the program

receives a blank record when the display station operator does not change any data on the display. The

CHANGE keyword is automatically put in the DDS source when SFGR source is converted to DDS by

the System/36 environment if N is specified for return input.

Erase Input Fields

On System/36, if a program writes a record to the display and the erase-input-fields function (columns

31 and 32 of the SFGR S specification) is enabled for the record, the input fields on the display are erased,

but the specified record is not sent to the display. For example, if a program writes record REC1 to the

display and then writes record REC2 to the display (where REC2 has the erase-input-fields function

enabled), all the input fields defined by REC1 are erased and REC2 is not sent to the display.

i5/OS display data management follows the System/36 handling of erase-input-fields when the program

is written in a System/36-compatible language, the USRDSPMGT keyword is specified, and the

ERASEINP keyword is enabled for the record.

On System/36, if a program writes a record to the display and the erase-input-fields and put-override

functions are both enabled for the record, the input fields on the display are erased, and the put-override

data for the specified record is sent to the display.

i5/OS display data management follows the System/36 handling of erase-input-fields when the program

is written in a System/36-compatible language, the USRDSPMGT keyword is specified, and the

ERASEINP and PUTOVR keywords are enabled for the record.

Appendix F. System/36-Compatible Display Data Management 695

Display Attributes

Some fields do not have beginning display attributes on the System/36. A field has a beginning display

attribute only if one or more of the following is true:

v The field is input-capable.

v The output data is based on an indicator (column 23-24 of SFGR D specification).

v The field specifies a display attribute (such as high intensity, blink, reverse image, underline, or column

separators).

v The field appears on a row that is not cleared by the record.

To provide application compatibility with the System/36, i5/OS display data management follows the

System/36 rules to determine if a field should have a beginning attribute when the USRDSPMGT

keyword is specified in a display file. Also, if a field does not have a beginning attribute and the

OVRATR keyword is specified on the field, the OVRATR keyword is ignored (no field attribute is sent).

On the System/36, some fields do not have ending display attributes. A field has an ending attribute only

if one or more of the following is true:

v The field is input-capable.

v The output data is based on an indicator (columns 23-24 of SFGR D specification).

v The field specifies a display attribute (such as high intensity, blink, reverse image, underline, or column

separators).

i5/OS display data management follows the System/36 rules to determine if a field should have an

ending attribute when the USRDSPMGT keyword is specified in a display file.

Positioning the Cursor

System/36 uses the following rules to determine where the cursor should be positioned when a record is

displayed:

1. The cursor is positioned to the first input field (defined by the SFGR source statements) that has an

indicator specified for the position-cursor attribute, has this indicator set on, and where one of the

following conditions is true:

v This field does not have the protect attribute specified (columns 37 and 38 of the SFGR D

specification).

v This field has an indicator specified for the protect attribute, but the indicator is off.

v This field has an unoptioned-protect attribute specified (columns 37 or 38 of the SFGR D

specification is Y or N).
2. If the cursor is not positioned by rule 1, a check is made for fields with an unoptioned-position-cursor

attribute (columns 32 or 33 of the SFGR D specification is Y). If there is a field with an

unoptioned-position-cursor attribute, the cursor is positioned to this field.

3. If the cursor is not positioned by rule 1 or 2, the cursor is positioned to the first input field (as

defined by the SFGR source statements) that does not have an unoptioned-protect attribute (columns

37 or 38 of the SFGR D specification are blank).

4. If the cursor is not positioned by any of the previous rules, the cursor is positioned to the

upper-left-hand corner of the display.

i5/OS display data management positions the cursor following the System/36 rules for display files that

have the USRDSPMGT keyword specified.

696 Application Display Programming V6R1

Displaying Messages

On System/36, fields can be defined that have message text automatically inserted into the field when a

record is displayed. System/36 work station data management retrieves the message text defined for the

field and supplies the message text as output data for the field. To display message text, System/36

applications must specify the following:

v M for constant type (column 56 of SFGR D specification).

v The message identification code (MIC) (columns 57 through 60 of SFGR D specification or output data

supplied by the program).

v The message member identifier (columns 61 and 62 of SFGR D specification or output data supplied by

the program).

i5/OS applications can display messages in a variety of different ways. For information on displaying

messages, see “Creating and Displaying Your Own Messages” on page 221.

To provide application compatibility with System/36, the MSGID keyword can be used to display

messages. The MSGID keyword is automatically generated by the System/36 environment if M is

specified for constant type in the SFGR D specification.

Either of the following formats can be used to display messages that follow the System/36 conventions

for sending messages:

MSGID(message-identifier message-file)

MSGID(USR message-identification-code message-file)

Message-identifier consists of two parts: a message prefix and a message-identification-code (MIC). If an

application uses the first format of the MSGID keyword, the three-character message prefix should be the

first three characters of the seven-character message-identifier. If an application uses the second format of

the MSGID keyword, the prefix does not need to be provided. The prefix is already specified as USR in

the MSGID keyword.

The message-identification-code parameter specifies the four-character message ID of the message to be

displayed.

For more information about specifying display file message-identifiers, see the Data description

specifications topic collection in the i5/OS Information Center.

The message-file parameter identifies the message file that contains the message to be displayed. For

System/36 compatibility, this parameter can be specified in one of two formats.

The first format for specifying the message-file parameter is in a two-character field-name. The

field-name must exist in the same record as the MSGID field, and the field must be defined as a character

field with usage H (hidden), P (program-to-system), B (both), or O (output-only). The field identified by

field-name indicates the message file that the System/36 environment uses to display a message. The

values allowed for the field are:

 Table 104. Message Files for MSGID

Value of Field-Name Message File Used

U1 Message text from the message file specified on USER1 parameter on

MEMBER OCL statement.

U2 Message help text from the message file specified on USER2 parameter on

MEMBER OCL statement.

P1 Message text from the message file specified on PROGRAM1 parameter on

MEMBER OCL statement.

Appendix F. System/36-Compatible Display Data Management 697

Table 104. Message Files for MSGID (continued)

Value of Field-Name Message File Used

P2 Message help text from the message file specified on PROGRAM2

parameter on MEMBER OCL statement.

M1 Message text from IBM-supplied message file ##MSG1.

M2 Message help text from IBM-supplied message file ##MSG1.

The second format for specifying the message-file parameter is a special value. The following special

values can be specified for the message file:

 Table 105. Message Files for MSGID

Special Value Message File Used

*USR1 Message text from message file specified on USER1 parameter on MEMBER

OCL statement.

*USR2 Message help text from message file specified on USER2 parameter on

MEMBER OCL statement.

*PGM1 Message text from message file specified on PROGRAM1 parameter on

MEMBER OCL statement.

*PGM2 Message help text from message file specified on PROGRAM2 parameter on

MEMBER OCL statement.

*SYS1 Message text from IBM-supplied message file ##MSG1.

*SYS2 Message help text from IBM-supplied message file ##MSG1.

The following are considerations you should be aware of when using the System/36-compatible functions

of the MSGID keyword:

v If a field name or a special value is specified, the processing done by i5/OS display data management

depends on the environment where the application runs. For example, if the application is run in the

System/36 environment, *USR1 indicates to use the message file identified by the USER1 parameter on

the MEMBER OCL statement. If the same application is not run in the System/36 environment, *USR1

indicates to use message file USR1.

v If the message is to be displayed and it only has message help, the message help is displayed.

v If the message help is to be displayed but the message has no message help, only the message is

displayed.

v If the message text to be displayed is longer than the length of the output field, the message text is

truncated to the length of the output field. If the message text to be displayed is shorter than the

length of the output field, the message text is padded with blanks.

v If the message identifier contains any characters that are not valid (valid characters are 0-9 and A-F),

the message text displayed is the message identifier followed by the two-character message file

identifier.

v If the message identifier or the message file is not found, the message text displayed is the message

identification code followed by two question marks (??).

v The following DDS keywords cannot be specified on a field with the MSGID keyword:

 DFT

 DFTVAL

 FLTFIXDEC

 FLTPCN

 MSGCON

698 Application Display Programming V6R1

Put Override

On System/36, if the put-override option is enabled (columns 33 and 34 of SFGR S specification) and the

number of lines to clear (columns 19 and 20 of SFGR S specification) is specified, the number of lines to

clear is ignored. System/36 work station data management does not clear the display when the

put-override option is enabled. i5/OS display data management also has support to ignore the clear

function (CLRL keyword) for records that have the put-override option (PUTOVR keyword) enabled. This

support is used for programs written in a System/36-compatible language or using a display file that

specifies the USRDSPMGT keyword.

On System/36, if the put-override option is enabled, no input-field definitions are sent to the display.

Input-field definitions contain information such as length of the input-field, mandatory-fill attribute,

mandatory-enter attribute, modified-data-tag attribute, and protected input-field attribute. If there are

input fields currently on the display, these fields remain input-capable. The default i5/OS display data

management support sends input-field definitions when the put override option is enabled. i5/OS

display data management provides the System/36 function of not sending input-field definitions to the

display when the put-override function is enabled and the record to be displayed is in a display file that

specifies the USRDSPMGT keyword. If the application uses the System/36 function of not sending

input-field definitions to the display when the put-override function is enabled, attributes that are

defined by the input-field definitions cannot be changed when put-override is enabled. For example, the

protected input-field attribute (DSPATR(PR)) is ignored when put-override is enabled, because the

input-field definitions are not sent to the display.

On System/36, the put-override option can be specified for records that are currently displayed and for

records that are not currently on the display. For example, if record REC1 is currently displayed and the

application program issues a write operation with the put-override function enabled for record REC2, the

request to display record REC2 is processed as a put-override request. The default support in i5/OS

display data management supports the put-override function only for records that are currently

displayed. For example, if record REC1 is currently displayed and the application program issues a write

operation with the put-override function enabled for record REC2, the put-override function is ignored

and the request to display record REC2 is processed as if the PUTOVR keyword was not enabled. If the

display file specifies the USRDSPMGT keyword, i5/OS display data management provides the System/36

function of allowing the put-override function even if the record is not currently displayed.

During an override operation, i5/OS display data management may ignore help specifications contained

in the record format that is displayed by the application program. This occurs if the USRDSPMGT

keyword is used. If the Help Cleared (HLPCLR) keyword is also specified on the record format, no online

help is available.

Handling Signed Numeric Data

System/36 does no checking when incorrect data (data other than 0 through 9) is specified for a signed

numeric field on a write operation. For example, if the data in a signed numeric field is character data,

the character data is displayed. The default support in i5/OS display data management is to replace any

incorrect signed numeric data with nulls when the field is displayed. i5/OS display data management

supports the System/36 function when the USRDSPMGT keyword is specified in the display file.

System/36 also does no checking when a read operation returns incorrect data for a signed numeric field.

For example, if the data returned for a signed numeric field is character data, the character data is passed

to the application program. The default support in i5/OS display data management replaces any incorrect

signed numeric data with zeros before the data is given to the application program. i5/OS display data

management supports the System/36 function for programs written in a System/36-compatible language.

On System/36, if zeros are entered in a signed numeric field and the field-minus key is used to exit the

field, a value of negative zero is returned to the application program. The default support in i5/OS

display data management returns zeros to the application instead of negative zero. i5/OS display data

Appendix F. System/36-Compatible Display Data Management 699

management supports the System/36 function for programs written in a System/36-compatible language

or using a display file that specifies the USRDSPMGT keyword.

Function Keys

On System/36, application programs can receive control when a function key is pressed. To use this

support, the application must enable the desired function key in the SFGR source and the program must

indicate that it can process the function key.

The default i5/OS display data management support does not allow a program not written in a

System/36 compatible language to indicate which function keys the program can process. The function

keys that are enabled in the DDS for the display file are the function keys that i5/OS display data

management passes to the program to handle.

i5/OS display data management supports the System/36 function of a program indicating which function

keys it can process for programs written in a System/36-compatible language. See the appropriate

System/36-compatible language manual for information on enabling function-key handling in a program.

Help Key Considerations

The HELP and HLPRTN DDS keywords are used to indicate what processing should be done by the

system when the Help key is pressed. The HELP keyword indicates that the application wants the Help

key enabled. The HELP keyword is automatically put in the DDS source when SFGR source is converted

to DDS by the System/36 environment.

The HLPRTN keyword indicates that the application program wants to process the Help key when the

display station operator presses the Help key. When the Help key is enabled in the SFGR key mask

(columns 64 through 79 of the SFGR S specification) the HLPRTN keyword is put in the DDS source

when the System/36 environment converts SFGR source to DDS.

If the HELP and HLPRTN keywords are not specified and the display station operator presses the Help

key, a message is displayed by i5/OS display data management indicating that the Help key is not

allowed.

If the USRDSPMGT and HELP keywords are specified, the HLPRTN keyword is not specified, and the

display station operator presses the Help key, i5/OS display data management uses the following rules to

determine how the Help key is be processed:

1. If the Help key is pressed when a message is being displayed, the message help for the message is

displayed.

2. If the Help key is not processed by rule 1 and there is application help defined for the record, the

application help for the record is displayed.

3. If the Help key is not processed by rules 1 or 2, an error message is displayed indicating that the key

is not allowed.

If the USRDSPMGT, HELP, and HLPRTN keywords are specified and the display station operator presses

the Help key, i5/OS display data management uses the following rules to determine how the Help key is

be processed:

1. If the application program has indicated that it can process the Help key, an indication is returned to

the application program that the Help key was pressed.

2. If the Help key is not processed by rule 1 and the Help key is pressed when a message is being

displayed, the message help for the message is displayed.

3. If the Help key is not processed by rules 1 or 2 and there is application help defined for the record,

the application help for the record is displayed.

700 Application Display Programming V6R1

4. If the Help key is not processed by rules 1, 2 or 3, an error message is displayed indicating that the

key is not allowed.

Using Command Keys to Exit Application Help

On System/36, if application help is displayed and the display station operator presses a command key

to exit application help, an indication of what command key was pressed is given to the application

program. To use this support, the application must enable the desired command key on the display

where the Help key is pressed, and the key must be enabled on the application help display. If the

display file containing application help specifies the USRDSPMGT keyword, i5/OS display data

management returns the indication of what command key was pressed to exit application help. If the

command key was not specified on both the application record and the help record, the message,

Function Key not Allowed is displayed.

On System/36, if application help is displayed and the display station operator presses a command key

to exit application help, the data from the display where the Help key is pressed is returned to the

application program. To use this support, the application must indicate restore yes (columns 47 and 48 of

the SFGR H specification) on the display where the Help key is pressed. i5/OS display data management

returns the data from the display where the Help key is pressed if the display file containing application

help specifies the USRDSPMGT keyword.

Cancel-Invite Operation

On System/36, if a program issues a cancel-invite operation and data has already been received by the

system (for example, the display station operator pressed the Enter key before the cancel-invite was

issued), the data is lost and the application is not notified.

The default i5/OS display data management support causes the cancel-invite operation to fail if the data

is available. Message CPF4737 and return code 0412 are sent to the application program. The application

can check the return code and issue a read operation to receive the data that was returned from the

display station.

i5/OS display data management supports the System/36 function and does not send message CPF4737

or set the return code for programs written in a System/36-compatible language or for display files that

have the USRDSPMGT keyword specified.

For an application running in an i5/OS display data management environment that contains the

USRDSPMGT keyword and the INVITE keyword in the display file, the following will occur:

v If a file is active with a read outstanding when a record is written from another display file, a save of

the currently displayed screen takes place before the write of the new record.

v The suspended file is restored when a write is done to the suspended file.

On a System/36, the save is not done for this situation.

To circumvent the save command in the i5/OS display data management environment, do the following:

1. Define a record named RECORDD in the file FILE1 as shown in Figure 147 on page 702.

2. Write record RECORDD to program PGM1 before writing record RECORDA

By writing record RECORDD, the read outstanding for record RECORDB is canceled, and the

save/restore of the record RECORDB is not required because there is no longer an outstanding invite.

Appendix F. System/36-Compatible Display Data Management 701

Retain Command and Function Keys

On System/36, when a program issues a write operation to display a record, the application can indicate

that the command and function keys currently active for the display station should be the command and

function keys that are used for the new record. For example, if an application writes record REC1 (where

REC1 enables command keys 1 through 12 and all of the function keys), and then the application writes

record REC2 (where REC2 keeps the command and function keys from REC1), then command keys 1

through 12 and all of the function keys are enabled when REC2 is displayed. System/36 applications

indicate that the command keys should be kept by specifying an R for the enable command keys option

in the SFGR source (column 28 of the SFGR S specification). System/36 applications indicate that the

function keys should be kept by specifying an R for the enable function keys option in the SFGR source

(column 27 of the SFGR S specification).

i5/OS application programs can specify either a list of command and function keys that are valid when a

record is displayed or an indication that the command and function keys that are currently active should

remain active when a record is displayed.

i5/OS display data management allows an application to keep the current command keys for a record if

the RETCMDKEY keyword is specified for the record. The RETCMDKEY keyword is automatically

generated by the System/36 environment if R is specified for command keys in the SFGR S specification.

Also, i5/OS display data management allows an application to keep the current function keys for a

record if the RETKEY keyword is specified for the record. The RETKEY keyword is automatically

generated by the System/36 environment if R is specified for function keys in the SFGR S specification.

System/36 Functions Not Supported

This section describes the System/36 work station data management functions that are not supported by

i5/OS display data management.

 PGM1 (RPG PROGRAM)

 MOVE *ON *IN24

 WRITERECORDB

 WRITERECORDD

 WRITERECORDA

 EXFMTRECORDC

 ENDSR

 FILE1

 USRDSPMGT

 R RECORDB OVERLAY

 CF(01)

 INVITE

 1 18’TESTB’

 R RECORDC OVERLAY

 1 18’TESTC’

 R RECORDD OVERLAY

 FILE2

 USRDSPMGT

 R RECORDA OVERLAY

 22 5’TEST________A’

24 DSPATR(ND)

Figure 147. Circumventing the Save Command

702 Application Display Programming V6R1

If one program issues a write operation that invites the display and another program issues a write

operation with the put-override function enabled for the same display, all the write and read operations

must use record formats from the same display file. For example, if program A sets up a

read-under-format (RUF) request by writing record REC1 from file FILE1, the second program must also

use FILE1 for any write operations with the put-override function enabled. If a different display file is

used, all the input fields from REC1 are changed to output-only fields when the put-override function is

handled by i5/OS display data management.

The put-override function can be used only across different jobs (for example, a single-requester-terminal

(SRT) program that gives control to a multiple-requester-terminal (MRT) program) when the application

programs are using RUF. If RUF is not in progress and the second job issues a write operation with the

put-override function enabled, all the input fields on the display are changed to output-only fields when

the put-override function is handled by i5/OS display data management.

On System/36, application help can return the data from input fields on an application help display. This

is not supported by i5/OS display data management.

Restricted DDS Keywords/Functions

If the USRDSPMGT keyword is specified in the DDS source, the following DDS functions cannot be used:

v DDS keywords that control clearing the display:

– ASSUME

– ERASE

– KEEP

– PUTRETAIN
v ERRSFL DDS keyword

v HLPCMDKEY DDS keyword

v Subfile DDS keywords:

– SFL

– SFLCTL

Because System/36-compatible languages do not support subfiles, subfiles cannot be used in a display

file if USRDSPMGT is specified.

v Response indicators

Because System/36-compatible languages do not return indicators from the read operation to a display

file, response indicators should not be specified if USRDSPMGT is used.

v IGC conversion

Because only one input-capable format is maintained on the screen at on time, IGC conversion is not

supported on the System/36 or on i5/OS in the System/36 environment. The IGCCNV keyword is not

allowed anywhere in the file definition when you use the USRDSPMGT keyword.

v DDS keywords:

– CHECK(M10F)

– CHECK(M11F)

Because specifying the DDS keywords CHECK(M10) and CHECK(M11) with USRDSPMGT provide the

same function as CHECK(M10F) and CHECK(M11F) without USRDSPMGT.

Appendix F. System/36-Compatible Display Data Management 703

704 Application Display Programming V6R1

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1997, 2008 705

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Display Programming publication documents intended Programming Interfaces that

allow the customer to write programs to obtain the services of IBM i5/OS.

706 Application Display Programming V6R1

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AFP

 AIX

 Common User Access

 CUA

 i5/OS

 IBM

 IBM (logo)

 InfoWindow

 iSeries

 OS/2

 PS/2

 SAA

 System/36

 System/38

 System i

 Systems Application Architecture

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks

of Adobe Systems Incorporated in the United States, and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

Notices 707

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

708 Application Display Programming V6R1

Bibliography

The following list of manuals and i5/OS

Information Center topics are related to this book.

The manuals are listed with their full title, base

order number, and a description of the content.

The description of each manual includes the

relationship of that manual to this book.

System Use

v The Basic system operations topic collection in

the i5/OS Information Center: Use this

information to explore some of the introductory

concepts related to the i5/OS operating system.

You can also use this guide to perform basic

system operation tasks, such as starting and

stopping your system and working with users,

jobs, and devices.

Systems Management

v The Systems management topic collection in

the i5/OS Information Center: This topic

collection provides information about creating

and changing the work management

environment, working with system values, and

collecting and using performance data to

improve system performance.

Application Development

v ADTS/400: Programming Development Manager,

SC09-1771-00

This guide and reference provides information

about using the Application Development Tools

programming development manager (PDM) to

work with lists of libraries, objects, members,

and user-defined options to easily do such

operations as copy, delete, and rename.

Use this guide and reference to learn how to

enter DDS and UIM source.

v ADTS for AS/400: Screen Design Aid,

SC09-2604-00

This guide and reference provides information

about using the Application Development Tools

screen design aid (SDA) to design, create, and

maintain displays, menus, and online help

information.

Use this guide and reference if you want to let

the system create the DDS as you design your

own displays.

v ADTS for AS/400: Source Entry Utility,

SC09-2605-00

This guide provides the application

programmer or programmer with information

about using the Application Development Tools

source entry utility (SEU) to create and edit

source members. This manual explains how to

start and end an SEU session and how to use

the many features of this full-screen text editor.

Use this guide to understand the functions of

SEU that are available for creating and editing

your DDS and CL and other code.

v Common User Access Basic Interface Design Guide

, SC26-4583.

This guide assists you in designing a user

interface that is consistent within your

application and across other applications. This

guide presents the user interface style

guidelines and implementation considerations

that you, the designer or developer, must be

concerned with.

Communications and

Connectivity

v ICF Programming, SC41-5442-00

This guide provides the information needed to

write application programs that use i5/OS

communications and the i5/OS intersystem

communications function (i5/OS-ICF). This

manual also contains information on data

description specifications (DDS) keywords,

system-supplied formats, return codes, file

transfer support, and program examples.

Use this guide to work with applications on

remote systems.

v IBM 5250 Information Display System Functions

Reference Manual, SA21-9247.

This reference manual provides information

about using the functions of the 5250

Information Display.

Use this manual to use the 5250 Display Data

Stream.

v IBM 5494 Remote Control Unit Functions

Reference Manual, SC30-3533.

This reference manual describes how the IBM

5494 Remote Control Unit uses Systems

Network Architecture (SNA), Synchronous Data

© Copyright IBM Corp. 1997, 2008 709

Link Control (SDLC), X.25, X.21, or Token-Ring

protocols to communicate with i5/OS. In

addition, this book describes how the 5494

manages the attached work stations and

converts network data streams into protocols

for 5250 work stations and printers.

Program Enablers

v The Data description specifications topic

collection in the i5/OS Information Center: This

topic collection provides detailed descriptions

of the entries and keywords that are needed to

describe database files (both logical and

physical) and certain device files (for displays,

printers, and ICF) external to the user’s

programs.

v The Control language topic collection in the

i5/OS Information Center: This topic collection

provides information for system programmers

and system administrators who write programs

using i5/OS commands and other

IBM-supplied commands.

This topic collection provides a description of

the i5/OS control language (CL) and its

commands. (Non-i5/OS commands are

described in the respective licensed program

publications.) It also provides an overview of

all the CL commands for the system, and it

describes the syntax rules to code them.

This topic also provides a wide-ranging

discussion of i5/OS programming topics,

including CL programming, controlling flow

and communicating between programs,

working with objects in CL programs, and

creating CL programs. Other topics include

predefined and impromptu messages and

message handling, defining and creating

user-defined commands and menus, and

application testing, including debug mode,

breakpoints, traces, and display functions.

Use this guide to understand how to use CL for

creating application programs.

v The Files and file systems topic collection in

the i5/OS Information Center: This topic

collection provides information about using

files in application programs. It includes

information about fundamental structure and

concepts of data management support on the

system. It also includes information about

overrides and file redirection (temporarily

making changes to files when an application

program is run), copying files by using system

commands to copy data from one place to

another, and tailoring a system by using

double-byte data. It also provides information

about how to control and understand printing,

including printer connectivity, PC attached

printers, and Advanced Function Printing

(AFP™) printers. Finally, it provides information

about data management support for tapes.

Use this topic for general information about

using files, including printer device files and

tape files, in application programs.

v System/36 Environment Programming,

SC41-4730-00.

This guide provides information about the

differences in the applications process in the

System/36 environment on the i5/OS operating

system. You can use this guide to understand

the functional and operational differences (from

a System/36 perspective) when processing in

the System/36 environment on the i5/OS

operating system. This includes an environment

functional overview, considerations for

migration, programming, communications,

security, and coexistence.

Program Interfaces

v The Application programming interfaces topic

collection in the Programming category of

information in the i5/OS Information Center:

This topic collection provides information and

examples for experienced application and

system programmers who want to use the

i5/OS Application programming interfaces

(APIs) from high-level language programs to

list data or retrieve descriptions and

information.

710 Application Display Programming V6R1

Index

Special characters
*DSPATR (display attribute)

parameter 170

*FLD (field) special value 185

*JOBCCSID special value 258

*PGM (program) object type
defining *PGM menu 241

menu object defining 241

Numerics
5250 display data stream

See user-defined data stream (UDDS)

5250 display station
avoiding record format problems 80

UNLOCK results 71

5250 engraved key restriction 340

A
accelerator key

defining 155

definition 155

example 156

acquire operation
definition 42

file resource allocation for 41

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

acquired display station 41

additional, for I/O operations 42

releasing from I/O operations 82

action list definition 338

action list option prompting 649

action variable definition 338, 339

ACTIONS (Menu Bar Cursor Action)

dialog command 636

active record format
determining 44

table 44

active subfile record
definition 89

Add Message Description (ADDMSGD)

command 240

Add Search Index Entry (ADDSCHIDXE)

command 405

adding
entries during incomplete

processing 336

pop-up window over another

panel 354

pop-up windows using APIs 354

window over another panel 354

window to display stack 354

ADDMSGD (Add Message Description)

command 240

ADDSCHIDXE (Add Search Index Entry)

command 405

alarm
sounding for messages 226

ALCOBJ (Allocate Object) command 41

Allocate Object (ALCOBJ) command 41

Allow Roll (ALWROL) keyword
effects on rolling 56

use 55

alphabetic conversion
name syntax 461

alternative character sets and code

pages 257

alternative keywords, specifying
Help (HELP) 26

Page Down (PAGEDOWN) 26

Page Up (PAGEUP) 26

ALTHELP (Alternative Help)

keyword 27

ALTPAGEDWN (Alternative Page Down)

keyword 27

ALTPAGEUP (Alternative Page Up)

keyword 27

ALWROL (Allow Roll) keyword
effects on rolling 56

use 55

ampersand (&) symbol 461

analyzing
system error messages 227

API (application programming interface)
adding and removing windows 354

services 275

APPFMT (application formatted area) tag
application formatted data 465

example
an application formatted area 466

overview 464

application
help 184

interaction with menu bar 178

application control of panel

formatting 347

application display
changing record formats on a 48

creating a sample 3

defining in display file 15

determining active record formats 44

entry
See entry display

erasing unprotected input and

output/input fields on 61

field, defining in a record format 21

functions, defining in record

format 21

how the system reads input from 75

improving system performance 263

information
See information display

inviting input to 67

keeping record or field on 61

list
See list displays

order of record formats written to 49

application display (continued)
overlaying and erasing record formats

on 49

placing records on 45

printing 36

reading input from 70

reading invited input from 68

rolling data between two lines 55

single-choice menu
See menu display

understanding which records do not

occupy space 47

viewing record format 22

writing output to 44

application formatted area (APPFMT) tag
application formatted data 465

example
an application formatted area 466

overview 464

application formatted data
selection characters 465

application handle definition 329

application help
See online help information

caution for multiple display

stations 363

definition 363

exiting, System/36 application

compatibility 701

application pop-up window
defining 354

application program
applying overrides when

compiling 214

describing data inside or outside 17

display files, use with 41

file resource allocation for on remote

system 41

opening 329

overriding
display file attributes in HLL 211

display file names and attributes in

HLL 213

display file names in HLL 212

passing display data 251

record format used by 21

application programming
confirmation processing 299

data presentation panel 313

list panel 294

menu bar panel 328

application programming interface (API)
adding and removing windows 354

services 275

application record
MNUBARDSP 189

application window
defining 354

area
on a panel 459

© Copyright IBM Corp. 1997, 2008 711

assignments, common key
See common key assignments

ASSUME (Assume) keyword
considerations 251

example DDS source 251, 252

OVERLAY keyword, used with 252

restriction with USRDSPMGT

keyword 703

sharing file between programs 251

System/36 application

compatibility 694

attribute
continued

example 457

display 170

display stations 43

entry fields 30

field
color 34

emphasizing 33

System/36 application

compatibility 696

modified data tag 23

overriding 57

attribute character 22

attribute interaction table 557

auto-enter
single-choice selection field 168

auto-selection
single-choice selection field 168

automatic confirmation processing 299

availability of choices
controlling 167

B
backward field-exit processing 178

BASETYPE
summary table 475

values 471

BASIC statement
I/O requests for subfiles 98

beginning attribute character
definition 22

benefits
programmable mouse button 197

bibliography 709

bidirectional considerations
formatting 542

binary return codes for program

menus 241

binary value
display form 481, 482

formatting 481

blank lines for separating 359

border of window 120

BOTINST (bottom instruction) tag
overview 466

bottom instruction (BOTINST) tag
overview 466

built-in function
CHKOBJ (check object) 485, 541

CHKPGM (COND evaluation

program) 486

CHKPGM (condition evaluation

program) 542

built-in function (continued)
CHKUSRCLS (check user class) 486,

542

C
CALL (Call Program) dialog

command 636

call program
commonly asked questions 360

Call Program (CALL) dialog

command 636

CANCEL dialog command 638

cancel key
defining 156

definition 156

menu panel 233

cancel read operation, CL command

for 83

cancel-invite operation
CL command for 83

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

System/36 application

compatibility 701

when to use 76

CAnn (command attention) key
defining 25

returning to program from online help

information 376

system performance

considerations 265

validity considerations 79

CAnn (Command Attention) keyword
for keyboard control 25

CFnn (command function) key
CHCACCEL keyword 155

defining 25

system performance

considerations 265

validity considerations 79

CFNN (command function) key
returning to program from online help

information 376

CFnn (Command Function) keyword 25

CHANGE (Change) keyword 72

Change Command Default

(CHGCMDDFT) command 246

Change Device Description (Display)

(CHGDEVDSP) command 37

Change Display File (CHGDSPF)

command
Change Display File (CHGDSPF)

changing file description 16

changing
display files 19

file description 16

DFRWRT (defer write) parameter
creating display file 63

described 263

ENHDSP (enhance display)

parameter 141

running 19

SHARE parameter 264

Change Job (CHGJOB) command 226

Change Menu (CHGMNU)

command 246

Change View (CHGVIEW) dialog

command 639

changing
display file 19

file description 16

file descriptions 19

window 124

character
selection 465, 617

sentence-ending 458

symmetric
Arabic 480

Hebrew 480

character beginning attribute 22

character ending attribute 22

character field attribute 22

Character Identifier (CHRID) keyword
description 257

example 257

character set and code page
considerations when printing 332

conversion, DDS 257

conversion, UIM 476

character translation
using 258

character value
display form 482

CHECK (Check) keyword
parameters for cursor movement 28

RL and RLTB parameters 28

CHECK (validity checking) tag
example, validity checking 469

overview 467

check box
definition 139

example 139

CHECK(FE) (Field Exit) keyword 152

CHGCMDDFT (Change Command

Default) command 246

CHGDEVDSP (Change Device

Description (Display)) command 37

CHGDSPF (Change Display File)

command
changing

display files 19

file description 16

DFRWRT (defer write) parameter
described 63

when creating display file 63

DFRWRT parameter 263

ENHDSP (enhance display)

parameter 141

running 19

SHARE parameter 264

CHGJOB (Change Job) command 226

CHGMNU (Change Menu)

command 246

CHGVIEW (Change View) dialog

command 639

CHKOBJ (Check Object) function 485,

541

CHKPGM (COND evaluation

program) 486

CHKPGM (condition evaluation

program) 542

712 Application Display Programming V6R1

CHKUSRCLS (check user class)

function 542

CHKUSRCLS (Check User Class)

function 486

choice entry field, Common User

Access 451

choice-level help 184

CHRID (Character Identifier) keyword
description 257

example 257

CHRID (Character Identifier) parameter
specifying 259

values, table of 260

CIT (title citation) tag
example, title citations 469

overview 469

use in help module 396

CL (control language) program
examples

program menu 242

RTNPNT(*NO) for program

menu 244

I/O operations using 83

inviting input from 67

reading-from-invited-devices from 69

CLASS (class definition) tag
BASETYPE summary table 475

decision tree for orientation 478

display forms
character value 482

date value 482

numeric values 481

time value 482

example
class definitions 480

numeric values table 481

overview 470

tags allowed table 470

class definition (CLASS) tag
BASETYPE summary table 475

decision tree for orientation 478

display forms
character value 482

date value 482

numeric values 481

time value 482

example
class definitions 480

example numeric values table 481

overview 470

tags allowed table 470

CLEAR (Clear) keyword 25

Clear Lines (CLRL) keyword
example

differences between OVERLAY

and 54

with (*NO) value 53

S/36 environment considerations 693

system performance

considerations 264

when to use 53

clearing
environment considerations 693

lines on display
S/36 environment

considerations 693

using the CLRL keyword 53

close operation
CL command for 83

definition 82

files shared in job 85

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

CLRL (Clear Lines) keyword
example

differences between OVERLAY

and 54

with (*NO) value 53

S/36 environment considerations 693

system performance

considerations 264

use 53

CMD (System Command) dialog

command 639

CMDLINE (Command Line) dialog

command 640

CMDLINE (command line) tag
overview 483

code page
alternative display 257

conversion, UIM 476

page 420 477

page 424 477

part of CHRID keyword for display

files 257

code page and character set

considerations when printing 332

codes, major/minor return
See major/minor return code

colon (:) symbol 461

COLOR (Color) keyword 34

color attribute 170

color, adding to displays 34

column data
formatting 564

column heading
list display 427

command attention (CAnn) key
defining 25

returning to program from online help

information 376

system performance

considerations 265

validity considerations 79

Command Attention (CAnn) keyword
for keyboard control 25

command function (CFnn) key
defining 25

returning to program from online help

information 376

system performance

considerations 265

validity considerations 79

Command Function (CFnn) keyword 25

command key
See also command attention (CAnn)

key

See command function (CFnn) key

command line
entered too long 345

interpretation 344

optional 436

pop-up window 355

command line (continued)
restrictions 344

tools 439

window 355

window example 355

Command Line (CMDLINE) dialog

command 640

command line (CMDLINE) tag
overview 483

command prompting 649

command, CL
Add Message Description

(ADDMSGD) 240

Add Search Index Entry

(ADDSCHIDXE) 405

ADDMSGD (Add Message

Description) 240

ADDSCHIDXE (Add Search Index

Entry) 405

ALCOBJ (Allocate Object) 41

Allocate Object (ALCOBJ) 41

canceling read operation with 83

Change Command Default

(CHGCMDDFT) 246

Change Device Description

(CHGDEVDSP) 37

Change Display File (CHGDSPF)
changing file description 19

running 19

SHARE parameter 264

Change Job (CHGJOB) 226

Change Menu (CHGMNU) 246

CHGCMDDFT (Change Command

Default) 246

CHGDEVDSP (Change Device

Description) 37

CHGDSPF (Change Display File)
changing file description 19

DFRWRT parameter 263

SHARE parameter 264

CHGJOB (Change Job) 226

CHGMNU (Change Menu) 246

Create Command (CRTCMD) 405

Create Control Language Program

(CRTCLPGM)
program menus 243

Create Display File (CRTDSPF)
building display with 6

creating display files 18

DFRWRT parameter 263

display file menus 240

program menus 242

SHARE parameter 264

Create Duplicate Object (CRTDUPOBJ)
use 246

Create Edit Description

(CRTEDTD) 35

Create Menu (CRTMNU)
display file menus 240

program menus 243

Create Message File (CRTMSGF) 240

Create Panel Group (CRTPNLGRP)
building display with 7

use 404

Create Search Index

(CRTSCHIDX) 405

Create Table (CRTTBL) 260

Index 713

command, CL (continued)
creating your own 405

CRTCLPGM (Create Control

Language Program)
program menus 243

CRTCMD (Create Command) 405

CRTDSPF (Create Display File)
building display with 6

creating display files 18

DFRWRT (defer write)

parameter 263

display file menus 240

program menus 242

SHARE parameter 264

CRTDUPOBJ (Create Duplicate Object)
use 246

CRTEDTD (Create Edit

Description) 35

CRTMNU (Create Menu)
display file menus 240

program menus 243

CRTMSGF (Create Message File) 240

CRTPNLGRP (Create Panel Group)
building display with 7

use 404

CRTSCHIDX (Create Search

Index) 405

CRTTBL (Create Table) 260

Delete Menu (DLTMNU) 246

Delete Override (DLTOVR) 215

Delete Panel Group

(DLTPNLGRP) 404

Delete Search Index

(DLTSCHIDXE) 406

Display Edit Description

(DSPEDTD) 35

Display File Description (DSPFD) 20

Display File Field Description

(DSPFFD) 20

Display Menu Attributes

(DSPMNUA) 246

Display Override (DSPOVR) 215

Display Program References

(DSPPGMREF) 20

DLTMNU (Delete Menu) 246

DLTOVR (Delete Override) 215

DLTPNLGRP (Delete Panel

Group) 404

DLTSCHIDXE (Delete Search Index

Entry) 406

DSPEDTD (Display Edit

Description) 35

DSPFD (Display File Description) 20

DSPFFD (Display File Field

Description) 20

DSPMNUA (Display Menu

Attributes) 246

DSPOVR (Display Override) 215

DSPPGMREF (Display Program

References) 20

End Receive (ENDRCV) 68

ENDRCV (End Receive) 68

GO (Go to Menu)
generic menu specification 246

use 233

Go to Menu (GO)
generic menu specification 246

command, CL (continued)
Go to Menu (GO) (continued)

use 233

help for, assigning 405

OVERLAY (Overlay) keyword
effect on help-list updating 373

Override with Display File

(OVRDSPF)
compared to CHGDSPF 16

file attributes 211

file names 212

file names and attributes 213

overrides
commands that restrict 218

improving performance for 264

OVRDSPF (Override with Display

File)
compared to CHGDSPF 16

file attributes 211

file names 212

file names and attributes 213

Remove Search Index Entry

(RMVSCHIDXE) 406

RMVSCHIDXE (Remove Search Index

Entry) 406

Start Programming Development

Manager (STRPDM) 3

Start Search Index (STRSCHIDX) 398

Start Source Entry Utility

(STRSEU) 20

STRPDM (Start Programming

Development Manager) 3

STRSCHIDX (Start Search Index) 398

STRSEU (Start Source Entry

Utility) 20

commands that are too long 345

comment 463

common feedback area
definition 43

common key assignments 439

Common User Access (CUA)
choice entry field 451

description 449

entry dialog actions, table of 449

entry display 452

entry fields 452

function key area 450

information displays 453

list display, example 453

menu display, single-choice 450

message line relationship 450

relationship to system 409

selection choices 451

single selection field operation,

guidelines 451

compact definition list
example 519

concatenation symbol 461

COND (condition definition) tag
CHKOBJ (Check Object) built-in

function 485

CHKPGM (COND evaluation

program) 486

CHKUSRCLS (Check User Class)

built-in function 486

example, conditioning option 487

overview 484

condition definition (COND) tag
CHKOBJ (Check Object) built-in

function 485

CHKPGM (COND evaluation

program) 486

CHKUSRCLS (Check User Class)

built-in function 486

example, conditioning option 487

overview 484

condition name, screen size 35

conditional expression 484, 540

conditional operator 484

conditioning
option

example 487

confirmation list panel, creating 295

confirmation panel source 296

confirmation processing
application programming 299

automatically 299

constant field
definition 23

inserting text from message

description 28

using 23

content separator 457

contextual help
defining in UIM 342

defining on display 365

definition 380

continued attribute
example 457

continued-entry field
backward field-exit processing 178

creating 173

DBCS considerations 173

example 173

forward field-exit processing 178

keyboard function 174

word wrap 173

control language (CL) program
examples

program menu 242

RTNPNT(*NO) for program

menu 244

I/O operations using 83

inviting input from 67

reading-from-invited-devices from 69

control value 167

controller, display station 694

controlling
availability of choices 167

list entries on list display 337

convention
recommended

list action (LISTACT) tag 559

pull-down field choice (PDFLDC)

tag 601

required
list action (LISTACT) tag 558

pull-down field choice (PDFLDC)

tag 601

conversion
alphabetic 461

character set and code page,

DDS 257

714 Application Display Programming V6R1

conversion (continued)
character set and code page,

UIM 476

COPYR (copyright) tag
overview 488

copyright (COPYR) tag
overview 488

country-designated selection

character 339

CPF4001-40FF message 228

CPF4101-43FF message 228

CPF4401-44FF message 228

CPF4501-46FF message 228

CPF4701-48FF message 228

CPF4901-49FF message 228

CPF5001-50FF message 228

CPF5101-53FF message 228

CPF5501-56FF message 228

Create Command (CRTCMD)

command 405

Create Control Language Program

(CRTCLPGM) command 243

Create Display File (CRTDSPF) command
building display with 6

creating display files 18

DFRWRT (defer write) parameter
improving performance with 263

write operation 63

display file menus 240

ENHDSP (enhance display)

parameter 141

program menus 242

SHARE parameter 264

Create Duplicate Object (CRTDUPOBJ)

command
use 246

Create Edit Description (CRTEDTD)

command
example 691

running 35

use 691

Create Menu (CRTMNU) command
display file menus 240

program menus 243

Create Message File (CRTMSGF)

command 240

Create Panel Group (CRTPNLGRP)

command
building display with 7

use 404

Create Search Index (CRTSCHIDX)

command 405

Create Table (CRTTBL) command 260

creating
application display with online help

information, steps for 3

confirmation list panel 295

continued-entry field 173

creating 166

data presentation panel 299

display file and description 18

edit description 691

graphical look 139

horizontal selection field 149

list panel 283

menu bar 144

menu bar panel 316

creating (continued)
menu panel 276

message 221

object 273

pull-down menu 152

scroll bar 163

selection list 159

vertical multiple-choice selection

field 149

vertical single-choice selection

field 148

window 116

CRTCLPGM (Create Control Language

Program) command 243

CRTCMD (Create Command)

command 405

CRTDSPF (Create Display File) command
building display with 6

creating display files 18

DFRWRT (defer write) parameter
improving performance with 263

write operation 63

display file menus 240

ENHDSP (enhance display)

parameter 141

program menus 242

SHARE parameter 264

CRTDUPOBJ (Create Duplicate Object)

command
use 246

CRTEDTD (Create Edit Description)

command
example 691

running 35

use 691

CRTMNU (Create Menu) command
display file menus 240

program menus 243

CRTMSGF (Create Message File)

command 240

CRTPNLGRP (Create Panel Group)

command
building display with 7

use 404

CRTSCHIDX (Create Search Index)

command 405

CRTTBL (Create Table) command 260

CSRINPONLY (Cursor Input Only)

keyword 29

CSRLOC (Cursor Location) keyword 65

CUA (Common User Access)
description 449

entry dialog actions, table of 449

entry display 452

entry fields 452

function key area:I2.message line

relationship 450

information displays 453

list display, example 453

menu display, single-choice 450

relationship to system 409

selection choices:I2.choice entry

field 451

single selection field operation,

guidelines 451

cursor
actions 187

cursor (continued)
movement

cursor keys 189

horizontal selection field 150

right-to-left 28

tab key 188

to input-capable positions only 29

vertical selection field 150

position when help text

displayed 342

positioning
after output operation 65

during I/O operations 76

each page of the subfile

record 105

rules for list displays 434

subfiles 106

System/36 application

compatibility for display

files 696

progression
entry field 30

restrict
PULLDOWN keyword 157

WINDOW keyword 119

returning position to an

application 66

cursor in window 119

Cursor Input Only (CSRINPONLY)

keyword 29

cursor key
movement 189

D
data 72, 252

ASSUME keyword considerations for

passing 251

checking validity of 73

data
receiving 44

describing inside or outside your

program 17

externally described
definition 17

using 17

input
handling negative numeric 75

keeping 72

KEEP keyword considerations for

passing 251

levels of description 16

passing
between programs 251

between programs in same routing

step 251

between routing steps 252

program-described
definition 17

described 17

using 38

receiving 44

relationship to display file 15

rolling between two lines on

display 55

sending and receiving 44

Index 715

DATA (data presentation area) tag
example

data entry panel 492

data entry panel with nested data

group 497

data presentation area with menu

area 496

two presentation areas for data

items 495

two-column format in data entry

panel 493

overview 488

tags allowed table 489

data area help 385

data column (DATACOL) tag
overview 499

data description specifications (DDS)
See also display file

See also keyword, DDS

CAnn keys, restrictions 26

changing 19

CHECK(FE) (Field Exit)

keyword 152

DDS form 21

definition 3

display files
passing data between

programs 251

passing data between routing

steps 252

use in 21

DSPRL (Display Right-to-Left)

keyword 31

entry displays 445

ERRMSG (Error Message)

keyword 120

ERRMSGID (Error Message ID)

keyword 120

ERRSFL (Error Subfile) keyword 120

example
5250 display station problems 80

CLRL and OVERLAY keywords,

differences between 54

display file menu 239

display file source 21

DSPATR(PC) keyword 106

DSPMOD keyword 64

DSPMOD keyword with

subfiles 100

ERRSFL keyword 224

GRDATR (Grid Line Attribute)

keyword 204

GRDBOX (Grid Box)

keyword 204

GRDCLR (Grid Clear)

keyword 204

GRDLIN (Grid Line)

keyword 204

GRDRCD (Grid Record)

keyword 204

grid line structure 204

HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

data description specifications (DDS)

(continued)
example (continued)

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

message subfile 105

mnemonic 169

OVERLAY and CLRL keywords,

differences between 54

program menu 242

PULLINPUT keyword 181

push button 166

PUTOVR keyword 58

PUTOVR keyword for more

efficient coding 59

PUTOVR keyword for repeatedly

entered data 60

PUTRETAIN keyword, field

level 62

PUTRETAIN keyword, record

level 62

ROLLUP, SFLSIZ, and SFLPAG

keywords 102

scroll bar 164

secondary help 375

selection field 148

selection list 159

SFLMSGID keyword 225

SFLNXTCHG keyword 104

SFLPAG, SFLSIZ, and ROLLUP

keywords 102

SFLSIZ, ROLLUP, and SFLPAG

keywords 102

subfiles for two display sizes 36

two display sizes 36

variable-length record 103

field
color (table) 34

emphasizing (table) 33

help record 120

information displays 446

keywords ignored if display modes

are changed 65

list display 447

menu displays 444

MSGLOC (Message Location)

keyword 120

NOCCSID (No CCSID) keyword 258

processing order for subfile

control 94

program logic 113

programming example 128

RMVWDW (Remove Window)

keyword 125

SFLMSG (Subfile Message)

keyword 120

SFLMSGID (Subfile Message

identifier) keyword 120

subfile, describing with 89

use 15

USRRSTDSP (User Restore Display)

keyword 126

validity-checking keyword 120

WDWBORDER (Window Border)

keyword 120

window 115

data description specifications (DDS)

(continued)
WINDOW (Window) keyword 116

data entry panel
example 492

introduction 316

nested data group example 497

data group (DATAGRP) tag
overview 500

data item (DATAI) tag
overview 502

data item choices (DATAC) tag
overview 498

data item extender (DATAIX) tag
overview 507

data item group scrolling 342

data presentation area (DATA) tag
example

data entry panel 492

data entry panel with nested data

group 497

data presentation area with menu

area 496

two presentation areas for data

items 495

two-column format in data entry

panel 493

overview 488

tags allowed table 489

data presentation panel application

programming 313

data presentation panel creating 299

data presentation panel source 302

data queue
waiting on display file and ICF

file 255

data selection field (DATASLT) tag
example

data entry panel 512

multiple-selection field 513

overview 510

tags allowed table 511

data selection field choice (DATASLTC)

tag
overview 515

data stream, 5250 display
See user-defined data stream (UDDS)

data stream, user-defined
See user-defined data stream (UDDS)

data tag, modified 23

DATAC (data item choices) tag
overview 498

DATACOL (data column) tag
overview 499

DATAGRP (data group) tag
overview 500

DATAI (data item) tag
overview 502

DATAIX (data item extender) tag
overview 507

DATASLT (data selection field) tag
example

data entry panel 512

multiple-selection field 513

overview 510

tags allowed table 511

716 Application Display Programming V6R1

DATASLTC (data selection field choice)

tag
overview 515

date value
display form 482

DBCS (double-byte character set)

printing 360

DBCS and national language

considerations 402

DBCS field
continued-entry field 174

DBCS grid line structure
See grid line structure

DDS (data description specifications)
See also display file

See also keyword, DDS

CAnn keys, restrictions 26

changing 19

CHECK(FE) (Field Exit)

keyword 152

DDS form 21

definition 3

display files
passing data between

programs 251

passing data between routing

steps 252

use in 21

DSPRL (Display Right-to-Left)

keyword 31

entry displays 445

ERRMSG (Error Message)

keyword 120

ERRMSGID (Error Message ID)

keyword 120

ERRSFL (Error Subfile) keyword 120

example
5250 display station problems 80

CLRL and OVERLAY keywords,

differences between 54

display file menu 239

display file source 21

DSPATR(PC) keyword 106

DSPMOD keyword 64

DSPMOD keyword with

subfiles 100

ERRSFL keyword 224

GRDATR (Grid Line Attribute)

keyword 204

GRDBOX (Grid Box)

keyword 204

GRDCLR (Grid Clear)

keyword 204

GRDLIN (Grid Line)

keyword 204

GRDRCD (Grid Record)

keyword 204

grid line structure 204

HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

DDS (data description specifications)

(continued)
example (continued)

message subfile 105

mnemonic 169

OVERLAY and CLRL keywords,

differences between 54

program menu 242

PULLINPUT keyword 181

push button 166

PUTOVR keyword 58

PUTOVR keyword for more

efficient coding 59

PUTOVR keyword for repeatedly

entered data 60

PUTRETAIN keyword, field

level 62

PUTRETAIN keyword, record

level 62

ROLLUP, SFLSIZ, and SFLPAG

keywords 102

scroll bar 164

secondary help 375

selection field 148

selection list 159

SFLMSGID keyword 225

SFLNXTCHG keyword 104

SFLPAG, SFLSIZ, and ROLLUP

keywords 102

SFLSIZ, ROLLUP, and SFLPAG

keywords 102

subfiles for two display sizes 36

two display sizes 36

variable-length record 103

field
color (table) 34

emphasizing (table) 33

help record 120

information displays 446

keywords ignored if display modes

are changed 65

list display 447

menu displays 444

MSGLOC (Message Location)

keyword 120

NOCCSID (No CCSID) keyword 258

processing order for subfile

control 94

program logic 113

programming example 128

RMVWDW (Remove Window)

keyword 125

SFLMSG (Subfile Message)

keyword 120

SFLMSGID (Subfile Message

identifier) keyword 120

subfile, describing with 89

use 15

USRRSTDSP (User Restore Display)

keyword 126

validity-checking keyword 120

WDWBORDER (Window Border)

keyword 120

window 115

WINDOW (Window) keyword 116

DDS form 21

DDS keyword
See keyword, DDS

DDS record
See record, DDS

decimal point, edit description for 689

Default (DFT) keyword
use 64

with ASSUME keyword 251

default value
fields 64

defining 238

accelerator key 155

application help 184

application pop-up window 354

application window 354

attributes for entry fields 30

cancel key 156

choice colors and attributes 170

choice-level help 184

contextual help in UIM 342

cursor progression for entry fields 30

dialog variables 329

function keys 345

function keys and VARUPD

value 345

header area 359

help for field 186

lists 335

menu object 276

menu-bar switch key 156

mnemonic 169

MNUBARDSP (Menu-Bar Display)

keyword
application record 179, 189

menu-bar record 180, 192

panel group object 283

prolog area 359

scrollable areas 340

definition
panel 459

definition list
device 656

definition list (DL) tag
example

compact definition list 519

definition list 518

overview 517

tags allowed table 517

use in help module 396

Delete Menu (DLTMNU) command 246

Delete Override (DLTOVR)

command 215

Delete Panel Group (DLTPNLGRP)

command 404

Delete Search Index Entry

(RMVSCHIDXE) command 406

deleting
menu displays 246

overrides 215

panel group 404

search index 406

window 125

description
field-level

definition 16

use 16

Index 717

description (continued)
file-level

definition 17

use 17

record-level
definition 16

use 16

description, file
changing

reasons for 16

with the CHGDSPF command 19

creating for display file 18

definition 3

detecting changes in 20

determining 16

descriptive text area, entry displays 421

device definition list
definition 43

part of open feedback area 656

DFRWRT (defer write) parameter
improving performance with 263

restrictions 63

using 63

DFT (Default) keyword
use 64

with ASSUME keyword 251

DFTVAL (Default Value) keyword 64

dialog command
ACTIONS (Menu Bar Cursor

Action) 636

CALL (Call Program) 636

Call Program (CALL) 636

CANCEL (Cancel) 638

Change View (Change View) 639

CHGVIEW (Change View) 639

CMD (System Command) 639

CMDLINE (Command Line) 640

Command Line (CMDLINE) 640

Display Help (DSPHELP) 640

Display Home Menu (HOME) 644

Display Message (MSG) 646

Display More Function Keys

(MOREKEYS) 645

DSPHELP (Display Help) 640

effects of 633

ENTER (Enter) 641

entry field prompting 649

EXIT (Exit Display) 642

Exit Display (EXIT) 642

Extended Help (EXTHELP) 642

EXTHELP (Extended Help) 642

HELP (Help) 643

HELPHELP (Help Help) 643

HELPIDX (Help Index) 643

HOME (Display Home Menu) 644

introduction 633

KEYSHELP (Keys Help) 644

MENU (Menu) 645

Menu Bar Cursor Action

(ACTIONS) 636

MOREKEYS (Display More Function

Keys) 645

Move to Top (MOVETOP) 646

MOVETOP (Move to Top) 646

MSG (Display Message) 646

PAGEDOWN (Page Down) 647

PAGEUP (Page Up) 647

dialog command (continued)
PRINT (Print Display) 648

Print Display (PRINT) 648

PROMPT (Prompt) 648

prompting an entry field 649

PULLDOWN (Display Pull-down

Menu) 650

RETRIEVE (Retrieve Command

String) 650

Retrieve Command String

(RETRIEVE) 650

RETURN (Return Control to

Application) 651

Return Control to Application

(RETURN) 651

System Command (CMD) 639

valid uses 633

variable update (VARUPD)

attribute 635

VARUPD attribute 635

dialog variable
defined by UIM 628

defining 329

definition 329

displaying panel field value

using 331

error messages 331

incorrect display characters 331

initial value 330

restrictions 330

variable pool 329

Z36ENV 628

ZCANCEL 628

ZDBCS 628

ZDSPSIZ 628

ZEXIT 628

ZJOB 628

ZJOBNBR 628

ZLMTCPB 628

ZMENU 628

ZMNULIB 628

ZSYSNAM 628

ZUSER 628

dialog variables and special values 332

differences between pull-down menus

and pop-up windows 352

display
creating UIM 283

list 335

panel field value using dialog

variables 331

UIM 283

user interface manager 283

display attribute
choices 170

color fields 34

emphasizing fields 33

display attribute (*DSPATR)

parameter 170

Display Attribute (DSPATR) keyword
example source for PC value 106

use 65

with ASSUME keyword 251

with program-to-system field 33

display character
incorrect 331

display device file
See display file

Display Edit Description (DSPEDTD)

command 35

display file
See also data description specifications

(DDS)

See also subfile

See also window

ASSUME (Assume)
considerations 251

attributes for fields, System/36

application compatibility 696

cancel-invite operation, System/36

application compatibility 701

characteristics of 15

closing 82

command key validity 79

creating
ways for 18

with DDS 18

without DDS 38

cursor positioning, System/36

application compatibility 696

defining input and output 39

defining your display in 15

definition 3

description
creating 18

how changes are applied to 19

display station controller, System/36

application compatibility 694

displaying messages, System/36

application compatibility 697

edit codes, user-defined 689

edit descriptions 687

erase-input-fields function, System/36

application compatibility 695

establishing 15

example, programming 128

examples
assigning space to

program-described 38

building with online help 3

DDS source 21

replacing record formats on

display 48

file entry field attributes 255

function keys, System/36 application

compatibility 700

HELP and HLPRTN keywords,

System/36 application

compatibility 700

input data
System/36 application

compatibility 694

input data, System/36 application

compatibility 694

input-only, defining 38

lock 41

maximum number of record formats

in 28

obtaining information about 43

online help information
See online help information

opening 41

718 Application Display Programming V6R1

display file (continued)
operations supported by the system

and high-level languages
CL commands 83

ILE C/C++ functions 83

ILE COBOL statements 83

ILE RPG operations 83

operator changes, System/36

application compatibility 695

output-only, defining 39

overriding
attributes in HLL programs 211

file names and attributes in HLL

programs 213

file names in HLL programs 212

passing data
between programs 251

between routing steps 252

put with explicit override, System/36

compatibility 699

relationship to data 15

retain command and function keys,

System/36 application

compatibility 702

return codes 671

screen size, specifying to improve

performance 263

self-check, System/36 application

compatibility 695

sharing in same job 84

signed numeric data, System/36

application compatibility 699

suspended 77

System/36 application

compatibility 693

System/36 functions not

supported 702

use 41

waiting for data with ICF file, data

queue 255

window use 115

display file attribute
See file attribute

Display File Description (DSPFD)

command 20

Display File Field Description (DSPFFD)

command 20

display file menu
See menu display

display form
binary value 481

character value 482

date value 482

example numeric values 481

numeric value 481

time value 482

Display Help (DSPHELP) dialog

command 640

Display Home Menu (HOME) dialog

command 644

display I/O feedback area 663

Display Menu Attributes (DSPMNUA)

command 246

Display Message (MSG) dialog

command 646

display mode
changing 100

display mode (continued)
DDS keywords ignored if

changed 65

definition 100

displaying subfiles horizontally

with 100

Display Mode (DSPMOD) keyword
description 64

example for subfiles 100

sample subfile display for *DS3 101

sample subfile display for *DS4 101

subfile use 100

Display More Function Keys

(MOREKEYS) dialog command 645

Display Override (DSPOVR)

command 215

display panel (PANEL) tag
example

panel definition 593

overview 587

tags allowed table 587

display panel field value using dialog

variables 331

Display Program References

(DSPPGMREF) command 20

Display Right-to-Left (DSPRL)

keyword 31

Display Size (DSPSIZ) keyword 36

display station 41, 42

acquired, releasing from I/O

operations 82

calculating maximum number of

fields 74

device description, changing for

printers 37

enhanced capabilities 141

models
3180-2 64

3197 64

5250, avoiding record format

problems on 80

obtaining information about 43

types 116, 139

user-defined data streams, differences

for 247

with UNLOCK 71

display station controller, System/36

application compatibility 694

display, application
See application display

displaying
list 335

message
about 221

in field 223

in program message queue 223

on message line 222

on message line using message

field 222

on message line when subfile

control record written 222

through subfile 223

override 215

panel using request processor

program 355

System/36 application

compatibility 697

DL (definition list) tag
example

a definition list 518

compact definition list 519

overview 517

tags allowed table 517

use in help module 396

DLTMNU (Delete Menu) command 246

DLTOVR (Delete Override)

command 215

DLTPNLGRP (Delete Panel Group)

command 404

DLTSCHIDXE (Delete Search Index

Entry) command 406

document, office
definition for help 7

double strike 359

double-byte character set
mnemonics 169

DSPATR (Display Attribute) keyword
example source for PC value 106

use 65

with ASSUME keyword 251

with program-to-system field 33

DSPEDTD (Display Edit Description)

command 35

DSPFD (Display File Description)

command 20

DSPFFD (Display File Field Description)

command 20

DSPHELP (Display Help) dialog

command 640

DSPMNUA (Display Menu Attributes)

command 246

DSPMOD (Display Mode) keyword
description 64

Display Mode (DSPMOD) 100

example for subfiles 100

sample subfile display for *DS3 101

sample subfile display for *DS4 101

subfile use 100

use 64

DSPOVR (Display Override)

command 215

DSPPGMREF (Display Program

References) command 20

DSPRL (Display Right-to-Left)

keyword 31

DSPSIZ (Display Size) keyword
specifying to improve

performance 263

use 36

DTAQ (data queue) parameter 255

duplicating window 124

dynamic list column heading formatting
example 552

E
edit code

defining your own 35

definition 35

description 689

IBM-supplied 687

use 35

Edit Code (EDTCDE) keyword 35

Index 719

edit description
creating 691

about 691

example 691

decimal point 689

description 689

IBM-supplied 689

rules 690

edit mask
creating 31

edit word
definition 35

Edit Word (EDTWRD) keyword 35

EDTCDE (Edit Code) keyword 35

EDTWRD (Edit Word) keyword 35

elements within a panel group 273

embed
See imbed

emphasis values table 566

emphasizing fields 33

enabled selection indicator in selection

list
example 161

enabling graphical user interface (GUI)
support 340

End Receive (ENDRCV) command 68

ending attribute character
definition 22

ENDRCV (End Receive) command 68

engraved key restrictions 340

enhanced display (ENHDSP) parameter
writing records 141

ENHDSP (enhanced display) parameter
writing records 141

ENTER dialog command 641

entering
commands that are too long 345

entry dialog actions, table of CUA 449

entry display
CUA entry field 452

description 417

descriptive text area 421

entry fields 419, 420

examples
CUA entry field 452

i5/OS-style 417

field prompts 418

instruction lines 418

online help information
DDS considerations 445

description 444

help areas for 445

types 444

operating guidelines 422

possible choices information 421

prompt areas 418

title 417

entry field
attributes for 30

CUA 452

cursor progression for 30

entry displays 419

menu selection 416

prompting 649

protecting using Edit Masks 31

rules for displays 420

entry field attribute
creating 30

entry pointer for list 336

ERASE (Erase) keyword
erasing records 50

restriction with USRDSPMGT

keyword 703

System/36 application

compatibility 694

with OVERLAY keyword 50

Erase Input (ERASEINP) keyword
system performance

considerations 264

use 61

erase-input-fields function, System/36

application compatibility 695

ERASEINP (Erase Input) keyword
system performance

considerations 264

use 61

erasing input 61

ERRMSG (Error Message) keyword 120,

222

ERRMSGID (Error Message Identifier)

keyword 120, 222

error
See also major/minor return code

See also message

field validation 70

recovering from 229

recovering from run-time 85

while scrolling 341

error condition 341

error message
dialog variables 331

window 119

Error Message (ERRMSG) keyword 120,

222

Error Message ID (ERRMSGID)

keyword 120

Error Message Identifier (ERRMSGID)

keyword 222

Error Message Subfile (ERRSFL) keyword
example DDS source 224

message received from 120

restriction with USRDSPMGT

keyword 703

use 223

ERRSFL (Error Message Subfile) keyword
example DDS source 224

message received from 120

restriction with USRDSPMGT

keyword 703

use 223

example
a text area 619

accelerator key 156

alternate view of list 284

application formatted area 466

building sample display with online

help 3

check box 139

CL programs
program menu 242

RTNPNT(*NO) for program menu,

CL source for 244

class definition 480

example (continued)
command line pop-up window 355

compact definition 519

conditioning option 487

continued attribute 457

continued-entry field 173

data description specifications (DDS)
5250 display station problems 80

ALWROL keyword 56

CHRID keyword 257

CLRL and OVERLAY keywords,

differences between 54

CLRL(*NO) keyword 53

display file menu 239

display file source 21

display size, for more than

one 36

DSPATR(PC) keyword 106

DSPMOD keyword 64

DSPMOD keyword with

subfiles 100

ERRSFL keyword 224

HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

INZRCD and UNLOCK

keywords 72

message subfile 105

OVERLAY and CLRL keywords,

differences between 54

program logic for subfiles 113

program menu 242

PUTOVR keyword 58

PUTOVR keyword for repeatedly

entered data 60

PUTOVR keyword, more efficient

coding 59

PUTRETAIN keyword, field

level 62

PUTRETAIN keyword, record

level 62

ROLLUP, SFLSIZ, and SFLPAG

keywords 102

RSTDSP parameter 77

secondary help 375

SFLMSGID keyword 225

SFLNXTCHG keyword 104

SFLPAG, SFLSIZ, and ROLLUP

keywords 102

SFLSIZ, ROLLUP, and SFLPAG

keywords 102

SLNO(*VAR) keyword 51

subfiles for two display sizes 36

UNLOCK and INZRCD

keywords 72

variable-length record 103

data entry panel 492, 512

data entry panel with nested data

group 497

data entry panel, two-column

format 493

720 Application Display Programming V6R1

example (continued)
data presentation panel 299

data presentation panel after

scrolling 301

defining MNUBARDSP on application

record 179, 189

defining MNUBARDSP on menu-bar

record 180, 192

definition list 518

display with output and input fields

displayed in response to request 23

dynamic list column heading 552

edit description, creating 691

enabled selection indicator in selection

list 161

entry displays
CUA 452

typical 417

formatting example 632

graphic image
HTML keyword 208

grid line structure 204

heading tags 526

help modules
command help 405

imbedded 394

imported 394

ISCH tag 399

ISCHSYN tag 399

LINK tag 404

panel group with 393

help panel definition 523

horizontal selection field 149

HTML keyword
graphic image 208

resolving field overlap 207

hypertext link 542

imbedded help 527

index search 531

index search synonym 533

information display 422

key definitions 536

key list 537

left-to-right formatting on left-to-right

panel 614

left-to-right formatting on right-to-left

panel 613

list
ordered 584

simple 615

translation 622

unordered 626

list actions 559

list area
example, UIM source 549

list column groups 551

three layout columns 550

list display
CUA 453

extended action entry area 425

list panel 283

list part 572

menu area with groups 578

menu bar
choices 144

DDS 189

panel 316

example (continued)
menu bar (continued)

UIM 573

menu displays
display file menu 239

message file, adding messages

to 240

message file, describing menu

actions in 237

naming help formats in message

file 237

program menu 242

program menu, CL source for 242

RTNPNT(*NO) for program menu,

CL source for 244

single choice 415

using options and GO

command 233

menu panel
creating 276

menu source 278

menu-bar choice help 184

menu-bar help list 186

message
ERRSFL keyword 224

SFLMSGID keyword 225

message, trailer 611

mnemonic, not valid DDS for 169

multiple-choice selection list 157

multiple-selection field (UIM) 513

note 583

numeric values table 481

online help information
command help 405

display showing help areas 366

HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

imbedded help modules in panel

group 394

imported help modules in panel

group 394

ISCH tag 399

ISCHSYN tag 399

LINK tag 404

panel groups with help

modules 393

secondary help 375

ordered list 584

output operation
effect of OVERLAY and ERASE

on 50

overrides
applying when compiling

program 214

attribute of display file 211

different display file 212

different display file and

attributes 213

panel definition 593

example (continued)
panel groups

command help 405

help modules 393

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

imbedded help modules 394

imported help modules 394

ISCH tag 399

ISCHSYN tag 399

LINK tag 404

paragraph continuation 596

paragraph tag 586

parameter list 595

passing data
between routing steps 252

in same routing step 251

print title line 610

program-described display file 38

pull-down menu 152, 189

PULLINPUT parameter 181

push button 166

radio button 139

record format, replacing 48

record, DDS
HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

secondary help 375

return-field (RTNFLD)

parameter 183

roll operation 56

sample figure 520

sample heading 631

scroll bar 157, 162

selection field 148

selection list 159

simple list 615

simple menu area 577

single-choice selection field choice

help 185

single-choice selection list 157

SLNO (Starting Line Number)

keyword 51

subfile
*DS3 mode display 101

*DS4 mode display 101

DSPATR(PC) keyword 106

DSPMOD keyword 100

message subfile 105

program logic for subfiles 113

ROLLUP, SFLSIZ, and SFLPAG

keywords 102

sample display for changing

information 88

sample display for display

only 87

sample display for input only 88

sample display for task

combination 88

sample display with selection 87

sample displays when rolling two

or more records 110

Index 721

example (continued)
subfile (continued)

SFLNXTCHG keyword 104

SFLPAG, SFLSIZ, and ROLLUP

keywords 102

SFLSIZ, ROLLUP, and SFLPAG

keywords 102

variable-length record 103

vertical and horizontal, displayed

at same time 99

suppressed selection indicator in

pull-down menu 155

suppressed selection indicator in

selection field 152

title citation 469

translation list 622

truth table 624

two presentation areas
data items 495

menu area 496

unavailable choice 168

unformatted lines 538

unordered list 626

valid DDS for mnemonic 169

validity checking 469

vertical multiple-choice selection

field 149

vertical single-choice selection

field 148

window title 123

window use 128

example (XMP) tag
example, formatting an example 632

help module 396

overview 631

EXIT (Exit Display) dialog

command 642

Exit Display (EXIT) dialog

command 642

Exit key, using on menus 233

exit program
commonly asked questions 360

expression
conditional 484, 540

extended action entry area
list displays 428

extended alphabetics
definition 257

extended help
definition 365, 380

Extended Help (EXTHELP) dialog

command 642

extended help heading (XH1 through

XH4) tag
example, sample heading 631

formatting rules 631

overview 630

use in help module 395

externally described data
advantages of 17

definition 17

use 17

EXTHELP (Extended Help) dialog

command 642

F
F18=More indexes

removing access 382

feedback area
common 43

error information 43

file-dependent 43

function keys 25

get attributes 666

I/O
common 659

definition 43

display 663

for function keys 25

open
definition 43

device definition list 656

individual descriptions 653

field
attribute

defining 30

attributes, System/36 application

compatibility 696

calculating maximum number for

display station 74

character, maximum length 24

characteristics of 16

choice entry, Common User

Access 451

color 34

constant 23

cursor progression
defining 30

default values, specifying 64

defining
attribute 30

cursor progression 30

definition 16

display 21

displaying 22

emphasizing 33

entry
See entry field

erasing unprotected input and

output/input 61

hidden 22

input 22

input and output, displayed in

response to request 23

input-capable, limitations on number

of 74

keeping on display 61

list
See list fields

maximum number in record

format 23

menu selection entry 416

message 23

numeric
maximum length 24

output 22

output/input 22

overriding attributes or content of 57

previously described 24

program-to-system
understanding how to use 23

with DSPATR keyword 33

field (continued)
record format 22

reference 24

validation errors 70

zoned decimal, maximum length 24

field (*FLD) special value 185

field attribute character 22

Field Cursor Progression (FLDCSRPRG)

keyword 30

Field Exit (CHECK(FE)) keyword 152

field location
input and output records 22

when to specify 24

field prompt, entry displays 418

field value for display panel using dialog

variables 331

field-exit processing
backward 178

forward 178

field-level description
definition 16

use 16

field, graphic 463

FIG (figure) tag
example, sample figure 520

overview 519

use in help module 396

figure (FIG) tag
example, sample figure 520

overview 519

use in help module 396

file
definition 17

display
See display file

shared in job
close operation for 85

input/output operation for 84

open operation for 84

source
See source file

file attribute
building 211

overriding
along with display file name in

HLL programs 213

display files in HLL

programs 211

file description
changing 19

reasons for 16

with the CHGDSPF command 19

creating for display file 18

definition 3

detecting changes in 20

determining 16

file redirection
definition 215

different file types 216

level checking 215

same file types 215

table of defaults for

combinations 216

valid for input and output 216

file resource
how allocated 41

file-dependent feedback area 43

722 Application Display Programming V6R1

file-level description 17

FLDCSRPRG (Field Cursor Progression)

keyword 30

folding
list panel 350

multiple panels when EXIT

requested 348

when EXIT requested 348

font
highlighting 359

format, record
See record format

formatting
bidirectional considerations 542

column data 564

display form 481

binary value 481

character value 482

date value 482

time value 482

example 632

function keys 345

IGC (ideographic characters)
BOTINST (bottom instruction)

tag 467

DATAC (data item choices)

tag 498

PDFLDC (pull-down field choice)

tag 600

TOPINST (top instruction)

tag 623

numeric value
example values table 481

panel
concepts 346

user control 348

panels 346

printed
information area 530

list area 548

forward field-exit processing 178

full screen mode
help information 522

function key
assignments, table 439

common assignments on i5/OS-style

displays 439

CUA entry dialog actions, table

of 449

DDS keywords for 25

defining
in DDS 24

in UIM 345

formatting in UIM 345

handling in UIM 345

optional for i5/OS-style displays, table

of 415

required for i5/OS-style displays,

table of 414

retain command, System/36

application compatibility 702

scrolling in UIM 341

System/36 application

compatibility 700

VARUPD value 345

function key area
CUA 450

function key area (continued)
menu displays, single-choice 414

function key area help 390

function, built-in
CHKOBJ (check object) 485, 541

CHKPGM (COND evaluation

program) 486

CHKPGM (condition evaluation

program) 542

CHKUSRCLS (check user class) 486,

542

G
get-attributes feedback area 666

get-attributes operation
definition 43

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

table of information available

from 43

get-next-changed operation
definition 97

get-next-changed operation for subfiles
BASIC statement for 98

ILE C/C++ function for 98

ILE COBOL statement for 98

ILE RPG operation for 98

get-relative operation
definition 97

get-relative operation for subfiles
BASIC statement for 98

ILE C/C++ function for 98

ILE COBOL statement for 98

ILE RPG operation for 98

GETRETAIN (Get Retain) keyword 72

GO (Go to Menu) command
generic menu specification 246

use 233

Go to Menu (GO) command
generic menu specification 246

use 233

graphical user interface (GUI)
support 340

graphics
field 463

literal 463

GRDATR (Grid Line Attribute)

keyword 204

GRDBOX (Grid Box) keyword 204

GRDCLR (Grid Clear) 204

GRDLIN (Grid Line) 204

GRDRCD (Grid Record) 204

Grid Box (GRDBOX) keyword 204

Grid Clear (GRDCLR) 204

Grid Line (GRDLIN) 204

Grid Line Attribute (GRDATR)

keyword 204

grid line structure
definition 204

example, DDS 204

hardware requirements 206

overview 204

window 205

Grid Record (GRDRCD) 204

group object, panel 459

GUI (graphical user interface)
support 340

guideline
CUA, single selection field

operation 451

message 448

operating
entry displays 422

information displays 425

list display 429

menu displays 417

H
H specification

definition 365

effect on help-list updating 373

entering in DDS source 366

order in DDS source 366

paging order 373

H1 through H4 (headings)
example

heading tags 526

help module 395

overview 525

handle on list entry 336

handling function keys and VARUPD

value 345

header area
defining 359

heading (H1 through H4) tag
example

heading tags 526

overview 525

use in help module 395

heading, column
See column heading

help
choice-level 184

data area 385

defining for application 184

displayed in window 120, 122

field 186

function key area 390

item specific 185

list area 380

menu area 383

menu bar area 388

panels 460

HELP (help module) tag
example, help panel definition 523

overview 521

placement in UIM source 393

UIM source showing panel groups

with help modules 393

HELP (Help) keyword
enabling the Help key 364

function key use 25

specifying alternative 26

System/36 application

compatibility 700

help area
See online help information

Help Area (HLPARA) keyword 365

help boundary
definition 374

Index 723

Help Boundary (HLPBDY) keyword
secondary help 375

use 374

Help Command Key (HLPCMDKEY)

keyword
restriction with USRDSPMGT

keyword 703

use 376

HELP dialog command 643

help display
See online help information

Help Exclude (HLPEXCLD)

keyword 367

help for field 186

Help Full (HLPFULL) keyword 367

help group
definition 374

help information
See online help information

help key 379

Help key
See also ALTHELP (Alternate Help)

keyword

See also HELP (Help) keyword

enabling 364

results when pressed 363

returning to program after

pressing 376

returning to program without

pressing 378

help list
defining for application 186

definition 373

help module
contained in different help panel

group, using 394

definition 393

emphasizing and formatting text

within 395

examples
command help 405

imbedded 394

imported 394

ISCH tag 399

ISCHSYN tag 399

LINK tag 404

panel group with 393

headings, adding 395

highlighting text 396

hypertext 402

linking 402

making lists 396

names 394

organizing panel group with 393

paragraphs and notes, defining 395

programming keywords and variables,

identifying 396

structured text, indicating 396

using more than once 394

help module (HELP) tag
example, help panel definition 523

overview 521

placement in UIM source 393

Help Panel Group (HLPPNLGRP)

keyword
use 367

Help Panel Group (HLPPNLGRP)

keyword (continued)
with HLPRCD and HLPDOC

keywords 369

with option indicators 369

Help Record (HLPRCD) keyword
with HLPDOC keyword in same

file 372

with HLPPNLGRP keyword in same

file 370

with option indicators 371

Help Return (HLPRTN) keyword
returning to your program after

help 378

System/36 application

compatibility 700

Help Search Index (HLPSCHIDX)

keyword 367

Help Sequencing (HLPSEQ)

keyword 374

help sublist
definition 374

help text
See online help information

help text displayed according to cursor

position 342

Help Title (HLPTITLE) keyword 367

HELPHELP dialog command 643

HELPIDX dialog command 643

hexadecimal data 464

hidden field
definition 22

using 22

hierarchy, index search 400

high-level language (HLL)
overriding display file attributes in

programs 211

overriding display file names and

attributes in programs 213

overriding display file names in

programs 212

recognizing the I/O requests

supported by 83

System/36 application

compatibility 693

highlight phrases table 524

highlighted phrase (HP0 through HP9)

tag
overview 524

use in help module 396

highlighting
selection characters 465, 617

highlighting and fonts 359

HLL (high-level language)
overriding display file attributes in

programs 211

overriding display file names and

attributes in programs 213

overriding display file names in

programs 212

recognizing the I/O requests

supported by 83

System/36 application

compatibility 693

HLPARA (Help Area) keyword 365

HLPBDY (Help Boundary) keyword
secondary help 375

HLPBDY (Help Boundary) keyword

(continued)
use 374

HLPCMDKEY (Help Command Key)

keyword
response indicators, sample source

with 377

restriction with USRDSPMGT

keyword 703

sample DDS source 377

use 376

HLPEXCLD (Help Exclude)

keyword 367

HLPFULL (Help Full) keyword 367

HLPPNLGRP (Help Panel Group)

keyword
example

option indicators, sample source

with 369

sample DDS source 368

use 367

with HLPRCD and HLPDOC

keywords 369

with option indicators 369

HLPRCD (Help Record) keyword
example

option indicators, sample source

with 371

sample DDS source 370

secondary help 375

with HLPDOC keyword in same

file 372

with HLPPNLGRP keyword in same

file 370

with option indicators 371

HLPRTN (Help Return) keyword
returning to your program after

help 378

System/36 application

compatibility 700

HLPSCHIDX (Help Search Index)

keyword 367

HLPSEQ (Help Sequencing)

keyword 374

HLPTITLE (Help Title) keyword 367

HOME (Display Home Menu) dialog

command 644

HOME (Home) keyword 25

horizontal selection field
cursor movement 150, 151

example 149

HP0 through HP9 (highlighted phrase)

tag
overview 524

use in help module 396

HTML (Hypertext Markup Language)

keyword
inserting 206

resolving field overlap 207

examples 207

restrictions 210

hypertext
See also online help information

definition 402

hypertext link
example 542

724 Application Display Programming V6R1

hypertext link definition (LINK) tag
CHKPGM (condition evaluation

program) 542

conditional expressions
CHKOBJ built-in function 540

CHKUSRCLS (check user class)

built-in function 542

example, hypertext link 542

overview 539

placement in UIM source 404

Hypertext Markup Language (HTML)

keyword
resolving field overlap 207

using 206

hypertext reference phrase
See also online help information

definition 404

I
I/O feedback area

common 659

contents 43

definition 43

display 663

I/O operation
acquiring a display station for 42

locking keyboard and positioning

cursor 76

mapping to HLL operations
CL commands 83

ILE C/C++ functions 83

ILE COBOL statements 83

ILE RPG operations 83

obtaining information about 43

releasing an acquired display station

from 82

requesting
for subfile control record

formats 98

for subfile record formats 96

for subfiles 96

I/O request
high-level languages, table of

subfile 98

supported by high-level

languages 83

ICF file
file entry field attributes 255

waiting for data with display file, data

queue 255

identifier fields for menu displays 436

identifier, level 20

ideographic characters (IGC)
formatting

BOTINST (bottom instruction)

tag 467

DATAC (data item choices)

tag 498

PDFLDC (pull-down field choice)

tag 600

TOPINST (top instruction)

tag 623

IGC (ideographic characters)
formatting

BOTINST (bottom instruction)

tag 467

IGC (ideographic characters) (continued)
formatting (continued)

DATAC (data item choices)

tag 498

PDFLDC (pull-down field choice)

tag 600

TOPINST (top instruction)

tag 623

ILE C/C++ functions
I/O requests for subfiles 98

mapping to I/O operations 83

ILE COBOL statement
I/O requests for subfiles 98

mapping to I/O operations 83

ILE RPG operation
I/O requests for subfiles 98

mapping to I/O operations 83

imbed help (IMHELP) tag
example, imbedded help 527

overview 526

placement in UIM source 394

imbedding
nesting source files 463

imbedding source files
nesting imbeds 463

imbedding UIM source files 463

IMHELP (imbed help) tag
example, imbedded help 527

overview 526

placement in UIM source 393, 394

UIM source showing panel groups

using 394

UIM source showing panel groups

with help modules 393

import (IMPORT) tag
overview 528

IMPORT (import) tag
overview 528

placement in UIM source 394

UIM source showing panel groups

using 394

improving
productivity with UIM 269

system performance with

displays 263

improving productivity with UIM 269

inactive subfile record
definition 90

incorrect characters in dialog

variable 331

incorrect display characters 331

incorrect printer characters 331

INDARA (Indicator Area) keyword 27

index search
See online help information

F18=More indexes
removing access 382

index search (ISCH) tag
parameter list 530

placement in UIM source 399

index search function
See online help information

index search hierarchy 400

Index search key (F11) 397

index search subtopic (ISCHSUBT) tag
parameter list 531

placement in UIM source 401

index search synonym (ISCHSYN) tag
parameter list 532

placement in UIM source 399

indicator
definition 27

option
definition 27

for display files 27

passing information via 27

response
definition 25

for display files 27

selection
in pull-down menu 154

in selection field 151

in selection list 160

setting off 28

setting when data is changed 72

types for display files 27

Indicator Area (INDARA) keyword 27

INFO (information area) tag
overview 529

print formatting considerations 530

information area
printed 530

scrolling 342

information area (INFO) tag
overview 529

print formatting considerations 530

information area scrolling 342

information display
CUA 453

description 422

example 422

instruction lines 425

location information 423

online help information
DDS considerations 446

description 445

help areas for 445

operating guidelines 425

prompt areas 424

titles 423

information, help
See online help information

information, location
See location information, displays

information, online help
See online help information

initial menu
definition 235

Initialize Record (INZRCD) keyword 70

initializing
list display 335

output/input fields 67

initializing list 335

input data
from the display

how the system reads 75

reading 70

reading invited 68

handling negative numeric 75

inviting
from CL programs 67

to the display 67

keeping 72

reading while writing output 75

Index 725

input data (continued)
System/36 application

compatibility 694

input field
definition 22

erasing 61

example, display with output and 23

improving performance when sending

records with 264

using 22

input file
defining 39

input not waited for, canceling 76

input operation
effect of INZRCD and UNLOCK

keywords on 72

input-capable field
limitations on number of 74

input-only file
defining 38

input/output feedback area
common 659

contents 43

definition 25, 43

display 663

input/output operation
acquiring a display station for 42

files shared in a job 84

locking keyboard and positioning

cursor 76

mapping to HLL operations
CL commands 83

ILE C/C++ functions 83

ILE COBOL statements 83

ILE RPG operations 83

mapping to I/O operations 83

obtaining information about 43

releasing an acquired display station

from 82

requesting
for subfile control record

formats 98

for subfile record formats 96

for subfiles 96

input/output request
high-level languages, table of

subfile 98

supported by high-level

languages 83

inserting
entry from list display 336

HTML tags 206

inserting entry from list 336

instruction line
entry displays 418

information displays 425

list display 426

menu displays, single-choice 416

interaction
between menu bar and

application 178

between menu bar and pull-down

menu 187

interactive response time for list

displays 337

interpretation of command line 344

INVITE (Invite) keyword
system performance

considerations 265

use 67

invite operation
CL command for 83

definition 67

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

system performance

considerations 265

invited input, reading from the

display 68

INZINP (Initialize Input) keyword
performance considerations 264

INZRCD (Initialize Record) keyword
example with UNLOCK keyword 72

use 70

ISCH (index search) tag
parameter list 530

placement in UIM source 399

ISCHSUBT (index search subtopic) tag
parameter list 531

placement in UIM source 401

ISCHSYN (index search synonym) tag
parameter list 532

placement in UIM source 399

item-specific help 185

J
job

close operation for files shared in 85

input/output operation for files

shared in 84

open operation for files shared in 84

K
KEEP (Keep) keyword

considerations 251

example DDS source 252

restriction with USRDSPMGT

keyword 703

sharing file between programs 251

System/36 application

compatibility 694

key
Cancel and Exit, using on menus 233

CAnn and CFnn, defining 25

CFnn (command function), validity

considerations 79

command
defining 25

validity considerations 79

command attention (CAnn) 25

command function (CFnn) 25

function
defining 24

System/36 application

compatibility 700

key assignments, common
See common key assignments

key definition
example 536

key interaction for menu bars and

pull-down menus 187

key list (KEYL) tag
example, key list 537

overview 537

tags allowed table 537

key list item (KEYI) tag
example, key definitions 536

overview 534

keyboard
locking 49

locking during I/O operations 76

unlocking while the program is

processing data 71

keyboard function
continued-entry field 174

KEYI (key list item) tag
example, key definitions 536

overview 534

KEYL (key list) tag
example, key list 537

overview 537

tags allowed table 537

KEYSHELP dialog command 644

keyword, DDS 50, 64, 100, 251

Alternative Help (ALTHELP) 26

ALTHELP (Alternative Help) 26

ALTPAGEDWN (Alternative Page

Down) 26

ALTPAGEUP (Alternative Page

Up) 26

ALWROL (Allow Roll)
example 56

use 55

ASSUME (Assume)
example DDS source 251, 252

use 251

with DFT keyword 251

CAnn (Command Attention) 25

CFnn (Command Function) 25

CHANGE (Change) 72

CHECK (Check)
AB value 73

description 28

M10 value 73

M11 value 73

ME value 73

MF value 73

VN value 73

VNE value 73

CHRID (Character Identifier)

keyword 257

CLEAR (Clear) 25

CLRL (Clear Line) 53

example with *NO value 53

example with OVERLAY 54

system performance

considerations 264

coding, more efficient 59

COLOR (Color) 34

COMP (Comparison) 73

CSRINPONLY (Cursor Input

Only) 29

CSRLOC (Cursor Location) 65

Cursor Input Only

(CSRINPONLY) 29

data, repeatedly entered 60

726 Application Display Programming V6R1

keyword, DDS (continued)
DFT (Default)

description 64

with ASSUME keyword 251

DFTVAL (Default Value) 64

Display Attribute (DSPATR)
adding color to fields with 34

emphasizing fields with 33

PC value 65, 106

table of values for 33, 34

with ASSUME keyword 251

Display Right-to-Left (DSPRL)

keyword 31

Display Size (DSPSIZ)
use 36

DSPATR (Display Attribute)
adding to color to fields with 34

emphasizing fields with 33

PC value 65, 106

table of color effects 34

table of values for 33

with ASSUME keyword 251

DSPMOD (Display Mode)
description 64

example for subfiles 100

subfile display for *DS3 101

subfile display for *DS4 101

DSPRL (Display Right-to-Left)

keyword 31

DSPSIZ (Display Size)
specifying to improve

performance 263

use 36

EDTCDE (Edit Code) 35

EDTWRD (Edit Word) 35

ERASE (Erase)
effect on output operation 50

example of effects with

OVERLAY 50

Erase Input (ERASEINP)
system performance

considerations 264

use 61

ERASEINP (Erase Input)
system performance

considerations 264

use 61

ERRMSG (Error Message) 222

ERRMSGID (Error Message

Identifier) 222

Error Message (ERRMSG) 222

Error Message Identifier

(ERRMSGID) 222

Error Subfile (ERRSFL)
description 223

example DDS source 224

ERRSFL (Error Subfile)
description 223

example DDS source 224

field
color (table) 34

emphasizing (table) 33

Field Cursor Progression

(FLDCSRPRG) 30

field level 62

FLDCSRPRG (Field Cursor

Progression) 30

keyword, DDS (continued)
function keys, defining with 25

GETRETAIN (Get Retain) 72

GRDATR (Grid Line Attribute) 204

GRDBOX (Grid Box) 204

GRDCLR (Grid Clear) 204

GRDLIN (Grid Line) 204

GRDRCD (Grid Record) 204

Grid Box (GRDBOX) 204

Grid Clear (GRDCLR) 204

Grid Line (GRDLIN) 204

Grid Line Attribute (GRDATR) 204

Grid Record (GRDRCD) 204

H specifications
See H specifications

HELP (Help)
enabling Help key 364

function key use 25

Help Area (HLPARA) 365

Help Boundary (HLPBDY)
use 374

Help Command Key (HLPCMDKEY)
use 376

Help Exclude (HLPEXCLD) 367

Help Full (HLPFULL) 367

Help Panel Group (HLPPNLGRP)
description 367

with option indicators 369

Help Record (HLPRCD)
description 370

with option indicators 371

Help Return (HLPRTN) 378

Help Search Index

(HLPSCHIDX) 367

Help Sequencing (HLPSEQ) 374

Help Title (HLPTITLE) 367

HLPARA (Help Area) 365

HLPBDY (Help Boundary)
secondary help 375

use 374

HLPCMDKEY (Help Command Key)
response indicators, sample source

with 377

sample DDS source 377

use 376

HLPEXCLD (Help Exclude) 367

HLPFULL (Help Full) 367

HLPPNLGRP (Help Panel Group)
description 367

option indicators, sample source

with 369

sample DDS source 368

with option indicators 369

HLPRCD (Help Record)
description 370

option indicators, sample source

with 371

sample DDS source 370

secondary help 375

with option indicators 371

HLPRTN (Help Return) 378

HLPSCHIDX (Help Search

Index) 367

HLPSEQ (Help Sequencing) 374

HLPTITLE (Help Title) 367

HOME (Home) 25

INDARA (Indicator Area) 27

keyword, DDS (continued)
Indicator Area (INDARA) 27

Initialize Record (INZRCD)
use 70

INVITE (Invite)
description 67

system performance

considerations 265

INZINP (Initialize Input), system

performance considerations 264

INZRCD (Initialize Record)
example with UNLOCK

keyword 72

use 70

KEEP (Keep)
description 251

example DDS source 252

keywords ignored if display modes

are changed 65

LOCK (Lock) 76

MDTOFF (Modified Data Tag Off) 61

MOUBTN (Programmable Mouse

Button) 195

MSGALARM (Message Alarm) 226

MSGID (Message Identifier) 223

OVERLAY (Overlay)
description 49

effect on output operation 50

example of effects with ERASE 50

example with CLRL 54

system performance

considerations 264

Override Attribute (OVRATR)
system performance

considerations 264

use 57

Override Data (OVRDTA) 59

system performance

considerations 264

OVRATR (Override Attribute)
system performance

considerations 264

use 57

OVRDTA (Override Data) 59

system performance

considerations 264

Page Down (PAGEDOWN) 25

Page Up (PAGEUP)
defining 25

PAGEDOWN (Page Down) 25

PAGEUP (Page Up) 25

PASSRCD (Passed Record) 252

PRINT (Print)
enabling 36

for function key 25

results available (table) 36

Programmable Mouse Button

(MOUBTN) 195

PSHBTNCHC (Push Button

Choice) 166

PSHBTNFLD (Push Button

Field) 166

Push Button Choice

(PSHBTNCHC) 166

Push Button Field

(PSHBTNFLD) 166

Index 727

keyword, DDS (continued)
Put with Explicit Override (PUTOVR)

description 57

system performance

considerations 264

Put-Retain (PUTRETAIN)
description 61

PUTOVR (Put with Explicit

Override) 59, 60

description 57

example 58

system performance

considerations 264

PUTRETAIN (Put-Retain) 62

description 61

for record level 62

RANGE (Range) 73

Return Cursor Location

(RTNCSRLOC) 66

Roll Down (ROLLDOWN)
defining 25

response indicators for 28

Roll Up (ROLLUP)
example with SFLSIZ and

SFLPAG 102

for function key 25

improving subfile

performance 263

response indicators for 28

ROLLDOWN (Roll Down)
defining 25

response indicators for 28

ROLLUP (Roll Up)
example with SFLSIZ and

SFLPAG 102

for function key 25

improving subfile

performance 263

response indicators for 28

RTNCSRLOC (Return Cursor

Location) 66

Set Off (SETOF or SETOFF) 28

SETOF or SETOFF (Set Off) 28

SFL (Subfile) 89

SFLCHCCTL (Subfile Choice

Control) 159

SFLCLR (Subfile Clear) 90

SFLCSRPRG (Subfile Cursor

Progression) 30

SFLCSRRRN (Subfile Cursor Relative

Record Number) 66

SFLCTL (Subfile Control) 89

SFLDLT (Subfile Delete) 90

SFLDROP (Subfile Drop) 90

SFLDSP (Subfile Display) 89

SFLDSPCTL (Subfile Display

Control) 90

SFLEND (Subfile End) 90

SFLENTER (Subfile Enter) 90

SFLFOLD (Subfile Fold) 90

SFLINZ (Subfile Initialize) 90

SFLLIN (Subfile Line) 90

SFLMODE (Subfile Mode) 66

SFLMSG (Subfile Message)
defining 90

description 90

keyword, DDS (continued)
SFLMSG (Subfile Message) (continued)

displaying on message line when

subfile control record

written 222

SFLMSGID (Subfile Message

Identifier)
defining 90

description 90

displaying on message line when

subfile control record

written 222

sample DDS 225

SFLMSGKEY (Subfile Message Key)
description 90

displaying messages from a

program message queue 223

SFLMSGRCD (Subfile Message

Record)
description 90

displaying messages from a

program message queue 223

SFLNXTCHG (Subfile Next Changed)
description 90

example 104

SFLPAG (Subfile Page)
example with ROLLUP and

SFLSIZ 102

use in subfile control record

format 89

SFLPGMQ (Subfile Program Message

Queue)
description 90

displaying messages from a

program message queue 223

SFLRCDNBR (Subfile Record

Number)
description 90

improving subfile

performance 263

SFLRNA (Subfile Records Not

Active) 90

SFLROLVAL (Subfile Roll Value) 90

SFLRTNSEL (Subfile Return Selected

Choice) 160

SFLSCROLL (Subfile Scroll) 160

SFLSIZ (Subfile Size)
example with ROLLUP and

SFLPAG 102

use in subfile control record

format 89

SFLSNGCHC (Subfile Single-Choice

Selection) 159

SLNO (Starting Line Number)
example with *VAR value 51

use 50

Starting Line Number (SLNO)
example with *VAR value 51

use 50

Subfile Choice Control

(SFLCHCCTL) 159

Subfile Clear (SFLCLR) 90

Subfile Control (SFLCTL) 89

Subfile Cursor Progression

(SFLCSRPRG) 30

Subfile Cursor Relative Record

Number (SFLCSRRRN) 66

keyword, DDS (continued)
Subfile Delete (SFLDLT) 90

Subfile Display (SFLDSP) 89

Subfile Display Control

(SFLDSPCTL) 90

Subfile Drop (SFLDROP) 90

Subfile End (SFLEND) 90

Subfile Enter (SFLENTER) 90

Subfile Fold (SFLFOLD) 90

Subfile Initialize (SFLINZ) 90

Subfile Line (SFLLIN) 90

Subfile Message (SFLMSG)
defining 90

description 90

displaying on message line when

subfile control record

written 222

Subfile Message Identifier

(SFLMSGID)
defining 90

description 90

displaying on message line when

subfile control record

written 222

sample DDS 225

Subfile Message Key (SFLMSGKEY)
description 90

displaying messages from a

program message queue 223

Subfile Message Record

(SFLMSGRCD)
description 90

displaying messages from a

program message queue 223

Subfile Mode (SFLMODE) 66

Subfile Next Changed (SFLNXTCHG)
description 90

example 104

Subfile Page (SFLPAG)
example with ROLLUP and

SFLSIZ 102

use in subfile control record

format 89

Subfile Program Message Queue

(SFLPGMQ)
description 90

displaying messages from a

program message queue 223

Subfile Record Number

(SFLRCDNBR)
description 90

improving subfile

performance 263

Subfile Records Not Active

(SFLRNA) 90

Subfile Return Selected Choice

(SFLRTNSEL) 160

Subfile Roll Value (SFLROLVAL) 90

Subfile Scroll (SFLSCROLL) 160

Subfile Single-Choice Selection

(SFLSNGCHC) 159

Subfile Size (SFLSIZ)
example with ROLLUP and

SFLPAG 102

use in subfile control record

format 89

728 Application Display Programming V6R1

keyword, DDS (continued)
UNLOCK (Unlock)

effects on input operation 72

example with INZRCD

keyword 72

unlocking while program is

processing data 71

USRDFN (User-Defined) 247

validity-checking 73

VALNUM 73

VALUES (Values) 73

Window Title (WDWTITLE) 122

Word Wrap (WRDWRAP) 32, 173

Keyword, DDS
HTML (Hypertext Markup Language)

resolving field overlap 207

restrictions 210

use 206

L
layout

title lines table 607

layout and positions summary

table 570, 571

left-to-right formatting on a left-to-right

panel
example 614

left-to-right formatting on a right-to-left

panel
example 613

level identifier
changes in 20

definition of 20

determining 20

library
QUSRSYS library 259

QUSRTOOL
definition 7

display examples 409

panel groups, using word

processing functions when

creating 364

limitations
panel formatter 348

line
clearing a specified number of 53

rolling data between 55

line, instruction
See instruction line

line, options 427

LINES (unformatted lines) tag
example, unformatted lines 538

overview 538

use in help module 396

LINK (hypertext link) tag
CHKPGM (condition evaluation

program) 542

conditional expressions
CHKOBJ built-in function 540

CHKUSRCLS (check user class)

built-in function 542

example, hypertext link 542

overview 539

placement in UIM source 404

UIM source showing panel groups

using 404

list
adding entries, 336

displaying 335

incomplete processing 336

initializing 335

inserting entry from 336

key 537

managing 334

ordered 583

parameter 594

part 571

removing entry from 336

simple 614

unordered 625

updating 336

LIST (list area) tag
example

dynamic list column heading

formatting 552

list area 549

list area with list group

columns 551

list area with three layout

columns 550

overview 544

print formatting considerations 548

tags allowed table 545

list action (LISTACT) tag
example, list actions 559

overview 554

recommended conventions 559

required conventions 558

list area
example

with list group columns 551

with three layout columns 550

help 380

printed 548

scrolling 341

list area (LIST) tag
example

dynamic list column heading

formatting 552

list area 549

list area with list group

columns 551

list area with three layout

columns 550

overview 544

print formatting considerations 548

tags allowed table 545

list area scrolling 341

list column (LISTCOL) tag
formatting considerations 564

overview 560

list column group (LISTGRP) tag
overview 567

list defining in UIM 335

list definition (LISTDEF) tag
emphasis values table 566

overview 565

list display
changing list control field 431

column headings 427

description 425

error condition rules 434

list display (continued)
example

CUA 453

extended action entry area 425

extended action entry area 428

format in an empty situation 435

instruction line 426

list entries on 337

list fields 428

list format, empty list 435

list one selection item 435

online help information
DDS considerations 447

description 446

help areas for 446

types 446

operating
extended action entry area 431

guidelines 429

list control field 430

lists when options are

specified 433

options line 427

paging location information 428

positioning
lists 430

lowercase names in a list 430

rules for cursor 434

prompt areas 426

response time for 337

rules, error condition 434

titles 426

list entries on a list display 337

list entry handle 336

list entry pointer 336

list fields on list displays 428

list panel
application programming 294

creating 283

source 286

list part (LP) tag
example, list part 572

overview 571

use in help module 396

list view (LISTVIEW) tag
layout and positions summary

table 570, 571

overview 570

LISTACT (list action) tag
example, list actions 559

overview 554

recommended conventions 559

required conventions 558

LISTCOL (list column) tag
formatting considerations 564

overview 560

LISTDEF (list definition) tag
emphasis values table 566

overview 565

LISTGRP (list column group) tag
overview 567

LISTVIEW (list view) tag
layout and positions summary

table 570, 571

overview 570

literal, graphic 463

location information, displays 423

Index 729

location of window 118, 119

LOCK (Lock) keyword 76

locked display file 41

locking keyboard and positioning

cursor 76

LP (list part) tag
example, list part 572

overview 571

use in help module 396

M
Main Menu display 233

major/minor return code
major return code definitions

00 229

02 229

03 229

04 229

08 229

11 229

34 229

80 229

81 229

82 229

83 229

recovering from errors
completion with exceptions 229

device or session error on open or

acquire operation 231

normal completion 229

permanent device or session error

on I/O operation 230

permanent system or file

errors 230

recoverable device or session

errors on I/O operation 231

understanding 228

managing
panel functions 339

managing list 334

managing panel functions 339

markup separator 457

MBAR (menu bar) tag
example, menu bar 573

overview 572

tags allowed table 572

MBARC (menu bar choice) tag
overview 575

tags allowed table 575

MDT (modified data tag)
character translation 258

definition 23

resetting 61

with ASSUME keyword 251

MDTOFF (Modified Data Tag Off)

keyword 61

member
source

definition 4

MENU (menu area) tag
example

menu area with groups 578

simple menu area 577

tags allowed table 576

menu area
help 383

menu area (continued)
scrolling 341

with groups
example 578

menu area (MENU) tag
example

menu area with groups 578

simple menu area 577

tags allowed table 576

menu bar
area help 388

creating 144

definition 144

example 144, 189

interaction with application 178

interaction with pull-down

menu 187

using 351

menu bar (MBAR) tag
example, menu bar 573

overview 572

tags allowed table 572

menu bar choice (MBARC) tag
overview 575

tags allowed table 575

Menu Bar Cursor Action (ACTIONS)

dialog command 636

menu bar panel
application programming 328

creating 316

source 318

menu definition 272

MENU dialog command 645

menu display 439

See also application display

Cancel key, using on 233

changing attributes 246

choosing which to display at sign-on

time 235

creating UIM 276

CUA 450

deleting 246

description 415

determining the previous menu 233

display file
building 238

creating for 240

creating menu object for 240

creating message file for 240

DDS considerations 236

DDS, specifying 239

defining 235

definition 233

help for 235

menu and help information,

describing 239

message file, adding messages

to 240

message file, describing menu

actions in 237

naming help formats for 237

parts of 235

displaying attributes 246

example
display file menu 239

message file, adding messages

to 240

menu display (continued)
example (continued)

message file, describing menu

actions in 237

naming help formats in message

file 237

program menu 242

program menu, CL source for 242

RTNPNT(*NO) for program menu,

CL source for 244

sample single-choice 415

using options and GO

command 233

Exit key, using on 233

function key area 414

identifier fields 436

initial 235

instruction line 416

menu displays, single-choice 416

menu selection entry field 416

menu stack 233

naming conflicts, avoiding
changing command default after

command duplication 246

generic menu specifications 246

naming, deciding how to 245

placement in library list 245

specifying library 245

ways 245

online help information
DDS considerations 444

description 443

help areas for 443

types 443

operating guidelines 417

optional 436

options 416

program
building 241

creating CL program for 243

creating display file 242

creating menu for 243

defining 241

definition 233

describing 242

entering CL source for 242

exiting without returning to

previous menu 244

passing parameters for 241

returning to after running the GO

command 233

selection entry field 416

system, running 233

user interface manager (UIM) 276

user-defined
running 233

types 233

menu group (MENUGRP) tag
tags allowed table 579

menu group (MNUGRP) tag
overview 579

menu item (MENUI or MI) tag
overview 580

MENU object type 233

menu object, defining
*DSPF menu 238

*UIM menu 276

730 Application Display Programming V6R1

menu-bar choice
defining 144

translation of 146

menu-bar choice help
example 184

Menu-Bar Display (MNUBARDSP)

keyword
application record 179, 189

menu-bar record 180, 192

menu-bar help list
example 186

menu-bar record
MNUBARDSP 192

menu-bar separator
creating 144

defining 145

definition 144

suppressing 145

menu-bar switch key
defining 156

definition 156

MENUGRP (menu group) tag
overview 579

tags allowed table 579

MENUI or MI (menu item) tag
overview 580

message
automatically handling error 226

available functions for display

files 221

CPF4001-40FF 228

CPF4101-43FF 228

CPF4401-44FF 228

CPF4501-46FF 228

CPF4701-48FF 228

CPF4901-49FF 228

CPF5001-50FF 228

CPF5101-53FF 228

CPF5501-56FF 228

creating and displaying 221

description 447

displaying
in field 223

in program message queue 223

message line for 222

on message line 222

on message line when subfile

control record written 222

priorities for 222

through subfile 223

error
displaying from subfiles 105

examples
ERRSFL keyword 224

SFLMSGID keyword 225

guidelines 448

line relationship, CUA 450

reasons for 221

sounding alarm for 226

system
alert 227

analyzing 227

detecting 227

diagnostic 227

escape 227

file status code 227

message queues 227

message (continued)
system (continued)

notifying 227

permanent 227

reporting 227

status 227

System/36 application

compatibility 697

understanding 227

window 119

Message Alarm (MSGALARM)

keyword 226

message description 28

message field to display message on

message line 222

message file
adding messages to 240

creating 240

describing menu action in 237

message line
definition 23

scrolling 340

use 23

Message Location (MSGLOC)

keyword 120

message subfile 105

message text symbol 461

message, monitor
See message

messages displayed on message line

priorities 222

mixed display
example 425

mnemonic
coding, not valid 169

defining 169

definition 139

valid coding for 169

MNUBARDSP (Menu-Bar Display)

keyword
application record 179, 189

menu-bar record 180, 192

mode, display
changing 100

definition 100

displaying subfiles horizontally

with 100

modified data tag (MDT)
character translation 258

definition 23

resetting 61

with ASSUME keyword 251

Modified Data Tag Off (MDTOFF)

keyword 61

monitor message
See message, monitor

MOREKEYS (Display More Function

Keys) dialog command 645

MOUBTN (Programmable Mouse Button)

keyword 195

mouse button, programmable
See Programmable Mouse Button

(MOUBTN) keyword

Move to Top (MOVETOP) dialog

command 646

MOVETOP (Move to Top) dialog

command 646

moving
cursor

CSRINPONLY keyword 29

using cursor keys 189

using tab key 188

window 124

MSG (Display Message) dialog

command 646

MSGALARM (Message Alarm)

keyword 226

MSGID (Message Identifier)

keyword 223

MSGLOC (Message Location)

keyword 120

multiple panel foldup when EXIT

requested 348

multiple-choice selection field
colors and display attributes 171

definition 146

vertical 149

multiple-choice selection list
creating 159

definition 157

example 157

multiple-selection field (UIM)
example 513

N
name syntax

alphabetic conversion 461

object name
restrictions 461

on HELP tag
restrictions 461

national language considerations and

DBCS 402

national language translation
sentence-ending characters 458

negative numeric input data,

handling 75

nesting
imbeds

source files 463

No CCSID (NOCCSID) keyword 258

NOCCSID (No CCSID) keyword 258

node (hypertext), definition
See online help information, hypertext

note (NOTE) tag
use in help module 395

NOTE (note) tag
use in help module 395

note (NT or NOTE) tag
overview 582

note (NT) tag
example, using a note 583

tags allowed table 582

use in help module 395

NT (note) tag
example, using a note 583

tags allowed table 582

use in help module 395

NT or NOTE (note) tag
overview 582

numeric input data, handling

negative 75

Index 731

numeric value
display form

binary 481

example values table 481

O
object

creating 273

definition 15

panel group 459

object name
name syntax

restrictions 461

ODP (open data path)
definition 84

for improving system

performance 264

sharing for same job 264

OL (ordered list) tag
example, ordered list 584

overview 583

tags allowed table 584

use in help module 396

online help information
adding to a display 363

contextual help 365

creating a sample display with 3

description 443

documents, office
comparing with panel groups and

records 364

enabling Help key 364

entry displays
DDS considerations 445

description 444

help areas for 444

types 444

example
building with display file 3

command help 405

display showing help areas 366

HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

imbedded help modules in panel

group 394

imported help modules 394

ISCH tag 399

ISCHSYN tag 399

LINK tag 404

panel groups with help

modules 393

secondary help 375

exiting, System/36 application

compatibility 701

extended help 365

H specifications
definition 365

entering in DDS source 366

order in DDS source 366

online help information (continued)
help areas

DDS keywords for 365

defining 365

panel groups, specifying 367

record 365

records, specifying for 370

required DDS source 365

Help key
enabling 364

returning control to program after

pressing 376

returning control to program

without pressing 378

help text displayed according to

cursor position 342

hypertext
creating links 404

definition 402

designing links 403

reference phrase, definition 404

index search
accessing 381

index search function
See also InfoSeeker function

deciding topics 399

function 397

root words, choosing for

topic 400

root words, defining 399

root words, including as

synonyms 399

synonyms for root words,

designating 399

synonyms, choosing for topic 400

topics, defining 399

UIM tags for 397

information display
DDS considerations 446

description 445

help areas for 445

list display
DDS considerations 447

description 446

help areas for 446

menu display
DDS considerations 444

help areas for 443

types 443

overview 380

panel groups 397, 399

adding entries to search

index 405

command help, assigning 405

comparing with documents and

records 364

creating 404

creating hypertext links 404

creating search index 405

DDS functions for 367

deleting 404

deleting search index 406

designing hypertext links 403

documents and records in same

file with 369

emphasizing and formatting text in

help modules 395

online help information (continued)
panel groups (continued)

entering UIM source for 393

full-screen help, indicating 367

headings in help modules,

adding 395

help modules, linking 402

help modules, using more than

once 394

help, specifying for 367

highlighting text in help

modules 396

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

hypertext 402

hypertext reference phrase 404

index search function 397

index search, enabling 381

Index search, enabling 367

making lists in help modules 396

name of help screen, defining 367

option indicators, specifying

with 369

organizing with help

modules 393

paragraphs and notes, defining in

help modules 395

programming keywords and

variables, identifying in help

modules 396

purpose of UIM tags 393

records and documents in same

file with 369

removing entries from search

index 406

root words, choosing for index

search topic 400

root words, defining 399

root words, including as index

search synonyms 399

secondary help, excluding as 367

structured text in help modules,

indicating 396

synonyms for root words,

designating 399

synonyms, choosing for index

search topic 400

topics, defining 399

user-defined, enabling 381

uses for 393

using a help module contained in

different 394

record, DDS
comparing with panel groups and

documents 364

entering source 371

help boundaries 374

help group 374

help list 373

help sublist 374

help, defining for 406

help, specifying for 370

HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPRCD keyword 370

732 Application Display Programming V6R1

online help information (continued)
record, DDS (continued)

HLPRCD keyword with option

indicators 371

option indicators, specifying

with 371

paging between help displays 373

paging through H

specifications 373

primary help 373

restrictions on 372

restrictions on secondary

help 376

secondary help 373, 375

secondary help, displaying 374

secondary, determining the

sequence of 374

with documents in same file 372

with panel groups in same

file 370

returning control to program after

pressing Help key 376

returning control to program without

pressing Help key 378

user-defined panel group
accessing 381

open data path (ODP)
definition 84

for improving system

performance 264

sharing for same job 264

open feedback area
contents 43

definition 43

device definition list 656

individual descriptions 653

open operation
definition 41

file resource allocation for 41

files shared in job 84

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

obtaining information about 43

opening
UIM application 329

operating guideline
entry displays 422

information displays 425

list display
See list display

menu displays, single choice 417

operator
conditional 484

relational 468

option indicator
example

HLPPNLGRP keyword with option

indicators 369

HLPRCD keyword with option

indicators 371

MNUBARCHC (Menu Bar Choice)

keyword 146

secondary help 375

panel groups, defining with 369

records, defining with 371

removing from record area 27

option line (OPTLINE) tag
overview 585

options line, list displays 427

OPTLINE (option line) tag
overview 585

ordered list (OL) tag
example, ordered list 584

overview 583

tags allowed table 584

use in help module 396

organization
panel outline 460

UIM menu outline 460

outline, panel
organization 460

UIM menu outline 460

outline, UIM menu
organization 460

output data
writing and reading input at same

time 75

writing to display 44

output field
definition 22

editing 34

examples
displayed in response to request,

display with input and 23

using 22

output file
defining 39

output operation
effect of OVERLAY and ERASE

on 50

positioning cursor after 65

returning cursor position to

application 66

output-only file, defining 39

output/input field
definition 22

erasing 61

using 22

OVERLAY (Overlay) keyword
description 49

effect on help-list updating 373

erasing records 50

example
differences between CLRL and 54

examples
with ERASE keyword 50

system performance

considerations 264

System/36 application

compatibility 694

override
applying when compiling

program 214

attributes 57

CL programs
included in 211

QCMDEXC, use of 211

commands that ignore or restrict 218

Delete Override (DLTOVR)

command 215

deleting 215

determining whether or not to

use 211

override (continued)
different file types 216

display file attributes in HLL

programs 211

display file names and attributes in

HLL programs 213

display file names in HLL

programs 212

Display Override (DSPOVR)

command 215

displaying 215

effect on other jobs 211

entering 211

examples
applying when compiling

program 214

attribute of display file 211

different display file 212

different display file and

attributes 213

file redirection
definition 215

different file types 216

level checking (LVLCHK) 215

same file types 215

table of defaults for

combinations 216

valid for input and output 216

Override with Display File

(OVRDSPF) command
file attributes 211

file names 212

file names and attributes 213

performance considerations 264

properties of 211

same file types 215

when in effect 211

when to apply 211

Override Attribute (OVRATR) keyword
system performance

considerations 264

use 57

Override Data (OVRDTA) keyword
description 59

system performance

considerations 264

Override with Display File (OVRDSPF)

command
compared to CHGDSPF 16

file attributes 211

file names 212

file names and attributes 213

overriding and sharing printer file 360

OVRATR (Override Attribute) keyword
system performance

considerations 264

use 57

OVRDSPF (Override with Display File)

command
compared to CHGDSPF 16

file attributes 211

file names 212

file names and attributes 213

OVRDTA (Override Data) keyword
description 59

system performance

considerations 264

Index 733

P
P (paragraph) tag

example, paragraph tag 586

overview 585

placement in UIM source 394

use in help module 395

page 420 for code page conversion 477

page 424 for code page conversion 477

Page Down (PAGEDOWN) keyword
for function key 25

specifying alternative 26

page eject during printing 359

Page Up (PAGEUP) keyword
for function key 25

specifying alternative 26

page, code
See code page

PAGEDOWN (Page Down) keyword
for function key 25

specifying alternative 26

PAGEDOWN dialog command 647

PAGEUP (Page Up) keyword
for function key 25

specifying alternative 26

PAGEUP dialog command 647

paging
help displays, DDS records 373

location information, list

displays 428

panel
areas 459

definition 272, 459

group object 459

help 459

organization 459

outline 459

UIM menu outline 459

PANEL (display panel) tag
example, panel definition 593

overview 587

tags allowed table 587

panel contents definition 347

panel formatter limitations 348

panel formatting
application control 347

concepts 346

definition 347

panel group
See also tag, UIM

accessing index search 381

accessing user-defined 381

adding UIM tags for index search

function 397

command help, assigning 405

comparing with documents and

records 364

creating 404

definition 3, 272

deleting 404

entering UIM source for 393

examples
command help 405

help modules 393

HLPPNLGRP keyword 368

HLPPNLGRP keyword with option

indicators 369

imbedded help modules 394

panel group (continued)
examples (continued)

imported help modules 394

ISCH tag 399

ISCHSYN tag 399

LINK tag 404

heading, adding in help modules 395

help modules
emphasizing and formatting

text 395

highlighting text 396

hypertext 402

linking 402

using more than once 394

using ones contained in different

panel group 394

help, specifying for 367

hypertext, definition 402

index search function 399

function 397

root words, choosing for

topic 400

root words, including as

synonyms 399

synonyms for root words,

designating 399

synonyms, choosing for topic 400

topics, deciding 399

making lists in help modules 396

organizing with help modules 393

paragraphs and notes, defining in

help modules 395

programming keywords and variables,

identifying 396

search index
adding entries to 405

creating 405

deleting 406

removing entries from a search

index 406

structured text in help modules,

indicating 396

topics, defining 399

uses for 393

panel group (PNLGRP) tag
overview 602

placement in UIM source 393

tags allowed table 602

panel group definition language
imbedding source files 463

markup/content separator 457

national language translation
sentence-ending characters 458

overview 458

panel group element 273

panel group object
creating 283

definition 459

panel list foldup 350

panel markup tag
See also tag

definition 395

paragraph (P) tag
example, paragraph tag 586

overview 585

placement in UIM source 394

use in help module 395

paragraph continuation (PC) tag
example, paragraph continuation 596

overview 596

use in help module 395

parameter
data queue (DTAQ) 255

DTAQ (data queue) 255

passed for program menus 241

restore display (RSTDSP)
example 77

return point (RTNPNT) parameter
for display file menus 233

for program menus 233

RSTDSP (restore display)
example 77

RTNPNT (return point) parameter
for display file menus 233

for program menus 233, 244

SHARE (share) 264

parameter list (PARML) tag
example, parameter list 595

overview 594

tags allowed table 594

use in help module 396

PARML (parameter list) tag
example, parameter list 595

overview 594

tags allowed table 594

use in help module 396

Passed Record (PASSRCD) keyword 252

passing data
between routing steps 252

in the same routing step 251

PASSRCD (Passed Record) keyword
example DDS source 252

use 252

PC (paragraph continuation) tag
example, paragraph continuation 596

overview 596

use in help module 395

PDACCEL (pull-down accelerator) tag
overview 596

PDFLD (pull-down field) tag
overview 597

tags allowed table 597

PDFLDC (pull-down field choice) tag
overview 598

recommended conventions 601

required conventions 601

PDM (programming development

manager)
definition 4

performance 264

command attention keys versus

command function keys 265

DDS windows 265

deferring write operation 263

designating primary screen size 263

ERASEINP keyword, considerations

with 264

invite operation 265

INZINP keyword, considerations

with 264

overlapping but not deleting

records 264

OVERLAY keyword, considerations

with 264

734 Application Display Programming V6R1

performance (continued)
override commands 264

PUTOVR, OVRDTA and OVRATR

keywords, considerations with 264

restoring display 264

RSTDSP (restore display)
keywords that require 264

system performance

considerations 264

sending records with input fields 264

sharing open data paths for same

job 264

subfile use 263

ways to improve using displays 263

window application 126

period (.) symbol 461

PK (programming keyword) tag
overview 601

use in help module 396

placement of window 118, 119

PNLGRP (panel group) tag
overview 602

placement in UIM source 393

tags allowed table 602

UIM source showing panel groups

with help modules 393

pointer device event
processing priority

other pointer device 204

shifted left button pressed 201

shifted left button released 202

shifted right button pressed 203

unshifted left button double

click 201

unshifted left button pressed 199

unshifted left button released 201

processing states 198

programmable mouse button 196

pop-up window
adding 354

adding over another panel 350

adding to display stack 354

help information 522

removing 354

pop-up window and pull-down menu

differences 352

position of window 118, 119

possible choices information, entry

displays 421

primary help, definition 373

PRINT (Print Display) dialog

command 648

PRINT (Print) keyword
enabling 36

for function key 25

results available (table) 36

Print Display (PRINT) dialog

command 648

print head panel (PRTHEAD) tag
example, print title lines 610

layout of title lines tables 608

overview 605

tags allowed table 606

print head panel printing 358

Print key
enabling 36

results available (table) 36

print panel (PRTPNL) tag
overview 610

tags allowed table 610

print panel printing 358

print title lines
example 610

print trailer message (PRTTRAIL) tag
example, trailer message 611

overview 611

printer characters, incorrect 331

printer file sharing and overriding 360

PRINTER parameter 37

printing
concepts 356

display 36

double-byte character set (DBCS)

considerations 360

information area 530

introduction 356

list area 548

page eject 359

print head panel 358

print panel 358

trailer 359

priorities for displaying messages on

message line 222

Problem Handling menu 234

productivity gains with UIM 269

productivity improvements with

UIM 269

program menu
See also menu display

definition 233

return code values, table of 241

program-described data
definition 17

description 17

example for assigning display

space 38

program versus system view 17

using 38

program-to-system field
understanding how to use 23

with DSPATR keyword 33

program, CL
See CL programs

program, IBM-supplied
QRCVDTAQ (receive data

queue) 255

QSNDDTAQ (send data queue) 255

Programmable Mouse Button (MOUBTN)

keyword
AID codes to be returned 196

benefits 197

event processing priority
other pointer device 204

shifted left button pressed 201

shifted left button released 202

shifted right button pressed 203

unshifted left button double

click 201

unshifted left button pressed 199

unshifted left button released 201

event processing states 198

NWS considerations 198

operation 197

overview 195

Programmable Mouse Button (MOUBTN)

keyword (continued)
pointer device event 196

programming development manager

(PDM)
definition 4

programming example
window use 128

programming keyword (PK) tag
overview 601

use in help module 396

Programming menu 234

programming variable (PV) tag
overview 612

use in help module 396

prolog area
defining 359

prolog section
panel group 460

prompt area
entry displays 418

list display 426

PROMPT dialog command 648

prompt, field
See field prompts

prompting
action list option 649

command 649

entry field 649

protecting entry field 31

PRTHEAD (print head panel) tag
example, print title lines 610

layout of title lines tables 608

overview 605

tags allowed table 606

PRTPNL (print panel) tag
overview 610

tags allowed table 610

PRTTRAIL (print trailer message) tag
example, trailer message 611

overview 611

PSHBTNCHC (Push Button Choice)

keyword 166

PSHBTNFLD (Push Button Field)

keyword 166

pull-down accelerator (PDACCEL) tag
overview 596

pull-down field (PDFLD) tag
overview 597

tags allowed table 597

pull-down field choice (PDFLDC) tag
overview 598

recommended conventions 601

required conventions 601

pull-down menu
CHECK(FE) keyword 152

creating 152

definition 144

example 152, 189

interaction with menu bar 187

receiving input 181

removing after receiving input 183

restrict cursor 157

single-choice selection field 152

updating before displaying 183

pull-down menu and pop-up window

differences 352

Index 735

PULLDOWN dialog command 650

PULLINPUT (Pull-Down Menu Input)

parameter
example 181

push button
creating 166

definition 165

example, DDS 166

Push Button Choice (PSHBTNCHC)

keyword 166

Push Button Field (PSHBTNFLD)

keyword 166

Put with Explicit Override (PUTOVR)

keyword
for repeatedly entered data 60

more efficient coding 59

sample DDS source 58

put-relative operation for subfiles
BASIC statement for 98

definition 96

ILE C/C++ function for 98

ILE COBOL statement for 98

ILE RPG operation for 98

Put-Retain (PUTRETAIN) keyword
example

field level 62

record level 62

restriction with USRDSPMGT

keyword 703

System/36 application

compatibility 694

using 61

PUTOVR (Put with Explicit Override)

keyword
description 57

example
more efficient coding 59

repeatedly entered data 60

sample DDS source 58

system performance

considerations 264

System/36 application

compatibility 699

PUTRETAIN (Put-Retain) keyword
example

field level 62

record level 62

restriction with USRDSPMGT

keyword 703

System/36 application

compatibility 694

using 61

PV (programming variable) tag
overview 612

use in help module 396

Q
QRCVDTAQ (receive data queue)

program 255

QSNDDTAQ (send data queue)

program 255

queue, data
See DTAQ (data queue) parameter

QUSRSYS library 259

QUSRTOOL library
definition 7

QUSRTOOL library (continued)
display examples 409

panel groups, using word processing

functions when creating 364

R
radio button

definition 139

example 139

read operation
canceling read operation, CL

command for 83

definition 70

definition for subfile 98

subfiles
BASIC statement 98

ILE C/C++ function for 98

ILE COBOL statement for 98

ILE RPG operation for 98

with no wait
CL command for 83

ILE COBOL statement for 83

ILE RPG operation for 83

with wait
CL command for 83

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

read-from-invited-program-devices

operation
after inviting input 67

from CL programs,

reading-from-invited-devices 69

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

understanding 69

reading
data from window 123

receiving
data 44

receiving input
from pull-down menu 181

using PULLINPUT 181

recommended convention
list action (LISTACT) tag 559

pull-down field choice (PDFLDC)

tag 601

record area, removing option and

response indicators from 27

record format 44

changing on display 48

checking for changes to 20

contents 21

defining display fields and functions

in 21

definition 3

description 21

determining active 44

field, how to use 22

maximum number for display file 28

maximum number of fields in 23

order written to display 49

output and input, for 44

overlaying and erasing on display 49

replacing 48

record format (continued)
replacing on display 48

starting on specific line 50

viewing on display 22

record format table, active 44

record-level description 16

definition 16

with field-level descriptions 16

with no field-level descriptions 16

record, DDS
comparing with panel groups and

documents 364

containing input fields, improving

performance with 264

definition 16

definition for help 7

displaying secondary help 374

displaying two or more 49

entering for help 371

erasing from display during

overlay 50

examples
HLPCMDKEY keyword 377

HLPCMDKEY keyword with

response indicators 377

HLPRCD keyword 370

HLPRCD keyword with option

indicators 371

secondary help 375

help
defining for 406

specifying for 370

improving performance when

sending 264

initializing (diagram) 72

keeping on display 61

mode to display 64

not occupying space on display 47

overlapping but not deleting to

improve system performance 264

paging between display 373

placing on display 45

resetting modified data tags for 61

restrictions on 372

restrictions on secondary help 376

retrieving with WAIT command 69

rules for displaying on more than one

line 45

secondary help, determining sequence

of 374

use by I/O statements 44

valid placement of, figure 45

recovering from errors
See major/minor return code

reference field
definition 24

relational operator 468

release operation
definition 82

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

Remove Search Index Entry

(RMVSCHIDXE) command 406

Remove Window (RMVWDW)

keyword 125

736 Application Display Programming V6R1

removing
entry from list 336

pop-up window 354

pop-windows using APIs 354

pull-down menu 183

window 125, 354

removing access
F18=More indexes 382

request processor program when

displaying panel 355

required convention
list action (LISTACT) tag 558

pull-down field choice (PDFLDC)

tag 601

resolving
HTML field overlap 207

resource allocation
description 41

effect on display station error

handling 41

understanding how system

allocates 41

response indicator
CAnn key, use with 26

CFnn key, use with 26

definition 25

enabling simultaneously 28

function keys, use with 25

HLPCMDKEY keyword, use

with 377

removing from record area 27

restriction with USRDSPMGT 703

ROLLDOWN keyword, use with 28

ROLLUP keyword, use with 28

SETOF or SETOFF keyword, use

with 28

response time
for list displays 337

list displays 337

window application 126

restore display (RSTDSP) parameter
example 77

keywords that require 264

system performance

considerations 264

use 77

restrict cursor
PULLDOWN keyword 157

WINDOW keyword 119

restrictions
5250 engraved keys 340

command line 344

name syntax
HELP tag 461

object names 461

on command line 344

using dialog variables 330

retain command and function keys
System/36 application

compatibility 702

Retain Command Keys (RETCMDKEY)

keyword
System/36 application

compatibility 702

Retain Function Keys (RETKEY) keyword
System/36 application

compatibility 702

RETCMDKEY (Retain Command Keys)

keyword
System/36 application

compatibility 702

RETKEY (Retain Function Keys) keyword
System/36 application

compatibility 702

RETRIEVE (Retrieve Command String)

dialog command 650

Retrieve Command String (RETRIEVE)

dialog command 650

RETURN (Return Control to Application)

dialog command 651

return code
binary program menus 241

display file
description 671

major 00 671

major 02 671

major 03 672

major 04 673

major 08 and 11 673

major 34 674

major 80 674

major 81 677

major 82 678

major 83 682

major/minor
See major/minor return code

Return Control to Application (RETURN)

dialog command 651

Return Cursor Location (RTNCSRLOC)

keyword 66

return point (RTNPNT) parameter
for program menus 244

return-field (RTNFLD) parameter
description 183

example 183

returning cursor position within subfile

to application 66

returning mode of subfile to

application 66

returning to menu after running GO

command 233

reverse text (RT) tag
example

left-to-right formatting on a

left-to-right panel 614

left-to-right formatting on

right-to-left panel 613

overview 612

right slash (/) symbol 461

right-to-left cursor movement 28

right-to-left display processing 31

RMVSCHIDXE (Remove Search Index

Entry) command 406

RMVWDW (Remove Window)

keyword 125

Roll Down (ROLLDOWN) keyword
for function keys 25

Roll Up (ROLLUP) keyword
example with SFLSIZ and

SFLPAG 102

ROLLDOWN (Roll Down) keyword
function keys 25

response indicators for 28

ROLLUP (Roll Up) keyword
example with SFLSIZ and

SFLPAG 102

function keys 25

improving subfile performance 263

response indicators for 28

root words for index search
See online help information

routing step 339

passing data between programs in

same 251

passing data between steps 252

RSTDSP (restore display) parameter
example 77

keywords that require 264

system performance

considerations 264

use 77

RT (reverse text) tag
example

left-to-right formatting on

left-to-right panel 614

left-to-right formatting on

right-to-left panel 613

overview 612

RTNCSRLOC (Return Cursor Location)

keyword 66

RTNFLD (return field) parameter
description 183

example 183

rule
edit description use 690

entry fields 420

list display
cursor positioning 434

error conditions 434

run-time errors, recovering from 85

running
system and user-defined menus 233

S
sample figure

example 520

sample heading
example 631

screen design aid (SDA)
compared to direct DDS source

entry 18

definition 7

screen size
alternate 64

condition names 35

examples
DDS for subfiles for two 36

DDS for two 36

improving performance with 263

primary and secondary 36

valid 35

scroll bar
creating 163

definition 157, 162

example 157

example, DDS 164

operation 165

sizing 164

scrollable area definition 340

Index 737

scrolling
area definition 340

areas that can be scrolled 340

data item groups 342

defining 340

error conditions 341

function keys 341

incomplete list 341

information area 342

list area 341

menu area 341

message line 340

status information 340

support 340

text area 342

SDA (screen design aid)
compared to direct DDS source

entry 18

definition 7

search index
See online help information

secondary help
definition 373

determining the sequence of

records 374

displaying records 374

selection
choices, Common User Access 451

list where singular item can be

selected, list displays 435

selection character
country-designated 339

highlighting 465, 617

selection field
example 146

example, DDS 148

horizontal 149

cursor movement 150

multiple-choice
definition 146

vertical 149

pull-down menu 152

selection indicator 151

single-choice
auto-enter 168

auto-selection 168

definition 146

vertical 148

vertical
creating 148, 149

cursor movement 150

selection field choice
colors and display attributes 171

selection indicator
definition 151

suppressing
in pull-down menu 154

in selection field 151

in selection list 160

selection list
creating 159

definition 157

example, DDS 159

multiple 159

selection indicator 160

single 159

selection list (UIM) 339

self-check, System/36 application

compatibility 695

sending
data 44

sentence-ending characters 458

separating with blank lines 359

separator
content 457

markup 457

Set Off (SETOF or SETOFF) keywords
response indicators for 28

SETOF or SETOFF (Set Off) keyword
response indicators for 28

SEU (source entry utility)
definition 5

Edit display 5

SFL (Subfile) keyword 89

SFLCHCCTL (Subfile Choice Control)

keyword 159

SFLCLR (Subfile Clear) keyword
description 90

SFLCSRPRG (Subfile Cursor Progression)

keyword 30

SFLCSRRRN (Subfile Cursor Relative

Record Number) keyword 66

SFLCTL (Subfile Control) keyword 89

SFLDLT (Subfile Delete) keyword 90

SFLDROP (Subfile Drop) keyword 90

SFLDSP (Subfile Display) keyword 89

SFLDSPCTL (Subfile Display Control)

keyword 90

SFLEND (Subfile End) keyword 90

SFLENTER (Subfile Enter) keyword 90

SFLFOLD (Subfile Fold) keyword 90

SFLINZ (Subfile Initialize) keyword 90

SFLLIN (Subfile Line) keyword 90

SFLMLTCHC (Subfile Multiple-Choice

Selection) keyword 159

SFLMODE (Subfile Mode) keyword 66

SFLMSG (Subfile Message) keyword
description 90

displaying on message line when

subfile control record written 222

messages resulting from 120

SFLMSGID (Subfile Message Identifier)

keyword
description 90

displaying on message line when

subfile control record written 222

example DDS source 225

messages resulting from 120

SFLMSGKEY (Subfile Message Key)

keyword
description 90

displaying messages from program

message queue 223

SFLMSGRCD (Subfile Message Record)

keyword
description 90

displaying messages from program

message queue 223

SFLNXTCHG (Subfile Next Changed)

keyword
description 90

example DDS 104

SFLPAG (Subfile Page) keyword
example with ROLLUP and

SFLSIZ 102

use in subfile control record

format 89

SFLPGMQ (Subfile Program Message

Queue) keyword
description 90

displaying messages from program

message queue 223

SFLRCDNBR (Subfile Record Number)

keyword
description 90

improving subfile performance 263

SFLRNA (Subfile Records Not Active)

keyword 90

SFLROLVAL (Subfile Roll Value)

keyword 90

SFLRTNSEL (Subfile Return Selected

Choice) keyword 160

SFLSCROLL (Subfile Scroll)

keyword 160

SFLSIZ (Subfile Size) keyword
example with ROLLUP and

SFLPAG 102

use in subfile control record

format 89

SFLSNGCHC (Subfile Single-Choice

Selection) keyword
SFLMLTCHC (Subfile Multiple-Choice

Selection) 159

Subfile Multiple-Choice Selection

(SFLMLTCHC) 159

SHARE (share) parameter
sharing display files in same job 84

system performance

considerations 264

sharing
open data paths 264

sharing and overriding with printer

file 360

sign on
choosing sign on menu 235

signed numeric data, System/36

application compatibility 699

simple list (SL) tag
example, simple lists 615

overview 614

tags allowed table 614

use in help module 396

simple menu area
example 577

single selection field operation, CUA

guidelines 451

single-choice menu display
See menu display

single-choice selection field
colors and display attributes 171

definition 146

horizontal 149

in a pull-down menu 152

vertical 148

single-choice selection list
creating 159

definition 157

example 157

738 Application Display Programming V6R1

size
window 118

SL (simple list) tag
example, simple lists 615

overview 614

tags allowed table 614

use in help module 396

slash (/) symbol 461

SLNO (Starting Line Number) keyword
examples 51

restrictions 51

table of values and results 50

use 50

used with other DDS keywords 51

with *VAR value 51

source
example confirmation panel 296

example data presentation panel 302

example list panel 286

example menu 278

example menu bar panel 318

source entry utility (SEU)
definition 5

Edit display 5

source file
definition 4

source member
definition 4

special values and dialog variables 332

Specify Members to Work with

display 4

specifying
enhanced display capability 141

right-to-left display processing 31

Start Programming Development

Manager (STRPDM) command 3

Start Search Index (STRSCHIDX)

command 398

Start Source Entry Utility (SEU)

display 5

Start Source Entry Utility (STRSEU)

command 20

Starting Line Number (SLNO) keyword
restrictions 51

table of values and results 50

use 50

used with other DDS keywords 51

with *VAR value 51

stream, user-defined data
See user-defined data stream (UDDS)

STRPDM (Start Programming

Development Manager) command 3

STRSCHIDX (Start Search Index)

command 398

STRSEU (Start Source Entry Utility)

command 20

subfile
See also display file

active record in, updating 96

adding record at a specified location

in 96

checking validity of data 104

controlling appearance of 99

cursor, positioning
initially 106

when Fold or Truncate key

used 109

subfile (continued)
cursor, positioning (continued)

when more than one record

displayed 109

when Roll key used 106

definition 22

describing in DDS source 89

displaying
and processing records at the same

time 98

error messages from 105

horizontally 99

horizontally with display

modes 100

records 98

vertically 99

example
*DS3 mode display 101

*DS4 mode display 101

DDS for two display sizes 36

DSPATR(PC) keyword, use of 106

DSPMOD keyword, use of 100

message subfile 105

program logic for subfiles 113

ROLLUP, SFLSIZ, and SFLPAG

keywords 102

sample display for changing

information 88

sample display for display

only 87

sample display for input only 88

sample display for task

combination 88

sample display with selection 87

sample displays when rolling two

or more records 110

SFLNXTCHG keyword, use

of 104

SFLPAG, SFLSIZ, and ROLLUP

keywords 102

SFLSIZ, ROLLUP, and SFLPAG

keywords 102

variable-length record 103

vertical and horizontal, displayed

at same time 99

extending full 93

functions for 90

high-level language programs, use

in 94

maximum number active to display

station 93

maximum number allowed in display

file 93

multiple records 87

optional functions, table of 90

order of subfile record format and

subfile control record format 89

performance considerations 263

placing records on display for

processing 98

positioning cursor for each page of

records 105

program logic for 113

reading active record at specified

location in 97

reading next changed record in 97

recognizing uses of 87

subfile (continued)
changing information 88

combination of tasks 88

display only 87

input only without validity

checking 88

sample display with selection 87

records
active subfile 89

inactive subfile 90

requesting I/O operations for 96

rolling and validity checking 93

SFL keyword, use of 89

SFLCTL keyword, use of 89

SFLDSP keyword, use of 89

SFLPAG keyword, use of 89

SFLSCROLL keyword, use of 160

SFLSIZ keyword, use of 89

size equal to page size 102

size not equal to page size 103

subfile control record format,

purpose 89

subfile control, processing order of

DDS keywords for 94

subfile record format, purpose 89

table of I/O requests in high-level

languages
BASIC statements 98

ILE C/C++ functions 98

ILE COBOL statements 98

ILE RPG operations 98

USRDSPMGT keyword

restriction 703

validity checking before rolling 93

window 120

Subfile Choice Control (SFLCHCCTL)

keyword 159

Subfile Clear (SFLCLR) keyword
description 90

Subfile Control (SFLCTL) keyword 89

subfile control record format
definition 89

placement after subfile record

format 89

read operation 98

requesting I/O operations for 98

required DDS keywords 89

SFLCTL keyword, use of 89

SFLDSP keyword, use of 89

SFLPAG keyword, use of 89

SFLSIZ keyword, use of 89

write operation 98

write-read operation 98

Subfile Cursor Progression (SFLCSRPRG)

keyword 30

Subfile Cursor Relative Record Number

(SFLSCRRRN) keyword 66

Subfile Delete (SFLDLT) keyword 90

Subfile Display (SFLDSP) keyword 89

Subfile Display Control (SFLDSPCTL)

keyword 90

Subfile Drop (SFLDROP) keyword 90

Subfile End (SFLEND) keyword 90

Subfile Enter (SFLENTER) keyword 90

Subfile Fold (SFLFOLD) keyword 90

Subfile Initialize (SFLINZ) keyword 90

Subfile Line (SFLLIN) keyword 90

Index 739

Subfile Message (SFLMSG) keyword
description 90

displaying on message line when

subfile control record written 222

messages resulting from 120

Subfile Message Identifier (SFLMSGID)

keyword 225

defining in display 223

description 90

displaying on message line when

subfile control record written 222

messages resulting from 120

Subfile Message Key (SFLMSGKEY)

keyword
description 90

displaying messages from program

message queue 223

Subfile Message Record (SFLMSGRCD)

keyword
description 90

displaying messages from program

message queue 223

Subfile Mode (SFLMODE) keyword 66

Subfile Multiple-Choice Selection

(SFLMLTCHC) keyword 159

Subfile Next Changed (SFLNXTCHG)

keyword
description 90

example DDS 104

Subfile Page (SFLPAG) keyword
example with ROLLUP and

SFLSIZ 102

use in subfile control record

format 89

Subfile Program Message Queue

(SFLPGMQ) keyword
description 90

displaying messages from program

message queue 223

subfile record format
definition 89

get-next-changed operation 97

get-relative operation 97

placement before subfile control

record format 89

put-relative operation 96

requesting I/O operations for 96

SFL keyword, use of 89

update operation 96

Subfile Record Number (SFLRCDNBR)

keyword
description 90

Subfile Records not Active (SFLRNA)

keyword 90

Subfile Return Selected Choice

(SFLRTNSEL) keyword 160

Subfile Roll Value (SFLROLVAL)

keyword 90

Subfile Scroll (SFLSCROLL)

keyword 160

Subfile Single-Choice Selection

(SFLSNGCHC) keyword 159

Subfile Size (SFLSIZ) keyword
example with ROLLUP and

SFLPAG 102

use in subfile control record

format 89

suppressed selection indicator in

pull-down menu
example 155

suppressed selection indicator in selection

field
example 152

symbol
ampersand (&) 461

colon (:) 461

concatenation 461

message text
message file default 461

period (.) 461

right slash (/) 461

symmetric character
Arabic 480

Hebrew 480

synonym, index search
See online help information

System Command (CMD) dialog

command 639

system menu
See menu display

system message
See message

system performance
See performance

System/36 application compatibility
ASSUME (Assume) keyword 694

cancel-invite operation 701

display files 693

ERASE (Erase) keyword 694

function keys 700

HELP (Help) keyword 700

Help Return (HLPRTN) keyword 700

high-level languages 693

HLPRTN (Help Return) keyword 700

input data 694

KEEP (Keep) keyword 694

messages 697

OVERLAY keyword 694

PUTOVR (Put with Explicit Override)

keyword 699

PUTRETAIN (Put-Retain)

keyword 694

T
tab key

movement 188

tag
definition 457

MENUGRP (menu group) 579

tag language
See panel group definition language

tag within help module
CIT (title citation)

use in help module 396

definition list (DL)
use in help module 396

DL (definition list)
use in help module 396

example (XMP)
use in help module 396

extended help headings (XH1-XH4)
use in help module 395

tag within help module (continued)
FIG (figure)

use in help module 396

figure (FIG)
use in help module 396

H1 through H4 (headings)
use in help module 395

heading (H1 through H4)
use in help module 395

HELP (help module)
panel groups with help

modules 393

placement in UIM source 393

help module (HELP)
panel groups with help

modules 393

placement in UIM source 393

highlighted phrase (HP0-HP9)
use in help module 396

HP0-HP9 (highlighted phrase)
use in help module 396

hypertext link (LINK)
placement in UIM source 404

imbed help (IMHELP)
placement in panel group

source 394

IMHELP (imbed help)
panel groups using 394

placement in panel group

source 394

IMPORT (import)
panel groups using 394

placement in UIM source 394

index search (ISCH)
placement in UIM source 399

index search synonym (ISCHSYN)
placement in UIM source 399

ISCH (index search)
panel groups using 399

placement in UIM source 399

ISCHSYN (index search synonym)
panel groups using 399

placement in UIM source 399

LINES (unformatted lines)
use in help module 396

LINK (hypertext link)
panel groups using 404

placement in UIM source 404

list part (LP)
use in help module 396

LP (list part)
use in help module 396

note (NOTE)
use in help module 395

NOTE (note)
use in help module 395

note (NT)
use in help module 395

NT (note) 395

OL (ordered list)
use in help module 396

ordered list (OL)
use in help module 396

P (paragraph)
placement in UIM source 394

use in help module 395

740 Application Display Programming V6R1

tag within help module (continued)
panel group (PNLGRP)

placement in UIM source 393

panel markup
definition 395

paragraph (P)
use in help module 395

paragraph continuation (PC)
use in help module 395

parameter list (PARML)
use in help module 396

PARML (parameter list)
use in help module 396

PC (paragraph continuation)
use in help module 395

PK (programming keyword)
use in help module 396

PNLGRP (panel group)
panel groups with help

modules 393

placement in UIM source 393

programming keyword (PK)
use in help module 396

programming variable (PV)
use in help module 396

purpose 393

PV (programming variable)
use in help module 396

simple list (SL)
use in help module 396

SL (simple list)
use in help module 396

title citation (CIT)
use in help module 396

UL (unordered list)
use in help module 396

unformatted lines (LINES)
use in help module 396

unordered list (UL)
use in help module 396

XH1 through XH4 (extended help

heading)
use in help module 395

XMP (example)
use in help module 396

tag, modified data 23

tag, UIM
APPFMT (application formatted

area) 464

BOTINST (bottom instruction) 466

CHECK (validity checking) 467

CIT (title citation) 469

CLASS (class definition) 470

CMDLINE (command line) 483

COND (condition definition) 484

COPYR (copyright) 488

DATA (data presentation area) 488

DATAC (data item choices) 498

DATACOL (data column) 499

DATAGRP (data group) 500

DATAI (data item) 502

DATAIX (data item extender) 507

DATASLT (data selection field) 510

DATASLTC (data selection field

choice) 515

DL (definition list) 517

FIG (figure) 519

tag, UIM (continued)
H1 through H4 (heading) 525

HELP (help module) 521

HP0 through HP9 (highlighted

phrase) 524

IMHELP (imbed help) 526

IMPORT (import) 528

INFO (information area) 529

ISCH (index search) 530

ISCHSUBT (index search

subtopic) 531

ISCHSYN (index search

synonym) 532

KEYI (key list item) 534

KEYL (key list) 537

LINES (unformatted lines) 538

LINK (hypertext link definition) 539

LIST (list area) 544

LISTACT (list action) 554

LISTCOL (list column) 560

LISTDEF (list definition) 565

LISTGRP (list column group) 567

LISTVIEW (list view) 570

LP (list part) 571

MBAR (menu bar) 572

MBARC (menu bar choice) 575

MENU (menu area) 576

MENUI or MI (menu item) 580

NT or NOTE (note) 582

OL (ordered list) 583

OPTLINE (option line) 585

P (paragraph) 585

PANEL (display panel) 587

PARML (parameter list) 594

PC (paragraph continuation) 596

PDACCEL (pull-down

accelerator) 596

PDFLD (pull-down field) 597

PDFLDC (pull-down field

choice) 598

PK (programming keyword) 601

PNLGRP (panel group) 602

PRTHEAD (print head panel) 605

PRTPNL (print panel) 610

PRTTRAIL (print trailer

message) 611

PV (programming variable) 612

RT (reverse text) 612

SL (simple list) 614

TEXT (text area) 616

TI (translation list item) 620

TL (translation list) 621

TOPINST (top instruction) 622

TT (truth table) 623

TTROW (truth table row) 624

UL (unordered list) 625

VAR (variable definition) 626

VARRCD (variable record

definition) 629

XH1 through XH4 (extended help

headings) 630

XMP (example) 631

text (TEXT area) tag
overview 616

text area
scrolling 342

text area (TEXT) tag
example

a text area 619

text data 617

text area scrolling 342

text area, descriptive
entry displays 421

text data
selection characters 617

TI (translation list item) tag
overview 620

time value
display form 482

timing function on WAITRCD

parameter 69

tips
Word Wrap (WRDWRAP)

keyword 33

title
entry displays 417

information displays 423

list display 426

single-choice menu displays 416

window 122

title citation (CIT) tag
example

title citations 469

overview 469

use in help module 396

title lines
table 608

TL (translation list) tag
list, translation 622

overview 621

tags allowed table 621

tool, command line 439

top instruction (TOPINST) tag
overview 622

topics, index search
See online help information

TOPINST (top instruction) tag
overview 622

trailer message
example 611

trailer printing 359

translation
character set and code page,

UIM 476

translation list (TL) tag
list, translation 622

overview 621

tags allowed table 621

translation list item (TI) tag
overview 620

translation table 259

truth table (TT) tag
overview 623

Truth Table (TT) tag
example, truth table 624

tags allowed table 623

truth table row (TTROW) tag
overview 624

TT (truth table) tag
overview 623

TT (Truth Table) tag
example, truth table 624

tags allowed table 623

Index 741

TTROW (truth table row) tag
overview 624

two presentation areas for data items
example 495

two-column format in a data entry panel
example 493

type
display station 116, 139

U
UDDS (user-defined data streams)

3270 Model 4 display station

support 249

available functions 248

buffer format for 5250 display

station 248

command attention keys, effects

on 248

command function keys, effects

on 248

defining output buffer 248

defining output data stream 248

display station differences,

understanding 247

handling of field-level requests after

user-defined requests 248

help information for 248

I/O requests, effect on 248

input operations 249

limitations 248

opening display files containing 248

output record area for record

format 248

system operations to request

commands 250

understanding limitations 248

using 247

USRDFN (User-Defined)

keyword 247

valid keywords with USRDFN

keyword 248

write-read function 249

write-read operations
CL (control language) 249

ILE COBOL 249

ILE RPG 249

UIM
commonly asked questions 360

UIM (user interface manager) 335

See also panel group

5250 engraved key restrictions 340

action list definition 338

action variable definition 338, 339

adding pop-up window over another

panel 350

adding window over another

panel 350

after scrolling example 301

alternate view of list example 284

application handle definition 329

application programming
confirmation processing 299

data presentation panel 313

list panel 294

menu bar panel 328

application window, defining 354

UIM (user interface manager) (continued)
automatic confirmation

processing 299

command line
entered too long 345

interpretation 344

pop-up window 355

restrictions 344

window 355

window example 355

confirmation panel source 296

confirmation processing
application programming 299

automatically 299

contextual help, defining 342

controlling list entries on list

display 337

conversion of character set and code

page 476

creating
menu panel 276

object 273

cursor position when help text

displayed 342

data entry panel 316

data presentation panel
application programming 313

example 299

source 302

DBCS and national language

considerations 402

defining
application window 354

contextual help 342

dialog variable 329

function keys 345

function keys and VARUPD

value 345

menu object 276

panel group object 283

definition 3

details 329

dialog variable
definition 329

error messages 331

incorrect characters 331

initial value 330

restrictions 330

differences between pull-down menus

and pop-up windows 352

display characters, incorrect 331

display panel field value using dialog

variables 331

displaying list 335

displaying panel using request

processor program 355

elements within panel group 273

entry pointer for list 336

error messages for dialog

variables 331

example
alternate view of list 284

list panel 283

menu bar panel 316

menu source 278

exit flag 348

UIM (user interface manager) (continued)
field value for display panel using

dialog variables 331

folding up list panel 350

folding up multiple panels when EXIT

requested 348

folding when EXIT requested 348

formatting function keys 345

function key
defining 345

formatting 345

scrolling 341

VARUPD value 345

graphical user interface (GUI) 340

help
hierarchy, index search 400

index search 381

index search hierarchy 400

user-defined panel group 381

help text displayed according to

cursor position 342

help window 122

incorrect characters in dialog

variable 331

incorrect display characters 331

incorrect printer characters 331

index search
giving help panels access 381

initial value of dialog variable 330

initializing list 335

inserting entry from list 336

interactive response time for list

displays 337

limitations of panel formatter 348

list
displaying 335

incomplete processing 336

initialing 335

inserting entry from 336

managing 334

removing entry from 336

updating 336

list display
controlling list entries 337

list entry
handle 336

on list display 337

pointer 336

list panel
application programming 294

example 283

fold up 350

source 286

managing panel functions 339

menu area, scrolling 341

menu bar panel
application programming 328

example 316

source 318

menu bars 351

menu definition 272

menu object 276

menu panel
creating 276

example 276

message line, scrolling 340

742 Application Display Programming V6R1

UIM (user interface manager) (continued)
national language considerations and

DBCS 402

opening application 329

panel formatter limitations 348

panel formatting
application control 347

concepts 346

definition 347

when to perform 347

panel function managing 339

panel group
elements 273

panel group object, defining 283

panel list fold up 350

pop-up window
adding 354

adding and removing using

APIs 354

adding over another panel 350

adding to display stack 354

API for adding and removing 354

command line 355

defining application 354

example in command line 355

removing 354

removing using APIs 354

using 353

pop-up window and pull-down menu

differences 352

printer characters, incorrect 331

printing
blank lines for separating 359

character set and code page 332

code page and character set 332

concepts 356

DBCS (double-byte character

set) 360

double-byte character set

(DBCS) 360

fonts and highlighting 359

header area 359

highlighting 359

highlighting and fonts 359

introduction 356

overriding with and sharing

printer file 360

page eject 359

print head panel 358

print panel 358

printer file, sharing and overriding

with 360

prolog area 359

separating with blank lines 359

sharing and overriding with

printer file 360

trailer 359

pull-down menu and pop-up window

differences 352

removing entry from list 336

request processor program when

displaying panel 355

response time for list displays 337

restrictions
5250 engraved keys 340

using dialog variables 330

routing step 339

UIM (user interface manager) (continued)
scrolling 340

area definition 340

areas that can be scrolled 340

data item groups 342

defining scrollable areas 340

error conditions 341

function key 341

incomplete list 341

information area 342

list area 341

menu area 341

message line 340

status information 340

text area 342

selection characters 339

selection list definition 339

source
example confirmation panel 296

example data presentation

panel 302

example list panel 286

example menu 278

example menu bar panel 318

updating list 336

user-defined panel group
giving help panels access 381

variable pool services 332

VARUPD value and function

keys 345

window
adding 354

adding and removing using

APIs 354

adding over another panel 350

adding to display stack 354

API for adding and removing 354

command line 355

defining application 354

example in command line 355

removing 354

removing using APIs 354

using 353

UIM (User Interface Manager)
API services 275

confirmation list panel, creating 295

considerations before using 269

creating
confirmation list panel 295

data presentation panel 299

list panel 283

menu bar panel 316

data presentation panel
creating 299

DDS instead of 269

functions supported 272

increasing user productivity 269

introduction 271

list panel
creating 283

menu bar panel
creating 316

panel elements supported 272

panel group
definition 272

productivity
improvements 269

UIM (User Interface Manager) (continued)
productivity (continued)

increasing application

programmer 269

using DDS instead of 269

when to use to gain productivity 269

UL (unordered list) tag
example, unordered list 626

overview 625

tags allowed table 625

use in help module 396

unavailable choice
example 168

unformatted lines (LINES) tag
example, unformatted lines 538

overview 538

use in help module 396

UNLOCK (Unlock Keyboard) keyword
effects on input operation 72

example with INZRCD keyword 72

unlocking keyboard while the

program is processing data 71

unordered list (UL) tag
example, unordered list 626

overview 625

tags allowed table 625

use in help module 396

update operation for subfiles
BASIC statement for 98

definition 96

ILE C/C++ function for 98

ILE COBOL statement for 98

ILE RPG operation for 98

updating
list in UIM 336

updating pull-down menu 183

User Defined (USRDFN) keyword
See user-defined data stream (UDDS)

User Display Management

(USRDSPMGT) keyword
DDS keywords that cannot be used

with 694

use 693

user interface manager (UIM)
See panel group

5250 engraved key restrictions 340

action list definition 338

action variable definition 338, 339

adding pop-up window over another

panel 350

adding window over another

panel 350

alternate view of list example 284

application handle definition 329

application programming
confirmation processing 299

data presentation panel 313

list panel 294

menu bar panel 328

application window, defining 354

automatic confirmation

processing 299

command line
entered too long 345

interpretation 344

pop-up window 355

restrictions 344

Index 743

user interface manager (UIM) (continued)
command line (continued)

window 355

window example 355

commonly asked questions 360

confirmation panel source 296

confirmation processing
application programming 299

automatically 299

contextual help, defining 342

controlling list entries on list

display 337

conversion of character set and code

page 476

creating
menu panel 276

object 273

cursor position when help text

displayed 342

data entry panel 316

data presentation panel
source 302

DBCS and national language

considerations 402

defining
application window 354

contextual help 342

dialog variable 329

function keys 345

function keys and VARUPD

value 345

panel group object 283

defining panel group object 283

definition 3

details 329

dialog variable
definition 329

error messages 331

incorrect characters 331

initial value 330

restrictions 330

differences between pull-down menus

and pop-up windows 352

display characters, incorrect 331

display panel field value using dialog

variables 331

displaying list 335

displaying panel using request

processor program 355

elements within panel group 273

enabling graphical user interface

(GUI) 340

entry pointer for list 336

error messages for dialog

variables 331

example
alternate view of list 284

list panel 283

menu bar panel 316

exit flag 348

field value for display panel using

dialog variables 331

folding up list panel 350

folding up multiple panels when EXIT

requested 348

folding when EXIT requested 348

formatting function keys 345

user interface manager (UIM) (continued)
function key

defining 345

formatting 345

scrolling 341

VARUPD value 345

graphical user interface (GUI) 340

help
hierarchy, index search 400

index search 381

index search hierarchy 400

user-defined panel group 381

help text displayed according to

cursor position 342

help window 122

incorrect characters in dialog

variable 331

incorrect display characters 331

incorrect printer characters 331

index search
giving help panels access 381

initial value of dialog variable 330

initializing list 335

inserting entry from list 336

interactive response time for list

displays 337

limitations of panel formatter 348

list
defining 335

displaying 335

incomplete processing 336

initialing 335

inserting entry from 336

managing 334, 335

removing entry from 336

updating 336

list display
controlling list entries 337

list entry
handle 336

on list display 337

pointer 336

list panel
application programming 294

example 283

fold up 350

source 286

managing panel functions 339

menu area, scrolling 341

menu bar 351

menu bar panel 316

application programming 328

example 316

source 318

menu panel
creating 276

example 276

message line, scrolling 340

national language considerations and

DBCS 402

opening application 329

panel formatter limitations 348

panel formatting
application control 347

concepts 346

definition 347

when to perform 347

user interface manager (UIM) (continued)
panel function managing 339

panel group
elements 273

panel group object, defining 283

panel list fold up 350

pop-up window
adding 354

adding and removing using

APIs 354

adding over another panel 350

adding to display stack 354

API for adding and removing 354

command line 355

defining application 354

example in command line 355

removing 354

removing using APIs 354

using 353

pop-up window and pull-down menu

differences 352

printer characters, incorrect 331

printing
blank lines for separating 359

character set and code page 332

code page and character set 332

concepts 356

DBCS (double-byte character

set) 360

double-byte character set

(DBCS) 360

fonts and highlighting 359

header area 359

highlighting and fonts 359

introduction 356

overriding with and sharing

printer files 360

page eject 359

print head panel 358

print panel 358

printer file, sharing and overriding

with 360

prolog area 359

separating with blank lines 359

sharing and overriding with

printer files 360

trailer 359

pull-down menu and pop-up window

differences 352

removing entry from list 336

request processor program when

displaying panel 355

response time for list displays 337

restrictions
5250 engraved keys 340

using dialog variables 330

routing step 339

scrolling 340

area definition 340

areas that can be scrolled 340

data item group 342

defining scrollable areas 340

error conditions 341

function key 341

incomplete list 341

information area 342

list area 341

744 Application Display Programming V6R1

user interface manager (UIM) (continued)
scrolling (continued)

menu area 341

message line 340

status information 340

text area 342

selection characters 339

selection list definition 339

source
example confirmation panel 296

example data presentation

panel 302

example list panel 286

example menu bar panel 318

updating list 336

user-defined panel group
giving help panels access 381

variable pool services 332

VARUPD value and function

keys 345

window
adding 354

adding and removing using

APIs 354

adding over another panel 350

adding to display stack 354

API for adding and removing 354

command line 355

defining application 354

example in command line 355

removing 354

removing using APIs 354

using 353

User Interface Manager (UIM)
API services 275

confirmation list panel, creating 295

considerations before using 269

creating
confirmation list panel 295

data presentation panel 299

list panel 283

menu bar panel 316

data presentation panel
after scrolling example 301

creating 299

example 299

DDS instead of 269

defining
menu object 276

defining menu object 276

example
menu source 278

functions supported 272

increasing user productivity 269

introduction 271

list panel
creating 283

menu bar panel
creating 316

menu definition 272

menu object, defining 276

panel elements supported 272

panel group
definition 272

productivity
improvements 269

User Interface Manager (UIM) (continued)
productivity (continued)

increasing application

programmer 269

source for example menu 278

using DDS instead of 269

when to use to gain productivity 269

User Restore Display (USRRSTDSP)

keyword 126

user-defined data streams (UDDS)
3270 Model 4 display station

support 249

available functions 248

buffer format for 5250 display

station 248

command attention keys, effects

on 248

command function keys, effects

on 248

defining output buffer 248

defining output data stream 248

display station differences,

understanding 247

handling of field-level requests after

user-defined requests 248

help information for 248

I/O requests, effect on 248

input operations 249

limitations 248

opening display files containing 248

output record area for record

format 248

system operations to request

commands 250

understanding limitations 248

using 247

USRDFN (User-Defined)

keyword 247

valid keywords with USRDFN

keyword 248

write-read function 249

write-read operations
CL (control language) 249

ILE RPG 249

user-defined edit code
about 35

edit descriptions 689

user-defined menus
See menu display

user-defined panel group
See online help information

using note
example 583

USRDFN (User-Defined) keyword
See user-defined data stream (UDDS)

USRDSPMGT (User Display

Management) keyword
restricted DDS keywords 694, 703

restrictions for response

indicators 703

restrictions for subfiles 703

use 693

USRRSTDSP (User Restore Display)

keyword 126

V
valid DDS for mnemonic

example 169

validity checking
functions, specifying 73

keywords 73

performing 330

restrictions when using CAnn

keys 26

subfile data 104

validity checking (CHECK) tag
example, validity checking 469

overview 467

validity-checking keyword 120

value
BASETYPE 471

character 482

date 482

numeric 481

time 482

VAR (variable definition) tag
overview 626

variable definition (VAR) tag
overview 626

variable pool
definition 329

services 332

variable record definition (VARRCD) tag
overview 629

variable update (VARUPD) attribute
dialog command 635

function keys 345

KEYI tag 535

PDFLDC tag 599

variable value 331

variable-length record 103

VARRCD (variable record definition) tag
overview 629

VARUPD (variable update) attribute
dialog command 635

function keys 345

KEYI tag 535

PDFLDC tag 599

VARUPD value and function keys 345

vertical
multiple-choice selection field

cursor movement 150

example 149

single-choice selection field 148

W
WAIT (wait) command 69

WAIT(*NO) parameter 67

WAITFILE (wait file) parameter
for acquire operation 42

for open operation 42

for system allocation of resources 41

WAITRCD (wait record) parameter
timing function for 69

WDWBORDER (Window Border)

keyword 120

WDWTITLE (Window Title)

keyword 122

window
adding over another panel 350

Index 745

window (continued)
border 120

changing 124

creating 116

cursor position 119

defining 354

definition 37

duplicating 124

grid line structure 205

help displayed in 120, 122

location 118, 119

making one pop out of series 125

making two active 124

maximum displayed 116

message in 119

moving 124

performance 126

programming example 128

reading data from 123

removing 125

size 118

subfile used in 120

system performance

considerations 265

title 122

WINDOW (Window) keyword 116

Window Border (WDWBORDER)

keyword 120

window definition record 117

window reference record 117

window title
example, DDS 122

Window Title (WDWTITLE)

keyword 122

Word Wrap (WRDWRAP) keyword 32,

173

words, index search root
See online help information

Work with Members Using PDM

display 4

wrap
word 32, 173

WRDWRAP (Word Wrap) keyword 32,

173

write operation 98

CL command for 83

deferring until a read request is

made 63

definition 44

ILE C/C++ function for 83

ILE COBOL statement for 83

ILE RPG operation for 83

subfiles
BASIC statement for 98

definition 98

ILE C/C++ function for 98

ILE COBOL statement for 98

ILE RPG operation for 98

write-read operation
with no wait, CL command for 83

with wait
CL command for 83

ILE C/C++ function for 83

ILE RPG operation for 83

write-read operation for subfiles
definition 98

ILE C/C++ function for 98

write-read operation for subfiles

(continued)
ILE RPG operation for 98

X
XH1 through XH4 (extended help

headings) tag
example, sample heading 631

formatting rules 631

overview 630

use in help module 395

XMP (example) tag
example, formatting an example 632

help module 396

overview 631

Z
Z-variable

definition 628

Z36ENV dialog variable 628

ZCANCEL dialog variable 628

ZDBCS dialog variable 628

ZDSPSIZ dialog variable 628

ZEXIT dialog variable 628

ZJOB dialog variable 628

ZJOBNBR dialog variable 628

ZLMTCPB dialog variable 628

ZMENU dialog variable 628

ZMNULIB dialog variable 628

ZSYSNAM dialog variable 628

ZUSER dialog variable 628

746 Application Display Programming V6R1

����

Printed in USA

SC41-5715-02

	Contents
	Figures
	Tables
	About Application Display Programming (SC41-5715)
	Part 1. Building a Sample Display with Online Help Information
	Chapter 1. Building a Sample Display with Online Help Information
	The Application Display
	The Online Help Information

	Part 2. Programming Application Displays Using Display Files
	Chapter 2. Defining Your Display in a Display File
	Establishing a Display File
	Determining File Descriptions
	Field-Level Descriptions
	Record-Level Descriptions
	File-Level Descriptions

	Deciding Whether to Describe Data Inside or Outside Your Program
	Externally Described Data
	Program-Described Data

	Creating a Display File and Description
	Changing the File Description
	Detecting File Description Changes

	Defining Display Fields and Functions in a Record Format
	DDS for Display File
	Record Format Used by the Program
	Record Format on the Display
	Understanding the Field Attribute Characters
	Understanding How Record Format Fields Can Be Used
	Defining Function Keys
	Defining Command Attention (CAnn) and Command Function (CFnn) Keys
	Specifying Alternative Keys
	Passing Information via Indicators
	Removing Option and Response Indicators from the Record Area
	Enabling Different Response Indicators Simultaneously
	Setting an Indicator Off

	Inserting Constant Field Text from a Message Description
	Allowing for Right-to-Left Cursor Movement
	Defining Cursor Movement to Input-Capable Positions Only
	Defining Cursor Progression for Entry Fields
	Defining Attributes for Entry Fields
	Protecting Entry Fields Using Edit Masks
	Specifying Right-to-Left Display Processing
	Specifying Word Wrap for Fields
	Specifying Word Wrap for Fields—Tips

	Emphasizing Fields
	Adding Color
	Editing Output Fields
	Defining Your Own Edit Codes
	Specifying Valid Screen Sizes
	Enabling Your Display to Be Printed
	Defining Windows

	Using Program-Described Data
	Defining Input-Only Files
	Defining Output-Only Files
	Defining Input and Output Files

	Chapter 3. Working with Display Files in an Application
	Understanding How the System Allocates Resources
	Opening Display Files
	Acquiring a Display Station for I/O Operations
	Obtaining Information about Display Files and Display Stations
	Obtaining Information about Open and I/O Operations
	Obtaining Attribute Information about Display Stations

	Sending and Receiving Data
	Determining Which Record Formats Are Active on a Display
	Writing Output to the Display
	Placing Records on the Display
	Understanding Which Records Do Not Occupy Space on the Display
	Changing Record Formats on a Display
	Deciding the Order of Record Formats Written to the Display
	Overlaying and Erasing Record Formats on a Display
	Starting Your Record Format on a Specific Line
	Clearing a Specified Number of Lines
	Rolling Data between Two Lines on a Display
	Overriding the Attributes or the Content of a Field
	Erasing All Unprotected Input and Output/Input Fields on the Display
	Resetting Modified Data Tags Associated with Records on the Display
	Keeping a Record or Field on a Display
	Deferring the Write Operation Until a Read Request is Made
	Specifying Default Values for Fields
	Indicating Which Mode to Display Records
	Positioning the Cursor after an Output Operation
	Returning the Cursor Position to an Application
	Returning the Cursor Position Within a Subfile to an Application
	Returning the Mode of a Subfile to an Application
	Initializing Output/Input Fields

	Inviting Input to the Display
	Inviting Input from CL Programs

	Reading Invited Input from the Display
	Understanding the Read-From-Invited-Devices
	Reading-From-Invited-Devices from CL Programs

	Reading Input from the Display
	Unlocking the Keyboard while the Program Is Processing Data
	Keeping Input Data
	Setting an Indicator When Data Is Changed
	Initializing Records and Unlocking the Keyboard-Diagram
	Specifying Validity-Checking Functions
	Understanding the Limitations on the Number of Input-Capable Fields
	Handling Negative Numeric Input Data
	Understanding How the System Reads Input from the Display

	Writing Output and Reading Input at the Same Time
	Canceling Input That Was Not Waited For
	Locking the Keyboard and Positioning the Cursor During I/O Operations
	Saving Previously Displayed Information
	Understanding the Effects of I/O Operations on Command Keys
	Avoiding Record Format Problems on the 5250 Display Station

	Releasing an Acquired Display Station from I/O Operations
	Closing Display Files
	Mapping Display Operations to High-Level Language Operations
	Sharing Display Files in the Same Job
	Understanding the Open Operation for Files Shared in a Job
	Understanding the Input/Output Operation for Files Shared in a Job
	Understanding the Close Operation for Files Shared in a Job

	Chapter 4. Displaying Groups of Records Using Subfiles
	Recognizing Subfile Uses
	Describing Subfiles in Your DDS Source
	Using a Subfile in a Program
	Requesting I/O Operations for a Subfile
	Requesting I/O Operations for a Subfile Record Format
	Adding a Record at a Specified Location in a Subfile
	Updating an Active Record in the Subfile
	Reading an Active Record at a Specified Location in the Subfile
	Reading the Next Changed Record in a Subfile

	Requesting I/O Operations for a Subfile Control Record Format
	Displaying Subfile Records
	Placing Subfile Records on the Display for Processing
	Displaying and Processing Subfile Records at the Same Time

	Recognizing Subfile I/O Requests in High-Level Languages

	Controlling the Appearance of Subfiles
	Displaying Horizontal Subfiles with Display Modes
	Specifying Subfile Size Equal to Page Size
	Specifying Subfile Size Not Equal to Page Size
	Checking Validity on Subfile Data
	Displaying Error Messages from Subfiles
	Positioning the Cursor on the Displayed Subfile
	Positioning the Cursor Initially
	Positioning the Cursor When a Roll Key Is Used
	Positioning the Cursor When a Fold or Truncate Key Is Used
	Positioning the Cursor and Rolling When Two or More Records Are Displayed

	Understanding Subfile DDS and Program Logic-Example

	Chapter 5. Defining Windows with Display Files
	Window Terminology
	DDS Window Keywords
	Window Representation and Hardware Configuration
	Creating Windows
	Window Definition Records
	Window Reference Records
	Window Size and Location
	Cursor Position
	Error Messages
	Subfiles
	DDS Help Records

	Defining Window Borders
	Border Defaults
	Multiple Border Definitions
	UIM Help Window Borders

	Defining a Window Title
	DDS for a Window Title-Example

	Reading Data from Windows
	Changing Window Borders and Contents
	Moving and Duplicating Windows
	Making Two Windows Seem Active at Once
	Making One Window in a Series Stand Out
	Removing Windows
	Removing All Windows
	Removing More Recent Windows

	Improving Application Performance
	System Save and Restore Operations
	Response Time

	Bypassing System Save and Restore Operations
	USRRSTDSP Keyword Processing and Interactions

	Programming Examples
	Using Basic Window Functions
	DDS Full-Screen Display and Window Definitions
	RPG Display Program
	Step 1: Display Initial Display
	Step 2: Display Window 1
	Step 3: Display Window 2
	Step 4: Restore Window 1
	Step 5: Display Initial Display

	Defining Windows in a Separate Display File
	DDS Full-Screen Display and Window Definitions

	RPG Program Source
	RPG Program Source for WINPGM
	Step 1: Display Initial Display
	Step 2: Display a Window
	Step 3: Return to the Initial Display

	Chapter 6. Creating a Graphical Look for Displays
	Factors Affecting the Graphical Look
	Hardware Configuration
	Enhanced Display Parameter

	DDS Keywords
	Creating Menu Bars
	Defining the Menu-Bar Choices
	Suppressing the Menu-Bar Separator
	Defining the Menu-Bar Separator

	Selection Fields-Overview
	DDS for Selection Fields-Example
	Creating a Vertical Single-Choice Selection Field
	Creating a Vertical Multiple-Choice Selection Field
	Creating a Horizontal Selection Field
	Cursor Movement in a Vertical Selection Field
	Cursor Movement in a Horizontal Selection Field
	Controlling the Selection Indicators in a Selection Field

	Creating Pull-Down Menus Using Single-Choice Selection Fields
	Controlling the Selection Indicators in a Pull-Down Menu
	Defining Accelerator Keys
	Defining a Menu-Bar Switch Key
	Defining a Cancel Key
	Limiting Function When Cursor is Outside a Pull-Down Menu

	Selection Lists-Overview
	DDS for Selection Lists-Example
	Creating Selection Lists
	Controlling the Selection Indicators in a Selection List

	Scroll Bars-Overview
	Creating a Scroll Bar
	DDS for Scroll Bars-Example
	Scroll Bar Operation

	Push Buttons-Overview
	DDS for Push Buttons-Example
	Creating Push Buttons

	Controlling the Availability of Choices
	Auto-Selection in Single-Choice Selection Fields
	Auto-Enter in Single-Choice Selection Fields
	Defining Mnemonics
	Defining Choice Colors and Attributes
	Continued-Entry Fields-Overview
	Specifying Word Wrap on Continued-Entry Fields
	DBCS Considerations with Continued-Entry Fields
	How DBCS Data is Returned for Continued-Entry Fields
	Keyboard Functions with Continued-Entry Fields
	Character data
	Field Mark
	Automatic Shape Determination (ASD) Processing
	Delete
	Erase EOF
	Erase Input
	Reverse
	Close
	Field Exit
	Field Plus
	Field Minus
	Dup
	Kanji
	Character Backspace
	Character Advance
	New Line
	Field Advance
	Field Backspace

	Forward Field-Exit Processing
	Backward Field-Exit Processing

	How the Menu Bar Interacts with the Application
	Defining the MNUBARDSP Keyword on the Application Record
	Defining the MNUBARDSP Keyword on the Menu-Bar Record
	Receiving Input from the Pull-Down Menus
	Receiving Input from Pull-Down Menus Using the Pull-Down Input Parameter

	Removing a Pull-Down Menu after Receiving Input
	Updating a Pull-Down Menu before Displaying

	Defining Application Help
	Defining Choice-Level Help
	Defining Help for a Field

	Key Interaction for Menu Bars and Pull-Down Menus
	Cursor Movement
	Pressing the Tab Key
	Pressing the Cursor Keys

	Programming Examples
	Using the MNUBARDSP Keyword on the Application Record
	Description

	Using the MNUBARDSP Keyword on the Menu-Bar Record
	Description

	How the Displays Look

	Simple Hotspots
	Command Key Emulation
	Page Up and Page Down Key Emulation

	Programmable Mouse Buttons-Overview
	Pointer Device Events
	AID Codes to be Returned
	Programmable Mouse Buttons-Benefits
	Programmable Mouse Buttons Operation
	Programmable Mouse Buttons-NWS Considerations
	Programmable Mouse Buttons-Event Processing States
	Programmable Mouse Buttons-Event Processing Priority
	Unshifted Left Button Pressed Event Processing
	Unshifted Left Button Released Event Processing
	Unshifted Left Button Double Click Event Processing
	Shifted Left Button Pressed Event Processing
	Shifted Left Button Released Event Processing
	Shifted Right Button Pressed Event Processing
	Any Other Pointer Device Event Processing

	Grid Line Structures-Overview
	DDS for Grid Line Structures-Example
	Grid Line Structures and Windows
	Hardware Requirements for Grid Line Structures

	Inserting HTML Tags
	Resolving HTML Field Overlap

	Programming Examples

	Chapter 7. Overriding Display Files and Display File Attributes
	Determining Whether or Not to Use Overrides
	Overriding File Attributes in HLL Programs
	Example

	Overriding File Names in HLL Programs
	Example

	Overriding Both File Names and Attributes in HLL Programs
	Example

	Applying Overrides When Compiling a Program
	Example

	Deleting Overrides
	Displaying Overrides
	Using File Redirection to Override File Names and Libraries or File Types
	Overriding Files with the Same File Types
	Overriding Files with Different File Types

	Recognizing Commands That Ignore or Restrict Overrides

	Chapter 8. Handling Messages and Errors for Display Files
	Creating and Displaying Your Own Messages
	Displaying a Message on the Message Line
	Displaying a Message on the Message Line When a Subfile Control Record is Written
	Displaying a Message on the Message Line Using a Message Field
	Priorities for Displaying Messages on a Message Line
	Displaying Messages in a Field on the Display
	Displaying Messages on a Program Message Queue
	Displaying Error Messages through a Subfile
	Sounding an Alarm for Messages
	Automatically Handling Permanent I/O Errors on Display Stations

	Analyzing Error Messages Sent from the System
	Understanding Messages and Message Monitors
	Understanding Major/Minor Return Codes
	Recovering from Errors
	Normal Completion
	Completion with Exceptions
	Permanent System or File Error
	Permanent Device or Session Error on I/O Operation
	Device or Session Error on Open or Acquire Operation
	Recoverable Device or Session Errors on I/O Operation

	Chapter 9. Creating and Accessing Menus Using Display Files
	Running System and User-Defined Menus
	Returning to a Menu after Running the GO command
	Determining the Previous Menu
	Using the Cancel and Exit Keys on Menus
	Choosing the Menu That Is Shown at Sign-On Time

	Defining Your Own Display File Menus
	Understanding DDS and Display File Considerations for Menus
	Describing Menu Actions in a Message File
	Naming Help Formats for Menus
	Building a Display File Menu
	Describing the Menu and Menu Help Information
	Creating the Display File
	Creating the Message File
	Adding Messages to the Message File
	Creating the Menu Object
	Running the Menu

	Defining Your Own Program Menus
	Passing Parameters for Program Menus
	Building a Program Menu
	Describing the Menu
	Creating the Display File
	Entering the Source and Creating a CL Program
	Creating the Menu
	Running the Menu

	Exiting from a Program Menu without Returning to the Previous Menu
	Program 1
	Program 2

	Avoiding Menu Name Conflict
	Naming Your Menus
	Placing Your Menu in a Higher Library in the Library List
	Specifying the Library That Contains the Menu
	Using the Generic Menu Specification
	Changing the Command Default after Duplicating a Command

	Displaying Menu Attributes
	Changing Menu Attributes
	Deleting Menus

	Chapter 10. Using User-Defined Data Streams
	Understanding Display Station Differences
	Understanding User-Defined Data Stream Limitations

	Chapter 11. Passing Data between Programs
	Passing Data in the Same Routing Step in a Job
	Passing Data between Routing Steps in a Job

	Chapter 12. Waiting for Input from a Display File, an ICF File, and a Data Queue
	Chapter 13. Using Alternative Character Sets and Code Pages
	System Has Characters Not Normally Displayed on the Device
	Device Passes Characters Not Displayed on the System
	Specifying Character Translation for Fields
	Determining the Character Identifier (CHRID) Value for Your Display

	Chapter 14. Improving System Performance with Displays
	Deferring the Write Operation for a Display File
	Designating the Primary Screen Size for a Display File
	Writing Only One Page of Subfile Records at a Time
	Sharing an Open Data Path (ODP) for the Same Job
	Sending Records with Input Fields to the Display in Order
	Overlapping and Not Deleting Repeatedly Sent Records
	Restoring the Display
	Defining Command Attention Keys Rather Than Command Function Keys
	Using the Invite Operation
	Using Windows

	Part 3. Programming Application Displays Using Panel Groups
	Chapter 15. Improving Productivity with User Interface Manager
	Increasing User Productivity
	Increasing Application Programmer Productivity
	What to Consider before Using UIM Instead of Data Description Specifications (DDS)

	Chapter 16. Introduction to the User Interface Manager
	Overview of UIM
	What the UIM Supports
	What Is a Panel Group
	What Is a Menu
	Creating Objects
	Elements Within a Panel Group
	Using the UIM Language Tags
	Using Dialog Commands
	Using Control Language (CL) Commands
	Using an Application Programming Interface (API)
	Defining a Menu Object Using UIM
	Creating a Menu Panel
	Required Tags for a Menu Panel
	Source for Example Menu

	Defining a Panel Group Object Using UIM
	Creating a List Panel
	Required Tags for a List Panel
	Source for Example List Panel
	Application Programming for a List Panel

	Creating a Confirmation List Panel
	Required Tags for a Confirmation List Panel
	Source for Example Confirmation Panel
	Automatic Confirmation Processing
	Application Programming for Confirmation Processing

	Creating a Data Presentation Panel
	Required Tags for a Data Presentation Panel
	Source for Example Data Presentation Panel
	Application Programming for a Data Presentation Panel
	Data Entry Panel

	Creating a Panel with a Menu Bar
	Required Tags for a Panel with a Menu Bar
	Source for Example Panel with a Menu Bar
	Application Programming for a Menu Bar Panel

	Chapter 17. Details of Using User Interface Manager
	Opening a UIM Application
	Defining Dialog Variables
	Restrictions on Using Dialog Variables
	Dialog Variable Error Messages
	Providing Field Values for a Display Panel Using Dialog Variables
	Using Variable Pool Services
	Dialog Variables and Special Values
	Character Set and Code Page Considerations
	Displaying
	Printing

	Managing a List
	Defining a List
	Initializing a List
	Displaying a List
	Updating a List
	Incomplete List Processing
	Removing and Inserting an Entry from a List
	Controlling List Entries on a List Display
	Improving Interactive Response Time for a List Display
	Using Action Lists and Selection Lists
	Using Action Lists
	Using Selection Lists

	Using Selection Characters

	Managing Panel Functions
	Enabling Conversion to a GUI
	Scrolling Support
	Defining Scrollable Areas
	Defining Function Key Scrolling
	Scrolling and Error Conditions
	Scrolling a List Area
	Scrolling a Menu Area
	Scrolling an Information Area
	Scrolling Data Item Groups
	Scrolling a Text Area

	Defining Contextual Help
	Command Line Restrictions
	Command Line Interpretation
	Entering Commands That Are Too Long

	Defining Function Keys
	Formatting Function Keys
	Handling Function Keys and VARUPD Value

	Panel Formatting Concepts
	When Panel Formatting Is Performed
	Application Control of Panel Formatting
	Limits of the Panel Formatter

	Folding Up Multiple Panels When EXIT Is Requested
	Folding Up a List Panel
	Adding a Pop-Up Window over Another Panel

	Using Menu Bars
	Differences Between Pull-Down Menus and Pop-Up Windows

	Using Pop-Up Windows
	Defining Application Windows
	Adding and Removing Windows
	Using the Command Line in a Window

	UIM as a Request Processor Program When Displaying a Panel
	Printing Concepts
	Printing a Print Head Panel
	Printing a Print Panel
	Using Blank Lines for Separating
	Fonts and Highlighting
	Printing the Trailer
	Defining Prolog Areas
	Defining Header Areas
	Using the Page-Eject Function During Printing
	Sharing and Overriding Printer Files
	Printing Double-Byte Character Set (DBCS) Considerations
	Commonly Asked UIM Questions

	Part 4. Programming Help Displays
	Chapter 18. Making Online Help Information Accessible for Your Display File
	Enabling the Help Key
	Choosing between Panel Groups and Records for Help
	Defining Which Areas of Your Display Need Online Help Information
	Specifying Panel Groups for Help in Your Display File
	Defining Panel Groups with Option Indicators
	Copying QUSRTOOL Examples That Specify Help Using Panel Groups

	Specifying Records in Your Display File
	Defining Records with Option Indicators
	Entering the Records That Contain the Help Information
	Using Records and Documents for Help in the Same Display File
	Understanding the Restrictions on Records
	Paging between Help Displays That Use Records
	Understanding How the System Pages Help Displays
	Displaying Secondary Online Help Information
	Determining the Sequence of Secondary Help
	Understanding the Restrictions of Records for Secondary Help

	Returning Control to Your Program after Pressing the Help Key
	Returning Control to Your Program after Showing the Help Display
	Returning Control to Your Program without Showing the Help Display

	Chapter 19. Making Online Help Accessible for Your Panel Group
	Definitions and Explanations
	Giving Help Panel Groups Access to Index Search
	Giving Help Panel Groups Access to A User-Defined Panel Group
	Removing Access to F18=More Indexes

	Help in a List Area
	Coding Help

	Help in a Menu Area
	Coding Help

	Help in a Data Area
	Coding Help

	Help in a Menu Bar Area
	Coding Help

	Help in a Function Key Area
	Coding Help

	Chapter 20. Defining Online Help Information
	Defining Online Help Information in a Panel Group
	Entering the UIM Source for a Panel Group for Help
	Organizing a Panel Group with Help Modules
	Using the Information in a Help Module More Than Once
	Using a Help Module Contained in a Different Help Panel Group
	Emphasizing and Formatting the Text within a Help Module
	Defining Paragraphs and Notes
	Adding Headings
	Highlighting Text
	Making Lists
	Identifying Programming Keywords and Variables
	Indicating Structured Text

	Adding Index Search Tags to a Help Panel Group
	Understanding How Index Search Works
	Deciding Which Topics to Put in Index Search
	Defining Index Search Topics and Root Words
	Designating Synonyms for Root Words
	Choosing Root Words and Synonyms for Index Search Topics
	Defining an Index Search Hierarchy
	National Language Considerations

	Linking Help Modules
	Designing Your Links
	Creating Links

	Creating and Deleting Panel Groups
	Assigning Panel Groups as Help for Commands
	Using Panel Groups in a Search Index
	Creating a Search Index
	Adding Entries to a Search Index
	Removing Entries from a Search Index
	Deleting a Search Index

	Copying QUSRTOOL Examples That Define Help in a Panel Group

	Defining Online Help Information in a DDS Record

	Part 5. Guidelines for IBM i5/OS-Style Displays
	Chapter 21. Designing IBM i5/OS-Style Displays
	Using the Displays Example in the QUSRTOOL Library
	Recognizing the Example Objects
	Installing the Example Objects
	Viewing the Sample Displays, Command, and Online Help Information
	Copying the Source for the Example Objects for Your Own Use

	Defining Special Functions and Attributes for All Displays
	Designing the Single-Choice Menu Display
	Title
	Instruction Line
	Menu Options
	Menu Selection Entry Field
	Function Keys
	Online Help Information
	General Menu Display Operation

	Designing the Entry Display
	Title
	Instruction Line
	Prompt Area
	Field Prompts
	Entry Fields
	Rules for Entry Fields

	Descriptive Text Area (Possible Choices Information)

	Function Keys
	Online Help Information
	General Entry Display Operation

	Designing the Information Display
	Title
	Location Information
	Prompt Area 1
	Prompt Area 2
	Instruction Line
	Function Keys
	Online Help Information
	General Information Display Operation

	Designing the List Display
	Title
	Prompt Area
	Instruction Line
	Options Line
	Column Headings
	Extended Action Entry Area
	List Fields
	Paging Location Information
	Function Keys
	Online Help Information
	General List Display Operation
	Operating the List Control Field
	Positioning the List
	Positioning to Lowercase Names in a List
	Changing the List Control Field and Positioning the List
	Operating the Extended Action Entry Area
	List Operation When Options Are Specified
	Cursor Positioning Rules
	Error Condition Rules
	List Where Only One Item Can Be Selected
	List Format in Empty List Situation

	Defining the Function Key Area for All Displays
	Optional Command Line and Identifier Field
	Available Command Line Tool

	Common Key Assignments

	Defining Help Information for All Displays
	Help for the Menu Display
	Help for the Entry Display
	Help for the Information Display
	Help for the List Display

	Defining and Presenting Messages
	Designing Common User Access (CUA) Entry Level Models
	Entry Dialog Actions
	Function Key Area and Message Line Relationship

	Single-Choice Selection (Menu)
	Selection Choices and Choice Entry Field
	Guidelines for Single Selection Field Operation

	Entry Display
	Entry Fields

	Information Display
	List Display
	Help Information

	Part 6. Appendixes
	Appendix A. UIM Panel Group Definition Language
	Tag Content Formatted as Paragraphs
	Panel Areas
	Panels
	Panel Group Objects
	Help on Panels
	Panel Group Organization
	Name Syntax
	Symbols
	Comments
	Imbeds
	DBCS Graphic Literals
	Hexadecimal Literals

	APPFMT (Application Formatted Area)
	Required Attributes
	Optional Attribute
	Application Formatted Data
	Example: Application Formatted Area

	BOTINST (Bottom Instruction)
	Optional Attribute
	Optional Text

	CHECK (Validity Checking)
	Required Attribute
	Optional Attributes
	Example: Validity Checking
	UIM Source

	CIT (Title Citation)
	Optional Text
	Example: Title Citations
	UIM Source
	Results

	CLASS (Class Definition)
	Required Attributes
	Optional Attributes
	Example: Class Definitions
	UIM Source

	Display Forms of Numeric Values
	Display Forms of Character, Date, and Time Values

	CMDLINE (Command Line)
	Required Attribute
	Optional Attribute
	Optional Text

	COND (Condition Definition)
	Required Attributes
	Optional Attribute
	Example: Conditioning an Option
	UIM Source

	COPYR (Copyright)
	Required Text

	DATA (Data Presentation Area)
	Required Attribute
	Optional Attributes
	Optional Text
	Print Formatting Considerations
	Example 1: Data Entry Panel
	UIM Source
	Results

	Example 2: Two-Column Format in a Data Entry Panel
	UIM Source
	Results

	Example 3: Two Presentation Areas for Data Items
	UIM Source
	Results

	Example 4: Data Presentation Area with a Menu Area
	UIM Source
	Results

	Example 5: Data Entry Panel with a Nested Data Group
	UIM Source
	Results

	DATAC (Data Item Choices)
	Optional Attribute
	Optional Text

	DATACOL (Data Column)
	Required Attribute
	Optional Text

	DATAGRP (Data Group)
	Optional Attributes
	Optional Text

	DATAI (Data Item)
	Required Attributes
	Optional Attributes
	Optional Text

	DATAIX (Data Item Extender)
	Required Attributes
	Optional Attributes

	DATASLT (Data Selection Field)
	Required Attributes
	Optional Attributes
	Optional Text
	Example 1: Data Entry Panel
	UIM Source
	Results

	Example 2: Multiple-Selection Field
	UIM Source
	Results

	DATASLTC (Data Selection Field Choice)
	Optional Attributes
	Optional Text

	DL (Definition List)
	Optional Attribute
	Required Tags
	Optional Tags
	Example 1: Definition List
	UIM Source
	Results

	Example 2: Compact Definition List
	UIM Source
	Results

	FIG (Figure)
	Optional Attribute
	Optional Tag
	Example: Sample Figure
	UIM Source
	Results

	HELP (Help Module)
	Required Attribute
	Optional Attributes
	Optional Text
	Example: Help Panel Definition
	UIM Source
	Results

	HP0 through HP9 (Highlighted Phrase)
	Optional Text

	H1 through H4 (Heading)
	Required Text
	Example: Heading Tags
	UIM Source
	Results

	IMHELP (Imbed Help)
	Required Attribute
	Example: Imbedded Help
	UIM Source

	IMPORT (Import)
	Required Attributes
	Optional Attributes

	INFO (Information Area)
	Required Attribute
	Optional Attributes
	Optional Text
	Print Formatting Considerations

	ISCH (Index Search)
	Required Attribute
	Required Text
	Example: Index Search
	UIM Source

	ISCHSUBT (Index Search Subtopic)
	Required Attribute
	Example: Index Search Hierarchy
	UIM Source

	ISCHSYN (Index Search Synonym)
	Required Attribute
	Required Text
	Example: Index Search Synonyms
	UIM Source

	KEYI (Key List Item)
	Required Attributes
	Optional Attributes
	Optional Text
	Example: Key Definitions
	UIM Source
	Results

	KEYL (Key List)
	Required Attribute
	Optional Attribute
	Example: Key List
	UIM Source

	LINES (Unformatted Lines)
	Optional Text
	Example: Unformatted Lines
	UIM Source
	Results

	LINK (Hypertext Link Definition)
	Required Attribute
	Optional Attributes
	Conditional Expressions
	Bidirectional Considerations
	Example: Hypertext Link
	UIM Source
	Results

	LIST (List Area)
	Required Attributes
	Optional Attributes
	Optional Text
	Print Formatting Considerations
	Example 1: List Area
	UIM Source
	Results

	Example 2: List Area with Three Layout Columns
	UIM Source
	Results

	Example 3: List Area with List Column Groups
	UIM Source
	Results

	Example 4: Dynamic List Column Heading Formatting
	UIM Source
	Results

	LISTACT (List Action)
	Required Attributes
	Optional Attributes
	Optional Text
	Confirmation Panel Requirements
	Confirmation Panel Conventions
	Example: List Actions
	UIM Source
	Results

	LISTCOL (List Column)
	Required Attributes
	Optional Attributes
	Optional Text
	Formatting Considerations

	LISTDEF (List Definition)
	Required Attributes
	Optional Attributes

	LISTGRP (List Column Group)
	Required Attributes
	Optional Attribute
	Optional Text
	Example: List Column Group
	UIM Source
	Results

	LISTVIEW (List View)
	Required Attribute
	Optional Attribute

	LP (List Part)
	Example: List Part
	UIM Source
	Results

	MBAR (Menu Bar)
	Required Attribute
	Optional Attributes
	Example: Menu Bar
	UIM Source
	Results

	MBARC (Menu Bar Choice)
	Required Attributes
	Required Text

	MENU (Menu Area)
	Required Attribute
	Optional Attribute
	Optional Text
	Example 1: Simple Menu Area
	UIM Source
	Results

	Example 2: Menu Area with Groups
	UIM Source
	Results

	MENUGRP (Menu Group)
	Optional Attribute
	Optional Text

	MENUI or MI (Menu Item)
	Required Attributes
	Optional Attributes
	Optional Text

	NT or NOTE (Note)
	Optional Text
	Example: Using a Note
	UIM Source
	Results

	OL (Ordered List)
	Optional Attribute
	Required Tag
	Example: Ordered List
	UIM Source
	Results

	OPTLINE (Option Line)
	Optional Attribute
	Optional Text

	P (Paragraph)
	Optional Text
	Example: Paragraph Tag
	UIM Source
	Results

	PANEL (Display Panel)
	Required Attributes
	Optional Attributes
	Optional Text
	Example: Panel Definition
	UIM Source
	Results

	PARML (Parameter List)
	Required Tags
	Example: Parameter List
	UIM Source
	Results

	PC (Paragraph Continuation)
	Example: Paragraph Continuation
	UIM Source
	Results

	PDACCEL (Pull-Down Accelerator)
	Required Text

	PDFLD (Pull-Down Field)
	Optional Attribute

	PDFLDC (Pull-Down Field Choice)
	Required Attributes
	Optional Attributes
	Optional Text
	Confirmation Panel Requirements
	Confirmation Panel Conventions

	PK (Programming Keyword)
	Optional Attribute
	Required Text

	PNLGRP (Panel Group)
	Optional Attributes

	PRTHEAD (Print Head Panel)
	Required Attribute
	Optional Attributes
	Optional Text
	Layout of the Title Lines
	Example: Print Title Line

	PRTPNL (Print Panel)
	Required Attribute
	Optional Attributes
	Optional Text

	PRTTRAIL (Print Trailer Message)
	Required Text
	Example: Trailer Message
	UIM Source

	PV (Programming Variable)
	Required Text

	RT (Reverse Text)
	Example 1: Left-to-Right Formatting on a Right-to-Left Panel
	UIM Source
	Results

	Example 2: Left-to-Right Formatting on a Left-to-Right Panel
	UIM Source
	Results

	SL (Simple List)
	Optional Attribute
	Required Tag
	Example: Simple Lists
	UIM Source
	Results

	TEXT (Text Area)
	Required Attribute
	Optional Attributes
	Cursor positioning
	Text Data
	Example: Text area

	TI (Translation List Item)
	Optional Attribute
	Optional Text

	TL (Translation List)
	Optional Attributes
	Examples: Translation List
	UIM Source
	UIM Source

	TOPINST (Top Instruction)
	Optional Attribute
	Optional Text

	TT (Truth Table)
	Required Attributes
	Example: Truth Table
	UIM Source

	TTROW (Truth Table Row)
	Required Attribute

	UL (Unordered List)
	Optional Attribute
	Required Tag
	Example: Unordered Lists
	UIM Source
	Results

	VAR (Variable Definition)
	Required Attribute
	Optional Attributes
	Dialog Variables Defined by UIM

	VARRCD (Variable Record Definition)
	Required Attributes
	Optional Attributes

	XH1 through XH4 (Extended Help Headings)
	Required Text
	Formatting Rules
	Example: Sample Headings
	UIM Source
	Results

	XMP (Example)
	Example: Formatting an Example
	UIM Source
	Results

	Appendix B. UIM Dialog Commands
	The VARUPD Attribute
	ACTIONS (Menu Bar Cursor Action)
	Messages

	CALL (Call Program)
	Required Parameter
	VARUPD Value
	Messages

	CANCEL
	Optional Parameter
	VARUPD Value
	Messages

	CHGVIEW (Change View)
	Parameters
	VARUPD Value
	Messages

	CMD (System Command)
	Parameter
	VARUPD Value
	Messages
	Hint

	CMDLINE (Command Line)
	Parameters
	Messages

	DSPHELP (Display Help)
	Required Parameter
	Optional Parameter
	Messages

	ENTER
	Parameters
	VARUPD Value
	Messages
	Considerations for Using the ENTER, HELP, and PROMPT Dialog Commands

	EXIT (Exit Display)
	Optional Parameter
	VARUPD Value
	Messages

	EXTHELP (Extended Help)
	Parameters

	HELP
	Parameters
	VARUPD Value
	Messages

	HELPHELP
	Parameters
	Messages

	HELPIDX
	Parameters
	Messages

	HOME (Display Home Menu)
	Parameters
	VARUPD Value
	Messages

	KEYSHELP
	Messages

	MENU
	Required Parameter
	Optional Parameter
	Messages

	MOREKEYS (Display More Function Keys)
	Parameters
	Messages

	MOVETOP (Move to Top)
	Parameters
	VARUPD Value
	Messages

	MSG (Display Message)
	Required Parameter
	Optional Parameter
	VARUPD Value

	PAGEDOWN
	Parameters
	Messages

	PAGEUP
	Parameters
	VARUPD Value
	Messages

	PRINT (Print Display)
	Parameters
	VARUPD Value
	Messages

	PROMPT
	Parameters
	VARUPD Value
	Messages
	Prompting an Entry Field
	Prompting an Action List Option or Command

	PULLDOWN (Display Pull-Down Menu)
	Parameters

	RETRIEVE (Retrieve Command String)
	Parameters
	VARUPD Value
	Messages

	RETURN (Return Control to Application)
	Required Parameter
	VARUPD Value
	Messages

	Appendix C. Feedback Area Layouts for Display Files
	Open Feedback Area
	Device Definition List

	I/O Feedback Area
	Common I/O Feedback Area
	I/O Feedback Area for Display Files
	Get Attributes

	Appendix D. Display File Return Codes
	Major Code 00
	Major Code 02
	Major Code 03
	Major Code 04
	Major Codes 08–11
	Major Code 34
	Major Code 80
	Major Code 81
	Major Code 82
	Major Code 83

	Appendix E. Edit Codes
	i5/OS Edit Codes
	Examples of Editing Using i5/OS Edit Codes

	User-Defined Edit Codes
	Using User-Defined Edit Codes
	Example of a User-Defined Edit Code

	Appendix F. System/36-Compatible Display Data Management
	Clearing Lines on the Display
	Input Data for Display File Records
	Input Data from the Work Station Controller
	Self-Check
	Return Input
	Erase Input Fields
	Display Attributes
	Positioning the Cursor
	Displaying Messages
	Put Override
	Handling Signed Numeric Data
	Function Keys
	Help Key Considerations
	Using Command Keys to Exit Application Help
	Cancel-Invite Operation
	Retain Command and Function Keys
	System/36 Functions Not Supported
	Restricted DDS Keywords/Functions

	Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

	Bibliography
	System Use
	Systems Management
	Application Development
	Communications and Connectivity
	Program Enablers
	Program Interfaces

	Index

