





System i
ILE C/C++ Runtime Library Functions

Version 6 Release 1

SC41-5607-03



Note
Before using this information and the product it supports, be sure to read the information in

[Appendix B, “Notices,” on page 555,

This edition applies to version 6, release 1, modification 0 of IBM i5/0S (product number 5761-S51), and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1999, 2008. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.




Contents

Tables ix
About ILE C/C++ Runtime Library
Functions (SC41-5607) . . Xi
Who should read this book . . Xxi
A note about examples. . . xi
Prerequisite and related information . . Xl
How to send your comments . Xii
Summary of Changes . . Xiii
Part 1. Runtime Library Functions . . 1
Chapter 1. Include Files . . 3
<assert.h> .3
<ctype.h> .3
<decimal.h> .3
<errno.h> .4
<except.h> . .4
<float.h>. .7
<inttypes.h> .7
<langinfo.h> .7
<limits.h> .7
<locale.h> .7
<math.h> . 8
<mallocinfo.h>. . 8
<monetary.h> . . 8
<nl_types.h> .9
<pointer.h> . .9
<recio.h> .9
<regex.h> . .12
<setjmp.h> .13
<signal.h> . .13
<stdarg.h>. .13
<stddef.h>. .13
<stdint.h> . .14
<stdio.h> . .15
<stdlib.h> . 17
<string.h> . 17
<strings.h> 17
<time.h> 18
<wchar.h>. 18
<wctype.h> .19
<xxcvt.h> . .19
<xxdtaa.h> . 19
<xxenv.h> . .19
<xxfdbk.h> . . .19
Machine Interface (Ml) Include F1les . . 20
Chapter 2. Library Functions .21
The C/C++ Library. .21
Error Handling . .21
Searching and Sorting . .22
Mathematical . .22

© Copyright IBM Corp. 1999, 2008

Time Manipulation .
Type Conversion
Conversion .
Record Input/ Output
Stream Input/Output .
Handling Argument Lists.
Pseudorandom Numbers .
Dynamic Memory Management
Memory Objects .
Environment Interaction .
String Operations
Character Testing
Multibyte Character Testmg
Character Case Mapping . .
Multibyte Character Manrpulatron
Data Areas
Message Catalogs
Regular Expression .
abort() — Stop a Program
abs() — Calculate Integer Absolute Value
acos() — Calculate Arccosine .
asctime() — Convert Time to Character Strmg
asctime_r() — Convert Time to Character String
(Restartable) . .
asin() — Calculate Arcsine
assert() — Verify Condition .
atan() — atan2() — Calculate Arctangent
atexit() — Record Program Ending Function
atof() — Convert Character String to Float .
atoi() — Convert Character String to Integer
atol() — atoll() — Convert Character String to Long
or Long Long Integer . o
Bessel Functions .
bsearch() — Search Arrays
btowc() — Convert Single Byte to Wlde Character
_C_Get_Ssn_Handle() — Handle to C Session .
calloc() — Reserve and Initialize Storage.
catclose() — Close Message Catalog .
catgets() — Retrieve a Message from a Message
Catalog . .
catopen() — Open Message Catalog .
ceil() — Find Integer >=Argument.
clearerr() — Reset Error Indicators.
clock() — Determine Processor Time .
cos() — Calculate Cosine .
cosh() — Calculate Hyperbolic Cosme
_C_Quickpool_Debug() — Modify Quick Pool
Memory Management Characteristics. .
_C_Quickpool_Init() — Initialize Quick Pool
Memory Management . .
_C_Quickpool_Report() — Generate Qu1cl< Pool
Memory Management Report .o .
ctime() — Convert Time to Character Strlng
ctime64() — Convert Time to Character String.
ctime_r() — Convert Time to Character String
(Restartable) .

.24
. 25
. 26
. 26
.27
. 30
.31
. 31
.31
.32
.32
. 33
. 34
. 34
. 34
. 36
. 36
. 36
. 36
. 37
. 38
. 39

.41
. 42
.43
. 44
. 45
. 46
. 48

. 49
. 50
. 51

53

. 55
. 55
. 57

. 58
. 59
. 61
. 62
. 63
. 64
. 65

. 66
. 68
.70
.71
.73

. 74

iii



ctime64_r() — Convert Time to Character String
(Restartable) . . .
_C_TS_malloc_debug() — Determme amount of
teraspace memory used (with optional dumps and
verification) .o
_C_TS_malloc_info() — Determme amount of
teraspace memory used . .
difftime() — Compute Time D1fference .
difftime64() — Compute Time Difference
div() — Calculate Quotient and Remainder.
erf() — erfc() — Calculate Error Functions
exit() — End Program . .
exp() — Calculate Exponential Funct1on
fabs() — Calculate Floating-Point Absolute Value
fclose() — Close Stream
fdopen() — Associates Stream W1th F1le Descr1ptor
feof() — Test End-of-File Indicator.
ferror() — Test for Read /Write Errors.
fflush() — Write Buffer to File .
fgetc() — Read a Character .
fgetpos() — Get File Position
fgets() — Read a String . .
fgetwc() — Read Wide Character from Stream
fgetws() — Read Wide-Character Strlng from
Stream . .
fileno() — Determme Flle Handle
floor() —Find Integer <=Argument . .
fmod() — Calculate Floating-Point Remainder
fopen() — Open Files.
fprintf() — Write Formatted Data to a Stream
fpute() — Write Character .
_fputchar - Write Character.
fputs() — Write String
fputwe() — Write Wide Character
fputws() — Write Wide-Character Str1ng
fread() — Read Items. .o
free() — Release Storage Blocks
freopen() — Redirect Open Files .
frexp() — Separate Floating-Point Value
fscanf() — Read Formatted Data . .
fseek() — fseeko() — Reposition File Pos1t1on
fsetpos() — Set File Position
ftell() — ftello() — Get Current Pos1t1on
fwide() — Determine Stream Orientation . .
fwprintf() — Format Data as Wide Characters and
Write to a Stream .
fwrite() — Write Items
fwscanf() — Read Data from Stream Usmg W1de
Character. Ce .o
gamma() — Gamma Funct1on
_gevt - Convert Floating-Point to Str1ng
getc() — getchar() — Read a Character .
getenv() — Search for Environment Variables.
_GetExcData() — Get Exception Data
gets() — Read a Line . .
getwe() — Read Wide Character from Stream
getwchar() — Get Wide Character from stdin.
gmtime() — Convert Time .
gmtime64() — Convert Time
gmtime_r() — Convert Time (Restartable)
gmtime64_r() — Convert Time (Restartable) .

iV ILE C/C++ Runtime Library Functions V6R1

. 76

.77

.79
. 82
. 84
. 86
. 87
. 88
. 89
.90
.91

92

. 95

. 96

. 98
099
. 101

. 102

. 104
. 106
. 107
. 108
. 109
. 116
. 118
. 120
. 121
. 122
. 124
. 126
. 128
. 130
. 132
. 132
. 134
. 136
. 138
. 140

. 143
. 146

. 147
. 150
. 151
. 152
. 154
. 154
. 156
. 157
. 159
. 161
. 163
. 165
. 167

hypot() — Calculate Hypotenuse .

isalnum() - isxdigit() — Test Integer Value

isascii() — Test for Character Representable as

ASCII Value . .

isblank() — Test for Blank or Tab Character .

iswalnum() to iswxdigit() — Test Wide Integer

Value .

iswctype() — Test for Character Property
_itoa - Convert Integer to String . .

labs() — llabs() — Calculate Absolute Value of

Long and Long Long Integer . . .o

ldexp() — Multiply by a Power of Two

Idiv() — lldiv() — Perform Long and Long Long

Division .

localeconv() — Retrleve Informat1on from the

Environment .

localtime() — Convert T1me

localtime64() — Convert Time .

localtime_r() — Convert Time (Restartable)

localtime64_r() — Convert Time (Restartable).

log() — Calculate Natural Logarithm

log10() — Calculate Base 10 Logarithm .

_ltoa - Convert Long Integer to String .

longjmp() — Restore Stack Environment

malloc() — Reserve Storage Block .

mblen() — Determine Length of a Multibyte

Character.

mbrlen() — Determlne Length of a Multlbyte

Character (Restartable) .

mbrtowc() — Convert a Multibyte Character to a

Wide Character (Restartable)

mbsinit() — Test State Object for Initial State

mbsrtowcs() — Convert a Multibyte String to a

Wide Character String (Restartable) . .

mbstowcs() — Convert a Multibyte String to a

Wide Character String

mbtowc() — Convert Mult1byte Character to a

Wide Character. .

memchr() — Search Buffer .

mememp() — Compare Buffers

memcpy() — Copy Bytes

memicmp() - Compare Bytes .

memmove() — Copy Bytes .

memset() — Set Bytes to Value

mktime() — Convert Local Time .

mktime64() — Convert Local Time .

modf() — Separate Floating-Point Value

nextafter() — nextafterl()— nexttoward() —

nexttowardl() — Calculate the Next Representable

Floating-Point Value . . .

nl_langinfo() —Retrieve Locale Informatlon .

perror() — Print Error Message

pow() — Compute Power . .

printf() — Print Formatted Characters .

pute() — putchar() — Write a Character .

putenv() — Change/Add Environment Vanables

puts() — Write a String .

putwe() — Write Wide Character

putwchar() — Write Wide Character to stdout

gsort() — Sort Array . .

QXXCHGDA() — Change Data Area

. 168
. 169

. 171
. 172

. 173
. 175
. 176

. 177
. 178

. 179

. 181
. 185
. 187
. 188
. 189
. 191
. 191
. 192
. 193
. 195

. 197

. 199

. 201
. 205

. 206

. 207

.21
. 212
. 213
. 214
. 215
. 217
. 218
. 218
. 220
. 222

. 223
. 224
. 227
. 228
. 229
. 239

240

. 241
. 242
. 244
. 245
. 247



QXXDTOP() — Convert Double to Packed Decimal
QXXDTOZ() —Convert Double to Zoned Decimal
QXXITOP() — Convert Integer to Packed Decimal
QXXITOZ() — Convert Integer to Zoned Decimal
QXXPTOD() — Convert Packed Decimal to Double
QXXPTOI() — Convert Packed Decimal to Integer
QXXRTVDA() — Retrieve Data Area
QXXZTOD() — Convert Zoned Decimal to Double
QXXZTOI() — Convert Zoned Decimal to Integer
raise() — Send Signal. . .
rand(), rand_r() — Generate Random Nurnber
_Racquire() — Acquire a Program Device .
_Rclose() — Close a File.
_Rcommit() — Commit Current Record
_Rdelete() — Delete a Record .
_Rdevatr() — Get Device Attrlbutes
realloc() — Change Reserved Storage Block Slze
regcomp() — Compile Regular Expression.
regerror() — Return Error Message for Regular
Expression .
regexec() — Execute Cornplled Regular Expressron
regfree() — Free Memory for Regular Expression
remove() — Delete File .
rename() — Rename File .
rewind() — Adjust Current File Posrtron
_Rfeod() — Force the End-of-Data
_Rfeov() — Force the End-of-File . .
_Rformat() — Set the Record Format Name
_Rindara() — Set Separate Indicator Area .
_Riofbk() — Obtain I/O Feedback Information .
_Rlocate() — Position a Record
_Ropen() — Open a Record File for 1/ O Operatrons
_Ropnfbk() — Obtain Open Feedback Information
_Rpgmdev() — Set Default Program Device .
_Rreadd() — Read a Record by Relative Record
Number . e
_Rreadf() — Read the Flrst Record .o
_Rreadindv() — Read from an Invited Device
_Rreadk() — Read a Record by Key .
_Rreadl() — Read the Last Record
_Rreadn() — Read the Next Record . .
_Rreadnc() — Read the Next Changed Record in a
Subfile. S
_Rreadp() — Read the PreV1ous Record
_Rreads() — Read the Same Record .
_Rrelease() — Release a Program Device
_Rrlslck() — Release a Record Lock .
_Rrollbck() — Roll Back Commitment Control
Changes . . e
_Rupdate() — Update a Record
_Rupfb() — Provide Information on Last I / O
Operation .o
_Rwrite() — Write the Next Record
_Rwrited() — Write a Record Directly .
_Rwriterd() — Write and Read a Record
_Rwrread() — Write and Read a Record (separate
buffers)
scanf() — Read Data . .
setbuf() — Control Buffering
setjmp() — Preserve Environment
setlocale() — Set Locale .

248
249
250
250
251
252
. 252
254
255

. 255
. 256
. 257
. 258
. 259
. 261
. 263

264

. 267

. 269

271
273

. 274
. 275
. 276
. 278
. 279
. 280
. 282
. 284

. 286
289
293

. 294

. 295
. 297
. 299
. 302
. 305

. 306

. 308
. 310
. 312
. 314
. 316

. 317
. 319

. 320
. 322
. 324
. 327

. 328
. 330
. 336
. 338
. 339

setvbuf() — Control Buffering .
signal() — Handle Interrupt Signals .
sin() — Calculate Sine . .
sinh() — Calculate Hyperbolic Slne . .
snprintf() — Print Formatted Data to Buffer .
sprintf() — Print Formatted Data to Buffer
sqrt() — Calculate Square Root
srand() — Set Seed for rand() Function .
sscanf() — Read Data. .
strcasecmp() — Compare Strings wrthout Case
Sensitivity .
strcat() — Concatenate Strlngs
strchr() — Search for Character
stremp() — Compare Strings
strempi() - Compare Strings Wlthout Case
Sensitivity
strcoll() — Compare Strlngs
strcpy() — Copy Strings . .
strespn() — Find Offset of First Character Match
strdup - Duplicate String
strerror() — Set Pointer to Runtrme Error Message
strfmon() — Convert Monetary Value to String .
strftime() — Convert Date/Time to String .
stricmp() - Compare Strings without Case
Sensitivity
strlen() — Determlne Strrng Length
strncasecmp() — Compare Strings without Case
Sensitivity .
strncat() — Concatenate Strmgs
strnemp() — Compare Strings .
strnepy() — Copy Strings .
strnicmp - Compare Substrings Wlthout Case
Sensitivity
strnset - strset - Set Characters in Strrng
strpbrk() — Find Characters in String
strptime()— Convert String to Date/Time .
strrchr() — Locate Last Occurrence of Character in
String . .
strspn() —Find Offset of Flrst Non—matchlng
Character. e
strstr() — Locate Substrrng
strtod() — strtof() — strtold — Convert Character
String to Double, Float, and Long Double .
strtod32() — strtod64() — strtod128() — Convert
Character String to Decimal Floating—Point
strtok() — Tokenize String . .
strtok_r() — Tokenize String (Restartable)

strtol() — strtoll() — Convert Character String to
Long and Long Long Integer .
strtoul() — strtoull() — Convert Character Strlng to
Unsigned Long and Unsigned Long Long Integer
strxfrm() — Transform String .
swprintf() — Format and Write Wrde Characters to
Buffer . .
swscanf() — Read W1de Character Data
system() — Execute a Command .
tan() — Calculate Tangent . .
tanh() — Calculate Hyperbolic Tangent
time() — Determine Current Time
time64() — Determine Current Time.
tmpfile() — Create Temporary File

Contents

. 344
. 346
. 348
. 349
. 350
. 352
. 353
. 354
. 355

. 357
. 358
. 359
. 360

. 362
. 363
. 364

365

. 366

367

. 368
. 370

. 374
. 375

. 376
. 377
. 379
. 380

. 382
. 383
. 384
. 385

. 389

. 390
. 391

. 392
. 395

. 398
. 399

. 400

. 403

. 404

. 406
. 407
. 408
. 409
. 410
. 411
. 412
. 414

A\



tmpnam() — Produce Temporary File Name .
toascii() — Convert Character to Character
Representable by ASCII .

tolower() — toupper() — Convert Character Case
towctrans() — Translate Wide Character
towlower() ~towupper() — Convert Wide
Character Case .

_ultoa - Convert Unsigned Long Integer to Strlng

ungetc() — Push Character onto Input Stream
ungetwc() — Push Wide Character onto Input
Stream

va_arg() — va end() -va start() — Access Functron

Arguments . .
viprintf() — Print Argument Data to Stream .
vfscanf() — Read Formatted Data

viwprintf() — Format Argument Data as Wlde

Characters and Write to a Stream.

viwscanf() — Read Formatted Wide Character Data
. 432
. 433
. 435
. 436
. 437

vprintf() — Print Argument Data.

vscanf() — Read Formatted Data . .
vsnprintf() — Print Argument Data to Buffer
vsprintf() — Print Argument Data to Buffer .
vsscanf() — Read Formatted Data

vswprintf() — Format and Write Wide Characters

to Buffer .

vswscanf() — Read Formatted W1de Character

Data
vwprintf() — Format Argument Data as Wrde
Characters and Print .

vwscanf() — Read Formatted W1de Character Data

wertomb() — Convert a Wide Character to a
Multibyte Character (Restartable).

wescat() — Concatenate Wide-Character Strrngs
weschr() — Search for Wide Character .
wesemp() — Compare Wide-Character Strings

wescoll() —Language Collation String Comparison

wescpy() — Copy Wide-Character Strings .

wescspn() — Find Offset of First Wide-Character

Match .

wesftime() — Convert to Formatted Date and Tlme
__wesicmp() — Compare Wide Character Strmgs

without Case Sensitivity . .

weslen() — Calculate Length of W1de Character
String .

wcslocaleconv() — Retrreve W1de Locale
Information .

wcesncat() — Concatenate Wlde Character Strlngs

wesnemp() — Compare Wide-Character Strings
wesnepy() — Copy Wide-Character Strings

__wesnicmp() — Compare Wide Character Strings

without Case Sensitivity .

wespbrk() — Locate Wide Characters in Strrng .

wcesptime()— Convert Wide Character String to
Date/Time

wesrchr() — Locate Last Occurrence of Wlde
Character in String

wesrtombs() — Convert Wlde Character Strlng to

Multibyte String (Restartable) .

wesspn() — Find Offset of First Non—matchrng

Wide Character.
wesstr() — Locate Wide- Character Substrlng

Vi ILE C/C++ Runtime Library Functions V6R1

. 414

. 415

416

. 417

. 418

419

. 420

. 422

. 423
. 425
. 427

. 428
430

. 439

. 441

. 443
445

. 446

451

. 452
. 453

455

. 456

. 457
458

. 460

. 461

. 462

463
464

. 466

. 467
. 468

. 469

. 471

. 473

. 474
. 475

westod() — Convert Wide-Character String to
Double

westod32() — wcstod64() — wcstod128()— Convert
. 478
. 480

Wide-Character String to Decimal Floating-Point
westok() — Tokenize Wide-Character String .
westol() — westoll() — Convert Wide Character
String to Long and Long Long Integer .
westombs() — Convert Wide-Character String to
Multibyte String

westoul() — westoull() — Convert W1de Character
String to Unsigned Long and Unsigned Long Long

Integer

weswes() — Locate Wlde Character Substrlng
weswidth() —
Wide Character String

wesxfrm() — Transform a W1de Character Strrng
wctob() — Convert Wide Character to Byte

wctomb() — Convert Wide Character to Multibyte

Character.

wetrans() —Get Handle for Character Mapplng
wctype() — Get Handle for Character Property
Classification

wewidth() — Determlne the Dlsplay Wrdth of a
Wide Character. .o S
wfopen() —Open Files

wmemchr() —Locate Wide Character in
Wide-Character Buffer

wmememp() —Compare Wide- Character Buffers
wmemcpy() —Copy Wide-Character Buffer
wmemmove() — Copy Wide-Character Buffer

wmemset() — Set Wide Character Buffer to a Value
wprintf() — Format Data as Wide Characters and

Print .
wscanf() — Read Data Us1ng W1de Character
Format String o

Chapter 3. Runtime Considerations
errno Macros

errno Values for Integrated F11e System Enabled C

Stream I/0 .

Record Input and Output Error Macro to Exceptron

. 510
. 511
. 513
. 514
. 515
. 516
. 523
. 524
. 524
. 527
. 529
. 530
. 531
. 531
. 532
. 534
. 534
. 535
. 536
. 536

Mapping . . .

Signal Handling Actlon Def1n1t10ns .
Signal to i5/0S Exception Mapping .

Cancel Handler Reason Codes. .

Exception Classes .

Data Type Compatibility

Runtime Character Set .

Understanding CCSIDs and Locales

CCSIDs of Characters and Character Strmgs .

Wide Characters

Asynchronous Signal Model

Unicode Support . .
Reasons to Use Unicode Support
Pseudo-CCSID Neutrality .
Unicode from Other ILE Languages
Standard Files . o .
Considerations .
Default File CCSID
Newline Character
Conversion Errors .

Determine the Display Width of a

. 476

. 481

. 483

. 486
. 488

. 489

490

. 491

. 492

493

. 495

. 497
. 498

. 498

499

. 500
. 501

502

. 503

. 504

507
. 507

. 508



Appendix A. Library Functions and
Extensions . . . . . . . . . . . .537
Standard C Library Functions Table, By Name . . 537

ILE C Library Extensions to C Library Functions
Table . . . . . . . . . . . . . . . .551

Appendix B. Notices . . . . . . . . 555

Programming interface information .

Trademarks .
Bibliography.

Index .

. 556
. 557

. 559

. 561

Contents

vii



viii ILE C/C++ Runtime Library Functions V6R1



Tables

14.

15.
16.
17.
18.

19.

0PN TT PN

Grouping Example. .
Monetary Formatting Example.
Monetary Fields

Values of Precision.

Return values of strcasecmp() .
Flags

Conversion Characters

Return values of strncasecmp ()
Return values of __wcsicmp()
Return values of __wcsicmp()
errno Macros.

errno Values for Integrated Flle System
Enabled C Stream 1/0

Record Input and Output Error Macro to

Exception Mapping

Handling Action Deﬁmtrons for Slgnal Values

Default Actions for Signal Values .

Signal to i5/0OS Exception Mapping .
Determining Canceled Invocation Reason
Codes . .

Common Reason Code for Cancelhng
Invocations

© Copyright IBM Corp. 1999, 2008

. 183
. 183
. 183
. 235
. 288
. 357
. 369
. 370
. 376
. 460
. 468
. 507

. 508

. 510
511

. 512
. 513

. 514

. 515

20.
21.
22.

23.
24.

25.

26.
27.

28.
29.
30.
31.

32.
33.

Exception Classes .

ILE C Data Type Compatlblhty w1th ILE RPG

ILE C Data Type Compatibility with ILE
COBOL

ILE C Data Type Compat1b111ty w1th ILE CL

ILE C Data Type Compatibility with OPM
RPG/400 . .

ILE C Data Type Compatlblhty w1th OPM

COBOL/400 .

ILE C Data Type Compatlblhty w1th CL
Arguments Passed From a Command Line
CL Call to an ILE C Program

CL Constants Passed from a Complled CL

Program to an ILE C Program .

CL Variables Passed from a Compiled CL

Program to an ILE C Program .
Invariant Characters .

Variant Characters in Different CCSIDs
Standard C Library Functions .

ILE C Library Extensions

. 515
517

. 518

519

. 519

. 520

521

. 522

. 522

. 522
. 523

523

. 537
. 551

ix



X ILE C/C++ Runtime Library Functions V6R1



About ILE C/C++ Runtime Library Functions (SC41-5607)

This book provides reference information about:
¢ Include files
* Runtime functions

¢ Runtime considerations

Use this book as a reference when you write Integrated Language Environment® (ILE) C and C++
applications.

This book does not describe how to program in the C or C++ programming languages, nor does it
explain the concepts of ILE. Companion publications for this reference are:

* C/C++ Legacy Class Libraries Reference, SC09-7652-00

* ILE Concepts, SC41-5606-08

e ILE C/C++ for AS/400 MI Library Reference, SC09-2418-00

e Standard C/C++ Library Reference, SC09-4949-01

* WebSphere Development Studio: ILE C/C++ Compiler Reference, SC09-4816-04
* WebSphere Development Studio: ILE C/C++ Language Reference, SC09-7852-01
* WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712-06

For other prerequisite and related information, see [“Prerequisite and related information”|and the
[“Bibliography” on page 559.|

Who should read this book

This book is intended for programmers who are familiar with the C/C++ programming language and
who want to write or maintain ILE C/C++ applications. You must have experience in using applicable
i5/0S® menus, and displays or control language (CL) commands. You also need knowledge of Integrated
Language Environment as explained in the ILE Concepts manual.

A note about examples

The examples in this book that illustrate the use of library functions are written in a simple style. The
examples do not demonstrate all possible uses of C/C++ language constructs. Some examples are only
code fragments and do not compile without additional code. The examples all assume that the C locale is
used.

All complete runnable examples for library functions and machine interface instructions are in library
QCPPLE, in source file QACSRC. Each example name is the same as the function name or instruction
name. For example, the source code for the example illustrating the use of the _Rcommit () function in this
book is in library QCPPLE, file QACSRC, member RCOMMIT. The QSYSINC library must be installed.

Prerequisite and related information

Use the IBM® i5/0S Information Center as your starting point for IBM System i technical information.

You can access the information center two ways:
* From the following Web site:
http://www.ibm.com/systems/i/infocenter/

© Copyright IBM Corp. 1999, 2008 xi



* From the i5/0S Information Center CD, SK3T-4091. This CD-ROM is included with your new System i
hardware or i5/0S software upgrade order. You can also order the CD-ROM from the IBM
Publications Center:

http://www.ibm.com/shop/publications/order

The i5/0S Information Center contains new and updated system information such as software and
hardware installation, Linux®, WebSphere®, Java'", high availability, database, logical partitions, CL
commands, and system application programming interfaces (APIs). In addition, it provides advisors and
finders to assist in planning, troubleshooting, and configuring your system hardware and software.

With every new hardware order, you receive the System i Access for Windows DVD, SK3T-4098. This DVD
provides for the installation for IBM System i Access for Windows licensed program. System i Access
Family offers client and server capabilities for connecting PCs to System i models.

For other related information, see the [“Bibliography” on page 559

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other System i documentation, fill out the readers” comment
form at the back of this book.

* If you prefer to send comments by mail, use the readers’ comment form with the address that is
printed on the back. If you are mailing a readers” comment form from a country or region other than
the United States, you can give the form to the local IBM branch office or IBM representative for
postage-paid mailing.

* If you prefer to send comments by FAX, use either of the following numbers:

— United States, Canada, and Puerto Rico: 1-800-937-3430
— Other countries or regions: 1-507-253-5192

* If you prefer to send comments electronically, use one of these e-mail addresses:

— Comments on books:
RCHCLERK®@us.ibm.com

— Comments on the i5/0S Information Center:
RCHINFOC@us.ibm.com

Be sure to include the following:
* The name of the book or i5/0S Information Center topic.
* The publication number of a book.

* The page number or topic of a book to which your comment applies.

Xii ILE C/C++ Runtime Library Functions V6R1



Summary of Changes

Here are the changes to this information for this edition.
* V6R1 updates

— ILE C runtime now supports the new data type decimal floating-point:

[strtod32()-strtod64()-strtod128()|
fwcstod32 ()—westod64 ()—westod128 ()|
<float.h>|

- Jprintf(
- |scanf()

1
=
~—

— 64-bit time functions have been added to ILE C runtime:
- i (
- |difftime64
mtime64
- lgmtime64 r(
ocaltime6d

O
—+
=
3
@D
[«))
>
e

)
purs
—_
3
D
(=]
E~Y
]
—
~—

—
—

1
Q |lQ |
—
~—
~—

1
—
—
~—

1
—]
o
O
Qv
—
+
—_
3
D
(=2
=
1
—
~—

ktime64 ()
ime64 ()
* V5R4 updates

1
+

The topic was not updated in V5R4. The following sections have been updated or added in this release

for the V5R4 updates since the previous edition.

— | C Quickpool Debug ()]

— | C Quickpool Init()]

— | C Quickpool Report ()|

-

- |hextafter(), nextafterl(), nexttoward(), nexttowardl ()|
-

— [strtod(), strtof(), strtold()|

— [Understanding CCSIDs and Locales|

— [Unicode from other ILE languages|

© Copyright IBM Corp. 1999, 2008

xiii



Xiv  ILE C/C++ Runtime Library Functions V6R1



Part 1. Runtime Library Functions

© Copyright IBM Corp. 1999, 2008



2 ILE C/C++ Runtime Library Functions V6R1



Chapter 1. Include Files

The include files that are provided with the runtime library contain macro and constant definitions, type
definitions, and function declarations. Some functions require definitions and declarations from include
files to work properly. The inclusion of files is optional, as long as the necessary statements from the files
are coded directly into the source.

This section describes each include file, explains its contents, and lists the functions that are declared in
the file.

The QSYSINC (system openness includes) library must be installed on your i5/0S operating system.
QSYSINC contains include files useful for C/C++ users, such as system API, Dynamic Screen Manager
(DSM), and ILE header files. The QSYSINC library contains header files that include the prototypes and
templates for the machine interface (MI) built-ins and the ILE C/C++ MI functions. See the ILE C/C++ for
AS/400 MI Library Reference for more information about these header files.

<assert.h>

The <assert.h> include file defines the macro. You must include assert.h when you use assert.

The definition of assert is in an #ifndef preprocessor block. If you have not defined the identifier
NDEBUG through a #define directive or on the compilation command, the assert macro tests the
assertion expression. If the assertion is false, the system prints a message to stderr, and raises an abort
signal for the program. The system also does a Dump Job (DMPJOB) OUTPUT(*PRINT) when the
assertion is false.

If NDEBUG is defined, assert is defined to do nothing. You can suppress program assertions by defining
NDEBUG.

<ctype.h>

The <ctype.h> include file defines functions that are used in character classification. The functions that
are defined in <ctype.h> are:

1'sasc1'1'1| ishl ankzl isgraph ispunct] toasci 1'1|

isalnum iscntrl isTowen isspace tolower

isalphal isdigit| isprint| isuppern toupper

1'sxd1'g1't|

Note: ' These functions are not available when LOCALETYPE(*CLD) is specified on the
compilation command.
Note: * This function is applicable to C++ only.

<decimal.h>

The <decimal.h> include file contains definitions of constants that specify the ranges of the packed
decimal type and its attributes. The <decimal.h> file must be included with a #include directive in your
source code if you use the keywords decimal, digitsof, or precisionof.

© Copyright IBM Corp. 1999, 2008 3



<errno.h>

The <errno.h> include file defines macros that are set to the errno variable. The <errno.h> include file
defines macros for values that are used for error reporting in the C library functions and defines the
macro errno. An integer value can be assigned to errno, and its value can be tested during run time. See
"Checking the Errno Value" in the WebSphere Development Studio: ILE C/C++ Programmer’s Guide for
information about displaying the current errno value.

Note: To test the value of errno after library function calls, set it to 0 before the call because its value
may not be reset during the call.

<except.h>

The <except.h> include file declares types and macros that are used in ILE C exception handling.

The definition of INTRPT Hndlr Parms T is:
typedef Packed struct {

unsigned int
_INVFLAGS T
char

INVPTR

_INVPTR
_SPCPTR

char

char

char

_INTRPT Mask_T
unsigned int
unsigned short
unsigned short
char

Block_Size;
Tgt_Flags;
reserved[8];
Target;

Source;

Com_Area;
Compare_Data[32];
Msg_Id[7];
reservedl;

Mask;

Msg_Ref Key;
Exception_Id;
Compare_Data_Len;
Signal_Class;

char Priority;
short Severity;
char reserved3[4];
int Msg Data_Len;
char Mch_Dep Data[10];
char Tgt_Inv_Type;
_SUSPENDPTR Tgt_Suspend;
char Ex_Data[48];
} _INTRPT Hndlr_Parms_T;
Element
Description
Block_Size

The size of the parameter block passed to the exception handler.

Tgt_Flags
Contains flags that are used by the system.

reserved
An eight byte reserved field.

Target An invocation pointer to the call stack entry that enabled the exception handler.

Source
An invocation pointer to the call stack entry that caused the exception. If that call stack entry no
longer exists, then this is a pointer to the call stack entry where control resumes when the
exception is handled.

Com_Area
A pointer to the communications area variable specified as the second parameter on the #pragma
exception_handler. If a communication area was not specified, this value is NULL.

4 ILE C/C++ Runtime Library Functions V6R1



Compare_Data
The compare data consists of 4 bytes of message prefix, for example CPF, MCH, followed by 28
bytes which are taken from the message data of the related message. In the case where the
message data is greater than 28 these are the first 28 bytes. For MCH messages, these are the first
28 bytes of the exception related data that is returned by the system (substitution text).

Msg_Id
A message identifier, for example CPF123D. *STATUS message types are not updated in this field.

reservedl
A 1 byte pad.

Mask This is an 8-byte exception mask, identifying the type of the exception that occurred, for example
a decimal data error. The possible types are shown in [Table 20 on page 515|

Msg_Ref Key
A key used to uniquely identify the message.

Exception_Id
Binary value of the exception id, for example, 0x123D. To display value, use conversion specifier
%x as information is stored in hex value.

Compare_Data_Len
The length of the compare data.

Signal_Class
Internal signal class.

Priority
The handler priority.

Severity
The message severity.

reserved3
A 4-byte reserved field.

Msg_Data_Len
The length of available message data.

Mch_Dep_Data
Machine-dependent data.

Tgt_Inv_Type
Invocation type. Macros are defined in <mimchobs.h>.

Tgt_Suspend
Suspend pointer of the target.

Ex_Data
The first 48 bytes of exception data.

The definition of CNL_Hndlr_Parms_T is:

typedef _Packed struct {
unsigned int Block_Size;
_INVFLAGS_T Inv_Flags;

char reserved[8];
_INVPTR Invocation;
_SPCPTR Com_Area;

_CNL_Mask_T Mask
} _CNL_Hnd1r_Parms_T;

Element
Description

Chapter 1. Include Files 5



Block_Size
The size of the parameter block passed to the cancel handler.

Inv_Flags
Contains flags that are used by the system.

reserved
An eight byte reserved field.

Invocation
An invocation pointer to the invocation that is being cancelled.

Com_Area
A pointer to the handler communications area defined by the cancel handler.

Mask A 4 byte value indicating the cancel reason.

The following built-ins are defined in <except.h>:

Built-in
Description

EXBDY
The purpose of the __EXBDY built-in or _LEXBDY macro is to act as a boundary for
exception-sensitive operations. An exception-sensitive operation is one that may signal an
exception. An EXBDY enables programmers to selectively suppress optimizations that do code
motion. For example, a divide is an exception-sensitive operation because it can signal a
divide-by-zero. An execution path containing both an EXBDY and a divide will perform the two
in the same order with or without optimization. For example:

b = expl;
C = exp2;
CEXBDY();
a = b/c;
__VBDY

The purpose of a __VBDY built-in or _-VBDY macro is to ensure the home storage locations are
current for variables that are potentially used on exception paths. This ensures the visibility of the
current values of variables in exception handlers. A VBDY enables programmers to selectively
suppress optimizations, such as redundant store elimination and forward store motion to enforce
sequential consistency of variable updates. In the following example, the VBDYs ensure that state
is in it’s home storage location before each block of code that may signal an exception. A VBDY is
often used in combination with an EXBDY to ensure that earlier assignments to state variables
really update home storage locations and that later exception sensitive operations are not moved
before these assignments.

state = 1;

_VBDY();

/* Do stuff that may signal an exception. */

state = 2;

_VBDY();

/* More stuff that may signal an exception. */
state = 3;
_VBDY();

For more information about built-ins, see the ILE C/C++ for AS/400 MI Library Reference .

6 ILE C/C++ Runtime Library Functions V6R1



<float.h>

The <float.h> include file defines constants that specify the ranges of binary floating-point data types.
For example, the maximum number of digits for objects of type double or the minimum exponent for
objects of type float. In addition, if the macro variable __ STDC_WANT_DEC_FP__ is defined, the
include file also defines constants that specify ranges of decimal floating-point data types. For example,
the maximum number of digits for objects of type _Decimal64 or the minimum exponent for objects of
type _Decimal32.

<inttypes.h>

The <inttypes.h> include file includes <stdint.h> and extends it with additional facilities.

The following macros are defined for format specifiers. These macros are defined for C programs. They

are defined for C++ only when _ STDC_FORMAT_MACROS is defined before <inttypes.h> is included.

PRId8 PRIo8 PRIX8 SCnd16 SCnuLEAST16
PRId16 PRIol6 PRIX16 SCnd32 SCnuLEAST32
PRId32 PRIo32 PRIX32 SCnd64 SCnuLEAST64
PRId64 PRIo64 PRIX64 SCndFAST16 SCnuMAX
PRIAFAST8 PRIOFAST8 PRIXFAST8 SCndFAST32 SCnx16
PRIAFAST16 PRIOFAST16 PRIXFAST16 SCndFAST64 SCnx32
PRIAFAST32 PRIOFAST32 PRIXFAST32 SCndLEAST16 SCnx64
PRIAFAST64 PRIOFAST64 PRIXFAST64 SCndLEAST32 SCnxFAST16
PRIALEAST8 PRIOLEAST8 PRIXLEAST8 SCndLEAST64 SCnxFAST32
PRIALEAST16 PRIOLEAST16 PRIXLEAST16 SCndMAX SCnxFAST64
PRIALEAST32 PRIOLEAST32 PRIXLEAST32 SCNol6 SCnxLEAST16
PRIALEAST64 PRIOLEAST64 PRIXLEAST64 SCNo32 SCnxLEAST32
PRIdMAX PRIOMAX PRIXMAX SCNo64 SCnxLEAST64
PRIi8 PRIu8 PRIX8 SCNoFAST16 SCnxMAX
PRIi16 PRIul6 PRIX16 SCNoFAST32

PRIi32 PRIu32 PRIX32 SCNoFAST64

PRIi64 PRIu64 PRIX64 SCNoLEAST16

PRIiFAST8 PRIUFAST8 PRIXFAST8 SCNoLEAST32

PRIiFAST16 PRIUFAST16 PRIXFAST16 SCNoLEAST64

PRI{iFAST32 PRIUFAST32 PRIXFAST32 SCNoMAX

PRI{iFAST64 PRIUFAST64 PRIXFAST64 SCNulé

PRIiLEAST8 PRIULEAST8 PRIXLEAST8 SCNu32

PRI{LEAST16 PRIULEAST16 PRIXLEAST16 SCNub64

PRI{LEAST32 PRIULEAST32 PRIXLEAST32 SCNuFAST16

PRIiLEAST64 PRIULEAST64 PRIXLEAST64 SCNuFAST32

PRIiMAX PRIUMAX PRIXMAX SCNuFAST64

<langinfo.h>

The <Tanginfo.h> include file contains the declarations and definitions that are used by n1_langinfo.

<limits.h>

The <Timits.h> include file defines constants that specify the ranges of integer and character data types.
For example, the maximum value for an object of type char.

<locale.h>

The <locale.h> include file declares the [setlocale()}|localeconv ()} and jwcslocaleconv ()|library
functions. These functions are useful for changing the C locale when you are creating applications for
international markets.

Chapter 1. Include Files 7



The <Tocale.h> include file also declares the type struct Tconv and the following macro definitions:

NULL LC_ALL LC C LC_C_FRANCE
LC_C_GERMANY LC_C_ITALY LC_C_SPAIN LC_C_UK
LC_C_USA LC_COLLATE LC_CTYPE LC_MESSAGES
LC_MONETARY LC_NUMERIC LC_TIME LC_TOD
LC_UCS2_ALL LC_UCS2_COLLATE LC_UCS2_CTYPE LC_UNI_ALL
LC_UNI_COLLATE LC_UNI_CTYPE LC_UNI_TIME LC_UNI_NUMERIC
LC_UNI_MESSAGES LC_UNI_MONITARY LC_UNI TOD

<math.h>

The <math.h> include file declares all the floating-point math functions:

frexp nextafter| sqrt|
gamma nextafterl tan
hypot nexttoward tanh
1dexp nexttowardl|

109 pow]

10910, sin

mod sinh

Notes:
1. The Bessel functions are a group of functions named j0, j1, jn, y0, y1, and yn.

2. Floating-point numbers are only guaranteed 15 significant digits. This can greatly affect expected
results if multiple floating-point numbers are used in a calculation.

<math.h> defines the macro HUGE_VAL, which expands to a positive double expression, and possibly to
infinity on systems that support infinity.

For all mathematical functions, a domain error occurs when an input argument is outside the range of
values that are allowed for that function. In the event of a domain error, errno is set to the value of
EDOM.

A range error occurs if the result of the function cannot be represented in a double value. If the
magnitude of the result is too large (overflow), the function returns the positive or negative value of the
macro HUGE_VAL, and sets errno to ERANGE. If the result is too small (underflow), the function returns
Zero.

<mallocinfo.h>
Include file with _C_TS_malloc_info and _C_TS_malloc_debug.

<monetary.h>

The <monetary.h> header file contains declarations and definitions that are related to the output of
monetary quantities. The following monetary functions are defined: strfmon() and wcsfmon(). The
strfmon() function is not available when LOCALETYPE(*CLD) is specified on the compilation command.
The wesfmon() function is available only when LOCALETYPE(*LOCALEUTEF) is specified on the
compilation command.

8 ILE C/C++ Runtime Library Functions V6R1



<nl_types.h>

The <nl1_types.h> header file contains catalog definitions and the following catalog functions:
catclose(), catgets(), and catopen(). These definitions are not available when either
LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

<pointer.h>

The <pointer.h> include file contains typedefs and pragma directives for the i5/OS pointer types: space
pointer, open pointer, invocation pointer, label pointer, system pointer, and suspend pointer. The typedefs

_ANYPTR and _SPCPTRCN are also defined in <pointer.h>.

<recio.h>

The <recio.h> include file defines the types and macros, and prototypes functions for all the ILE C
record input and output (I/O) operations.

The following functions are defined in <recio.h>:

_Racquire
_Rdevatr
_Rindara
_Ropnfbk
_Rreadindv
_Rreadnc
_Rrlslck
_Rwrite

_Rclose _Rcommit
_Rfeod _Rfeov
_Riofbk _Rlocate
_Rpgmdev _Rreadd
_Rreadk _Rreadl
_Rreadp _Rreads
_Rrollbck _Rupdate
_Rwrited _Rwriterd

The following positioning macros are defined in recio.h:

__END
_KEY_GE

_ KEY_NEXTEQ
__KEY_LAST

_ PRIOR

__ LAST

__END_ERC __FIRST
_KEY_GT _KEY_LE

_ KEY_NEXTUNQ __KEY_PREVEQ
__ KEY_NEXT _ NO_POSITION
_ RRN_EQ _ START

_ NEXT

The following macros are defined in recio.h:

_ DATA_ONLY

DFT __NO_LOCK

The following directional macros are defined in recio.h:

_ READ_NEXT

__ READ_PREV

The following functions and macros support locate or move mode:

_Rreadd
_Rreadl
_Rreads
_Rwriterd

_Rreadf _Rreadindv
_Rreadn _Rreadnc
_Rupdate _Rwrite
_Rwrread

_Rdelete
_Rformat
_Ropen
_Rreadf
_Rreadn
_Rrelease
_Rupfb
_Rwrread

__KEY_EQ
_KEY_LT
__KEY_PREVUNQ
_ PREVIOUS
START_FRC

__NULL_KEY_MAP

_Rreadk
_Rreadp
_Rwrited

Chapter 1. Include Files



Any of the record I/0O functions that include a buffer parameter may work in move mode or locate
mode. In move mode, data is moved between the user-supplied buffer and the system buffer. In locate
mode, the user must access the data in the system buffer. Pointers to the system buffers are exposed in
the _RFILE structure. To specify that locate mode is being used, the buffer parameter of the record I/O
function is coded as NULL.

A number of the functions include a size parameter. For move mode, this is the number of data bytes
that are copied between the user-supplied buffer and the system buffer. All of the record I/O functions
work with one record at a time regardless of the size that is specified. The size of this record is defined
by the file description. It may not be equal to the size parameter that is specified by the user on the call
to the record 1/0 functions. The amount of data that is moved between buffers is equal to the record
length of the current record format or specified minimum size, whichever is smaller. The size parameter
is ignored for locate mode.

The following types are defined in recio.h:

Information for controlling opened record I/O operations

typedef _Packed struct {

char
volatile void
volatile void

reservedl[16];
xconst *const in_buf;
*const *const out_buf;

char reserved2[48];
_RIOFB_T riofb;

char reserved3[32];
const unsigned int buf_length;
char reserved4[28];
volatile char +*const in_null_map;
volatile char =*const out_null_map;
volatile char =*const null_key map;

char
const int
short
short
char
}_RFILE;

Element

in_null_map

out_null_map

null_key_map

null_map_len

reserved5[48];
min_length;
null_map_len;
null_key map_len;
reserved6[8];

Description

Specifies which fields are to be considered NULL when you read from a
database file.

Specifies which fields are to be considered NULL when you write to a
database file.

Specifies which fields contain NULL if you are reading a database by key.

Specifies the lengths of the in_null_map and out_null_map.

null_key_map_len Specifies the length of the null_key_map.

Record 1/0 Feedback Information

typedef struct {

unsigned char
_Sys_Struct_T
unsigned long
long

short

char

int

int

int

char

}_RIOFB_T;

*key;
*sysparm;

rrn;
num_bytes;
bTk_count;
bTk_filled_by;
dup_key 01
icf_Tocate :1;
reservedl :6;
reserved2[20];

10 ILE C/C++ Runtime Library Functions V6R1



Element Description

key If you are processing a file using a keyed sequence access path, this field
contains a pointer to the key value of the record successfully positioned
to, read or written.

sysparm This field is a pointer to the major and minor return code for ICF, display,
and printer files.

rn This field contains the relative record number of the record that was
successfully positioned to, read or written.

num_bytes This field contains the number of bytes that are read or are written.

blk_count This field contains the number of records that remain in the block. If the
file is open for input, blkrcd=y is specified, and a read function is called,
this field will be updated with the number of records remaining in the
block.

blk_filled_by This field indicates the operation that filled the block. If the file is open
for input, blkrcd=y is specified, and a read function is called. This field
will be set to the _ READ_NEXT macro if the _Rreadn function filled the
block or to the __ READ_PREV macro if the _Rreadp function filled the

block.
System—-Specific Information
typedef struct {
void *sysparm_ext;
_Maj_Min_rc_T _Maj_Min;
char reserved1[12];

} _Sys Struct T;

Major and Minor Return Codes

typedef struct {
char major_rc[2];
char minor_rc[2];
} _Maj_Min_rc_T;

The following macros are defined in recio.h:

_FILENAME_MAX Expands to an integral constant expression that is the size of a character
array large enough to hold the longest file name. This is the same as the
stream I/O macro.

_ROPEN_MAX Expands to an integral constant expression that is the maximum number
of files that can be opened simultaneously.

The following null field macros are defined in recio.h:

Element
Description

_CLEAR_NULL_MAP(file, type)
Clears the null output field map that indicates that there are no null fields in the record to be
written to file. type is a typedef that corresponds to the null field map for the current record
format.

_CLEAR_UPDATE_NULL_MAP(file, type)
Clears the null input field map that indicates that no null fields are in the record to be written to
file. type is a typedef that corresponds to the null field map for the current record format.

Chapter 1. Include Files 11



_QRY_NULL_MAP(file, type)
Returns the number of fields that are null in the previously read record. type is a typedef that
corresponds to the null field map for the current record format.

_CLEAR_NULL_KEY_MAP(file, type)
Clears the null key field map so that it indicates no null key fields in the record to be written to
file. type is a typedef that corresponds to the null key field map for the current record format.

_SET_NULL_MAP_FIELD(file, type, field)
Sets the specified field in the output null field map so that field is considered NULL when the
record is written to file.

_SET_UPDATE_NULL_MAP_FIELD(file, type, field)
Sets the specified field in the input null field map so that field is considered null when the record
is written to file. type is a typedef that corresponds to the null key field map for the record
format.

_QRY_NULL_MAP_FIELD(file, type, field)
Returns 1 if the specified field in the null input field map indicates that the field is to be
considered null in the previously read record. If field is not null, it returns zero. type is a typedef
that corresponds to the NULL key field map for the current record format.

_SET_NULL_KEY_MAP_FIELD(file, type, field)
Sets the specified field map that indicates that the field will be considered null when the record is
read from file. type is a typedef that corresponds to the null key field map for the current record
format.

_ORY_NULL_KEY_MAP(file, type)
Returns the number of fields that are null in the key of the previously read record. type is a
typedef that corresponds to the null field map for the current record format.

_ORY_NULL_KEY_MAP_FIELD(file, type, field)
Returns 1 if the specified field in the null key field map indicates that field is to be considered
null in the previously read record. If field is not null, it returns zero. type is a typedef that
corresponds to the null key field map for the current record format.

<regex.h>
The <regex.h> include file defines the following regular expression functions:

regcomp () regerror() regexec () regfree()

The <regex.h> include file also declares the regmatch_t type, the regex_t type, which is capable of storing a
compiled regular expression, and the following macros:

Values of the cflags parameter of the regcomp () function:

REG_BASIC
REG_EXTENDED
REG_ICASE
REG_NEWLINE
REG_NOSUB

Values of the eflags parameter of the regexec() function:

REG_NOTBOL
REG_NOTEOL

Values of the errcode parameter of the regerror()function:

12 ILE C/C++ Runtime Library Functions V6R1



REG_NOMATCH
REG_BADPAT
REG_ECOLLATE
REG_ECTYPE
REG_EESCAPE
REG_ESUBREG
REG_EBRACK
REG_EPAREN
REG_EBRACE
REG_BADBR
REG_ERANGE
REG_ESPACE
REG_BADRPT
REG_ECHAR
REG_EBOL
REG_EEOL
REG_ECOMP
REG_EEXEC
REG_LAST

These declarations and definitions are not available when LOCALETYPE(*CLD) is specified on the
compilation command.

<setjmp.h>

The <setjmp.h> include file declares the [setjmp ()| macro and |[1ongjmp| function. It also defines a buffer
type, jmp_buf, that the setj mp () macro and longjmp function use to save and restore the program state.

<signal.h>

The <signal.h> include file defines the values for signals and declares the|signal ()]and |raise ()|
functions.

The <signal.h> include file also defines the following macros:

SIGABRT SIG_ERR SIGILL SIGOTHER SIGUSR1
SIGALL SIGFPE SIGINT SIGSEGV SIGUSR2
SIG_DFL SIG_IGN SIGIO SIGTERM

<signal.h> also declares the function _GetExcData, an i5/OS extension to the C standard library.

<stdarg.h>

The <stdarg.h> include file defines macros that allow you access to arguments in functions with
variable-length argument lists: [va_arg()} [va_start()} and |va_end()} The <stdarg.h> include file also
defines the type va_list.

<stddef.h>

The <stddef.h> include file declares the commonly used pointers, variables, and types as listed below:

ptrdiff_t
typedef for the type of the difference of two pointers

size_t typedef for the type of the value that is returned by sizeof

Chapter 1. Include Files 13



wchar_t
typedef for a wide character constant.

The <stddef.h> include file also defines the macros NULL and offsetof. NULL is a pointer that is
guaranteed not to point to a data object. The offsetof macro expands to the number of bytes between a
structure member and the start of the structure. The offsetof macro has the form:

offsetof(structure_type, member)

The <stddef.h> include file also declares the extern variable EXCP_MSGID, an i5/0S extension to C.

<stdint.h>

The <stdint.h> include file declares sets of integer types that have specified widths and defines
corresponding sets of macros. It also defines macros that specify limits of integer types corresponding to
the types defined in other standard include files.

The following exact-width integer types are defined:

int8_t int32_t uint8_t uint32_t
intl6e_t int64_t uintle_t uint64_t

The following minimum-width integer types are defined:

int_Teast8_t int_least32_t uint_least8_t uint_least32_t
int_Teastl6_t int_Teast64 t uint_leastl6_t uint_least64_t

The following fastest minimum-width integer types are defined:

int_fast8_t int_fast32_t uint_fast8_t uint_fast32_t
int_fastl6_t int_fast64_t uint_fastl6_t uint_fast64_t

The following greatest-width integer types are defined:

intmax_t
uintmax_t

The following macros are defined for limits of exact-width integer types (See note |l on page 15):

INT8_MAX INT16_MIN INT64_MAX UINT16_MAX
INT8_MIN INT32_MAX INT64_MIN UINT32_MAX
INT16_MAX INT32_MIN UINT8_MAX UINT64_MAX

The following macros are defined for limits of minimum-width integer types (See note [l on page 15):

INT_LEAST8_MAX INT_LEAST16_MIN INT_LEAST64_MIN UINT_LEAST16_MAX
INT_LEAST8_MIN INT_LEAST32_MAX INT_LEAST64 MIN UINT_LEAST32_MAX
INT_LEAST16_MAX INT_LEAST32_MIN UINT_LEAST8_MAX UINT_LEAST64_MAX

The following macros are defined for limits of fastest minimum-width integer types (See note

:

14 ILE C/C++ Runtime Library Functions V6R1



INT_FAST8_MAX INT_FAST16_MIN INT_FAST64_MIN UINT_FAST16_MAX
INT_FAST8_MIN INT_FAST32_MAX INT_FAST64_MIN UINT_FAST32_MAX
INT_FAST16_MAX INT_FAST32_MIN UINT_FAST8_MAX UINT_FAST64_MAX

The following macros are defined for limits of greatest-width integer types (See note [1):

INTMAX_MIN
INTMAX_MAX
UINTMAX_MAX

The following macros are defined for limits for other integer types (See note [1):

PTRDIFF_MAX SIG_ATOMIC_MIN WCHAR_MIN
PTRDIFF_MIN SIZE_MAX WINT_MAX
SIG_ATOMIC_MAX WCHAR_MAX WINT_MIN

The following macros are defined for minimum-width integer constant expressions (See note Iﬂ):

INT8_C INT32_C UINT8_C UINT32_C
INT16_C INT64_C UINT16_C UINT64_C

The following macros are defined for greatest-width integer constant expressions (See note IZ[):

INTMAX_C
UINTMAX_C

Notes:

1. These macros are defined for C programs. They are defined for C++ only when
_ STDC_LIMIT_MACROS is defined before <stdint.h> is included.

2. These macros are defined for C programs. They are defined for C++ only when
_ STDC_CONSTANT_MACROS is defined before <stdint.h> is included.

<stdio.h>

The <stdio.h> include file defines constants, macros, and types, and declares stream input and output
functions. The stream 1/0 functions are:

_C_Get_Ssn_Handle fprintf fwrite remove vfscanf
clearerr fputc fwscanf ! rename vfwprintf !
fclose _fputchar getc rewind vfwscanf!
fdopen? fputs getchar scanf vprintf
feof fputwc! gets setbuf vscanf
ferror fputws® getwc ! setvbuf vsscanf
fflush fread getwchar ! snprintf vsnprintf
fgetc freopen perror sprintf vsprintf
fgetpos fscanf printf sscanf vwprintf !
fgets fseek putc tmpfile vwscanf!
fgetwc ! fsetpos putchar tmpnam wfopen?
fgetws ! ftell puts ungetc wprintf !
fileno? fwide ! putwc ! ungetwc ! wscanf !
fopen fwprintf ! putwchar ! vfprintf

Chapter 1. Include Files

15



Note: ' These functions are not available when either LOCALETYPE(*CLD) or
SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Note: > These functions are available when SYSIFCOPT(*IFSIO) is specified on the
compilation command.

The <stdio.h> include file also defines the macros that are listed below. You can use these constants in
your programs, but you should not alter their values.

BUFSIZ Specifies the buffer size that the setbuf library function will use when you are allocating buffers
for stream I/0O. This value establishes the size of system-allocated buffers and is used with

setbuf.

EOF The value that is returned by an I/O function when the end of the file (or in some cases, an
error) is found.

FOPEN_MAX

The number of files that can be opened simultaneously.

FILENAME_MAX
The longest file name that is supported. If there is no reasonable limit, FILENAME_MAX will be the
recommended size.

L_tmpnam
The size of the longest temporary name that can be generated by the tmpnam function.

TMP_MAX
The minimum number of unique file names that can be generated by the tmpnam function.

NULL A pointer guaranteed not to point to a data object.
The FILE structure type is defined in <stdio.h>. Stream I/O functions use a pointer to the FILE type to
get access to a given stream. The system uses the information in the FILE structure to maintain the

stream.

When integrated file system is enabled with a compilation parameter SYSIFCOPT(*IFSIO), ifs.h is
included into <stdio.h>.

The C standard streams stdin, stdout, and stderr are also defined in <stdio.h>.

The macros SEEK_CUR, SEEK_END, and SEEK_SET expand to integral constant expressions and can be used as
the third argument to fseek().

The macros _IOFBF, _IOLBF, and _IONBF expand to integral constant expressions with distinct values
suitable for use as the third argument to the setvbuf function.

The type fpos_t is defined in <stdio.h> for use with fgetpos() and fsetpos().

See |“<stddef.h>" on page 13| for more information about NULL.

16 ILE C/C++ Runtime Library Functions V6R1



<stdlib.h>

The <stdlib.h> include file declares the following functions:

abortl C Quickpool Report reaHocl str‘tou]l
abs div srand strtoull
atexit exit strtod

atof] freg) strtod32

atoi gcvtll strtod64

ato] geteny| strtod12§|

bsearch itoa strtof

callod Ttoa strtol

C Quickpool Debug| [labs| strtold

C Quickpool Init] 11abs| strtoll

Note: ' These functions are applicable to C++ only.

The <stdlib.h> include file also contains definitions for the following macros:
NULL  The NULL pointer value.

EXIT_SUCCESS
Expands to 0; used by the atexit function.

EXIT_FAILURE
Expands to 8; used by the atexit function.

RAND_MAX
Expands to an integer that represents the largest number that the rand function can return.

MB_CUR_MAX
Expands to an integral expression to represent the maximum number of bytes in a multibyte
character for the current locale.

For more information about NULL and the types size_t and wchar_t, see|“<stddef.h>" on page 13|

<string.h>

The <string.h> include file declares the string manipulation functions:

strcat strncm strsetll
strchr strspn
|strcmp —1| strstn
strcmp1—1| strnset! strtok
strcolll strpbrk strtok_r|
strcpy| strrchr strxfr

Note: ' These functions are available for C++ programs. They are available for C only when the program defines the
__cplusplus__strings__ macro.

The <string.h> include file also defines the macro NULL, and the type size_t.

For more information about NULL and the type size_t, see|“<stddef.h>" on page 13|

<strings.h>

Contains the functions strcasecmp and strncasecmp.

Chapter 1. Include Files 17



<time.h>

The <time.h> include file declares the time and date functions:

asctime| gmtime64] localtime F| s‘crp’c1’me|1
asctime 1| gmtime r localtime64_r| time
clock i mk t ime time64
ctime i mk t ime64

ctime64| strftime

Note: ' These functions are not available when LOCALETYPE(*CLD) is specified on the compilation command.

The <time.h> include file also provides:

* A structure tm that contains the components of a calendar time. See [‘emtime() — Convert Time” on|
for a list of the tm structure members.

* A macro CLOCKS_PER_SEC equal to the number per second of the value that is returned by the clock
function.

e Types clock_t, time_t, time64_t, and size_t.
¢ The NULL pointer value.

For more information about NULL and the type size_t, see|“<stddef.h>" on page 13|

<wchar.h>

The <wchar.h> header file contains declarations and definitions that are related to the manipulation of
wide character strings. Any functions which deal with files are accessible if SYSIFCOPT(*IFSIO) is
specified.

btowc? mbsrtowcs? wcsemp wesrchr WCSWCS
fgetwc? putwc? wcscoll? wcsrtombs? wcswidth?
fgetws? putwchar? wcscpy wcsspn wesxfrm!
fputwc? swprintf! wescspn wecsstr wctob!
fputws? swscanf? wesftime! westod! wewidth!
fwide? ungetwc? __wcsicmp? wcstod32! wmemchr
fwprintf? vfwprintf? wcslen wcstod64! wmemcmp
fwscanf? vswscanf! wcsncat wcstod128! wmemcpy
getwc? vswprintf! wcsncmp wcstok wmemmove
getwchar? vwprintf? wcshepy westol! wmemset
mbrlen! wcrtomb! __wecsnicmp! westoll! wprintf?
mbrtowc! wcscat wespbrk wcstoul? wscanf?
mbsinit! weschr wesptime® wcstoull?

Note: ' These functions are not available when LOCALETYPE(*CLD) is specified on the
compilation command.

Note: * These functions are available only when SYSIFCOPT(*IFSIO) and
LOCALETYPE(*LOCALE) are specified on the compilation command.

Note: ° These functions are available only when LOCALETYPE(*LOCALEUTF) is specified
on the compilation command.

<wchar.h> also defines the macro NULL and the types size_t and wchar_t.

For more information about NULL and the types size_t and wchar_t, see [“<stddef.h>" on page 13]

18 ILE C/C++ Runtime Library Functions V6R1



<wctype.h>

The <wctype.h> header file declares the following wide character functions:

iswalnum iswgraph iswspace towlower wctrans
iswalpha iswlower iswupper towupper

iswentrl iswprint iswxdigit towctrans

iswdigit iswpunct iswctype wctype

The <wctype.h> header file also contains declarations and definitions for wide character classification.
These declarations and definitions are not available when LOCALETYPE(*CLD) is specified on the
compilation command.

<xxcvt.h>

The <xxcvt.h> include file contains the declarations that are used by the QXXDTOP, QXXDTOZ, QXXITOP,
QXXITOZ, QXXPTOI, QXXPTOD, QXXZTOD, and QXXZTOI conversion functions.

<xxdtaa.h>

The <xxdtaa.h> include file contains the declarations for the data area interface functions QXXCHGDA,
QXXRTVDA, and the type DTAA NAME_T.

The definition of DTAA_NAME_T is:

typedef struct DTAA NAME_T {
char dtaa_name[10];
char dtaa_1ib[10];

} DTAA_NAME_T;

<xxenv.h>

The <xxenv.h> include file contains the declarations for the QPXXCALL and QPXXDLTE EPM environment
handling program. ILE procedures cannot be called from this interface.

The definition of ENVPGM_T is:

typedef struct ENVPGM T {
char pgmname[10];
char pgmlib[10];

} _ENVPGM_T;

<xxfdbk.h>

The <xxfdbk.h> include file contains the declarations that are used by the i5/0S feedback areas. To

retrieve information from feedback areas, see |’ Riofbk() — Obtain I/O Feedback Information” on page|

I and [“_Ropnfbk() — Obtain Open Feedback Information” on page 293 |

The following is an example of a type that is defined in the <xxfdbk.h> include file:
typedef _Packed struct _XXIOFB_T {

short file_dep_fb_offset;
int write_count;

int read_count;

int write_read_count;
int other_io_count;
char reservedl;

char cur_operation;

char rec_format[10];
char dev_class[2];

Chapter 1. Include Files

19



char dev_name[10];

int last_io_rec_len;
char reserved2[80];
short num_recs_retrieved;
short last_io_rec_len2;
char reserved3[2];

int cur_blk_count;

char reserved4[8];

} _XXIOFB_T;

For further information about the open feedback areas, see the [Files and file systems| category in the
Information Center.

Machine Interface (MI) Include Files
See the ILE C/C++ for AS/400 MI Library Reference for a description of the MI header files.

20 ILE C/C++ Runtime Library Functions V6R1



Chapter 2. Library Functions

This chapter describes the standard C/C++ library functions and the ILE C/C++ extensions to the library
functions, except for the ILE C/C++ MI functions. See the ILE C/C++ for AS/400 MI Library Reference for
more information about the MI functions.

Each library function that is listed in this section contains:

* A format description that shows the include file that declares the function.
¢ The data type that is returned by the function.

* The required data types of the arguments to the function.

This example shows the format of the Tog() function:

#include <math.h>
double Tog(double x);

The example shows that:
* you must include the file math.h in the program.
* the Tog() function returns type double.

* the Tog() function requires an argument x of type double.
Examples throughout the section illustrate the use of library functions and are not necessarily complete.

This chapter lists the library functions in alphabetic order. If you are unsure of the function you want to
use, see the summary of the library functions in [‘The C/C++ Library.”|

Note: All functions are considered threadsafe unless noted otherwise.

The C/C++ Library

This chapter summarizes the available C/C++ library functions and their location in this book. It also
briefly describes what the function does. Each library function is listed according to the type of function
it performs.

Error Handling

Function Header File Page Description

assert() assert.h Prints diagnostic messages.

atexit() stdlib.h Registers a function to be executed
at program end.

clearerr() stdio.h Resets error indicators.

feof () stdio.h Tests end-of-file indicator for stream
input.

ferror() stdio.h Tests the error indicator for a
specified stream.

_GetExcData() signal.h 154] Retrieves information about an
exception from within a C signal
handler. This function is not defined
when SYSIFCOPT(*SYNCSIGNAL)
is specified on the compilation
command.

© Copyright IBM Corp. 1999, 2008 21



Function Header File Page Description

perror() stdio.h Prints an error message to stderr.

raise() signal.h Initiates a signal.

signal() signal.h Allows handling of an interrupt

signal from the operating system.
strerror() string.h Retrieves pointer to system error
message.

Searching and Sorting

Function Header File Page Description

bsearch() stdlib.h Performs a binary search of a sorted array.

gsort() stdlib.h Performs a quick sort on an array of elements.

Mathematical

Function Header File Page Description

abs() stdlib.h @ Calculates the absolute value of an integer.

ceil() math.h Calculates the double value representing the
smallest integer that is greater than or equal
to a number.

div() stdlib.h @ Calculates the quotient and remainder of an
integer.

erf() math.h @ Calculates the error function.

erfc() math.h @ Calculates the error function for large
numbers.

exp() math.h @l Calculates an exponential function.

fabs () math.h @ Calculates the absolute value of a
floating-point number.

floor() math.h Calculates the double value representing the
largest integer that is less than or equal to a
number.

fmod () math.h Calculates the floating-point remainder of one
argument divided by another.

frexp() math.h Separates a floating-point number into its
mantissa and exponent.

gamma () math.h Calculates the gamma function.

hypot () math.h Calculates the hypotenuse.

Tabs () stdlib.h Calculates the absolute value of a long
integer.

11abs() stdlib.h Calculates the absolute value of a long long
integer.

Tdexp() math.h 178 Multiplies a floating-point number by an
integral power of 2.

1div() stdlib.h 179, Calculates the quotient and remainder of a
long integer.

22 ILE C/C++ Runtime Library Functions V6R1




Function Header File Page Description

11div() stdlib.h Calculates the quotient and remainder of a
long long integer.

Tog() math.h Calculates natural logarithm.

1og10() math.h Calculates base 10 logarithm.

modf () math.h Calculates the signed fractional portion of the
argument.

nextafter() math.h Calculates the next representable
floating-point value.

nextafterl() math.h Calculates the next representable
floating-point value.

nexttoward() math.h Calculates the next representable
floating-point value.

nexttowardl () math.h Calculates the next representable
floating-point value.

pow() math.h Calculates the value of an argument raised to
a power.

sqrt () math.h Calculates the square root of a number.

Trigonometric Functions

Function Header File Page Description

acos() math.h Calculates the arc cosine.

asin() math.h @ Calculates the arc sine.

atan() math.h @ Calculates the arc tangent.

atan2() math.h @ Calculates the arc tangent.

cos() math.h @ Calculates the cosine.

cosh() math.h Calculates the hyperbolic cosine.

sin() math.h Calculates the sine.

sinh() math.h Calculates the hyperbolic sine.

tan() math.h Calculates the tangent.

tanh() math.h 410 Calculates the hyperbolic tangent.

Bessel Functions

Function Header File Page Description

Jjo() math.h @l 0 order differential equation of the first kind.

J1() math.h @l 1st order differential equation of the first
kind.

jn() math.h @l nth order differential equation of the first
kind.

yo() math.h @l 0 order differential equation of the second
kind.

y1() math.h @l 1st order differential equation of the second
kind.

Chapter 2. Library Functions 23



Function

Header File

Page

Description

yn()

math.h

nth order differential equation of the second
kind.

Time Manipulation

Function Header File Page Description

asctime() time.h Converts time stored as a structure to a
character string in storage.

asctime_r() time.h Converts time stored as a structure to a
character string in storage. (Restartable
version of asctime())

clock() time.h Determines processor time.

ctime() time.h Converts time stored as a long value to a
character string.

ctime64() time.h Converts time stored as a long long value to a
character string.

ctime_r() time.h Converts time stored as a long value to a
character string. (Restartable version of
ctime())

ctime6d r() time.h Converts time stored as a long long value to a
character string. (Restartable version of
ctime64())

difftime() time.h @ Calculates the difference between two times.

difftime64() time.h @ Calculates the difference between two times.

gmtime() time.h Converts time to Coordinated Universal Time
structure.

gmtime_r() time.h Converts time to Coordinated Universal Time
structure. (Restartable version of gmtime())

gmtime64 () time.h Converts time to Coordinated Universal Time
structure.

gmtime64 r() time.h Converts time to Coordinated Universal Time
structure. (Restartable version of gmtime64())

localtime() time.h Converts time to local time.

Tocaltime64 () time.h Converts time to local time.

Tocaltime_r() time.h 188, Converts time to local time. (Restartable
version of localtime())

Tocaltime64 r() time.h Converts time to local time. (Restartable
version of Tocaltime64())

mktime() time.h Converts local time into calendar time.

mktime64 () time.h Converts local time into calendar time.

time() time.h Returns the time in seconds.

time64() time.h 412 Returns the time in seconds.

24  ILE C/C++ Runtime Library Functions V6R1




Type Conversion

Function Header File Page Description

atof() stdlib.h @ Converts a character string to a floating-point
value.

atoi () stdlib.h Converts a character string to an integer.

atol() stdlib.h @l Converts a character string to a long integer.

atol1() stdlib.h @l Converts a character string to a long integer.

_gevt() stdlib.h 151 Converts a floating-point value to a string.

_itoa() stdlib.h 176 Converts an integer to a string.

_Ttoa() stdlib.h 192 Converts a long integer to a string.

strtod() stdlib.h Converts a character string to a
double-precision binary floating-point value.

strtod32() stblib.h Converts a character string to a
single-precision decimal floating-point value.

strtod64() stblib.h Converts a character string to a
double-precision decimal floating-point value.

strtod128() stblib.h Converts a character string to a
quad-precision decimal floating-point value.

strtof() stblib.h Converts a character string to a binary
floating-point value.

strtol() stdlib.h Converts a character string to a long integer.

strtold() stdlib.h Converts a character string to a
double-precision binary floating-point value.

strtol1() stdlib.h Converts a character string to a long long
integer.

strtoul () stdlib.h Converts a string to an unsigned long integer.

strtoull() stdlib.h Converts a string to an unsigned long long
integer.

toascii() ctype.h 415 Converts a character to the corresponding
ASCII value.

_ultoa() stdlib.h Converts an unsigned long integer to a string.

wcstod() wchar.h Converts a wide-character string to a
double-precision binary floating-point value.

wcstod32() wchar.h 178 Converts a wide-character string to a
single-precision decimal floating-point value.

westod6d () wchar.h 478 Converts a wide-character string to a
double-precision decimal floating-point value.

wcstod128() wchar.h Converts a wide-character string to a
quad-precision decimal floating-point value.

westol () wchar.h 481 Converts a wide-character string to a long
integer.

westol1() wcharh Converts a wide-character string to a long
long integer.

westoul () wchar.h Converts a wide-character string to an
unsigned long integer.

westoull() wchar.h Converts a wide-character string to an

unsigned long long integer.

Chapter 2. Library Functions 25




Conversion

Function Header File Page Description

QXXDTOP () xxcvt.h Converts a floating-point value to a packed
decimal value.

QXXDTOZ () xxcvt.h Converts a floating-point value to a zoned
decimal value.

QXXITOP() xxcvt.h Converts an integer value to a packed
decimal value.

QXXITOZ() xxcvt.h Converts an integer value to a zoned decimal
value.

QXXPTOD() xxcvt.h Converts a packed decimal value to a
floating-point value.

QXXPTOI() xxcvt.h Converts a packed decimal value to an
integer value.

QXXZTOD() xxcvt.h Converts a zoned decimal value to a
floating-point value.

QXXZTOI() xxcvt.h Converts a zoned decimal value to an integer

value.

Record Input/Output

Function Header File Page Description
_Racquire() recio.h Prepares a device for record 1/O operations.
_Rclose() recio.h Closes a file that is opened for record 1/O
operations.
_Rcommit() recio.h Completes the current transaction, and
establishes a new commitment boundary.
_Rdelete() recio.h Deletes the currently locked record.
_Rdevatr() recio.h Returns a pointer to a copy of the device
xxfdbk.h attributes feedback area for the file reference
by fp and the device pgmdev.
_Rfeod() recio.h Forces an end-of-file condition for the file
referenced by fp.
_Rfeov() recio.h Forces an end-of-volume condition for tapes.
_Rformat () recio.h Sets the record format to fmt for the file
referenced by fp.
_Rindara() recio.h Sets up the separate indicator area to be used
for subsequent record I/O operations.
_Riofbk() recio.h Returns a pointer to a copy of the I/0
xxfdbk.h feedback area for the file referenced by fp.
_Rlocate() recio.h Positions to the record in the files associated
with fp and specified by the key, klen_rrn and
opt parameters.
_Ropen() recio.h Opens a file for record I/O operations.
_Ropnfbk () recio.h Returns a pointer to a copy of the open
xxfdbk.h feedback area for the file referenced by fp.

26 ILE C/C++ Runtime Library Functions V6R1




Function Header File Page Description

_Rpgmdev () recio.h Sets the default program device.

_Rreadd() recio.h Reads a record by relative record number.

_Rreadf() recio.h @ Reads the first record.

_Rreadindv() recio.h Reads data from an invited device.

_Rreadk() recio.h Reads a record by key.

_Rreadl() recio.h Reads the last record.

_Rreadn() recio.h Reads the next record.

_Rreadnc() recio.h Reads the next changed record in the subfile.

_Rreadp() recio.h Reads the previous record.

_Rreads|() recio.h Reads the same record.

_Rrelease() recio.h Makes the specified device ineligible for
record 1/O operations.

_Rrlsick() recio.h Releases the currently locked record.

_Rrol1bck() recio.h Reestablishes the last commitment boundary
as the current commitment boundary.

_Rupdate() recio.h Writes to the record that is currently locked
for update.

_Rupfb() recio.h Updates the feedback structure with
information about the last record I/0
operation.

_Rwrite() recio.h Writes a record to the end of the file.

_Rwrited() recio.h Writes a record by relative record number. It
will only write over deleted records.

_Rwriterd() recio.h Writes and reads a record.

_Rwrread() recio.h Functions as _Rwriterd(), except separate
buffers can be specified for input and output
data.

Stream Input/Output

Formatted Input/Output

Function Header File Page Description

fprintf() stdio.h Formats and prints characters to the output
stream.

fscanf() stdio.h Reads data from a stream into locations given
by arguments.

fwprintf() stdio.h Formats data as wide characters, and writes to
a stream.

fwscanf () stdio.h Reads wide data from stream into locations
given by arguments.

printf() stdio.h 229 Formats and prints characters to stdout.

scanf() stdio.h 330 Reads data from stdin into locations given by
arguments.

snprintf() stdio.h 350 Same as sprintf, except that the snprintf()
function will stop after n characters have been
written to a buffer.

Chapter 2. Library Functions 27



Function Header File Page Description
sprintf() stdio.h Formats and writes characters to a buffer.
sscanf() stdio.h Reads data from a buffer into locations given
by arguments.
swprintf() wchar.h Formats and writes wide characters to buffer.
swscanf () wchar.h @ Reads wide data from a buffer into locations
given by arguments.
vprintf() stdio.h 425 Formats and prints characters to the output
stdarg.h stream using a variable number of arguments.
vfscanf() Reads data from a specified stream into
stdarg.h locations given by a variable number of
stdio.h arguments.
vfwprintf() stdio.h Formats argument data as wide characters and
stdarg.h writes to a stream using a variable number of
arguments.
vfwscanf () Reads wide data from a specified stream into
stdarg.h locations given by a variable number of
stdio.h arguments.
vprintf() Formats and writes characters to stdout using
stdarg.h a variable number of arguments.
stdio.h
vscanf() Reads data from stdin into locations given by
stdarg.h a variable number of arguments.
stdio.h
vsnprintf() stdio.h Same as vsprintf, except that the vsnprintf
stdarg.h function will stop after n characters have been
written to a buffer.
vsprintf() stdarg.h Formats and writes characters to a buffer
stdio.h using a variable number of arguments.
vsscanf() Reads data from a buffer into locations given
stdarg.h by a variable number of arguments.
stdio.h
vswprintf() wchar.h 439 Formats and writes wide characters to buffer
stdarg.h using a variable number of arguments.
vswscanf () Reads wide data from a buffer into locations
stdarg.h given by a variable number of arguments.
wcharh
vwprintf() wchar.h Formats and writes wide characters to stdout
stdarg.h using a variable number of arguments.
vwscanf () 445 Reads wide data from stdin into locations
stdarg.h given by a variable number of arguments.
stdio.h
wprintf() stdio.h Formats and writes wide characters to stdout
wscanf () stdio.h Reads wide data from stdin into locations
given by arguments.

28 ILE C/C++ Runtime Library Functions V6R1




Character and String Input/Output

Function Header File Page Description

fgetc() stdio.h Reads a character from a specified input
stream.

fgets() stdio.h Reads a string from a specified input stream.

fgetwc () stdio.h Reads a wide character from a specified
stream.

fgetws () stdio.h Reads a wide-character string from a specified
stream.

fputc() stdio.h Prints a character to a specified output stream.

_fputchar() stdio.h Writes a character to stdout.

fputs () stdio.h Prints a string to a specified output stream.

fputwe () stdio.h Writes a wide character to a specified stream.

fputws () stdio.h Writes a wide-character string to a specified
stream.

getc() stdio.h Reads a character from a specified input
stream.

getchar() stdio.h 152) Reads a character from stdin.

gets() stdio.h 156) Reads a line from stdin.

getwc() stdio.h Reads a wide character from a specified
stream.

getwchar() stdio.h Gets a wide character from stdin.

putc() stdio.h Prints a character to a specified output stream.

putchar() stdio.h Prints a character to stdout.

puts() stdio.h Prints a string to stdout.

putwc () stdio.h Writes a wide character to a specified stream.

putwchar() stdio.h Writes a wide character to stdout.

ungetc() stdio.h Pushes a character back onto a specified input
stream.

ungetwc () stdio.h 4272 Pushes a wide character back onto a specified
input stream.

Direct Input/Output

Function Header File Page Description

fread() stdio.h 126 Reads items from a specified input stream.

furite() stdio.h 146, Writes items to a specified output stream.

File Positioning

Function Header File Page Description

fgetpos() stdio.h @ Gets the current position of the file pointer.
fseek() stdio.h Moves the file pointer to a new location.
fseeko() stdio.h Same as fseek().

fsetpos() stdio.h 136 Moves the file pointer to a new location.

Chapter 2. Library Functions 29



Function Header File Page Description

ftell() stdio.h 138 Gets the current position of the file pointer.

ftello() stdio.h 138 Same as ftell().

rewind() stdio.h Repositions the file pointer to the beginning
of the file.

File Access

Function Header File Page Description

fclose() stdio.h Closes a specified stream.

fdopen() stdio.h @ Associates an input or output stream with a
file.

fflush() stdio.h @ Causes the system to write the contents of a
buffer to a file.

fopen() stdio.h 109, Opens a specified stream.

freopen() stdio.h 130 Closes a file and reassigns a stream.

fwide() stdio.h 140, Determines stream orientation.

setbuf() stdio.h Allows control of buffering.

setvbuf () stdio.h Controls buffering and buffer size for a
specified stream.

wfopen() stdio.h Opens a specified stream, accepting file name
and mode as wide characters.

File Operations

Function Header File Page Description

fileno() stdio.h 106 Determines the file handle.

remove () stdio.h Deletes a specified file.

rename () stdio.h Renames a specified file.

tmpfile() stdio.h 414 Creates a temporary file and returns a pointer
to that file.

tmpnam() stdio.h 414 Produces a temporary file name.

Handling Argument Lists

Function Header File Page Description

va_arg() stdarg.h 423 Allows access to variable number of function
arguments.

va_end() stdarg.h 423 Allows access to variable number of function
arguments.

va_start() stdarg.h 423) Allows access to variable number of function
arguments.

30 ILE C/C++ Runtime Library Functions V6R1




Pseudorandom Numbers

Function Header File Page Description

rand(), rand_r() stdlib.h Returns a pseudorandom integer. (rand_r() is
the restartable version of rand().)

srand() stdlib.h Sets the starting point for pseudorandom
numbers.

Dynamic Memory Management

Function Header File Page Description

calloc() stdlib.h Reserves storage space for an array and
initializes the values of all elements to 0.

_C_Quickpool_Debug() stdlib.h Modifies Quick Pool memory
characteristics.

_C_Quickpool_Init() stdlib.h Initializes the use of the Quick Pool
memory management algorithm.

_C_Quickpool_Report() stdlib.h Generates a spooled file that contains a
snapshot of the memory used by the Quick
Pool memory management algorithm in the
current activation group.

_C_TS_malloc_debug() mallocinfo.h Returns the same information as
_C_TS_malloc_info, plus produces a spool
file of detailed information about the
memory structure used by malloc functions
when compiled with teraspace.

_C_TS malloc_info() mallocinfo.h Returns the current memory usage
information.

free() stdlib.h 128] Frees storage blocks.

malloc() stdlib.h Reserves storage blocks.

realloc() stdlib.h @ Changes storage size allocated for an object.

Memory Objects

Function Header File Page Description

memchr () string.h Searches a buffer for the first occurrence of a
given character.

mememp () string.h Compares two buffers.

memcpy () string.h Copies a buffer.

memicmp () string.h Compare two buffers without regard to case.

memmove () string.h Moves a buffer.

memset () string.h Sets a buffer to a given value.

wmemchr () wchar.h Locates a wide character in a wide-character
buffer.

wmemcmp () wchar.h Compares two wide-character buffers.

wmemcpy () wchar.h Copies a wide-character buffer.

wmemmove () wchar.h Moves a wide-character buffer.

Chapter 2. Library Functions 31



Function

Header File

Page

Description

wmemset ()

wchar.h

Sets a wide-character buffer to a given value.

Environment Interaction

Function Header File Page Description

abort () stdlib.h @ Ends a program abnormally.

_C_Get_Ssn_Handle() stdio.h Returns a handle to the C
session for use with DSM APIs.

exit() stdlib.h Ends the program normally if
called in the initial thread.

getenv() stdlib.h 154 Searches environment variables
for a specified variable.

localeconv() locale.h Formats numeric quantities in
struct lconv according to the
current locale.

Tongjmp() setjimp.h Restores a stack environment.

n1_langinfo() langinfo.h Retrieves information from the
current locale.

putenv () stdlib.h Sets the value of an
environment variable by
altering an existing variable or
creating a new one.

setjmp() setjmp.h Saves a stack environment.

setlocale() locale.h Changes or queries locale.

system() stdlib.h Passes a string to the operating
system’s command interpreter.

wcslocaleconv () locale.h 462 Formats numeric quantities in

struct weslconv according to the
current locale.

String Operations

Function Header File Page Description

strcasecmp() strings.h Compares strings without case sensitivity.

strcat() string.h Concatenates two strings.

strchr() string.h Locates the first occurrence of a specified
character in a string.

strcmp () string.h @ Compares the value of two strings.

strempi () string.h @ Compares the value of two strings without
regard to case.

strcoll() string.h Compares the locale-defined value of two
strings.

strcpy () string.h @ Copies one string into another.

strespn() string.h Finds the length of the first substring in a
string of characters not in a second string.

strdup() string.h @ Duplicates a string.

32 ILE C/C++ Runtime Library Functions V6R1




Function Header File Page Description

strfmon() string.h Converts monetary value to string.

strftime() time.h Converts date and time to a formatted string.

stricmp() string.h Compares the value of two strings without
regard to case.

strien() string.h Calculates the length of a string.

strncasecmp () strings.h Compares strings without case sensitivity.

strncat() string.h Adds a specified length of one string to
another string.

strncmp () string.h Compares two strings up to a specified
length.

strncpy() string.h Copies a specified length of one string into
another.

strnicmp() string.h Compares the value of two substrings without
regard to case.

strnset() string.h Sets character in a string.

strpbrk() string.h Locates specified characters in a string.

strptime() time.h Converts string to formatted time.

strrchr() string.h Locates the last occurrence of a character
within a string.

strspn() string.h Locates the first character in a string that is
not part of specified set of characters.

strstr() string.h Locates the first occurrence of a string in
another string.

strtok() string.h Locates a specified token in a string.

strtok_r() string.h Locates a specified token in a string.
(Restartable version of strtok()).

strxfrm() string.h 404 Transforms strings according to locale.

wesftime() wchar.h 458 Converts to formatted date and time.

wesptime() wcharh Converts string to formatted time.

wesstr() wchar.h 475 Locates a wide-character substring.

westok () wcharh Tokenizes a wide-character string.

Character Testing

Function Header File Page Description

isalnum() ctype.h Tests for alphanumeric characters.

isalpha() ctype.h Tests for alphabetic characters.

isascii() ctype.h Tests for ASCII values.

isblank() ctype.h Tests for blank or tab characters.

iscntri() ctype.h Tests for control characters.

isdigit() ctype.h Tests for decimal digits.

isgraph() ctype.h Tests for printable characters excluding the
space.

isTower() ctype.h 169 Tests for lowercase letters.

Chapter 2. Library Functions

33



Function Header File Page Description

isprint() ctype.h Tests for printable characters including the
space.

ispunct() ctype.h 169 Tests for punctuation characters as defined in
the locale.

isspace() ctype.h Tests for white-space characters.

isupper() ctype.h Tests for uppercase letters.

isxdigit() ctype.h 169, Tests for wide hexadecimal digits 0 through
9, a through f, or A through F.

Multibyte Character Testing

Function Header File Page Description

iswalnum() wctype.h Tests for wide alphanumeric characters.

iswalpha() wctype.h Tests for wide alphabetic characters.

iswentrl() wctype.h Tests for wide control characters.

iswctype() wctype.h Tests for character property.

iswdigit() wctype.h Tests for wide decimal digits.

iswgraph() wctype.h Tests for wide printing characters excluding
the space.

iswlower() wctype.h 173, Tests for wide lowercase letters.

iswprint() wctype.h 173 Tests for wide printing characters.

iswpunct () wctype.h 173 Tests for wide punctuation characters as
defined in the locale.

iswspace() wctype.h Tests for wide whitespace characters.

iswupper() wctype.h Tests for wide uppercase letters.

iswxdigit() wctype.h 173 Tests for wide hexadecimal digits 0 through 9,
a through f, or A through F.

Character Case Mapping

Function Header File Page Description

tolower() ctype.h 416 Converts a character to lowercase.

toupper() ctype.h 416 Converts a character to uppercase.

towlower() ctype.h 418 Converts a wide character to lowercase.

towupper() ctype.h 418 Converts a wide character to uppercase.

Multibyte Character Manipulation

Function Header File Page Description

btowc () stdio.h Converts a single byte to a wide character.
wchar.h

mblen() stdlib.h Determines the length of a multibyte

character.

34 ILE C/C++ Runtime Library Functions V6R1




Function Header File Page Description

mbrlen() stdlib.h 199, Determines the length of a multibyte
character. (Restartable version of mblen())

mbrtowc () stdlib.h Converts a multibyte character to a wide
character. (Restartable version of mbtowc())

mbsinit() stdlib.h Tests state object for initial state.

mbsrtowcs () stdlib.h @ Converts a multibyte string to a wide
character string. (Restartable version of
mbstowcs ())

mbstowcs () stdlib.h @ Converts a multibyte string to a wide
character string.

mbtowc () stdlib.h Converts multibyte characters to a wide
character.

towctrans () wctype.h Translates wide character.

wertomb () stdlib.h 446 Converts a wide character to a multibyte
character. (Restartable version of wctomb()).

wcscat () wchar.h Concatenates wide character strings.

wcschr() wchar.h Searches a wide character string for a wide
character.

wescmp () wchar.h 453 Compares two wide character strings.

wescoll() wcharh 455 Compares the locale-defined value of two
wide-character strings.

wescpy () wcharh Copies a wide character string.

wescspn () wchar.h Searches a wide character string for
characters.

__wesicmp() wchar.h Compares two wide character strings without
regard to case.

weslen() wchar.h Finds length of a wide character string.

wesncat () wchar.h 463 Concatenates a wide character string segment.

wesnemp () wchar.h 464 Compares wide character string segments.

wesnepy () wcharh @ Copies wide character string segments.

__wesnicmp() wchar.h @ Compares two wide character substrings
without regard to case.

wcspbrk () wchar.h Locates wide characters in string.

wesrchr() wchar.h Locates wide character in string.

wcsrtombs () stdlib.h Converts a wide character string to a
multibyte character string. (Restartable
version of wcstombs()).

wesspn() wchar.h Finds offset of first nonmatching wide
character.

wcstombs () stdlib.h 483 Converts a wide character string to a
multibyte character string.

weswes () wchar.h Locates a wide character string in another
wide character string.

weswidth() wchar.h Determines the display width of a wide
character string.

wesxfrm() wchar.h Transforms wide-character strings according

to locale.

Chapter 2. Library Functions 35



Function Header File Page Description

wctob () stdlib.h 491 Converts a wide character to a single byte.

wctomb () stdlib.h @ Converts a wide character to multibyte
characters.

wctrans () wctype.h Gets a handle for character mapping.

wectype() wcharh Obtains a handle for character property
classification.

wewidth() wcharh @ Determines the display width of a wide
character.

Data Areas

Function Header File Page Description

QXXCHGDA() xxdtaa.h Changes the data area.

QXXRTVDA() xxdtaa.h Retrieves a copy of the data area specified by
dtaname.

Message Catalogs

Function Header File Page Description

catclose() nl_types.h @ Closes a message catalog.

catgets() nl_types.h Reads a message from an opened message
catalog.

catopen() nl_types.h @ Opens a message catalog.

Regular Expression

Function Header File Page Description

regcomp () regex.h @ Compiles a regular expression.

regerror() regex.h Returns error message for regular expression.
regexec () regex.h Executes a compiled regular expression.
regfree() regex.h Frees memory for regular expression.

abort() — Stop a Program
Format

#include <stdlib.h>

void abort(void);

Language Level: ANSI

Threadsafe: Yes.

Description

36 ILE C/C++ Runtime Library Functions V6R1



The abort () function causes an abnormal end of the program and returns control to the host
environment. Like the exit() function, the abort() function deletes buffers and closes open files before
ending the program.

Calls to the abort() function raise the SIGABRT signal. The abort() function will not result in the ending
of the program if SIGABRT is caught by a signal handler, and the signal handler does not return.

Note: When compiled with SYSIFCOPT(*ASYNCSIGNAL), the abort() function cannot be called in a
signal handler.

Return Value
There is no return value.
Example that uses abort()

This example tests for successful opening of the file myfile. If an error occurs, an error message is
printed, and the program ends with a call to the abort() function.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *stream;

if ((stream = fopen("mylib/myfile", "r")) == NULL)
{
perror("Could not open data file");
abort();
1
1

Related Information

* |“exit() — End Program” on page 88|

+ [“signal() — Handle Interrupt Signals” on page 346|
* [“<stdlib.h>” on page 17]
e See the signal() API in the topic in the i5/0S Information Center.

abs() — Calculate Integer Absolute Value

Format

#include <stdlib.h>

int abs(int n);

Language Level: ANSI

Threadsafe: Yes.

Description

The abs() function returns the absolute value of an integer argument #.

Return Value

There is no error return value. The result is undefined when the absolute value of the argument cannot

be represented as an integer. The value of the minimum allowable integer is defined by INT_MIN in the
<limits.h> include file.

Chapter 2. Library Functions 37



Example that uses abs ()

This example calculates the absolute value of an integer x and assigns it to y.

#include <stdlib.h>
#include <stdio.h>

int main(void)

{ int x = -4, y;
y = abs(x);
printf("The absolute value of x is %d.\n", y);
[HHrdkd ok kk bbb kk QUEPUT Ak ek ok ek ook ok ok ok ok ok

The absolute value of x is 4.
*****************************************************/

}

Related Information

» |“fabs() — Calculate Floating-Point Absolute Value” on page 90|

+ [“labs() — llabs() — Calculate Absolute Value of Long and Long Long Integer” on page 177

+ [“<limits.h>" on page 7|
* [“<stdlib.h>” on page 17

acos() — Calculate Arccosine

Format

#include <math.h>
doubTe acos(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The acos() function calculates the arccosine of x, expressed in radians, in the range 0 toIL
Return Value

The acos () function returns the arccosine of x. The value of x must be between -1 and 1 inclusive. If x is
less than -1 or greater than 1, acos() sets errno to EDOM and returns 0.

Example that uses acos ()

This example prompts for a value for x. It prints an error message if x is greater than 1 or less than -1;
otherwise, it assigns the arccosine of x to y.
#include <stdio.h>

#include <stdlib.h>
#include <math.h>

#define MAX 1.0
#define MIN -1.0

int main(void)

{
double x, y;

38 ILE C/C++ Runtime Library Functions V6R1



printf( "Enter x\n" );
scanf( "%1f", & );

/* Output error if not in range */
if ((x > MAX )
printf( "Error: %1f too large for acos\n", x );
else if ( x < MIN )
printf( "Error: %1f too small for acos\n", x );
else {
y = acos( x );
printf( "acos( %1f ) = %1f\n", x, y );
}
1

[*xxxkkx  Expected output if 0.4 is entered: wkxkxxxwx
Enter x

acos( 0.400000 ) = 1.159279

*/

Related Information

+ [“asin() — Calculate Arcsine” on page 42|

+ [“atan() — atan2() — Calculate Arctangent” on page 44|

* [“cos() — Calculate Cosine” on page 64|

* [“cosh() — Calculate Hyperbolic Cosine” on page 65|

[“sin() — Calculate Sine” on page 348|

[“sinh() — Calculate Hyperbolic Sine” on page 349

[“tan() — Calculate Tangent” on page 409|

[“tanh() — Calculate Hyperbolic Tangent” on page 410|

[“<math.h>" on page §|

asctime() — Convert Time to Character String
Format

#include <time.h>

char *asctime(const struct tm *time);

Language Level: ANSI

Threadsafe: No. Use asctime_r() instead.

Description

The asctime() function converts time, stored as a structure pointed to by time, to a character string. You
can obtain the time value from a call to the gmtime(), gmtime64(), Tocaltime(), or Tocaltime64() function.

The string result that asctime() produces contains exactly 26 characters and has the format:
"%.3s %.35%3d %.2d:%.2d:%.2d %d\n"

The following are examples of the string returned:

Sat Jul 16 02:03:55 1994\n\0
or
Sat Jul 16 2:03:55 1994\n\0

The asctime() function uses a 24-hour-clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,
Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,

Chapter 2. Library Functions 39



and Dec. All fields have constant width. Dates with only one digit are preceded either with a zero or a
blank space. The new-line character (\n) and the null character (\0) occupy the last two positions of the
string.

The time and date functions begin at 00:00:00 Universal Time, January 1, 1970.
Return Value

The asctime() function returns a pointer to the resulting character string. If the function is unsuccessful,
it returns NULL.

Note: The asctime(), ctime() functions, and other time functions can use a common, statically allocated
buffer to hold the return string. Each call to one of these functions might destroy the result of the
previous call. The asctime_r(), ctime_r(), gmtime_r(), and Tocaltime_r() functions do not use a
common, statically allocated buffer to hold the return string. These functions can be used in place
of the asctime(), ctime(), gmtime(), and Tocaltime() functions if reentrancy is desired.

Example that uses asctime()

This example polls the system clock and prints a message that gives the current time.

#include <time.h>
#include <stdio.h>

int main(void)

{
struct tm *newtime;
time_t Ttime;

/* Get the time in seconds */
time(&1time);

/* Convert it to the structure tm =*/
newtime = localtime(&1time);

/* Print the local time as a string =/
printf("The current date and time are %s",
asctime(newtime));

}

[ Fk Kk Kk kk ok kk Kk Output should be similar to: ****xxxkxkkkkkkkkhx
The current date and time are Fri Sep 16 13:29:51 1994
*/

Related Information

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

s [“ctime() — Convert Time to Character String” on page 71|

* |“ctime64() — Convert Time to Character String” on page 73|

+ |“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

* |“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[‘emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163]

[‘emtime64_r() — Convert Time (Restartable)” on page 167]

[‘emtime_r() — Convert Time (Restartable)” on page 165

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187

[“localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 18|

40 ILE C/C++ Runtime Library Functions V6R1



[“mktime() — Convert Local Time” on page 218§|

[‘mktime64() — Convert Local Time” on page 220|

[“strftime() — Convert Date/Time to String” on page 370)

[“time() — Determine Current Time” on page 411

[‘printf() — Print Formatted Characters” on page 229|

[“setlocale() — Set Locale” on page 339

[“time64() — Determine Current Time” on page 412|

* |“<time.h>" on page 18|

asctime_r() — Convert Time to Character String (Restartable)

Format

#include <time.h>
char *asctime_r(const struct tm *tm, char *buf);

Language Level: XPG4

Threadsafe: Yes.

Description

This function is the restartable version of the asctime() function.

The asctime_r() function converts time, stored as a structure pointed to by tm, to a character string. You
can obtain the tm value from a call to gmtime_r(), gmtime64 r(), Tocaltime_r(), or Tocaltime64 r().

The string result that asctime_r() produces contains exactly 26 characters and has the format:
"%.3s %.35%3d %.2d:%.2d:%.2d %d\n"

The following are examples of the string returned:

Sat Jul 16 02:03:55 1994\n\0
or
Sat Jul 16 2:03:55 1994\n\0

The asctime_r() function uses a 24-hour-clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,
Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
and Dec. All fields have constant width. Dates with only one digit are preceded either with a zero or a
blank space. The new-line character (\n) and the null character (\0) occupy the last two positions of the
string.

The time and date functions begin at 00:00:00 Universal Time, January 1, 1970.
Return Value

The asctime_r() function returns a pointer to the resulting character string. If the function is
unsuccessful, it returns NULL.

Example that uses asctime_r()

This example polls the system clock and prints a message giving the current time.

#include <time.h>
#include <stdio.h>

int main(void)

{

Chapter 2. Library Functions 41



struct tm *newtime;
time_t Ttime;
char mybuf[50];

/* Get the time in seconds =*/
time(&Ttime);
/* Convert it to the structure tm */
newtime = localtime_r(&1time());
/* Print the local time as a string */
printf("The current date and time are %s",
asctime_r(newtime, mybuf));

}

[ FF K gk Kk kk Kk k kKK Output should be similar to **x**xx*kxkxkkxkkks*x
The current date and time are Fri Sep 16 132951 1994
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ |“ctime() — Convert Time to Character String” on page 71|

* |“ctime64() — Convert Time to Character String” on page 73|

* [“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

s [“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[‘emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163]

[‘emtime64_r() — Convert Time (Restartable)” on page 167|

* |“gmtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187

[“localtime64_r() — Convert Time (Restartable)” on page 189

[localtime_r() — Convert Time (Restartable)” on page 188|

[“mktime() — Convert Local Time” on page 218§|

[“mktime64() — Convert Local Time” on page 220|

[“strftime() — Convert Date/Time to String” on page 370)

[“time() — Determine Current Time” on page 411|

[“printf() — Print Formatted Characters” on page 229|

* [“<time.h>" on page 1§|

asin() — Calculate Arcsine
Format

#include <math.h>

double asin(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The asin() function calculates the arcsine of x, in the range -n/2 to /2 radians.

Return Value

42 ILE C/C++ Runtime Library Functions V6R1



The asin() function returns the arcsine of x. The value of x must be between -1 and 1. If x is less than -1
or greater than 1, the asin() function sets errno to EDOM, and returns a value of 0.

Example that uses asin()

This example prompts for a value for x. It prints an error message if x is greater than 1 or less than -1;

otherwise, it assigns the arcsine of x to y.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX 1.0
#define MIN -1.0

int main(void)
double x, y;

printf( "Enter x\n" );
scanf( "%1f", &x );

/* Output error if not in range */
if ((x > MAX )
printf( "Error: %1f too large for asin\n", x );
else if ( x < MIN )
printf( "Error: %1f too small for asin\n", x );
else
{
y = asin( x );
printf( "asin( %1f ) = %1f\n", x, y );
}
1

[ *kF gk kg kk Kk kk Kk Output should be similar to ****x*kkkkkkxkkkshr®
Enter x

asin( 0.200000 ) = 0.201358

*/

Related Information

* [“acos() — Calculate Arccosine” on page 38|

+ [“atan() — atan2() — Calculate Arctangent” on page 44|

* [“cos() — Calculate Cosine” on page 64|

* |“cosh() — Calculate Hyperbolic Cosine” on page 65|

[“sin() — Calculate Sine” on page 348|

[“sinh() — Calculate Hyperbolic Sine” on page 349

[“tan() — Calculate Tangent” on page 409

[“tanh() — Calculate Hyperbolic Tangent” on page 410|

[“<math.h>" on page §|

assert() — Verify Condition

Format
#include <assert.h>

void assert(int expression);

Language Level: ANSI

Threadsafe: No.

Chapter 2. Library Functions

43



Description

The assert() function prints a diagnostic message to stderr and aborts the program if expression is false
(zero). The diagnostic message has the format:

Assertion failed: expression, file filename, line line-number.
The assert() function takes no action if the expression is true (nonzero).

Use the assert() function to identify program logic errors. Choose an expression that holds true only if
the program is operating as you intend. After you have debugged the program, you can use the special
no-debug identifier NDEBUG to remove the assert() calls from the program. If you define NDEBUG to
any value with a #define directive, the C preprocessor expands all assert calls to void expressions. If you
use NDEBUG, you must define it before you include in the program.

Return Value

There is no return value.

Note: The assert() function is defined as a macro. Do not use the #undef directive with assert().
Example that uses assert()

In this example, the assert() function tests string for a null string and an empty string, and verifies that
length is positive before processing these arguments.

#include <stdio.h>
#include <assert.h>

void analyze (char =, int);

int main(void)
{
char *string = "ABC";
int length = 3;
analyze(string, length);
printf("The string %s is not null or empty, "
"and has Tength %d \n", string, length);

}

void analyze(char *string, int length)

{

assert(string != NULL); /* cannot be NULL =/
assert(*string != '\0'); /* cannot be empty */
assert(length > 0); /* must be positive x/

}

[ Fk K dkk ok kk ok kk ok Output should be similar to #x*kxkxkkkkxkkkhrs

The string ABC is not null or empty, and has length 3

Related Information

+ |“abort() — Stop a Program” on page 36|

+ [“<assert.h>" on page 3|

atan() — atan2() — Calculate Arctangent

Format

#include <math.h>
doubTe atan(double x);
double atan2(double y, double x);

44 ILE C/C++ Runtime Library Functions V6R1



Language Level: ANSI

Threadsafe: Yes.

Description

The atan() and atan2() functions calculate the arctangent of x and y/x, respectively.

Return Value

The atan() function returns a value in the range -n/2 to n/2 radians. The atan2() function returns a
value in the range - to i radians. If both arguments of the atan2() function are zero, the function sets
errno to EDOM, and returns a value of 0.

Example that uses atan()

This example calculates arctangents using the atan() and atan2() functions.

#include <math.h>
#include <stdio.h>

int main(void)

double a,b,c,d;

c = 0.45;

d = 0.23;

a = atan(c);

b = atan2(c,d);

printf("atan( %1f ) = %1f/n", c, a);
printf("atan2( %1f, %1f ) = %1f/n", c, d, b);

}

R Y Output should be similar to #x*kxkkkkkkxkkkhrs
atan( 0.450000 ) = 0.422854
atan2( 0.450000, 0.230000 ) 1.098299

ko kK ook o o o o oo ok ook o ok o o oo ok S—

Related Information

+ [“acos() — Calculate Arccosine” on page 38|

+ [“asin() — Calculate Arcsine” on page 42|

[“cos() — Calculate Cosine” on page 64|

* [“cosh() — Calculate Hyperbolic Cosine” on page 65|

[‘sin() — Calculate Sine” on page 348§|

[‘sinh() — Calculate Hyperbolic Sine” on page 349

“tan() — Calculate Tangent” on page 409
2 pag

[“tanh() — Calculate Hyperbolic Tangent” on page 410|

[‘<math.h>" on page §|

atexit() — Record Program Ending Function

Format

Chapter 2. Library Functions

45



#include <stdlib.h>
int atexit(void (*func)(void));

Language Level: ANSI
Threadsafe: Yes.
Description

The atexit() function records the function, pointed to by func, that the system calls at normal program
end. For portability, you should use the atexit() function to register a maximum of 32 functions. The
functions are processed in a last-in, first-out order. The atexit() function cannot be called from the OPM
default activation group. Most functions can be used with the atexit function; however, if the exit
function is used the atexit function will fail.

Return Value
The atexit() function returns 0 if it is successful, and nonzero if it fails.
Example that uses atexit()

This example uses the atexit() function to call goodbye() at program end.

#include <stdlib.h>
#include <stdio.h>

int main(void)

{
void goodbye(void);
int rc;

rc = atexit(goodbye);

if (rc !'=0)
perror("Error in atexit");
exit(0);

}

void goodbye(void)
/* This function is called at normal program end */
{

printf("The function goodbye was called at program end\n");

R Y Qutput should be similar to: ****xkxkkkkkhkkkkkhx

The function goodbye was called at program end

*/

Related Information

* [“exit() — End Program” on page 88
g pag

+ |“signal() — Handle Interrupt Signals” on page 346|
* [“<stdlib.h>” on page 17|

atof() — Convert Character String to Float

Format
#include <stdlib.h>
double atof(const char #*string);

Language Level: ANSI

46 ILE C/C++ Runtime Library Functions V6R1



Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale. For more information, see [“Understanding CCSIDs and Locales” on page
4]

Description

The atof() function converts a character string to a double-precision floating-point value.

The input string is a sequence of characters that can be interpreted as a numeric value of the specified
return type. The function stops reading the input string at the first character that it cannot recognize as

part of a number. This character can be the null character that ends the string.

The atof() function expects a string in the following form:

” LWhitespace—l |:+:‘ dig;t,s.tl_'—l I—digits—l IT_E_l i: :‘ digits—l
- —digits i

The white space consists of the same characters for which the isspace()function is true, such as spaces
and tabs. The atof() function ignores leading white-space characters.

For the atof() function, digits is one or more decimal digits; if no digits appear before the decimal point,
at least one digit must appear after the decimal point. The decimal digits can precede an exponent,
introduced by the letter e or E. The exponent is a decimal integer, which might be signed.

The atof() function will not fail if a character other than a digit follows an E or if e is read in as an
exponent. For example, 100elf will be converted to the floating-point value 100.0. The accuracy is up to 17
significant character digits.

Return Value

The atof() function returns a double value that is produced by interpreting the input characters as a
number. The return value is 0 if the function cannot convert the input to a value of that type. In case of
overflow, the function sets errno to ERANGE and returns the value -HUGE_VAL or +HUGE_VAL.

Example that uses atof ()

This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>
#include <stdio.h>

int main(void)

double x;
char *s;

S
X

" -2309.12E-15";
atof(s); /* x = -2309.12E-15 */

printf("x = %.4e\n",x);

Chapter 2. Library Functions 47



[FHxk xR IR IE TR KK Qutput should be similar to: ****xkxkkkkxkkkk

X = -2.3091e-12
*/

Related Information

+ |“atoi() — Convert Character String to Integer”|

[“atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49|

* |“strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400|

* |“strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page
392

o |“strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page|
395

[“<stdlib.h>" on page 17]

atoi() — Convert Character String to Integer

Format
#include <stdlib.h>

int atoi(const char *string);
Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The atoi () function converts a character string to an integer value. The input string is a sequence of
characters that can be interpreted as a numeric value of the specified return type. The function stops
reading the input string at the first character that it cannot recognize as part of a number. This character
can be the null character that ends the string.

The atoi () function does not recognize decimal points or exponents. The string argument for this
function has the form:

digits ><

[
>p

l—wh i tespace—l —+—

where whitespace consists of the same characters for which the isspace() function is true, such as spaces
and tabs. The atoi () function ignores leading white-space characters. The value digits represents one or
more decimal digits.

Return Value

The atoi() function returns an int value that is produced by interpreting the input characters as a
number. The return value is 0 if the function cannot convert the input to a value of that type. The return

value is undefined in the case of an overflow.

Example that uses atoi ()

48 ILE C/C++ Runtime Library Functions V6R1



This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>
#include <stdio.h>

int main(void)
int i;
char *s;

S
.i

" .9885";
atoi(s); /* i = -9885 */

printf("i = %d\n",i);
}

[ *Fk Kk kk ok kk ok kkkkkkk Output should be similar to: F#x**xx*kxk*xxkxk**x

i = -9885
*/

Related Information

+ [“atof() — Convert Character String to Float” on page 46|

+ [“atol() — atoll() — Convert Character String to Long or Long Long Integer”|

* |“strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page
392

o |“strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page|
395

[“strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400|
[“<stdlib.h>" on page 17]

atol() — atoll() — Convert Character String to Long or Long Long
Integer

Format (atol1())

#include <stdlib.h>
Tong int atol(const char #string);

Format (atol11())

#include <stdlib.h>

Tong long int atoll(const char *string);
Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the
current locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The atol() function converts a character string to a long value. The ato11() function converts a character
string to a long long value.

The input string is a sequence of characters that can be interpreted as a numeric value of the specified

return type. The function stops reading the input string at the first character that it cannot recognize as
part of a number. This character can be the null character that ends the string.

Chapter 2. Library Functions 49



The atol() and atol1() functions do not recognize decimal points or exponents. The string argument for
this function has the form:

-
>p

digits ><
l—whitespace—l —+—

where whitespace consists of the same characters for which the isspace() function is true, such as spaces
and tabs. The ato1() and atol11() functions ignore leading white-space characters. The value digits
represents one or more decimal digits.

Return Value

The atol() and atol1()functions return a long or a long long value that is produced by interpreting the
input characters as a number. The return value is OL if the function cannot convert the input to a value of
that type. The return value is undefined in case of overflow.

Example that uses atol()

This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
long 1;
char *s;

s
1

98854 dollars";
atol(s); /* 1 = 98854 =/

printf("1 = %.1d\n",1);
1

[ Fk K dkk ko kk ko kk Rk ok ko Output should be similar to: ****x*xkkkkxkrk*

1 = 98854
*/

Related Information

* |“atof() — Convert Character String to Float” on page 46|

+ [“atoi() — Convert Character String to Integer” on page 48|

s |“strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page]
392

* |“strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page|
395

[“strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400|
[“<stdlib.h>" on page 17]

Bessel Functions

Format

#include <math.h>
double jO(double x);
double j1l(double x);

50 ILE C/C++ Runtime Library Functions V6R1



double jn(int n, double x);
double y0(double x);
double yl(double x);
double yn(int n, double x);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

Bessel functions solve certain types of differential equations. The jO(), j1(), and jn() functions are Bessel
functions of the first kind for orders 0, 1, and n, respectively. The y0(), y1(), and yn() functions are
Bessel functions of the second kind for orders 0, 1, and #, respectively.

The argument x must be positive. The argument n should be greater than or equal to zero. If n is less
than zero, it will be a negative exponent.

Return Value

For jo(), j1(), yo(), or y1(), if the absolute value of x is too large, the function sets errno to ERANGE,
and returns 0. For y0(), y1(), or yn(), if x is negative, the function sets errno to EDOM and returns the
value -HUGE_VAL. For y0, y1(), or yn(), if x causes overflow, the function sets errno to ERANGE and
returns the value -HUGE_VAL.

Example that uses Bessel Functions

This example computes y to be the order 0 Bessel function of the first kind for x. It also computes z to be
the order 3 Bessel function of the second kind for x.

#include <math.h>
#include <stdio.h>

int main(void)

double x, y, z;
x = 4.27;

Jjo(x); /*y = -0.3660 is the order 0 bessel */
/* function of the first kind for x =/
yn(3,x); /* z = -0.0875 is the order 3 bessel */
/* function of the second kind for x */

Y

z

printf("y = 51f\n", y);
printf("z = %1f\n", 2);

}

[ FKk K gk k kK kkkk Qutput should be similar to: *x*kxkxkkkkkkkkkkkkkhkk

y = -0.366022
z = -0.087482
ek ek ok st o ok ek o o ok ok o ok ok o ok ok o s e o o ok o o ok ok o ok ok o ok ok o dedede o ok ok ok o */

Related Information

* [“erf() — erfc() — Calculate Error Functions” on page 87]

+ “gamma() — Gamma Function” on page 150|

* [“<math.h>" on page 8|

bsearch() — Search Arrays

Format

Chapter 2. Library Functions 51



#include <stdlib.h>
void xbsearch(const void *key, const void =*base,
size_t num, size_t size,
int (*compare) (const void *key, const void *element));

Language Level: ANSI
Threadsafe: Yes.
Description

The bsearch() function performs a binary search of an array of num elements, each of size bytes. The
array must be sorted in ascending order by the function pointed to by compare. The base is a pointer to
the base of the array to search, and key is the value being sought.

The compare argument is a pointer to a function you must supply that compares two items and returns a
value specifying their relationship. The first item in the argument list of the compare() function is the
pointer to the value of the item that is being searched for. The second item in the argument list of the
compare() function is a pointer to the array element being compared with the key. The compare() function
must compare the key value with the array element and then return one of the following values:

Value Meaning

Less than 0 key less than element

0 key identical to element
Greater than 0 key greater than element

Return Value

The bsearch() function returns a pointer to key in the array to which base points. If two keys are equal,
the element that key will point to is unspecified. If the bsearch() function cannot find the key, it returns
NULL.

Example that uses bsearch()

This example performs a binary search on the argv array of pointers to the program parameters and finds
the position of the argument PATH. It first removes the program name from argv, and then sorts the
array alphabetically before calling bsearch(). The comparel() and compare2() functions compare the
values pointed to by argl and arg2 and return the result to the bsearch() function.

#include <stdlib.h>

#include <stdio.h>
#include <string.h>

int comparel(const void *, const void *);
int compare2(const void *, const void *);

main(int argc, char xargv[])

{ /* This program performs a binary */
char *xresult; /* search on the argv array of pointers =x/
char xkey = "PATH"; /* to the program parameters. It first =x/
int i; /* removes the program name from argv */

/* then sorts the array alphabetically */
argv++t; /* before calling bsearch. */
argc--;

gsort((char *)argv, argc, sizeof(char *), comparel);

result = (charxx)bsearch(&key, (char x)argv, argc, sizeof(char *), compare2);
if (result != NULL) {

52 ILE C/C++ Runtime Library Functions V6R1



printf("result =<%s>\n",*result);
}
else printf("result is null\n");

1
/*This function compares the values pointed to by argl =/
/*and arg2 and returns the result to gsort. argl and =/
/*arg2 are both pointers to elements of the argv array. */

int comparel(const void xargl, const void *arg2)

return (strcmp(*(char **)argl, x(char *x)arg2));
/*This function compares the values pointed to by argl =/
/*and arg2 and returns the result to bsearch */
/*argl is a pointer to the key value, arg2 points to */
/*the element of argv that is being compared to the key */
/*value. */
int compare2(const void xargl, const void *arg2)
return (strcmp(*(char *x)argl, *(char **)arg2));
}
[ Fk K dkk ok gk kk ok kk ko k kK Output should be similar to: ***xkx*xkxkxk*
result = <PATH>
*kxkxrkkkkkrxeeskk When the input on the i5/0S command Tine s ##*xkkxx
CALL BSEARCH PARM(WHERE IS PATH IN THIS PHRASE'?')
*/

Related Information

* |“gsort() — Sort Array” on page 245|
* |“<stdlib.h>” on page 17

btowc() — Convert Single Byte to Wide Character

Format

#include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

Chapter 2. Library Functions 53



The btowc () function converts the single byte value c to the wide-character representation of c. If ¢ does
not constitute a valid (1-byte) multibyte character in the initial shift state, the btowc() function returns
WEOE

Return Value

The btowc() function returns WEOF if ¢ has the value EOF, or if (unsigned char) ¢ does not constitute a
valid (1-byte) multibyte character in the initial shift state. Otherwise, it returns the wide-character
representation of that character.

If a conversion error occurs, errno might be set to ECONVERT.
Example that uses btowc ()

This example scans various types of data.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <local.h>

#define UPPER_LIMIT  OxFF

int main(void)
{
int wc;
int ch;
if (NULL == setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE")) {
printf("Locale could not be loaded\n");
exit(1l);

1
for (ch = 0; ch <= UPPER_LIMIT; ++ch) {
wc = btowc(ch);
if (wc==WEOF) {
printf("%#04x is not a one-byte multibyte character\n", ch);
} else {
printf("%#04x has wide character representation: %#06x\n", ch, wc);

}

}
wc = btowc (EOF);
if (wc==WEOF) {
printf("The character is EOF.\n", ch);
} else {
printf("EOF has wide character representation: %#06x\n", wc);

return 0;

}

/******************************* """"""""""" *khkkkkhkhkkhhkhhhhkk *%
If the locale is bound to SBCS, the output should be similar to:
0000 has wide character representation: 000000
0x01 has wide character representation: 0x0001

0xfe has wide character representation: 0x00fe
Oxff has wide character representation: 0x00ff
The character is EOF.

************************************************************************/

Related Information

* “mblen() — Determine Length of a Multibyte Character” on page 197]

* [“mbtowc() — Convert Multibyte Character to a Wide Character” on page 211]

* “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

54 ILE C/C++ Runtime Library Functions V6R1



[“mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206|

[“setlocale() — Set Locale” on page 339
* [“wertomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446|
[‘wesrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473)|

[‘<stdio.h>" on page 15|

* [“<wchar.h>" on page 18|

_C_Get_Ssn_Handle() — Handle to C Session

Format
#include <stdio.h>

_SSN_HANDLE_T _C_Get_Ssn_Handle (void)

Language Level: ILE C Extension

Threadsafe: Yes.

Description

Returns a handle to the C session for use with Dynamic Screen Manager (DSM) APIs.
Return Value

The C_Get_Ssn_Handle() function returns a handle to the C session. If an error occurs,

_SSN_HANDLE _T is set to zero. See the topic in the iInformation Center for more information
about using the _C_Get_Ssn_Handle() function with DSM APIs.

calloc() — Reserve and Initialize Storage

Format

#include <stdlib.h>
void *calloc(size_t num, size t size);

Language Level: ANSI
Threadsafe: Yes.
Description

The calloc() function reserves storage space for an array of num elements, each of length size bytes. The
calloc() function then gives all the bits of each element an initial value of 0.

Return Value

The calloc() function returns a pointer to the reserved space. The storage space to which the return
value points is suitably aligned for storage of any type of object. To get a pointer to a type, use a type
cast on the return value. The return value is NULL if there is not enough storage, or if num or size is 0.

Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should
be allocated and deallocated within the same activation group. You cannot allocate heap storage
within one activation group and deallocate that storage from a different activation group. For more
information about activation groups, see the ILE Concepts manual.

Chapter 2. Library Functions 55



2. To use Teraspace storage instead of heap storage without changing the C source code, specify the
TERASPACE(*YES *TSIFC) parameter on the compiler command. This maps the calloc() library
function to _C_TS_calloc(), its Teraspace storage counterpart. The maximum amount of Teraspace
storage that can be allocated by each call to _C_TS_calloc() is 2GB - 224, or 2147483424 bytes.

For more information about Teraspace, see the ILE Concepts manual.

3. If the _C_Quickpool_Init() function has been called in the current activation group, then the storage
is retrieved using Quick Pool memory management. See _C_Quickpool_Init() for more information.

Example that uses calloc()

This example prompts for the number of array entries required, and then reserves enough space in
storage for the entries. If calloc() is successful, the example prints out each entry; otherwise, it prints
out an error.

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

long * array; /* start of the array

*/

long * index; /* index variable

*/

int i /* index variable

*/

int num; /* number of entries of the array
*/

printf( "Enter the size of the array\n" );
scanf( "%i", &num);

/* allocate num entries */
if ( (index = array = (long *) calloc( num, sizeof( long ))) !'= NULL )

for (1 =0; i < num; ++i ) /* put values in arr */
xindex++ = i; /* using pointer no */
for (i =0; 1 < num; ++i ) /* print the array out =/

printf( "array[%i ] = %i\n", i, array[i] );

}
else
{ /* out of storage */

perror( "Out of storage" );

abort();
}

1

[ *Fk K gk gk kR ko k Kk Qutput should be similar to: **xkkkkkkkkkkkkkkkkhkkk

Enter the size of the array

array[ 0] = 0
array[ 1] =1
array[ 2] =2
*/

Related Information

+ [“_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66|

+ |“_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68|

* |“_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70|

+ [“free() — Release Storage Blocks” on page 128|

[‘malloc() — Reserve Storage Block” on page 195

56 ILE C/C++ Runtime Library Functions V6R1



|« [“realloc() — Change Reserved Storage Block Size” on page 264|
| |“<stdlib.h>” on page 17

catclose() — Close Message Catalog

Format

#include <nl_types.h>

int catclose (nl_catd catd);
Language Level: XPG4
Threadsafe: Yes.

| Locale Sensitive: This function is not available when LOCALETYPE(*CLD) is specified on the
| compilation command.

| Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
| on the compilation command.

Description
The catclose() function closes the previously opened message catalog that is identified by catd.
Return Value

If the close is performed successfully, 0 is returned. Otherwise, -1 is returned indicating failure, which
might happen if catd is not a valid message catalog descriptor.
The value of errno can be set to:

EBADF
The catalog descriptor is not valid.

EINTR
The function was interrupted by a signal.

Example that uses catclose()

Chapter 2. Library Functions 57



#include <stdio.h>
#include <nl_types.h>
#include <locale.h>
/* Name of the message catalog is "/gsys.lib/mylib.lib/msgs.usrspc" */
int main(void) {
nl_catd msg_file;
char * my _msg;

char = my_Tocale;

setlocale(LC_ALL, NULL);
msg_file = catopen("/qsys.lib/mylib.1ib/msgs.usrspc", 0);

if (msg_file != CATD_ERR) {
my_msg = catgets(msg_file, 1, 2, "oops");
printf("%s\n", my_msg);
catclose(msg_file);

}
}

Related Information

+ [“catopen() — Open Message Catalog” on page 59|

* |“catgets() — Retrieve a Message from a Message Catalog”]

catgets() — Retrieve a Message from a Message Catalog

Format
#include <nl_types.h>

char xcatgets(nl_catd catd, int set_id, int msg_id, char *s);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Description

The catgets() function retrieves message msg_id, in set set_id from the message catalog that is identified
by catd. catd is a message catalog descriptor that is returned by a previous call to catopen(). The s
argument points to a default message which will be returned by catgets() if the identified message
cannot be retrieved.

Return Value
If the message is retrieved successfully, then catgets() returns a pointer to the message string that is
contained in the message catalog. The CCSID of the retrieved message is determined by the flags

specified in the oflag parameter on the previous call to the catopen() function, when the message catalog
file was opened.

58 ILE C/C++ Runtime Library Functions V6R1



 If the NL_CAT_JOB_MODE flag was specified, then the retrieved message is in the CCSID of the job.

* If the NL_CAT_CTYPE_MODE flag was specified, then the retrieved message is in the CCSID of the
LC_CTYPE category of the current locale.

* If neither flag was specified, the CCSID of the retrieved message matches the CCSID of the message
catalog file.

If the message is retrieved unsuccessfully, then a pointer to the default string s is returned.

The value of errno can be set to the following:

EBADF
The catalog descriptor is not valid.

ECONVERT
A conversion error occurred.

EINTR
The function was interrupted by a signal.

Example that uses catgets()

#include <stdio.h>
#include <nl_types.h>
#include <locale.h>
/* Name of the message catalog is "/qsys.lib/mylib.1ib/msgs.usrspc" */
int main(void) {
nl_catd msg_file;
char * my_msg;

char = my_locale;

setlocale(LC_ALL, NULL);
msg_file = catopen("/qsys.lib/mylib.1ib/msgs.usrspc", 0);

if (msg_file != CATD_ERR) {
my_msg = catgets(msg_file, 1, 2, "oops");
printf("%s\n", my _msg);
catclose(msg_file);

}
}

Related Information

+ [“catclose() — Close Message Catalog” on page 57|

* |“catopen() — Open Message Catalog”]

catopen() — Open Message Catalog

Format
#include <nl1_types.h>
nl_catd catopen(const char *name, int oflag);

Language Level: XPG4

Threadsafe: Yes.

Chapter 2. Library Functions

59



Locale Sensitive: The behavior of this function might be affected by the LC_MESSAGES category of the
current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [‘Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Description

The catopen() function opens a message catalog, which must be done before a message can be retrieved.
The NLSPATH environment variable and the LC_MESSAGES category are used to find the specified
message catalog if no slash (/) characters are found in the name. If the name contains one or more slash
(/) characters, then the name is interpreted as a path name of the catalog to open.

If there is no NLSPATH environment variable, or if a message catalog cannot be found in the path
specified by NLSPATH, then a default path is used. The default path might be affected by the setting of
the LANG environment variable; if the NL_CAT_LOCALE flag is set in the oflag parameter or if the
LANG environment variable is not set, the default path might be affected by the LC_MESSAGES locale
category.

Three values can be specified for the oflag parameter: NL_CAT_LOCALE, NL_CAT_JOB_MODE, and
NL_CAT_CTYPE_MODE. NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE are mutually exclusive. If
the NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE flags are both set in the oflag parameter, the
catopen() function will fail with a return value of CATD_ERR.

If you want the catalog messages to be converted to the job CCSID before they are returned by the
catgets() function, set the parameter to NL_CAT_JOB_MODE. If you want the catalog messages to be
converted to the LC_CTYPE CCSID before they are returned by catgets(), set the parameter to
NL_CAT_CTYPE_MODE. If you do not set the parameter to NL_CAT_JOB_MODE or
NL_CAT_CTYPE_MODE, the messages are returned without conversion and are in the CCSID of the
message file.

The message catalog descriptor will remain valid until it is closed by a call to catclose(). If the
LC_MESSAGES locale category is changed, it might invalidate existing open message catalogs.

Note: The name of the message catalog must be a valid integrated file system file name.
Return Value

If the message catalog is opened successfully, then a valid catalog descriptor is returned. If catopen() is
unsuccessful, then it returns CATD_ERR ((nl_catd)-1).

The catopen() function might fail under the following conditions, and the value of errno can be set to:

EACCES
Insufficient authority to read the message catalog specified, or to search the component of the
path prefix of the message catalog specified.

ECONVERT
A conversion error occurred.

EMFILE
NL_MAXOPEN message catalogs are currently open.

ENAMETOOLONG
The length of the path name of the message catalog exceeds PATH_MAX, or a path name
component is longer than NAME_MAX.

60 ILE C/C++ Runtime Library Functions V6R1



ENFILE
Too many files are currently open in the system.

ENOENT
The message catalog does not exist, or the name argument points to an empty string.

Example that uses catopen()

#include <stdio.h>
#include <nl_types.h>
#include <locale.h>
/* Name of the message catalog is "/gsys.lib/mylib.lib/msgs.usrspc" */
int main(void) {
nl_catd msg_file;
char * my_msg;

char = my_locale;

setlocale(LC_ALL, NULL);
msg_file = catopen("/qsys.lib/mylib.1ib/msgs.usrspc", 0);

if (msg_file != CATD_ERR) {
my_msg = catgets(msg_file, 1, 2, "oops");
printf("%s\n", my msg);
catclose(msg _file);

}
}

Related Information

* [“catclose() — Close Message Catalog” on page 57|

+ [“catgets() — Retrieve a Message from a Message Catalog” on page 58|

ceil() — Find Integer >=Argument

Format

#include <math.h>

double ceil(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The ceil() function computes the smallest integer that is greater than or equal to x.
Return Value

The ceil() function returns the integer as a double value.

Example that uses ceil()

This example sets y to the smallest integer greater than 1.05, and then to the smallest integer greater than

-1.05. The results are 2.0 and -1.0, respectively.

Chapter 2. Library Functions 61



#include <math.h>
#include <stdio.h>

int main(void)
{
double y, z;

ceil(1.05); [*y
ceil(-1.05); /* z

2.0 x/
-1.0 */

Y
z

printf("y = %.2f ; z = %.2f\n", y, 2z);
[ Fk K dkkkdkkk ok kok ok Output should be similar to: *x**kxkxkkkkkkkkkkhxkkkk

y =2.00; z=-1.00

**********************************************************************/

Related Information

+ |“floor() —Find Integer <=Argument” on page 107|

* |“fmod() — Calculate Floating-Point Remainder” on page 108§|

* [“<math.h>" on page §|

clearerr() — Reset Error Indicators

Format

#include <stdio.h>
void clearerr (FILE xstream);

Language Level: ANSI
Threadsafe: Yes.
Description

The clearerr() function resets the error indicator and end-of-file indicator for the specified stream. Once
set, the indicators for a specified stream remain set until your program calls the clearerr() function or
the rewind() function. The fseek() function also clears the end-of-file indicator. The ILE C/C++ runtime
environment does not automatically clear error or end of file indicators.

Return Value
There is no return value.

The value of errno can be set to:
Value Meaning

EBADF
The file pointer or descriptor is not valid.

ENOTOPEN
The file is not open.

ESTDIN
stdin cannot be opened.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0O error occurred.

62 ILE C/C++ Runtime Library Functions V6R1



Example that uses clearerr()
This example reads a data stream, and then checks that a read error has not occurred.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int c;

int main(void)
if ((stream = fopen("mylib/myfile", "r")) != NULL)
{

if ((c=getc(stream)) == EOF)
{

if (ferror(stream))

perror("Read error");
clearerr(stream);
}
}
1

else
exit(0);
1

Related Information
+ [“feof() — Test End-of-File Indicator” on page 95|
* [“ferror() — Test for Read/Write Errors” on page 95|

[“fseek() — fseeko() — Reposition File Position” on page 134]

* [“perror() — Print Error Message” on page 227|

* [“rewind() — Adjust Current File Position” on page 276|

[“strerror() — Set Pointer to Runtime Error Message” on page 367

[<stdio.h>" on page 15|

clock() — Determine Processor Time

Format

#include <time.h>

clock_t clock(void);

Language Level: ANSI

Threadsafe: Yes.

Description

The clock() function returns an approximation of the processor time used by the program since the
beginning of an implementation-defined time-period that is related to the process invocation. To obtain
the time in seconds, divide the value that is returned by clock() by the value of the macro
CLOCKS_PER_SEC.

Return Value

If the value of the processor time is not available or cannot be represented, the cl ock() function returns

the value (clock_t)-1.

Chapter 2. Library Functions 63



To measure the time spent in a program, call clock() at the start of the program, and subtract its return
value from the value returned by subsequent calls to clock(). On other platforms, you can not always
rely on the clock() function because calls to the system() function might reset the clock.

Example that uses clock()
This example prints the time that has elapsed since the program was called.

#include <time.h>
#include <stdio.h>

double timel, timedif; /* use doubles to show small values */

int main(void)

{

int i,
timel = (double) clock(); /* get initial time */
timel = timel / CLOCKS_PER_SEC; /* in seconds */

/* running the FOR loop 10000 times =*/
for (i=0; 1<10000; i++);

/* call clock a second time */
timedif = ( ((double) clock()) / CLOCKS PER_SEC) - timel;
printf("The elapsed time is %1f seconds\n", timedif);

}

Related Information

+ |“difftime() — Compute Time Difference” on page 82

[“difftime64() — Compute Time Difference” on page 84|

[“time() — Determine Current Time” on page 411|

[“time64() — Determine Current Time” on page 412|

+ |“<time.h>" on page 18§|

cos() — Calculate Cosine
Format

#include <math.h>

double cos(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The cos () function calculates the cosine of x. The value x is expressed in radians. If x is too large, a
partial loss of significance in the result might occur.

Return Value
The cos() function returns the cosine of x. The value of errno can be set to either EDOM or ERANGE.
Example that uses cos ()

This example calculates y to be the cosine of x.

64 ILE C/C++ Runtime Library Functions V6R1



#include <math.h>
#include <stdio.h>

int main(void)
double x, y;

X
y

7.2;
cos(x);

printf("cos( %1f ) = %1f\n", x, y);

[ xK Kk kk Kk kk ko kk ok kR kk ok Output should be similar to: *#x**xkxkkxkxkkkhxk®

cos( 7.200000 ) = 0.608351
*/

Related Information

+ [“acos() — Calculate Arccosine” on page 3§|

[“cosh() — Calculate Hyperbolic Cosine”|

[“sin() — Calculate Sine” on page 348§|

[“sinh() — Calculate Hyperbolic Sine” on page 349

[“tan() — Calculate Tangent” on page 409

[“tanh() — Calculate Hyperbolic Tangent” on page 410|

* [“<math.h>" on page §|

cosh() — Calculate Hyperbolic Cosine

Format

#include <math.h>

double cosh(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The cosh() function calculates the hyperbolic cosine of x. The value x is expressed in radians.

Return Value

The cosh() function returns the hyperbolic cosine of x. If the result is too large, cosh() returns the value
HUGE_VAL and sets errno to ERANGE.

Example that uses cosh()

This example calculates y to be the hyperbolic cosine of x.

Chapter 2. Library Functions 65



#include <math.h>
#include <stdio.h>

int main(void)
{
double x,y;

X
y

7.2;
cosh(x);

printf("cosh( %1f ) = %1f\n", x, y);

[ * K kkk ok kk ok kkkkkkkkk Output should be similar to: *#*x*xkxkkxkxkkkhxk®

cosh( 7.200000 ) = 669.715755
*/

Related Information

+ [“acos() — Calculate Arccosine” on page 3§|

* |“cos() — Calculate Cosine” on page 64|

+ [“sin() — Calculate Sine” on page 348

[“sinh() — Calculate Hyperbolic Sine” on page 349

[“tan() — Calculate Tangent” on page 409

[“tanh() — Calculate Hyperbolic Tangent” on page 410|

* [“<math.h>" on page §|

_C_Quickpool_Debug() — Modify Quick Pool Memory Management
Characteristics

Format

#include <stdlib.h>
_C_Quickpool_Debug T _C_Quickpool_Debug(_C_Quickpool_Debug_T *newval);

Language Level: Extended

Threadsafe: Yes.

Description

The _C_Quickpool_Debug() function modifies Quick Pool memory management characteristics.

The parameters for _C_Quickpool_Debug() are as follows:

newval
A pointer to a _C_Quickpool_Debug_T structure. The structure contains the following fields:

flags  An unsigned integer value that indicates the characteristics to be modified. The flags field
can contain the following values (which can be used in any combination):

_C_INIT_MALLOC
Initializes all allocated storage to a specified value. The value is passed in the
variable argument list.

_C_INIT_FREE
Initializes all freed storage to a specified value. The value is passed in the
variable argument list.

66 ILE C/C++ Runtime Library Functions V6R1



_C_COLLECT_STATS

Collects statistics on the Quick Pool memory management algorithm to use

_C _Quickpool_Report functions.

malloc_val

A 1-byte unsigned character value that is used to initialize allocated memory. This field is

in use only when the _C_INIT_MALLOC flag is specified.

free_val

A 1-byte unsigned character value that is used to initialize freed memory. This field is in

use only when the _C_INIT_FREE flag is specified.

Return Value

The return value is a structure that contains the _C_Quickpool_Debug values before the changes requested
by the current function call are made. This value can be used to restore the _C_Quickpool_Debug values to
a prior state with a later call.

Example that uses _C_Quickpool_Debug()

The following example uses _C_Quickpool_Debug with the _C_INIT_MALLOC and _C_INIT_FREE flags to
initialize memory on the malloc and free functions.

#include <stdlib.h>
#include <stdio.h>
int main(void) {

}

char *p;

char *mtest = "AAAAAAAAAA";

char *ftest = "BBBBBBBBBB";
unsigned int cell_sizes[2]
unsigned int cells_per_extent[2]

{ 16, 64 };
{ 16, 16 };

_C_Quickpool Debug T dbgVals = { C_INIT_MALLOC | _C_INIT FREE, 'A', 'B' };

if (_C_Quickpool Init(2, cell_sizes, cells_per_extent) {
printf("Error initializing Quick Pool memory management.\n");
return -1;

}
_C_Quickpool_Debug(dbgVals);

if ((p = malloc(10)) == NULL) {
printf("Error during malloc.\n");
return -2;

}

if (memcmp(p, mtest, 10)) {
printf("malloc test failed\n");

}

free(p);

if (memcmp(p, ftest, 10)) {
printf("free test failed\n");

}

printf("Test successful!\n");

return 0;

/*****************Output should be similar to:x*x*kkkxkkkkxkkkk

Test successful!
*******************************************************************/

Related Information

* |“_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68|

* [“_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70|

[“<stdlib.h>" on page 17]

Chapter 2. Library Functions

67



_C_Quickpool_lInit() — Initialize Quick Pool Memory Management

Format

#include <stdlib.h>
int _C_Quickpool_Init(unsigned int numpools, unsigned int *cell_sizes, unsigned int *num cells);

Language Level: Extended
Threadsafe: Yes.
Description

When the _C_Quickpool_Init() function is called, all subsequent calls to memory management functions
(malloc, calloc, realloc, and free) in the same activation group will use the Quick Pool memory
management algorithm. This algorithm can provide improved performance in some cases.

Quick Pool memory management breaks memory up into a series of pools. Each pool is broken up into a
number of cells with identical sizes. The number of pools, the size of cells in each pool, and the number
of cells in each pool extent is set using the _C_Quickpool_Init() function.

Suppose that a user wants to define four pools, each of which contains 64 cells. The first pool will have
16-byte cells; the second pool will have 256-byte cells; the third pool will have 1024-byte cells; and the
fourth pool will have 2048-byte cells. When the user submits the request for storage, the memory
management algorithm assigns the request to a pool first. The algorithm compares the size of storage in
the request with the size of the cells in a given pool.

In this example, the first pool satisfies requests between 1 and 16 bytes in size; the second pool satisfies
requests between 17 and 256 bytes in size; the third pool satisfies requests between 257 and 1024 bytes in
size, and the fourth pool satisfies requests between 1025 and 2048 bytes in size. Any requests larger than
the largest cell size are allocated through the old memory management algorithm.

After the pool has been assigned, the free queue for the pool is examined. Each pool has a free queue
that contains cells that have been freed and have not yet been reallocated. If there is a cell on the free
queue, the cell is removed from the free queue and returned; otherwise, the cell is retrieved from the
current extent for the pool. An extent is a collection of cells that are allocated as one block. Initially, a
pool has no extents.

When the first request comes in for a pool, an extent is allocated for the pool and the request is satisfied
from that extent. Later requests are also satisfied by that extent until the extent is exhausted. When an
extent is exhausted, a new extent is allocated for the pool. If the algorithm fails to retrieve a cell from the
current extent, it assumes that a memory problem exists. An attempt will be made to allocate the storage
using the old memory management algorithm. If the attempt is not successful, the NULL value is
returned.

numpools
The number of pools to use in the Quick Pool memory management algorithm. This parameter
can have a value between 1 and 512.

cell_sizes
An array of unsigned integer values. The number of entries in the array is equal to the number
specified on the numpools parameter. Each entry specifies the number of bytes in a cell for a
given pool. These values must be multiples of 16 bytes. If a value is specified that is not a
multiple of 16 bytes, the cell size is rounded up to the next larger multiple of 16 bytes. The
minimum valid value is 16 bytes and the maximum valid value is 4096 bytes.

num_cells
An array of unsigned integer values. The number of entries in the array is equal to the number

68 ILE C/C++ Runtime Library Functions V6R1



specified on the numpools parameter. Each entry specifies the number of cells in a single extent

for the corresponding pool. The number can be any nonzero number, but the total size of the
extent cannot exceed the maximum size of an extent (currently 16 MB).

Here is the call to _C_Quickpool_Init() for the preceding example:

unsigned int cell_sizes[4] = { 16, 256, 1024, 2048 };
unsigned int cells_per_extent[4] = { 64, 64, 64, 64 };

rc = C_Quickpool Init(4, /* number of pools */
cell_sizes, /* cell sizes for each pool  */
cells_per extent); /* extent sizes for each pool =*/

Return Value

The follow list shows the return values for the _C_Quickpool_Init function:

0 Success

-1 _C_Quickpool_Init has already been called in this activation group.

-2 Error allocating storage for control structures.

-3 An invalid number of pools was specified.

-4 _C_Quickpool_Init was called from an invalid activation group.

-5 An unexpected exception occurred when _C_Quickpool_Init was running.

Example that uses _C_Quickpool_Init()
The following example uses _C_Quickpool_Init to enable Quick Pool memory allocation.

#include <stdlib.h>

#include <stdio.h>

int main(void) {
char *p;
unsigned int cell_sizes[2]
unsigned int cells_per_extent[2]

{ 16, 64 };
{ 16, 16 };

if (_C_Quickpool Init(2, cell_sizes, cells_per_extent) {
printf("Error initializing Quick Pool memory management.\n");
return -1;

}
if ((p = malloc(10)) == NULL) {
printf("Error during malloc.\n");
return -2;
}
free(p);
printf("Test successful!\n");
return 0;
1
/*****************Output should be similar to:x*x*xkkxkkkkxkrkk
Test successful!
***‘k**‘k******‘k**k****‘k******‘k**k‘k*************‘k******‘k**‘k******‘k*****/

Related Information

* |“_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66|

* |“_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70|
* |“<stdlib.h>” on page 17

Chapter 2. Library Functions

69



_C_Quickpool_Report() — Generate Quick Pool Memory Management
Report

Format

#include <stdlib.h>
void _C_Quickpool_Report(void);

Language Level: Extended
Threadsafe: Yes.
Description

The _C_Quickpool_Report function generates a spooled file that contains a snapshot of the memory used
by the Quick Pool memory management algorithm in the current activation group. If the
_C_Quickpool_Init() function has not been called in the current activation group yet or if the
_C_COLLECT_STATS flag is not used on a call to _C_Quickpool_Debug(), the report will be a message that
indicates no data is collected.

If _C Quickpool_Init() has been called and the _C_COLLECT_STATS flag is set using the
_C_Quickpool_Debug() function, the report that is generated indicates the number of allocation attempts
for each 16 bytes of memory since the time _C_Quickpool_Debug() was called. In addition, the report
indicates the maximum number of outstanding allocations (peak allocations) that is reached for each pool.
If no storage requests are made for a given range of memory, that range of memory will not be included
in the report. No output is generated for allocations larger than the maximum cell size (4096 bytes).

Return Value

There is no return value for the function.

Example that uses _C_Quickpool_Report()

The following example uses _C_Quickpool_Init to enable Quick Pool memory allocation. It uses the

_C_COLLECT_STATS flags to collect information. The collected information is printed using
_C_Quickpool_Report.

70 ILE C/C++ Runtime Library Functions V6R1



#include <stdlib.h>
#include <stdio.h>
int main(void) {

char *p;
int i
unsigned int cell_sizes[2] = {16, 64 };
unsigned int cells_per_extent[2] = { 16, 16 };

_C_Quickpool Debug T dbgVals = { C COLLECT STATS, 'A', 'B' };

if (_C_Quickpool Init(2, cell_sizes, cells_per_extent) {
printf("Error initializing Quick Pool memory management.\n");
return -1;

}
_C_Quickpool_Debug(dbgVals);

for (i = 1; i <= 64; i++) {
p = malloc(i);
free(p);

p = malloc(128);
free(p);
_C_Quickpool_Report();
return 0;
}
[xxFxxxxskrxxerxxxxxSpooled File Output should be similar to:xxssxxssxrx
Pool 1 (16 bytes, 1 peak allocations):
1-16 bytes: 16 allocations
Pool 2 (64 bytes, 1 peak allocations):
17-32 bytes: 16 allocations
33-48 bytes: 16 allocations
49-64 bytes: 16 allocations
Remaining allocations smaller than the largest cell size (4096 bytes):
113-128 bytes: 1 allocations

*******************************************************************/

Related Information

* |“_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66|

* [“_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68|
* [“<stdlib.h>” on page 17]

ctime() — Convert Time to Character String

Format

#include <time.h>

char *ctime(const time_t *time);
Language Level: ANSI

Threadsafe: No. Use ctime_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The ctime() function converts the time value pointed to by time to local time in the form of a character
string. A time value is usually obtained by a call to the time() function.

The string result that is produced by ctime() contains exactly 26 characters and has the format:
"%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

Chapter 2. Library Functions 71



For example:
Mon Jul 16 02:03:55 1987\n\0

The ctime() function uses a 24-hour clock format. The days are abbreviated to: Sun, Mon, Tue, Wed, Thu,
Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and
Dec. All fields have a constant width. Dates with only one digit are preceded with a zero. The new-line
character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to the ctime() function is equivalent to:

asctime(localtime(&anytime))

Note: The asctime() and ctime() functions, and other time functions can use a common, statically
allocated buffer to hold the return string. Each call to one of these functions might destroy the
result of the previous call. The asctime_r(), ctime_r(), gmtime_r(), and Tocaltime_r() functions
do not use a common, statically allocated buffer to hold the return string. These functions can be
used in place of asctime(), ctime(), gmtime(), and Tocaltime() if reentrancy is desired.

Example that uses ctime()

This example polls the system clock using time(). It then prints a message giving the current date and
time.

#include <time.h>
#include <stdio.h>

int main(void)

{
time_t Ttime;
time(&1time);

printf("the time is %s", ctime(&Itime));

}

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* [“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

* |“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

* |“gmtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163)|

[‘emtime64_r() — Convert Time (Restartable)” on page 167

[‘emtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

* [“localtime_r() — Convert Time (Restartable)” on page 188|

[‘mktime() — Convert Local Time” on page 218

[‘mktime64() — Convert Local Time” on page 220|

72 ILE C/C++ Runtime Library Functions V6R1



[“setlocale() — Set Locale” on page 339

[‘strftime() — Convert Date/Time to String” on page 370)

[“time() — Determine Current Time” on page 411|

[‘time64() — Determine Current Time” on page 412

[‘printf() — Print Formatted Characters” on page 229|

[<time.h>" on page 18|

ctime64() — Convert Time to Character String
Format

#include <time.h>

char *ctime64(const time64d t *time);

Language Level: ILE C Extension

Threadsafe: No. Use ctime64_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The ctime64() function converts the time value pointed to by time to local time in the form of a character
string. A time value is usually obtained by a call to the time64 () function.

The string result that is produced by the ctime64() function contains exactly 26 characters and has the
format:

"%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:
Mon Jul 16 02:03:55 1987\n\0

The ctime64() function uses a 24-hour clock format. The month and day abbreviations used are retrieved
from the locale. All fields have a constant width. Dates with only 1 digit are preceded with a zero. The
new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime64() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to the ctime64() function is equivalent to:

asctime(localtime64 (&anytime))

Note: The asctime() and ctime64() functions, and other time functions can use a common, statically
allocated buffer to hold the return string. Each call to one of these functions might destroy the
result of the previous call. The asctime_r(), ctime64_r(), gntime64_r(), and Tocaltime64_r()
functions do not use a common, statically allocated buffer to hold the return string. These
functions can be used in place of asctime(), ctime64(), gmtime64(), and Tocaltime64(), if
reentrancy is desired.

Example that uses ctime64()

This example polls the system clock using time64 (). It then prints a message that gives the current date
and time.

Chapter 2. Library Functions 73



#include <time.h>
#include <stdio.h>

int main(void)

{
time64_t 1time;
time64 (&1time);

printf("the time is %s", ctime64(&Itime));
1

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

* [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* [“ctime() — Convert Time to Character String” on page 71|

[“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[‘emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163)|

[‘emtime64_r() — Convert Time (Restartable)” on page 167

* |“gmtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 18|

[‘mktime() — Convert Local Time” on page 218

[‘mktime64() — Convert Local Time” on page 220|

[“setlocale() — Set Locale” on page 339

[‘strftime() — Convert Date/Time to String” on page 370

[“time() — Determine Current Time” on page 411|

[“time64() — Determine Current Time” on page 412

[‘printf() — Print Formatted Characters” on page 229|

[<time.h>” on page 18|

ctime_r() — Convert Time to Character String (Restartable)
Format

#include <time.h>

char *ctime_r(const time_t *time, char xbuf);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

This function is the restartable version of the ctime() function.

74 ILE C/C++ Runtime Library Functions V6R1



The ctime_r() function converts the time value pointed to by time to local time in the form of a character
string. A time value is usually obtained by a call to the time() function.

The string result that is produced by the ctime_r() function contains exactly 26 characters and has the
format:

"%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:
Mon Jul 16 02:03:55 1987\n\0

The ctime_r() function uses a 24-hour clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,
Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
and Dec. All fields have a constant width. Dates with only one digit are preceded with a zero. The
new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime_r() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to ctime_r() is equivalent to:

asctime_r(localtime_r(&anytime, buf2), buf)
where buf is a pointer to char.
Example that uses ctime_r()

This example polls the system clock using ctime_r(). It then prints a message giving the current date and
time.

#include <time.h>
#include <stdio.h>

int main(void)

time_t Ttime;
char buf[50];

time(&1time);
printf("the time is %s", ctime_r(&Itime, buf));

}

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* [“ctime() — Convert Time to Character String” on page 71|

* |“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[‘emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163

[‘emtime64_r() — Convert Time (Restartable)” on page 167

* |“gmtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 188

Chapter 2. Library Functions 75



[“mktime() — Convert Local Time” on page 218§|

[‘mktime64() — Convert Local Time” on page 220|

[“strftime() — Convert Date/Time to String” on page 370)

[“time() — Determine Current Time” on page 411

[“time64() — Determine Current Time” on page 412|

[‘<time.h>" on page 18|

ctime64_r() — Convert Time to Character String (Restartable)
Format

#include <time.h>

char *ctime64_r(const time64_t *time, char *buf);

Language Level: ILE C Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description
This function is the restartable version of the ctime64() function.

The ctime64() function converts the time value pointed to by time to local time in the form of a character
string. A time value is usually obtained by a call to the time64() function.

The string result that is produced by the ctime64_r() function contains exactly 26 characters and has the
format:

"%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:
Mon Jul 16 02:03:55 1987\n\0

The ctime64_r() function uses a 24-hour clock format. The month and day abbreviation used are
retrieved from the locale. All fields have a constant width. Dates with only 1 digit are preceded with a
zero. The new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime64_r() function returns a pointer to the character string result. If the function is unsuccessful, it
returns NULL. A call to the ctime64_r() function is equivalent to:

asctime_r(localtime64 r(&anytime, buf2), buf)
Example that uses ctime64_r()

This example polls the system clock using time64(). It then prints a message, giving the current date and
time.

76 ILE C/C++ Runtime Library Functions V6R1



#include <time.h>
#include <stdio.h>

int main(void)

time6d_t 1time;
char buf[50];

time64 (&1time);

printf("the time is %s", ctime64 r(&1time, buf));
1

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

* [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* [“ctime() — Convert Time to Character String” on page 71|

* |“ctime64() — Convert Time to Character String” on page 73|

* [“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[‘emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163

[‘emtime64_r() — Convert Time (Restartable)” on page 167

* |“gmtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187}

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 188

[‘mktime() — Convert Local Time” on page 218

[‘mktime64() — Convert Local Time” on page 220|

[“strftime() — Convert Date/Time to String” on page 370

[“time() — Determine Current Time” on page 411|

[“time64() — Determine Current Time” on page 412|

+ [“<time.h>" on page 18§|

_C_TS_malloc_debug() — Determine amount of teraspace memory
used (with optional dumps and verification)

Format

#include <mallocinfo.h>
int _C_TS malloc_debug(unsigned int dump_level, unsigned int verify level,
struct _C_mallinfo_t xoutput_record, size_t sizeofoutput);

Language Level: Extended
Threadsafe: Yes.
Description

The _C_TS_malloc_debug() function determines the amount of teraspace memory used and returns the
information within the given output_record structure. If the given dump_level parameter is greater than
0, it also dumps the internal memory structures used to stdout. If the given verify_level parameter is
greater than 0, it also performs verification checks for the internal memory structures. If a verification
fails, a message is generated to stdout indicating the failure. If both the dump_level and verify_level
parameters are 0, this function provides the same behavior as the _C_TS malloc_info function.

Chapter 2. Library Functions 77



The following macros are defined within the <mallocinfo.h> include file to be specified for the

dump_level parameter:

_C_NO_DUMPS

No information is dumped

_C_DUMP_TOTALS

Overall totals and totals for each chunk are printed

_C_DUMP_CHUNKS

Additional information about each chunk is printed

_C_DUMP_NODES

Additional information for all nodes within each chunk
is printed

_C_DUMP_TREE Additional information for the cartesian tree used to
track free nodes is printed
_C_DUMP_ALL All available information is printed

The following macros are defined within the <mallocinfo.h> include file to be specified for the

verify_level parameter:

_C_NO_CHECKS

No verification checks are performed

_C_CHECK_TOTALS

Totals are verified for correctness

_C_CHECK_CHUNKS

Additional verifications are performed for each chunk

_C_CHECK_NODES

Additional verifications are performed for all nodes
within each chunk

_C_CHECK_TREE

Additional verifications are performed for the cartesian
tree used to track free nodes

_C_CHECK_ALL

All verifications are performed

_C_CHECK_ALL_AND_ABORT

All verifications are performed, and if any verification
fails, the abort() function is called

Note: This function is for low-level debug of teraspace memory usage within an application.

Return Value

If successful, the function returns 0. If an error occurs, the function returns a negative value.

Example that uses C_TS malloc_debug()

This example prints the information returned from _C_TS_malloc_debug() to stdout . This program is

compiled with TERASPACE(*YES *TSIFC).

78 ILE C/C++ Runtime Library Functions V6R1




#include <stdio.h>
#include <stdlib.h>
#include <mallocinfo.h>

int main (void)

_C_mallinfo_t info;
int rc;
void *Mm;

/* Allocate a small chunk of memory =*/
m = malloc(500);

rc = _C_TS_malloc_debug(_C_DUMP_TOTALS,
“C_NO_CHECKS,
&info, sizeof(info));

if (rc == 0) {
Printf("_C_TS malloc_debug successful\n");
}

else {

printf(" C TS malloc_debug failed (rc = %d)\n", rc);
}

free(m);

}

/****************************************************
The output should be similar to:

total bytes = 524288
allocated_bytes = 688
unallocated_bytes = 523600
allocated_blocks =1
unallocated_blocks =1
requested_bytes = 500
pad_bytes =12
overhead bytes = 176
Number of memory chunks =1
Total bytes = 524288
Total allocated bytes = 688
Total unallocated bytes = 523600
Total allocated blocks =1
Total unallocated blocks =1
Total requested bytes = 500
Total pad bytes =12
Total overhead bytes = 176

_C_TS malloc_debug successful
B R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

Related Information

* |“_C_TS_malloc_info() — Determine amount of teraspace memory used”|

“calloc() — Reserve and Initialize Storage” on page 55
g pag

[‘free() — Release Storage Blocks” on page 128|

[‘malloc() — Reserve Storage Block” on page 195

[“realloc() — Change Reserved Storage Block Size” on page 264|

[“<mallocinfo.h>" on page §|

_C_TS_malloc_info() — Determine amount of teraspace memory used

Format

Chapter 2. Library Functions 79



#include <mallocinfo.h>
int _C_TS_malloc_info(struct _C_mallinfo_t *output_record, size_t sizeofoutput);

Language Level: Extended
Threadsafe: Yes.
Description

The _C_TS_malloc_info() function determines the amount of teraspace memory used and returns the
information within the given output_record structure.

Note: This function is for low-level debug of teraspace memory usage within an application.
Return Value

If successful, the function returns 0. If an error occurs, the function returns a negative value.
Example that uses _C_TS malloc_info()

This example prints the information returned from _C_TS_malloc_info() to stdout . This program is
compiled with TERASPACE(*YES *TSIFC).

80 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <mallocinfo.h>

int main (void)

}

_C_mallinfo_t info;
int rc;
void *Mm;

/* Allocate a small chunk of memory =*/
m = malloc(500);

rc = _C_TS malloc_info(&info, sizeof(info));

if (rc == 0) {
printf("Total bytes = %17u\n",
info.total_bytes);
printf("Total allocated bytes = %11u\n",

info.allocated_bytes);
printf("Total unallocated bytes = %1lu\n",
info.unallocated bytes);
printf("Total allocated blocks = %1Tu\n",
info.allocated blocks);
printf("Total unallocated blocks = %1Tu\n",
info.unallocated blocks);

printf("Total requested bytes = %11u\n",
info.requested_bytes);
printf("Total pad bytes = %1Tu\n",
info.pad_bytes);
printf("Total overhead bytes = %11u\n",
info.overhead_bytes);
1
else {
printf("_C_TS_malloc_info failed (rc = %d)\n", rc);
1
free(m);

/****************************************************

The output should be similar to:

Total bytes = 524288
Total allocated bytes = 688
Total unallocated bytes = 523600
Total allocated blocks =1
Total unallocated blocks =1
Total requested bytes = 500
Total pad bytes =12
Total overhead bytes = 176

B e e e R e T TR T R S S T e s T T

Related Information

“_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps and|

verification)” on page 77|

[“calloc() — Reserve and Initialize Storage” on page 55|

[“free() — Release Storage Blocks” on page 128

[‘malloc() — Reserve Storage Block” on page 195

[‘realloc() — Change Reserved Storage Block Size” on page 264|

[“<mallocinfo.h>" on page §|

Chapter 2. Library Functions

81



difftime() — Compute Time Difference

Format

#include <time.h>

double difftime(time_t time2, time_t timel);

Language Level: ANSI

Threadsafe: Yes.

Description

The difftime() function computes the difference in seconds between time2 and timel.

Return Value

The difftime() function returns the elapsed time in seconds from timel to time2 as a double precision
number. Type time_t is defined in <time.h>.

Example that uses difftime()

This example shows a timing application that uses difftime(). The example calculates how long, on
average, it takes to find the prime numbers from 2 to 10 000.

82 ILE C/C++ Runtime Library Functions V6R1



#include <time.h>
#include <stdio.h>

#define RUNS 1000
#define SIZE 10000

int mark[SIZE];

int main(void)

{
time_t start, finish;
int i, Toop, n, num;

time(&start);

/* This loop finds the prime numbers between 2 and SIZE */
for (Toop = 0; Toop < RUNS; ++loop)
{
for (n = 0; n < SIZE; ++n)
mark [n] = 0;
/* This loops marks all the composite numbers with -1 =/
for (num = 0, n = 2; n < SIZE; ++n)
if (! mark[n])
{

for (i =2 * n; i <SIZE; i +=n)
mark[i] = -1;
++num;
}
}
time(&finish);
printf("Program takes an average of %f seconds
"to find %d primes.\n",
difftime(finish,start)/RUNS, num);

}

[FF kg kR kR * R KKK Qutput should be similar: *x*xxkkxkxkkkkxkhkx

The program takes an average of 0.106000 seconds to find 1229 primes.
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

+ |“ctime() — Convert Time to Character String” on page 71|

* [“ctime64() — Convert Time to Character String” on page 73|

[‘ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

* |“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[“difftime64() — Compute Time Difference” on page 84|

[’emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163

[‘emtime64_r() — Convert Time (Restartable)” on page 167

* |“gmtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 188

[‘mktime() — Convert Local Time” on page 218

[‘mktime64() — Convert Local Time” on page 220|

Chapter 2. Library Functions 83



[“strftime() — Convert Date/Time to String” on page 370

+ |“time() — Determine Current Time” on page 411]

[“time64() — Determine Current Time” on page 412|

* [“<time.h>" on page 1§|

difftime64() — Compute Time Difference

Format

#include <time.h>

double difftime64(time64_t time2, time64_t timel);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The difftime64() function computes the difference in seconds between time2 and timel.

Return Value

The difftime64 () function returns the elapsed time in seconds from timel to time2 as a double precision
number. Type time64_t is defined in <time.h>.

Example that uses difftime64()

This example shows a timing application that uses difftime64(). The example calculates how long, on
average, it takes to find the prime numbers from 2 to 10 000.

84 ILE C/C++ Runtime Library Functions V6R1



#i
#i

#d
#d

in

in

{

}
/*

Th
*/

nclude <time.h>
nclude <stdio.h>

efine RUNS 1000
efine SIZE 10000

t mark[SIZE];
t main(void)

time64_t start, finish;
int i, Toop, n, num;

time64 (&start);

/* This loop finds the prime numbers between 2 and SIZE */
for (Toop = 0; Toop < RUNS; ++loop)
{
for (n = 0; n < SIZE; ++n)
mark [n] = 0;
/* This loops marks all the composite numbers with -1 =/
for (num = 0, n = 2; n < SIZE; ++n)
if (! mark[n])
{

for (i =2 * n; i <SIZE; i +=n)
mark[i] = -1;
++num;
}
}
time64 (&finish);
printf("Program takes an average of %f seconds
"to find %d primes.\n",
difftime64 (finish,start)/RUNS, num);

*kkkkkkkkkkkkkkkkkx  Qutput should be similar: *x*xxkkxkxkkkkxkhkx

e program takes an average of 0.106000 seconds to find 1229 primes.

Related Information

[“asctime() — Convert Time to Character String” on page 39|

[“asctime_r() — Convert Time to Character String (Restartable)” on page 41]

[“ctime() — Convert Time to Character String” on page 71|

[“ctime64() — Convert Time to Character String” on page 73|

[‘ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[“difftime() — Compute Time Difference” on page 82|

[’emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163

[‘emtime64_r() — Convert Time (Restartable)” on page 167

[‘emtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 188

[‘mktime() — Convert Local Time” on page 218

[‘mktime64() — Convert Local Time” on page 220|

Chapter 2. Library Functions

85



[“strftime() — Convert Date/Time to String” on page 370

+ |“time() — Determine Current Time” on page 411]

[“time64() — Determine Current Time” on page 412|

* [“<time.h>" on page 1§|

div() — Calculate Quotient and Remainder

Format

#include <stdlib.h>

div_t div(int numerator, int denominator);

Language Level: ANSI

Threadsafe: Yes. However, only the function version is threadsafe. The macro version is NOT threadsafe.
Description

The div() function calculates the quotient and remainder of the division of numerator by denominator.
Return Value

The div() function returns a structure of type div_t, containing both the quotient int quot and the
remainder int rem. If the return value cannot be represented, its value is undefined. If denominator is 0, an
exception will be raised.

Example that uses div()

This example uses div() to calculate the quotients and remainders for a set of two dividends and two
divisors.

86 ILE C/C++ Runtime Library Functions V6R1



#include <stdlib.h>
#include <stdio.h>

int main(void)

int num[2] = {45,-45};

int den[2] {7,-7};

div_t ans; /* div_t is a struct type containing two ints:
'quot' stores quotient; 'rem' stores remainder */

short i,j;

printf("Results of division:\n");
for (i = 0; i < 2; i++)
for (j = 05 j < 2; j++)
{
ans = div(num[i],den[j]);
printf("Dividend: %6d Divisor: %6d", num[i], den[j]);
printf(" Quotient: %6d Remainder: %6d\n", ans.quot, ans.rem);

}

[FHrk gk KRR AT kK Qutput should be similar to: **x*kkkkkkkkxkkkk

Results of division:

Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3
Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3
Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3
Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3

Related Information

* |“ldiv() — lldiv() — Perform Long and Long Long Division” on page 179|
* [“<stdlib.h>" on page 17

erf() — erfc() — Calculate Error Functions

Format

#include <math.h>
double erf(double x);
double erfc(double x);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

The erf() function calculates the error function of:

1/2

I Pt

1]

The erfc() function computes the value of 1.0 - erf(x). The erfc() function is used in place of erf() for
large values of x.

Return Value

Chapter 2. Library Functions 87



The erf() function returns a double value that represents the error function. The erfc() function returns
a double value representing 1.0 - erf.

Example that uses erf()
This example uses erf() and erfc() to compute the error function of two numbers.

#include <stdio.h>
#include <math.h>

double smallx, Targex, value;

int main(void)

{

smallx = 0.1;
largex = 10.0;
value = erf(smallx); /* value = 0.112463 */

printf("Error value for 0.1: %1f\n", value);

value = erfc(largex); /* value = 2.088488e-45 =/
printf("Error value for 10.0: %1e\n", value);

}

[ *Hxk kKT I I KKK Qutput should be similar to: **x*kkkkkkkkkhrkk
Error value for 0.1: 0.112463

Error value for 10.0: 2.088488e-45

*/

Related Information

* |“Bessel Functions” on page 50|

+ |“gamma() — Gamma Function” on page 150|

+ [“<math.h>" on page §|

exit() — End Program

Format

#include <stdlib.h>

void exit(int status);

Language Level: ANSI

Threadsafe: Yes.

Description

The exit() function returns control to the host environment from the program. It first calls all functions
that are registered with the atexit() function, in reverse order; that is, the last one that is registered is
the first one called. It deletes all buffers and closes all open files before ending the program.

The argument status can have a value from 0 to 255 inclusive, or be one of the macros EXIT_SUCCESS or
EXIT_FAILURE. A status value of EXIT_SUCCESS or 0 indicates a normal exit; otherwise, another status
value is returned.

Note: When compiled with SYSIFCOPT(*ASYNCSIGNAL), exit() cannot be called in a signal handler.

Return Value

88 ILE C/C++ Runtime Library Functions V6R1



The exit() function returns both control and the value of status to the operating system.

Example that uses exit()

This example ends the program after deleting buffers and closing any open files if it cannot open the file

myfile.

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int main(void)

if ((stream = fopen("mylib/myfile", "r")) == NULL)
{
perror("Could not open data file");
exit(EXIT_FAILURE);
}
1

Related Information

+ [“abort() — Stop a Program” on page 36|

+ [“atexit() — Record Program Ending Function” on page 45|

+ [“signal() — Handle Interrupt Signals” on page 346|
+ [“<stdlib.h>" on page 17

exp() — Calculate Exponential Function

Format

#include <math.h>
double exp(double x);
Language Level: ANSI
Threadsafe: Yes.

Description

The exp() function calculates the exponential value of a floating-point argument x ( ¢* , where e equals

2.17128128...).

Return Value

If an overflow occurs, the exp() function returns HUGE_VAL. If an underflow occurs, it returns 0. Both

overflow and underflow set errno to ERANGE. The value of errno can also be set to EDOM.

Example that uses exp()

This example calculates y as the exponential function of x:

Chapter 2. Library Functions

89



#include <math.h>
#include <stdio.h>

int main(void)
{
double x, y;

X
y

5.0;
exp(x);

printf("exp( %1f ) = %1f\n", x, y);

[ Fk K gk kkk ok kkk ok Output should be similar to: Fx*xkkxkxkkxkkxkk*x

exp( 5.000000 ) = 148.413159
*/

Related Information

+ [“log() — Calculate Natural Logarithm” on page 191

* [“log10() — Calculate Base 10 Logarithm” on page 191

+ ["<math.h>" on page §|

fabs() — Calculate Floating-Point Absolute Value

Format

#include <math.h>

double fabs(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The fabs() function calculates the absolute value of the floating-point argument x.
Return Value

The fabs() function returns the absolute value. There is no error return value.

Example that uses fabs ()

This example calculates y as the absolute value of x:

90 ILE C/C++ Runtime Library Functions V6R1



#include <math.h>
#include <stdio.h>

int main(void)
double x, y;

X
y

-5.6798;
fabs(x);

printf("fabs( %1f ) = %1f\n", x, y);

[ *Fk Kk kk ok kk ok kkkkk kK Output should be similar to: F#x**xx*kxk*xxkxkk*x

fabs( -5.679800 ) = 5.679800
*/

Related Information

+ [“abs() — Calculate Integer Absolute Value” on page 37

* [“labs() — llabs() — Calculate Absolute Value of Long and Long Long Integer” on page 177

+ [“<math.h>" on page §|

fclose() — Close Stream

Format

#include <stdio.h>
int fclose(FILE *stream);

Language Level: ANSI
Threadsafe: Yes.
Description

The fclose() function closes a stream pointed to by stream. This function deletes all buffers that are
associated with the stream before closing it. When it closes the stream, the function releases any buffers
that the system reserved. When a binary stream is closed, the last record in the file is padded with null
characters (\0) to the end of the record.

Return Value
The fclose() function returns 0 if it successfully closes the stream, or EOF if any errors were detected.

The value of errno can be set to:
Value Meaning

ENOTOPEN
The file is not open.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0O error occurred.

ESCANFAILURE
The file was marked with a scan failure.

Chapter 2. Library Functions

91



Note: The storage pointed to by the FILE pointer is freed by the fclose() function. After the use of the
fclose() function, any attempt to use the FILE pointer is not valid.

Example that uses fclose()

This example opens a file myfile for reading as a stream; then it closes this file.
#include <stdio.h>

#define NUM_ALPHA 26

int main(void)
{

FILE *stream;
char buffer[NUM_ALPHA];

if (( stream = fopen("mylib/myfile", "r"))!= NULL )

fread( buffer, sizeof( char ), NUM_ALPHA, stream );
printf( "buffer = %s\n", buffer );
}

if (fclose(stream)) /* Close the stream. x/
perror("fclose error");
else printf("File mylib/myfile closed successfully.\n");
1

Related Information
o [“fflush() — Write Buffer to File” on page 96|
+ |“fopen() — Open Files” on page 109

+ |“freopen() — Redirect Open Files” on page 130|

+ [“<stdio.h>" on page 15|

fdopen() — Associates Stream With File Descriptor

Format

#include <stdio.h>
FILE *fdopen(int handle, char =*type);

Language Level: XPG4
Threadsafe: Yes.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Description

The fdopen() function associates an input or output stream with the file that is identified by handle. The
type variable is a character string specifying the type of access that is requested for the stream. The
variable contains one positional parameter that is followed by optional keyword parameters.

The possible values for the positional parameters are:

Mode Description

r Create a stream to read a text file. The file pointer is set to the beginning of the file.

w Create a stream to write to a text file. The file pointer is set to the beginning of the file.

92 ILE C/C++ Runtime Library Functions V6R1



a Create a stream to write, in append mode, at the end of the text file. The file pointer is set to the
end of the file.

r+ Create a stream for reading and writing a text file. The file pointer is set to the beginning of the
file.

w+ Create a stream for reading and writing a text file. The file pointer is set to the beginning of the
file.

a+ Create a stream for reading or writing, in append mode, at the end of the text file. The file
pointer is set to the end of the file.

rb Create a stream to read a binary file. The file pointer is set to the beginning of the file.

wb Create a stream to write to a binary file. The file pointer is set to the beginning of the file.

ab Create a stream to write to a binary file in append mode. The file pointer is set to the end of the
file.

r+b or rb+
Create a stream for reading and writing a binary file. The file pointer is set to the beginning of
the file.

w+b or wb+
Create a stream for reading and writing a binary file. The file pointer is set to the beginning of
the file.

a+b or ab+
Create a stream for reading and writing to a binary file in append mode. The file pointer is set to
the end of the file.

Note: Use the w, w+, wb, wb+, and w+b modes with care; they can destroy existing files.

The specified type must be compatible with the access method you used to open the file. If the file was
opened with the O_APPEND flag, the stream mode must be a, a+, ab, a+b, or ab+. To use the fdopen()
function you need a file descriptor. To get a descriptor use the POSIX function open(). The O_APPEND
flag is a mode for open(). Modes for open() are defined in QSYSINC/H/FCNTL. For further information
see the topic in the i5/0S Information Center.

The keyword parameters allowed for fdopen() are the same as those documented in |“fopen() — Open|

| [Files” on page 109| that are for the integrated file system.

If fdopen() returns NULL, use close() to close the file. If fdopen() is successful, you must use fclose()
to close the stream and file.

Return Value

The fdopen() function returns a pointer to a file structure that can be used to access the open file. A
NULL pointer return value indicates an error.

Example that uses fdopen()

This example opens the file sample.dat and associates a stream with the file using fdopen(). It then reads
from the stream into the bulffer.

Chapter 2. Library Functions 93



/* compile with SYSIFCOPT(*IFSIQ) =/
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>

int main(void)

{
long Tength;
int fh;
char buffer[20];
FILE *fp;
printf("\nCreating sample.dat.\n");
if ((fp= fopen("/sample.dat", "w")) == NULL) {
perror(" File was not created: ");
exit(1);
1
fputs("Sample Program", fp);
fclose(fp);
memset (buffer, '\0', 20); /* Initialize bufferx/
if (-1 == (fh = open("/sample.dat", O RDWR|0O_APPEND))) {
perror("Unable to open sample.dat");
exit(1l);
1
if (NULL == (fp = fdopen(fh, "r"))) {
perror("fdopen failed");
close(fh);
exit(1l);
1
if (14 != fread(buffer, 1, 14, fp)) {
perror("fread failed");
fclose(fp);
exit(1l);
1
printf("Successfully read from the stream the following:\n%s.\n", buffer);
fclose(fp);
return 1;
/****************************************************************
* The output should be:
*
* Creating sample.dat.
* Successfully read from the stream the following:
* Sample Program.
*/
1

Related Information

+ [“fclose() — Close Stream” on page 91|

+ [“fopen() — Open Files” on page 109

[“fseek() — fseeko() — Reposition File Position” on page 134]

» |“fsetpos() — Set File Position” on page 136|

[‘rewind() — Adjust Current File Position” on page 276|

[“<stdio.h>" on page 15|
open API in the topic in the i5/0S Information Center.
close API in the topic in the i5/0S Information Center.

94 ILE C/C++ Runtime Library Functions V6R1



feof() — Test End-of-File Indicator

Format

#include <stdio.h>
int feof (FILE *stream);

Language Level: ANSI
Threadsafe: Yes.
Description

The feof() function indicates whether the end-of-file flag is set for the given stream. The end-of-file flag
is set by several functions to indicate the end of the file. The end-of-file flag is cleared by calling the
rewind(), fsetpos(), fseek(), or clearerr() functions for this stream.

Return Value

The feof() function returns a nonzero value if and only if the EOF flag is set; otherwise, it returns 0.
Example that uses feof ()

This example scans the input stream until it reads an end-of-file character.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
char string[100];
FILE *stream;
memset (string, 0, sizeof(string));
stream = fopen("qcpple/qacsrc(feof)", "r");

fscanf(stream, "%s", string);
while (!feof(stream))

printf("%s\n", string);
memset (string, 0, sizeof(string));
fscanf(stream, "%s", string);

}
}

Related Information

* |“clearerr() — Reset Error Indicators” on page 62|

» |“ferror() — Test for Read /Write Errors’]

[“fseek() — fseeko() — Reposition File Position” on page 134
[“fsetpos() — Set File Position” on page 136|

* [“perror() — Print Error Message” on page 227|

[‘rewind() — Adjust Current File Position” on page 276|

+ [“<stdio.h>" on page 15|

ferror() — Test for Read/Write Errors

Format

Chapter 2. Library Functions 95



#include <stdio.h>
int ferror(FILE *stream);

Language Level: ANSI
Threadsafe: Yes.
Description

The ferror() function tests for an error in reading from or writing to the given stream. If an error occurs,
the error indicator for the stream remains set until you close stream, call the rewind () function, or call the
clearerr() function.

Return Value

The ferror() function returns a nonzero value to indicate an error on the given stream. A return value of
0 means that no error has occurred.

Example that uses ferror()
This example puts data out to a stream, and then checks that a write error has not occurred.

#include <stdio.h>

int main(void)

{
FILE *stream;
char *string = "Important information";
stream = fopen("mylib/myfile","w");

fprintf(stream, "%s\n", string);
if (ferror(stream))
{
printf("write error\n");
clearerr(stream);

if (fclose(stream))
perror("fclose error");

Related Information

* [“clearerr() — Reset Error Indicators” on page 62|
* |“feof() — Test End-of-File Indicator” on page 95|
+ |“fopen() — Open Files” on page 109

* |“perror() — Print Error Message” on page 227|

+ [“strerror() — Set Pointer to Runtime Error Message” on page 367

+ [“<stdio.h>" on page 15|

fflush() — Write Buffer to File

Format

#include <stdio.h>

int fflush(FILE *stream);
Language Level: ANSI

Threadsafe: Yes.

96 ILE C/C++ Runtime Library Functions V6R1



Description

The fflush() function causes the system to empty the buffer that is associated with the specified output
stream, if possible. If the stream is open for input, the fflush() function undoes the effect of any ungetc()
function. The stream remains open after the call.

If stream is NULL, the system flushes all open streams.

Note: The system automatically deletes buffers when you close the stream, or when a program ends
normally without closing the stream.

Return Value

The fflush() function returns the value 0 if it successfully deletes the buffer. It returns EOF if an error
occurs.

The value of errno can be set to:
Value Meaning

ENOTOPEN
The file is not open.

ERECIO
The file is opened for record I/0.

ESTDIN
stdin cannot be opened.

EIOERROR
A non-recoverable 1/O error occurred.

EIORECERR
A recoverable I/0O error occurred.

The fflush() function is not supported for files that are opened with type=record.
Example that uses fflush()
This example deletes a stream buffer.

#include <stdio.h>
int main(void)

FILE *stream;
int ch;
unsigned int result = 0;

stream = fopen("mylib/myfile", "r");

while ((ch = getc(stream)) != EOF && isdigit(ch))
result = result = 10 + ch - '0';

if (ch !'= EOF)
ungetc(ch,stream);

fflush(stream); /* fflush undoes the effect of ungetc function
*/
printf("The result is: %d\n", result);
if ((ch = getc(stream)) != EOF)
printf("The character is: %c\n", ch);

Chapter 2. Library Functions 97



Related Information

+ [“fclose() — Close Stream” on page 91|

+ [“fopen() — Open Files” on page 109

+ [“setbuf() — Control Buffering” on page 336|

* [“ungetc() — Push Character onto Input Stream” on page 420|

+ |“<stdio.h>" on page 15|

fgetc() — Read a Character

Format

#include <stdio.h>
int fgetc(FILE xstream);

Language Level: ANSI
Threadsafe: Yes.
Description

The fgetc() function reads a single unsigned character from the input stream at the current position and
increases the associated file pointer, if any, so that it points to the next character.

Note: The fgetc()function is identical to|getc()} but it is always defined as a function call; it is never
replaced by a macro.

Return Value

The fgetc() function returns the character that is read as an integer. An EOF return value indicates an
error or an end-of-file condition. Use the feof() or the ferror() function to determine whether the EOF
value indicates an error or the end of the file.

The value of errno can be set to:
Value Meaning

EBADF
The file pointer or descriptor is not valid.

ECONVERT
A conversion error occurred.

ENOTREAD
The file is not open for read operations.

EGETANDPUT
An read operation that was not allowed occurred after a write operation.

ERECIO
The file is open for record 1/0O.

ESTDIN
stdin cannot be opened.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/0O error occurred.

98 ILE C/C++ Runtime Library Functions V6R1



The fgetc() function is not supported for files that are opened with type=record.
Example that uses fgetc()
This example gathers a line of input from a stream.

#include <stdio.h>
#define MAX_LEN 80

int main(void)

{
FILE *stream;
char buffer[MAX_LEN + 1];
int i, ch;

fopen("mylib/myfile","r");

stream

for (i = 0; (i < (sizeof(buffer)-1) &&
((ch = fgetc(stream)) != EOF) &% (ch != '\n')); i++)
buffer[i] = ch;

buffer[i] = '\0';

if (fclose(stream))
perror("fclose error");

printf("line: %s\n", buffer);

/***********************************************************************
If FILENAME contains: one two three
The output should be:

line: one two three
************************************************************************/

Related Information
+ |“feof() — Test End-of-File Indicator” on page 95|
» [“ferror() — Test for Read /Write Errors” on page 95|

[“feetwe() — Read Wide Character from Stream” on page 102|

[“fputc() — Write Character” on page 118|

[“getc() — getchar() — Read a Character” on page 152|

+ [“getwc() — Read Wide Character from Stream” on page 157

[“getwchar() — Get Wide Character from stdin” on page 159

[<stdio.h>" on page 15|

fgetpos() — Get File Position
Format

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);
Language Level: ANSI

Threadsafe: YES

Description

Chapter 2. Library Functions

99



The fgetpos() function stores the current position of the file pointer that is associated with stream into
the object pointed to by pos. The value pointed to by pos can be used later in a call to fsetpos() to
reposition the stream.

Return Value

The fgetpos() function returns 0 if successful; on error, it returns nonzero and sets errno to a nonzero
value.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.
EBADSEEK

Bad offset for a seek operation.
ENODEV

Operation was attempted on a wrong device.
ENOTOPEN

The file is not open.
ERECIO

The file is open for record 1/0O.
ESTDERR

stderr cannot be opened.
ESTDIN

stdin cannot be opened.
ESTDOUT

stdout cannot be opened.
EIOERROR

A non-recoverable I/O error occurred.
EIORECERR

A recoverable I/0 error occurred.
The fgetpos() function is not supported for files that are opened with type=record.
Example that uses fgetpos()

This example opens the file myfile for reading and stores the current file pointer position into the
variable pos.

100 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
FILE *stream;
int main(void)

int retcode;
fpos_t pos;

stream = fopen("mylib/myfile", "rb");

/* The value returned by fgetpos can be used by fsetpos */
/* to set the file pointer if 'retcode' is 0 */

if ((retcode = fgetpos(stream, Point-of-Sale)) == 0)
printf("Current position of file pointer found\n");
fclose(stream);

}

Related Information

+ [“fseek() — fseeko() — Reposition File Position” on page 134|

+ [“fsetpos() — Set File Position” on page 136|
* [“ftell() — ftello() — Get Current Position” on page 138§|
+ [“<stdio.h>" on page 15|

fgets() — Read a String

Format

#include <stdio.h>
char xfgets (char xstring, int n, FILE *stream);

Language Level: ANSI
Threadsafe: Yes.
Description

The fgets() function reads characters from the current stream position up to and including the first
new-line character (\n), up to the end of the stream, or until the number of characters read is equal to
n-1, whichever comes first. The fgets() function stores the result in string and adds a null character (\0)
to the end of the string. The string includes the new-line character, if read. If # is equal to 1, the string is

empty.
Return Value

The fgets() function returns a pointer to the string buffer if successful. A NULL return value indicates an
error or an end-of-file condition. Use the feof() or ferror() functions to determine whether the NULL
value indicates an error or the end of the file. In either case, the value of the string is unchanged.

The fgets() function is not supported for files that are opened with type=record.

The value of errno can be set to:
Value Meaning

EBADF
The file pointer or descriptor is not valid.

Chapter 2. Library Functions 101



ECONVERT
A conversion error occurred.

ENOTREAD
The file is not open for read operations.

EGETANDPUT
An read operation that was not allowed occurred after a write operation.

ERECIO
The file is open for record I/0O.

ESTDIN
stdin cannot be opened.

EIOERROR
A non-recoverable I1/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

Example that uses fgets()

This example gets a line of input from a data stream. The example reads no more than MAX_LEN - 1
characters, or up to a new-line character from the stream.

#include <stdio.h>
#define MAX_LEN 100

int main(void)
{

FILE *stream;
char Tine[MAX_LEN], *result;

stream = fopen("mylib/myfile","rb");

if ((result = fgets(1ine,MAX_LEN,stream)) != NULL)
printf("The string is %s\n", result);

if (fclose(stream))
perror("fclose error");
1

Related Information
* |“feof() — Test End-of-File Indicator” on page 95|
» [“ferror() — Test for Read/Write Errors” on page 95|

* |“fgetws() — Read Wide-Character String from Stream” on page 104|
[“fputs() — Write String” on page 121]
[“gets() — Read a Line” on page 156|

[‘puts() — Write a String” on page 241

[<stdio.h>" on page 15|

fgetwc() — Read Wide Character from Stream

Format

#include <wchar.h>
#include <stdio.h>
wint_t fgetwc(FILE *stream);

102 ILE C/C++ Runtime Library Functions V6R1



Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527| for more information.

Description

The fgetwc () reads the next multibyte character from the input stream pointed to by stream, converts it to
a wide character, and advances the associated file position indicator for the stream (if defined).

Using non-wide-character functions with fgetwc() on the same stream results in undefined behavior.
After calling fgetwc (), flush the buffer or reposition the stream pointer before calling a write function for
the stream, unless EOF has been reached. After a write operation on the stream, flush the buffer or
reposition the stream pointer before calling fgetwc ().

Note: If the current locale is changed between subsequent read operations on the same stream, undefined
results can occur.

Return Value

The fgetwc() function returns the next wide character that corresponds to the multibyte character from
the input stream pointed to by stream. If the stream is at EOF, the EOF indicator for the stream is set, and
fgetwc() returns WEOF.

If a read error occurs, the error indicator for the stream is set, and the fgetwc() function returns WEOF. If
an encoding error occurs (an error converting the multibyte character into a wide character), the fgetwc()
function sets errno to EILSEQ and returns WEOF.

Use the ferror() and feof() functions to distinguish between a read error and an EOF. EOF is only
reached when an attempt is made to read past the last byte of data. Reading up to and including the last
byte of data does not turn on the EOF indicator.

The value of errno can be set to:

Value Meaning

EBADF
The file pointer or descriptor is not valid.
ENOTREAD
The file is not open for read operations.
EGETANDPUT
An read operation that was not allowed occurred after a write operation.
ERECIO

The file is open for record 1/0.

Chapter 2. Library Functions 103



ESTDIN
stdin cannot be opened.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

EILSEQ
An invalid multibyte character sequence was encountered.

ECONVERT
A conversion error occurred.

Example that uses fgetwc ()
This example opens a file, reads in each wide character, and prints out the characters.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)

{
FILE  *stream;
wint_t wc;

if (NULL == (stream = fopen("fgetwc.dat", "r"))) {
printf("Unable to open: \"fgetwc.dat\"\n");
exit(1l);

}

errno = 0;
while (WEOF != (wc = fgetwc(stream)))
printf("wc = %1c\n", wc);

if (EILSEQ == errno) {
printf("An invalid wide character was encountered.\n");
exit(1l);

fclose(stream);
return 0;

}

* % * End of File » % *

Related Information

* [“fgetc() — Read a Character” on page 98|
* [“fputwc() — Write Wide Character” on page 122|
[“feetws() — Read Wide-Character String from Stream”|

[“getc() — getchar() — Read a Character” on page 152|

[‘getwc() — Read Wide Character from Stream” on page 157]

[“getwchar() — Get Wide Character from stdin” on page 159

+ |“<stdio.h>" on page 15|

* [“<wcharh>" on page 18|

fgetws() — Read Wide-Character String from Stream

Format

104 ILE C/C++ Runtime Library Functions V6R1



#include <wchar.h>
#include <stdio.h>
wchar_t *fgetws(wchar_t *wcs, int n, FILE *stream);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527| for more information.

Description

The fgetws() function reads at most one less than the number of wide characters specified by n from the
stream pointed to by stream. The fgetws () function stops reading characters after WEOF, or after it reads
a new-line wide character (which is retained). It adds a null wide character immediately after the last
wide character read into the array. The fgetws() function advances the file position unless there is an
error. If an error occurs, the file position is undefined.

Using non-wide-character functions with the fgetws() function on the same stream results in undefined
behavior. After calling the fgetws () function, flush the buffer or reposition the stream pointer before
calling a write function for the stream, unless WEOF has been reached. After a write operation on the
stream, flush the buffer or reposition the stream pointer before calling the fgetws() function.

Note: If the current locale is changed between subsequent read operations on the same stream, undefined
results can occur.

Return Value

If successful, the fgetws() function returns a pointer to the wide-character string wcs. If WEOF is
encountered before any wide characters have been read into wcs, the contents of wcs remain unchanged
and the fgetws () function returns a null pointer. If WEOF is reached after data has already been read
into the string buffer, the fgetws() function returns a pointer to the string buffer to indicate success. A
subsequent call would return NULL because WEOF would be reached without any data being read.

If a read error occurs, the contents of wcs are indeterminate, and the fgetws () function returns NULL. If
an encoding error occurs (in converting a wide character to a multibyte character), the fgetws() function
sets errno to EILSEQ and returns NULL.

If n equals 1, the wcs buffer has only room for the ending null character, and nothing is read from the
stream. (Such an operation is still considered a read operation, so it cannot immediately follow a write
operation unless the buffer is flushed or the stream pointer repositioned first.) If n is greater than 1, the
fgetws () function fails only if an I/O error occurs, or if WEOF is reached before data is read from the
stream.

Use the ferror() and feof() functions to distinguish between a read error and a WEOE. A WEOF error is

only reached when an attempt is made to read past the last byte of data. Reading up to and including the
last byte of data does not turn on the WEOF indicator.

Chapter 2. Library Functions 105



For information about errno values for fgetws (), see[‘fgetwc() — Read Wide Character from Stream” on|
|o; e 102

Example that uses fgetws ()
This example opens a file, reads in the file contents, then prints the file contents.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main(void)

{
FILE *stream;
wchar_t wcs[100];

if (NULL == (stream = fopen("fgetws.dat", "r"))) {
printf("Unable to open: \"fgetws.dat\"\n");
exit(1l);

}

errno = 0;
if (NULL == fgetws(wcs, 100, stream)) {
if (EILSEQ == errno) {
printf("An invalid wide character was encountered.\n");
exit(1l);

else if (feof(stream))
printf("End of file reached.\n");
else
perror("Read error.\n");

1

printf("wcs = \"%1s\"\n", wcs);
fclose(stream);

return 0;

/************************************************************
Assuming the file fgetws.dat contains:

This test string should not return -1
The output should be similar to:
wcs = "This test string should not return -1"

************************************************************/

}

Related Information

* |“fgetc() — Read a Character” on page 98|

+ [“fgets() — Read a String” on page 101]

[‘fgetwc() — Read Wide Character from Stream” on page 102
[“fputws() — Write Wide-Character String” on page 124|
[“<stdio.h>" on page 15|

* [“<wcharh>" on page 18|

fileno() — Determine File Handle

Format

106 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
int fileno(FILE *stream);

Language Level: XPG4
Threadsafe: Yes.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Description
The fileno() function determines the file handle that is currently associated with stream.
Return Value

If the environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Yes, the fileno()function returns
0 for stdin, 1 for stdout, and 2 for stderr.

With QIBM_USE_DESCRIPTOR_STDIO set to No, the ILE C session files stdin, stdout, and stderr do
not have a file descriptor associated with them. The fileno() function will return a value of -1 in this
case.

The value of errno can be set to EBADFE.
Example that uses fileno()
This example determines the file handle of the stderr data stream.

/* Compile with SYSIFCOPT(*IFSIO) */
#include <stdio.h>

int main (void)

{
FILE *fp;
int result;

fp = fopen ("stderr","w");

result = fileno(fp);
printf("The file handle associated with stderr is %d.\n", result);
return 0;

/*****************************************************************
* The output should be:
*

* The file handle associated with stderr is -1.
Kkokkkokkokkok ko okkok ko kokok ko kok ok ok ok Kok Kkkkkkkkkhkkhkhhhkkhhkhx Kkkkkkkkkk [

}

Related Information

* [“fopen() — Open Files” on page 109|

* |“freopen() — Redirect Open Files” on page 130|

+ [“<stdio.h>" on page 15|

floor() —Find Integer <=Argument

Format

Chapter 2. Library Functions 107



#include <math.h>
double floor(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The floor() function calculates the largest integer that is less than or equal to x.
Return Value

The floor() function returns the floating-point result as a double value.

The result of floor() cannot have a range error.

Example that uses floor()

This example assigns y value of the largest integer less than or equal to 2.8 and z the value of the largest
integer less than or equal to -2.8.

#include <math.h>
#include <stdio.h>

int main(void)
{
double y, z;

floor(2.8);
floor(-2.8);

Y
z

Z1f\n", y);
%1f\n", z);

printf("floor( 2.8 )
printf("floor( -2.8 )
1

[ *k Kk kk ok kk ko kk kg kK Output should be similar to: F#x**xkxk*xxkxkk*x

floor( 2.8 ) = 2.000000
floor( -2.8 ) = -3.000000
*/

Related Information

* |“ceil() — Find Integer >=Argument” on page 61|

* “fmod() — Calculate Floating-Point Remainder”

* ["<math.h>" on page §|

fmod() — Calculate Floating-Point Remainder

Format

#include <math.h>

double fmod(double x, double y);
Language Level: ANSI
Threadsafe: Yes.

Description

108 ILE C/C++ Runtime Library Functions V6R1



The fmod() function calculates the floating-point remainder of x/y. The absolute value of the result is
always less than the absolute value of y. The result will have the same sign as x.

Return Value

The fmod() function returns the floating-point remainder of x/y. If y is zero or if x/y causes an overflow,
fmod () returns 0. The value of errno can be set to EDOM.

Example that uses fmod ()
This example computes z as the remainder of x/y; here, x/y is -3 with a remainder of -1.

#include <math.h>
#include <stdio.h>

int main(void)

double x, y, z;

x = -10.0;
y = 3.0;
z = fmod(x,y); /*z = -1.0 %/

printf("fmod( %1f, %1f) = %1f\n", x, y, z);

[ FkHR kR FAAKKAA K KA Output should be similar to: #wkxxxxssssidrk

fmod( -10.000000, 3.000000) = -1.000000
*/

Related Information

* |“ceil() — Find Integer >=Argument” on page 61|

+ [“fabs() — Calculate Floating-Point Absolute Value” on page 90|

+ [“floor() —Find Integer <=Argument” on page 107|

* [“<math.h>" on page §|

fopen() — Open Files

Format
#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Language Level: ANSI

Threadsafe: Yes.

Description

The fopen() function opens the file that is specified by filename. The mode parameter is a character string

specifying the type of access that is requested for the file. The mode variable contains one positional

parameter followed by optional keyword parameters.

Note: When the program is compiled with SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS6410), and fopen()
creates a file in the integrated file system, the owner of the file, the owner’s group, and public is
given read, write, and execute authority to the file.

The possible values for the positional parameters are:

Chapter 2. Library Functions 109



Mode Description

r Open a text file for reading. The file must exist.

w Create a text file for writing. If the given file exists, its contents are destroyed unless it is a logical
file.

a Open a text file in append mode for writing at the end of the file. The fopen() function creates
the file if it does not exist and is not a logical file.

r+ Open a text file for both reading and writing. The file must exist.

w+ Create a text file for both reading and writing. If the given file exists, its contents are cleared

unless it is a logical file.

a+ Open a text file in append mode for reading or updating at the end of the file. The fopen()
function creates the file if it does not exist.

rb Open a binary file for reading. The file must exist.

wb Create an empty binary file for writing. If the file exists, its contents are cleared unless it is a
logical file.

ab Open a binary file in append mode for writing at the end of the file. The fopen function creates
the file if it does not exist.

r+b or tb+
Open a binary file for both reading and writing. The file must exist.

w+b or wb+
Create an empty binary file for both reading and writing. If the file exists, its contents will be
cleared unless it is a logical file.

a+b or ab+
Open a binary file in append mode for writing at the end of the file. The fopen() function creates
the file if it does not exist.

Notes:

1. The fopen() function is not supported for files that are opened with the attributes type=record and
ab+, rb+, or wb+

2. Use the w, w+, wb, w+b, and wb+ parameters with care; data in existing files of the same name will
be lost.

Text files contain printable characters and control characters that are organized into lines. Each line ends
with a new-line character, except possibly the last line, depending on the compiler. The system can insert
or convert control characters in an output text stream. The fopen() function mode "a” and "a+" can not
be used for the QSYS.LIB file system. There are implementation restrictions when using the QSYS.LIB file
system for text files in all modes. Seeking beyond the start of files cannot be relied on to work with
streams opened in text mode.

Note: When you use fopen() to create a file in the QSYS.LIB file system, specifying a library name of
*LIBL or blank causes the file to be created in QTEMP library:.

If a text file does not exist, you can create one using the following command:
CRTSRCPF FILE(MYLIB/MYFILE) RCDLEN(LRECL) MBR(MYMBR) SYSTEM(*FILETYPE)
Note: Data output to a text stream might not compare as equal to the same data on input. The QSYS.LIB

file system treats database files as a directory of members. The database file must exist before a
member can be dynamically created when using the fopen() function.

110 ILE C/C++ Runtime Library Functions V6R1



See [Large file support|in the Integrated file system topic in the i5/0S Information Center for the current
file system limit of the integrated file system. For files in the integrated file system that are larger than 2
GB, you need to allow your application programs access to 64-bit C runtime functions. You can use the
following methods to allow your program access:

* Specify SYSIFCOPT(*IFS6410) on a compilation command, which causes the native C compiler to
define IFS64_IO . This causes the macros _LARGE_FILES and _LARGE_FILE_API to be defined.

* Define the macro _LARGE_FILES, either in the program source or by specifying
DEFINE('_LARGE_FILES’) on a compilation command. The existing C runtime functions and the
relevant data types in the code will all be automatically mapped or redefined to their 64-bit versions.

* Define the macro _LARGE_FILE_AP]I, either in the program source or by specifying
DEFINE('_LARGE_FILE_APT’) on a compilation command. This makes visible the set of of new 64-bit
C runtime functions and data types. The application must explicitly specify the name of the C runtime
functions, both existing version and 64-bit version, to use.

The 64-bit C runtime functions include the following: int fgetpos64(), FILE *fopen64(), FILE
*freopen64 (), FILE *»wfopen64(), int fsetpos64(FILE %, const fpost64 t x), FILE *tmpfile64(), int
fseeko(FILE *, off_t, int), int fseeko64(FILE *, off64 t, int), off t ftello(FILE *), and off64 t
ftello64().

Binary files contain a series of characters. For binary files, the system does not translate control characters
on input or output.

If a binary file does not exist, you can create one using the following command:

CRTPF FILEMYLIB/MYFILE) RCDLEN(LRECL) MBR(MYMBR) MAXMBRS(*NOMAX)
SYSTEM(*FILETYPE)

When you open a file with a, a+, ab, a+b or ab+ mode, all write operations take place at the end of the
file. Although you can reposition the file pointer using the fseek() function or the rewind() function, the
write functions move the file pointer back to the end of the file before they carry out any operation. This
action prevents you from overwriting existing data.

When you specify the update mode (using + in the second or third position), you can both read from and
write to the file. However, when switching between reading and writing, you must include an
intervening positioning function such as the fseek(), fsetpos(), rewind(), or fflush(). Output can
immediately follow input if the end-of-file was detected.

Keyword parameters for non-Integrated File System

blksize=value
Specifies the maximum length, in bytes, of a physical block of records.

Irecl=value
Specifies the length, in bytes, for fixed-length records and the maximum length for
variable-length records.

recfm=value
value can be:

F fixed-length, deblocked records

FB fixed-length, blocked records

A% variable-length, deblocked records

VB variable-length, blocked records

VBS  variable-length, blocked, spanned records for tape files
\'%A variable-length, deblocked, spanned records for tape files

Chapter 2. Library Functions 111



D variable-length, deblocked, unspanned records for ASCII D format for tape files
DB variable-length, blocked, unspanned records for ASCII D format for tape files
U undefined format for tape files

FA fixed-length that uses first character forms control data for printer files

Note: If the file is created using CTLCHAR(*FCFC), the first character form control will be used.
If it is created using CTLCHAR(*NONE), the first character form control will not be used.

commit=value
value can be:

N This parameter identifies that this file is not opened under commitment control. This is the
default.

Y This parameter identifies that this file is opened under commitment control.

cesid=value
If a CCSID that is not supported by the i5/0S operating system is specified, it is ignored by data
management.

When LOCALETYPE(*LOCALEUTEF) is specified on the compilation command, the default value
is the LC_CTYPE CCSID value, which is determined by your current locale setting. See
[“setlocale() — Set Locale” on page 339| for further information about locale settings. When
LOCALETYPE(*LOCALEUTE) is not specified on the compilation command, the default value is
the job CCSID value. See [“File CCSID” on page 525| for further information about file CCSID
values.

arrseq=value
value can be:

N This parameter identifies that this file is processed in the way it was created. This is the
default.

Y This parameter identifies that this file is processed in arrival sequence.

indicators=value
value can be:

N This parameter identifies that indicators in display, ICFE, or printer files are stored in the file
buffer. This is the default.

Y This parameter identifies that indicators in display, ICF, or printer files are stored in a separate
indicator area, not in the file buffer. A file buffer is the area the system uses to transfer data to
and from the user program and the operating system when writing and reading. You must store
indicators in a separate indicator area when processing ICF files.

type=value
value can be:

memory This parameter identifies this file as a memory file that is available only from C
programs. This is the default.

record This parameter specifies that the file is to be opened for sequential record I/O. The file
must be opened as a binary file; otherwise, the fopen() function fails. Read and write operations
are done with the fread() function and the fwrite() functions.

Keyword parameters for Integrated File System only

type=value
value can be:

record The file is opened for sequential record I/O. (File has to be opened as binary stream.)

112 ILE C/C++ Runtime Library Functions V6R1



cesid=value

cesid is converted to a code page value. The default is to use the job CCSID value as the code
page. The CCSID and codepage option cannot both be specified. The CCSID option provides
compatibility with i5/0S and Data management based stream 1/0O.

Note: Mixed data (the data contains both single and double-byte characters) is not supported for
a file data processing mode of text. Mixed data is supported for a file processing mode of
binary.

If you specity the ccsid keyword, you cannot specify the o_ccsid keyword or the codepage
keyword.

Because of the possible expansion or contraction of converted data, making assumptions about
data size and the current file offset is dangerous. For example, a file might have a physical size of
100 bytes, but after an application has read 100 bytes from the file, the current file offset might be
only 50. In order to read the whole file, the application might have to read 200 bytes or more,
depending on the CCSIDs involved. Therefore, file positioning functions, such as ftell(),
fseek(), fgetpos(), and fsetpos(), might not work. These functions might fail with error
ENOTSUP. Read functions also will not work if buffering is on, as it is by default. To turn
buffering off, use the setvbuf function with the _-IONBF keyword.

The fopen() function might fail with the ECONVERT error when all of the following three
conditions occur:

* The file data processing mode is text.
* The code page is not specified.

* The CCSID of the job is ‘'mixed-data’ (the data contains both single-byte and double-byte
characters).

o_ccsid=value

When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the default value
is the LC_CTYPE CCSID value, which is determined by your current locale setting. See
[“setlocale() — Set Locale” on page 339 for further information about locale settings. When
LOCALETYPE(*LOCALEUTE) is not specified on the compilation command, the default value is
the job CCSID value. See [“File CCSID” on page 525| for further information about file CCSID
values.

This parameter is similar to the ccsid parameter, except that the value specified is not converted to
a code page. Also, mixed data is supported. If the file is created, it is tagged with the specified
CCSID. If the file already exists, data will be converted from the CCSID of the file to the specified
CCSID on read operations. On write operations, the data is assumed to be in the specified
CCSID, and is converted to the CCSID of the file.

Because of the possible expansion or contraction of converted data, making assumptions about
data size and the current file offset is dangerous. For example, a file might have a physical size of
100 bytes, but after an application has read 100 bytes from the file, the current file offset might be
only 50. In order to read the whole file, the application might have to read 200 bytes or more,
depending on the CCSIDs involved. Therefore, file positioning functions such as ftell(),
fseek(), fgetpos(), and fsetpos() will not work. These functions will fail with ENOTSUP. Read
functions also will not work if buffering is on, as it is by default. To turn buffering off, use the
setvbuf function with the _IONBF keyword.

Example that uses o_ccsid

/* Create a file that is tagged with CCSID 37 */

if ((fp = fopen("/MYFILE" , "w, o_ccsid=37")) == NULL) {
printf("Failed to open file with o_ccsid=37\n");

}

Chapter 2. Library Functions 113



fclose(fp);

/* Now reopen the file with CCSID 13488, because your application
wants to deal with the data in UNICODE */

if ((fp = fopen("/MYFILE" , "r+, 0_ccsid=13488")) == NULL) {
printf("Failed to open file with o_ccsid=13488\n");

/* Turn buffering off because read functions do not work when
buffering is on */

if (setbuf(fp, NULL, _IONBF, 0) != 0){
printf("Unable to turn buffering off\n");
1

/* Because you opened with o _ccsid = 13488, you must provide
all input data as unicode.

If this program is compiled with LOCALETYPE(*LOCALEUCS?2),

L constrants will be unicode. */

funcreturn = fputws(L"ABC", fp); /* Write a unicode ABC to the file. */

if (funcreturn < 0) {
printf("Error with 'fputws' on 1ine %d\n", _ LINE_);
}
/* Because the file was tagged with CCSID 37, the unicode ABC was
converted to EBCDIC ABC when it was written to the file. */

codepage=value
The code page that is specified by value is used.

If you specify the codepage keyword, you cannot specify the ccsid keyword or the o_ccsid
keyword.

If the file to be opened does not exist, and the open mode specifies that the file should be
created, the file is created and tagged with the calculated code page. If the file already exists, the
data read from the file is converted from the files code page to the calculated code page during
the read operation. Data written to the file is assumed to be in the calculated code page and is
converted to the code page of the file during the write operation.

crln=value
value can be:

Y The line terminator to be used is carriage return [CR], new line [NL] combination. When data
is read, all carriage returns [CR] are stripped for string functions. When data is written to a file,
carriage returns [CR] are added before each new line [NL] character. Line terminator processing
only occurs when a file is open with text mode. This is the default.

N The line terminator to be used is new line [NL] only.
The keyword parameters are not case sensitive and should be separated by a comma.
The fopen() function generally fails if parameters are mismatched.
Return Value
The fopen() function returns a pointer to a FILE structure type that can be used to access the open file.

Note: To use stream files (type = record) with record I/O functions, you must cast the FILE pointer to an
RFILE pointer.

A NULL pointer return value indicates an error.

The value of errno can be set to:

114 ILE C/C++ Runtime Library Functions V6R1



Value Meaning

EBADMODE

The file mode that is specified is not valid.

EBADNAME

The file name that is specified is not valid.

ECONEVRT
Conversion error.

ENOENT
No file or library.

ENOMEM
Storage allocation request failed.

ENOTOPEN
The file is not open.

EIOERROR
A non-recoverable I/0 error occurred.

EIORECERR
A recoverable I/O error occurred.

ESCANFAILURE
The file was marked with a scan failure.

If the mode string passed to fopen() is correct, fopen() will not set errno to EBADMODE, regardless of

the file type.

If the mode string that is passed to fopen() is not valid, fopen() will set errno to EBADMODE,

regardless of the file type.

If the mode string passed to fopen() is correct, but is invalid to that specific type of file, fopen() will set
errno to ENOTOPEN, EIOERROR, or EIORECERR, regardless of the file type.

Example that uses fopen()

This example attempts to open a file for reading.

Chapter 2. Library Functions

115



#include <stdio.h>
#define MAX_LEN 60

int main(void)

{
FILE *stream;
fpos_t pos;
char 1inel[MAX_LEN];
char 1ine2[MAX_LEN];
char *result;
char ch;
int num;
/* The following call opens a text file for reading. =/
if ((stream = fopen("mylib/myfile", "r")) == NULL)
printf("Could not open data file\n");
else if ((result = fgets(1inel,MAX LEN,stream)) != NULL)
{
printf("The string read from myfile: %s\n", result);
fclose(stream);
1
/* The following call opens a fixed record length file */
/* for reading and writing. */
if ((stream = fopen("mylib/myfile2", "rb+, Trec1=80, \
bT1ksize=240, recfm=f")) == NULL)
printf("Could not open data file\n");
else {
fgetpos(stream, Point-of-Sale);
if (!fread(1line2,sizeof(1ine2),1,stream))
perror("fread error");
else printf("1st record read from myfile2: %s\n", line2);
fsetpos(stream, Point-of-Sale); /* Reset pointer to start of file */
fputs(result, stream); /* The Tine read from myfile is =/
/* written to myfile2. */
fclose(stream);
}
1

Related Information

* |“fclose() — Close Stream” on page 91]

[“fflush() — Write Buffer to File” on page 96|
[‘fread() — Read Items” on page 126|
[“freopen() — Redirect Open Files” on page 130|

[“fseek() — fseeko() — Reposition File Position” on page 134]

+ |“fsetpos() — Set File Position” on page 136|
[“fwrite() — Write Items” on page 146|
* |“rewind() — Adjust Current File Position” on page 276

[“wfopen() —Open Files” on page 49|

[“<stdio.h>" on page 15|
open() API in the in the i5/0S Information Center.

fprintf() — Write Formatted Data to a Stream

Format

#include <stdio.h>
int fprintf(FILE *stream, const char *format-string, argument-list);

Language Level: ANSI

116 ILE C/C++ Runtime Library Functions V6R1



Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of
the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The fprintf() function formats and writes a series of characters and values to the output stream. The
fprintf() function converts each entry in argument-list, if any, and writes to the stream according to the
corresponding format specification in the format-string.

The format-string has the same form and function as the format-string argument for the printf() function.

Return Value

The fprintf() function returns the number of bytes that are printed or a negative value if an output
eITor occurs.

For information about errno values for fprintf(), see [“printf() — Print Formatted Characters” on page|

Example that uses fprintf()

This example sends a line of asterisks for each integer in the array count to the file myfile. The number of
asterisks that are printed on each line corresponds to an integer in the array.

Chapter 2. Library Functions 117



#include <stdio.h>
int count [10] = {1, 5, 8, 3, 0, 3, 5, 6, 8, 10};

int main(void)
{
int i,3;
FILE *stream;
stream = fopen("mylib/myfile", "w");

/* Open the stream for writing */
for (i=0; i < sizeof(count) / sizeof(count[0]); i++)

for (j = 0; j < count[i]; j++)
fprintf(stream,"*");

/* Print asterisk */
fprintf(stream,"\n");
/* Move to the next line */

fclose (stream);

}

[ Fk Kk kk ok kk ko kk ko kK Output should be similar to: ***%xxxkkkkxkrk*

*

*kkkk
*khkhkkkkk
*kk

*k%

*kkkk
*kkkhkk
*khkkkkkkk
*khkkhkhkhkhkhkhkhkx

*/
Related Information

* |“fscanf() — Read Formatted Data” on page 132
[“fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

[‘printf() — Print Formatted Characters” on page 229|

[“sprintf() — Print Formatted Data to Buffer” on page 352|

“viprintf() — Print Argument Data to Stream” on page 425
p g pag

[‘vprintf() — Print Argument Data” on page 432|

[‘vsprintf() — Print Argument Data to Buffer” on page 436|

[“<stdio.h>" on page 15|

fputc() — Write Character
Format

#include <stdio.h>

int fputc(int c, FILE *stream);
Language Level: ANSI

Threadsafe: Yes.

Description

118 ILE C/C++ Runtime Library Functions V6R1



The fputc() function converts ¢ to an unsigned char and then writes ¢ to the output stream at the current
position and advances the file position appropriately. If the stream is opened with one of the append
modes, the character is appended to the end of the stream.

The fputc() function is identical to putc(); it always is defined as a function call; it is never replaced by
a macro.

Return Value
The fputc() function returns the character that is written. A return value of EOF indicates an error.

The value of errno can be set to:

Value Meaning

ECONVERT

A conversion error occurred.
ENOTWRITE

The file is not open for write operations.
EPUTANDGET

A write operation that was not permitted occurred after a read operation.
ERECIO

The file is open for record 1/0O.
ESTDERR

stderr cannot be opened.
ESTDOUT

stdout cannot be opened.
EIOERROR

A non-recoverable 1/O error occurred.
EIORECERR

A recoverable I/O error occurred.
The fputc() function is not supported for files that are opened with type=record.
Example that uses fputc()
This example writes the contents of buffer to a file that is called myfile.

Note: Because the output occurs as a side effect within the second expression of the for statement, the
statement body is null.

Chapter 2. Library Functions 119



#include <stdio.h>
#define NUM_ALPHA 26

int main(void)
{

FILE * stream;
int i;
int ch;

char buffer[NUM_ALPHA + 1] = "abcdefghijkImnopgrstuvwxyz";
if (( stream = fopen("mylib/myfile", "w"))!= NULL )
{

/* Put buffer into file */
for (i =0; (1< sizeof(buffer) ) &&
((ch = fputc( buffer[i], stream)) != EOF ); ++i );
fclose( stream );
}
else
perror( "Error opening myfile" );

}

Related Information

* |“fgetc() — Read a Character” on page 98|

* [“putc() — putchar() — Write a Character” on page 239

* [“<stdio.h>" on page 15|

_fputchar - Write Character
Format

#include <stdio.h>

int _fputchar(int c);

Language Level: Extension

Threadsafe: Yes.

Description

_fputchar writes the single character c to the stdout stream at the current position. It is equivalent to the
following fputc call:

fputc(c, stdout);
For portability, use the ANSI/ISO fputc function instead of _fputchar.
Return Value

_fputchar returns the character written. A return value of EOF indicates that a write error has occurred.
Use ferror and feof to tell whether this is an error condition or the end of the file.

For information about errno values for _fputchar, see [“fputc() — Write Character” on page 118}

Example that uses _fputchar()

This example writes the contents of buffer to stdout:

120 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
int main(void)
{
char buffer[80];
int i,ch = 1;
for (i = 0; i < 80; i++)
buffer[i] = 'c';
for (i = 0; (i < 80) && (ch != EQF); i++)
ch = _fputchar(buffer[i]);
printf("\n");
return 0;

}

The output should be similar to:
CCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

Related Information:

* [“getc() — getchar() — Read a Character” on page 152

+ [“fputc() — Write Character” on page 118§|

+ [“putc() — putchar() — Write a Character” on page 239

* |“<stdio.h>" on page 15|

fputs() — Write String

Format

#include <stdio.h>

int fputs(const char *string, FILE *stream);
Language Level: ANSI

Threadsafe: Yes.

Description

The fputs() function copies string to the output stream at the current position. It does not copy the null

character (\0) at the end of the string.

Return Value

The fputs() function returns EOF if an error occurs; otherwise, it returns a non-negative value.

The fputs() function is not supported for files that are opened with type=record.

For information about errno values for fputs(), see [“fputc() — Write Character” on page 118}

Example that uses fputs()

This example writes a string to a stream.

Chapter 2. Library Functions 121



#include <stdio.h>
#define NUM_ALPHA 26

int main(void)

{
FILE * stream;
int num;

/* Do not forget that the '\@' char occupies one character x/
static char buffer[NUM_ALPHA + 1] = "abcdefghijkImnopgrstuvwxyz";

if ((stream = fopen("mylib/myfile", "w")) != NULL )
{

/* Put buffer into file =/

if ( (num = fputs( buffer, stream )) != EOF )

{
/* Note that fputs() does not copy the \0 character */
printf( "Total number of characters written to file = %i\n", num );
fclose( stream );

}

else /x fputs failed */
perror( "fputs failed" );

}

else
perror( "Error opening myfile" );

Related Information

* [“feets() — Read a String” on page 101

[“fputws() — Write Wide-Character String” on page 124|

[‘gets() — Read a Line” on page 156|

[‘puts() — Write a String” on page 241

* [“<stdio.h>" on page 15|

fputwc() — Write Wide Character

Format

#include <wchar.h>
#include <stdio.h>
wint_t fputwc(wint_t wc, FILE *stream);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTFE) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527| for more information.

Description

122 ILE C/C++ Runtime Library Functions V6R1



The fputwc () function writes the wide character wc to the output stream pointed to by stream at the
current position. It also advances the file position indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to the
stream.

Using non-wide-character functions with the fputwc() function on the same stream will result in
undefined behavior. After calling the fputwc() function, delete the buffer or reposition the stream pointer
before calling a read function for the stream. After reading from the stream, delete the buffer or
reposition the stream pointer before calling the fputwc() function, unless EOF has been reached.

Note: If the current locale is changed between subsequent operations on the same stream, undefined
results can occur.

Return Value

The fputwc() function returns the wide character that is written. If a write error occurs, the error
indicator for the stream is set, and the fputwc() function returns WEOE. If an encoding error occurs
during conversion from wide character to a multibyte character, fputwc() sets errno to EILSEQ and
returns WEOF.

For information about errno values for putwc (), see [“fputc() — Write Character” on page 118}

Example that uses fputwc()

This example opens a file and uses the fputwc() function to write wide characters to the file.

Chapter 2. Library Functions 123



#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)

{
FILE *stream;
wchar_t *wcs = L"A character string.";
int is

if (NULL == (stream = fopen("fputwc.out", "w")))

printf("Unable to open: \"fputwc.out\".\n");
exit(1l);
}

for (i = 03 wes[i] != L'\O'; i++) {
errno = 0;
if (WEOF == fputwc(wcs[i], stream)) {
printf("Unable to fputwc() the wide character.\n"
"wes[%d] = Ox%.41x\n", i, wcs[i]);
if (EILSEQ == errno)
printf("An invalid wide character was encountered.\n");
exit(1);
}

fclose(stream);
return 0;

/***************************************************************
The output file fputwc.out should contain:

A character string.
***************************************************************/

}

Related Information

+ [“fgetwc() — Read Wide Character from Stream” on page 102|

* [“fputc() — Write Character” on page 118§|

* |“fputwc() — Write Wide Character” on page 122|

+ [“putc() — putchar() — Write a Character” on page 239
[‘putwchar() — Write Wide Character to stdout” on page 244|
[“putwc() — Write Wide Character” on page 242

[<stdio.h>" on page 15|

* [“<wcharh>" on page 18|

fputws() — Write Wide-Character String

Format

#include <wchar.h>
#include <stdio.h>
int fputws(const wchar_t *wcs, FILE *stream);

Language Level: XPG4
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if

124 ILE C/C++ Runtime Library Functions V6R1



LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [‘Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The fputws () function writes the wide-character string wcs to a stream. It does not write the ending null
wide characters.

Using non-wide-character functions with the fputws() function on the same stream will result in
undefined behavior. After calling the fputws() function, flush the buffer or reposition the stream pointer
before calling a read function for the stream. After a read operation, flush the buffer or reposition the
stream pointer before calling the fputws() function, unless EOF has been reached.

Note: If the current locale is changed between subsequent operations on the same stream, undefined
results can occur.

Return Value

The fputws() function returns a non-negative value if successful. If a write error occurs, the error
indicator for the stream is set, and the fputws() function returns -1. If an encoding error occurs in
converting the wide characters to multibyte characters, the fputws () function sets errno to EILSEQ and
returns -1.

For information about errno values for fputws (), see [‘fputc() — Write Character” on page 118

Example that uses fputws()

This example opens a file and writes a wide-character string to the file using the fgetws () function.

Chapter 2. Library Functions 125



#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)
{
FILE *stream;
wchar_t #wcs = L"This test string should not return -1";

if (NULL == (stream = fopen("fputws.out", "w"))) {
printf("Unable to open: \"fputws.out\".\n");
exit(1l);

}

errno = 0;
if (EOF == fputws(wcs, stream)) {
printf("Unable to complete fputws() function.\n");
if (EILSEQ == errno)
printf("An invalid wide character was encountered.\n");
exit(1);

fclose(stream);
return 0;

/************************************************************
The output file fputws.out should contain:

This test string should not return -1

Related Information

s [“fgetws() — Read Wide-Character String from Stream” on page 104]
+ |“fputs() — Write String” on page 121

* |“fputwc() — Write Wide Character” on page 122|

* [“puts() — Write a String” on page 241|

* |“<stdio.h>" on page 15|

+ [“<wchar.h>" on page 18|

fread() — Read ltems

Format

#include <stdio.h>

size_t fread(void *buffer, size t size, size_t count, FILE *stream);
Language Level: ANSI

Threadsafe: Yes.

Description

The fread() function reads up to count items of size length from the input stream and stores them in the
given buffer. The position in the file increases by the number of bytes read.

Return Value

The fread() function returns the number of full items successfully read, which can be less than count if
an error occurs, or if the end-of-file is met before reaching count. If size or count is 0, the fread() function
returns zero, and the contents of the array and the state of the stream remain unchanged.

126 ILE C/C++ Runtime Library Functions V6R1



The value of errno can be set to:
Value Meaning

EGETANDPUT

A read operation that was not permitted occurred after a write operation.

ENOREC
Record is not found.

ENOTREAD
The file is not open for read operations.

ERECIO
The file is open for record 1/0O.

ESTDIN
stdin cannot be opened.

ETRUNC
Truncation occurred on the operation.

EIOERROR
A non-recoverable 1/O error occurred.

EIORECERR
A recoverable I/0 error occurred.

Use the ferror() and feof() functions to distinguish between a read error and an end-of-file.

When using fread() for record input, set size to 1 and count to the maximum expected length of the

record, to obtain the number of bytes. If you do not know the record length, you should set size to 1 and

count to a large value. You can read only one record at a time when using record 1/0.

Example that uses fread()

This example attempts to read NUM_ALPHA characters from the file myfile. If there are any errors with

either fread() or fopen(), a message is printed.

Chapter 2. Library Functions

127



#include <stdio.h>
#define NUM_ALPHA 26

int main(void)
{
FILE * stream;
int num; /* number of characters read from stream =/

/* Do not forget that the '\@' char occupies one character too! */
char buffer[NUM_ALPHA + 1];

if (( stream = fopen("mylib/myfile", "r"))!= NULL )
{

memset (buffer, 0, sizeof(buffer));
num = fread( buffer, sizeof( char ), NUM_ALPHA, stream );
if (num ) { /x fread success */
printf( "Number of characters has been read = %i\n", num );
printf( "buffer = %s\n", buffer );
fclose( stream );
}
else { /* fread failed */
if ( ferror(stream) ) /* possibility 1 */
perror( "Error reading myfile" );
else if ( feof(stream)) /* possibility 2 */
perror( "EOF found" );
1

}

else
perror( "Error opening myfile" );

}

Related Information
* |“feof() — Test End-of-File Indicator” on page 95|
» |“ferror() — Test for Read/Write Errors” on page 95|

* |“fopen() — Open Files” on page 109
[“fwrite() — Write Items” on page 146|
[<stdio.h>" on page 15|

free() — Release Storage Blocks

Format

#include <stdlib.h>
void free(void =*ptr);

Language Level: ANSI

Threadsafe: Yes.

Description

The free() function frees a block of storage. The ptr argument points to a block that is previously
reserved with a call to the calloc(), malloc(), realloc(), C TS calloc(), C_TS malloc(),
_C_TS_realloc(), or _C_TS_malloc64() functions. The number of bytes freed is the number of bytes

specified when you reserved (or reallocated, in the case of the realloc() function) the block of storage. If
ptr is NULL, free() simply returns.

128 ILE C/C++ Runtime Library Functions V6R1



Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should
be allocated and deallocated within the same activation group. It is not valid to allocate heap storage
within one activation group and deallocate that storage from a different activation group. For more

information about activation groups, see the ILE Concepts manual.

2. Attempting to free a block of storage not allocated with calloc(), malloc(), or realloc() (or
previously freed storage) can affect the subsequent reserving of storage and lead to undefined results.
Storage that is allocated with the ILE bindable API CEEGTST can be freed with free().

To use Teraspace storage instead of heap storage without changing the C source code, specify the
TERASPACE(*YES *TSIFC) parameter on the CRTCMOD compiler command. This maps the free()
library function to _C_TS_free(), its Teraspace storage counterpart.

Note: Whenever an invalid pointer is passed to the free() function, a C2M1212 message is signalled.

Usually an MCH message associated with the C2M1212 message appears immediately prior to the
C2M1212 message in the job log. The MCH message usually has additional information that can be
used to debug the problem.

If a C2M1212 message is signalled and the data area QGPL/QC2M1212 exists, the program stack at
the point that the C2M1212 message is signalled is spooled to a spool file. You can create the
QGPL/QC2M1212 data area using the CRTDTAARA (Create Data Area) command. You can specify
any type and length for the data area.

Following are some of the problems that can cause a C2M1212 message to be signalled:

* A pointer that was never set to point to storage reserved by the malloc() function is passed to
the free() function.

» A pointer was set to point to storage reserved by the malloc() function, was subsequently
modified, and then is passed to the free() function.

* A pointer was set to point to storage reserved by the malloc () function, was passed to the
free() function, and then is passed to the free() function..

When a C2M1212 message is generated, the hexadecimal value of the pointer passed to the free()
function is included as part of the message description. This hexadecimal value can provide clues

as to the origin of the problem. The malloc() function returns only pointers that end in
hexadecimal 0. Any pointer that does not end in hexadecimal 0 was either never set to point to
storage reserved by the malloc() function or was modified since it was set to point to storage
reserved by the malloc() function. If the pointer ends in hexadecimal 0, then the cause of the
C2M1212 message is uncertain, and the program code that calls free() should be examined.

Return Value

There is no return value.

Example that uses free()

This example uses the calloc() function to allocate storage for x array elements, and then calls the
free() function to free them.

#include <stdio.h>
#include <stdlib.h>

int main(void)

long * array; /* start of the array */
long * index; /* index variable */
int i /* index variable */
int  num; /* number of entries of the array */

Chapter 2. Library Functions 129



printf( "Enter the size of the array\n" );
scanf( "%i", &num );

/* allocate num entries */
if ( (index = array = calloc( num, sizeof( Tong ))) != NULL )
{

for (i =0; 1 < num; ++i ) /* put values in array */
xindex++ = 1i; /* using pointer notation */
free( array ); /* deallocates array */
}
else

{ /* Out of storage x/
perror( "Error: out of storage" );
abort();
}
1

Related Information

* [“calloc() — Reserve and Initialize Storage” on page 55|

+ [“_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66|

* |“_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68|

* |“_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70|

[‘malloc() — Reserve Storage Block” on page 195

[“realloc() — Change Reserved Storage Block Size” on page 264|
[“<stdlib.h>" on page 17]

freopen() — Redirect Open Files

Format

#include <stdio.h>
FILE *freopen(const char =filename, const char *mode, FILE *stream);

Language Level: ANSI
Threadsafe: Yes.
Description

The freopen() function closes the file that is currently associated with stream and reassigns stream to the
file that is specified by filename. The freopen() function opens the new file associated with stream with
the given mode, which is a character string specifying the type of access requested for the file. You can
also use the freopen() function to redirect the standard stream files stdin, stdout, and stderr to files
that you specify.

For database files, if filename is an empty string, the freopen() function closes and reopens the stream to
the new open mode, rather than reassigning it to a new file or device. You can use the freopen() function
with no file name specified to change the mode of a standard stream from text to binary without
redirecting the stream, for example:

fp = freopen("", "rb", stdin);
You can use the same method to change the mode from binary back to text.
You cannot use the freopen() function with filename as an empty string in modules created with

SYSIFCOPT(*IFSIO).

130 ILE C/C++ Runtime Library Functions V6R1



Return Value

The freopen() function returns a pointer to the newly opened stream. If an error occurs, the freopen()
function closes the original file and returns a NULL pointer value.

The value of errno can be set to:
Value Meaning

EBADF
The file pointer or descriptor is not valid.

EBADMODE
The file mode that is specified is not valid.

EBADNAME
The file name that is specified is not valid.

ENOENT
No file or library.

ENOTOPEN
The file is not open.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0O error occurred.

Example that uses freopen()

This example closes the stream1 data stream and reassigns its stream pointer. stream1 and stream2 will
have the same value, but they will not necessarily have the same value as stream.

#include <stdio.h>
#define MAX_LEN 100

int main(void)

{
FILE *stream, *streaml, *stream?2;
char 1ine[MAX LEN], *result;
int 1,

stream = fopen("mylib/myfile","r");
if ((result = fgets(line,MAX_LEN,stream)) != NULL)
printf("The string is %s\n", result);

/* Change all spaces in the Tine to '*'. */
for (i=0; i<=sizeof(1ine); i++)
if (line[i] == ' ")
Tine[i] = '*';

streaml = stream;

stream2 = freopen("", "w+", streaml);
fputs( line, stream2 );

fclose( stream?);

}

Related Information

* [“fclose() — Close Stream” on page 91|

+ |“fopen() — Open Files” on page 109

+ [“<stdio.h>" on page 15|

Chapter 2. Library Functions 131



frexp() — Separate Floating-Point Value

Format

#include <math.h>
double frexp(double x, int xexpptr);

Language Level: ANSI
Threadsafe: Yes.
Description

The frexp() function breaks down the floating-point value x into a term m for the mantissa and another
term n for the exponent. It is done such that x=m*2 ", and the absolute value of m is greater than or equal
to 0.5 and less than 1.0 or equal to 0. The frexp() function stores the integer exponent # at the location to
which expptr points.

Return Value

The frexp() function returns the mantissa term m. If x is 0, frexp() returns 0 for both the mantissa and
exponent. The mantissa has the same sign as the argument x. The result of the frexp() function cannot
have a range error.

Example that uses frexp()

This example separates the floating-point value of x, 16.4, into its mantissa 0.5125, and its exponent 5. It
stores the mantissa in ¥ and the exponent in n.

#include <math.h>
#include <stdio.h>

int main(void)
{

double x, m;

int n;
x = 16.4;
m = frexp(x, n);

printf("The mantissa is %1f and the exponent is %d\n", m, n);

}

[ FHrk gk KT K I TR KK Output should be similar to: ****xkxkkkkxkkkk

The mantissa is 0.512500 and the exponent is 5
*/

Related Information

+ [“Idexp() — Multiply by a Power of Two” on page 178|

* “modf() — Separate Floating-Point Value” on page 222|

* ["<math.h>" on page §|

fscanf() — Read Formatted Data

Format

132 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
int fscanf (FILE *stream, const char *format-string, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the
compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description
The fscanf() function reads data from the current position of the specified stream into the locations that
are given by the entries in arqument-list, if any. Each entry in arqument-list must be a pointer to a variable

with a type that corresponds to a type specifier in format-string.

The format-string controls the interpretation of the input fields and has the same form and function as the
format-string argument for the scanf() function.

Return Value

The fscanf() function returns the number of fields that it successfully converted and assigned. The
return value does not include fields that the fscanf() function read but did not assign.

The return value is EOF if an input failure occurs before any conversion, or the number of input items
assigned if successful.

Example that uses fscanf()

This example opens the file myfile for reading and then scans this file for a string, a long integer value, a
character, and a floating-point value.

Chapter 2. Library Functions 133



#include <stdio.h>
#define MAX_LEN 80

int main(void)
{
FILE *stream;
long 1;
float fp;
char s[MAX_LEN + 1];
char c;

stream = fopen("mylib/myfile", "r");
/* Put in various data. */

fscanf(stream, "%s", &s [0]);
fscanf(stream, "%1d", &1);
fscanf(stream, "%c", &c);
fscanf(stream, "%f", &fp);

printf("string = %s\n", s);
printf("long double = %1d\n", 1);
printf("char = %c\n", c);
printf("float = %f\n", fp);

1

[FFxxwrxkrxkxxkxx [ myfile containg woxwsrmdrmhrmhrhrxkhrrkhrs
khkhkkkkhkhhrhkk abcdefghijk]mnopqrstuvwxyz 343.2 *kxkkkkkkkkk
KKKk A KA KKK KK KKK kA expected output is: Fkxkkxkrxs Fkok kK k kK kA *

string = abcdefghijklmnopgrstuvwxyz
long double = 343

char = .

float = 2.000000

*/

Related Information

+ |“fprintf() — Write Formatted Data to a Stream” on page 116|

[“fwscanf() — Read Data from Stream Using Wide Character” on page 147]
[“scanf() — Read Data” on page 330

* |“sscanf() — Read Data” on page 355|

* |“swscanf() — Read Wide Character Data” on page 407

[“wscanf() — Read Data Using Wide-Character Format String” on page 504|

[<stdio.h>" on page 15|

fseek() — fseeko() — Reposition File Position

Format

#include <stdio.h>
int fseek(FILE *stream, long int offset, int origin);
int fseeko(FILE *stream, off_t offset, int origin);

Language Level: ANSI
Threadsafe: Yes.

Integrated File System Interface: The fseeko() function is not available when SYSIFCOPT(*NOIFSIO) is
specified on the compilation command.

134 ILE C/C++ Runtime Library Functions V6R1



Description

The fseek() and fseeko() functions change the current file position that is associated with stream to a
new location within the file. The next operation on stream takes place at the new location. On a stream
open for update, the next operation can be either a reading or a writing operation.

The fseeko() function is identical to fseek() except that the offset argument is of type off_t.

The origin must be one of the following constants that are defined in <stdio.h>:
Origin Definition

SEEK_SET
Beginning of file

SEEK_CUR
Current position of file pointer

SEEK_END
End of file

For a binary stream, you can also change the position beyond the end of the file. An attempt to position
before the beginning of the file causes an error. If successful, the fseek() or fseeko() function clears the
end-of-file indicator, even when origin is SEEK_END, and undoes the effect of any preceding the ungetc()
function on the same stream.

Note: For streams opened in text mode, the fseek() and fseeko() functions have limited use because
some system translations (such as those between carriage-return-line-feed and new line) can
produce unexpected results. The only fseek() and fseeko() operations that can be relied upon to
work on streams opened in text mode are seeking with an offset of zero relative to any of the
origin values, or seeking from the beginning of the file with an offset value returned from a call to
the ftel1()or ftello() functions. Calls to the ftell() and ftello() functions are subject to their
restrictions.

Return Value
The fseek() or fseeko function returns 0 if it successfully moves the pointer. A nonzero return value
indicates an error. On devices that cannot seek, such as terminals and printers, the return value is

nonzero.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is invalid.
EBADSEEK

Bad offset for a seek operation.
ENODEV

Operation was attempted on a wrong device.
ENOTOPEN

The file is not open.
ERECIO

The file is open for record I/0.
ESTDERR

stderr cannot be opened.

Chapter 2. Library Functions 135



ESTDIN
stdin cannot be opened.

ESTDOUT
stdout cannot be opened.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0O error occurred.

The fseek() and fseeko() functions are not supported for files that are opened with type=record.
Example that uses fseek()

This example opens a file myfile for reading. After performing input operations,fseek () moves the file
pointer to the beginning of the file.

#include <stdio.h>
#define MAX_LEN 10

int main(void)
{
FILE *stream;
char buffer[MAX_LEN + 1];
int result;
int i
char ch;

stream
i (i < (sizeof(buffer)-1) &&
((c fgetc(stream)) != EOF) && (ch != '\n')); i++)

uffer[i] = ch;

fopen("mylib/myfile", "r");
0;

h
b

result = fseek(stream, OL, SEEK SET); /* moves the pointer to the */
/* beginning of the file */
if (result == 0)
printf("Pointer successfully moved to the beginning of the file.\n");
else
printf("Failed moving pointer to the beginning of the file.\n");
1

Related Information
» |“ftell() — ftello() — Get Current Position” on page 138§|
+ |“fgetpos() — Get File Position” on page 99|

* |“fsetpos() — Set File Position”]

* [“rewind() — Adjust Current File Position” on page 276|

[‘ungetc() — Push Character onto Input Stream” on page 420]

[‘fseek() — fseeko() — Reposition File Position” on page 134

[<stdio.h>" on page 15|

fsetpos() — Set File Position

Format
#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Language Level: ANSI

136 ILE C/C++ Runtime Library Functions V6R1



Threadsafe: Yes.
Description

The fsetpos() function moves any file position that is associated with stream to a new location within the
file according to the value pointed to by pos. The value of pos was obtained by a previous call to the

fgetpos ()| library function.

If successful, fsetpos() clears the end-of-file indicator, and undoes the effect of any previous ungetc()
function on the same stream.

After the fsetpos() call, the next operation on a stream in update mode can be input or output.
Return Value

If fsetpos() successfully changes the current position of the file, it returns 0. A nonzero return value
indicates an error.

The value of errno can be set to:
Value Meaning

EBADF
The file pointer or descriptor is invalid.

EBADPOS
The position that is specified is not valid.

EINVAL
The value specified for the argument is not correct. You might receive this errno when you
compile your program with *IFSIO, and you are working with a file in the QSYS file system. For
example, "/qsys.1ib/qtemp.1ib/myfile.file/mymem.mbr"

ENODEV

Operation was attempted on a wrong device.
ENOPOS

No record at the specified position.
ERECIO

The file is open for record 1/0.
ESTDERR

stderr cannot be opened.
ESTDIN

stdin cannot be opened.
ESTDOUT

stdout cannot be opened.
EIOERROR

A non-recoverable 1/O error occurred.
EIORECERR

A recoverable I/0O error occurred.

The fsetpos() function cannot be used for files that are opened with type=record. Also, the fsetpos ()
function can only support setting the position to the beginning of the file if:

* your program is compiled with *IFSIO, and

* you are working on a file in the QSYS file system.

Chapter 2. Library Functions 137



Example that uses fsetpos()

This example opens a file mylib/myfile for reading. After performing input operations, fsetpos() moves
the file pointer to the beginning of the file and rereads the first byte.

#include <stdio.h>

FILE *stream;

int main(void)

{

}

int retcode;

fpos_t pos;

char ptr[20]; /* existing file 'mylib/myfile' has 20 byte records */
int i,

/* Open file, get position of file pointer, and read first record */

stream = fopen("mylib/myfile", "rb");

fgetpos(stream,Point-of-Sale);

if (!fread(ptr,sizeof(ptr),1,stream))
perror("fread error");

else printf("Ist record: %s\n", ptr);

/* Perform another read operation on the second record */
/* - the value of 'pos' changes */
if (!fread(ptr,sizeof(ptr),1,stream))

perror("fread error");
else printf("2nd record: %s\n", ptr);

/* Re-set pointer to start of file and re-read first record =/
fsetpos(stream,Point-of-Sale);
if (!fread(ptr,sizeof(ptr),1,stream))
perror("fread error");
else printf("1st record again: %s\n", ptr);

fclose(stream);

Related Information

[“feetpos() — Get File Position” on page 99|

[“fseek() — fseeko() — Reposition File Position” on page 134
[“ftell() — ftello() — Get Current Position”]
[“rewind() — Adjust Current File Position” on page 276|

[<stdio.h>" on page 15|

ftell() — ftello() — Get Current Position

Format

#include <stdio.h>
long int ftell1(FILE *stream);
off t ftello(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Integrated File System Interface: The ftello() function is not available when SYSIFCOPT(*NOIFSIO) is
specified on the compilation command.

138 ILE C/C++ Runtime Library Functions V6R1



Description

The ftel1() and ftello() functions find the current position of the file associated with stream. For a

fixed-length binary file, the value that is returned is an offset relative to the beginning of the stream.

For file in the QSYS library system, the ftell1() and ftello() functions return a relative value for
fixed-format binary files and an encoded value for other file types. This encoded value must be used in
calls to the fseek() and fseeko()functions to positions other than the beginning of the file.

Return Value

The ftel1() and ftello() functions return the current file position. On error, ftel1() and ftello()
return -1, cast to Tong and off_t respectively, and set errno to a nonzero value.

The value of errno can be set to:

Value Meaning

ENODEV
Operation was attempted on a wrong device.
ENOTOPEN
The file is not open.
ENUMMBRS
The file is open for multi-member processing.
ENUMRECS
Too many records.
ERECIO
The file is open for record 1/0.
ESTDERR
stderr cannot be opened.
ESTDIN
stdin cannot be opened.
ESTDOUT
stdout cannot be opened.
EIOERROR
A non-recoverable 1/O error occurred.
EIORECERR

A recoverable I/O error occurred.

The ftel1() and ftello() functions are not supported for files that are opened with type=record.

Example that uses ftell()

This example opens the file mylib/myfile for reading. It reads enough characters to fill half of the buffer

and prints out the position in the stream and the buffer.

Chapter 2. Library Functions

139



#include <stdio.h>

#define NUM_ALPHA 26
#define NUM_CHAR 6

int main(void)

{
FILE * stream;
int i;
char ch;

char buffer[NUM_ALPHA];
long position;

if (( stream
{
/* read into buffer x/
for (i =0; (i < NUM_ALPHA/2 ) && ((buffer[i] = fgetc(stream)) != EOF ); ++i )
if (i==NUM_CHAR-1) /* We want to be able to position the =/
/* file pointer to the character in */
/* position NUM_CHAR */
position = ftell(stream);

fopen("mylib/myfile", "r")) != NULL )

buffer[i] = '\0';
} printf("Current file position is %d\n", position);
printf("Buffer contains: %s\n", buffer);
1

Related Information

+ |“fseek() — fseeko() — Reposition File Position” on page 134]

[“fgetpos() — Get File Position” on page 99|

[“fopen() — Open Files” on page 109

[“fsetpos() — Set File Position” on page 136
[“ftell() — ftello() — Get Current Position” on page 138|
[<stdio.h>" on page 15|

fwide() — Determine Stream Orientation

Format

#include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Description

The fwide() function determines the orientation of the stream pointed to by stream. If mode is greater than
0, the fwide() function first attempts to make the stream wide oriented. If mode is less than 0, the fwide()
function first attempts to make the stream byte oriented. Otherwise, mode is 0, and the fwide() function

does not alter the orientation of the stream.

140 ILE C/C++ Runtime Library Functions V6R1



| Note: If the orientation of the stream has already been determined, the fwide() function does not change
I it.

Return Value
If, after the call, the stream has wide orientation, the fwide() function returns a value greater than 0. If
the stream has byte orientation, it returns a value less than 0. If the stream has no orientation, it returns

0.

Example that uses fwide()

Chapter 2. Library Functions 141



#include <stdio.h>
#include <math.h>
#include <wchar.h>

void check_orientation(FILE *stream)

{

}

int rc;
rc = fwide(stream,0); /* check the orientation */
if (rc<0) {

printf("Stream has byte orientation.\n");
} else if (rc>0) {

printf("Stream has wide orientation.\n");
} else {

printf("Stream has no orientation.\n");

return;

int main(void)

{

}

FILE *stream;
/* Demonstrate that fwide can be used to set the orientation,
but cannot change it once it has been set. */
stream = fopen("test.dat","w");
printf("After opening the file: ");
check _orientation(stream);
fwide(stream, -1); /* Make the stream byte oriented */
printf("After fwide(stream, -1): ");
check orientation(stream);
fwide(stream, 1); /* Try to make the stream wide oriented */
printf("After fwide(stream, 1): ");
check_orientation(stream);
fclose(stream);
printf("Close the stream\n");
/* Check that a wide character output operation sets the orientation
as expected.  */
stream = fopen("test.dat","w");
printf("After opening the file: ");
check_orientation(stream);
fwprintf(stream, L"pi = %.5f\n", 4x atan(1.0));
printf("After fwprintf( ): ");
check _orientation(stream);
fclose(stream);
return 0;
/*******************************************************************
The output should be similar to :
After opening the file: Stream has no orientation.
After fwide(stream, -1): Stream has byte orientation.
After fwide(stream, 1): Stream has byte orientation.
Close the stream
After opening the file: Stream has no orientation.
After fwprintf( ): Stream has wide orientation.
**‘k**"k**********************'k"k***‘k**"k***‘k**‘k‘k**‘k****************‘k**/

Related Information

[‘feetwe() — Read Wide Character from Stream” on page 102|

[“feetws() — Read Wide-Character String from Stream” on page 104]
[“fputwc() — Write Wide Character” on page 122}

[“fputws() — Write Wide-Character String” on page 124
[<stdio.h>" on page 15|

[“<wchar.h>” on page 18]

142  ILE C/C++ Runtime Library Functions V6R1



fwprintf() — Format Data as Wide Characters and Write to a Stream

Format

#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE *stream, const wchar_t *format, argument-list);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale, and might also be affected by the LC_UNI_CTYPE and
LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or
LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available
when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see
[“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527| for more information.

Description

The fwprintf() function writes output to the stream pointed to by stream, under control of the wide
string pointed to by format. The format string specifies how subsequent arguments are converted for
output.

The fwprintf() function converts each entry in argument-list according to the corresponding
wide-character format specifier in format.

If insufficient arguments exist for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the fwprintf() function evaluates the excess arguments, but otherwise ignores them.
The fwprintf() function returns when it encounters the end of the format string.

The format comprises zero or more directives: ordinary wide characters (not %) and conversion
specifications. Conversion specifications are processed as if they were replaced in the format string by
wide-character strings. The wide-character strings are the result of fetching zero or more subsequent
arguments and then converting them, if applicable, according to the corresponding conversion specifier.
The fwprintf() function then writes the expanded wide-character format string to the output stream.

The format for the fwprintf() function has the same form and function as the format string for printf(),
with the following exceptions:

* %c (without an 1 prefix) converts an integer argument to wchar_t, as if by calling the btowc() function.

* %s (without an | prefix) converts an array of multibyte characters to an array of wchar_t, as if by
calling the mbrtowc() function. The array is written up to, but not including, the terminating null
character, unless the precision specifies a shorter output.

¢ %ls and %S write an array of wchar_t. The array is written up to, but not including, the ending null
character, unless the precision specifies a shorter output.

¢ Any width or precision specified for %c, %s, %ls, and %S indicates the number of characters rather
than the number of bytes.

If a conversion specification is invalid, the behavior is undefined.

Chapter 2. Library Functions 143



If any argument is, or points to, a union or an aggregate (except for an array of char type using %s
conversion, an array of wchar_t type using %ls conversion, or a pointer using %p conversion), the
behavior is undefined.

In no case does a nonexistent, or small field width, cause truncation of a field; if the conversion result is
wider than the field width, the field is expanded to contain the conversion result.

Note: When you write wide characters, the file should be opened in binary mode, or opened with the
o_ccsid or codepage parameters. This ensures that no conversions occur on the wide characters.

Return Value

The fwprintf() function returns the number of wide characters transmitted. If an output error occurred,
it returns a negative value.

Example that uses fwprintf()

#include <stdio.h>
#include <wchar.h>
#include <locale.h>
int count [10] = {1, 5, 8, 3, 0, 3, 5, 6, 8, 10};
int main(void)
{
int 1,3
FILE *stream; /* Open the stream for writing x/
if (NULL == (stream = fopen("/QSYS.LIB/LIB.LIB/WCHAR.FILE/WCHAR.MBR","wb")))
perror("fopen error");
for (i=0; i < sizeof(count) / sizeof(count[0]); i++)

for (j = 0; j < count[i]; j++)
fwprintf(stream, L"*"); /* Print asterisk */
fwprintf(stream, L"\n"); /* Move to the next line */
1
fclose (stream);

1
/* The member WCHAR of file WCHAR will contain:

*

*kkkk
*kkkkkkkx
*kk

*k%

*kkkk
*kkkkk
*khkkkkkkk
*kkkkkkkkx

*/

Unicode example that uses fwprintf()

144 1ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

/* This program is compile LOCALETYPE(*LOCALEUCS2) and
/* SYSIFCOPT(*IFSIO)

int main(void)

}

FILE *stream;
wchar_t wc = 0x0058; /* UNICODE X =*/
char cl = 'c¢';
char xsl = "123";
wchar_t ws[4];
setlocale(LC_ALL,
"/QSYS.LIB/EN_US.LOCALE"); /* a CCSID 37 Tocale */

ws[0] = 0x0041; /* UNICODE A =/

ws[1] = (wchar_t)0x0042; /* UNICODE B */
ws[2] = (wchar_t)0x0043; /* UNICODE C =/
ws[3] = (wchar_t)0x0000;

stream = fopen("myfile.dat", "wb+");

/* 1c and 1s take wide char as input and just copies th
/* to the file. So the file would Took like this

/* after the below fwprintf statement:

/* 0058002000200020004100420043

/* 0020 is UNICODE blank

fwprintf(stream, L"%1c  %1s",wc,ws);

/* ¢ and s take multibyte as input and produce UNICODE
/* In this case cl and sl are CCSID 37 characters based
/* on the setlocale above. So the characters are

/* converted from CCSID 37 to UNICODE and will look

/* 1ike this in hex after the following fwprintf

/* statement: 0063002000200020003100320033

/* 0063 is a UNICODE c 0031 is a UNICODE 1 and so on

fwprintf(stream, L"%c %s",cl,sl);

/* Now lets try width and precision. 61s means write
/* 6 wide characters so we will pad with 3 UNICODE
/* blanks and %.2s means write no more then 2 wide
/* characters. So we get an output that looks like
/* this: 00200020002000410042004300310032

fwprintf(stream, L"%61s%.2s",ws,s1);

Related Information

en

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

* |“fprintf() — Write Formatted Data to a Stream” on page 116|

[“printf() — Print Formatted Characters” on page 229|

[‘vfprintf() — Print Argument Data to Stream” on page 425|

[vprintf() — Print Argument Data” on page 432|

[“btowc() — Convert Single Byte to Wide Character” on page 53|

*/
*/

[‘mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

[‘vEwprintf() — Format Argument Data as Wide Characters and Write to a Stream” on page 428|

[‘vswprintf() — Format and Write Wide Characters to Buffer” on page 439

[“wprintf() — Format Data as Wide Characters and Print” on page 503

[“<stdarg.h>" on page 13|

[“<wchar.h>” on page 18]

Chapter 2. Library Functions

145



fwrite() — Write Items

Format

#include <stdio.h>
size_t fwrite(const void *buffer, size_t size, size_t count,
FILE *stream);

Language Level: ANSI
Threadsafe: Yes.
Description

The fwrite() function writes up to count items, each of size bytes in length, from buffer to the output
stream.

Return Value

The fwrite() function returns the number of full items successfully written, which can be fewer than
count if an error occurs.

When using fwrite() for record output, set size to 1 and count to the length of the record to obtain the
number of bytes written. You can only write one record at a time when using record 1/0O.

The value of errno can be set to:
Value Meaning

ECONVERT
A conversion error occurred.

ENOTWRITE
The file is not open for write operations.

EPAD Padding occurred on a write operation.

EPUTANDGET
An illegal write operation occurred after a read operation.

ESTDERR
stderr cannot be opened.

ESTDIN
stdin cannot be opened.

ESTDOUT
stdout cannot be opened.

ETRUNC
Truncation occurred on I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

Example that uses fwrite()

This example writes NUM long integers to a stream in binary format.

146 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#define NUM 100

int main(void)

FILE *stream;
Tong list[NUM];
int numwritten;
int i;
stream = fopen("MYLIB/MYFILE", "w+b");
/* assign values to 1ist[] */
for (i=0; i<=NUM; i++)
list[i]=1;

numwritten = fwrite(list, sizeof(long), NUM, stream);
printf("Number of items successfully written = %d\n", numwritten);

}

Related Information

* |“fopen() — Open Files” on page 109

+ [“fread() — Read Items” on page 126

* [“<stdio.h>" on page 15|

fwscanf() — Read Data from Stream Using Wide Character

Format

#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE *stream, const wchar_t *format, argument-list);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC
categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is
specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see [“Understanding CCSIDs and Locales”|
—

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The fwscanf() function reads input from the stream pointed to by stream, under control of the wide
string pointed to by format. The format string specifies the admissible input sequences and how they are
to be converted for assignment. To receive the converted input, the fwscanf() function uses subsequent
arguments as pointers to the objects.

Each argument in argument-list must point to a variable with a type that corresponds to a type specifier in
format.

Chapter 2. Library Functions 147



If insufficient arguments exist for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the fwscanf() function evaluates the excess arguments, but otherwise ignores them.

The format consists of zero or more directives: one or more white-space wide characters; an ordinary
wide character (neither % nor a white-space wide character); or a conversion specification. Each
conversion specification is introduced by a %.

The format has the same form and function as the format string for the scanf () function, with the
following exceptions:

* %c (with no 1 prefix) converts one or more wchar_t characters (depending on precision) to multibyte
characters, as if by calling wcrtomb ().

e %lc and %C convert one or more wchar_t characters (depending on precision) to an array of wchar_t.

* %s (with no | prefix) converts a sequence of non-white-space wchar_t characters to multibyte
characters, as if by calling the wertomb() function. The array includes the ending null character.

* %lIs and %S copy an array of wchar_t, including the ending null wide character, to an array of wchar_t.

If the data is from stdin, and stdin has not been overridden, the data is assumed to be in the CCSID of
the job. The data is converted as required by the format specifications. If the file that is being read is not
opened with file mode rb, then invalid conversion can occur.

If a conversion specification is invalid, the behavior is undefined. If the fwscanf() function encounters
end-of-file during input, conversion is ended. If end-of-file occurs before the fwscanf() function reads
any characters matching the current directive (other than leading white space, where permitted),
execution of the current directive ends with an input failure. Otherwise, unless execution of the current
directive terminates with a matching failure, execution of the following directive (other than %n, if any)
ends with an input failure.

The fwscanf() function leaves trailing white space (including new-line wide characters) unread, unless
matched by a directive. You cannot determine the success of literal matches and suppressed assignments
other than through the %n directive.

Return Value

The fwscanf() function returns the number of input items assigned, which can be fewer than provided
for, in the event of an early matching failure.

If an input failure occurs before any conversion, the fwscanf() function returns EOF.
Example that uses fwscanf ()

This example opens the file myfile.dat for input, and then scans this file for a string, a long integer value,
a character, and a floating-point value.

148 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <wchar.h>

#define MAX_LEN 80
int main(void)

FILE *stream;

long 1;

float fp;

char s[MAX_LEN+1];
char c;

stream = fopen("myfile.dat", "r");
/* Read data from file. =/

fwscanf(stream, L"%s", &s[0]);
fwscanf(stream, L"%1d", &1);
fwscanf(stream, L"%c", &c);
fwscanf(stream, L"%f", &fp);

printf("string = %s\n", s);
printf("long integer = %1d\n", 1);
printf("char = %c\n", c);
printf("float = %f\n", fp);

return 0;

/***********************************************
If myfile.dat contains:
abcdefghijklmnopqrstuvwxyz 343.2.

The output should be:

string = abcdefghijkImnopqrstuvwxyz
long integer = 343

char = .

float = 2.000000

***********************************************/

}

Unicode example that uses fwscanf ()

This example reads a Unicode string from unicode.dat and prints it to the screen. The example is
compiled with LOCALETYPE(*LOCALEUCS2) SYSIFCOPT(*IFSIO):

Chapter 2. Library Functions 149



#include <stdio.h>
#include  <wchar.h>
#include <locale.h>
void main(void)

{

FILE *stream;
wchar_t buffer[20];
stream=fopen("unicode.dat","rb");

fwscanf(stream,L"%1s", buffer);
wprintf(L"The string read was :%1s\n",buffer);

fclose(stream);

/* If the input in unicode.dat is :

ABC

and ABC is in unicode which in hex would be 0x0041, 0x0042, 0x0043
then the output will be similar to:

The string read was :ABC

*

/

Related Information

* |“fscanf() — Read Formatted Data” on page 132

[“fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143
[“scanf() — Read Data” on page 330|

* |“swprintf() — Format and Write Wide Characters to Buffer” on page 406|

* [“swscanf() — Read Wide Character Data” on page 407]

[‘wscanf() — Read Data Using Wide-Character Format String” on page 504|

[‘<stdio.h>” on page 15|

+ [“<wchar.h>" on page 18|

gamma() — Gamma Function

Format
#include <math.h>

double gamma(double x);
Language Level: ILE C Extension
Threadsafe: Yes.

Description

The gamma() function computes the natural logarithm of the absolute value of G(x) (In(G(x)!)), where
(=

I x-1

(ix) = P | dr
0

The argument x must be a positive real value.
Return Value

The gamma() function returns the value of In(1G(x)|). If x is a negative value, errno is set to EDOM. If the
result causes an overflow, gamma () returns HUGE_VAL and sets errno to ERANGE.

150 ILE C/C++ Runtime Library Functions V6R1



Example that uses gamma ()
This example uses gamma() to calculate In(1G(x)|), where x = 42.

#include <math.h>
#include <stdio.h>

int main(void)
double x=42, g_at_x;
g_at_x = exp(gamma(x)); /* g_at_x = 3.345253e+49 x/

printf ("The value of G(%4.21f) is %7.2e\n", x, g_at x);
1

[ xS gk dk ok ok k ok ok ko k ok ko k kK Output should be similar to: *x*x*x*x*x*

The value of G(42.00) is 3.35e+49
*/

Related Information

+ [“Bessel Functions” on page 50|

* [“erf() — erfc() — Calculate Error Functions” on page 87]

* [“<math.h>" on page §|

_gcvt - Convert Floating-Point to String

Format

#include <stdlib.h>

char *_gcvt(double value, int ndec, char *buffer);

Note: The _gcvt function is supported only for C++, not for C.
Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale. For more information, see [“Understanding CCSIDs and Locales” on page|
4]

Description

_gcvt() converts a floating-point value to a character string pointed to by buffer. The buffer should be
large enough to hold the converted value and a null character (\0) that _gcvt() automatically adds to the
end of the string. There is no provision for overflow.

_gevt() attempts to produce ndec significant digits in FORTRAN F format. Failing that, it produces ndec
significant digits in FORTRAN E format. Trailing zeros might be suppressed in the conversion if they are
insignificant.

A FORTRAN F number has the following format:

[

v
A

digit .
+ l—digz't—l l—digit—l

Chapter 2. Library Functions 151



A FORTRAN E number has the following format:

v
A

> digit—.—digit—E digit |_
digii.‘—|

_gcvt also converts infinity values to the string INFINITY.
Return Value

_gevt() returns a pointer to the string of digits. If it cannot allocate memory to perform the conversion,
_gcvt () returns an empty string and sets errno to ENOMEM.

Example that uses _gcvt()

This example converts the value -3.1415e3 to a character string and places it in the character array
bufferl.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
char bufferl[10];
_gcvt(-3.1415e3, 7, bufferl);
printf("The first result is %s \n", bufferl);
return 0;

}

The output should be:
The first result is -3141.5

Related Information:
+ |“<stdlib.h>" on page 17

getc() — getchar() — Read a Character

Format

#include <stdio.h>
int getc(FILE *stream);
int getchar(void);

Language Level: ANSI

Threadsafe: No. #undef getc or #undef getchar allows the getc or getchar function to be called instead
of the macro version of these functions. The functions are threadsafe.

Description

The getc() function reads a single character from the current stream position and advances the stream
position to the next character. The getchar() function is identical to getc(stdin).

The difference between the getc() and fgetc() functions is that getc() can be implemented so that its
arguments can be evaluated multiple times. Therefore, the stream argument to getc() should not be an

expression with side effects.

Return Value

152 ILE C/C++ Runtime Library Functions V6R1



The getc() and getchar() functions return the character read. A return value of EOF indicates an error or
end-of-file condition. Use ferror() or feof() to determine whether an error or an end-of-file condition
occurred.

The value of errno can be set to:
Value Meaning

EBADF
The file pointer or descriptor is not valid.

ECONVERT
A conversion error occurred.

EGETANDPUT
An illegal read operation occurred after a write operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

The getc() and getchar() functions are not supported in record mode.
Example that uses getc()

This example gets a line of input from the stdin stream. You can also use getc(stdin) instead of
getchar() in the for statement to get a line of input from stdin.

#include <stdio.h>
#define LINE 80

int main(void)

{
char buffer[LINE+1];
int i;
int ch;

printf( "Please enter string\n" );

/* Keep reading until either:
1. the length of LINE is exceeded or
2. the input character is EOF or
3. the input character is a new-line character

*/
for (i =0; (i < LINE) & (( ch = getchar()) != EOF) &&
(ch 1="\n'); ++i )
buffer[i] = ch;
buffer[i] = '\0'; /* a string should always end with '\0' ! =/

printf( "The string is %s\n", buffer );
1

Related Information

* [“fgetc() — Read a Character” on page 98|

+ [“fgetwc() — Read Wide Character from Stream” on page 102

* [“gets() — Read a Line” on page 156|

* |“getwc() — Read Wide Character from Stream” on page 157

Chapter 2. Library Functions 153



| [Locales” on page 524| for more information.

[“eetwchar() — Get Wide Character from stdin” on page 159

* [“putc() — putchar() — Write a Character” on page 239

* [‘ungetc() — Push Character onto Input Stream” on page 420|

[<stdio.h>" on page 15|

getenv() — Search for Environment Variables

Format
#include <stdlib.h>

char *getenv(const char *varname);
Language Level: ANSI
Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|

Description
The getenv() function searches the list of environment variables for an entry corresponding to varname.
Return Value

The getenv() function returns a pointer to the string containing the value for the specified varname in the
current environment. If getenv() cannot find the environment string, NULL is returned, and errno is set
to indicate the error.

Example that uses getenv ()

#include <stdlib.h>
#include <stdio.h>

/* Where the environment variable 'PATH' is set to a value. */

int main(void)

{

char *pathvar;

pathvar = getenv("PATH");
| printf("pathvar=%s",pathvar);
Related Information
+ [“<stdlib.h>” on page 17
+ [“putenv() — Change/Add Environment Variables” on page 240|
* Environment Variable APIs in the topic in the i5/0S Information Center.

_GetExcData() — Get Exception Data

Format
#include <signal.h>
void _GetExcData(_INTRPT_Hndlr_Parms_T *parms);

Language Level: ILE C Extension

154 ILE C/C++ Runtime Library Functions V6R1



| [Locales” on page 524| for more information.

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and]

Description

The _GetExcData() function returns information about the current exception from within a C signal
handler. The caller of the _GetExcData() function must allocate enough storage for a structure of type
_INTRPT_Hndlr_Parms_T. If the _GetExcData() function is called from outside a signal handler, the
storage pointed to by parms is not updated.

This function is not available when SYSIFCOPT(*ASYNCSIGNAL) is specified on the compilation
commands. When SYSIFCOPT(*ASYNCSIGNAL) is specified, a signal handler established with the ILE C
signal() function has no way to access any exception information that might have caused the signal
handler to be invoked. An extended signal handler established with the sigaction () function, however,
does have access to this exception information. The extended signal handler has the following function
prototype:

void func( int signo, siginfo_t *info, void *context )

The exception information is appended to the siginfo_t structure, which is then passed as the second
parameter to the extended signal handler.

The siginfo_t structure is defined in signal.h. The exception-related data follows the si_sigdata field
in the siginfo_tstructure. You can address it from the se_data field of the sigdata_t structure.

The format of the exception data appended to the siginfo_t structure is defined by the
_INTRPT_Hndlr_Parms_T structure in except.h.

Return Value

There is no return value.

Example that uses _GetExcData()

This example shows how exceptions from MI library functions can be monitored and handled using a
signal handling function. The signal handler my_signal_handler is registered before the rslvsp() function

signals a 0x2201 exception. When a SIGSEGV signal is raised, the signal handler is called. If an 0x2201
exception occurred, the signal handler calls the QUSRCRTS API to create a space.

Chapter 2. Library Functions 155



#include <signal.h>

#include <QSYSINC/MIH/RSLVSP>
#include <QSYSINC/H/QUSCRTUS>
#include <string.h>

#define CREATION_SIZE 65500
void my_signal_handler(int sig) {

_INTRPT _Hnd1r_Parms T excp_data;
int error_code = 0;

/* Check the message id for exception 0x2201 */
_GetExcData(&excp_data);

if (!memcmp(excp_data.Msg_Id, "MCH3401", 7))

QUSCRTUS ("MYSPACE ~ QTEMP ",
"MYSPACE ",
CREATION_SIZE,
II\OII,
II*ALL II’
"MYSPACE example for Programmer's Reference
II*YES II’

&error_code);

}

Related Information

* |“signal() — Handle Interrupt Signals” on page 346|

+ [“<except.h>" on page 4|

gets() — Read a Line
Format

#include <stdio.h>

char xgets(char *buffer);
Language Level: ANSI
Threadsafe: Yes.

Description

The gets() function reads a line from the standard input stream stdin and stores it in buffer. The line
consists of all characters up to but not including the first new-line character (\n) or EOF. The gets ()
function then replaces the new-line character, if read, with a null character (\0) before returning the line.

Return Value

If successful, the gets() function returns its argument. A NULL pointer return value indicates an error, or
an end-of-file condition with no characters read. Use the ferror() function or the feof() function to
determine which of these conditions occurred. If there is an error, the value that is stored in buffer is

undefined. If an end-of-file condition occurs, buffer is not changed.

Example that uses gets()

This example gets a line of input from stdin.

156 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#define MAX_LINE 100
int main(void)

char Tine[MAX_LINE];
char *result;

printf("Please enter a string:\n");

if ((result = gets(line)) != NULL)
printf("The string is: %s\n", line);

else if (ferror(stdin))
perror("Error");

Related Information

+ [“fgets() — Read a String” on page 101]

[“fgetws() — Read Wide-Character String from Stream” on page 104
[“feof() — Test End-of-File Indicator” on page 95|
+ [“ferror() — Test for Read/Write Errors” on page 95|

[“fputs() — Write String” on page 121]

[“getc() — getchar() — Read a Character” on page 152|

[‘puts() — Write a String” on page 241|

* |“<stdio.h>" on page 15|

getwc() — Read Wide Character from Stream

Format

#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *stream);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See ["Wide Characters” on page 527| for more information.

Description

The getwc() function reads the next multibyte character from stream, converts it to a wide character, and
advances the associated file position indicator for stream.

The getwc () function is equivalent to the fgetwc() function except that, if it is implemented as a macro, it

can evaluate stream more than once. Therefore, the argument should never be an expression with side
effects.

Chapter 2. Library Functions 157



If the current locale is changed between subsequent read operations on the same stream, undefined
results can occur. Using non-wide-character functions with the getwc() function on the same stream
results in undefined behavior.

After calling the getwc() function, flush the buffer or reposition the stream pointer before calling a write
function for the stream, unless EOF has been reached. After a write operation on the stream, flush the
buffer or reposition the stream pointer before calling the getwc () function.

Return Value

The getwc () function returns the next wide character from the input stream, or WEOF. If an error occurs,
the getwc () function sets the error indicator. If the getwc() function encounters the end-of-file, it sets the
EOF indicator. If an encoding error occurs during conversion of the multibyte character, the getwc ()
function sets errno to EILSEQ.

Use the ferror() or feof() functions to determine whether an error or an EOF condition occurred. EOF
is only reached when an attempt is made to read past the last byte of data. Reading up to and including
the last byte of data does not turn on the EOF indicator.

For information about errno values for getwc(), see [“fgetwc() — Read Wide Character from Stream” on|

Example that uses getwc()

158 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)

}

FILE *Stream;
wint_t wc;

if (NULL == (stream = fopen("getwc.dat", "r"))) {
printf("Unable to open: \'"getwc.dat\"\n");
exit(1);

}

errno = 03
while (WEOF != (wc = getwc(stream)))
printf("wc = %1c\n", wc);

if (EILSEQ == errno) {
printf("An invalid wide character was encountered.\n");
exit(1);

1

fclose(stream);

return 0;

/********************************************************
Assuming the file getwc.dat contains:

Hello world!

The output should be similar to:

wc = H
we = e
we =1
we = 1
=0

wC

********************************************************/

Related Information

[“feetwc() — Read Wide Character from Stream” on page 102|
[“getwchar() — Get Wide Character from stdin”|

[“getc() — getchar() — Read a Character” on page 152|

[‘putwc() — Write Wide Character” on page 242

[‘ungetwc() — Push Wide Character onto Input Stream” on page 422

[<stdio.h>" on page 15|

[“<wcharh>" on page 1§|

getwchar() — Get Wide Character from stdin

Format

#include <wchar.h>
wint_t getwchar(void);

Language Level: ANSI

Threadsafe: Yes.

Chapter 2. Library Functions

159



Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if
LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The getwchar() function reads the next multibyte character from stdin, converts it to a wide character,
and advances the associated file position indicator for stdin. A call to the getwchar() function is
equivalent to a call to getwc(stdin).

If the current locale is changed between subsequent read operations on the same stream, undefined
results can occur. Using non-wide-character functions with the getwchar() function on stdin results in
undefined behavior.

Return Value

The getwchar() function returns the next wide character from stdin or WEOF. If the getwchar() function
encounters EOF, it sets the EOF indicator for the stream and returns WEOF. If a read error occurs, the
error indicator for the stream is set, and the getwchar() function returns WEOF. If an encoding error
occurs during the conversion of the multibyte character to a wide character, the getwchar() function sets
errno to EILSEQ and returns WEOF.

Use the ferror() or feof() functions to determine whether an error or an EOF condition occurred. EOF
is only reached when an attempt is made to read past the last byte of data. Reading up to and including
the last byte of data does not turn on the EOF indicator.

For information about errno values for getwchar(), see [“fgetwc() — Read Wide Character from Stream”]

Example that uses getwchar()

This example uses the getwchar() to read wide characters from the keyboard, then prints the wide
characters.

160 ILE C/C++ Runtime Library Functions V6R1



#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main(void)
wint_t wc;

errno = 0;
while (WEOF != (wc = getwchar()))
printf("wc = %Ic\n", wc);

if (EILSEQ == errno) {
printf("An invalid wide character was encountered.\n");
exit(1);

}

return 0;

/***************************************************************
Assuming you enter: abcde

The output should be:

wC
wC
wC
wC

Related Information

* [“fgetc() — Read a Character” on page 98|

* |“fgetwc() — Read Wide Character from Stream” on page 102

+ |“fgetws() — Read Wide-Character String from Stream” on page 104|

* [“getc() — getchar() — Read a Character” on page 152

[‘getwc() — Read Wide Character from Stream” on page 157

[‘ungetwc() — Push Wide Character onto Input Stream” on page 422|

* [“<wcharh>" on page 18|

gmtime() — Convert Time
Format

#include <time.h>

struct tm *gmtime(const time_t *time);
Language Level: ANSI

Threadsafe: No. Use gmtime_r() instead.

Description

The gmtime() function breaks down the time value, in seconds, and stores it in a tm structure, defined in
<time.h>. The value time is usually obtained by a call to the time() function.

The fields of the tm structure include:

tm_sec
Seconds (0-61)

Chapter 2. Library Functions 161



tm_min

Minutes (0-59)
tm_hour

Hours (0-23)
tm_mday

Day of month (1-31)

tm_mon

Month (0-11; January = 0)
tm_year

Year (current year minus 1900)
tm_wday

Day of week (0-6; Sunday = 0)
tm_yday

Day of year (0-365; January 1 = 0)

tm_isdst
Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if
the information is not available.

Return Value

The gmtime() function returns a pointer to the resulting tm structure.

Notes:
1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime() and lTocaltime() functions can use a common, statically allocated buffer for the
conversion. Each call to one of these functions might alter the result of the previous call.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example that uses gmtime ()

This example uses the gmtime() function to adjust a time_t representation to a Coordinated Universal
Time character string, and then converts it to a printable string using the asctime() function.

#include <stdio.h>
#include <time.h>

int main(void)
{
time_t Ttime;
time(&1time);

printf ("Coordinated Universal Time is %s\n",
asctime(gmtime(&1time)));
1

T e Y Qutput should be similar to: F**xkxkkxkx

Coordinated Universal Time is Wed Aug 18 21:01:44 1993
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

162 ILE C/C++ Runtime Library Functions V6R1



[“ctime() — Convert Time to Character String” on page 71|

[“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[emtime64() — Convert Time”]

[‘emtime64_r() — Convert Time (Restartable)” on page 167

* [“gmtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 188

[“mktime() — Convert Local Time” on page 218§|

[‘mktime64() — Convert Local Time” on page 220|

[“setlocale() — Set Locale” on page 339

[“time() — Determine Current Time” on page 411

* |“time64() — Determine Current Time” on page 412

+ [“<time.h>" on page 18§|

gmtime64() — Convert Time

Format

#include <time.h>
struct tm *gmtime64(const tim64_t *time);

Language Level: ILE C Extension
Threadsafe: No. Use gmtime64 r() instead.
Description

The gmtime64 () function breaks down the time value, in seconds, and stores it in a tm structure, defined
in <time.h>. The value time is usually obtained by a call to the time64() function.
The fields of the tm structure include:

tm_sec
Seconds (0-61)

tm_min
Minutes (0-59)

tm_hour
Hours (0-23)

tm_mday
Day of month (1-31)

tm_mon
Month (0-11; January = 0)

tm_year
Year (current year minus 1900)

tm_wday
Day of week (0-6; Sunday = 0)

Chapter 2. Library Functions 163



tm_yday
Day of year (0-365; January 1 = 0)

tm_isdst
Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if
the information is not available.

Return Value

The gmtime64 () function returns a pointer to the resulting tm structure.

Notes:
1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime64() and localtime64() functions can use a common, statically allocated buffer for the
conversion. Each call to one of these functions might alter the result of the previous call. The
asctime_r(), ctime64_r(), gmtime64 r(), and lTocaltime64 r() functions do not use a common
statically allocated buffer to hold the return string. These functions can be used in place of the
asctime(), ctime64(), gmtime64(), and Tocaltime64() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example that uses gmtime64 ()

This example uses the gmtime64() function to adjust a time64_t representation to a Universal Coordinate
Time character string and then converts it to a printable string using the asctime() function.

#include <stdio.h>
#include <time.h>

int main(void)
{
time6d_t 1time;
time64 (&1time);

printf ("Universal Coordinate Time is %s",
asctime(gmtime64 (&1time)));
1

[ FF K dkk ok kkk ko kk ko kk ko k kK Output should be similar to: **x**xx*x*x%

Universal Coordinate Time is Wed Aug 18 21:01:44 1993
*/

Related Information

* [“asctime() — Convert Time to Character String” on page 39|

* [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

+ |“ctime() — Convert Time to Character String” on page 71|

[“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

* |“gmtime() — Convert Time” on page 161

[‘emtime_r() — Convert Time (Restartable)” on page 165

[‘emtime64_r() — Convert Time (Restartable)” on page 167

[localtime() — Convert Time” on page 185|

[localtime64() — Convert Time” on page 187]

[“localtime64_r() — Convert Time (Restartable)” on page 189

164 ILE C/C++ Runtime Library Functions V6R1



[“localtime_r() — Convert Time (Restartable)” on page 188§|

[‘mktime() — Convert Local Time” on page 218§|

[“mktime64() — Convert Local Time” on page 220|

[“setlocale() — Set Locale” on page 339

[“time() — Determine Current Time” on page 411|

[“time64() — Determine Current Time” on page 412|

* [“<time.h>" on page 18§|

gmtime_r() — Convert Time (Restartable)

Format

#include <time.h>
struct tm *gmtime_r(const time_t *time, struct tm *result);

Language Level: XPG4

Threadsafe: Yes,

Description

This function is the restartable version of gmtime().

The gmtime_r() function breaks down the time value, in seconds, and stores it in result. result is a pointer
to the tmstructure, defined in <time.h>. The value time is usually obtained by a call to the time()
function.

The fields of the tm structure include:

tm_sec
Seconds (0-61)

tm_min
Minutes (0-59)

tm_hour
Hours (0-23)

tm_mday
Day of month (1-31)

tm_mon
Month (0-11; January = 0)

tm_year
Year (current year minus 1900)

tm_wday
Day of week (0-6; Sunday = 0)

tm_yday
Day of year (0-365; January 1 = 0)

tm_isdst
Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if
the information is not available.

Return Value

The gmtime_r() function returns a pointer to the resulting tm structure.

Chapter 2. Library Functions 165



Notes:
1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime() and Tocaltime() functions can use a common, statically allocated buffer for the
conversion. Each call to one of these functions might alter the result of the previous call. The
asctime_r(), ctime_r(), gmtime_r(), and Tocaltime_r() functions do not use a common, statically
allocated buffer to hold the return string. These functions can be used in place of the asctime(),
ctime(), gmtime(), and localtime() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example that uses gmtime_r()

This example uses the gmtime_r() function to adjust a time_t representation to a Coordinated Universal
Time character string, and then converts it to a printable string using the asctime_r() function.

#include <stdio.h>
#include <time.h>

int main(void)

{
time_t Ttime;
struct tm mytime;
char buf[50];

time(&1time)
printf ("Coordinated Universal Time is %s\n",
asctime_r(gmtime_r(&1time, &mytime), buf));
1

[ Fk K dkk ok dkkk ok kk ok k ok ko k kK Output should be similar to: **x*xx*xx*x%x

Coordinated Universal Time is Wed Aug 18 21:01:44 1993
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

s [“ctime() — Convert Time to Character String” on page 71|

* |“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[‘emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163]

[‘emtime64_r() — Convert Time (Restartable)” on page 167|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)” on page 18|

[“mktime() — Convert Local Time” on page 218§|

[‘mktime64() — Convert Local Time” on page 220|

[“time() — Determine Current Time” on page 411|

[time64() — Determine Current Time” on page 412

* |“<time.h>" on page 18§|

166 ILE C/C++ Runtime Library Functions V6R1



gmtime64_r() — Convert Time (Restartable)

Format

#include <time.h>
struct tm *gmtime64_r(const time64_t *time, struct tm *result);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

This function is the restartable version of gmtime64 ().

The gmtime64 r() function breaks down the time value, in seconds, and stores it in result. result is a
pointer to the tm structure, defined in <time.h>. The value time is usually obtained by a call to the
time64() function.

The fields of the tm structure include:

tm_sec
Seconds (0-61)

tm_min
Minutes (0-59)
tm_hour

Hours (0-23)

tm_mday
Day of month (1-31)

tm_mon
Month (0-11; January = 0)

tm_year
Year (current year minus 1900)

tm_wday

Day of week (0-6; Sunday = 0)
tm_yday

Day of year (0-365; January 1 = 0)

tm_isdst
Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if
the information is not available.

Return Value

The gmtime64_r() function returns a pointer to the resulting tm structure.

Notes:
1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime64() and Tocaltime64() functions might use a common, statically allocated buffer for the
conversion. Each call to one of these functions might alter the result of the previous call. The
asctime_r(), ctime64_r(), gmtime64 r(), and Tocaltime64 r() functions do not use a common,
statically allocated buffer to hold the return string. These functions can be used in place of the
asctime(), ctime64(), gmtime64(), and localtime64() functions if reentrancy is desired.

Chapter 2. Library Functions 167



3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Example that uses gmtime64 _r()

This example uses the gmtime64_r() function to adjust a time64_t representation to a Universal
Coordinate Time character string and then converts it to a printable string using the asctime_r()
function.

#include <stdio.h>
#include <time.h>

int main(void)

{
time64_t 1time;
struct tm mytime;
char buf[50];

time64 (&1time)
printf ("Universal Coordinate Time is %s",
asctime_r(gmtime64 r(&Itime, &mytime), buf));
}

R e T Qutput should be similar to: F*xkx*kk*xkx

Universal Coordinate Time is Wed Aug 18 21:01:44 1993
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* |“ctime() — Convert Time to Character String” on page 71|

[“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[“emtime() — Convert Time” on page 161|

[‘emtime64() — Convert Time” on page 163)|

[‘emtime_r() — Convert Time (Restartable)” on page 165|

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[“localtime64_r() — Convert Time (Restartable)” on page 189

[localtime_r() — Convert Time (Restartable)” on page 188|

[“mktime() — Convert Local Time” on page 218|

[“mktime64() — Convert Local Time” on page 220|

[“time() — Determine Current Time” on page 411|

[“time64() — Determine Current Time” on page 412|

+ |“<time.h>" on page 18§|

hypot() — Calculate Hypotenuse

Format

168 ILE C/C++ Runtime Library Functions V6R1



#include <math.h>
double hypot(double sidel, double side2);

Language Level: ILE C Extension
Threadsafe: Yes.

Description

The hypot () function calculates the length of the hypotenuse of a right-angled triangle based on the

lengths of two sides sidel and side2. A call to the hypot() function is equivalent to:

sqrt(sidel * sidel + side2 * side2);

Return Value

The hypot () function returns the length of the hypotenuse. If an overflow results, hypot () sets errno to
ERANGE and returns the value HUGE_VAL. If an underflow results, hypot () sets errno to ERANGE and

returns zero. The value of errno can also be set to EDOM.

Example that uses hypot ()

This example calculates the hypotenuse of a right-angled triangle with sides of 3.0 and 4.0.

#include <math.h>
int main(void)

double x, y, z;

x = 3.0;
y = 4.0;
z = hypot(x,y);

printf("The hypotenuse of the triangle with sides %1f and %1f"
"is %1f\n", X, y, 2);

}

[ *Fk KR kk Rk kkkkk ok k kK Qutput should be similar to: ***xkxkkkkxkkk

The hypotenuse of the triangle with sides 3.000000 and 4.000000 is 5.000000
*/

Related Information

+ [“sqrt() — Calculate Square Root” on page 353

* [“<math.h>" on page §|

isalnum() - isxdigit() — Test Integer Value

Format

#include <ctype.h>

int isalnum(int c);

/* Test for upper- or lowercase letters, or decimal digit */
int isalpha(int c);

/* Test for alphabetic character */

int iscntrl(int c);

/* Test for any control character =/

int isdigit(int c);

/* Test for decimal digit =/

int isgraph(int c);

/* Test for printable character excluding space */

Chapter 2. Library Functions

169



int islower(int c);

/* Test for lowercase */

int isprint(int c);

/* Test for printable character including space */
int ispunct(int c);

/* Test for any nonalphanumeric printable character */
/* excluding space */

int isspace(int c);

/* Test for whitespace character */

int isupper(int c);

/* Test for uppercase */

int isxdigit(int c);

/* Test for hexadecimal digit */

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the
current locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description
The <ctype.h> functions listed test a character with an integer value.
Return Value

These functions return a nonzero value if the integer satisfies the test condition, or a zero value if it does
not. The integer variable ¢ must be representable as an unsigned char.

Note: EOF is a valid input value.

Example that uses <ctype.h> functions

This example analyzes all characters between code 0x0 and code UPPER_LIMIT, printing A for alphabetic
characters, AN for alphanumerics, U for uppercase, L for lowercase, D for digits, X for hexadecimal
digits, S for spaces, PU for punctuation, PR for printable characters, G for graphics characters, and C for

control characters. This example prints the code if printable.

The output of this example is a 256-line table showing the characters from 0 to 255 that possess the
attributes tested.

170 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <ctype.h>

#define UPPER_LIMIT  OxFF
int main(void)
int ch;

for ( ch = 0; ch <= UPPER_LIMIT; ++ch )

{
printf("%3d ", ch);
printf("%#04x ", ch);
printf("%3s ", isalnum(ch) ? "AN" : " ");
printf("%2s ", isalpha(ch) ? "A" : " ");
printf("%2s", iscntrl(ch) 2?2 "C" : " ");
printf("%2s", isdigit(ch) ? "D" : " ");
printf("%2s", isgraph(ch) ? "G" : " ");
printf("%2s", islower(ch) ? "L" : " ");
printf(" %c", idisprint(ch) 2?2 ch : ' ');
printf("%3s", ispunct(ch) ? "PU" : " ");
printf("%2s", isspace(ch) ? "S" : " ");
printf("%3s", isprint(ch) ? "PR" : " ");
printf("%2s", isupper(ch) ? "U" : " ");
printf("%2s", isxdigit(ch) ? "X" = " ");
putchar('\n');

}

}

Related Information

+ [“tolower() — toupper() — Convert Character Case” on page 416|
» |“isblank() — Test for Blank or Tab Character” on page 172|
+ [“<ctype.h>" on page 3|

isascii() — Test for Character Representable as ASCII Value

Format
#include <ctype.h>

int isascii(int c);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The isascii() function tests if a given character, in the current locale, can be represented as a valid 7-bit
US-ASCII character.

Return Value

The isascii() function returns nonzero if ¢, in the current locale, can be represented as a character in the
7-bit US-ASCII character set. Otherwise, it returns 0.

Example that uses isascii()

Chapter 2. Library Functions 171



This example tests the integers from 0x7c to 0x82, and prints the corresponding character if the integer
can be represented as a character in the 7-bit US-ASCII character set.

#include <stdio.h>
#include <ctype.h>

int main(void)
{

int ch;

for (ch = 0x7c; ch <= 0x82; ch++) {
printf("%#04x ", ch);
if (isascii(ch))
printf("The character is %c\n", ch);
else
printf("Cannot be represented by an ASCII character\n");
1

return 0;

/************************************************

The output should be:

0x7c¢ The character is @
0x7d The character is
0x7e The character is =
0x7f The character is
0x80 Cannot be represented by an ASCII character
0x81 The character is a

0x82 The character is b

************************************************/

Related Information

* [“isalnum() - isxdigit() — Test Integer Value” on page 169
g g pag

* [“iswalnum() to iswxdigit() — Test Wide Integer Value” on page 173|

* [“toascii() — Convert Character to Character Representable by ASCII” on page 415

[“tolower() — toupper() — Convert Character Case” on page 416|

[“towlower() —towupper() — Convert Wide Character Case” on page 418

+ [“<ctype.h>" on page 3|

isblank() — Test for Blank or Tab Character

Format

#include <ctype.h>

int isblank(int c);

Note: The isblank() function is supported only for C++, not for C.
Language Level: Extended

Threadsafe: Yes.

Description

The isblank() function tests if a character is either the EBCDIC space or EBCDIC tab character.

Return Value

172 ILE C/C++ Runtime Library Functions V6R1



The isblank() function returns nonzero if c is either the EBCDIC space character or the EBCDIC tab

character, otherwise it returns 0.
Example that uses isblank()

This example tests several characters using isblank().

#include <stdio.h>
#include <ctype.h>

int main(void)

char *buf = "a b\tc";
int i;

for (i = 0; i <5; i++) {
if (isblank(buf[i]))
printf("Character %d is not a blank.\n", 1i);
else
printf("Character %d is a blank\n", i);
}
return 0;

}

/*************************************

The output should be

Character 0 is not a blank.

Character 1 is a blank.

Character 2 is not a blank.

Character 3 is a blank.

Character 4 is not a blank.

)k kkkkkkkkk k% XX AKX Kk khkkkk **********/

Related Information

+ [“isalnum() - isxdigit() — Test Integer Value” on page 169

* [“iswalnum() to iswxdigit() — Test Wide Integer Value’]

» [“isascii() — Test for Character Representable as ASCII Value” on page 171]

[“tolower() — toupper() — Convert Character Case” on page 416

[“towlower() —towupper() — Convert Wide Character Case” on page 418

+ [“<ctype.h>" on page 3|

iswalnum() to iswxdigit() — Test Wide Integer Value

Format

#include <wctype.h>

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswentrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);

Language Level: ANSI

Chapter 2. Library Functions

173



Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the
current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of
these functions might be affected by the LC_UNI_CTYPE category of the current locale if either the
LOCALETYPE(*LOCALEUCS2) option or the LOCALETYPE(*LOCALEUTF) option is specified on the
compilation command. These functions are not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see [‘Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description
The functions listed above, which are all declared in <wctype.h>, test a given wide integer value.

The value of wc must be a wide-character code corresponding to a valid character in the current locale, or
must equal the value of the macro WEOEF. If the argument has any other value, the behavior is undefined.

Here are descriptions of each function in this group.

iswalnum()
Test for a wide alphanumeric character.

iswalpha()
Test for a wide alphabetic character, as defined in the alpha class of the current locale.

iswentrl()
Test for a wide control character, as defined in the cntrl class of the current locale.

iswdigit()
Test for a wide decimal-digit character: 0 through 9, as defined in the digit class of the current
locale.

iswgraph()
Test for a wide printing character, not a space, as defined in the graph class of the current locale.
iswlower()
Test for a wide lowercase character, as defined in the lower class of the current locale or for
which none of the iswentr1 (), iswdigit(), iswspace() functions are true.
iswprint()
Test for any wide printing character, as defined in the print class of the current locale.
iswpunct()

Test for a wide nonalphanumeric, nonspace character, as defined in the punct class of the current
locale.

iswspace()
Test for a wide whitespace character, as defined in the space class of the current locale.

iswupper()
Test for a wide uppercase character, as defined in the upper class of the current locale.

iswxdigit()
Test for a wide hexadecimal digit 0 through 9, a through f, or A through F as defined in the
xdigit class of the current locale.

Returned Value

These functions return a nonzero value if the wide integer satisfies the test value, or a 0 value if it does
not. The value for wc must be representable as a wide unsigned char. WEOF is a valid input value.

174 ILE C/C++ Runtime Library Functions V6R1



Example

#include <stdio.h>
#include <wctype.h>

int main(void)
int wc;
for (wc=0; wc <= OxFF; wc++) {

printf("%3d", wc);
printf(" %#4x ", wc);

printf("%3s", iswalnum(wc) ? "AN" : " ");
printf("%2s", iswalpha(wc) ? "A" : " ");
printf("%2s", iswcntrl(wc) 2?2 "C" : " ");
printf("%2s", iswdigit(wc) ? "D" : " ");
printf("%2s", iswgraph(wc) ? "G" : " ");
printf("%2s", iswlower(wc) ? "L" : " ");
printf(" %c", iswprint(wc) 2?2 wc : ' ');
printf("%3s", iswpunct(wc) ? "PU" : " ");
printf("%2s", iswspace(wc) ? "S" : " ");
printf("%3s", iswprint(wc) ? "PR" : " ");
printf("%2s", iswupper(wc) 2?2 "U" : " ");
printf("%2s", iswxdigit(wc) ? "X" = " ");

putchar('\n');
}
1

Related Information

+ [“<wctype.h>" on page 19|

iswctype() — Test for Character Property

Format

#include <wctype.h>
int iswctype(wint_t wc, wctype t wc_prop);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this
function might be affected by the LC_UNI_CTYPE category of the current locale if either the
LOCALETYPE(*LOCALEUCS2) option or the LOCALETYPE(*LOCALEUTF) option is specified on the
compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the
compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The iswctype() function determines whether the wide character wc has the property wc_prop. If the value
of wc is neither WEOF nor any value of the wide characters that corresponds to a multibyte character, the
behavior is undefined. If the value of wc_prop is incorrect (that is, it is not obtained by a previous call to
the wctype() function, or wc_prop has been invalidated by a subsequent call to the setlocale() function),
the behavior is undefined.

Return Value

Chapter 2. Library Functions 175



The iswctype() function returns true if the value of the wide character wc has the property wc_prop.

The following strings, alnum through to xdigit are reserved for the standard character classes. The
functions are shown as follows with their equivalent isw*() function:

iswctype(wc, wctype("alnum")); /* is equivalent to x/ iswalnum(wc);
iswctype(wc, wctype("alpha")); /* is equivalent to */ iswalpha(wc);
iswctype(wc, wctype("cntrl")); /* is equivalent to =/ iswentrl (we);
iswctype(wc, wctype("digit")); /* is equivalent to */ iswdigit(wc);
iswctype(wc, wctype("graph")); /* is equivalent to =/ iswgraph(wc);
iswctype(wc, wctype("Tower")); /* is equivalent to */ iswlower(wc);
iswctype(wc, wctype("print")); /* is equivalent to */ iswprint(wc);
iswctype(wc, wctype("punct")); /* is equivalent to x/ iswpunct(wc);
iswctype(wc,wctype("space")); /* is equivalent to */ iswspace(wc);
iswctype(wc, wctype("upper")); /* is equivalent to */ iswupper(wc);
iswctype(wc, wctype("xdigit")); /* is equivalent to */ iswxdigit(wc);
Example that uses iswctype()
#include <stdio.h>
#include <wctype.h>
int main(void)
{
int wc;
for (wc=0; wc <= OxFF; wc++) {
printf("%3d", wc);
printf(" %#4x ", wc);
printf("%3s", iswctype(wc, wctype("alnum")) 2 "AN" : " ");
printf("%2s", iswctype(wc, wctype("alpha")) ? "A" "y,
printf("%2s", iswctype(wc, wctype("cntri®)) ? "C" "y,
printf("%2s", iswctype(wc, wctype("digit")) ? "D" "y,
printf("%2s", iswctype(wc, wctype("graph")) ? "G" oy,
printf("%2s", iswctype(wc, wctype("lower")) 2 "L" "),
printf(" %c", iswctype(wc, wctype("print")) 2 wc : ' ');
printf("%3s", iswctype(wc, wctype("punct")) 2 "PU" : " ");
printf("%2s", iswctype(wc, wctype("space")) ? "S" " ");
printf("%3s", iswctype(wc, wctype("print")) ? "PR" : " ");
printf("%2s", iswctype(wc, wctype("upper")) ? "U" "),
printf("%2s", iswctype(wc, wctype("xdigit")) ? "X" oy,
putchar('\n');
1
}

Related Information

* “wctype() — Get Handle for Character Property Classification” on page 495|

+ [“iswalnum() to iswxdigit() — Test Wide Integer Value” on page 173|

* [“<wctype.h>” on page 19|

_itoa - Convert Integer to String

Format

#include <stdlib.h>

char *_itoa(int value, char *string, int radix);

Note: The _itoa function is supported only for C++, not for C.

Language Level: Extension

Threadsafe: Yes.

176

ILE C/C++ Runtime Library Functions V6R1



Description

_itoa() converts the digits of the given value to a character string that ends with a null character and
stores the result in string. The radix argument specifies the base of value; it must be in the range 2 to 36. If
radix equals 10 and value is negative, the first character of the stored string is the minus sign (-).

Note: The space reserved for string must be large enough to hold the returned string. The function can
return up to 33 bytes including the null character (\0).

Return Value

_itoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.
Example that uses _itoa()

This example converts the integer value -255 to a decimal, a binary, and a hex number, storing its
character representation in the array buffer.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{
char buffer[35];
char *p;
p = _itoa(-255, buffer, 10);
printf("The result of _itoa(-255) with radix of 10 is %s\n", p);
p = itoa(-255, buffer, 2);
printf("The result of _itoa(-255) with radix of 2\n is %s\n", p);
p = _itoa(-255, buffer, 16);
printf("The result of _itoa(-255) with radix of 16 is %s\n", p);
return 0;

}

The output should be:

The result of _itoa(-255) with radix of 10 is -255
The result of _itoa(-255) with radix of 2

is 11111111111111111111111100000001
The result of _itoa(-255) with radix of 16 is ffffffol

Related Information:

+ [“_gcvt - Convert Floating-Point to String” on page 151

“_itoa - Convert Integer to String” on page 176|

s

_ltoa - Convert Long Integer to String” on page 192|

o |

_ultoa - Convert Unsigned Long Integer to String” on page 419
“<stdlib.h>" on page 17

labs() — llabs() — Calculate Absolute Value of Long and Long Long
Integer

Format (1abs())

#include <stdlib.h>
Tong int labs(long int n);

Format (11abs())

#include <stdlib.h>
Tong Tong int 1labs(long long int i);

Chapter 2. Library Functions 177



Language Level: ANSI

Threadsafe: Yes.

Description

The 1abs () function produces the absolute value of its long integer argument 7. The result might be
undefined when the argument is equal to LONG_MIN, the smallest available long integer. The value
LONG_MIN is defined in the <limits.h> include file.

The 11abs() function returns the absolute value of its long long integer operand.The result might be
undefined when the argument is equal to LONG_LONG_MIN, the smallest available long integer. The
value LONG_LONG_MIN is defined in the <limits.h> include file.

Return Value

The Tabs () function returns the absolute value of n. There is no error return value.

The T1abs() function returns the absolute value of i. There is no error return value.

Example that uses labs()

This example computes y as the absolute value of the long integer -41567.

#include <stdlib.h>
#include <stdio.h>

int main(void)

{

long x, y;
x = -41567L;
y = Tabs(x);

printf("The absolute value of %1d is %1d\n", X, y);

[ Fk Kk kkk ok kk ok kkkkkkok Output should be similar to: ****xkxkxkkxkr*

The absolute value of -41567 is 41567
*/

Related Information

+ |“abs() — Calculate Integer Absolute Value” on page 37|

» [“fabs() — Calculate Floating-Point Absolute Value” on page 90|

* [“<limits.h>" on page 7|

Idexp() — Multiply by a Power of Two
Format

#include <math.h>

double Tdexp(double x, int exp);

Language Level: ANSI

Threadsafe: Yes.

Description

178 ILE C/C++ Runtime Library Functions V6R1



The Tdexp() function calculates the value of x * (2°F).
Return Value

The 1dexp() function returns the value of x*(2°%). If an overflow results, the function returns
+HUGE_VAL for a large result or -HUGE_VAL for a small result, and sets errno to ERANGE.

Example that uses 1dexp()
This example computes y as 1.5 times 2 to the fifth power (1.5*2%):

#include <math.h>
#include <stdio.h>

int main(void)

double x, y;

int p;

x = 1.5;

p = 5;

y = ldexp(x,p);

printf("%1f times 2 to the power of %d is %1f\n", x, p, y);
}

[ *F kR kk ok k kg kk ok k kK Qutput should be similar to: **x*xkxkkkkxkrk

1.500000 times 2 to the power of 5 is 48.000000
*/

Related Information

+ |“exp() — Calculate Exponential Function” on page 89|

* |“frexp() — Separate Floating-Point Value” on page 132

* [“modf() — Separate Floating-Point Value” on page 222

+ [“<math.h>" on page §|

Idiv() — lldiv() — Perform Long and Long Long Division

Format (1div())

#include <stdlib.h>
1div_t 1div(Tong int numerator, long int denominator);

Format (11div())

#include <stdlib.h>
11div_t 11div(Tong Tong int numerator, long long int denominator);

Language Level: ANSI

Threadsafe: Yes. However, only the function version is threadsafe. The macro version is NOT threadsafe.

Description

The 1div() function calculates the quotient and remainder of the division of numerator by denominator.

Return Value

Chapter 2. Library Functions



The 1div() function returns a structure of type ldiv_t, containing both the quotient (long int quot) and
the remainder (long int rem). If the value cannot be represented, the return value is undefined. If
denominator is 0, an exception is raised.

The 11div() subroutine computes the quotient and remainder of the numerator parameter by the
denominator parameter.

The 11div() subroutine returns a structure of type lldiv_t, containing both the quotient and the
remainder. The structure is defined as:

struct 11div_t

{
Tong long int quot; /* quotient */
long Tong int rem; /* remainder */

If the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and
magnitude of the resulting quotient is the largest long long integer less than the magnitude of the
algebraic quotient. If the result cannot be represented (for example, if the denominator is 0), the behavior is
undefined.

Example that uses 1div()

This example uses 1div() to calculate the quotients and remainders for a set of two dividends and two
divisors.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
long int num[2] = {45,-45};
long int den[2] = {7,-7};
1div_t ans;  /* 1div_t is a struct type containing two long ints:
'quot' stores quotient; 'rem' stores remainder */
short i,j;

printf("Results of long division:\n");
for (1 = 03 i < 2; i++)

for (j = 05 j <25 j++)

{

ans = 1div(num[i], den[j]);
printf("Dividend: %61d Divisor: %61d", num[i], den[j]);
printf(" Quotient: %61d Remainder: %61d\n", ans.quot, ans.rem);
}
}

[ xF Kk Rk gk ko kk ok k kK Expected output; E L T T

Results of long division:

Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3
Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3
Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3
Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3
*

/

Related Information

* |“div() — Calculate Quotient and Remainder” on page 86|
* |“<stdlib.h>” on page 17

180 ILE C/C++ Runtime Library Functions V6R1



localeconv() — Retrieve Information from the Environment

Format

#include <locale.h>

struct Tconv *localeconv(void);
Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_NUMERIC and

LC_MONETARY categories of the current locale. For more information, see [“Understanding CCSIDs and|

[Locales” on page 524

Description

The Tocaleconv() sets the components of a structure having type struct Iconv to values appropriate for
the current locale. The structure might be overwritten by another call to Tocaleconv (), or by calling the

setlocale() function.

The structure contains the following elements (defaults shown are for the C locale):

Element Purpose of Element Default

"o

char *decimal_point Decimal-point character used to format
non-monetary quantities.

"

char *thousands_sep Character used to separate groups of digits to the
left of the decimal-point character in formatted
non-monetary quantities.

"

char *grouping String indicating the size of each group of digits in
formatted non-monetary quantities. Each character
in the string specifies the number of digits in a
group. The initial character represents the size of
the group immediately to the left of the decimal
delimiter. The characters following this define
succeeding groups to the left of the previous
group. If the last character is not UCHAR_MAX,
the grouping is repeated using the last character as
the size. If the last character is UCHAR_MAX,
grouping is only performed for the groups already
in the string (no repetition). See
for an example of how grouping works.

"

char *int_curr_symbol International currency symbol for the current
locale. The first three characters contain the
alphabetic international currency symbol. The
fourth character (usually a space) is the character
used to separate the international currency symbol
from the monetary quantity.

char *currency_symbol Local currency symbol of the current locale. "

char *mon_decimal_point Decimal-point character used to format monetary |""
quantities.

char *mon_thousands_sep Separator for digits in formatted monetary "
quantities.

Chapter 2. Library Functions

181



Element

Purpose of Element

Default

char *mon_grouping

String indicating the size of each group of digits in
formatted monetary quantities. Each character in
the string specifies the number of digits in a
group. The initial character represents the size of
the group immediately to the left of the decimal
delimiter. The following characters define
succeeding groups to the left of the previous
group. If the last character is not UCHAR_MAX,
the grouping is repeated using the last character as
the size. If the last character is UCHAR_MAX,
grouping is only performed for the groups already
in the string (no repetition). See
for an example of how grouping works.

"

char *positive_sign

String indicating the positive sign used in
monetary quantities.

"

char *negative_sign

String indicating the negative sign used in
monetary quantities.

"

char int_frac_digits

The number of displayed digits to the right of the
decimal place for internationally formatted
monetary quantities.

UCHAR_MAX

char frac_digits

Number of digits to the right of the decimal place
in monetary quantities.

UCHAR_MAX

char p_cs_precedes

1 if the currency_symbol precedes the value for a
nonnegative formatted monetary quantity; 0 if it
does not.

UCHAR_MAX

char p_sep_by_space

1 if the currency_symbol is separated by a space
from the value of a nonnegative formatted
monetary quantity; 0 if it does not.

UCHAR_MAX

char n_cs_precedes

1 if the currency_symbol precedes the value for a
negative formatted monetary quantity; O if it does
not.

UCHAR_MAX

char n_sep_by_space

1 if the currency_symbol is separated by a space
from the value of a negative formatted monetary
quantity; 0 if it does not.

UCHAR_MAX

char p_sign_posn

Value indicating the position of the positive_sign
for a nonnegative formatted monetary quantity.

UCHAR_MAX

char n_sign_posn

Value indicating the position of the negative_sign
for a negative formatted monetary quantity.

UCHAR_MAX

Pointers to strings with a value of " indicate that the value is not available in the C locale or is of zero
length. Elements with char types with a value of UCHAR_MAX indicate that the value is not available in

the current locale.

The n_sign_posn and p_sign_posn elements can have the following values:

Value Meaning

0 The quantity and currency_symbol are enclosed in parentheses.
1 The sign precedes the quantity and currency_symbol.

2 The sign follows the quantity and currency_symbol.

3 The sign precedes the currency_symbol.

182 ILE C/C++ Runtime Library Functions V6R1




4 The sign follows the currency_symbol.

Grouping Example

Table 1. Grouping Example

Locale Source Grouping String Number Formatted Number
-1 0x00 123456789 123456789

3 0x0300 123456789 123,456,789

3,-1 0x03FF00 123456789 123456,789

32,1 0x03020100 123456789 1,2,3,4,56,789

Monetary Formatting Example:

Table 2. Monetary Formatting Example

Country Positive Format Negative Format International Format
Italy L.1.230 -L.1.230 ITL.1.230
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56- NOK1.234,56
Switzerland SFRs.1,234.56 SFrx.1,234.56C CHF 1,234.56

The above table was generated by locales with the following monetary fields:

Table 3. Monetary Fields

Italy

Netherlands

Norway

Switzerland

int_curr_symbol

"ITL. "

NNLGH

HNOKH

HCHFH

currency_symbol

HL "

HFH

rlkr "

"SFrs.”

mon_decimal_point

nn

"o
7

"on
7

"o

mon_thousands_sep

"on

"on

"on

"on
7

mon_grouping

17\377

N\3H

H\3H

H\3H

positive_sign

nn

"

nn

nn

negative_sign

"on

"_n

"o

HC ”

int_frac_digits

frac_digits

p_cs_precedes

p_sep_by_space

n_cs_preceds

n_sep_by_space

p_sep_posn

n_sign_posn

R, | O, |O|R,|O|O

B = =R === NN

N =R ||~ |DN|DN

N, |, |O|RL|IDN|DN

Return Value

The Tocaleconv() function returns a pointer to the structure.

Example that uses *CLD locale objects

Chapter 2. Library Functions

183



This example prints out the default decimal point for your locale and then the decimal point for the
LC_C_FRANCE locale.

#include <stdio.h>
#include <locale.h>

int main(void) {
char * string;
struct Tconv * mylocale;
mylocale = Tocaleconv();
/% Display default decimal point =/

printf("Default decimal point is a %s\n", mylocale->decimal_point);

if (NULL != (string = setlocale(LC_ALL, LC_C_FRANCE))) {
mylocale = localeconv();

/* A comma is set to be the decimal point when the locale is LC_C_FRANCEx/
printf("France's decimal point is a %s\n", mylocale->decimal_point);

} else {
printf("setlocale(LC_ALL, LC_C_FRANCE) returned <NULL>\n");

return 0;

}

Example that uses *LOCALE objects

184 ILE C/C++ Runtime Library Functions V6R1



/************************************************************************
This example prints out the default decimal point for

the C Tocale and then the decimal point for the French

locale using a *LOCALE object called
"QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE".

Step 1: Create a French *LOCALE object by entering the command
CRTLOCALE LOCALE('QSYS.LIB/MYLIB.LIB/LC_ FRANCE.LOCALE') +
SRCFILE('QSYS.LIB/QSYSLOCALE.LIB/QLOCALESRC.FILE/ +
FR_FR.MBR') CCSID(297) *
Step 2: Compile the following C source, specifying
LOCALETYPE (*LOCALE) on the compilation command.
Step 3: Run the program.

************************************************************************/

#include <stdio.h>
#include <locale.h>
int main(void) {
char * string;
struct Tconv * mylocale;
mylocale = localeconv();

/* Display default decimal point =/
printf("Default decimal point is a %s\n", mylocale->decimal_ point);
if (NULL != (string = setlocale(LC_ALL,
"QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE"))) {
mylocale = Tocaleconv();

/* A comma is set to be the decimal point in the French locale */
printf("France's decimal point is a %s\n", mylocale->decimal_point);
} else {
printf("setlocale(LC_ALL, \"QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE\") \
returned <NULL>\n");
}
return 0;

}

Related Information

+ |“setlocale() — Set Locale” on page 339

+ [“<locale.h>" on page 7|

localtime() — Convert Time

Format

#include <time.h>

struct tm *localtime(const time_t *timeval);
Language Level: ANSI

Threadsafe: No. Use localtime_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale.

Description
The Tocaltime() function converts a time value, in seconds, to a structure of type tm.
The Tocaltime() function takes a timeval assumed to be Universal Coordinate Time (UTC) and converts it

to job locale time. For this conversion localtime() checks the current locale setting for local time zone
and daylight saving time (DST). If these values are not set in the current locale, Tocaltime() gets the local

Chapter 2. Library Functions 185



time zone and daylight saving time (DST) settings from the current job. Once converted, the time is
returned in a structure of type tm. If the DST is set in the locale but the time zone information is not, the
DST information in the locale is ignored.

The time value is usually obtained by a call to the time() function.

Notes:

1. The gmtime() and localtime() functions can use a common, statically allocated buffer for the
conversion. Each call to one of these functions might destroy the result of the previous call. The
ctime_r(), gmtime_r(), and Tocaltime_r() functions do not use a common, statically allocated buffer.
These functions can be used in place of the asctime(), ctime(), gmtime() and Tocaltime() functions if
reentrancy is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

Return Value

The Tocaltime() function returns a pointer to the structure result. There is no error return value.
Example that uses lTocaltime()

This example queries the system clock and displays the local time.

#include <time.h>
#include <stdio.h>

int main(void)
{

struct tm *newtime;
time_t Ttime;

Ttime = time(&1time);
newtime = localtime(&1time);
printf("The date and time is %s", asctime(newtime));}

[*xxxxxkxxxkxxx I the Tocal time is 3 p.m. February 15, 2008, x*¥*xxsxx
*kkkkkkkkkkkkkkkkkkkkkrxk  the output should be: rkxkkkrkrsrkrrhkrrhrs

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* |“ctime() — Convert Time to Character String” on page 71|

[“ctime64() — Convert Time to Character String” on page 73|

[“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[“emtime() — Convert Time” on page 161|

[‘emtime64() — Convert Time” on page 163]

[‘emtime64_r() — Convert Time (Restartable)” on page 167

[‘emtime_r() — Convert Time (Restartable)” on page 165

[“localtime_r() — Convert Time (Restartable)” on page 188

[“localtime64() — Convert Time” on page 187

“localtime64_r() — Convert Time (Restartable)” on page 189
pag

186 ILE C/C++ Runtime Library Functions V6R1



[“mktime() — Convert Local Time” on page 218§|

[‘mktime64() — Convert Local Time” on page 220|

[“setlocale() — Set Locale” on page 339

[“time() — Determine Current Time” on page 411

[“time64() — Determine Current Time” on page 412|

[<time.h>" on page 18|

localtime64() — Convert Time

Format

#include <time.h>
struct tm *Tocaltime64(const time64 t *timeval);

Language Level: ILE C Extension
Threadsafe: No. Use localtime64 r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale.

Description
The Tocaltime64() function converts a time value, in seconds, to a structure of type tm.

The Tocaltime64() function takes a timeval assumed to be Universal Coordinate Time (UTC) and converts
it to job locale time. For this conversion, Tocaltime64() checks the current locale setting for local time
zone and daylight saving time (DST). If these values are not set in the current locale, Tocaltime64() gets
the local time zone and daylight saving time (DST) settings from the current job. Once converted, the
time is returned in a structure of type tm. If the DST is set in the locale but the time zone information is
not, the DST information in the locale is ignored.

The time value is usually obtained by a call to the time64 () function.

Notes:

1. The gmtime64() and Tocaltime64() functions might use a common, statically allocated buffer for the
conversion. Each call to one of these functions might alter the result of the previous call. The
asctime_r(), ctime64 r(), gmtime64 r() and localtime64 r() functions do not use a common,
statically allocated buffer. These functions can be used in place of the asctime(), ctime64(),
gmtime64 (), and Tocaltime64() functions if thread safety is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

3. The supported date and time range for this function is 01,/01/0001 00:00: 00 through 12/31/9999 23:
59: 59.

Return Value

The Tocaltime64() function returns a pointer to the structure result. If the given timeval is out of range, a
NULL pointer is returned and errno is set to EOVERFLOW.

Example that uses Tocaltime64()

This example queries the system clock and displays the local time.

Chapter 2. Library Functions 187



#include <stdio.h>
#include <time.h>

int main(void)

{
struct tm *newtime;
time6d_t 1time;

Ttime = time64(&1time);
newtime = localtime64(&1time);
printf("The date and time is %s", asctime(newtime));

}

[*xxxxxkxxxxxxx  If the Tocal time is 3 p.m. February 15, 2008, x*¥*xxs¥xx
kkkkkkkhkkhkkhkkkkkhkxkrkkxkxx  the output should be: **xkkkkxkkkkrhrkkkkhrs

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* |“ctime() — Convert Time to Character String” on page 71|

* [“ctime64() — Convert Time to Character String” on page 73|

[‘ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

* |“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

+ [“emtime() — Convert Time” on page 161

[‘emtime64() — Convert Time” on page 163)|

[‘emtime64_r() — Convert Time (Restartable)” on page 167

mtime_r() — Convert lime (Restartable)” on page
“omti 0 C Ti (R ble)” page 165

[localtime() — Convert Time” on page 185|

[“localtime64_r() — Convert Time (Restartable)” on page 189

[“localtime_r() — Convert Time (Restartable)”|

[“mktime() — Convert Local Time” on page 218|

[“mktime64() — Convert Local Time” on page 220|

[“setlocale() — Set Locale” on page 339

[“time() — Determine Current Time” on page 411|

* |“time64() — Determine Current Time” on page 412

['<time.h>" on page 18|

localtime_r() — Convert Time (Restartable)
Format

#include <time.h>

struct tm *Tocaltime_r(const time_t *timeval, struct tm *result);
Language Level: XPG4

Threadsafe: Yes

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale.

Description

188 ILE C/C++ Runtime Library Functions V6R1



This function is the restartable version of Tocaltime(). It is the same as localtime() except that it passes
in the place to store the returned structure result.

Return Value

The Tocaltime_r() returns a pointer to the structure result. There is no error return value.
Example that uses localtime_r()

This example queries the system clock and displays the local time.

#include <time.h>
#include <stdio.h>

int main(void)

struct tm newtime;
time_t Ttime;
char buf[50];

Ttime=time (&1time);
Tocaltime_r(&1time, &newtime);
printf("The date and time is %s", asctime_r(&newtime, buf));

}

[xwwxxxskrxxwkxx  If the Tocal time is 3 p.m. February 15, 2008, #¥¥*xxk¥rxx
kkkkkkkkkkkkhkkkkkxkrkkkxk  the output should be: xkxkkxkkdkkkhrkhkkrkx

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

* [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* [“ctime() — Convert Time to Character String” on page 71|

+ |“ctime_r() — Convert Time to Character String (Restartable)” on page 74|

[‘emtime() — Convert Time” on page 161

[‘emtime_r() — Convert Time (Restartable)” on page 165

[“localtime() — Convert Time” on page 185|

[“mktime() — Convert Local Time” on page 218§|

* [“time() — Determine Current Time” on page 411

* [“<time.h>" on page 1§|

localtime64_r() — Convert Time (Restartable)

Format
#include <time.h>

struct tm *localtime64 r(const time64_t *timeval, struct tm *result);
Language Level: ILE C Extension
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale.

Description

Chapter 2. Library Functions 189



This function is the restartable version of Tocaltime64(). It is the same as localtime64() except that it
passes in the place to store the returned structure result.

Notes:

1. The gmtime64() and Tocaltime64() functions might use a common, statically allocated buffer for the
conversion. Each call to one of these functions might alter the result of the previous call. The
asctime_r(), ctime64 _r(), gmtime64 r(), and Tocaltime64 r() functions do not use a common
statically allocated buffer to hold the return string. These functions can be used in place of the
asctime(), ctime64(), gmtime64(), and Tocaltime64() functions if thread safety is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,
1970 Universal Coordinate Time (UTC).

3. The supported date and time range for this function is 01,/01/0001 00:00:00 through 12/31/9999
23:59:59.

Return Value

The Tocaltime64_r() function returns a pointer to the structure result. If the given timeval is out of range,
a NULL pointer is returned and errno is set to EOVERFLOW.

Example that uses Tocaltime64_r()
This example queries the system clock and displays the local time.

#include <stdio.h>
#include <time.h>

int main(void)

{
struct tm newtime;
time64_t 1time;
char buf[50];

Ttime = time64(&1time);
Tocaltime64_r(&1time, &newtime);
printf("The date and time is %s\n", asctime_r(&newtime, buf));

}

[xxwwsrrkxxxxkx  f the Tocal time is 3 p.m. February 15, 2008, *¥*xxxkksksk
*kkhkkkkhrkkxkhkkkkxkkx*k*x** the output should be: *x*xx*kxkxkkxkxkkkhxkh®

The date and time is Fri Feb 15 15:00:00 2008
*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

* [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* [“ctime64() — Convert Time to Character String” on page 73|

+ |“ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

[‘emtime64() — Convert Time” on page 163]

[‘emtime64_r() — Convert Time (Restartable)” on page 167]

[“localtime64() — Convert Time” on page 187]

[‘mktime64() — Convert Local Time” on page 220|

[“time64() — Determine Current Time” on page 412|

* [“<time.h>" on page 1§|

190 ILE C/C++ Runtime Library Functions V6R1



log() — Calculate Natural Logarithm
Format

#include <math.h>

double Tog(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The Tog() function calculates the natural logarithm (base e) of x.

Return Value

The Tog() function returns the computed value. If x is negative, 1og()sets errno to EDOM and might

return the value -HUGE_VAL. If x is zero, 1og() returns the value -HUGE_VAL, and might set errno to

ERANGE.
Example that uses 1og()
This example calculates the natural logarithm of 1000.0.

#include <math.h>
#include <stdio.h>

int main(void)
double x = 1000.0, y;
y = log(x);

printf("The natural Togarithm of %1f is %1f\n", x, y);
}

[ *Fk Kk kk gk kg kk ok k kK Qutput should be similar to: **x*xkxkkkkxkkx

The natural logarithm of 1000.000000 is 6.907755
*/

Related Information

+ [“exp() — Calculate Exponential Function” on page 89|
* [“log10() — Calculate Base 10 Logarithm”|
+ [“pow() — Compute Power” on page 228|

+ [“<math.h>" on page §|

log10() — Calculate Base 10 Logarithm

Format

#include <math.h>
double 1ogl0(double x);
Language Level: ANSI

Threadsafe: Yes.

Chapter 2. Library Functions

191



Description
The 10g10() function calculates the base 10 logarithm of x.
Return Value

The 10g10() function returns the computed value. If x is negative, 10910 ()sets errno to EDOM and might
return the value -HUGE_VAL. If x is zero, the 10g10() function returns the value -HUGE_VAL, and
might set errno to ERANGE.

Example that uses 10g10()
This example calculates the base 10 logarithm of 1000.0.

#include <math.h>
#include <stdio.h>

int main(void)
{
double x = 1000.0, y;
= Togl0(x);

printf("The base 10 logarithm of %1f is %1f\n", x, y);

[ *Fk K Fkk gk ko kkkkkkk Qutput should be similar to: ***xkxkkkkxkkk

The base 10 Togarithm of 1000.000000 is 3.000000
*/

Related Information

* [“exp() — Calculate Exponential Function” on page 89

* |“log() — Calculate Natural Logarithm” on page 191

* [“pow() — Compute Power” on page 228|

+ [“<math.h>" on page §|

_Itoa - Convert Long Integer to String

Format

#include <stdlib.h>
char * 1toa(long value, char *string, int radix);

Note: The _ltoa function is supported only for C++, not for C.
Language Level: Extension
Threadsafe: Yes.
Description
_ltoa converts the digits of the given long integer value to a character string that ends with a null

character and stores the result in string. The radix argument specifies the base of value; it must be in the
range 2 to 36. If radix equals 10 and value is negative, the first character of the stored string is the minus

sign (-).

Note: The space allocated for string must be large enough to hold the returned string. The function can
return up to 33 bytes including the null character (\0).

192 ILE C/C++ Runtime Library Functions V6R1



Return Value

_1toa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.
Example that uses _1toa()

This example converts the integer value -255L to a decimal, a binary, and a hex value, and stores its
character representation in the array buffer.

#include <stdio.h>
#include <stdlib.h>
int main(void)

char buffer[35];

char *p;

p = _ltoa(-255L, buffer, 10);

printf("The result of _1toa(-255) with radix of 10 is %s\n", p);

p = _itoa(-255L, buffer, 2);

printf("The result of _1toa(-255) with radix of 2\n is %s\n", p);
p = itoa(-255L, buffer, 16);

printf("The result of _T1toa(-255) with radix of 16 is %s\n", p);
return 0;

}

The output should be:

The result of _1toa(-255) with radix of 10 is -255
The result of _Ttoa(-255) with radix of 2

is 11111111111111111111111100000001
The result of _Ttoa(-255) with radix of 16 is ffffffol

Related Information:

+ [“atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49|

* |“_gcvt - Convert Floating-Point to String” on page 151

* |“_itoa - Convert Integer to String” on page 176

[“strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400|

+ |“_ultoa - Convert Unsigned Long Integer to String” on page 419

[“wcstol() — westoll() — Convert Wide Character String to Long and Long Long Integer” on page 481|
[“<stdlib.h>" on page 17]

longjmp() — Restore Stack Environment

Format

#include <setjmp.h>

void Tongjmp(jmp_buf env, int value);

Language Level: ANSI

Threadsafe: Yes.

Description

The Tongjmp() function restores a stack environment previously saved in env by the setjmp() function.

The setjmp() and Tongjmp() functions provide a way to perform a non-local goto. They are often used in
signal handlers.

Chapter 2. Library Functions 193



A call to the setjmp() function causes the current stack environment to be saved in env. A subsequent call
to Tongjmp () restores the saved environment and returns control to a point in the program corresponding
to the setjmp()call. Processing resumes as if the setjmp() call had just returned the given value.

All variables (except register variables) that are available to the function that receives control contain the
values they had when Tongjmp() was called. The values of register variables are unpredictable.
Nonvolatile auto variables that are changed between calls to the setjmp() and Tongjmp() functions are
also unpredictable.

Note: Ensure that the function that calls the setjmp() function does not return before you call the
corresponding Tongjmp() function. Calling Tongjmp() after the function calling the setjmp()
function returns causes unpredictable program behavior.

The value argument must be nonzero. If you give a zero argument for value, Tongjmp () substitutes 1 in its
place.

Return Value

The Tongjmp() function does not use the normal function call and return mechanisms; it has no return
value.

Example that uses longjmp()
This example saves the stack environment at the statement:
if(setjmp(mark) !'=0) ...

When the system first performs the if statement, it saves the environment in mark and sets the condition
to FALSE because the setjmp() function returns a 0 when it saves the environment. The program prints
the message:

setjmp has been called

The subsequent call to function p() causes it to call the Tongjmp() function. Control is transferred to the
point in the main() function immediately after the call to the setjmp() function using the environment
saved in the mark variable. This time, the condition is TRUE because -1 is specified in the second
parameter on the Tongjmp() function call as the return value to be placed on the stack. The example then
performs the statements in the block, prints the message "Tongjmp() has been called", calls the recover()
function, and leaves the program.

194 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

Jmp_buf mark;

void p(void);
void recover(void);

int main(void)

{
if (setjmp(mark) != 0)
{

printf("longjmp has been called\n");
recover();
exit(1);
}
printf("setjmp has been called\n");
printf("Calling function p()\n");
p();
printf("This point should never be reached\n");

1
void p(void)
{

printf("Calling lTongjmp() from inside function p()\n");
Tongjmp (mark, -1);
printf("This point should never be reached\n");

1
void recover(void)

printf("Performing function recover()\n");

/*******************Output should be as folTOWS: **x**kxkkkkxkkkxkhkkkhk
setjmp has been called

Calling function p()

Calling longjmp() from inside function p()

longjmp has been called

Performing function recover()
*"k‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k*"k‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k*"k‘k‘k*‘k‘k*****‘k‘k*‘k****‘k********/

Related Information

* [“seimp() — Preserve Environment” on page 338|

* [“<setimp.h>" on page 13|

malloc() — Reserve Storage Block
Format

#include <stdlib.h>

void *malloc(size_t size);

Language Level: ANSI

Threadsafe: Yes.

Description

The malloc() function reserves a block of storage of size bytes. Unlike the calloc() function, malloc()
does not initialize all elements to 0. The maximum size for a non-Teraspace malloc() is 16711568 bytes.

Chapter 2. Library Functions 195



Notes:

1.

All heap storage is associated with the activation group of the calling routine. As such, storage should
be allocated and deallocated within the same activation group. You cannot allocate heap storage
within one activation group and deallocate that storage from a different activation group. For more
information about activation groups, see the ILE Concepts manual.

To use Teraspace storage instead of heap storage without changing the C source code, specify the
TERASPACE(*YES *TSIFC) parameter on the CRTCMOD compiler command. This maps the malloc()
library function to _C_TS_malloc(), its Teraspace storage counterpart. The maximum amount of
Teraspace storage that can be allocated by each call to _C_TS malloc() is 2GB - 224, or 2147483424
bytes. If more than 2147483408 bytes are needed on a single request, call _C_TS_malloc64 (unsigned
Tong Tong int);.

For more information, see the ILE Concepts manual.

For current statistics on the teraspace storage being used by MI programs in an activation group, call
the _C_TS_malloc_info function. This function returns information including total bytes, allocated
bytes and blocks, unallocated bytes and blocks, requested bytes, pad bytes, and overhead bytes. To
get more detailed information about the memory structures used by the _C_TS_malloc()

and C TS malloc64() functions, call the C TS malloc_debug function. You can use the information
this function returns to identify memory corruption problems.

If the _C_Quickpool_Init() function has been called in the current activation group, then the storage
is retrieved using Quick Pool memory management. See _C_Quickpool_Init() for more information.

Return Value

The malloc() function returns a pointer to the reserved space. The storage space to which the return
value points is suitably aligned for storage of any type of object. The return value is NULL if not enough
storage is available, or if size was specified as zero.

Example that uses malloc()

This example prompts for the number of array entries you want and then reserves enough space in
storage for the entries. If malloc() was successful, the example assigns values to the entries and prints
out each entry; otherwise, it prints out an error.

196 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>

int main(void)

long * array; /* start of the array */

Tong * index; /* index variable */
int i /* index variable */
int  num; /* number of entries of the array */

printf( "Enter the size of the array\n" );
scanf( "%i", &num );

/* allocate num entries =*/

if ( (index = array = (long *) malloc( num * sizeof( Tong ))) != NULL )
{
for (i =0; i < num; ++i ) /* put values in array  */
*index++ = 1i; /* using pointer notation */
for (1 =0; i < num; ++i ) /* print the array out */

printf( "array[ %i ] = %i\n", i, array[i] );
}
else { /*» malloc error x/
perror( "Out of storage" );
abort();

[ FHHR kR FAA KKK KK KA *  Qutput should be similar to: ##sssrrrxsssss

Enter the size of the array
array[ 0 ]
array[ 1]
array[ 2 ]
array[ 3 1]
array[ 4 ]

*/

nonononon
WO

Related Information

* |“calloc() — Reserve and Initialize Storage” on page 55|

* |”_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66|

e [“_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 6
p Y g pag

* |“_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70|

[“free() — Release Storage Blocks” on page 128

[“realloc() — Change Reserved Storage Block Size” on page 264|
[“<stdlib.h>" on page 17]

mblen() — Determine Length of a Multibyte Character
Format

#include <stdlib.h>

int mblen(const char *string, size_t n);

Language Level: ANSI

Threadsafe: No. Use mbrlen() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This function might be affected by the LC_UNI_CTYPE category of the current locale if

Chapter 2. Library Functions 197



LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The mblen() function determines the length in bytes of the multibyte character pointed to by string. n
represents the maximum number of bytes examined.

Return Value

If string is NULL, the mblen() function returns:
* Non-zero if the active locale allows mixed-byte strings. The function initializes the state variable.
* Zero otherwise.

If string is not NULL, mblen() returns:

* Zero if string points to the null character.

¢ The number of bytes comprising the multibyte character.
* -1 if string does not point to a valid multibyte character.

Note: The mblen(), mbtowc(), and wctomb() functions use their own statically allocated storage and are
therefore not restartable. However, mbrlen(), mbrtowc(), and wcrtomb() are restartable.

Example that uses mblen()

This example uses mblen() and mbtowc() to convert a multibyte character into a single wide character.

#include <stdio.h>
#include <stdlib.h>

int length, temp;
char string [6] = "w";
wchar_t arr[6];

int main(void)

{

/* Initialize internal state variable =%/
lTength = mblen(NULL, MB_CUR_MAX);

/* Set string to point to a multibyte character =x/
Tength = mblen(string, MB_CUR MAX);

temp = mbtowc(arr,string,length);

arr[1] = L'\0"';

printf("wide character string: %1s\n", arr);

}

Related Information

* [“mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

[“mbtowc() — Convert Multibyte Character to a Wide Character” on page 211|

[“mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 207

[“strlen() — Determine String Length” on page 375|

[‘weslen() — Calculate Length of Wide-Character String” on page 461|
[‘wctomb() — Convert Wide Character to Multibyte Character” on page 492
[“<stdlib.h>" on page 17|

198 ILE C/C++ Runtime Library Functions V6R1



mbrlen() — Determine Length of a Multibyte Character (Restartable)

Format

#include <wchar.h>
size_t mbrlen (const char *s, size_t n, mbstate t *ps);

Language Level: ANSI
Threadsafe: Yes, if ps is not NULL.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

This function is the restartable version of mblen().

The mbrlen() function determines the length of a multibyte character.
n is the number of bytes (at most) of the multibyte string to examine.

This function differs from its corresponding internal-state multibyte character function in that it has an
extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe the
current conversion state of the associated multibyte character sequence. If ps is a NULL pointer, mbrlen()
behaves like mblen().

mbrlen() is a restartable version of mblen(). In other words, shift-state information is passed as one of the
arguments (ps represents the initial shift) and is updated on exit. With mbrlen(), you can switch from one
multibyte string to another, provided that you have kept the shift-state information.

Return Value

If s is a null pointer and if the active locale allows mixed-byte strings, the mbrien () function returns
nonzero. If s is a null pointer and if the active locale does not allow mixed-byte strings, zero will be
returned.

If s is not a null pointer, the mbrlen() function returns one of the following:
0 If s is a NULL string (s points to the NULL character).

positive
If the next n or fewer bytes comprise a valid multibyte character. The value returned is the
number of bytes that comprise the multibyte character.

(size_t)-1
If s does not point to a valid multibyte character.

(size_t)-2
If the next n or fewer bytes contribute to an incomplete but potentially valid character and all n
bytes have been processed

Example that uses mbrien()

/* This program is compiled with LOCALETYPE(*LOCALE) and */
/* SYSIFCOPT(*IFSIO) */

Chapter 2. Library Functions 199



#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define LOCNAME "gsys.1ib/JA_JP.locale"
#define LOCNAME_EN "gsys.1ib/EN_US.locale"

int main(void)

{

200

int length, s1 = 0;

char string[10];
mbstate_t ps = 0;

memset (string, '\0', 10);

string[0] = 0xCl;
string[1] = OxOE;
string[2] = 0x41;
string[3] = 0x71;
string[4] = 0x41;
string[5] = 0x72;
string[6] = OxOF;
string[7] = 0xC2;

/* In this first example we will find the length of
/* of a multibyte character when the CCSID of locale
/* associated with LC_CTYPE is 37.

/* For single byte cases the state will always

/* remain in the initial state 0

if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
printf("setlocale failed.\n");

length = mbrlen(string, MB_CUR MAX, &ps);

*/
*/
*/
*/
*/

/* In this case Tength is 1, which is always the case for */

/* single byte CCSID =*/

printf("length = %d, state = %d\n\n", length, ps);
printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

/* Now let's try a multibyte example. We first must set the =/

/* locale to a multibyte Tocale. We choose a locale with

/* CCSID 5026 =*/

if (setlocale(LC_ALL, LOCNAME) == NULL)
printf("setlocale failed.\n");

length = mbrlen(string, MB_CUR_MAX, &ps);

/* The first is single byte so length is 1 and
/* the state is still the initial state 0

printf("length = %d, state = %d\n\n", length, ps);
printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

s1 += length;

length = mbrlen(&string[s1], MB_CUR_MAX, &ps);

/* The next character is a mixed byte. Length is 3 to
/* account for the shiftout Ox0e. State is

/* changed to double byte state.

printf("length = %d, state = %d\n\n", length, ps);

s1 += length;

ILE C/C++ Runtime Library Functions V6R1

*/
*/

*/
*/
*/

*/



}

/*

Tength = mbrlen(&string[s1], MB_CUR_MAX, &ps);

/* The next character is also a double byte character.
/* The state is changed to initial state since this was
/* the last double byte character. Length is 3 to

/* account for the ending 0x0f shiftin.

printf("length = %d, state = %d\n\n", length, ps);

s1 += length;

Tength = mbrlen(&string[s1], MB_CUR MAX, &ps);

/* The next character is single byte so length is 1 and
/* state remains in initial state.

printf("length = %d, state = %d\n\n", length, ps);

The output should Took Tike this:

length = 1, state = 0

MB_CUR MAX: 1
length = 1, state = 0
MB_CUR_MAX: 4
length = 3, state = 2
length = 3, state = 0

length = 1, state = 0

* % x End of File » * *

Related Information

* [“mblen() — Determine Length of a Multibyte Character” on page 197]

*/
*/
*/
*/

*/
*/

[“mbtowc() — Convert Multibyte Character to a Wide Character” on page 211

[“mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)”

[‘mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206|

[“setlocale() — Set Locale” on page 339

[‘wertomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446|

[‘wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

[“<locale.h>" on page 7]

[“<wchar.h>” on page 18]

mbrtowc() — Convert a Multibyte Character to a Wide Character

(Restartable)

Format

#include <wchar.h>

size_t mbrtowc (wchar_t *pwc, const char *s, size t n, mbstate t *ps);

Language Level: ANSI

Chapter 2. Library Functions



Threadsafe:: Yes, if ps is not NULL

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description
This function is the restartable version of the mbtowc() function.

If s is a null pointer, the mbrtowc() function determines the number of bytes necessary to enter the initial
shift state (zero if encodings are not state-dependent or if the initial conversion state is described). In this
situation, the value of the pwc parameter will be ignored and the resulting shift state described will be
the initial conversion state.

If s is not a null pointer, the mbrtowc() function determines the number of bytes that are in the multibyte
character (and any leading shift sequences) pointed to by s, produces the value of the corresponding
multibyte character and if pwc is not a null pointer, stores that value in the object pointed to by pwc. If
the corresponding multibyte character is the null wide character, the resulting state will be reset to the
initial conversion state.

This function differs from its corresponding internal-state multibyte character function in that it has an
extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe the
current conversion state of the associated multibyte character sequence. If ps is NULL, this function uses
an internal static variable for the state.

At most, n bytes of the multibyte string are examined.
Return Value

If s is a null pointer, the mbrtowc () function returns the number of bytes necessary to enter the initial shift
state. The value returned must be less than the MB_ CUR_MAX macro.

If a conversion error occurs, errno might be set to ECONVERT.

If s is not a null pointer, the mbrtowc() function returns one of the following:

0 If the next n or fewer bytes form the multibyte character that corresponds to the null wide
character.

positive
If the next n or fewer bytes form a valid multibyte character. The value returned is the number of
bytes that constitute the multibyte character.

(size_t)-2
If the next n bytes form an incomplete (but potentially valid) multibyte character, and all n bytes
have been processed. It is unspecified whether this can occur when the value of 7 is less than the
value of the MB_CUR_MAX macro.

(size_t)-1
If an encoding error occurs (when the next n or fewer bytes do not form a complete and correct
multibyte character). The value of the macro EILSEQ is stored in errno, but the conversion state is
unchanged.

202 ILE C/C++ Runtime Library Functions V6R1



Note: When a -2 value is returned, the string could contain redundant shift-out and shift-in characters or
a partial UTF-8 character. To continue processing the multibyte string, increment the pointer by the

value n, and call mbrtowc() again.

Example that uses mbrtowc ()

/* This program is compiled with LOCALETYPE(*LOCALE) and */
/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define LOCNAME  "/gsys.lib/JA_JP.locale"
#define LOCNAME_EN "/qsys.1ib/EN_US.locale"

int main(void)
{
int length, s1 = 0;
char string[10];
wchar_t buffer[10];
mbstate_t ps = 0;
memset (string, '\0', 10);

string[0] = 0xCl;
string[1] = OxOE;
string[2] = 0x41;
string[3] = Ox71;
string[4] = 0x41;
string[5] = 0x72;
string[6] = OxOF;
string[7] = 0xC2;
/* In this first example we will convert */
/* a multibyte character when the CCSID of Tocale */
/* associated with LC_CTYPE is 37. */
/* For single byte cases the state will always */
/* remain in the initial state 0 */

if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
printf("setlocale failed.\n");

Tength = mbrtowc(buffer, string, MB_CUR MAX, &ps);
/* In this case length is 1, and Cl is converted 0x00C1 =/

printf("length = %d, state = %d\n\n", Tength, ps);
printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

/* Now lets try a multibyte example. We first must set the =/

/* locale to a multibyte Tocale. We choose a locale with
/* CCSID 5026 =/

if (setlocale(LC_ALL, LOCNAME) == NULL)
printf("setlocale failed.\n");

Tength = mbrtowc(buffer, string, MB_CUR MAX, &ps);
/* The first is single byte so Tength is 1 and */
/* the state is still the initial state 0. Cl is convertedx/

/* to 0x00C1 */

printf("length = %d, state = %d\n\n", length, ps);
printf("MB_CUR MAX: %d\n\n", MB_CUR MAX);

s1 += length;

Chapter 2. Library Functions

203



Tength = mbrtowc(&buffer[1], &string[s1], MB_CUR MAX, &ps);
/* The next character is a mixed byte. Length is 3 to */
/* account for the shiftout Ox0e. State is */
/* changed to double byte state. 0x4171 is copied into */
/* the buffer =/

printf("length = %d, state = %d\n\n", length, ps);

s1 += length;

Tength = mbrtowc(&buffer[2], &string[s1], MB_CUR MAX, &ps);

/* The next character is also a double byte character. */
/* The state is changed to initial state since this was */
/* the Tast double byte character. Length is 3 to */

/* account for the ending 0x0f shiftin. 0x4172 is copied =/
/* into the buffer. =*/

printf("length = %d, state = %d\n\n", length, ps);

s1 += length;

Tength = mbrtowc(&buffer[3], &string[s1], MB_CUR MAX, &ps);
/* The next character is single byte so length is 1 and */
/* state remains in initial state. O0xC2 is converted to */
/* 0x00C2.  The buffer now has the value: */
/* 0x00C14171417200C2 */
printf("length = %d, state = %d\n\n", length, ps);

}
/* The output should look Tike this:

length = 1, state = 0
MB_CUR_MAX: 1
length = 1, state = 0

MB_CUR MAX: 4

length = 3, state = 2

n
(<]

length = 3, state

I
(<]

length = 1, state
*/

Related Information

* [“mblen() — Determine Length of a Multibyte Character” on page 197]

[‘mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199|

[“mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206|

[“setlocale() — Set Locale” on page 339
[“wertomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446|
* [“wesrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473|

[<locale.h>” on page 7|

* |“<wchar.h>" on page 18|

204 ILE C/C++ Runtime Library Functions V6R1



mbsinit() — Test State Object for Initial State

Format

#include <wchar.h>
int mbsinit (const mbstate t *ps);

Language Level: ANSI
Threadsafe: Yes
Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [‘Understanding CCSIDs and Locales” on page 524

Description

If ps is not a null pointer, the mbsinit() function specifies whether the pointed to mbstate_t object
describes an initial conversion state.

Return Value

The mbsinit() function returns nonzero if ps is a null pointer or if the pointed to object describes an
initial conversion state. Otherwise, it returns zero.

Example that uses mbsinit()

This example checks the conversion state to see if it is the initial state.

#include <stdio.h>
#include <wchar.h>
#include <stdlib.h>

main()

{
char *string = "ABC";
mbstate_t state = 0;
wchar_t  wc;
int rc;

rc = mbrtowc(&wc, string, MB_CUR_MAX, &state);
if (mbsinit(&state))
printf("In initial conversion state\n");

}

Related Information

* [“mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199
* [“mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201|

[“mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206|

[“setlocale() — Set Locale” on page 339

[‘wertomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446|
[“wesrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473)|
[<locale.h>" on page 7|

* [“<wchar.h>" on page 18|

Chapter 2. Library Functions 205



mbsrtowcs() — Convert a Multibyte String to a Wide Character String
(Restartable)

Format

#include <wchar.h>
size_t mbsrtowcs (wchar_t *dst, const char **src, size_t len,
mbstate t *ps);

Language Level: ANSI
Threadsafe: Yes, if ps is not NULL.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [‘Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527| for more information.

Description
This function is the restartable version of mbstowcs ().

The mbsrtowcs () function converts a sequence of multibyte characters that begins in the conversion state
described by ps from the array indirectly pointed to by src into a sequence of corresponding wide
characters. It then stores the converted characters into the array pointed to by dst.

Conversion continues up to and including an ending null character, which is also stored. Conversion will
stop earlier in two cases: when a sequence of bytes are reached that do not form a valid multibyte
character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed
to by dst. Each conversion takes place as if by a call to mbrtowc () function.

If dst is not a null pointer, the pointer object pointed to by src will be assigned either a null pointer (if
conversion stopped due to reaching an ending null character) or the address just past the last multibyte
character converted. If conversion stopped due to reaching an ending null character, the initial conversion
state is described.

Return Value

If the input string does not begin with a valid multibyte character, an encoding error occurs, the
mbsrtowcs () function stores the value of the macro EILSEQ in errno, and returns (size_t) -1, but the
conversion state will be unchanged. Otherwise, it returns the number of multibyte characters successfully
converted, which is the same as the number of array elements modified when dst is not a null pointer.

If a conversion error occurs, errno might be set to ECONVERT.

Example that uses mbsrtowcs ()

206 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <locale.h>

#define SIZE 10

int main(void)
{
char mbs1[] = "abc";
char mbs2[] = "\x81\x41" "m" "\x81\x42",
const char  *pmbsl = mbsl;
const char  *pmbs2 = mbs2;
mbstate_t ssl = 0;
mbstate t ss2 = 0;
wchar_t wcs1[SIZE], wcs2[SIZE];

if (NULL == setlocale(LC_ALL, "/gsys.lib/locale.lib/ja_jp939.1ocale"))

printf("setlocale failed.\n");

exit(EXIT_FAILURE);
1
mbsrtowcs (wcsl, &pmbsl, SIZE, &ssl);
mbsrtowcs (wcs2, &pmbs2, SIZE, &ss2);
printf("The first wide character string is %1s.\n", wcsl);
printf("The second wide character string is %1s.\n", wcs2);
return 0;

The output should be similar to:

The first wide character string is abc.

The second wide character string is Am B.
*******************************************************/

Also, see the examples for [“mbrtowc() — Convert a Multibyte Character to a Wide Character|
[(Restartable)” on page 201.

Related Information

¢ [“mblen() — Determine Length of a Multibyte Character” on page 197]

[‘mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199|
[“mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201]
[“mbstowcs() — Convert a Multibyte String to a Wide Character String”]

[“setlocale() — Set Locale” on page 339
[‘wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446|
[‘wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

[<locale.h>” on page 7|

+ [“<wchar.h>" on page 18|

mbstowcs() — Convert a Multibyte String to a Wide Character String

Format
#include <stdlib.h>
size_t mbstowcs(wchar_t *pwc, const char *string, size_t n);

Language Level: ANSI

Threadsafe: Yes.

Chapter 2. Library Functions 207



Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The mbstowcs () function determines the length of the sequence of the multibyte characters pointed to by
string. It then converts the multibyte character string that begins in the initial shift state into a wide
character string, and stores the wide characters into the buffer that is pointed to by pwc. A maximum of n
wide characters are written.

Return Value

The mbstowcs () function returns the number of wide characters generated, not including any ending null
wide characters. If a multibyte character that is not valid is encountered, the function returns (size_t)-1.

If a conversion error occurs, errno might be set to ECONVERT.

Examples that use mbstowcs ()

208 ILE C/C++ Runtime Library Functions V6R1



/* This program is compiled with LOCALETYPE(*LOCALEUCS2) and */
/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include  <wchar.h>
#include  <errno.h>

#define LOCNAME  "qgsys.lib/JA_JP.locale"
#define LOCNAME_EN "gsys.lib/EN_US.locale"

int main(void)

int length, sl = 0;

char string[10];

char string2[] = "ABC";
wchar_t buffer[10];
memset (string, '\0', 10);

string[0] = 0xCl;
string[1] = OxOE;
string[2] = 0x41;
string[3] = 0x71;
string[4] = 0x41;
string[5] = 0x72;
string[6] = OxOF;
string[7] = 0xC2;
/* In this first example we will convert */
/* a multibyte character when the CCSID of Tocale */
/* associated with LC_CTYPE is 37. */

if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
printf("setlocale failed.\n");
length = mbstowcs(buffer, string2, 10);

/* In this case Tength ABC is converted to UNICODE ABC */
/* or 0x004100420043. Length will be 3. */

printf("length = %d\n\n", length);

/* Now lets try a multibyte example. We first must set the x/

/* locale to a multibyte locale. We choose a locale with
/* CCSID 5026 =x/

if (setlocale(LC_ALL, LOCNAME) == NULL)
printf("setlocale failed.\n");

length = mbstowcs(buffer, string, 10);

/* The buffer now has the value: x/
/* 0x004103A103A30042 length is 4 */

printf("length = %d\n\n", length);

}

/* The output should look 1ike this:
length = 3

length = 4

Chapter 2. Library Functions

209



/* This program is compiled with LOCALETYPE(*LOCALE) and */
/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <wchar.h>
#include <errno.h>

#define LOCNAME  "qgsys.lib/JA_JP.locale"
#define LOCNAME_EN "gsys.1ib/EN_US.locale"

int main(void)
{
int length, sl = 0;
char string[10];
char string2[] = "ABC";
wchar_t buffer[10];
memset (string, '\0', 10);
string[0] = O0xC1;
string[1] = OxOE;
string[2] = 0x41;
string[3] = 0x71;
string[4] = 0x41;
string[5] = 0x72;
string[6] = OxOF;
string[7] = 0xC2;
/* In this first example we will convert */
/* a multibyte character when the CCSID of Tocale x/
/* associated with LC_CTYPE is 37. */

if (setlocale(LC_ALL, LOCNAME_EN) == NULL)
printf("setlocale failed.\n");

Tength = mbstowcs (buffer, string2, 10);

/* In this case length ABC is converted to */
/* 0x00C100C200C3. Length will be 3. */

printf("length = %d\n\n", Tength);
/* Now lets try a multibyte example. We first must set the =
/* locale to a multibyte Tocale. We choose a locale with

/* CCSID 5026 */

if (setlocale(LC_ALL, LOCNAME) == NULL)
printf("setlocale failed.\n");

Tength = mbstowcs (buffer, string, 10);

/* The buffer now has the value: */
/* 0x00C14171417200C2 length is 4 */

printf("length = %d\n\n", Tength);
}
/* The output should look 1ike this:

length = 3

length = 4

*/

Related Information

* |“mblen() — Determine Length of a Multibyte Character” on page 197]

210 ILE C/C++ Runtime Library Functions V6R1



[“mbtowc() — Convert Multibyte Character to a Wide Character”]|
[“setlocale() — Set Locale” on page 339

[‘wcslen() — Calculate Length of Wide-Character String” on page 461

[‘westombs() — Convert Wide-Character String to Multibyte String” on page 483|

[“<locale.h>” on page 7]
[“<stdlib.h>" on page 17]
* [“<wcharh>" on page 18|

mbtowc() — Convert Multibyte Character to a Wide Character

Format

#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char xstring, size_t n);

Language Level: ANSI

Threadsafe: No. Use mbrtowc() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The mbtowc () function first determines the length of the multibyte character pointed to by string. It then
converts the multibyte character to a wide character as described in mbstowcs. A maximum of n bytes are
examined.

Return Value

If string is NULL, the mbtowc () function returns:
* Nonzero when the active locale is mixed byte. The function initializes the state variable.
* 0 otherwise.

If string is not NULL, the mbtowc () function returns:
* 0 if string points to the null character
* The number of bytes comprising the converted multibyte character

-1 if string does not point to a valid multibyte character.
If a conversion error occurs, errno might be set to ECONVERT.
Example that uses mbtowc ()

This example uses the mblen() and mbtowc () functions to convert a multibyte character into a single wide
character.

Chapter 2. Library Functions 211



#include <stdio.h>
#include <stdlib.h>

#define LOCNAME "gsys.lib/mylib.1ib/ja_jp959.1ocale"
/*Locale created from source JA_JP and CCSID 939 =*/

int length, temp;
char string [] = "\x0e\x41\x71\x0f";
wchar_t arr[6];

int main(void)

{
/* initialize internal state variable =*/
temp = mbtowc(arr, NULL, 0);

setlocale (LC_ALL, LOCNAME);

/* Set string to point to a multibyte character. */
Tength = mblen(string, MB_CUR_MAX);

temp = mbtowc(arr,string,length);

arr[1] = L'\0"';

printf("wide character string: %1s",arr);

}

Related Information

+ “mblen() — Determine Length of a Multibyte Character” on page 197]

* [“mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 207

* [“wcslen() — Calculate Length of Wide-Character String” on page 461
+ “wctomb() — Convert Wide Character to Multibyte Character” on page 492|
[“<stdlib.h>" on page 17|

memchr() — Search Buffer

Format

#include <string.h>

void *memchr(const void *buf, int c, size_t count);
Language Level: ANSI

Threadsafe: Yes.

Description

The memchr () function searches the first count bytes of buf for the first occurrence of ¢ converted to an
unsigned character. The search continues until it finds ¢ or examines count bytes.

Return Value

The memchr() function returns a pointer to the location of c in buf. It returns NULL if ¢ is not within the
first count bytes of buf.

Example that uses memchr ()

This example finds the first occurrence of “x” in the string that you provide. If it is found, the string that
starts with that character is printed.

212 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{

char * result;

if (argc !'=2)
printf( "Usage: %s string\n", argv[0] );
else

if ((result = (char *) memchr( argv[1], 'x', strlen(argv[1])) ) != NULL)
printf( "The string starting with x is %s\n", result );

else
printf( "The Tetter x cannot be found in the string\n" );
}

}

[ *F kR kk gk ko k ko k kK Qutput should be similar to: F*xxkxkkkkxkkkk

The string starting with x is xing

*/

Related Information

+ “mememp() — Compare Buffers”]

* [“memcpy() — Copy Bytes” on page 214

+ [“memmove() — Copy Bytes” on page 217

+ “wmemchr() —Locate Wide Character in Wide-Character Buffer” on page 498§|

[‘memset() — Set Bytes to Value” on page 218

[“strchr() — Search for Character” on page 359

* [“<string.h>" on page 17|

memcmp() — Compare Buffers

Format

#include <string.h>

int memcmp(const void *bufl, const void *buf2, size_t count);
Language Level: ANSI

Threadsafe: Yes.

Description

The memcmp () function compares the first count bytes of bufl and buf2.

Return Value

The memcmp () function returns a value indicating the relationship between the two buffers as follows:

Value Meaning

Less than 0 bufl less than buf?

0 bufl identical to buf2
Greater than 0 bufl greater than buf2

Example that uses memcmp ()

Chapter 2. Library Functions

213



This example compares first and second arguments passed to main() to determine which, if either, is
greater.

#include <stdio.h>
#include <string.h>

int main(int argc, char ** argv)
{

int Ten;

int result;

if ( argc !'= 3 )

printf( "Usage: %s stringl string2\n", argv[0] );
}
else
{
/* Determine the length to be used for comparison x/
if (strlen( argv[1] ) < strlen( argv[2] ))
len = strlen( argv[1l] );
else
len = strlen( argv[2] );

result = memcmp( argv[1], argv[2], Ten );

printf( "When the first %i characters are compared,\n", Ten );
if ( result == 0 )

printf( "\"%s\" is identical to \"%s\"\n", argv[1], argv[2] );
else if ( result <0 )

printf( "\"%s\" is less than \"%s\"\n", argv[1], argv[2] );
else

printf( "\"%s\" is greater than \"%s\"\n", argv[1l], argv[2] );

[*Hxkrrkxkkxkxxkx [T the program is passed the arguments #xxxxkxkkkrkkr*
*hkhkkkkhkhkhxkhk kK ﬁrststm’ng and secondstm’ng’ *hkkkhkhkkkk kK
kkkkkkkhkkkkhkkkk output should be: *kkkkkhkkkkk

When the first 11 characters are compared,

"firststring" is less than "secondstring"
**********************************************************************/

Related Information

* “memchr() — Search Buffer” on page 212

* “memcpy() — Copy Bytes”]

* “wmemcmp() —Compare Wide-Character Buffers” on page 499|

+ [“‘memmove() — Copy Bytes” on page 217

* [“memset() — Set Bytes to Value” on page 218|

* [“stremp() — Compare Strings” on page 360

* |“<string.h>" on page 17

memcpy() — Copy Bytes

Format
#include <string.h>

void *memcpy(void *dest, const void *src, size_t count);

Language Level: ANSI

Threadsafe: Yes.

214 ILE C/C++ Runtime Library Functions V6R1



Description

The memcpy () function copies count bytes of src to dest. The behavior is undefined if copying takes place
between objects that overlap. The memmove () function allows copying between objects that might overlap.

Return Value

The memcpy () function returns a pointer to dest.
Example that uses memcpy ()

This example copies the contents of source to target.

#include <string.h>
#include <stdio.h>

#define MAX_LEN 80

char source[ MAX_LEN ] = "This is the source string";
char target[ MAX_LEN ] = "This is the target string";

int main(void)
{
printf( "Before memcpy, target is \"%s\"\n", target );
memcpy ( target, source, sizeof(source));
printf( "After memcpy, target becomes \"%s\"\n", target );
1

R A Expected output: kkkkkkkkkskkkkkkkkkkhrkk

Before memcpy, target is "This is the target string"
After memcpy, target becomes "This is the source string"
*/

Related Information

* [“memchr() — Search Buffer” on page 212

* [“memcmp() — Compare Buffers” on page 213|

+ “wmemcpy() —Copy Wide-Character Buffer” on page 500

* [“‘memmove() — Copy Bytes” on page 217]

[“memset() — Set Bytes to Value” on page 218§|

s [“strcpy() — Copy Strings” on page 364|

* |“<string.h>" on page 17|

memicmp() - Compare Bytes

Format
#include <string.h> // also in <memory.h>
int memicmp(void *bufl, void *buf2, unsigned int cnt);

Note: The memicmp function is available for C++ programs. It is available for C only when the program
defines the __cplusplus__strings_ macro.

Language Level: Extension

Threadsafe: Yes.

Chapter 2. Library Functions 215



Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The memicmp function compares the first cnt bytes of bufl and buf2 without regard to the case of letters in
the two buffers. The function converts all uppercase characters into lowercase and then performs the
comparison.

Return Value

The return value of memicmp indicates the result as follows:

Value Meaning

Less than 0 bufl less than buf2

0 bufl identical to buf2
Greater than 0 bufl greater than buf2

Example that uses memicmp ()

This example copies two strings that each contain a substring of 29 characters that are the same except
for case. The example then compares the first 29 bytes without regard to case.

#include <stdio.h>
#include <string.h>
char first[100],second[100];
int main(void)
{
int result;
strcpy(first, "Those Who Will Not Learn From History");
strcpy(second, "THOSE WHO WILL NOT LEARN FROM their mistakes");
printf("Comparing the first 29 characters of two strings.\n");
result = memicmp(first, second, 29);
printf("The first 29 characters of String 1 are ");
if (result < 0)
printf("less than String 2.\n");
else
if (0 == result)
printf("equal to String 2.\n");
else
printf("greater than String 2.\n");
return 0;

}
The output should be:
Comparing the first 29 characters of two strings.

The first 29 characters of String 1 are equal to String 2

Related Information:

* “memchr() — Search Buffer” on page 212

* [“'memcmp() — Compare Buffers” on page 213

* [“memcpy() — Copy Bytes” on page 214|

+ [“'memmove() — Copy Bytes” on page 217

[“memset() — Set Bytes to Value” on page 218|

[‘stremp() — Compare Strings” on page 360

[“strempi() - Compare Strings Without Case Sensitivity” on page 362|

+ [“stricmp() - Compare Strings without Case Sensitivity” on page 374

216 ILE C/C++ Runtime Library Functions V6R1



+ [“strnicmp - Compare Substrings Without Case Sensitivity” on page 382

* [“<string.h>" on page 17|

memmove() — Copy Bytes

Format

#include <string.h>
void *memmove (void *dest, const void *src, size_t count);

Language Level: ANSI
Threadsafe: Yes.
Description

The memmove () function copies count bytes of src to dest. This function allows copying between objects that
might overlap as if src is first copied into a temporary array.

Return Value

The memmove () function returns a pointer to dest.

Example that uses memmove ()

This example copies the word "shiny” from position target + 2 to position target + 8.

#include <string.h>
#include <stdio.h>

#define SIZE 21
char target[SIZE] = "a shiny white sphere";

int main( void )
{
char * p = target + 8; /* p points at the starting character
of the word we want to replace */
char * source = target + 2; /* start of "shiny" */

printf( "Before memmove, target is \"%s\"\n", target );
memmove( p, source, 5 );
printf( "After memmove, target becomes \"%s\"\n", target );

}

R A Expected OULpUL:  Fxkdkkdkkdhkdhrdhrdhkkhrdkkhkkh®
Before memmove, target is "a shiny white sphere"

After memmove, target becomes "a shiny shiny sphere"

*/

Related Information

* [“memchr() — Search Buffer” on page 212

* [“memcmp() — Compare Buffers” on page 213|

+ “wmemmove() — Copy Wide-Character Buffer” on page 501]

* [“memcpy() — Copy Bytes” on page 214

[“memset() — Set Bytes to Value” on page 218§|

+ |“strcpy() — Copy Strings” on page 364|

* [‘<string.h>" on page 17]

Chapter 2. Library Functions 217



memset() — Set Bytes to Value

Format

#include <string.h>
void *memset(void =dest, int c, size_t count);

Language Level: ANSI
Threadsafe: Yes.
Description

The memset () function sets the first count bytes of dest to the value c. The value of ¢ is converted to an
unsigned character.

Return Value

The memset () function returns a pointer to dest.

Example that uses memset ()

This example sets 10 bytes of the buffer to A and the next 10 bytes to B.

#include <string.h>
#include <stdio.h>

#define BUF_SIZE 20
int main(void)

char buffer[BUF_SIZE + 1];
char *string;

memset (buffer, 0, sizeof(buffer));

string = (char *) memset(buffer,'A', 10);
printf("\nBuffer contents: %s\n", string);
memset (buffer+10, 'B', 10);
printf("\nBuffer contents: %s\n", buffer);

}

[ xS g kk Rk Rk kg kK Output should be similar to: ***kxkxkkkkxkrkk
Buffer contents: AAAAAAAAAA

Buffer contents: AAAAAAAAAABBBBBBBBBB
*/

Related Information

* [“memchr() — Search Buffer” on page 212|

* “memcmp() — Compare Buffers” on page 213

* [“memcpy() — Copy Bytes” on page 214

* [“'memmove() — Copy Bytes” on page 217

* [“wmemset() — Set Wide Character Buffer to a Value” on page 502|

+ [“<string.h>" on page 17

mktime() — Convert Local Time

Format

218 ILE C/C++ Runtime Library Functions V6R1



#include <time.h>
time_t mktime(struct tm *time);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale.

Description

The mktime() function converts a stored tm structure (assume to be in job local time) pointed to by time,
into a time_t structure suitable for use with other time functions. After the conversion, the time_t
structure will be considered Universal Coordinate Time (UTC). For this conversion, mktime() checks the
current locale setting for local time zone and daylight saving time (DST). If these values are not set in the
current locale, mktime() gets the local time zone and daylight saving time settings from the current job. If
the DST is set in the locale but the time zone information is not, the DST information in the locale is
ignored. mktime() then uses the current time zone information to determine UTC.

The values of some structure elements pointed to by time are not restricted to the ranges shown for
gmtime().

The values of tm_wday and tm_yday passed to mktime() are ignored and are assigned their correct
values on return.

A positive or 0 value for tm_isdst causes mktime() to presume initially that DST, respectively, is or is not
in effect for the specified time. A negative value for tm_isdst causes mktime() to attempt to determine
whether DST is in effect for the specified time.

Return Value

The mktime() function returns Universal Coordinate Time (UTC) having type time_t. The value
(time_t)(-1) is returned if the Universal Coordinate Time cannot be represented.

Example that uses mktime ()

This example prints the day of the week that is 40 days and 16 hours from the current date.

Chapter 2. Library Functions 219



#include <stdio.h>
#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday" };

int main(void)

{
time_t t1, t3;
struct tm *t2;

= time(NULL);
t2 = localtime(&tl);
t2 -> tm_mday += 40;
t2 -> tm_hour += 16;
t3 = mktime(t2);

printf("40 days and 16 hours from now, it will be a %s \n",
wday[t2 -> tm_wday]);
}

[ FHrk gk KT I I I TR KK Output should be similar to: ****xkxkkkkxkkkk

40 days and 16 hours from now, it will be a Sunday

*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* |“ctime() — Convert Time to Character String” on page 71|

* [“ctime64() — Convert Time to Character String” on page 73|

[‘ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

* |“ctime_r() — Convert Time to Character String (Restartable)” on page 74

* [“gmtime() — Convert Time” on page 161
g pag

[‘emtime64() — Convert Time” on page 163)|

[‘emtime64_r() — Convert Time (Restartable)” on page 167]

“omtime_r() — Convert Time (Restartable)” on page 165
g pag

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[“localtime64_r() — Convert Time (Restartable)” on page 189

[localtime_r() — Convert Time (Restartable)” on page 188|
[‘mktime64() — Convert Local Time”]

* [“time() — Determine Current Time” on page 411

[“time64() — Determine Current Time” on page 412|

* [“<time.h>" on page 18|

mktime64() — Convert Local Time

Format

#include <time.h>

time64_t mktime64(struct tm *time);
Language Level: ILE C Extension

Threadsafe: Yes.

220 ILE C/C++ Runtime Library Functions V6R1



Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current
locale.

Description

The mktime64 () function converts a stored tm structure (assumed to be in job local time) pointed to by
time, into a time64_t value suitable for use with other time functions. After the conversion, the time64_t
value will be considered Universal Coordinate Time (UTC). For this conversion, mktime64() checks the
current locale settings for the local time zone and daylight saving time (DST). If these values are not set
in the current locale, mktime64 () gets the local time zone and DST settings from the current job. If the
DST is set in the locale but the time zone information is not, the DST information in the locale is ignored.
The mktime64 () function then uses the time zone information of the current job to determine UTC.

The values of some structure elements pointed to by time are not restricted to the ranges shown for
gmtime64().

The values of tm_wday and tm_yday passed to mktime64 () are ignored and are assigned their correct
values on return.

A positive or 0 value for tm_isdst causes mktime() to presume initially that DST, respectively, is or is not
in effect for the specified time. A negative value for tm_isdst causes mktime() to attempt to determine

whether DST is in effect for the specified time.

Note: The supported date and time range for this function is 01/01/1970 00:00:00 through 12/31/9999
23:59:59.

Return Value

The mktime64 () function returns Universal Coordinate Time (UTC) having type time64_t. The value
(time_t)(-1) is returned if the Universal Coordinate Time cannot be represented or if the given time is out
of range. If the given time is out of range, errno is set to EOVERFLOW.

Example that uses mktime64()

This example prints the day of the week that is 40 days and 16 hours from the current date.

Chapter 2. Library Functions 221



#include <stdio.h>
#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday" };

int main(void)

{
time64_t tl1, t3;
struct tm *t2;

= time64 (NULL);
t2 = localtime64(&tl);
t2 -> tm_mday += 40;
t2 -> tm_hour += 16;
t3 = mktime64(t2);

printf("40 days and 16 hours from now, it will be a %s \n",
wday[t2 -> tm_wday]);
}

[ FHrk gk KT I I I TR KK Output should be similar to: ****xkxkkkkxkkkk

40 days and 16 hours from now, it will be a Sunday

*/

Related Information

+ [“asctime() — Convert Time to Character String” on page 39|

+ [“asctime_r() — Convert Time to Character String (Restartable)” on page 41|

* |“ctime() — Convert Time to Character String” on page 71|

* [“ctime64() — Convert Time to Character String” on page 73|

[‘ctime64_r() — Convert Time to Character String (Restartable)” on page 76|

* |“ctime_r() — Convert Time to Character String (Restartable)” on page 74

* [“gmtime() — Convert Time” on page 161
g pag

[‘emtime64() — Convert Time” on page 163)|

[‘emtime64_r() — Convert Time (Restartable)” on page 167]

“omtime_r() — Convert Time (Restartable)” on page 165
g pag

[“localtime() — Convert Time” on page 185|

[“localtime64() — Convert Time” on page 187]

[“localtime64_r() — Convert Time (Restartable)” on page 189

[localtime_r() — Convert Time (Restartable)” on page 188|

[“mktime() — Convert Local Time” on page 218

* [“time() — Determine Current Time” on page 411

[“time64() — Determine Current Time” on page 412|

* [“<time.h>" on page 18|

modf() — Separate Floating-Point Value

Format

#include <math.h>

double modf(double x, double xintptr);
Language Level: ANSI

Threadsafe: Yes.

222 ILE C/C++ Runtime Library Functions V6R1



Description

The modf () function breaks down the floating-point value x into fractional and integral parts. The signed
fractional portion of x is returned. The integer portion is stored as a double value pointed to by intptr.
Both the fractional and integral parts are given the same sign as x.

Return Value

The modf () function returns the signed fractional portion of x.

Example that uses modf ()

This example breaks the floating-point number -14.876 into its fractional and integral components.

#include <math.h>
#include <stdio.h>

int main(void)
{
double x, y, d;

X
y

-14.876;
modf(x, &d);

printf("x = %1f\n", x);

printf("Integral part = %1f\n", d);

printf("Fractional part = %1f\n", y);
1

R R Y Qutput should be similar to: ***xkxkkkkkkkkkkkhx

x = -14.876000

Integral part = -14.000000
Fractional part = -0.876000
*/

Related Information

+ [“fmod() — Calculate Floating-Point Remainder” on page 108§|

* |“frexp() — Separate Floating-Point Value” on page 132|

* [“ldexp() — Multiply by a Power of Two” on page 178§|

+ [“<math.h>" on page §|

nextafter() — nextafterl()— nexttoward() — nexttowardl() — Calculate
the Next Representable Floating-Point Value

Format

#include <math.h>

double nextafter(double x, double y);

long double nextafterl(long double x, Tong double y);
double nexttoward(double x, Tong double y);

Tong double nexttowardl(long double x, Tong double y);

Language Level: ANSI
Threadsafe: Yes.

Description

Chapter 2. Library Functions 223



The nextafter(), nextafterl(), nexttoward(), and nexttowardl () functions calculate the next
representable value after x in the direction of y.

Return Value

The nextafter(), nextafterl(), nexttoward(), and nexttowardl () functions return the next representable
value after x in the direction of y. If x is equal to y, they return y. If x or y is NaN (Not a Number), NaN
is returned and errno is set to EDOM. If x is the largest finite value and the result is infinite or not
representable, HUGE_VAL is returned and errno is set to ERANGE.

Example that uses nextafter(), nextafterl(), nexttoward(), and nexttowardl ()

This example converts a floating-point value to the next greater representable value and next smaller
representable value. It prints out the converted values.

#include <stdio.h>
#include <math.h>
int main(void)

{

double x, y;

long double 1d;

x = nextafter(1.234567899, 10.0);
printf("nextafter 1.234567899 is %#19.17g\n" x);
1d = nextafterl(1.234567899, -10.0);
printf("nextafter] 1.234567899 is %#19.17g\n" 1d);

X = nexttoward(1.234567899, 10.0);
printf("nexttoward 1.234567899 is %#19.17g\n" x);
1d = nexttowardl(1.234567899, -10.0);
printf("nexttowardl 1.234567899 is %#19.17g\n" 1d);

}

[Fxxrxrrrrrkxrxexx Qutput should be similar to: *xxssxxssrrrsrrrs
nextafter 1.234567899 is 1.2345678990000002
nextafterl 1.234567899 is 1.2345678989999997
nexttoward 1.234567899 is 1.2345678990000002
nexttowardl 1.234567899 is 1.2345678989999997

*/

Related Information

* |“ceil() — Find Integer >=Argument” on page 61|

[“floor() —Find Integer <=Argument” on page 107

[“frexp() — Separate Floating-Point Value” on page 132

[“modf() — Separate Floating-Point Value” on page 222|

[“<math.h>" on page §|

nl_langinfo() —Retrieve Locale Information

Format

#include <langinfo.h>
#include <nl_types.h>
char *n1_langinfo(nl_item item);

Language Level: XPG4

Threadsafe: No.

224 ILE C/C++ Runtime Library Functions V6R1



Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, and LC_TIME categories of the current locale. This function is not
available when LOCALETYPE(*CLD) is specified on the compilation command. For more information,

see [“Understanding CCSIDs and Locales” on page 524

Description

The n1_langinfo() function retrieves from the current locale the string that describes the requested
information specified by item.

The retrieval of the following information from the current locale is supported:

Item Explanation

CODESET CCSID of locale in character form

D_T_FMT string for formatting date and time

D_FMT date format string

T_FMT time format string

T_FMT_AMPM a.m. or p.m. time format string

AM_STR Ante Meridian affix

PM_STR Post Meridian affix

DAY_1 name of the first day of the week (for example, Sunday)
DAY_2 name of the second day of the week (for example, Monday)
DAY_3 name of the third day of the week (for example, Tuesday)
DAY _4 name of the fourth day of the week (for example, Wednesday)
DAY_5 name of the fifth day of the week (for example, Thursday)
DAY_6 name of the sixth day of the week (for example, Friday)
DAY 7 name of the seventh day of the week (for example, Saturday)
ABDAY_1 abbreviated name of the first day of the week

ABDAY 2 abbreviated name of the second day of the week
ABDAY_3 abbreviated name of the third day of the week

ABDAY 4 abbreviated name of the fourth day of the week
ABDAY_5 abbreviated name of the fifth day of the week

ABDAY_6 abbreviated name of the sixth day of the week

ABDAY_7 abbreviated name of the seventh day of the week

MON_1 name of the first month of the year

MON_2 name of the second month of the year

MON_3 name of the third month of the year

MON_4 name of the fourth month of the year

MON_5 name of the fifth month of the year

MON_6 name of the sixth month of the year

MON_7 name of the seventh month of the year

MON_8 name of the eighth month of the year

MON_9 name of the ninth month of the year

MON_10 name of the tenth month of the year

MON_11 name of the eleventh month of the year

Chapter 2. Library Functions

225



MON_12 name of the twelfth month of the year

ABMON_1 abbreviated name of the first month of the year
ABMON_2 abbreviated name of the second month of the year
ABMON_3 abbreviated name of the third month of the year
ABMON_4 abbreviated name of the fourth month of the year
ABMON_5 abbreviated name of the fifth month of the year
ABMON_6 abbreviated name of the sixth month of the year
ABMON_7 abbreviated name of the seventh month of the year
ABMON_8 abbreviated name of the eighth month of the year
ABMON_9 abbreviated name of the ninth month of the year
ABMON_10 abbreviated name of the tenth month of the year
ABMON_11 abbreviated name of the eleventh month of the year
ABMON_12 abbreviated name of the twelfth month of the year
ERA era description segments

ERA_D_FMT era date format string

ERA_D_T_FMT era date and time format string

ERA_T_FMT era time format string

ALT_DIGITS alternative symbols for digits

RADIXCHAR radix character

THOUSEP separator for thousands

YESEXPR affirmative response expression

NOEXPR negative response expression

YESSTR affirmative response for yes/no queries

NOSTR negative response for yes/no queries

CRNCYSTR currency symbol, preceded by '~ if the symbol should appear before the value, "+ if

the symbol should appear after the value, or . if the symbol should replace the
radix character

Returned Value

The n1_langinfo() function returns a pointer to a null-ended string containing information concerning
the active language or cultural area. The active language or cultural area is determined by the most
recent setlocale() call. The array pointed to by the returned value is modified by subsequent calls to the
function. The array should not be changed by the user’s program.

If the item is not valid, the function returns a pointer to an empty string.

Example that uses n1_langinfo()

This example retrieves the name of the codeset using the n1_langinfo() function.

226 ILE C/C++ Runtime Library Functions V6R1




#include <langinfo.h>
#include <locale.h>
#include <n1_types.h>
#include <stdio.h>
int main(void)

printf("Current codeset is %s\n", n1_langinfo(CODESET));
return 0;

}

/************************************************************************

The output should be similar to:

Current codeset is 37

************************************************************************/

Related Information

* [“localeconv() — Retrieve Information from the Environment” on page 181

+ |“setlocale() — Set Locale” on page 339

+ [“<langinfo.h>" on page 7|

* |“<nl_types.h>" on page 9|

perror() — Print Error Message
Format

#include <stdio.h>

void perror(const char *string);

Language Level: ANSI

Threadsafe: Yes.

Description

The perror() function prints an error message to stderr. If string is not NULL and does not point to a

null character, the string pointed to by string is printed to the standard error

stream, followed by a colon

and a space. The message associated with the value in errno is then printed followed by a new-line

character.

To produce accurate results, you should ensure that the perror() function is

called immediately after a

library function returns with an error; otherwise, subsequent calls might alter the errno value.

Return Value
There is no return value.

The value of errno can be set to:
Value Meaning

EBADDATA
The message data is not valid.

EBUSY
The record or file is in use.

Chapter 2. Library Functions 227



ENOENT
The file or library cannot be found.

EPERM
Insufficient authorization for access.

ENOREC
Record not found.

EIOERROR
A non-recoverable I/0 error occurred.

EIORECERR
A recoverable I/0O error occurred.

Example that uses perror()
This example tries to open a stream. If fopen() fails, the example prints a message and ends the program.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *fh;

if ((fh = fopen("mylib/myfile","r")) == NULL)
{
perror("Could not open data file");
abort();

}
}

Related Information

+ [“clearerr() — Reset Error Indicators” on page 62|

* |“ferror() — Test for Read /Write Errors” on page 95|

» [“strerror() — Set Pointer to Runtime Error Message” on page 367

+ [“<stdio.h>" on page 15|

pow() — Compute Power

Format

#include <math.h>

double pow(double x, double y);

Language Level: ANSI

Threadsafe: Yes.

Description

The pow() function calculates the value of x to the power of y.

Return Value

If y is 0, the pow() function returns the value 1. If x is 0 and y is negative, the pow() function sets errno to
EDOM and returns 0. If both x and y are 0, or if x is negative and y is not an integer, the pow() function

sets errno to EDOM, and returns 0. The errno variable can also be set to ERANGE. If an overflow results,
the pow() function returns +HUGE_VAL for a large result or -HUGE_VAL for a small result.

228 ILE C/C++ Runtime Library Functions V6R1



Example that uses pow()
This example calculates the value of 2°.

#include <math.h>
#include <stdio.h>

int main(void)

double x, y, z;

X = 2.0;
y = 3.0;
z = pow(x,y);

printf("%1f to the power of %1f is %1f\n", x, y, z);
1

[ Fk K dkk ok kk ok kkk ok Output should be similar to: H*x*xkxkkxkkkkxkh*x

2.000000 to the power of 3.000000 is 8.000000
*/

Related Information

* [“exp() — Calculate Exponential Function” on page 89|

* |“log() — Calculate Natural Logarithm” on page 191

[1og10() — Calculate Base 10 Logarithm” on page 191|

[“sqrt() — Calculate Square Root” on page 353|

[“<math.h>" on page §|

printf() — Print Formatted Characters

Format

#include <stdio.h>
int printf(const char *format-string, argument-Tist);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC
categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the
compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The printf() function formats and prints a series of characters and values to the standard output stream
stdout. Format specifications, beginning with a percent sign (%), determine the output format for any
argument-list following the format-string. The format-string is a multibyte character string beginning and
ending in its initial shift state.

The format-string is read left to right. When the first format specification is found, the value of the first
argument after the format-string is converted and printed according to the format specification. The
second format specification causes the second argument after the format-string to be converted and
printed, and so on through the end of the format-string. If there are more arguments than there are format
specifications, the extra arguments are evaluated and ignored. The results are undefined if there are not
enough arguments for all the format specifications.

Chapter 2. Library Functions 229



A format specification has the following form:

A\
A

»>—% type
l—flags—l |—width—| l—— precision—l —h—

Conversions can be applied to the nth argument after the format-string in the argument list, rather than to
the next unused argument. In this case, the conversion character % is replaced by the sequence %n$,
where n is a decimal integer in the range 1 through NL_ARGMAX, giving the position of the argument
in the argument list. This feature provides for the definition of format strings that select arguments in an
order appropriate to specific languages.

Alternative format specification has the following form:

»>—%—arg-number$ type >
I—flags—| |—width—| l—— precision—| —h—
_L_
_'|_
L 11—
H
_D_

As an alternative, specific entries in the argument-list can be assigned by using the format specification
outlined in the preceding diagram. This format specification and the previous format specification cannot
be mixed in the same call to printf(). Otherwise, unpredictable results might occur.

The arg-number is a positive integer constant where 1 refers to the first entry in the argument-list.
Arg-number cannot be greater than the number of entries in the argument-list, or else the results are
undefined. Arg-number also may not be greater than NL_ARGMAX.

In format strings containing the %n$ form of conversion specifications, numbered arguments in the
argument list can be referenced from the format string as many times as required.

In format strings containing the %n$ form of a conversion specification, a field width or precision may be
indicated by the sequence *m$, where m is a decimal integer in the range 1 thru NL_ARGMAX giving
the position in the argument list (after the format argument) of an integer argument containing the field
width or precision, for example:

printf("%1$d:%2$.%3$d:%4$.+3$d\n", hour, min, precision, sec);

The format-string can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only exception to this
is that %% can be mixed with the %n$ form. The results of mixing numbered and unnumbered argument
specifications in a format-string string are undefined. When numbered argument specifications are used,
specifying the nth argument requires that all the leading arguments, from the first to the (n-1)th, are
specified in the format string.

Each field of the format specification is a single character or number signifying a particular format
option. The type character, which appears after the last optional format field, determines whether the

230 ILE C/C++ Runtime Library Functions V6R1



associated argument is interpreted as a character, a string, a number, or pointer. The simplest format
specification contains only the percent sign and a type character (for example, %s).

The following optional fields control other aspects of the formatting:

Field Description

flags  Justification of output and printing of signs, blanks, decimal points, octal, and hexadecimal
prefixes, and the semantics for wchar_t precision unit.

width ~ Minimum number of bytes output.

precision

See [Table 4 on page 235]

h, 11, L, H, D, DD

Size of argument expected:

h

1

L
H
D
DD

A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a short int or

unsigned short int.

A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a long int or

unsigned long int.

A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a long long
int or unsigned long long int.

A prefix with e, E, f, F, g, or G types that specifies that the argument is long double.

A prefix with e, E, f, F, g, or G types that specifies that the argument is _Decimal32.

A prefix with e, E, f, F, g, or G types that specifies that the argument is _Decimal64.

A prefix with e, E, f, F, g, or G types that specifies that the argument is _Decimal128.

Each field of the format specification is discussed in detail below. If a percent sign (%) is followed by a
character that has no meaning as a format field, the character is simply copied to stdout. For example, to

print a percent sign character, use %%.

The type characters and their meanings are given in the following table:

Character

Argument

Output Format

d,i

Integer

Signed decimal integer.

u

Integer

Unsigned decimal integer.

(¢]

Integer

Unsigned octal integer.

X

Integer

Unsigned hexadecimal integer, using abcdef.

X

Integer

Unsigned hexadecimal integer, using ABCDEF.

D(n,p)

Packed decimal

It has the format [-] dddd.dddd where the number of digits after the
decimal point is equal to the precision of the specification. If the
precision is missing, the default is p; if the precision is zero, and the #
flag is not specified, no decimal point character appears. If the n and
the p are ¥, an argument from the argument list supplies the value. n
and p must precede the value being formatted in the argument list. At
least one character appears before a decimal point. The value is
rounded to the appropriate number of digits.

Floating-point

Signed value having the form [-]dddd.dddd, where dddd is one or more
decimal digits. The number of digits before the decimal point depends
on the magnitude of the number. The number of digits after the
decimal point is equal to the requested precision.”

Chapter 2. Library Functions 231



Character

Argument

Output Format

F

Floating-point

Identical to the f format except that uppercase alphabetic characters
are used instead of lowercase alphabetic characters.?

e Floating-point Signed value having the form [-]d.dddd e[sign]ddd, where d is a
single-decimal digit, dddd is one or more decimal digits, ddd is 2 or 4
decimal digits, and sign is + or —.2

E Floating-point Identical to the e format except that uppercase alphabetic characters
are used instead of lowercase alphabetic characters.?

g Floating-point Signed value printed in f or e format. The e format is used only when
the exponent of the value is less than -4 or greater than precision.
Trailing zeros are truncated, and the decimal point appears only if one
or more digits follow it.”

G Floating-point Identical to the g format except that uppercase alphabetic characters
are used instead of lowercase alphabetic characters.?

c Character (byte) Single character.

S String Characters (bytes) printed up to the first null character (\0) or until
precision is reached.

n Pointer to integer Number of characters (bytes) successfully written so far to the stream
or buffer; this value is stored in the integer whose address is given as
the argument.

p Pointer Pointer converted to a sequence of printable characters. It can be one
of the following;:

* space pointer

* system pointer

* invocation pointer
* procedure pointer
* open pointer

* suspend pointer

* data pointer

* label pointer

lcor C Wide Character The (wchar_t) character is converted to a multibyte character as if by a
call to wctomb(), and this character is printed out.'

IsorS Wide Character The (wchar_t) characters up to the first (wchar_t) null character (L\0),
or until precision is reached, are converted to multibyte characters, as
if by a call to wcstombs(), and these characters are printed out. If the
argument is a null string, (null) is printed.'

Notes:

1. See the documentation for the wctomb() function or the documentation for the wcstombs () function for
more information. You can also find additional information in [“Wide Characters” on page 527

2. If the H, D, or DD format size specifiers are not used, only 15 significant digits of output are
guaranteed.

The following list shows the format of the printed values for i5/0OS pointers, and gives a brief description

of the components of the printed values.

Space pointer:

SPP:Context:Object:Offset: AG

Context: type, subtype and name of the context

Object:
Offset:

type, subtype and name of the object
offset within the space

232 ILE C/C++ Runtime Library Functions V6R1



AG: Activation group ID
System pointer: SYP:Context:Object: Auth:Index:AG

Context: type, subtype and name of the context
Object: type, subtype and name of the object
Auth: authority

Index: Index associated with the pointer

AG: Activation group ID

Invocation pointer: IVP:Index:AG

Index: Index associated with the pointer
AG: Activation group ID

Procedure pointer: PRP:Index:AG

Index:  Index associated with the pointer
AG: Activation group ID

Suspend pointer: SUP:Index:AG

Index: Index associated with the pointer
AG: Activation group ID

Data pointer: DTP:Index:AG

Index:  Index associated with the pointer
AG: Activation group ID

Label pointer: LBP:Index:AG

Index: Index associated with the pointer
AG: Activation group ID

NULL pointer: NULL

The following restrictions apply to pointer printing and scanning on the i5/0OS operating system:

* If a pointer is printed out and scanned back from the same activation group, the scanned back pointer
will be compared equal to the pointer printed out.

+ If a scanf() family function scans a pointer that was printed out by a different activation group, the
scanf() family function will set the pointer to NULL.

 If a pointer is printed out in a Teraspace environment, just the hexadecimal value of the pointer is
printed out. These results are the same as when using %f#p.

See the WebSphere Development Studio: ILE C/C++ Programmer’s Guide for more information about using
i5/0S pointers.

If a floating-point value of INFINITY or Not-a-Number (NaN) is formatted using the e, f, or g format, the
output string is infinity or nan. If a floating-point value of INFINITY or Not-A-Number (NaN) is
formatted using the E, F, or G format, the output string is INFINITY or NAN.

The flag characters and their meanings are as follows (notice that more than one flag can appear in a
format specification):

Chapter 2. Library Functions 233



Flag Meaning Default

- Left-justify the result within the field width. Right-justify.

+ Prefix the output value with a sign (+ or -) if the output value is | Sign appears only for
of a signed type. negative signed values

)

blank(' ") Prefix the output value with a blank if the output value is signed |No blank.
and positive. The + flag overrides the blank flag if both appear,
and a positive signed value will be output with a sign.

# When used with the o, x, or X formats, the # flag prefixes any No prefix.
nonzero output value with 0, 0x, or 0X, respectively.

When used with the f, E D(n,p), e, or E formats, the # flag forces |Decimal point appears

the output value to contain a decimal point in all cases. only if digits follow it.

When used with the g or G formats, the # flag forces the output Decimal point appears

value to contain a decimal point in all cases and prevents the only if digits follow it;

truncation of trailing zeros. trailing zeros are
truncated.

When used with the Is or S format, the # flag causes precision to | Precision indicates the

be measured in characters, regardless of the size of the character. | maximum number of

For example, if single-byte characters are being printed, a precision | bytes to be output.

of 4 would result in 4 bytes being printed. If double-byte

characters are being printed, a precision of 4 would result in 8

bytes being printed.

When used with the p format, the # flag converts the pointer to Pointer converted to a

hex digits. These hex digits cannot be converted back into a sequence of printable

pointer, unless in a Teraspace environment. characters.

0 When used with the d, i, D(n,p) o, u, x, X, e, E, f, F g, or G Space padding. No
formats, the 0 flag causes leading Os to pad the output to the field |space padding for
width. The 0 flag is ignored if precision is specified for an integer |D(n,p).
or if the — flag is specified.

The # flag should not be used with ¢, Ic, d, i, u, or s types.

Width is a nonnegative decimal integer controlling the minimum number of characters printed. If the
number of characters (bytes) in the output value is less than the specified width, blanks are added on the
left or the right (depending on whether the - flag is specified) until the minimum width is reached.

Width never causes a value to be truncated; if the number of characters (bytes) in the output value is
greater than the specified width, or width is not given, all characters of the value are printed (subject to

the precision specification).

For the Is or S type, width is specified in bytes. If the number of bytes in the output value is less than the
specified width, single-byte blanks are added on the left or the right (depending on whether the - flag is
specified) until the minimum width is reached.

The width specification can be an asterisk (*), in which case an argument from the argument list supplies
the value. The width argument must precede the value being formatted in the argument list.

Precision is a nonnegative decimal integer preceded by a period, which specifies the number of characters
to be printed or the number of decimal places. Unlike the width specification, the precision can cause

truncation of the output value or rounding of a floating-point or packed decimal value.

The precision specification can be an asterisk (*), in which case an argument from the argument list
supplies the value. The precision argument must precede the value being formatted in the argument list.

234 ILE C/C++ Runtime Library Functions V6R1



The interpretation of the precision value and the default when the precision is omitted depend on the type,
as shown in the following table:

Table 4. Values of Precision

Type Meaning Default

i Precision specifies the minimum number of digits to be If precision is O or omitted

d printed. If the number of digits in the argument is less than | entirely, or if the period (.)

u precision, the output value is padded on the left with zeros. appears without a number

o The value is not truncated when the number of digits following it, the precision is set

X exceeds precision. to 1.

X

f Precision specifies the number of digits to be printed after the |Default precision for f, F, e and

F decimal point. The last digit printed is rounded. E is six. Default precision for

D(n,p) D(n,p) is p. If precision is 0 or

e the period appears without a

E number following it, no
decimal point is printed.

g Precision specifies the maximum number of significant digits | All significant digits are

G printed. printed. Default precision is
Six.

c No effect. The character is printed.

Ic No effect. The wchar_t character is
converted and resulting
multibyte character is printed.

s Precision specifies the maximum number of characters (bytes) |Characters are printed until a
to be printed. Characters (bytes) in excess of precision are not |null character is encountered.
printed.

Is Precision specifies the maximum number of bytes to be wchar_t characters are
printed. Bytes in excess of precision are not printed; however, |converted and resulting
multibyte integrity is always preserved. multibyte characters are

printed.

Return Value

The printf() function returns the number of bytes printed. The value of errno may be set to:

Value Meaning

EBADMODE
The file mode that is specified is not valid.

ECONVERT
A conversion error occurred.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/0O error occurred.

EILSEQ

An invalid multibyte character sequence was encountered.

EPUTANDGET

An illegal write operation occurred after a read operation.

ESTDOUT
stdout cannot be opened.

Chapter 2. Library Functions 235



| Note: The radix character for the printf() function is locale sensitive. The radix character is the decimal
I point to be used for the # flag character of the format string parameter for the format types f, F,
| D(n,p), e, E, g, and G.

Example that uses printf()
This example prints data in a variety of formats.

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
char ch = 'h', *string = "computer";
int count = 234, hex = 0x10, oct = 010, dec = 10;
double fp = 251.7366;
wchar_t wc = (wchar_t)0x0058;
wchar_t ws[4];
printf("1234567890123%n4567890123456789\n\n", &count);
printf("Value of count should be 13; count = %d\n\n", count);
printf("%10c%5c\n", ch, ch);
printf("%25s\n%25.4s\n\n", string, string);
printf("%f %.2f %e %E\n\n", fp, fp, fp, fp);
printf("%i %i %i\n\n", hex, oct, dec);

1

[ Fk K dkk KRk kkk ok Output should be similar to: Fx*xk*kxkxkkxkxkk*x

234 +234 000234 EA ea 352
12345678901234567890123456789

Value of count should be 13; count = 13

computer
comp

251.736600 251.74 2.517366e+02 2.517366E+02
16 8 10
**~k****-k*********************~k*************************************/

Example that uses printf()

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

/* This program is compiled with LOCALETYPE(*LOCALEUCS2) and */
/* SYSIFCOPT(*IFSIO) */

/* We will assume the locale setting is the same as the CCSID of the =/

/* job. We will also assume any files involved have a CCSID of */

/* 65535 (no convert). This way if printf goes to the screen or */

/* a file the output will be the same. */

int main(void)
{
wchar_t wc = 0x0058; /* UNICODE X =/
wchar_t ws[4];
setlocale(LC_ALL,
"/QSYS.LIB/EN_US.LOCALE"); /* a CCSID 37 locale =*/

ws[0] = 0x0041; /* UNICODE A =/

ws[1] = (wchar_t)0x0042; /* UNICODE B =/
ws[2] = (wchar_t)0x0043; /* UNICODE C =/
ws[3] = (wchar_t)0x0000;

236 ILE C/C++ Runtime Library Functions V6R1



}

/* The output displayed is CCSID 37 =/
printf("%1c  %Is\n\n",wc,ws);
printf("%1c  %.21s\n\n",wc,ws);

/* Now Tet's try a mixed-byte CCSID example =*/
/* You would need a device that can handle mixed bytes to =/
/* display this correctly. */

setlocale(LC_ALL,
"/QSYS.LIB/JA_JP.LOCALE");/* a CCSID 5026 locale */

/* big A means an A that takes up 2 bytes on the screen */

/* It will Took bigger then single byte A */
ws[0] = (wchar t)OxFF21; /* UNICODE big A  */

ws[1] = (wchar_ t)OxFF22; /* UNICODE big B */

ws[2] = (wchar_t)OxFF23; /* UNICODE big C  */

ws[3] = (wchar_t)0x0000;

wc = Oxffll; /% UNICODE big 1 =/

printf("%1c  %1s\n\n",wc,ws);

/* The output of this printf is not shown below and it */
/* will differ depending on the device you display it on,*/
/* but if you looked at the string in hex it would Took =/
/* like this: OE42F10F404040400E42C142C242C30F */
/* OE is shift out, OF is shift in, and 42F1 is the */
/* big 1 in CCSID 5026 */

printf("%1c  %.41s\n\n",wc,ws);

/* The output of this printf is not shown below either. */
/* The hex would look like: */
/* OE42F10F404040400E42C10F */
/* Since the precision is in bytes we only get 4 bytes =*/
/* of the string. */

printf("%1c  %#.21s\n\n",wc,ws);

/* The output of this printf is not shown below either. */

/* The hex would Took Tike: */
/* OE42F10F404040400E42C142C20F */
/* The # means precision is in characters reguardless  */
/* of size. So we get 2 characters of the string. x/

[ *F Kk kK kkk Rk k Ak Output should be similar to: ***kkxkkkkkkkkkkk

X

X

ABC

AB

*******************************************************************/

Example that uses printf ()

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

/* This program is compile LOCALETYPE(*LOCALE) and */
/* SYSIFCOPT(*IFSIO) */

int main(void)

{

ws[1]
ws[2]

wchar_t wc = (wchar_t)0x00C4; [* D */
wchar_t ws[4];

ws[0] = (wchar_t)0x00C1; [* A x/
= (wchar_t)0x00C2; /* B x/
= (wchar_t)0x00C3; /x C  */

Chapter 2. Library Functions

237



ws[3] = (wchar_t)0x0000;
/* The output displayed is CCSID 37 =/
printf("%1c  %Is\n\n",wc,ws);

/* Now Tet's try a mixed-byte CCSID example =*/
/* You would need a device that can handle mixed bytes to =/
/* display this correctly. */

setlocale(LC_ALL,
"/QSYS.1ib/JA_JP.LOCALE"); /* a CCSID 5026 Tocale */

/* big A means an A that takes up 2 bytes on the screen */

/* It will Took bigger than single byte A */
ws[0] = (wchar_t)0x42C1; /* big A %/

ws[1] = (wchar_t)Ox42C2; /* big B */

ws[2] = (wchar_t)0x42C3; /* big C %/

ws[3] = (wchar_t)0x0000;

wc = 0x42F1; /* big 1 */

printf("%1c  %1s\n\n",wc,ws);

/* The output of this printf is not shown below and it =*/
/* will differ depending on the device you display it on,*/
/* but if you looked at the string in hex it would look =/
/* 1ike this: OE42F10F404040400E42C142C242C30F */
/* OE is shift out, OF is shift in, and 42F1 is the */
/* big 1 in CCSID 5026 =/

printf("%1c  %.41s\n\n",wc,ws);

/* The output of this printf is not shown below either. */

/* The hex would Took Tike: */
/* OE42F10F404040400E42C10F */
/* Since the precision is in bytes we only get 4 bytes =/
/* of the string. */

printf("%1c  %#.21s\n\n",wc,ws);

/* The output of this printf is not shown below either. */

/* The hex would Took like: */
/* OE42F10F404040400E42C142C20F */
/* The # means precision is in characters regardless */
/* of size. So we get 2 characters of the string. */

}

[HExFEII KK EIIK KR *K Output should be similar to: ****kxkkkkkhxkkkk

D ABC

*******************************************************************/

Related Information

s |“fprintf() — Write Formatted Data to a Stream” on page 116|
[“fscanf() — Read Formatted Data” on page 132|

[“scanf() — Read Data” on page 330|

[‘sprintf() — Print Formatted Data to Buffer” on page 352|

[“sscanf() — Read Data” on page 355|

[‘vfprintf() — Print Argument Data to Stream” on page 425

[‘vprintf() — Print Argument Data” on page 432|

[vsprintf() — Print Areument Data to Buffer” on page 436|

238 ILE C/C++ Runtime Library Functions V6R1



* “wprintf() — Format Data as Wide Characters and Print” on page 503
* |“<stdio.h>" on page 15|

putc() — putchar() — Write a Character

Format

#include <stdio.h>
int putc(int c, FILE *stream);
int putchar(int c);

Language Level: ANSI

Threadsafe: No. #undef putc or #undef putchar allows the putc or putchar function to be called instead
of the macro version of these functions. The functions are threadsafe.

Description

The putc() function converts ¢ to unsigned char and then writes c to the output stream at the current
position. The putchar() is equivalent to putc(c, stdout).

The putc() function can be defined as a macro so the argument can be evaluated multiple times.
The putc() and putchar() functions are not supported for files opened with type=record.
Return Value

The putc() and putchar() functions return the character written. A return value of EOF indicates an
error.

The value of errno may be set to:

Value Meaning

ECONVERT
A conversion error occurred.

EPUTANDGET
An illegal write operation occurred after a read operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I1/0O error occurred.

Example that uses putc()

This example writes the contents of a buffer to a data stream. In this example, the body of the for
statement is null because the example carries out the writing operation in the test expression.

Chapter 2. Library Functions 239



#include <stdio.h>
#include <string.h>

#define LENGTH 80

int main(void)
{
FILE *stream = stdout;
int i, ch;
char buffer[LENGTH + 1] = "Hello world";

/* This could be replaced by using the fwrite routine */

for (i =03
(i < strlen(buffer)) & ((ch = putc(buffer[i], stream)) != EOF);
++1);
1
[ xSk dkkk ok kk ok kkkkkk ok Expected output: sskkskskksdskkdokkhokkhohkhrkhrkhk

Hello world
*/

Related Information

* [“fputc() — Write Character” on page 118§|
[“fwrite() — Write Items” on page 146|
[“getc() — getchar() — Read a Character” on page 152|

* [“puts() — Write a String” on page 241|

* ["“putwc() — Write Wide Character” on page 242|
[‘putwchar() — Write Wide Character to stdout” on page 244
[‘<stdio.h>” on page 15|

putenv() — Change/Add Environment Variables

Format

#include <stdlib.h>
int putenv(const char *varname);

Language Level: XPG4
Threadsafe: Yes
Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|
[Locales” on page 524 for more information.

Description
The putenv() function sets the value of an environment variables by altering an existing variable or
creating a new one. The varname parameter points to a string of the form var=x, where x is the new value

for the environment variable var.

The name cannot contain a blank or an equal ( =) symbol. For example,
PATH NAME=/my_1ib/joe_user

is not valid because of the blank between PATH and NAME. Similarly,
PATH=NAME=/my_1ib/joe_user

240 ILE C/C++ Runtime Library Functions V6R1



is not valid because of the equal symbol between PATH and NAME. The system interprets all characters
following the first equal symbol as being the value of the environment variable.

Return Value

The putenv() function returns 0 is successful. If putenv() fails then -1 is returned and errno is set to
indicate the error.

Example that uses putenv ()

#include <stdio.h>
#include <stdlib.h>

int main(void)
char *pathvar;
if (-1 == putenv("PATH=/:/home/userid")) {
printf("putenv failed \n");
return EXIT_FAILURE;
1
/* getting and printing the current environment path */
pathvar = getenv("PATH");

printf("The current path is: %s\n", pathvar);
return 0;
1

/~k******~k**************************************************

The output should be:

The current path is: /:/home/userid

Related Information

+ [“getenv() — Search for Environment Variables” on page 154
* [“<stdlib.h>” on page 17]

puts() — Write a String
Format

#include <stdio.h>

int puts(const char *string);
Language Level: ANSI
Threadsafe: Yes.

Description

The puts() function writes the given string to the standard output stream stdout; it also appends a
new-line character to the output. The ending null character is not written.

Return Value

The puts() function returns EOF if an error occurs. A nonnegative return value indicates that no error
has occurred.

The value of errno may be set to:

Value Meaning

Chapter 2. Library Functions 241



ECONVERT
A conversion error occurred.

EPUTANDGET
An illegal write operation occurred after a read operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0O error occurred.
Example that uses puts ()

This example writes Hello World to stdout.

#include <stdio.h>

int main(void)
{
if ( puts("Hello World") == EOF )
printf( "Error in puts\n" );
1

R Expected output: skkskksdrsdkrskrkkrkk

Hello World

*/

Related Information

* |“fputs() — Write String” on page 121

[“fputws() — Write Wide-Character String” on page 124
[‘gets() — Read a Line” on page 156|

[“putc() - putchar() — Write a Character” on page 239
+ “putwc() — Write Wide Character”]
[<stdio.h>" on page 15|

putwc() — Write Wide Character

Format

#include <stdio.h>
#include <wchar.h>
wint_t putwc(wint_t wc, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527| for more information.

242  ILE C/C++ Runtime Library Functions V6R1



Description

The putwc () function writes the wide character wc to the stream at the current position. It also advances

the file position indicator for the stream appropriately. The putwc() function is equivalent to the fputwc()
function except that some platforms implement putwc() as a macro. Therefore, for portability, the stream
argument to putwc() should not be an expression with side effects.

Using a non-wide-character function with the putwc () function on the same stream results in undefined
behavior. After calling the putwc() function, flush the buffer or reposition the stream pointer before
calling a write function for the stream, unless EOF has been reached. After a write operation on the
stream, flush the buffer or reposition the stream pointer before calling the putwc() function.

Return Value
The putwc () function returns the wide character written. If a write error occurs, it sets the error indicator

for the stream and returns WEOEF. If an encoding error occurs when a wide character is converted to a
multibyte character, the putwc() function sets errno to EILSEQ and returns WEOF.

For information about errno values for putwc (), see [“fputc() — Write Character” on page 118}

Example that uses putwc ()

The following example uses the putwc() function to convert the wide characters in wcs to multibyte
characters and write them to the file putwc.out.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <errno.h>

int main(void)

{
FILE *Stream;
wchar_t *wcs = L"A character string.";
int i

if (NULL == (stream = fopen("putwc.out", "w"))) {
printf("Unable to open: \"putwc.out\".\n");
exit(1);

}

for (i = 0; wes[i] !'= L'\O'; i++) {
errno = 0;
if (WEOF == putwc(wcs[i], stream)) {
printf("Unable to putwc() the wide character.\n"
"wes[%d] = 0x%1x\n", i, wcs[i]);
if (EILSEQ == errno)
printf("An invalid wide character was encountered.\n");
exit(1);

1
fclose(stream);
return 0;

/***************************************************************

The output file putwc.out should contain :

A character string.
***************************************************************/

}
Related Information

Chapter 2. Library Functions 243



[“fputc() — Write Character” on page 118|

[“fputwc() — Write Wide Character” on page 122

[“fputws() — Write Wide-Character String” on page 124|
[‘getwc() — Read Wide Character from Stream” on page 157]

[‘putc() — putchar() — Write a Character” on page 239
[‘putwchar() — Write Wide Character to stdout’]
* [“<stdio.h>" on page 15|

+ [“<wcharh>" on page 18|

putwchar() — Write Wide Character to stdout

Format

#include <wchar.h>
wint_t putwchar(wint_t wc);

Language Level: ANSI
Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the
current locale. This behavior might also be affected by the LC_UNI_CTYPE category of the current locale
if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTEF) is specified on the compilation
command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation
command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified
on the compilation command.

Wide Character Function: See [“Wide Characters” on page 527 for more information.

Description

The putwchar() function converts the wide character wc to a multibyte character and writes it to stdout.
A call to the putwchar() function is equivalent to putwc(wc, stdout).

Using a non-wide-character function with the putwchar() function on the same stream results in
undefined behavior. After calling the putwchar() function, flush the buffer or reposition the stream
pointer before calling a write function for the stream, unless EOF has been reached. After a write
operation on the stream, flush the buffer or reposition the stream pointer before calling the putwchar()
function.

Return Value

The putwchar() function returns the wide character written. If a write error occurs, the putwchar()
function sets the error indicator for the stream and returns WEOF. If an encoding error occurs when a
wide character is converted to a multibyte character, the putwchar() function sets errno to EILSEQ and
returns WEOE

For information about errno values for putwc(), see [“fputc() — Write Character” on page 118}

Example that uses putwchar()

This example uses the putwchar() function to write the string in wcs.

244 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <wchar.h>
#include <errno.h>
#include <stdlib.h>

int main(void)

wchar_t *wcs = L"A character string.";
int i

for (i = 0; wes[i] != L'\O'; i++) {
errno = 0;
if (WEOF == putwchar(wcs[i])) {
printf("Unable to putwchar() the wide character.\n");
printf("wcs[%d] = Ox%1x\n", i, wcs[i]);
if (EILSEQ == errno)
printf("An invalid wide character was encountered.\n");
exit (EXIT_FAILURE);
}
1

return 0;

The output should be similar to :
A character string.

**************************************************************/

}

Related Information

* [“fputc() — Write Character” on page 118§|
[“fputwc() — Write Wide Character” on page 122|
[“fputws() — Write Wide-Character String” on page 124|

* [“getwchar() — Get Wide Character from stdin” on page 159

* [“putc() — putchar() — Write a Character” on page 239
[‘putwc() — Write Wide Character” on page 242
[“<wchar.h>” on page 18]

gsort() — Sort Array

Format

#include <stdlib.h>
void gsort(void *base, size t num, size t width,
int (*compare) (const void *key, const void *element));

Language Level: ANSI
Threadsafe: Yes.
Description

The gsort() function sorts an array of num elements, each of width bytes in size. The base pointer is a
pointer to the array to be sorted. The gsort() function overwrites this array with the sorted elements.

The compare argument is a pointer to a function you must supply that takes a pointer to the key argument
and to an array element, in that order. The gsort() function calls this function one or more times during
the search. The function must compare the key and the element and return one of the following values:

Value | Meaning

Chapter 2. Library Functions 245



Less than 0

key less than element

0

key equal to element

Greater than 0

key greater than element

Value Meaning

Less than 0
key less than element

0 key equal to element

Greater than 0
key greater than element

The sorted array elements are stored in ascending order, as defined by your compare function. You can
sort in reverse order by reversing the sense of “greater than” and “less than” in compare. The order of the
elements is unspecified when two elements compare equally.

Return Value
There is no return value.

Example that uses gsort()

This example sorts the arguments (argv) in ascending lexical sequence, using the comparison function

compare() supplied in the example.

246 ILE C/C++ Runtime Library Functions V6R1




#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Declaration of compare() as a function x/
int compare(const void *, const void *);

int main (int argc, char =*argv[ ])
{
int i;
argv++;
argc--;
gsort((char *)argv, argc, sizeof(char *), compare);
for (i = 0; i < argc; ++1)
printf("%s\n", argv[i]);
return 0;

1
int compare (const void xargl, const void *arg2)

/* Compare all of both strings */
return(strcmp(*(char *x)argl, x(char **)arg2));

}

[*#wxxxxkxxxx 1T the program is passed the arguments: sxswxxwssxxs*
xxxxxkxx 'Does' 'this' 'really' 'sort' 'the' 'arguments' 'correctly?'xxxx
*kkkkkkkkkxkxk** then the expected output 1S *kkkkkrhrrkhrhhhkhrhd

arguments
correctly?
really
sort

the

this

Does

*/

Related Information

* [“bsearch() — Search Arrays” on page 51|
+ [“<stdlib.h>" on page 17

QXXCHGDA() — Change Data Area

Format
#include <xxdtaa.h>

void QXXCHGDA(_DTAA NAME_T dtaname, short int offset, short int len,
char *dtaptr);

Language Level: ILE C Extension

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|

| [Locales” on page 524| for more information.

Description

Chapter 2. Library Functions

247



The QXXCHGDA() function allows you to change the data area specified by dtaname, starting at position
offset, with the data in the user buffer pointed to by dtaptr of length len. The structure dtaname contains
the names of the data area and the library that contains the data area. The values that can be specified for
the data area name are:

*LDA Specifies that the contents of the local data area are to be changed. The library name dtaa_lib must
be blank.

*GDA Specifies that the contents of the group data area are to be changed. The library name dtaa_lib
must be blank.

data-area-name
Specifies that the contents of the data area created using the Create Data Area (CRTDTAARA) CL
command are to be changed. The library name dtaa_lib must be either *LIBL, *CURLIB, or the
name of the library where the data area (data-area-name) is located. The data area is locked while
it is being changed.

QXXCHGDA can only be used to change character data.
Example that uses QXXCHGDA()

#include <stdio.h>
#include <xxdtaa.h>

#define START 1
#define LENGTH 8

int main(void)
{
char newdata[LENGTH] = "new data";

/* The local data area will be changed x/
_DTAA NAME_ T dtaname = {"*LDA v, "1
/* Use function to change the local data area. */

QXXCHGDA (dtaname, START,LENGTH,newdata) ;
/* The first 8 characters in the Tocal data area */
/* are: new data */

}

Related Information
+ ["QXXRTVDA() — Retrieve Data Area” on page 252|

QXXDTOP() — Convert Double to Packed Decimal

Format

#include <xxcvt.h>
void QXXDTOP(unsigned char *pptr, int digits, int fraction,
double value);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

The QXXDTOP function converts the double value specified in value to a packed decimal number with
digits total digits, and fraction fractional digits. The result is stored in the array pointed to by pptr.

248 ILE C/C++ Runtime Library Functions V6R1



Example that uses QXXDTOP()

#include <xxcvt.h>
#include <stdio.h>

int main(void)

unsigned char pptr[10];
int digits = 8, fraction = 6;
double value = 3.141593;

QXXDTOP(pptr, digits, fraction, value);
1

Related Information

* ["QXXDTOZ() —Convert Double to Zoned Decimal’]

[“OXXITOP() — Convert Integer to Packed Decimal” on page 250
[‘OXXITOZ() — Convert Integer to Zoned Decimal” on page 250|
[“OXXPTOD() — Convert Packed Decimal to Double” on page 251
[“QXXPTOI() — Convert Packed Decimal to Integer” on page 252|
[‘OXXZTOD() — Convert Zoned Decimal to Double” on page 254|
[‘QXXZTOI() — Convert Zoned Decimal to Integer” on page 255|

QXXDTOZ() —Convert Double to Zoned Decimal

Format

#include <xxcvt.h>
void QXXDTOZ(unsigned char *zptr, int digits, int fraction,
double value);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

The QXXDTOZ function converts the double value specified in value to a zoned decimal number with
digits total digits, and fraction fractional digits. The result is stored in the array pointed to by zptr.

Example that uses QXXDTOZ()

#include <xxcvt.h>
#include <stdio.h>

int main(void)

{
unsigned char zptr[10];
int digits = 8, fraction = 6;
double value = 3.141593;

QXXDTOZ (zptr, digits, fraction, value);
/* Zoned value is : 03141593 =/

Related Information
+ ["OXXDTOP() — Convert Double to Packed Decimal” on page 248§|

+ ["“QXXITOP() — Convert Integer to Packed Decimal” on page 250|
* ["QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

Chapter 2. Library Functions

249



[“OXXPTOD() — Convert Packed Decimal to Double” on page 251
[“OXXPTOI() — Convert Packed Decimal to Integer” on page 252|
[“OXXZTOD() — Convert Zoned Decimal to Double” on page 254|
[“QXXZTOI() — Convert Zoned Decimal to Integer” on page 255|

QXXITOP() — Convert Integer to Packed Decimal

Format

#include <xxcvt.h>
void QXXITOP(unsigned char *pptr, int digits, int fraction,
int value);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

The QXXITOP function converts the integer specified in value to a packed decimal number with digits
total digits, and fraction fractional digits. The result is stored in the array pointed to by pptr.

Example that uses QXXITOP()

#include <xxcvt.h>
#include <stdio.h>

int main(void)

{
unsigned char pptr[10];
int digits = 3, fraction = 0;
int value = 116;

QXXITOP(pptr, digits, fraction, value);
1

Related Information

* [“QXXDTOP() — Convert Double to Packed Decimal” on page 248|
[“OXXDTOZ() —Convert Double to Zoned Decimal” on page 249|
[“QXXITOZ() — Convert Integer to Zoned Decimal”|

[“OXXPTOD() — Convert Packed Decimal to Double” on page 251
[“QXXPTOI() — Convert Packed Decimal to Integer” on page 252|
[‘QOXXZTOD() — Convert Zoned Decimal to Double” on page 254]
[‘QXXZTOI() — Convert Zoned Decimal to Integer” on page 255|

QXXITOZ() — Convert Integer to Zoned Decimal

Format

#include <xxcvt.h>

void QXXITOZ(unsigned char *zptr, int digits, int fraction, int value);
Language Level: ILE C Extension

Threadsafe: Yes.

Description

250 ILE C/C++ Runtime Library Functions V6R1



The QXXITOZ function converts the integer specified in value to a zoned decimal number with digits total
digits, and fraction fractional digits. The result is stored in the array pointed to by zptr.

Example that uses QXXITOZ()

#include <xxcvt.h>
#include <stdio.h>

int main(void)
unsigned char zptr[10];
int digits = 9, fraction = 0;
int value = 111115;
QXXITOZ(zptr, digits, fraction, value);

/* Zoned value is :
1

Related Information

000111115 */

+ ["OXXDTOP() — Convert Double to Packed Decimal” on page 248§|

[“OXXDTOZ() —Convert Double to Zoned Decimal” on page 249|

[“OXXITOP() — Convert Integer to Packed Decimal” on page 250)

[“OXXPTOD() — Convert Packed Decimal to Double”|

[“QXXPTOI() — Convert Packed Decimal to Integer” on page 252|

[‘QXXZTOD() — Convert Zoned Decimal to Double” on page 254|

[“QXXZTOI() — Convert Zoned Decimal to Integer” on page 255|

QXXPTOD() — Convert Packed Decimal to Double

Format
#include <xxcvt.h>

double QXXPTOD(unsigned char xpptr, int digits, int fraction);

Language Level: ILE C Extension
Threadsafe: Yes.

Description

The QXXPTOD function converts a packed decimal number to a double.

Example that uses QXXPTOD()

#include <xxcvt.h>
#include <stdio.h>

int main(void)
unsigned char pptr[10];

int digits = 8, fraction = 6;
double value = 6.123456, result;

/* First convert an integer to a packed decimal,=*/

QXXDTOP (pptr, digits, fraction, value);

/* then convert it back to a double. */

result = QXXPTOD(pptr, digits, fraction);
/* result = 6.123456

*/

Chapter 2. Library Functions

251



Related Information

[“OXXDTOP() — Convert Double to Packed Decimal” on page 248|
[ OXXDTOZ() —Convert Double to Zoned Decimal” on page 249|
[“OXXITOP() — Convert Integer to Packed Decimal” on page 250
[‘OXXITOZ() — Convert Integer to Zoned Decimal” on page 250|
[“QXXPTOI() — Convert Packed Decimal to Integer”]|
[‘OXXZTOD() — Convert Zoned Decimal to Double” on page 254]
[‘QXXZTOI() — Convert Zoned Decimal to Integer” on page 255|

QXXPTOI() — Convert Packed Decimal to Integer

Format

#include <xxcvt.h>
int QXXPTOI(unsigned char *pptr, int digits, int fraction);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXPTOI function converts a packed decimal number to an integer.
Example that uses QXXPTOI()

#include <xxcvt.h>
#include <stdio.h>

int main(void)
{
unsigned char pptr[10];
int digits = 3, fraction = 0, value = 104, result;
/* First convert an integer to a packed decimal,*/
QXXITOP(pptr, digits, fraction, value);

/* then convert it back to an integer. */
result = QXXPTOI(pptr, digits, fraction);
/* result = 104 */

}

Related Information

+ ["QXXDTOP() — Convert Double to Packed Decimal” on page 248
+ ["OXXDTOZ() —Convert Double to Zoned Decimal” on page 249|
[“OXXITOP() — Convert Integer to Packed Decimal” on page 250
[‘OXXITOZ() — Convert Integer to Zoned Decimal” on page 250|
[“QXXPTOD() — Convert Packed Decimal to Double” on page 251
[‘OXXZTOD() — Convert Zoned Decimal to Double” on page 254]
[‘QXXZTOI() — Convert Zoned Decimal to Integer” on page 255|

QXXRTVDA() — Retrieve Data Area

Format

#include <xxdtaa.h>

void QXXRTVDA(_DTAA_NAME_T dtaname, short int offset,
short int len, char *dtaptr);

252 ILE C/C++ Runtime Library Functions V6R1



Language Level: ILE C Extension
Threadsafe: Yes.
| Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

| All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|
| [Locales” on page 524| for more information.

Description

The following typedef definition is included in the <xxdtaa.h> header file. The character arrays are not
null-ended strings so they must be blank filled.
typedef struct DTAA NAME T {

char dtaa_name[10]; /* name of data area */

char dtaa_1ib[10]; /* library that contains data area */
} DTAA_NAME_T;

The QXXRTVDA() function retrieves a copy of the data area specified by dtaname starting at position offset
with a length of len. The structure dtaname contains the names of the data area and the library that
contains the data area. The values that can be specified for the data area name are:

*LDA The contents of the local data area are to be retrieved. The library name dtaa_lib must be blank.
*GDA The contents of the group data area are to be retrieved. The library name dtaa_lib must be blank.

*PDA Specifies that the contents of the program initialization parameters (PIP) data area are to be
retrieved. The PIP data area is created for each pre-started job and is a character area up to 2000
characters in length. You cannot retrieve the PIP data area until you have acquired the requester.
The library name dtaa_lib must be blank.

data-area-name
Specifies that the contents of the data area created using the Create Data Area (CRTDTAARA) CL
command are to be retrieved. The library name dfaa_lib must be either *LIBL, *CURLIB, or the
name of the library where the data area (data-area-name) is located. The data area is locked while
the data is being retrieved.

The parameter dtaptr is a pointer to the storage that receives the retrieved copy of the data area. Only
character data can be retrieved using QXXRTVDA.

Example that uses QXXRTVDA()

Chapter 2. Library Functions 253



#include <stdio.h>
#include <xxdtaa.h>

#define DATA_AREA_LENGTH 30
#define START 6
#define LENGTH 7

int main(void)

{
char uda_area[DATA AREA_LENGTH];

/* Retrieve data from user-defined data area currently in MYLIB x/
_DTAA_NAME_T dtaname = {"USRDDA ", "MYLIB "1,

/* Use the function to retrieve some data into uda_area. */
QXXRTVDA(dtaname,START,LENGTH,uda_area);

/* Print the contents of the retrieved subset. */
printf("uda_area contains %7.7s\n",uda_area);

}

Related Information
+ ["OXXCHGDA() — Change Data Area” on page 247

QXXZTOD() — Convert Zoned Decimal to Double

Format

#include <xxcvt.h>
double QXXZTOD(unsigned char *zptr, int digits, int fraction);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

The QXXZTOD function converts to a double, the zoned decimal number (with digits total digits, and
fraction fractional digits) pointed to by zptr. The resulting double value is returned.

Example that uses QXXZTOD()

#include <xxcvt.h>
#include <stdio.h>

int main(void)

{
unsigned char zptr[] = "06123456";
int digits = 8, fraction = 6;
double result;

result = QXXZTOD(zptr, digits, fraction);
/* result = 6.123456 */
1

Related Information

+ [“QXXDTOP() — Convert Double to Packed Decimal” on page 248
+ ["QXXDTOZ() —Convert Double to Zoned Decimal” on page 249
* [“QXXITOP() — Convert Integer to Packed Decimal” on page 250|
+ ["OXXITOZ() — Convert Integer to Zoned Decimal” on page 250|

254 ILE C/C++ Runtime Library Functions V6R1



+ ["QXXPTOD() — Convert Packed Decimal to Double” on page 251|
* [“QXXPTOI() — Convert Packed Decimal to Integer” on page 252|
+ ["OXXZTOI() — Convert Zoned Decimal to Integer”]

QXXZTOI() — Convert Zoned Decimal to Integer

Format

#include <xxcvt.h>
int QXXZTOI(unsigned char =*zptr, int digits, int fraction);

Language Level: ILE C Extension
Threadsafe: Yes.
Description

The QXXZTOI function converts to an integer, the zoned decimal number (with digits total digits, and
fraction fractional digits) pointed to by zptr. The resulting integer is returned.

Example that uses QXXZTOI()

#include <xxcvt.h>
#include <stdio.h>

int main(void)

unsigned char zptr[] = "000111115";
int digits = 9, fraction = 0, result;

result = QXXZTOI(zptr, digits, fraction);
/* result = 111115 =/
}

Related Information

* [“QXXDTOP() — Convert Double to Packed Decimal” on page 248
[ OXXDTOZ() —Convert Double to Zoned Decimal” on page 249|
[“OXXITOP() — Convert Integer to Packed Decimal” on page 250)
[‘QXXITOZ() — Convert Integer to Zoned Decimal” on page 250|
[‘OXXPTOD() — Convert Packed Decimal to Double” on page 251
[“OXXPTOI() — Convert Packed Decimal to Integer” on page 252|
[‘QOXXZTOD() — Convert Zoned Decimal to Double” on page 254|

raise() — Send Signal

Format

#include <signal.h>

int raise(int sig);
Language Level: ANSI
Threadsafe: Yes.

Description

Chapter 2. Library Functions 255



The raise() functions sends the signal sig to the running program. If compiled with
SYSIFCOPT(*ASYNCSIGNAL) on the compilation command, this function uses asynchronous signals. The
asynchronous version of this function throws a signal to the process or thread.

Return Value
The raise() functions returns 0 if successful, nonzero if unsuccessful.
Example that uses raise()

This example establishes a signal handler called sig_hand for the signal SIGUSR1. The signal handler is
called whenever the SIGUSR1 signal is raised and will ignore the first nine occurrences of the signal. On
the tenth raised signal, it exits the program with an error code of 10. Note that the signal handler must be
reestablished each time it is called.

#include <signal.h>
#include <stdio.h>

void sig_hand(int); /* declaration of sig_hand() as a function */

int main(void)
{
signal (SIGUSR1, sig_hand); /* set up handler for SIGUSRL =/

raise(SIGUSR1);  /* signal SIGUSR1 is raised */
/* sig_hand() is called */
}

void sig_hand(int sig)
{

static int count = 0; /% initialized only once */

count++;
if (count == 10) /* ignore the first 9 occurrences of this signal */
exit(10);
else
signal (SIGUSRL, sig_hand); /* set up the handler again */
1

/* This is a program fragment and not a complete program */

Related Information

+ |“signal() — Handle Interrupt Signals” on page 346|

* |“Signal Handling Action Definitions” on page 511|

+ |“<signal.h>" on page 13|
e Signal APIs in the topic in the i5/0S Information Center.
POSIX thread APIs in the topic in the i5/0S Information Center.

rand(), rand_r() — Generate Random Number

Format

#include <stdlib.h>
int rand(void);
int rand_r(unsigned int *seed);

Language Level: ANSI
Threadsafe: No. rand() is not threadsafe, but rand_r() is.

Description

256 ILE C/C++ Runtime Library Functions V6R1



The rand() function generates a pseudo-random integer in the range 0 to RAND_MAX (macro defined in
<stdlib.h>). Use [the srand() function|before calling rand() to set a starting point for the random number
generator. If you do not call the srand() function first, the default seed is 1.

Note: The rand_r() function is the restartable version of rand().
Return Value

The rand() function returns a pseudo-random number.

Example that uses rand()

This example prints the first 10 random numbers generated.

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
int x;
for (x = 1; x <= 10; x++)
printf("iteration %d, rand=%d\n", x, rand());

[ xS kkk ok kk ok kk ok kkk ok kk Output should be similar to: **x*x*xkxkx**

iteration 1, rand=16838
iteration 2, rand=5758
iteration 3, rand=10113
iteration 4, rand=17515
iteration 5, rand=31051
iteration 6, rand=5627
iteration 7, rand=23010
iteration 8, rand=7419
iteration 9, rand=16212
iteration 10, rand=4086
*

/

Related Information

* |“srand() — Set Seed for rand() Function” on page 354
* [“<stdlib.h>" on page 17

_Racquire() — Acquire a Program Device

Format
#include <recio.h>

int _Racquire( RFILE *fp, char *dev);
Language Level: ILE C Extension
Threadsafe: No.
| Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

| All character data returned by this function is in the CCSID of the job. See|“Understanding CCSIDs and|
| [Locales” on page 524| for more information.

Description

Chapter 2. Library Functions 257



The Racquire() function acquires the program device specified by the dev parameter and associates it
with the file specified by fp. The dev parameter is a null-ended C string. The program device name must
be specified in uppercase. The program device must be defined to the file.

This function is valid for display and ICF files.
Return Value
The Racquire() function returns 1 if it is successful or zero if it is unsuccessful. The value of errno may

be set to EIOERROR (a non-recoverable 1/0O error occurred) or EIORECERR (a recoverable 1/O error
occurred).

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Racquire()

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

int main(void)

{
_RFILE «fp;
"RIOFB_T  #rfb;

/* Open the device file. */
if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{
printf ( "Could not open file\n" );
exit (1);
}

_Racquire ( fp,"DEVICEL" ); /* Acquire another program device. */
/* Replace with actual device name.*/

_Rformat ( fp,"FORMATL" ); /* Set the record format for the =*/

/* display file. */
rfb = _Rwrite ( fp, "", 0 ); /* Set up the display. */
/* Do some processing... */

_Rclose ( fp );
1

Related Information

* |“_Rrelease() — Release a Program Device” on page 314|

_Rclose() — Close a File

Format
#include <recio.h>

int _Rclose(_RFILE *fp);
Language Level: ILE C Extension

Threadsafe: Yes.

258 ILE C/C++ Runtime Library Functions V6R1



Description

The Rclose() function closes the file specified by fp. Before this file is closed, all buffers associated with

it are flushed and all buffers reserved for it are released. The file is closed even if an exception occurs.

The _Rclose() function applies to all types of files.

Note: Closing a file more than once in a multi-threaded environment will cause undefined behavior.

Return Value

The Rclose() function returns zero if the file is closed successfully, or EOF if the close operation failed
or the file was already closed. The file is closed even if an exception occurs, and zero is returned.

The value of errno may be set to:

Value Meaning

ENOTOPEN The file is not open.

EIOERROR A non-recoverable I/O error occurred.
EIORECERR A recoverable I/O error occurred.

See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Example that uses _Rclose()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
{
_RFILE *fp;

/* Open the file for processing in arrival sequence.

*/

if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{

printf ( "Open failed\n" );
exit (1),

1

else

/* Do some processing x/;

_Rclose ( fp )s
}

Related Information

* |“_Ropen() — Open a Record File for I/O Operations” on page 289

_Rcommit() — Commit Current Record

Format
#include <recio.h>

int _Rcommit(char *cmtid);

Language Level: ILE C Extension

Threadsafe: No.

Chapter 2. Library Functions

259



Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|
[Locales” on page 524 for more information.

Description
The _Rcommit() function completes the current transaction for the job that calls it and establishes a new
commitment boundary. All changes made since the last commitment boundary are made permanent. Any

file or resource that is open under commitment control in the job is affected.

The cmtid parameter is a null-ended C string used to identify the group of changes associated with a
commitment boundary. It cannot be longer than 4000 bytes.

The _Rcommit() function applies to database and DDM files.
Return Value
The Rcommit() function returns 1 if the operation is successful or zero if the operation is unsuccessful.

The value of errno may be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a
recoverable I/0O error occurred).

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rcommit ()

260 ILE C/C++ Runtime Library Functions V6R1



#incl
#incl
#incl
#incl

ude <stdio.h>
ude <recio.h>
ude <stdlib.h>
ude <string.h>

int main(void)

cha
int

r buf[40];
rc = 1;

RFILE *purf;

“RFILE «dailyf;

/*

Open purchase display file and daily transaction file

*/

if ( ( purf = Ropen ( "MYLIB/T1677RD3", "ar+,indicators=y" )) == NULL )

{
}

if
{

}
/*

printf ( "Display file did not open.\n" );
exit (1);

( ( dailyf = _Ropen ( "MYLIB/T1677RDA", "wr,commit=y") ) == NULL )

printf ( "Daily transaction file did not open.\n" );
exit (2 );

Select purchase record format */

_Rformat ( purf, "PURCHASE" );

/*
/*

Invite user to enter a purchase transaction.
The _Rwrite function writes the purchase display.

_Rwrite ( purf, "", 0);
_Rreadn ( purf, buf, sizeof(buf), _ DFT );

/* Update daily transaction file
rc = (( _Rwrite ( dailyf, buf, sizeof(buf) ))->num_bytes );
/* If the databases were updated, then commit the transaction.
/* Otherwise, rollback the transaction and indicate to the
/* user that an error has occurred and end the application.
if (rc)
{
_Rcommit ( "Transaction complete" );
1
else
_Rrollbck ( )3
_Rformat ( purf, "ERROR" );
1
_Rclose ( purf );

_Rclose ( dailyf );

}

Related Information

*/
*/

*/
*/
*/

* |“_Rrollbck() — Roll Back Commitment Control Changes” on page 317]

_Rdelete() — Delete a Record

Format

#incl

ude <recio.h>

_RIOFB_T * Rdelete( RFILE *fp);

Language Level: ILE C Extension

Chapter 2. Library Functions

261



Threadsafe: Yes.
Description

The _Rdelete() function deletes the record that is currently locked for update in the file specified by fp.
After the delete operation, the record is not locked. The file must be open for update.

A record is locked for update by reading or locating to it unless _ NO_LOCK is specified on the read or
locate option. If the _ NO_POSITION option is specified on the locate operation that locked the record,
the record deleted may not be the record that the file is currently positioned to.

This function is valid for database and DDM files.
Return Value

The _Rdelete() function returns a pointer to the _RIOFB_T structure associated with fp. If the operation
is successful, the num_bytes field contains 1. If the operation is unsuccessful, the num_bytes field
contains zero.

The value of errno may be set to:
Value Meaning

ENOTDLT
The file is not open for delete operations.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I1/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rdelete()

262 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

_RFILE *fp;
“XXOPFB_T  opfh;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )

printf ( "Open failed\n" );
exit (1);

/* Get the Tibrary and file names of the file opened. */
opfb = _Ropnfbk ( fp );
printf ( "Library: %10.10s\nFile: %10.10s\n",

opfb->Tibrary name,

opfb->file_name);

/* Get the first record. */
_Rreadf ( fp, NULL, 20, _ DFT );
printf ( "First record: %10.10s\n", *(fp->in_buf) );

/* Delete the first record. */
_Rdelete ( fp );

_Rclose ( fp );
1

Related Information
* |“_Rrlslck() — Release a Record Lock” on page 316|

_Rdevatr() — Get Device Attributes

Format

#include <recio.h>
#include <xxfdbk.h>
_XXDEV_ATR_T * Rdevatr( RFILE =fp, char *dev);

Language Level: ILE C Extension
Threadsafe: No.
| Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

| All character data returned by this function is in the CCSID of the job. See |“Understanding CCSIDs and|
| [Locales” on page 524 for more information.

Description

The _Rdevatr() function returns a pointer to a copy of the device attributes feedback area for the file
pointed to by fp, and the device specified by dev.

The dev parameter is a null-ended C string. The device name must be specified in uppercase.
The _Rdevatr() function is valid for display and ICF files.

Return Value

Chapter 2. Library Functions 263



The Rdevatr() function returns NULL if an error occurs.

See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Example that uses _Rdevatr()

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char ** argv)

{

_RFILE  =*fp; /* File pointer */
_RIOFB_T =*rfb; /+Pointer to the file's feedback structure */
_XXIOFB_T =iofb; /* Pointer to the file's feedback area */
_XXDEV_ATR_T *dv_atr; /* Pointer to a copy of the file's device =*/

/* attributes feedback area */
/* Open the device file. */

if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{
printf ( "Could not open file\n" );

exit (1);
1

dv_atr = Rdevatr (fp, argv[1]);
if (dv_atr == NULL)
printf("Error occurred getting device attributes for %s.\n",
argv[1]);

_Rclose ( fp )s
}

Related Information

* |“_Racquire() — Acquire a Program Device” on page 257|

* |“_Rrelease() — Release a Program Device” on page 314

realloc() — Change Reserved Storage Block Size

Format

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Language Level: ANSI

Threadsafe: Yes.

Description

The realloc() function changes the size of a previously reserved storage block. The ptr argument points
to the beginning of the block. The size argument gives the new size of the block, in bytes. The contents of

the block are unchanged up to the shorter of the new and old sizes.

If the ptr is NULL, realloc() reserves a block of storage of size bytes. It does not necessarily give all bits
of each element an initial value of 0.

If size is 0 and the ptr is not NULL, realloc()frees the storage allocated to ptr and returns NULL

264 ILE C/C++ Runtime Library Functions V6R1



Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should
be allocated and deallocated within the same activation group. You cannot allocate heap storage
within one activation group and deallocate that storage from a different activation group. For more
information about activation groups, see the ILE Concepts manual.

2. If the _C_Quickpool_Init() function has been called in the current activation group then storage is
retrieved using Quick Pool memory management. See _C_Quickpool_Init() for more information.

Return Value
The realloc() function returns a pointer to the reallocated storage block. The storage location of the
block may be moved by the realloc() function. Thus, the ptr argument to the realloc() function is not

necessarily the same as the return value.

If size is 0, the realloc() function returns NULL. If there is not enough storage to expand the block to the
given size, the original block is unchanged and the realloc() function returns NULL.

The storage to which the return value points is aligned for storage of any type of object.

To use Teraspace storage instead of heap storage without changing the C source code, specify the
TERASPACE(*YES *TSIFC) parameter on the CRTCMOD compiler command. This maps the realloc()
library function to _C_TS_realloc(), its Teraspace storage counterpart. The maximum amount of
Teraspace storage that can be allocated by each call to _C_TS_realloc() is 2GB - 240, or 214743408 bytes.
For additional information about Teraspace, see the ILE Concepts manual.

Example that uses realloc()

This example allocates storage for the prompted size of array and then uses realloc() to reallocate the
block to hold the new size of the array. The contents of the array are printed after each allocation.

Chapter 2. Library Functions 265



#include <stdio.h>
#include <stdlib.h>

int main(void)

{
long * array; /* start of the array */
long * ptr; /* pointer to array */
int i /* index variable */
int numl, num2; /* number of entries of the array =/
void print_array( long *ptr_array, int size);
printf( "Enter the size of the array\n" );
scanf( "%i", &numl);
/* allocate numl entries using malloc() */
if ( (array = (long *) malloc( numl * sizeof( long ))) != NULL )
{
for ( ptr = array, i = 0; i < numl ; ++i ) /% assign values x/
*ptr++ = is
print_array( array, numl );
printf("\n");
}
else { /* malloc error =/
perror( "Out of storage" );
abort();
}
/* Change the size of the array ... */
printf( "Enter the size of the new array\n" );
scanf( "%i", &num2);
if ( (array = (long *) realloc( array, num2x sizeof( long ))) != NULL )
{
for ( ptr = array + numl, i = numl; i <= num2; ++i )
*ptr++ = 1 + 2000; /* assign values to new elements */
print_array( array, num2 );
}
else { /* realloc error */
perror( "Out of storage" );
abort();
}
}
void print_array( long =* ptr_array, int size )
{
int i;
long * index = ptr_array;
printf("The array of size %d is:\n", size);
for (i =0; 1< size; ++i ) /* print the array out */
printf( " array[ %i ] = %1i\n", i, ptr_array[i] );
1

/**x% If the initial value entered is 2 and the second value entered
is 4, then the expected output is:
Enter the size of the array
The array of size 2 is:
array[ 0] = 0
array[ 1] =1
Enter the size of the new array
The array of size 4 is:
array[ 0] = 0
array[ 1] =1
array[ 2 ] = 2002
array[ 3 ] = 2003 */

Related Information

* [“calloc() — Reserve and Initialize Storage” on page 55|

+ |[“_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66|

* |“_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68|

266 ILE C/C++ Runtime Library Functions V6R1



+ |“_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70|

[“free() — Release Storage Blocks” on page 128|

[“malloc() — Reserve Storage Block” on page 195|
[“<stdlib.h>" on page 17|

regcomp() — Compile Regular Expression

Format
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE
categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on
the compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The regcomp() function compiles the source regular expression pointed to by pattern into an executable
version and stores it in the location pointed to by preg. You can then use the regexec () function to

compare the regular expression to other strings.

The cflags flag defines the attributes of the compilation process:

cflag

Description String

REG_ALT_NL

¢ When LOCALETYPE(*LOCALE) is specified, the
newline character of the integrated file system will be
matched by regular expressions.

¢ When LOCALETYPE(*LOCALEUTF) is specified, the
database newline character will be matched.

If the REG_ALT_NL flag is not set, the default for
LOCALETYPE(*LOCALE) is to match the database
newline, and the default for
LOCALETYPE(*LOCALEUTEF) is to match the integrated
file system newline.

Note: For UTF-8 and UTF-32, the newline character of
the integrated file system and the database newline
character are the same.

REG_EXTENDED

Support extended regular expressions.

REG_NEWLINE

Treat newline character as a special end-of-line character;
it then establishes the line boundaries matched by the ]
and $ patterns, and can only be matched within a string
explicitly using \n. (If you omit this flag, the newline
character is treated like any other character.)

REG_ICASE

Ignore case in match.

Chapter 2. Library Functions 267



cflag Description String

REG_NOSUB Ignore the number of subexpressions specified in pattern.
When you compare a string to the compiled pattern
(using regexec()), the string must match the entire
pattern. The regexec() function then returns a value that
indicates only if a match was found; it does not indicate
at what point in the string the match begins, or what the
matching string is.

Regular expressions are a context-independent syntax that can represent a wide variety of character sets
and character set orderings, which can be interpreted differently depending on the current locale. The
functions regcomp(), regerror(), regexec(), and regfree() use regular expressions in a similar way to
the UNIX® awk, ed, grep, and egrep commands.

Return Value

If the regcomp() function is successful, it returns 0. Otherwise, it returns an error code that you can use in
a call to the regerror() function, and the content of preg is undefined.

Example that uses regcomp ()

268 ILE C/C++ Runtime Library Functions V6R1



#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)

regex_t preg;

char *string = "a very simple simple simple string";
char *xpattern = "\\(sim[a-z]Te\\) \\1";

int rc;

size_t nmatch = 2;

regmatch_t pmatch[2];

if (0 !'= (rc = regcomp(&preg, pattern, 0))) {
printf("regcomp() failed, returning nonzero (%d)\n", rc);
exit(EXIT_FAILURE);

}

if (0 !'= (rc = regexec(&preg, string, nmatch, pmatch, 0))) {
printf("Failed to match '%s' with '%s',returning %d.\n",
string, pattern, rc);

1
else {
printf("With the whole expression, "
"a matched substring \"%.xs\" is found at position %d to %d.\n",
pmatch[0].rm_eo - pmatch[0].rm_so, &string[pmatch[0].rm so],
pmatch[0].rm_so, pmatch[0].rm_eo - 1);
printf("With the sub-expression, ";
"a matched substring \"%.xs\" is found at position %d to %d.\n",
pmatch[1].rm_eo - pmatch[1].rm_so, "string[pmatch[1].rm_so],
pmatch[1].rm_so, pmatch[1].rm eo - 1);
1
regfree(&preg);
return 0;

/****************************************************************************
The output should be similar to :

With the whole expression, a matched substring "simple simple" is found
at position 7 to 19.

With the sub-expression, a matched substring "simple" is found

at position 7 to 12.

****************************************************************************/

}

Related Information

* [“regerror() — Return Error Message for Regular Expression”|

+ [“regexec() — Execute Compiled Regular Expression” on page 271|

* |“regfree() — Free Memory for Regular Expression” on page 273|

* |“<regex.h>" on page 12|

regerror() — Return Error Message for Regular Expression

Format

#include <regex.h>
size_t regerror(int errcode, const regex_t *preg,
char *errbuf, size_t errbuf_size);

Language Level: XPG4

Threadsafe: Yes.

Chapter 2. Library Functions

269



| Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE
| categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on
| the compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The regerror() function finds the description for the error code errcode for the regular expression preg.
The description for errcode is assigned to errbuf. The errbuf_size value specifies the maximum message size
that can be stored (the size of errbuf). The description strings for errcode are:

errcode Description String

REG_NOMATCH regexec() failed to find a match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.
REG_ECTYPE Invalid character class type referenced.
REG_EESCAPE Last character in regular expression is a \.
REG_ESUBREG Number in \digit invalid, or error.
REG_EBRACK [1 imbalance.

REG_EPAREN \(\) or () imbalance.

REG_EBRACE \{ \} imbalance.

REG_BADBR Expression between \{ and \} is invalid.
REG_ERANGE Invalid endpoint in range expression.
REG_ESPACE Out of memory.

REG_BADRPT ?, ¥, or + not preceded by valid regular expression.
REG_ECHAR Invalid multibyte character.

REG_EBOL A anchor not at beginning of regular expression.
REG_EEOL $ anchor not at end of regular expression.
REG_ECOMP Unknown error occurred during regcomp() call.
REG_EEXEC Unknown error occurred during regexec() call.

Return Value

The regerror() returns the size of the buffer needed to hold the string that describes the error condition.
The value of errno may be set to ECONVERT (conversion error).

Example that uses regerror()

This example compiles an invalid regular expression, and prints an error message using the regerror()

function.

270 ILE C/C++ Runtime Library Functions V6R1




#include <regex.htm>
#include <stdio.h>
#include <stdlib.h>

int main(void)

regex_t preg;

char xpattern = "a[missing.bracket";
int rc;

char buffer[100];

if (0 != (rc = regcomp(&preg, pattern, REG_EXTENDED))) {
regerror(rc, &preg, buffer, 100);
printf("regcomp() failed with '%s'\n", buffer);
exit(EXIT_FAILURE);

}

return 0;

/**********************************************************
The output should be similar to:

regcomp() failed with '[] imbalance.'
ko ok e ok ok o ok ok o ok ok ok ok ok ok ok ke ok ok ok ok ok o Fkk ok dkok ok dok ok ok ok ok ok Kok ok ok ok kh *xk [

}

Related Information

* [“regcomp() — Compile Regular Expression” on page 267

* [“regexec() — Execute Compiled Regular Expression”]

* [‘regfree() — Free Memory for Regular Expression” on page 273|

* [“<regex.h>" on page 12|

regexec() — Execute Compiled Regular Expression

Format

#include <regex.h>
int regexec(const regex_t *preg, const char *string,
size_t nmatch, regmatch_t *pmatch, int eflags);

Language Level: XPG4
Threadsafe: Yes.
Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE

categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on
the compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The regexec() function compares the null-ended string against the compiled regular expression preg to
find a match between the two.

The nmatch value is the number of substrings in string that the regexec() function should try to match
with subexpressions in preg. The array you supply for pmatch must have at least nmatch elements.

The regexec() function fills in the elements of the array pmatch with offsets of the substrings in string

that correspond to the parenthesized subexpressions of the original pattern given to the regcomp ()
function to create preg. The zeroth element of the array corresponds to the entire pattern. If there are

Chapter 2. Library Functions 271



more than nmatch subexpressions, only the first nmatch - 1 are stored. If nmatch is 0, or if the
REG_NOSUB flag was set when preg was created with the regcomp() function, the regexec() function
ignores the pmatch argument.

The eflags flag defines customizable behavior of the regexec() function:

errflag Description String

REG_NOTBOL Indicates that the first character of string is not the
beginning of line.

REG_NOTEOL Indicates that the first character of string is not the end
of line.

When a basic or extended regular expression is matched, any given parenthesized subexpression of the
original pattern could participate in the match of several different substrings of string. The following rules
determine which substrings are reported in pmatch:

1. If subexpression i in a regular expression is not contained within another subexpression, and it
participated in the match several times, then the byte offsets in pmatch[i] will delimit the last such
match.

2. If subexpression i is not contained within another subexpression, and it did not participate in an
otherwise successful match, the byte offsets in pmatch[i] will be -1. A subexpression does not
participate in the match when any of following conditions are true:

¢ *or \{ \} appears immediately after the subexpression in a basic regular expression.

e * 2, 0or { } appears immediately after the subexpression in an extended regular expression, and the
subexpression did not match (matched 0 times).

* | is used in an extended regular expression to select this subexpression or another, and the other
subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not contained within any other
subexpression that is contained within j, and a match of subexpression j is reported in pmatch[jl, then
the match or non-match of subexpression i reported in pmatch[i] will be as described in 1. and 2.
above, but within the substring reported in pmatch[j] rather than the whole string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are -1, then the
offsets in pmatch[i] also will be -1.\

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] will be the byte
offset of the character or null terminator immediately following the zero-length string.

If the REG_NOSUB flag was set when preg was created by the regcomp() function, the contents of pmatch
are unspecified. If the REG_NEWLINE flag was set when preg was created, new-line characters are
allowed in string.

Return Value

If a match is found, the regexec() function returns 0. If no match is found, the regexec() function
returns REG_NOMATCH. Otherwise, it returns a nonzero value indicating an error. A nonzero return

value can be used in a call to the regerror() function.

Example that uses regexec()

272 ILE C/C++ Runtime Library Functions V6R1



#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)

regex_t preg;

char *string = "a very simple simple simple string";
char *xpattern = "\\(sim[a-z]Te\\) \\1";

int rc;

size_t nmatch = 2;

regmatch_t pmatch[2];

if (0 !'= (rc = regcomp(&preg, pattern, 0))) {
printf("regcomp() failed, returning nonzero (%d)\n", rc);
exit(EXIT_FAILURE);

}

if (0 !'= (rc = regexec(&preg, string, nmatch, pmatch, 0))) {
printf("Failed to match '%s' with '%s',returning %d.\n",
string, pattern, rc);

1

else {

printf("With the whole expression,
"a matched substring \"%.xs\" is found at position %d to %d.\n",
pmatch[0].rm_eo - pmatch[0].rm_so, &string[pmatch[0].rm so],
pmatch[0].rm_so, pmatch[0].rm_eo - 1);

printf("With the sub-expression, "
"a matched substring \"%.xs\" is found at position %d to %d.\n",
pmatch[1].rm_eo - pmatch[1].rm_so, &string[pmatch[1].rm_so],
pmatch[1].rm_so, pmatch[1].rm eo - 1);

1
regfree(&preg);
return 0;

/****************************************************************************
The output should be similar to :

With the whole expression, a matched substring "simple simple" is found
at position 7 to 19.

With the sub-expression, a matched substring "simple" is found

at position 7 to 12.

****************************************************************************/

}

Related Information

* [“regcomp() — Compile Regular Expression” on page 267

* [“regerror() — Return Error Message for Regular Expression” on page 269

* |“regfree() — Free Memory for Regular Expression”|

* |“<regex.h>" on page 12|

regfree() — Free Memory for Regular Expression

Format
#include <regex.h>
void regfree(regex_t *preg);

Language Level: XPG4

Threadsafe: Yes.

Chapter 2. Library Functions

273



| Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE
| categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on
| the compilation command. For more information, see [“Understanding CCSIDs and Locales” on page 524

Description

The regfree() function frees any memory that was allocated by the regcomp() function to implement the
regular expression preg. After the call to the regfree() function, the expression that is defined by preg is
no longer a compiled regular or extended expression.

Return Value

There is no return value.

Example that uses regfree()

This example compiles an extended regular expression.

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)

{
regex_t preg;
char xpattern = ".*(simple).*";
int rc;

if (0 != (rc = regcomp(&preg, pattern, REG_EXTENDED))) {
printf("regcomp() failed, returning nonzero (%d)\n", rc);
exit (EXIT_FAILURE);

}

regfree(&preg);
printf("regcomp() is successful.\n");
return 0;

/************************************************************

The output should be similar to:
regcomp() is successful.

************************************************************/

}

Related Information

* |“regcomp() — Compile Regular Expression” on page 267

* |“regerror() — Return Error Message for Regular Expression” on page 269

* |“regexec() — Execute Compiled Regular Expression” on page 271|

+ [“<regex.h>" on page 12|

remove() — Delete File

Format
#include <stdio.h>
int remove(const char *filename);

Language Level: ANSI

Threadsafe: Yes.

274 ILE C/C++ Runtime Library Functions V6R1



Description

The remove() function deletes the file specified by filename. If the filename contains the member name,
the member is removed or the file is deleted.

Note: You cannot remove a nonexistent file or a file that is open.
Return Value

The remove() function returns 0 if it successfully deletes the file. A nonzero return value indicates an
error.

The value of errno may be set to ECONVERT (conversion error).
Example that uses remove()

When you call this example with a file name, the program attempts to remove that file. It issues a
message if an error occurs.

#include <stdio.h>
int main(int argc, char ** argv)

if (argc !'=2)
printf( "Usage: %s fn\n", argv[0] );
else
if ( remove( argv[l] ) !=0)
perror( "Could not remove file" );

}

Related Information

* [“fopen() — Open Files” on page 109
p p pag

* [“rename() — Rename File”

+ [“<stdio.h>" on page 15|

rename() — Rename File

Format
#include <stdio.h>

int rename(const char *oldname, const char *newname);

Language Level: ANSI

Threadsafe: Yes.

Description

The rename() function renames the file specified by oldname to the name given by newname. The oldname
pointer must specify the name of an existing file. The newname pointer must not specify the name of an

existing file. You cannot rename a file with the name of an existing file. You also cannot rename an open
file.

The file formats that can be used to satisfy the new name depend on the format of the old name. The

following table shows the valid file formats that can be used to specify the old file name and the
corresponding valid file formats for the new name.

Chapter 2. Library Functions 275



If the format for both new name and old name is lib/file(member), then the file cannot change. If the file
name changes, rename will not work. For example, the following is not valid: lib/filel(memberl)
lib/file2(memberl).

Old Name New Name
lib / file(member) lib/file(member), lib /file, file, file(member)
lib/file lib/file, file
file lib/file, file
file(member) lib/file(member), lib /file, file, file(member)

Return Value

The rename() function returns 0 if successful. On an error, it returns a nonzero value.
The value of errno may be set to ECONVERT (conversion error).

Example that uses rename()

This example takes two file names as input and uses rename() to change the file name from the first
name to the second name.

#include <stdio.h>

int main(int argc, char ** argv )
{
if (argc !'=3)
printf( "Usage: %s old_fn new_fn\n", argv[0] );
else if ( rename( argv[1], argv[2] ) !=0)
perror ( "Could not rename file" );

Related Information

 [“fopen() — Open Files” on page 109
p p pag

* [“remove() — Delete File” on page 274

+ [“<stdio.h>" on page 15|

rewind() — Adjust Current File Position
Format

#include <stdio.h>

void rewind(FILE xstream);

Language Level: ANSI

Threadsafe: Yes.

Description

The rewind() function repositions the file pointer associated with stream to the beginning of the file. A
call to the rewind() function is the same as:

(void) fseek(stream, OL, SEEK SET);

except that the rewind() function also clears the error indicator for the stream.

276 ILE C/C++ Runtime Library Functions V6R1



The rewind() function is not supported for files opened with type=record.
Return Value
There is no return value.

The value of errno may be set to:
Value Meaning

EBADF
The file pointer or descriptor is not valid.

ENODEV
Operation attempted on a wrong device.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0 error occurred.

Example that uses rewind()

This example first opens a file myfile for input and output. It writes integers to the file, uses rewind() to
reposition the file pointer to the beginning of the file, and then reads in the data.

#include <stdio.h>
FILE *stream;

int datal, data2, data3, data4;
int main(void)

datal = 1; data2 = -37;

/* Place data in the file */
stream = fopen("mylib/myfile", "w+");
fprintf(stream, "%d %d\n", datal, data2);

/* Now read the data file */
rewind(stream);
fscanf(stream, "%d", &data3);
fscanf(stream, "%d", &data4);
printf("The values read back in are: %d and %d\n",
data3, data4);
1

[ *F kR kk gk k ko kk kR k kK Qutput should be similar to: **x*xkxkkkkxkrx

The values read back in are: 1 and -37

*/

Related Information

+ |“fgetpos() — Get File Position” on page 99|

[“fseek() — fseeko() — Reposition File Position” on page 134

[“fsetpos() — Set File Position” on page 136
[“ftell() — ftello() — Get Current Position” on page 138|
[‘<stdio.h>" on page 15|

Chapter 2. Library Functions 277



_Rfeod() — Force the End-of-Data

Format
#include <recio.h>

int _Rfeod(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The Rfeod() function forces an end-of-data condition for a device or member associated with the file
specified by fp. Any outstanding updates, deletes or writes that the system is buffering will be forced to
nonvolatile storage. If a database file is open for input, any outstanding locks will be released.

The Rfeod() function positions the file to *END unless the file is open for multi-member processing and
the current member is not the last member in the file. If multi-member processing is in effect and the
current member is not the last member in the file, Rfeod() will open the next member of the file and
position it to *START.

The _Rfeod() function is valid for all types of files.

Return Value

The Rfeod() function returns 1 if multi-member processing is taking place and the next member has
been opened. EOF is returned if the file is positioned to *END. If the operation is unsuccessful, zero is

returned. The value of errno may be set to EIOERROR (a non-recoverable error occurred) or EIORECERR
(a recoverable 1/0 error occurred). See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Example that uses _Rfeod()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{

_RFILE  *in;
char new_purchase[21] = "PEAR 1002022244",
/* Open the file for processing in keyed sequence. */

if ( (in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL )
{

printf("Open failed\n");

exit(1l);
}s

/* Update the first record in the keyed sequence. */

_Rlocate(in, NULL, 0, _ FIRST);
_Rupdate(in, new_purchase, 20);

/* Force the end of data. */
_Rfeod(in);

Related Information

278 ILE C/C++ Runtime Library Functions V6R1



+ |“_Racquire() — Acquire a Program Device” on page 257|
* |“_Rfeov() — Force the End-of-File”|

_Rfeov() — Force the End-of-File

Format
#include <recio.h>

int _Rfeov(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Rfeov() function forces an end-of-volume condition for a tape file that is associated with the file
that is specified by fp. The _Rfeov()function positions the file to the next volume of the file. If the file is
open for output, the output buffers will be flushed.

The Rfeov() function is valid for tape files.

Return Value

The Rfeov() function returns 1 if the file has moved from one volume to the next. It will return EOF if it
is called while processing the last volume of the file. It will return zero if the operation is unsuccessful.

The value of errno may be set to EIOERROR (a non-recoverable error occurred) or EIORECERR (a
recoverable I/O error occurred). See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses Rfeov ()

Chapter 2. Library Functions 279



#include <stdio.h>
#include <recio.h>
#include <stdlib.h>

int main(void)

{
_RFILE =tape;
"RFILE *fp;
char  buf[92];
int i, feov2;
/* Open source physical file containing C source. */
if (( fp = _Ropen ( "QCSRC(T1677SRC)", "rr blkrcd=y" )) == NULL )
{
printf ( "could not open C source file\n" );
exit (1);
1
/* Open tape file to receive C source statements */
if (( tape = _Ropen ( "T1677TPF", "wr Trec1=92 blkrcd=y" )) == NULL )
{
printf ( "could not open tape file\n" );
exit (2 );
!
/* Read the C source statements, find their sizes */
/* and add them to the tape file. */
while (( _Rreadn ( fp, buf, sizeof(buf), _DFT )) -> num bytes != EOF
)
{
for (i = sizeof(buf) - 1 ; buf[i] == "' "' && i > 12; --1);
i=(i==12) 7?80 : (1-12);
memmove ( buf, buf+l2, i );
_Rwrite ( tape, buf, i );
}
feov2 = Rfeov (fp);
_Rclose ( fp )s
_Rclose ( tape );
1

Related Information

+ |“_Racquire() — Acquire a Program Device” on page 257|
* |“_Rfeod() — Force the End-of-Data” on page 278|

_Rformat() — Set the Record Format Name

Format
#include <recio.h>

void _Rformat( RFILE *fp, char *fmt);
Language Level: ILE C Extension
Threadsafe: Yes.
| Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

| All character data returned by this function is in the CCSID of the job. See[“Understanding CCSIDs and|
| [Locales” on page 524| for more information.

280 ILE C/C++ Runtime Library Functions V6R1



Description
The _Rformat() function sets the record format to fmt for the file specified by fp.
The fmt parameter is a null-ended C string. The fmt parameter must be in uppercase.

The _Rformat() function is valid for multi-format logical database, DDM files, display, ICF and printer
files.

Return Value

The Rformat() function returns void. See [Table 12 on page 507 and [Table 14 on page 510| for errno
settings.

Example that uses _Rformat()

This example shows how _Rformat() is used.

Chapter 2. Library Functions 281



#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>

int main(void)

{
char buf[40];
int rc = 1;
_RFILE *purf;
_RFILE *dailyf;
/* Open purchase display file and daily transaction file */

if ( ( purf = _Ropen ( "MYLIB/T1677RD3", "ar+,indicators=y" )) == NULL )
{

printf ( "Display file did not open.\n" );
exit (1);
}

if ( ( dailyf = _Ropen ( "MYLIB/T1677RDA", "wr,commit=y") ) == NULL )
{

printf ( "Daily transaction file did not open.\n" );
exit (2 );
}

/* Select purchase record format */
_Rformat ( purf, "PURCHASE" );

/* Invite user to enter a purchase transaction. */
/* The _Rwrite function writes the purchase display. */
_Rwrite ( purf, "", 0 );

_Rreadn ( purf, buf, sizeof(buf), _ DFT );

/* Update daily transaction file x/
rc = (( _Rwrite ( dailyf, buf, sizeof(buf) ))->num_bytes );
/* If the databases were updated, then commit the transaction. */
/* Otherwise, rollback the transaction and indicate to the */
/* user that an error has occurred and end the application. */
if (rc)
{
_Rcommit ( "Transaction complete" );
1
else
{
_Rrollbck ( )3
_Rformat ( purf, "ERROR" );
1

_Rclose ( purf );
_Rclose ( dailyf );
}

Related Information

* [“_Ropen() — Open a Record File for 1/0 Operations” on page 289

_Rindara() — Set Separate Indicator Area

Format

#include <recio.h>

void _Rindara(_RFILE *fp, char xindic_buf);

Language Level: ILE C Extension

282 ILE C/C++ Runtime Library Functions V6R1



Threadsafe: No.

| Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
| All character data returned by this function is in the CCSID of the job. See|“Understanding CCSIDs and|
| [Locales” on page 524| for more information.

Description

The Rindara() function registers indic_buf as the separate indicator area to be used by the file specified
by fp. The file must be opened with the keyword indicators=Y on the _Ropen() function. The DDS for the
file should specify also that a separate indicator area is to be used. It is generally best to initialize a
separate indicator area explicitly with ‘0" (character) in each byte.

The _Rindara() function is valid for display, ICF, and printer files.

Return Value

The Rindara() function returns void. See [Table 12 on page 507| and [Table 14 on page 510 for errno
settings.

Example that uses _Rindara()

Chapter 2. Library Functions 283



#include <stdio.h>

#include <recio.h>

#include <stdlib.h>
#include <string.h>
#define PFO3 2
#define IND_OFF '0'
#define IND_ON '1'

int main(void)
{
char buf[40];
int rc = 1;
_SYSindara ind_area;
RFILE *purf;
RFILE xdailyf;
/* Open purchase display file and daily transaction file */
if ( ( purf = Ropen ( "MYLIB/T1677RD3", "ar+,indicators=y" )) == NULL )
{

printf ( "Display file did not open.\n" );

exit (1);
}
if ( ( dailyf = Ropen ( "MYLIB/T1677RDA", "wr,commit=y") ) == NULL )
{

printf ( "Daily transaction file did not open.\n" );
exit (2 );
}
/* Associate separate indicator area with purchase file */
_Rindara ( purf, ind_area );
/* Select purchase record format */
_Rformat ( purf, "PURCHASE" );
/* Invite user to enter a purchase transaction. */
/* The Rwrite function writes the purchase display. */
_Rwrite ( purf, "", 0 );
Rreadn ( purf, buf, sizeof(buf), _ DFT );

7% While user is entering transactions, update daily and x/
/* monthly transaction files. */
while ( rc &% ind_area[PF03] == IND_OFF )
{
rc = (( _Rwrite ( dailyf, buf, sizeof(buf) ))->num bytes );
/* If the databases were updated, then commit transaction */
/* otherwise, rollback the transaction and indicate to the x/
/* user that an error has occurred and end the application. x/
if (rc)
{
_Rcommit ( "Transaction complete" );
1
else
{
_Rrollbck ()3
_Rformat ( purf, "ERROR" );
1

_Rwrite ( purf, "", 0 );
_Rreadn ( purf, buf, sizeof(buf), _ DFT );
}

_Rclose ( purf );
_Rclose ( dailyf );
1

Related Information

* [“_Ropen() — Open a Record File for 1/0 Operations” on page 289

_Riofbk() — Obtain I/0 Feedback Information

Format

284 ILE C/C++ Runtime Library Functions V6R1



#include <recio.h>
#include <xxfdbk.h>
_XXIOFB_T * Riofbk( RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The Riofbk() function returns a pointer to a copy of the I/O feedback area for the file that is specified

by fp.

The Riofbk() function is valid for all types of files.

Return Value

The Riofbk() function returns NULL if an error occurs. See [Table 12 on page 507 and [Table 14 on page]
for errno settings.

Example that uses _Riofbk()

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {

char name[20];
char address[25];

} formatl ;
typedef struct {

char name[8];
char password[10];

} format2 ;
typedef union {

formatl fmtl;
format2 fmt2;

} formats ;

int

{

/*

main(void)

_RFILE  =*fp; /* File pointer

"RIOFB_T *rfb; /*Pointer to
_XXIOFB_T =iofb; /* Pointer

the file's feedback structure
to the file's feedback area

formats buf, in_buf, out_buf; /+ Buffers to hold data

Open the device file.

if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{

printf ( "Could not open file\n" );

exit (1);

_Racquire ( fp,"DEVICEL" );

_Rformat ( fp,"FORMATL" );

rfb = Rwrite ( fp, "", 0 );
_Rpgmdev ( fp,"DEVICE2" );

_Rformat ( fp,"FORMAT2" );

rfb
rfb

_Rwrite ( fp, "", 0);
_Rwriterd ( fp, &buf,

/* with actual device name.
/* Set the record format for the
/* display file.
/* Set up the display.
/* Change the default program device.
/* Replace with actual device name.
/* Set the record format for the
/* display file.
/* Set up the display.
sizeof (buf) );

rfb = Rwrread ( fp, &in_buf, sizeof(in_buf), &out_buf,

*/
*/
*/
*/

/* Acquire another device. Replace

*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 2. Library Functions

285



| [Locales” on page 524| for more information.

sizeof (out_buf ));
_Rreadindv ( fp, &buf, sizeof(buf), _ DFT );
/* Read from the first device that =*/

/* enters data - device becomes */
/* default program device. */
/* Determine which terminal responded first. */

jofb = Riofbk ( fp );
if ( !strncmp ( "FORMATL ", iofb -> rec_format, 10 ))
{

}

else

{
}

/* Continue processing. */
printf ( "Data displayed is %45.45s\n", &buf);
_Rclose ( fp )s

_Rrelease ( fp, "DEVICEL" );

_Rrelease(fp, "DEVICE2" );

}

Related Information
* |“_Ropnfbk() — Obtain Open Feedback Information” on page 293

_Rlocate() — Position a Record

Format
#include <recio.h>

_RIOFB_T *_Rlocate(_RFILE *fp, void *key, int klen_rrn, int opts);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|

Description

The Rlocate() function positions to the record in the file associated with fp and specified by the key,
klen_rrn and opts parameters. The _Rlocate() function locks the record specified by the key, klen_rrn and
opts parameters unless _ NO_LOCK is specified.

The _Rlocate() function is valid for database and DDM files that are opened with the _Ropen() function.
The following are valid parameters of the _Rlocate()function.
key Points to a string containing the key fields to be used for positioning.

klen_rrn
Specifies the length of the key that is used if positioning by key or the relative record number if
positioning by relative record number.

opts  Specifies positioning options to be used for the locate operation. The possible macros are:

DFT

Default to __KEY_EQ and lock the record for update if the file is open for updating.

286 ILE C/C++ Runtime Library Functions V6R1



__END
Positions to just after the last record in a file. There is no record that is associated with
this position.

__END_FRC
Positions to just after the last record in a file. All buffered changes are made permanent.
There is no record that is associated with this position.

__FIRST
Positions to the first record in the access path that is currently being used by fp. The key
parameter is ignored.

__KEY_EQ
Positions to the first record with the specified key.

__KEY_GE
Positions to the first record that has a key greater than or equal to the specified key.

_KEY_GT
Positions to the first record that has a key greater than the specified key.

_KEY_LE
Positions to the first record that has a key less than or equal to the specified key.

_KEY_LT
Positions to the first record that has a key less than the specified key.

__KEY_NEXTEQ
Positions to the next record that has a key equal to the key value with a length of
klen_rrn, at the current position. The key parameter is ignored.

__KEY_NEXTUNQ
Positions to the next record with a unique key from the current position in the access
path. The key parameter is ignored.

__KEY_PREVEQ
Positions to the previous record with a key equal to the key value with a length of
klen_rrn, at the current position. The key parameter is ignored.

__KEY_PREVUNQ
Positions to the previous record with a unique key from the current position in the access
path. The key parameter is ignored.

__LAST
Positions to the last record in the access path that is currently being used by fp. The key
parameter is ignored.

__NEXT
Positions to the next record in the access path that is currently being used by fp. The key
parameter is ignored.

__PREVIOUS
Positions to the previous record in the access path that is currently being used by fp. The
key parameter is ignored.

__RRN_EQ
Positions to the record that has the relative record number specified on the klen_rrn
parameter.

_ START
Positions to just before the first record in the file. There is no record that is associated
with this position.

Chapter 2. Library Functions 287



_ START_FRC
Positions to just before the first record in a file. There is no record that is associated with
this position. All buffered changes are made permanent.

_ DATA_ONLY
Positions to data records only. Deleted records will be ignored.

_ KEY_NULL_MAP
The NULL key map is to be considered when locating to a record by key.

__NO_LOCK
The record that is positioned will not be locked.

__NO_POSITION
The position of the file is not changed, but the located record will be locked if the file is

open for update.
__PRIOR
Positions to just before the requested record.

| If you specify a start or end option (_ START, _ START_FRC, __END or _ END_FRC) with any other
| options, the start or end option takes precedence and the other options might be ignored.

If you are positioned to __START or __END and perform a _Rreads operation, errno is set to EIOERROR.

Return Value

The Rlocate() function returns a pointer to the _"RIOFB_T structure associated with fp. If the _Rlocate()
operation is successful, the num_bytes field contains 1. If _ START, _ START_FRC, _END or _ END_FRC
are specified, the num_bytes field is set to EOF. If the Rlocate() operation is unsuccessful, the
num_bytes field contains zero. The key and rrn fields are updated, and the key field will contain the
complete key even if a partial key is specified.

The value of errno may be set to:

Table 5.

Value Meaning

EBADKEYLN The key length that is specified is not valid.
ENOTREAD The file is not open for read operations
EIOERROR A non-recoverable I/O error occurred.
EIORECERR A recoverable I/0O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rlocate()

288 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

_RFILE  xin;
char new_purchase[21] = "PEAR 1002022244"
/* Open the file for processing in keyed sequence. */

if ( (in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL )
printf("Open failed\n");
exit(1l);

1

/* Update the first record in the keyed sequence. */

_Rlocate(in, NULL, 0, _ FIRST);
_Rupdate(in, new_purchase, 20);

/* Force the end of data. */
_Rfeod(in);

_Rclose(in);

Related Information

* |“_Ropen() — Open a Record File for I/0O Operations”]

_Ropen() — Open a Record File for I/O Operations

Format
#include <recio.h>

_RFILE *_Ropen(const char * filename, const char * mode, ...);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Ropen() function opens the record file specified by filename according to the mode parameter, which
may be followed by optional parameters, if the varparm keyword parameter is specified in the mode
parameter. The open mode and keyword parameters may be separated by a comma and one or more
spaces. The _Ropen() function does not dynamically create database files for you. All of the files you refer
to in the _Ropen() function must exist, or the open operation will fail.

Files that are opened by the _Ropen() function are closed implicitly when the activation group they are
opened in, is ended. If a pointer to a file opened in one activation group is passed to another activation

group and the opening activation group is ended, the file pointer will no longer be valid.

The _Ropen() function applies to all types of files. The filename variable is any valid i5/0S system file
name.

Chapter 2. Library Functions 289



The mode parameter specifies the type of access that is requested for the file. It contains an open mode
that is followed by optional keyword parameters. The mode parameter may be one of the following
values:

Mode Description

rr Open an existing file for reading records.

wr Open an existing file for writing records. If the file contains data, the content is cleared unless the
file is a logical file.

ar Open an existing file for writing records to the end of the file (append).

rr+ Open an existing file for reading, writing or updating records.

wr+  Open an existing file for reading, writing or updating records. If the file contains data, the
content is cleared unless the file is a logical file.

ar+ Open an existing file for reading and writing records. All data is written to the end of the file.

The mode may be followed by any of the following keyword parameters:

Keyword
Description

arrseq=value
Where value can be:

Y Specifies that the file is processed in arrival sequence.

N Specifies that the file is processed using the access path that is used when the file was
created. This is the default.

blkrcd=value
Where value can be:

Y Performs record blocking. The i5/0S operating system determines the most efficient
block size for you. This parameter is valid for database, DDM, diskette and tape files. It is
only valid for files opened for input-only or output-only (modes rr, wr, or ar).

N Does not perform record blocking. This is the default.

cesid=value
Specifies the CCSID that is used for translation of the file. The default is 0 which indicates that
the job CCSID is used.

commit=value
Where value can be:

Y Specifies that the database file is opened under commitment control. Commitment control
must have been set up prior to this.

N Specifies that the database file is not opened under commitment control. This is the
default.

dupkey=value
value can be:

Y Duplicate key values will be flagged in the _RIOFB_T structure.
N Duplicate key values will not be flagged. This is the default.

indicators=value
Indicators are valid for printer, display, and ICF files. value can be:

Y The indicators that are associated with the file are returned in a separate indicator area
instead of in the I/O buffers.

290 ILE C/C++ Runtime Library Functions V6R1



N The indicators are returned in the I/O buffers. This is the default.

Irecl=value
The length, in bytes, for fixed length records, and the maximum length for variable length
records. This parameter is valid for diskette, display, printer, tape, and save files.

nullcap=value
Where value can be:

Y The program is capable of handling null fields in records. This is valid for database and
DDM files.
N The program cannot handle null fields in records. This is the default.

riofb=value
Where value can be:

Y All fields in the _RIOFB_T structure are updated by any I/O operation that returns a
pointer to the _RIOFB_T structure. However, the blk_filled_by field is not updated when
using the _Rreadk function. This is the default.

N Only the num_bytes field in the _RIOFB_T structure is updated.

rtncode=value
Where value can be:

Y Use this option to bypass exception generation and handling. This will improve
performance in the end-of-file and record-not-found cases. If the end-of-file is
encountered, num_bytes will be set to EOF, but no errno values will be generated. If no
record is found, num_bytes will be set to zero, and errno will be set to EIORECERR. This
parameter is only valid for database and DDM files. For DDM files, num_bytes is not
updated for _Rfeod.

N The normal exception generation and handling process will occur for the cases of
end-of-file and record-not-found. This is the default.

secure=value
Where value can be:

Y Secures the file from overrides.
N Does not secure the file from overrides. This is the default.

splfname=(value)
For spooled output only. Where value can be:

*FILE The name of the printer file is used for the spooled output file name.

spool-file-name
Specify the name of the spooled output file. A maximum of 10 characters can be used.

usrdta=(value)
To specify, for spooled output only, user-specified data that identifies the file.

user-data
Specify up to 10 characters of user-specified text.

varparm=(list)
Where (list) is a list of optional keywords indicating which optional parameters will be passed to
_Ropen(). The order of the keywords within the list indicates the order that the optional
parameters will appear after the mode parameter. The following is a valid optional keyword:

Ivichk The lvlchk keyword is used in conjunction with the lvichk option on #pragma mapinc.
When this keyword is used, a pointer to an object of type _LVLCHK_T (generated by
#pragma mapinc) must be specified after the mode parameter on the _Ropen() function.

Chapter 2. Library Functions 291



For more details on this pointer, see the lvichk option of #pragma mapinc in the
WebSphere Development Studio: ILE C/C++ Programmer’s Guide.

vir=value
Variable length record, where value is the minimum length of bytes of a record to be written to
the file. The value can equal -1, or range from 0 to the maximum record length of the file. This
parameter is valid for database and DDM files.

When VLR processing is required, _Ropen() will set min_length field. If the default value is not
used, the minimum value that is provided by the user will be directly copied into min_length
field. If the default value is specified, _Ropen() gets the minimum length from DB portion of the
open data path.

Return Value

The _Ropen() function returns a pointer to a structure of type _RFILE if the file is opened successfully. It
returns NULL if opening the file is unsuccessful.

The value of errno may be set to:
Value Meaning

EBADMODE
The file mode that is specified is not valid.

EBADNAME
The file name that is specified is not valid.

ECONVERT
A conversion error occurred.

ENOTOPEN
The file is not open.

EIOERROR
A non-recoverable I1/0 error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Example that uses _Ropen()

292 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)
_RFILE *fp;
/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{
printf ( "Open failed\n" );
exit (1);
else
/* Do some processing */;

_Rclose ( fp );
1

Related Information

+ [“_Rclose() — Close a File” on page 258|

* [“<recio.h>" on page 9|

_Ropnfbk() — Obtain Open Feedback Information

Format

#include <recio.h>
#include <xxfdbk.h>

_XXOPFB_T *_Ropnfbk(_RFILE *fp);
Language Level: ILE C Extension
Threadsafe: Yes.

Description

The Ropnfbk() function returns a pointer to a copy of the open feedback area for the file that is specified

by fp.
The _Ropnfbk() function is valid for all types of files.

Return Value

The Ropnfbk() function returns NULL if an error occurs. See [Table 12 on page 507] and [Table 14 on page|
for errno settings.

Example that uses _Ropnfbk()

Chapter 2. Library Functions 293



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{
_RFILE *fp;
“XXOPFB_T  *opfb;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{

printf ( "Open failed\n" );

exit (1),

/* Get the Tibrary and file names of the file opened. */
opfb = _Ropnfbk ( fp );
printf ( "Library: %10.10s\nFile: %10.10s\n",
opfb->Tibrary_name,
opfb->file_name);

_Rclose ( fp );
1

Related Information

* |“_Rupfb() — Provide Information on Last 1/O Operation” on page 320

_Rpgmdev() — Set Default Program Device

Format

#include <recio.h>

int _Rpgmdev(_RFILE *fp, char *dev);
Language Level: ILE C Extension
Threadsafe: No.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
All character data returned by this function is in the CCSID of the job. See [“Understanding CCSIDs and|

| [Locales” on page 524| for more information.

Description

The _Rpgmdev () function sets the current program device for the file that is associated with fp to dev. You
must specify the device in uppercase.

The dev parameter is a null-ended C string.
The _Rpgmdev () function is valid for display, ICF, and printer files.
Return Value

The _Rpgmdev () function returns 1 if the operation is successful or zero if the device specified has not
been acquired for the file. See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Example that uses _Rpgmdev ()

294 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

typedef struct {
char name[20];
char address[25];
} formatl ;

typedef struct {

char name[8];

char password[10];
} format2 ;

typedef union {
formatl fmtl;
format2 fmt2;
} formats ;

int main(void)

_RFILE  =*fp; /x File pointer */
_RIOFB_T *rfb; /*Pointer to the file's feedback structure */
formats buf, in_buf, out_buf; /* Buffers to hold data */
/* Open the device file. */

if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{

printf ( "Could not open file\n" );

exit (1);
}

_Rpgmdev ( fp,"DEVICE2" );/* Change the default program device. =*/
/* Replace with actual device name. x/

_Rformat ( fp,"FORMAT2" ); /+ Set the record format for the */

/* display file. */
rfb = Rwrite ( fp, "", 0 ); /x Set up the display. */
rfb = Rwriterd ( fp, &buf, sizeof(buf) );
rfb = Rwrread ( fp, &in_buf, sizeof(in_buf), &out_buf,

sizeof (out_buf ));
/* Continue processing. */

_Rclose ( fp );
1

Related Information

+ |“_Racquire() — Acquire a Program Device” on page 257|

* |“_Rrelease() — Release a Program Device” on page 314

_Rreadd() — Read a Record by Relative Record Number

Format
#include <recio.h>

_RIOFB_T * Rreadd (_RFILE *fp, void *buf, size t size,
int opts, long rrn);

Language Level: ILE C Extension

Chapter 2. Library Functions 295



Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The _Rreadd() function reads the record that is specified by rrn in the arrival sequence access path for the
file that is associated with fp. The _Rreadd() function locks the record specified by the rrn unless

_ NO_LOCK is specified. If the file is a keyed file, the keyed access path is ignored. Up to size number of
bytes are copied from the record into buf (move mode only).

The following parameters are valid for the _Rreadd() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

rrn The relative record number of the record to be read.
opts  Specifies the processing and access options for the file. The possible options are:

__DFT
If the file is opened for updating, then the record being read is locked for update. The
previously locked record will no longer be locked.

_NO_LOCK
Does not lock the record being positioned to.

The Rreadd() function is valid for database, DDM and display (subfiles) files.
Return Value

The Rreadd() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rreadd()
operation is successful the num_bytes field is set to the number of bytes transferred from the system
buffer to the user’s buffer (move mode) or the record length of the file (locate mode). If blkrcd=Y and
riofb=Y are specified, the blk_count and the blk_filled_by fields of the _RIOFB_T structure are updated.
The key and rrn fields are also updated. If the file associated with fp is a display file, the sysparm field is
updated. If it is unsuccessful, the num_bytes field is set to a value less than size and errno will be
changed.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507] and [Table 14 on page 510| for errno settings.

Example that uses _Rreadd()

296 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

_RFILE *fp;
“XXOPFB_T  opfh;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )

printf ( "Open failed\n" );
exit (1);

/* Get the Tibrary and file names of the file opened. */
opfb = _Ropnfbk ( fp );
printf ( "Library: %10.10s\nFile: %10.10s\n",

opfb->Tibrary name,

opfb->file_name);

/* Get the second record. */
Rreadd ( fp, NULL, 20, _DFT, 2 );
printf ( "Second record: %10.10s\n", *(fp->in_buf) );

_Rclose ( fp )s
}

Related Information
* |“_Rreadf() — Read the First Record”)

[*_Rreadindv() — Read from an Invited Device” on page 299|
[*_Rreadk() — Read a Record by Key” on page 302|
[*_Rreadl() — Read the Last Record” on page 305|
[*_Rreadn() — Read the Next Record” on page 306|

|

|

|

“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308|

s

_Rreadp() — Read the Previous Record” on page 310]
“ Rreads() — Read the Same Record” on page 312

_Rreadf() — Read the First Record

Format
#include <recio.h>

_RIOFB_T * Rreadf (_RFILE *fp, void *buf, size t size, int opts);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rreadf() function reads the first record in the access path that is currently being used for the file
specified by fp. The access path may be keyed sequence or arrival sequence. The _Rreadf() function locks
the first record unless _ NO_LOCK is specified. Up to size number of bytes are copied from the record
into buf (move mode only).

The following are valid parameters for the _Rreadf() function.

Chapter 2. Library Functions 297



buf This parameter points to the buffer where the data that is read is to be stored. If locate mode is
used, this parameter must be set to NULL.

size This parameter specifies the number of bytes that are to be read and stored in buf. If locate mode
is used, this parameter is ignored.

opts  This parameter specifies the processing and access options for the file. The possible options are:

_ DFT
If the file is opened for updating, then the record being read or positioned to is locked for
update. The previously locked record will no longer be locked.

__NO_LOCK
Does not lock the record being positioned to.

The Rreadf() function is valid for database and DDM files.
Return Value

The Rreadf() function returns a pointer to the _"RIOFB_T structure that is specified by fp. If the

Rr‘eadf () operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields are updated. If record blocking is taking place, the blk_count and blk_filled_by fields are
updated. The num_bytes field is set to EOF if the file is empty. If it is unsuccessful, the num_bytes field is
set to a value less than size, and errno is changed.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/0 error occurred.

See [Table 12 on page 507|and [Table 14 on page 510 for errno settings.

Example that uses _Rreadf()

298 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

_RFILE *fp;
“XXOPFB_T  opfh;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )

printf ( "Open failed\n" );
exit (1);

/* Get the Tibrary and file names of the file opened. */
opfb = _Ropnfbk ( fp );
printf ( "Library: %10.10s\nFile: %10.10s\n",

opfb->Tibrary name,

opfb->file_name);

/* Get the first record. */
Rreadf ( fp, NULL, 20, _DFT );
printf ( "First record: %10.10s\n", *(fp->in_buf) );

/* Delete the first record. */
_Rdelete ( fp );

_Rclose ( fp )s
}

Related Information
* |“_Rreadd() — Read a Record by Relative Record Number” on page 295

[*_Rreadindv() — Read from an Invited Device”|
[*_Rreadk() — Read a Record by Key” on page 302|
[*_Rreadl() — Read the Last Record” on page 305|
[*_Rreadn() — Read the Next Record” on page 306|
I

I

I

“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308]

s

_Rreadp() — Read the Previous Record” on page 310|
“ Rreads() — Read the Same Record” on page 312

_Rreadindv() — Read from an Invited Device

Format
#include <recio.h>

_RIOFB_T *_Rreadindv(_RFILE *fp, void xbuf, size_t size, int opts);
Language Level: ILE C Extension

Threadsafe: No.

Description

The Rreadindv() function reads data from an invited device.

The following are valid parameters for the _Rreadindv() function.

Chapter 2. Library Functions 299



buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts  Specifies the processing options for the file. Possible values are:
DFT

If the file is opened for updating, then the record being read or positioned to is locked.
Otherwise, the option is ignored.

The Rreadindv() function is valid for display and ICF files.
Return Value

The _Rreadindv() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadindv() function is successful, the num_bytes field is set to the number of bytes transferred from
the system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The
sysparm and rrn (for subfiles) fields are also updated. The num_bytes field is set to EOF if the file is
empty. If the _Rreadindv() function is unsuccessful, the num_bytes field is set to a value less than the
value of size and the errno will be changed.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable 1/0 error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507] and [Table 14 on page 510| for errno settings.

Example that uses _Rreadindv ()

300 ILE C/C++ Runtime Library Functions V6R1



#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {

char name[20];
char address[25];

} formatl ;
typedef struct {

char name[8];
char password[10];

} format2 ;
typedef union {

formatl fmtl;
format2 fmt2;

} formats ;
int main(void)

{

}

/*

/*

/*

_RFILE  =fp; /* File pointer

iéIOFB_T *rfb; /* Pointer to the file's feedback structure
iﬁXIOFB_T *i0fb; /* Pointer to the file's feedback area
;érmats buf, in_buf, out_buf /* Buffers to hold data
Séen the device file. */

if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{

printf ( "Could not open file\n" );

exit (1),
1
_Racquire ( fp,"DEVICE1" ); /* Acquire another device. Replace */
/* with actual device name. */
_Rformat ( fp,"FORMAT1" ); /* Set the record format for the =*/
/* display file. */
rfb = Rwrite ( fp, "", 0 ); /* Set up the display. */

_Rpgmdev ( fp,"DEVICE2" ); /* Change the default program device. */
/* Replace with actual device name. */
_Rformat ( fp,"FORMAT2" );  /* Set the record format for the */

/* display file. */
rfb = Rwrite ( fp, "", 0 ); /x Set up the display. */
rfb = Rwriterd ( fp, &buf, sizeof(buf) );
rfb = Rwrread ( fp, &in_buf, sizeof(in_buf), &out_buf,

sizeof (out_buf ));
_Rreadindv ( fp, &buf, sizeof(buf), _ DFT );
/* Read from the first device that =/

/* enters data - device becomes */
/* default program device. x/
Determine which terminal responded first. */

jofb = Riofbk ( fp );
if ( !strncmp ( "FORMAT1 ", iofb -> rec_format, 10 ))

_Rrelease ( fp, "DEVICE1" );
1

else

{
}

Continue processing. */
printf ( "Data displayed is %45.45s\n", &buf);
_Rclose ( fp )s

_Rrelease(fp, "DEVICE2" );

Related Information
* |“_Rreadd() — Read a Record by Relative Record Number” on page 295

Chapter 2. Library Functions

301



[*_Rreadf() — Read the First Record” on page 297
[*_Rreadk() — Read a Record by Key”|

[*_Rreadl() — Read the Last Record” on page 305|
[*_Rreadn() — Read the Next Record” on page 306|
|

|

|

“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308|

s

_Rreadp() — Read the Previous Record” on page 310]

“_Rreads() — Read the Same Record” on page 312]

_Rreadk() — Read a Record by Key

Format
#include <recio.h>

_RIOFB_T *_Rreadk(_RFILE *fp, void *buf, size t size,
int opts, void xkey, unsigned int keylen);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rreadk() function reads the record in the keyed access path that is currently being used for the file
that is associated with fp. Up to size number of bytes are copied from the record into buf (move mode
only). The _Rreadk() function locks the record positioned to unless _ NO_LOCK is specified. You must
be processing the file using a keyed sequence path.

The following parameters are valid for the _Rreadk() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

key Points to the key to be used for reading.
keylen Specifies the total length of the key to be used.

opts Specifies the processing options for the file. Possible values are:

__DFT
Default to _ KEY_EQ.
__KEY_EQ
Positions to and reads the first record that has the specified key.
__KEY_GE
Positions to and reads the first record that has a key greater than or equal to the specified
key.
_KEY_GT
Positions and reads to the first record that has a key greater than the specified key.
_KEY_LE
Positions to and reads the first record that has a key less than or equal to the specified
key.

302 ILE C/C++ Runtime Library Functions V6R1



_KEY_LT
Positions to and reads the first record that has a key less than the specified key.

__KEY_NEXTEQ
Positions to and reads the next record that has a key equal to the key value at the current
position. The key parameter is ignored.

_ KEY_NEXTUNQ
Positions to and reads the next record with a unique key from the current position in the
access path. The key parameter is ignored.

__KEY_PREVEQ
Positions to and reads the last record that has a key equal to the key value at the current
position. The key parameter is ignored.

__KEY_PREVUNQ
Positions to and reads the previous record with a unique key from the current position in
the access path. The key parameter is ignored.

__NO_LOCK
Do not lock the record for updating.

The positioning options are mutually exclusive.

The following options may be combined with the positioning options using the bit-wise OR (|) operator.

_ KEY_NULL_MAP
The NULL key map is to be considered when reading a record by key.

__NO_LOCK
The record that is positioned will not be locked.

The Rreadk() function is valid for database and DDM files.
Return Value

The _Rreadk() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rreadk()
operation is successful the num_bytes field is set to the number of bytes transferred from the system
buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and rrn
fields will be updated. The key field will always contain the complete key if a partial key is specified.
When using record blocking with _Rreadk(), only one record is read into the block. Thus there are zero
records remaining in the block and the blk_count field of the _RIOFB_T structure will be updated with 0.
The blk_filled_by field is not applicable to _Rreadk() and is not updated. If the record specified by key
cannot be found, the num_bytes field is set to zero. If you are reading a record by a partial key, then the
entire key is returned in the feedback structure. If it is unsuccessful, the num_bytes field is set to a value
less than size and errno will be changed.

The value of errno may be set to:
Value Meaning

EBADKEYLN
The key length specified is not valid.

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable 1/O error occurred.

Chapter 2. Library Functions 303



EIORECERR
A recoverable I1/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rreadk()

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>

int main(void)
{
RFILE  *fp;
"RIOFB_T #fb;
char buf[4];
/* Create a physical file */
system("CRTPF FILE(QTEMP/MY FILE)");
/* Open the file for write */
if ( (fp = _Ropen("QTEMP/MY_FILE", "wr")) == NULL )
{
printf("open for write fails\n");
exit(1l);
1
/* write some records into the file */
_Rwrite(fp, "KEY9", 4);
_Rwrite(fp, "KEY8", 4);
_Rwrite(fp, "KEY7", 4);
_Rwrite(fp, "KEY6", 4);
_Rwrite(fp, "KEY5", 4);
_Rwrite(fp, "KEY4", 4);
_Rwrite(fp, "KEY3", 4);
_Rwrite(fp, "KEY2", 4);
_Rwrite(fp, "KEY1", 4);
/* Close the file */
_Rclose(fp)s
/* Open the file for read */
if ( (fp = _Ropen("QTEMP/MY_FILE", "rr")) == NULL )
{
printf("open for read fails\n");
exit(2);

1

/* Read the record with key KEY3 */
fb = Rreadk(fp, buf, 4, _KEY_EQ, "KEY3", 4);

printf("record %d with value %4.4s\n", fb->rrn, buf);

/* Read the next record with key less than KEY3 */
fb = Rreadk(fp, buf, 4, _KEY LT, "KEY3", 4);

printf("record %d with value %4.4s\n", fb->rrn, buf);

/* Read the next record with key greater than KEY3 */
fb = _Rreadk(fp, buf, 4, _ KEY_GT, "KEY3", 4);

printf("record %d with value %4.4s\n", fb->rrn, buf);

/* Read the next record with different key */
fb = Rreadk(fp, buf, 4, _KEY _NEXTUNQ, "", 4);

printf("record %d with value %4.4s\n", fb->rrn, buf);

/* Close the file */
_Rclose(fp);

Related Information

* |“_Rreadd() — Read a Record by Relative Record Number” on page 295
* |“_Rreadf() — Read the First Record” on page 297|

+ |“_Rreadindv() — Read from an Invited Device” on page 299

* |[“_Rreadl() — Read the Last Record” on page 305

304 ILE C/C++ Runtime Library Functions V6R1



[*_Rreadn() — Read the Next Record” on page 306|

[*_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308|
I

I

“ Rreadp() — Read the Previous Record” on page 310
“ Rreads() — Read the Same Record” on page 312

_Rreadl() — Read the Last Record

Format
#include <recio.h>

_RIOFB_T *_Rreadl(_RFILE *fp, void *buf, size t size, int opts);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rreadl() function reads the last record in the access path currently being used for the file specified
by fp. The access path may be keyed sequence or arrival sequence. Up to size number of bytes are copied
from the record into buf (move mode only). The _Rreadl() function locks the last record unless

_ NO_LOCK is specified.

The following parameters are valid for the _Rread1() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts  Specifies the processing options for the file. Possible values are:

DFT

If the file is opened for updating, then the record being read or positioned to is locked.
The previously locked record will no longer be locked.

_NO_LOCK
Do not lock the record being positioned to.

The Rreadl() function is valid for database and DDM files.
Return Value

The _Rread1() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rread1() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields will be updated. If record blocking is taking place, the blk_count and blk_filled_by fields will
be updated. If the file is empty, the num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field
is set to a value less than size and errno will be changed.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

Chapter 2. Library Functions 305



ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/0O error occurred.

EIORECERR

A recoverable I/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rread] ()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{

}

RFILE «fp;

_XXOPFB_T  xopfb;

/* Open the file for processing in arrival sequence.

if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) ==

{
printf ( "Open failed\n" );
exit (1);

/* Get the library and file names of the file opened.
opfb = _Ropnfbk ( fp )3
printf ( "Library: %10.10s\nFile: %10.10s\n",
opfb->1ibrary_name,
opfb->file_name);

/* Get the last record.

_Rreadl ( fp, NULL, 20, _ DFT );

printf ( "Last record: %10.10s\n", *(fp->in_buf) );

_Rclose ( fp );

Related Information
+ |“_Rreadd() — Read a Record by Relative Record Number” on page 295|

s

_Rreadf() — Read the First Record” on page 297

s

_Rreadindv() — Read from an Invited Device” on page 299|

s

_Rreadk() — Read a Record by Key” on page 302|

11

_Rreadn() — Read the Next Record”]

“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

s

_Rreadp() — Read the Previous Record” on page 310|

11

_Rreads() — Read the Same Record” on page 312]

_Rreadn() — Read the Next Record

Format

#include <recio.h>

_RIOFB_T *_Rreadn (_RFILE *fp, void *buf, size_t size,

Language Level: ILE C Extension

306

ILE C/C++ Runtime Library Functions V6R1

int opts);



Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The _Rreadn() function reads the next record in the access path that is currently being used for the file
that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size number
of bytes are copied from the record into buf (move mode only). The _Rreadn() function locks the record
positioned to unless _ NO_LOCK is specified.

If the file associated with fp is opened for sequential member processing and the current record position
is the last record of any member in the file except the last, _Rreadn() will read the first record in the next
member of the file.

If an _Rlocate() operation positioned to a record specifying the _PRIOR option, _Rreadn() will read the
record positioned to by the _Rlocate() operation.

If the file is open for record blocking and a call to _Rreadp() has filled the block, the Rreadn() function
is not valid if there are records remaining in the block. You can check the blk_count in _RIOFB_T to see if
there are any remaining records.

The following are valid parameters for the _Rreadn() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts  Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.
The previously locked record will no longer be locked.

__NO_LOCK
Do not lock the record being positioned to.

The Rreadn() function is valid for all types of files except printer files.
Return Value

The _Rreadn() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadn() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields are updated. If the file that is associated with fp is a display file, the sysparm field is also
updated. If record blocking is taking place, the blk_count and the blk_filled_by fields of the _RIOFB_T
structure are updated. If attempts are made to read beyond the last record in the file, the num_bytes field
is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less than size, and errno is
changed. If you are using device files and specify zero as the size, check errno to determine if the function
was successful.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

Chapter 2. Library Functions 307



ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rreadn()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{
_RFILE «fp;
"XXOPFB_T  *opfh;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{

printf ( "Open failed\n" );

exit (1);

/* Get the library and file names of the file opened. */
opfb = _Ropnfbk ( fp )3
printf ( "Library: %10.10s\nFile: %10.10s\n",
opfb->1ibrary_name,
opfb->file_name);

/* Get the first record. */
_Rreadf ( fp, NULL, 20, _ DFT );
printf ( "First record: %10.10s\n", *(fp->in_buf) );

/* Delete the second record. */
_Rreadn ( fp, NULL, 20, _ DFT );
_Rdelete ( fp );

_Rclose ( fp );
1

Related Information
+ |“_Rreadd() — Read a Record by Relative Record Number” on page 295|
* |“_Rreadf() — Read the First Record” on page 297

o |

|

[*_Rreadindv() — Read from an Invited Device” on page 299
[*_Rreadk() — Read a Record by Key” on page 302|
[*_Rreadl() — Read the Last Record” on page 305|
|

|

|

“ Rreadnc() — Read the Next Changed Record in a Subfile”]

Z

_Rreadp() — Read the Previous Record” on page 310
“ Rreads() — Read the Same Record” on page 312]

_Rreadnc() — Read the Next Changed Record in a Subfile

Format

308 ILE C/C++ Runtime Library Functions V6R1



#include <recio.h>

_RIOFB_T * Rreadnc(_RFILE *fp, void *buf, size t size);
Language Level: ILE C Extension

Threadsafe: No.

Description

The Rreadnc() function reads the next changed record from the current position in the subfile that is
associated with fp. The minimum size of data that is read from the screen are copied from the system
buffer to buf.

The following are valid parameters for the _Rreadnc() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf.
The Rreadnc() function is valid for subfiles.
Return Value

The _Rreadnc() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadnc() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The rrn and
sysparm fields are updated. If there are no changed records between the current position and the end of
the file, the num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less
than size, and errno is changed.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0 error occurred.

See [Table 12 on page 507] and [Table 14 on page 510| for errno settings.

Example that uses _Rreadnc()

Chapter 2. Library Functions 309



#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

#define LEN 10

#define NUM_RECS 20

#define SUBFILENAME "MYLIB/T1677RD6"
#define PFILENAME "MYLIB/T1677RDB"
typedef struct {

char name[LEN];
char phone[LEN];

}opf_ts
#define RECLEN sizeof(pf_t)
void init_subfile(_RFILE *, RFILE =*);

int main(void)

{

}

_RFILE *pfs

_RFILE *subf;
/*************************************************
* Open the subfile and the physical file. *

*************************************************/

if ((pf = Ropen(PFILENAME, "rr")) == NULL) {
printf("can't open file %s\n", PFILENAME);
exit(1l);

1
if ((subf = _Ropen(SUBFILENAME, "ar+")) == NULL) {
printf("can't open file %s\n", SUBFILENAME);

exit(2);
1
/ .................................................
* Initialize the subfile with records *
* from the physical file. *

*************************************************/
init_subfile(pf, subf);
/*************************************************

* Write the subfile to the display by writing =*

* a record to the subfile control format. *

*************************************************/
_Rformat (subf, "SFLCTL");

_Rwrite(subf, "", 0);

_Rreadnc(subf, "", 0);
/*************************************************

* Close the physical file and the subfile. *

""""""""""""""" ********************/
_Rclose(pf)s
_Rclose(subf);

Related Information
* |“_Rreadd() — Read a Record by Relative Record Number” on page 295|

" Rreadf() — Read the First Record” on page 297

Z

_Rreadindv() — Read from an Invited Device” on page 299

“ Rreadk() — Read a Record by Key” on page 302|

“ Rreadl() — Read the Last Record” on page 305|

“ Rreadn() — Read the Next Record” on page 306

" Rreadp() — Read the Previous Record”]

“ Rreads() — Read the Same Record” on page 312

_Rreadp() — Read the Previous Record

Format

310 ILE C/C++ Runtime Library Functions V6R1



#include <recio.h>

_RIOFB_T * Rreadp( RFILE *fp, void *buf, size t size, int opts);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rreadp() function reads the previous record in the access path that is currently being used for the
file that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size
number of bytes are copied from the record into buf (move mode only). The _Rreadp() function locks the
record positioned to unless _ NO_LOCK is specified.

If the file associated with fp is opened for sequential member processing and the current record position
is the first record of any member in the file except the first, _Rreadp() will read the last record in the
previous member of the file.

If the file is open for record blocking and a call to _Rreadn() has filled the block, the Rreadp() function
is not valid if there are records remaining in the block. You can check the blk_count in _RIOFB_T to see if
there are any remaining records.

The following are valid parameters for the _Rreadp() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts  Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.
The previously locked record will no longer be locked.

_NO_LOCK
Do not lock the record being positioned to.

The Rreadp() function is valid for database and DDM files.
Return Value

The _Rreadp() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreadp() operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields are also updated. If record blocking is taking place, the blk_count and the blk_filled_by fields of
the _RIOFB_T structure are updated. If attempts are made to read prior to the first record in the file, the
num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less than size, and
errno is changed.

The value of errno may be set to:
Value Meaning

ENOTREAD
The file is not open for read operations.

Chapter 2. Library Functions 311



ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/0O error occurred.

EIORECERR

A recoverable I/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rreadp()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{

}

_RFILE *fps
"XXOPFB_T  *opfh;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{

printf ( "Open failed\n" );

exit (1);

/* Get the library and file names of the file opened. */
opfb = _Ropnfbk ( fp )3
printf ( "Library: %10.10s\nFile: %10.10s\n",
opfb->1ibrary_name,
opfb->file_name);

/* Get the last record. */
_Rreadl ( fp, NULL, 20, _ DFT );
printf ( "Last record: %10.10s\n", *(fp->in_buf) );

/* Get the previous record. */

_Rreadp ( fp, NULL, 20, _ DFT );
printf ( "Next to last record: %10.10s\n", *(fp->in_buf) );

_Rclose ( fp );

Related Information
+ |“_Rreadd() — Read a Record by Relative Record Number” on page 295|

“_Rreadf() — Read the First Record” on page 297|

s

_Rreadindv() — Read from an Invited Device” on page 299|

“ Rreadk() — Read a Record by Key” on page 302|

“ Rreadl() — Read the Last Record” on page 305|

“ Rreadn() — Read the Next Record” on page 306|

“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

“ Rreads() — Read the Same Record”]

_Rreads() — Read the Same Record

Format

312 ILE C/C++ Runtime Library Functions V6R1



#include <recio.h>

_RIOFB_T * Rreads(_RFILE *fp, void *buf, size t size, int opts);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rreads() function reads the current record in the access path that is currently being used for the file
that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size number
of bytes are copied from the record into buf (move mode only). The _Rreads() function locks the record
positioned to unless _ NO_LOCK is specified.

If the current position in the file that is associated with fp has no record associated with it, the _Rreads ()
function will fail.

The Rreads() function is not valid when the file is open for record blocking.

The following are valid parameters for the _Rreads() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this
parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this
parameter is ignored.

opts  Specifies the processing options for the file. Possible values are:

__ DFT
If the file is opened for updating, then the record being read or positioned to is locked.
The previously locked record will no longer be locked.

_NO_LOCK
Do not lock the record being positioned to.

The Rreads() function is valid for database and DDM files.
Return Value

The Rreads() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rreads () operation is successful the num_bytes field is set to the number of bytes transferred from the
system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and
rrn fields are also updated. If it is unsuccessful, the num_bytes field is set to a value less than size, and
errno is changed.

The value of errno may be set to:

Value Meaning

ENOTREAD
The file is not open for read operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/O error occurred.

Chapter 2. Library Functions 313



EIORECERR
A recoverable I1/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rreads ()

#include <stdlib.h>
#include <recio.h>

int main(void)

{
_RFILE *fps
“XXOPFB_T  opfh;

/* Open the file for processing in arrival sequence. */
if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{

printf ( "Open failed\n" );

exit (1);

/* Get the library and file names of the file opened. */
opfb = Ropnfbk ( fp )3
printf ( "Library: %10.10s\nFile: %10.10s\n",
opfb->1ibrary_name,
opfb->file_name);

/* Get the Tlast record. */
_Rreadl ( fp, NULL, 20, _ DFT );
printf ( "Last record: %10.10s\n", *(fp->in_buf) );

/* Get the same record without locking it. */
Rreads ( fp, NULL, 20, _ NO_LOCK);
printf ( "Same record: %10.10s\n", *(fp->in_buf) );

_Rclose ( fp )s
1

Related Information
* |“_Rreadd() — Read a Record by Relative Record Number” on page 295|
" Rreadf() — Read the First Record” on page 297

Z

|

[*_Rreadindv() — Read from an Invited Device” on page 299|
[*_Rreadk() — Read a Record by Key” on page 302|
[*_Rreadl() — Read the Last Record” on page 305|
|

|

|

“ Rreadn() — Read the Next Record” on page 306|
“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308|

4

_Rreadp() — Read the Previous Record” on page 310]

_Rrelease() — Release a Program Device

Format
#include <recio.h>

int Rrelease(_RFILE *fp, char =*dev);
Language Level: ILE C Extension

Threadsafe: No.

314 ILE C/C++ Runtime Library Functions V6R1



| Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.
| All character data returned by this function is in the CCSID of the job. See|“Understanding CCSIDs and|

| [Locales” on page 524| for more information.

Description

The _Rrelease() function releases the program device that is specified by dev from the file that is

associated with fp. The device name must be specified in uppercase.
The dev parameter is a null-ended C string.
The Rrelease() function is valid for display and ICF files.

Return Value

The Rrelease() function returns 1 if it is successful or zero if it is unsuccessful. The value of errno may

be set to EIOERROR (a non-recoverable 1/0 error occurred) or EIORECERR (a recoverable 1/O error

occurred). See [Table 12 on page 507] and [Table 14 on page 510| for errno settings.

Example that uses _Rrelease()

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {
char name[20];
char address[25];
} formatl ;
typedef struct {
char name[8];
char password[10];
} format2 ;
typedef union {
formatl fmtl;
format2 fmt2;
} formats ;

int main(void)

_RFILE  *fp; /* File pointer
_RIOFB_T =*rfb; /*Pointer to the file's feedback structure
_XXIOFB_T *jofb; /* Pointer to the file's feedback area
formats buf, in_buf, out_buf; /* Buffers to hold data

/* Open the device file. x/
if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{

printf ( "Could not open file\n" );
exit (1)
}
_Racquire ( fp,"DEVICEL" ); /* Acquire another device. Replace
/* with actual device name.
_Rformat ( fp,"FORMAT1" ); /* Set the record format for the
/* display file.
rfb = Rwrite ( fp, "", 0 ); /* Set up the display.
_Rpgmdev ( fp,"DEVICE2" ); /* Change the default program device.
/* Replace with actual device name.
_Rformat ( fp,"FORMAT2" ); /+ Set the record format for the
/* display file.

rfb = Rwrite ( fp, "", 0 ); /* Set up the display.
rfb = Rwriterd ( fp, &buf, sizeof(buf) );
rfb = Rwrread ( fp, &in_buf, sizeof(in_buf), &out_buf,

sizeof(out_buf ));
_Rreadindv ( fp, &buf, sizeof(buf), _ DFT );

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 2. Library Functions

315



/* Read from the first device that =/

/* enters data - device becomes */
/* default program device. */
/* Determine which terminal responded first. */

jofb = Riofbk ( fp );
if ( !strncmp ( "FORMATL ", iofb -> rec_format, 10 ))
{

}

else

{
}

/* Continue processing. */
printf ( "Data displayed is %45.45s\n", &buf);
_Rclose ( fp );

_Rrelease ( fp, "DEVICEL" );

_Rrelease(fp, "DEVICE2" );

}

Related Information

* |“_Racquire() — Acquire a Program Device” on page 257|

_Rrisick() — Release a Record Lock

Format
#include <recio.h>

int _Rrlslck(_RFILE *fp);
Language Level: ILE C Extension
Threadsafe: Yes.

Description

The _Rrlslck() function releases the lock on the currently locked record for the file specified by fp. The
file must be open for update, and a record must be locked. If the _NO_POSITION option was specified
on the _Rlocate() operation that locked the record, the record released may not be the record currently
positioned to.

The Rrlslck() function is valid for database and DDM files.
Return Value
The Rrlslck() function returns 1 if the operation is successful, or zero if the operation is unsuccessful.

The value of errno may be set to:
Value Meaning

ENOTUPD
The file is not open for update operations.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0 error occurred.

See [Table 12 on page 507|and [Table 14 on page 510 for errno settings.

316 ILE C/C++ Runtime Library Functions V6R1



Example that uses _Rrlslck()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

char buf[21];

_RFILE *fp;

_XXOPFB_T  opfb;

int result;

/* Open the file for processing in arrival sequence. */

if (( fp = _Ropen ( "MYLIB/T1677RD1", "rr+, arrseq=Y" )) == NULL )
{

printf ( "Open failed\n" );
exit (1);
1

/* Get the Tibrary and file names of the file opened. */
opfb = Ropnfbk ( fp );
printf ( "Library: %10.10s\nFile: %10.10s\n",
opfb->1ibrary_name,
opfb->file_name);

/* Get the last record. */
_Rreadl ( fp, NULL, 20, _ DFT );
printf ( "Last record: %10.10s\n", *(fp->in_buf) );

/* Rrlslck example. */
result = Rrlsick ( fp );
if ( result == 0 )

printf(" Rrlslck failed.\n");

_Rclose ( fp );
1

Related Information
+ |[“_Rdelete() — Delete a Record” on page 261

_Rrollbck() — Roll Back Commitment Control Changes

Format
#include <recio.h>

int _Rrollbck(void);

Language Level: ILE C Extension

Threadsafe: No.

Description

The Rrollbck() function reestablishes the last commitment boundary as the current commitment
boundary. All changes that are made to the files under commitment control in the job, are reversed. All
locked records are released. Any file that is open under commitment control in the job will be affected.
You must specify the keyword parameter commit=y when the file is opened to be under commitment

control. A commitment control environment must have been set up prior to this.

The Rrollbck() function is valid for database and DDM files.

Chapter 2. Library Functions 317



Return Value

The _Rrollbck() function returns 1 if the operation is successful or zero if the operation is unsuccessful.
The value of errno may be set to EIOERROR (a non-recoverable 1/O error occurred) or EIORECERR (a
recoverable I/O error occurred). See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rrollbck()

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>

int main(void)

{
char buf[40];
int rc = 1;
_RFILE *purf;
_RFILE *dailyf;
/* Open purchase display file and daily transaction file */
if ( ( purf = Ropen ( "MYLIB/T1677RD3", "ar+,indicators=y" )) == NULL )
{

printf ( "Display file did not open.\n" );
exit (1);
}

if ( ( dailyf = Ropen ( "MYLIB/T1677RDA", "wr,commit=y") ) == NULL )
{

printf ( "Daily transaction file did not open.\n" );

exit (2 );
}

/* Select purchase record format */
_Rformat ( purf, "PURCHASE" );

/* Invite user to enter a purchase transaction. */
/* The _Rwrite function writes the purchase display. */
_Rwrite ( purf, "", 0 );

_Rreadn ( purf, buf, sizeof(buf), _ DFT );

/* Update daily transaction file */
rc = (( _Rwrite ( dailyf, buf, sizeof(buf) ))->num bytes );
/* 1f the databases were updated, then commit the transaction. */
/* Otherwise, rollback the transaction and indicate to the */
/* user that an error has occurred and end the application. x/
if (rc)
{
_Rcommit ( "Transaction complete" );
1
else
{
_Rrollbck ()3
_Rformat ( purf, "ERROR" );
1

_Rclose ( purf );
_Rclose ( dailyf );
1

Related Information

+ |“_Rcommit() — Commit Current Record” on page 259

* Recovering your system manual

318 ILE C/C++ Runtime Library Functions V6R1



_Rupdate() — Update a Record

Format
#include <recio.h>

_RIOFB_T *_Rupdate(_RFILE *fp, void *buf, size_t size);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The _Rupdate() function updates the record that is currently locked for update in the file that is specified
by fp. The file must be open for update. A record is locked for update by reading or locating to it unless
_ NO_LOCK is specified on the read or locate operation. If the _ NO_POSITION option is specified on a
locate operation the record updated may not be the record currently positioned to. After the update
operation, the updated record is no longer locked.

The number of bytes that are copied from buf to the record is the minimum of size and the record length
of the file (move mode only). If size is greater than the record length, the data is truncated, and errno is
set to ETRUNC. One complete record is always written to the file. If the size is less than the record length
of the file, the remaining data in the record will be the original data that was read into the system buffer
by the read that locked the record. If a locate operation locked the record, the remaining data will be
what was in the system input buffer prior to the locate.

The Rupdate() function can be used to update deleted records and key fields. A deleted record that is
updated will no longer be marked as a deleted record. In both of these cases any keyed access paths
defined for fp will be changed.

Note: If locate mode is being used, _Rupdate() works on the data in the file’s input buffer.
The Rupdate() function is valid for database, display (subfiles) and DDM files.
Return Value

The _Rupdate() function returns a pointer to the _"RIOFB_T structure associated with fp. If the _Rupdate()
function is successful, the num_bytes field is set to the number of bytes transferred from the system
buffer to the user’s buffer (move mode) or the record length of the file (locate mode). If fp is a display
file, the sysparm field is updated. If the _Rupdate() function is unsuccessful, the num_bytes field is set to
a value less than the size specified (move mode) or zero (locate mode). The errno value will also be
changed.

The value of errno may be set to:
Value Meaning

ENOTUPD
The file is not open for update operations.

EIOERROR
A non-recoverable I/O error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Chapter 2. Library Functions 319



Example that uses _Rupdate()

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{

_RFILE  *in;
char new_purchase[21] = "PEAR 1002022244"
/* Open the file for processing in keyed sequence. */

if ( (in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL )
{

printf("Open failed\n");

exit(1l);
1

/* Update the first record in the keyed sequence. */

_Rlocate(in, NULL, 0, _ FIRST);
_Rupdate(in, new_purchase, 20);

/* Force the end of data. */
_Rfeod(in);

_Rclose(in);
}
Related Information
* |“_Rreadd() — Read a Record by Relative Record Number” on page 295
_Rreadf() — Read the First Record” on page 297

s

I
[*_Rreadindv() — Read from an Invited Device” on page 299|
[*_Rreadk() — Read a Record by Key” on page 302|
[*_Rreadl() — Read the Last Record” on page 305|
[*_Rreadn() — Read the Next Record” on page 306|

|

|

|

“ Rreadnc() — Read the Next Changed Record in a Subfile” on page 308|

11

_Rreadp() — Read the Previous Record” on page 310
“ Rreads() — Read the Same Record” on page 312

_Rupfb() — Provide Information on Last I/0O Operation

Format
#include <recio.h>

_RIOFB_T  Rupfb( RFILE *fp);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rupfb() function updates the feedback structure associated with the file specified by fp with
information about the last I/O operation. The _RIOFB_T structure will be updated even if riofb=N was

320 ILE C/C++ Runtime Library Functions V6R1



specified when the file was opened. The num_bytes field of the _RIOFB_T structure will not be updated.
See|“<recio.h>" on page 9| for a description of the "RIOFB_T structure.

The Rupfb() function is valid for all types of files.

Return Value

The _Rupfb() function returns a pointer to the _"RIOFB_T structure specified by fp. See [Table 12 on page|

@ and [Table 14 on page 510 for errno settings.

Example that uses _Rupfb()

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>

int main(void)

RFILE  *fp;
"RIOFB_T *fb;

/* Create a physical file */
system("CRTPF FILE(QTEMP/MY_FILE) RCDLEN(80)");
/* Open the file for write */
if ( (fp = _Ropen("QTEMP/MY_FILE", "wr")) == NULL )
printf("open for write fails\n");
exit(1);
1
/* Write some records into the file */
_Rwrite(fp, "This is record 1", 16);
_Rwrite(fp, "This is record 2", 16);
_Rwrite(fp, "This is record 3", 16);
_Rwrite(fp, "This is record 4", 16);
_Rwrite(fp, "This is record 5", 16);
_Rwrite(fp, "This is record 6", 16);
_Rwrite(fp, "This is record 7", 16);
_Rwrite(fp, "This is record 8", 16);
_Rwrite(fp, "This is record 9", 16);
/* Close the file */
_Rclose(fp);
/* Open the file for read */
if ( (fp = _Ropen("QTEMP/MY_FILE", "rr, blkrcd = y")) == NULL )
{
printf("open for read fails\n");
exit(2);
}
/* Read some records */
_Rreadn(fp, NULL, 80, _ DFT);
_Rreadn(fp, NULL, 80, _ DFT);
/* Call _Rupfb and print feed back information */
fb = Rupfb(fp);
printf("record number ---------mmmmmmmmmo %d\n",
fb->rrn);
printf("number of bytes read ----------ccomeuoo %d\n",
fb->num_bytes);
printf("number of records remaining in block --- %hd\n",
fb->b1k_count);
if ( fb->blk_filled by == _ READ_NEXT )
printf("block filled by --==------==cccmmmmee- __READ_NEXT\n");
else
{
printf("block filled by =---=-=mmmmmmmmmmmaaamoe __READ_PREV\n");

Chapter 2. Library Functions

321



1
/* Close the file */
_Rclose(fp);

1

Related Information
+ |“_Ropnfbk() — Obtain Open Feedback Information” on page 293

_Rwrite() — Write the Next Record

Format
#include <recio.h>

_RIOFB_T * _Rwrite(_RFILE *fp, void *buf, size_t size);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The Rwrite() function has two modes: move and locate. When buf points to a user buffer, Rwrite() is
in move mode. When buf is NULL, the function is in locate mode.

The _Rwrite() function appends a record to the file specified by fp. The number of bytes copied from buf
to the record is the minimum of size and the record length of the file (move mode only). If size is greater
than the record length, the data is truncated and errno is set to ETRUNC. One complete record is always
written if the operation is successful.

If you are using _Ropen() and then Rwrite() to output records to a source physical file, the sequence
numbers must be manually appended.

The _Rwrite() function has no effect on the position of the file for a subsequent read operation.

Records might be lost although the _Rwrite() function indicates success when the following items are
true:

* Record blocking is taking place.

* The file associated with fp is approaching the limit of the number of records it can contain and the file
cannot be extended.

¢ Multiple writers are writing to the same file.
Because the output is buffered, the _Rwrite routine returns success that indicates the record is
successfully copied to the buffer. However, when the buffer is flushed, the routine might fail because the

file has been filled to capacity by another writer. In this case, the _Rwrite() function indicates that an
error occurred only on the call to the Rwrite() function that sends the data to the file.

The _Rwrite() function is valid for all types of files.

Return Value

The Rwrite() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rwrite() operation is successful the num_bytes field is set to the number of bytes written for both move

mode and locate mode. The function transfers the bytes from the user’s buffer to the system buffer. If
record blocking is taking place, the function only updates the rrn and key fields when it sends the block

322 ILE C/C++ Runtime Library Functions V6R1



to the database. If fp is a display, ICF or printer file, the function updates the sysparm field. If it is

unsuccessful, the num_bytes field is set to a value less than size specified (move mode) or zero (locate

mode) and errno is changed.

The value of errno may be set to:
Value Meaning

ENOTWRITE
The file is not open for write operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507] and [Table 14 on page 510| for errno settings.

Example that uses Rwrite()

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {
char name[20];
char address[25];
} formatl ;
typedef struct {
char name[8];
char password[10];
} format2 ;
typedef union {
formatl fmtl;
format2 fmt2;
} formats ;

int main(void)

_RFILE  *fp; /* File pointer
_RIOFB_T *rfb; /*Pointer to the file's feedback structure
_XXIOFB_T *iofb; /* Pointer to the file's feedback area
formats buf, in_buf, out_buf; /+ Buffers to hold data

/* Open the device file. x/
if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{

printf ( "Could not open file\n" );
exit (1);

_Racquire ( fp,"DEVICEL" ); /* Acquire another device. Replace
/* with actual device name.
_Rformat ( fp,"FORMAT1" ); /* Set the record format for the
/* display file.
rfb = Rwrite ( fp, "", 0 ); /* Set up the display.
_Rpgmdev ( fp,"DEVICE2" ); /* Change the default program device.
/* Replace with actual device name.
_Rformat ( fp,"FORMAT2" ); /+ Set the record format for the
/* display file.

rfb = Rwrite ( fp, "", 0 ); /% Set up the display.
rfb = Rwriterd ( fp, &buf, sizeof(buf) );
rfb = Rwrread ( fp, &in_buf, sizeof(in_buf), &out_buf,

sizeof (out_buf ));

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 2. Library Functions

323



_Rreadindv ( fp, &buf, sizeof(buf), _ DFT );
/* Read from the first device that =/

/* enters data - device becomes */
/* default program device. */
/* Determine which terminal responded first. */

jofb = Riofbk ( fp );
if ( !strncmp ( "FORMAT1 ", iofb -> rec_format, 10 ))
{

}

else

{
}

/* Continue processing. */
printf ( "Data displayed is %45.45s\n", &buf);
_Rclose ( fp );

_Rrelease ( fp, "DEVICE1" );

_Rrelease(fp, "DEVICE2" );

}

Related Information

+ |[“_Rwrited() — Write a Record Directly”]

* |“_Rwriterd() — Write and Read a Record” on page 327

* [“_Rwrread() — Write and Read a Record (separate buffers)” on page 328|

_Rwrited() — Write a Record Directly

Format
#include <recio.h>

_RIOFB_T * Rwrited(_RFILE *fp, void *buf, size_t size, unsigned long rrn);
Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared
among those threads.

Description

The _Rwrited() function writes a record to the file associated with fp at the position specified by rrn. The
_Rwrited() function will only write over deleted records. The number of bytes copied from buf to the
record is the minimum of size and the record length of the file (move mode only). If size is greater than
the record length, the data is truncated, and errno is set to ETRUNC. One complete record is always
written if the operation is successful.

The Rwrited() function has no effect on the position of the file for a read operation.
The Rwrited() function is valid for database, DDM and subfiles.
Return Value

The Rwrited() function returns a pointer to the _"RIOFB_T structure associated with fp. If the _Rwrited()
operation is successful the num_bytes field is set to the number of bytes transferred from the user’s
buffer to the system buffer (move mode) or the record length of the file (locate mode). The rrn field is
updated. If fp is a display file, the sysparm field is updated. If it is unsuccessful, the num_bytes field is
set to a value less than size specified (move mode) or zero (locate mode) and errno is changed.

The value of errno may be set to:

Value Meaning

324 ILE C/C++ Runtime Library Functions V6R1



ENOTWRITE
The file is not open for write operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0 error occurred.

See [Table 12 on page 507| and [Table 14 on page 510| for errno settings.

Example that uses Rwrited()

Chapter 2. Library Functions

325



#include <stdio.h>
#include <stdlib.h>
#include <recio.h>
#define LEN 10
#define NUM_RECS 20
#define SUBFILENAME "MYLIB/T1677RD6"
#define PFILENAME "MYLIB/T1677RDB"
typedef struct {
char name[LEN];
char phone[LEN];
}opf_t;
#define RECLEN sizeof(pf_t)
void init_subfile( RFILE %, RFILE #);
int main(void)

{

_RFILE
RFILE

*pf;
*subf;

/* Open the subfile and the physical file.

*/

if ((pf = _Ropen(PFILENAME, "rr")) == NULL) {
printf("can't open file %s\n", PFILENAME);
exit(1);

1

if ((subf = _Ropen(SUBFILENAME, "ar+")) == NULL) {
printf("can't open file %s\n", SUBFILENAME);

exit(2);
1
/* Initialize the subfile with records *
* from the physical file. */

init_subfile(pf, subf);
/* Write the subfile to the display by writing =*
* a record to the subfile control format. */
_Rformat (subf, "SFLCTL");
_Rwrite(subf, "", 0);
_Rreadnc(subf, "", 0);

/* Close the physical file and the subfile. x/
_Rclose(pf);
_Rclose(subf);
}
void init_subfile( RFILE #pf, RFILE *subf)
{
_RIOFB_T *fh;
int is
pf t record;
/* Select the subfile record format. */

_Rformat(subf, "SFL");
for (i = 1; i <= NUM_RECS; i++) {
fb = _Rreadn(pf, &record, RECLEN, _ DFT);
if (fb->num_bytes != RECLEN) {
printf("%d\n", fb->num_bytes);
printf("%d\n", RECLEN);
printf("error occurred during read\n");
exit(3);
}
fb = Rwrited(subf, &record, RECLEN, 1);
if (fb->num_bytes != RECLEN) {
printf("error occurred during write\n");
exit(4);

}

Related Information

* |[“_Rwrite() — Write the Next Record” on page 322|

* |[“_Rwriterd() — Write and Read a Record” on page 327

* [“_Rwrread() — Write and Read a Record (separate buffers)” on page 328|

326 ILE C/C++ Runtime Library Functions V6R1



_Rwriterd() — Write and Read a Record

Format

#include <recio.h>
_RIOFB_T *_Rwriterd(_RFILE *fp, void *buf, size_t size);

Language Level: ILE C Extension
Threadsafe: No.
Description

The _Rwriterd() function performs a write and then a read operation on the file that is specified by fp.
The minimum of size and the length of the current record format determines the amount of data to be
copied between the system buffer and buf for both the write and read parts of the operation. If size is
greater than the record length of the current format, errno is set to ETRUNC on the write part of the
operation. If size is less than the length of the current record format, errno is set to ETRUNC on the read
part of the operation.

The Rwriterd() function is valid for display and ICF files.
Return Value

The _Rwriterd() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rwriterd() operation is successful, the num_bytes field is set to the number of bytes transferred from
the system buffer to buf on the read part of the operation (move mode) or the record length of the file

(locate mode).

The value of errno may be set to:
Value Meaning

ENOTUPD
The file is not open for update operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/O error occurred.

See [Table 12 on page 507 and [Table 14 on page 510| for errno settings.

Example that uses _Rwriterd()

Chapter 2. Library Functions 327



#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

typedef struct {
char name[20];
char address[25];
} formatl ;

typedef struct {

char name[8];

char password[10];
} format2 ;

typedef union {
formatl fmtl;
format2 fmt2;
} formats ;

int main(void)

{
_RFILE  =*fp; /x File pointer */
_RIOFB_T *rfb; /*Pointer to the file's feedback structure */
formats buf, in_buf, out_buf; /* Buffers to hold data */
/* Open the device file. */
if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{
printf ( "Could not open file\n" );
exit (1);
}
_Rpgmdev ( fp,"DEVICE2" );/* Change the default program device. =*/
/* Replace with actual device name. */
_Rformat ( fp,"FORMAT2" );  /+ Set the record format for the */
/* display file. */
rfb = _Rwrite ( fp, "", 0 ); /* Set up the display. */
rfb = Rwriterd ( fp, &buf, sizeof(buf) );
rfb = Rwrread ( fp, &in_buf, sizeof(in_buf), &out buf,
sizeof (out_buf ));
/* Continue processing. */
_Rclose ( fp );
}

Related Information

+ |“_Rwrite() — Write the Next Record” on page 322|

* |[“_Rwrited() — Write a Record Directly” on page 324]

* [“_Rwrread() — Write and Read a Record (separate buffers)”]

_Rwrread() — Write and Read a Record (separate buffers)

Format
#include <recio.h>

_RIOFB_T *_Rwrread(_RFILE *fp, void *in_buf, size_t in_buf size,
void *out_buf, size t out_buf size);

328 ILE C/C++ Runtime Library Functions V6R1



Language Level: ILE C Extension
Threadsafe: No.
Description

The Rwrread() function performs a write and then a read operation on the file that is specified by fp.
Separate buffers may be specified for the input and output data. The minimum of size and the length of
the current record format determines the amount of data to be copied between the system buffer and the
buffers for both the write and read parts of the operation. If out_buf size is greater than the record length
of the current format, errno is set to ETRUNC on the write part of the operation. If in_buf_size is less than
the length of the current record format, errno is set to ETRUNC on the read part of the operation.

The _Rwrread() function is valid for display and ICF files.
Return Value

The Rwrread() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the
_Rwrread() operation is successful, the num_bytes field is set to the number of bytes transferred from the
system buffer to in_buf in the read part of the operation (move mode) or the record length of the file
(locate mode).

The value of errno may be set to:
Value Meaning

ENOTUPD
The file is not open for update operations.

ETRUNC
Truncation occurred on an I/O operation.

EIOERROR
A non-recoverable I/0O error occurred.

EIORECERR
A recoverable I/0O error occurred.

See [Table 12 on page 507] and [Table 14 on page 510| for errno settings.

Example that uses _Rwrread()

Chapter 2. Library Functions 329



#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>

typedef struct {
char name[20];
char address[25];
} formatl ;

typedef struct {

char name[8];

char password[10];
} format2 ;

typedef union {
formatl fmtl;
format2 fmt2;
} formats ;

int main(void)

{
_RFILE  =*fp; /* File pointer
_RIOFB_T *rfb; /*Pointer to the file's feedback structure
formats buf, in_buf, out_buf; /+ Buffers to hold data

/* Open the device file.
if (( fp = _Ropen ( "MYLIB/T1677RD2", "ar+" )) == NULL )
{
printf ( "Could not open file\n" );
exit (1);
1

_Rpgmdev ( fp,"DEVICE2" );/* Change the default program device.

/* Replace with actual device name.

_Rformat ( fp,"FORMAT2" );  /+ Set the record format for the
/* display file.

rfb = Rwrite ( fp, "", 0 ); /* Set up the display.
rfb = Rwriterd ( fp, &buf, sizeof(buf) );

rfb = Rwrread 