
System i

ILE C/C++ Runtime Library Functions

Version 6 Release 1

SC41-5607-03

���

System i

ILE C/C++ Runtime Library Functions

Version 6 Release 1

SC41-5607-03

���

Note

Before using this information and the product it supports, be sure to read the information in

Appendix B, “Notices,” on page 555.

This edition applies to version 6, release 1, modification 0 of IBM i5/OS (product number 5761-SS1), and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1999, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables ix

About ILE C/C++ Runtime Library

Functions (SC41-5607) xi

Who should read this book xi

A note about examples xi

Prerequisite and related information xi

How to send your comments xii

Summary of Changes xiii

Part 1. Runtime Library Functions . . 1

Chapter 1. Include Files 3

<assert.h> 3

<ctype.h> 3

<decimal.h> 3

<errno.h> 4

<except.h> 4

<float.h> 7

<inttypes.h> 7

<langinfo.h> 7

<limits.h> 7

<locale.h> 7

<math.h> 8

<mallocinfo.h> 8

<monetary.h> 8

<nl_types.h> 9

<pointer.h> 9

<recio.h> 9

<regex.h> 12

<setjmp.h> 13

<signal.h> 13

<stdarg.h> 13

<stddef.h> 13

<stdint.h> 14

<stdio.h> 15

<stdlib.h> 17

<string.h> 17

<strings.h> 17

<time.h> 18

<wchar.h> 18

<wctype.h> 19

<xxcvt.h> 19

<xxdtaa.h> 19

<xxenv.h> 19

<xxfdbk.h> 19

Machine Interface (MI) Include Files 20

Chapter 2. Library Functions 21

The C/C++ Library 21

Error Handling 21

Searching and Sorting 22

Mathematical 22

Time Manipulation 24

Type Conversion 25

Conversion 26

Record Input/Output 26

Stream Input/Output 27

Handling Argument Lists 30

Pseudorandom Numbers 31

Dynamic Memory Management 31

Memory Objects 31

Environment Interaction 32

String Operations 32

Character Testing 33

Multibyte Character Testing 34

Character Case Mapping 34

Multibyte Character Manipulation 34

Data Areas 36

Message Catalogs 36

Regular Expression 36

abort() — Stop a Program 36

abs() — Calculate Integer Absolute Value 37

acos() — Calculate Arccosine 38

asctime() — Convert Time to Character String . . . 39

asctime_r() — Convert Time to Character String

(Restartable) 41

asin() — Calculate Arcsine 42

assert() — Verify Condition 43

atan() – atan2() — Calculate Arctangent 44

atexit() — Record Program Ending Function . . . 45

atof() — Convert Character String to Float 46

atoi() — Convert Character String to Integer . . . 48

atol() — atoll() — Convert Character String to Long

or Long Long Integer 49

Bessel Functions 50

bsearch() — Search Arrays 51

btowc() — Convert Single Byte to Wide Character 53

_C_Get_Ssn_Handle() — Handle to C Session . . . 55

calloc() — Reserve and Initialize Storage 55

catclose() — Close Message Catalog 57

catgets() — Retrieve a Message from a Message

Catalog 58

catopen() — Open Message Catalog 59

ceil() — Find Integer >=Argument 61

clearerr() — Reset Error Indicators 62

clock() — Determine Processor Time 63

cos() — Calculate Cosine 64

cosh() — Calculate Hyperbolic Cosine 65

_C_Quickpool_Debug() — Modify Quick Pool

Memory Management Characteristics 66

_C_Quickpool_Init() — Initialize Quick Pool

Memory Management 68

_C_Quickpool_Report() — Generate Quick Pool

Memory Management Report 70

ctime() — Convert Time to Character String . . . 71

ctime64() — Convert Time to Character String . . . 73

ctime_r() — Convert Time to Character String

(Restartable) 74

© Copyright IBM Corp. 1999, 2008 iii

||

||

||

 |
 | |
 |
 | |
 |
 | |

 | |

ctime64_r() — Convert Time to Character String

(Restartable) 76

_C_TS_malloc_debug() — Determine amount of

teraspace memory used (with optional dumps and

verification) 77

_C_TS_malloc_info() — Determine amount of

teraspace memory used 79

difftime() — Compute Time Difference 82

difftime64() — Compute Time Difference 84

div() — Calculate Quotient and Remainder 86

erf() – erfc() — Calculate Error Functions 87

exit() — End Program 88

exp() — Calculate Exponential Function 89

fabs() — Calculate Floating-Point Absolute Value . . 90

fclose() — Close Stream 91

fdopen() — Associates Stream With File Descriptor 92

feof() — Test End-of-File Indicator 95

ferror() — Test for Read/Write Errors 95

fflush() — Write Buffer to File 96

fgetc() — Read a Character 98

fgetpos() — Get File Position 99

fgets() — Read a String 101

fgetwc() — Read Wide Character from Stream . . 102

fgetws() — Read Wide-Character String from

Stream 104

fileno() — Determine File Handle 106

floor() —Find Integer <=Argument 107

fmod() — Calculate Floating-Point Remainder . . 108

fopen() — Open Files 109

fprintf() — Write Formatted Data to a Stream . . . 116

fputc() — Write Character 118

_fputchar - Write Character 120

fputs() — Write String 121

fputwc() — Write Wide Character 122

fputws() — Write Wide-Character String 124

fread() — Read Items 126

free() — Release Storage Blocks 128

freopen() — Redirect Open Files 130

frexp() — Separate Floating-Point Value 132

fscanf() — Read Formatted Data 132

fseek() — fseeko() — Reposition File Position . . . 134

fsetpos() — Set File Position 136

ftell() — ftello() — Get Current Position 138

fwide() — Determine Stream Orientation 140

fwprintf() — Format Data as Wide Characters and

Write to a Stream 143

fwrite() — Write Items 146

fwscanf() — Read Data from Stream Using Wide

Character 147

gamma() — Gamma Function 150

_gcvt - Convert Floating-Point to String 151

getc() – getchar() — Read a Character 152

getenv() — Search for Environment Variables . . . 154

_GetExcData() — Get Exception Data 154

gets() — Read a Line 156

getwc() — Read Wide Character from Stream . . 157

getwchar() — Get Wide Character from stdin . . . 159

gmtime() — Convert Time 161

gmtime64() — Convert Time 163

gmtime_r() — Convert Time (Restartable) 165

gmtime64_r() — Convert Time (Restartable) . . . 167

hypot() — Calculate Hypotenuse 168

isalnum() - isxdigit() — Test Integer Value 169

isascii() — Test for Character Representable as

ASCII Value 171

isblank() — Test for Blank or Tab Character . . . 172

iswalnum() to iswxdigit() — Test Wide Integer

Value 173

iswctype() — Test for Character Property 175

_itoa - Convert Integer to String 176

labs() — llabs() — Calculate Absolute Value of

Long and Long Long Integer 177

ldexp() — Multiply by a Power of Two 178

ldiv() — lldiv() — Perform Long and Long Long

Division 179

localeconv() — Retrieve Information from the

Environment 181

localtime() — Convert Time 185

localtime64() — Convert Time 187

localtime_r() — Convert Time (Restartable) . . . 188

localtime64_r() — Convert Time (Restartable) . . . 189

log() — Calculate Natural Logarithm 191

log10() — Calculate Base 10 Logarithm 191

_ltoa - Convert Long Integer to String 192

longjmp() — Restore Stack Environment 193

malloc() — Reserve Storage Block 195

mblen() — Determine Length of a Multibyte

Character 197

mbrlen() — Determine Length of a Multibyte

Character (Restartable) 199

mbrtowc() — Convert a Multibyte Character to a

Wide Character (Restartable) 201

mbsinit() — Test State Object for Initial State . . . 205

mbsrtowcs() — Convert a Multibyte String to a

Wide Character String (Restartable) 206

mbstowcs() — Convert a Multibyte String to a

Wide Character String 207

mbtowc() — Convert Multibyte Character to a

Wide Character 211

memchr() — Search Buffer 212

memcmp() — Compare Buffers 213

memcpy() — Copy Bytes 214

memicmp() - Compare Bytes 215

memmove() — Copy Bytes 217

memset() — Set Bytes to Value 218

mktime() — Convert Local Time 218

mktime64() — Convert Local Time 220

modf() — Separate Floating-Point Value 222

nextafter() — nextafterl()— nexttoward() —

nexttowardl() — Calculate the Next Representable

Floating-Point Value 223

nl_langinfo() —Retrieve Locale Information . . . 224

perror() — Print Error Message 227

pow() — Compute Power 228

printf() — Print Formatted Characters 229

putc() – putchar() — Write a Character 239

putenv() — Change/Add Environment Variables 240

puts() — Write a String 241

putwc() — Write Wide Character 242

putwchar() — Write Wide Character to stdout . . 244

qsort() — Sort Array 245

QXXCHGDA() — Change Data Area 247

iv ILE C/C++ Runtime Library Functions V6R1

|
||

||

||

||

 | |

 | |

 | |

 |
 |
 | |

QXXDTOP() — Convert Double to Packed Decimal 248

QXXDTOZ() —Convert Double to Zoned Decimal 249

QXXITOP() — Convert Integer to Packed Decimal 250

QXXITOZ() — Convert Integer to Zoned Decimal 250

QXXPTOD() — Convert Packed Decimal to Double 251

QXXPTOI() — Convert Packed Decimal to Integer 252

QXXRTVDA() — Retrieve Data Area 252

QXXZTOD() — Convert Zoned Decimal to Double 254

QXXZTOI() — Convert Zoned Decimal to Integer 255

raise() — Send Signal 255

rand(), rand_r() — Generate Random Number . . 256

_Racquire() — Acquire a Program Device 257

_Rclose() — Close a File 258

_Rcommit() — Commit Current Record 259

_Rdelete() — Delete a Record 261

_Rdevatr() — Get Device Attributes 263

realloc() — Change Reserved Storage Block Size 264

regcomp() — Compile Regular Expression 267

regerror() — Return Error Message for Regular

Expression 269

regexec() — Execute Compiled Regular Expression 271

regfree() — Free Memory for Regular Expression 273

remove() — Delete File 274

rename() — Rename File 275

rewind() — Adjust Current File Position 276

_Rfeod() — Force the End-of-Data 278

_Rfeov() — Force the End-of-File 279

_Rformat() — Set the Record Format Name . . . 280

_Rindara() — Set Separate Indicator Area 282

_Riofbk() — Obtain I/O Feedback Information . . 284

_Rlocate() — Position a Record 286

_Ropen() — Open a Record File for I/O Operations 289

_Ropnfbk() — Obtain Open Feedback Information 293

_Rpgmdev() — Set Default Program Device . . . 294

_Rreadd() — Read a Record by Relative Record

Number 295

_Rreadf() — Read the First Record 297

_Rreadindv() — Read from an Invited Device . . 299

_Rreadk() — Read a Record by Key 302

_Rreadl() — Read the Last Record 305

_Rreadn() — Read the Next Record 306

_Rreadnc() — Read the Next Changed Record in a

Subfile 308

_Rreadp() — Read the Previous Record 310

_Rreads() — Read the Same Record 312

_Rrelease() — Release a Program Device 314

_Rrlslck() — Release a Record Lock 316

_Rrollbck() — Roll Back Commitment Control

Changes 317

_Rupdate() — Update a Record 319

_Rupfb() — Provide Information on Last I/O

Operation 320

_Rwrite() — Write the Next Record 322

_Rwrited() — Write a Record Directly 324

_Rwriterd() — Write and Read a Record 327

_Rwrread() — Write and Read a Record (separate

buffers) 328

scanf() — Read Data 330

setbuf() — Control Buffering 336

setjmp() — Preserve Environment 338

setlocale() — Set Locale 339

setvbuf() — Control Buffering 344

signal() — Handle Interrupt Signals 346

sin() — Calculate Sine 348

sinh() — Calculate Hyperbolic Sine 349

snprintf() — Print Formatted Data to Buffer . . . 350

sprintf() — Print Formatted Data to Buffer . . . 352

sqrt() — Calculate Square Root 353

srand() — Set Seed for rand() Function 354

sscanf() — Read Data 355

strcasecmp() — Compare Strings without Case

Sensitivity 357

strcat() — Concatenate Strings 358

strchr() — Search for Character 359

strcmp() — Compare Strings 360

strcmpi() - Compare Strings Without Case

Sensitivity 362

strcoll() — Compare Strings 363

strcpy() — Copy Strings 364

strcspn() — Find Offset of First Character Match 365

strdup - Duplicate String 366

strerror() — Set Pointer to Runtime Error Message 367

strfmon() — Convert Monetary Value to String . . 368

strftime() — Convert Date/Time to String 370

stricmp() - Compare Strings without Case

Sensitivity 374

strlen() — Determine String Length 375

strncasecmp() — Compare Strings without Case

Sensitivity 376

strncat() — Concatenate Strings 377

strncmp() — Compare Strings 379

strncpy() — Copy Strings 380

strnicmp - Compare Substrings Without Case

Sensitivity 382

strnset - strset - Set Characters in String 383

strpbrk() — Find Characters in String 384

strptime()— Convert String to Date/Time 385

strrchr() — Locate Last Occurrence of Character in

String 389

strspn() —Find Offset of First Non-matching

Character 390

strstr() — Locate Substring 391

strtod() — strtof() — strtold — Convert Character

String to Double, Float, and Long Double 392

strtod32() — strtod64() — strtod128() — Convert

Character String to Decimal Floating-Point . . . 395

strtok() — Tokenize String 398

strtok_r() — Tokenize String (Restartable) 399

strtol() — strtoll() — Convert Character String to

Long and Long Long Integer 400

strtoul() — strtoull() — Convert Character String to

Unsigned Long and Unsigned Long Long Integer . 403

strxfrm() — Transform String 404

swprintf() — Format and Write Wide Characters to

Buffer 406

swscanf() — Read Wide Character Data 407

system() — Execute a Command 408

tan() — Calculate Tangent 409

tanh() — Calculate Hyperbolic Tangent 410

time() — Determine Current Time 411

time64() — Determine Current Time 412

tmpfile() — Create Temporary File 414

Contents v

 |
 | |
 |
 | |

 | |

tmpnam() — Produce Temporary File Name . . . 414

toascii() — Convert Character to Character

Representable by ASCII 415

tolower() – toupper() — Convert Character Case 416

towctrans() — Translate Wide Character 417

towlower() –towupper() — Convert Wide

Character Case 418

_ultoa - Convert Unsigned Long Integer to String 419

ungetc() — Push Character onto Input Stream . . 420

ungetwc() — Push Wide Character onto Input

Stream 422

va_arg() – va_end() – va_start() — Access Function

Arguments 423

vfprintf() — Print Argument Data to Stream . . . 425

vfscanf() — Read Formatted Data 427

vfwprintf() — Format Argument Data as Wide

Characters and Write to a Stream 428

vfwscanf() — Read Formatted Wide Character Data 430

vprintf() — Print Argument Data 432

vscanf() — Read Formatted Data 433

vsnprintf() — Print Argument Data to Buffer . . . 435

vsprintf() — Print Argument Data to Buffer . . . 436

vsscanf() — Read Formatted Data 437

vswprintf() — Format and Write Wide Characters

to Buffer 439

vswscanf() — Read Formatted Wide Character

Data 441

vwprintf() — Format Argument Data as Wide

Characters and Print 443

vwscanf() — Read Formatted Wide Character Data 445

wcrtomb() — Convert a Wide Character to a

Multibyte Character (Restartable) 446

wcscat() — Concatenate Wide-Character Strings 451

wcschr() — Search for Wide Character 452

wcscmp() — Compare Wide-Character Strings . . 453

wcscoll() —Language Collation String Comparison 455

wcscpy() — Copy Wide-Character Strings 456

wcscspn() — Find Offset of First Wide-Character

Match 457

wcsftime() — Convert to Formatted Date and Time 458

__wcsicmp() — Compare Wide Character Strings

without Case Sensitivity 460

wcslen() — Calculate Length of Wide-Character

String 461

wcslocaleconv() — Retrieve Wide Locale

Information 462

wcsncat() — Concatenate Wide-Character Strings 463

wcsncmp() — Compare Wide-Character Strings 464

wcsncpy() — Copy Wide-Character Strings . . . 466

__wcsnicmp() — Compare Wide Character Strings

without Case Sensitivity 467

wcspbrk() — Locate Wide Characters in String . . 468

wcsptime()— Convert Wide Character String to

Date/Time 469

wcsrchr() — Locate Last Occurrence of Wide

Character in String 471

wcsrtombs() — Convert Wide Character String to

Multibyte String (Restartable) 473

wcsspn() — Find Offset of First Non-matching

Wide Character 474

wcsstr() — Locate Wide-Character Substring . . . 475

wcstod() — Convert Wide-Character String to

Double 476

wcstod32() — wcstod64() — wcstod128()— Convert

Wide-Character String to Decimal Floating-Point . 478

wcstok() — Tokenize Wide-Character String . . . 480

wcstol() — wcstoll() — Convert Wide Character

String to Long and Long Long Integer 481

wcstombs() — Convert Wide-Character String to

Multibyte String 483

wcstoul() — wcstoull() — Convert Wide Character

String to Unsigned Long and Unsigned Long Long

Integer 486

wcswcs() — Locate Wide-Character Substring . . 488

wcswidth() — Determine the Display Width of a

Wide Character String 489

wcsxfrm() — Transform a Wide-Character String 490

wctob() — Convert Wide Character to Byte . . . 491

wctomb() — Convert Wide Character to Multibyte

Character 492

wctrans() —Get Handle for Character Mapping 493

wctype() — Get Handle for Character Property

Classification 495

wcwidth() — Determine the Display Width of a

Wide Character 497

wfopen() —Open Files 498

wmemchr() —Locate Wide Character in

Wide-Character Buffer 498

wmemcmp() —Compare Wide-Character Buffers 499

wmemcpy() —Copy Wide-Character Buffer . . . 500

wmemmove() — Copy Wide-Character Buffer . . 501

wmemset() — Set Wide Character Buffer to a Value 502

wprintf() — Format Data as Wide Characters and

Print 503

wscanf() — Read Data Using Wide-Character

Format String 504

Chapter 3. Runtime Considerations 507

errno Macros 507

errno Values for Integrated File System Enabled C

Stream I/O 508

Record Input and Output Error Macro to Exception

Mapping 510

Signal Handling Action Definitions 511

Signal to i5/OS Exception Mapping 513

Cancel Handler Reason Codes 514

Exception Classes 515

Data Type Compatibility 516

Runtime Character Set 523

Understanding CCSIDs and Locales 524

CCSIDs of Characters and Character Strings . . 524

Wide Characters 527

Asynchronous Signal Model 529

Unicode Support 530

Reasons to Use Unicode Support 531

Pseudo-CCSID Neutrality 531

Unicode from Other ILE Languages 532

Standard Files 534

Considerations 534

Default File CCSID 535

Newline Character 536

Conversion Errors 536

vi ILE C/C++ Runtime Library Functions V6R1

 |
 | |

 | |
 | |
 | |

 | |

Appendix A. Library Functions and

Extensions 537

Standard C Library Functions Table, By Name . . 537

ILE C Library Extensions to C Library Functions

Table 551

Appendix B. Notices 555

Programming interface information 556

Trademarks 557

Bibliography 559

Index 561

Contents vii

viii ILE C/C++ Runtime Library Functions V6R1

Tables

 1. Grouping Example 183

 2. Monetary Formatting Example 183

 3. Monetary Fields 183

 4. Values of Precision 235

 5. 288

 6. Return values of strcasecmp() 357

 7. Flags 369

 8. Conversion Characters 370

 9. Return values of strncasecmp() 376

10. Return values of __wcsicmp() 460

11. Return values of __wcsicmp() 468

12. errno Macros 507

13. errno Values for Integrated File System

Enabled C Stream I/O 508

14. Record Input and Output Error Macro to

Exception Mapping 510

15. Handling Action Definitions for Signal Values 511

16. Default Actions for Signal Values 512

17. Signal to i5/OS Exception Mapping 513

18. Determining Canceled Invocation Reason

Codes 514

19. Common Reason Code for Cancelling

Invocations 515

20. Exception Classes 515

21. ILE C Data Type Compatibility with ILE RPG 517

22. ILE C Data Type Compatibility with ILE

COBOL 518

23. ILE C Data Type Compatibility with ILE CL 519

24. ILE C Data Type Compatibility with OPM

RPG/400 519

25. ILE C Data Type Compatibility with OPM

COBOL/400 520

26. ILE C Data Type Compatibility with CL 521

27. Arguments Passed From a Command Line

CL Call to an ILE C Program 522

28. CL Constants Passed from a Compiled CL

Program to an ILE C Program 522

29. CL Variables Passed from a Compiled CL

Program to an ILE C Program 522

30. Invariant Characters 523

31. Variant Characters in Different CCSIDs 523

32. Standard C Library Functions 537

33. ILE C Library Extensions 551

© Copyright IBM Corp. 1999, 2008 ix

x ILE C/C++ Runtime Library Functions V6R1

About ILE C/C++ Runtime Library Functions (SC41-5607)

This book provides reference information about:

v Include files

v Runtime functions

v Runtime considerations

Use this book as a reference when you write Integrated Language Environment® (ILE) C and C++

applications.

This book does not describe how to program in the C or C++ programming languages, nor does it

explain the concepts of ILE. Companion publications for this reference are:

v C/C++ Legacy Class Libraries Reference, SC09-7652-00

v ILE Concepts, SC41-5606-08

v ILE C/C++ for AS/400 MI Library Reference, SC09-2418-00

v Standard C/C++ Library Reference, SC09-4949-01

v WebSphere Development Studio: ILE C/C++ Compiler Reference, SC09-4816-04

v WebSphere Development Studio: ILE C/C++ Language Reference, SC09-7852-01

v WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712-06

For other prerequisite and related information, see “Prerequisite and related information” and the

“Bibliography” on page 559.

Who should read this book

This book is intended for programmers who are familiar with the C/C++ programming language and

who want to write or maintain ILE C/C++ applications. You must have experience in using applicable

i5/OS® menus, and displays or control language (CL) commands. You also need knowledge of Integrated

Language Environment as explained in the ILE Concepts manual.

A note about examples

The examples in this book that illustrate the use of library functions are written in a simple style. The

examples do not demonstrate all possible uses of C/C++ language constructs. Some examples are only

code fragments and do not compile without additional code. The examples all assume that the C locale is

used.

All complete runnable examples for library functions and machine interface instructions are in library

QCPPLE, in source file QACSRC. Each example name is the same as the function name or instruction

name. For example, the source code for the example illustrating the use of the _Rcommit() function in this

book is in library QCPPLE, file QACSRC, member RCOMMIT. The QSYSINC library must be installed.

Prerequisite and related information

Use the IBM® i5/OS Information Center as your starting point for IBM System i™ technical information.

You can access the information center two ways:

v From the following Web site:

http://www.ibm.com/systems/i/infocenter/

© Copyright IBM Corp. 1999, 2008 xi

|

|

|
|
|
|

v From the i5/OS Information Center CD, SK3T-4091. This CD-ROM is included with your new System i

hardware or i5/OS software upgrade order. You can also order the CD-ROM from the IBM

Publications Center:

http://www.ibm.com/shop/publications/order

The i5/OS Information Center contains new and updated system information such as software and

hardware installation, Linux®, WebSphere®, Java™, high availability, database, logical partitions, CL

commands, and system application programming interfaces (APIs). In addition, it provides advisors and

finders to assist in planning, troubleshooting, and configuring your system hardware and software.

With every new hardware order, you receive the System i Access for Windows DVD, SK3T-4098. This DVD

provides for the installation for IBM System i Access for Windows licensed program. System i Access

Family offers client and server capabilities for connecting PCs to System i models.

For other related information, see the “Bibliography” on page 559.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you

have any comments about this book or any other System i documentation, fill out the readers’ comment

form at the back of this book.

v If you prefer to send comments by mail, use the readers’ comment form with the address that is

printed on the back. If you are mailing a readers’ comment form from a country or region other than

the United States, you can give the form to the local IBM branch office or IBM representative for

postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:

– United States, Canada, and Puerto Rico: 1-800-937-3430

– Other countries or regions: 1-507-253-5192
v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:

 RCHCLERK@us.ibm.com
– Comments on the i5/OS Information Center:

 RCHINFOC@us.ibm.com

Be sure to include the following:

v The name of the book or i5/OS Information Center topic.

v The publication number of a book.

v The page number or topic of a book to which your comment applies.

xii ILE C/C++ Runtime Library Functions V6R1

Summary of Changes

Here are the changes to this information for this edition.

v V6R1 updates

– ILE C runtime now supports the new data type decimal floating-point:

- strtod32()–strtod64()–strtod128()

- wcstod32()–wcstod64()–wcstod128()

- <float.h>

- printf()

- scanf()

– 64-bit time functions have been added to ILE C runtime:

- ctime64()

- ctime64_r()

- difftime64()

- gmtime64()

- gmtime64_r()

- localtime64()

- localtime64_r()

- mktime64()

- time64()

v V5R4 updates

The topic was not updated in V5R4. The following sections have been updated or added in this release

for the V5R4 updates since the previous edition.

– _C_Quickpool_Debug()

– _C_Quickpool_Init()

– _C_Quickpool_Report()

– <inttypes.h>

– nextafter(), nextafterl(), nexttoward(), nexttowardl()

– <stdint.h>

– strtod(), strtof(), strtold()

– Understanding CCSIDs and Locales

– Unicode from other ILE languages

© Copyright IBM Corp. 1999, 2008 xiii

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

xiv ILE C/C++ Runtime Library Functions V6R1

Part 1. Runtime Library Functions

© Copyright IBM Corp. 1999, 2008 1

2 ILE C/C++ Runtime Library Functions V6R1

Chapter 1. Include Files

The include files that are provided with the runtime library contain macro and constant definitions, type

definitions, and function declarations. Some functions require definitions and declarations from include

files to work properly. The inclusion of files is optional, as long as the necessary statements from the files

are coded directly into the source.

This section describes each include file, explains its contents, and lists the functions that are declared in

the file.

The QSYSINC (system openness includes) library must be installed on your i5/OS operating system.

QSYSINC contains include files useful for C/C++ users, such as system API, Dynamic Screen Manager

(DSM), and ILE header files. The QSYSINC library contains header files that include the prototypes and

templates for the machine interface (MI) built-ins and the ILE C/C++ MI functions. See the ILE C/C++ for

AS/400 MI Library Reference for more information about these header files.

<assert.h>

The <assert.h> include file defines the assert macro. You must include assert.h when you use assert.

The definition of assert is in an #ifndef preprocessor block. If you have not defined the identifier

NDEBUG through a #define directive or on the compilation command, the assert macro tests the

assertion expression. If the assertion is false, the system prints a message to stderr, and raises an abort

signal for the program. The system also does a Dump Job (DMPJOB) OUTPUT(*PRINT) when the

assertion is false.

If NDEBUG is defined, assert is defined to do nothing. You can suppress program assertions by defining

NDEBUG.

<ctype.h>

The <ctype.h> include file defines functions that are used in character classification. The functions that

are defined in <ctype.h> are:

 isascii1

isalnum

isalpha

isblank2

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

toascii1

tolower

toupper

Note:

1 These functions are not available when LOCALETYPE(*CLD) is specified on the

compilation command.

Note:

2 This function is applicable to C++ only.

<decimal.h>

The <decimal.h> include file contains definitions of constants that specify the ranges of the packed

decimal type and its attributes. The <decimal.h> file must be included with a #include directive in your

source code if you use the keywords decimal, digitsof, or precisionof.

© Copyright IBM Corp. 1999, 2008 3

|
|
|
|
|

<errno.h>

The <errno.h> include file defines macros that are set to the errno variable. The <errno.h> include file

defines macros for values that are used for error reporting in the C library functions and defines the

macro errno. An integer value can be assigned to errno, and its value can be tested during run time. See

"Checking the Errno Value" in the WebSphere Development Studio: ILE C/C++ Programmer’s Guide for

information about displaying the current errno value.

Note: To test the value of errno after library function calls, set it to 0 before the call because its value

may not be reset during the call.

<except.h>

The <except.h> include file declares types and macros that are used in ILE C exception handling.

The definition of _INTRPT_Hndlr_Parms_T is:

typedef _Packed struct {

 unsigned int Block_Size;

 _INVFLAGS_T Tgt_Flags;

 char reserved[8];

 _INVPTR Target;

 _INVPTR Source;

 _SPCPTR Com_Area;

 char Compare_Data[32];

 char Msg_Id[7];

 char reserved1;

 _INTRPT_Mask_T Mask;

 unsigned int Msg_Ref_Key;

 unsigned short Exception_Id;

 unsigned short Compare_Data_Len;

 char Signal_Class;

 char Priority;

 short Severity;

 char reserved3[4];

 int Msg_Data_Len;

 char Mch_Dep_Data[10];

 char Tgt_Inv_Type;

 _SUSPENDPTR Tgt_Suspend;

 char Ex_Data[48];

} _INTRPT_Hndlr_Parms_T;

Element

Description

Block_Size

The size of the parameter block passed to the exception handler.

Tgt_Flags

Contains flags that are used by the system.

reserved

An eight byte reserved field.

Target An invocation pointer to the call stack entry that enabled the exception handler.

Source

An invocation pointer to the call stack entry that caused the exception. If that call stack entry no

longer exists, then this is a pointer to the call stack entry where control resumes when the

exception is handled.

Com_Area

A pointer to the communications area variable specified as the second parameter on the #pragma

exception_handler. If a communication area was not specified, this value is NULL.

4 ILE C/C++ Runtime Library Functions V6R1

Compare_Data

The compare data consists of 4 bytes of message prefix, for example CPF, MCH, followed by 28

bytes which are taken from the message data of the related message. In the case where the

message data is greater than 28 these are the first 28 bytes. For MCH messages, these are the first

28 bytes of the exception related data that is returned by the system (substitution text).

Msg_Id

A message identifier, for example CPF123D. *STATUS message types are not updated in this field.

reserved1

A 1 byte pad.

Mask This is an 8-byte exception mask, identifying the type of the exception that occurred, for example

a decimal data error. The possible types are shown in Table 20 on page 515.

Msg_Ref_Key

A key used to uniquely identify the message.

Exception_Id

Binary value of the exception id, for example, 0x123D. To display value, use conversion specifier

%x as information is stored in hex value.

Compare_Data_Len

The length of the compare data.

Signal_Class

Internal signal class.

Priority

The handler priority.

Severity

The message severity.

reserved3

A 4-byte reserved field.

Msg_Data_Len

The length of available message data.

Mch_Dep_Data

Machine-dependent data.

Tgt_Inv_Type

Invocation type. Macros are defined in <mimchobs.h>.

Tgt_Suspend

Suspend pointer of the target.

Ex_Data

The first 48 bytes of exception data.

The definition of _CNL_Hndlr_Parms_T is:

typedef _Packed struct {

 unsigned int Block_Size;

 _INVFLAGS_T Inv_Flags;

 char reserved[8];

 _INVPTR Invocation;

 _SPCPTR Com_Area;

 _CNL_Mask_T Mask;

} _CNL_Hndlr_Parms_T;

Element

Description

Chapter 1. Include Files 5

Block_Size

The size of the parameter block passed to the cancel handler.

Inv_Flags

Contains flags that are used by the system.

reserved

An eight byte reserved field.

Invocation

An invocation pointer to the invocation that is being cancelled.

Com_Area

A pointer to the handler communications area defined by the cancel handler.

Mask A 4 byte value indicating the cancel reason.

The following built-ins are defined in <except.h>:

Built-in

Description

__EXBDY

The purpose of the __EXBDY built-in or _EXBDY macro is to act as a boundary for

exception-sensitive operations. An exception-sensitive operation is one that may signal an

exception. An EXBDY enables programmers to selectively suppress optimizations that do code

motion. For example, a divide is an exception-sensitive operation because it can signal a

divide-by-zero. An execution path containing both an EXBDY and a divide will perform the two

in the same order with or without optimization. For example:

b = exp1;

c = exp2;

...

_EXBDY();

a = b/c;

__VBDY

The purpose of a __VBDY built-in or _VBDY macro is to ensure the home storage locations are

current for variables that are potentially used on exception paths. This ensures the visibility of the

current values of variables in exception handlers. A VBDY enables programmers to selectively

suppress optimizations, such as redundant store elimination and forward store motion to enforce

sequential consistency of variable updates. In the following example, the VBDYs ensure that state

is in it’s home storage location before each block of code that may signal an exception. A VBDY is

often used in combination with an EXBDY to ensure that earlier assignments to state variables

really update home storage locations and that later exception sensitive operations are not moved

before these assignments.

 state = 1;

 _VBDY();

 /* Do stuff that may signal an exception. */

 state = 2;

 _VBDY();

 /* More stuff that may signal an exception. */

state = 3;

_VBDY();

For more information about built-ins, see the ILE C/C++ for AS/400 MI Library Reference .

6 ILE C/C++ Runtime Library Functions V6R1

<float.h>

The <float.h> include file defines constants that specify the ranges of binary floating-point data types.

For example, the maximum number of digits for objects of type double or the minimum exponent for

objects of type float. In addition, if the macro variable __STDC_WANT_DEC_FP__ is defined, the

include file also defines constants that specify ranges of decimal floating-point data types. For example,

the maximum number of digits for objects of type _Decimal64 or the minimum exponent for objects of

type _Decimal32.

<inttypes.h>

The <inttypes.h> include file includes <stdint.h> and extends it with additional facilities.

The following macros are defined for format specifiers. These macros are defined for C programs. They

are defined for C++ only when __STDC_FORMAT_MACROS is defined before <inttypes.h> is included.

 PRId8

PRId16

PRId32

PRId64

PRIdFAST8

PRIdFAST16

PRIdFAST32

PRIdFAST64

PRIdLEAST8

PRIdLEAST16

PRIdLEAST32

PRIdLEAST64

PRIdMAX

PRIi8

PRIi16

PRIi32

PRIi64

PRIiFAST8

PRIiFAST16

PRIiFAST32

PRIiFAST64

PRIiLEAST8

PRIiLEAST16

PRIiLEAST32

PRIiLEAST64

PRIiMAX

PRIo8

PRIo16

PRIo32

PRIo64

PRIoFAST8

PRIoFAST16

PRIoFAST32

PRIoFAST64

PRIoLEAST8

PRIoLEAST16

PRIoLEAST32

PRIoLEAST64

PRIoMAX

PRIu8

PRIu16

PRIu32

PRIu64

PRIuFAST8

PRIuFAST16

PRIuFAST32

PRIuFAST64

PRIuLEAST8

PRIuLEAST16

PRIuLEAST32

PRIuLEAST64

PRIuMAX

PRIx8

PRIx16

PRIx32

PRIx64

PRIxFAST8

PRIxFAST16

PRIxFAST32

PRIxFAST64

PRIxLEAST8

PRIxLEAST16

PRIxLEAST32

PRIxLEAST64

PRIxMAX

PRIX8

PRIX16

PRIX32

PRIX64

PRIXFAST8

PRIXFAST16

PRIXFAST32

PRIXFAST64

PRIXLEAST8

PRIXLEAST16

PRIXLEAST32

PRIXLEAST64

PRIXMAX

SCnd16

SCnd32

SCnd64

SCndFAST16

SCndFAST32

SCndFAST64

SCndLEAST16

SCndLEAST32

SCndLEAST64

SCndMAX

SCNo16

SCNo32

SCNo64

SCNoFAST16

SCNoFAST32

SCNoFAST64

SCNoLEAST16

SCNoLEAST32

SCNoLEAST64

SCNoMAX

SCNu16

SCNu32

SCNu64

SCNuFAST16

SCNuFAST32

SCNuFAST64

SCnuLEAST16

SCnuLEAST32

SCnuLEAST64

SCnuMAX

SCnx16

SCnx32

SCnx64

SCnxFAST16

SCnxFAST32

SCnxFAST64

SCnxLEAST16

SCnxLEAST32

SCnxLEAST64

SCnxMAX

<langinfo.h>

The <langinfo.h> include file contains the declarations and definitions that are used by nl_langinfo.

<limits.h>

The <limits.h> include file defines constants that specify the ranges of integer and character data types.

For example, the maximum value for an object of type char.

<locale.h>

The <locale.h> include file declares the setlocale(), localeconv(), and wcslocaleconv() library

functions. These functions are useful for changing the C locale when you are creating applications for

international markets.

Chapter 1. Include Files 7

|
|
|
|
|
|

|

|

|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

The <locale.h> include file also declares the type struct lconv and the following macro definitions:

 NULL LC_ALL LC_C LC_C_FRANCE

LC_C_GERMANY LC_C_ITALY LC_C_SPAIN LC_C_UK

LC_C_USA LC_COLLATE LC_CTYPE LC_MESSAGES

LC_MONETARY LC_NUMERIC LC_TIME LC_TOD

LC_UCS2_ALL LC_UCS2_COLLATE LC_UCS2_CTYPE LC_UNI_ALL

LC_UNI_COLLATE LC_UNI_CTYPE LC_UNI_TIME LC_UNI_NUMERIC

LC_UNI_MESSAGES LC_UNI_MONITARY LC_UNI_TOD

<math.h>

The <math.h> include file declares all the floating-point math functions:

 acos

asin

atan

atan2

Bessel

ceil

cos

cosh

erf

erfc

exp

fabs

floor

fmod

frexp

gamma

hypot

ldexp

log

log10

modf

nextafter

nextafterl

nexttoward

nexttowardl

pow

sin

sinh

sqrt

tan

tanh

Notes:

1. The Bessel functions are a group of functions named j0, j1, jn, y0, y1, and yn.

2. Floating-point numbers are only guaranteed 15 significant digits. This can greatly affect expected

results if multiple floating-point numbers are used in a calculation.

<math.h> defines the macro HUGE_VAL, which expands to a positive double expression, and possibly to

infinity on systems that support infinity.

For all mathematical functions, a domain error occurs when an input argument is outside the range of

values that are allowed for that function. In the event of a domain error, errno is set to the value of

EDOM.

A range error occurs if the result of the function cannot be represented in a double value. If the

magnitude of the result is too large (overflow), the function returns the positive or negative value of the

macro HUGE_VAL, and sets errno to ERANGE. If the result is too small (underflow), the function returns

zero.

<mallocinfo.h>

Include file with _C_TS_malloc_info and _C_TS_malloc_debug.

<monetary.h>

The <monetary.h> header file contains declarations and definitions that are related to the output of

monetary quantities. The following monetary functions are defined: strfmon() and wcsfmon(). The

strfmon() function is not available when LOCALETYPE(*CLD) is specified on the compilation command.

The wcsfmon() function is available only when LOCALETYPE(*LOCALEUTF) is specified on the

compilation command.

8 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|

<nl_types.h>

The <nl_types.h> header file contains catalog definitions and the following catalog functions:

catclose(), catgets(), and catopen(). These definitions are not available when either

LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

<pointer.h>

The <pointer.h> include file contains typedefs and pragma directives for the i5/OS pointer types: space

pointer, open pointer, invocation pointer, label pointer, system pointer, and suspend pointer. The typedefs

_ANYPTR and _SPCPTRCN are also defined in <pointer.h>.

<recio.h>

The <recio.h> include file defines the types and macros, and prototypes functions for all the ILE C

record input and output (I/O) operations.

The following functions are defined in <recio.h>:

 _Racquire _Rclose _Rcommit _Rdelete

_Rdevatr _Rfeod _Rfeov _Rformat

_Rindara _Riofbk _Rlocate _Ropen

_Ropnfbk _Rpgmdev _Rreadd _Rreadf

_Rreadindv _Rreadk _Rreadl _Rreadn

_Rreadnc _Rreadp _Rreads _Rrelease

_Rrlslck _Rrollbck _Rupdate _Rupfb

_Rwrite _Rwrited _Rwriterd _Rwrread

The following positioning macros are defined in recio.h:

 __END __END_FRC __FIRST __KEY_EQ

__KEY_GE __KEY_GT __KEY_LE __KEY_LT

__KEY_NEXTEQ __KEY_NEXTUNQ __KEY_PREVEQ __KEY_PREVUNQ

__KEY_LAST __KEY_NEXT __NO_POSITION __PREVIOUS

__PRIOR __RRN_EQ __START __START_FRC

__LAST __NEXT

The following macros are defined in recio.h:

 __DATA_ONLY __DFT __NO_LOCK __NULL_KEY_MAP

The following directional macros are defined in recio.h:

 __READ_NEXT __READ_PREV

The following functions and macros support locate or move mode:

 _Rreadd _Rreadf _Rreadindv _Rreadk

_Rreadl _Rreadn _Rreadnc _Rreadp

_Rreads _Rupdate _Rwrite _Rwrited

_Rwriterd _Rwrread

Chapter 1. Include Files 9

|
|
|

Any of the record I/O functions that include a buffer parameter may work in move mode or locate

mode. In move mode, data is moved between the user-supplied buffer and the system buffer. In locate

mode, the user must access the data in the system buffer. Pointers to the system buffers are exposed in

the _RFILE structure. To specify that locate mode is being used, the buffer parameter of the record I/O

function is coded as NULL.

A number of the functions include a size parameter. For move mode, this is the number of data bytes

that are copied between the user-supplied buffer and the system buffer. All of the record I/O functions

work with one record at a time regardless of the size that is specified. The size of this record is defined

by the file description. It may not be equal to the size parameter that is specified by the user on the call

to the record I/O functions. The amount of data that is moved between buffers is equal to the record

length of the current record format or specified minimum size, whichever is smaller. The size parameter

is ignored for locate mode.

The following types are defined in recio.h:

Information for controlling opened record I/O operations

typedef _Packed struct {

 char reserved1[16];

 volatile void *const *const in_buf;

 volatile void *const *const out_buf;

 char reserved2[48];

 _RIOFB_T riofb;

 char reserved3[32];

 const unsigned int buf_length;

 char reserved4[28];

 volatile char *const in_null_map;

 volatile char *const out_null_map;

 volatile char *const null_key_map;

 char reserved5[48];

 const int min_length;

 short null_map_len;

 short null_key_map_len;

 char reserved6[8];

}_RFILE;

Element Description

in_null_map Specifies which fields are to be considered NULL when you read from a

database file.

out_null_map Specifies which fields are to be considered NULL when you write to a

database file.

null_key_map Specifies which fields contain NULL if you are reading a database by key.

null_map_len Specifies the lengths of the in_null_map and out_null_map.

null_key_map_len Specifies the length of the null_key_map.

Record I/O Feedback Information

typedef struct {

 unsigned char *key;

 _Sys_Struct_T *sysparm;

 unsigned long rrn;

 long num_bytes;

 short blk_count;

 char blk_filled_by;

 int dup_key :1;

 int icf_locate :1;

 int reserved1 :6;

 char reserved2[20];

}_RIOFB_T;

10 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

Element Description

key If you are processing a file using a keyed sequence access path, this field

contains a pointer to the key value of the record successfully positioned

to, read or written.

sysparm This field is a pointer to the major and minor return code for ICF, display,

and printer files.

rrn This field contains the relative record number of the record that was

successfully positioned to, read or written.

num_bytes This field contains the number of bytes that are read or are written.

blk_count This field contains the number of records that remain in the block. If the

file is open for input, blkrcd=y is specified, and a read function is called,

this field will be updated with the number of records remaining in the

block.

blk_filled_by This field indicates the operation that filled the block. If the file is open

for input, blkrcd=y is specified, and a read function is called. This field

will be set to the __READ_NEXT macro if the _Rreadn function filled the

block or to the __READ_PREV macro if the _Rreadp function filled the

block.

System−Specific Information

typedef struct {

 void *sysparm_ext;

 _Maj_Min_rc_T _Maj_Min;

 char reserved1[12];

} _Sys_Struct_T;

Major and Minor Return Codes

 typedef struct {

 char major_rc[2];

 char minor_rc[2];

 } _Maj_Min_rc_T;

The following macros are defined in recio.h:

_FILENAME_MAX Expands to an integral constant expression that is the size of a character

array large enough to hold the longest file name. This is the same as the

stream I/O macro.

_ROPEN_MAX Expands to an integral constant expression that is the maximum number

of files that can be opened simultaneously.

The following null field macros are defined in recio.h:

Element

Description

_CLEAR_NULL_MAP(file, type)

Clears the null output field map that indicates that there are no null fields in the record to be

written to file. type is a typedef that corresponds to the null field map for the current record

format.

_CLEAR_UPDATE_NULL_MAP(file, type)

Clears the null input field map that indicates that no null fields are in the record to be written to

file. type is a typedef that corresponds to the null field map for the current record format.

Chapter 1. Include Files 11

_QRY_NULL_MAP(file, type)

Returns the number of fields that are null in the previously read record. type is a typedef that

corresponds to the null field map for the current record format.

_CLEAR_NULL_KEY_MAP(file, type)

Clears the null key field map so that it indicates no null key fields in the record to be written to

file. type is a typedef that corresponds to the null key field map for the current record format.

_SET_NULL_MAP_FIELD(file, type, field)

Sets the specified field in the output null field map so that field is considered NULL when the

record is written to file.

_SET_UPDATE_NULL_MAP_FIELD(file, type, field)

Sets the specified field in the input null field map so that field is considered null when the record

is written to file. type is a typedef that corresponds to the null key field map for the record

format.

_QRY_NULL_MAP_FIELD(file, type, field)

Returns 1 if the specified field in the null input field map indicates that the field is to be

considered null in the previously read record. If field is not null, it returns zero. type is a typedef

that corresponds to the NULL key field map for the current record format.

_SET_NULL_KEY_MAP_FIELD(file, type, field)

Sets the specified field map that indicates that the field will be considered null when the record is

read from file. type is a typedef that corresponds to the null key field map for the current record

format.

_QRY_NULL_KEY_MAP(file, type)

Returns the number of fields that are null in the key of the previously read record. type is a

typedef that corresponds to the null field map for the current record format.

_QRY_NULL_KEY_MAP_FIELD(file, type, field)

Returns 1 if the specified field in the null key field map indicates that field is to be considered

null in the previously read record. If field is not null, it returns zero. type is a typedef that

corresponds to the null key field map for the current record format.

<regex.h>

The <regex.h> include file defines the following regular expression functions:

 regcomp() regerror() regexec() regfree()

The <regex.h> include file also declares the regmatch_t type, the regex_t type, which is capable of storing a

compiled regular expression, and the following macros:

Values of the cflags parameter of the regcomp()function:

REG_BASIC

REG_EXTENDED

REG_ICASE

REG_NEWLINE

REG_NOSUB

Values of the eflags parameter of the regexec() function:

REG_NOTBOL

REG_NOTEOL

Values of the errcode parameter of the regerror()function:

12 ILE C/C++ Runtime Library Functions V6R1

REG_NOMATCH

 REG_BADPAT

 REG_ECOLLATE

 REG_ECTYPE

 REG_EESCAPE

 REG_ESUBREG

 REG_EBRACK

 REG_EPAREN

 REG_EBRACE

 REG_BADBR

 REG_ERANGE

 REG_ESPACE

 REG_BADRPT

 REG_ECHAR

 REG_EBOL

 REG_EEOL

 REG_ECOMP

 REG_EEXEC

 REG_LAST

 These declarations and definitions are not available when LOCALETYPE(*CLD) is specified on the

compilation command.

<setjmp.h>

The <setjmp.h> include file declares the setjmp() macro and longjmp function. It also defines a buffer

type, jmp_buf, that the setjmp() macro and longjmp function use to save and restore the program state.

<signal.h>

The <signal.h> include file defines the values for signals and declares the signal() and raise()

functions.

The <signal.h> include file also defines the following macros:

 SIGABRT

SIGALL

SIG_DFL

SIG_ERR

SIGFPE

SIG_IGN

SIGILL

SIGINT

SIGIO

SIGOTHER

SIGSEGV

SIGTERM

SIGUSR1

SIGUSR2

<signal.h> also declares the function _GetExcData, an i5/OS extension to the C standard library.

<stdarg.h>

The <stdarg.h> include file defines macros that allow you access to arguments in functions with

variable-length argument lists: va_arg(), va_start(), and va_end(). The <stdarg.h> include file also

defines the type va_list.

<stddef.h>

The <stddef.h> include file declares the commonly used pointers, variables, and types as listed below:

ptrdiff_t

typedef for the type of the difference of two pointers

size_t typedef for the type of the value that is returned by sizeof

Chapter 1. Include Files 13

wchar_t

typedef for a wide character constant.

The <stddef.h> include file also defines the macros NULL and offsetof. NULL is a pointer that is

guaranteed not to point to a data object. The offsetof macro expands to the number of bytes between a

structure member and the start of the structure. The offsetof macro has the form:

 offsetof(structure_type, member)

The <stddef.h> include file also declares the extern variable _EXCP_MSGID, an i5/OS extension to C.

<stdint.h>

The <stdint.h> include file declares sets of integer types that have specified widths and defines

corresponding sets of macros. It also defines macros that specify limits of integer types corresponding to

the types defined in other standard include files.

The following exact-width integer types are defined:

 int8_t

int16_t

int32_t

int64_t

uint8_t

uint16_t

uint32_t

uint64_t

The following minimum-width integer types are defined:

 int_least8_t

int_least16_t

int_least32_t

int_least64_t

uint_least8_t

uint_least16_t

uint_least32_t

uint_least64_t

The following fastest minimum-width integer types are defined:

 int_fast8_t

int_fast16_t

int_fast32_t

int_fast64_t

uint_fast8_t

uint_fast16_t

uint_fast32_t

uint_fast64_t

The following greatest-width integer types are defined:

 intmax_t

uintmax_t

The following macros are defined for limits of exact-width integer types (See note 1 on page 15):

 INT8_MAX

INT8_MIN

INT16_MAX

INT16_MIN

INT32_MAX

INT32_MIN

INT64_MAX

INT64_MIN

UINT8_MAX

UINT16_MAX

UINT32_MAX

UINT64_MAX

The following macros are defined for limits of minimum-width integer types (See note 1 on page 15):

 INT_LEAST8_MAX

INT_LEAST8_MIN

INT_LEAST16_MAX

INT_LEAST16_MIN

INT_LEAST32_MAX

INT_LEAST32_MIN

INT_LEAST64_MIN

INT_LEAST64_MIN

UINT_LEAST8_MAX

UINT_LEAST16_MAX

UINT_LEAST32_MAX

UINT_LEAST64_MAX

The following macros are defined for limits of fastest minimum-width integer types (See note 1 on page

15):

14 ILE C/C++ Runtime Library Functions V6R1

|

|
|
|

|

||
|
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|
|
|

|

||
|
|

|

||
|
|

|
|
|

|
|
|

|
|
|
|

|

||
|
|

|
|
|

|
|
|

|
|
|
|

|
|

INT_FAST8_MAX

INT_FAST8_MIN

INT_FAST16_MAX

INT_FAST16_MIN

INT_FAST32_MAX

INT_FAST32_MIN

INT_FAST64_MIN

INT_FAST64_MIN

UINT_FAST8_MAX

UINT_FAST16_MAX

UINT_FAST32_MAX

UINT_FAST64_MAX

The following macros are defined for limits of greatest-width integer types (See note 1):

 INTMAX_MIN

INTMAX_MAX

UINTMAX_MAX

The following macros are defined for limits for other integer types (See note 1):

 PTRDIFF_MAX

PTRDIFF_MIN

SIG_ATOMIC_MAX

SIG_ATOMIC_MIN

SIZE_MAX

WCHAR_MAX

WCHAR_MIN

WINT_MAX

WINT_MIN

The following macros are defined for minimum-width integer constant expressions (See note 2):

 INT8_C

INT16_C

INT32_C

INT64_C

UINT8_C

UINT16_C

UINT32_C

UINT64_C

The following macros are defined for greatest-width integer constant expressions (See note 2):

 INTMAX_C

UINTMAX_C

Notes:

1. These macros are defined for C programs. They are defined for C++ only when

__STDC_LIMIT_MACROS is defined before <stdint.h> is included.

2. These macros are defined for C programs. They are defined for C++ only when

__STDC_CONSTANT_MACROS is defined before <stdint.h> is included.

<stdio.h>

The <stdio.h> include file defines constants, macros, and types, and declares stream input and output

functions. The stream I/O functions are:

 _C_Get_Ssn_Handle

clearerr

fclose

fdopen2

feof

ferror

fflush

fgetc

fgetpos

fgets

fgetwc

1

fgetws

1

fileno2

fopen

fprintf

fputc

_fputchar

fputs

fputwc1

fputws1

fread

freopen

fscanf

fseek

fsetpos

ftell

fwide

1

fwprintf

1

fwrite

fwscanf

1

getc

getchar

gets

getwc

1

getwchar

1

perror

printf

putc

putchar

puts

putwc

1

putwchar

1

remove

rename

rewind

scanf

setbuf

setvbuf

snprintf

sprintf

sscanf

tmpfile

tmpnam

ungetc

ungetwc

1

vfprintf

vfscanf

vfwprintf

1

vfwscanf1

vprintf

vscanf

vsscanf

vsnprintf

vsprintf

vwprintf

1

vwscanf1

wfopen2

wprintf

1

wscanf

1

Chapter 1. Include Files 15

||
|
|

|
|
|

|
|
|

|
|
|
|

|

||
|
|
|

|

||
|
|

|
|
|

|
|
|
|

|

||
|
|
|
|
|
|
|
|

|

||
|
|

|

|
|

|
|

Note:

1 These functions are not available when either LOCALETYPE(*CLD) or

SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

Note:

2 These functions are available when SYSIFCOPT(*IFSIO) is specified on the

compilation command.

The <stdio.h> include file also defines the macros that are listed below. You can use these constants in

your programs, but you should not alter their values.

BUFSIZ Specifies the buffer size that the setbuf library function will use when you are allocating buffers

for stream I/O. This value establishes the size of system-allocated buffers and is used with

setbuf.

EOF The value that is returned by an I/O function when the end of the file (or in some cases, an

error) is found.

FOPEN_MAX

The number of files that can be opened simultaneously.

FILENAME_MAX

The longest file name that is supported. If there is no reasonable limit, FILENAME_MAX will be the

recommended size.

L_tmpnam

The size of the longest temporary name that can be generated by the tmpnam function.

TMP_MAX

The minimum number of unique file names that can be generated by the tmpnam function.

NULL A pointer guaranteed not to point to a data object.

The FILE structure type is defined in <stdio.h>. Stream I/O functions use a pointer to the FILE type to

get access to a given stream. The system uses the information in the FILE structure to maintain the

stream.

When integrated file system is enabled with a compilation parameter SYSIFCOPT(*IFSIO), ifs.h is

included into <stdio.h>.

The C standard streams stdin, stdout, and stderr are also defined in <stdio.h>.

The macros SEEK_CUR, SEEK_END, and SEEK_SET expand to integral constant expressions and can be used as

the third argument to fseek().

The macros _IOFBF, _IOLBF, and _IONBF expand to integral constant expressions with distinct values

suitable for use as the third argument to the setvbuf function.

The type fpos_t is defined in <stdio.h> for use with fgetpos() and fsetpos().

See “<stddef.h>” on page 13 for more information about NULL.

16 ILE C/C++ Runtime Library Functions V6R1

<stdlib.h>

The <stdlib.h> include file declares the following functions:

 abort

abs

atexit

atof

atoi

atol

bsearch

calloc

_C_Quickpool_Debug

_C_Quickpool_Init

_C_Quickpool_Report

div

exit

free

_gcvt1

getenv

_itoa1

_ltoa1

labs

llabs

ldiv

lldiv

malloc

mblen

mbstowcs

mbtowc

putenv

qsort

rand

rand_r

realloc

srand

strtod

strtod32

strtod64

strtod128

strtof

strtol

strtold

strtoll

strtoul

strtoull

system

_ultoa1

wcstombs

wctomb

Note:

1 These functions are applicable to C++ only.

The <stdlib.h> include file also contains definitions for the following macros:

NULL The NULL pointer value.

EXIT_SUCCESS

Expands to 0; used by the atexit function.

EXIT_FAILURE

Expands to 8; used by the atexit function.

RAND_MAX

Expands to an integer that represents the largest number that the rand function can return.

MB_CUR_MAX

Expands to an integral expression to represent the maximum number of bytes in a multibyte

character for the current locale.

For more information about NULL and the types size_t and wchar_t, see “<stddef.h>” on page 13.

<string.h>

The <string.h> include file declares the string manipulation functions:

 memchr

memcmp

memcpy

memicmp1

memmove

memset

strcat

strchr

strcmp

strcmpi1

strcoll

strcpy

strcspn

strdup1

strerror

stricmp1

strlen

strncat

strncmp

strncpy

strnicmp1

strnset1

strpbrk

strrchr

strset1

strspn

strstr

strtok

strtok_r

strxfrm

Note:

1 These functions are available for C++ programs. They are available for C only when the program defines the

__cplusplus__strings__ macro.

The <string.h> include file also defines the macro NULL, and the type size_t.

For more information about NULL and the type size_t, see “<stddef.h>” on page 13.

<strings.h>

Contains the functions strcasecmp and strncasecmp.

Chapter 1. Include Files 17

|
|
|
|
|
|
|
|
|
|

<time.h>

The <time.h> include file declares the time and date functions:

 asctime

asctime_r

clock

ctime

ctime64

ctime_r

ctime64_r

difftime

difftime64

gmtime

gmtime64

gmtime_r

gmtime64_r

localtime

localtime64

localtime_r

localtime64_r

mktime

mktime64

strftime

strptime1

time

time64

Note:

1 These functions are not available when LOCALETYPE(*CLD) is specified on the compilation command.

The <time.h> include file also provides:

v A structure tm that contains the components of a calendar time. See “gmtime() — Convert Time” on

page 161 for a list of the tm structure members.

v A macro CLOCKS_PER_SEC equal to the number per second of the value that is returned by the clock

function.

v Types clock_t, time_t, time64_t, and size_t.

v The NULL pointer value.

For more information about NULL and the type size_t, see “<stddef.h>” on page 13.

<wchar.h>

The <wchar.h> header file contains declarations and definitions that are related to the manipulation of

wide character strings. Any functions which deal with files are accessible if SYSIFCOPT(*IFSIO) is

specified.

 btowc1

fgetwc2

fgetws2

fputwc2

fputws2

fwide2

fwprintf2

fwscanf2

getwc2

getwchar2

mbrlen1

mbrtowc1

mbsinit1

mbsrtowcs1

putwc2

putwchar2

swprintf1

swscanf2

ungetwc2

vfwprintf2

vswscanf1

vswprintf1

vwprintf2

wcrtomb1

wcscat

wcschr

wcscmp

wcscoll1

wcscpy

wcscspn

wcsftime1

__wcsicmp1

wcslen

wcsncat

wcsncmp

wcsncpy

__wcsnicmp1

wcspbrk

wcsptime3

wcsrchr

wcsrtombs1

wcsspn

wcsstr

wcstod1

wcstod321

wcstod641

wcstod1281

wcstok

wcstol1

wcstoll1

wcstoul1

wcstoull1

wcswcs

wcswidth1

wcsxfrm1

wctob1

wcwidth1

wmemchr

wmemcmp

wmemcpy

wmemmove

wmemset

wprintf2

wscanf2

Note:

1 These functions are not available when LOCALETYPE(*CLD) is specified on the

compilation command.

Note:

2 These functions are available only when SYSIFCOPT(*IFSIO) and

LOCALETYPE(*LOCALE) are specified on the compilation command.

Note:

3 These functions are available only when LOCALETYPE(*LOCALEUTF) is specified

on the compilation command.

<wchar.h> also defines the macro NULL and the types size_t and wchar_t.

For more information about NULL and the types size_t and wchar_t, see “<stddef.h>” on page 13.

18 ILE C/C++ Runtime Library Functions V6R1

||
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

<wctype.h>

The <wctype.h> header file declares the following wide character functions:

 iswalnum

iswalpha

iswcntrl

iswdigit

iswgraph

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxdigit

iswctype

towlower

towupper

towctrans

wctype

wctrans

The <wctype.h> header file also contains declarations and definitions for wide character classification.

These declarations and definitions are not available when LOCALETYPE(*CLD) is specified on the

compilation command.

<xxcvt.h>

The <xxcvt.h> include file contains the declarations that are used by the QXXDTOP, QXXDTOZ, QXXITOP,

QXXITOZ, QXXPTOI, QXXPTOD, QXXZTOD, and QXXZTOI conversion functions.

<xxdtaa.h>

The <xxdtaa.h> include file contains the declarations for the data area interface functions QXXCHGDA,

QXXRTVDA, and the type _DTAA_NAME_T.

The definition of _DTAA_NAME_T is:

typedef struct _DTAA_NAME_T {

 char dtaa_name[10];

 char dtaa_lib[10];

}_DTAA_NAME_T;

<xxenv.h>

The <xxenv.h> include file contains the declarations for the QPXXCALL and QPXXDLTE EPM environment

handling program. ILE procedures cannot be called from this interface.

The definition of _ENVPGM_T is:

typedef struct _ENVPGM_T {

 char pgmname[10];

 char pgmlib[10];

} _ENVPGM_T;

<xxfdbk.h>

The <xxfdbk.h> include file contains the declarations that are used by the i5/OS feedback areas. To

retrieve information from feedback areas, see “_Riofbk() — Obtain I/O Feedback Information” on page

284 and “_Ropnfbk() — Obtain Open Feedback Information” on page 293.

The following is an example of a type that is defined in the <xxfdbk.h> include file:

typedef _Packed struct _XXIOFB_T {

 short file_dep_fb_offset;

 int write_count;

 int read_count;

 int write_read_count;

 int other_io_count;

 char reserved1;

 char cur_operation;

 char rec_format[10];

 char dev_class[2];

Chapter 1. Include Files 19

|
|
|

char dev_name[10];

 int last_io_rec_len;

 char reserved2[80];

 short num_recs_retrieved;

 short last_io_rec_len2;

 char reserved3[2];

 int cur_blk_count;

 char reserved4[8];

} _XXIOFB_T;

For further information about the open feedback areas, see the Files and file systems category in the

Information Center.

Machine Interface (MI) Include Files

See the ILE C/C++ for AS/400 MI Library Reference for a description of the MI header files.

20 ILE C/C++ Runtime Library Functions V6R1

Chapter 2. Library Functions

This chapter describes the standard C/C++ library functions and the ILE C/C++ extensions to the library

functions, except for the ILE C/C++ MI functions. See the ILE C/C++ for AS/400 MI Library Reference for

more information about the MI functions.

Each library function that is listed in this section contains:

v A format description that shows the include file that declares the function.

v The data type that is returned by the function.

v The required data types of the arguments to the function.

This example shows the format of the log() function:

 #include <math.h>

 double log(double x);

The example shows that:

v you must include the file math.h in the program.

v the log() function returns type double.

v the log() function requires an argument x of type double.

Examples throughout the section illustrate the use of library functions and are not necessarily complete.

This chapter lists the library functions in alphabetic order. If you are unsure of the function you want to

use, see the summary of the library functions in “The C/C++ Library.”

Note: All functions are considered threadsafe unless noted otherwise.

The C/C++ Library

This chapter summarizes the available C/C++ library functions and their location in this book. It also

briefly describes what the function does. Each library function is listed according to the type of function

it performs.

Error Handling

 Function Header File Page Description

assert() assert.h 43 Prints diagnostic messages.

atexit() stdlib.h 45 Registers a function to be executed

at program end.

clearerr() stdio.h 62 Resets error indicators.

feof() stdio.h 95 Tests end-of-file indicator for stream

input.

ferror() stdio.h 95 Tests the error indicator for a

specified stream.

_GetExcData() signal.h 154 Retrieves information about an

exception from within a C signal

handler. This function is not defined

when SYSIFCOPT(*SYNCSIGNAL)

is specified on the compilation

command.

© Copyright IBM Corp. 1999, 2008 21

Function Header File Page Description

perror() stdio.h 227 Prints an error message to stderr.

raise() signal.h 255 Initiates a signal.

signal() signal.h 346 Allows handling of an interrupt

signal from the operating system.

strerror() string.h 367 Retrieves pointer to system error

message.

Searching and Sorting

 Function Header File Page Description

bsearch() stdlib.h 51 Performs a binary search of a sorted array.

qsort() stdlib.h 245 Performs a quick sort on an array of elements.

Mathematical

 Function Header File Page Description

abs() stdlib.h 37 Calculates the absolute value of an integer.

ceil() math.h 61 Calculates the double value representing the

smallest integer that is greater than or equal

to a number.

div() stdlib.h 86 Calculates the quotient and remainder of an

integer.

erf() math.h 87 Calculates the error function.

erfc() math.h 87 Calculates the error function for large

numbers.

exp() math.h 89 Calculates an exponential function.

fabs() math.h 90 Calculates the absolute value of a

floating-point number.

floor() math.h 107 Calculates the double value representing the

largest integer that is less than or equal to a

number.

fmod() math.h 108 Calculates the floating-point remainder of one

argument divided by another.

frexp() math.h 132 Separates a floating-point number into its

mantissa and exponent.

gamma() math.h 150 Calculates the gamma function.

hypot() math.h 168 Calculates the hypotenuse.

labs() stdlib.h 177 Calculates the absolute value of a long

integer.

llabs() stdlib.h 177 Calculates the absolute value of a long long

integer.

ldexp() math.h 178 Multiplies a floating-point number by an

integral power of 2.

ldiv() stdlib.h 179 Calculates the quotient and remainder of a

long integer.

22 ILE C/C++ Runtime Library Functions V6R1

Function Header File Page Description

lldiv() stdlib.h 179 Calculates the quotient and remainder of a

long long integer.

log() math.h 191 Calculates natural logarithm.

log10() math.h 191 Calculates base 10 logarithm.

modf() math.h 222 Calculates the signed fractional portion of the

argument.

nextafter() math.h 223 Calculates the next representable

floating-point value.

nextafterl() math.h 223 Calculates the next representable

floating-point value.

nexttoward() math.h 223 Calculates the next representable

floating-point value.

nexttowardl() math.h 223 Calculates the next representable

floating-point value.

pow() math.h 228 Calculates the value of an argument raised to

a power.

sqrt() math.h 353 Calculates the square root of a number.

Trigonometric Functions

 Function Header File Page Description

acos() math.h 38 Calculates the arc cosine.

asin() math.h 42 Calculates the arc sine.

atan() math.h 44 Calculates the arc tangent.

atan2() math.h 44 Calculates the arc tangent.

cos() math.h 64 Calculates the cosine.

cosh() math.h 65 Calculates the hyperbolic cosine.

sin() math.h 348 Calculates the sine.

sinh() math.h 349 Calculates the hyperbolic sine.

tan() math.h 409 Calculates the tangent.

tanh() math.h 410 Calculates the hyperbolic tangent.

Bessel Functions

 Function Header File Page Description

j0() math.h 50 0 order differential equation of the first kind.

j1() math.h 50 1st order differential equation of the first

kind.

jn() math.h 50 nth order differential equation of the first

kind.

y0() math.h 50 0 order differential equation of the second

kind.

y1() math.h 50 1st order differential equation of the second

kind.

Chapter 2. Library Functions 23

|

|

|

|

Function Header File Page Description

yn() math.h 50 nth order differential equation of the second

kind.

Time Manipulation

 Function Header File Page Description

asctime() time.h 39 Converts time stored as a structure to a

character string in storage.

asctime_r() time.h 41 Converts time stored as a structure to a

character string in storage. (Restartable

version of asctime())

clock() time.h 63 Determines processor time.

ctime() time.h 71 Converts time stored as a long value to a

character string.

ctime64() time.h 73 Converts time stored as a long long value to a

character string.

ctime_r() time.h 74 Converts time stored as a long value to a

character string. (Restartable version of

ctime())

ctime64_r() time.h 76 Converts time stored as a long long value to a

character string. (Restartable version of

ctime64())

difftime() time.h 82 Calculates the difference between two times.

difftime64() time.h 84 Calculates the difference between two times.

gmtime() time.h 161 Converts time to Coordinated Universal Time

structure.

gmtime_r() time.h 165 Converts time to Coordinated Universal Time

structure. (Restartable version of gmtime())

gmtime64() time.h 163 Converts time to Coordinated Universal Time

structure.

gmtime64_r() time.h 167 Converts time to Coordinated Universal Time

structure. (Restartable version of gmtime64())

localtime() time.h 185 Converts time to local time.

localtime64() time.h 187 Converts time to local time.

localtime_r() time.h 188 Converts time to local time. (Restartable

version of localtime())

localtime64_r() time.h 189 Converts time to local time. (Restartable

version of localtime64())

mktime() time.h 218 Converts local time into calendar time.

mktime64() time.h 220 Converts local time into calendar time.

time() time.h 411 Returns the time in seconds.

time64() time.h 412 Returns the time in seconds.

24 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

|

Type Conversion

 Function Header File Page Description

atof() stdlib.h 46 Converts a character string to a floating-point

value.

atoi() stdlib.h 48 Converts a character string to an integer.

atol() stdlib.h 49 Converts a character string to a long integer.

atoll() stdlib.h 49 Converts a character string to a long integer.

_gcvt() stdlib.h 151 Converts a floating-point value to a string.

_itoa() stdlib.h 176 Converts an integer to a string.

_ltoa() stdlib.h 192 Converts a long integer to a string.

strtod() stdlib.h 392 Converts a character string to a

double-precision binary floating-point value.

strtod32() stblib.h 395 Converts a character string to a

single-precision decimal floating-point value.

strtod64() stblib.h 395 Converts a character string to a

double-precision decimal floating-point value.

strtod128() stblib.h 395 Converts a character string to a

quad-precision decimal floating-point value.

strtof() stblib.h 392 Converts a character string to a binary

floating-point value.

strtol() stdlib.h 400 Converts a character string to a long integer.

strtold() stdlib.h 392 Converts a character string to a

double-precision binary floating-point value.

strtoll() stdlib.h 400 Converts a character string to a long long

integer.

strtoul() stdlib.h 403 Converts a string to an unsigned long integer.

strtoull() stdlib.h 403 Converts a string to an unsigned long long

integer.

toascii() ctype.h 415 Converts a character to the corresponding

ASCII value.

_ultoa() stdlib.h 419 Converts an unsigned long integer to a string.

wcstod() wchar.h 476 Converts a wide-character string to a

double-precision binary floating-point value.

wcstod32() wchar.h 478 Converts a wide-character string to a

single-precision decimal floating-point value.

wcstod64() wchar.h 478 Converts a wide-character string to a

double-precision decimal floating-point value.

wcstod128() wchar.h 478 Converts a wide-character string to a

quad-precision decimal floating-point value.

wcstol() wchar.h 481 Converts a wide-character string to a long

integer.

wcstoll() wchar.h 481 Converts a wide-character string to a long

long integer.

wcstoul() wchar.h 486 Converts a wide-character string to an

unsigned long integer.

wcstoull() wchar.h 486 Converts a wide-character string to an

unsigned long long integer.

Chapter 2. Library Functions 25

|
|

|

|

|

||
|

|
|

|
|

|

|

|
|

Conversion

 Function Header File Page Description

QXXDTOP() xxcvt.h 248 Converts a floating-point value to a packed

decimal value.

QXXDTOZ() xxcvt.h 249 Converts a floating-point value to a zoned

decimal value.

QXXITOP() xxcvt.h 250 Converts an integer value to a packed

decimal value.

QXXITOZ() xxcvt.h 250 Converts an integer value to a zoned decimal

value.

QXXPTOD() xxcvt.h 251 Converts a packed decimal value to a

floating-point value.

QXXPTOI() xxcvt.h 252 Converts a packed decimal value to an

integer value.

QXXZTOD() xxcvt.h 254 Converts a zoned decimal value to a

floating-point value.

QXXZTOI() xxcvt.h 255 Converts a zoned decimal value to an integer

value.

Record Input/Output

 Function Header File Page Description

_Racquire() recio.h 257 Prepares a device for record I/O operations.

_Rclose() recio.h 258 Closes a file that is opened for record I/O

operations.

_Rcommit() recio.h 259 Completes the current transaction, and

establishes a new commitment boundary.

_Rdelete() recio.h 261 Deletes the currently locked record.

_Rdevatr() recio.h

xxfdbk.h

263 Returns a pointer to a copy of the device

attributes feedback area for the file reference

by fp and the device pgmdev.

_Rfeod() recio.h 278 Forces an end-of-file condition for the file

referenced by fp.

_Rfeov() recio.h 279 Forces an end-of-volume condition for tapes.

_Rformat() recio.h 280 Sets the record format to fmt for the file

referenced by fp.

_Rindara() recio.h 282 Sets up the separate indicator area to be used

for subsequent record I/O operations.

_Riofbk() recio.h

xxfdbk.h

284 Returns a pointer to a copy of the I/O

feedback area for the file referenced by fp.

_Rlocate() recio.h 286 Positions to the record in the files associated

with fp and specified by the key, klen_rrn and

opt parameters.

_Ropen() recio.h 289 Opens a file for record I/O operations.

_Ropnfbk() recio.h

xxfdbk.h

293 Returns a pointer to a copy of the open

feedback area for the file referenced by fp.

26 ILE C/C++ Runtime Library Functions V6R1

Function Header File Page Description

_Rpgmdev() recio.h 294 Sets the default program device.

_Rreadd() recio.h 295 Reads a record by relative record number.

_Rreadf() recio.h 297 Reads the first record.

_Rreadindv() recio.h 299 Reads data from an invited device.

_Rreadk() recio.h 302 Reads a record by key.

_Rreadl() recio.h 305 Reads the last record.

_Rreadn() recio.h 306 Reads the next record.

_Rreadnc() recio.h 308 Reads the next changed record in the subfile.

_Rreadp() recio.h 310 Reads the previous record.

_Rreads() recio.h 312 Reads the same record.

_Rrelease() recio.h 314 Makes the specified device ineligible for

record I/O operations.

_Rrlslck() recio.h 316 Releases the currently locked record.

_Rrollbck() recio.h 317 Reestablishes the last commitment boundary

as the current commitment boundary.

_Rupdate() recio.h 319 Writes to the record that is currently locked

for update.

_Rupfb() recio.h 320 Updates the feedback structure with

information about the last record I/O

operation.

_Rwrite() recio.h 322 Writes a record to the end of the file.

_Rwrited() recio.h 324 Writes a record by relative record number. It

will only write over deleted records.

_Rwriterd() recio.h 327 Writes and reads a record.

_Rwrread() recio.h 328 Functions as _Rwriterd(), except separate

buffers can be specified for input and output

data.

Stream Input/Output

Formatted Input/Output

 Function Header File Page Description

fprintf() stdio.h 116 Formats and prints characters to the output

stream.

fscanf() stdio.h 132 Reads data from a stream into locations given

by arguments.

fwprintf() stdio.h 143 Formats data as wide characters, and writes to

a stream.

fwscanf() stdio.h 147 Reads wide data from stream into locations

given by arguments.

printf() stdio.h 229 Formats and prints characters to stdout.

scanf() stdio.h 330 Reads data from stdin into locations given by

arguments.

snprintf() stdio.h 350 Same as sprintf, except that the snprintf()

function will stop after n characters have been

written to a buffer.

Chapter 2. Library Functions 27

Function Header File Page Description

sprintf() stdio.h 352 Formats and writes characters to a buffer.

sscanf() stdio.h 355 Reads data from a buffer into locations given

by arguments.

swprintf() wchar.h 406 Formats and writes wide characters to buffer.

swscanf() wchar.h 407 Reads wide data from a buffer into locations

given by arguments.

vfprintf() stdio.h

stdarg.h

425 Formats and prints characters to the output

stream using a variable number of arguments.

vfscanf()

 stdarg.h

stdio.h

427 Reads data from a specified stream into

locations given by a variable number of

arguments.

vfwprintf() stdio.h

stdarg.h

428 Formats argument data as wide characters and

writes to a stream using a variable number of

arguments.

vfwscanf()

 stdarg.h

stdio.h

430 Reads wide data from a specified stream into

locations given by a variable number of

arguments.

vprintf()

 stdarg.h

stdio.h

432 Formats and writes characters to stdout using

a variable number of arguments.

vscanf()

 stdarg.h

stdio.h

433 Reads data from stdin into locations given by

a variable number of arguments.

vsnprintf() stdio.h

stdarg.h

435 Same as vsprintf, except that the vsnprintf

function will stop after n characters have been

written to a buffer.

vsprintf() stdarg.h

stdio.h

436 Formats and writes characters to a buffer

using a variable number of arguments.

vsscanf()

 stdarg.h

stdio.h

437 Reads data from a buffer into locations given

by a variable number of arguments.

vswprintf() wchar.h

stdarg.h

439 Formats and writes wide characters to buffer

using a variable number of arguments.

vswscanf()

 stdarg.h

wchar.h

441 Reads wide data from a buffer into locations

given by a variable number of arguments.

vwprintf() wchar.h

stdarg.h

443 Formats and writes wide characters to stdout

using a variable number of arguments.

vwscanf()

 stdarg.h

stdio.h

445 Reads wide data from stdin into locations

given by a variable number of arguments.

wprintf() stdio.h 503 Formats and writes wide characters to stdout

wscanf() stdio.h 504 Reads wide data from stdin into locations

given by arguments.

28 ILE C/C++ Runtime Library Functions V6R1

Character and String Input/Output

 Function Header File Page Description

fgetc() stdio.h 98 Reads a character from a specified input

stream.

fgets() stdio.h 101 Reads a string from a specified input stream.

fgetwc() stdio.h 102 Reads a wide character from a specified

stream.

fgetws() stdio.h 104 Reads a wide-character string from a specified

stream.

fputc() stdio.h 118 Prints a character to a specified output stream.

_fputchar() stdio.h 120 Writes a character to stdout.

fputs() stdio.h 121 Prints a string to a specified output stream.

fputwc() stdio.h 122 Writes a wide character to a specified stream.

fputws() stdio.h 124 Writes a wide-character string to a specified

stream.

getc() stdio.h 152 Reads a character from a specified input

stream.

getchar() stdio.h 152 Reads a character from stdin.

gets() stdio.h 156 Reads a line from stdin.

getwc() stdio.h 157 Reads a wide character from a specified

stream.

getwchar() stdio.h 159 Gets a wide character from stdin.

putc() stdio.h 239 Prints a character to a specified output stream.

putchar() stdio.h 239 Prints a character to stdout.

puts() stdio.h 241 Prints a string to stdout.

putwc() stdio.h 242 Writes a wide character to a specified stream.

putwchar() stdio.h 244 Writes a wide character to stdout.

ungetc() stdio.h 420 Pushes a character back onto a specified input

stream.

ungetwc() stdio.h 422 Pushes a wide character back onto a specified

input stream.

Direct Input/Output

 Function Header File Page Description

fread() stdio.h 126 Reads items from a specified input stream.

fwrite() stdio.h 146 Writes items to a specified output stream.

File Positioning

 Function Header File Page Description

fgetpos() stdio.h 99 Gets the current position of the file pointer.

fseek() stdio.h 134 Moves the file pointer to a new location.

fseeko() stdio.h 134 Same as fseek().

fsetpos() stdio.h 136 Moves the file pointer to a new location.

Chapter 2. Library Functions 29

Function Header File Page Description

ftell() stdio.h 138 Gets the current position of the file pointer.

ftello() stdio.h 138 Same as ftell().

rewind() stdio.h 276 Repositions the file pointer to the beginning

of the file.

File Access

 Function Header File Page Description

fclose() stdio.h 91 Closes a specified stream.

fdopen() stdio.h 92 Associates an input or output stream with a

file.

fflush() stdio.h 96 Causes the system to write the contents of a

buffer to a file.

fopen() stdio.h 109 Opens a specified stream.

freopen() stdio.h 130 Closes a file and reassigns a stream.

fwide() stdio.h 140 Determines stream orientation.

setbuf() stdio.h 336 Allows control of buffering.

setvbuf() stdio.h 344 Controls buffering and buffer size for a

specified stream.

wfopen() stdio.h 498 Opens a specified stream, accepting file name

and mode as wide characters.

File Operations

 Function Header File Page Description

fileno() stdio.h 106 Determines the file handle.

remove() stdio.h 274 Deletes a specified file.

rename() stdio.h 275 Renames a specified file.

tmpfile() stdio.h 414 Creates a temporary file and returns a pointer

to that file.

tmpnam() stdio.h 414 Produces a temporary file name.

Handling Argument Lists

 Function Header File Page Description

va_arg() stdarg.h 423 Allows access to variable number of function

arguments.

va_end() stdarg.h 423 Allows access to variable number of function

arguments.

va_start() stdarg.h 423 Allows access to variable number of function

arguments.

30 ILE C/C++ Runtime Library Functions V6R1

Pseudorandom Numbers

 Function Header File Page Description

rand(), rand_r() stdlib.h 256 Returns a pseudorandom integer. (rand_r() is

the restartable version of rand().)

srand() stdlib.h 354 Sets the starting point for pseudorandom

numbers.

Dynamic Memory Management

 Function Header File Page Description

calloc() stdlib.h 55 Reserves storage space for an array and

initializes the values of all elements to 0.

_C_Quickpool_Debug() stdlib.h 66 Modifies Quick Pool memory

characteristics.

_C_Quickpool_Init() stdlib.h 68 Initializes the use of the Quick Pool

memory management algorithm.

_C_Quickpool_Report() stdlib.h 70 Generates a spooled file that contains a

snapshot of the memory used by the Quick

Pool memory management algorithm in the

current activation group.

_C_TS_malloc_debug() mallocinfo.h 77 Returns the same information as

_C_TS_malloc_info, plus produces a spool

file of detailed information about the

memory structure used by malloc functions

when compiled with teraspace.

_C_TS_malloc_info() mallocinfo.h 79 Returns the current memory usage

information.

free() stdlib.h 128 Frees storage blocks.

malloc() stdlib.h 195 Reserves storage blocks.

realloc() stdlib.h 264 Changes storage size allocated for an object.

Memory Objects

 Function Header File Page Description

memchr() string.h 212 Searches a buffer for the first occurrence of a

given character.

memcmp() string.h 213 Compares two buffers.

memcpy() string.h 214 Copies a buffer.

memicmp() string.h 215 Compare two buffers without regard to case.

memmove() string.h 217 Moves a buffer.

memset() string.h 218 Sets a buffer to a given value.

wmemchr() wchar.h 498 Locates a wide character in a wide-character

buffer.

wmemcmp() wchar.h 499 Compares two wide-character buffers.

wmemcpy() wchar.h 500 Copies a wide-character buffer.

wmemmove() wchar.h 501 Moves a wide-character buffer.

Chapter 2. Library Functions 31

|

|

|

Function Header File Page Description

wmemset() wchar.h 502 Sets a wide-character buffer to a given value.

Environment Interaction

 Function Header File Page Description

abort() stdlib.h 36 Ends a program abnormally.

_C_Get_Ssn_Handle() stdio.h 55 Returns a handle to the C

session for use with DSM APIs.

exit() stdlib.h 88 Ends the program normally if

called in the initial thread.

getenv() stdlib.h 154 Searches environment variables

for a specified variable.

localeconv() locale.h 181 Formats numeric quantities in

struct lconv according to the

current locale.

longjmp() setjmp.h 193 Restores a stack environment.

nl_langinfo() langinfo.h 224 Retrieves information from the

current locale.

putenv() stdlib.h 240 Sets the value of an

environment variable by

altering an existing variable or

creating a new one.

setjmp() setjmp.h 338 Saves a stack environment.

setlocale() locale.h 339 Changes or queries locale.

system() stdlib.h 408 Passes a string to the operating

system’s command interpreter.

wcslocaleconv() locale.h 462 Formats numeric quantities in

struct wcslconv according to the

current locale.

String Operations

 Function Header File Page Description

strcasecmp() strings.h 357 Compares strings without case sensitivity.

strcat() string.h 358 Concatenates two strings.

strchr() string.h 359 Locates the first occurrence of a specified

character in a string.

strcmp() string.h 360 Compares the value of two strings.

strcmpi() string.h 362 Compares the value of two strings without

regard to case.

strcoll() string.h 363 Compares the locale-defined value of two

strings.

strcpy() string.h 364 Copies one string into another.

strcspn() string.h 365 Finds the length of the first substring in a

string of characters not in a second string.

strdup() string.h 366 Duplicates a string.

32 ILE C/C++ Runtime Library Functions V6R1

Function Header File Page Description

strfmon() string.h 368 Converts monetary value to string.

strftime() time.h 370 Converts date and time to a formatted string.

stricmp() string.h 374 Compares the value of two strings without

regard to case.

strlen() string.h 375 Calculates the length of a string.

strncasecmp() strings.h 376 Compares strings without case sensitivity.

strncat() string.h 377 Adds a specified length of one string to

another string.

strncmp() string.h 379 Compares two strings up to a specified

length.

strncpy() string.h 380 Copies a specified length of one string into

another.

strnicmp() string.h 382 Compares the value of two substrings without

regard to case.

strnset() string.h 383 Sets character in a string.

strpbrk() string.h 384 Locates specified characters in a string.

strptime() time.h 385 Converts string to formatted time.

strrchr() string.h 389 Locates the last occurrence of a character

within a string.

strspn() string.h 390 Locates the first character in a string that is

not part of specified set of characters.

strstr() string.h 391 Locates the first occurrence of a string in

another string.

strtok() string.h 398 Locates a specified token in a string.

strtok_r() string.h 399 Locates a specified token in a string.

(Restartable version of strtok()).

strxfrm() string.h 404 Transforms strings according to locale.

wcsftime() wchar.h 458 Converts to formatted date and time.

wcsptime() wchar.h 469 Converts string to formatted time.

wcsstr() wchar.h 475 Locates a wide-character substring.

wcstok() wchar.h 480 Tokenizes a wide-character string.

Character Testing

 Function Header File Page Description

isalnum() ctype.h 169 Tests for alphanumeric characters.

isalpha() ctype.h 169 Tests for alphabetic characters.

isascii() ctype.h 171 Tests for ASCII values.

isblank() ctype.h 172 Tests for blank or tab characters.

iscntrl() ctype.h 169 Tests for control characters.

isdigit() ctype.h 169 Tests for decimal digits.

isgraph() ctype.h 169 Tests for printable characters excluding the

space.

islower() ctype.h 169 Tests for lowercase letters.

Chapter 2. Library Functions 33

Function Header File Page Description

isprint() ctype.h 169 Tests for printable characters including the

space.

ispunct() ctype.h 169 Tests for punctuation characters as defined in

the locale.

isspace() ctype.h 169 Tests for white-space characters.

isupper() ctype.h 169 Tests for uppercase letters.

isxdigit() ctype.h 169 Tests for wide hexadecimal digits 0 through

9, a through f, or A through F.

Multibyte Character Testing

 Function Header File Page Description

iswalnum() wctype.h 173 Tests for wide alphanumeric characters.

iswalpha() wctype.h 173 Tests for wide alphabetic characters.

iswcntrl() wctype.h 173 Tests for wide control characters.

iswctype() wctype.h 175 Tests for character property.

iswdigit() wctype.h 173 Tests for wide decimal digits.

iswgraph() wctype.h 173 Tests for wide printing characters excluding

the space.

iswlower() wctype.h 173 Tests for wide lowercase letters.

iswprint() wctype.h 173 Tests for wide printing characters.

iswpunct() wctype.h 173 Tests for wide punctuation characters as

defined in the locale.

iswspace() wctype.h 173 Tests for wide whitespace characters.

iswupper() wctype.h 173 Tests for wide uppercase letters.

iswxdigit() wctype.h 173 Tests for wide hexadecimal digits 0 through 9,

a through f, or A through F.

Character Case Mapping

 Function Header File Page Description

tolower() ctype.h 416 Converts a character to lowercase.

toupper() ctype.h 416 Converts a character to uppercase.

towlower() ctype.h 418 Converts a wide character to lowercase.

towupper() ctype.h 418 Converts a wide character to uppercase.

Multibyte Character Manipulation

 Function Header File Page Description

btowc() stdio.h

wchar.h

53 Converts a single byte to a wide character.

mblen() stdlib.h 197 Determines the length of a multibyte

character.

34 ILE C/C++ Runtime Library Functions V6R1

Function Header File Page Description

mbrlen() stdlib.h 199 Determines the length of a multibyte

character. (Restartable version of mblen())

mbrtowc() stdlib.h 201 Converts a multibyte character to a wide

character. (Restartable version of mbtowc())

mbsinit() stdlib.h 205 Tests state object for initial state.

mbsrtowcs() stdlib.h 206 Converts a multibyte string to a wide

character string. (Restartable version of

mbstowcs())

mbstowcs() stdlib.h 207 Converts a multibyte string to a wide

character string.

mbtowc() stdlib.h 211 Converts multibyte characters to a wide

character.

towctrans() wctype.h 417 Translates wide character.

wcrtomb() stdlib.h 446 Converts a wide character to a multibyte

character. (Restartable version of wctomb()).

wcscat() wchar.h 451 Concatenates wide character strings.

wcschr() wchar.h 452 Searches a wide character string for a wide

character.

wcscmp() wchar.h 453 Compares two wide character strings.

wcscoll() wchar.h 455 Compares the locale-defined value of two

wide-character strings.

wcscpy() wchar.h 456 Copies a wide character string.

wcscspn() wchar.h 457 Searches a wide character string for

characters.

__wcsicmp() wchar.h 460 Compares two wide character strings without

regard to case.

wcslen() wchar.h 461 Finds length of a wide character string.

wcsncat() wchar.h 463 Concatenates a wide character string segment.

wcsncmp() wchar.h 464 Compares wide character string segments.

wcsncpy() wchar.h 466 Copies wide character string segments.

__wcsnicmp() wchar.h 467 Compares two wide character substrings

without regard to case.

wcspbrk() wchar.h 468 Locates wide characters in string.

wcsrchr() wchar.h 471 Locates wide character in string.

wcsrtombs() stdlib.h 473 Converts a wide character string to a

multibyte character string. (Restartable

version of wcstombs()).

wcsspn() wchar.h 474 Finds offset of first nonmatching wide

character.

wcstombs() stdlib.h 483 Converts a wide character string to a

multibyte character string.

wcswcs() wchar.h 488 Locates a wide character string in another

wide character string.

wcswidth() wchar.h 489 Determines the display width of a wide

character string.

wcsxfrm() wchar.h 490 Transforms wide-character strings according

to locale.

Chapter 2. Library Functions 35

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Function Header File Page Description

wctob() stdlib.h 491 Converts a wide character to a single byte.

wctomb() stdlib.h 492 Converts a wide character to multibyte

characters.

wctrans() wctype.h 493 Gets a handle for character mapping.

wctype() wchar.h 495 Obtains a handle for character property

classification.

wcwidth() wchar.h 497 Determines the display width of a wide

character.

Data Areas

 Function Header File Page Description

QXXCHGDA() xxdtaa.h 247 Changes the data area.

QXXRTVDA() xxdtaa.h 252 Retrieves a copy of the data area specified by

dtaname.

Message Catalogs

 Function Header File Page Description

catclose() nl_types.h 57 Closes a message catalog.

catgets() nl_types.h 58 Reads a message from an opened message

catalog.

catopen() nl_types.h 59 Opens a message catalog.

Regular Expression

 Function Header File Page Description

regcomp() regex.h 267 Compiles a regular expression.

regerror() regex.h 269 Returns error message for regular expression.

regexec() regex.h 271 Executes a compiled regular expression.

regfree() regex.h 273 Frees memory for regular expression.

abort() — Stop a Program

Format

#include <stdlib.h>

void abort(void);

Language Level: ANSI

Threadsafe: Yes.

Description

36 ILE C/C++ Runtime Library Functions V6R1

The abort() function causes an abnormal end of the program and returns control to the host

environment. Like the exit() function, the abort() function deletes buffers and closes open files before

ending the program.

Calls to the abort() function raise the SIGABRT signal. The abort() function will not result in the ending

of the program if SIGABRT is caught by a signal handler, and the signal handler does not return.

Note: When compiled with SYSIFCOPT(*ASYNCSIGNAL), the abort() function cannot be called in a

signal handler.

Return Value

There is no return value.

Example that uses abort()

This example tests for successful opening of the file myfile. If an error occurs, an error message is

printed, and the program ends with a call to the abort() function.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *stream;

 if ((stream = fopen("mylib/myfile", "r")) == NULL)

 {

 perror("Could not open data file");

 abort();

 }

}

Related Information

v “exit() — End Program” on page 88

v “signal() — Handle Interrupt Signals” on page 346

v “<stdlib.h>” on page 17

v See the signal() API in the APIs topic in the i5/OS Information Center.

abs() — Calculate Integer Absolute Value

Format

#include <stdlib.h>

int abs(int n);

Language Level: ANSI

Threadsafe: Yes.

Description

The abs() function returns the absolute value of an integer argument n.

Return Value

There is no error return value. The result is undefined when the absolute value of the argument cannot

be represented as an integer. The value of the minimum allowable integer is defined by INT_MIN in the

<limits.h> include file.

Chapter 2. Library Functions 37

Example that uses abs()

This example calculates the absolute value of an integer x and assigns it to y.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int x = -4, y;

 y = abs(x);

 printf("The absolute value of x is %d.\n", y);

 /********************* Output **************************

 The absolute value of x is 4.

 ***/

}

Related Information

v “fabs() — Calculate Floating-Point Absolute Value” on page 90

v “labs() — llabs() — Calculate Absolute Value of Long and Long Long Integer” on page 177

v “<limits.h>” on page 7

v “<stdlib.h>” on page 17

acos() — Calculate Arccosine

Format

#include <math.h>

double acos(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The acos() function calculates the arccosine of x, expressed in radians, in the range 0 toΠ.

Return Value

The acos() function returns the arccosine of x. The value of x must be between -1 and 1 inclusive. If x is

less than -1 or greater than 1, acos() sets errno to EDOM and returns 0.

Example that uses acos()

This example prompts for a value for x. It prints an error message if x is greater than 1 or less than -1;

otherwise, it assigns the arccosine of x to y.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define MAX 1.0

#define MIN -1.0

int main(void)

{

 double x, y;

38 ILE C/C++ Runtime Library Functions V6R1

printf("Enter x\n");

 scanf("%lf", &x);

 /* Output error if not in range */

 if (x > MAX)

 printf("Error: %lf too large for acos\n", x);

 else if (x < MIN)

 printf("Error: %lf too small for acos\n", x);

 else {

 y = acos(x);

 printf("acos(%lf) = %lf\n", x, y);

 }

}

/******* Expected output if 0.4 is entered: *********

Enter x

acos(0.400000) = 1.159279

*/

Related Information

v “asin() — Calculate Arcsine” on page 42

v “atan() – atan2() — Calculate Arctangent” on page 44

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

asctime() — Convert Time to Character String

Format

#include <time.h>

char *asctime(const struct tm *time);

Language Level: ANSI

Threadsafe: No. Use asctime_r() instead.

Description

The asctime() function converts time, stored as a structure pointed to by time, to a character string. You

can obtain the time value from a call to the gmtime(), gmtime64(), localtime(), or localtime64() function.

The string result that asctime() produces contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

The following are examples of the string returned:

 Sat Jul 16 02:03:55 1994\n\0

or

 Sat Jul 16 2:03:55 1994\n\0

The asctime() function uses a 24-hour-clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,

Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,

Chapter 2. Library Functions 39

|
|

and Dec. All fields have constant width. Dates with only one digit are preceded either with a zero or a

blank space. The new-line character (\n) and the null character (\0) occupy the last two positions of the

string.

The time and date functions begin at 00:00:00 Universal Time, January 1, 1970.

Return Value

The asctime() function returns a pointer to the resulting character string. If the function is unsuccessful,

it returns NULL.

Note: The asctime(), ctime() functions, and other time functions can use a common, statically allocated

buffer to hold the return string. Each call to one of these functions might destroy the result of the

previous call. The asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions do not use a

common, statically allocated buffer to hold the return string. These functions can be used in place

of the asctime(), ctime(), gmtime(), and localtime() functions if reentrancy is desired.

Example that uses asctime()

This example polls the system clock and prints a message that gives the current time.

#include <time.h>

#include <stdio.h>

int main(void)

{

 struct tm *newtime;

 time_t ltime;

/* Get the time in seconds */

 time(<ime);

/* Convert it to the structure tm */

 newtime = localtime(<ime);

 /* Print the local time as a string */

 printf("The current date and time are %s",

 asctime(newtime));

}

/**************** Output should be similar to: ******************

The current date and time are Fri Sep 16 13:29:51 1994

*/

Related Information

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

40 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “printf() — Print Formatted Characters” on page 229

v “setlocale() — Set Locale” on page 339

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

asctime_r() — Convert Time to Character String (Restartable)

Format

#include <time.h>

char *asctime_r(const struct tm *tm, char *buf);

Language Level: XPG4

Threadsafe: Yes.

Description

This function is the restartable version of the asctime() function.

The asctime_r() function converts time, stored as a structure pointed to by tm, to a character string. You

can obtain the tm value from a call to gmtime_r(), gmtime64_r(), localtime_r(), or localtime64_r().

The string result that asctime_r() produces contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

The following are examples of the string returned:

 Sat Jul 16 02:03:55 1994\n\0

or

 Sat Jul 16 2:03:55 1994\n\0

The asctime_r() function uses a 24-hour-clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,

Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,

and Dec. All fields have constant width. Dates with only one digit are preceded either with a zero or a

blank space. The new-line character (\n) and the null character (\0) occupy the last two positions of the

string.

The time and date functions begin at 00:00:00 Universal Time, January 1, 1970.

Return Value

The asctime_r() function returns a pointer to the resulting character string. If the function is

unsuccessful, it returns NULL.

Example that uses asctime_r()

This example polls the system clock and prints a message giving the current time.

#include <time.h>

#include <stdio.h>

int main(void)

{

Chapter 2. Library Functions 41

|

|

|
|

struct tm *newtime;

 time_t ltime;

 char mybuf[50];

/* Get the time in seconds */

 time(<ime);

/* Convert it to the structure tm */

 newtime = localtime_r(<ime());

/* Print the local time as a string */

 printf("The current date and time are %s",

 asctime_r(newtime, mybuf));

}

/**************** Output should be similar to ******************

The current date and time are Fri Sep 16 132951 1994

*/

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “printf() — Print Formatted Characters” on page 229

v “<time.h>” on page 18

asin() — Calculate Arcsine

Format

#include <math.h>

double asin(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The asin() function calculates the arcsine of x, in the range -π/2 to π/2 radians.

Return Value

42 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

The asin() function returns the arcsine of x. The value of x must be between -1 and 1. If x is less than -1

or greater than 1, the asin() function sets errno to EDOM, and returns a value of 0.

Example that uses asin()

This example prompts for a value for x. It prints an error message if x is greater than 1 or less than -1;

otherwise, it assigns the arcsine of x to y.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define MAX 1.0

#define MIN -1.0

int main(void)

{

 double x, y;

 printf("Enter x\n");

 scanf("%lf", &x);

 /* Output error if not in range */

 if (x > MAX)

 printf("Error: %lf too large for asin\n", x);

 else if (x < MIN)

 printf("Error: %lf too small for asin\n", x);

 else

 {

 y = asin(x);

 printf("asin(%lf) = %lf\n", x, y);

 }

}

/**************** Output should be similar to ******************

Enter x

asin(0.200000) = 0.201358

*/

Related Information

v “acos() — Calculate Arccosine” on page 38

v “atan() – atan2() — Calculate Arctangent” on page 44

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

assert() — Verify Condition

Format

#include <assert.h>

void assert(int expression);

Language Level: ANSI

Threadsafe: No.

Chapter 2. Library Functions 43

Description

The assert() function prints a diagnostic message to stderr and aborts the program if expression is false

(zero). The diagnostic message has the format:

Assertion failed: expression, file filename, line line-number.

The assert() function takes no action if the expression is true (nonzero).

Use the assert() function to identify program logic errors. Choose an expression that holds true only if

the program is operating as you intend. After you have debugged the program, you can use the special

no-debug identifier NDEBUG to remove the assert() calls from the program. If you define NDEBUG to

any value with a #define directive, the C preprocessor expands all assert calls to void expressions. If you

use NDEBUG, you must define it before you include <assert.h> in the program.

Return Value

There is no return value.

Note: The assert() function is defined as a macro. Do not use the #undef directive with assert().

Example that uses assert()

In this example, the assert() function tests string for a null string and an empty string, and verifies that

length is positive before processing these arguments.

#include <stdio.h>

#include <assert.h>

void analyze (char *, int);

int main(void)

{

 char *string = "ABC";

 int length = 3;

 analyze(string, length);

 printf("The string %s is not null or empty, "

 "and has length %d \n", string, length);

}

void analyze(char *string, int length)

{

 assert(string != NULL); /* cannot be NULL */

 assert(*string != ’\0’); /* cannot be empty */

 assert(length > 0); /* must be positive */

}

/**************** Output should be similar to ******************

The string ABC is not null or empty, and has length 3

Related Information

v “abort() — Stop a Program” on page 36

v “<assert.h>” on page 3

atan() – atan2() — Calculate Arctangent

Format

#include <math.h>

double atan(double x);

double atan2(double y, double x);

44 ILE C/C++ Runtime Library Functions V6R1

Language Level: ANSI

Threadsafe: Yes.

Description

The atan() and atan2() functions calculate the arctangent of x and y/x, respectively.

Return Value

The atan() function returns a value in the range -π/2 to π/2 radians. The atan2() function returns a

value in the range -π to π radians. If both arguments of the atan2() function are zero, the function sets

errno to EDOM, and returns a value of 0.

Example that uses atan()

This example calculates arctangents using the atan() and atan2() functions.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double a,b,c,d;

 c = 0.45;

 d = 0.23;

 a = atan(c);

 b = atan2(c,d);

 printf("atan(%lf) = %lf/n", c, a);

 printf("atan2(%lf, %lf) = %lf/n", c, d, b);

}

/**************** Output should be similar to ******************

atan(0.450000) = 0.422854

atan2(0.450000, 0.230000) = 1.098299

***/

Related Information

v “acos() — Calculate Arccosine” on page 38

v “asin() — Calculate Arcsine” on page 42

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

atexit() — Record Program Ending Function

Format

Chapter 2. Library Functions 45

#include <stdlib.h>

int atexit(void (*func)(void));

Language Level: ANSI

Threadsafe: Yes.

Description

The atexit() function records the function, pointed to by func, that the system calls at normal program

end. For portability, you should use the atexit() function to register a maximum of 32 functions. The

functions are processed in a last-in, first-out order. The atexit() function cannot be called from the OPM

default activation group. Most functions can be used with the atexit function; however, if the exit

function is used the atexit function will fail.

Return Value

The atexit() function returns 0 if it is successful, and nonzero if it fails.

Example that uses atexit()

This example uses the atexit() function to call goodbye() at program end.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 void goodbye(void);

 int rc;

 rc = atexit(goodbye);

 if (rc != 0)

 perror("Error in atexit");

 exit(0);

}

void goodbye(void)

 /* This function is called at normal program end */

{

 printf("The function goodbye was called at program end\n");

}

/**************** Output should be similar to: ******************

The function goodbye was called at program end

*/

Related Information

v “exit() — End Program” on page 88

v “signal() — Handle Interrupt Signals” on page 346

v “<stdlib.h>” on page 17

atof() — Convert Character String to Float

Format

#include <stdlib.h>

double atof(const char *string);

Language Level: ANSI

46 ILE C/C++ Runtime Library Functions V6R1

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. For more information, see “Understanding CCSIDs and Locales” on page

524.

Description

The atof() function converts a character string to a double-precision floating-point value.

The input string is a sequence of characters that can be interpreted as a numeric value of the specified

return type. The function stops reading the input string at the first character that it cannot recognize as

part of a number. This character can be the null character that ends the string.

The atof() function expects a string in the following form:

 The white space consists of the same characters for which the isspace()function is true, such as spaces

and tabs. The atof() function ignores leading white-space characters.

For the atof() function, digits is one or more decimal digits; if no digits appear before the decimal point,

at least one digit must appear after the decimal point. The decimal digits can precede an exponent,

introduced by the letter e or E. The exponent is a decimal integer, which might be signed.

The atof() function will not fail if a character other than a digit follows an E or if e is read in as an

exponent. For example, 100elf will be converted to the floating-point value 100.0. The accuracy is up to 17

significant character digits.

Return Value

The atof() function returns a double value that is produced by interpreting the input characters as a

number. The return value is 0 if the function cannot convert the input to a value of that type. In case of

overflow, the function sets errno to ERANGE and returns the value -HUGE_VAL or +HUGE_VAL.

Example that uses atof()

This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 double x;

 char *s;

 s = " -2309.12E-15";

 x = atof(s); /* x = -2309.12E-15 */

 printf("x = %.4e\n",x);

}

��

whitespace

+

–

 digits

.

digits

.

digits

e

digits

E

+

–

 ��

Chapter 2. Library Functions 47

|
|
|

/******************* Output should be similar to: ***************

x = -2.3091e-12

*/

Related Information

v “atoi() — Convert Character String to Integer”

v “atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “<stdlib.h>” on page 17

atoi() — Convert Character String to Integer

Format

#include <stdlib.h>

int atoi(const char *string);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The atoi() function converts a character string to an integer value. The input string is a sequence of

characters that can be interpreted as a numeric value of the specified return type. The function stops

reading the input string at the first character that it cannot recognize as part of a number. This character

can be the null character that ends the string.

The atoi() function does not recognize decimal points or exponents. The string argument for this

function has the form:

 where whitespace consists of the same characters for which the isspace() function is true, such as spaces

and tabs. The atoi() function ignores leading white-space characters. The value digits represents one or

more decimal digits.

Return Value

The atoi() function returns an int value that is produced by interpreting the input characters as a

number. The return value is 0 if the function cannot convert the input to a value of that type. The return

value is undefined in the case of an overflow.

Example that uses atoi()

��

whitespace

+

-

 digits ��

48 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|

This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int i;

 char *s;

 s = " -9885";

 i = atoi(s); /* i = -9885 */

 printf("i = %d\n",i);

}

/******************* Output should be similar to: ***************

i = -9885

*/

Related Information

v “atof() — Convert Character String to Float” on page 46

v “atol() — atoll() — Convert Character String to Long or Long Long Integer”

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “<stdlib.h>” on page 17

atol() — atoll() — Convert Character String to Long or Long Long

Integer

Format (atol())

#include <stdlib.h>

long int atol(const char *string);

Format (atoll())

#include <stdlib.h>

long long int atoll(const char *string);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The atol() function converts a character string to a long value. The atoll() function converts a character

string to a long long value.

The input string is a sequence of characters that can be interpreted as a numeric value of the specified

return type. The function stops reading the input string at the first character that it cannot recognize as

part of a number. This character can be the null character that ends the string.

Chapter 2. Library Functions 49

|
|

|
|

The atol() and atoll() functions do not recognize decimal points or exponents. The string argument for

this function has the form:

 where whitespace consists of the same characters for which the isspace() function is true, such as spaces

and tabs. The atol() and atoll() functions ignore leading white-space characters. The value digits

represents one or more decimal digits.

Return Value

The atol() and atoll()functions return a long or a long long value that is produced by interpreting the

input characters as a number. The return value is 0L if the function cannot convert the input to a value of

that type. The return value is undefined in case of overflow.

Example that uses atol()

This example shows how to convert numbers that are stored as strings to numeric values.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 long l;

 char *s;

 s = "98854 dollars";

 l = atol(s); /* l = 98854 */

 printf("l = %.ld\n",l);

}

/******************* Output should be similar to: ***************

l = 98854

*/

Related Information

v “atof() — Convert Character String to Float” on page 46

v “atoi() — Convert Character String to Integer” on page 48

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “<stdlib.h>” on page 17

Bessel Functions

Format

#include <math.h>

double j0(double x);

double j1(double x);

��

whitespace

+

-

 digits ��

50 ILE C/C++ Runtime Library Functions V6R1

|
|

double jn(int n, double x);

double y0(double x);

double y1(double x);

double yn(int n, double x);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

Bessel functions solve certain types of differential equations. The j0(), j1(), and jn() functions are Bessel

functions of the first kind for orders 0, 1, and n, respectively. The y0(), y1(), and yn() functions are

Bessel functions of the second kind for orders 0, 1, and n, respectively.

The argument x must be positive. The argument n should be greater than or equal to zero. If n is less

than zero, it will be a negative exponent.

Return Value

For j0(), j1(), y0(), or y1(), if the absolute value of x is too large, the function sets errno to ERANGE,

and returns 0. For y0(), y1(), or yn(), if x is negative, the function sets errno to EDOM and returns the

value -HUGE_VAL. For y0, y1(), or yn(), if x causes overflow, the function sets errno to ERANGE and

returns the value -HUGE_VAL.

Example that uses Bessel Functions

This example computes y to be the order 0 Bessel function of the first kind for x. It also computes z to be

the order 3 Bessel function of the second kind for x.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = 4.27;

 y = j0(x); /* y = -0.3660 is the order 0 bessel */

 /* function of the first kind for x */

 z = yn(3,x); /* z = -0.0875 is the order 3 bessel */

 /* function of the second kind for x */

 printf("y = %lf\n", y);

 printf("z = %lf\n", z);

}

/***************** Output should be similar to: **********************

 y = -0.366022

 z = -0.087482

***/

Related Information

v “erf() – erfc() — Calculate Error Functions” on page 87

v “gamma() — Gamma Function” on page 150

v “<math.h>” on page 8

bsearch() — Search Arrays

Format

Chapter 2. Library Functions 51

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

 size_t num, size_t size,

 int (*compare)(const void *key, const void *element));

Language Level: ANSI

Threadsafe: Yes.

Description

The bsearch() function performs a binary search of an array of num elements, each of size bytes. The

array must be sorted in ascending order by the function pointed to by compare. The base is a pointer to

the base of the array to search, and key is the value being sought.

The compare argument is a pointer to a function you must supply that compares two items and returns a

value specifying their relationship. The first item in the argument list of the compare() function is the

pointer to the value of the item that is being searched for. The second item in the argument list of the

compare() function is a pointer to the array element being compared with the key. The compare() function

must compare the key value with the array element and then return one of the following values:

 Value Meaning

Less than 0 key less than element

0 key identical to element

Greater than 0 key greater than element

Return Value

The bsearch() function returns a pointer to key in the array to which base points. If two keys are equal,

the element that key will point to is unspecified. If the bsearch() function cannot find the key, it returns

NULL.

Example that uses bsearch()

This example performs a binary search on the argv array of pointers to the program parameters and finds

the position of the argument PATH. It first removes the program name from argv, and then sorts the

array alphabetically before calling bsearch(). The compare1() and compare2() functions compare the

values pointed to by arg1 and arg2 and return the result to the bsearch() function.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int compare1(const void *, const void *);

int compare2(const void *, const void *);

main(int argc, char *argv[])

{ /* This program performs a binary */

 char **result; /* search on the argv array of pointers */

 char *key = "PATH"; /* to the program parameters. It first */

 int i; /* removes the program name from argv */

 /* then sorts the array alphabetically */

 argv++; /* before calling bsearch. */

 argc--;

 qsort((char *)argv, argc, sizeof(char *), compare1);

 result = (char**)bsearch(&key, (char *)argv, argc, sizeof(char *), compare2);

 if (result != NULL) {

52 ILE C/C++ Runtime Library Functions V6R1

printf("result =<%s>\n",*result);

 }

 else printf("result is null\n");

}

 /*This function compares the values pointed to by arg1 */

 /*and arg2 and returns the result to qsort. arg1 and */

 /*arg2 are both pointers to elements of the argv array. */

int compare1(const void *arg1, const void *arg2)

{

 return (strcmp(*(char **)arg1, *(char **)arg2));

}

 /*This function compares the values pointed to by arg1 */

 /*and arg2 and returns the result to bsearch */

 /*arg1 is a pointer to the key value, arg2 points to */

 /*the element of argv that is being compared to the key */

 /*value. */

int compare2(const void *arg1, const void *arg2)

{

 return (strcmp(*(char **)arg1, *(char **)arg2));

}

/******************** Output should be similar to: *************

result = <PATH>

****************** When the input on the i5/OS command line is ********

CALL BSEARCH PARM(WHERE IS PATH IN THIS PHRASE’?’)

*/

Related Information

v “qsort() — Sort Array” on page 245

v “<stdlib.h>” on page 17

btowc() — Convert Single Byte to Wide Character

Format

#include <stdio.h>

#include <wchar.h>

wint_t btowc(int c);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

Chapter 2. Library Functions 53

|
|
|
|
|

|

The btowc() function converts the single byte value c to the wide-character representation of c. If c does

not constitute a valid (1-byte) multibyte character in the initial shift state, the btowc() function returns

WEOF.

Return Value

The btowc() function returns WEOF if c has the value EOF, or if (unsigned char) c does not constitute a

valid (1-byte) multibyte character in the initial shift state. Otherwise, it returns the wide-character

representation of that character.

If a conversion error occurs, errno might be set to ECONVERT.

Example that uses btowc()

This example scans various types of data.

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <local.h>

#define UPPER_LIMIT 0xFF

int main(void)

{

 int wc;

 int ch;

 if (NULL == setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE")) {

 printf("Locale could not be loaded\n");

 exit(1);

 }

 for (ch = 0; ch <= UPPER_LIMIT; ++ch) {

 wc = btowc(ch);

 if (wc==WEOF) {

 printf("%#04x is not a one-byte multibyte character\n", ch);

 } else {

 printf("%#04x has wide character representation: %#06x\n", ch, wc);

 }

 }

 wc = btowc(EOF);

 if (wc==WEOF) {

 printf("The character is EOF.\n", ch);

 } else {

 printf("EOF has wide character representation: %#06x\n", wc);

 }

 return 0;

 }

 /***

 If the locale is bound to SBCS, the output should be similar to:

 0000 has wide character representation: 000000

 0x01 has wide character representation: 0x0001

 ...

 0xfe has wide character representation: 0x00fe

 0xff has wide character representation: 0x00ff

 The character is EOF.

 **/

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbtowc() — Convert Multibyte Character to a Wide Character” on page 211

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

54 ILE C/C++ Runtime Library Functions V6R1

v “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206

v “setlocale() — Set Locale” on page 339

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

_C_Get_Ssn_Handle() — Handle to C Session

Format

#include <stdio.h>

_SSN_HANDLE_T _C_Get_Ssn_Handle (void)

Language Level: ILE C Extension

Threadsafe: Yes.

Description

Returns a handle to the C session for use with Dynamic Screen Manager (DSM) APIs.

Return Value

The _C_Get_Ssn_Handle() function returns a handle to the C session. If an error occurs,

_SSN_HANDLE_T is set to zero. See the APIs topic in the iInformation Center for more information

about using the _C_Get_Ssn_Handle() function with DSM APIs.

calloc() — Reserve and Initialize Storage

Format

#include <stdlib.h>

void *calloc(size_t num, size_t size);

Language Level: ANSI

Threadsafe: Yes.

Description

The calloc() function reserves storage space for an array of num elements, each of length size bytes. The

calloc() function then gives all the bits of each element an initial value of 0.

Return Value

The calloc() function returns a pointer to the reserved space. The storage space to which the return

value points is suitably aligned for storage of any type of object. To get a pointer to a type, use a type

cast on the return value. The return value is NULL if there is not enough storage, or if num or size is 0.

Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should

be allocated and deallocated within the same activation group. You cannot allocate heap storage

within one activation group and deallocate that storage from a different activation group. For more

information about activation groups, see the ILE Concepts manual.

Chapter 2. Library Functions 55

|
|
|
|

2. To use Teraspace storage instead of heap storage without changing the C source code, specify the

TERASPACE(*YES *TSIFC) parameter on the compiler command. This maps the calloc() library

function to _C_TS_calloc(), its Teraspace storage counterpart. The maximum amount of Teraspace

storage that can be allocated by each call to _C_TS_calloc() is 2GB - 224, or 2147483424 bytes.

For more information about Teraspace, see the ILE Concepts manual.

3. If the _C_Quickpool_Init() function has been called in the current activation group, then the storage

is retrieved using Quick Pool memory management. See _C_Quickpool_Init() for more information.

Example that uses calloc()

This example prompts for the number of array entries required, and then reserves enough space in

storage for the entries. If calloc() is successful, the example prints out each entry; otherwise, it prints

out an error.

Related Information

v “_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66

v “_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68

v “_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70

v “free() — Release Storage Blocks” on page 128

v “malloc() — Reserve Storage Block” on page 195

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array

 */

 long * index; /* index variable

 */

 int i; /* index variable

 */

 int num; /* number of entries of the array

*/

 printf("Enter the size of the array\n");

 scanf("%i", &num);

 /* allocate num entries */

 if ((index = array = (long *) calloc(num, sizeof(long))) != NULL)

 {

 for (i = 0; i < num; ++i) /* put values in arr */

 index++ = i; / using pointer no */

 for (i = 0; i < num; ++i) /* print the array out */

 printf("array[%i] = %i\n", i, array[i]);

 }

 else

 { /* out of storage */

 perror("Out of storage");

 abort();

 }

}

/****************** Output should be similar to: **********************

Enter the size of the array

array[0] = 0

array[1] = 1

array[2] = 2

*/

56 ILE C/C++ Runtime Library Functions V6R1

|
|

|

|

|

|

|

|

v “realloc() — Change Reserved Storage Block Size” on page 264

v “<stdlib.h>” on page 17

catclose() — Close Message Catalog

Format

#include <nl_types.h>

int catclose (nl_catd catd);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: This function is not available when LOCALETYPE(*CLD) is specified on the

compilation command.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Description

The catclose() function closes the previously opened message catalog that is identified by catd.

Return Value

If the close is performed successfully, 0 is returned. Otherwise, -1 is returned indicating failure, which

might happen if catd is not a valid message catalog descriptor.

The value of errno can be set to:

EBADF

The catalog descriptor is not valid.

EINTR

The function was interrupted by a signal.

Example that uses catclose()

Chapter 2. Library Functions 57

|

|

|
|

|
|

Related Information

v “catopen() — Open Message Catalog” on page 59

v “catgets() — Retrieve a Message from a Message Catalog”

catgets() — Retrieve a Message from a Message Catalog

Format

#include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id, char *s);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Description

The catgets() function retrieves message msg_id, in set set_id from the message catalog that is identified

by catd. catd is a message catalog descriptor that is returned by a previous call to catopen(). The s

argument points to a default message which will be returned by catgets() if the identified message

cannot be retrieved.

Return Value

If the message is retrieved successfully, then catgets() returns a pointer to the message string that is

contained in the message catalog. The CCSID of the retrieved message is determined by the flags

specified in the oflag parameter on the previous call to the catopen() function, when the message catalog

file was opened.

#include <stdio.h>

#include <nl_types.h>

#include <locale.h>

/* Name of the message catalog is "/qsys.lib/mylib.lib/msgs.usrspc" */

int main(void) {

 nl_catd msg_file;

 char * my_msg;

 char * my_locale;

 setlocale(LC_ALL, NULL);

 msg_file = catopen("/qsys.lib/mylib.lib/msgs.usrspc", 0);

 if (msg_file != CATD_ERR) {

 my_msg = catgets(msg_file, 1, 2, "oops");

 printf("%s\n", my_msg);

 catclose(msg_file);

 }

}

58 ILE C/C++ Runtime Library Functions V6R1

|
|
|

|
|

|
|
|
|

v If the NL_CAT_JOB_MODE flag was specified, then the retrieved message is in the CCSID of the job.

v If the NL_CAT_CTYPE_MODE flag was specified, then the retrieved message is in the CCSID of the

LC_CTYPE category of the current locale.

v If neither flag was specified, the CCSID of the retrieved message matches the CCSID of the message

catalog file.

If the message is retrieved unsuccessfully, then a pointer to the default string s is returned.

The value of errno can be set to the following:

EBADF

The catalog descriptor is not valid.

ECONVERT

A conversion error occurred.

EINTR

The function was interrupted by a signal.

Example that uses catgets()

Related Information

v “catclose() — Close Message Catalog” on page 57

v “catopen() — Open Message Catalog”

catopen() — Open Message Catalog

Format

#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

Language Level: XPG4

Threadsafe: Yes.

#include <stdio.h>

#include <nl_types.h>

#include <locale.h>

/* Name of the message catalog is "/qsys.lib/mylib.lib/msgs.usrspc" */

int main(void) {

 nl_catd msg_file;

 char * my_msg;

 char * my_locale;

 setlocale(LC_ALL, NULL);

 msg_file = catopen("/qsys.lib/mylib.lib/msgs.usrspc", 0);

 if (msg_file != CATD_ERR) {

 my_msg = catgets(msg_file, 1, 2, "oops");

 printf("%s\n", my_msg);

 catclose(msg_file);

 }

}

Chapter 2. Library Functions 59

|

|
|

|
|

|

Locale Sensitive: The behavior of this function might be affected by the LC_MESSAGES category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Description

The catopen() function opens a message catalog, which must be done before a message can be retrieved.

The NLSPATH environment variable and the LC_MESSAGES category are used to find the specified

message catalog if no slash (/) characters are found in the name. If the name contains one or more slash

(/) characters, then the name is interpreted as a path name of the catalog to open.

If there is no NLSPATH environment variable, or if a message catalog cannot be found in the path

specified by NLSPATH, then a default path is used. The default path might be affected by the setting of

the LANG environment variable; if the NL_CAT_LOCALE flag is set in the oflag parameter or if the

LANG environment variable is not set, the default path might be affected by the LC_MESSAGES locale

category.

Three values can be specified for the oflag parameter: NL_CAT_LOCALE, NL_CAT_JOB_MODE, and

NL_CAT_CTYPE_MODE. NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE are mutually exclusive. If

the NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE flags are both set in the oflag parameter, the

catopen() function will fail with a return value of CATD_ERR.

If you want the catalog messages to be converted to the job CCSID before they are returned by the

catgets() function, set the parameter to NL_CAT_JOB_MODE. If you want the catalog messages to be

converted to the LC_CTYPE CCSID before they are returned by catgets(), set the parameter to

NL_CAT_CTYPE_MODE. If you do not set the parameter to NL_CAT_JOB_MODE or

NL_CAT_CTYPE_MODE, the messages are returned without conversion and are in the CCSID of the

message file.

The message catalog descriptor will remain valid until it is closed by a call to catclose(). If the

LC_MESSAGES locale category is changed, it might invalidate existing open message catalogs.

Note: The name of the message catalog must be a valid integrated file system file name.

Return Value

If the message catalog is opened successfully, then a valid catalog descriptor is returned. If catopen() is

unsuccessful, then it returns CATD_ERR ((nl_catd)-1).

The catopen() function might fail under the following conditions, and the value of errno can be set to:

EACCES

Insufficient authority to read the message catalog specified, or to search the component of the

path prefix of the message catalog specified.

ECONVERT

A conversion error occurred.

EMFILE

NL_MAXOPEN message catalogs are currently open.

ENAMETOOLONG

The length of the path name of the message catalog exceeds PATH_MAX, or a path name

component is longer than NAME_MAX.

60 ILE C/C++ Runtime Library Functions V6R1

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

ENFILE

Too many files are currently open in the system.

ENOENT

The message catalog does not exist, or the name argument points to an empty string.

Example that uses catopen()

Related Information

v “catclose() — Close Message Catalog” on page 57

v “catgets() — Retrieve a Message from a Message Catalog” on page 58

ceil() — Find Integer >=Argument

Format

#include <math.h>

double ceil(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The ceil() function computes the smallest integer that is greater than or equal to x.

Return Value

The ceil() function returns the integer as a double value.

Example that uses ceil()

This example sets y to the smallest integer greater than 1.05, and then to the smallest integer greater than

-1.05. The results are 2.0 and -1.0, respectively.

#include <stdio.h>

#include <nl_types.h>

#include <locale.h>

/* Name of the message catalog is "/qsys.lib/mylib.lib/msgs.usrspc" */

int main(void) {

 nl_catd msg_file;

 char * my_msg;

 char * my_locale;

 setlocale(LC_ALL, NULL);

 msg_file = catopen("/qsys.lib/mylib.lib/msgs.usrspc", 0);

 if (msg_file != CATD_ERR) {

 my_msg = catgets(msg_file, 1, 2, "oops");

 printf("%s\n", my_msg);

 catclose(msg_file);

 }

}

Chapter 2. Library Functions 61

Related Information

v “floor() —Find Integer <=Argument” on page 107

v “fmod() — Calculate Floating-Point Remainder” on page 108

v “<math.h>” on page 8

clearerr() — Reset Error Indicators

Format

#include <stdio.h>

void clearerr (FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The clearerr() function resets the error indicator and end-of-file indicator for the specified stream. Once

set, the indicators for a specified stream remain set until your program calls the clearerr() function or

the rewind() function. The fseek() function also clears the end-of-file indicator. The ILE C/C++ runtime

environment does not automatically clear error or end of file indicators.

Return Value

There is no return value.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

ENOTOPEN

The file is not open.

ESTDIN

stdin cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double y, z;

 y = ceil(1.05); /* y = 2.0 */

 z = ceil(-1.05); /* z = -1.0 */

 printf("y = %.2f ; z = %.2f\n", y, z);

}

/***************** Output should be similar to: ***********************

 y = 2.00 ; z = -1.00

**/

62 ILE C/C++ Runtime Library Functions V6R1

Example that uses clearerr()

This example reads a data stream, and then checks that a read error has not occurred.

Related Information

v “feof() — Test End-of-File Indicator” on page 95

v “ferror() — Test for Read/Write Errors” on page 95

v “fseek() — fseeko() — Reposition File Position” on page 134

v “perror() — Print Error Message” on page 227

v “rewind() — Adjust Current File Position” on page 276

v “strerror() — Set Pointer to Runtime Error Message” on page 367

v “<stdio.h>” on page 15

clock() — Determine Processor Time

Format

#include <time.h>

clock_t clock(void);

Language Level: ANSI

Threadsafe: Yes.

Description

The clock() function returns an approximation of the processor time used by the program since the

beginning of an implementation-defined time-period that is related to the process invocation. To obtain

the time in seconds, divide the value that is returned by clock() by the value of the macro

CLOCKS_PER_SEC.

Return Value

If the value of the processor time is not available or cannot be represented, the clock() function returns

the value (clock_t)-1.

#include <stdio.h>

#include <stdlib.h>

FILE *stream;

int c;

int main(void)

{

 if ((stream = fopen("mylib/myfile", "r")) != NULL)

 {

 if ((c=getc(stream)) == EOF)

 {

 if (ferror(stream))

 {

 perror("Read error");

 clearerr(stream);

 }

 }

 }

 else

 exit(0);

}

Chapter 2. Library Functions 63

To measure the time spent in a program, call clock() at the start of the program, and subtract its return

value from the value returned by subsequent calls to clock(). On other platforms, you can not always

rely on the clock() function because calls to the system() function might reset the clock.

Example that uses clock()

This example prints the time that has elapsed since the program was called.

Related Information

v “difftime() — Compute Time Difference” on page 82

v “difftime64() — Compute Time Difference” on page 84

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

cos() — Calculate Cosine

Format

#include <math.h>

double cos(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The cos() function calculates the cosine of x. The value x is expressed in radians. If x is too large, a

partial loss of significance in the result might occur.

Return Value

The cos() function returns the cosine of x. The value of errno can be set to either EDOM or ERANGE.

Example that uses cos()

This example calculates y to be the cosine of x.

#include <time.h>

#include <stdio.h>

double time1, timedif; /* use doubles to show small values */

int main(void)

{

 int i;

 time1 = (double) clock(); /* get initial time */

 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */

 /* running the FOR loop 10000 times */

 for (i=0; i<10000; i++);

 /* call clock a second time */

 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;

 printf("The elapsed time is %lf seconds\n", timedif);

}

64 ILE C/C++ Runtime Library Functions V6R1

|

|

Related Information

v “acos() — Calculate Arccosine” on page 38

v “cosh() — Calculate Hyperbolic Cosine”

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

cosh() — Calculate Hyperbolic Cosine

Format

#include <math.h>

double cosh(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The cosh() function calculates the hyperbolic cosine of x. The value x is expressed in radians.

Return Value

The cosh() function returns the hyperbolic cosine of x. If the result is too large, cosh() returns the value

HUGE_VAL and sets errno to ERANGE.

Example that uses cosh()

This example calculates y to be the hyperbolic cosine of x.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y;

 x = 7.2;

 y = cos(x);

 printf("cos(%lf) = %lf\n", x, y);

}

/********************* Output should be similar to: *******************

cos(7.200000) = 0.608351

*/

Chapter 2. Library Functions 65

Related Information

v “acos() — Calculate Arccosine” on page 38

v “cos() — Calculate Cosine” on page 64

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

_C_Quickpool_Debug() — Modify Quick Pool Memory Management

Characteristics

Format

#include <stdlib.h>

_C_Quickpool_Debug_T _C_Quickpool_Debug(_C_Quickpool_Debug_T *newval);

Language Level: Extended

Threadsafe: Yes.

Description

The _C_Quickpool_Debug() function modifies Quick Pool memory management characteristics.

The parameters for _C_Quickpool_Debug() are as follows:

newval

A pointer to a _C_Quickpool_Debug_T structure. The structure contains the following fields:

flags An unsigned integer value that indicates the characteristics to be modified. The flags field

can contain the following values (which can be used in any combination):

_C_INIT_MALLOC

Initializes all allocated storage to a specified value. The value is passed in the

variable argument list.

_C_INIT_FREE

Initializes all freed storage to a specified value. The value is passed in the

variable argument list.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x,y;

 x = 7.2;

 y = cosh(x);

 printf("cosh(%lf) = %lf\n", x, y);

}

/********************* Output should be similar to: *******************

cosh(7.200000) = 669.715755

*/

66 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|
|

|

|

|

|

|

|
|

||
|

|
|
|

|
|
|

_C_COLLECT_STATS

Collects statistics on the Quick Pool memory management algorithm to use

_C_Quickpool_Report functions.

malloc_val

A 1-byte unsigned character value that is used to initialize allocated memory. This field is

in use only when the _C_INIT_MALLOC flag is specified.

free_val

A 1-byte unsigned character value that is used to initialize freed memory. This field is in

use only when the _C_INIT_FREE flag is specified.

 Return Value

The return value is a structure that contains the _C_Quickpool_Debug values before the changes requested

by the current function call are made. This value can be used to restore the _C_Quickpool_Debug values to

a prior state with a later call.

Example that uses _C_Quickpool_Debug()

The following example uses _C_Quickpool_Debug with the _C_INIT_MALLOC and _C_INIT_FREE flags to

initialize memory on the malloc and free functions.

Related Information

v “_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68

v “_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70

v “<stdlib.h>” on page 17

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 char *p;

 char *mtest = "AAAAAAAAAA";

 char *ftest = "BBBBBBBBBB";

 unsigned int cell_sizes[2] = { 16, 64 };

 unsigned int cells_per_extent[2] = { 16, 16 };

 _C_Quickpool_Debug_T dbgVals = { _C_INIT_MALLOC | _C_INIT_FREE, ’A’, ’B’ };

 if (_C_Quickpool_Init(2, cell_sizes, cells_per_extent) {

 printf("Error initializing Quick Pool memory management.\n");

 return -1;

 }

 _C_Quickpool_Debug(dbgVals);

 if ((p = malloc(10)) == NULL) {

 printf("Error during malloc.\n");

 return -2;

 }

 if (memcmp(p, mtest, 10)) {

 printf("malloc test failed\n");

 }

 free(p);

 if (memcmp(p, ftest, 10)) {

 printf("free test failed\n");

 }

 printf("Test successful!\n");

 return 0;

}

/*****************Output should be similar to:*****************

Test successful!

***/

Chapter 2. Library Functions 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|

|

|

|

_C_Quickpool_Init() — Initialize Quick Pool Memory Management

Format

#include <stdlib.h>

int _C_Quickpool_Init(unsigned int numpools, unsigned int *cell_sizes, unsigned int *num_cells);

Language Level: Extended

Threadsafe: Yes.

Description

When the _C_Quickpool_Init() function is called, all subsequent calls to memory management functions

(malloc, calloc, realloc, and free) in the same activation group will use the Quick Pool memory

management algorithm. This algorithm can provide improved performance in some cases.

Quick Pool memory management breaks memory up into a series of pools. Each pool is broken up into a

number of cells with identical sizes. The number of pools, the size of cells in each pool, and the number

of cells in each pool extent is set using the _C_Quickpool_Init() function.

Suppose that a user wants to define four pools, each of which contains 64 cells. The first pool will have

16-byte cells; the second pool will have 256-byte cells; the third pool will have 1024-byte cells; and the

fourth pool will have 2048-byte cells. When the user submits the request for storage, the memory

management algorithm assigns the request to a pool first. The algorithm compares the size of storage in

the request with the size of the cells in a given pool.

In this example, the first pool satisfies requests between 1 and 16 bytes in size; the second pool satisfies

requests between 17 and 256 bytes in size; the third pool satisfies requests between 257 and 1024 bytes in

size, and the fourth pool satisfies requests between 1025 and 2048 bytes in size. Any requests larger than

the largest cell size are allocated through the old memory management algorithm.

After the pool has been assigned, the free queue for the pool is examined. Each pool has a free queue

that contains cells that have been freed and have not yet been reallocated. If there is a cell on the free

queue, the cell is removed from the free queue and returned; otherwise, the cell is retrieved from the

current extent for the pool. An extent is a collection of cells that are allocated as one block. Initially, a

pool has no extents.

When the first request comes in for a pool, an extent is allocated for the pool and the request is satisfied

from that extent. Later requests are also satisfied by that extent until the extent is exhausted. When an

extent is exhausted, a new extent is allocated for the pool. If the algorithm fails to retrieve a cell from the

current extent, it assumes that a memory problem exists. An attempt will be made to allocate the storage

using the old memory management algorithm. If the attempt is not successful, the NULL value is

returned.

numpools

The number of pools to use in the Quick Pool memory management algorithm. This parameter

can have a value between 1 and 512.

cell_sizes

An array of unsigned integer values. The number of entries in the array is equal to the number

specified on the numpools parameter. Each entry specifies the number of bytes in a cell for a

given pool. These values must be multiples of 16 bytes. If a value is specified that is not a

multiple of 16 bytes, the cell size is rounded up to the next larger multiple of 16 bytes. The

minimum valid value is 16 bytes and the maximum valid value is 4096 bytes.

num_cells

An array of unsigned integer values. The number of entries in the array is equal to the number

68 ILE C/C++ Runtime Library Functions V6R1

|

|

|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

specified on the numpools parameter. Each entry specifies the number of cells in a single extent

for the corresponding pool. The number can be any nonzero number, but the total size of the

extent cannot exceed the maximum size of an extent (currently 16 MB).

 Here is the call to _C_Quickpool_Init() for the preceding example:

unsigned int cell_sizes[4] = { 16, 256, 1024, 2048 };

unsigned int cells_per_extent[4] = { 64, 64, 64, 64 };

rc = _C_Quickpool_Init(4, /* number of pools */

 cell_sizes, /* cell sizes for each pool */

 cells_per_extent); /* extent sizes for each pool */

Return Value

The follow list shows the return values for the _C_Quickpool_Init function:

0 Success

-1 _C_Quickpool_Init has already been called in this activation group.

-2 Error allocating storage for control structures.

-3 An invalid number of pools was specified.

-4 _C_Quickpool_Init was called from an invalid activation group.

-5 An unexpected exception occurred when _C_Quickpool_Init was running.

Example that uses _C_Quickpool_Init()

The following example uses _C_Quickpool_Init to enable Quick Pool memory allocation.

Related Information

v “_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66

v “_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70

v “<stdlib.h>” on page 17

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 char *p;

 unsigned int cell_sizes[2] = { 16, 64 };

 unsigned int cells_per_extent[2] = { 16, 16 };

 if (_C_Quickpool_Init(2, cell_sizes, cells_per_extent) {

 printf("Error initializing Quick Pool memory management.\n");

 return -1;

 }

 if ((p = malloc(10)) == NULL) {

 printf("Error during malloc.\n");

 return -2;

 }

 free(p);

 printf("Test successful!\n");

 return 0;

}

/*****************Output should be similar to:*****************

Test successful!

***/

Chapter 2. Library Functions 69

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

|

||

||

||

||

||

||

|

|
|

|

|

|

|

_C_Quickpool_Report() — Generate Quick Pool Memory Management

Report

Format

#include <stdlib.h>

void _C_Quickpool_Report(void);

Language Level: Extended

Threadsafe: Yes.

Description

The _C_Quickpool_Report function generates a spooled file that contains a snapshot of the memory used

by the Quick Pool memory management algorithm in the current activation group. If the

_C_Quickpool_Init() function has not been called in the current activation group yet or if the

_C_COLLECT_STATS flag is not used on a call to _C_Quickpool_Debug(), the report will be a message that

indicates no data is collected.

If _C_Quickpool_Init() has been called and the _C_COLLECT_STATS flag is set using the

_C_Quickpool_Debug() function, the report that is generated indicates the number of allocation attempts

for each 16 bytes of memory since the time _C_Quickpool_Debug() was called. In addition, the report

indicates the maximum number of outstanding allocations (peak allocations) that is reached for each pool.

If no storage requests are made for a given range of memory, that range of memory will not be included

in the report. No output is generated for allocations larger than the maximum cell size (4096 bytes).

Return Value

There is no return value for the function.

Example that uses _C_Quickpool_Report()

The following example uses _C_Quickpool_Init to enable Quick Pool memory allocation. It uses the

_C_COLLECT_STATS flags to collect information. The collected information is printed using

_C_Quickpool_Report.

70 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|
|

|

|

|

|
|
|
|
|

|
|
|
|
|
|

|

|

|

|
|
|
|

Related Information

v “_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66

v “_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68

v “<stdlib.h>” on page 17

ctime() — Convert Time to Character String

Format

#include <time.h>

char *ctime(const time_t *time);

Language Level: ANSI

Threadsafe: No. Use ctime_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The ctime() function converts the time value pointed to by time to local time in the form of a character

string. A time value is usually obtained by a call to the time() function.

The string result that is produced by ctime() contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 char *p;

 int i;

 unsigned int cell_sizes[2] = { 16, 64 };

 unsigned int cells_per_extent[2] = { 16, 16 };

 _C_Quickpool_Debug_T dbgVals = { _C_COLLECT_STATS, ’A’, ’B’ };

 if (_C_Quickpool_Init(2, cell_sizes, cells_per_extent) {

 printf("Error initializing Quick Pool memory management.\n");

 return -1;

 }

 _C_Quickpool_Debug(dbgVals);

 for (i = 1; i <= 64; i++) {

 p = malloc(i);

 free(p);

 }

 p = malloc(128);

 free(p);

 _C_Quickpool_Report();

 return 0;

}

/*****************Spooled File Output should be similar to:**********

Pool 1 (16 bytes, 1 peak allocations):

1-16 bytes: 16 allocations

Pool 2 (64 bytes, 1 peak allocations):

17-32 bytes: 16 allocations

33-48 bytes: 16 allocations

49-64 bytes: 16 allocations

Remaining allocations smaller than the largest cell size (4096 bytes):

113-128 bytes: 1 allocations

***/

Chapter 2. Library Functions 71

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime() function uses a 24-hour clock format. The days are abbreviated to: Sun, Mon, Tue, Wed, Thu,

Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and

Dec. All fields have a constant width. Dates with only one digit are preceded with a zero. The new-line

character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime() function returns a pointer to the character string result. If the function is unsuccessful, it

returns NULL. A call to the ctime() function is equivalent to:

 asctime(localtime(&anytime))

Note: The asctime() and ctime() functions, and other time functions can use a common, statically

allocated buffer to hold the return string. Each call to one of these functions might destroy the

result of the previous call. The asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions

do not use a common, statically allocated buffer to hold the return string. These functions can be

used in place of asctime(), ctime(), gmtime(), and localtime() if reentrancy is desired.

Example that uses ctime()

This example polls the system clock using time(). It then prints a message giving the current date and

time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t ltime;

 time(<ime);

 printf("the time is %s", ctime(<ime));

}

72 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

v “setlocale() — Set Locale” on page 339

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “printf() — Print Formatted Characters” on page 229

v “<time.h>” on page 18

ctime64() — Convert Time to Character String

Format

#include <time.h>

char *ctime64(const time64_t *time);

Language Level: ILE C Extension

Threadsafe: No. Use ctime64_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The ctime64() function converts the time value pointed to by time to local time in the form of a character

string. A time value is usually obtained by a call to the time64() function.

The string result that is produced by the ctime64() function contains exactly 26 characters and has the

format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime64() function uses a 24-hour clock format. The month and day abbreviations used are retrieved

from the locale. All fields have a constant width. Dates with only 1 digit are preceded with a zero. The

new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime64() function returns a pointer to the character string result. If the function is unsuccessful, it

returns NULL. A call to the ctime64() function is equivalent to:

 asctime(localtime64(&anytime))

Note: The asctime() and ctime64() functions, and other time functions can use a common, statically

allocated buffer to hold the return string. Each call to one of these functions might destroy the

result of the previous call. The asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r()

functions do not use a common, statically allocated buffer to hold the return string. These

functions can be used in place of asctime(), ctime64(), gmtime64(), and localtime64(), if

reentrancy is desired.

Example that uses ctime64()

This example polls the system clock using time64(). It then prints a message that gives the current date

and time.

Chapter 2. Library Functions 73

|

|

|

|
|

|

|

|
|

|

|
|

|
|

|

|

|

|
|
|

|

|
|

|

|
|
|
|
|
|

|

|
|
|

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “setlocale() — Set Locale” on page 339

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “printf() — Print Formatted Characters” on page 229

v “<time.h>” on page 18

ctime_r() — Convert Time to Character String (Restartable)

Format

#include <time.h>

char *ctime_r(const time_t *time, char *buf);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

This function is the restartable version of the ctime() function.

#include <time.h>

#include <stdio.h>

int main(void)

{

 time64_t ltime;

 time64(<ime);

 printf("the time is %s", ctime64(<ime));

}

74 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

The ctime_r() function converts the time value pointed to by time to local time in the form of a character

string. A time value is usually obtained by a call to the time() function.

The string result that is produced by the ctime_r() function contains exactly 26 characters and has the

format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime_r() function uses a 24-hour clock format. The days are abbreviated to: Sun, Mon, Tue, Wed,

Thu, Fri, and Sat. The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,

and Dec. All fields have a constant width. Dates with only one digit are preceded with a zero. The

new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime_r() function returns a pointer to the character string result. If the function is unsuccessful, it

returns NULL. A call to ctime_r() is equivalent to:

 asctime_r(localtime_r(&anytime, buf2), buf)

where buf is a pointer to char.

Example that uses ctime_r()

This example polls the system clock using ctime_r(). It then prints a message giving the current date and

time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t ltime;

 char buf[50];

 time(<ime);

 printf("the time is %s", ctime_r(<ime, buf));

}

Chapter 2. Library Functions 75

|

|

|

|

|

|

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

ctime64_r() — Convert Time to Character String (Restartable)

Format

#include <time.h>

char *ctime64_r(const time64_t *time, char *buf);

Language Level: ILE C Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

This function is the restartable version of the ctime64() function.

The ctime64() function converts the time value pointed to by time to local time in the form of a character

string. A time value is usually obtained by a call to the time64() function.

The string result that is produced by the ctime64_r() function contains exactly 26 characters and has the

format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example:

 Mon Jul 16 02:03:55 1987\n\0

The ctime64_r() function uses a 24-hour clock format. The month and day abbreviation used are

retrieved from the locale. All fields have a constant width. Dates with only 1 digit are preceded with a

zero. The new-line character (\n) and the null character (\0) occupy the last two positions of the string.

Return Value

The ctime64_r() function returns a pointer to the character string result. If the function is unsuccessful, it

returns NULL. A call to the ctime64_r() function is equivalent to:

 asctime_r(localtime64_r(&anytime, buf2), buf)

Example that uses ctime64_r()

This example polls the system clock using time64(). It then prints a message, giving the current date and

time.

76 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|
|

|

|

|
|

|

|

|
|

|
|

|

|

|

|
|
|

|

|
|

|

|

|
|
|

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

_C_TS_malloc_debug() — Determine amount of teraspace memory

used (with optional dumps and verification)

Format

#include <mallocinfo.h>

int _C_TS_malloc_debug(unsigned int dump_level, unsigned int verify_level,

 struct _C_mallinfo_t *output_record, size_t sizeofoutput);

Language Level: Extended

Threadsafe: Yes.

Description

The _C_TS_malloc_debug() function determines the amount of teraspace memory used and returns the

information within the given output_record structure. If the given dump_level parameter is greater than

0, it also dumps the internal memory structures used to stdout. If the given verify_level parameter is

greater than 0, it also performs verification checks for the internal memory structures. If a verification

fails, a message is generated to stdout indicating the failure. If both the dump_level and verify_level

parameters are 0, this function provides the same behavior as the _C_TS_malloc_info function.

#include <time.h>

#include <stdio.h>

int main(void)

{

 time64_t ltime;

 char buf[50];

 time64(<ime);

 printf("the time is %s", ctime64_r(<ime, buf));

}

Chapter 2. Library Functions 77

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

The following macros are defined within the <mallocinfo.h> include file to be specified for the

dump_level parameter:

 _C_NO_DUMPS No information is dumped

_C_DUMP_TOTALS Overall totals and totals for each chunk are printed

_C_DUMP_CHUNKS Additional information about each chunk is printed

_C_DUMP_NODES Additional information for all nodes within each chunk

is printed

_C_DUMP_TREE Additional information for the cartesian tree used to

track free nodes is printed

_C_DUMP_ALL All available information is printed

The following macros are defined within the <mallocinfo.h> include file to be specified for the

verify_level parameter:

 _C_NO_CHECKS No verification checks are performed

_C_CHECK_TOTALS Totals are verified for correctness

_C_CHECK_CHUNKS Additional verifications are performed for each chunk

_C_CHECK_NODES Additional verifications are performed for all nodes

within each chunk

_C_CHECK_TREE Additional verifications are performed for the cartesian

tree used to track free nodes

_C_CHECK_ALL All verifications are performed

_C_CHECK_ALL_AND_ABORT All verifications are performed, and if any verification

fails, the abort() function is called

Note: This function is for low-level debug of teraspace memory usage within an application.

Return Value

If successful, the function returns 0. If an error occurs, the function returns a negative value.

Example that uses _C_TS_malloc_debug()

This example prints the information returned from _C_TS_malloc_debug() to stdout . This program is

compiled with TERASPACE(*YES *TSIFC).

78 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_C_TS_malloc_info() — Determine amount of teraspace memory used”

v “calloc() — Reserve and Initialize Storage” on page 55

v “free() — Release Storage Blocks” on page 128

v “malloc() — Reserve Storage Block” on page 195

v “realloc() — Change Reserved Storage Block Size” on page 264

v “<mallocinfo.h>” on page 8

_C_TS_malloc_info() — Determine amount of teraspace memory used

Format

#include <stdio.h>

#include <stdlib.h>

#include <mallocinfo.h>

int main (void)

{

 _C_mallinfo_t info;

 int rc;

 void *m;

 /* Allocate a small chunk of memory */

 m = malloc(500);

 rc = _C_TS_malloc_debug(_C_DUMP_TOTALS,

 _C_NO_CHECKS,

 &info, sizeof(info));

 if (rc == 0) {

 Printf("_C_TS_malloc_debug successful\n");

 }

 else {

 printf("_C_TS_malloc_debug failed (rc = %d)\n", rc);

 }

 free(m);

}

/**

 The output should be similar to:

 total_bytes = 524288

 allocated_bytes = 688

 unallocated_bytes = 523600

 allocated_blocks = 1

 unallocated_blocks = 1

 requested_bytes = 500

 pad_bytes = 12

 overhead_bytes = 176

 Number of memory chunks = 1

 Total bytes = 524288

 Total allocated bytes = 688

 Total unallocated bytes = 523600

 Total allocated blocks = 1

 Total unallocated blocks = 1

 Total requested bytes = 500

 Total pad bytes = 12

 Total overhead bytes = 176

 _C_TS_malloc_debug successful

 **

Chapter 2. Library Functions 79

#include <mallocinfo.h>

int _C_TS_malloc_info(struct _C_mallinfo_t *output_record, size_t sizeofoutput);

Language Level: Extended

Threadsafe: Yes.

Description

The _C_TS_malloc_info() function determines the amount of teraspace memory used and returns the

information within the given output_record structure.

Note: This function is for low-level debug of teraspace memory usage within an application.

Return Value

If successful, the function returns 0. If an error occurs, the function returns a negative value.

Example that uses _C_TS_malloc_info()

This example prints the information returned from _C_TS_malloc_info() to stdout . This program is

compiled with TERASPACE(*YES *TSIFC).

80 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps and

verification)” on page 77

v “calloc() — Reserve and Initialize Storage” on page 55

v “free() — Release Storage Blocks” on page 128

v “malloc() — Reserve Storage Block” on page 195

v “realloc() — Change Reserved Storage Block Size” on page 264

v “<mallocinfo.h>” on page 8

#include <stdio.h>

#include <stdlib.h>

#include <mallocinfo.h>

int main (void)

{

 _C_mallinfo_t info;

 int rc;

 void *m;

 /* Allocate a small chunk of memory */

 m = malloc(500);

 rc = _C_TS_malloc_info(&info, sizeof(info));

 if (rc == 0) {

 printf("Total bytes = %llu\n",

 info.total_bytes);

 printf("Total allocated bytes = %llu\n",

 info.allocated_bytes);

 printf("Total unallocated bytes = %llu\n",

 info.unallocated_bytes);

 printf("Total allocated blocks = %llu\n",

 info.allocated_blocks);

 printf("Total unallocated blocks = %llu\n",

 info.unallocated_blocks);

 printf("Total requested bytes = %llu\n",

 info.requested_bytes);

 printf("Total pad bytes = %llu\n",

 info.pad_bytes);

 printf("Total overhead bytes = %llu\n",

 info.overhead_bytes);

 }

 else {

 printf("_C_TS_malloc_info failed (rc = %d)\n", rc);

 }

 free(m);

}

/**

 The output should be similar to:

 Total bytes = 524288

 Total allocated bytes = 688

 Total unallocated bytes = 523600

 Total allocated blocks = 1

 Total unallocated blocks = 1

 Total requested bytes = 500

 Total pad bytes = 12

 Total overhead bytes = 176

 **

Chapter 2. Library Functions 81

difftime() — Compute Time Difference

Format

#include <time.h>

double difftime(time_t time2, time_t time1);

Language Level: ANSI

Threadsafe: Yes.

Description

The difftime() function computes the difference in seconds between time2 and time1.

Return Value

The difftime() function returns the elapsed time in seconds from time1 to time2 as a double precision

number. Type time_t is defined in <time.h>.

Example that uses difftime()

This example shows a timing application that uses difftime(). The example calculates how long, on

average, it takes to find the prime numbers from 2 to 10 000.

82 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “difftime64() — Compute Time Difference” on page 84

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

#include <time.h>

#include <stdio.h>

#define RUNS 1000

#define SIZE 10000

int mark[SIZE];

int main(void)

{

 time_t start, finish;

 int i, loop, n, num;

 time(&start);

 /* This loop finds the prime numbers between 2 and SIZE */

 for (loop = 0; loop < RUNS; ++loop)

 {

 for (n = 0; n < SIZE; ++n)

 mark [n] = 0;

 /* This loops marks all the composite numbers with -1 */

 for (num = 0, n = 2; n < SIZE; ++n)

 if (! mark[n])

 {

 for (i = 2 * n; i < SIZE; i += n)

 mark[i] = -1;

 ++num;

 }

 }

 time(&finish);

 printf("Program takes an average of %f seconds "

 "to find %d primes.\n",

 difftime(finish,start)/RUNS, num);

}

/******************** Output should be similar: *****************

The program takes an average of 0.106000 seconds to find 1229 primes.

*/

Chapter 2. Library Functions 83

|

|

|

|

|

|

|

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

difftime64() — Compute Time Difference

Format

#include <time.h>

double difftime64(time64_t time2, time64_t time1);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The difftime64() function computes the difference in seconds between time2 and time1.

Return Value

The difftime64() function returns the elapsed time in seconds from time1 to time2 as a double precision

number. Type time64_t is defined in <time.h>.

Example that uses difftime64()

This example shows a timing application that uses difftime64(). The example calculates how long, on

average, it takes to find the prime numbers from 2 to 10 000.

84 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|
|

|

|

|

|

|

|
|

|

|
|
|

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “difftime() — Compute Time Difference” on page 82

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

#include <time.h>

#include <stdio.h>

#define RUNS 1000

#define SIZE 10000

int mark[SIZE];

int main(void)

{

 time64_t start, finish;

 int i, loop, n, num;

 time64(&start);

 /* This loop finds the prime numbers between 2 and SIZE */

 for (loop = 0; loop < RUNS; ++loop)

 {

 for (n = 0; n < SIZE; ++n)

 mark [n] = 0;

 /* This loops marks all the composite numbers with -1 */

 for (num = 0, n = 2; n < SIZE; ++n)

 if (! mark[n])

 {

 for (i = 2 * n; i < SIZE; i += n)

 mark[i] = -1;

 ++num;

 }

 }

 time64(&finish);

 printf("Program takes an average of %f seconds "

 "to find %d primes.\n",

 difftime64(finish,start)/RUNS, num);

}

/******************** Output should be similar: *****************

The program takes an average of 0.106000 seconds to find 1229 primes.

*/

Chapter 2. Library Functions 85

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

div() — Calculate Quotient and Remainder

Format

#include <stdlib.h>

div_t div(int numerator, int denominator);

Language Level: ANSI

Threadsafe: Yes. However, only the function version is threadsafe. The macro version is NOT threadsafe.

Description

The div() function calculates the quotient and remainder of the division of numerator by denominator.

Return Value

The div() function returns a structure of type div_t, containing both the quotient int quot and the

remainder int rem. If the return value cannot be represented, its value is undefined. If denominator is 0, an

exception will be raised.

Example that uses div()

This example uses div() to calculate the quotients and remainders for a set of two dividends and two

divisors.

86 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

Related Information

v “ldiv() — lldiv() — Perform Long and Long Long Division” on page 179

v “<stdlib.h>” on page 17

erf() – erfc() — Calculate Error Functions

Format

#include <math.h>

double erf(double x);

double erfc(double x);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The erf() function calculates the error function of:

 The erfc() function computes the value of 1.0 - erf(x). The erfc() function is used in place of erf() for

large values of x.

Return Value

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int num[2] = {45,-45};

 int den[2] = {7,-7};

 div_t ans; /* div_t is a struct type containing two ints:

 ’quot’ stores quotient; ’rem’ stores remainder */

 short i,j;

 printf("Results of division:\n");

 for (i = 0; i < 2; i++)

 for (j = 0; j < 2; j++)

 {

 ans = div(num[i],den[j]);

 printf("Dividend: %6d Divisor: %6d", num[i], den[j]);

 printf(" Quotient: %6d Remainder: %6d\n", ans.quot, ans.rem);

 }

}

/***************** Output should be similar to: *****************

Results of division:

Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3

Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3

Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3

Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3

**/

Chapter 2. Library Functions 87

The erf() function returns a double value that represents the error function. The erfc() function returns

a double value representing 1.0 - erf.

Example that uses erf()

This example uses erf() and erfc() to compute the error function of two numbers.

Related Information

v “Bessel Functions” on page 50

v “gamma() — Gamma Function” on page 150

v “<math.h>” on page 8

exit() — End Program

Format

#include <stdlib.h>

void exit(int status);

Language Level: ANSI

Threadsafe: Yes.

Description

The exit() function returns control to the host environment from the program. It first calls all functions

that are registered with the atexit() function, in reverse order; that is, the last one that is registered is

the first one called. It deletes all buffers and closes all open files before ending the program.

The argument status can have a value from 0 to 255 inclusive, or be one of the macros EXIT_SUCCESS or

EXIT_FAILURE. A status value of EXIT_SUCCESS or 0 indicates a normal exit; otherwise, another status

value is returned.

Note: When compiled with SYSIFCOPT(*ASYNCSIGNAL), exit() cannot be called in a signal handler.

Return Value

#include <stdio.h>

#include <math.h>

double smallx, largex, value;

int main(void)

{

 smallx = 0.1;

 largex = 10.0;

 value = erf(smallx); /* value = 0.112463 */

 printf("Error value for 0.1: %lf\n", value);

 value = erfc(largex); /* value = 2.088488e-45 */

 printf("Error value for 10.0: %le\n", value);

}

/***************** Output should be similar to: *****************

Error value for 0.1: 0.112463

Error value for 10.0: 2.088488e-45

*/

88 ILE C/C++ Runtime Library Functions V6R1

The exit() function returns both control and the value of status to the operating system.

Example that uses exit()

This example ends the program after deleting buffers and closing any open files if it cannot open the file

myfile.

Related Information

v “abort() — Stop a Program” on page 36

v “atexit() — Record Program Ending Function” on page 45

v “signal() — Handle Interrupt Signals” on page 346

v “<stdlib.h>” on page 17

exp() — Calculate Exponential Function

Format

#include <math.h>

double exp(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The exp() function calculates the exponential value of a floating-point argument x (ex , where e equals

2.17128128...).

Return Value

If an overflow occurs, the exp() function returns HUGE_VAL. If an underflow occurs, it returns 0. Both

overflow and underflow set errno to ERANGE. The value of errno can also be set to EDOM.

Example that uses exp()

This example calculates y as the exponential function of x:

#include <stdio.h>

#include <stdlib.h>

FILE *stream;

int main(void)

{

 if ((stream = fopen("mylib/myfile", "r")) == NULL)

 {

 perror("Could not open data file");

 exit(EXIT_FAILURE);

 }

}

Chapter 2. Library Functions 89

Related Information

v “log() — Calculate Natural Logarithm” on page 191

v “log10() — Calculate Base 10 Logarithm” on page 191

v “<math.h>” on page 8

fabs() — Calculate Floating-Point Absolute Value

Format

#include <math.h>

double fabs(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The fabs() function calculates the absolute value of the floating-point argument x.

Return Value

The fabs() function returns the absolute value. There is no error return value.

Example that uses fabs()

This example calculates y as the absolute value of x:

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y;

 x = 5.0;

 y = exp(x);

 printf("exp(%lf) = %lf\n", x, y);

}

/***************** Output should be similar to: *****************

exp(5.000000) = 148.413159

*/

90 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “abs() — Calculate Integer Absolute Value” on page 37

v “labs() — llabs() — Calculate Absolute Value of Long and Long Long Integer” on page 177

v “<math.h>” on page 8

fclose() — Close Stream

Format

#include <stdio.h>

int fclose(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The fclose() function closes a stream pointed to by stream. This function deletes all buffers that are

associated with the stream before closing it. When it closes the stream, the function releases any buffers

that the system reserved. When a binary stream is closed, the last record in the file is padded with null

characters (\0) to the end of the record.

Return Value

The fclose() function returns 0 if it successfully closes the stream, or EOF if any errors were detected.

The value of errno can be set to:

Value Meaning

ENOTOPEN

The file is not open.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

ESCANFAILURE

The file was marked with a scan failure.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y;

 x = -5.6798;

 y = fabs(x);

 printf("fabs(%lf) = %lf\n", x, y);

}

/******************* Output should be similar to: ***************

fabs(-5.679800) = 5.679800

*/

Chapter 2. Library Functions 91

Note: The storage pointed to by the FILE pointer is freed by the fclose() function. After the use of the

fclose() function, any attempt to use the FILE pointer is not valid.

Example that uses fclose()

This example opens a file myfile for reading as a stream; then it closes this file.

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE *stream;

 char buffer[NUM_ALPHA];

 if ((stream = fopen("mylib/myfile", "r"))!= NULL)

 {

 fread(buffer, sizeof(char), NUM_ALPHA, stream);

 printf("buffer = %s\n", buffer);

 }

 if (fclose(stream)) /* Close the stream. */

 perror("fclose error");

 else printf("File mylib/myfile closed successfully.\n");

}

Related Information

v “fflush() — Write Buffer to File” on page 96

v “fopen() — Open Files” on page 109

v “freopen() — Redirect Open Files” on page 130

v “<stdio.h>” on page 15

fdopen() — Associates Stream With File Descriptor

Format

#include <stdio.h>

FILE *fdopen(int handle, char *type);

Language Level: XPG4

Threadsafe: Yes.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Description

The fdopen() function associates an input or output stream with the file that is identified by handle. The

type variable is a character string specifying the type of access that is requested for the stream. The

variable contains one positional parameter that is followed by optional keyword parameters.

The possible values for the positional parameters are:

Mode Description

r Create a stream to read a text file. The file pointer is set to the beginning of the file.

w Create a stream to write to a text file. The file pointer is set to the beginning of the file.

92 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|
|

|

a Create a stream to write, in append mode, at the end of the text file. The file pointer is set to the

end of the file.

r+ Create a stream for reading and writing a text file. The file pointer is set to the beginning of the

file.

w+ Create a stream for reading and writing a text file. The file pointer is set to the beginning of the

file.

a+ Create a stream for reading or writing, in append mode, at the end of the text file. The file

pointer is set to the end of the file.

rb Create a stream to read a binary file. The file pointer is set to the beginning of the file.

wb Create a stream to write to a binary file. The file pointer is set to the beginning of the file.

ab Create a stream to write to a binary file in append mode. The file pointer is set to the end of the

file.

r+b or rb+

Create a stream for reading and writing a binary file. The file pointer is set to the beginning of

the file.

w+b or wb+

Create a stream for reading and writing a binary file. The file pointer is set to the beginning of

the file.

a+b or ab+

Create a stream for reading and writing to a binary file in append mode. The file pointer is set to

the end of the file.

Note: Use the w, w+, wb, wb+, and w+b modes with care; they can destroy existing files.

The specified type must be compatible with the access method you used to open the file. If the file was

opened with the O_APPEND flag, the stream mode must be a, a+, ab, a+b, or ab+. To use the fdopen()

function you need a file descriptor. To get a descriptor use the POSIX function open(). The O_APPEND

flag is a mode for open(). Modes for open() are defined in QSYSINC/H/FCNTL. For further information

see the APIs topic in the i5/OS Information Center.

The keyword parameters allowed for fdopen() are the same as those documented in “fopen() — Open

Files” on page 109 that are for the integrated file system.

If fdopen() returns NULL, use close() to close the file. If fdopen() is successful, you must use fclose()

to close the stream and file.

Return Value

The fdopen() function returns a pointer to a file structure that can be used to access the open file. A

NULL pointer return value indicates an error.

Example that uses fdopen()

This example opens the file sample.dat and associates a stream with the file using fdopen(). It then reads

from the stream into the buffer.

Chapter 2. Library Functions 93

|
|

Related Information

v “fclose() — Close Stream” on page 91

v “fopen() — Open Files” on page 109

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “rewind() — Adjust Current File Position” on page 276

v “<stdio.h>” on page 15

v open API in the APIs topic in the i5/OS Information Center.

v close API in the APIs topic in the i5/OS Information Center.

/* compile with SYSIFCOPT(*IFSIO) */

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <string.h>

int main(void)

{

 long length;

 int fh;

 char buffer[20];

 FILE *fp;

 printf("\nCreating sample.dat.\n");

 if ((fp= fopen("/sample.dat", "w")) == NULL) {

 perror(" File was not created: ");

 exit(1);

 }

 fputs("Sample Program", fp);

 fclose(fp);

 memset(buffer, ’\0’, 20); /* Initialize buffer*/

 if (-1 == (fh = open("/sample.dat", O_RDWR|O_APPEND))) {

 perror("Unable to open sample.dat");

 exit(1);

 }

 if (NULL == (fp = fdopen(fh, "r"))) {

 perror("fdopen failed");

 close(fh);

 exit(1);

 }

 if (14 != fread(buffer, 1, 14, fp)) {

 perror("fread failed");

 fclose(fp);

 exit(1);

 }

 printf("Successfully read from the stream the following:\n%s.\n", buffer);

 fclose(fp);

 return 1;

 /**

 * The output should be:

 *

 * Creating sample.dat.

 * Successfully read from the stream the following:

 * Sample Program.

 */

}

94 ILE C/C++ Runtime Library Functions V6R1

feof() — Test End-of-File Indicator

Format

#include <stdio.h>

int feof(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The feof() function indicates whether the end-of-file flag is set for the given stream. The end-of-file flag

is set by several functions to indicate the end of the file. The end-of-file flag is cleared by calling the

rewind(), fsetpos(), fseek(), or clearerr() functions for this stream.

Return Value

The feof() function returns a nonzero value if and only if the EOF flag is set; otherwise, it returns 0.

Example that uses feof()

This example scans the input stream until it reads an end-of-file character.

Related Information

v “clearerr() — Reset Error Indicators” on page 62

v “ferror() — Test for Read/Write Errors”

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “perror() — Print Error Message” on page 227

v “rewind() — Adjust Current File Position” on page 276

v “<stdio.h>” on page 15

ferror() — Test for Read/Write Errors

Format

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char string[100];

 FILE *stream;

 memset(string, 0, sizeof(string));

 stream = fopen("qcpple/qacsrc(feof)", "r");

 fscanf(stream, "%s", string);

 while (!feof(stream))

 {

 printf("%s\n", string);

 memset(string, 0, sizeof(string));

 fscanf(stream, "%s", string);

 }

}

Chapter 2. Library Functions 95

#include <stdio.h>

int ferror(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The ferror() function tests for an error in reading from or writing to the given stream. If an error occurs,

the error indicator for the stream remains set until you close stream, call the rewind() function, or call the

clearerr() function.

Return Value

The ferror() function returns a nonzero value to indicate an error on the given stream. A return value of

0 means that no error has occurred.

Example that uses ferror()

This example puts data out to a stream, and then checks that a write error has not occurred.

Related Information

v “clearerr() — Reset Error Indicators” on page 62

v “feof() — Test End-of-File Indicator” on page 95

v “fopen() — Open Files” on page 109

v “perror() — Print Error Message” on page 227

v “strerror() — Set Pointer to Runtime Error Message” on page 367

v “<stdio.h>” on page 15

fflush() — Write Buffer to File

Format

#include <stdio.h>

int fflush(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

int main(void)

{

 FILE *stream;

 char *string = "Important information";

 stream = fopen("mylib/myfile","w");

 fprintf(stream, "%s\n", string);

 if (ferror(stream))

 {

 printf("write error\n");

 clearerr(stream);

 }

 if (fclose(stream))

 perror("fclose error");

}

96 ILE C/C++ Runtime Library Functions V6R1

Description

The fflush() function causes the system to empty the buffer that is associated with the specified output

stream, if possible. If the stream is open for input, the fflush() function undoes the effect of any ungetc()

function. The stream remains open after the call.

If stream is NULL, the system flushes all open streams.

Note: The system automatically deletes buffers when you close the stream, or when a program ends

normally without closing the stream.

Return Value

The fflush() function returns the value 0 if it successfully deletes the buffer. It returns EOF if an error

occurs.

The value of errno can be set to:

Value Meaning

ENOTOPEN

The file is not open.

ERECIO

The file is opened for record I/O.

ESTDIN

stdin cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The fflush() function is not supported for files that are opened with type=record.

Example that uses fflush()

This example deletes a stream buffer.

#include <stdio.h>

int main(void)

{

 FILE *stream;

 int ch;

 unsigned int result = 0;

 stream = fopen("mylib/myfile", "r");

 while ((ch = getc(stream)) != EOF && isdigit(ch))

 result = result * 10 + ch - ’0’;

 if (ch != EOF)

 ungetc(ch,stream);

 fflush(stream); /* fflush undoes the effect of ungetc function

*/

 printf("The result is: %d\n", result);

 if ((ch = getc(stream)) != EOF)

 printf("The character is: %c\n", ch);

}

Chapter 2. Library Functions 97

Related Information

v “fclose() — Close Stream” on page 91

v “fopen() — Open Files” on page 109

v “setbuf() — Control Buffering” on page 336

v “ungetc() — Push Character onto Input Stream” on page 420

v “<stdio.h>” on page 15

fgetc() — Read a Character

Format

#include <stdio.h>

int fgetc(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The fgetc() function reads a single unsigned character from the input stream at the current position and

increases the associated file pointer, if any, so that it points to the next character.

Note: The fgetc()function is identical to getc(), but it is always defined as a function call; it is never

replaced by a macro.

Return Value

The fgetc() function returns the character that is read as an integer. An EOF return value indicates an

error or an end-of-file condition. Use the feof() or the ferror() function to determine whether the EOF

value indicates an error or the end of the file.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

ECONVERT

A conversion error occurred.

ENOTREAD

The file is not open for read operations.

EGETANDPUT

An read operation that was not allowed occurred after a write operation.

ERECIO

The file is open for record I/O.

ESTDIN

stdin cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

98 ILE C/C++ Runtime Library Functions V6R1

The fgetc() function is not supported for files that are opened with type=record.

Example that uses fgetc()

This example gathers a line of input from a stream.

Related Information

v “feof() — Test End-of-File Indicator” on page 95

v “ferror() — Test for Read/Write Errors” on page 95

v “fgetwc() — Read Wide Character from Stream” on page 102

v “fputc() — Write Character” on page 118

v “getc() – getchar() — Read a Character” on page 152

v “getwc() — Read Wide Character from Stream” on page 157

v “getwchar() — Get Wide Character from stdin” on page 159

v “<stdio.h>” on page 15

fgetpos() — Get File Position

Format

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

Language Level: ANSI

Threadsafe: YES

Description

#include <stdio.h>

#define MAX_LEN 80

int main(void)

{

 FILE *stream;

 char buffer[MAX_LEN + 1];

 int i, ch;

 stream = fopen("mylib/myfile","r");

 for (i = 0; (i < (sizeof(buffer)-1) &&

 ((ch = fgetc(stream)) != EOF) && (ch != ’\n’)); i++)

 buffer[i] = ch;

 buffer[i] = ’\0’;

 if (fclose(stream))

 perror("fclose error");

 printf("line: %s\n", buffer);

}

 /***

 If FILENAME contains: one two three

 The output should be:

 line: one two three

 **/

Chapter 2. Library Functions 99

The fgetpos() function stores the current position of the file pointer that is associated with stream into

the object pointed to by pos. The value pointed to by pos can be used later in a call to fsetpos() to

reposition the stream.

Return Value

The fgetpos() function returns 0 if successful; on error, it returns nonzero and sets errno to a nonzero

value.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

EBADSEEK

Bad offset for a seek operation.

ENODEV

Operation was attempted on a wrong device.

ENOTOPEN

The file is not open.

ERECIO

The file is open for record I/O.

ESTDERR

stderr cannot be opened.

ESTDIN

stdin cannot be opened.

ESTDOUT

stdout cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The fgetpos() function is not supported for files that are opened with type=record.

Example that uses fgetpos()

This example opens the file myfile for reading and stores the current file pointer position into the

variable pos.

100 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “ftell() — ftello() — Get Current Position” on page 138

v “<stdio.h>” on page 15

fgets() — Read a String

Format

#include <stdio.h>

char *fgets (char *string, int n, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The fgets() function reads characters from the current stream position up to and including the first

new-line character (\n), up to the end of the stream, or until the number of characters read is equal to

n-1, whichever comes first. The fgets() function stores the result in string and adds a null character (\0)

to the end of the string. The string includes the new-line character, if read. If n is equal to 1, the string is

empty.

Return Value

The fgets() function returns a pointer to the string buffer if successful. A NULL return value indicates an

error or an end-of-file condition. Use the feof() or ferror() functions to determine whether the NULL

value indicates an error or the end of the file. In either case, the value of the string is unchanged.

The fgets() function is not supported for files that are opened with type=record.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

#include <stdio.h>

FILE *stream;

int main(void)

{

 int retcode;

 fpos_t pos;

 stream = fopen("mylib/myfile", "rb");

 /* The value returned by fgetpos can be used by fsetpos */

 /* to set the file pointer if ’retcode’ is 0 */

 if ((retcode = fgetpos(stream, Point-of-Sale)) == 0)

 printf("Current position of file pointer found\n");

 fclose(stream);

}

Chapter 2. Library Functions 101

ECONVERT

A conversion error occurred.

ENOTREAD

The file is not open for read operations.

EGETANDPUT

An read operation that was not allowed occurred after a write operation.

ERECIO

The file is open for record I/O.

ESTDIN

stdin cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses fgets()

This example gets a line of input from a data stream. The example reads no more than MAX_LEN - 1

characters, or up to a new-line character from the stream.

Related Information

v “feof() — Test End-of-File Indicator” on page 95

v “ferror() — Test for Read/Write Errors” on page 95

v “fgetws() — Read Wide-Character String from Stream” on page 104

v “fputs() — Write String” on page 121

v “gets() — Read a Line” on page 156

v “puts() — Write a String” on page 241

v “<stdio.h>” on page 15

fgetwc() — Read Wide Character from Stream

Format

#include <wchar.h>

#include <stdio.h>

wint_t fgetwc(FILE *stream);

#include <stdio.h>

#define MAX_LEN 100

int main(void)

{

 FILE *stream;

 char line[MAX_LEN], *result;

 stream = fopen("mylib/myfile","rb");

 if ((result = fgets(line,MAX_LEN,stream)) != NULL)

 printf("The string is %s\n", result);

 if (fclose(stream))

 perror("fclose error");

}

102 ILE C/C++ Runtime Library Functions V6R1

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The fgetwc() reads the next multibyte character from the input stream pointed to by stream, converts it to

a wide character, and advances the associated file position indicator for the stream (if defined).

Using non-wide-character functions with fgetwc() on the same stream results in undefined behavior.

After calling fgetwc(), flush the buffer or reposition the stream pointer before calling a write function for

the stream, unless EOF has been reached. After a write operation on the stream, flush the buffer or

reposition the stream pointer before calling fgetwc().

Note: If the current locale is changed between subsequent read operations on the same stream, undefined

results can occur.

Return Value

The fgetwc() function returns the next wide character that corresponds to the multibyte character from

the input stream pointed to by stream. If the stream is at EOF, the EOF indicator for the stream is set, and

fgetwc() returns WEOF.

If a read error occurs, the error indicator for the stream is set, and the fgetwc() function returns WEOF. If

an encoding error occurs (an error converting the multibyte character into a wide character), the fgetwc()

function sets errno to EILSEQ and returns WEOF.

Use the ferror() and feof() functions to distinguish between a read error and an EOF. EOF is only

reached when an attempt is made to read past the last byte of data. Reading up to and including the last

byte of data does not turn on the EOF indicator.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

ENOTREAD

The file is not open for read operations.

EGETANDPUT

An read operation that was not allowed occurred after a write operation.

ERECIO

The file is open for record I/O.

Chapter 2. Library Functions 103

|
|
|
|
|

|
|

|

|
|

ESTDIN

stdin cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

EILSEQ

An invalid multibyte character sequence was encountered.

ECONVERT

A conversion error occurred.

Example that uses fgetwc()

This example opens a file, reads in each wide character, and prints out the characters.

Related Information

v “fgetc() — Read a Character” on page 98

v “fputwc() — Write Wide Character” on page 122

v “fgetws() — Read Wide-Character String from Stream”

v “getc() – getchar() — Read a Character” on page 152

v “getwc() — Read Wide Character from Stream” on page 157

v “getwchar() — Get Wide Character from stdin” on page 159

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

fgetws() — Read Wide-Character String from Stream

Format

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wint_t wc;

 if (NULL == (stream = fopen("fgetwc.dat", "r"))) {

 printf("Unable to open: \"fgetwc.dat\"\n");

 exit(1);

 }

 errno = 0;

 while (WEOF != (wc = fgetwc(stream)))

 printf("wc = %lc\n", wc);

 if (EILSEQ == errno) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 fclose(stream);

 return 0;

}

* * * End of File * * *

104 ILE C/C++ Runtime Library Functions V6R1

#include <wchar.h>

#include <stdio.h>

wchar_t *fgetws(wchar_t *wcs, int n, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The fgetws() function reads at most one less than the number of wide characters specified by n from the

stream pointed to by stream. The fgetws() function stops reading characters after WEOF, or after it reads

a new-line wide character (which is retained). It adds a null wide character immediately after the last

wide character read into the array. The fgetws() function advances the file position unless there is an

error. If an error occurs, the file position is undefined.

Using non-wide-character functions with the fgetws() function on the same stream results in undefined

behavior. After calling the fgetws() function, flush the buffer or reposition the stream pointer before

calling a write function for the stream, unless WEOF has been reached. After a write operation on the

stream, flush the buffer or reposition the stream pointer before calling the fgetws() function.

Note: If the current locale is changed between subsequent read operations on the same stream, undefined

results can occur.

Return Value

If successful, the fgetws() function returns a pointer to the wide-character string wcs. If WEOF is

encountered before any wide characters have been read into wcs, the contents of wcs remain unchanged

and the fgetws() function returns a null pointer. If WEOF is reached after data has already been read

into the string buffer, the fgetws() function returns a pointer to the string buffer to indicate success. A

subsequent call would return NULL because WEOF would be reached without any data being read.

If a read error occurs, the contents of wcs are indeterminate, and the fgetws() function returns NULL. If

an encoding error occurs (in converting a wide character to a multibyte character), the fgetws() function

sets errno to EILSEQ and returns NULL.

If n equals 1, the wcs buffer has only room for the ending null character, and nothing is read from the

stream. (Such an operation is still considered a read operation, so it cannot immediately follow a write

operation unless the buffer is flushed or the stream pointer repositioned first.) If n is greater than 1, the

fgetws() function fails only if an I/O error occurs, or if WEOF is reached before data is read from the

stream.

Use the ferror() and feof() functions to distinguish between a read error and a WEOF. A WEOF error is

only reached when an attempt is made to read past the last byte of data. Reading up to and including the

last byte of data does not turn on the WEOF indicator.

Chapter 2. Library Functions 105

|
|
|
|
|

|
|

|

|
|

For information about errno values for fgetws(), see “fgetwc() — Read Wide Character from Stream” on

page 102.

Example that uses fgetws()

This example opens a file, reads in the file contents, then prints the file contents.

Related Information

v “fgetc() — Read a Character” on page 98

v “fgets() — Read a String” on page 101

v “fgetwc() — Read Wide Character from Stream” on page 102

v “fputws() — Write Wide-Character String” on page 124

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

fileno() — Determine File Handle

Format

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 FILE *stream;

 wchar_t wcs[100];

 if (NULL == (stream = fopen("fgetws.dat", "r"))) {

 printf("Unable to open: \"fgetws.dat\"\n");

 exit(1);

 }

 errno = 0;

 if (NULL == fgetws(wcs, 100, stream)) {

 if (EILSEQ == errno) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 else if (feof(stream))

 printf("End of file reached.\n");

 else

 perror("Read error.\n");

 }

 printf("wcs = \"%ls\"\n", wcs);

 fclose(stream);

 return 0;

 /**

 Assuming the file fgetws.dat contains:

 This test string should not return -1

 The output should be similar to:

 wcs = "This test string should not return -1"

 **/

}

106 ILE C/C++ Runtime Library Functions V6R1

#include <stdio.h>

int fileno(FILE *stream);

Language Level: XPG4

Threadsafe: Yes.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Description

The fileno() function determines the file handle that is currently associated with stream.

Return Value

If the environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Yes, the fileno()function returns

0 for stdin, 1 for stdout, and 2 for stderr.

With QIBM_USE_DESCRIPTOR_STDIO set to No, the ILE C session files stdin, stdout, and stderr do

not have a file descriptor associated with them. The fileno() function will return a value of -1 in this

case.

The value of errno can be set to EBADF.

Example that uses fileno()

This example determines the file handle of the stderr data stream.

Related Information

v “fopen() — Open Files” on page 109

v “freopen() — Redirect Open Files” on page 130

v “<stdio.h>” on page 15

floor() —Find Integer <=Argument

Format

/* Compile with SYSIFCOPT(*IFSIO) */

 #include <stdio.h>

 int main (void)

 {

 FILE *fp;

 int result;

 fp = fopen ("stderr","w");

 result = fileno(fp);

 printf("The file handle associated with stderr is %d.\n", result);

 return 0;

 /***

 * The output should be:

 *

 * The file handle associated with stderr is -1.

 **/

 }

Chapter 2. Library Functions 107

|
|

#include <math.h>

double floor(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The floor() function calculates the largest integer that is less than or equal to x.

Return Value

The floor() function returns the floating-point result as a double value.

The result of floor() cannot have a range error.

Example that uses floor()

This example assigns y value of the largest integer less than or equal to 2.8 and z the value of the largest

integer less than or equal to -2.8.

Related Information

v “ceil() — Find Integer >=Argument” on page 61

v “fmod() — Calculate Floating-Point Remainder”

v “<math.h>” on page 8

fmod() — Calculate Floating-Point Remainder

Format

#include <math.h>

double fmod(double x, double y);

Language Level: ANSI

Threadsafe: Yes.

Description

#include <math.h>

#include <stdio.h>

int main(void)

{

 double y, z;

 y = floor(2.8);

 z = floor(-2.8);

 printf("floor(2.8) = %lf\n", y);

 printf("floor(-2.8) = %lf\n", z);

}

/******************* Output should be similar to: ***************

floor(2.8) = 2.000000

floor(-2.8) = -3.000000

*/

108 ILE C/C++ Runtime Library Functions V6R1

The fmod() function calculates the floating-point remainder of x/y. The absolute value of the result is

always less than the absolute value of y. The result will have the same sign as x.

Return Value

The fmod() function returns the floating-point remainder of x/y. If y is zero or if x/y causes an overflow,

fmod() returns 0. The value of errno can be set to EDOM.

Example that uses fmod()

This example computes z as the remainder of x/y; here, x/y is -3 with a remainder of -1.

Related Information

v “ceil() — Find Integer >=Argument” on page 61

v “fabs() — Calculate Floating-Point Absolute Value” on page 90

v “floor() —Find Integer <=Argument” on page 107

v “<math.h>” on page 8

fopen() — Open Files

Format

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Language Level: ANSI

Threadsafe: Yes.

Description

The fopen() function opens the file that is specified by filename. The mode parameter is a character string

specifying the type of access that is requested for the file. The mode variable contains one positional

parameter followed by optional keyword parameters.

Note: When the program is compiled with SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS64IO), and fopen()

creates a file in the integrated file system, the owner of the file, the owner’s group, and public is

given read, write, and execute authority to the file.

The possible values for the positional parameters are:

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = -10.0;

 y = 3.0;

 z = fmod(x,y); /* z = -1.0 */

 printf("fmod(%lf, %lf) = %lf\n", x, y, z);

}

/******************* Output should be similar to: ***************

fmod(-10.000000, 3.000000) = -1.000000

*/

Chapter 2. Library Functions 109

|
|
|

Mode Description

r Open a text file for reading. The file must exist.

w Create a text file for writing. If the given file exists, its contents are destroyed unless it is a logical

file.

a Open a text file in append mode for writing at the end of the file. The fopen() function creates

the file if it does not exist and is not a logical file.

r+ Open a text file for both reading and writing. The file must exist.

w+ Create a text file for both reading and writing. If the given file exists, its contents are cleared

unless it is a logical file.

a+ Open a text file in append mode for reading or updating at the end of the file. The fopen()

function creates the file if it does not exist.

rb Open a binary file for reading. The file must exist.

wb Create an empty binary file for writing. If the file exists, its contents are cleared unless it is a

logical file.

ab Open a binary file in append mode for writing at the end of the file. The fopen function creates

the file if it does not exist.

r+b or rb+

Open a binary file for both reading and writing. The file must exist.

w+b or wb+

Create an empty binary file for both reading and writing. If the file exists, its contents will be

cleared unless it is a logical file.

a+b or ab+

Open a binary file in append mode for writing at the end of the file. The fopen() function creates

the file if it does not exist.

Notes:

1. The fopen() function is not supported for files that are opened with the attributes type=record and

ab+, rb+, or wb+

2. Use the w, w+, wb, w+b, and wb+ parameters with care; data in existing files of the same name will

be lost.

Text files contain printable characters and control characters that are organized into lines. Each line ends

with a new-line character, except possibly the last line, depending on the compiler. The system can insert

or convert control characters in an output text stream. The fopen() function mode ″a″ and ″a+″ can not

be used for the QSYS.LIB file system. There are implementation restrictions when using the QSYS.LIB file

system for text files in all modes. Seeking beyond the start of files cannot be relied on to work with

streams opened in text mode.

Note: When you use fopen() to create a file in the QSYS.LIB file system, specifying a library name of

*LIBL or blank causes the file to be created in QTEMP library.

If a text file does not exist, you can create one using the following command:

CRTSRCPF FILE(MYLIB/MYFILE) RCDLEN(LRECL) MBR(MYMBR) SYSTEM(*FILETYPE)

Note: Data output to a text stream might not compare as equal to the same data on input. The QSYS.LIB

file system treats database files as a directory of members. The database file must exist before a

member can be dynamically created when using the fopen() function.

110 ILE C/C++ Runtime Library Functions V6R1

See Large file support in the Integrated file system topic in the i5/OS Information Center for the current

file system limit of the integrated file system. For files in the integrated file system that are larger than 2

GB, you need to allow your application programs access to 64-bit C runtime functions. You can use the

following methods to allow your program access:

v Specify SYSIFCOPT(*IFS64IO) on a compilation command, which causes the native C compiler to

define _IFS64_IO_. This causes the macros _LARGE_FILES and _LARGE_FILE_API to be defined.

v Define the macro _LARGE_FILES, either in the program source or by specifying

DEFINE(’_LARGE_FILES’) on a compilation command. The existing C runtime functions and the

relevant data types in the code will all be automatically mapped or redefined to their 64-bit versions.

v Define the macro _LARGE_FILE_API, either in the program source or by specifying

DEFINE(’_LARGE_FILE_API’) on a compilation command. This makes visible the set of of new 64-bit

C runtime functions and data types. The application must explicitly specify the name of the C runtime

functions, both existing version and 64-bit version, to use.

The 64-bit C runtime functions include the following: int fgetpos64(), FILE *fopen64(), FILE

*freopen64(), FILE *wfopen64(), int fsetpos64(FILE *, const fpost64_t *), FILE *tmpfile64(), int

fseeko(FILE *, off_t, int), int fseeko64(FILE *, off64_t, int), off_t ftello(FILE *), and off64_t

ftello64().

Binary files contain a series of characters. For binary files, the system does not translate control characters

on input or output.

If a binary file does not exist, you can create one using the following command:

CRTPF FILE(MYLIB/MYFILE) RCDLEN(LRECL) MBR(MYMBR) MAXMBRS(*NOMAX)

SYSTEM(*FILETYPE)

When you open a file with a, a+, ab, a+b or ab+ mode, all write operations take place at the end of the

file. Although you can reposition the file pointer using the fseek() function or the rewind() function, the

write functions move the file pointer back to the end of the file before they carry out any operation. This

action prevents you from overwriting existing data.

When you specify the update mode (using + in the second or third position), you can both read from and

write to the file. However, when switching between reading and writing, you must include an

intervening positioning function such as the fseek(), fsetpos(), rewind(), or fflush(). Output can

immediately follow input if the end-of-file was detected.

Keyword parameters for non-Integrated File System

blksize=value

Specifies the maximum length, in bytes, of a physical block of records.

lrecl=value

Specifies the length, in bytes, for fixed-length records and the maximum length for

variable-length records.

recfm=value

value can be:

F fixed-length, deblocked records

FB fixed-length, blocked records

V variable-length, deblocked records

VB variable-length, blocked records

VBS variable-length, blocked, spanned records for tape files

VS variable-length, deblocked, spanned records for tape files

Chapter 2. Library Functions 111

|
|
|
|

D variable-length, deblocked, unspanned records for ASCII D format for tape files

DB variable-length, blocked, unspanned records for ASCII D format for tape files

U undefined format for tape files

FA fixed-length that uses first character forms control data for printer files

Note: If the file is created using CTLCHAR(*FCFC), the first character form control will be used.

If it is created using CTLCHAR(*NONE), the first character form control will not be used.

commit=value

value can be:

 N This parameter identifies that this file is not opened under commitment control. This is the

default.

 Y This parameter identifies that this file is opened under commitment control.

ccsid=value

If a CCSID that is not supported by the i5/OS operating system is specified, it is ignored by data

management.

 When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the default value

is the LC_CTYPE CCSID value, which is determined by your current locale setting. See

“setlocale() — Set Locale” on page 339 for further information about locale settings. When

LOCALETYPE(*LOCALEUTF) is not specified on the compilation command, the default value is

the job CCSID value. See “File CCSID” on page 525 for further information about file CCSID

values.

arrseq=value

value can be:

 N This parameter identifies that this file is processed in the way it was created. This is the

default.

 Y This parameter identifies that this file is processed in arrival sequence.

indicators=value

value can be:

 N This parameter identifies that indicators in display, ICF, or printer files are stored in the file

buffer. This is the default.

 Y This parameter identifies that indicators in display, ICF, or printer files are stored in a separate

indicator area, not in the file buffer. A file buffer is the area the system uses to transfer data to

and from the user program and the operating system when writing and reading. You must store

indicators in a separate indicator area when processing ICF files.

type=value

value can be:

 memory This parameter identifies this file as a memory file that is available only from C

programs. This is the default.

 record This parameter specifies that the file is to be opened for sequential record I/O. The file

must be opened as a binary file; otherwise, the fopen() function fails. Read and write operations

are done with the fread() function and the fwrite() functions.

Keyword parameters for Integrated File System only

type=value

value can be:

 record The file is opened for sequential record I/O. (File has to be opened as binary stream.)

112 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

ccsid=value

 ccsid is converted to a code page value. The default is to use the job CCSID value as the code

page. The CCSID and codepage option cannot both be specified. The CCSID option provides

compatibility with i5/OS and Data management based stream I/O.

Note: Mixed data (the data contains both single and double-byte characters) is not supported for

a file data processing mode of text. Mixed data is supported for a file processing mode of

binary.

 If you specify the ccsid keyword, you cannot specify the o_ccsid keyword or the codepage

keyword.

 Because of the possible expansion or contraction of converted data, making assumptions about

data size and the current file offset is dangerous. For example, a file might have a physical size of

100 bytes, but after an application has read 100 bytes from the file, the current file offset might be

only 50. In order to read the whole file, the application might have to read 200 bytes or more,

depending on the CCSIDs involved. Therefore, file positioning functions, such as ftell(),

fseek(), fgetpos(), and fsetpos(), might not work. These functions might fail with error

ENOTSUP. Read functions also will not work if buffering is on, as it is by default. To turn

buffering off, use the setvbuf function with the _IONBF keyword.

 The fopen() function might fail with the ECONVERT error when all of the following three

conditions occur:

v The file data processing mode is text.

v The code page is not specified.

v The CCSID of the job is ’mixed-data’ (the data contains both single-byte and double-byte

characters).

o_ccsid=value

 When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the default value

is the LC_CTYPE CCSID value, which is determined by your current locale setting. See

“setlocale() — Set Locale” on page 339 for further information about locale settings. When

LOCALETYPE(*LOCALEUTF) is not specified on the compilation command, the default value is

the job CCSID value. See “File CCSID” on page 525 for further information about file CCSID

values.

 This parameter is similar to the ccsid parameter, except that the value specified is not converted to

a code page. Also, mixed data is supported. If the file is created, it is tagged with the specified

CCSID. If the file already exists, data will be converted from the CCSID of the file to the specified

CCSID on read operations. On write operations, the data is assumed to be in the specified

CCSID, and is converted to the CCSID of the file.

 Because of the possible expansion or contraction of converted data, making assumptions about

data size and the current file offset is dangerous. For example, a file might have a physical size of

100 bytes, but after an application has read 100 bytes from the file, the current file offset might be

only 50. In order to read the whole file, the application might have to read 200 bytes or more,

depending on the CCSIDs involved. Therefore, file positioning functions such as ftell(),

fseek(), fgetpos(), and fsetpos() will not work. These functions will fail with ENOTSUP. Read

functions also will not work if buffering is on, as it is by default. To turn buffering off, use the

setvbuf function with the _IONBF keyword.

 Example that uses o_ccsid

 /* Create a file that is tagged with CCSID 37 */

if ((fp = fopen("/MYFILE" , "w, o_ccsid=37")) == NULL) {

 printf("Failed to open file with o_ccsid=37\n");

}

Chapter 2. Library Functions 113

|
|

|

|

|
|

|
|
|
|
|
|

fclose(fp);

/* Now reopen the file with CCSID 13488, because your application

 wants to deal with the data in UNICODE */

if ((fp = fopen("/MYFILE" , "r+, o_ccsid=13488")) == NULL) {

 printf("Failed to open file with o_ccsid=13488\n");

}

/* Turn buffering off because read functions do not work when

buffering is on */

if (setbuf(fp, NULL, _IONBF, 0) != 0){

 printf("Unable to turn buffering off\n");

}

/* Because you opened with o_ccsid = 13488, you must provide

all input data as unicode.

If this program is compiled with LOCALETYPE(*LOCALEUCS2),

L constrants will be unicode. */

funcreturn = fputws(L"ABC", fp); /* Write a unicode ABC to the file. */

if (funcreturn < 0) {

 printf("Error with ’fputws’ on line %d\n", __LINE__);

}

/* Because the file was tagged with CCSID 37, the unicode ABC was

converted to EBCDIC ABC when it was written to the file. */

codepage=value

The code page that is specified by value is used.

 If you specify the codepage keyword, you cannot specify the ccsid keyword or the o_ccsid

keyword.

 If the file to be opened does not exist, and the open mode specifies that the file should be

created, the file is created and tagged with the calculated code page. If the file already exists, the

data read from the file is converted from the files code page to the calculated code page during

the read operation. Data written to the file is assumed to be in the calculated code page and is

converted to the code page of the file during the write operation.

crln=value

value can be:

 Y The line terminator to be used is carriage return [CR], new line [NL] combination. When data

is read, all carriage returns [CR] are stripped for string functions. When data is written to a file,

carriage returns [CR] are added before each new line [NL] character. Line terminator processing

only occurs when a file is open with text mode. This is the default.

 N The line terminator to be used is new line [NL] only.

The keyword parameters are not case sensitive and should be separated by a comma.

The fopen() function generally fails if parameters are mismatched.

Return Value

The fopen() function returns a pointer to a FILE structure type that can be used to access the open file.

Note: To use stream files (type = record) with record I/O functions, you must cast the FILE pointer to an

RFILE pointer.

A NULL pointer return value indicates an error.

The value of errno can be set to:

114 ILE C/C++ Runtime Library Functions V6R1

Value Meaning

EBADMODE

The file mode that is specified is not valid.

EBADNAME

The file name that is specified is not valid.

ECONEVRT

Conversion error.

ENOENT

No file or library.

ENOMEM

Storage allocation request failed.

ENOTOPEN

The file is not open.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

ESCANFAILURE

The file was marked with a scan failure.

If the mode string passed to fopen() is correct, fopen() will not set errno to EBADMODE, regardless of

the file type.

If the mode string that is passed to fopen() is not valid, fopen() will set errno to EBADMODE,

regardless of the file type.

If the mode string passed to fopen() is correct, but is invalid to that specific type of file, fopen() will set

errno to ENOTOPEN, EIOERROR, or EIORECERR, regardless of the file type.

Example that uses fopen()

This example attempts to open a file for reading.

Chapter 2. Library Functions 115

Related Information

v “fclose() — Close Stream” on page 91

v “fflush() — Write Buffer to File” on page 96

v “fread() — Read Items” on page 126

v “freopen() — Redirect Open Files” on page 130

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “fwrite() — Write Items” on page 146

v “rewind() — Adjust Current File Position” on page 276

v “wfopen() —Open Files” on page 498

v “<stdio.h>” on page 15

v open() API in the APIs in the i5/OS Information Center.

fprintf() — Write Formatted Data to a Stream

Format

#include <stdio.h>

int fprintf(FILE *stream, const char *format-string, argument-list);

Language Level: ANSI

#include <stdio.h>

#define MAX_LEN 60

int main(void)

{

 FILE *stream;

 fpos_t pos;

 char line1[MAX_LEN];

 char line2[MAX_LEN];

 char *result;

 char ch;

 int num;

 /* The following call opens a text file for reading. */

 if ((stream = fopen("mylib/myfile", "r")) == NULL)

 printf("Could not open data file\n");

 else if ((result = fgets(line1,MAX_LEN,stream)) != NULL)

 {

 printf("The string read from myfile: %s\n", result);

 fclose(stream);

 }

 /* The following call opens a fixed record length file */

 /* for reading and writing. */

 if ((stream = fopen("mylib/myfile2", "rb+, lrecl=80, \

 blksize=240, recfm=f")) == NULL)

 printf("Could not open data file\n");

 else {

 fgetpos(stream, Point-of-Sale);

 if (!fread(line2,sizeof(line2),1,stream))

 perror("fread error");

 else printf("1st record read from myfile2: %s\n", line2);

 fsetpos(stream, Point-of-Sale); /* Reset pointer to start of file */

 fputs(result, stream); /* The line read from myfile is */

 /* written to myfile2. */

 fclose(stream);

 }

}

116 ILE C/C++ Runtime Library Functions V6R1

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The fprintf() function formats and writes a series of characters and values to the output stream. The

fprintf() function converts each entry in argument-list, if any, and writes to the stream according to the

corresponding format specification in the format-string.

The format-string has the same form and function as the format-string argument for the printf() function.

Return Value

The fprintf() function returns the number of bytes that are printed or a negative value if an output

error occurs.

For information about errno values for fprintf(), see “printf() — Print Formatted Characters” on page

229.

Example that uses fprintf()

This example sends a line of asterisks for each integer in the array count to the file myfile. The number of

asterisks that are printed on each line corresponds to an integer in the array.

Chapter 2. Library Functions 117

|
|
|
|

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “printf() — Print Formatted Characters” on page 229

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “vsprintf() — Print Argument Data to Buffer” on page 436

v “<stdio.h>” on page 15

fputc() — Write Character

Format

#include <stdio.h>

int fputc(int c, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

#include <stdio.h>

int count [10] = {1, 5, 8, 3, 0, 3, 5, 6, 8, 10};

int main(void)

{

 int i,j;

 FILE *stream;

 stream = fopen("mylib/myfile", "w");

 /* Open the stream for writing */

 for (i=0; i < sizeof(count) / sizeof(count[0]); i++)

 {

 for (j = 0; j < count[i]; j++)

 fprintf(stream,"*");

 /* Print asterisk */

 fprintf(stream,"\n");

 /* Move to the next line */

 }

 fclose (stream);

}

/******************* Output should be similar to: ***************

*

*/

118 ILE C/C++ Runtime Library Functions V6R1

The fputc() function converts c to an unsigned char and then writes c to the output stream at the current

position and advances the file position appropriately. If the stream is opened with one of the append

modes, the character is appended to the end of the stream.

The fputc() function is identical to putc(); it always is defined as a function call; it is never replaced by

a macro.

Return Value

The fputc() function returns the character that is written. A return value of EOF indicates an error.

The value of errno can be set to:

Value Meaning

ECONVERT

A conversion error occurred.

ENOTWRITE

The file is not open for write operations.

EPUTANDGET

A write operation that was not permitted occurred after a read operation.

ERECIO

The file is open for record I/O.

ESTDERR

stderr cannot be opened.

ESTDOUT

stdout cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The fputc() function is not supported for files that are opened with type=record.

Example that uses fputc()

This example writes the contents of buffer to a file that is called myfile.

Note: Because the output occurs as a side effect within the second expression of the for statement, the

statement body is null.

Chapter 2. Library Functions 119

Related Information

v “fgetc() — Read a Character” on page 98

v “putc() – putchar() — Write a Character” on page 239

v “<stdio.h>” on page 15

_fputchar - Write Character

Format

#include <stdio.h>

int _fputchar(int c);

Language Level: Extension

Threadsafe: Yes.

Description

_fputchar writes the single character c to the stdout stream at the current position. It is equivalent to the

following fputc call:

fputc(c, stdout);

For portability, use the ANSI/ISO fputc function instead of _fputchar.

Return Value

_fputchar returns the character written. A return value of EOF indicates that a write error has occurred.

Use ferror and feof to tell whether this is an error condition or the end of the file.

For information about errno values for _fputchar, see “fputc() — Write Character” on page 118.

Example that uses _fputchar()

This example writes the contents of buffer to stdout:

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE * stream;

 int i;

 int ch;

 char buffer[NUM_ALPHA + 1] = "abcdefghijklmnopqrstuvwxyz";

 if ((stream = fopen("mylib/myfile", "w"))!= NULL)

 {

 /* Put buffer into file */

 for (i = 0; (i < sizeof(buffer)) &&

 ((ch = fputc(buffer[i], stream)) != EOF); ++i);

 fclose(stream);

 }

 else

 perror("Error opening myfile");

}

120 ILE C/C++ Runtime Library Functions V6R1

#include <stdio.h>

int main(void)

{

 char buffer[80];

 int i,ch = 1;

 for (i = 0; i < 80; i++)

 buffer[i] = ’c’;

 for (i = 0; (i < 80) && (ch != EOF); i++)

 ch = _fputchar(buffer[i]);

 printf("\n");

 return 0;

}

The output should be similar to:

ccc

Related Information:

v “getc() – getchar() — Read a Character” on page 152

v “fputc() — Write Character” on page 118

v “putc() – putchar() — Write a Character” on page 239

v “<stdio.h>” on page 15

fputs() — Write String

Format

#include <stdio.h>

int fputs(const char *string, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The fputs() function copies string to the output stream at the current position. It does not copy the null

character (\0) at the end of the string.

Return Value

The fputs() function returns EOF if an error occurs; otherwise, it returns a non-negative value.

The fputs() function is not supported for files that are opened with type=record.

For information about errno values for fputs(), see “fputc() — Write Character” on page 118.

Example that uses fputs()

This example writes a string to a stream.

Chapter 2. Library Functions 121

Related Information

v “fgets() — Read a String” on page 101

v “fputws() — Write Wide-Character String” on page 124

v “gets() — Read a Line” on page 156

v “puts() — Write a String” on page 241

v “<stdio.h>” on page 15

fputwc() — Write Wide Character

Format

#include <wchar.h>

#include <stdio.h>

wint_t fputwc(wint_t wc, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE * stream;

 int num;

 /* Do not forget that the ’\0’ char occupies one character */

 static char buffer[NUM_ALPHA + 1] = "abcdefghijklmnopqrstuvwxyz";

 if ((stream = fopen("mylib/myfile", "w")) != NULL)

 {

 /* Put buffer into file */

 if ((num = fputs(buffer, stream)) != EOF)

 {

 /* Note that fputs() does not copy the \0 character */

 printf("Total number of characters written to file = %i\n", num);

 fclose(stream);

 }

 else /* fputs failed */

 perror("fputs failed");

 }

 else

 perror("Error opening myfile");

}

122 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|

|

The fputwc() function writes the wide character wc to the output stream pointed to by stream at the

current position. It also advances the file position indicator appropriately. If the file cannot support

positioning requests, or if the stream was opened with append mode, the character is appended to the

stream.

Using non-wide-character functions with the fputwc() function on the same stream will result in

undefined behavior. After calling the fputwc() function, delete the buffer or reposition the stream pointer

before calling a read function for the stream. After reading from the stream, delete the buffer or

reposition the stream pointer before calling the fputwc() function, unless EOF has been reached.

Note: If the current locale is changed between subsequent operations on the same stream, undefined

results can occur.

Return Value

The fputwc() function returns the wide character that is written. If a write error occurs, the error

indicator for the stream is set, and the fputwc() function returns WEOF. If an encoding error occurs

during conversion from wide character to a multibyte character, fputwc() sets errno to EILSEQ and

returns WEOF.

For information about errno values for putwc(), see “fputc() — Write Character” on page 118.

Example that uses fputwc()

This example opens a file and uses the fputwc() function to write wide characters to the file.

Chapter 2. Library Functions 123

|
|

Related Information

v “fgetwc() — Read Wide Character from Stream” on page 102

v “fputc() — Write Character” on page 118

v “fputwc() — Write Wide Character” on page 122

v “putc() – putchar() — Write a Character” on page 239

v “putwchar() — Write Wide Character to stdout” on page 244

v “putwc() — Write Wide Character” on page 242

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

fputws() — Write Wide-Character String

Format

#include <wchar.h>

#include <stdio.h>

int fputws(const wchar_t *wcs, FILE *stream);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wchar_t *wcs = L"A character string.";

 int i;

 if (NULL == (stream = fopen("fputwc.out", "w")))

 {

 printf("Unable to open: \"fputwc.out\".\n");

 exit(1);

 }

 for (i = 0; wcs[i] != L’\0’; i++) {

 errno = 0;

 if (WEOF == fputwc(wcs[i], stream)) {

 printf("Unable to fputwc() the wide character.\n"

 "wcs[%d] = 0x%.4lx\n", i, wcs[i]);

 if (EILSEQ == errno)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 }

 fclose(stream);

 return 0;

 /***

 The output file fputwc.out should contain:

 A character string.

 ***/

}

124 ILE C/C++ Runtime Library Functions V6R1

|
|

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The fputws() function writes the wide-character string wcs to a stream. It does not write the ending null

wide characters.

Using non-wide-character functions with the fputws() function on the same stream will result in

undefined behavior. After calling the fputws() function, flush the buffer or reposition the stream pointer

before calling a read function for the stream. After a read operation, flush the buffer or reposition the

stream pointer before calling the fputws() function, unless EOF has been reached.

Note: If the current locale is changed between subsequent operations on the same stream, undefined

results can occur.

Return Value

The fputws() function returns a non-negative value if successful. If a write error occurs, the error

indicator for the stream is set, and the fputws() function returns -1. If an encoding error occurs in

converting the wide characters to multibyte characters, the fputws() function sets errno to EILSEQ and

returns -1.

For information about errno values for fputws(), see “fputc() — Write Character” on page 118.

Example that uses fputws()

This example opens a file and writes a wide-character string to the file using the fgetws() function.

Chapter 2. Library Functions 125

|
|
|

|
|

|

|
|

Related Information

v “fgetws() — Read Wide-Character String from Stream” on page 104

v “fputs() — Write String” on page 121

v “fputwc() — Write Wide Character” on page 122

v “puts() — Write a String” on page 241

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

fread() — Read Items

Format

#include <stdio.h>

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The fread() function reads up to count items of size length from the input stream and stores them in the

given buffer. The position in the file increases by the number of bytes read.

Return Value

The fread() function returns the number of full items successfully read, which can be less than count if

an error occurs, or if the end-of-file is met before reaching count. If size or count is 0, the fread() function

returns zero, and the contents of the array and the state of the stream remain unchanged.

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wchar_t *wcs = L"This test string should not return -1";

 if (NULL == (stream = fopen("fputws.out", "w"))) {

 printf("Unable to open: \"fputws.out\".\n");

 exit(1);

 }

 errno = 0;

 if (EOF == fputws(wcs, stream)) {

 printf("Unable to complete fputws() function.\n");

 if (EILSEQ == errno)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 fclose(stream);

 return 0;

 /**

 The output file fputws.out should contain:

 This test string should not return -1

 **/

}

126 ILE C/C++ Runtime Library Functions V6R1

The value of errno can be set to:

Value Meaning

EGETANDPUT

A read operation that was not permitted occurred after a write operation.

ENOREC

Record is not found.

ENOTREAD

The file is not open for read operations.

ERECIO

The file is open for record I/O.

ESTDIN

stdin cannot be opened.

ETRUNC

Truncation occurred on the operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Use the ferror() and feof() functions to distinguish between a read error and an end-of-file.

When using fread() for record input, set size to 1 and count to the maximum expected length of the

record, to obtain the number of bytes. If you do not know the record length, you should set size to 1 and

count to a large value. You can read only one record at a time when using record I/O.

Example that uses fread()

This example attempts to read NUM_ALPHA characters from the file myfile. If there are any errors with

either fread() or fopen(), a message is printed.

Chapter 2. Library Functions 127

Related Information

v “feof() — Test End-of-File Indicator” on page 95

v “ferror() — Test for Read/Write Errors” on page 95

v “fopen() — Open Files” on page 109

v “fwrite() — Write Items” on page 146

v “<stdio.h>” on page 15

free() — Release Storage Blocks

Format

#include <stdlib.h>

void free(void *ptr);

Language Level: ANSI

Threadsafe: Yes.

Description

The free() function frees a block of storage. The ptr argument points to a block that is previously

reserved with a call to the calloc(), malloc(), realloc(), _C_TS_calloc(), _C_TS_malloc(),

_C_TS_realloc(), or _C_TS_malloc64() functions. The number of bytes freed is the number of bytes

specified when you reserved (or reallocated, in the case of the realloc() function) the block of storage. If

ptr is NULL, free() simply returns.

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE * stream;

 int num; /* number of characters read from stream */

 /* Do not forget that the ’\0’ char occupies one character too! */

 char buffer[NUM_ALPHA + 1];

 if ((stream = fopen("mylib/myfile", "r"))!= NULL)

 {

 memset(buffer, 0, sizeof(buffer));

 num = fread(buffer, sizeof(char), NUM_ALPHA, stream);

 if (num) { /* fread success */

 printf("Number of characters has been read = %i\n", num);

 printf("buffer = %s\n", buffer);

 fclose(stream);

 }

 else { /* fread failed */

 if (ferror(stream)) /* possibility 1 */

 perror("Error reading myfile");

 else if (feof(stream)) /* possibility 2 */

 perror("EOF found");

 }

 }

 else

 perror("Error opening myfile");

}

128 ILE C/C++ Runtime Library Functions V6R1

Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should

be allocated and deallocated within the same activation group. It is not valid to allocate heap storage

within one activation group and deallocate that storage from a different activation group. For more

information about activation groups, see the ILE Concepts manual.

2. Attempting to free a block of storage not allocated with calloc(), malloc(), or realloc() (or

previously freed storage) can affect the subsequent reserving of storage and lead to undefined results.

Storage that is allocated with the ILE bindable API CEEGTST can be freed with free().

To use Teraspace storage instead of heap storage without changing the C source code, specify the

TERASPACE(*YES *TSIFC) parameter on the CRTCMOD compiler command. This maps the free()

library function to _C_TS_free(), its Teraspace storage counterpart.

Note: Whenever an invalid pointer is passed to the free() function, a C2M1212 message is signalled.

Usually an MCH message associated with the C2M1212 message appears immediately prior to the

C2M1212 message in the job log. The MCH message usually has additional information that can be

used to debug the problem.

If a C2M1212 message is signalled and the data area QGPL/QC2M1212 exists, the program stack at

the point that the C2M1212 message is signalled is spooled to a spool file. You can create the

QGPL/QC2M1212 data area using the CRTDTAARA (Create Data Area) command. You can specify

any type and length for the data area.

Following are some of the problems that can cause a C2M1212 message to be signalled:

v A pointer that was never set to point to storage reserved by the malloc() function is passed to

the free() function.

v A pointer was set to point to storage reserved by the malloc() function, was subsequently

modified, and then is passed to the free() function.

v A pointer was set to point to storage reserved by the malloc() function, was passed to the

free() function, and then is passed to the free() function..

When a C2M1212 message is generated, the hexadecimal value of the pointer passed to the free()

function is included as part of the message description. This hexadecimal value can provide clues

as to the origin of the problem. The malloc() function returns only pointers that end in

hexadecimal 0. Any pointer that does not end in hexadecimal 0 was either never set to point to

storage reserved by the malloc() function or was modified since it was set to point to storage

reserved by the malloc() function. If the pointer ends in hexadecimal 0, then the cause of the

C2M1212 message is uncertain, and the program code that calls free() should be examined.

Return Value

There is no return value.

Example that uses free()

This example uses the calloc() function to allocate storage for x array elements, and then calls the

free() function to free them.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * index; /* index variable */

 int i; /* index variable */

 int num; /* number of entries of the array */

Chapter 2. Library Functions 129

|
|
|
|

printf("Enter the size of the array\n");

 scanf("%i", &num);

 /* allocate num entries */

 if ((index = array = calloc(num, sizeof(long))) != NULL)

 {

 for (i = 0; i < num; ++i) /* put values in array */

 index++ = i; / using pointer notation */

 free(array); /* deallocates array */

 }

 else

 { /* Out of storage */

 perror("Error: out of storage");

 abort();

 }

}

Related Information

v “calloc() — Reserve and Initialize Storage” on page 55

v “_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66

v “_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68

v “_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70

v “malloc() — Reserve Storage Block” on page 195

v “realloc() — Change Reserved Storage Block Size” on page 264

v “<stdlib.h>” on page 17

freopen() — Redirect Open Files

Format

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The freopen() function closes the file that is currently associated with stream and reassigns stream to the

file that is specified by filename. The freopen() function opens the new file associated with stream with

the given mode, which is a character string specifying the type of access requested for the file. You can

also use the freopen() function to redirect the standard stream files stdin, stdout, and stderr to files

that you specify.

For database files, if filename is an empty string, the freopen() function closes and reopens the stream to

the new open mode, rather than reassigning it to a new file or device. You can use the freopen() function

with no file name specified to change the mode of a standard stream from text to binary without

redirecting the stream, for example:

 fp = freopen("", "rb", stdin);

You can use the same method to change the mode from binary back to text.

You cannot use the freopen() function with filename as an empty string in modules created with

SYSIFCOPT(*IFSIO).

130 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

Return Value

The freopen() function returns a pointer to the newly opened stream. If an error occurs, the freopen()

function closes the original file and returns a NULL pointer value.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

EBADMODE

The file mode that is specified is not valid.

EBADNAME

The file name that is specified is not valid.

ENOENT

No file or library.

ENOTOPEN

The file is not open.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses freopen()

This example closes the stream1 data stream and reassigns its stream pointer. stream1 and stream2 will

have the same value, but they will not necessarily have the same value as stream.

Related Information

v “fclose() — Close Stream” on page 91

v “fopen() — Open Files” on page 109

v “<stdio.h>” on page 15

#include <stdio.h>

#define MAX_LEN 100

int main(void)

{

 FILE *stream, *stream1, *stream2;

 char line[MAX_LEN], *result;

 int i;

 stream = fopen("mylib/myfile","r");

 if ((result = fgets(line,MAX_LEN,stream)) != NULL)

 printf("The string is %s\n", result);

 /* Change all spaces in the line to ’*’. */

 for (i=0; i<=sizeof(line); i++)

 if (line[i] == ’ ’)

 line[i] = ’*’;

 stream1 = stream;

 stream2 = freopen("", "w+", stream1);

 fputs(line, stream2);

 fclose(stream2);

}

Chapter 2. Library Functions 131

frexp() — Separate Floating-Point Value

Format

#include <math.h>

double frexp(double x, int *expptr);

Language Level: ANSI

Threadsafe: Yes.

Description

The frexp() function breaks down the floating-point value x into a term m for the mantissa and another

term n for the exponent. It is done such that x=m*2

n, and the absolute value of m is greater than or equal

to 0.5 and less than 1.0 or equal to 0. The frexp() function stores the integer exponent n at the location to

which expptr points.

Return Value

The frexp() function returns the mantissa term m. If x is 0, frexp() returns 0 for both the mantissa and

exponent. The mantissa has the same sign as the argument x. The result of the frexp() function cannot

have a range error.

Example that uses frexp()

This example separates the floating-point value of x, 16.4, into its mantissa 0.5125, and its exponent 5. It

stores the mantissa in y and the exponent in n.

Related Information

v “ldexp() — Multiply by a Power of Two” on page 178

v “modf() — Separate Floating-Point Value” on page 222

v “<math.h>” on page 8

fscanf() — Read Formatted Data

Format

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, m;

 int n;

 x = 16.4;

 m = frexp(x, n);

 printf("The mantissa is %lf and the exponent is %d\n", m, n);

}

/******************* Output should be similar to: ***************

The mantissa is 0.512500 and the exponent is 5

*/

132 ILE C/C++ Runtime Library Functions V6R1

#include <stdio.h>

int fscanf (FILE *stream, const char *format-string, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The fscanf() function reads data from the current position of the specified stream into the locations that

are given by the entries in argument-list, if any. Each entry in argument-list must be a pointer to a variable

with a type that corresponds to a type specifier in format-string.

The format-string controls the interpretation of the input fields and has the same form and function as the

format-string argument for the scanf() function.

Return Value

The fscanf() function returns the number of fields that it successfully converted and assigned. The

return value does not include fields that the fscanf() function read but did not assign.

The return value is EOF if an input failure occurs before any conversion, or the number of input items

assigned if successful.

Example that uses fscanf()

This example opens the file myfile for reading and then scans this file for a string, a long integer value, a

character, and a floating-point value.

Chapter 2. Library Functions 133

|
|
|
|

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “swscanf() — Read Wide Character Data” on page 407

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “<stdio.h>” on page 15

fseek() — fseeko() — Reposition File Position

Format

#include <stdio.h>

int fseek(FILE *stream, long int offset, int origin);

int fseeko(FILE *stream, off_t offset, int origin);

Language Level: ANSI

Threadsafe: Yes.

Integrated File System Interface: The fseeko() function is not available when SYSIFCOPT(*NOIFSIO) is

specified on the compilation command.

#include <stdio.h>

#define MAX_LEN 80

int main(void)

{

 FILE *stream;

 long l;

 float fp;

 char s[MAX_LEN + 1];

 char c;

 stream = fopen("mylib/myfile", "r");

 /* Put in various data. */

 fscanf(stream, "%s", &s [0]);

 fscanf(stream, "%ld", &l);

 fscanf(stream, "%c", &c);

 fscanf(stream, "%f", &fp);

 printf("string = %s\n", s);

 printf("long double = %ld\n", l);

 printf("char = %c\n", c);

 printf("float = %f\n", fp);

}

/*************** If myfile contains ************************

**************** abcdefghijklmnopqrstuvwxyz 343.2 ***********

********************** expected output is: *********************

string = abcdefghijklmnopqrstuvwxyz

long double = 343

char = .

float = 2.000000

*/

134 ILE C/C++ Runtime Library Functions V6R1

|
|

Description

The fseek() and fseeko() functions change the current file position that is associated with stream to a

new location within the file. The next operation on stream takes place at the new location. On a stream

open for update, the next operation can be either a reading or a writing operation.

The fseeko() function is identical to fseek() except that the offset argument is of type off_t.

The origin must be one of the following constants that are defined in <stdio.h>:

Origin Definition

SEEK_SET

Beginning of file

SEEK_CUR

Current position of file pointer

SEEK_END

End of file

For a binary stream, you can also change the position beyond the end of the file. An attempt to position

before the beginning of the file causes an error. If successful, the fseek() or fseeko() function clears the

end-of-file indicator, even when origin is SEEK_END, and undoes the effect of any preceding the ungetc()

function on the same stream.

Note: For streams opened in text mode, the fseek() and fseeko() functions have limited use because

some system translations (such as those between carriage-return-line-feed and new line) can

produce unexpected results. The only fseek() and fseeko() operations that can be relied upon to

work on streams opened in text mode are seeking with an offset of zero relative to any of the

origin values, or seeking from the beginning of the file with an offset value returned from a call to

the ftell()or ftello() functions. Calls to the ftell() and ftello() functions are subject to their

restrictions.

Return Value

The fseek() or fseeko function returns 0 if it successfully moves the pointer. A nonzero return value

indicates an error. On devices that cannot seek, such as terminals and printers, the return value is

nonzero.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is invalid.

EBADSEEK

Bad offset for a seek operation.

ENODEV

Operation was attempted on a wrong device.

ENOTOPEN

The file is not open.

ERECIO

The file is open for record I/O.

ESTDERR

stderr cannot be opened.

Chapter 2. Library Functions 135

ESTDIN

stdin cannot be opened.

ESTDOUT

stdout cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The fseek() and fseeko() functions are not supported for files that are opened with type=record.

Example that uses fseek()

This example opens a file myfile for reading. After performing input operations,fseek() moves the file

pointer to the beginning of the file.

Related Information

v “ftell() — ftello() — Get Current Position” on page 138

v “fgetpos() — Get File Position” on page 99

v “fsetpos() — Set File Position”

v “rewind() — Adjust Current File Position” on page 276

v “ungetc() — Push Character onto Input Stream” on page 420

v “fseek() — fseeko() — Reposition File Position” on page 134

v “<stdio.h>” on page 15

fsetpos() — Set File Position

Format

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Language Level: ANSI

#include <stdio.h>

#define MAX_LEN 10

int main(void)

{

 FILE *stream;

 char buffer[MAX_LEN + 1];

 int result;

 int i;

 char ch;

 stream = fopen("mylib/myfile", "r");

 for (i = 0; (i < (sizeof(buffer)-1) &&

 ((ch = fgetc(stream)) != EOF) && (ch != ’\n’)); i++)

 buffer[i] = ch;

 result = fseek(stream, 0L, SEEK_SET); /* moves the pointer to the */

 /* beginning of the file */

 if (result == 0)

 printf("Pointer successfully moved to the beginning of the file.\n");

 else

 printf("Failed moving pointer to the beginning of the file.\n");

}

136 ILE C/C++ Runtime Library Functions V6R1

Threadsafe: Yes.

Description

The fsetpos() function moves any file position that is associated with stream to a new location within the

file according to the value pointed to by pos. The value of pos was obtained by a previous call to the

fgetpos() library function.

If successful, fsetpos() clears the end-of-file indicator, and undoes the effect of any previous ungetc()

function on the same stream.

After the fsetpos() call, the next operation on a stream in update mode can be input or output.

Return Value

If fsetpos() successfully changes the current position of the file, it returns 0. A nonzero return value

indicates an error.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is invalid.

EBADPOS

The position that is specified is not valid.

EINVAL

The value specified for the argument is not correct. You might receive this errno when you

compile your program with *IFSIO, and you are working with a file in the QSYS file system. For

example, "/qsys.lib/qtemp.lib/myfile.file/mymem.mbr"

ENODEV

Operation was attempted on a wrong device.

ENOPOS

No record at the specified position.

ERECIO

The file is open for record I/O.

ESTDERR

stderr cannot be opened.

ESTDIN

stdin cannot be opened.

ESTDOUT

stdout cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The fsetpos() function cannot be used for files that are opened with type=record. Also, the fsetpos()

function can only support setting the position to the beginning of the file if:

v your program is compiled with *IFSIO, and

v you are working on a file in the QSYS file system.

Chapter 2. Library Functions 137

Example that uses fsetpos()

This example opens a file mylib/myfile for reading. After performing input operations, fsetpos() moves

the file pointer to the beginning of the file and rereads the first byte.

Related Information

v “fgetpos() — Get File Position” on page 99

v “fseek() — fseeko() — Reposition File Position” on page 134

v “ftell() — ftello() — Get Current Position”

v “rewind() — Adjust Current File Position” on page 276

v “<stdio.h>” on page 15

ftell() — ftello() — Get Current Position

Format

#include <stdio.h>

long int ftell(FILE *stream);

off_t ftello(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Integrated File System Interface: The ftello() function is not available when SYSIFCOPT(*NOIFSIO) is

specified on the compilation command.

#include <stdio.h>

FILE *stream;

int main(void)

{

 int retcode;

 fpos_t pos;

 char ptr[20]; /* existing file ’mylib/myfile’ has 20 byte records */

 int i;

 /* Open file, get position of file pointer, and read first record */

 stream = fopen("mylib/myfile", "rb");

 fgetpos(stream,Point-of-Sale);

 if (!fread(ptr,sizeof(ptr),1,stream))

 perror("fread error");

 else printf("1st record: %s\n", ptr);

 /* Perform another read operation on the second record */

 /* - the value of ’pos’ changes */

 if (!fread(ptr,sizeof(ptr),1,stream))

 perror("fread error");

 else printf("2nd record: %s\n", ptr);

 /* Re-set pointer to start of file and re-read first record */

 fsetpos(stream,Point-of-Sale);

 if (!fread(ptr,sizeof(ptr),1,stream))

 perror("fread error");

 else printf("1st record again: %s\n", ptr);

 fclose(stream);

}

138 ILE C/C++ Runtime Library Functions V6R1

|
|

Description

The ftell() and ftello() functions find the current position of the file associated with stream. For a

fixed-length binary file, the value that is returned is an offset relative to the beginning of the stream.

For file in the QSYS library system, the ftell() and ftello() functions return a relative value for

fixed-format binary files and an encoded value for other file types. This encoded value must be used in

calls to the fseek() and fseeko()functions to positions other than the beginning of the file.

Return Value

The ftell() and ftello() functions return the current file position. On error, ftell() and ftello()

return –1, cast to long and off_t respectively, and set errno to a nonzero value.

The value of errno can be set to:

Value Meaning

ENODEV

Operation was attempted on a wrong device.

ENOTOPEN

The file is not open.

ENUMMBRS

The file is open for multi-member processing.

ENUMRECS

Too many records.

ERECIO

The file is open for record I/O.

ESTDERR

stderr cannot be opened.

ESTDIN

stdin cannot be opened.

ESTDOUT

stdout cannot be opened.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The ftell() and ftello() functions are not supported for files that are opened with type=record.

Example that uses ftell()

This example opens the file mylib/myfile for reading. It reads enough characters to fill half of the buffer

and prints out the position in the stream and the buffer.

Chapter 2. Library Functions 139

Related Information

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fgetpos() — Get File Position” on page 99

v “fopen() — Open Files” on page 109

v “fsetpos() — Set File Position” on page 136

v “ftell() — ftello() — Get Current Position” on page 138

v “<stdio.h>” on page 15

fwide() — Determine Stream Orientation

Format

#include <stdio.h>

#include <wchar.h>

int fwide(FILE *stream, int mode);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: This function is not available when LOCALETYPE(*CLD) is specified on the

compilation command.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Description

The fwide() function determines the orientation of the stream pointed to by stream. If mode is greater than

0, the fwide() function first attempts to make the stream wide oriented. If mode is less than 0, the fwide()

function first attempts to make the stream byte oriented. Otherwise, mode is 0, and the fwide() function

does not alter the orientation of the stream.

#include <stdio.h>

#define NUM_ALPHA 26

#define NUM_CHAR 6

int main(void)

{

 FILE * stream;

 int i;

 char ch;

 char buffer[NUM_ALPHA];

 long position;

 if ((stream = fopen("mylib/myfile", "r")) != NULL)

 {

 /* read into buffer */

 for (i = 0; (i < NUM_ALPHA/2) && ((buffer[i] = fgetc(stream)) != EOF); ++i)

 if (i==NUM_CHAR-1) /* We want to be able to position the */

 /* file pointer to the character in */

 /* position NUM_CHAR */

 position = ftell(stream);

 buffer[i] = ’\0’;

 } printf("Current file position is %d\n", position);

 printf("Buffer contains: %s\n", buffer);

}

140 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|

Note: If the orientation of the stream has already been determined, the fwide() function does not change

it.

Return Value

If, after the call, the stream has wide orientation, the fwide() function returns a value greater than 0. If

the stream has byte orientation, it returns a value less than 0. If the stream has no orientation, it returns

0.

Example that uses fwide()

Chapter 2. Library Functions 141

|
|

Related Information

v “fgetwc() — Read Wide Character from Stream” on page 102

v “fgetws() — Read Wide-Character String from Stream” on page 104

v “fputwc() — Write Wide Character” on page 122

v “fputws() — Write Wide-Character String” on page 124

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

#include <stdio.h>

#include <math.h>

#include <wchar.h>

void check_orientation(FILE *stream)

{

 int rc;

 rc = fwide(stream,0); /* check the orientation */

 if (rc<0) {

 printf("Stream has byte orientation.\n");

 } else if (rc>0) {

 printf("Stream has wide orientation.\n");

 } else {

 printf("Stream has no orientation.\n");

 }

 return;

}

int main(void)

{

 FILE *stream;

 /* Demonstrate that fwide can be used to set the orientation,

 but cannot change it once it has been set. */

 stream = fopen("test.dat","w");

 printf("After opening the file: ");

 check_orientation(stream);

 fwide(stream, -1); /* Make the stream byte oriented */

 printf("After fwide(stream, -1): ");

 check_orientation(stream);

 fwide(stream, 1); /* Try to make the stream wide oriented */

 printf("After fwide(stream, 1): ");

 check_orientation(stream);

 fclose(stream);

 printf("Close the stream\n");

 /* Check that a wide character output operation sets the orientation

 as expected. */

 stream = fopen("test.dat","w");

 printf("After opening the file: ");

 check_orientation(stream);

 fwprintf(stream, L"pi = %.5f\n", 4* atan(1.0));

 printf("After fwprintf(): ");

 check_orientation(stream);

 fclose(stream);

 return 0;

 /***

 The output should be similar to :

 After opening the file: Stream has no orientation.

 After fwide(stream, -1): Stream has byte orientation.

 After fwide(stream, 1): Stream has byte orientation.

 Close the stream

 After opening the file: Stream has no orientation.

 After fwprintf(): Stream has wide orientation.

 ***/

}

142 ILE C/C++ Runtime Library Functions V6R1

fwprintf() — Format Data as Wide Characters and Write to a Stream

Format

#include <stdio.h>

#include <wchar.h>

int fwprintf(FILE *stream, const wchar_t *format, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale, and might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The fwprintf() function writes output to the stream pointed to by stream, under control of the wide

string pointed to by format. The format string specifies how subsequent arguments are converted for

output.

The fwprintf() function converts each entry in argument-list according to the corresponding

wide-character format specifier in format.

If insufficient arguments exist for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the fwprintf() function evaluates the excess arguments, but otherwise ignores them.

The fwprintf() function returns when it encounters the end of the format string.

The format comprises zero or more directives: ordinary wide characters (not %) and conversion

specifications. Conversion specifications are processed as if they were replaced in the format string by

wide-character strings. The wide-character strings are the result of fetching zero or more subsequent

arguments and then converting them, if applicable, according to the corresponding conversion specifier.

The fwprintf() function then writes the expanded wide-character format string to the output stream.

The format for the fwprintf() function has the same form and function as the format string for printf(),

with the following exceptions:

v %c (without an l prefix) converts an integer argument to wchar_t, as if by calling the btowc() function.

v %s (without an l prefix) converts an array of multibyte characters to an array of wchar_t, as if by

calling the mbrtowc() function. The array is written up to, but not including, the terminating null

character, unless the precision specifies a shorter output.

v %ls and %S write an array of wchar_t. The array is written up to, but not including, the ending null

character, unless the precision specifies a shorter output.

v Any width or precision specified for %c, %s, %ls, and %S indicates the number of characters rather

than the number of bytes.

If a conversion specification is invalid, the behavior is undefined.

Chapter 2. Library Functions 143

|
|
|
|
|
|

|
|

|

|
|

If any argument is, or points to, a union or an aggregate (except for an array of char type using %s

conversion, an array of wchar_t type using %ls conversion, or a pointer using %p conversion), the

behavior is undefined.

In no case does a nonexistent, or small field width, cause truncation of a field; if the conversion result is

wider than the field width, the field is expanded to contain the conversion result.

Note: When you write wide characters, the file should be opened in binary mode, or opened with the

o_ccsid or codepage parameters. This ensures that no conversions occur on the wide characters.

Return Value

The fwprintf() function returns the number of wide characters transmitted. If an output error occurred,

it returns a negative value.

Example that uses fwprintf()

Unicode example that uses fwprintf()

#include <stdio.h>

#include <wchar.h>

#include <locale.h>

int count [10] = {1, 5, 8, 3, 0, 3, 5, 6, 8, 10};

int main(void)

{

 int i,j;

 FILE *stream; /* Open the stream for writing */

 if (NULL == (stream = fopen("/QSYS.LIB/LIB.LIB/WCHAR.FILE/WCHAR.MBR","wb")))

 perror("fopen error");

 for (i=0; i < sizeof(count) / sizeof(count[0]); i++)

 {

 for (j = 0; j < count[i]; j++)

 fwprintf(stream, L"*"); /* Print asterisk */

 fwprintf(stream, L"\n"); /* Move to the next line */

 }

 fclose (stream);

}

/* The member WCHAR of file WCHAR will contain:

 *

 */

144 ILE C/C++ Runtime Library Functions V6R1

|
|
|

|
|

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “printf() — Print Formatted Characters” on page 229

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “btowc() — Convert Single Byte to Wide Character” on page 53

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream” on page 428

v “vswprintf() — Format and Write Wide Characters to Buffer” on page 439

v “wprintf() — Format Data as Wide Characters and Print” on page 503

v “<stdarg.h>” on page 13

v “<wchar.h>” on page 18

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

/* This program is compile LOCALETYPE(*LOCALEUCS2) and */

/* SYSIFCOPT(*IFSIO) */

int main(void)

{

 FILE *stream;

 wchar_t wc = 0x0058; /* UNICODE X */

 char c1 = ’c’;

 char *s1 = "123";

 wchar_t ws[4];

 setlocale(LC_ALL,

 "/QSYS.LIB/EN_US.LOCALE"); /* a CCSID 37 locale */

 ws[0] = 0x0041; /* UNICODE A */

 ws[1] = (wchar_t)0x0042; /* UNICODE B */

 ws[2] = (wchar_t)0x0043; /* UNICODE C */

 ws[3] = (wchar_t)0x0000;

 stream = fopen("myfile.dat", "wb+");

 /* lc and ls take wide char as input and just copies then */

 /* to the file. So the file would look like this */

 /* after the below fwprintf statement: */

 /* 0058002000200020004100420043 */

 /* 0020 is UNICODE blank */

 fwprintf(stream, L"%lc %ls",wc,ws);

 /* c and s take multibyte as input and produce UNICODE */

 /* In this case c1 and s1 are CCSID 37 characters based */

 /* on the setlocale above. So the characters are */

 /* converted from CCSID 37 to UNICODE and will look */

 /* like this in hex after the following fwprintf */

 /* statement: 0063002000200020003100320033 */

 /* 0063 is a UNICODE c 0031 is a UNICODE 1 and so on */

 fwprintf(stream, L"%c %s",c1,s1);

 /* Now lets try width and precision. 6ls means write */

 /* 6 wide characters so we will pad with 3 UNICODE */

 /* blanks and %.2s means write no more then 2 wide */

 /* characters. So we get an output that looks like */

 /* this: 00200020002000410042004300310032 */

 fwprintf(stream, L"%6ls%.2s",ws,s1);

}

Chapter 2. Library Functions 145

fwrite() — Write Items

Format

#include <stdio.h>

size_t fwrite(const void *buffer, size_t size, size_t count,

 FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The fwrite() function writes up to count items, each of size bytes in length, from buffer to the output

stream.

Return Value

The fwrite() function returns the number of full items successfully written, which can be fewer than

count if an error occurs.

When using fwrite() for record output, set size to 1 and count to the length of the record to obtain the

number of bytes written. You can only write one record at a time when using record I/O.

The value of errno can be set to:

Value Meaning

ECONVERT

A conversion error occurred.

ENOTWRITE

The file is not open for write operations.

EPAD Padding occurred on a write operation.

EPUTANDGET

An illegal write operation occurred after a read operation.

ESTDERR

stderr cannot be opened.

ESTDIN

stdin cannot be opened.

ESTDOUT

stdout cannot be opened.

ETRUNC

Truncation occurred on I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses fwrite()

This example writes NUM long integers to a stream in binary format.

146 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “fopen() — Open Files” on page 109

v “fread() — Read Items” on page 126

v “<stdio.h>” on page 15

fwscanf() — Read Data from Stream Using Wide Character

Format

#include <stdio.h>

#include <wchar.h>

int fwscanf(FILE *stream, const wchar_t *format, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is

specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The fwscanf() function reads input from the stream pointed to by stream, under control of the wide

string pointed to by format. The format string specifies the admissible input sequences and how they are

to be converted for assignment. To receive the converted input, the fwscanf() function uses subsequent

arguments as pointers to the objects.

Each argument in argument-list must point to a variable with a type that corresponds to a type specifier in

format.

#include <stdio.h>

#define NUM 100

int main(void)

{

 FILE *stream;

 long list[NUM];

 int numwritten;

 int i;

 stream = fopen("MYLIB/MYFILE", "w+b");

 /* assign values to list[] */

 for (i=0; i<=NUM; i++)

 list[i]=i;

 numwritten = fwrite(list, sizeof(long), NUM, stream);

 printf("Number of items successfully written = %d\n", numwritten);

}

Chapter 2. Library Functions 147

|
|
|
|
|
|

|
|

|

If insufficient arguments exist for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the fwscanf() function evaluates the excess arguments, but otherwise ignores them.

The format consists of zero or more directives: one or more white-space wide characters; an ordinary

wide character (neither % nor a white-space wide character); or a conversion specification. Each

conversion specification is introduced by a %.

The format has the same form and function as the format string for the scanf()function, with the

following exceptions:

v %c (with no l prefix) converts one or more wchar_t characters (depending on precision) to multibyte

characters, as if by calling wcrtomb().

v %lc and %C convert one or more wchar_t characters (depending on precision) to an array of wchar_t.

v %s (with no l prefix) converts a sequence of non-white-space wchar_t characters to multibyte

characters, as if by calling the wcrtomb() function. The array includes the ending null character.

v %ls and %S copy an array of wchar_t, including the ending null wide character, to an array of wchar_t.

If the data is from stdin, and stdin has not been overridden, the data is assumed to be in the CCSID of

the job. The data is converted as required by the format specifications. If the file that is being read is not

opened with file mode rb, then invalid conversion can occur.

If a conversion specification is invalid, the behavior is undefined. If the fwscanf() function encounters

end-of-file during input, conversion is ended. If end-of-file occurs before the fwscanf() function reads

any characters matching the current directive (other than leading white space, where permitted),

execution of the current directive ends with an input failure. Otherwise, unless execution of the current

directive terminates with a matching failure, execution of the following directive (other than %n, if any)

ends with an input failure.

The fwscanf() function leaves trailing white space (including new-line wide characters) unread, unless

matched by a directive. You cannot determine the success of literal matches and suppressed assignments

other than through the %n directive.

Return Value

The fwscanf() function returns the number of input items assigned, which can be fewer than provided

for, in the event of an early matching failure.

If an input failure occurs before any conversion, the fwscanf() function returns EOF.

Example that uses fwscanf()

This example opens the file myfile.dat for input, and then scans this file for a string, a long integer value,

a character, and a floating-point value.

148 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Unicode example that uses fwscanf()

This example reads a Unicode string from unicode.dat and prints it to the screen. The example is

compiled with LOCALETYPE(*LOCALEUCS2) SYSIFCOPT(*IFSIO):

#include <stdio.h>

#include <wchar.h>

#define MAX_LEN 80

int main(void)

{

 FILE *stream;

 long l;

 float fp;

 char s[MAX_LEN+1];

 char c;

 stream = fopen("myfile.dat", "r");

 /* Read data from file. */

 fwscanf(stream, L"%s", &s[0]);

 fwscanf(stream, L"%ld", &l);

 fwscanf(stream, L"%c", &c);

 fwscanf(stream, L"%f", &fp);

 printf("string = %s\n", s);

 printf("long integer = %ld\n", l);

 printf("char = %c\n", c);

 printf("float = %f\n", fp);

 return 0;

 /***

 If myfile.dat contains:

 abcdefghijklmnopqrstuvwxyz 343.2.

 The output should be:

 string = abcdefghijklmnopqrstuvwxyz

 long integer = 343

 char = .

 float = 2.000000

 ***/

}

Chapter 2. Library Functions 149

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “scanf() — Read Data” on page 330

v “swprintf() — Format and Write Wide Characters to Buffer” on page 406

v “swscanf() — Read Wide Character Data” on page 407

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

gamma() — Gamma Function

Format

#include <math.h>

double gamma(double x);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The gamma() function computes the natural logarithm of the absolute value of G(x) (ln(|G(x)|)), where

The argument x must be a positive real value.

Return Value

The gamma() function returns the value of ln(|G(x)|). If x is a negative value, errno is set to EDOM. If the

result causes an overflow, gamma() returns HUGE_VAL and sets errno to ERANGE.

#include <stdio.h>

#include <wchar.h>

#include <locale.h>

void main(void)

{

FILE *stream;

wchar_t buffer[20];

stream=fopen("unicode.dat","rb");

fwscanf(stream,L"%ls", buffer);

wprintf(L"The string read was :%ls\n",buffer);

fclose(stream);

}

/* If the input in unicode.dat is :

 ABC

 and ABC is in unicode which in hex would be 0x0041, 0x0042, 0x0043

 then the output will be similar to:

 The string read was :ABC

*/

150 ILE C/C++ Runtime Library Functions V6R1

Example that uses gamma()

This example uses gamma() to calculate ln(|G(x)|), where x = 42.

Related Information

v “Bessel Functions” on page 50

v “erf() – erfc() — Calculate Error Functions” on page 87

v “<math.h>” on page 8

_gcvt - Convert Floating-Point to String

Format

#include <stdlib.h>

char *_gcvt(double value, int ndec, char *buffer);

Note: The _gcvt function is supported only for C++, not for C.

Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. For more information, see “Understanding CCSIDs and Locales” on page

524.

Description

_gcvt() converts a floating-point value to a character string pointed to by buffer. The buffer should be

large enough to hold the converted value and a null character (\0) that _gcvt() automatically adds to the

end of the string. There is no provision for overflow.

_gcvt() attempts to produce ndec significant digits in FORTRAN F format. Failing that, it produces ndec

significant digits in FORTRAN E format. Trailing zeros might be suppressed in the conversion if they are

insignificant.

A FORTRAN F number has the following format:

��

+

-

 digit

digit
 .

digit
 ��

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x=42, g_at_x;

 g_at_x = exp(gamma(x)); /* g_at_x = 3.345253e+49 */

 printf ("The value of G(%4.2lf) is %7.2e\n", x, g_at_x);

}

/************************ Output should be similar to: **********

The value of G(42.00) is 3.35e+49

*/

Chapter 2. Library Functions 151

|
|
|

A FORTRAN E number has the following format:

��

+

-

 digit . digit E

+

-

 digit

digit
 ��

_gcvt also converts infinity values to the string INFINITY.

Return Value

_gcvt() returns a pointer to the string of digits. If it cannot allocate memory to perform the conversion,

_gcvt() returns an empty string and sets errno to ENOMEM.

Example that uses _gcvt()

This example converts the value -3.1415e3 to a character string and places it in the character array

buffer1.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char buffer1[10];

 _gcvt(-3.1415e3, 7, buffer1);

 printf("The first result is %s \n", buffer1);

 return 0;

}

The output should be:

 The first result is -3141.5

Related Information:

v “<stdlib.h>” on page 17

getc() – getchar() — Read a Character

Format

#include <stdio.h>

int getc(FILE *stream);

int getchar(void);

Language Level: ANSI

Threadsafe: No. #undef getc or #undef getchar allows the getc or getchar function to be called instead

of the macro version of these functions. The functions are threadsafe.

Description

The getc() function reads a single character from the current stream position and advances the stream

position to the next character. The getchar() function is identical to getc(stdin).

The difference between the getc() and fgetc() functions is that getc() can be implemented so that its

arguments can be evaluated multiple times. Therefore, the stream argument to getc() should not be an

expression with side effects.

Return Value

152 ILE C/C++ Runtime Library Functions V6R1

|

|

|

The getc() and getchar() functions return the character read. A return value of EOF indicates an error or

end-of-file condition. Use ferror() or feof() to determine whether an error or an end-of-file condition

occurred.

The value of errno can be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

ECONVERT

A conversion error occurred.

EGETANDPUT

An illegal read operation occurred after a write operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The getc() and getchar() functions are not supported in record mode.

Example that uses getc()

This example gets a line of input from the stdin stream. You can also use getc(stdin) instead of

getchar() in the for statement to get a line of input from stdin.

Related Information

v “fgetc() — Read a Character” on page 98

v “fgetwc() — Read Wide Character from Stream” on page 102

v “gets() — Read a Line” on page 156

v “getwc() — Read Wide Character from Stream” on page 157

#include <stdio.h>

#define LINE 80

int main(void)

{

 char buffer[LINE+1];

 int i;

 int ch;

 printf("Please enter string\n");

 /* Keep reading until either:

 1. the length of LINE is exceeded or

 2. the input character is EOF or

 3. the input character is a new-line character

 */

 for (i = 0; (i < LINE) && ((ch = getchar()) != EOF) &&

 (ch !=’\n’); ++i)

 buffer[i] = ch;

 buffer[i] = ’\0’; /* a string should always end with ’\0’ ! */

 printf("The string is %s\n", buffer);

}

Chapter 2. Library Functions 153

v “getwchar() — Get Wide Character from stdin” on page 159

v “putc() – putchar() — Write a Character” on page 239

v “ungetc() — Push Character onto Input Stream” on page 420

v “<stdio.h>” on page 15

getenv() — Search for Environment Variables

Format

#include <stdlib.h>

char *getenv(const char *varname);

Language Level: ANSI

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The getenv() function searches the list of environment variables for an entry corresponding to varname.

Return Value

The getenv() function returns a pointer to the string containing the value for the specified varname in the

current environment. If getenv() cannot find the environment string, NULL is returned, and errno is set

to indicate the error.

Example that uses getenv()

Related Information

v “<stdlib.h>” on page 17

v “putenv() — Change/Add Environment Variables” on page 240

v Environment Variable APIs in the APIs topic in the i5/OS Information Center.

_GetExcData() — Get Exception Data

Format

#include <signal.h>

void _GetExcData(_INTRPT_Hndlr_Parms_T *parms);

Language Level: ILE C Extension

#include <stdlib.h>

#include <stdio.h>

/* Where the environment variable ’PATH’ is set to a value. */

int main(void)

{

 char *pathvar;

 pathvar = getenv("PATH");

 printf("pathvar=%s",pathvar);

}

154 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _GetExcData() function returns information about the current exception from within a C signal

handler. The caller of the _GetExcData() function must allocate enough storage for a structure of type

_INTRPT_Hndlr_Parms_T. If the _GetExcData() function is called from outside a signal handler, the

storage pointed to by parms is not updated.

This function is not available when SYSIFCOPT(*ASYNCSIGNAL) is specified on the compilation

commands. When SYSIFCOPT(*ASYNCSIGNAL) is specified, a signal handler established with the ILE C

signal() function has no way to access any exception information that might have caused the signal

handler to be invoked. An extended signal handler established with the sigaction() function, however,

does have access to this exception information. The extended signal handler has the following function

prototype:

void func(int signo, siginfo_t *info, void *context)

The exception information is appended to the siginfo_t structure, which is then passed as the second

parameter to the extended signal handler.

The siginfo_t structure is defined in signal.h. The exception-related data follows the si_sigdata field

in the siginfo_tstructure. You can address it from the se_data field of the sigdata_t structure.

The format of the exception data appended to the siginfo_t structure is defined by the

_INTRPT_Hndlr_Parms_T structure in except.h.

Return Value

There is no return value.

Example that uses _GetExcData()

This example shows how exceptions from MI library functions can be monitored and handled using a

signal handling function. The signal handler my_signal_handler is registered before the rslvsp() function

signals a 0x2201 exception. When a SIGSEGV signal is raised, the signal handler is called. If an 0x2201

exception occurred, the signal handler calls the QUSRCRTS API to create a space.

Chapter 2. Library Functions 155

|
|
|

Related Information

v “signal() — Handle Interrupt Signals” on page 346

v “<except.h>” on page 4

gets() — Read a Line

Format

#include <stdio.h>

char *gets(char *buffer);

Language Level: ANSI

Threadsafe: Yes.

Description

The gets() function reads a line from the standard input stream stdin and stores it in buffer. The line

consists of all characters up to but not including the first new-line character (\n) or EOF. The gets()

function then replaces the new-line character, if read, with a null character (\0) before returning the line.

Return Value

If successful, the gets() function returns its argument. A NULL pointer return value indicates an error, or

an end-of-file condition with no characters read. Use the ferror() function or the feof() function to

determine which of these conditions occurred. If there is an error, the value that is stored in buffer is

undefined. If an end-of-file condition occurs, buffer is not changed.

Example that uses gets()

This example gets a line of input from stdin.

#include <signal.h>

#include <QSYSINC/MIH/RSLVSP>

#include <QSYSINC/H/QUSCRTUS>

#include <string.h>

#define CREATION_SIZE 65500

void my_signal_handler(int sig) {

 _INTRPT_Hndlr_Parms_T excp_data;

 int error_code = 0;

 /* Check the message id for exception 0x2201 */

 _GetExcData(&excp_data);

 if (!memcmp(excp_data.Msg_Id, "MCH3401", 7))

 QUSCRTUS("MYSPACE QTEMP ",

 "MYSPACE ",

 CREATION_SIZE,

 "\0",

 "*ALL ",

 "MYSPACE example for Programmer’s Reference ",

 "*YES ",

 &error_code);

}

156 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “fgets() — Read a String” on page 101

v “fgetws() — Read Wide-Character String from Stream” on page 104

v “feof() — Test End-of-File Indicator” on page 95

v “ferror() — Test for Read/Write Errors” on page 95

v “fputs() — Write String” on page 121

v “getc() – getchar() — Read a Character” on page 152

v “puts() — Write a String” on page 241

v “<stdio.h>” on page 15

getwc() — Read Wide Character from Stream

Format

 #include <stdio.h>

 #include <wchar.h>

 wint_t getwc(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The getwc() function reads the next multibyte character from stream, converts it to a wide character, and

advances the associated file position indicator for stream.

The getwc() function is equivalent to the fgetwc() function except that, if it is implemented as a macro, it

can evaluate stream more than once. Therefore, the argument should never be an expression with side

effects.

#include <stdio.h>

#define MAX_LINE 100

int main(void)

{

 char line[MAX_LINE];

 char *result;

 printf("Please enter a string:\n");

 if ((result = gets(line)) != NULL)

 printf("The string is: %s\n", line);

 else if (ferror(stdin))

 perror("Error");

}

Chapter 2. Library Functions 157

|
|
|
|
|

|
|

|

If the current locale is changed between subsequent read operations on the same stream, undefined

results can occur. Using non-wide-character functions with the getwc() function on the same stream

results in undefined behavior.

After calling the getwc() function, flush the buffer or reposition the stream pointer before calling a write

function for the stream, unless EOF has been reached. After a write operation on the stream, flush the

buffer or reposition the stream pointer before calling the getwc() function.

Return Value

The getwc() function returns the next wide character from the input stream, or WEOF. If an error occurs,

the getwc() function sets the error indicator. If the getwc() function encounters the end-of-file, it sets the

EOF indicator. If an encoding error occurs during conversion of the multibyte character, the getwc()

function sets errno to EILSEQ.

Use the ferror() or feof() functions to determine whether an error or an EOF condition occurred. EOF

is only reached when an attempt is made to read past the last byte of data. Reading up to and including

the last byte of data does not turn on the EOF indicator.

For information about errno values for getwc(), see “fgetwc() — Read Wide Character from Stream” on

page 102.

Example that uses getwc()

158 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Related Information

v “fgetwc() — Read Wide Character from Stream” on page 102

v “getwchar() — Get Wide Character from stdin”

v “getc() – getchar() — Read a Character” on page 152

v “putwc() — Write Wide Character” on page 242

v “ungetwc() — Push Wide Character onto Input Stream” on page 422

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

getwchar() — Get Wide Character from stdin

Format

 #include <wchar.h>

 wint_t getwchar(void);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wint_t wc;

 if (NULL == (stream = fopen("getwc.dat", "r"))) {

 printf("Unable to open: \"getwc.dat\"\n");

 exit(1);

 }

 errno = 0;

 while (WEOF != (wc = getwc(stream)))

 printf("wc = %lc\n", wc);

 if (EILSEQ == errno) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 fclose(stream);

 return 0;

 /**

 Assuming the file getwc.dat contains:

 Hello world!

 The output should be similar to:

 wc = H

 wc = e

 wc = l

 wc = l

 wc = o

 :

 **/

}

Chapter 2. Library Functions 159

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. It might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The getwchar() function reads the next multibyte character from stdin, converts it to a wide character,

and advances the associated file position indicator for stdin. A call to the getwchar() function is

equivalent to a call to getwc(stdin).

If the current locale is changed between subsequent read operations on the same stream, undefined

results can occur. Using non-wide-character functions with the getwchar() function on stdin results in

undefined behavior.

Return Value

The getwchar() function returns the next wide character from stdin or WEOF. If the getwchar() function

encounters EOF, it sets the EOF indicator for the stream and returns WEOF. If a read error occurs, the

error indicator for the stream is set, and the getwchar() function returns WEOF. If an encoding error

occurs during the conversion of the multibyte character to a wide character, the getwchar() function sets

errno to EILSEQ and returns WEOF.

Use the ferror() or feof() functions to determine whether an error or an EOF condition occurred. EOF

is only reached when an attempt is made to read past the last byte of data. Reading up to and including

the last byte of data does not turn on the EOF indicator.

For information about errno values for getwchar(), see “fgetwc() — Read Wide Character from Stream”

on page 102.

Example that uses getwchar()

This example uses the getwchar() to read wide characters from the keyboard, then prints the wide

characters.

160 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|

|

|
|
|

Related Information

v “fgetc() — Read a Character” on page 98

v “fgetwc() — Read Wide Character from Stream” on page 102

v “fgetws() — Read Wide-Character String from Stream” on page 104

v “getc() – getchar() — Read a Character” on page 152

v “getwc() — Read Wide Character from Stream” on page 157

v “ungetwc() — Push Wide Character onto Input Stream” on page 422

v “<wchar.h>” on page 18

gmtime() — Convert Time

Format

#include <time.h>

struct tm *gmtime(const time_t *time);

Language Level: ANSI

Threadsafe: No. Use gmtime_r() instead.

Description

The gmtime() function breaks down the time value, in seconds, and stores it in a tm structure, defined in

<time.h>. The value time is usually obtained by a call to the time() function.

The fields of the tm structure include:

tm_sec

Seconds (0-61)

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 wint_t wc;

 errno = 0;

 while (WEOF != (wc = getwchar()))

 printf("wc = %lc\n", wc);

 if (EILSEQ == errno) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 return 0;

 /***

 Assuming you enter: abcde

 The output should be:

 wc = a

 wc = b

 wc = c

 wc = d

 wc = e

 ***/

}

Chapter 2. Library Functions 161

tm_min

Minutes (0-59)

tm_hour

Hours (0-23)

tm_mday

Day of month (1-31)

tm_mon

Month (0-11; January = 0)

tm_year

Year (current year minus 1900)

tm_wday

Day of week (0-6; Sunday = 0)

tm_yday

Day of year (0-365; January 1 = 0)

tm_isdst

Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if

the information is not available.

Return Value

The gmtime() function returns a pointer to the resulting tm structure.

Notes:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime() and localtime() functions can use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

Example that uses gmtime()

This example uses the gmtime() function to adjust a time_t representation to a Coordinated Universal

Time character string, and then converts it to a printable string using the asctime() function.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t ltime;

 time(<ime);

 printf ("Coordinated Universal Time is %s\n",

 asctime(gmtime(<ime)));

}

/************************ Output should be similar to: **********

Coordinated Universal Time is Wed Aug 18 21:01:44 1993

*/

162 ILE C/C++ Runtime Library Functions V6R1

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime64() — Convert Time”

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “setlocale() — Set Locale” on page 339

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

gmtime64() — Convert Time

Format

#include <time.h>

struct tm *gmtime64(const tim64_t *time);

Language Level: ILE C Extension

Threadsafe: No. Use gmtime64_r() instead.

Description

The gmtime64() function breaks down the time value, in seconds, and stores it in a tm structure, defined

in <time.h>. The value time is usually obtained by a call to the time64() function.

The fields of the tm structure include:

tm_sec

Seconds (0-61)

tm_min

Minutes (0-59)

tm_hour

Hours (0-23)

tm_mday

Day of month (1-31)

tm_mon

Month (0-11; January = 0)

tm_year

Year (current year minus 1900)

tm_wday

Day of week (0-6; Sunday = 0)

Chapter 2. Library Functions 163

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

tm_yday

Day of year (0-365; January 1 = 0)

tm_isdst

Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if

the information is not available.

Return Value

The gmtime64() function returns a pointer to the resulting tm structure.

Notes:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime64() and localtime64() functions can use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call. The

asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions do not use a common

statically allocated buffer to hold the return string. These functions can be used in place of the

asctime(), ctime64(), gmtime64(), and localtime64() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

Example that uses gmtime64()

This example uses the gmtime64() function to adjust a time64_t representation to a Universal Coordinate

Time character string and then converts it to a printable string using the asctime() function.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

#include <stdio.h>

#include <time.h>

int main(void)

{

 time64_t ltime;

 time64(<ime);

 printf ("Universal Coordinate Time is %s",

 asctime(gmtime64(<ime)));

}

/************************ Output should be similar to: **********

Universal Coordinate Time is Wed Aug 18 21:01:44 1993

*/

164 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|

|
|
|
|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “setlocale() — Set Locale” on page 339

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

gmtime_r() — Convert Time (Restartable)

Format

#include <time.h>

struct tm *gmtime_r(const time_t *time, struct tm *result);

Language Level: XPG4

Threadsafe: Yes,

Description

This function is the restartable version of gmtime().

The gmtime_r() function breaks down the time value, in seconds, and stores it in result. result is a pointer

to the tmstructure, defined in <time.h>. The value time is usually obtained by a call to the time()

function.

The fields of the tm structure include:

tm_sec

Seconds (0-61)

tm_min

Minutes (0-59)

tm_hour

Hours (0-23)

tm_mday

Day of month (1-31)

tm_mon

Month (0-11; January = 0)

tm_year

Year (current year minus 1900)

tm_wday

Day of week (0-6; Sunday = 0)

tm_yday

Day of year (0-365; January 1 = 0)

tm_isdst

Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if

the information is not available.

Return Value

The gmtime_r() function returns a pointer to the resulting tm structure.

Chapter 2. Library Functions 165

|

|

|

|

|

|

|

Notes:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime() and localtime() functions can use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call. The

asctime_r(), ctime_r(), gmtime_r(), and localtime_r() functions do not use a common, statically

allocated buffer to hold the return string. These functions can be used in place of the asctime(),

ctime(), gmtime(), and localtime() functions if reentrancy is desired.

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

Example that uses gmtime_r()

This example uses the gmtime_r() function to adjust a time_t representation to a Coordinated Universal

Time character string, and then converts it to a printable string using the asctime_r() function.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t ltime;

 struct tm mytime;

 char buf[50];

 time(<ime)

 printf ("Coordinated Universal Time is %s\n",

 asctime_r(gmtime_r(<ime, &mytime), buf));

}

/************************ Output should be similar to: **********

Coordinated Universal Time is Wed Aug 18 21:01:44 1993

*/

166 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

gmtime64_r() — Convert Time (Restartable)

Format

#include <time.h>

struct tm *gmtime64_r(const time64_t *time, struct tm *result);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

This function is the restartable version of gmtime64().

The gmtime64_r() function breaks down the time value, in seconds, and stores it in result. result is a

pointer to the tm structure, defined in <time.h>. The value time is usually obtained by a call to the

time64() function.

The fields of the tm structure include:

tm_sec

Seconds (0-61)

tm_min

Minutes (0-59)

tm_hour

Hours (0-23)

tm_mday

Day of month (1-31)

tm_mon

Month (0-11; January = 0)

tm_year

Year (current year minus 1900)

tm_wday

Day of week (0-6; Sunday = 0)

tm_yday

Day of year (0-365; January 1 = 0)

tm_isdst

Zero if daylight saving time is not in effect; positive if daylight saving time is in effect; negative if

the information is not available.

Return Value

The gmtime64_r() function returns a pointer to the resulting tm structure.

Notes:

1. The range (0-61) for tm_sec allows for as many as two leap seconds.

2. The gmtime64() and localtime64() functions might use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call. The

asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions do not use a common,

statically allocated buffer to hold the return string. These functions can be used in place of the

asctime(), ctime64(), gmtime64(), and localtime64() functions if reentrancy is desired.

Chapter 2. Library Functions 167

|

|

|
|

|

|

|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|
|
|
|
|

3. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

Example that uses gmtime64_r()

This example uses the gmtime64_r() function to adjust a time64_t representation to a Universal

Coordinate Time character string and then converts it to a printable string using the asctime_r()

function.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

hypot() — Calculate Hypotenuse

Format

#include <stdio.h>

#include <time.h>

int main(void)

{

 time64_t ltime;

 struct tm mytime;

 char buf[50];

 time64(<ime)

 printf ("Universal Coordinate Time is %s",

 asctime_r(gmtime64_r(<ime, &mytime), buf));

}

/************************ Output should be similar to: **********

Universal Coordinate Time is Wed Aug 18 21:01:44 1993

*/

168 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

#include <math.h>

double hypot(double side1, double side2);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The hypot() function calculates the length of the hypotenuse of a right-angled triangle based on the

lengths of two sides side1 and side2. A call to the hypot() function is equivalent to:

 sqrt(side1 * side1 + side2 * side2);

Return Value

The hypot() function returns the length of the hypotenuse. If an overflow results, hypot() sets errno to

ERANGE and returns the value HUGE_VAL. If an underflow results, hypot() sets errno to ERANGE and

returns zero. The value of errno can also be set to EDOM.

Example that uses hypot()

This example calculates the hypotenuse of a right-angled triangle with sides of 3.0 and 4.0.

Related Information

v “sqrt() — Calculate Square Root” on page 353

v “<math.h>” on page 8

isalnum() - isxdigit() — Test Integer Value

Format

#include <ctype.h>

int isalnum(int c);

/* Test for upper- or lowercase letters, or decimal digit */

int isalpha(int c);

/* Test for alphabetic character */

int iscntrl(int c);

/* Test for any control character */

int isdigit(int c);

/* Test for decimal digit */

int isgraph(int c);

/* Test for printable character excluding space */

#include <math.h>

int main(void)

{

 double x, y, z;

 x = 3.0;

 y = 4.0;

 z = hypot(x,y);

 printf("The hypotenuse of the triangle with sides %lf and %lf"

 " is %lf\n", x, y, z);

}

/******************** Output should be similar to: **************

The hypotenuse of the triangle with sides 3.000000 and 4.000000 is 5.000000

*/

Chapter 2. Library Functions 169

int islower(int c);

/* Test for lowercase */

int isprint(int c);

/* Test for printable character including space */

int ispunct(int c);

/* Test for any nonalphanumeric printable character */

/* excluding space */

int isspace(int c);

/* Test for whitespace character */

int isupper(int c);

/* Test for uppercase */

int isxdigit(int c);

/* Test for hexadecimal digit */

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The <ctype.h> functions listed test a character with an integer value.

Return Value

These functions return a nonzero value if the integer satisfies the test condition, or a zero value if it does

not. The integer variable c must be representable as an unsigned char.

Note: EOF is a valid input value.

Example that uses <ctype.h> functions

This example analyzes all characters between code 0x0 and code UPPER_LIMIT, printing A for alphabetic

characters, AN for alphanumerics, U for uppercase, L for lowercase, D for digits, X for hexadecimal

digits, S for spaces, PU for punctuation, PR for printable characters, G for graphics characters, and C for

control characters. This example prints the code if printable.

The output of this example is a 256-line table showing the characters from 0 to 255 that possess the

attributes tested.

170 ILE C/C++ Runtime Library Functions V6R1

|
|

|

Related Information

v “tolower() – toupper() — Convert Character Case” on page 416

v “isblank() — Test for Blank or Tab Character” on page 172

v “<ctype.h>” on page 3

isascii() — Test for Character Representable as ASCII Value

Format

#include <ctype.h>

int isascii(int c);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The isascii() function tests if a given character, in the current locale, can be represented as a valid 7–bit

US-ASCII character.

Return Value

The isascii() function returns nonzero if c, in the current locale, can be represented as a character in the

7–bit US-ASCII character set. Otherwise, it returns 0.

Example that uses isascii()

#include <stdio.h>

#include <ctype.h>

#define UPPER_LIMIT 0xFF

int main(void)

{

 int ch;

 for (ch = 0; ch <= UPPER_LIMIT; ++ch)

 {

 printf("%3d ", ch);

 printf("%#04x ", ch);

 printf("%3s ", isalnum(ch) ? "AN" : " ");

 printf("%2s ", isalpha(ch) ? "A" : " ");

 printf("%2s", iscntrl(ch) ? "C" : " ");

 printf("%2s", isdigit(ch) ? "D" : " ");

 printf("%2s", isgraph(ch) ? "G" : " ");

 printf("%2s", islower(ch) ? "L" : " ");

 printf(" %c", isprint(ch) ? ch : ’ ’);

 printf("%3s", ispunct(ch) ? "PU" : " ");

 printf("%2s", isspace(ch) ? "S" : " ");

 printf("%3s", isprint(ch) ? "PR" : " ");

 printf("%2s", isupper(ch) ? "U" : " ");

 printf("%2s", isxdigit(ch) ? "X" : " ");

 putchar(’\n’);

 }

}

Chapter 2. Library Functions 171

|
|
|

This example tests the integers from 0x7c to 0x82, and prints the corresponding character if the integer

can be represented as a character in the 7–bit US-ASCII character set.

Related Information

v “isalnum() - isxdigit() — Test Integer Value” on page 169

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 173

v “toascii() — Convert Character to Character Representable by ASCII” on page 415

v “tolower() – toupper() — Convert Character Case” on page 416

v “towlower() –towupper() — Convert Wide Character Case” on page 418

v “<ctype.h>” on page 3

isblank() — Test for Blank or Tab Character

Format

#include <ctype.h>

int isblank(int c);

Note: The isblank() function is supported only for C++, not for C.

Language Level: Extended

Threadsafe: Yes.

Description

The isblank() function tests if a character is either the EBCDIC space or EBCDIC tab character.

Return Value

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 int ch;

 for (ch = 0x7c; ch <= 0x82; ch++) {

 printf("%#04x ", ch);

 if (isascii(ch))

 printf("The character is %c\n", ch);

 else

 printf("Cannot be represented by an ASCII character\n");

 }

 return 0;

}

 /**

 The output should be:

 0x7c The character is @

 0x7d The character is ’

 0x7e The character is =

 0x7f The character is "

 0x80 Cannot be represented by an ASCII character

 0x81 The character is a

 0x82 The character is b

 **/

172 ILE C/C++ Runtime Library Functions V6R1

The isblank() function returns nonzero if c is either the EBCDIC space character or the EBCDIC tab

character, otherwise it returns 0.

Example that uses isblank()

This example tests several characters using isblank().

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 char *buf = "a b\tc";

 int i;

 for (i = 0; i < 5; i++) {

 if (isblank(buf[i]))

 printf("Character %d is not a blank.\n", i);

 else

 printf("Character %d is a blank\n", i);

 }

 return 0;

}

/*************************************

 The output should be

 Character 0 is not a blank.

 Character 1 is a blank.

 Character 2 is not a blank.

 Character 3 is a blank.

 Character 4 is not a blank.

*************************************/

Related Information

v “isalnum() - isxdigit() — Test Integer Value” on page 169

v “iswalnum() to iswxdigit() — Test Wide Integer Value”

v “isascii() — Test for Character Representable as ASCII Value” on page 171

v “tolower() – toupper() — Convert Character Case” on page 416

v “towlower() –towupper() — Convert Wide Character Case” on page 418

v “<ctype.h>” on page 3

iswalnum() to iswxdigit() — Test Wide Integer Value

Format

#include <wctype.h>

int iswalnum(wint_t wc);

int iswalpha(wint_t wc);

int iswcntrl(wint_t wc);

int iswdigit(wint_t wc);

int iswgraph(wint_t wc);

int iswlower(wint_t wc);

int iswprint(wint_t wc);

int iswpunct(wint_t wc);

int iswspace(wint_t wc);

int iswupper(wint_t wc);

int iswxdigit(wint_t wc);

Language Level: ANSI

Chapter 2. Library Functions 173

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of

these functions might be affected by the LC_UNI_CTYPE category of the current locale if either the

LOCALETYPE(*LOCALEUCS2) option or the LOCALETYPE(*LOCALEUTF) option is specified on the

compilation command. These functions are not available when LOCALETYPE(*CLD) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The functions listed above, which are all declared in <wctype.h>, test a given wide integer value.

The value of wc must be a wide-character code corresponding to a valid character in the current locale, or

must equal the value of the macro WEOF. If the argument has any other value, the behavior is undefined.

Here are descriptions of each function in this group.

iswalnum()

Test for a wide alphanumeric character.

iswalpha()

Test for a wide alphabetic character, as defined in the alpha class of the current locale.

iswcntrl()

Test for a wide control character, as defined in the cntrl class of the current locale.

iswdigit()

Test for a wide decimal-digit character: 0 through 9, as defined in the digit class of the current

locale.

iswgraph()

Test for a wide printing character, not a space, as defined in the graph class of the current locale.

iswlower()

Test for a wide lowercase character, as defined in the lower class of the current locale or for

which none of the iswcntrl(), iswdigit(), iswspace() functions are true.

iswprint()

Test for any wide printing character, as defined in the print class of the current locale.

iswpunct()

Test for a wide nonalphanumeric, nonspace character, as defined in the punct class of the current

locale.

iswspace()

Test for a wide whitespace character, as defined in the space class of the current locale.

iswupper()

Test for a wide uppercase character, as defined in the upper class of the current locale.

iswxdigit()

Test for a wide hexadecimal digit 0 through 9, a through f, or A through F as defined in the

xdigit class of the current locale.

Returned Value

These functions return a nonzero value if the wide integer satisfies the test value, or a 0 value if it does

not. The value for wc must be representable as a wide unsigned char. WEOF is a valid input value.

174 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

Example

Related Information

v “<wctype.h>” on page 19

iswctype() — Test for Character Property

Format

#include <wctype.h>

int iswctype(wint_t wc, wctype_t wc_prop);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this

function might be affected by the LC_UNI_CTYPE category of the current locale if either the

LOCALETYPE(*LOCALEUCS2) option or the LOCALETYPE(*LOCALEUTF) option is specified on the

compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The iswctype() function determines whether the wide character wc has the property wc_prop. If the value

of wc is neither WEOF nor any value of the wide characters that corresponds to a multibyte character, the

behavior is undefined. If the value of wc_prop is incorrect (that is, it is not obtained by a previous call to

the wctype() function, or wc_prop has been invalidated by a subsequent call to the setlocale() function),

the behavior is undefined.

Return Value

#include <stdio.h>

#include <wctype.h>

int main(void)

{

 int wc;

 for (wc=0; wc <= 0xFF; wc++) {

 printf("%3d", wc);

 printf(" %#4x ", wc);

 printf("%3s", iswalnum(wc) ? "AN" : " ");

 printf("%2s", iswalpha(wc) ? "A" : " ");

 printf("%2s", iswcntrl(wc) ? "C" : " ");

 printf("%2s", iswdigit(wc) ? "D" : " ");

 printf("%2s", iswgraph(wc) ? "G" : " ");

 printf("%2s", iswlower(wc) ? "L" : " ");

 printf(" %c", iswprint(wc) ? wc : ’ ’);

 printf("%3s", iswpunct(wc) ? "PU" : " ");

 printf("%2s", iswspace(wc) ? "S" : " ");

 printf("%3s", iswprint(wc) ? "PR" : " ");

 printf("%2s", iswupper(wc) ? "U" : " ");

 printf("%2s", iswxdigit(wc) ? "X" : " ");

 putchar(’\n’);

 }

}

Chapter 2. Library Functions 175

|
|
|
|
|
|

|

The iswctype() function returns true if the value of the wide character wc has the property wc_prop.

The following strings, alnum through to xdigit are reserved for the standard character classes. The

functions are shown as follows with their equivalent isw*() function:

iswctype(wc, wctype("alnum")); /* is equivalent to */ iswalnum(wc);

iswctype(wc, wctype("alpha")); /* is equivalent to */ iswalpha(wc);

iswctype(wc, wctype("cntrl")); /* is equivalent to */ iswcntrl(wc);

iswctype(wc, wctype("digit")); /* is equivalent to */ iswdigit(wc);

iswctype(wc, wctype("graph")); /* is equivalent to */ iswgraph(wc);

iswctype(wc, wctype("lower")); /* is equivalent to */ iswlower(wc);

iswctype(wc, wctype("print")); /* is equivalent to */ iswprint(wc);

iswctype(wc, wctype("punct")); /* is equivalent to */ iswpunct(wc);

iswctype(wc,wctype("space")); /* is equivalent to */ iswspace(wc);

iswctype(wc, wctype("upper")); /* is equivalent to */ iswupper(wc);

iswctype(wc, wctype("xdigit")); /* is equivalent to */ iswxdigit(wc);

Example that uses iswctype()

Related Information

v “wctype() — Get Handle for Character Property Classification” on page 495

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 173

v “<wctype.h>” on page 19

_itoa - Convert Integer to String

Format

#include <stdlib.h>

char *_itoa(int value, char *string, int radix);

Note: The _itoa function is supported only for C++, not for C.

Language Level: Extension

Threadsafe: Yes.

#include <stdio.h>

#include <wctype.h>

int main(void)

{

 int wc;

 for (wc=0; wc <= 0xFF; wc++) {

 printf("%3d", wc);

 printf(" %#4x ", wc);

 printf("%3s", iswctype(wc, wctype("alnum")) ? "AN" : " ");

 printf("%2s", iswctype(wc, wctype("alpha")) ? "A" : " ");

 printf("%2s", iswctype(wc, wctype("cntrl")) ? "C" : " ");

 printf("%2s", iswctype(wc, wctype("digit")) ? "D" : " ");

 printf("%2s", iswctype(wc, wctype("graph")) ? "G" : " ");

 printf("%2s", iswctype(wc, wctype("lower")) ? "L" : " ");

 printf(" %c", iswctype(wc, wctype("print")) ? wc : ’ ’);

 printf("%3s", iswctype(wc, wctype("punct")) ? "PU" : " ");

 printf("%2s", iswctype(wc, wctype("space")) ? "S" : " ");

 printf("%3s", iswctype(wc, wctype("print")) ? "PR" : " ");

 printf("%2s", iswctype(wc, wctype("upper")) ? "U" : " ");

 printf("%2s", iswctype(wc, wctype("xdigit")) ? "X" : " ");

 putchar(’\n’);

 }

}

176 ILE C/C++ Runtime Library Functions V6R1

Description

_itoa() converts the digits of the given value to a character string that ends with a null character and

stores the result in string. The radix argument specifies the base of value; it must be in the range 2 to 36. If

radix equals 10 and value is negative, the first character of the stored string is the minus sign (-).

Note: The space reserved for string must be large enough to hold the returned string. The function can

return up to 33 bytes including the null character (\0).

Return Value

_itoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.

Example that uses _itoa()

This example converts the integer value -255 to a decimal, a binary, and a hex number, storing its

character representation in the array buffer.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char buffer[35];

 char *p;

 p = _itoa(-255, buffer, 10);

 printf("The result of _itoa(-255) with radix of 10 is %s\n", p);

 p = _itoa(-255, buffer, 2);

 printf("The result of _itoa(-255) with radix of 2\n is %s\n", p);

 p = _itoa(-255, buffer, 16);

 printf("The result of _itoa(-255) with radix of 16 is %s\n", p);

 return 0;

}

The output should be:

 The result of _itoa(-255) with radix of 10 is -255

 The result of _itoa(-255) with radix of 2

 is 11111111111111111111111100000001

 The result of _itoa(-255) with radix of 16 is ffffff01

Related Information:

v “_gcvt - Convert Floating-Point to String” on page 151

v “_itoa - Convert Integer to String” on page 176

v “_ltoa - Convert Long Integer to String” on page 192

v “_ultoa - Convert Unsigned Long Integer to String” on page 419

v “<stdlib.h>” on page 17

labs() — llabs() — Calculate Absolute Value of Long and Long Long

Integer

Format (labs())

#include <stdlib.h>

long int labs(long int n);

Format (llabs())

#include <stdlib.h>

long long int llabs(long long int i);

Chapter 2. Library Functions 177

Language Level: ANSI

Threadsafe: Yes.

Description

The labs() function produces the absolute value of its long integer argument n. The result might be

undefined when the argument is equal to LONG_MIN, the smallest available long integer. The value

LONG_MIN is defined in the <limits.h> include file.

The llabs() function returns the absolute value of its long long integer operand.The result might be

undefined when the argument is equal to LONG_LONG_MIN, the smallest available long integer. The

value LONG_LONG_MIN is defined in the <limits.h> include file.

Return Value

The labs() function returns the absolute value of n. There is no error return value.

The llabs() function returns the absolute value of i. There is no error return value.

Example that uses labs()

This example computes y as the absolute value of the long integer -41567.

Related Information

v “abs() — Calculate Integer Absolute Value” on page 37

v “fabs() — Calculate Floating-Point Absolute Value” on page 90

v “<limits.h>” on page 7

ldexp() — Multiply by a Power of Two

Format

#include <math.h>

double ldexp(double x, int exp);

Language Level: ANSI

Threadsafe: Yes.

Description

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 long x, y;

 x = -41567L;

 y = labs(x);

 printf("The absolute value of %ld is %ld\n", x, y);

}

/******************** Output should be similar to: **************

The absolute value of -41567 is 41567

*/

178 ILE C/C++ Runtime Library Functions V6R1

The ldexp() function calculates the value of x * (2exp).

Return Value

The ldexp() function returns the value of x*(2exp). If an overflow results, the function returns

+HUGE_VAL for a large result or -HUGE_VAL for a small result, and sets errno to ERANGE.

Example that uses ldexp()

This example computes y as 1.5 times 2 to the fifth power (1.5*25):

Related Information

v “exp() — Calculate Exponential Function” on page 89

v “frexp() — Separate Floating-Point Value” on page 132

v “modf() — Separate Floating-Point Value” on page 222

v “<math.h>” on page 8

ldiv() — lldiv() — Perform Long and Long Long Division

Format (ldiv())

#include <stdlib.h>

ldiv_t ldiv(long int numerator, long int denominator);

Format (lldiv())

#include <stdlib.h>

lldiv_t lldiv(long long int numerator, long long int denominator);

Language Level: ANSI

Threadsafe: Yes. However, only the function version is threadsafe. The macro version is NOT threadsafe.

Description

The ldiv() function calculates the quotient and remainder of the division of numerator by denominator.

Return Value

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y;

 int p;

 x = 1.5;

 p = 5;

 y = ldexp(x,p);

 printf("%lf times 2 to the power of %d is %lf\n", x, p, y);

}

/******************** Output should be similar to: **************

1.500000 times 2 to the power of 5 is 48.000000

*/

Chapter 2. Library Functions 179

The ldiv() function returns a structure of type ldiv_t, containing both the quotient (long int quot) and

the remainder (long int rem). If the value cannot be represented, the return value is undefined. If

denominator is 0, an exception is raised.

The lldiv() subroutine computes the quotient and remainder of the numerator parameter by the

denominator parameter.

The lldiv() subroutine returns a structure of type lldiv_t, containing both the quotient and the

remainder. The structure is defined as:

struct lldiv_t

{

long long int quot; /* quotient */

long long int rem; /* remainder */

};

If the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and

magnitude of the resulting quotient is the largest long long integer less than the magnitude of the

algebraic quotient. If the result cannot be represented (for example, if the denominator is 0), the behavior is

undefined.

Example that uses ldiv()

This example uses ldiv() to calculate the quotients and remainders for a set of two dividends and two

divisors.

Related Information

v “div() — Calculate Quotient and Remainder” on page 86

v “<stdlib.h>” on page 17

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long int num[2] = {45,-45};

 long int den[2] = {7,-7};

 ldiv_t ans; /* ldiv_t is a struct type containing two long ints:

 ’quot’ stores quotient; ’rem’ stores remainder */

 short i,j;

 printf("Results of long division:\n");

 for (i = 0; i < 2; i++)

 for (j = 0; j < 2; j++)

 {

 ans = ldiv(num[i], den[j]);

 printf("Dividend: %6ld Divisor: %6ld", num[i], den[j]);

 printf(" Quotient: %6ld Remainder: %6ld\n", ans.quot, ans.rem);

 }

}

/******************** Expected output: **************************

Results of long division:

Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3

Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3

Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3

Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3

*/

180 ILE C/C++ Runtime Library Functions V6R1

localeconv() — Retrieve Information from the Environment

Format

#include <locale.h>

struct lconv *localeconv(void);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_NUMERIC and

LC_MONETARY categories of the current locale. For more information, see “Understanding CCSIDs and

Locales” on page 524.

Description

The localeconv() sets the components of a structure having type struct lconv to values appropriate for

the current locale. The structure might be overwritten by another call to localeconv(), or by calling the

setlocale() function.

The structure contains the following elements (defaults shown are for the C locale):

 Element Purpose of Element Default

char *decimal_point Decimal-point character used to format

non-monetary quantities.

"."

char *thousands_sep Character used to separate groups of digits to the

left of the decimal-point character in formatted

non-monetary quantities.

""

char *grouping String indicating the size of each group of digits in

formatted non-monetary quantities. Each character

in the string specifies the number of digits in a

group. The initial character represents the size of

the group immediately to the left of the decimal

delimiter. The characters following this define

succeeding groups to the left of the previous

group. If the last character is not UCHAR_MAX,

the grouping is repeated using the last character as

the size. If the last character is UCHAR_MAX,

grouping is only performed for the groups already

in the string (no repetition). See Table 1 on page

183 for an example of how grouping works.

""

char *int_curr_symbol International currency symbol for the current

locale. The first three characters contain the

alphabetic international currency symbol. The

fourth character (usually a space) is the character

used to separate the international currency symbol

from the monetary quantity.

""

char *currency_symbol Local currency symbol of the current locale. ""

char *mon_decimal_point Decimal-point character used to format monetary

quantities.

""

char *mon_thousands_sep Separator for digits in formatted monetary

quantities.

""

Chapter 2. Library Functions 181

|
|
|

|
|
|

Element Purpose of Element Default

char *mon_grouping String indicating the size of each group of digits in

formatted monetary quantities. Each character in

the string specifies the number of digits in a

group. The initial character represents the size of

the group immediately to the left of the decimal

delimiter. The following characters define

succeeding groups to the left of the previous

group. If the last character is not UCHAR_MAX,

the grouping is repeated using the last character as

the size. If the last character is UCHAR_MAX,

grouping is only performed for the groups already

in the string (no repetition). See Table 1 on page

183 for an example of how grouping works.

""

char *positive_sign String indicating the positive sign used in

monetary quantities.

""

char *negative_sign String indicating the negative sign used in

monetary quantities.

""

char int_frac_digits The number of displayed digits to the right of the

decimal place for internationally formatted

monetary quantities.

UCHAR_MAX

char frac_digits Number of digits to the right of the decimal place

in monetary quantities.

UCHAR_MAX

char p_cs_precedes 1 if the currency_symbol precedes the value for a

nonnegative formatted monetary quantity; 0 if it

does not.

UCHAR_MAX

char p_sep_by_space 1 if the currency_symbol is separated by a space

from the value of a nonnegative formatted

monetary quantity; 0 if it does not.

UCHAR_MAX

char n_cs_precedes 1 if the currency_symbol precedes the value for a

negative formatted monetary quantity; 0 if it does

not.

UCHAR_MAX

char n_sep_by_space 1 if the currency_symbol is separated by a space

from the value of a negative formatted monetary

quantity; 0 if it does not.

UCHAR_MAX

char p_sign_posn Value indicating the position of the positive_sign

for a nonnegative formatted monetary quantity.

UCHAR_MAX

char n_sign_posn Value indicating the position of the negative_sign

for a negative formatted monetary quantity.

UCHAR_MAX

Pointers to strings with a value of "" indicate that the value is not available in the C locale or is of zero

length. Elements with char types with a value of UCHAR_MAX indicate that the value is not available in

the current locale.

The n_sign_posn and p_sign_posn elements can have the following values:

Value Meaning

0 The quantity and currency_symbol are enclosed in parentheses.

1 The sign precedes the quantity and currency_symbol.

2 The sign follows the quantity and currency_symbol.

3 The sign precedes the currency_symbol.

182 ILE C/C++ Runtime Library Functions V6R1

4 The sign follows the currency_symbol.

Grouping Example

 Table 1. Grouping Example

Locale Source Grouping String Number Formatted Number

−1 0x00 123456789 123456789

3 0x0300 123456789 123,456,789

3;−1 0x03FF00 123456789 123456,789

3;2;1 0x03020100 123456789 1,2,3,4,56,789

Monetary Formatting Example:

 Table 2. Monetary Formatting Example

Country Positive Format Negative Format International Format

Italy L.1.230 -L.1.230 ITL.1.230

Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56

Norway kr1.234,56 kr1.234,56- NOK1.234,56

Switzerland SFRs.1,234.56 SFrx.1,234.56C CHF 1,234.56

The above table was generated by locales with the following monetary fields:

 Table 3. Monetary Fields

Italy Netherlands Norway Switzerland

int_curr_symbol ″ITL.″ ″NLG″ ″NOK″ ″CHF″

currency_symbol ″L.″ ″F″ ″kr″ ″SFrs.″

mon_decimal_point ″″ ″,″ ″,″ ″.″

mon_thousands_sep ″.″ ″.″ ″.″ ″,″

mon_grouping ″\3″ ″\3″ ″\3″ ″\3″

positive_sign ″″ ″″ ″″ ″″

negative_sign ″-″ ″-″ ″-″ ″C″

int_frac_digits 0 2 2 2

frac_digits 0 2 2 2

p_cs_precedes 1 1 1 1

p_sep_by_space 0 1 0 0

n_cs_preceds 1 1 1 1

n_sep_by_space 0 1 0 0

p_sep_posn 1 1 1 1

n_sign_posn 1 4 2 2

Return Value

The localeconv() function returns a pointer to the structure.

Example that uses *CLD locale objects

Chapter 2. Library Functions 183

|

This example prints out the default decimal point for your locale and then the decimal point for the

LC_C_FRANCE locale.

Example that uses *LOCALE objects

#include <stdio.h>

#include <locale.h>

int main(void) {

 char * string;

 struct lconv * mylocale;

 mylocale = localeconv();

 /* Display default decimal point */

 printf("Default decimal point is a %s\n", mylocale->decimal_point);

 if (NULL != (string = setlocale(LC_ALL, LC_C_FRANCE))) {

 mylocale = localeconv();

 /* A comma is set to be the decimal point when the locale is LC_C_FRANCE*/

 printf("France’s decimal point is a %s\n", mylocale->decimal_point);

 } else {

 printf("setlocale(LC_ALL, LC_C_FRANCE) returned <NULL>\n");

 }

 return 0;

}

184 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “setlocale() — Set Locale” on page 339

v “<locale.h>” on page 7

localtime() — Convert Time

Format

#include <time.h>

struct tm *localtime(const time_t *timeval);

Language Level: ANSI

Threadsafe: No. Use localtime_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale.

Description

The localtime() function converts a time value, in seconds, to a structure of type tm.

The localtime() function takes a timeval assumed to be Universal Coordinate Time (UTC) and converts it

to job locale time. For this conversion localtime() checks the current locale setting for local time zone

and daylight saving time (DST). If these values are not set in the current locale, localtime() gets the local

 /**

 This example prints out the default decimal point for

 the C locale and then the decimal point for the French

 locale using a *LOCALE object called

 "QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE".

 Step 1: Create a French *LOCALE object by entering the command

 CRTLOCALE LOCALE(’QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE’) +

 SRCFILE(’QSYS.LIB/QSYSLOCALE.LIB/QLOCALESRC.FILE/ +

 FR_FR.MBR’) CCSID(297) *

 Step 2: Compile the following C source, specifying

 LOCALETYPE(*LOCALE) on the compilation command.

 Step 3: Run the program.

 **/

 #include <stdio.h>

 #include <locale.h>

 int main(void) {

 char * string;

 struct lconv * mylocale;

 mylocale = localeconv();

 /* Display default decimal point */

 printf("Default decimal point is a %s\n", mylocale->decimal_point);

 if (NULL != (string = setlocale(LC_ALL,

 "QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE"))) {

 mylocale = localeconv();

 /* A comma is set to be the decimal point in the French locale */

 printf("France’s decimal point is a %s\n", mylocale->decimal_point);

 } else {

 printf("setlocale(LC_ALL, \"QSYS.LIB/MYLIB.LIB/LC_FRANCE.LOCALE\") \

 returned <NULL>\n");

 }

 return 0;

 }

Chapter 2. Library Functions 185

|
|

time zone and daylight saving time (DST) settings from the current job. Once converted, the time is

returned in a structure of type tm. If the DST is set in the locale but the time zone information is not, the

DST information in the locale is ignored.

The time value is usually obtained by a call to the time() function.

Notes:

1. The gmtime() and localtime() functions can use a common, statically allocated buffer for the

conversion. Each call to one of these functions might destroy the result of the previous call. The

ctime_r(), gmtime_r(), and localtime_r() functions do not use a common, statically allocated buffer.

These functions can be used in place of the asctime(), ctime(), gmtime() and localtime() functions if

reentrancy is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

Return Value

The localtime() function returns a pointer to the structure result. There is no error return value.

Example that uses localtime()

This example queries the system clock and displays the local time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime_r() — Convert Time (Restartable)” on page 188

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

#include <time.h>

#include <stdio.h>

int main(void)

{

 struct tm *newtime;

 time_t ltime;

 ltime = time(<ime);

 newtime = localtime(<ime);

 printf("The date and time is %s", asctime(newtime));}

/************** If the local time is 3 p.m. February 15, 2008, **********

************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008

*/

186 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “setlocale() — Set Locale” on page 339

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

localtime64() — Convert Time

Format

#include <time.h>

struct tm *localtime64(const time64_t *timeval);

Language Level: ILE C Extension

Threadsafe: No. Use localtime64_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale.

Description

The localtime64() function converts a time value, in seconds, to a structure of type tm.

The localtime64() function takes a timeval assumed to be Universal Coordinate Time (UTC) and converts

it to job locale time. For this conversion, localtime64() checks the current locale setting for local time

zone and daylight saving time (DST). If these values are not set in the current locale, localtime64() gets

the local time zone and daylight saving time (DST) settings from the current job. Once converted, the

time is returned in a structure of type tm. If the DST is set in the locale but the time zone information is

not, the DST information in the locale is ignored.

The time value is usually obtained by a call to the time64() function.

Notes:

1. The gmtime64() and localtime64() functions might use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call. The

asctime_r(), ctime64_r(), gmtime64_r() and localtime64_r() functions do not use a common,

statically allocated buffer. These functions can be used in place of the asctime(), ctime64(),

gmtime64(), and localtime64() functions if thread safety is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

3. The supported date and time range for this function is 01/01/0001 00:00: 00 through 12/31/9999 23:

59: 59.

Return Value

The localtime64() function returns a pointer to the structure result. If the given timeval is out of range, a

NULL pointer is returned and errno is set to EOVERFLOW.

Example that uses localtime64()

This example queries the system clock and displays the local time.

Chapter 2. Library Functions 187

|

|

|

|
|

|

|

|
|

|

|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|

|
|

|

|
|

|

|
|

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)”

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “setlocale() — Set Locale” on page 339

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

localtime_r() — Convert Time (Restartable)

Format

#include <time.h>

struct tm *localtime_r(const time_t *timeval, struct tm *result);

Language Level: XPG4

Threadsafe: Yes

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale.

Description

#include <stdio.h>

#include <time.h>

int main(void)

{

 struct tm *newtime;

 time64_t ltime;

 ltime = time64(<ime);

 newtime = localtime64(<ime);

 printf("The date and time is %s", asctime(newtime));

}

/************** If the local time is 3 p.m. February 15, 2008, **********

************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008

*/

188 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

This function is the restartable version of localtime(). It is the same as localtime() except that it passes

in the place to store the returned structure result.

Return Value

The localtime_r() returns a pointer to the structure result. There is no error return value.

Example that uses localtime_r()

This example queries the system clock and displays the local time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “mktime() — Convert Local Time” on page 218

v “time() — Determine Current Time” on page 411

v “<time.h>” on page 18

localtime64_r() — Convert Time (Restartable)

Format

#include <time.h>

struct tm *localtime64_r(const time64_t *timeval, struct tm *result);

Language Level: ILE C Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale.

Description

#include <time.h>

#include <stdio.h>

int main(void)

{

 struct tm newtime;

 time_t ltime;

 char buf[50];

 ltime=time(<ime);

 localtime_r(<ime, &newtime);

 printf("The date and time is %s", asctime_r(&newtime, buf));

}

/************** If the local time is 3 p.m. February 15, 2008, **********

************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008

*/

Chapter 2. Library Functions 189

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|
|

|

This function is the restartable version of localtime64(). It is the same as localtime64() except that it

passes in the place to store the returned structure result.

Notes:

1. The gmtime64() and localtime64() functions might use a common, statically allocated buffer for the

conversion. Each call to one of these functions might alter the result of the previous call. The

asctime_r(), ctime64_r(), gmtime64_r(), and localtime64_r() functions do not use a common

statically allocated buffer to hold the return string. These functions can be used in place of the

asctime(), ctime64(), gmtime64(), and localtime64() functions if thread safety is desired.

2. Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January 1,

1970 Universal Coordinate Time (UTC).

3. The supported date and time range for this function is 01/01/0001 00:00:00 through 12/31/9999

23:59:59.

Return Value

The localtime64_r() function returns a pointer to the structure result. If the given timeval is out of range,

a NULL pointer is returned and errno is set to EOVERFLOW.

Example that uses localtime64_r()

This example queries the system clock and displays the local time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “localtime64() — Convert Time” on page 187

v “mktime64() — Convert Local Time” on page 220

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

#include <stdio.h>

#include <time.h>

int main(void)

{

 struct tm newtime;

 time64_t ltime;

 char buf[50];

 ltime = time64(<ime);

 localtime64_r(<ime, &newtime);

 printf("The date and time is %s\n", asctime_r(&newtime, buf));

}

/************** If the local time is 3 p.m. February 15, 2008, **********

************************* the output should be: *********************

The date and time is Fri Feb 15 15:00:00 2008

*/

190 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

log() — Calculate Natural Logarithm

Format

#include <math.h>

double log(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The log() function calculates the natural logarithm (base e) of x.

Return Value

The log() function returns the computed value. If x is negative, log()sets errno to EDOM and might

return the value -HUGE_VAL. If x is zero, log() returns the value -HUGE_VAL, and might set errno to

ERANGE.

Example that uses log()

This example calculates the natural logarithm of 1000.0.

Related Information

v “exp() — Calculate Exponential Function” on page 89

v “log10() — Calculate Base 10 Logarithm”

v “pow() — Compute Power” on page 228

v “<math.h>” on page 8

log10() — Calculate Base 10 Logarithm

Format

#include <math.h>

double log10(double x);

Language Level: ANSI

Threadsafe: Yes.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 1000.0, y;

 y = log(x);

 printf("The natural logarithm of %lf is %lf\n", x, y);

}

/******************** Output should be similar to: **************

The natural logarithm of 1000.000000 is 6.907755

*/

Chapter 2. Library Functions 191

Description

The log10() function calculates the base 10 logarithm of x.

Return Value

The log10() function returns the computed value. If x is negative, log10()sets errno to EDOM and might

return the value -HUGE_VAL. If x is zero, the log10() function returns the value -HUGE_VAL, and

might set errno to ERANGE.

Example that uses log10()

This example calculates the base 10 logarithm of 1000.0.

Related Information

v “exp() — Calculate Exponential Function” on page 89

v “log() — Calculate Natural Logarithm” on page 191

v “pow() — Compute Power” on page 228

v “<math.h>” on page 8

_ltoa - Convert Long Integer to String

Format

#include <stdlib.h>

char *_ltoa(long value, char *string, int radix);

Note: The _ltoa function is supported only for C++, not for C.

Language Level: Extension

Threadsafe: Yes.

Description

_ltoa converts the digits of the given long integer value to a character string that ends with a null

character and stores the result in string. The radix argument specifies the base of value; it must be in the

range 2 to 36. If radix equals 10 and value is negative, the first character of the stored string is the minus

sign (-).

Note: The space allocated for string must be large enough to hold the returned string. The function can

return up to 33 bytes including the null character (\0).

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 1000.0, y;

 y = log10(x);

 printf("The base 10 logarithm of %lf is %lf\n", x, y);

}

/******************** Output should be similar to: **************

The base 10 logarithm of 1000.000000 is 3.000000

*/

192 ILE C/C++ Runtime Library Functions V6R1

Return Value

_ltoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.

Example that uses _ltoa()

This example converts the integer value -255L to a decimal, a binary, and a hex value, and stores its

character representation in the array buffer.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char buffer[35];

 char *p;

 p = _ltoa(-255L, buffer, 10);

 printf("The result of _ltoa(-255) with radix of 10 is %s\n", p);

 p = _itoa(-255L, buffer, 2);

 printf("The result of _ltoa(-255) with radix of 2\n is %s\n", p);

 p = _itoa(-255L, buffer, 16);

 printf("The result of _ltoa(-255) with radix of 16 is %s\n", p);

 return 0;

}

The output should be:

 The result of _ltoa(-255) with radix of 10 is -255

 The result of _ltoa(-255) with radix of 2

 is 11111111111111111111111100000001

 The result of _ltoa(-255) with radix of 16 is ffffff01

Related Information:

v “atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49

v “_gcvt - Convert Floating-Point to String” on page 151

v “_itoa - Convert Integer to String” on page 176

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “_ultoa - Convert Unsigned Long Integer to String” on page 419

v “wcstol() — wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 481

v “<stdlib.h>” on page 17

longjmp() — Restore Stack Environment

Format

#include <setjmp.h>

void longjmp(jmp_buf env, int value);

Language Level: ANSI

Threadsafe: Yes.

Description

The longjmp() function restores a stack environment previously saved in env by the setjmp() function.

The setjmp() and longjmp() functions provide a way to perform a non-local goto. They are often used in

signal handlers.

Chapter 2. Library Functions 193

A call to the setjmp() function causes the current stack environment to be saved in env. A subsequent call

to longjmp() restores the saved environment and returns control to a point in the program corresponding

to the setjmp()call. Processing resumes as if the setjmp() call had just returned the given value.

All variables (except register variables) that are available to the function that receives control contain the

values they had when longjmp() was called. The values of register variables are unpredictable.

Nonvolatile auto variables that are changed between calls to the setjmp() and longjmp() functions are

also unpredictable.

Note: Ensure that the function that calls the setjmp() function does not return before you call the

corresponding longjmp() function. Calling longjmp() after the function calling the setjmp()

function returns causes unpredictable program behavior.

The value argument must be nonzero. If you give a zero argument for value, longjmp() substitutes 1 in its

place.

Return Value

The longjmp() function does not use the normal function call and return mechanisms; it has no return

value.

Example that uses longjmp()

This example saves the stack environment at the statement:

When the system first performs the if statement, it saves the environment in mark and sets the condition

to FALSE because the setjmp() function returns a 0 when it saves the environment. The program prints

the message:

The subsequent call to function p() causes it to call the longjmp() function. Control is transferred to the

point in the main() function immediately after the call to the setjmp() function using the environment

saved in the mark variable. This time, the condition is TRUE because -1 is specified in the second

parameter on the longjmp() function call as the return value to be placed on the stack. The example then

performs the statements in the block, prints the message "longjmp() has been called", calls the recover()

function, and leaves the program.

 if(setjmp(mark) != 0) ...

 setjmp has been called

194 ILE C/C++ Runtime Library Functions V6R1

|

|
|
|
|
|
|

Related Information

v “setjmp() — Preserve Environment” on page 338

v “<setjmp.h>” on page 13

malloc() — Reserve Storage Block

Format

#include <stdlib.h>

void *malloc(size_t size);

Language Level: ANSI

Threadsafe: Yes.

Description

The malloc() function reserves a block of storage of size bytes. Unlike the calloc() function, malloc()

does not initialize all elements to 0. The maximum size for a non-Teraspace malloc() is 16711568 bytes.

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf mark;

void p(void);

void recover(void);

int main(void)

{

 if (setjmp(mark) != 0)

 {

 printf("longjmp has been called\n");

 recover();

 exit(1);

 }

 printf("setjmp has been called\n");

 printf("Calling function p()\n");

 p();

 printf("This point should never be reached\n");

}

void p(void)

{

 printf("Calling longjmp() from inside function p()\n");

 longjmp(mark, -1);

 printf("This point should never be reached\n");

}

void recover(void)

{

 printf("Performing function recover()\n");

}

/*******************Output should be as follows: **********************

 setjmp has been called

 Calling function p()

 Calling longjmp() from inside function p()

 longjmp has been called

 Performing function recover()

**/

Chapter 2. Library Functions 195

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should

be allocated and deallocated within the same activation group. You cannot allocate heap storage

within one activation group and deallocate that storage from a different activation group. For more

information about activation groups, see the ILE Concepts manual.

2. To use Teraspace storage instead of heap storage without changing the C source code, specify the

TERASPACE(*YES *TSIFC) parameter on the CRTCMOD compiler command. This maps the malloc()

library function to _C_TS_malloc(), its Teraspace storage counterpart. The maximum amount of

Teraspace storage that can be allocated by each call to _C_TS_malloc() is 2GB - 224, or 2147483424

bytes. If more than 2147483408 bytes are needed on a single request, call _C_TS_malloc64(unsigned

long long int);.

For more information, see the ILE Concepts manual.

3. For current statistics on the teraspace storage being used by MI programs in an activation group, call

the _C_TS_malloc_info function. This function returns information including total bytes, allocated

bytes and blocks, unallocated bytes and blocks, requested bytes, pad bytes, and overhead bytes. To

get more detailed information about the memory structures used by the _C_TS_malloc()

and _C_TS_malloc64() functions, call the _C_TS_malloc_debug function. You can use the information

this function returns to identify memory corruption problems.

4. If the _C_Quickpool_Init() function has been called in the current activation group, then the storage

is retrieved using Quick Pool memory management. See _C_Quickpool_Init() for more information.

Return Value

The malloc() function returns a pointer to the reserved space. The storage space to which the return

value points is suitably aligned for storage of any type of object. The return value is NULL if not enough

storage is available, or if size was specified as zero.

Example that uses malloc()

This example prompts for the number of array entries you want and then reserves enough space in

storage for the entries. If malloc() was successful, the example assigns values to the entries and prints

out each entry; otherwise, it prints out an error.

196 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|

Related Information

v “calloc() — Reserve and Initialize Storage” on page 55

v “_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66

v “_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68

v “_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70

v “free() — Release Storage Blocks” on page 128

v “realloc() — Change Reserved Storage Block Size” on page 264

v “<stdlib.h>” on page 17

mblen() — Determine Length of a Multibyte Character

Format

#include <stdlib.h>

int mblen(const char *string, size_t n);

Language Level: ANSI

Threadsafe: No. Use mbrlen() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function might be affected by the LC_UNI_CTYPE category of the current locale if

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * index; /* index variable */

 int i; /* index variable */

 int num; /* number of entries of the array */

 printf("Enter the size of the array\n");

 scanf("%i", &num);

 /* allocate num entries */

 if ((index = array = (long *) malloc(num * sizeof(long))) != NULL)

 {

 for (i = 0; i < num; ++i) /* put values in array */

 index++ = i; / using pointer notation */

 for (i = 0; i < num; ++i) /* print the array out */

 printf("array[%i] = %i\n", i, array[i]);

 }

 else { /* malloc error */

 perror("Out of storage");

 abort();

 }

}

/******************** Output should be similar to: **************

Enter the size of the array

array[0] = 0

array[1] = 1

array[2] = 2

array[3] = 3

array[4] = 4

*/

Chapter 2. Library Functions 197

|

|

|

|

|

|

|

|

|
|

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The mblen() function determines the length in bytes of the multibyte character pointed to by string. n

represents the maximum number of bytes examined.

Return Value

If string is NULL, the mblen() function returns:

v Non-zero if the active locale allows mixed-byte strings. The function initializes the state variable.

v Zero otherwise.

If string is not NULL, mblen() returns:

v Zero if string points to the null character.

v The number of bytes comprising the multibyte character.

v -1 if string does not point to a valid multibyte character.

Note: The mblen(), mbtowc(), and wctomb() functions use their own statically allocated storage and are

therefore not restartable. However, mbrlen(), mbrtowc(), and wcrtomb() are restartable.

Example that uses mblen()

This example uses mblen() and mbtowc() to convert a multibyte character into a single wide character.

Related Information

v “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

v “mbtowc() — Convert Multibyte Character to a Wide Character” on page 211

v “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 207

v “strlen() — Determine String Length” on page 375

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wctomb() — Convert Wide Character to Multibyte Character” on page 492

v “<stdlib.h>” on page 17

#include <stdio.h>

#include <stdlib.h>

int length, temp;

char string [6] = "w";

wchar_t arr[6];

int main(void)

{

 /* Initialize internal state variable */

 length = mblen(NULL, MB_CUR_MAX);

 /* Set string to point to a multibyte character */

 length = mblen(string, MB_CUR_MAX);

 temp = mbtowc(arr,string,length);

 arr[1] = L’\0’;

 printf("wide character string: %ls\n", arr);

}

198 ILE C/C++ Runtime Library Functions V6R1

|
|

mbrlen() — Determine Length of a Multibyte Character (Restartable)

Format

#include <wchar.h>

size_t mbrlen (const char *s, size_t n, mbstate_t *ps);

Language Level: ANSI

Threadsafe: Yes, if ps is not NULL.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

This function is the restartable version of mblen().

The mbrlen() function determines the length of a multibyte character.

n is the number of bytes (at most) of the multibyte string to examine.

This function differs from its corresponding internal-state multibyte character function in that it has an

extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe the

current conversion state of the associated multibyte character sequence. If ps is a NULL pointer, mbrlen()

behaves like mblen().

mbrlen() is a restartable version of mblen(). In other words, shift-state information is passed as one of the

arguments (ps represents the initial shift) and is updated on exit. With mbrlen(), you can switch from one

multibyte string to another, provided that you have kept the shift-state information.

Return Value

If s is a null pointer and if the active locale allows mixed-byte strings, the mbrlen() function returns

nonzero. If s is a null pointer and if the active locale does not allow mixed-byte strings, zero will be

returned.

If s is not a null pointer, the mbrlen() function returns one of the following:

0 If s is a NULL string (s points to the NULL character).

positive

If the next n or fewer bytes comprise a valid multibyte character. The value returned is the

number of bytes that comprise the multibyte character.

(size_t)-1

If s does not point to a valid multibyte character.

(size_t)-2

If the next n or fewer bytes contribute to an incomplete but potentially valid character and all n

bytes have been processed

Example that uses mbrlen()

 /* This program is compiled with LOCALETYPE(*LOCALE) and */

 /* SYSIFCOPT(*IFSIO) */

Chapter 2. Library Functions 199

|
|
|
|
|

#include <stdio.h>

 #include <stdlib.h>

 #include <locale.h>

 #include <wchar.h>

 #include <errno.h>

 #define LOCNAME "qsys.lib/JA_JP.locale"

 #define LOCNAME_EN "qsys.lib/EN_US.locale"

 int main(void)

 {

 int length, sl = 0;

 char string[10];

 mbstate_t ps = 0;

 memset(string, ’\0’, 10);

 string[0] = 0xC1;

 string[1] = 0x0E;

 string[2] = 0x41;

 string[3] = 0x71;

 string[4] = 0x41;

 string[5] = 0x72;

 string[6] = 0x0F;

 string[7] = 0xC2;

 /* In this first example we will find the length of */

 /* of a multibyte character when the CCSID of locale */

 /* associated with LC_CTYPE is 37. */

 /* For single byte cases the state will always */

 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = mbrlen(string, MB_CUR_MAX, &ps);

 /* In this case length is 1, which is always the case for */

 /* single byte CCSID */

 printf("length = %d, state = %d\n\n", length, ps);

 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 /* Now let’s try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = mbrlen(string, MB_CUR_MAX, &ps);

 /* The first is single byte so length is 1 and */

 /* the state is still the initial state 0 */

 printf("length = %d, state = %d\n\n", length, ps);

 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 sl += length;

 length = mbrlen(&string[sl], MB_CUR_MAX, &ps);

 /* The next character is a mixed byte. Length is 3 to */

 /* account for the shiftout 0x0e. State is */

 /* changed to double byte state. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

200 ILE C/C++ Runtime Library Functions V6R1

length = mbrlen(&string[sl], MB_CUR_MAX, &ps);

 /* The next character is also a double byte character. */

 /* The state is changed to initial state since this was */

 /* the last double byte character. Length is 3 to */

 /* account for the ending 0x0f shiftin. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrlen(&string[sl], MB_CUR_MAX, &ps);

 /* The next character is single byte so length is 1 and */

 /* state remains in initial state. */

 printf("length = %d, state = %d\n\n", length, ps);

 }

 /* The output should look like this:

 length = 1, state = 0

 MB_CUR_MAX: 1

 length = 1, state = 0

 MB_CUR_MAX: 4

 length = 3, state = 2

 length = 3, state = 0

 length = 1, state = 0

 */

 * * * End of File * * *

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbtowc() — Convert Multibyte Character to a Wide Character” on page 211

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)”

v “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206

v “setlocale() — Set Locale” on page 339

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “<locale.h>” on page 7

v “<wchar.h>” on page 18

mbrtowc() — Convert a Multibyte Character to a Wide Character

(Restartable)

Format

#include <wchar.h>

size_t mbrtowc (wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

Language Level: ANSI

Chapter 2. Library Functions 201

Threadsafe:: Yes, if ps is not NULL

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

This function is the restartable version of the mbtowc() function.

If s is a null pointer, the mbrtowc() function determines the number of bytes necessary to enter the initial

shift state (zero if encodings are not state-dependent or if the initial conversion state is described). In this

situation, the value of the pwc parameter will be ignored and the resulting shift state described will be

the initial conversion state.

If s is not a null pointer, the mbrtowc() function determines the number of bytes that are in the multibyte

character (and any leading shift sequences) pointed to by s, produces the value of the corresponding

multibyte character and if pwc is not a null pointer, stores that value in the object pointed to by pwc. If

the corresponding multibyte character is the null wide character, the resulting state will be reset to the

initial conversion state.

This function differs from its corresponding internal-state multibyte character function in that it has an

extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe the

current conversion state of the associated multibyte character sequence. If ps is NULL, this function uses

an internal static variable for the state.

At most, n bytes of the multibyte string are examined.

Return Value

If s is a null pointer, the mbrtowc() function returns the number of bytes necessary to enter the initial shift

state. The value returned must be less than the MB_CUR_MAX macro.

If a conversion error occurs, errno might be set to ECONVERT.

If s is not a null pointer, the mbrtowc() function returns one of the following:

0 If the next n or fewer bytes form the multibyte character that corresponds to the null wide

character.

positive

If the next n or fewer bytes form a valid multibyte character. The value returned is the number of

bytes that constitute the multibyte character.

(size_t)-2

If the next n bytes form an incomplete (but potentially valid) multibyte character, and all n bytes

have been processed. It is unspecified whether this can occur when the value of n is less than the

value of the MB_CUR_MAX macro.

(size_t)-1

If an encoding error occurs (when the next n or fewer bytes do not form a complete and correct

multibyte character). The value of the macro EILSEQ is stored in errno, but the conversion state is

unchanged.

202 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|

Note: When a -2 value is returned, the string could contain redundant shift-out and shift-in characters or

a partial UTF-8 character. To continue processing the multibyte string, increment the pointer by the

value n, and call mbrtowc() again.

Example that uses mbrtowc()

/* This program is compiled with LOCALETYPE(*LOCALE) and */

/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <wchar.h>

#include <errno.h>

#define LOCNAME "/qsys.lib/JA_JP.locale"

#define LOCNAME_EN "/qsys.lib/EN_US.locale"

int main(void)

{

 int length, sl = 0;

 char string[10];

 wchar_t buffer[10];

 mbstate_t ps = 0;

 memset(string, ’\0’, 10);

 string[0] = 0xC1;

 string[1] = 0x0E;

 string[2] = 0x41;

 string[3] = 0x71;

 string[4] = 0x41;

 string[5] = 0x72;

 string[6] = 0x0F;

 string[7] = 0xC2;

 /* In this first example we will convert */

 /* a multibyte character when the CCSID of locale */

 /* associated with LC_CTYPE is 37. */

 /* For single byte cases the state will always */

 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = mbrtowc(buffer, string, MB_CUR_MAX, &ps);

 /* In this case length is 1, and C1 is converted 0x00C1 */

 printf("length = %d, state = %d\n\n", length, ps);

 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 /* Now lets try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = mbrtowc(buffer, string, MB_CUR_MAX, &ps);

 /* The first is single byte so length is 1 and */

 /* the state is still the initial state 0. C1 is converted*/

 /* to 0x00C1 */

 printf("length = %d, state = %d\n\n", length, ps);

 printf("MB_CUR_MAX: %d\n\n", MB_CUR_MAX);

 sl += length;

Chapter 2. Library Functions 203

length = mbrtowc(&buffer[1], &string[sl], MB_CUR_MAX, &ps);

 /* The next character is a mixed byte. Length is 3 to */

 /* account for the shiftout 0x0e. State is */

 /* changed to double byte state. 0x4171 is copied into */

 /* the buffer */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrtowc(&buffer[2], &string[sl], MB_CUR_MAX, &ps);

 /* The next character is also a double byte character. */

 /* The state is changed to initial state since this was */

 /* the last double byte character. Length is 3 to */

 /* account for the ending 0x0f shiftin. 0x4172 is copied */

 /* into the buffer. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = mbrtowc(&buffer[3], &string[sl], MB_CUR_MAX, &ps);

 /* The next character is single byte so length is 1 and */

 /* state remains in initial state. 0xC2 is converted to */

 /* 0x00C2. The buffer now has the value: */

 /* 0x00C14171417200C2 */

 printf("length = %d, state = %d\n\n", length, ps);

}

/* The output should look like this:

length = 1, state = 0

MB_CUR_MAX: 1

length = 1, state = 0

MB_CUR_MAX: 4

length = 3, state = 2

length = 3, state = 0

length = 1, state = 0

 */

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

v “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206

v “setlocale() — Set Locale” on page 339

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “<locale.h>” on page 7

v “<wchar.h>” on page 18

204 ILE C/C++ Runtime Library Functions V6R1

mbsinit() — Test State Object for Initial State

Format

#include <wchar.h>

int mbsinit (const mbstate_t *ps);

Language Level: ANSI

Threadsafe: Yes

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

If ps is not a null pointer, the mbsinit() function specifies whether the pointed to mbstate_t object

describes an initial conversion state.

Return Value

The mbsinit() function returns nonzero if ps is a null pointer or if the pointed to object describes an

initial conversion state. Otherwise, it returns zero.

Example that uses mbsinit()

This example checks the conversion state to see if it is the initial state.

Related Information

v “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206

v “setlocale() — Set Locale” on page 339

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “<locale.h>” on page 7

v “<wchar.h>” on page 18

#include <stdio.h>

#include <wchar.h>

#include <stdlib.h>

main()

{

 char *string = "ABC";

 mbstate_t state = 0;

 wchar_t wc;

 int rc;

 rc = mbrtowc(&wc, string, MB_CUR_MAX, &state);

 if (mbsinit(&state))

 printf("In initial conversion state\n");

}

Chapter 2. Library Functions 205

|
|
|

mbsrtowcs() — Convert a Multibyte String to a Wide Character String

(Restartable)

Format

#include <wchar.h>

size_t mbsrtowcs (wchar_t *dst, const char **src, size_t len,

 mbstate_t *ps);

Language Level: ANSI

Threadsafe: Yes, if ps is not NULL.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

This function is the restartable version of mbstowcs().

The mbsrtowcs() function converts a sequence of multibyte characters that begins in the conversion state

described by ps from the array indirectly pointed to by src into a sequence of corresponding wide

characters. It then stores the converted characters into the array pointed to by dst.

Conversion continues up to and including an ending null character, which is also stored. Conversion will

stop earlier in two cases: when a sequence of bytes are reached that do not form a valid multibyte

character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed

to by dst. Each conversion takes place as if by a call to mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src will be assigned either a null pointer (if

conversion stopped due to reaching an ending null character) or the address just past the last multibyte

character converted. If conversion stopped due to reaching an ending null character, the initial conversion

state is described.

Return Value

If the input string does not begin with a valid multibyte character, an encoding error occurs, the

mbsrtowcs() function stores the value of the macro EILSEQ in errno, and returns (size_t) -1, but the

conversion state will be unchanged. Otherwise, it returns the number of multibyte characters successfully

converted, which is the same as the number of array elements modified when dst is not a null pointer.

If a conversion error occurs, errno might be set to ECONVERT.

Example that uses mbsrtowcs()

206 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|

Also, see the examples for “mbrtowc() — Convert a Multibyte Character to a Wide Character

(Restartable)” on page 201.

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “mbstowcs() — Convert a Multibyte String to a Wide Character String”

v “setlocale() — Set Locale” on page 339

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “<locale.h>” on page 7

v “<wchar.h>” on page 18

mbstowcs() — Convert a Multibyte String to a Wide Character String

Format

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwc, const char *string, size_t n);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <locale.h>

#define SIZE 10

int main(void)

{

 char mbs1[] = "abc";

 char mbs2[] = "\x81\x41" "m" "\x81\x42";

 const char *pmbs1 = mbs1;

 const char *pmbs2 = mbs2;

 mbstate_t ss1 = 0;

 mbstate_t ss2 = 0;

 wchar_t wcs1[SIZE], wcs2[SIZE];

 if (NULL == setlocale(LC_ALL, "/qsys.lib/locale.lib/ja_jp939.locale"))

 {

 printf("setlocale failed.\n");

 exit(EXIT_FAILURE);

 }

 mbsrtowcs(wcs1, &pmbs1, SIZE, &ss1);

 mbsrtowcs(wcs2, &pmbs2, SIZE, &ss2);

 printf("The first wide character string is %ls.\n", wcs1);

 printf("The second wide character string is %ls.\n", wcs2);

 return 0;

}

 /***

 The output should be similar to:

 The first wide character string is abc.

 The second wide character string is Am B.

 ***/

Chapter 2. Library Functions 207

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The mbstowcs() function determines the length of the sequence of the multibyte characters pointed to by

string. It then converts the multibyte character string that begins in the initial shift state into a wide

character string, and stores the wide characters into the buffer that is pointed to by pwc. A maximum of n

wide characters are written.

Return Value

The mbstowcs() function returns the number of wide characters generated, not including any ending null

wide characters. If a multibyte character that is not valid is encountered, the function returns (size_t)-1.

If a conversion error occurs, errno might be set to ECONVERT.

Examples that use mbstowcs()

208 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|

/* This program is compiled with LOCALETYPE(*LOCALEUCS2) and */

/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <wchar.h>

#include <errno.h>

#define LOCNAME "qsys.lib/JA_JP.locale"

#define LOCNAME_EN "qsys.lib/EN_US.locale"

int main(void)

{

 int length, sl = 0;

 char string[10];

 char string2[] = "ABC";

 wchar_t buffer[10];

 memset(string, ’\0’, 10);

 string[0] = 0xC1;

 string[1] = 0x0E;

 string[2] = 0x41;

 string[3] = 0x71;

 string[4] = 0x41;

 string[5] = 0x72;

 string[6] = 0x0F;

 string[7] = 0xC2;

 /* In this first example we will convert */

 /* a multibyte character when the CCSID of locale */

 /* associated with LC_CTYPE is 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string2, 10);

 /* In this case length ABC is converted to UNICODE ABC */

 /* or 0x004100420043. Length will be 3. */

 printf("length = %d\n\n", length);

 /* Now lets try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string, 10);

 /* The buffer now has the value: */

 /* 0x004103A103A30042 length is 4 */

 printf("length = %d\n\n", length);

}

/* The output should look like this:

length = 3

length = 4

 */

Chapter 2. Library Functions 209

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

/* This program is compiled with LOCALETYPE(*LOCALE) and */

/* SYSIFCOPT(*IFSIO) */

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <wchar.h>

#include <errno.h>

#define LOCNAME "qsys.lib/JA_JP.locale"

#define LOCNAME_EN "qsys.lib/EN_US.locale"

int main(void)

{

 int length, sl = 0;

 char string[10];

 char string2[] = "ABC";

 wchar_t buffer[10];

 memset(string, ’\0’, 10);

 string[0] = 0xC1;

 string[1] = 0x0E;

 string[2] = 0x41;

 string[3] = 0x71;

 string[4] = 0x41;

 string[5] = 0x72;

 string[6] = 0x0F;

 string[7] = 0xC2;

 /* In this first example we will convert */

 /* a multibyte character when the CCSID of locale */

 /* associated with LC_CTYPE is 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string2, 10);

 /* In this case length ABC is converted to */

 /* 0x00C100C200C3. Length will be 3. */

 printf("length = %d\n\n", length);

 /* Now lets try a multibyte example. We first must set the *

 /* locale to a multibyte locale. We choose a locale with

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = mbstowcs(buffer, string, 10);

 /* The buffer now has the value: */

 /* 0x00C14171417200C2 length is 4 */

 printf("length = %d\n\n", length);

}

/* The output should look like this:

length = 3

length = 4

 */

210 ILE C/C++ Runtime Library Functions V6R1

v “mbtowc() — Convert Multibyte Character to a Wide Character”

v “setlocale() — Set Locale” on page 339

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcstombs() — Convert Wide-Character String to Multibyte String” on page 483

v “<locale.h>” on page 7

v “<stdlib.h>” on page 17

v “<wchar.h>” on page 18

mbtowc() — Convert Multibyte Character to a Wide Character

Format

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *string, size_t n);

Language Level: ANSI

Threadsafe: No. Use mbrtowc() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The mbtowc() function first determines the length of the multibyte character pointed to by string. It then

converts the multibyte character to a wide character as described in mbstowcs. A maximum of n bytes are

examined.

Return Value

If string is NULL, the mbtowc() function returns:

v Nonzero when the active locale is mixed byte. The function initializes the state variable.

v 0 otherwise.

If string is not NULL, the mbtowc() function returns:

v 0 if string points to the null character

v The number of bytes comprising the converted multibyte character

v -1 if string does not point to a valid multibyte character.

If a conversion error occurs, errno might be set to ECONVERT.

Example that uses mbtowc()

This example uses the mblen() and mbtowc() functions to convert a multibyte character into a single wide

character.

Chapter 2. Library Functions 211

|
|
|
|

|

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 207

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wctomb() — Convert Wide Character to Multibyte Character” on page 492

v “<stdlib.h>” on page 17

memchr() — Search Buffer

Format

#include <string.h>

void *memchr(const void *buf, int c, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

The memchr() function searches the first count bytes of buf for the first occurrence of c converted to an

unsigned character. The search continues until it finds c or examines count bytes.

Return Value

The memchr() function returns a pointer to the location of c in buf. It returns NULL if c is not within the

first count bytes of buf.

Example that uses memchr()

This example finds the first occurrence of “x” in the string that you provide. If it is found, the string that

starts with that character is printed.

#include <stdio.h>

#include <stdlib.h>

#define LOCNAME "qsys.lib/mylib.lib/ja_jp959.locale"

/*Locale created from source JA_JP and CCSID 939 */

int length, temp;

char string [] = "\x0e\x41\x71\x0f";

wchar_t arr[6];

int main(void)

{

 /* initialize internal state variable */

 temp = mbtowc(arr, NULL, 0);

 setlocale (LC_ALL, LOCNAME);

 /* Set string to point to a multibyte character. */

 length = mblen(string, MB_CUR_MAX);

 temp = mbtowc(arr,string,length);

 arr[1] = L’\0’;

 printf("wide character string: %ls",arr);

}

212 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “memcmp() — Compare Buffers”

v “memcpy() — Copy Bytes” on page 214

v “memmove() — Copy Bytes” on page 217

v “wmemchr() —Locate Wide Character in Wide-Character Buffer” on page 498

v “memset() — Set Bytes to Value” on page 218

v “strchr() — Search for Character” on page 359

v “<string.h>” on page 17

memcmp() — Compare Buffers

Format

#include <string.h>

int memcmp(const void *buf1, const void *buf2, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

The memcmp() function compares the first count bytes of buf1 and buf2.

Return Value

The memcmp() function returns a value indicating the relationship between the two buffers as follows:

 Value Meaning

Less than 0 buf1 less than buf2

0 buf1 identical to buf2

Greater than 0 buf1 greater than buf2

Example that uses memcmp()

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 char * result;

 if (argc != 2)

 printf("Usage: %s string\n", argv[0]);

 else

 {

 if ((result = (char *) memchr(argv[1], ’x’, strlen(argv[1]))) != NULL)

 printf("The string starting with x is %s\n", result);

 else

 printf("The letter x cannot be found in the string\n");

 }

}

/******************** Output should be similar to: **************

The string starting with x is xing

*/

Chapter 2. Library Functions 213

This example compares first and second arguments passed to main() to determine which, if either, is

greater.

Related Information

v “memchr() — Search Buffer” on page 212

v “memcpy() — Copy Bytes”

v “wmemcmp() —Compare Wide-Character Buffers” on page 499

v “memmove() — Copy Bytes” on page 217

v “memset() — Set Bytes to Value” on page 218

v “strcmp() — Compare Strings” on page 360

v “<string.h>” on page 17

memcpy() — Copy Bytes

Format

#include <string.h>

void *memcpy(void *dest, const void *src, size_t count);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 int len;

 int result;

 if (argc != 3)

 {

 printf("Usage: %s string1 string2\n", argv[0]);

 }

 else

 {

 /* Determine the length to be used for comparison */

 if (strlen(argv[1]) < strlen(argv[2]))

 len = strlen(argv[1]);

 else

 len = strlen(argv[2]);

 result = memcmp(argv[1], argv[2], len);

 printf("When the first %i characters are compared,\n", len);

 if (result == 0)

 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);

 else if (result < 0)

 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);

 else

 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);

 }

}

/**************** If the program is passed the arguments **************

***************** firststring and secondstring, ************

***************** output should be: ************

When the first 11 characters are compared,

"firststring" is less than "secondstring"

**/

214 ILE C/C++ Runtime Library Functions V6R1

Description

The memcpy() function copies count bytes of src to dest. The behavior is undefined if copying takes place

between objects that overlap. The memmove() function allows copying between objects that might overlap.

Return Value

The memcpy() function returns a pointer to dest.

Example that uses memcpy()

This example copies the contents of source to target.

Related Information

v “memchr() — Search Buffer” on page 212

v “memcmp() — Compare Buffers” on page 213

v “wmemcpy() —Copy Wide-Character Buffer” on page 500

v “memmove() — Copy Bytes” on page 217

v “memset() — Set Bytes to Value” on page 218

v “strcpy() — Copy Strings” on page 364

v “<string.h>” on page 17

memicmp() - Compare Bytes

Format

#include <string.h> // also in <memory.h>

int memicmp(void *buf1, void *buf2, unsigned int cnt);

Note: The memicmp function is available for C++ programs. It is available for C only when the program

defines the __cplusplus__strings__ macro.

Language Level: Extension

Threadsafe: Yes.

#include <string.h>

#include <stdio.h>

#define MAX_LEN 80

char source[MAX_LEN] = "This is the source string";

char target[MAX_LEN] = "This is the target string";

int main(void)

{

 printf("Before memcpy, target is \"%s\"\n", target);

 memcpy(target, source, sizeof(source));

 printf("After memcpy, target becomes \"%s\"\n", target);

}

/********************* Expected output: ************************

Before memcpy, target is "This is the target string"

After memcpy, target becomes "This is the source string"

*/

Chapter 2. Library Functions 215

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The memicmp function compares the first cnt bytes of buf1 and buf2 without regard to the case of letters in

the two buffers. The function converts all uppercase characters into lowercase and then performs the

comparison.

Return Value

The return value of memicmp indicates the result as follows:

Value Meaning

Less than 0 buf1 less than buf2

0 buf1 identical to buf2

Greater than 0 buf1 greater than buf2

Example that uses memicmp()

This example copies two strings that each contain a substring of 29 characters that are the same except

for case. The example then compares the first 29 bytes without regard to case.

#include <stdio.h>

#include <string.h>

char first[100],second[100];

int main(void)

{

 int result;

 strcpy(first, "Those Who Will Not Learn From History");

 strcpy(second, "THOSE WHO WILL NOT LEARN FROM their mistakes");

 printf("Comparing the first 29 characters of two strings.\n");

 result = memicmp(first, second, 29);

 printf("The first 29 characters of String 1 are ");

 if (result < 0)

 printf("less than String 2.\n");

 else

 if (0 == result)

 printf("equal to String 2.\n");

 else

 printf("greater than String 2.\n");

 return 0;

}

The output should be:

Comparing the first 29 characters of two strings.

The first 29 characters of String 1 are equal to String 2

Related Information:

v “memchr() — Search Buffer” on page 212

v “memcmp() — Compare Buffers” on page 213

v “memcpy() — Copy Bytes” on page 214

v “memmove() — Copy Bytes” on page 217

v “memset() — Set Bytes to Value” on page 218

v “strcmp() — Compare Strings” on page 360

v “strcmpi() - Compare Strings Without Case Sensitivity” on page 362

v “stricmp() - Compare Strings without Case Sensitivity” on page 374

216 ILE C/C++ Runtime Library Functions V6R1

|
|

v “strnicmp - Compare Substrings Without Case Sensitivity” on page 382

v “<string.h>” on page 17

memmove() — Copy Bytes

Format

#include <string.h>

void *memmove(void *dest, const void *src, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

The memmove() function copies count bytes of src to dest. This function allows copying between objects that

might overlap as if src is first copied into a temporary array.

Return Value

The memmove() function returns a pointer to dest.

Example that uses memmove()

This example copies the word ″shiny″ from position target + 2 to position target + 8.

Related Information

v “memchr() — Search Buffer” on page 212

v “memcmp() — Compare Buffers” on page 213

v “wmemmove() — Copy Wide-Character Buffer” on page 501

v “memcpy() — Copy Bytes” on page 214

v “memset() — Set Bytes to Value” on page 218

v “strcpy() — Copy Strings” on page 364

v “<string.h>” on page 17

#include <string.h>

#include <stdio.h>

#define SIZE 21

char target[SIZE] = "a shiny white sphere";

int main(void)

{

 char * p = target + 8; /* p points at the starting character

 of the word we want to replace */

 char * source = target + 2; /* start of "shiny" */

 printf("Before memmove, target is \"%s\"\n", target);

 memmove(p, source, 5);

 printf("After memmove, target becomes \"%s\"\n", target);

}

/********************* Expected output: ************************

Before memmove, target is "a shiny white sphere"

After memmove, target becomes "a shiny shiny sphere"

*/

Chapter 2. Library Functions 217

memset() — Set Bytes to Value

Format

#include <string.h>

void *memset(void *dest, int c, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

The memset() function sets the first count bytes of dest to the value c. The value of c is converted to an

unsigned character.

Return Value

The memset() function returns a pointer to dest.

Example that uses memset()

This example sets 10 bytes of the buffer to A and the next 10 bytes to B.

Related Information

v “memchr() — Search Buffer” on page 212

v “memcmp() — Compare Buffers” on page 213

v “memcpy() — Copy Bytes” on page 214

v “memmove() — Copy Bytes” on page 217

v “wmemset() — Set Wide Character Buffer to a Value” on page 502

v “<string.h>” on page 17

mktime() — Convert Local Time

Format

#include <string.h>

#include <stdio.h>

#define BUF_SIZE 20

int main(void)

{

 char buffer[BUF_SIZE + 1];

 char *string;

 memset(buffer, 0, sizeof(buffer));

 string = (char *) memset(buffer,’A’, 10);

 printf("\nBuffer contents: %s\n", string);

 memset(buffer+10, ’B’, 10);

 printf("\nBuffer contents: %s\n", buffer);

}

/******************* Output should be similar to: ***************

Buffer contents: AAAAAAAAAA

Buffer contents: AAAAAAAAAABBBBBBBBBB

*/

218 ILE C/C++ Runtime Library Functions V6R1

#include <time.h>

time_t mktime(struct tm *time);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale.

Description

The mktime() function converts a stored tm structure (assume to be in job local time) pointed to by time,

into a time_t structure suitable for use with other time functions. After the conversion, the time_t

structure will be considered Universal Coordinate Time (UTC). For this conversion, mktime() checks the

current locale setting for local time zone and daylight saving time (DST). If these values are not set in the

current locale, mktime() gets the local time zone and daylight saving time settings from the current job. If

the DST is set in the locale but the time zone information is not, the DST information in the locale is

ignored. mktime() then uses the current time zone information to determine UTC.

The values of some structure elements pointed to by time are not restricted to the ranges shown for

gmtime().

The values of tm_wday and tm_yday passed to mktime() are ignored and are assigned their correct

values on return.

A positive or 0 value for tm_isdst causes mktime() to presume initially that DST, respectively, is or is not

in effect for the specified time. A negative value for tm_isdst causes mktime() to attempt to determine

whether DST is in effect for the specified time.

Return Value

The mktime() function returns Universal Coordinate Time (UTC) having type time_t. The value

(time_t)(-1) is returned if the Universal Coordinate Time cannot be represented.

Example that uses mktime()

This example prints the day of the week that is 40 days and 16 hours from the current date.

Chapter 2. Library Functions 219

|
|

|
|
|

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime64() — Convert Local Time”

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

mktime64() — Convert Local Time

Format

#include <time.h>

time64_t mktime64(struct tm *time);

Language Level: ILE C Extension

Threadsafe: Yes.

#include <stdio.h>

#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday" };

int main(void)

{

 time_t t1, t3;

 struct tm *t2;

 t1 = time(NULL);

 t2 = localtime(&t1);

 t2 -> tm_mday += 40;

 t2 -> tm_hour += 16;

 t3 = mktime(t2);

 printf("40 days and 16 hours from now, it will be a %s \n",

 wday[t2 -> tm_wday]);

}

/******************* Output should be similar to: ***************

40 days and 16 hours from now, it will be a Sunday

*/

220 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

|

|

|
|

|

|

Locale Sensitive: The behavior of this function might be affected by the LC_TOD category of the current

locale.

Description

The mktime64() function converts a stored tm structure (assumed to be in job local time) pointed to by

time, into a time64_t value suitable for use with other time functions. After the conversion, the time64_t

value will be considered Universal Coordinate Time (UTC). For this conversion, mktime64() checks the

current locale settings for the local time zone and daylight saving time (DST). If these values are not set

in the current locale, mktime64() gets the local time zone and DST settings from the current job. If the

DST is set in the locale but the time zone information is not, the DST information in the locale is ignored.

The mktime64() function then uses the time zone information of the current job to determine UTC.

The values of some structure elements pointed to by time are not restricted to the ranges shown for

gmtime64().

The values of tm_wday and tm_yday passed to mktime64() are ignored and are assigned their correct

values on return.

A positive or 0 value for tm_isdst causes mktime() to presume initially that DST, respectively, is or is not

in effect for the specified time. A negative value for tm_isdst causes mktime() to attempt to determine

whether DST is in effect for the specified time.

Note: The supported date and time range for this function is 01/01/1970 00:00:00 through 12/31/9999

23:59:59.

Return Value

The mktime64() function returns Universal Coordinate Time (UTC) having type time64_t. The value

(time_t)(-1) is returned if the Universal Coordinate Time cannot be represented or if the given time is out

of range. If the given time is out of range, errno is set to EOVERFLOW.

Example that uses mktime64()

This example prints the day of the week that is 40 days and 16 hours from the current date.

Chapter 2. Library Functions 221

|
|

|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|

|
|
|

|

|
|

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

modf() — Separate Floating-Point Value

Format

#include <math.h>

double modf(double x, double *intptr);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday" };

int main(void)

{

 time64_t t1, t3;

 struct tm *t2;

 t1 = time64(NULL);

 t2 = localtime64(&t1);

 t2 -> tm_mday += 40;

 t2 -> tm_hour += 16;

 t3 = mktime64(t2);

 printf("40 days and 16 hours from now, it will be a %s \n",

 wday[t2 -> tm_wday]);

}

/******************* Output should be similar to: ***************

40 days and 16 hours from now, it will be a Sunday

*/

222 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Description

The modf() function breaks down the floating-point value x into fractional and integral parts. The signed

fractional portion of x is returned. The integer portion is stored as a double value pointed to by intptr.

Both the fractional and integral parts are given the same sign as x.

Return Value

The modf() function returns the signed fractional portion of x.

Example that uses modf()

This example breaks the floating-point number −14.876 into its fractional and integral components.

Related Information

v “fmod() — Calculate Floating-Point Remainder” on page 108

v “frexp() — Separate Floating-Point Value” on page 132

v “ldexp() — Multiply by a Power of Two” on page 178

v “<math.h>” on page 8

nextafter() — nextafterl()— nexttoward() — nexttowardl() — Calculate

the Next Representable Floating-Point Value

Format

#include <math.h>

double nextafter(double x, double y);

long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);

long double nexttowardl(long double x, long double y);

Language Level: ANSI

Threadsafe: Yes.

Description

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, d;

 x = -14.876;

 y = modf(x, &d);

 printf("x = %lf\n", x);

 printf("Integral part = %lf\n", d);

 printf("Fractional part = %lf\n", y);

}

/**************** Output should be similar to: ******************

x = -14.876000

Integral part = -14.000000

Fractional part = -0.876000

*/

Chapter 2. Library Functions 223

|

|

|

|
|
|
|
|

|

|

|

The nextafter(), nextafterl(), nexttoward(), and nexttowardl() functions calculate the next

representable value after x in the direction of y.

Return Value

The nextafter(), nextafterl(), nexttoward(), and nexttowardl() functions return the next representable

value after x in the direction of y. If x is equal to y, they return y. If x or y is NaN (Not a Number), NaN

is returned and errno is set to EDOM. If x is the largest finite value and the result is infinite or not

representable, HUGE_VAL is returned and errno is set to ERANGE.

Example that uses nextafter(), nextafterl(), nexttoward(), and nexttowardl()

This example converts a floating-point value to the next greater representable value and next smaller

representable value. It prints out the converted values.

Related Information

v “ceil() — Find Integer >=Argument” on page 61

v “floor() —Find Integer <=Argument” on page 107

v “frexp() — Separate Floating-Point Value” on page 132

v “modf() — Separate Floating-Point Value” on page 222

v “<math.h>” on page 8

nl_langinfo() —Retrieve Locale Information

Format

#include <langinfo.h>

#include <nl_types.h>

char *nl_langinfo(nl_item item);

Language Level: XPG4

Threadsafe: No.

#include <stdio.h>

#include <math.h>

int main(void)

{

 double x, y;

 long double ld;

 x = nextafter(1.234567899, 10.0);

 printf("nextafter 1.234567899 is %#19.17g\n" x);

 ld = nextafterl(1.234567899, -10.0);

 printf("nextafterl 1.234567899 is %#19.17g\n" ld);

 x = nexttoward(1.234567899, 10.0);

 printf("nexttoward 1.234567899 is %#19.17g\n" x);

 ld = nexttowardl(1.234567899, -10.0);

 printf("nexttowardl 1.234567899 is %#19.17g\n" ld);

}

/***************** Output should be similar to: *****************

nextafter 1.234567899 is 1.2345678990000002

nextafterl 1.234567899 is 1.2345678989999997

nexttoward 1.234567899 is 1.2345678990000002

nexttowardl 1.234567899 is 1.2345678989999997

*/

224 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

|
|
|

|

|

|

|

|

|

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE, LC_MESSAGES,

LC_MONETARY, LC_NUMERIC, and LC_TIME categories of the current locale. This function is not

available when LOCALETYPE(*CLD) is specified on the compilation command. For more information,

see “Understanding CCSIDs and Locales” on page 524.

Description

The nl_langinfo() function retrieves from the current locale the string that describes the requested

information specified by item.

The retrieval of the following information from the current locale is supported:

 Item Explanation

CODESET CCSID of locale in character form

D_T_FMT string for formatting date and time

D_FMT date format string

T_FMT time format string

T_FMT_AMPM a.m. or p.m. time format string

AM_STR Ante Meridian affix

PM_STR Post Meridian affix

DAY_1 name of the first day of the week (for example, Sunday)

DAY_2 name of the second day of the week (for example, Monday)

DAY_3 name of the third day of the week (for example, Tuesday)

DAY_4 name of the fourth day of the week (for example, Wednesday)

DAY_5 name of the fifth day of the week (for example, Thursday)

DAY_6 name of the sixth day of the week (for example, Friday)

DAY_7 name of the seventh day of the week (for example, Saturday)

ABDAY_1 abbreviated name of the first day of the week

ABDAY_2 abbreviated name of the second day of the week

ABDAY_3 abbreviated name of the third day of the week

ABDAY_4 abbreviated name of the fourth day of the week

ABDAY_5 abbreviated name of the fifth day of the week

ABDAY_6 abbreviated name of the sixth day of the week

ABDAY_7 abbreviated name of the seventh day of the week

MON_1 name of the first month of the year

MON_2 name of the second month of the year

MON_3 name of the third month of the year

MON_4 name of the fourth month of the year

MON_5 name of the fifth month of the year

MON_6 name of the sixth month of the year

MON_7 name of the seventh month of the year

MON_8 name of the eighth month of the year

MON_9 name of the ninth month of the year

MON_10 name of the tenth month of the year

MON_11 name of the eleventh month of the year

Chapter 2. Library Functions 225

|
|
|
|

MON_12 name of the twelfth month of the year

ABMON_1 abbreviated name of the first month of the year

ABMON_2 abbreviated name of the second month of the year

ABMON_3 abbreviated name of the third month of the year

ABMON_4 abbreviated name of the fourth month of the year

ABMON_5 abbreviated name of the fifth month of the year

ABMON_6 abbreviated name of the sixth month of the year

ABMON_7 abbreviated name of the seventh month of the year

ABMON_8 abbreviated name of the eighth month of the year

ABMON_9 abbreviated name of the ninth month of the year

ABMON_10 abbreviated name of the tenth month of the year

ABMON_11 abbreviated name of the eleventh month of the year

ABMON_12 abbreviated name of the twelfth month of the year

ERA era description segments

ERA_D_FMT era date format string

ERA_D_T_FMT era date and time format string

ERA_T_FMT era time format string

ALT_DIGITS alternative symbols for digits

RADIXCHAR radix character

THOUSEP separator for thousands

YESEXPR affirmative response expression

NOEXPR negative response expression

YESSTR affirmative response for yes/no queries

NOSTR negative response for yes/no queries

CRNCYSTR currency symbol, preceded by ’−’ if the symbol should appear before the value, ’+’ if

the symbol should appear after the value, or ’.’ if the symbol should replace the

radix character

Returned Value

The nl_langinfo() function returns a pointer to a null-ended string containing information concerning

the active language or cultural area. The active language or cultural area is determined by the most

recent setlocale() call. The array pointed to by the returned value is modified by subsequent calls to the

function. The array should not be changed by the user’s program.

If the item is not valid, the function returns a pointer to an empty string.

Example that uses nl_langinfo()

This example retrieves the name of the codeset using the nl_langinfo() function.

226 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “localeconv() — Retrieve Information from the Environment” on page 181

v “setlocale() — Set Locale” on page 339

v “<langinfo.h>” on page 7

v “<nl_types.h>” on page 9

perror() — Print Error Message

Format

#include <stdio.h>

void perror(const char *string);

Language Level: ANSI

Threadsafe: Yes.

Description

The perror() function prints an error message to stderr. If string is not NULL and does not point to a

null character, the string pointed to by string is printed to the standard error stream, followed by a colon

and a space. The message associated with the value in errno is then printed followed by a new-line

character.

To produce accurate results, you should ensure that the perror() function is called immediately after a

library function returns with an error; otherwise, subsequent calls might alter the errno value.

Return Value

There is no return value.

The value of errno can be set to:

Value Meaning

EBADDATA

The message data is not valid.

EBUSY

The record or file is in use.

#include <langinfo.h>

#include <locale.h>

#include <nl_types.h>

#include <stdio.h>

int main(void)

{

 printf("Current codeset is %s\n", nl_langinfo(CODESET));

 return 0;

}

/**

 The output should be similar to:

 Current codeset is 37

**/

Chapter 2. Library Functions 227

ENOENT

The file or library cannot be found.

EPERM

Insufficient authorization for access.

ENOREC

Record not found.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses perror()

This example tries to open a stream. If fopen() fails, the example prints a message and ends the program.

Related Information

v “clearerr() — Reset Error Indicators” on page 62

v “ferror() — Test for Read/Write Errors” on page 95

v “strerror() — Set Pointer to Runtime Error Message” on page 367

v “<stdio.h>” on page 15

pow() — Compute Power

Format

#include <math.h>

double pow(double x, double y);

Language Level: ANSI

Threadsafe: Yes.

Description

The pow() function calculates the value of x to the power of y.

Return Value

If y is 0, the pow() function returns the value 1. If x is 0 and y is negative, the pow() function sets errno to

EDOM and returns 0. If both x and y are 0, or if x is negative and y is not an integer, the pow() function

sets errno to EDOM, and returns 0. The errno variable can also be set to ERANGE. If an overflow results,

the pow() function returns +HUGE_VAL for a large result or -HUGE_VAL for a small result.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *fh;

 if ((fh = fopen("mylib/myfile","r")) == NULL)

 {

 perror("Could not open data file");

 abort();

 }

}

228 ILE C/C++ Runtime Library Functions V6R1

Example that uses pow()

This example calculates the value of 23.

Related Information

v “exp() — Calculate Exponential Function” on page 89

v “log() — Calculate Natural Logarithm” on page 191

v “log10() — Calculate Base 10 Logarithm” on page 191

v “sqrt() — Calculate Square Root” on page 353

v “<math.h>” on page 8

printf() — Print Formatted Characters

Format

#include <stdio.h>

int printf(const char *format-string, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The printf() function formats and prints a series of characters and values to the standard output stream

stdout. Format specifications, beginning with a percent sign (%), determine the output format for any

argument-list following the format-string. The format-string is a multibyte character string beginning and

ending in its initial shift state.

The format-string is read left to right. When the first format specification is found, the value of the first

argument after the format-string is converted and printed according to the format specification. The

second format specification causes the second argument after the format-string to be converted and

printed, and so on through the end of the format-string. If there are more arguments than there are format

specifications, the extra arguments are evaluated and ignored. The results are undefined if there are not

enough arguments for all the format specifications.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = 2.0;

 y = 3.0;

 z = pow(x,y);

 printf("%lf to the power of %lf is %lf\n", x, y, z);

}

/***************** Output should be similar to: *****************

2.000000 to the power of 3.000000 is 8.000000

*/

Chapter 2. Library Functions 229

|
|
|
|

|
|
|
|
|
|

A format specification has the following form:

 Conversions can be applied to the nth argument after the format-string in the argument list, rather than to

the next unused argument. In this case, the conversion character % is replaced by the sequence %n$,

where n is a decimal integer in the range 1 through NL_ARGMAX, giving the position of the argument

in the argument list. This feature provides for the definition of format strings that select arguments in an

order appropriate to specific languages.

Alternative format specification has the following form:

As an alternative, specific entries in the argument-list can be assigned by using the format specification

outlined in the preceding diagram. This format specification and the previous format specification cannot

be mixed in the same call to printf(). Otherwise, unpredictable results might occur.

The arg-number is a positive integer constant where 1 refers to the first entry in the argument-list.

Arg-number cannot be greater than the number of entries in the argument-list, or else the results are

undefined. Arg-number also may not be greater than NL_ARGMAX.

In format strings containing the %n$ form of conversion specifications, numbered arguments in the

argument list can be referenced from the format string as many times as required.

In format strings containing the %n$ form of a conversion specification, a field width or precision may be

indicated by the sequence *m$, where m is a decimal integer in the range 1 thru NL_ARGMAX giving

the position in the argument list (after the format argument) of an integer argument containing the field

width or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format-string can contain either numbered argument specifications (that is, %n$ and *m$), or

unnumbered argument specifications (that is, % and *), but normally not both. The only exception to this

is that %% can be mixed with the %n$ form. The results of mixing numbered and unnumbered argument

specifications in a format-string string are undefined. When numbered argument specifications are used,

specifying the nth argument requires that all the leading arguments, from the first to the (n-1)th, are

specified in the format string.

Each field of the format specification is a single character or number signifying a particular format

option. The type character, which appears after the last optional format field, determines whether the

�� %

flags

width

.

precision

h

L

l

ll

H

D

DD

 type ��

�� % arg-number$

flags

width

.

precision

h

L

l

ll

H

D

DD

 type ��

230 ILE C/C++ Runtime Library Functions V6R1

|||||||

|||||||

|
|
|
|
|

|
|
|

associated argument is interpreted as a character, a string, a number, or pointer. The simplest format

specification contains only the percent sign and a type character (for example, %s).

The following optional fields control other aspects of the formatting:

Field Description

flags Justification of output and printing of signs, blanks, decimal points, octal, and hexadecimal

prefixes, and the semantics for wchar_t precision unit.

width Minimum number of bytes output.

precision

See Table 4 on page 235.

h, l, ll, L, H, D, DD

Size of argument expected:

h A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a short int or

unsigned short int.

l A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a long int or

unsigned long int.

ll A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a long long

int or unsigned long long int.

L A prefix with e, E, f, F, g, or G types that specifies that the argument is long double.

H A prefix with e, E, f, F, g, or G types that specifies that the argument is _Decimal32.

D A prefix with e, E, f, F, g, or G types that specifies that the argument is _Decimal64.

DD A prefix with e, E, f, F, g, or G types that specifies that the argument is _Decimal128.

Each field of the format specification is discussed in detail below. If a percent sign (%) is followed by a

character that has no meaning as a format field, the character is simply copied to stdout. For example, to

print a percent sign character, use %%.

The type characters and their meanings are given in the following table:

 Character Argument Output Format

d, i Integer Signed decimal integer.

u Integer Unsigned decimal integer.

o Integer Unsigned octal integer.

x Integer Unsigned hexadecimal integer, using abcdef.

X Integer Unsigned hexadecimal integer, using ABCDEF.

D(n,p) Packed decimal It has the format [−] dddd.dddd where the number of digits after the

decimal point is equal to the precision of the specification. If the

precision is missing, the default is p; if the precision is zero, and the #

flag is not specified, no decimal point character appears. If the n and

the p are *, an argument from the argument list supplies the value. n

and p must precede the value being formatted in the argument list. At

least one character appears before a decimal point. The value is

rounded to the appropriate number of digits.

f Floating-point Signed value having the form [-]dddd.dddd, where dddd is one or more

decimal digits. The number of digits before the decimal point depends

on the magnitude of the number. The number of digits after the

decimal point is equal to the requested precision.2

Chapter 2. Library Functions 231

|
|

||
|

||
|

||
|

||

||

||

||

|
|
|
|

Character Argument Output Format

F Floating-point Identical to the f format except that uppercase alphabetic characters

are used instead of lowercase alphabetic characters.2

e Floating-point Signed value having the form [-]d.dddd e[sign]ddd, where d is a

single-decimal digit, dddd is one or more decimal digits, ddd is 2 or 4

decimal digits, and sign is + or −.2

E Floating-point Identical to the e format except that uppercase alphabetic characters

are used instead of lowercase alphabetic characters.2

g Floating-point Signed value printed in f or e format. The e format is used only when

the exponent of the value is less than -4 or greater than precision.

Trailing zeros are truncated, and the decimal point appears only if one

or more digits follow it.2

G Floating-point Identical to the g format except that uppercase alphabetic characters

are used instead of lowercase alphabetic characters.2

c Character (byte) Single character.

s String Characters (bytes) printed up to the first null character (\0) or until

precision is reached.

n Pointer to integer Number of characters (bytes) successfully written so far to the stream

or buffer; this value is stored in the integer whose address is given as

the argument.

p Pointer Pointer converted to a sequence of printable characters. It can be one

of the following:

v space pointer

v system pointer

v invocation pointer

v procedure pointer

v open pointer

v suspend pointer

v data pointer

v label pointer

lc or C Wide Character The (wchar_t) character is converted to a multibyte character as if by a

call to wctomb(), and this character is printed out.1

ls or S Wide Character The (wchar_t) characters up to the first (wchar_t) null character (L\0),

or until precision is reached, are converted to multibyte characters, as

if by a call to wcstombs(), and these characters are printed out. If the

argument is a null string, (null) is printed.1

Notes:

1. See the documentation for the wctomb() function or the documentation for the wcstombs() function for

more information. You can also find additional information in “Wide Characters” on page 527.

2. If the H, D, or DD format size specifiers are not used, only 15 significant digits of output are

guaranteed.

The following list shows the format of the printed values for i5/OS pointers, and gives a brief description

of the components of the printed values.

Space pointer: SPP:Context:Object:Offset:AG

 Context: type, subtype and name of the context

 Object: type, subtype and name of the object

 Offset: offset within the space

232 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|
|

|
|

|
|
|
|

|
|

|

|
|

|
|

AG: Activation group ID

System pointer: SYP:Context:Object:Auth:Index:AG

 Context: type, subtype and name of the context

 Object: type, subtype and name of the object

 Auth: authority

 Index: Index associated with the pointer

 AG: Activation group ID

Invocation pointer: IVP:Index:AG

 Index: Index associated with the pointer

 AG: Activation group ID

Procedure pointer: PRP:Index:AG

 Index: Index associated with the pointer

 AG: Activation group ID

Suspend pointer: SUP:Index:AG

 Index: Index associated with the pointer

 AG: Activation group ID

Data pointer: DTP:Index:AG

 Index: Index associated with the pointer

 AG: Activation group ID

Label pointer: LBP:Index:AG

 Index: Index associated with the pointer

 AG: Activation group ID

NULL pointer: NULL

The following restrictions apply to pointer printing and scanning on the i5/OS operating system:

v If a pointer is printed out and scanned back from the same activation group, the scanned back pointer

will be compared equal to the pointer printed out.

v If a scanf() family function scans a pointer that was printed out by a different activation group, the

scanf() family function will set the pointer to NULL.

v If a pointer is printed out in a Teraspace environment, just the hexadecimal value of the pointer is

printed out. These results are the same as when using %#p.

See the WebSphere Development Studio: ILE C/C++ Programmer’s Guide for more information about using

i5/OS pointers.

If a floating-point value of INFINITY or Not-a-Number (NaN) is formatted using the e, f, or g format, the

output string is infinity or nan. If a floating-point value of INFINITY or Not-A-Number (NaN) is

formatted using the E, F, or G format, the output string is INFINITY or NAN.

The flag characters and their meanings are as follows (notice that more than one flag can appear in a

format specification):

Chapter 2. Library Functions 233

|
|
|

Flag Meaning Default

- Left-justify the result within the field width. Right-justify.

+ Prefix the output value with a sign (+ or −) if the output value is

of a signed type.

Sign appears only for

negative signed values

(−).

blank(' ') Prefix the output value with a blank if the output value is signed

and positive. The + flag overrides the blank flag if both appear,

and a positive signed value will be output with a sign.

No blank.

When used with the o, x, or X formats, the # flag prefixes any

nonzero output value with 0, 0x, or 0X, respectively.

No prefix.

When used with the f, F, D(n,p), e, or E formats, the # flag forces

the output value to contain a decimal point in all cases.

Decimal point appears

only if digits follow it.

When used with the g or G formats, the # flag forces the output

value to contain a decimal point in all cases and prevents the

truncation of trailing zeros.

Decimal point appears

only if digits follow it;

trailing zeros are

truncated.

When used with the ls or S format, the # flag causes precision to

be measured in characters, regardless of the size of the character.

For example, if single-byte characters are being printed, a precision

of 4 would result in 4 bytes being printed. If double-byte

characters are being printed, a precision of 4 would result in 8

bytes being printed.

Precision indicates the

maximum number of

bytes to be output.

When used with the p format, the # flag converts the pointer to

hex digits. These hex digits cannot be converted back into a

pointer, unless in a Teraspace environment.

Pointer converted to a

sequence of printable

characters.

0 When used with the d, i, D(n,p) o, u, x, X, e, E, f, F, g, or G

formats, the 0 flag causes leading 0s to pad the output to the field

width. The 0 flag is ignored if precision is specified for an integer

or if the − flag is specified.

Space padding. No

space padding for

D(n,p).

The # flag should not be used with c, lc, d, i, u, or s types.

Width is a nonnegative decimal integer controlling the minimum number of characters printed. If the

number of characters (bytes) in the output value is less than the specified width, blanks are added on the

left or the right (depending on whether the - flag is specified) until the minimum width is reached.

Width never causes a value to be truncated; if the number of characters (bytes) in the output value is

greater than the specified width, or width is not given, all characters of the value are printed (subject to

the precision specification).

For the ls or S type, width is specified in bytes. If the number of bytes in the output value is less than the

specified width, single-byte blanks are added on the left or the right (depending on whether the - flag is

specified) until the minimum width is reached.

The width specification can be an asterisk (*), in which case an argument from the argument list supplies

the value. The width argument must precede the value being formatted in the argument list.

Precision is a nonnegative decimal integer preceded by a period, which specifies the number of characters

to be printed or the number of decimal places. Unlike the width specification, the precision can cause

truncation of the output value or rounding of a floating-point or packed decimal value.

The precision specification can be an asterisk (*), in which case an argument from the argument list

supplies the value. The precision argument must precede the value being formatted in the argument list.

234 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

The interpretation of the precision value and the default when the precision is omitted depend on the type,

as shown in the following table:

 Table 4. Values of Precision

Type Meaning Default

 i

 d

 u

 o

 x

 X

Precision specifies the minimum number of digits to be

printed. If the number of digits in the argument is less than

precision, the output value is padded on the left with zeros.

The value is not truncated when the number of digits

exceeds precision.

If precision is 0 or omitted

entirely, or if the period (.)

appears without a number

following it, the precision is set

to 1.

 f

 F

 D(n,p)

 e

 E

Precision specifies the number of digits to be printed after the

decimal point. The last digit printed is rounded.

Default precision for f, F, e and

E is six. Default precision for

D(n,p) is p. If precision is 0 or

the period appears without a

number following it, no

decimal point is printed.

 g

 G

Precision specifies the maximum number of significant digits

printed.

All significant digits are

printed. Default precision is

six.

 c No effect. The character is printed.

 lc No effect. The wchar_t character is

converted and resulting

multibyte character is printed.

 s Precision specifies the maximum number of characters (bytes)

to be printed. Characters (bytes) in excess of precision are not

printed.

Characters are printed until a

null character is encountered.

 ls Precision specifies the maximum number of bytes to be

printed. Bytes in excess of precision are not printed; however,

multibyte integrity is always preserved.

wchar_t characters are

converted and resulting

multibyte characters are

printed.

Return Value

The printf() function returns the number of bytes printed. The value of errno may be set to:

Value Meaning

EBADMODE

The file mode that is specified is not valid.

ECONVERT

A conversion error occurred.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

EILSEQ

An invalid multibyte character sequence was encountered.

EPUTANDGET

An illegal write operation occurred after a read operation.

ESTDOUT

stdout cannot be opened.

Chapter 2. Library Functions 235

|
|
|
|
|
|

|
|
|

Note: The radix character for the printf() function is locale sensitive. The radix character is the decimal

point to be used for the # flag character of the format string parameter for the format types f, F,

D(n,p), e, E, g, and G.

Example that uses printf()

This example prints data in a variety of formats.

Example that uses printf()

 #include <stdio.h>

 #include <stdlib.h>

 #include <locale.h>

 /* This program is compiled with LOCALETYPE(*LOCALEUCS2) and */

 /* SYSIFCOPT(*IFSIO) */

 /* We will assume the locale setting is the same as the CCSID of the */

 /* job. We will also assume any files involved have a CCSID of */

 /* 65535 (no convert). This way if printf goes to the screen or */

 /* a file the output will be the same. */

 int main(void)

 {

 wchar_t wc = 0x0058; /* UNICODE X */

 wchar_t ws[4];

 setlocale(LC_ALL,

 "/QSYS.LIB/EN_US.LOCALE"); /* a CCSID 37 locale */

 ws[0] = 0x0041; /* UNICODE A */

 ws[1] = (wchar_t)0x0042; /* UNICODE B */

 ws[2] = (wchar_t)0x0043; /* UNICODE C */

 ws[3] = (wchar_t)0x0000;

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char ch = ’h’, *string = "computer";

 int count = 234, hex = 0x10, oct = 010, dec = 10;

 double fp = 251.7366;

 wchar_t wc = (wchar_t)0x0058;

 wchar_t ws[4];

 printf("1234567890123%n4567890123456789\n\n", &count);

 printf("Value of count should be 13; count = %d\n\n", count);

 printf("%10c%5c\n", ch, ch);

 printf("%25s\n%25.4s\n\n", string, string);

 printf("%f %.2f %e %E\n\n", fp, fp, fp, fp);

 printf("%i %i %i\n\n", hex, oct, dec);

}

/***************** Output should be similar to: *****************

234 +234 000234 EA ea 352

12345678901234567890123456789

Value of count should be 13; count = 13

 h h

 computer

 comp

251.736600 251.74 2.517366e+02 2.517366E+02

16 8 10

***/

236 ILE C/C++ Runtime Library Functions V6R1

|
|
|

/* The output displayed is CCSID 37 */

 printf("%lc %ls\n\n",wc,ws);

 printf("%lc %.2ls\n\n",wc,ws);

 /* Now let’s try a mixed-byte CCSID example */

 /* You would need a device that can handle mixed bytes to */

 /* display this correctly. */

 setlocale(LC_ALL,

 "/QSYS.LIB/JA_JP.LOCALE");/* a CCSID 5026 locale */

 /* big A means an A that takes up 2 bytes on the screen */

 /* It will look bigger then single byte A */

 ws[0] = (wchar_t)0xFF21; /* UNICODE big A */

 ws[1] = (wchar_t)0xFF22; /* UNICODE big B */

 ws[2] = (wchar_t)0xFF23; /* UNICODE big C */

 ws[3] = (wchar_t)0x0000;

 wc = 0xff11; /* UNICODE big 1 */

 printf("%lc %ls\n\n",wc,ws);

 /* The output of this printf is not shown below and it */

 /* will differ depending on the device you display it on,*/

 /* but if you looked at the string in hex it would look */

 /* like this: 0E42F10F404040400E42C142C242C30F */

 /* 0E is shift out, 0F is shift in, and 42F1 is the */

 /* big 1 in CCSID 5026 */

 printf("%lc %.4ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */

 /* The hex would look like: */

 /* 0E42F10F404040400E42C10F */

 /* Since the precision is in bytes we only get 4 bytes */

 /* of the string. */

 printf("%lc %#.2ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */

 /* The hex would look like: */

 /* 0E42F10F404040400E42C142C20F */

 /* The # means precision is in characters reguardless */

 /* of size. So we get 2 characters of the string. */

 }

 /***************** Output should be similar to: *****************

 X ABC

 X AB

 ***/

Example that uses printf()

 #include <stdio.h>

 #include <stdlib.h>

 #include <locale.h>

 /* This program is compile LOCALETYPE(*LOCALE) and */

 /* SYSIFCOPT(*IFSIO) */

 int main(void)

 {

 wchar_t wc = (wchar_t)0x00C4; /* D */

 wchar_t ws[4];

 ws[0] = (wchar_t)0x00C1; /* A */

 ws[1] = (wchar_t)0x00C2; /* B */

 ws[2] = (wchar_t)0x00C3; /* C */

Chapter 2. Library Functions 237

ws[3] = (wchar_t)0x0000;

 /* The output displayed is CCSID 37 */

 printf("%lc %ls\n\n",wc,ws);

 /* Now let’s try a mixed-byte CCSID example */

 /* You would need a device that can handle mixed bytes to */

 /* display this correctly. */

 setlocale(LC_ALL,

 "/QSYS.lib/JA_JP.LOCALE"); /* a CCSID 5026 locale */

 /* big A means an A that takes up 2 bytes on the screen */

 /* It will look bigger than single byte A */

 ws[0] = (wchar_t)0x42C1; /* big A */

 ws[1] = (wchar_t)0x42C2; /* big B */

 ws[2] = (wchar_t)0x42C3; /* big C */

 ws[3] = (wchar_t)0x0000;

 wc = 0x42F1; /* big 1 */

 printf("%lc %ls\n\n",wc,ws);

 /* The output of this printf is not shown below and it */

 /* will differ depending on the device you display it on,*/

 /* but if you looked at the string in hex it would look */

 /* like this: 0E42F10F404040400E42C142C242C30F */

 /* 0E is shift out, 0F is shift in, and 42F1 is the */

 /* big 1 in CCSID 5026 */

 printf("%lc %.4ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */

 /* The hex would look like: */

 /* 0E42F10F404040400E42C10F */

 /* Since the precision is in bytes we only get 4 bytes */

 /* of the string. */

 printf("%lc %#.2ls\n\n",wc,ws);

 /* The output of this printf is not shown below either. */

 /* The hex would look like: */

 /* 0E42F10F404040400E42C142C20F */

 /* The # means precision is in characters regardless */

 /* of size. So we get 2 characters of the string. */

 }

 /***************** Output should be similar to: *****************

 D ABC

 ***/

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “fscanf() — Read Formatted Data” on page 132

v “scanf() — Read Data” on page 330

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “sscanf() — Read Data” on page 355

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “vsprintf() — Print Argument Data to Buffer” on page 436

238 ILE C/C++ Runtime Library Functions V6R1

v “wprintf() — Format Data as Wide Characters and Print” on page 503

v “<stdio.h>” on page 15

putc() – putchar() — Write a Character

Format

#include <stdio.h>

int putc(int c, FILE *stream);

int putchar(int c);

Language Level: ANSI

Threadsafe: No. #undef putc or #undef putchar allows the putc or putchar function to be called instead

of the macro version of these functions. The functions are threadsafe.

Description

The putc() function converts c to unsigned char and then writes c to the output stream at the current

position. The putchar() is equivalent to putc(c, stdout).

The putc() function can be defined as a macro so the argument can be evaluated multiple times.

The putc() and putchar() functions are not supported for files opened with type=record.

Return Value

The putc() and putchar() functions return the character written. A return value of EOF indicates an

error.

The value of errno may be set to:

Value Meaning

ECONVERT

A conversion error occurred.

EPUTANDGET

An illegal write operation occurred after a read operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses putc()

This example writes the contents of a buffer to a data stream. In this example, the body of the for

statement is null because the example carries out the writing operation in the test expression.

Chapter 2. Library Functions 239

Related Information

v “fputc() — Write Character” on page 118

v “fwrite() — Write Items” on page 146

v “getc() – getchar() — Read a Character” on page 152

v “puts() — Write a String” on page 241

v “putwc() — Write Wide Character” on page 242

v “putwchar() — Write Wide Character to stdout” on page 244

v “<stdio.h>” on page 15

putenv() — Change/Add Environment Variables

Format

#include <stdlib.h>

int putenv(const char *varname);

Language Level: XPG4

Threadsafe: Yes

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The putenv() function sets the value of an environment variables by altering an existing variable or

creating a new one. The varname parameter points to a string of the form var=x, where x is the new value

for the environment variable var.

The name cannot contain a blank or an equal (=) symbol. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. Similarly,

 PATH=NAME=/my_lib/joe_user

#include <stdio.h>

#include <string.h>

#define LENGTH 80

int main(void)

{

 FILE *stream = stdout;

 int i, ch;

 char buffer[LENGTH + 1] = "Hello world";

 /* This could be replaced by using the fwrite routine */

 for (i = 0;

 (i < strlen(buffer)) && ((ch = putc(buffer[i], stream)) != EOF);

 ++i);

}

/******************** Expected output: **************************

Hello world

*/

240 ILE C/C++ Runtime Library Functions V6R1

|

|
|

|
|
|

is not valid because of the equal symbol between PATH and NAME. The system interprets all characters

following the first equal symbol as being the value of the environment variable.

Return Value

The putenv() function returns 0 is successful. If putenv() fails then -1 is returned and errno is set to

indicate the error.

Example that uses putenv()

Related Information

v “getenv() — Search for Environment Variables” on page 154

v “<stdlib.h>” on page 17

puts() — Write a String

Format

#include <stdio.h>

int puts(const char *string);

Language Level: ANSI

Threadsafe: Yes.

Description

The puts() function writes the given string to the standard output stream stdout; it also appends a

new-line character to the output. The ending null character is not written.

Return Value

The puts() function returns EOF if an error occurs. A nonnegative return value indicates that no error

has occurred.

The value of errno may be set to:

Value Meaning

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char *pathvar;

 if (-1 == putenv("PATH=/:/home/userid")) {

 printf("putenv failed \n");

 return EXIT_FAILURE;

 }

 /* getting and printing the current environment path */

 pathvar = getenv("PATH");

 printf("The current path is: %s\n", pathvar);

 return 0;

}

/**

 The output should be:

 The current path is: /:/home/userid

Chapter 2. Library Functions 241

ECONVERT

A conversion error occurred.

EPUTANDGET

An illegal write operation occurred after a read operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses puts()

This example writes Hello World to stdout.

Related Information

v “fputs() — Write String” on page 121

v “fputws() — Write Wide-Character String” on page 124

v “gets() — Read a Line” on page 156

v “putc() – putchar() — Write a Character” on page 239

v “putwc() — Write Wide Character”

v “<stdio.h>” on page 15

putwc() — Write Wide Character

Format

 #include <stdio.h>

 #include <wchar.h>

 wint_t putwc(wint_t wc, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <stdio.h>

int main(void)

{

 if (puts("Hello World") == EOF)

 printf("Error in puts\n");

}

/************************ Expected output: *********************

Hello World

*/

242 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|

|

Description

The putwc() function writes the wide character wc to the stream at the current position. It also advances

the file position indicator for the stream appropriately. The putwc() function is equivalent to the fputwc()

function except that some platforms implement putwc() as a macro. Therefore, for portability, the stream

argument to putwc() should not be an expression with side effects.

Using a non-wide-character function with the putwc() function on the same stream results in undefined

behavior. After calling the putwc() function, flush the buffer or reposition the stream pointer before

calling a write function for the stream, unless EOF has been reached. After a write operation on the

stream, flush the buffer or reposition the stream pointer before calling the putwc() function.

Return Value

The putwc() function returns the wide character written. If a write error occurs, it sets the error indicator

for the stream and returns WEOF. If an encoding error occurs when a wide character is converted to a

multibyte character, the putwc() function sets errno to EILSEQ and returns WEOF.

For information about errno values for putwc(), see “fputc() — Write Character” on page 118.

Example that uses putwc()

The following example uses the putwc() function to convert the wide characters in wcs to multibyte

characters and write them to the file putwc.out.

Related Information

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wchar_t *wcs = L"A character string.";

 int i;

 if (NULL == (stream = fopen("putwc.out", "w"))) {

 printf("Unable to open: \"putwc.out\".\n");

 exit(1);

 }

 for (i = 0; wcs[i] != L’\0’; i++) {

 errno = 0;

 if (WEOF == putwc(wcs[i], stream)) {

 printf("Unable to putwc() the wide character.\n"

 "wcs[%d] = 0x%lx\n", i, wcs[i]);

 if (EILSEQ == errno)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 }

 fclose(stream);

 return 0;

 /***

 The output file putwc.out should contain :

 A character string.

 ***/

}

Chapter 2. Library Functions 243

|
|
|
|

v “fputc() — Write Character” on page 118

v “fputwc() — Write Wide Character” on page 122

v “fputws() — Write Wide-Character String” on page 124

v “getwc() — Read Wide Character from Stream” on page 157

v “putc() – putchar() — Write a Character” on page 239

v “putwchar() — Write Wide Character to stdout”

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

putwchar() — Write Wide Character to stdout

Format

 #include <wchar.h>

 wint_t putwchar(wint_t wc);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The putwchar() function converts the wide character wc to a multibyte character and writes it to stdout.

A call to the putwchar() function is equivalent to putwc(wc, stdout).

Using a non-wide-character function with the putwchar() function on the same stream results in

undefined behavior. After calling the putwchar() function, flush the buffer or reposition the stream

pointer before calling a write function for the stream, unless EOF has been reached. After a write

operation on the stream, flush the buffer or reposition the stream pointer before calling the putwchar()

function.

Return Value

The putwchar() function returns the wide character written. If a write error occurs, the putwchar()

function sets the error indicator for the stream and returns WEOF. If an encoding error occurs when a

wide character is converted to a multibyte character, the putwchar() function sets errno to EILSEQ and

returns WEOF.

For information about errno values for putwc(), see “fputc() — Write Character” on page 118.

Example that uses putwchar()

This example uses the putwchar() function to write the string in wcs.

244 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|

|

Related Information

v “fputc() — Write Character” on page 118

v “fputwc() — Write Wide Character” on page 122

v “fputws() — Write Wide-Character String” on page 124

v “getwchar() — Get Wide Character from stdin” on page 159

v “putc() – putchar() — Write a Character” on page 239

v “putwc() — Write Wide Character” on page 242

v “<wchar.h>” on page 18

qsort() — Sort Array

Format

#include <stdlib.h>

void qsort(void *base, size_t num, size_t width,

 int(*compare)(const void *key, const void *element));

Language Level: ANSI

Threadsafe: Yes.

Description

The qsort() function sorts an array of num elements, each of width bytes in size. The base pointer is a

pointer to the array to be sorted. The qsort() function overwrites this array with the sorted elements.

The compare argument is a pointer to a function you must supply that takes a pointer to the key argument

and to an array element, in that order. The qsort() function calls this function one or more times during

the search. The function must compare the key and the element and return one of the following values:

 Value Meaning

#include <stdio.h>

#include <wchar.h>

#include <errno.h>

#include <stdlib.h>

int main(void)

{

 wchar_t *wcs = L"A character string.";

 int i;

 for (i = 0; wcs[i] != L’\0’; i++) {

 errno = 0;

 if (WEOF == putwchar(wcs[i])) {

 printf("Unable to putwchar() the wide character.\n");

 printf("wcs[%d] = 0x%lx\n", i, wcs[i]);

 if (EILSEQ == errno)

 printf("An invalid wide character was encountered.\n");

 exit(EXIT_FAILURE);

 }

 }

 return 0;

 /**

 The output should be similar to :

 A character string.

 **/

}

Chapter 2. Library Functions 245

Less than 0 key less than element

0 key equal to element

Greater than 0 key greater than element

Value Meaning

Less than 0

key less than element

0 key equal to element

Greater than 0

key greater than element

The sorted array elements are stored in ascending order, as defined by your compare function. You can

sort in reverse order by reversing the sense of “greater than” and “less than” in compare. The order of the

elements is unspecified when two elements compare equally.

Return Value

There is no return value.

Example that uses qsort()

This example sorts the arguments (argv) in ascending lexical sequence, using the comparison function

compare() supplied in the example.

246 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “bsearch() — Search Arrays” on page 51

v “<stdlib.h>” on page 17

QXXCHGDA() — Change Data Area

Format

#include <xxdtaa.h>

void QXXCHGDA(_DTAA_NAME_T dtaname, short int offset, short int len,

 char *dtaptr);

Language Level: ILE C Extension

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 /* Declaration of compare() as a function */

int compare(const void *, const void *);

int main (int argc, char *argv[])

{

 int i;

 argv++;

 argc--;

 qsort((char *)argv, argc, sizeof(char *), compare);

 for (i = 0; i < argc; ++i)

 printf("%s\n", argv[i]);

 return 0;

}

int compare (const void *arg1, const void *arg2)

{

 /* Compare all of both strings */

 return(strcmp(*(char **)arg1, *(char **)arg2));

}

/*********** If the program is passed the arguments: ************

******** ’Does’ ’this’ ’really’ ’sort’ ’the’ ’arguments’ ’correctly?’****

**************** then the expected output is: *******************

arguments

correctly?

really

sort

the

this

Does

*/

Chapter 2. Library Functions 247

|
|
|

The QXXCHGDA() function allows you to change the data area specified by dtaname, starting at position

offset, with the data in the user buffer pointed to by dtaptr of length len. The structure dtaname contains

the names of the data area and the library that contains the data area. The values that can be specified for

the data area name are:

*LDA Specifies that the contents of the local data area are to be changed. The library name dtaa_lib must

be blank.

*GDA Specifies that the contents of the group data area are to be changed. The library name dtaa_lib

must be blank.

data-area-name

Specifies that the contents of the data area created using the Create Data Area (CRTDTAARA) CL

command are to be changed. The library name dtaa_lib must be either *LIBL, *CURLIB, or the

name of the library where the data area (data-area-name) is located. The data area is locked while

it is being changed.

QXXCHGDA can only be used to change character data.

Example that uses QXXCHGDA()

Related Information

v “QXXRTVDA() — Retrieve Data Area” on page 252

QXXDTOP() — Convert Double to Packed Decimal

Format

#include <xxcvt.h>

void QXXDTOP(unsigned char *pptr, int digits, int fraction,

 double value);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXDTOP function converts the double value specified in value to a packed decimal number with

digits total digits, and fraction fractional digits. The result is stored in the array pointed to by pptr.

#include <stdio.h>

#include <xxdtaa.h>

#define START 1

#define LENGTH 8

int main(void)

{

 char newdata[LENGTH] = "new data";

 /* The local data area will be changed */

 _DTAA_NAME_T dtaname = {"*LDA ", " "};

 /* Use function to change the local data area. */

 QXXCHGDA(dtaname,START,LENGTH,newdata);

 /* The first 8 characters in the local data area */

 /* are: new data */

}

248 ILE C/C++ Runtime Library Functions V6R1

Example that uses QXXDTOP()

Related Information

v “QXXDTOZ() —Convert Double to Zoned Decimal”

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

v “QXXPTOD() — Convert Packed Decimal to Double” on page 251

v “QXXPTOI() — Convert Packed Decimal to Integer” on page 252

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

v “QXXZTOI() — Convert Zoned Decimal to Integer” on page 255

QXXDTOZ() —Convert Double to Zoned Decimal

Format

#include <xxcvt.h>

void QXXDTOZ(unsigned char *zptr, int digits, int fraction,

 double value);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXDTOZ function converts the double value specified in value to a zoned decimal number with

digits total digits, and fraction fractional digits. The result is stored in the array pointed to by zptr.

Example that uses QXXDTOZ()

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char pptr[10];

 int digits = 8, fraction = 6;

 double value = 3.141593;

 QXXDTOP(pptr, digits, fraction, value);

}

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char zptr[10];

 int digits = 8, fraction = 6;

 double value = 3.141593;

 QXXDTOZ(zptr, digits, fraction, value);

} /* Zoned value is : 03141593 */

Chapter 2. Library Functions 249

v “QXXPTOD() — Convert Packed Decimal to Double” on page 251

v “QXXPTOI() — Convert Packed Decimal to Integer” on page 252

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

v “QXXZTOI() — Convert Zoned Decimal to Integer” on page 255

QXXITOP() — Convert Integer to Packed Decimal

Format

#include <xxcvt.h>

void QXXITOP(unsigned char *pptr, int digits, int fraction,

 int value);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXITOP function converts the integer specified in value to a packed decimal number with digits

total digits, and fraction fractional digits. The result is stored in the array pointed to by pptr.

Example that uses QXXITOP()

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXDTOZ() —Convert Double to Zoned Decimal” on page 249

v “QXXITOZ() — Convert Integer to Zoned Decimal”

v “QXXPTOD() — Convert Packed Decimal to Double” on page 251

v “QXXPTOI() — Convert Packed Decimal to Integer” on page 252

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

v “QXXZTOI() — Convert Zoned Decimal to Integer” on page 255

QXXITOZ() — Convert Integer to Zoned Decimal

Format

#include <xxcvt.h>

void QXXITOZ(unsigned char *zptr, int digits, int fraction, int value);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char pptr[10];

 int digits = 3, fraction = 0;

 int value = 116;

 QXXITOP(pptr, digits, fraction, value);

}

250 ILE C/C++ Runtime Library Functions V6R1

The QXXITOZ function converts the integer specified in value to a zoned decimal number with digits total

digits, and fraction fractional digits. The result is stored in the array pointed to by zptr.

Example that uses QXXITOZ()

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXDTOZ() —Convert Double to Zoned Decimal” on page 249

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXPTOD() — Convert Packed Decimal to Double”

v “QXXPTOI() — Convert Packed Decimal to Integer” on page 252

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

v “QXXZTOI() — Convert Zoned Decimal to Integer” on page 255

QXXPTOD() — Convert Packed Decimal to Double

Format

#include <xxcvt.h>

double QXXPTOD(unsigned char *pptr, int digits, int fraction);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXPTOD function converts a packed decimal number to a double.

Example that uses QXXPTOD()

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char zptr[10];

 int digits = 9, fraction = 0;

 int value = 111115;

 QXXITOZ(zptr, digits, fraction, value);

 /* Zoned value is : 000111115 */

}

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char pptr[10];

 int digits = 8, fraction = 6;

 double value = 6.123456, result;

 /* First convert an integer to a packed decimal,*/

 QXXDTOP(pptr, digits, fraction, value);

 /* then convert it back to a double. */

 result = QXXPTOD(pptr, digits, fraction);

 /* result = 6.123456 */

}

Chapter 2. Library Functions 251

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXDTOZ() —Convert Double to Zoned Decimal” on page 249

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

v “QXXPTOI() — Convert Packed Decimal to Integer”

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

v “QXXZTOI() — Convert Zoned Decimal to Integer” on page 255

QXXPTOI() — Convert Packed Decimal to Integer

Format

#include <xxcvt.h>

int QXXPTOI(unsigned char *pptr, int digits, int fraction);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXPTOI function converts a packed decimal number to an integer.

Example that uses QXXPTOI()

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXDTOZ() —Convert Double to Zoned Decimal” on page 249

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

v “QXXPTOD() — Convert Packed Decimal to Double” on page 251

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

v “QXXZTOI() — Convert Zoned Decimal to Integer” on page 255

QXXRTVDA() — Retrieve Data Area

Format

#include <xxdtaa.h>

void QXXRTVDA(_DTAA_NAME_T dtaname, short int offset,

 short int len, char *dtaptr);

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char pptr[10];

 int digits = 3, fraction = 0, value = 104, result;

 /* First convert an integer to a packed decimal,*/

 QXXITOP(pptr, digits, fraction, value);

 /* then convert it back to an integer. */

 result = QXXPTOI(pptr, digits, fraction);

 /* result = 104 */

}

252 ILE C/C++ Runtime Library Functions V6R1

Language Level: ILE C Extension

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The following typedef definition is included in the <xxdtaa.h> header file. The character arrays are not

null-ended strings so they must be blank filled.

typedef struct _DTAA_NAME_T {

 char dtaa_name[10]; /* name of data area */

 char dtaa_lib[10]; /* library that contains data area */

}_DTAA_NAME_T;

The QXXRTVDA() function retrieves a copy of the data area specified by dtaname starting at position offset

with a length of len. The structure dtaname contains the names of the data area and the library that

contains the data area. The values that can be specified for the data area name are:

*LDA The contents of the local data area are to be retrieved. The library name dtaa_lib must be blank.

*GDA The contents of the group data area are to be retrieved. The library name dtaa_lib must be blank.

*PDA Specifies that the contents of the program initialization parameters (PIP) data area are to be

retrieved. The PIP data area is created for each pre-started job and is a character area up to 2000

characters in length. You cannot retrieve the PIP data area until you have acquired the requester.

The library name dtaa_lib must be blank.

data-area-name

Specifies that the contents of the data area created using the Create Data Area (CRTDTAARA) CL

command are to be retrieved. The library name dtaa_lib must be either *LIBL, *CURLIB, or the

name of the library where the data area (data-area-name) is located. The data area is locked while

the data is being retrieved.

The parameter dtaptr is a pointer to the storage that receives the retrieved copy of the data area. Only

character data can be retrieved using QXXRTVDA.

Example that uses QXXRTVDA()

Chapter 2. Library Functions 253

|
|
|

Related Information

v “QXXCHGDA() — Change Data Area” on page 247

QXXZTOD() — Convert Zoned Decimal to Double

Format

#include <xxcvt.h>

double QXXZTOD(unsigned char *zptr, int digits, int fraction);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXZTOD function converts to a double, the zoned decimal number (with digits total digits, and

fraction fractional digits) pointed to by zptr. The resulting double value is returned.

Example that uses QXXZTOD()

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXDTOZ() —Convert Double to Zoned Decimal” on page 249

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

#include <stdio.h>

#include <xxdtaa.h>

#define DATA_AREA_LENGTH 30

#define START 6

#define LENGTH 7

int main(void)

{

 char uda_area[DATA_AREA_LENGTH];

 /* Retrieve data from user-defined data area currently in MYLIB */

 _DTAA_NAME_T dtaname = {"USRDDA ", "MYLIB "};

 /* Use the function to retrieve some data into uda_area. */

 QXXRTVDA(dtaname,START,LENGTH,uda_area);

 /* Print the contents of the retrieved subset. */

 printf("uda_area contains %7.7s\n",uda_area);

}

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char zptr[] = "06123456";

 int digits = 8, fraction = 6;

 double result;

 result = QXXZTOD(zptr, digits, fraction);

 /* result = 6.123456 */

}

254 ILE C/C++ Runtime Library Functions V6R1

v “QXXPTOD() — Convert Packed Decimal to Double” on page 251

v “QXXPTOI() — Convert Packed Decimal to Integer” on page 252

v “QXXZTOI() — Convert Zoned Decimal to Integer”

QXXZTOI() — Convert Zoned Decimal to Integer

Format

#include <xxcvt.h>

int QXXZTOI(unsigned char *zptr, int digits, int fraction);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The QXXZTOI function converts to an integer, the zoned decimal number (with digits total digits, and

fraction fractional digits) pointed to by zptr. The resulting integer is returned.

Example that uses QXXZTOI()

Related Information

v “QXXDTOP() — Convert Double to Packed Decimal” on page 248

v “QXXDTOZ() —Convert Double to Zoned Decimal” on page 249

v “QXXITOP() — Convert Integer to Packed Decimal” on page 250

v “QXXITOZ() — Convert Integer to Zoned Decimal” on page 250

v “QXXPTOD() — Convert Packed Decimal to Double” on page 251

v “QXXPTOI() — Convert Packed Decimal to Integer” on page 252

v “QXXZTOD() — Convert Zoned Decimal to Double” on page 254

raise() — Send Signal

Format

#include <signal.h>

int raise(int sig);

Language Level: ANSI

Threadsafe: Yes.

Description

#include <xxcvt.h>

#include <stdio.h>

int main(void)

{

 unsigned char zptr[] = "000111115";

 int digits = 9, fraction = 0, result;

 result = QXXZTOI(zptr, digits, fraction);

 /* result = 111115 */

}

Chapter 2. Library Functions 255

The raise() functions sends the signal sig to the running program. If compiled with

SYSIFCOPT(*ASYNCSIGNAL) on the compilation command, this function uses asynchronous signals. The

asynchronous version of this function throws a signal to the process or thread.

Return Value

The raise() functions returns 0 if successful, nonzero if unsuccessful.

Example that uses raise()

This example establishes a signal handler called sig_hand for the signal SIGUSR1. The signal handler is

called whenever the SIGUSR1 signal is raised and will ignore the first nine occurrences of the signal. On

the tenth raised signal, it exits the program with an error code of 10. Note that the signal handler must be

reestablished each time it is called.

#include <signal.h>

#include <stdio.h>

void sig_hand(int); /* declaration of sig_hand() as a function */

int main(void)

{

 signal(SIGUSR1, sig_hand); /* set up handler for SIGUSR1 */

 raise(SIGUSR1); /* signal SIGUSR1 is raised */

 /* sig_hand() is called */

}

void sig_hand(int sig)

{

 static int count = 0; /* initialized only once */

 count++;

 if (count == 10) /* ignore the first 9 occurrences of this signal */

 exit(10);

 else

 signal(SIGUSR1, sig_hand); /* set up the handler again */

}

/* This is a program fragment and not a complete program */

Related Information

v “signal() — Handle Interrupt Signals” on page 346

v “Signal Handling Action Definitions” on page 511

v “<signal.h>” on page 13

v Signal APIs in the APIs topic in the i5/OS Information Center.

v POSIX thread APIs in the APIs topic in the i5/OS Information Center.

rand(), rand_r() — Generate Random Number

Format

#include <stdlib.h>

int rand(void);

int rand_r(unsigned int *seed);

Language Level: ANSI

Threadsafe: No. rand() is not threadsafe, but rand_r() is.

Description

256 ILE C/C++ Runtime Library Functions V6R1

The rand() function generates a pseudo-random integer in the range 0 to RAND_MAX (macro defined in

<stdlib.h>). Use the srand() function before calling rand() to set a starting point for the random number

generator. If you do not call the srand() function first, the default seed is 1.

Note: The rand_r() function is the restartable version of rand().

Return Value

The rand() function returns a pseudo-random number.

Example that uses rand()

This example prints the first 10 random numbers generated.

Related Information

v “srand() — Set Seed for rand() Function” on page 354

v “<stdlib.h>” on page 17

_Racquire() — Acquire a Program Device

Format

#include <recio.h>

int _Racquire(_RFILE *fp, char *dev);

Language Level: ILE C Extension

Threadsafe: No.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int x;

 for (x = 1; x <= 10; x++)

 printf("iteration %d, rand=%d\n", x, rand());

}

/********************* Output should be similar to: ************

iteration 1, rand=16838

iteration 2, rand=5758

iteration 3, rand=10113

iteration 4, rand=17515

iteration 5, rand=31051

iteration 6, rand=5627

iteration 7, rand=23010

iteration 8, rand=7419

iteration 9, rand=16212

iteration 10, rand=4086

*/

Chapter 2. Library Functions 257

|
|
|

The _Racquire() function acquires the program device specified by the dev parameter and associates it

with the file specified by fp. The dev parameter is a null-ended C string. The program device name must

be specified in uppercase. The program device must be defined to the file.

This function is valid for display and ICF files.

Return Value

The _Racquire() function returns 1 if it is successful or zero if it is unsuccessful. The value of errno may

be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a recoverable I/O error

occurred).

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Racquire()

Related Information

v “_Rrelease() — Release a Program Device” on page 314

_Rclose() — Close a File

Format

#include <recio.h>

int _Rclose(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

int main(void)

{

 _RFILE *fp;

 _RIOFB_T *rfb;

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Racquire (fp,"DEVICE1"); /* Acquire another program device. */

 /* Replace with actual device name.*/

 _Rformat (fp,"FORMAT1"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 /* Do some processing... */

 _Rclose (fp);

}

258 ILE C/C++ Runtime Library Functions V6R1

Description

The _Rclose() function closes the file specified by fp. Before this file is closed, all buffers associated with

it are flushed and all buffers reserved for it are released. The file is closed even if an exception occurs.

The _Rclose() function applies to all types of files.

Note: Closing a file more than once in a multi-threaded environment will cause undefined behavior.

Return Value

The _Rclose() function returns zero if the file is closed successfully, or EOF if the close operation failed

or the file was already closed. The file is closed even if an exception occurs, and zero is returned.

The value of errno may be set to:

 Value Meaning

ENOTOPEN The file is not open.

EIOERROR A non-recoverable I/O error occurred.

EIORECERR A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rclose()

Related Information

v “_Ropen() — Open a Record File for I/O Operations” on page 289

_Rcommit() — Commit Current Record

Format

#include <recio.h>

int _Rcommit(char *cmtid);

Language Level: ILE C Extension

Threadsafe: No.

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 else

 /* Do some processing */;

 _Rclose (fp);

}

Chapter 2. Library Functions 259

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _Rcommit() function completes the current transaction for the job that calls it and establishes a new

commitment boundary. All changes made since the last commitment boundary are made permanent. Any

file or resource that is open under commitment control in the job is affected.

The cmtid parameter is a null-ended C string used to identify the group of changes associated with a

commitment boundary. It cannot be longer than 4000 bytes.

The _Rcommit() function applies to database and DDM files.

Return Value

The _Rcommit() function returns 1 if the operation is successful or zero if the operation is unsuccessful.

The value of errno may be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a

recoverable I/O error occurred).

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rcommit()

260 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Related Information

v “_Rrollbck() — Roll Back Commitment Control Changes” on page 317

_Rdelete() — Delete a Record

Format

#include <recio.h>

_RIOFB_T *_Rdelete(_RFILE *fp);

Language Level: ILE C Extension

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

 char buf[40];

 int rc = 1;

 _RFILE *purf;

 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */

 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)

 {

 printf ("Display file did not open.\n");

 exit (1);

 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)

 {

 printf ("Daily transaction file did not open.\n");

 exit (2);

 }

 /* Select purchase record format */

 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */

 /* The _Rwrite function writes the purchase display. */

 _Rwrite (purf, "", 0);

 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* Update daily transaction file */

 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit the transaction. */

 /* Otherwise, rollback the transaction and indicate to the */

 /* user that an error has occurred and end the application. */

 if (rc)

 {

 _Rcommit ("Transaction complete");

 }

 else

 {

 _Rrollbck ();

 _Rformat (purf, "ERROR");

 }

 _Rclose (purf);

 _Rclose (dailyf);

}

Chapter 2. Library Functions 261

Threadsafe: Yes.

Description

The _Rdelete() function deletes the record that is currently locked for update in the file specified by fp.

After the delete operation, the record is not locked. The file must be open for update.

A record is locked for update by reading or locating to it unless __NO_LOCK is specified on the read or

locate option. If the __NO_POSITION option is specified on the locate operation that locked the record,

the record deleted may not be the record that the file is currently positioned to.

This function is valid for database and DDM files.

Return Value

The _Rdelete() function returns a pointer to the _RIOFB_T structure associated with fp. If the operation

is successful, the num_bytes field contains 1. If the operation is unsuccessful, the num_bytes field

contains zero.

The value of errno may be set to:

Value Meaning

ENOTDLT

The file is not open for delete operations.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rdelete()

262 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_Rrlslck() — Release a Record Lock” on page 316

_Rdevatr() — Get Device Attributes

Format

#include <recio.h>

#include <xxfdbk.h>

_XXDEV_ATR_T *_Rdevatr(_RFILE *fp, char *dev);

Language Level: ILE C Extension

Threadsafe: No.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _Rdevatr() function returns a pointer to a copy of the device attributes feedback area for the file

pointed to by fp, and the device specified by dev.

The dev parameter is a null-ended C string. The device name must be specified in uppercase.

The _Rdevatr() function is valid for display and ICF files.

Return Value

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the first record. */

 _Rreadf (fp, NULL, 20, __DFT);

 printf ("First record: %10.10s\n", *(fp->in_buf));

 /* Delete the first record. */

 _Rdelete (fp);

 _Rclose (fp);

}

Chapter 2. Library Functions 263

|
|
|

The _Rdevatr() function returns NULL if an error occurs.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rdevatr()

Related Information

v “_Racquire() — Acquire a Program Device” on page 257

v “_Rrelease() — Release a Program Device” on page 314

realloc() — Change Reserved Storage Block Size

Format

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Language Level: ANSI

Threadsafe: Yes.

Description

The realloc() function changes the size of a previously reserved storage block. The ptr argument points

to the beginning of the block. The size argument gives the new size of the block, in bytes. The contents of

the block are unchanged up to the shorter of the new and old sizes.

If the ptr is NULL, realloc() reserves a block of storage of size bytes. It does not necessarily give all bits

of each element an initial value of 0.

If size is 0 and the ptr is not NULL, realloc()frees the storage allocated to ptr and returns NULL

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

int main(int argc, char ** argv)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 _XXIOFB_T *iofb; /* Pointer to the file’s feedback area */

 _XXDEV_ATR_T *dv_atr; /* Pointer to a copy of the file’s device */

 /* attributes feedback area */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 dv_atr = _Rdevatr (fp, argv[1]);

 if (dv_atr == NULL)

 printf("Error occurred getting device attributes for %s.\n",

 argv[1]);

 _Rclose (fp);

}

264 ILE C/C++ Runtime Library Functions V6R1

Notes:

1. All heap storage is associated with the activation group of the calling routine. As such, storage should

be allocated and deallocated within the same activation group. You cannot allocate heap storage

within one activation group and deallocate that storage from a different activation group. For more

information about activation groups, see the ILE Concepts manual.

2. If the _C_Quickpool_Init() function has been called in the current activation group then storage is

retrieved using Quick Pool memory management. See _C_Quickpool_Init() for more information.

Return Value

The realloc() function returns a pointer to the reallocated storage block. The storage location of the

block may be moved by the realloc() function. Thus, the ptr argument to the realloc() function is not

necessarily the same as the return value.

If size is 0, the realloc() function returns NULL. If there is not enough storage to expand the block to the

given size, the original block is unchanged and the realloc() function returns NULL.

The storage to which the return value points is aligned for storage of any type of object.

To use Teraspace storage instead of heap storage without changing the C source code, specify the

TERASPACE(*YES *TSIFC) parameter on the CRTCMOD compiler command. This maps the realloc()

library function to _C_TS_realloc(), its Teraspace storage counterpart. The maximum amount of

Teraspace storage that can be allocated by each call to _C_TS_realloc() is 2GB - 240, or 214743408 bytes.

For additional information about Teraspace, see the ILE Concepts manual.

Example that uses realloc()

This example allocates storage for the prompted size of array and then uses realloc() to reallocate the

block to hold the new size of the array. The contents of the array are printed after each allocation.

Chapter 2. Library Functions 265

|
|
|
|

Related Information

v “calloc() — Reserve and Initialize Storage” on page 55

v “_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics” on page 66

v “_C_Quickpool_Init() — Initialize Quick Pool Memory Management” on page 68

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * ptr; /* pointer to array */

 int i; /* index variable */

 int num1, num2; /* number of entries of the array */

 void print_array(long *ptr_array, int size);

 printf("Enter the size of the array\n");

 scanf("%i", &num1);

 /* allocate num1 entries using malloc() */

 if ((array = (long *) malloc(num1 * sizeof(long))) != NULL)

 {

 for (ptr = array, i = 0; i < num1 ; ++i) /* assign values */

 *ptr++ = i;

 print_array(array, num1);

 printf("\n");

 }

 else { /* malloc error */

 perror("Out of storage");

 abort();

 }

 /* Change the size of the array ... */

 printf("Enter the size of the new array\n");

 scanf("%i", &num2);

 if ((array = (long *) realloc(array, num2* sizeof(long))) != NULL)

 {

 for (ptr = array + num1, i = num1; i <= num2; ++i)

 ptr++ = i + 2000; / assign values to new elements */

 print_array(array, num2);

 }

 else { /* realloc error */

 perror("Out of storage");

 abort();

 }

}

void print_array(long * ptr_array, int size)

{

 int i;

 long * index = ptr_array;

 printf("The array of size %d is:\n", size);

 for (i = 0; i < size; ++i) /* print the array out */

 printf(" array[%i] = %li\n", i, ptr_array[i]);

}

/**** If the initial value entered is 2 and the second value entered

 is 4, then the expected output is:

Enter the size of the array

The array of size 2 is:

 array[0] = 0

 array[1] = 1

Enter the size of the new array

The array of size 4 is:

 array[0] = 0

 array[1] = 1

 array[2] = 2002

 array[3] = 2003 */

266 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

v “_C_Quickpool_Report() — Generate Quick Pool Memory Management Report” on page 70

v “free() — Release Storage Blocks” on page 128

v “malloc() — Reserve Storage Block” on page 195

v “<stdlib.h>” on page 17

regcomp() — Compile Regular Expression

Format

#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE

categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on

the compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The regcomp() function compiles the source regular expression pointed to by pattern into an executable

version and stores it in the location pointed to by preg. You can then use the regexec()function to

compare the regular expression to other strings.

The cflags flag defines the attributes of the compilation process:

 cflag Description String

REG_ALT_NL v When LOCALETYPE(*LOCALE) is specified, the

newline character of the integrated file system will be

matched by regular expressions.

v When LOCALETYPE(*LOCALEUTF) is specified, the

database newline character will be matched.

If the REG_ALT_NL flag is not set, the default for

LOCALETYPE(*LOCALE) is to match the database

newline, and the default for

LOCALETYPE(*LOCALEUTF) is to match the integrated

file system newline.

Note: For UTF-8 and UTF-32, the newline character of

the integrated file system and the database newline

character are the same.

REG_EXTENDED Support extended regular expressions.

REG_NEWLINE Treat newline character as a special end-of-line character;

it then establishes the line boundaries matched by the]

and $ patterns, and can only be matched within a string

explicitly using \n. (If you omit this flag, the newline

character is treated like any other character.)

REG_ICASE Ignore case in match.

Chapter 2. Library Functions 267

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

cflag Description String

REG_NOSUB Ignore the number of subexpressions specified in pattern.

When you compare a string to the compiled pattern

(using regexec()), the string must match the entire

pattern. The regexec() function then returns a value that

indicates only if a match was found; it does not indicate

at what point in the string the match begins, or what the

matching string is.

Regular expressions are a context-independent syntax that can represent a wide variety of character sets

and character set orderings, which can be interpreted differently depending on the current locale. The

functions regcomp(), regerror(), regexec(), and regfree() use regular expressions in a similar way to

the UNIX® awk, ed, grep, and egrep commands.

Return Value

If the regcomp() function is successful, it returns 0. Otherwise, it returns an error code that you can use in

a call to the regerror() function, and the content of preg is undefined.

Example that uses regcomp()

268 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “regerror() — Return Error Message for Regular Expression”

v “regexec() — Execute Compiled Regular Expression” on page 271

v “regfree() — Free Memory for Regular Expression” on page 273

v “<regex.h>” on page 12

regerror() — Return Error Message for Regular Expression

Format

#include <regex.h>

size_t regerror(int errcode, const regex_t *preg,

 char *errbuf, size_t errbuf_size);

Language Level: XPG4

Threadsafe: Yes.

#include <regex.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 regex_t preg;

 char *string = "a very simple simple simple string";

 char *pattern = "\\(sim[a-z]le\\) \\1";

 int rc;

 size_t nmatch = 2;

 regmatch_t pmatch[2];

 if (0 != (rc = regcomp(&preg, pattern, 0))) {

 printf("regcomp() failed, returning nonzero (%d)\n", rc);

 exit(EXIT_FAILURE);

 }

 if (0 != (rc = regexec(&preg, string, nmatch, pmatch, 0))) {

 printf("Failed to match ’%s’ with ’%s’,returning %d.\n",

 string, pattern, rc);

 }

 else {

 printf("With the whole expression, "

 "a matched substring \"%.*s\" is found at position %d to %d.\n",

 pmatch[0].rm_eo - pmatch[0].rm_so, &string[pmatch[0].rm_so],

 pmatch[0].rm_so, pmatch[0].rm_eo - 1);

 printf("With the sub-expression, ";

 "a matched substring \"%.*s\" is found at position %d to %d.\n",

 pmatch[1].rm_eo - pmatch[1].rm_so, "string[pmatch[1].rm_so],

 pmatch[1].rm_so, pmatch[1].rm_eo - 1);

 }

 regfree(&preg);

 return 0;

 /**

 The output should be similar to :

 With the whole expression, a matched substring "simple simple" is found

 at position 7 to 19.

 With the sub-expression, a matched substring "simple" is found

 at position 7 to 12.

 **/

}

Chapter 2. Library Functions 269

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE

categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on

the compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The regerror() function finds the description for the error code errcode for the regular expression preg.

The description for errcode is assigned to errbuf. The errbuf_size value specifies the maximum message size

that can be stored (the size of errbuf). The description strings for errcode are:

 errcode Description String

REG_NOMATCH regexec() failed to find a match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Last character in regular expression is a \.

REG_ESUBREG Number in \digit invalid, or error.

REG_EBRACK [] imbalance.

REG_EPAREN \(\) or () imbalance.

REG_EBRACE \{ \} imbalance.

REG_BADBR Expression between \{ and \} is invalid.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ?, *, or + not preceded by valid regular expression.

REG_ECHAR Invalid multibyte character.

REG_EBOL ^ anchor not at beginning of regular expression.

REG_EEOL $ anchor not at end of regular expression.

REG_ECOMP Unknown error occurred during regcomp() call.

REG_EEXEC Unknown error occurred during regexec() call.

Return Value

The regerror() returns the size of the buffer needed to hold the string that describes the error condition.

The value of errno may be set to ECONVERT (conversion error).

Example that uses regerror()

This example compiles an invalid regular expression, and prints an error message using the regerror()

function.

270 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Related Information

v “regcomp() — Compile Regular Expression” on page 267

v “regexec() — Execute Compiled Regular Expression”

v “regfree() — Free Memory for Regular Expression” on page 273

v “<regex.h>” on page 12

regexec() — Execute Compiled Regular Expression

Format

#include <regex.h>

int regexec(const regex_t *preg, const char *string,

 size_t nmatch, regmatch_t *pmatch, int eflags);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE

categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on

the compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The regexec() function compares the null-ended string against the compiled regular expression preg to

find a match between the two.

The nmatch value is the number of substrings in string that the regexec() function should try to match

with subexpressions in preg. The array you supply for pmatch must have at least nmatch elements.

The regexec() function fills in the elements of the array pmatch with offsets of the substrings in string

that correspond to the parenthesized subexpressions of the original pattern given to the regcomp()

function to create preg. The zeroth element of the array corresponds to the entire pattern. If there are

#include <regex.htm>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 regex_t preg;

 char *pattern = "a[missing.bracket";

 int rc;

 char buffer[100];

 if (0 != (rc = regcomp(&preg, pattern, REG_EXTENDED))) {

 regerror(rc, &preg, buffer, 100);

 printf("regcomp() failed with ’%s’\n", buffer);

 exit(EXIT_FAILURE);

 }

 return 0;

/**

 The output should be similar to:

 regcomp() failed with ’[] imbalance.’

 **/

}

Chapter 2. Library Functions 271

|
|
|

more than nmatch subexpressions, only the first nmatch - 1 are stored. If nmatch is 0, or if the

REG_NOSUB flag was set when preg was created with the regcomp() function, the regexec() function

ignores the pmatch argument.

The eflags flag defines customizable behavior of the regexec() function:

 errflag Description String

REG_NOTBOL Indicates that the first character of string is not the

beginning of line.

REG_NOTEOL Indicates that the first character of string is not the end

of line.

When a basic or extended regular expression is matched, any given parenthesized subexpression of the

original pattern could participate in the match of several different substrings of string. The following rules

determine which substrings are reported in pmatch:

1. If subexpression i in a regular expression is not contained within another subexpression, and it

participated in the match several times, then the byte offsets in pmatch[i] will delimit the last such

match.

2. If subexpression i is not contained within another subexpression, and it did not participate in an

otherwise successful match, the byte offsets in pmatch[i] will be -1. A subexpression does not

participate in the match when any of following conditions are true:

v * or \{ \} appears immediately after the subexpression in a basic regular expression.

v *, ?, or { } appears immediately after the subexpression in an extended regular expression, and the

subexpression did not match (matched 0 times).

v | is used in an extended regular expression to select this subexpression or another, and the other

subexpression matched.
3. If subexpression i is contained within another subexpression j, and i is not contained within any other

subexpression that is contained within j, and a match of subexpression j is reported in pmatch[j], then

the match or non-match of subexpression i reported in pmatch[i] will be as described in 1. and 2.

above, but within the substring reported in pmatch[j] rather than the whole string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are -1, then the

offsets in pmatch[i] also will be -1.\

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] will be the byte

offset of the character or null terminator immediately following the zero-length string.

If the REG_NOSUB flag was set when preg was created by the regcomp() function, the contents of pmatch

are unspecified. If the REG_NEWLINE flag was set when preg was created, new-line characters are

allowed in string.

Return Value

If a match is found, the regexec() function returns 0. If no match is found, the regexec() function

returns REG_NOMATCH. Otherwise, it returns a nonzero value indicating an error. A nonzero return

value can be used in a call to the regerror() function.

Example that uses regexec()

272 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “regcomp() — Compile Regular Expression” on page 267

v “regerror() — Return Error Message for Regular Expression” on page 269

v “regfree() — Free Memory for Regular Expression”

v “<regex.h>” on page 12

regfree() — Free Memory for Regular Expression

Format

#include <regex.h>

void regfree(regex_t *preg);

Language Level: XPG4

Threadsafe: Yes.

#include <regex.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 regex_t preg;

 char *string = "a very simple simple simple string";

 char *pattern = "\\(sim[a-z]le\\) \\1";

 int rc;

 size_t nmatch = 2;

 regmatch_t pmatch[2];

 if (0 != (rc = regcomp(&preg, pattern, 0))) {

 printf("regcomp() failed, returning nonzero (%d)\n", rc);

 exit(EXIT_FAILURE);

 }

 if (0 != (rc = regexec(&preg, string, nmatch, pmatch, 0))) {

 printf("Failed to match ’%s’ with ’%s’,returning %d.\n",

 string, pattern, rc);

 }

 else {

 printf("With the whole expression, "

 "a matched substring \"%.*s\" is found at position %d to %d.\n",

 pmatch[0].rm_eo - pmatch[0].rm_so, &string[pmatch[0].rm_so],

 pmatch[0].rm_so, pmatch[0].rm_eo - 1);

 printf("With the sub-expression, "

 "a matched substring \"%.*s\" is found at position %d to %d.\n",

 pmatch[1].rm_eo - pmatch[1].rm_so, &string[pmatch[1].rm_so],

 pmatch[1].rm_so, pmatch[1].rm_eo - 1);

 }

 regfree(&preg);

 return 0;

/**

 The output should be similar to :

 With the whole expression, a matched substring "simple simple" is found

 at position 7 to 19.

 With the sub-expression, a matched substring "simple" is found

 at position 7 to 12.

 **/

}

Chapter 2. Library Functions 273

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE

categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on

the compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The regfree() function frees any memory that was allocated by the regcomp() function to implement the

regular expression preg. After the call to the regfree() function, the expression that is defined by preg is

no longer a compiled regular or extended expression.

Return Value

There is no return value.

Example that uses regfree()

This example compiles an extended regular expression.

Related Information

v “regcomp() — Compile Regular Expression” on page 267

v “regerror() — Return Error Message for Regular Expression” on page 269

v “regexec() — Execute Compiled Regular Expression” on page 271

v “<regex.h>” on page 12

remove() — Delete File

Format

#include <stdio.h>

int remove(const char *filename);

Language Level: ANSI

Threadsafe: Yes.

#include <regex.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 regex_t preg;

 char *pattern = ".*(simple).*";

 int rc;

 if (0 != (rc = regcomp(&preg, pattern, REG_EXTENDED))) {

 printf("regcomp() failed, returning nonzero (%d)\n", rc);

 exit(EXIT_FAILURE);

 }

 regfree(&preg);

 printf("regcomp() is successful.\n");

 return 0;

/**

 The output should be similar to:

 regcomp() is successful.

 **/

}

274 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Description

The remove() function deletes the file specified by filename. If the filename contains the member name,

the member is removed or the file is deleted.

Note: You cannot remove a nonexistent file or a file that is open.

Return Value

The remove() function returns 0 if it successfully deletes the file. A nonzero return value indicates an

error.

The value of errno may be set to ECONVERT (conversion error).

Example that uses remove()

When you call this example with a file name, the program attempts to remove that file. It issues a

message if an error occurs.

Related Information

v “fopen() — Open Files” on page 109

v “rename() — Rename File”

v “<stdio.h>” on page 15

rename() — Rename File

Format

#include <stdio.h>

int rename(const char *oldname, const char *newname);

Language Level: ANSI

Threadsafe: Yes.

Description

The rename() function renames the file specified by oldname to the name given by newname. The oldname

pointer must specify the name of an existing file. The newname pointer must not specify the name of an

existing file. You cannot rename a file with the name of an existing file. You also cannot rename an open

file.

The file formats that can be used to satisfy the new name depend on the format of the old name. The

following table shows the valid file formats that can be used to specify the old file name and the

corresponding valid file formats for the new name.

#include <stdio.h>

int main(int argc, char ** argv)

{

 if (argc != 2)

 printf("Usage: %s fn\n", argv[0]);

 else

 if (remove(argv[1]) != 0)

 perror("Could not remove file");

}

Chapter 2. Library Functions 275

If the format for both new name and old name is lib/file(member), then the file cannot change. If the file

name changes, rename will not work. For example, the following is not valid: lib/file1(member1)

lib/file2(member1).

 Old Name New Name

lib/file(member) lib/file(member), lib/file, file, file(member)

lib/file lib/file, file

file lib/file, file

file(member) lib/file(member), lib/file, file, file(member)

Return Value

The rename() function returns 0 if successful. On an error, it returns a nonzero value.

The value of errno may be set to ECONVERT (conversion error).

Example that uses rename()

This example takes two file names as input and uses rename() to change the file name from the first

name to the second name.

Related Information

v “fopen() — Open Files” on page 109

v “remove() — Delete File” on page 274

v “<stdio.h>” on page 15

rewind() — Adjust Current File Position

Format

#include <stdio.h>

void rewind(FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

The rewind() function repositions the file pointer associated with stream to the beginning of the file. A

call to the rewind() function is the same as:

 (void)fseek(stream, 0L, SEEK_SET);

except that the rewind() function also clears the error indicator for the stream.

#include <stdio.h>

int main(int argc, char ** argv)

{

 if (argc != 3)

 printf("Usage: %s old_fn new_fn\n", argv[0]);

 else if (rename(argv[1], argv[2]) != 0)

 perror ("Could not rename file");

}

276 ILE C/C++ Runtime Library Functions V6R1

The rewind() function is not supported for files opened with type=record.

Return Value

There is no return value.

The value of errno may be set to:

Value Meaning

EBADF

The file pointer or descriptor is not valid.

ENODEV

Operation attempted on a wrong device.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

Example that uses rewind()

This example first opens a file myfile for input and output. It writes integers to the file, uses rewind() to

reposition the file pointer to the beginning of the file, and then reads in the data.

Related Information

v “fgetpos() — Get File Position” on page 99

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “ftell() — ftello() — Get Current Position” on page 138

v “<stdio.h>” on page 15

#include <stdio.h>

FILE *stream;

int data1, data2, data3, data4;

int main(void)

{

 data1 = 1; data2 = -37;

 /* Place data in the file */

 stream = fopen("mylib/myfile", "w+");

 fprintf(stream, "%d %d\n", data1, data2);

 /* Now read the data file */

 rewind(stream);

 fscanf(stream, "%d", &data3);

 fscanf(stream, "%d", &data4);

 printf("The values read back in are: %d and %d\n",

 data3, data4);

}

/******************** Output should be similar to: **************

The values read back in are: 1 and -37

*/

Chapter 2. Library Functions 277

_Rfeod() — Force the End-of-Data

Format

#include <recio.h>

int _Rfeod(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Rfeod() function forces an end-of-data condition for a device or member associated with the file

specified by fp. Any outstanding updates, deletes or writes that the system is buffering will be forced to

nonvolatile storage. If a database file is open for input, any outstanding locks will be released.

The _Rfeod() function positions the file to *END unless the file is open for multi-member processing and

the current member is not the last member in the file. If multi-member processing is in effect and the

current member is not the last member in the file, _Rfeod() will open the next member of the file and

position it to *START.

The _Rfeod() function is valid for all types of files.

Return Value

The _Rfeod() function returns 1 if multi-member processing is taking place and the next member has

been opened. EOF is returned if the file is positioned to *END. If the operation is unsuccessful, zero is

returned. The value of errno may be set to EIOERROR (a non-recoverable error occurred) or EIORECERR

(a recoverable I/O error occurred). See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rfeod()

Related Information

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *in;

 char new_purchase[21] = "PEAR 1002022244";

 /* Open the file for processing in keyed sequence. */

 if ((in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL)

 {

 printf("Open failed\n");

 exit(1);

 };

 /* Update the first record in the keyed sequence. */

 _Rlocate(in, NULL, 0, __FIRST);

 _Rupdate(in, new_purchase, 20);

 /* Force the end of data. */

 _Rfeod(in);

278 ILE C/C++ Runtime Library Functions V6R1

v “_Racquire() — Acquire a Program Device” on page 257

v “_Rfeov() — Force the End-of-File”

_Rfeov() — Force the End-of-File

Format

#include <recio.h>

int _Rfeov(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Rfeov() function forces an end-of-volume condition for a tape file that is associated with the file

that is specified by fp. The _Rfeov()function positions the file to the next volume of the file. If the file is

open for output, the output buffers will be flushed.

The _Rfeov() function is valid for tape files.

Return Value

The _Rfeov() function returns 1 if the file has moved from one volume to the next. It will return EOF if it

is called while processing the last volume of the file. It will return zero if the operation is unsuccessful.

The value of errno may be set to EIOERROR (a non-recoverable error occurred) or EIORECERR (a

recoverable I/O error occurred). See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rfeov()

Chapter 2. Library Functions 279

Related Information

v “_Racquire() — Acquire a Program Device” on page 257

v “_Rfeod() — Force the End-of-Data” on page 278

_Rformat() — Set the Record Format Name

Format

#include <recio.h>

void _Rformat(_RFILE *fp, char *fmt);

Language Level: ILE C Extension

Threadsafe: Yes.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

int main(void)

{

 _RFILE *tape;

 _RFILE *fp;

 char buf[92];

 int i, feov2;

 /* Open source physical file containing C source. */

 if ((fp = _Ropen ("QCSRC(T1677SRC)", "rr blkrcd=y")) == NULL)

 {

 printf ("could not open C source file\n");

 exit (1);

 }

 /* Open tape file to receive C source statements */

 if ((tape = _Ropen ("T1677TPF", "wr lrecl=92 blkrcd=y")) == NULL)

 {

 printf ("could not open tape file\n");

 exit (2);

 }

 /* Read the C source statements, find their sizes */

 /* and add them to the tape file. */

 while ((_Rreadn (fp, buf, sizeof(buf), __DFT)) -> num_bytes != EOF

)

 {

 for (i = sizeof(buf) - 1 ; buf[i] == ’ ’ && i > 12; --i);

 i = (i == 12) ? 80 : (1-12);

 memmove(buf, buf+12, i);

 _Rwrite (tape, buf, i);

 }

 feov2 = _Rfeov (fp);

 _Rclose (fp);

 _Rclose (tape);

}

280 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Description

The _Rformat() function sets the record format to fmt for the file specified by fp.

The fmt parameter is a null-ended C string. The fmt parameter must be in uppercase.

The _Rformat() function is valid for multi-format logical database, DDM files, display, ICF and printer

files.

Return Value

The _Rformat() function returns void. See Table 12 on page 507 and Table 14 on page 510 for errno

settings.

Example that uses _Rformat()

This example shows how _Rformat() is used.

Chapter 2. Library Functions 281

Related Information

v “_Ropen() — Open a Record File for I/O Operations” on page 289

_Rindara() — Set Separate Indicator Area

Format

#include <recio.h>

void _Rindara(_RFILE *fp, char *indic_buf);

Language Level: ILE C Extension

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

 char buf[40];

 int rc = 1;

 _RFILE *purf;

 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */

 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)

 {

 printf ("Display file did not open.\n");

 exit (1);

 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)

 {

 printf ("Daily transaction file did not open.\n");

 exit (2);

 }

 /* Select purchase record format */

 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */

 /* The _Rwrite function writes the purchase display. */

 _Rwrite (purf, "", 0);

 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* Update daily transaction file */

 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit the transaction. */

 /* Otherwise, rollback the transaction and indicate to the */

 /* user that an error has occurred and end the application. */

 if (rc)

 {

 _Rcommit ("Transaction complete");

 }

 else

 {

 _Rrollbck ();

 _Rformat (purf, "ERROR");

 }

 _Rclose (purf);

 _Rclose (dailyf);

}

282 ILE C/C++ Runtime Library Functions V6R1

Threadsafe: No.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _Rindara() function registers indic_buf as the separate indicator area to be used by the file specified

by fp. The file must be opened with the keyword indicators=Y on the _Ropen() function. The DDS for the

file should specify also that a separate indicator area is to be used. It is generally best to initialize a

separate indicator area explicitly with ’0’ (character) in each byte.

The _Rindara() function is valid for display, ICF, and printer files.

Return Value

The _Rindara() function returns void. See Table 12 on page 507 and Table 14 on page 510 for errno

settings.

Example that uses _Rindara()

Chapter 2. Library Functions 283

|
|
|

Related Information

v “_Ropen() — Open a Record File for I/O Operations” on page 289

_Riofbk() — Obtain I/O Feedback Information

Format

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

#include <string.h>

#define PF03 2

#define IND_OFF ’0’

#define IND_ON ’1’

int main(void)

{

 char buf[40];

 int rc = 1;

 _SYSindara ind_area;

 _RFILE *purf;

 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */

 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)

 {

 printf ("Display file did not open.\n");

 exit (1);

 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)

 {

 printf ("Daily transaction file did not open.\n");

 exit (2);

 }

 /* Associate separate indicator area with purchase file */

 _Rindara (purf, ind_area);

 /* Select purchase record format */

 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */

 /* The _Rwrite function writes the purchase display. */

 _Rwrite (purf, "", 0);

 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* While user is entering transactions, update daily and */

 /* monthly transaction files. */

 while (rc && ind_area[PF03] == IND_OFF)

 {

 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit transaction */

 /* otherwise, rollback the transaction and indicate to the */

 /* user that an error has occurred and end the application. */

 if (rc)

 {

 _Rcommit ("Transaction complete");

 }

 else

 {

 _Rrollbck ();

 _Rformat (purf, "ERROR");

 }

 _Rwrite (purf, "", 0);

 _Rreadn (purf, buf, sizeof(buf), __DFT);

 }

 _Rclose (purf);

 _Rclose (dailyf);

}

284 ILE C/C++ Runtime Library Functions V6R1

#include <recio.h>

#include <xxfdbk.h>

_XXIOFB_T *_Riofbk(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Riofbk() function returns a pointer to a copy of the I/O feedback area for the file that is specified

by fp.

The _Riofbk() function is valid for all types of files.

Return Value

The _Riofbk() function returns NULL if an error occurs. See Table 12 on page 507 and Table 14 on page

510 for errno settings.

Example that uses _Riofbk()

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 _XXIOFB_T *iofb; /* Pointer to the file’s feedback area */

 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace

*/

 /* with actual device name. */

 _Rformat (fp,"FORMAT1"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

Chapter 2. Library Functions 285

sizeof(out_buf));

 _Rreadindv (fp, &buf, sizeof(buf), __DFT);

 /* Read from the first device that */

 /* enters data - device becomes */

 /* default program device. */

 /* Determine which terminal responded first. */

 iofb = _Riofbk (fp);

 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))

 {

 _Rrelease (fp, "DEVICE1");

 }

 else

 {

 _Rrelease(fp, "DEVICE2");

 }

 /* Continue processing. */

 printf ("Data displayed is %45.45s\n", &buf);

 _Rclose (fp);

}

Related Information

v “_Ropnfbk() — Obtain Open Feedback Information” on page 293

_Rlocate() — Position a Record

Format

#include <recio.h>

_RIOFB_T *_Rlocate(_RFILE *fp, void *key, int klen_rrn, int opts);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _Rlocate() function positions to the record in the file associated with fp and specified by the key,

klen_rrn and opts parameters. The _Rlocate() function locks the record specified by the key, klen_rrn and

opts parameters unless __NO_LOCK is specified.

The _Rlocate() function is valid for database and DDM files that are opened with the _Ropen() function.

The following are valid parameters of the _Rlocate()function.

key Points to a string containing the key fields to be used for positioning.

klen_rrn

Specifies the length of the key that is used if positioning by key or the relative record number if

positioning by relative record number.

opts Specifies positioning options to be used for the locate operation. The possible macros are:

__DFT

Default to __KEY_EQ and lock the record for update if the file is open for updating.

286 ILE C/C++ Runtime Library Functions V6R1

|
|
|

__END

Positions to just after the last record in a file. There is no record that is associated with

this position.

__END_FRC

Positions to just after the last record in a file. All buffered changes are made permanent.

There is no record that is associated with this position.

__FIRST

Positions to the first record in the access path that is currently being used by fp. The key

parameter is ignored.

__KEY_EQ

Positions to the first record with the specified key.

__KEY_GE

Positions to the first record that has a key greater than or equal to the specified key.

__KEY_GT

Positions to the first record that has a key greater than the specified key.

__KEY_LE

Positions to the first record that has a key less than or equal to the specified key.

__KEY_LT

Positions to the first record that has a key less than the specified key.

__KEY_NEXTEQ

Positions to the next record that has a key equal to the key value with a length of

klen_rrn, at the current position. The key parameter is ignored.

__KEY_NEXTUNQ

Positions to the next record with a unique key from the current position in the access

path. The key parameter is ignored.

__KEY_PREVEQ

Positions to the previous record with a key equal to the key value with a length of

klen_rrn, at the current position. The key parameter is ignored.

__KEY_PREVUNQ

Positions to the previous record with a unique key from the current position in the access

path. The key parameter is ignored.

__LAST

Positions to the last record in the access path that is currently being used by fp. The key

parameter is ignored.

__NEXT

Positions to the next record in the access path that is currently being used by fp. The key

parameter is ignored.

__PREVIOUS

Positions to the previous record in the access path that is currently being used by fp. The

key parameter is ignored.

__RRN_EQ

Positions to the record that has the relative record number specified on the klen_rrn

parameter.

__START

Positions to just before the first record in the file. There is no record that is associated

with this position.

Chapter 2. Library Functions 287

__START_FRC

Positions to just before the first record in a file. There is no record that is associated with

this position. All buffered changes are made permanent.

__DATA_ONLY

Positions to data records only. Deleted records will be ignored.

__KEY_NULL_MAP

The NULL key map is to be considered when locating to a record by key.

__NO_LOCK

The record that is positioned will not be locked.

__NO_POSITION

The position of the file is not changed, but the located record will be locked if the file is

open for update.

__PRIOR

Positions to just before the requested record.

 If you specify a start or end option (__START, __START_FRC, __END or __END_FRC) with any other

options, the start or end option takes precedence and the other options might be ignored.

If you are positioned to __START or __END and perform a _Rreads operation, errno is set to EIOERROR.

Return Value

The _Rlocate() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rlocate()

operation is successful, the num_bytes field contains 1. If __START, __START_FRC, _END or __END_FRC

are specified, the num_bytes field is set to EOF. If the _Rlocate() operation is unsuccessful, the

num_bytes field contains zero. The key and rrn fields are updated, and the key field will contain the

complete key even if a partial key is specified.

The value of errno may be set to:

 Table 5.

Value Meaning

EBADKEYLN The key length that is specified is not valid.

ENOTREAD The file is not open for read operations

EIOERROR A non-recoverable I/O error occurred.

EIORECERR A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rlocate()

288 ILE C/C++ Runtime Library Functions V6R1

|
|

Related Information

v “_Ropen() — Open a Record File for I/O Operations”

_Ropen() — Open a Record File for I/O Operations

Format

#include <recio.h>

_RFILE *_Ropen(const char * filename, const char * mode, ...);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Ropen() function opens the record file specified by filename according to the mode parameter, which

may be followed by optional parameters, if the varparm keyword parameter is specified in the mode

parameter. The open mode and keyword parameters may be separated by a comma and one or more

spaces. The _Ropen() function does not dynamically create database files for you. All of the files you refer

to in the _Ropen() function must exist, or the open operation will fail.

Files that are opened by the _Ropen() function are closed implicitly when the activation group they are

opened in, is ended. If a pointer to a file opened in one activation group is passed to another activation

group and the opening activation group is ended, the file pointer will no longer be valid.

The _Ropen() function applies to all types of files. The filename variable is any valid i5/OS system file

name.

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *in;

 char new_purchase[21] = "PEAR 1002022244";

 /* Open the file for processing in keyed sequence. */

 if ((in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL)

 {

 printf("Open failed\n");

 exit(1);

 };

 /* Update the first record in the keyed sequence. */

 _Rlocate(in, NULL, 0, __FIRST);

 _Rupdate(in, new_purchase, 20);

 /* Force the end of data. */

 _Rfeod(in);

 _Rclose(in);

}

Chapter 2. Library Functions 289

The mode parameter specifies the type of access that is requested for the file. It contains an open mode

that is followed by optional keyword parameters. The mode parameter may be one of the following

values:

Mode Description

rr Open an existing file for reading records.

wr Open an existing file for writing records. If the file contains data, the content is cleared unless the

file is a logical file.

ar Open an existing file for writing records to the end of the file (append).

rr+ Open an existing file for reading, writing or updating records.

wr+ Open an existing file for reading, writing or updating records. If the file contains data, the

content is cleared unless the file is a logical file.

ar+ Open an existing file for reading and writing records. All data is written to the end of the file.

The mode may be followed by any of the following keyword parameters:

Keyword

Description

arrseq=value

Where value can be:

Y Specifies that the file is processed in arrival sequence.

N Specifies that the file is processed using the access path that is used when the file was

created. This is the default.

blkrcd=value

Where value can be:

Y Performs record blocking. The i5/OS operating system determines the most efficient

block size for you. This parameter is valid for database, DDM, diskette and tape files. It is

only valid for files opened for input-only or output-only (modes rr, wr, or ar).

N Does not perform record blocking. This is the default.

ccsid=value

Specifies the CCSID that is used for translation of the file. The default is 0 which indicates that

the job CCSID is used.

commit=value

Where value can be:

Y Specifies that the database file is opened under commitment control. Commitment control

must have been set up prior to this.

N Specifies that the database file is not opened under commitment control. This is the

default.

dupkey=value

value can be:

Y Duplicate key values will be flagged in the _RIOFB_T structure.

N Duplicate key values will not be flagged. This is the default.

indicators=value

Indicators are valid for printer, display, and ICF files. value can be:

Y The indicators that are associated with the file are returned in a separate indicator area

instead of in the I/O buffers.

290 ILE C/C++ Runtime Library Functions V6R1

N The indicators are returned in the I/O buffers. This is the default.

lrecl=value

The length, in bytes, for fixed length records, and the maximum length for variable length

records. This parameter is valid for diskette, display, printer, tape, and save files.

nullcap=value

Where value can be:

Y The program is capable of handling null fields in records. This is valid for database and

DDM files.

N The program cannot handle null fields in records. This is the default.

riofb=value

Where value can be:

Y All fields in the _RIOFB_T structure are updated by any I/O operation that returns a

pointer to the _RIOFB_T structure. However, the blk_filled_by field is not updated when

using the _Rreadk function. This is the default.

N Only the num_bytes field in the _RIOFB_T structure is updated.

rtncode=value

Where value can be:

Y Use this option to bypass exception generation and handling. This will improve

performance in the end-of-file and record-not-found cases. If the end-of-file is

encountered, num_bytes will be set to EOF, but no errno values will be generated. If no

record is found, num_bytes will be set to zero, and errno will be set to EIORECERR. This

parameter is only valid for database and DDM files. For DDM files, num_bytes is not

updated for _Rfeod.

N The normal exception generation and handling process will occur for the cases of

end-of-file and record-not-found. This is the default.

secure=value

Where value can be:

Y Secures the file from overrides.

N Does not secure the file from overrides. This is the default.

splfname=(value)

For spooled output only. Where value can be:

*FILE The name of the printer file is used for the spooled output file name.

spool-file-name

Specify the name of the spooled output file. A maximum of 10 characters can be used.

usrdta=(value)

To specify, for spooled output only, user-specified data that identifies the file.

user-data

Specify up to 10 characters of user-specified text.

varparm=(list)

Where (list) is a list of optional keywords indicating which optional parameters will be passed to

_Ropen(). The order of the keywords within the list indicates the order that the optional

parameters will appear after the mode parameter. The following is a valid optional keyword:

lvlchk The lvlchk keyword is used in conjunction with the lvlchk option on #pragma mapinc.

When this keyword is used, a pointer to an object of type _LVLCHK_T (generated by

#pragma mapinc) must be specified after the mode parameter on the _Ropen() function.

Chapter 2. Library Functions 291

For more details on this pointer, see the lvlchk option of #pragma mapinc in the

WebSphere Development Studio: ILE C/C++ Programmer’s Guide.

vlr=value

Variable length record, where value is the minimum length of bytes of a record to be written to

the file. The value can equal -1, or range from 0 to the maximum record length of the file. This

parameter is valid for database and DDM files.

 When VLR processing is required, _Ropen() will set min_length field. If the default value is not

used, the minimum value that is provided by the user will be directly copied into min_length

field. If the default value is specified, _Ropen() gets the minimum length from DB portion of the

open data path.

Return Value

The _Ropen() function returns a pointer to a structure of type _RFILE if the file is opened successfully. It

returns NULL if opening the file is unsuccessful.

The value of errno may be set to:

Value Meaning

EBADMODE

The file mode that is specified is not valid.

EBADNAME

The file name that is specified is not valid.

ECONVERT

A conversion error occurred.

ENOTOPEN

The file is not open.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Ropen()

292 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_Rclose() — Close a File” on page 258

v “<recio.h>” on page 9

_Ropnfbk() — Obtain Open Feedback Information

Format

#include <recio.h>

#include <xxfdbk.h>

_XXOPFB_T *_Ropnfbk(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Ropnfbk() function returns a pointer to a copy of the open feedback area for the file that is specified

by fp.

The _Ropnfbk() function is valid for all types of files.

Return Value

The _Ropnfbk() function returns NULL if an error occurs. See Table 12 on page 507 and Table 14 on page

510 for errno settings.

Example that uses _Ropnfbk()

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 else

 /* Do some processing */;

 _Rclose (fp);

}

Chapter 2. Library Functions 293

Related Information

v “_Rupfb() — Provide Information on Last I/O Operation” on page 320

_Rpgmdev() — Set Default Program Device

Format

#include <recio.h>

int _Rpgmdev(_RFILE *fp, char *dev);

Language Level: ILE C Extension

Threadsafe: No.

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _Rpgmdev() function sets the current program device for the file that is associated with fp to dev. You

must specify the device in uppercase.

The dev parameter is a null-ended C string.

The _Rpgmdev() function is valid for display, ICF, and printer files.

Return Value

The _Rpgmdev() function returns 1 if the operation is successful or zero if the device specified has not

been acquired for the file. See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rpgmdev()

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 _Rclose (fp);

}

294 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Related Information

v “_Racquire() — Acquire a Program Device” on page 257

v “_Rrelease() — Release a Program Device” on page 314

_Rreadd() — Read a Record by Relative Record Number

Format

#include <recio.h>

_RIOFB_T *_Rreadd (_RFILE *fp, void *buf, size_t size,

 int opts, long rrn);

Language Level: ILE C Extension

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Rpgmdev (fp,"DEVICE2");/* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

 sizeof(out_buf));

 /* Continue processing. */

 _Rclose (fp);

}

Chapter 2. Library Functions 295

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreadd() function reads the record that is specified by rrn in the arrival sequence access path for the

file that is associated with fp. The _Rreadd() function locks the record specified by the rrn unless

__NO_LOCK is specified. If the file is a keyed file, the keyed access path is ignored. Up to size number of

bytes are copied from the record into buf (move mode only).

The following parameters are valid for the _Rreadd() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

rrn The relative record number of the record to be read.

opts Specifies the processing and access options for the file. The possible options are:

__DFT

If the file is opened for updating, then the record being read is locked for update. The

previously locked record will no longer be locked.

__NO_LOCK

Does not lock the record being positioned to.

The _Rreadd() function is valid for database, DDM and display (subfiles) files.

Return Value

The _Rreadd() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rreadd()

operation is successful the num_bytes field is set to the number of bytes transferred from the system

buffer to the user’s buffer (move mode) or the record length of the file (locate mode). If blkrcd=Y and

riofb=Y are specified, the blk_count and the blk_filled_by fields of the _RIOFB_T structure are updated.

The key and rrn fields are also updated. If the file associated with fp is a display file, the sysparm field is

updated. If it is unsuccessful, the num_bytes field is set to a value less than size and errno will be

changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadd()

296 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_Rreadf() — Read the First Record”

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rreadf() — Read the First Record

Format

#include <recio.h>

_RIOFB_T *_Rreadf (_RFILE *fp, void *buf, size_t size, int opts);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreadf() function reads the first record in the access path that is currently being used for the file

specified by fp. The access path may be keyed sequence or arrival sequence. The _Rreadf() function locks

the first record unless __NO_LOCK is specified. Up to size number of bytes are copied from the record

into buf (move mode only).

The following are valid parameters for the _Rreadf() function.

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the second record. */

 _Rreadd (fp, NULL, 20, __DFT, 2);

 printf ("Second record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);

}

Chapter 2. Library Functions 297

buf This parameter points to the buffer where the data that is read is to be stored. If locate mode is

used, this parameter must be set to NULL.

size This parameter specifies the number of bytes that are to be read and stored in buf. If locate mode

is used, this parameter is ignored.

opts This parameter specifies the processing and access options for the file. The possible options are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked for

update. The previously locked record will no longer be locked.

__NO_LOCK

Does not lock the record being positioned to.

The _Rreadf() function is valid for database and DDM files.

Return Value

The _Rreadf() function returns a pointer to the _RIOFB_T structure that is specified by fp. If the

_Rreadf() operation is successful the num_bytes field is set to the number of bytes transferred from the

system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and

rrn fields are updated. If record blocking is taking place, the blk_count and blk_filled_by fields are

updated. The num_bytes field is set to EOF if the file is empty. If it is unsuccessful, the num_bytes field is

set to a value less than size, and errno is changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadf()

298 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadindv() — Read from an Invited Device”

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rreadindv() — Read from an Invited Device

Format

#include <recio.h>

_RIOFB_T *_Rreadindv(_RFILE *fp, void *buf, size_t size, int opts);

Language Level: ILE C Extension

Threadsafe: No.

Description

The _Rreadindv() function reads data from an invited device.

The following are valid parameters for the _Rreadindv() function.

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the first record. */

 _Rreadf (fp, NULL, 20, __DFT);

 printf ("First record: %10.10s\n", *(fp->in_buf));

 /* Delete the first record. */

 _Rdelete (fp);

 _Rclose (fp);

}

Chapter 2. Library Functions 299

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

opts Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.

Otherwise, the option is ignored.

The _Rreadindv() function is valid for display and ICF files.

Return Value

The _Rreadindv() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rreadindv() function is successful, the num_bytes field is set to the number of bytes transferred from

the system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The

sysparm and rrn (for subfiles) fields are also updated. The num_bytes field is set to EOF if the file is

empty. If the _Rreadindv() function is unsuccessful, the num_bytes field is set to a value less than the

value of size and the errno will be changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadindv()

300 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer

 */

 _RIOFB_T *rfb; /* Pointer to the file’s feedback structure

 */

 _XXIOFB_T *iofb; /* Pointer to the file’s feedback area

 */

 formats buf, in_buf, out_buf /* Buffers to hold data

 */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace */

 /* with actual device name. */

 _Rformat (fp,"FORMAT1"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

 sizeof(out_buf));

 _Rreadindv (fp, &buf, sizeof(buf), __DFT);

 /* Read from the first device that */

 /* enters data - device becomes */

 /* default program device. */

 /* Determine which terminal responded first. */

 iofb = _Riofbk (fp);

 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))

 {

 _Rrelease (fp, "DEVICE1");

 }

 else

 {

 _Rrelease(fp, "DEVICE2");

 }

 /* Continue processing. */

 printf ("Data displayed is %45.45s\n", &buf);

 _Rclose (fp);

}

Chapter 2. Library Functions 301

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadk() — Read a Record by Key”

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rreadk() — Read a Record by Key

Format

#include <recio.h>

_RIOFB_T *_Rreadk(_RFILE *fp, void *buf, size_t size,

 int opts, void *key, unsigned int keylen);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreadk() function reads the record in the keyed access path that is currently being used for the file

that is associated with fp. Up to size number of bytes are copied from the record into buf (move mode

only). The _Rreadk() function locks the record positioned to unless __NO_LOCK is specified. You must

be processing the file using a keyed sequence path.

The following parameters are valid for the _Rreadk() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

key Points to the key to be used for reading.

keylen Specifies the total length of the key to be used.

opts Specifies the processing options for the file. Possible values are:

__DFT

Default to __KEY_EQ.

__KEY_EQ

Positions to and reads the first record that has the specified key.

__KEY_GE

Positions to and reads the first record that has a key greater than or equal to the specified

key.

__KEY_GT

Positions and reads to the first record that has a key greater than the specified key.

__KEY_LE

Positions to and reads the first record that has a key less than or equal to the specified

key.

302 ILE C/C++ Runtime Library Functions V6R1

__KEY_LT

Positions to and reads the first record that has a key less than the specified key.

__KEY_NEXTEQ

Positions to and reads the next record that has a key equal to the key value at the current

position. The key parameter is ignored.

__KEY_NEXTUNQ

Positions to and reads the next record with a unique key from the current position in the

access path. The key parameter is ignored.

__KEY_PREVEQ

Positions to and reads the last record that has a key equal to the key value at the current

position. The key parameter is ignored.

__KEY_PREVUNQ

Positions to and reads the previous record with a unique key from the current position in

the access path. The key parameter is ignored.

__NO_LOCK

Do not lock the record for updating.

The positioning options are mutually exclusive.

The following options may be combined with the positioning options using the bit-wise OR (|) operator.

__KEY_NULL_MAP

The NULL key map is to be considered when reading a record by key.

__NO_LOCK

The record that is positioned will not be locked.

The _Rreadk() function is valid for database and DDM files.

Return Value

The _Rreadk() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rreadk()

operation is successful the num_bytes field is set to the number of bytes transferred from the system

buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and rrn

fields will be updated. The key field will always contain the complete key if a partial key is specified.

When using record blocking with _Rreadk(), only one record is read into the block. Thus there are zero

records remaining in the block and the blk_count field of the _RIOFB_T structure will be updated with 0.

The blk_filled_by field is not applicable to _Rreadk() and is not updated. If the record specified by key

cannot be found, the num_bytes field is set to zero. If you are reading a record by a partial key, then the

entire key is returned in the feedback structure. If it is unsuccessful, the num_bytes field is set to a value

less than size and errno will be changed.

The value of errno may be set to:

Value Meaning

EBADKEYLN

The key length specified is not valid.

ENOTREAD

The file is not open for read operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

Chapter 2. Library Functions 303

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadk()

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadl() — Read the Last Record” on page 305

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

int main(void)

{

 _RFILE *fp;

 _RIOFB_T *fb;

 char buf[4];

 /* Create a physical file */

 system("CRTPF FILE(QTEMP/MY_FILE)");

 /* Open the file for write */

 if ((fp = _Ropen("QTEMP/MY_FILE", "wr")) == NULL)

 {

 printf("open for write fails\n");

 exit(1);

 }

 /* write some records into the file */

 _Rwrite(fp, "KEY9", 4);

 _Rwrite(fp, "KEY8", 4);

 _Rwrite(fp, "KEY7", 4);

 _Rwrite(fp, "KEY6", 4);

 _Rwrite(fp, "KEY5", 4);

 _Rwrite(fp, "KEY4", 4);

 _Rwrite(fp, "KEY3", 4);

 _Rwrite(fp, "KEY2", 4);

 _Rwrite(fp, "KEY1", 4);

 /* Close the file */

 _Rclose(fp);

 /* Open the file for read */

 if ((fp = _Ropen("QTEMP/MY_FILE", "rr")) == NULL)

 {

 printf("open for read fails\n");

 exit(2);

 }

 /* Read the record with key KEY3 */

 fb = _Rreadk(fp, buf, 4, __KEY_EQ, "KEY3", 4);

 printf("record %d with value %4.4s\n", fb->rrn, buf);

 /* Read the next record with key less than KEY3 */

 fb = _Rreadk(fp, buf, 4, __KEY_LT, "KEY3", 4);

 printf("record %d with value %4.4s\n", fb->rrn, buf);

 /* Read the next record with key greater than KEY3 */

 fb = _Rreadk(fp, buf, 4, __KEY_GT, "KEY3", 4);

 printf("record %d with value %4.4s\n", fb->rrn, buf);

 /* Read the next record with different key */

 fb = _Rreadk(fp, buf, 4, __KEY_NEXTUNQ, "", 4);

 printf("record %d with value %4.4s\n", fb->rrn, buf);

 /* Close the file */

 _Rclose(fp);

}

304 ILE C/C++ Runtime Library Functions V6R1

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rreadl() — Read the Last Record

Format

#include <recio.h>

_RIOFB_T *_Rreadl(_RFILE *fp, void *buf, size_t size, int opts);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreadl() function reads the last record in the access path currently being used for the file specified

by fp. The access path may be keyed sequence or arrival sequence. Up to size number of bytes are copied

from the record into buf (move mode only). The _Rreadl() function locks the last record unless

__NO_LOCK is specified.

The following parameters are valid for the _Rreadl() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

opts Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.

The previously locked record will no longer be locked.

__NO_LOCK

Do not lock the record being positioned to.

The _Rreadl() function is valid for database and DDM files.

Return Value

The _Rreadl() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rreadl() operation is successful the num_bytes field is set to the number of bytes transferred from the

system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and

rrn fields will be updated. If record blocking is taking place, the blk_count and blk_filled_by fields will

be updated. If the file is empty, the num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field

is set to a value less than size and errno will be changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

Chapter 2. Library Functions 305

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadl()

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadn() — Read the Next Record”

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rreadn() — Read the Next Record

Format

#include <recio.h>

_RIOFB_T *_Rreadn (_RFILE *fp, void *buf, size_t size, int opts);

Language Level: ILE C Extension

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the last record. */

 _Rreadl (fp, NULL, 20, __DFT);

 printf ("Last record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);

}

306 ILE C/C++ Runtime Library Functions V6R1

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreadn() function reads the next record in the access path that is currently being used for the file

that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size number

of bytes are copied from the record into buf (move mode only). The _Rreadn() function locks the record

positioned to unless __NO_LOCK is specified.

If the file associated with fp is opened for sequential member processing and the current record position

is the last record of any member in the file except the last, _Rreadn() will read the first record in the next

member of the file.

If an _Rlocate() operation positioned to a record specifying the __PRIOR option, _Rreadn() will read the

record positioned to by the _Rlocate() operation.

If the file is open for record blocking and a call to _Rreadp() has filled the block, the _Rreadn() function

is not valid if there are records remaining in the block. You can check the blk_count in _RIOFB_T to see if

there are any remaining records.

The following are valid parameters for the _Rreadn() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

opts Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.

The previously locked record will no longer be locked.

__NO_LOCK

Do not lock the record being positioned to.

The _Rreadn() function is valid for all types of files except printer files.

Return Value

The _Rreadn() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rreadn() operation is successful the num_bytes field is set to the number of bytes transferred from the

system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and

rrn fields are updated. If the file that is associated with fp is a display file, the sysparm field is also

updated. If record blocking is taking place, the blk_count and the blk_filled_by fields of the _RIOFB_T

structure are updated. If attempts are made to read beyond the last record in the file, the num_bytes field

is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less than size, and errno is

changed. If you are using device files and specify zero as the size, check errno to determine if the function

was successful.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

Chapter 2. Library Functions 307

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadn()

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadnc() — Read the Next Changed Record in a Subfile”

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rreadnc() — Read the Next Changed Record in a Subfile

Format

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the first record. */

 _Rreadf (fp, NULL, 20, __DFT);

 printf ("First record: %10.10s\n", *(fp->in_buf));

 /* Delete the second record. */

 _Rreadn (fp, NULL, 20, __DFT);

 _Rdelete (fp);

 _Rclose (fp);

}

308 ILE C/C++ Runtime Library Functions V6R1

#include <recio.h>

_RIOFB_T *_Rreadnc(_RFILE *fp, void *buf, size_t size);

Language Level: ILE C Extension

Threadsafe: No.

Description

The _Rreadnc() function reads the next changed record from the current position in the subfile that is

associated with fp. The minimum size of data that is read from the screen are copied from the system

buffer to buf.

The following are valid parameters for the _Rreadnc() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf.

The _Rreadnc() function is valid for subfiles.

Return Value

The _Rreadnc() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rreadnc() operation is successful the num_bytes field is set to the number of bytes transferred from the

system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The rrn and

sysparm fields are updated. If there are no changed records between the current position and the end of

the file, the num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less

than size, and errno is changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadnc()

Chapter 2. Library Functions 309

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadp() — Read the Previous Record”

v “_Rreads() — Read the Same Record” on page 312

_Rreadp() — Read the Previous Record

Format

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

#define LEN 10

#define NUM_RECS 20

#define SUBFILENAME "MYLIB/T1677RD6"

#define PFILENAME "MYLIB/T1677RDB"

typedef struct {

 char name[LEN];

 char phone[LEN];

} pf_t;

#define RECLEN sizeof(pf_t)

void init_subfile(_RFILE *, _RFILE *);

int main(void)

{

 _RFILE *pf;

 _RFILE *subf;

 /***

 * Open the subfile and the physical file. *

 ***/

 if ((pf = _Ropen(PFILENAME, "rr")) == NULL) {

 printf("can’t open file %s\n", PFILENAME);

 exit(1);

 }

 if ((subf = _Ropen(SUBFILENAME, "ar+")) == NULL) {

 printf("can’t open file %s\n", SUBFILENAME);

 exit(2);

 }

 /***

 * Initialize the subfile with records *

 * from the physical file. *

 ***/

 init_subfile(pf, subf);

 /***

 * Write the subfile to the display by writing *

 * a record to the subfile control format. *

 ***/

 _Rformat(subf, "SFLCTL");

 _Rwrite(subf, "", 0);

 _Rreadnc(subf, "", 0);

 /***

 * Close the physical file and the subfile. *

 ***/

 _Rclose(pf);

 _Rclose(subf);

}

310 ILE C/C++ Runtime Library Functions V6R1

#include <recio.h>

_RIOFB_T *_Rreadp(_RFILE *fp, void *buf, size_t size, int opts);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreadp() function reads the previous record in the access path that is currently being used for the

file that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size

number of bytes are copied from the record into buf (move mode only). The _Rreadp() function locks the

record positioned to unless __NO_LOCK is specified.

If the file associated with fp is opened for sequential member processing and the current record position

is the first record of any member in the file except the first, _Rreadp() will read the last record in the

previous member of the file.

If the file is open for record blocking and a call to _Rreadn() has filled the block, the _Rreadp() function

is not valid if there are records remaining in the block. You can check the blk_count in _RIOFB_T to see if

there are any remaining records.

The following are valid parameters for the _Rreadp() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

opts Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.

The previously locked record will no longer be locked.

__NO_LOCK

Do not lock the record being positioned to.

The _Rreadp() function is valid for database and DDM files.

Return Value

The _Rreadp() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rreadp() operation is successful the num_bytes field is set to the number of bytes transferred from the

system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and

rrn fields are also updated. If record blocking is taking place, the blk_count and the blk_filled_by fields of

the _RIOFB_T structure are updated. If attempts are made to read prior to the first record in the file, the

num_bytes field is set to EOF. If it is unsuccessful, the num_bytes field is set to a value less than size, and

errno is changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

Chapter 2. Library Functions 311

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreadp()

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreads() — Read the Same Record”

_Rreads() — Read the Same Record

Format

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the last record. */

 _Rreadl (fp, NULL, 20, __DFT);

 printf ("Last record: %10.10s\n", *(fp->in_buf));

 /* Get the previous record. */

 _Rreadp (fp, NULL, 20, __DFT);

 printf ("Next to last record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);

}

312 ILE C/C++ Runtime Library Functions V6R1

#include <recio.h>

_RIOFB_T *_Rreads(_RFILE *fp, void *buf, size_t size, int opts);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rreads() function reads the current record in the access path that is currently being used for the file

that is associated with fp. The access path may be keyed sequence or arrival sequence. Up to size number

of bytes are copied from the record into buf (move mode only). The _Rreads() function locks the record

positioned to unless __NO_LOCK is specified.

If the current position in the file that is associated with fp has no record associated with it, the _Rreads()

function will fail.

The _Rreads() function is not valid when the file is open for record blocking.

The following are valid parameters for the _Rreads() function.

buf Points to the buffer where the data that is read is to be stored. If locate mode is used, this

parameter must be set to NULL.

size Specifies the number of bytes that are to be read and stored in buf. If locate mode is used, this

parameter is ignored.

opts Specifies the processing options for the file. Possible values are:

__DFT

If the file is opened for updating, then the record being read or positioned to is locked.

The previously locked record will no longer be locked.

__NO_LOCK

Do not lock the record being positioned to.

The _Rreads() function is valid for database and DDM files.

Return Value

The _Rreads() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rreads() operation is successful the num_bytes field is set to the number of bytes transferred from the

system buffer to the user’s buffer (move mode) or the record length of the file (locate mode). The key and

rrn fields are also updated. If it is unsuccessful, the num_bytes field is set to a value less than size, and

errno is changed.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

Chapter 2. Library Functions 313

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rreads()

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

_Rrelease() — Release a Program Device

Format

#include <recio.h>

int _Rrelease(_RFILE *fp, char *dev);

Language Level: ILE C Extension

Threadsafe: No.

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *fp;

 _XXOPFB_T *opfb;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 }

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the last record. */

 _Rreadl (fp, NULL, 20, __DFT);

 printf ("Last record: %10.10s\n", *(fp->in_buf));

 /* Get the same record without locking it. */

 _Rreads (fp, NULL, 20, __NO_LOCK);

 printf ("Same record: %10.10s\n", *(fp->in_buf));

 _Rclose (fp);

}

314 ILE C/C++ Runtime Library Functions V6R1

Job CCSID Interface: All character data sent to this function is expected to be in the CCSID of the job.

All character data returned by this function is in the CCSID of the job. See “Understanding CCSIDs and

Locales” on page 524 for more information.

Description

The _Rrelease() function releases the program device that is specified by dev from the file that is

associated with fp. The device name must be specified in uppercase.

The dev parameter is a null-ended C string.

The _Rrelease() function is valid for display and ICF files.

Return Value

The _Rrelease() function returns 1 if it is successful or zero if it is unsuccessful. The value of errno may

be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a recoverable I/O error

occurred). See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rrelease()

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 _XXIOFB_T *iofb; /* Pointer to the file’s feedback area */

 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace */

 /* with actual device name. */

 _Rformat (fp,"FORMAT1"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

 sizeof(out_buf));

 _Rreadindv (fp, &buf, sizeof(buf), __DFT);

Chapter 2. Library Functions 315

|
|
|

/* Read from the first device that */

 /* enters data - device becomes */

 /* default program device. */

 /* Determine which terminal responded first. */

 iofb = _Riofbk (fp);

 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))

 {

 _Rrelease (fp, "DEVICE1");

 }

 else

 {

 _Rrelease(fp, "DEVICE2");

 }

 /* Continue processing. */

 printf ("Data displayed is %45.45s\n", &buf);

 _Rclose (fp);

}

Related Information

v “_Racquire() — Acquire a Program Device” on page 257

_Rrlslck() — Release a Record Lock

Format

#include <recio.h>

int _Rrlslck(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes.

Description

The _Rrlslck() function releases the lock on the currently locked record for the file specified by fp. The

file must be open for update, and a record must be locked. If the _NO_POSITION option was specified

on the _Rlocate() operation that locked the record, the record released may not be the record currently

positioned to.

The _Rrlslck() function is valid for database and DDM files.

Return Value

The _Rrlslck() function returns 1 if the operation is successful, or zero if the operation is unsuccessful.

The value of errno may be set to:

Value Meaning

ENOTUPD

The file is not open for update operations.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

316 ILE C/C++ Runtime Library Functions V6R1

Example that uses _Rrlslck()

Related Information

v “_Rdelete() — Delete a Record” on page 261

_Rrollbck() — Roll Back Commitment Control Changes

Format

#include <recio.h>

int _Rrollbck(void);

Language Level: ILE C Extension

Threadsafe: No.

Description

The _Rrollbck() function reestablishes the last commitment boundary as the current commitment

boundary. All changes that are made to the files under commitment control in the job, are reversed. All

locked records are released. Any file that is open under commitment control in the job will be affected.

You must specify the keyword parameter commit=y when the file is opened to be under commitment

control. A commitment control environment must have been set up prior to this.

The _Rrollbck() function is valid for database and DDM files.

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 char buf[21];

 _RFILE *fp;

 _XXOPFB_T *opfb;

 int result;

 /* Open the file for processing in arrival sequence. */

 if ((fp = _Ropen ("MYLIB/T1677RD1", "rr+, arrseq=Y")) == NULL)

 {

 printf ("Open failed\n");

 exit (1);

 };

 /* Get the library and file names of the file opened. */

 opfb = _Ropnfbk (fp);

 printf ("Library: %10.10s\nFile: %10.10s\n",

 opfb->library_name,

 opfb->file_name);

 /* Get the last record. */

 _Rreadl (fp, NULL, 20, __DFT);

 printf ("Last record: %10.10s\n", *(fp->in_buf));

 /* _Rrlslck example. */

 result = _Rrlslck (fp);

 if (result == 0)

 printf("_Rrlslck failed.\n");

 _Rclose (fp);

}

Chapter 2. Library Functions 317

Return Value

The _Rrollbck() function returns 1 if the operation is successful or zero if the operation is unsuccessful.

The value of errno may be set to EIOERROR (a non-recoverable I/O error occurred) or EIORECERR (a

recoverable I/O error occurred). See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rrollbck()

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

 char buf[40];

 int rc = 1;

 _RFILE *purf;

 _RFILE *dailyf;

 /* Open purchase display file and daily transaction file */

 if ((purf = _Ropen ("MYLIB/T1677RD3", "ar+,indicators=y")) == NULL)

 {

 printf ("Display file did not open.\n");

 exit (1);

 }

 if ((dailyf = _Ropen ("MYLIB/T1677RDA", "wr,commit=y")) == NULL)

 {

 printf ("Daily transaction file did not open.\n");

 exit (2);

 }

 /* Select purchase record format */

 _Rformat (purf, "PURCHASE");

 /* Invite user to enter a purchase transaction. */

 /* The _Rwrite function writes the purchase display. */

 _Rwrite (purf, "", 0);

 _Rreadn (purf, buf, sizeof(buf), __DFT);

 /* Update daily transaction file */

 rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);

 /* If the databases were updated, then commit the transaction. */

 /* Otherwise, rollback the transaction and indicate to the */

 /* user that an error has occurred and end the application. */

 if (rc)

 {

 _Rcommit ("Transaction complete");

 }

 else

 {

 _Rrollbck ();

 _Rformat (purf, "ERROR");

 }

 _Rclose (purf);

 _Rclose (dailyf);

}

Related Information

v “_Rcommit() — Commit Current Record” on page 259

v Recovering your system manual

318 ILE C/C++ Runtime Library Functions V6R1

_Rupdate() — Update a Record

Format

#include <recio.h>

_RIOFB_T *_Rupdate(_RFILE *fp, void *buf, size_t size);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rupdate() function updates the record that is currently locked for update in the file that is specified

by fp. The file must be open for update. A record is locked for update by reading or locating to it unless

__NO_LOCK is specified on the read or locate operation. If the __NO_POSITION option is specified on a

locate operation the record updated may not be the record currently positioned to. After the update

operation, the updated record is no longer locked.

The number of bytes that are copied from buf to the record is the minimum of size and the record length

of the file (move mode only). If size is greater than the record length, the data is truncated, and errno is

set to ETRUNC. One complete record is always written to the file. If the size is less than the record length

of the file, the remaining data in the record will be the original data that was read into the system buffer

by the read that locked the record. If a locate operation locked the record, the remaining data will be

what was in the system input buffer prior to the locate.

The _Rupdate() function can be used to update deleted records and key fields. A deleted record that is

updated will no longer be marked as a deleted record. In both of these cases any keyed access paths

defined for fp will be changed.

Note: If locate mode is being used, _Rupdate() works on the data in the file’s input buffer.

The _Rupdate() function is valid for database, display (subfiles) and DDM files.

Return Value

The _Rupdate() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rupdate()

function is successful, the num_bytes field is set to the number of bytes transferred from the system

buffer to the user’s buffer (move mode) or the record length of the file (locate mode). If fp is a display

file, the sysparm field is updated. If the _Rupdate() function is unsuccessful, the num_bytes field is set to

a value less than the size specified (move mode) or zero (locate mode). The errno value will also be

changed.

The value of errno may be set to:

Value Meaning

ENOTUPD

The file is not open for update operations.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Chapter 2. Library Functions 319

Example that uses _Rupdate()

Related Information

v “_Rreadd() — Read a Record by Relative Record Number” on page 295

v “_Rreadf() — Read the First Record” on page 297

v “_Rreadindv() — Read from an Invited Device” on page 299

v “_Rreadk() — Read a Record by Key” on page 302

v “_Rreadl() — Read the Last Record” on page 305

v “_Rreadn() — Read the Next Record” on page 306

v “_Rreadnc() — Read the Next Changed Record in a Subfile” on page 308

v “_Rreadp() — Read the Previous Record” on page 310

v “_Rreads() — Read the Same Record” on page 312

_Rupfb() — Provide Information on Last I/O Operation

Format

#include <recio.h>

_RIOFB_T *_Rupfb(_RFILE *fp);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rupfb() function updates the feedback structure associated with the file specified by fp with

information about the last I/O operation. The _RIOFB_T structure will be updated even if riofb=N was

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

int main(void)

{

 _RFILE *in;

 char new_purchase[21] = "PEAR 1002022244";

 /* Open the file for processing in keyed sequence. */

 if ((in = _Ropen("MYLIB/T1677RD4", "rr+, arrseq=N")) == NULL)

 {

 printf("Open failed\n");

 exit(1);

 };

 /* Update the first record in the keyed sequence. */

 _Rlocate(in, NULL, 0, __FIRST);

 _Rupdate(in, new_purchase, 20);

 /* Force the end of data. */

 _Rfeod(in);

 _Rclose(in);

}

320 ILE C/C++ Runtime Library Functions V6R1

specified when the file was opened. The num_bytes field of the _RIOFB_T structure will not be updated.

See “<recio.h>” on page 9 for a description of the _RIOFB_T structure.

The _Rupfb() function is valid for all types of files.

Return Value

The _Rupfb() function returns a pointer to the _RIOFB_T structure specified by fp. See Table 12 on page

507 and Table 14 on page 510 for errno settings.

Example that uses _Rupfb()

#include <stdio.h>

#include <recio.h>

#include <stdlib.h>

int main(void)

{

 _RFILE *fp;

 _RIOFB_T *fb;

 /* Create a physical file */

 system("CRTPF FILE(QTEMP/MY_FILE) RCDLEN(80)");

 /* Open the file for write */

 if ((fp = _Ropen("QTEMP/MY_FILE", "wr")) == NULL)

 {

 printf("open for write fails\n");

 exit(1);

 }

 /* Write some records into the file */

 _Rwrite(fp, "This is record 1", 16);

 _Rwrite(fp, "This is record 2", 16);

 _Rwrite(fp, "This is record 3", 16);

 _Rwrite(fp, "This is record 4", 16);

 _Rwrite(fp, "This is record 5", 16);

 _Rwrite(fp, "This is record 6", 16);

 _Rwrite(fp, "This is record 7", 16);

 _Rwrite(fp, "This is record 8", 16);

 _Rwrite(fp, "This is record 9", 16);

 /* Close the file */

 _Rclose(fp);

 /* Open the file for read */

 if ((fp = _Ropen("QTEMP/MY_FILE", "rr, blkrcd = y")) == NULL)

 {

 printf("open for read fails\n");

 exit(2);

 }

 /* Read some records */

 _Rreadn(fp, NULL, 80, __DFT);

 _Rreadn(fp, NULL, 80, __DFT);

 /* Call _Rupfb and print feed back information */

 fb = _Rupfb(fp);

 printf("record number -------------------------- %d\n",

 fb->rrn);

 printf("number of bytes read ------------------- %d\n",

 fb->num_bytes);

 printf("number of records remaining in block --- %hd\n",

 fb->blk_count);

 if (fb->blk_filled_by == __READ_NEXT)

 {

 printf("block filled by ------------------------ __READ_NEXT\n");

 }

 else

 {

 printf("block filled by ------------------------ __READ_PREV\n");

Chapter 2. Library Functions 321

}

 /* Close the file */

 _Rclose(fp);

}

Related Information

v “_Ropnfbk() — Obtain Open Feedback Information” on page 293

_Rwrite() — Write the Next Record

Format

#include <recio.h>

_RIOFB_T * _Rwrite(_RFILE *fp, void *buf, size_t size);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rwrite() function has two modes: move and locate. When buf points to a user buffer, _Rwrite() is

in move mode. When buf is NULL, the function is in locate mode.

The _Rwrite() function appends a record to the file specified by fp. The number of bytes copied from buf

to the record is the minimum of size and the record length of the file (move mode only). If size is greater

than the record length, the data is truncated and errno is set to ETRUNC. One complete record is always

written if the operation is successful.

If you are using _Ropen() and then _Rwrite() to output records to a source physical file, the sequence

numbers must be manually appended.

The _Rwrite() function has no effect on the position of the file for a subsequent read operation.

Records might be lost although the _Rwrite() function indicates success when the following items are

true:

v Record blocking is taking place.

v The file associated with fp is approaching the limit of the number of records it can contain and the file

cannot be extended.

v Multiple writers are writing to the same file.

Because the output is buffered, the _Rwrite routine returns success that indicates the record is

successfully copied to the buffer. However, when the buffer is flushed, the routine might fail because the

file has been filled to capacity by another writer. In this case, the _Rwrite() function indicates that an

error occurred only on the call to the _Rwrite() function that sends the data to the file.

The _Rwrite() function is valid for all types of files.

Return Value

The _Rwrite() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rwrite() operation is successful the num_bytes field is set to the number of bytes written for both move

mode and locate mode. The function transfers the bytes from the user’s buffer to the system buffer. If

record blocking is taking place, the function only updates the rrn and key fields when it sends the block

322 ILE C/C++ Runtime Library Functions V6R1

|
|

|

|
|

|

|
|
|
|

to the database. If fp is a display, ICF or printer file, the function updates the sysparm field. If it is

unsuccessful, the num_bytes field is set to a value less than size specified (move mode) or zero (locate

mode) and errno is changed.

The value of errno may be set to:

Value Meaning

ENOTWRITE

The file is not open for write operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rwrite()

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 _XXIOFB_T *iofb; /* Pointer to the file’s feedback area */

 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Racquire (fp,"DEVICE1"); /* Acquire another device. Replace */

 /* with actual device name. */

 _Rformat (fp,"FORMAT1"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 _Rpgmdev (fp,"DEVICE2"); /* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

 sizeof(out_buf));

Chapter 2. Library Functions 323

_Rreadindv (fp, &buf, sizeof(buf), __DFT);

 /* Read from the first device that */

 /* enters data - device becomes */

 /* default program device. */

 /* Determine which terminal responded first. */

 iofb = _Riofbk (fp);

 if (!strncmp ("FORMAT1 ", iofb -> rec_format, 10))

 {

 _Rrelease (fp, "DEVICE1");

 }

 else

 {

 _Rrelease(fp, "DEVICE2");

 }

 /* Continue processing. */

 printf ("Data displayed is %45.45s\n", &buf);

 _Rclose (fp);

}

Related Information

v “_Rwrited() — Write a Record Directly”

v “_Rwriterd() — Write and Read a Record” on page 327

v “_Rwrread() — Write and Read a Record (separate buffers)” on page 328

_Rwrited() — Write a Record Directly

Format

#include <recio.h>

_RIOFB_T *_Rwrited(_RFILE *fp, void *buf, size_t size, unsigned long rrn);

Language Level: ILE C Extension

Threadsafe: Yes. However, if the file pointer is passed among threads, the I/O feedback area is shared

among those threads.

Description

The _Rwrited() function writes a record to the file associated with fp at the position specified by rrn. The

_Rwrited() function will only write over deleted records. The number of bytes copied from buf to the

record is the minimum of size and the record length of the file (move mode only). If size is greater than

the record length, the data is truncated, and errno is set to ETRUNC. One complete record is always

written if the operation is successful.

The _Rwrited() function has no effect on the position of the file for a read operation.

The _Rwrited() function is valid for database, DDM and subfiles.

Return Value

The _Rwrited() function returns a pointer to the _RIOFB_T structure associated with fp. If the _Rwrited()

operation is successful the num_bytes field is set to the number of bytes transferred from the user’s

buffer to the system buffer (move mode) or the record length of the file (locate mode). The rrn field is

updated. If fp is a display file, the sysparm field is updated. If it is unsuccessful, the num_bytes field is

set to a value less than size specified (move mode) or zero (locate mode) and errno is changed.

The value of errno may be set to:

Value Meaning

324 ILE C/C++ Runtime Library Functions V6R1

ENOTWRITE

The file is not open for write operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rwrited()

Chapter 2. Library Functions 325

Related Information

v “_Rwrite() — Write the Next Record” on page 322

v “_Rwriterd() — Write and Read a Record” on page 327

v “_Rwrread() — Write and Read a Record (separate buffers)” on page 328

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

#define LEN 10

#define NUM_RECS 20

#define SUBFILENAME "MYLIB/T1677RD6"

#define PFILENAME "MYLIB/T1677RDB"

typedef struct {

 char name[LEN];

 char phone[LEN];

} pf_t;

#define RECLEN sizeof(pf_t)

void init_subfile(_RFILE *, _RFILE *);

int main(void)

{

 _RFILE *pf;

 _RFILE *subf;

 /* Open the subfile and the physical file. */

 if ((pf = _Ropen(PFILENAME, "rr")) == NULL) {

 printf("can’t open file %s\n", PFILENAME);

 exit(1);

 }

 if ((subf = _Ropen(SUBFILENAME, "ar+")) == NULL) {

 printf("can’t open file %s\n", SUBFILENAME);

 exit(2);

 }

 /* Initialize the subfile with records *

 * from the physical file. */

 init_subfile(pf, subf);

 /* Write the subfile to the display by writing *

 * a record to the subfile control format. */

 _Rformat(subf, "SFLCTL");

 _Rwrite(subf, "", 0);

 _Rreadnc(subf, "", 0);

 /* Close the physical file and the subfile. */

 _Rclose(pf);

 _Rclose(subf);

}

void init_subfile(_RFILE *pf, _RFILE *subf)

 {

 _RIOFB_T *fb;

 int i;

 pf_t record;

 /* Select the subfile record format. */

 _Rformat(subf, "SFL");

 for (i = 1; i <= NUM_RECS; i++) {

 fb = _Rreadn(pf, &record, RECLEN, __DFT);

 if (fb->num_bytes != RECLEN) {

 printf("%d\n", fb->num_bytes);

 printf("%d\n", RECLEN);

 printf("error occurred during read\n");

 exit(3);

 }

 fb = _Rwrited(subf, &record, RECLEN, i);

 if (fb->num_bytes != RECLEN) {

 printf("error occurred during write\n");

 exit(4);

 }

 }

 }

326 ILE C/C++ Runtime Library Functions V6R1

_Rwriterd() — Write and Read a Record

Format

#include <recio.h>

_RIOFB_T *_Rwriterd(_RFILE *fp, void *buf, size_t size);

Language Level: ILE C Extension

Threadsafe: No.

Description

The _Rwriterd() function performs a write and then a read operation on the file that is specified by fp.

The minimum of size and the length of the current record format determines the amount of data to be

copied between the system buffer and buf for both the write and read parts of the operation. If size is

greater than the record length of the current format, errno is set to ETRUNC on the write part of the

operation. If size is less than the length of the current record format, errno is set to ETRUNC on the read

part of the operation.

The _Rwriterd() function is valid for display and ICF files.

Return Value

The _Rwriterd() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rwriterd() operation is successful, the num_bytes field is set to the number of bytes transferred from

the system buffer to buf on the read part of the operation (move mode) or the record length of the file

(locate mode).

The value of errno may be set to:

Value Meaning

ENOTUPD

The file is not open for update operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rwriterd()

Chapter 2. Library Functions 327

Related Information

v “_Rwrite() — Write the Next Record” on page 322

v “_Rwrited() — Write a Record Directly” on page 324

v “_Rwrread() — Write and Read a Record (separate buffers)”

_Rwrread() — Write and Read a Record (separate buffers)

Format

#include <recio.h>

_RIOFB_T *_Rwrread(_RFILE *fp, void *in_buf, size_t in_buf_size,

 void *out_buf, size_t out_buf_size);

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Rpgmdev (fp,"DEVICE2");/* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

 sizeof(out_buf));

 /* Continue processing. */

 _Rclose (fp);

}

328 ILE C/C++ Runtime Library Functions V6R1

Language Level: ILE C Extension

Threadsafe: No.

Description

The _Rwrread() function performs a write and then a read operation on the file that is specified by fp.

Separate buffers may be specified for the input and output data. The minimum of size and the length of

the current record format determines the amount of data to be copied between the system buffer and the

buffers for both the write and read parts of the operation. If out_buf_size is greater than the record length

of the current format, errno is set to ETRUNC on the write part of the operation. If in_buf_size is less than

the length of the current record format, errno is set to ETRUNC on the read part of the operation.

The _Rwrread() function is valid for display and ICF files.

Return Value

The _Rwrread() function returns a pointer to the _RIOFB_T structure that is associated with fp. If the

_Rwrread() operation is successful, the num_bytes field is set to the number of bytes transferred from the

system buffer to in_buf in the read part of the operation (move mode) or the record length of the file

(locate mode).

The value of errno may be set to:

Value Meaning

ENOTUPD

The file is not open for update operations.

ETRUNC

Truncation occurred on an I/O operation.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

See Table 12 on page 507 and Table 14 on page 510 for errno settings.

Example that uses _Rwrread()

Chapter 2. Library Functions 329

Related Information

v “_Rwrite() — Write the Next Record” on page 322

v “_Rwrited() — Write a Record Directly” on page 324

v “_Rwriterd() — Write and Read a Record” on page 327

scanf() — Read Data

Format

#include <stdio.h>

int scanf(const char *format-string, argument-list);

Language Level: ANSI

#include <stdio.h>

#include <recio.h>

#include <string.h>

#include <stdlib.h>

typedef struct {

 char name[20];

 char address[25];

} format1 ;

typedef struct {

 char name[8];

 char password[10];

} format2 ;

typedef union {

 format1 fmt1;

 format2 fmt2;

} formats ;

int main(void)

{

 _RFILE *fp; /* File pointer */

 _RIOFB_T *rfb; /*Pointer to the file’s feedback structure */

 formats buf, in_buf, out_buf; /* Buffers to hold data */

 /* Open the device file. */

 if ((fp = _Ropen ("MYLIB/T1677RD2", "ar+")) == NULL)

 {

 printf ("Could not open file\n");

 exit (1);

 }

 _Rpgmdev (fp,"DEVICE2");/* Change the default program device. */

 /* Replace with actual device name. */

 _Rformat (fp,"FORMAT2"); /* Set the record format for the */

 /* display file. */

 rfb = _Rwrite (fp, "", 0); /* Set up the display. */

 rfb = _Rwriterd (fp, &buf, sizeof(buf));

 rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf,

 sizeof(out_buf));

 /* Continue processing. */

 _Rclose (fp);

}

330 ILE C/C++ Runtime Library Functions V6R1

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The scanf() function reads data from the standard input stream stdin into the locations that is given by

each entry in argument-list. Each argument must be a pointer to a variable with a type that corresponds to

a type specifier in format-string. The format-string controls the interpretation of the input fields, and is a

multibyte character string that begins and ends in its initial shift state.

The format-string can contain one or more of the following:

v White-space characters, as specified by the isspace() function (such as blanks and new-line

characters). A white-space character causes the scanf() function to read, but not to store, all

consecutive white-space characters in the input up to the next character that is not white space. One

white-space character in format-string matches any combination of white-space characters in the input.

v Characters that are not white space, except for the percent sign character (%). A non-whitespace

character causes the scanf() function to read, but not to store, a matching non-whitespace character. If

the next character in stdin does not match, the scanf() function ends.

v Format specifications, introduced by the percent sign (%). A format specification causes the scanf()

function to read and convert characters in the input into values of a specified type. The value is

assigned to an argument in the argument list.

The scanf() function reads format-string from left to right. Characters outside of format specifications are

expected to match the sequence of characters in stdin; the matched characters in stdin are scanned but

not stored. If a character in stdin conflicts with format-string, scanf() ends. The conflicting character is

left in stdin as if it had not been read.

When the first format specification is found, the value of the first input field is converted according to the

format specification and stored in the location specified by the first entry in argument-list. The second

format specification converts the second input field and stores it in the second entry in argument-list, and

so on through the end of format-string.

An input field is defined as all characters up to the first white-space character (space, tab, or new line),

up to the first character that cannot be converted according to the format specification, or until the field

width is reached, whichever comes first. If there are too many arguments for the format specifications, the

extra arguments are ignored. The results are undefined if there are not enough arguments for the format

specifications.

A format specification has the following form:

 Each field of the format specification is a single character or a number signifying a particular format

option. The type character, which appears after the last optional format field, determines whether the

�� %

*

width

h

L

l

ll

H

D

DD

 type ��

Chapter 2. Library Functions 331

|||||||

|
|
|
|

input field is interpreted as a character, a string, or a number. The simplest format specification contains

only the percent sign and a type character (for example, %s).

Each field of the format specification is discussed in detail below. If a percent sign (%) is followed by a

character that has no meaning as a format control character, that character and following characters up to

the next percent sign are treated as an ordinary sequence of characters; that is, a sequence of characters

that must match the input. For example, to specify a percent-sign character, use %%.

The following restrictions apply to pointer printing and scanning:

v If a pointer is printed out and scanned back from the same activation group, the scanned back pointer

will be compared equal to the pointer that is printed out.

v If a scanf() family function scans a pointer that was printed out by a different activation group, the

scanf() family function will set the pointer to NULL.

See the WebSphere Development Studio: ILE C/C++ Programmer’s Guide for more information about using

i5/OS pointers.

An asterisk (*) following the percent sign suppresses assignment of the next input field, which is

interpreted as a field of the specified type. The field is scanned but not stored.

The width is a positive decimal integer controlling the maximum number of characters to be read from

stdin. No more than width characters are converted and stored at the corresponding argument. Fewer

than width characters are read if a white-space character (space, tab, or new line), or a character that

cannot be converted according to the given format occurs before width is reached.

The optional size modifiers h, l, ll, L, H, D, and DD indicate the size of the receiving object. The

conversion characters d, i, and n must be preceded by h if the corresponding argument is a pointer to a

short int rather than a pointer to an int, by l if it is a pointer to a long int, or by ll if it is a pointer to a

long long int. Similarly, the conversion characters o, u, x, and X must be preceded by h if the

corresponding argument is a pointer to an unsigned short int rather than a pointer to an unsigned int, by

l if it is a pointer to an unsigned long int, or by ll if it is a pointer to an unsigned long long int. The

conversion characters e, E, f, F, g, and G must be preceded by l if the corresponding argument is a

pointer to a double rather than a pointer to a float, by L if it is a pointer to a long double, by H if it is a

pointer to a _Decimal32, by D if it is a pointer to a _Decimal64, or by DD if it is a pointer to a

_Decimal128. Finally, the conversion characters c, s, and [must be preceded by l if the corresponding

argument is a pointer to a wchar_t rather than a pointer to a single-byte character type. If an h, l, L, ll, H,

D, or DD appears with any other conversion character, the behavior is undefined.

The type characters and their meanings are in the following table:

 Character Type of Input Expected Type of Argument

d Signed decimal integer Pointer to int.

o Unsigned octal integer Pointer to unsigned int.

x, X Unsigned hexadecimal integer Pointer to unsigned int.

i Decimal, hexadecimal, or octal integer Pointer to int.

u Unsigned decimal integer Pointer to unsigned int.

e, E, f, F, g,

G

Floating-point value consisting of an optional sign

(+ or -); a series of one or more decimal digits

possibly containing a decimal point; and an

optional exponent (e or E) followed by a possibly

signed integer value.

Pointer to floating point.

332 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|

|
|

Character Type of Input Expected Type of Argument

D(n,p) Packed decimal value consisting of an optional

sign (+ or -); then a non-empty sequence of digits,

optionally a series of one or more decimal digits

possibly containing a decimal point, but not a

decimal suffix. The subject sequence is defined as

the longest initial subsequence of the input string,

starting with the first non-whitespace character, in

the expected form. It contains no characters if the

input string is empty or consists entirely of white

space, or if the first non-whitespace character is

anything other than a sign, a digit, or a decimal

point character.

Pointer to decimal(n,p). Since the internal

representation of the binary coded decimal object

is the same as the internal representation of the

packed decimal data type, you can use the type

character D(n,p).

c Character; white-space characters that are

ordinarily skipped are read when c is specified

Pointer to char large enough for input field.

s String Pointer to character array large enough for input

field plus a ending null character (\0), which is

automatically appended.

n No input read from stream or buffer Pointer to int, into which is stored the number of

characters successfully read from the stream or

buffer up to that point in the call to scanf().

p Pointer to void converted to series of characters Pointer to void.

lc Multibyte character constant Pointer to wchar_t.

ls Multibyte string constant Pointer to wchar_t string.

To read strings not delimited by space characters, substitute a set of characters in brackets ([]) for the s

(string) type character. The corresponding input field is read up to the first character that does not appear

in the bracketed character set. If the first character in the set is a caret (^), the effect is reversed: the input

field is read up to the first character that does appear in the rest of the character set.

To store a string without storing an ending null character (\0), use the specification %ac, where a is a

decimal integer. In this instance, the c type character means that the argument is a pointer to a character

array. The next a characters are read from the input stream into the specified location, and no null

character is added.

The input for a %x format specifier is interpreted as a hexadecimal number.

The scanf() function scans each input field character by character. It might stop reading a particular

input field either before it reaches a space character, when the specified width is reached, or when the

next character cannot be converted as specified. When a conflict occurs between the specification and the

input character, the next input field begins at the first unread character. The conflicting character, if there

was one, is considered unread and is the first character of the next input field or the first character in

subsequent read operations on stdin.

For %lc and %ls, specifies the data that is read is a multibyte string and is converted to wide characters

as if by calls to mbtowc.

For the %e, %E, %f, %F, %g, and %G format specifiers, a character sequence of INFINITY or NAN (ignoring

case) is allowed and yields a value of INFINITY or Quiet Not-A-Number (NaN), respectively.

Alternative format specification has the following form:

Chapter 2. Library Functions 333

|
|

As an alternative, specific entries in the argument-list may be assigned by using the format specification

outlined in the diagram above. This format specification and the previous format specification may not be

mixed in the same call to scanf(). Otherwise, unpredictable results may occur.

The arg-number is a positive integer constant where 1 refers to the first entry in the argument-list.

Arg-number may not be greater than the number of entries in the argument-list, or else the results are

undefined. Arg-number also may not be greater than NL_ARGMAX.

Return Value

The scanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned.

The return value is EOF for an attempt to read at end-of-file if no conversion was performed. A return

value of 0 means that no fields were assigned.

Error Conditions

If the type of the argument that is to be assigned into is different than the format specification,

unpredictable results can occur. For example, reading a floating-point value, but assigning it into a

variable of type int, is incorrect and would have unpredictable results.

If there are more arguments than format specifications, the extra arguments are ignored. The results are

undefined if there are not enough arguments for the format specifications.

If the format string contains an invalid format specification, and positional format specifications are being

used, errno will be set to EILSEQ.

If positional format specifications are used and there are not enough arguments, errno will be set to

EINVAL.

If a conversion error occurs, errno may be set to ECONVERT.

Examples using scanf()

This example scans various types of data.

�� % arg-number$

*

width

h

L

l

ll

H

D

DD

 type ��

334 ILE C/C++ Runtime Library Functions V6R1

|||||||

This example converts a hexadecimal integer to a decimal integer. The while loop ends if the input value

is not a hexadecimal integer.

This example reads from stdin and assigns data by using the alternative positional format string.

#include <stdio.h>

int main(void)

{

 int i;

 float fp;

 char c, s[81];

 printf("Enter an integer, a real number, a character "

 "and a string : \n");

 if (scanf("%d %f %c %s", &i, &fp, &c, s) != 4)

 printf("Not all fields were assigned\n");

 else

 {

 printf("integer = %d\n", i);

 printf("real number = %f\n", fp);

 printf("character = %c\n", c);

 printf("string = %s\n",s);

 }

}

/***************** If input is: 12 2.5 a yes, *******************

************** then output should be similar to: ****************

Enter an integer, a real number, a character and a string :

integer = 12

real number = 2.500000

character = a

string = yes

*/

#include <stdio.h>

int main(void)

{

 int number;

 printf("Enter a hexadecimal number or anything else to quit:\n");

 while (scanf("%x",&number))

 {

 printf("Hexadecimal Number = %x\n",number);

 printf("Decimal Number = %d\n",number);

 }

}

/*************** If input is: 0x231 0xf5e 0x1 q, ************** **

**************** then output should be similar to: **************

Enter a hexadecimal number or anything else to quit:

Hexadecimal Number = 231

Decimal Number = 561

Hexadecimal Number = f5e

Decimal Number = 3934

Hexadecimal Number = 1

Decimal Number = 1

*/

Chapter 2. Library Functions 335

This example reads in a multibyte character string into a wide Unicode string. The example can be

compiled with either LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF).

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “printf() — Print Formatted Characters” on page 229

v “sscanf() — Read Data” on page 355

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “swscanf() — Read Wide Character Data” on page 407

v “<stdio.h>” on page 15

setbuf() — Control Buffering

Format

#include <stdio.h>

int main(int argc, char *argv[])

{

int i;

char s[20];

float f;

scanf("%2$s %3$f %1$d",&i, s, &f);

printf("The data read was %i\n%s\n%f\n,i,s,f);

return 0;

 }

 /* If the input is : test 0.2 100

 then the output will be similar to: */

 The data read was

 100

 test

 0.20000

 --

 #include <locale.h>

 #include <stdio.h>

 #include <wchar.h>

 void main(void)

{

wchar_t uString[20];

setlocale(LC_UNI_ALL, "");

scanf("Enter a string %ls",uString);

printf("String read was %ls\n",uString);

}

/* if the input is : ABC

 then the output will be similiar to:

 String read was ABC

 */

336 ILE C/C++ Runtime Library Functions V6R1

#include <stdio.h>

void setbuf(FILE *, char *buffer);

Language Level: ANSI

Threadsafe: Yes.

Description

If the operating system supports user-defined buffers, setbuf() controls buffering for the specified stream.

The setbuf() function only works in ILE C when using the integrated file system. The stream pointer

must refer to an open file before any I/O or repositioning has been done.

If the buffer argument is NULL, the stream is unbuffered. If not, the buffer must point to a character array

of length BUFSIZ, which is the buffer size that is defined in the <stdio.h> include file. The system uses

the buffer, which you specify, for input/output buffering instead of the default system-allocated buffer for

the given stream. stdout, stderr, and stdin do not support user-defined buffers.

The setvbuf() function is more flexible than the setbuf() function.

Return Value

There is no return value.

Example that uses setbuf()

This example opens the file setbuf.dat for writing. It then calls the setbuf() function to establish a buffer

of length BUFSIZ. When string is written to the stream, the buffer buf is used and contains the string

before it is flushed to the file.

Related Information

v “fclose() — Close Stream” on page 91

v “fflush() — Write Buffer to File” on page 96

v “fopen() — Open Files” on page 109

v “setvbuf() — Control Buffering” on page 344

v “<stdio.h>” on page 15

#include <stdio.h>

int main(void)

{

 char buf[BUFSIZ];

 char string[] = "hello world";

 FILE *stream;

 memset(buf,’\0’,BUFSIZ); /* initialize buf to null characters */

 stream = fopen("setbuf.dat", "wb");

 setbuf(stream,buf); /* set up buffer */

 fwrite(string, sizeof(string), 1, stream);

 printf("%s\n",buf); /* string is found in buf now */

 fclose(stream); /* buffer is flushed out to myfile.dat */

}

Chapter 2. Library Functions 337

setjmp() — Preserve Environment

Format

#include <setjmp.h>

int setjmp(jmp_buf env);

Language Level: ANSI

Threadsafe: Yes.

Description

The setjmp() function saves a stack environment that can subsequently be restored by the longjmp()

function. The setjmp() and longjmp() functions provide a way to perform a non-local goto. They are

often used in signal handlers.

A call to the setjmp() function causes it to save the current stack environment in env. A subsequent call

to the longjmp() function restores the saved environment and returns control to a point corresponding to

the setjmp() call. The values of all variables (except register variables) available to the function receiving

control contain the values they had when the longjmp() function was called. The values of register

variables are unpredictable. Nonvolatile auto variables that are changed between calls to the setjmp()

function and the longjmp() function are also unpredictable.

Return Value

The setjmp() function returns the value 0 after saving the stack environment. If the setjmp() function

returns as a result of a longjmp() call, it returns the value argument of the longjmp() function, or 1 if the

value argument of the longjmp() function is 0. There is no error return value.

Example that uses setjmp()

This example saves the stack environment at the statement:

When the system first performs the if statement, it saves the environment in mark and sets the condition

to FALSE because the setjmp() function returns a 0 when it saves the environment. The program prints

the message:

The subsequent call to function p() causes it to call the longjmp() function. Control is transferred to the

point in the main() function immediately after the call to the setjmp() function using the environment

saved in the mark variable. This time, the condition is TRUE because -1 is specified in the second

parameter on the longjmp() function call as the return value to be placed on the stack. The example then

performs the statements in the block, prints the message "longjmp() has been called", calls the recover()

function, and leaves the program.

 if(setjmp(mark) != 0) ...

 setjmp has been called

338 ILE C/C++ Runtime Library Functions V6R1

|

|
|
|
|
|
|

Related Information

v “longjmp() — Restore Stack Environment” on page 193

v “<setjmp.h>” on page 13

setlocale() — Set Locale

Format

#include <locale.h>

char *setlocale(int category, const char *locale);

Language Level: ANSI

Threadsafe: No.

Locale Sensitive: For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The setlocale() function changes or queries variables that are defined in the <locale.h> include file, that

indicate location. The values for category are listed below.

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf mark;

void p(void);

void recover(void);

int main(void)

{

 if (setjmp(mark) != 0)

 {

 printf("longjmp has been called\n");

 recover();

 exit(1);

 }

 printf("setjmp has been called\n");

 printf("Calling function p()\n");

 p();

 printf("This point should never be reached\n");

}

void p(void)

{

 printf("Calling longjmp() from inside function p()\n");

 longjmp(mark, -1);

 printf("This point should never be reached\n");

}

void recover(void)

{

 printf("Performing function recover()\n");

}

/*******************Output should be as follows: **********************

 setjmp has been called

 Calling function p()

 Calling longjmp() from inside function p()

 longjmp has been called

 Performing function recover()

**/

Chapter 2. Library Functions 339

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Category Purpose

LC_ALL Names entire locale of program.

LC_COLLATE Affects behavior of the strcoll() and strxfrm() functions.

LC_CTYPE Affects behavior of character handling functions.

LC_MONETARY Affects monetary information returned by localeconv() and nl_langinfo()

functions.

LC_NUMERIC Affects the decimal-point character for the formatted input/output and string

conversion functions, and the non-monetary formatting information returned by

the localeconv() and nl_langinfo() functions.

LC_TIME Affects behavior of the strftime() function and the time formatting information

returned by the nl_langinfo() function.

LC_TOD Affects the behavior of the time functions.

The category LC_TOD has several fields in it. The TNAME field is the time zone

name. The TZDIFF field is the difference between local time and Greenwich

Meridian time. If the TNAME field is nonblank, then the TZDIFF field is used

when determining the values that are returned by some of the time functions.

This value takes precedence over the system value, QUTCOFFSET.

LC_UNI_ALL* This category causes setlocale() to load all of the the LC_UNI_ categories from

the locale specified. This category accepts only a locale with a UCS-2 or UTF-32

CCSID.

LC_UNI_COLLATE* Affects behavior of the wcscoll() and wcsxfrm() functions. This category accepts

only a locale with a UCS-2 or UTF-32 CCSID.

Note: This category is not supported for UCS-2.

LC_UNI_CTYPE* Affects the behavior of the wide character handling functions. This category

accepts only a locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_MESSAGES* Affects the message formatting information returned by the _WCS_nl_langinfo()

function. This category accepts only a locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_MONETARY* Affects the monetary information returned by the wcslocaleconv() and

_WCS_nl_langinfo() functions. This category accepts only a locale with a UCS-2

or UTF-32 CCSID.

LC_UNI_NUMERIC* Affects the decimal-point character for the wide character formatted input/output

and wide character string conversion functions, and the non-monetary

information returned by the wcslocaleconv() and _WCS_nl_langinfo() functions.

This category accepts only a locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_TIME* Affects the behavior of the wcsftime() function and the time formatting

information returned by the _WCS_nl_langinfo() functions. This category accepts

only a locale with a UCS-2 or UTF-32 CCSID.

LC_UNI_TOD* Affects the behavior of the wide character time functions. This category accepts

only a locale with a UCS-2 or UTF-32 CCSID.

* To use categories with UNI in the name, LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF)

must be specified on the compilation command. If LOCALETYPE(*LOCALEUCS2) is used, the locale

specified must be a UCS-2 locale. If LOCALETYPE(*LOCALEUTF) is used, the locale specified must be a

UTF-32 locale.

Note: There are two ways of defining setlocale() and other locale-sensitive C functions on the System i

platform. The original way to define setlocale() uses *CLD locale objects to set the locale and

retrieve locale-sensitive data. The second way to define setlocale() uses *LOCALE objects to set

the locale and retrieve locale-sensitive data. The original way is accessed by specifying

LOCALETYPE(*CLD) on the compilation command. The second way is accessed by specifying

LOCALETYPE(*LOCALE), LOCALETYPE(*LOCALEUCS2), or LOCALETYPE(*LOCALEUTF) on

340 ILE C/C++ Runtime Library Functions V6R1

the compilation command. For more information about the two methods of locale definition in ILE

C, see the International Locale Support section in the WebSphere Development Studio: ILE C/C++

Programmer’s Guide.

Setlocale using *CLD locale objects

You can set the value of locale to "C", "", LC_C, LC_C_GERMANY, LC_C_FRANCE, LC_C_SPAIN,

LC_C_ITALY, LC_C_USA or LC_C_UK. A locale value of ″C″ indicates the default C environment. A locale

value of "" tells the setlocale() function to use the default locale for the implementation.

Setlocale with *LOCALE objects.

You can set the value of locale to "", "C", "POSIX", or the fully qualified Integrated File System path name

of a *LOCALE object enclosed in double quotes. A locale value of "C" or "POSIX" indicates the default C

*LOCALE object. A locale value of "" tells the setlocale() function to use the default locale for the

process.

The default locale for the process is determined using the following table:

 LC_ALL 1. Check the LC_ALL environment variable1. If it is defined and not null,

use the specified locale2 for all POSIX locale categories. Otherwise, go

to the next step.

2. For each POSIX locale category (LC_CTYPE, LC_COLLATE, LC_TIME,

LC_NUMERIC, LC_MESSAGES, LC_MONETARY, and LC_TOD),

check the environment variable with the same name1. If it is defined

and not null, use the locale specified2.

3. Check the LANG environment variable1. For every locale category that

was not set in the previous step, if the LANG environment variable is

defined and not null, set the locale category to the specified locale2.

Otherwise, set it to the default C *LOCALE object.

LC_CTYPE

LC_COLLATE

LC_TIME

LC_NUMERIC

LC_MESSAGES

LC_MONETARY

LC_TOD

1. Check the LC_ALL environment variable1. If it is defined and not null,

use the specified locale2. Otherwise, go to the next step.

2. Check the environment variable with the same name1 as the specified

locale category. If it is defined and not null, use the locale specified2.

Otherwise, go to the next step.

3. Check the LANG environment variable1. If it is defined and not null,

set the locale category to the specified locale2. Otherwise, go to the

next step.

4. Set the locale category to the default C *LOCALE object.

Chapter 2. Library Functions 341

LC_UNI_ALL If your module is compiled with the LOCALETYPE(*LOCALEUCS2)

option:

1. Check the LC_UCS2_ALL environment variable1. If it is defined and

not null, use the specified locale for all Unicode locale categories.

Otherwise, go to the next step.

2. For each Unicode locale category check the corresponding

environment variable1 (LC_UCS2_CTYPE, LC_UCS2_COLLATE,

LC_UCS2_TIME, LC_UCS2_NUMERIC, LC_UCS2_MESSAGES,

LC_UCS2_MONETARY, or LC_UCS2_TOD)3. If it is defined and not

null, use the locale specified.

3. Set the locale category to the default UCS-2 *LOCALE object.

If your module is compiled with the LOCALETYPE(*LOCALEUTF)

option:

1. Check the LC_UTF_ALL environment variable1. If it is defined and not

null, use the specified locale for all Unicode locale categories.

Otherwise, go to the next step.

2. For each Unicode locale category check the corresponding

environment variable1 (LC_UTF_CTYPE, LC_UTF_COLLATE,

LC_UTF_TIME, LC_UTF_NUMERIC, LC_UTF_MESSAGES,

LC_UTF_MONETARY, or LC_UTF_TOD)3. If it is defined and not null,

use the locale specified.

3. Check the LANG environment variable1. For every locale category that

was not set in the previous step, if the LANG environment variable is

defined and not null, set the locale category to the specified locale.

Otherwise, set it to the default UTF *LOCALE object.

LC_UNI_CTYPE

LC_UNI_COLLATE

LC_UNI_TIME

LC_UNI_NUMERIC

LC_UNI_MESSAGES

LC_UNI_MONETARY

LC_UNI_TOD

If your module is compiled with the LOCALETYPE(*LOCALEUCS2)

option:

1. Check the environment variable corresponding to the specified locale

category1 (LC_UCS2_CTYPE, LC_UCS2_COLLATE, LC_UCS2_TIME,

LC_UCS2_NUMERIC, LC_UCS2_MESSAGES, LC_UCS2_MONETARY,

or LC_UCS2_TOD)3. If it is defined and not null, use the locale

specified. Otherwise, go to the next step.

2. Check the LC_UCS2_ALL environment variable1. If it is defined and

not null, use the specified locale. Otherwise, go to the next step.

3. Set the locale category to the default UCS-2 *LOCALE object.

If your module is compiled with the LOCALETYPE(*LOCALEUTF)

option:

1. Check the environment variable corresponding to the specified locale

category1 (LC_UTF_CTYPE, LC_UTF_COLLATE, LC_UTF_TIME,

LC_UTF_NUMERIC, LC_UTF_MESSAGES, LC_UTF_MONETARY, or

LC_UTF_TOD)3. If it is defined and not null, use the locale specified.

Otherwise, go to the next step.

2. Check the LC_UTF_ALL environment variable1. If it is defined and not

null, use the specified locale. Otherwise, go to the next step.

3. Check the LANG environment variable1. If the LANG environment

variable is defined and not null, set the locale category to the specified

locale. Otherwise, set it to the default UTF *LOCALE object.

Note:

1 The environment variables with names corresponding to locale categories are created by the user.

The LANG environment variable is automatically created during job initiation when you specify a

locale path name for either of the following:

v the LOCALE parameter in your user profile (see the CHGUSRPRF (Change User Profile)

command information in the i5/OS Information Center).

342 ILE C/C++ Runtime Library Functions V6R1

v the QLOCALE system value (see the QLOCALE system value information in the i5/OS

Information Center).

The locale environment variables are expected to contain a locale path name of the form

/QSYS.LIB/<locname>.LOCALE or /QSYS.LIB/<libname>.LIB/<locname>.LOCALE. If your module is

compiled with the LOCALETYPE(*LOCALEUTF) option, the environment variable will be ignored

if the <locname> portion of the path exceeds 8 characters. This restriction exists because a 2

character suffix must be appended to the locale name to get the name of the corresponding UTF

locale.

Note:

2 When LOCALETYPE(*LOCALEUTF) is specified on the compilation command, the setlocale()

function appends a trailing _8 to the LC_ALL, LC_CTYPE, LC_COLLATE, LC_TIME,

LC_NUMERIC, LC_MESSAGES, LC_MONETARY, LC_TOD, and LANG environment variables. If

this locale is not found, the UTF default locale object is used. For example, setlocale(LC_ALL, "")

when LANG is set to /QSYS.LIB/EN_US.LOCALE causes setlocale() to attempt to load the locale

/QSYS.LIB/EN_US_8.LOCALE. If the LANG environment variable is used to set one of the Unicode

locale categories (LC_UNI_ALL, LC_UNI_CTYPE, LC_UNI_COLLATE, LC_UNI_TIME,

LC_UNI_NUMERIC, LC_UNI_MESSAGES, LC_UNI_MONETARY, or LC_UNI_TOD), setlocale()

appends a trailing _4 to the locale name stored in the environment variable. This is an attempt to

locate the corresponding UTF-32 locale. If this locale is not found, the default UTF-32 locale object

is used. For example, setlocale(LC_UNI_TIME, "") when LANG is set to /QSYS.LIB/EN_US.LOCALE

causes setlocale() to attempt to load the locale /QSYS.LIB/EN_US_4.LOCALE. Locale names ending

in _4 and _8 follow a naming convention introduced by the CRTLOCALE CL command (see the

CRTLOCALE (Create Locale) command information in the i5/OS Information Center) for locales

created with CCSID(*UTF).

Note:

3 The LC_UNI_ALL, LC_UNI_COLLATE, LC_UNI_CTYPE, LC_UNI_TIME, LC_UNI_NUMERIC,

LC_UNI_MESSAGES, LC_UNI_MONETARY, and LC_UNI_TOD locale category names are shared

between UCS-2 and UTF. The environment variables corresponding to these categories cannot be

shared, so the names of the environment variables do not exactly match the locale category names.

For UCS-2 environment variable names, UNI is replaced with UCS2 (for example, LC_UNI_ALL

locale category becomes LC_UCS2_ALL environment variable). For UTF environment variable

names, UNI is replaced with UTF (for example, LC_UNI_ALL locale category becomes

LC_UTF_ALL environment variable).

If compiled with LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF), the locale must be a

pointer to a valid Unicode locale for the categories starting with LC_UNI_, and must not be a Unicode

locale for the other categories.

Return Value

The setlocale() function returns a pointer to a string that represents the current locale setting. If the

returned string is stored, the stored string value can be used as input to the setlocale() function to

restore the locale setting at any time. However, you need to copy the string to a user-defined buffer;

otherwise, the string is overwritten on subsequent calls to setlocale().

Note: Because the string to which a successful call to setlocale() points may be overwritten by

subsequent calls to the setlocale() function, you should copy the string if you plan to use it later.

The exact format of the locale string is different between locale types of *CLD, *LOCALE,

*LOCALEUCS2, and *LOCALEUTF.

To query the locale, give a NULL as the second parameter. For example, to query all the categories of

your locale, enter the following statement:

Error Conditions

 char *string = setlocale(LC_ALL, NULL);

Chapter 2. Library Functions 343

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

On error, the setlocale() function returns NULL, and the program’s locale is not changed.

Example that uses *CLD locale objects

 /**

This example sets the locale of the program to

LC_C_FRANCE *CLD and prints the string

that is associated with the locale. This example must be compiled with

the LOCALETYPE(*CLD) parameter on the compilation command.

 *

 **/

#include <stdio.h>

#include <locale.h>

char *string;

int main(void)

{

 string = setlocale(LC_ALL, LC_C_FRANCE);

 if (string != NULL)

 printf(" %s \n",string);

}

Example that uses *LOCALE objects

Related Information

v “getenv() — Search for Environment Variables” on page 154

v “localeconv() — Retrieve Information from the Environment” on page 181

v “nl_langinfo() —Retrieve Locale Information” on page 224

v “<locale.h>” on page 7

setvbuf() — Control Buffering

Format

/**

This example sets the locale of the program to be "POSIX" and prints

the string that is associated with the locale. This example must be

compiled with the LOCALETYPE(*LOCALE) parameter on the CRTCMOD or

CRTBNDC command.

 **/

#include <stdio.h>

#include <locale.h>

char *string;

int main(void)

{

 string = setlocale(LC_ALL, "POSIX");

 if (string != NULL)

 printf(" %s \n",string);

}

344 ILE C/C++ Runtime Library Functions V6R1

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int type, size_t size);

Language Level: ANSI

Threadsafe: Yes.

Description

The setvbuf() function allows control over the buffering strategy and buffer size for a specified stream.

The setvbuf() function only works in ILE C when using the integrated file system. The stream must refer

to a file that has been opened, but not read or written to.

The array pointed to by buf designates an area that you provide that the C library may choose to use as a

buffer for the stream. A buf value of NULL indicates that no such area is supplied and that the C library

is to assume responsibility for managing its own buffers for the stream. If you supply a buffer, it must

exist until the stream is closed.

The type must be one of the following:

Value Meaning

_IONBF

No buffer is used.

_IOFBF

Full buffering is used for input and output. Use buf as the buffer and size as the size of the buffer.

_IOLBF

Line buffering is used. The buffer is deleted when a new-line character is written, when the

buffer is full, or when input is requested.

If type is _IOFBF or _IOLBF, size is the size of the supplied buffer. If buf is NULL, the C library takes size

as the suggested size for its own buffer. If type is _IONBF, both buf and size are ignored.

The value for size must be greater than 0.

Return Value

The setvbuf() function returns 0 if successful. It returns nonzero if a value that is not valid was specified

in the parameter list, or if the request cannot be performed.

The setvbuf() function has no effect on stdout, stdin, or stderr.

Warning: The array that is used as the buffer must still exist when the specified stream is closed. For

example, if the buffer is declared within the scope of a function block, the stream must be closed before

the function is ended and frees the storage allocated to the buffer.

Example that uses setvbuf()

This example sets up a buffer of buf for stream1 and specifies that input to stream2 is to be unbuffered.

Chapter 2. Library Functions 345

Related Information

v “fclose() — Close Stream” on page 91

v “fflush() — Write Buffer to File” on page 96

v “fopen() — Open Files” on page 109

v “setbuf() — Control Buffering” on page 336

v “<stdio.h>” on page 15

signal() — Handle Interrupt Signals

Format

#include <signal.h>

void (*signal (int sig, void(*func)(int)))(int);

Language Level: ANSI

Threadsafe: Yes.

Description

The signal() function allows a program to choose one of several ways to handle an interrupt signal from

the operating system or from the raise() function. If compiled with the SYSIFCOPT(*ASYNCSIGNAL)

option, this function uses asynchronous signals. The asynchronous version of this function behaves like

sigaction() with SA_NODEFER and SA_RESETHAND options. Asynchronous signal handlers may not

call abort() or exit(). The remainder of this function description will describe synchronous signals.

The sig argument must be one of the macros SIGABRT, SIGALL, SIGILL, SIGINT, SIGFPE, SIGIO,

SIGOTHER, SIGSEGV, SIGTERM, SIGUSR1, or SIGUSR2, defined in the signal.h include file. SIGALL,

SIGIO, and SIGOTHER are only supported by the ILE C/C++ runtime library. The func argument must

be one of the macros SIG_DFL or SIG_IGN, defined in the <signal.h> include file, or a function address.

The meaning of the values of sig is as follows:

Value Meaning

#include <stdio.h>

#define BUF_SIZE 1024

char buf[BUF_SIZE];

FILE *stream1, *stream2;

int main(void)

{

 stream1 = fopen("myfile1.dat", "r");

 stream2 = fopen("myfile2.dat", "r");

 /* stream1 uses a user-assigned buffer of BUF_SIZE bytes */

 if (setvbuf(stream1, buf, _IOFBF, sizeof(buf)) != 0)

 printf("Incorrect type or size of buffer\n");

 /* stream2 is unbuffered */

 if (setvbuf(stream2, NULL, _IONBF, 0) != 0)

 printf("Incorrect type or size of buffer\n");

/* This is a program fragment and not a complete function example */

}

346 ILE C/C++ Runtime Library Functions V6R1

SIGABRT

Abnormal termination

SIGALL

Catch-all for signals whose current handling action is SIG_DFL.

 When SYSIFCOPT(*ASYNCSIGNAL) is specified, SIGALL is not a catch-all signal. A signal

handler for SIGALL is only invoked for a user-raised SIGALL signal.

SIGILL

Detection of a function image that was not valid

SIGFPE

Arithmetic exceptions that are not masked, such as overflow, division by zero, and operations

that are not valid

SIGINT

Interactive attention

SIGIO

Record file I/O error

SIGOTHER

ILE C signal

SIGSEGV

Access to memory that was not valid

SIGTERM

End request sent to the program

SIGUSR1

Intended for use by user applications. (extension to ANSI)

SIGUSR2

Intended for use by user applications. (extension to ANSI)

The action that is taken when the interrupt signal is received depends on the value of func.

Value Meaning

SIG_DFL

Default handling for the signal will occur.

SIG_IGN

The signal is to be ignored.

Return Value

A return value of SIG_ERR indicates an error in the call to signal(). If successful, the call to signal()

returns the most recent value of func. The value of errno may be set to EINVAL (the signal is not valid).

Example that uses signal()

This example shows you how to establish a signal handler.

Chapter 2. Library Functions 347

Related Information

v “abort() — Stop a Program” on page 36

v “atexit() — Record Program Ending Function” on page 45

v “exit() — End Program” on page 88

v “raise() — Send Signal” on page 255

v “<signal.h>” on page 13

v signal() API in the APIs topic in the i5/OS Information Center.

sin() — Calculate Sine

Format

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#define ONE_K 1024

#define OUT_OF_STORAGE (SIGUSR1)

/* The SIGNAL macro does a signal() checking the return code */

#define SIGNAL(SIG, StrCln) { \

 if (signal((SIG), (StrCln)) == SIG_ERR) { \

 perror("Could not signal user signal"); \

 abort(); \

 } \

}

void StrCln(int);

void DoWork(char **, int);

int main(int argc, char *argv[]) {

 int size;

 char *buffer;

 SIGNAL(OUT_OF_STORAGE, StrCln);

 if (argc != 2) {

 printf("Syntax: %s size \n", argv[0]);

 return(-1);

 }

 size = atoi(argv[1]);

 DoWork(&buffer, size);

 return(0);

}

void StrCln(int SIG_TYPE) {

 printf("Failed trying to malloc storage\n");

 SIGNAL(SIG_TYPE, SIG_DFL);

 exit(0);

}

void DoWork(char **buffer, int size) {

 int rc;

 *buffer = malloc(size*ONE_K); /* get the size in number of K */

 if (*buffer == NULL) {

 if (raise(OUT_OF_STORAGE)) {

 perror("Could not raise user signal");

 abort();

 }

 }

 return;

}

/* This is a program fragment and not a complete function example */

348 ILE C/C++ Runtime Library Functions V6R1

#include <math.h>

double sin(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The sin() function calculates the sine of x, with x expressed in radians. If x is too large, a partial loss of

significance in the result may occur.

Return Value

The sin() function returns the value of the sine of x. The value of errno may be set to either EDOM or

ERANGE.

Example that uses sin()

This example computes y as the sine of π/2.

Related Information

v “acos() — Calculate Arccosine” on page 38

v “asin() — Calculate Arcsine” on page 42

v “atan() – atan2() — Calculate Arctangent” on page 44

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sinh() — Calculate Hyperbolic Sine”

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

sinh() — Calculate Hyperbolic Sine

Format

#include <math.h>

double sinh(double x);

Language Level: ANSI

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x, y;

 pi = 3.1415926535;

 x = pi/2;

 y = sin(x);

 printf("sin(%lf) = %lf\n", x, y);

}

/********************* Output should be similar to: *************

sin(1.570796) = 1.000000

*/

Chapter 2. Library Functions 349

Threadsafe: Yes.

Description

The sinh() function calculates the hyperbolic sine of x, with x expressed in radians.

Return Value

The sinh() function returns the value of the hyperbolic sine of x. If the result is too large, the sinh()

function sets errno to ERANGE and returns the value HUGE_VAL (positive or negative, depending on

the value of x).

Example that uses sinh()

This example computes y as the hyperbolic sine of π/2.

Related Information

v “acos() — Calculate Arccosine” on page 38

v “asin() — Calculate Arcsine” on page 42

v “atan() – atan2() — Calculate Arctangent” on page 44

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sin() — Calculate Sine” on page 348

v “tan() — Calculate Tangent” on page 409

v “tanh() — Calculate Hyperbolic Tangent” on page 410

v “<math.h>” on page 8

snprintf() — Print Formatted Data to Buffer

Format

#include <stdio.h>

int snprintf(char *buffer, size_t n, const char *format-string,

 argument-list);

Language Level: ANSI

Threadsafe: Yes.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x, y;

 pi = 3.1415926535;

 x = pi/2;

 y = sinh(x);

 printf("sinh(%lf) = %lf\n", x, y);

}

/********************* Output should be similar to: *************

sinh(1.570796) = 2.301299

*/

350 ILE C/C++ Runtime Library Functions V6R1

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The snprintf() function formats and stores a series of characters and values in the array buffer. Any

argument-list is converted and put out according to the corresponding format specification in the

format-string. The snprintf() function is identical to the sprintf() function with the addition of the n

argument, which indicates the maximum number of characters (including the ending null character) to be

written to buffer.

The format-string consists of ordinary characters and has the same form and function as the format string

for the printf() function.

Return Value

The snprintf() function returns the number of bytes that are written in the array, not counting the

ending null character.

Example that uses snprintf()

This example uses snprintf() to format and print various data.

#include <stdio.h>

char buffer[200];

int i, j;

double fp;

char *s = "baltimore";

char c;

int main(void)

{

 c = ’l’;

 i = 35;

 fp = 1.7320508;

 /* Format and print various data */

 j = snprintf(buffer, 6, "%s\n", s);

 j += snprintf(buffer+j, 6, "%c\n", c);

 j += snprintf(buffer+j, 6, "%d\n", i);

 j += snprintf(buffer+j, 6, "%f\n", fp);

 printf("string:\n%s\ncharacter count = %d\n", buffer, j);

}

/********************* Output should be similar to: *************

string:

baltil

35

1.732

character count = 15 */

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “printf() — Print Formatted Characters” on page 229

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “vsnprintf() — Print Argument Data to Buffer” on page 435

Chapter 2. Library Functions 351

|
|
|
|

v “<stdio.h>” on page 15

sprintf() — Print Formatted Data to Buffer

Format

#include <stdio.h>

int sprintf(char *buffer, const char *format-string, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The sprintf() function formats and stores a series of characters and values in the array buffer. Any

argument-list is converted and put out according to the corresponding format specification in the

format-string.

The format-string consists of ordinary characters and has the same form and function as the format-string

argument for the printf() function.

Return Value

The sprintf() function returns the number of bytes that are written in the array, not counting the ending

null character.

Example that uses sprintf()

This example uses sprintf() to format and print various data.

352 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “printf() — Print Formatted Characters” on page 229

v “sscanf() — Read Data” on page 355

v “swprintf() — Format and Write Wide Characters to Buffer” on page 406

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “vsprintf() — Print Argument Data to Buffer” on page 436

v “<stdio.h>” on page 15

sqrt() — Calculate Square Root

Format

#include <math.h>

double sqrt(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The sqrt() function calculates the nonnegative value of the square root of x.

Return Value

#include <stdio.h>

char buffer[200];

int i, j;

double fp;

char *s = "baltimore";

char c;

int main(void)

{

 c = ’l’;

 i = 35;

 fp = 1.7320508;

 /* Format and print various data */

 j = sprintf(buffer, "%s\n", s);

 j += sprintf(buffer+j, "%c\n", c);

 j += sprintf(buffer+j, "%d\n", i);

 j += sprintf(buffer+j, "%f\n", fp);

 printf("string:\n%s\ncharacter count = %d\n", buffer, j);

}

/********************* Output should be similar to: *************

string:

baltimore

l

35

1.732051

character count = 24 */

Chapter 2. Library Functions 353

The sqrt() function returns the square root result. If x is negative, the function sets errno to EDOM, and

returns 0.

Example that uses sqrt()

This example computes the square root of the quantity that is passed as the first argument to main. It

prints an error message if you pass a negative value.

Related Information

v “exp() — Calculate Exponential Function” on page 89

v “hypot() — Calculate Hypotenuse” on page 168

v “log() — Calculate Natural Logarithm” on page 191

v “log10() — Calculate Base 10 Logarithm” on page 191

v “pow() — Compute Power” on page 228

v “<math.h>” on page 8

srand() — Set Seed for rand() Function

Format

#include <stdlib.h>

void srand(unsigned int seed);

Language Level: ANSI

Threadsafe: No.

Description

The srand() function sets the starting point for producing a series of pseudo-random integers. If srand()

is not called, the rand() seed is set as if srand(1) were called at program start. Any other value for seed

sets the generator to a different starting point.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main(int argc, char ** argv)

{

 char * rest;

 double value;

 if (argc != 2)

 printf("Usage: %s value\n", argv[0]);

 else

 {

 value = strtod(argv[1], &rest);

 if (value < 0.0)

 printf("sqrt of a negative number\n");

 else

 printf("sqrt(%lf) = %lf\n", value, sqrt(value));

 }

}

/******************** If the input is 45, *****************************

**************** then the output should be similar to: **********

sqrt(45.000000) = 6.708204

*/

354 ILE C/C++ Runtime Library Functions V6R1

The rand() function generates the pseudo-random numbers.

Return Value

There is no return value.

Example that uses srand()

This example first calls srand() with a value other than 1 to initiate the random value sequence. Then the

program computes five random values for the array of integers that are called ranvals.

Related Information

v “rand(), rand_r() — Generate Random Number” on page 256

v “<stdlib.h>” on page 17

sscanf() — Read Data

Format

#include <stdio.h>

int sscanf(const char *buffer, const char *format, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The sscanf() function reads data from buffer into the locations that are given by argument-list. Each

argument must be a pointer to a variable with a type that corresponds to a type specifier in the

format-string.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int i, ranvals[5];

 srand(17);

 for (i = 0; i < 5; i++)

 {

 ranvals[i] = rand();

 printf("Iteration %d ranvals [%d] = %d\n", i+1, i, ranvals[i]);

 }

}

/****************** Output should be similar to: ****************

Iteration 1 ranvals [0] = 24107

Iteration 2 ranvals [1] = 16552

Iteration 3 ranvals [2] = 12125

Iteration 4 ranvals [3] = 9427

Iteration 5 ranvals [4] = 13152

*/

Chapter 2. Library Functions 355

|
|
|
|

Return Value

The sscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned.

The return value is EOF when the end of the string is encountered before anything is converted.

Example that uses sscanf()

This example uses sscanf() to read various data from the string tokenstring, and then displays that data.

#include <stdio.h>

#include <stddef.h>

int main(void)

{

 char *tokenstring = "15 12 14";

 char *string = "ABC Z";

 wchar_t ws[81];

 wchar_t wc;

 int i;

 float fp;

 char s[81];

 char c;

 /* Input various data */

 /* In the first invocation of sscanf, the format string is */

 /* "%s %c%d%f". If there were no space between %s and %c, */

 /* sscanf would read the first character following the */

 /* string, which is a blank space. */

 sscanf(tokenstring, "%s %c%d%f", s, &c, &i, &fp);

 sscanf(string, "%ls %lc", ws,&wc);

 /* Display the data */

 printf("\nstring = %s\n",s);

 printf("character = %c\n",c);

 printf("integer = %d\n",i);

 printf("floating-point number = %f\n",fp);

 printf("wide-character string = %S\n",ws);

 printf("wide-character = %C\n",wc);

}

/***************** Output should be similar to: *****************

string = 15

character = 1

integer = 2

floating-point number = 14.000000

wide-character string = ABC

wide-character = Z

***/

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “scanf() — Read Data” on page 330

v “swscanf() — Read Wide Character Data” on page 407

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “sprintf() — Print Formatted Data to Buffer” on page 352

356 ILE C/C++ Runtime Library Functions V6R1

v “<stdio.h>” on page 15

strcasecmp() — Compare Strings without Case Sensitivity

Format

#include <strings.h>

int srtcasecmp(const char *string1, const char *string2);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strcasecmp() function compares string1 and string2 without sensitivity to case. All alphabetic

characters in string1 and string2 are converted to lowercase before comparison.

The strcasecmp() function operates on null terminated strings. The string arguments to the function are

expected to contain a null character (’\0’) marking the end of the string.

Return Value

The strcasecmp() function returns a value indicating the relationship between the two strings, as follows:

 Table 6. Return values of strcasecmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example that usesstrcasecmp()

This example uses strcasecmp() to compare two strings.

#include <stdio.h>

#include <strings.h>

int main(void)

{

 char_t *str1 = "STRING";

 char_t *str2 = "string";

 int result;

 result = strcasecmp(str1, str2);

 if (result == 0)

 printf("Strings compared equal.\n");

 else if (result < 0)

 printf("\"%s\" is less than \"%s\".\n", str1, str2);

 else

 printf("\"%s\" is greater than \"%s\".\n", str1, str2);

 return 0;

}

Chapter 2. Library Functions 357

|
|
|

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information

v “strncasecmp() — Compare Strings without Case Sensitivity” on page 376

v “strncmp() — Compare Strings” on page 379

v “stricmp() - Compare Strings without Case Sensitivity” on page 374

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity” on page 460

v “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 467

v “<strings.h>” on page 17

strcat() — Concatenate Strings

Format

#include <string.h>

char *strcat(char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Description

The strcat() function concatenates string2 to string1 and ends the resulting string with the null character.

The strcat() function operates on null-ended strings. The string arguments to the function should

contain a null character (\0) that marks the end of the string. No length checking is performed. You

should not use a literal string for a string1 value, although string2 may be a literal string.

If the storage of string1 overlaps the storage of string2, the behavior is undefined.

Return Value

The strcat() function returns a pointer to the concatenated string (string1).

Example that uses strcat()

This example creates the string ″computer program″ using strcat().

358 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “strchr() — Search for Character”

v “strcmp() — Compare Strings” on page 360

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncat() — Concatenate Strings” on page 377

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcsncat() — Concatenate Wide-Character Strings” on page 463

v “<string.h>” on page 17

strchr() — Search for Character

Format

#include <string.h>

char *strchr(const char *string, int c);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strchr() function finds the first occurrence of a character in a string. The character c can be the null

character (\0); the ending null character of string is included in the search.

The strchr() function operates on null-ended strings. The string arguments to the function should

contain a null character (\0) that marks the end of the string.

Return Value

The strchr() function returns a pointer to the first occurrence of c that is converted to a character in

string. The function returns NULL if the specified character is not found.

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buffer1[SIZE] = "computer";

 char * ptr;

 ptr = strcat(buffer1, " program");

 printf("buffer1 = %s\n", buffer1);

}

/***************** Output should be similar to: *****************

buffer1 = computer program

*/

Chapter 2. Library Functions 359

|
|

Example that uses strchr()

This example finds the first occurrence of the character ″p″ in ″computer program″.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strcmp() — Compare Strings”

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncmp() — Compare Strings” on page 379

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcschr() — Search for Wide Character” on page 452

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “<string.h>” on page 17

strcmp() — Compare Strings

Format

#include <string.h>

int strcmp(const char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Description

The strcmp() function compares string1 and string2. The function operates on null-ended strings. The

string arguments to the function should contain a null character (\0) that marks the end of the string.

Return Value

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buffer1[SIZE] = "computer program";

 char * ptr;

 int ch = ’p’;

 ptr = strchr(buffer1, ch);

 printf("The first occurrence of %c in ’%s’ is ’%s’\n",

 ch, buffer1, ptr);

}

/***************** Output should be similar to: *****************

The first occurrence of p in ’computer program’ is ’puter program’

*/

360 ILE C/C++ Runtime Library Functions V6R1

The strcmp() function returns a value indicating the relationship between the two strings, as follows:

 Value Meaning

Less than 0 string1 less than string2

0 string1 identical to string2

Greater than 0 string1 greater than string2

Example that uses strcmp()

This example compares the two strings that are passed to main() using strcmp().

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strchr() — Search for Character” on page 359

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncmp() — Compare Strings” on page 379

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcschr() — Search for Wide Character” on page 452

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “<string.h>” on page 17

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 int result;

 if (argc != 3)

 {

 printf("Usage: %s string1 string2\n", argv[0]);

 }

 else

 {

 result = strcmp(argv[1], argv[2]);

 if (result == 0)

 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);

 else if (result < 0)

 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);

 else

 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);

 }

}

/****************** If the input is the strings ***********************

********** "is this first?" and "is this before that one?", ***********

****************** then the expected output is: *********************

"is this first?" is greater than "is this before that one?"

**/

Chapter 2. Library Functions 361

strcmpi() - Compare Strings Without Case Sensitivity

Format

#include <string.h>

int strcmpi(const char *string1, const char *string2);

Note: The strcmpi function is available for C++ programs. It is available for C only when the program

defines the __cplusplus__strings__ macro.

Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

strcmpi compares string1 and string2 without sensitivity to case. All alphabetic characters in the two

arguments string1 and string2 are converted to lowercase before the comparison.

The function operates on null-ended strings. The string arguments to the function are expected to contain

a null character (\0) marking the end of the string.

Return Value

strcmpi returns a value indicating the relationship between the two strings, as follows:

 Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example that uses strcmpi()

This example uses strcmpi to compare two strings.

#include <stdio.h>

#include <string.h>

int main(void)

{

 /* Compare two strings without regard to case */

 if (0 == strcmpi("hello", "HELLO"))

 printf("The strings are equivalent.\n");

 else

 printf("The strings are not equivalent.\n");

 return 0;

}

The output should be:

 The strings are equivalent.

Related Information:

v “strcoll() — Compare Strings” on page 363

v “strcspn() — Find Offset of First Character Match” on page 365

v “strdup - Duplicate String” on page 366

362 ILE C/C++ Runtime Library Functions V6R1

|
|

v “stricmp() - Compare Strings without Case Sensitivity” on page 374

v “strncmp() — Compare Strings” on page 379

v “strnicmp - Compare Substrings Without Case Sensitivity” on page 382

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “strcasecmp() — Compare Strings without Case Sensitivity” on page 357

v “strncasecmp() — Compare Strings without Case Sensitivity” on page 376

v “<string.h>” on page 17

strcoll() — Compare Strings

Format

#include <string.h>

int strcoll(const char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_COLLATE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strcoll() function compares two strings using the collating sequence that is specified by the

program’s locale.

Return Value

The strcoll() function returns a value indicating the relationship between the strings, as listed below:

 Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

If strcoll() is unsuccessful, errno is changed. The value of errno may be set to EINVAL (the string1 or

string2 arguments contain characters that are not available in the current locale).

Example that uses strcoll()

This example compares the two strings that are passed to main() using strcoll():

Chapter 2. Library Functions 363

|
|

Related Information

v “setlocale() — Set Locale” on page 339

v “strcmp() — Compare Strings” on page 360

v “strncmp() — Compare Strings” on page 379

v “wcscoll() —Language Collation String Comparison” on page 455

v “<string.h>” on page 17

strcpy() — Copy Strings

Format

#include <string.h>

char *strcpy(char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Description

The strcpy() function copies string2, including the ending null character, to the location that is specified

by string1.

The strcpy() function operates on null-ended strings. The string arguments to the function should

contain a null character (\0) that marks the end of the string. No length checking is performed. You

should not use a literal string for a string1 value, although string2 may be a literal string.

Return Value

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 int result;

 if (argc != 3)

 {

 printf("Usage: %s string1 string2\n", argv[0]);

 }

 else

 {

 result = strcoll(argv[1], argv[2]);

 if (result == 0)

 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);

 else if (result < 0)

 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);

 else

 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);

 }

}

/****************** If the input is the strings ***********************

**************** "firststring" and "secondstring", ********************

****************** then the expected output is: *****************

"firststring" is less than "secondstring"

*/

364 ILE C/C++ Runtime Library Functions V6R1

The strcpy() function returns a pointer to the copied string (string1).

Example that uses strcpy()

This example copies the contents of source to destination.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcspn() — Find Offset of First Character Match”

v “strncpy() — Copy Strings” on page 380

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcsncpy() — Copy Wide-Character Strings” on page 466

v “<string.h>” on page 17

strcspn() — Find Offset of First Character Match

Format

#include <string.h>

size_t strcspn(const char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char source[SIZE] = "This is the source string";

 char destination[SIZE] = "And this is the destination string";

 char * return_string;

 printf("destination is originally = \"%s\"\n", destination);

 return_string = strcpy(destination, source);

 printf("After strcpy, destination becomes \"%s\"\n", destination);

}

/***************** Output should be similar to: *****************

destination is originally = "And this is the destination string"

After strcpy, destination becomes "This is the source string"

*/

Chapter 2. Library Functions 365

|
|

The strcspn() function finds the first occurrence of a character in string1 that belongs to the set of

characters that is specified by string2. Null characters are not considered in the search.

The strcspn() function operates on null-ended strings. The string arguments to the function should

contain a null character (\0) marking the end of the string.

Return Value

The strcspn() function returns the index of the first character found. This value is equivalent to the

length of the initial substring of string1 that consists entirely of characters not in string2.

Example that uses strcspn()

This example uses strcspn() to find the first occurrence of any of the characters ″a″, ″x″, ″l″, or ″e″ in

string.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcpy() — Copy Strings” on page 364

v “strncmp() — Compare Strings” on page 379

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “<string.h>” on page 17

strdup - Duplicate String

Format

#include <string.h>

char *strdup(const char *string);

Note: The strdup function is available for C++ programs. It is available for C only when the program

defines the __cplusplus__strings__ macro.

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char string[SIZE] = "This is the source string";

 char * substring = "axle";

 printf("The first %i characters in the string \"%s\" "

 "are not in the string \"%s\" \n",

 strcspn(string, substring), string, substring);

}

/********** Output should be similar to: **************

The first 10 characters in the string "This is the source string"

are not in the string "axle"

*/

366 ILE C/C++ Runtime Library Functions V6R1

Language Level: XPG4, Extension

Threadsafe: Yes.

Description

strdup reserves storage space for a copy of string by calling malloc. The string argument to this function

is expected to contain a null character (\0) marking the end of the string. Remember to free the storage

reserved with the call to strdup.

Return Value

strdup returns a pointer to the storage space containing the copied string. If it cannot reserve storage

strdup returns NULL.

Example that uses strdup()

This example uses strdup to duplicate a string and print the copy.

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *string = "this is a copy";

 char *newstr;

 /* Make newstr point to a duplicate of string */

 if ((newstr = strdup(string)) != NULL)

 printf("The new string is: %s\n", newstr);

 return 0;

}

The output should be:

 The new string is: this is a copy

Related Information:

v “strcpy() — Copy Strings” on page 364

v “strncpy() — Copy Strings” on page 380

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcsncpy() — Copy Wide-Character Strings” on page 466

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “<string.h>” on page 17

strerror() — Set Pointer to Runtime Error Message

Format

#include <string.h>

char *strerror(int errnum);

Language Level: ANSI

Threadsafe: Yes.

Description

The strerror() function maps the error number in errnum to an error message string.

Return Value

Chapter 2. Library Functions 367

The strerror() function returns a pointer to the string. It does not return a NULL value. The value of

errno may be set to ECONVERT (conversion error).

Example that uses strerror()

This example opens a file and prints a runtime error message if an error occurs.

Related Information

v “clearerr() — Reset Error Indicators” on page 62

v “ferror() — Test for Read/Write Errors” on page 95

v “perror() — Print Error Message” on page 227

v “<string.h>” on page 17

strfmon() — Convert Monetary Value to String

Format

#include <monetary.h>

int strfmon(char *s, size_t maxsize, const char *format, argument_list);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_MONETARY

categories of the current locale. This function is not available when LOCALETYPE(*CLD) is specified on

the compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strfmon() function places characters into the array pointed to by s as controlled by the string pointed

to by format. No more than maxsize characters are placed into the array.

The character string format contains two types of objects: plain characters, which are copied to the output

stream, and directives, each of which results in the fetching of zero or more arguments, which are

converted and formatted. The results are undefined if there are insufficient arguments for the format. If

the format is exhausted while arguments remain, the excess arguments are simply ignored. Only 15

significant digits are guaranteed on conversions involving double values.

A directive consists of a % character, optional conversion specifications, and a ending character that

determines the directive’s behavior.

A directive consists of the following sequence:

#include <stdlib.h>

#include <string.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 if ((stream = fopen("mylib/myfile", "r")) == NULL)

 printf(" %s \n", strerror(errno));

}

/* This is a program fragment and not a complete function example */

368 ILE C/C++ Runtime Library Functions V6R1

|
|
|

v A % character.

v Optional flags.

v Optional field width.

v Optional left precision.

v Optional right precision.

v A required conversion character indicating the type of conversion to be performed.

 Table 7. Flags

Flag Meaning

=f An = followed by a single character f which is used as the

numeric fill character. By default the numeric fill character is a

space character. This flag does not affect field width filling, which

always uses a space character. This flag is ignored unless left

precision is specified.

^ Do not use grouping characters when formatting the currency

value. Default is to insert grouping characters as defined in the

current locale.

+ or (Specify the style representing positive and negative currency

amounts. If + is specified, the locale’s equivalent of + and – for

monetary quantities will be used. If (is specified, negative

amounts are enclosed within parenthesis. Default is +.

! Do not output the currency symbol. Default is to output the

currency symbol.

- Use left justification for double arguments. Default is right

justification.

Field Width

w A decimal digit string w specifying a minimum field width in bytes in which the result of the

conversion is right-justified (or left-justified if the flag - is specified). The default is 0.

Left Precision

#n A # followed by a decimal digit string n specifying a maximum number of digits expected to be

formatted to the left of the radix character. This option can be used to keep the formatted output

from multiple calls to strfmon() aligned in the same columns. It can also be used to fill unused

positions with a special character as in $***123.45. This option causes an amount to be formatted

as if it has the number of digits specified by n. If more than n digit positions are required, this

conversion specification is ignored. Digit positions in excess of those actually required are filled

with the numeric fill character (see the =f flag above).

 If grouping has not been suppressed with the ^ flag, and it is defined for the current locale,

grouping separators are inserted before the fill characters (if any) are added. Grouping separators

are not applied to fill characters even if the fill character is a digit. To ensure alignment, any

characters appearing before or after the number in the formatted output, such as currency or sign

symbols, are padded as necessary with space characters to make their positive and negative

formats an equal length.

Right Precision

.p A period followed by a decimal digit string p specifies the number of digits after the radix

character. If the value of the right precision p is 0, no radix character appears. If a right precision

is not specified, a default specified by the current locale is used. The amount being formatted is

rounded to the specified number of digits prior to formatting.

Chapter 2. Library Functions 369

Table 8. Conversion Characters

Specifier Meaning

%i The double argument is formatted according to the locale’s

international currency format.

%n The double argument is formatted according to the locale’s

national currency format.

%% Is replaced by %. No argument is converted.

Return Value

If the total number of resulting bytes including the ending null character is not more than maxsize, the

strfmon() function returns the number of bytes placed into the array pointed to by s, but excludes the

ending null character. Otherwise, zero is returned, and the contents of the array are undefined.

The value of errno may be set to:

E2BIG Conversion stopped due to lack of space in the buffer.

Example that uses strfmon()

#include <stdio.h>

 #include <monetary.h>

 #include <locale.h>

int main(void)

{

 char string[100];

 double money = 1234.56;

 if (setlocale(LC_ALL, "/qsys.lib/en_us.locale") == NULL) {

 printf("Unable to setlocale().\n");

 exit(1);

 }

 strfmon(string, 100, "%i", money); /* USD 1,234.56 */

 printf("%s\n", string);

 strfmon(string, 100, "%n", money); /* $1,234.56 */

 printf("%s\n", string);

}

/**

 The output should be similar to:

 USD 1,234.56

 $1,234.56

**/

Related Information

v “localeconv() — Retrieve Information from the Environment” on page 181

v “<monetary.h>” on page 8

strftime() — Convert Date/Time to String

Format

#include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format,

 const struct tm *timeptr);

Language Level: ANSI

Threadsafe: Yes.

370 ILE C/C++ Runtime Library Functions V6R1

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE, LC_TIME, and

LC_TOD categories of the current locale. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Description

The strftime() function places bytes into the array pointed to by s as controlled by the string pointed to

by format. The format string consists of zero or more conversion specifications and ordinary characters. A

conversion specification consists of a % character and a terminating conversion character that determines

the behavior of the conversion. All ordinary characters (including the terminating null byte, and

multi-byte chars) are copied unchanged into the array. If copying takes place between objects that

overlap, then the behavior is undefined. No more than maxsize bytes are placed in the array. The

appropriate characters are determined by the values contained in the structure pointed to by timeptr, and

by the values stored in the current locale.

Each standard conversion specification is replaced by appropriate characters as described in the following

table:

 Specifier Meaning

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Date/Time in the format of the locale.

%C Century number [00-99], the year divided by 100 and truncated to an integer.

%d Day of the month [01-31].

%D Date Format, same as %m/%d/%y.

%e Same as %d, except single digit is preceded by a space [1-31].

%g 2 digit year portion of ISO week date [00,99].

%G 4 digit year portion of ISO week date. Can be negative.

%h Same as %b.

%H Hour in 24-hour format [00-23].

%I Hour in 12-hour format [01-12].

%j Day of the year [001-366].

%m Month [01-12].

%M Minute [00-59].

%n Newline character.

%p AM or PM string.

%r Time in AM/PM format of the locale. If not available in the locale time format, defaults to

the POSIX time AM/PM format: %I:%M:%S %p.

%R 24-hour time format without seconds, same as %H:%M.

%S Second [00-61]. The range for seconds allows for a leap second and a double leap second.

%t Tab character.

%T 24-hour time format with seconds, same as %H:%M:%S.

%u Weekday [1,7]. Monday is 1 and Sunday is 7.

%U Week number of the year [00-53]. Sunday is the first day of the week.

Chapter 2. Library Functions 371

|
|
|

Specifier Meaning

%V ISO week number of the year [01-53]. Monday is the first day of the week. If the week

containing January 1st has four or more days in the new year then it is considered week 1.

Otherwise, it is the last week of the previous year, and the next year is week 1 of the new

year.

%w Weekday [0,6], Sunday is 0.

%W Week number of the year [00-53]. Monday is the first day of the week.

%x Date in the format of the locale.

%X Time in the format of the locale.

%y 2 digit year [00,99].

%Y 4-digit year. Can be negative.

%z UTC offset. Output is a string with format +HHMM or -HHMM, where + indicates east of GMT, -

indicates west of GMT, HH indicates the number of hours from GMT, and MM indicates

the number of minutes from GMT.

%Z Time zone name.

%% % character.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an alternate

format or specification should be used rather than the one normally used by the unmodified conversion

specifier. If a modified conversion specifier uses a field in the current locale that is unavailable, then the

behavior will be as if the unmodified conversion specification were used. For example, if the era string is

the empty string ″″, which means that the string is unavailable, then %EY would act like %Y.

 Specifier Meaning

%Ec Date/time for current era.

%EC Era name.

%Ex Date for current era.

%EX Time for current era.

%Ey Era year. This is the offset from the base year.

%EY Year for current era.

%Od Day of the month using alternate digits.

%Oe Same as %Od.

%OH Hour in 24 hour format using alternate digits.

%OI Hour in 12 hour format using alternate digits.

%Om Month using alternate digits.

%OM Minutes using alternate digits.

%OS Seconds using alternate digits.

%Ou Weekday using alternate digits. Monday is 1 and Sunday is 7.

%OU Week number of the year using alternate digits. Sunday is the first day of the week.

%OV ISO week number of the year using alternate digits. See %V for explanation of ISO week

number.

%Ow Weekday using alternate digits. Sunday is 0.

%OW Week number of the year using alternate digits. Monday is the first day of the week.

372 ILE C/C++ Runtime Library Functions V6R1

Specifier Meaning

%Oy 2-digit year using alternate digits.

%OZ If the time zone name exists in the current locale, this is the same as %Z; otherwise, the

abbreviated time zone name of the current job is returned.

Note: %C, %D, %e, %h, %n, %r, %R, %t, %T, %u, %V, and the modified conversion specifiers are not

available when LOCALETYPE(*CLD) is specified on the compilation command.

Return Value

If the total number of resulting bytes including the terminating null byte is not more than maxsize,

strftime() returns the number of bytes placed into the array pointed to by s, not including the

terminating null byte. Otherwise, 0 is returned and the contents of the array are indeterminate.

If a conversion error occurs, errno may be set to ECONVERT.

Example that uses strftime()

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

#include <stdio.h>

#include <time.h>

int main(void)

{

 char s[100];

 int rc;

 time_t temp;

 struct tm *timeptr;

 temp = time(NULL);

 timeptr = localtime(&temp);

 rc = strftime(s,sizeof(s),"Today is %A, %b %d.\nTime: %r", timeptr);

 printf("%d characters written.\n%s\n",rc,s);

 return 0;

}

/***

 The output should be similar to:

 46 characters written

 Today is Wednesday, Oct 24.

 Time: 01:01:15 PM

**/

Chapter 2. Library Functions 373

|
|

|

|

|

|

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “setlocale() — Set Locale” on page 339

v “strptime()— Convert String to Date/Time” on page 385

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

stricmp() - Compare Strings without Case Sensitivity

Format

#include <string.h>

int stricmp(const char *string1, const char *string2);

Note: The stricmp function is available for C++ programs. It is available for C only when the program

defines the __cplusplus__strings__ macro.

Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

stricmp compares string1 and string2 without sensitivity to case. All alphabetic characters in the two

arguments string1 and string2 are converted to lowercase before the comparison.

The function operates on null-ended strings. The string arguments to the function are expected to contain

a null character (\0) marking the end of the string.

Return Value

stricmp returns a value indicating the relationship between the two strings, as follows:

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example that uses stricmp()

This example uses stricmp to compare two strings.

#include <stdio.h>

#include <string.h>

int main(void)

{

 /* Compare two strings as lowercase */

 if (0 == stricmp("hello", "HELLO"))

 printf("The strings are equivalent.\n");

374 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|
|

else

 printf("The strings are not equivalent.\n");

 return 0;

}

The output should be:

 The strings are equivalent.

Related Information:

v “strcmpi() - Compare Strings Without Case Sensitivity” on page 362

v “strcoll() — Compare Strings” on page 363

v “strcspn() — Find Offset of First Character Match” on page 365

v “strdup - Duplicate String” on page 366

v “strncmp() — Compare Strings” on page 379

v “strcasecmp() — Compare Strings without Case Sensitivity” on page 357

v “strncasecmp() — Compare Strings without Case Sensitivity” on page 376

v “strnicmp - Compare Substrings Without Case Sensitivity” on page 382

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “<string.h>” on page 17

strlen() — Determine String Length

Format

#include <string.h>

size_t strlen(const char *string);

Language Level: ANSI

Threadsafe: Yes.

Description

The strlen() function determines the length of string excluding the ending null character.

Return Value

The strlen() function returns the length of string.

Example that uses strlen()

This example determines the length of the string that is passed to main().

Chapter 2. Library Functions 375

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “strncat() — Concatenate Strings” on page 377

v “strncmp() — Compare Strings” on page 379

v “strncpy() — Copy Strings” on page 380

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “<string.h>” on page 17

strncasecmp() — Compare Strings without Case Sensitivity

Format

#include <strings.h>

int strncasecmp(const char *string1, const char *string2, size_t count);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strncasecmp() function compares up to count characters of string1 and string2 without sensitivity to

case. All alphabetic characters in string1 and string2 are converted to lowercase before comparison.

The strncasecmp() function operates on null terminated strings. The string arguments to the function are

expected to contain a null character (’\0’) marking the end of the string.

Return Value

Thestrncasecmp() function returns a value indicating the relationship between the two strings, as follows:

 Table 9. Return values of strncasecmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 if (argc != 2)

 printf("Usage: %s string\n", argv[0]);

 else

 printf("Input string has a length of %i\n", strlen(argv[1]));

}

/****************** If the input is the string ***********************

*****************"How long is this string?", ******************

****************** then the expected output is: *****************

Input string has a length of 24

*/

376 ILE C/C++ Runtime Library Functions V6R1

|
|
|

Table 9. Return values of strncasecmp() (continued)

Greater than 0 string1 greater than string2

Example that uses strncasecmp()

This example uses strncasecmp() to compare two strings.

#include <stdio.h>

#include <strings.h>

int main(void)

{

 char_t *str1 = "STRING ONE";

 char_t *str2 = "string TWO";

 int result;

 result = strncasecmp(str1, str2, 6);

 if (result == 0)

 printf("Strings compared equal.\n");

 else if (result < 0)

 printf("\"%s\" is less than \"%s\".\n", str1, str2);

 else

 printf("\"%s\" is greater than \"%s\".\n", str1, str2);

 return 0;

}

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information

v “strcasecmp() — Compare Strings without Case Sensitivity” on page 357

v “strncmp() — Compare Strings” on page 379

v “stricmp() - Compare Strings without Case Sensitivity” on page 374

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity” on page 460

v “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 467

v “<strings.h>” on page 17

strncat() — Concatenate Strings

Format

#include <string.h>

char *strncat(char *string1, const char *string2, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

Chapter 2. Library Functions 377

The strncat() function appends the first count characters of string2 to string1 and ends the resulting

string with a null character (\0). If count is greater than the length of string2, the length of string2 is used

in place of count.

The strncat() function operates on null-ended strings. The string argument to the function should

contain a null character (\0) marking the end of the string.

Return Value

The strncat() function returns a pointer to the joined string (string1).

Example that uses strncat()

This example demonstrates the difference between strcat() and strncat(). The strcat() function

appends the entire second string to the first, whereas strncat() appends only the specified number of

characters in the second string to the first.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strncmp() — Compare Strings” on page 379

v “strncpy() — Copy Strings” on page 380

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcsncat() — Concatenate Wide-Character Strings” on page 463

v “<string.h>” on page 17

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buffer1[SIZE] = "computer";

 char * ptr;

 /* Call strcat with buffer1 and " program" */

 ptr = strcat(buffer1, " program");

 printf("strcat : buffer1 = \"%s\"\n", buffer1);

 /* Reset buffer1 to contain just the string "computer" again */

 memset(buffer1, ’\0’, sizeof(buffer1));

 ptr = strcpy(buffer1, "computer");

 /* Call strncat with buffer1 and " program" */

 ptr = strncat(buffer1, " program", 3);

 printf("strncat: buffer1 = \"%s\"\n", buffer1);

}

/***************** Output should be similar to: *****************

strcat : buffer1 = "computer program"

strncat: buffer1 = "computer pr"

*/

378 ILE C/C++ Runtime Library Functions V6R1

strncmp() — Compare Strings

Format

#include <string.h>

int strncmp(const char *string1, const char *string2, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

The strncmp() function compares string1 and string2 to the maximum of count.

Return Value

The strncmp() function returns a value indicating the relationship between the strings, as follows:

 Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

Example that uses strncmp()

This example demonstrates the difference between the strcmp() function and the strncmp() function.

Chapter 2. Library Functions 379

Related Information

v “strcmp() — Compare Strings” on page 360

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncat() — Concatenate Strings” on page 377

v “strncpy() — Copy Strings”

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “<string.h>” on page 17

v “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity” on page 460

v “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 467

strncpy() — Copy Strings

Format

#include <stdio.h>

#include <string.h>

#define SIZE 10

int main(void)

{

 int result;

 int index = 3;

 char buffer1[SIZE] = "abcdefg";

 char buffer2[SIZE] = "abcfg";

 void print_result(int, char *, char *);

 result = strcmp(buffer1, buffer2);

 printf("Comparison of each character\n");

 printf(" strcmp: ");

 print_result(result, buffer1, buffer2);

 result = strncmp(buffer1, buffer2, index);

 printf("\nComparison of only the first %i characters\n", index);

 printf(" strncmp: ");

 print_result(result, buffer1, buffer2);

}

void print_result(int res, char * p_buffer1, char * p_buffer2)

{

 if (res == 0)

 printf("\"%s\" is identical to \"%s\"\n", p_buffer1, p_buffer2);

 else if (res < 0)

 printf("\"%s\" is less than \"%s\"\n", p_buffer1, p_buffer2);

 else

 printf("\"%s\" is greater than \"%s\"\n", p_buffer1, p_buffer2);

}

/***************** Output should be similar to: *****************

Comparison of each character

 strcmp: "abcdefg" is less than "abcfg"

Comparison of only the first 3 characters

 strncmp: "abcdefg" is identical to "abcfg"

*/

380 ILE C/C++ Runtime Library Functions V6R1

#include <string.h>

char *strncpy(char *string1, const char *string2, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Description

The strncpy() function copies count characters of string2 to string1. If count is less than or equal to the

length of string2, a null character (\0) is not appended to the copied string. If count is greater than the

length of string2, the string1 result is padded with null characters (\0) up to length count.

Return Value

The strncpy() function returns a pointer to string1.

Example that uses strncpy()

This example demonstrates the difference between strcpy() and strncpy().

Related Information

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncat() — Concatenate Strings” on page 377

v “strncmp() — Compare Strings” on page 379

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char source[SIZE] = "123456789";

 char source1[SIZE] = "123456789";

 char destination[SIZE] = "abcdefg";

 char destination1[SIZE] = "abcdefg";

 char * return_string;

 int index = 5;

 /* This is how strcpy works */

 printf("destination is originally = ’%s’\n", destination);

 return_string = strcpy(destination, source);

 printf("After strcpy, destination becomes ’%s’\n\n", destination);

 /* This is how strncpy works */

 printf("destination1 is originally = ’%s’\n", destination1);

 return_string = strncpy(destination1, source1, index);

 printf("After strncpy, destination1 becomes ’%s’\n", destination1);

}

/***************** Output should be similar to: *****************

destination is originally = ’abcdefg’

After strcpy, destination becomes ’123456789’

destination1 is originally = ’abcdefg’

After strncpy, destination1 becomes ’12345fg’

*/

Chapter 2. Library Functions 381

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “<string.h>” on page 17

strnicmp - Compare Substrings Without Case Sensitivity

Format

#include <string.h>

int strnicmp(const char *string1, const char *string2, int n);

Note: The strnset and strset functions are available for C++ programs. They are available for C only

when the program defines the __cplusplus__strings__ macro.

Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

strnicmp compares, at most, the first n characters of string1 and string2 without sensitivity to case.

The function operates on null terminated strings. The string arguments to the function are expected to

contain a null character (\0) marking the end of the string.

Return Value

strnicmp returns a value indicating the relationship between the substrings, as follows:

Value Meaning

Less than 0 substring1 less than substring2

0 substring1 equivalent to substring2

Greater than 0 substring1 greater than substring2

Example that uses strnicmp()

This example uses strnicmp to compare two strings.

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *str1 = "THIS IS THE FIRST STRING";

 char *str2 = "This is the second string";

 int numresult;

 /* Compare the first 11 characters of str1 and str2

 without regard to case */

 numresult = strnicmp(str1, str2, 11);

 if (numresult < 0)

 printf("String 1 is less than string2.\n");

 else

 if (numresult > 0)

 printf("String 1 is greater than string2.\n");

382 ILE C/C++ Runtime Library Functions V6R1

|
|

else

 printf("The two strings are equivalent.\n");

 return 0;

}

The output should be:

 The two strings are equivalent.

Related Information:

v “strcmp() — Compare Strings” on page 360

v “strcmpi() - Compare Strings Without Case Sensitivity” on page 362

v “stricmp() - Compare Strings without Case Sensitivity” on page 374

v “strncmp() — Compare Strings” on page 379

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “<string.h>” on page 17

strnset - strset - Set Characters in String

Format

#include <string.h>

char *strnset(char *string, int c, size_t n);

char *strset(char *string, int c);

Note: The strnset and strset functions are available for C++ programs. They are available for C only

when the program defines the __cplusplus__strings__ macro.

Language Level: Extension

Threadsafe: Yes.

Description

strnset sets, at most, the first n characters of string to c (converted to a char). If n is greater than the

length of string, the length of string is used in place of n. strset sets all characters of string, except the

ending null character (\0), to c (converted to a char). For both functions, the string is a null-terminated

string.

Return Value

Both strset and strnset return a pointer to the altered string. There is no error return value.

Example that uses strnset() and strset()

In this example, strnset sets not more than four characters of a string to the character ’x’. Then the

strset function changes any non-null characters of the string to the character ’k’.

#include <stdio.h>

#include <string.h>

int main(void)

{

 char str[] = "abcdefghi";

 printf("This is the string: %s\n", str);

 printf("This is the string after strnset: %s\n", strnset((char*)str, ’x’, 4));

 printf("This is the string after strset: %s\n", strset((char*)str, ’k’));

 return 0;

}

Chapter 2. Library Functions 383

The output should be:

 This is the string: abcdefghi

 This is the string after strnset: xxxxefghi

 This is the string after strset: kkkkkkkkk

Related Information:

v “strchr() — Search for Character” on page 359

v “strpbrk() — Find Characters in String”

v “wcschr() — Search for Wide Character” on page 452

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “<string.h>” on page 17

strpbrk() — Find Characters in String

Format

#include <string.h>

char *strpbrk(const char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strpbrk() function locates the first occurrence in the string pointed to by string1 of any character

from the string pointed to by string2.

Return Value

The strpbrk() function returns a pointer to the character. If string1 and string2 have no characters in

common, a NULL pointer is returned.

Example that uses strpbrk()

This example returns a pointer to the first occurrence in the array string of either a or b.

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *result, *string = "A Blue Danube";

 char *chars = "ab";

 result = strpbrk(string, chars);

 printf("The first occurrence of any of the characters \"%s\" in "

 "\"%s\" is \"%s\"\n", chars, string, result);

}

/***************** Output should be similar to: *****************

The first occurrence of any of the characters "ab" in "The Blue Danube"

is "anube"

*/

384 ILE C/C++ Runtime Library Functions V6R1

|
|

Related Information

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncmp() — Compare Strings” on page 379

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcschr() — Search for Wide Character” on page 452

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<string.h>” on page 17

strptime()— Convert String to Date/Time

Format

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *tm);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE, LC_TIME, and

LC_TOD categories of the current locale. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Description

The strptime() function converts the character string pointed to by buf to values that are stored in the tm

structure pointed to by tm, using the format specified by format.

The format contains zero or more directives. A directive contains either an ordinary character (not % or a

white space), or a conversion specification. Each conversion specification is composed of a % character

followed by one or more conversion characters, which specify the replacement required. There must be a

white space or other delimiter in both buf and format to be guaranteed that the function will behave as

expected. There must be a delimiter between two string-to-number conversions, or the first number

conversion may convert characters that belong to the second conversion specifier.

Any whitespace (as specified by isspace()) encountered before a directive is scanned in either the format

string or the input string will be ignored. A directive that is an ordinary character must exactly match the

next scanned character in the input string. Case is relevant when matching ordinary character directives.

If the ordinary character directive in the format string does not match the character in the input string,

strptime is not successful. No more characters will be scanned.

Any other conversion specification is matched by scanning characters in the input string until a character

that is not a possible character for that specification is found or until no more characters can be scanned.

If the specification was string-to-number, the possible character range is +,- or a character specified by

isdigit(). Number specifiers do not require leading zeros. If the specification needs to match a field in

the current locale, scanning is repeated until a match is found. Case is ignored when matching fields in

Chapter 2. Library Functions 385

|
|
|
|

the locale. If a match is found, the structure pointed to by tm will be updated with the corresponding

locale information. If no match is found, strptime is not successful. No more characters will be scanned.

Missing fields in the tm structure may be filled in by strftime if given enough information. For example,

if a date is given, tm_yday can be calculated.

Each standard conversion specification is replaced by appropriate characters as described in the following

table:

 Specifier Meaning

%a Name of day of the week, can be either the full name or an abbreviation.

%A Same as %a.

%b Month name, can be either the full name or an abbreviation.

%B Same as %b.

%c Date/time, in the format of the locale.

%C Century number [00–99]. Calculates the year if a two-digit year is used.

%d Day of the month [1–31].

%D Date format, same as %m/%d/%y.

%e Same as %d.

%g 2 digit year portion of ISO week date [00–99].

%G 4 digit year portion of ISO week date. Can be negative.

%h Same as %b.

%H Hour in 24-hour format [0–23].

%I Hour in 12-hour format [1-12].

%j Day of the year [1-366].

%m Month [1-12].

%M Minute [0-59].

%n Skip all whitespaces until a newline character is found.

%p AM or PM string, used for calculating the hour if 12-hour format is used.

%r Time in AM/PM format of the locale. If not available in the locale time format, defaults to

the POSIX time AM/PM format: %I:%M:%S %p.

%R 24-hour time format without seconds, same as %H:%M.

%S Second [00-61]. The range for seconds allows for a leap second and a double leap second.

%t Skip all whitespaces until a tab character is found.

%T 24 hour time format with seconds, same as %H:%M:%S .

%u Weekday [1–7]. Monday is 1 and Sunday is 7.

%U Week number of the year [0-53], Sunday is the first day of the week. Used in calculating the

day of the year.

%V ISO week number of the year [1-53]. Monday is the first day of the week. If the week

containing January 1st has four or more days in the new year, it is considered week 1.

Otherwise, it is the last week of the previous year, and the next week is week 1 of the new

year. Used in calculating the day of the year.

%w Weekday [0 -6]. Sunday is 0.

%W Week number of the year [0-53]. Monday is the first day of the week. Used in calculating

the day of the year.

%x Date in the format of the locale.

386 ILE C/C++ Runtime Library Functions V6R1

Specifier Meaning

%X Time in the format of the locale.

%y 2-digit year [0-99].

%Y 4-digit year. Can be negative.

%z UTC offset. Output is a string with format +HHMM or -HHMM, where + indicates east of GMT, -

indicates west of GMT, HH indicates the number of hours from GMT, and MM indicates the

number of minutes from GMT.

%Z Time zone name.

%% % character.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an alternate

format or specification should be used. If a modified conversion specifier uses a field in the current locale

that is unavailable, then the behavior will be as if the unmodified conversion specification were used. For

example, if the era string is the empty string ″″, which means that era is unavailable, then %EY would act

like %Y.

 Specifier Meaning

%Ec Date/time for current era.

%EC Era name.

%Ex Date for current era.

%EX Time for current era.

%Ey Era year. This is the offset from the base year.

%EY Year for the current era.

%Od Day of the month using alternate digits.

%Oe Same as %Od.

%OH Hour in 24-hour format using alternate digits.

%OI Hour in 12-hour format using alternate digits.

%Om Month using alternate digits.

%OM Minutes using alternate digits.

%OS Seconds using alternate digits.

%Ou Day of the week using alternate digits. Monday is 1 and Sunday is 7.

%OU Week number of the year using alternate digits. Sunday is the first day of the week.

%OV ISO week number of the year using alternate digits. See %V for explanation of ISO week

number.

%Ow Weekday using alternate digit. Sunday is 0 and Saturday is 6.

%OW Week number of the year using alternate digits. Monday is the first day of the week.

%Oy 2-digit year using alternate digits.

%OZ Abbreviated time zone name.

Return Value

On successful completion, the strptime() function returns a pointer to the character following the last

character parsed. Otherwise, a null pointer is returned. The value of errno may be set to ECONVERT

(conversion error).

Chapter 2. Library Functions 387

|

Example that uses strptime()

#include <stdio.h>

#include <locale.h>

#include <time.h>

int main(void)

{

 char buf[100];

 time_t t;

 struct tm *timeptr,result;

 setlocale(LC_ALL,"/QSYS.LIB/EN_US.LOCALE");

 t = time(NULL);

 timeptr = localtime(&t);

 strftime(buf,sizeof(buf), "%a %m/%d/%Y %r", timeptr);

 if(strptime(buf, "%a %m/%d/%Y %r",&result) == NULL)

 printf("\nstrptime failed\n");

 else

 {

 printf("tm_hour: %d\n",result.tm_hour);

 printf("tm_min: %d\n",result.tm_min);

 printf("tm_sec: %d\n",result.tm_sec);

 printf("tm_mon: %d\n",result.tm_mon);

 printf("tm_mday: %d\n",result.tm_mday);

 printf("tm_year: %d\n",result.tm_year);

 printf("tm_yday: %d\n",result.tm_yday);

 printf("tm_wday: %d\n",result.tm_wday);

 }

 return 0;

}

/**

 The output should be similar to:

 Tue 10/30/2001 10:59:10 AM

 tm_hour: 10

 tm_min: 59

 tm_sec: 10

 tm_mon: 9

 tm_mday: 30

 tm_year: 101

 tm_yday: 302

 tm_wday: 2

**/

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

388 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

v “localtime_r() — Convert Time (Restartable)” on page 188

v “setlocale() — Set Locale” on page 339

v “strftime() — Convert Date/Time to String” on page 370

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

v “wcsptime()— Convert Wide Character String to Date/Time” on page 469

strrchr() — Locate Last Occurrence of Character in String

Format

#include <string.h>

char *strrchr(const char *string, int c);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strrchr() function finds the last occurrence of c (converted to a character) in string. The ending null

character is considered part of the string.

Return Value

The strrchr() function returns a pointer to the last occurrence of c in string. If the given character is not

found, a NULL pointer is returned.

Example that uses strrchr()

This example compares the use of strchr() and strrchr(). It searches the string for the first and last

occurrence of p in the string.

Chapter 2. Library Functions 389

|

|
|

Related Information

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncmp() — Compare Strings” on page 379

v “strpbrk() — Find Characters in String” on page 384

v “strspn() —Find Offset of First Non-matching Character”

v “<string.h>” on page 17

strspn() —Find Offset of First Non-matching Character

Format

#include <string.h>

size_t strspn(const char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strspn() function finds the first occurrence of a character in string1 that is not contained in the set of

characters that is specified by string2. The null character (\0) that ends string2 is not considered in the

matching process.

Return Value

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buf[SIZE] = "computer program";

 char * ptr;

 int ch = ’p’;

 /* This illustrates strchr */

 ptr = strchr(buf, ch);

 printf("The first occurrence of %c in ’%s’ is ’%s’\n", ch, buf, ptr);

 /* This illustrates strrchr */

 ptr = strrchr(buf, ch);

 printf("The last occurrence of %c in ’%s’ is ’%s’\n", ch, buf, ptr);

}

/***************** Output should be similar to: *****************

The first occurrence of p in ’computer program’ is ’puter program’

The last occurrence of p in ’computer program’ is ’program’

*/

390 ILE C/C++ Runtime Library Functions V6R1

|
|

The strspn() function returns the index of the first character found. This value is equal to the length of

the initial substring of string1 that consists entirely of characters from string2. If string1 begins with a

character not in string2, the strspn() function returns 0. If all the characters in string1 are found in

string2, the length of string1 is returned.

Example that uses strspn()

This example finds the first occurrence in the array string of a character that is not an a, b, or c. Because

the string in this example is cabbage, the strspn() function returns 5, the length of the segment of

cabbage before a character that is not an a, b, or c.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “wcschr() — Search for Wide Character” on page 452

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “<string.h>” on page 17

strstr() — Locate Substring

Format

#include <string.h>

char *strstr(const char *string1, const char *string2);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <string.h>

int main(void)

{

 char * string = "cabbage";

 char * source = "abc";

 int index;

 index = strspn(string, "abc");

 printf("The first %d characters of \"%s\" are found in \"%s\"\n",

 index, string, source);

}

/***************** Output should be similar to: *****************

The first 5 characters of "cabbage" are found in "abc"

*/

Chapter 2. Library Functions 391

Description

The strstr() function finds the first occurrence of string2 in string1. The function ignores the null

character (\0) that ends string2 in the matching process.

Return Value

The strstr() function returns a pointer to the beginning of the first occurrence of string2 in string1. If

string2 does not appear in string1, the strstr() function returns NULL. If string2 points to a string with

zero length, the strstr() function returns string1.

Example that uses strstr()

This example locates the string ″haystack″ in the string "needle in a haystack".

Related Information

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcspn() — Find Offset of First Character Match” on page 365

v “strncmp() — Compare Strings” on page 379

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcschr() — Search for Wide Character” on page 452

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<string.h>” on page 17

strtod() — strtof() — strtold — Convert Character String to Double,

Float, and Long Double

Format

#include <string.h>

#include <stdio.h>

int main(void)

{

 char *string1 = "needle in a haystack";

 char *string2 = "haystack";

 char *result;

 result = strstr(string1,string2);

 /* Result = a pointer to "haystack" */

 printf("%s\n", result);

}

/***************** Output should be similar to: *****************

haystack

*/

392 ILE C/C++ Runtime Library Functions V6R1

|

|

|

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

float strtof(const char *nptr, char **endptr);

long double strtold(const char *nptr, char **endptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE and

LC_NUMERIC categories of the current locale. For more information, see “Understanding CCSIDs and

Locales” on page 524.

Description

The strtod(), strtof(), and strtold() functions convert a character string to a double, float, or long

double value. The parameter nptr points to a sequence of characters that can be interpreted as a numeric

binary floating-point value. These functions stop reading the string at the first character that is not

recognized as part of a number. This character can be the null character at the end of the string.

The strtod(), strtof(), and strtold() functions expect nptr to point to a string with the following form:

 The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN

(ignoring case) is allowed.

Return Value

The strtod(), strtof(), and strtold() functions return the value of the floating-point number, except

when the representation causes an underflow or overflow. For an overflow, strtof() returns

HUGE_VALF or -HUGE_VALF; strtod() and strtold() return HUGE_VAL or -HUGE_VAL. For an

underflow, all functions return 0.

In both cases, errno is set to ERANGE. If the string pointed to by nptr does not have the expected form,

no conversion is performed and the value of nptr is stored in the object pointed to by endptr, provided

that endptr is not a NULL pointer.

The strtod(), strtof(), and strtold() functions do not fail if a character other than a digit follows an E

or e that is read as an exponent. For example, 100elf is converted to the floating-point value 100.0.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN

yields a Quiet Not-A-Number (NAN) value.

Example that uses strtod(), strtof(), and strtold()

This example converts the strings to double, float, and long double values. It prints the converted values

and the substring that stopped the conversion.

��

whitespace

+

–

 digits

.

digits

.

digits

e

digits

E

+

–

 ��

Chapter 2. Library Functions 393

|||

|
|

|
|
|
|

|

|

|
|
|

|

|
|
|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|

|
|

|

|
|
|

Related Information

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char *string, *stopstring;

 double x;

 float f;

 long double ld;

 string = "3.1415926This stopped it";

 f = strtof(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtof = %f\n", f);

 printf("Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";

 x = strtod(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtod = %f\n", x);

 printf(" Stopped scan at %s\n\n", stopstring);

 string = "100ergs";

 x = strtod(string, &stopstring);

 printf("string = \"%s\"\n", string);

 printf(" strtod = %f\n", x);

 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";

 ld = strtold(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtold = %lf\n", ld);

 printf(" Stopped scan at %s\n\n", stopstring);

 string = "100ergs";

 ld = strtold(string, &stopstring);

 printf("string = \"%s\"\n", string);

 printf(" strtold = %lf\n", ld);

 printf(" Stopped scan at \"%s\"\n\n", stopstring);

}

/***************** Output should be similar to: *****************

string = 3.1415926This stopped it

 strtof = 3.141593

 Stopped scan at This stopped it

string = "100ergs

 strtof = 100.000000

 Stopped scan at "erg

string = 3.1415926This stopped it

 strtod = 3.141593

 Stopped scan at This stopped it

string = "100ergs

 strtod = 100.000000

 Stopped scan at "erg

string = 3.1415926This stopped it

 strtold = 3.141593

 Stopped scan at This stopped it

string = "100ergs

 strtold = 100.000000

 Stopped scan at "erg

*/

394 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v “atof() — Convert Character String to Float” on page 46

v “atoi() — Convert Character String to Integer” on page 48

v “atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point”

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “strtoul() — strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer”

on page 403

v “wcstod() — Convert Wide-Character String to Double” on page 476

v “wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character String to Decimal Floating-Point”

on page 478

v “<stdlib.h>” on page 17

strtod32() — strtod64() — strtod128() — Convert Character String to

Decimal Floating-Point

Format

#include <stdlib.h>

_Decimal32 strtod32(const char *nptr, char **endptr);

_Decimal64 strtod64(const char *nptr, char **endptr);

_Decimal128 strtod132(const char *nptr, char **endptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE and

LC_NUMERIC categories of the current locale. For more information, see “Understanding CCSIDs and

Locales” on page 524.

Description

The strtod32(), strtod64(), and strtod128() functions convert a character string to a single-precision,

double-precision, or quad-precision decimal floating-point value. The parameter nptr points to a sequence

of characters that can be interpreted as a numeric decimal floating-point value. These functions stop

reading the string at the first character that is not recognized as part of a number. This character can be

the null character at the end of the string. The endptr parameter is updated to point to this character,

provided that endptr is not a NULL pointer.

The strtod32(), strtod64(), and strtod128() functions expect nptr to point to a string with the following

form:

 The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN

(ignoring case) is allowed.

Return Value

��

whitespace

+

–

 digits

.

digits

.

digits

e

digits

E

+

–

 ��

Chapter 2. Library Functions 395

|||

|
|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

The strtod32(), strtod64(), and strtod128() functions return the value of the floating-point number,

except when the representation causes an underflow or overflow. For an overflow, strtod32() returns

HUGE_VAL_D32 or -HUGE_VAL_D32; strtod64() returns HUGE_VAL_D64 or -HUGE_VAL_D64;

strtod128() returns HUGE_VAL_D128 or -HUGE_VAL_D128. For an underflow, all functions return

+0.E0.

In both the overflow and underflow cases, errno is set to ERANGE. If the string pointed to by nptr does

not have the expected form, a value of +0.E0 is returned and the value of nptr is stored in the object

pointed to by endptr, provided that endptr is not a NULL pointer.

The strtod32(), strtod64(), and strtod128() functions do not fail if a character other than a digit

follows an E or e that is read as an exponent. For example, 100elf is converted to the floating-point value

100.0.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN

yields a Quiet Not-A-Number (NaN) value.

If necessary, the return value is rounded using the rounding mode Round to Nearest, Ties to Even.

Example that uses strtod32(), strtod64(), and strtod128()

This example converts the strings to single-precision, double-precision, and quad-precision decimal

floating-point values. It prints the converted values and the substring that stopped the conversion.

396 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char *string, *stopstring;

 _Decimal32 d32;

 _Decimal64 d64;

 _Decimal128 d128;

 string = "3.1415926This stopped it";

 d32 = strtod32(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtod32 = %Hf\n", d32);

 printf(" Stopped scan at %s\n\n", stopstring);

 string = "100ergs";

 d32 = strtod32(string, &stopstring);

 printf("string = \"%s\"\n", string);

 printf(" strtof = %Hf\n", d32);

 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";

 d64 = strtod64(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtod = %Df\n", d64);

 printf(" Stopped scan at %s\n\n", stopstring);

 string = "100ergs";

 d64 = strtod64(string, &stopstring);

 printf("string = \"%s\"\n", string);

 printf(" strtod = %Df\n", d64);

 printf(" Stopped scan at \"%s\"\n\n", stopstring);

 string = "3.1415926This stopped it";

 d128 = strtod128(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtold = %DDf\n", d128);

 printf(" Stopped scan at %s\n\n", stopstring);

 string = "100ergs";

 d128 = strtod128(string, &stopstring);

 printf("string = \"%s\"\n", string);

 printf(" strtold = %DDf\n", d128);

 printf(" Stopped scan at \"%s\"\n\n", stopstring);

}

/***************** Output should be similar to: *****************

string = 3.1415926This stopped it

 strtof = 3.141593

 Stopped scan at This stopped it

string = "100ergs"

 strtof = 100.000000

 Stopped scan at "ergs"

string = 3.1415926This stopped it

 strtod= 3.141593

 Stopped scan at This stopped it

string = "100ergs"

 strtod = 100.000000

 Stopped scan at "ergs"

Chapter 2. Library Functions 397

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “atof() — Convert Character String to Float” on page 46

v “atoi() — Convert Character String to Integer” on page 48

v “atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “strtoul() — strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer”

on page 403

v “wcstod() — Convert Wide-Character String to Double” on page 476

v “wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character String to Decimal Floating-Point”

on page 478

v “<stdlib.h>” on page 17

strtok() — Tokenize String

Format

#include <string.h>

char *strtok(char *string1, const char *string2);

Language Level: ANSI

Threadsafe: No. Use strtok_r() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strtok() function reads string1 as a series of zero or more tokens, and string2 as the set of characters

serving as delimiters of the tokens in string1. The tokens in string1 can be separated by one or more of

the delimiters from string2. The tokens in string1 can be located by a series of calls to the strtok()

function.

In the first call to the strtok() function for a given string1, the strtok() function searches for the first

token in string1, skipping over leading delimiters. A pointer to the first token is returned.

When the strtok() function is called with a NULL string1 argument, the next token is read from a stored

copy of the last non-null string1 parameter. Each delimiter is replaced by a null character. The set of

delimiters can vary from call to call, so string2 can take any value. Note that the initial value of string1 is

not preserved after the call to the strtok() function.

string = 3.1415926This stopped it

 strtold = 3.141593

 Stopped scan at This stopped it

string = "100ergs"

 strtold = 100.000000

 Stopped scan at "ergs"

*/

398 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

Note that the strtok() function writes data into the buffer. The function should be passed to a

non-critical buffer containing the string to be tokenized because the buffer will be damaged by the

strtok() function.

Return Value

The first time the strtok() function is called, it returns a pointer to the first token in string1. In later calls

with the same token string, the strtok() function returns a pointer to the next token in the string. A

NULL pointer is returned when there are no more tokens. All tokens are null-ended.

Note: The strtok() function uses an internal static pointer to point to the next token in the string being

tokenized. A reentrant version of the strtok() function, strtok_r(), which does not use any

internal static storage, can be used in place of the strtok() function.

Example that uses strtok()

Using a loop, this example gathers tokens, separated by commas, from a string until no tokens are left.

The example prints the tokens, a string, of, and tokens.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “strtok_r() — Tokenize String (Restartable)”

v “<string.h>” on page 17

strtok_r() — Tokenize String (Restartable)

Format

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *token, *string = "a string, of, ,tokens\0,after null terminator";

 /* the string pointed to by string is broken up into the tokens

 "a string", " of", " ", and "tokens" ; the null terminator (\0)

 is encountered and execution stops after the token "tokens" */

 token = strtok(string, ",");

 do

 {

 printf("token: %s\n", token);

 }

 while (token = strtok(NULL, ","));

}

/***************** Output should be similar to: *****************

token: a string

token: of

token:

token: tokens

*/

Chapter 2. Library Functions 399

#include <string.h>

char *strtok_r(char *string, const char *seps,

 char **lasts);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

This function is the restartable version of strtok().

The strtok_r() function reads string as a series of zero or more tokens, and seps as the set of characters

serving as delimiters of the tokens in string. The tokens in string can be separated by one or more of the

delimiters from seps. The arguments lasts points to a user-provided pointer, which points to stored

information necessary for the strtok_r() function to continue scanning the same string.

In the first call to the strtok_r() function for a given null-ended string, it searches for the first token in

string, skipping over leading delimiters. It returns a pointer to the first character of the first token, writes

a null character into string immediately following the returned token, and updates the pointer to which

lasts points.

To read the next token from string, call the strtok_r() function with a NULL string argument. This

causes the strtok_r() function to search for the next token in the previous token string. Each delimiter is

replaced in the original string is replaced by a null character, and the pointer to which lasts points is

updated. The set of delimiters in seps can vary from call to call, but lasts must remain unchanged from

the previous call. When no tokens remain in string, a NULL pointer is returned.

Return Value

The first time the strtok_r() function is called, it returns a pointer to the first token in string. In later

calls with the same token string, the strtok_r() function returns a pointer to the next token in the string.

A NULL pointer is returned when there are no more tokens. All tokens are null-ended.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strchr() — Search for Character” on page 359

v “strcmp() — Compare Strings” on page 360

v “strcpy() — Copy Strings” on page 364

v “strcspn() — Find Offset of First Character Match” on page 365

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “strtok() — Tokenize String” on page 398

v “<string.h>” on page 17

strtol() — strtoll() — Convert Character String to Long and Long Long

Integer

Format (strtol())

400 ILE C/C++ Runtime Library Functions V6R1

|
|

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

Format (strtoll())

#include <stdlib.h>

long long int strtoll(char *string, char **endptr, int base);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strtol() function converts a character string to a long integer value. The parameter nptr points to a

sequence of characters that can be interpreted as a numeric value of type long int.

The strtoll() function converts a character string to a long long integer value. The parameter nptr points

to a sequence of characters that can be interpreted as a numeric value of type long long int.

When you use these functions, the nptr parameter should point to a string with the following form:

 If the base parameter is a value between 2 and 36, the subject sequence’s expected form is a sequence of

letters and digits representing an integer whose radix is specified by the base parameter. This sequence is

optionally preceded by a positive (+) or negative (-) sign. Letters from a to z inclusive (either upper or

lower case) are ascribed the values 10 to 35; only letters whose ascribed values are less than that of the

base parameter are permitted. If the base parameter has a value of 16, the characters 0x or 0X optionally

precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if present.

If the value of the base parameter is 0, the string determines the base. After an optional leading sign a

leading 0 indicates octal conversion, a leading 0x or 0X indicates hexadecimal conversion, and all other

leading characters result in decimal conversion.

These functions scan the string up to the first character that is inconsistent with the base parameter. This

character may be the null character (’\0’) at the end of the string. Leading white-space characters are

ignored, and an optional sign may precede the digits.

If the value of the endptr parameter is not null a pointer, a pointer to the character that ended the scan is

stored in the value pointed to by endptr. If a value cannot be formed, the value pointed to by endptr is set

to the nptr parameter

Return Value

If base has an invalid value (less than 0, 1, or greater than 36), errno is set to EINVAL and 0 is returned.

The value pointed to by the endptr parameter is set to the value of the nptr parameter.

��

whitespace

+

–

0

0x

0X

 digits ��

Chapter 2. Library Functions 401

|
|

If the value is outside the range of representable values, errno is set to ERANGE. If the value is positive,

the strtol() function will return LONG_MAX, and the strtoll() function will return

LONGLONG_MAX. If the value is negative, the strtol() function will return LONG_MIN, and the

strtoll() function will return LONGLONG_MIN.

If no characters are converted, the strtoll() and strtol() functions will set errno to EINVAL and 0 is

returned. For both functions, the value pointed to by endptr is set to the value of the nptr parameter.

Upon successful completion, both functions return the converted value.

Example that uses strtol()

This example converts the strings to a long value. It prints out the converted value and the substring that

stopped the conversion.

Related Information

v “atof() — Convert Character String to Float” on page 46

v “atoi() — Convert Character String to Integer” on page 48

v “atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtoul() — strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer”

on page 403

v “wcstol() — wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 481

v “<stdlib.h>” on page 17

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char *string, *stopstring;

 long l;

 int bs;

 string = "10110134932";

 printf("string = %s\n", string);

 for (bs = 2; bs <= 8; bs *= 2)

 {

 l = strtol(string, &stopstring, bs);

 printf(" strtol = %ld (base %d)\n", l, bs);

 printf(" Stopped scan at %s\n\n", stopstring);

 }

}

/***************** Output should be similar to: *****************

string = 10110134932

 strtol = 45 (base 2)

 Stopped scan at 34932

 strtol = 4423 (base 4)

 Stopped scan at 4932

402 ILE C/C++ Runtime Library Functions V6R1

|
|

strtoul() — strtoull() — Convert Character String to Unsigned Long and

Unsigned Long Long Integer

Format (strtoul())

#include <stdlib.h>

unsigned long int strtoul(const char *nptr, char **endptr, int base);

Format (strtoull())

#include <stdlib.h>

unsigned long long int strtoull(char *string, char **endptr, int base);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The strtoul() function converts a character string to an unsigned long integer value. The parameter nptr

points to a sequence of characters that can be interpreted as a numeric value of type unsigned long int.

The strtoull() function converts a character string to an unsigned long long integer value. The

parameter nptr points to a sequence of characters that can be interpreted as a numeric value of type

unsigned long long int.

When you use these functions, the nptr parameter should point to a string with the following form:

If the base parameter is a value between 2 and 36, the subject sequence’s expected form is a sequence of

letters and digits representing an integer whose radix is specified by the base parameter. This sequence is

optionally preceded by a positive (+) or negative (-) sign. Letters from a to z inclusive (either upper or

lower case) are ascribed the values 10 to 35. Only letters whose ascribed values are less than that of the

base parameter are permitted. If the base parameter has a value of 16 the characters 0x or 0X optionally

precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if present.

If the value of the base parameter is 0, the string determines the base. After an optional leading sign a

leading 0 indicates octal conversion, a leading 0x or 0X indicates hexadecimal conversion, and all other

leading characters result in decimal conversion.

These functions scan the string up to the first character that is inconsistent with the base parameter. This

character may be the null character (’\0’) at the end of the string. Leading white-space characters are

ignored, and an optional sign may precede the digits.

If the value of the endptr parameter is not null a pointer, a pointer to the character that ended the scan is

stored in the value pointed to by endptr. If a value cannot be formed, the value pointed to by endptr is set

to the nptr parameter.

Return Value

��

whitespace

+

–

0

0x

0X

 digits ��

Chapter 2. Library Functions 403

|
|

If base has an invalid value (less than 0, 1, or greater than 36), errno is set to EINVAL and 0 is returned.

The value pointed to by the endptr parameter is set to the value of the nptr parameter.

If the value is outside the range of representable values, errno is set to ERANGE. The strtoul() function

will return ULONG_MAX and the strtoull() function will return ULONGLONG_MAX.

If no characters are converted, the strtoull() function will set errno to EINVAL and 0 is returned. The

strtoul() function will return 0 but will not set errno to EINVAL. In both cases the value pointed to by

endptr is set to the value of the nptr parameter. Upon successful completion, both functions return the

converted value.

Example that uses strtoul()

This example converts the string to an unsigned long value. It prints out the converted value and the

substring that stopped the conversion.

Related Information

v “atof() — Convert Character String to Float” on page 46

v “atoi() — Convert Character String to Integer” on page 48

v “atol() — atoll() — Convert Character String to Long or Long Long Integer” on page 49

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “wcstoul() — wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 486

v “<stdlib.h>” on page 17

strxfrm() — Transform String

Format

#include <stdio.h>

#include <stdlib.h>

#define BASE 2

int main(void)

{

 char *string, *stopstring;

 unsigned long ul;

 string = "1000e13 e";

 printf("string = %s\n", string);

 ul = strtoul(string, &stopstring, BASE);

 printf(" strtoul = %ld (base %d)\n", ul, BASE);

 printf(" Stopped scan at %s\n\n", stopstring);

}

/***************** Output should be similar to: *****************

string = 1000e13 e

 strtoul = 8 (base 2)

 Stopped scan at e13 e

*/

404 ILE C/C++ Runtime Library Functions V6R1

|
|

#include <string.h>

size_t strxfrm(char *string1, const char *string2, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_COLLATE

categories of the current locale. For more information, see “Understanding CCSIDs and Locales” on page

524.

Description

The strxfrm() function transforms the string pointed to by string2 and places the result into the string

pointed to by string1. The transformation is determined by the program’s current locale. The transformed

string is not necessarily readable, but can be used with the strcmp() or the strncmp() functions.

Return Value

The strxfrm() function returns the length of the transformed string, excluding the ending null character.

If the returned value is greater than or equal to count, the contents of the transformed string are

indeterminate.

If strxfrm() is unsuccessful, errno is changed. The value of errno may be set to EINVAL (the string1 or

string2 arguments contain characters which are not available in the current locale).

Example that uses strxfrm()

This example prompts the user to enter a string of characters, then uses strxfrm()to transform the string

and return its length.

Related Information

v “localeconv() — Retrieve Information from the Environment” on page 181

v “setlocale() — Set Locale” on page 339

v “strcmp() — Compare Strings” on page 360

v “strcoll() — Compare Strings” on page 363

v “strncmp() — Compare Strings” on page 379

v “<string.h>” on page 17

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *string1, buffer[80];

 int length;

 printf("Type in a string of characters.\n ");

 string1 = gets(buffer);

 length = strxfrm(NULL, string1, 0);

 printf("You would need a %d element array to hold the string\n",length);

 printf("\n\n%s\n\n transformed according",string1);

 printf(" to this program’s locale. \n");

}

Chapter 2. Library Functions 405

|
|
|

swprintf() — Format and Write Wide Characters to Buffer

Format

#include <wchar.h>

int swprintf(wchar_t *wcsbuffer, size_t n,

 const wchar_t *format, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The swprintf() function formats and stores a series of wide characters and values into the wide-character

buffer wcsbuffer. The swprintf() function is equivalent to the sprintf() function, except that it operates

on wide characters.

The value n specifies the maximum number of wide characters to be written, including the ending null

character. The swprintf()function converts each entry in the argument-list according to the corresponding

wide-character format specifier in format. The format has the same form and function as the format

string for the printf() function, with the following exceptions:

v %c (without an l prefix) converts a character argument to wchar_t, as if by calling the mbtowc()

function.

v %lc and %C copy a wchar_t to wchar_t. %#lc and %#C are equivalent to %lc and %C, respectively.

v %s (without an l prefix) converts an array of multibyte characters to an array of wchar_t, as if by

calling the mbstowcs() function. The array is written up to, but not including, the ending null character,

unless the precision specifies a shorter output.

v %ls and %S copy an array of wchar_t (no conversion). The array is written up to, but not including,

the ending NULL character, unless the precision specifies a shorter output. %#ls and %#S are

equivalent to %ls and %S, respectively.

Width and precision always are wide characters.

A null wide character is added to the end of the wide characters written; the null wide character is not

counted as part of the returned value. If copying takes place between objects that overlap, the behavior is

undefined.

Return Value

The swprintf() function returns the number of wide characters that are written to the output buffer, not

counting the ending null wide character or a negative value if an error is encountered. If n or more wide

characters are requested to be written, a negative value is returned.

The value of errno may be set to EINVAL, invalid argument.

Example that uses swprintf()

406 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

|
|
|

This example uses the swprintf() function to format and print several values to buffer.

Related Information

v “printf() — Print Formatted Characters” on page 229

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “vswprintf() — Format and Write Wide Characters to Buffer” on page 439

v “<wchar.h>” on page 18

swscanf() — Read Wide Character Data

Format

#include <wchar.h>

int swscanf(const wchar_t *buffer, const wchar_t *format, argument-list);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The swscanf() function is equivalent of the fwscanf() function, except that the argument buffer specifies

a wide string from which the input is to be obtained, rather than from a stream. Reaching the end of the

wide string is equivalent to encountering end-of-file for the fwscanf() function.

Return Value

#include <wchar.h>

#include <stdio.h>

#define BUF_SIZE 100

int main(void)

{

 wchar_t wcsbuf[BUF_SIZE];

 wchar_t wstring[] = L"ABCDE";

 int num;

 num = swprintf(wcsbuf, BUF_SIZE, L"%s", "xyz");

 num += swprintf(wcsbuf + num, BUF_SIZE - num, L"%ls", wstring);

 num += swprintf(wcsbuf + num, BUF_SIZE - num, L"%i", 100);

 printf("The array wcsbuf contains: \"%ls\"\n", wcsbuf);

 return 0;

 /***

 The output should be similar to :

 The array wcsbuf contains: "xyzABCDE100"

 ***/

}

Chapter 2. Library Functions 407

|
|
|
|
|
|

|

The swscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF when the

end of the string is encountered before anything is converted.

The value of errno may be set EINVAL, invalid argument.

Example that uses swscanf()

This example uses the swscanf() function to read various data from the string ltokenstring, and then

displays that data.

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “scanf() — Read Data” on page 330

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “sscanf() — Read Data” on page 355

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “<wchar.h>” on page 18

system() — Execute a Command

Format

#include <stdlib.h>

int system(const char *string);

Language Level: ANSI

Threadsafe: Yes. However, the CL command processor and all CL commands are NOT threadsafe. Use

this function with caution.

Description

#include <wchar.h>

#include <stdio.h>

wchar_t *ltokenstring = L"15 12 14";

int i;

float fp;

char s[10];

char c;

int main(void)

{

 /* Input various data */

 swscanf(ltokenstring, L"%s %c%d%f", s, &c, &i, &fp);

 /* If there were no space between %s and %c, */

 /* swscanf would read the first character following */

 /* the string, which is a blank space. */

 printf("string = %s\n",s);

 printf("character = %c\n",c);

 printf("integer = %d\n",i);

 printf("floating-point number = %f\n",fp);

}

408 ILE C/C++ Runtime Library Functions V6R1

The system() function passes the given string to the CL command processor for processing.

Return Value

If passed a non-NULL pointer to a string, the system() function passes the argument to the CL command

processor. The system() function returns zero if the command is successful. If passed a NULL pointer to

a string, system() returns -1, and the command processor is not called. If the command fails, system()

returns 1. If the system() function fails, the global variable _EXCP_MSGID in <stddef.h> is set with the

exception message ID. The exception message ID set within the _EXCP_MSGID variable is in job CCSID.

Example that uses system()

Related Information

v “exit() — End Program” on page 88

v “<stdlib.h>” on page 17

tan() — Calculate Tangent

Format

#include <math.h>

double tan(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The tan() function calculates the tangent of x, where x is expressed in radians. If x is too large, a partial

loss of significance in the result can occur and sets errno to ERANGE. The value of errno may also be set

to EDOM.

Return Value

The tan() function returns the value of the tangent of x.

Example that uses tan()

This example computes x as the tangent of π/4.

 #include <stdlib.h>

 int main(void)

 {

 int result;

 /* A data area is created, displayed and deleted: */

 result = system("CRTDTAARA QTEMP/TEST TYPE(*CHAR) VALUE(’Test’)");

 result = system("DSPDTAARA TEST");

 result = system("DLTDTAARA TEST");

 }

Chapter 2. Library Functions 409

Related Information

v “acos() — Calculate Arccosine” on page 38

v “asin() — Calculate Arcsine” on page 42

v “atan() – atan2() — Calculate Arctangent” on page 44

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tanh() — Calculate Hyperbolic Tangent”

v “<math.h>” on page 8

tanh() — Calculate Hyperbolic Tangent

Format

#include <math.h>

double tanh(double x);

Language Level: ANSI

Threadsafe: Yes.

Description

The tanh() function calculates the hyperbolic tangent of x, where x is expressed in radians.

Return Value

The tanh() function returns the value of the hyperbolic tangent of x. The result of tanh() cannot have a

range error.

Example that uses tanh()

This example computes x as the hyperbolic tangent of π/4.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x;

 pi = 3.1415926;

 x = tan(pi/4.0);

 printf("tan(%lf) is %lf\n", pi/4, x);

}

/****************** Output should be similar to: ****************

tan(0.785398) is 1.000000

*/

410 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “acos() — Calculate Arccosine” on page 38

v “asin() — Calculate Arcsine” on page 42

v “atan() – atan2() — Calculate Arctangent” on page 44

v “cos() — Calculate Cosine” on page 64

v “cosh() — Calculate Hyperbolic Cosine” on page 65

v “sin() — Calculate Sine” on page 348

v “sinh() — Calculate Hyperbolic Sine” on page 349

v “tan() — Calculate Tangent” on page 409

v “<math.h>” on page 8

time() — Determine Current Time

Format

#include <time.h>

time_t time(time_t *timeptr);

Language Level: ANSI

Threadsafe: Yes.

Description

The time() function determines the current calendar time, in seconds.

Note: Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January

1, 1970 Universal Coordinate Time (UTC).

Return Value

The time() function returns the current calendar time. The return value is also stored in the location that

is given by timeptr. If timeptr is NULL, the return value is not stored. If the calendar time is not available,

the value (time_t)(-1) is returned.

Example that uses time()

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x;

 pi = 3.1415926;

 x = tanh(pi/4);

 printf("tanh(%lf) = %lf\n", pi/4, x);

}

/****************** Output should be similar to: ****************

tanh(0.785398) = 0.655794

*/

Chapter 2. Library Functions 411

This example gets the time and assigns it to ltime. The ctime() function then converts the number of

seconds to the current date and time. This example then prints a message giving the current time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “time64() — Determine Current Time”

v “<time.h>” on page 18

time64() — Determine Current Time

Format

#include <time.h>

time64_t time64(time64_t *timeptr);

Language Level: ILE C Extension.

Threadsafe: Yes.

Description

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t ltime;

 if(time(<ime) == -1)

{

 printf("Calendar time not available.\n");

 exit(1);

}

 printf("The time is %s\n", ctime(<ime));

}

/****************** Output should be similar to: ****************

The time is Mon Mar 22 19:01:41 2004

*/

412 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

The time64() function determines the current calendar time, in seconds.

Note: Calendar time is the number of seconds that have elapsed since EPOCH, which is 00:00:00, January

1, 1970 Universal Coordinate Time (UTC).

Return Value

The time64() function returns the current calendar time. The return value is also stored in the location

that is given by timeptr. If timeptr is NULL, the return value is not stored. If the calendar time is not

available, the value (time_t)(-1) is returned.

Example that uses time64()

This example gets the time and assigns it to ltime. The ctime64() function then converts the number of

seconds to the current date and time. This example then prints a message giving the current time.

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “ctime() — Convert Time to Character String” on page 71

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “mktime() — Convert Local Time” on page 218

v “mktime64() — Convert Local Time” on page 220

v “time() — Determine Current Time” on page 411

v “<time.h>” on page 18

#include <time.h>

#include <stdio.h>

int main(void)

{

 time64_t ltime;

 if(time64(<ime) == -1)

{

 printf("Calendar time not available.\n");

 exit(1);

}

 printf("The time is %s", ctime64(<ime));

}

/****************** Output should be similar to: ****************

The time is Mon Mar 22 19:01:41 2004

*/

Chapter 2. Library Functions 413

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

tmpfile() — Create Temporary File

Format

#include <stdio.h>

FILE *tmpfile(void);

Language Level: ANSI

Threadsafe: Yes.

Description

The tmpfile() function creates a temporary binary file. The file is automatically removed when it is

closed or when the program is ended.

The tmpfile() function opens the temporary file in wb+ mode.

Return Value

The tmpfile() function returns a stream pointer, if successful. If it cannot open the file, it returns a NULL

pointer. On normal end (exit()), these temporary files are removed.

On the i5/OS Data Management system, the tmpfile() function creates a new file that is named

QTEMP/QACXxxxx. If you specify the SYSIFCOPT(*IFSIO) option on the compilation command, the

tmpfile() function creates a new file that is named /tmp/QACXaaaaaaa. At the end of the job, the file

that is created with the filename from the tmpfile() function is discarded. You can use the remove()

function to remove files.

Example that uses tmpfile()

This example creates a temporary file, and if successful, writes tmpstring to it. At program end, the file is

removed.

Related Information

v “fopen() — Open Files” on page 109

v “<stdio.h>” on page 15

tmpnam() — Produce Temporary File Name

Format

#include <stdio.h>

FILE *stream;

char tmpstring[] = "This is the string to be temporarily written";

int main(void)

{

 if((stream = tmpfile()) == NULL)

 perror("Cannot make a temporary file");

 else

 fprintf(stream, "%s", tmpstring);

}

414 ILE C/C++ Runtime Library Functions V6R1

#include <stdio.h>

char *tmpnam(char *string);

Language Level: ANSI

Threadsafe: Yes. However, using tmpnam(NULL) is NOT threadsafe.

Description

The tmpnam() function produces a valid file name that is not the same as the name of any existing file. It

stores this name in string. If string is NULL, the tmpnam() function leaves the result in an internal static

buffer. Any subsequent calls destroy this value. If string is not NULL, it must point to an array of at least

L_tmpnam bytes. The value of L_tmpnam is defined in <stdio.h>.

The tmpnam() function produces a different name each time it is called within an activation group up to

at least TMP_MAX names. For ILE C, TMP_MAX is 32 767. This is a theoretical limit; the actual number

of files that can be opened at the same time depends on the available space in the system.

Return Value

The tmpnam() function returns a pointer to the name. If it cannot create a unique name then it returns

NULL.

Example that uses tmpnam()

This example calls tmpnam() to produce a valid file name.

Related Information

v “fopen() — Open Files” on page 109

v “remove() — Delete File” on page 274

v “<stdio.h>” on page 15

toascii() — Convert Character to Character Representable by ASCII

Format

#include <ctype.h>

int toascii(int c);

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

#include <stdio.h>

int main(void)

{

 char *name1;

 if ((name1 = tmpnam(NULL)) !=NULL)

 printf("%s can be used as a file name.\n", name1);

 else printf("Cannot create a unique file name\n");

}

Chapter 2. Library Functions 415

|
|
|

The toascii() function determines to what character c would be mapped to in a 7–bit US-ASCII locale

and returns the corresponding character encoding in the current locale.

Return Value

The toascii() function maps the character c according to a 7–bit US-ASCII locale and returns the

corresponding character encoding in the current locale.

Example that uses toascii()

This example prints encodings of the 7–bit US-ASCII characters 0x7c to 0x82 are mapped to by toascii().

Related Information

v “isascii() — Test for Character Representable as ASCII Value” on page 171

v “<ctype.h>” on page 3

tolower() – toupper() — Convert Character Case

Format

#include <ctype.h>

int tolower(int C);

int toupper(int c);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The tolower() function converts the uppercase letter C to the corresponding lowercase letter.

The toupper() function converts the lowercase letter c to the corresponding uppercase letter.

#include <stdio.h>

#include <ctype.h>

 void main(void)

 {

 int ch;

 for (ch=0x7c; ch<=0x82; ch++) {

 printf("toascii(%#04x) = %c\n", ch, toascii(ch));

 }

 }

/*****************And the output should be:********************************

toascii(0x7c) = @

toascii(0x7d) = ’

toascii(0x7e) = =

toascii(0x7f) = "

toascii(0x80) = X

toascii(0x81) = a

toascii(0x82) = b

**/

416 ILE C/C++ Runtime Library Functions V6R1

|
|

Return Value

Both functions return the converted character. If the character c does not have a corresponding lowercase

or uppercase character, the functions return c unchanged.

Example that uses toupper() and tolower()

This example uses the toupper() and tolower() functions to change characters between code 0 and code

7f.

Related Information

v “isalnum() - isxdigit() — Test Integer Value” on page 169

v “towlower() –towupper() — Convert Wide Character Case” on page 418

v “<ctype.h>” on page 3

towctrans() — Translate Wide Character

Format

#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. It might also be

affected by the LC_UNI_CTYPE category of the current locale if either the

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) option is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The towctrans() function maps the wide character wc using the mapping that is described by desc.

A towctrans(wc, wctrans("tolower")) behaves in the same way as the call to the wide-character,

case-mapping function towlower().

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 int ch;

 for (ch = 0; ch <= 0x7f; ch++)

 {

 printf("toupper=%#04x\n", toupper(ch));

 printf("tolower=%#04x\n", tolower(ch));

 putchar(’\n’);

 }

}

Chapter 2. Library Functions 417

|
|
|
|
|
|

|

|

A towctrans(wc, wctrans("toupper")) behaves in the same way as the call to the wide-character,

case-mapping function towupper().

Return Value

The towctrans() function returns the mapped value of wc using the mapping that is described by desc.

Example that uses towctrans()

Related Information

v “wctrans() —Get Handle for Character Mapping” on page 493

v “<wchar.h>” on page 18

towlower() –towupper() — Convert Wide Character Case

Format

#include <wctype.h>

wint_t towlower(wint_t wc);

wint_t towupper(wint_t wc);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of

these functions might also be affected by the LC_UNI_CTYPE category of the current locale if either the

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) option is specified on the compilation

command. These functions are not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <wchar.h>

#include <wctype.h>

int main()

{

 char *alpha = "abcdefghijklmnopqrstuvwxyz";

 char *tocase[2] = {"toupper", "tolower"};

 wchar_t *wcalpha;

 int i, j;

 size_t alphalen;

 alphalen = strlen(alpha)+1;

 wcalpha = (wchar_t *)malloc(sizeof(wchar_t)*alphalen);

 mbstowcs(wcalpha, alpha, 2*alphalen);

 for (i=0; i<2; ++i) {

 printf("Input string: %ls\n", wcalpha);

 for (j=0; j

 for (j=0; j

418 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

The towupper() function converts the lowercase character wc to the corresponding uppercase letter. The

towlower() function converts the uppercase character wc to the corresponding lowercase letter.

Return Value

If wc is a wide character for which iswupper() (or iswlower()) is true and there is a corresponding wide

character for which iswlower() (or iswupper()) is true, towlower() (or towupper()) returns the

corresponding wide character. Otherwise, the argument is returned unchanged.

Example that uses towlower() and towupper()

This example uses towlower() and towupper() to convert characters between 0 and 0x7f.

Related Information

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 173

v “tolower() – toupper() — Convert Character Case” on page 416

v “<wctype.h>” on page 19

_ultoa - Convert Unsigned Long Integer to String

Format

#include <stdlib.h>

char *_ultoa(unsigned long value, char *string, int radix);

Note: The _ultoa function is supported only for C++, not for C.

Language Level: Extension

Threadsafe: Yes.

#include <wctype.h>

#include <stdio.h>

int main(void)

{

 wint_t w_ch;

 for (w_ch = 0; w_ch <= 0xff; w_ch++) {

 printf ("towupper : %#04x %#04x, ", w_ch, towupper(w_ch));

 printf ("towlower : %#04x %#04x\n", w_ch, towlower(w_ch));

 }

 return 0;

/**

The output should be similar to:

:

towupper : 0xc1 0xc1, towlower : 0xc1 0x81

towupper : 0xc2 0xc2, towlower : 0xc2 0x82

towupper : 0xc3 0xc3, towlower : 0xc3 0x83

towupper : 0xc4 0xc4, towlower : 0xc4 0x84

towupper : 0xc5 0xc5, towlower : 0xc5 0x85

:

towupper : 0x81 0xc1, towlower : 0x81 0x81

towupper : 0x82 0xc2, towlower : 0x82 0x82

towupper : 0x83 0xc3, towlower : 0x83 0x83

towupper : 0x84 0xc4, towlower : 0x84 0x84

towupper : 0x85 0xc5, towlower : 0x85 0x85

:

**/

}

Chapter 2. Library Functions 419

Description

_ultoa converts the digits of the given unsigned long value to a character string that ends with a null

character and stores the result in string. The radix argument specifies the base of value; it must be in the

range 2 to 36.

Note: The space allocated for string must be large enough to hold the returned string. The function can

return up to 33 bytes including the null character (\0).

Return Value

_ultoa returns a pointer to string. There is no error return value.

When the string argument is NULL or the radix is outside the range 2 to 36, errno will be set to EINVAL.

Example that uses _ultoa()

This example converts the integer value 255 to a decimal, binary, and hexadecimal representation.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char buffer[35];

 char *p;

 p = _ultoa(255UL, buffer, 10);

 printf("The result of _ultoa(255) with radix of 10 is %s\n", p);

 p = _ultoa(255UL, buffer, 2);

 printf("The result of _ultoa(255) with radix of 2\n is %s\n", p);

 p = _ultoa(255UL, buffer, 16);

 printf("The result of _ultoa(255) with radix of 16 is %s\n", p);

 return 0;

}

The output should be:

 The result of _ultoa(255) with radix of 10 is 255

 The result of _ultoa(255) with radix of 2

 is 11111111

 The result of _ultoa(255) with radix of 16 is ff

Related Information

v “_gcvt - Convert Floating-Point to String” on page 151

v “_itoa - Convert Integer to String” on page 176

v “_ltoa - Convert Long Integer to String” on page 192

v “<stdlib.h>” on page 17

ungetc() — Push Character onto Input Stream

Format

#include <stdio.h>

int ungetc(int c, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Description

420 ILE C/C++ Runtime Library Functions V6R1

The ungetc() function pushes the unsigned character c back onto the given input stream. However, only

one consecutive character is guaranteed to be pushed back onto the input stream if you call

ungetc()consecutively. The stream must be open for reading. A subsequent read operation on the stream

starts with c. The character c cannot be the EOF character.

Characters placed on the stream by ungetc() will be erased if fseek(), fsetpos(), rewind(), or fflush()

is called before the character is read from the stream.

Return Value

The ungetc() function returns the integer argument c converted to an unsigned char, or EOF if c cannot

be pushed back.

The value of errno may be set to:

Value Meaning

ENOTREAD

The file is not open for read operations.

EIOERROR

A non-recoverable I/O error occurred.

EIORECERR

A recoverable I/O error occurred.

The ungetc() function is not supported for files opened with type=record.

Example that uses ungetc()

In this example, the while statement reads decimal digits from an input data stream by using arithmetic

statements to compose the numeric values of the numbers as it reads them. When a non-digit character

appears before the end of the file, ungetc() replaces it in the input stream so that later input functions

can process it.

Related Information

v “getc() – getchar() — Read a Character” on page 152

v “fflush() — Write Buffer to File” on page 96

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “putc() – putchar() — Write a Character” on page 239

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 FILE *stream;

 int ch;

 unsigned int result = 0;

 while ((ch = getc(stream)) != EOF && isdigit(ch))

 result = result * 10 + ch - ’0’;

 if (ch != EOF)

 ungetc(ch,stream);

 /* Put the nondigit character back */

 printf("The result is: %d\n", result);

 if ((ch = getc(stream)) != EOF)

 printf("The character is: %c\n", ch);

}

Chapter 2. Library Functions 421

v “rewind() — Adjust Current File Position” on page 276

v “<stdio.h>” on page 15

ungetwc() — Push Wide Character onto Input Stream

Format

#include <wchar.h>

#include <stdio.h>

wint_t ungetwc(wint_t wc, FILE *stream);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The ungetwc() function pushes the wide character wc back onto the input stream. The pushed-back wide

characters will be returned by subsequent reads on that stream in the reverse order of their pushing. A

successful intervening call (on the stream) to a file positioning function (fseek(), fsetpos(), or rewind())

discards any pushed-back wide characters for the stream. The external storage corresponding to the

stream is unchanged. There is always at least one wide character of push-back. If the value of wc is

WEOF, the operation fails and the input stream is unchanged.

A successful call to the ungetwc() function clears the EOF indicator for the stream. The value of the file

position indicator for the stream after reading or discarding all pushed-back wide characters is the same

as it was before the wide characters were pushed back. However, only one consecutive wide character is

guaranteed to be pushed back onto the input stream if you call ungetwc() consecutively.

For a text stream, the file position indicator is backed up by one wide character. This affects the ftell(),

fflush(), fseek() (with SEEK_CUR), and fgetpos() function. For a binary stream, the position indicator

is unspecified until all characters are read or discarded, unless the last character is pushed back, in which

case the file position indicator is backed up by one wide character. This affects the ftell(), fseek() (with

SEEK_CUR), fgetpos(), and fflush() function.

Return Value

The ungetwc() function returns the wide character pushed back after conversion, or WEOF if the

operation fails.

Example that uses ungetwc()

#include <wchar.h>

#include <wctype.h>

#include <stdio.h>

#include <stdlib.h>

422 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|

|

int main(void)

{

 FILE *stream;

 wint_t wc;

 wint_t wc2;

 unsigned int result = 0;

 if (NULL == (stream = fopen("ungetwc.dat", "r+"))) {

 printf("Unable to open file.\n");

 exit(EXIT_FAILURE);

 }

 while (WEOF != (wc = fgetwc(stream)) && iswdigit(wc))

 result = result * 10 + wc - L’0’;

 if (WEOF != wc)

 ungetwc(wc, stream); /* Push the nondigit wide character back */

 /* get the pushed back character */

 if (WEOF != (wc2 = fgetwc(stream))) {

 if (wc != wc2) {

 printf("Subsequent fgetwc does not get the pushed back character.\n");

 exit(EXIT_FAILURE);

 }

 printf("The digits read are ’%i’\n"

 "The character being pushed back is ’%lc’", result, wc2);

 }

 return 0;

 /**

 Assuming the file ungetwc.dat contains:

 12345ABCDE67890XYZ

 The output should be similar to :

 The digits read are ’12345’

 The character being pushed back is ’A’

 **/

}

Related Information

v “fflush() — Write Buffer to File” on page 96

v “fseek() — fseeko() — Reposition File Position” on page 134

v “fsetpos() — Set File Position” on page 136

v “getwc() — Read Wide Character from Stream” on page 157

v “putwc() — Write Wide Character” on page 242

v “ungetc() — Push Character onto Input Stream” on page 420

v “<wchar.h>” on page 18

va_arg() – va_end() – va_start() — Access Function Arguments

Format

#include <stdarg.h>

var_type va_arg(va_list arg_ptr, var_type);

void va_end(va_list arg_ptr);

void va_start(va_list arg_ptr, variable_name);

Language Level: ANSI

Threadsafe: Yes.

Chapter 2. Library Functions 423

Description

The va_arg(), va_end(), and va_start() functions access the arguments to a function when it takes a

fixed number of required arguments and a variable number of optional arguments. You declare required

arguments as ordinary parameters to the function and access the arguments through the parameter

names.

va_start() initializes the arg_ptr pointer for subsequent calls to va_arg() and va_end().

The argument variable_name is the identifier of the rightmost named parameter in the parameter list

(preceding , ...). Use va_start() before va_arg(). Corresponding va_start() and va_end() macros must

be in the same function.

The va_arg() function retrieves a value of the given var_type from the location given by arg_ptr, and

increases arg_ptr to point to the next argument in the list. The va_arg() function can retrieve arguments

from the list any number of times within the function. The var_type argument must be one of int, long,

decimal, double, struct, union, or pointer, or a typedef of one of these types.

The va_end() function is needed to indicate the end of parameter scanning.

Because it is not always possible for the called routine to determine how many arguments there are, the

calling routine should communicate the number of arguments to the called routine. To determine the

number of arguments, a routine can use a null pointer to signal the end of the list or pass the count of

the optional arguments as one of the required arguments. The printf() function, for instance, can tell

how many arguments there are through the format-string argument.

Return Value

The va_arg() function returns the current argument. The va_end and va_start() functions do not return

a value.

Example that uses va_arg() – va_end() – va_start()

This example passes a variable number of arguments to a function, stores each argument in an array, and

prints each argument.

424 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

Related Information

v “vfprintf() — Print Argument Data to Stream”

v “vprintf() — Print Argument Data” on page 432

v “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream” on page 428

v “vsprintf() — Print Argument Data to Buffer” on page 436

v “<stdarg.h>” on page 13

vfprintf() — Print Argument Data to Stream

Format

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE *stream, const char *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

#include <stdio.h>

#include <stdarg.h>

int vout(int max, ...);

int main(void)

{

 vout(3, "Sat", "Sun", "Mon");

 printf("\n");

 vout(5, "Mon", "Tues", "Wed", "Thurs", "Fri");

}

int vout(int max, ...)

{

 va_list arg_ptr;

 int args = 0;

 char *days[7];

 va_start(arg_ptr, max);

 while(args < max)

 {

 days[args] = va_arg(arg_ptr, char *);

 printf("Day: %s \n", days[args++]);

 }

 va_end(arg_ptr);

}

/****************** Output should be similar to: ****************

Day: Sat

Day: Sun

Day: Mon

Day: Mon

Day: Tues

Day: Wed

Day: Thurs

Day: Fri

*/

Chapter 2. Library Functions 425

|
|
|

compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vfprintf() function formats and writes a series of characters and values to the output stream. The

vfprintf() function works just like the fprintf() function, except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. These arguments should be

initialized by va_start for each call. In contrast, the fprintf() function can have a list of arguments, but

the number of arguments in that list is fixed when you compile the program.

The vfprintf() function converts each entry in the argument list according to the corresponding format

specifier in format. The format has the same form and function as the format string for the printf()

function.

Return Value

If successful, vfprintf() returns the number of bytes written to stream. If an error occurs, the function

returns a negative value.

Example that uses vfprintf()

This example prints out a variable number of strings to the file myfile.

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “printf() — Print Formatted Characters” on page 229

v “va_arg() – va_end() – va_start() — Access Function Arguments” on page 423

v “vprintf() — Print Argument Data” on page 432

v “vsprintf() — Print Argument Data to Buffer” on page 436

#include <stdarg.h>

#include <stdio.h>

void vout(FILE *stream, char *fmt, ...);

char fmt1 [] = "%s %s %s\n";

int main(void)

{

 FILE *stream;

 stream = fopen("mylib/myfile", "w");

 vout(stream, fmt1, "Sat", "Sun", "Mon");

}

void vout(FILE *stream, char *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vfprintf(stream, fmt, arg_ptr);

 va_end(arg_ptr);

}

/****************** Output should be similar to: ****************

Sat Sun Mon

*/

426 ILE C/C++ Runtime Library Functions V6R1

|
|

v “vwprintf() — Format Argument Data as Wide Characters and Print” on page 443

v “<stdarg.h>” on page 13

v “<stdio.h>” on page 15

vfscanf() — Read Formatted Data

Format

#include <stdarg.h>

#include <stdio.h>

int vfscanf(FILE *stream, const char *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. This function is not available when LOCALETYPE(*CLD) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vfscanf() function reads data from a stream into locations specified by a variable number of

arguments. The vfscanf() function works just like the fscanf()function, except that arg_ptr points to a

list of arguments whose number can vary from call to call in the program. These arguments should be

initialized by va_start for each call. In contrast, the fscanf() function can have a list of arguments, but

the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in

format-string. The format has the same form and function as the format string for the scanf() function.

Return Value

The vfscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF for an

attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields

were assigned.

Example that uses vfscanf()

This example opens the file myfile for input, and then scans this file for a string, a long integer value, and

a floating-point value.

Chapter 2. Library Functions 427

|
|
|
|
|

Related Information

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “fscanf() — Read Formatted Data” on page 132

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “swscanf() — Read Wide Character Data” on page 407

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “<stdio.h>” on page 15

vfwprintf() — Format Argument Data as Wide Characters and Write to a

Stream

Format

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwprintf(FILE *stream, const wchar_t *format, va_list arg);

#include <stdio.h>

#include <stdarg.h>

int vread(FILE *stream, char *fmt, ...)

{

 int rc;

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 rc = vfscanf(stream, fmt, arg_ptr);

 va_end(arg_ptr);

 return(rc);

}

#define MAX_LEN 80

int main(void)

{

 FILE *stream;

 long l;

 float fp;

 char s[MAX_LEN + 1];

 char c;

 stream = fopen("mylib/myfile", "r");

 /* Put in various data. */

 vread(stream, "%s", &s[0]);

 vread(stream, "%ld", &l);

 vread(stream, "%c", &c);

 vread(stream, "%f", &fp);

 printf("string = %s\n", s);

 printf("long double = %ld\n", l);

 printf("char = %c\n", c);

 printf("float = %f\n", fp);

}

/*************** If myfile contains ************************

**************** abcdefghijklmnopqrstuvwxyz 343.2 ***********

********************** expected output is: *********************

string = abcdefghijklmnopqrstuvwxyz

long double = 343

char = .

float = 2.000000

*/

428 ILE C/C++ Runtime Library Functions V6R1

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The vfwprintf() function is equivalent to the fwprintf() function, except that the variable argument list

is replaced by arg, which the va_start macro (and possibly subsequent va_arg calls) will have initialized.

The vfwprintf() function does not invoke the va_end macro.

Because the functions vfwprintf(), vswprintf(), and vwprintf()invoke the va_arg macro, the value of arg

after the return is unspecified.

Return Value

The vfwprintf() function returns the number of wide characters that are written to the output buffer, not

counting the ending null wide character or a negative value if an error was encountered. If n or more

wide characters are requested to be written, a negative value is returned.

Example that uses vfwprintf()

This example prints the wide character a to a file. The printing is done from the vout() function, which

takes a variable number of arguments and uses vfwprintf() to print them to a file.

#include <wchar.h>

#include <stdarg.h>

#include <locale.h>

void vout (FILE *stream, wchar_t *fmt, ...);

const char ifs_path [] = "tmp/myfile";

 int main(void) {

 FILE *stream;

 wchar_t format [] = L"%lc";

 setlocale(LC_ALL, "POSIX");

 if ((stream = fopen (ifs_path, "w")) == NULL) {

 printf("Could not open file.\n");

 return (-1);

 }

 vout (stream, format, L’a’);

 fclose (stream);

 /***

 The contents of output file tmp/myfile.dat should

 be a wide char ’a’ which in the "POSIX" locale

 is ’0081’x.

Chapter 2. Library Functions 429

|
|
|
|
|
|

|
|

|

|
|
|

*/

 return (0);

 }

 void vout (FILE *stream, wchar_t *fmt, ...)

{

 va_list arg_ptr;

 va_start (arg_ptr, fmt);

 vfwprintf (stream, fmt, arg_ptr);

 va_end (arg_ptr);

}

Related Information

v “printf() — Print Formatted Characters” on page 229

v “fprintf() — Write Formatted Data to a Stream” on page 116

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “btowc() — Convert Single Byte to Wide Character” on page 53

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “vswprintf() — Format and Write Wide Characters to Buffer” on page 439

v “vwprintf() — Format Argument Data as Wide Characters and Print” on page 443

v “<stdarg.h>” on page 13

v “<stdio.h>” on page 15

v “<wchar.h>” on page 18

vfwscanf() — Read Formatted Wide Character Data

Format

#include <stdarg.h>

#include <stdio.h>

int vfwscanf(FILE *stream, const wchar_t *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: See “Wide Characters” on page 527 for more information.

Wide Character Function: This function is not available when SYSIFCOPT(*NOIFSIO) is specified on the

compilation command.

Description

430 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

|
|

The vfwscanf() function reads wide data from a stream into locations specified by a variable number of

arguments. The vfwscanf() function works just like the fwscanf() function, except that arg_ptr points to a

list of arguments whose number can vary from call to call in the program. These arguments should be

initialized by va_start for each call. In contrast, the fwscanf() function can have a list of arguments, but

the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in

format-string. The format has the same form and function as the format string for the fwscanf() function.

Return Value

The vfwscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF for an

attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields

were assigned.

Example that uses vfwscanf()

This example opens the file myfile for input, and then scans this file for a string, a long integer value, and

a floating-point value.

#include <stdio.h>

#include <stdarg.h>

#include <wchar.h>

int vread(FILE *stream, wchar_t *fmt, ...)

{

 int rc;

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 rc = vfwscanf(stream, fmt, arg_ptr);

 va_end(arg_ptr);

 return(rc);

}

#define MAX_LEN 80

int main(void)

{

 FILE *stream;

 long l;

 float fp;

 char s[MAX_LEN + 1];

 char c;

 stream = fopen("mylib/myfile", "r");

 /* Put in various data. */

 vread(stream, L"%s", &s [0]);

 vread(stream, L"%ld", &l);

 vread(stream, L"%c", &c);

 vread(stream, L"%f", &fp);

 printf("string = %s\n", s);

 printf("long double = %ld\n", l);

 printf("char = %c\n", c);

 printf("float = %f\n", fp);

}

/*************** If myfile contains ************************

**************** abcdefghijklmnopqrstuvwxyz 343.2 ***********

********************** expected output is: *********************

string = abcdefghijklmnopqrstuvwxyz

long double = 343

char = .

float = 2.000000

*/

Chapter 2. Library Functions 431

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “swprintf() — Format and Write Wide Characters to Buffer” on page 406

v “swscanf() — Read Wide Character Data” on page 407

v “vfscanf() — Read Formatted Data” on page 427

v “vfwscanf() — Read Formatted Wide Character Data” on page 430

v “vscanf() — Read Formatted Data” on page 433

v “vsscanf() — Read Formatted Data” on page 437

v “vswscanf() — Read Formatted Wide Character Data” on page 441

v “vwscanf() — Read Formatted Wide Character Data” on page 445

v “wprintf() — Format Data as Wide Characters and Print” on page 503

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “<wchar.h>” on page 18

vprintf() — Print Argument Data

Format

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vprintf() function formats and prints a series of characters and values to stdout. The vprintf()

function works just like the printf()function, except that arg_ptr points to a list of arguments whose

number can vary from call to call in the program. These arguments should be initialized by va_start for

each call. In contrast, the printf() function can have a list of arguments, but the number of arguments in

that list is fixed when you compile the program.

The vprintf() function converts each entry in the argument list according to the corresponding format

specifier in format. The format has the same form and function as the format string for the printf()

function.

Return Value

If successful, the vprintf() function returns the number of bytes written to stdout. If an error occurs, the

vprintf() function returns a negative value. The value of errno may be set to ETRUNC.

Example that uses vprintf()

432 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

This example prints out a variable number of strings to stdout.

Related Information

v “printf() — Print Formatted Characters” on page 229

v “va_arg() – va_end() – va_start() — Access Function Arguments” on page 423

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vsprintf() — Print Argument Data to Buffer” on page 436

v “<stdarg.h>” on page 13

v “<stdio.h>” on page 15

vscanf() — Read Formatted Data

Format

#include <stdarg.h>

#include <stdio.h>

int vscanf(const char *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vscanf() function reads data from stdin into locations specified by a variable number of arguments.

The vscanf() function works just like the scanf()function, except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. These arguments should be

#include <stdarg.h>

#include <stdio.h>

void vout(char *fmt, ...);

char fmt1 [] = "%s %s %s %s %s \n";

int main(void)

{

 FILE *stream;

 stream = fopen("mylib/myfile", "w");

 vout(fmt1, "Mon", "Tues", "Wed", "Thurs", "Fri");

}

void vout(char *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vprintf(fmt, arg_ptr);

 va_end(arg_ptr);

}

/****************** Output should be similar to: ****************

Mon Tues Wed Thurs Fri

*/

Chapter 2. Library Functions 433

|
|
|
|

initialized by va_start for each call. In contrast, the scanf() function can have a list of arguments, but the

number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in

format-string. The format has the same form and function as the format string for the scanf() function.

Return Value

The vscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF for an

attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields

were assigned.

Example that uses vscanf()

This example uses the vscanf() function to read an integer, a floating-point value, a character, and a

string from stdin and then displays these values.

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

#include <stdio.h>

#include <stdarg.h>

int vread(char *fmt, ...)

{

 int rc;

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 rc = vscanf(fmt, arg_ptr);

 va_end(arg_ptr);

 return(rc);

}

int main(void)

{

 int i, rc;

 float fp;

 char c, s[81];

 printf("Enter an integer, a real number, a character "

 "and a string : \n");

 rc = vread("%d %f %c %s", &i, &fp, &c, s);

 if (rc != 4)

 printf("Not all fields are assigned\n");

 else

 {

 printf("integer = %d\n", i);

 printf("real number = %f\n", fp);

 printf("character = %c\n", c);

 printf("string = %s\n",s);

 }

}

/***************** If input is: 12 2.5 a yes, *******************

************** then output should be similar to: ****************

Enter an integer, a real number, a character and a string :

integer = 12

real number = 2.500000

character = a

string = yes

*/

434 ILE C/C++ Runtime Library Functions V6R1

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “swprintf() — Format and Write Wide Characters to Buffer” on page 406

v “swscanf() — Read Wide Character Data” on page 407

v “vfscanf() — Read Formatted Data” on page 427

v “vfwscanf() — Read Formatted Wide Character Data” on page 430

v “vscanf() — Read Formatted Data” on page 433

v “vsscanf() — Read Formatted Data” on page 437

v “vswscanf() — Read Formatted Wide Character Data” on page 441

v “vwscanf() — Read Formatted Wide Character Data” on page 445

v “wprintf() — Format Data as Wide Characters and Print” on page 503

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “<wchar.h>” on page 18

vsnprintf() — Print Argument Data to Buffer

Format

#include <stdarg.h>

#include <stdio.h>

int vsnprintf(char *target-string, size_t n, const char *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vsnprintf() function formats and stores a series of characters and values in the buffer target-string.

The vsnprintf() function works just like the snprintf() function, except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. These arguments should be

initialized by the va_start function for each call. In contrast, the snprintf() function can have a list of

arguments, but the number of arguments in that list is fixed when you compile the program.

The vsnprintf() function converts each entry in the argument list according to the corresponding format

specifier in format. The format has the same form and function as the format string for the printf()

function.

Return Value

The vsnprintf() function returns the number of bytes that are written in the array, not counting the

ending null character.

Example that uses vsnprintf()

This example assigns a variable number of strings to string and prints the resultant string.

#include <stdarg.h>

#include <stdio.h>

Chapter 2. Library Functions 435

|
|
|
|

void vout(char *string, char *fmt, ...);

char fmt1 [] = "%s %s %s\n";

int main(void)

{

 char string[100];

 vout(string, fmt1, "Sat", "Sun", "Mon");

 printf("The string is: %s\n", string);

}

void vout(char *string, char *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vsnprintf(string, 8, fmt, arg_ptr);

 va_end(arg_ptr);

}

/****************** Output should be similar to: ****************

The string is: Sat Su

*/

Related Information

v “printf() — Print Formatted Characters” on page 229

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “snprintf() — Print Formatted Data to Buffer” on page 350

v “va_arg() – va_end() – va_start() — Access Function Arguments” on page 423

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vsprintf() — Print Argument Data to Buffer”

v “<stdarg.h>” on page 13

v “<stdio.h>” on page 15

vsprintf() — Print Argument Data to Buffer

Format

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char *target-string, const char *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vsprintf() function formats and stores a series of characters and values in the buffer target-string.

The vsprintf() function works just like the sprintf() function, except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. These arguments should be

initialized by the va_start function for each call. In contrast, the sprintf() function can have a list of

arguments, but the number of arguments in that list is fixed when you compile the program.

436 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

The vsprintf() function converts each entry in the argument list according to the corresponding format

specifier in format. The format has the same form and function as the format string for the printf()

function.

Return Value

If successful, the vsprintf() function returns the number of bytes written to target-string. If an error

occurs, the vsprintf() function returns a negative value.

Example that uses vsprintf()

This example assigns a variable number of strings to string and prints the resultant string.

Related Information

v “printf() — Print Formatted Characters” on page 229

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “va_arg() – va_end() – va_start() — Access Function Arguments” on page 423

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “vswprintf() — Format and Write Wide Characters to Buffer” on page 439

v “<stdarg.h>” on page 13

v “<stdio.h>” on page 15

vsscanf() — Read Formatted Data

Format

#include <stdarg.h>

#include <stdio.h>

int vsscanf(const char *buffer, const char *format, va_list arg_ptr);

Language Level: ANSI

#include <stdarg.h>

#include <stdio.h>

void vout(char *string, char *fmt, ...);

char fmt1 [] = "%s %s %s\n";

int main(void)

{

 char string[100];

 vout(string, fmt1, "Sat", "Sun", "Mon");

 printf("The string is: %s\n", string);

}

void vout(char *string, char *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vsprintf(string, fmt, arg_ptr);

 va_end(arg_ptr);

}

/****************** Output should be similar to: ****************

The string is: Sat Sun Mon

*/

Chapter 2. Library Functions 437

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE category of

the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the

compilation command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Description

The vsscanf() function reads data from a buffer into locations specified by a variable number of

arguments. The vsscanf() function works just like the sscanf()function, except that arg_ptr points to a

list of arguments whose number can vary from call to call in the program. These arguments should be

initialized by va_start for each call. In contrast, the sscanf() function can have a list of arguments, but

the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in

format-string. The format has the same form and function as the format string for the scanf() function.

Return Value

The vsscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF for an

attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields

were assigned.

Example that uses vsscanf()

This example uses vsscanf() to read various data from the string tokenstring and then displays that data.

438 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “<stdio.h>” on page 15

v “swscanf() — Read Wide Character Data” on page 407

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

vswprintf() — Format and Write Wide Characters to Buffer

Format

#include <stdio.h>

#include <stdarg.h>

#include <stddef.h>

int vread(const char *buffer, char *fmt, ...)

{

 int rc;

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 rc = vsscanf(buffer, fmt, arg_ptr);

 va_end(arg_ptr);

 return(rc);

}

int main(void)

{

 char *tokenstring = "15 12 14";

 wchar_t * idestring = L"ABC Z";

 wchar_t ws[81];

 wchar_t wc;

 int i;

 float fp;

 char s[81];

 char c;

 /* Input various data */

 /* In the first invocation of vsscanf, the format string is */

 /* "%s %c%d%f". If there were no space between %s and %c, */

 /* vsscanf would read the first character following the */

 /* string, which is a blank space. */

 vread(tokenstring, "%s %c%d%f", s, &c, &i, &fp);

 vread((char *) idestring, "%S %C", ws,&wc);

 /* Display the data */

 printf("\nstring = %s\n",s);

 printf("character = %c\n",c);

 printf("integer = %d\n",i);

 printf("floating-point number = %f\n",fp);

 printf("wide-character string = %S\n", ws);

 printf("wide-character = %C\n", wc);

}

/***************** Output should be similar to: *****************

string = 15

character = 1

integer = 2

floating-point number = 14.000000

wide-character string = ABC

wide-character = Z

***/

Chapter 2. Library Functions 439

#include <stdarg.h>

#include <wchar.h>

int vswprintf(wchar_t *wcsbuffer, size_t n, const wchar_t

 *format, va_list argptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is

specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The vswprintf() function formats and stores a series of wide characters and values in the buffer

wcsbuffer. The vswprintf() function works just like the swprintf() function, except that argptr points to a

list of wide-character arguments whose number can vary from call to call. These arguments should be

initialized by va_start for each call. In contrast, the swprintf() function can have a list of arguments, but

the number of arguments in that list are fixed when you compile in the program.

The value n specifies the maximum number of wide characters to be written, including the ending null

character. The vswprintf() function converts each entry in the argument list according to the

corresponding wide-character format specifier in format. The format has the same form and function as

the format string for the printf() function, with the following exceptions:

v %c (without an l prefix) converts an integer argument to wchar_t, as if by calling the mbtowc()

function.

v %lc converts a wint_t to wchar_t.

v %s (without an l prefix) converts an array of multibyte characters to an array of wchar_t, as if by

calling the mbrtowc() function. The array is written up to, but not including, the ending null character,

unless the precision specifies a shorter output.

v %ls writes an array of wchar_t. The array is written up to, but not including, the ending null character,

unless the precision specifies a shorter output.

A null wide character is added to the end of the wide characters written; the null wide character is not

counted as part of the returned value. If copying takes place between objects that overlap, the behavior is

undefined.

Return Value

The vswprintf() function returns the number of bytes written in the array, not counting the ending null

wide character.

Example that uses vswprintf()

This example creates a function vout() that takes a variable number of wide-character arguments and

uses vswprintf() to print them to wcstr.

440 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

Related Information

v “swprintf() — Format and Write Wide Characters to Buffer” on page 406

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

v “vsprintf() — Print Argument Data to Buffer” on page 436

v “<stdarg.h>” on page 13

v “<wchar.h>” on page 18

vswscanf() — Read Formatted Wide Character Data

Format

#include <stdarg.h>

#include <wchar.h>

int vswscanf(const wchar_t *buffer, const wchar_t *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is

#include <stdio.h>

#include <stdarg.h>

#include <wchar.h>

wchar_t *format3 = L"%ls %d %ls";

wchar_t *format5 = L"%ls %d %ls %d %ls";

void vout(wchar_t *wcs, size_t n, wchar_t *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vswprintf(wcs, n, fmt, arg_ptr);

 va_end(arg_ptr);

 return;

}

int main(void)

{

 wchar_t wcstr[100];

 vout(wcstr, 100, format3, L"ONE", 2L, L"THREE");

 printf("%ls\n", wcstr);

 vout(wcstr, 100, format5, L"ONE", 2L, L"THREE", 4L, L"FIVE");

 printf("%ls\n", wcstr);

 return 0;

 /**

 The output should be similar to:

 ONE 2 THREE

 ONE 2 THREE 4 FIVE

 **/

}

Chapter 2. Library Functions 441

|
|
|

specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The vswscanf() function reads wide data from a buffer into locations specified by a variable number of

arguments. The vswscanf() function works just like the swscanf() function, except that arg_ptr points to a

list of arguments whose number can vary from call to call in the program. These arguments should be

initialized by va_start for each call. In contrast, the swscanf() function can have a list of arguments, but

the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in

format-string. The format has the same form and function as the format string for the swscanf() function.

Return Value

The vswscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF for an

attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields

were assigned.

Example that uses vswscanf()

This example uses the vswscanf() function to read various data from the string tokenstring and then

displays that data.

442 ILE C/C++ Runtime Library Functions V6R1

|
|
|

|

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “scanf() — Read Data” on page 330

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “sscanf() — Read Data” on page 355

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “swscanf() — Read Wide Character Data” on page 407

v “<wchar.h>” on page 18

vwprintf() — Format Argument Data as Wide Characters and Print

Format

#include <stdarg.h>

#include <wchar.h>

int vwprintf(const wchar_t *format, va_list arg);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <stdarg.h>

#include <wchar.h>

int vread(const wchar_t *buffer, wchar_t *fmt, ...)

{

 int rc;

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 rc = vswscanf(buffer, fmt, arg_ptr);

 va_end(arg_ptr);

 return(rc);

}

int main(void)

{

 wchar_t *tokenstring = L"15 12 14";

 char s[81];

 char c;

 int i;

 float fp;

 /* Input various data */

 vread(tokenstring, L"%s %c%d%f", s, &c, &i, &fp);

 /* Display the data */

 printf("\nstring = %s\n",s);

 printf("character = %c\n",c);

 printf("integer = %d\n",i);

 printf("floating-point number = %f\n",fp);

}

/***************** Output should be similar to: *****************

string = 15

character = 1

integer = 2

floating-point number = 14.000000

***/

Chapter 2. Library Functions 443

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is

specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The vwprintf() function is equivalent to the wprintf() function, except that the variable argument list is

replaced by arg, which the va_start macro (and possibly subsequent va_arg calls) will have initialized.

The vwprintf() function does not invoke the va_end macro.

Return Value

The vwprintf() function returns the number of wide characters transmitted. If an output error occurred,

thevwprintf() returns a negative value.

Example that uses vwprintf()

This example prints the wide character a. The printing is done from the vout() function, which takes a

variable number of arguments and uses the vwprintf()function to print them to stdout.

Related Information

v “printf() — Print Formatted Characters” on page 229

v “vfprintf() — Print Argument Data to Stream” on page 425

v “vprintf() — Print Argument Data” on page 432

#include <wchar.h>

#include <stdarg.h>

#include <locale.h>

void vout (wchar_t *fmt, ...);

const char ifs_path[] = "tmp/mytest";

int main(void) {

 FILE *stream;

 wchar_t format[] = L"%lc";

 setlocale(LC_ALL, "POSIX");

 vout (format, L’a’);

return(0);

/* A long a is written to stdout, if stdout is written to the screen

 it may get converted back to a single byte ’a’. */

}

 void vout (wchar_t *fmt, ...) {

 va_list arg_ptr;

 va_start (arg_ptr, fmt);

 vwprintf (fmt, arg_ptr);

 va_end (arg_ptr);

}

444 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|
|

|

v “btowc() — Convert Single Byte to Wide Character” on page 53

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “vswprintf() — Format and Write Wide Characters to Buffer” on page 439

v “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream” on page 428

v “<stdarg.h>” on page 13

v “<wchar.h>” on page 18

vwscanf() — Read Formatted Wide Character Data

Format

#include <stdarg.h>

#include <stdio.h>

int vwscanf(const wchar_t *format, va_list arg_ptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. It might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is

specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The vwscanf() function reads data from stdin into locations specified by a variable number of

arguments. The vwscanf() function works just like the wscanf() function, except that arg_ptr points to a

list of arguments whose number can vary from call to call in the program. These arguments should be

initialized by va_start for each call. In contrast, the wscanf() function can have a list of arguments, but

the number of arguments in that list is fixed when you compile the program.

Each argument must be a pointer to a variable with a type that corresponds to a type specifier in

format-string. The format has the same form and function as the format string for the wscanf() function.

Return Value

The vwscanf() function returns the number of fields that were successfully converted and assigned. The

return value does not include fields that were read but not assigned. The return value is EOF for an

attempt to read at end-of-file if no conversion was performed. A return value of 0 means that no fields

were assigned.

Example that uses vwscanf()

This example scans various types of data from stdin.

Chapter 2. Library Functions 445

|
|
|
|
|
|

|
|

|

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “swscanf() — Read Wide Character Data” on page 407

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “wscanf() — Read Data Using Wide-Character Format String” on page 504

v “sprintf() — Print Formatted Data to Buffer” on page 352

v “<stdio.h>” on page 15

wcrtomb() — Convert a Wide Character to a Multibyte Character

(Restartable)

Format

#include <wchar.h>

size_t wcrtomb (char *s, wchar_t wc, mbstate_t *ps);

Language Level: ANSI

Threadsafe: Yes, except when ps is NULL.

#include <stdio.h

#include <stdarg.h

int vread(wchar_t *fmt, ...)

{

 int rc;

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 rc = vwscanf(fmt, arg_ptr);

 va_end(arg_ptr);

 return(rc);

}

int main(void)

{

 int i, rc;

 float fp;

 char c, s[81];

 printf("Enter an integer, a real number, a character "

 "and a string : \n");

 rc = vread(L"%d %f %c %s",&i,&fp,&c, s);

 if (rc != 4)

 printf("Not all fields are assigned\n");

 else

 {

 printf("integer = %d\n", i);

 printf("real number = %f\n", fp);

 printf("character = %c\n", c);

 printf("string = %s\n",s);

 }

}

/***************** If input is: 12 2.5 a yes, *******************

************** then output should be similar to: ****************

Enter an integer, a real number, a character and a string :

integer = 12

real number = 2.500000

character = a

string = yes

*/

446 ILE C/C++ Runtime Library Functions V6R1

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

This function is the restartable version of the wctomb() function.

The wcrtomb() function converts a wide character to a multibyte character.

If s is a null pointer, the wcrtomb() function determines the number of bytes necessary to enter the initial

shift state (zero if encodings are not state-dependent or if the initial conversion state is described). The

resulting state described will be the initial conversion stated.

If s is not a null pointer, the wcrtomb() function determines the number of bytes needed to represent the

multibyte character that corresponds to the wide character given by wc (including any shift sequences),

and stores the resulting bytes in the array whose first element is pointed to by s. At most MB_CUR_MAX

bytes will be stored. If wc is a null wide character, the resulting state described will be the initial

conversions state.

This function differs from its corresponding internal-state multibyte character function in that it has an

extra parameter, ps of type pointer to mbstate_t that points to an object that can completely describe the

current conversion state of the associated multibyte character sequence. If ps is NULL, an internal static

variable will be used to keep track of the conversion state. Using the internal static variable is not

threadsafe.

Return Value

If s is a null pointer, the wcrtomb() function returns the number of bytes needed to enter the initial shift

state. The value returned will not be greater than that of the MB_CUR_MAX macro.

If s is not a null pointer, the wcrtomb() function returns the number of bytes stored in the array object

(including any shift sequences) when wc is a valid wide character; otherwise (when wc is not a valid

wide character), an encoding error occurs, the value of the macro EILSEQ shall be stored in errno and -1

will be returned, but the conversion state will be unchanged.

If a conversion error occurs, errno may be set to ECONVERT.

Examples that use wcrtomb()

This program is compiled with LOCALETYPE(*LOCALE) and SYSIFCOPT(*IFSIO):

#include <stdio.h>

#include <locale.h>

#include <wchar.h>

#include <errno.h>

#define STRLENGTH 10

#define LOCNAME "qsys.lib/JA_JP.locale"

#define LOCNAME_EN "qsys.lib/EN_US.locale"

int main(void)

{

 char string[STRLENGTH];

 int length, sl = 0;

Chapter 2. Library Functions 447

|
|
|
|
|

|

wchar_t wc = 0x4171;

 wchar_t wc2 = 0x00C1;

 wchar_t wc_string[10];

 mbstate_t ps = 0;

 memset(string, ’\0’, STRLENGTH);

 wc_string[0] = 0x00C1;

 wc_string[1] = 0x4171;

 wc_string[2] = 0x4172;

 wc_string[3] = 0x00C2;

 wc_string[4] = 0x0000;

 /* In this first example we will convert a wide character */

 /* to a single byte character. We first set the locale */

 /* to a single byte locale. We choose a locale with */

 /* CCSID 37. For single byte cases the state will always */

 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = wcrtomb(string, wc, &ps);

 /* In this case since wc > 256 hex, lenth is -1 and */

 /* errno is set to EILSEQ (3492) */

 printf("errno = %d, length = %d\n\n", errno, length);

 length = wcrtomb(string, wc2, &ps);

 /* In this case wc2 00C1 is converted to C1 */

 printf("string = %s\n\n", string);

 /* Now lets try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = wcrtomb(string, wc_string[0], &ps);

 /* The first character is < 256 hex so is converted to */

 /* single byte and the state is still the initial state 0 */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[1], &ps);

 /* The next character is > 256 hex so we get a shift out */

 /* 0x0e followed by the double byte character. State is */

 /* changed to double byte state. Length is 3. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[2], &ps);

 /* The next character is > 256 hex so we get another */

 /* double byte character. The state is left in */

 /* double byte state. Length is 2. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

448 ILE C/C++ Runtime Library Functions V6R1

length = wcrtomb(&string[sl], wc_string[3], &ps);

 /* The next character is < 256 hex so we close off the */

 /* double byte characters with a shift in 0x0f and then */

 /* get a single byte character. Length is 2. */

 /* The hex look at string would now be: */

 /* C10E417141720FC2 */

 /* You would need a device capable of displaying multibyte */

 /* characters to see this string. */

 printf("length = %d, state = %d\n\n", length, ps);

 /* In the last example we will show what happens if NULL */

 /* is passed in for the state. */

 memset(string, ’\0’, STRLENGTH);

 length = wcrtomb(string, wc_string[1], NULL);

 /* The second character is > 256 hex so a shift out */

 /* followed by the double character is produced but since */

 /* the state is NULL, the double byte character is closed */

 /* off with a shift in right away. So string we look */

 /* like this: 0E41710F and length is 4 and the state is */

 /* left in the initial state. */

 printf("length = %d, state = %d\n\n", length, ps);

}

/* The output should look like this:

errno = 3492, length = -1

string = A

length = 1, state = 0

length = 3, state = 2

length = 2, state = 2

length = 2, state = 0

length = 4, state = 0

 */

This program is compiled with LOCALETYPE(*LOCALEUCS2) and SYSIFCOPT(*IFSIO):

#include <stdio.h>

#include <locale.h>

#include <wchar.h>

#include <errno.h>

#define STRLENGTH 10

#define LOCNAME "qsys.lib/JA_JP.locale"

#define LOCNAME_EN "qsys.lib/EN_US.locale"

int main(void)

{

 char string[STRLENGTH];

 int length, sl = 0;

 wchar_t wc = 0x4171;

 wchar_t wc2 = 0x0041;

 wchar_t wc_string[10];

 mbstate_t ps = 0;

 memset(string, ’\0’, STRLENGTH);

 wc_string[0] = 0x0041;

 wc_string[1] = 0xFF31;

Chapter 2. Library Functions 449

wc_string[2] = 0xFF32;

 wc_string[3] = 0x0042;

 wc_string[4] = 0x0000;

 /* In this first example we will convert a UNICODE character */

 /* to a single byte character. We first set the locale */

 /* to a single byte locale. We choose a locale with */

 /* CCSID 37. For single byte cases the state will always */

 /* remain in the initial state 0 */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = wcrtomb(string, wc2, &ps);

 /* In this case wc2 0041 is converted to C1 */

 /* 0041 is UNICODE A, C1 is CCSID 37 A */

 printf("string = %s\n\n", string);

 /* Now lets try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = wcrtomb(string, wc_string[0], &ps);

 /* The first character UNICODE character is converted to a */

 /* single byte and the state is still the initial state 0 */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[1], &ps);

 /* The next UNICODE character is converted to a shift out */

 /* 0x0e followed by the double byte character. State is */

 /* changed to double byte state. Length is 3. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[2], &ps);

 /* The UNICODE character is converted to another */

 /* double byte character. The state is left in */

 /* double byte state. Length is 2. */

 printf("length = %d, state = %d\n\n", length, ps);

 sl += length;

 length = wcrtomb(&string[sl], wc_string[3], &ps);

 /* The next UNICODE character converts to single byte so */

 /* we close off the */

 /* double byte characters with a shiftin 0x0f and then */

 /* get a single byte character. Length is 2. */

 /* The hex look at string would now be: */

 /* C10E42D842D90FC2 */

 /* You would need a device capable of displaying multibyte */

 /* characters to see this string. */

 printf("length = %d, state = %d\n\n", length, ps);

450 ILE C/C++ Runtime Library Functions V6R1

}

/* The output should look like this:

string = A

length = 1, state = 0

length = 3, state = 2

length = 2, state = 2

length = 2, state = 0

 */

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “wctomb() — Convert Wide Character to Multibyte Character” on page 492

v “<wchar.h>” on page 18

wcscat() — Concatenate Wide-Character Strings

Format

#include <wchar.h>

wchar_t *wcscat(wchar_t *string1, const wchar_t *string2);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcscat() function appends a copy of the string pointed to by string2 to the end of the string pointed

to by string1.

The wcscat() function operates on null-ended wchar_t strings. The string arguments to this function

should contain a wchar_t null character marking the end of the string. Boundary checking is not

performed.

Return Value

The wcscat() function returns a pointer to the concatenated string1.

Example that uses wcscat()

This example creates the wide character string ″computer program″ using the wcscat() function.

Chapter 2. Library Functions 451

|
|

|

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strncat() — Concatenate Strings” on page 377

v “wcschr() — Search for Wide Character”

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsncat() — Concatenate Wide-Character Strings” on page 463

v “<wchar.h>” on page 18

wcschr() — Search for Wide Character

Format

#include <wchar.h>

wchar_t *wcschr(const wchar_t *string, wchar_t character);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcschr() function searches the wide-character string for the occurrence of character. The character can

be a wchar_t null character (\0); the wchar_t null character at the end of string is included in the search.

The wcschr() function operates on null-ended wchar_t strings. The string argument to this function

should contain a wchar_t null character marking the end of the string.

Return Value

The wcschr() function returns a pointer to the first occurrence of character in string. If the character is not

found, a NULL pointer is returned.

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer";

 wchar_t * string = L" program";

 wchar_t * ptr;

 ptr = wcscat(buffer1, string);

 printf("buffer1 = %ls\n", buffer1);

}

/**************** Output should be similar to: ******************

buffer1 = computer program

**/

452 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

Example that uses wcschr()

This example finds the first occurrence of the character ″p″ in the wide-character string ″computer

program″.

Related Information

v “strchr() — Search for Character” on page 359

v “strcspn() — Find Offset of First Character Match” on page 365

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcscmp() — Compare Wide-Character Strings”

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<wchar.h>” on page 18

wcscmp() — Compare Wide-Character Strings

Format

#include <wchar.h>

int wcscmp(const wchar_t *string1, const wchar_t *string2);

Language Level: ANSI

Threadsafe: Yes.

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer program";

 wchar_t * ptr;

 wchar_t ch = L’p’;

 ptr = wcschr(buffer1, ch);

 printf("The first occurrence of %lc in ’%ls’ is ’%ls’\n",

 ch, buffer1, ptr);

}

/**************** Output should be similar to: ******************

The first occurrence of p in ’computer program’ is ’puter program’

*/

Chapter 2. Library Functions 453

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcscmp() function compares two wide-character strings. The wcscmp()function operates on null-ended

wchar_t strings; string arguments to this function should contain a wchar_t null character marking the

end of the string. Boundary checking is not performed when a string is added to or copied.

Return Value

The wcscmp() function returns a value indicating the relationship between the two strings, as follows:

Value Meaning

Less than 0

string1 less than string2

0 string1 identical to string2

Greater than 0

string1 greater than string2.

Example that uses wcscmp()

This example compares the wide-character string string1 to string2 using wcscmp().

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 int result;

 wchar_t string1[] = L"abcdef";

 wchar_t string2[] = L"abcdefg";

 result = wcscmp(string1, string2);

 if (result == 0)

 printf("\"%ls\" is identical to \"%ls\"\n", string1, string2);

 else if (result < 0)

 printf("\"%ls\" is less than \"%ls\"\n", string1, string2);

 else

 printf("\"%ls\" is greater than \"%ls\"\n", string1, string2);

}

/**************** Output should be similar to: ******************

"abcdef" is less than "abcdefg"

*/

Related Information

v “strcmp() — Compare Strings” on page 360

v “strncmp() — Compare Strings” on page 379

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcschr() — Search for Wide Character” on page 452

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity” on page 460

454 ILE C/C++ Runtime Library Functions V6R1

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 467

v “<wchar.h>” on page 18

wcscoll() —Language Collation String Comparison

Format

#include <wchar.h>

int wcscoll (const wchar_t *wcs1, const wchar_t *wcs2);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_COLLATE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this

function might also be affected by the LC_UNI_COLLATE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcscoll() function compares the wide-character strings pointed to by wcs1 and wcs2, both

interpreted as appropriate to the LC_COLLATE category of the current locale (or the LC_UNI_COLLATE

category if a UNICODE LOCALETYPE was specified).

Return Value

The wcscoll() function returns an integer value indicating the relationship between the strings, as

follows:

Value Meaning

Less than 0

wcs1 less than wcs2

0 wcs1 equivalent to wcs2

Greater than 0

wcs1 greater than wcs2

 If wcs1 or wcs2 contain characters outside the domain of the collating sequence, the wcscoll() function

sets errno to EINVAL. If an error occurs, the wcscoll() function sets errno to an nonzero value. There is

no error return value.

Example that uses wcscoll()

This example uses the default locale.

Chapter 2. Library Functions 455

|

|
|
|
|
|
|

|

Related Information

v “strcoll() — Compare Strings” on page 363

v “setlocale() — Set Locale” on page 339

v “<wchar.h>” on page 18

wcscpy() — Copy Wide-Character Strings

Format

#include <wchar.h>

wchar_t *wcscpy(wchar_t *string1, const wchar_t *string2);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcscpy() function copies the contents of string2 (including the ending wchar_t null character) into

string1.

The wcscpy() function operates on null-ended wchar_t strings; string arguments to this function should

contain a wchar_t null character marking the end of the string. Only string2 needs to contain a null

character. Boundary checking is not performed.

Return Value

The wcscpy() function returns a pointer to string1.

Example that uses wcscpy()

This example copies the contents of source to destination.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 int result;

 wchar_t *wcs1 = L"first_wide_string";

 wchar_t *wcs2 = L"second_wide_string";

 result = wcscoll(wcs1, wcs2);

 if (result == 0)

 printf("\"%S\" is identical to \"%S\"\n", wcs1, wcs2);

 else if (result < 0)

 printf("\"%S\" is less than \"%S\"\n", wcs1, wcs2);

 else

 printf("\"%S\" is greater than \"%S\"\n", wcs1, wcs2);

}

456 ILE C/C++ Runtime Library Functions V6R1

|
|

|

Related Information

v “strcpy() — Copy Strings” on page 364

v “strncpy() — Copy Strings” on page 380

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcschr() — Search for Wide Character” on page 452

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscspn() — Find Offset of First Wide-Character Match”

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsncpy() — Copy Wide-Character Strings” on page 466

v “<wchar.h>” on page 18

wcscspn() — Find Offset of First Wide-Character Match

Format

#include <wchar.h>

size_t wcscspn(const wchar_t *string1, const wchar_t *string2);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcscspn() function determines the number of wchar_t characters in the initial segment of the string

pointed to by string1 that do not appear in the string pointed to by string2.

The wcscspn() function operates on null-ended wchar_t strings; string arguments to this function should

contain a wchar_t null character marking the end of the string.

Return Value

The wcscspn() function returns the number of wchar_t characters in the segment.

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t source[SIZE] = L"This is the source string";

 wchar_t destination[SIZE] = L"And this is the destination string";

 wchar_t * return_string;

 printf("destination is originally = \"%ls\"\n", destination);

 return_string = wcscpy(destination, source);

 printf("After wcscpy, destination becomes \"%ls\"\n", destination);

}

/**************** Output should be similar to: ******************

destination is originally = "And this is the destination string"

After wcscpy, destination becomes "This is the source string"

*/

Chapter 2. Library Functions 457

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

Example that uses wcscspn()

This example uses wcscspn() to find the first occurrence of any of the characters a, x, l, or e in string.

Related Information

v “strcspn() — Find Offset of First Character Match” on page 365

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcschr() — Search for Wide Character” on page 452

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<wchar.h>” on page 18

wcsftime() — Convert to Formatted Date and Time

Format

 #include <wchar.h>

 size_t wcsftime(wchar_t *wdest, size_t maxsize,

 const wchar_t *format, const struct tm *timeptr);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE, LC_TIME, and

LC_TOD categories of the current locale if LOCALETYPE(*LOCALE) is specified on the compilation

command. The behavior of this function might also be affected by the LC_UNI_CTYPE, LC_UNI_TIME,

and LC_UNI_TOD categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t string[SIZE] = L"This is the source string";

 wchar_t * substring = L"axle";

 printf("The first %i characters in the string \"%ls\" are not in the "

 "string \"%ls\" \n", wcscspn(string, substring),

 string, substring);

}

/**************** Output should be similar to: ******************

The first 10 characters in the string "This is the source string" are not

in the string "axle"

*/

458 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

Description

The wcsftime() function converts the time and date specification in the timeptr structure into a

wide-character string. It then stores the null-ended string in the array pointed to by wdest according to

the format string pointed to by format. The maxsize value specifies the maximum number of wide

characters that can be copied into the array. This function is equivalent to strftime(), except that it uses

wide characters.

The wcsftime() function works just like the strftime() function, except that it uses wide characters. The

format string is a wide-character character string that contains:

v Conversion-specification characters.

v Ordinary wide characters, which are copied into the array unchanged.

This function uses the time structure pointed to by timeptr, and if the specifier is locale sensitive, then it

will also use the LC_TIME category of the current locale to determine the appropriate replacement value

of each valid specifier. The time structure pointed to by timeptr is usually obtained by calling the

gmtime() or localtime() function.

Return Value

If the total number of wide characters in the resulting string, including the ending null wide character,

does not exceed maxsize, wcsftime() returns the number of wide characters placed into wdest, not

including the ending null wide character. Otherwise, the wcsftime() function returns 0 and the contents

of the array are indeterminate.

If a conversion error occurs, errno may be set to ECONVERT.

Example that uses wcsftime()

This example obtains the date and time using localtime(), formats the information with the wcsftime(),

and prints the date and time.

#include <stdio.h>

#include <time.h>

#include <wchar.h>

int main(void)

{

 struct tm *timeptr;

 wchar_t dest[100];

 time_t temp;

 size_t rc;

 temp = time(NULL);

 timeptr = localtime(&temp);

 rc = wcsftime(dest, sizeof(dest), L" Today is %A,"

 L" %b %d.\n Time: %I:%M %p", timeptr);

 printf("%d characters placed in string to make:\n\n%ls\n", rc, dest);

 return 0;

 /**

 The output should be similar to:

 43 characters placed in string to make:

 Today is Thursday, Nov 10.

 Time: 04:56 PM

 **/

}

Related Information

Chapter 2. Library Functions 459

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “strftime() — Convert Date/Time to String” on page 370

v “strptime()— Convert String to Date/Time” on page 385

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<wchar.h>” on page 18

__wcsicmp() — Compare Wide Character Strings without Case

Sensitivity

Format

#include <wchar.h>

int __wcsicmp(const wchar_t *string1, const wchar_t *string2);

Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this

function might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The __wcsicmp() function compares string1 and string2 without sensitivity to case. All alphabetic wide

characters in string1 and string2 are converted to lowercase before comparison. The function operates on

null terminated wide character strings. The string arguments to the function are expected to contain a

wchar_t null character (L’\0’) marking the end of the string.

Return Value

The__wcsicmp() function returns a value indicating the relationship between the two strings as follows:

 Table 10. Return values of __wcsicmp()

Value Meaning

460 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|

Table 10. Return values of __wcsicmp() (continued)

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

.

Example that uses __wcsicmp()

This example uses __wcsicmp() to compare two wide character strings.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *str1 = L"STRING";

 wchar_t *str2 = L"string";

 int result;

 result = __wcsicmp(str1, str2);

 if (result == 0)

 printf("Strings compared equal.\n");

 else if (result < 0)

 printf("\"%ls\" is less than \"%ls\".\n", str1, str2);

 else

 printf("\"%ls\" is greater than \"%ls\".\n", str1, str2);

 return 0;

}

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information

v “strcmp() — Compare Strings” on page 360

v “strncmp() — Compare Strings” on page 379

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcschr() — Search for Wide Character” on page 452

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcslen() — Calculate Length of Wide-Character String”

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity” on page 467

v “<wchar.h>” on page 18

wcslen() — Calculate Length of Wide-Character String

Format

#include <wchar.h>

size_t wcslen(const wchar_t *string);

Language Level: XPG4

Threadsafe: Yes.

Chapter 2. Library Functions 461

|
|

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcslen() function computes the number of wide characters in the string pointed to by string.

Return Value

The wcslen() function returns the number of wide characters in string, excluding the ending wchar_t null

character.

Example that uses wcslen()

This example computes the length of the wide-character string string.

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “strlen() — Determine String Length” on page 375

v “wcsncat() — Concatenate Wide-Character Strings” on page 463

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “wcsncpy() — Copy Wide-Character Strings” on page 466

v “<wchar.h>” on page 18

wcslocaleconv() — Retrieve Wide Locale Information

Format

#include <locale.h>

struct wcslconv *wcslocaleconv(void);

Language Level: Extended

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_UNI_NUMERIC and

LC_UNI_MONETARY categories of the current locale. This function is only available when

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t * string = L"abcdef";

 printf("Length of \"%ls\" is %i\n", string, wcslen(string));

}

/**************** Output should be similar to: ******************

Length of "abcdef" is 6

*/

462 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|

The wcslocaleconv() function is the same as the localeconv function, except that it returns a pointer to a

wcslconv structure, which is the wide version of a lconv structure. These elements are determined by the

LC_UNI_MONETARY and LC_UNI_NUMERIC categories of the current locale.

Return Value

The wcslocaleconv() function returns a pointer to a wcslconv structure.

Example that uses wcslocaleconv()

This example prints out the Unicode currency symbol for a French locale.

Related Information

v “setlocale() — Set Locale” on page 339

v “<locale.h>” on page 7

v “localeconv() — Retrieve Information from the Environment” on page 181

wcsncat() — Concatenate Wide-Character Strings

Format

#include <wchar.h>

wchar_t *wcsncat(wchar_t *string1, const wchar_t *string2, size_t count);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

/**

This example prints out the Unicode currency symbol for a French

locale. You first must create a Unicode French locale. You can do

this with this command:

CRTLOCALE LOCALE(’QSYS.LIB/MYLIB.LIB/LC_UNI_FR.LOCALE’) +

SRCFILE(’QSYS.LIB/QSYSLOCALE.LIB/QLOCALESRC.FILE/ +

FR_FR.MBR’) CCSID(13488)

Then you must compile your c program with LOCALETYPE(*LOCALEUCS2)

**/

#include <stdio.h>

#include <locale.h>

int main(void) {

char * string;

struct wcslconv * mylocale;

if (NULL != (string = setlocale(LC_UNI_ALL,

"QSYS.LIB/MYLIB.LIB/LC_UNI_FR.LOCALE"))) {

mylocale = wcslocaleconv();

/* Display the Unicode currency symbol in a French locale */

printf("French Unicode currency symbol is a %ls\n", mylocale->currency_symbol);

} else {

printf("setlocale(LC_UNI_ALL, \"QSYS.LIB/MYLIB.LIB/LC_UNI_FR.LOCALE\") \

returned <NULL>\n");

}

return 0;

}

Chapter 2. Library Functions 463

|
|

|

The wcsncat() function appends up to count wide characters from string2 to the end of string1, and

appends a wchar_t null character to the result.

The wcsncat() function operates on null-ending wide-character strings; string arguments to this function

should contain a wchar_t null character marking the end of the string.

Return Value

The wcsncat() function returns string1.

Example that uses wcsncat()

This example demonstrates the difference between the wcscat() and wcsncat()functions. The wcscat()

function appends the entire second string to the first; the wcsncat()function appends only the specified

number of characters in the second string to the first.

Related Information

v “strcat() — Concatenate Strings” on page 358

v “strncat() — Concatenate Strings” on page 377

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcsncmp() — Compare Wide-Character Strings”

v “wcsncpy() — Copy Wide-Character Strings” on page 466

v “<wchar.h>” on page 18

wcsncmp() — Compare Wide-Character Strings

Format

#include <stdio.h>

#include <wchar.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer";

 wchar_t * ptr;

 /* Call wcscat with buffer1 and " program" */

 ptr = wcscat(buffer1, L" program");

 printf("wcscat : buffer1 = \"%ls\"\n", buffer1);

 /* Reset buffer1 to contain just the string "computer" again */

 memset(buffer1, L’\0’, sizeof(buffer1));

 ptr = wcscpy(buffer1, L"computer");

 /* Call wcsncat with buffer1 and " program" */

 ptr = wcsncat(buffer1, L" program", 3);

 printf("wcsncat: buffer1 = \"%ls\"\n", buffer1);

}

/**************** Output should be similar to: ******************

wcscat : buffer1 = "computer program"

wcsncat: buffer1 = "computer pr"

*/

464 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

#include <wchar.h>

int wcsncmp(const wchar_t *string1, const wchar_t *string2, size_t count);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcsncmp() function compares up to count wide characters in string1 to string2.

The wcsncmp() function operates on null-ended wide-character strings; string arguments to this function

should contain a wchar_t null character marking the end of the string.

Return Value

The wcsncmp() function returns a value indicating the relationship between the two strings, as follows:

Value Meaning

Less than 0

string1 less than string2

0 string1 identical to string2

Greater than 0

string1 greater than string2.

Example that uses wcsncmp()

This example demonstrates the difference between the wcscmp() function, which compares the entire

strings, and the wcsncmp() function, which compares only a specified number of wide characters in the

strings.

Chapter 2. Library Functions 465

|
|

|

Related Information

v “strcmp() — Compare Strings” on page 360

v “strcoll() — Compare Strings” on page 363

v “strncmp() — Compare Strings” on page 379

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncat() — Concatenate Wide-Character Strings” on page 463

v “wcsncpy() — Copy Wide-Character Strings”

v “<wchar.h>” on page 18

wcsncpy() — Copy Wide-Character Strings

Format

#include <wchar.h>

wchar_t *wcsncpy(wchar_t *string1, const wchar_t *string2, size_t count);

Language Level: XPG4

Threadsafe: Yes

#include <stdio.h>

#include <wchar.h>

#define SIZE 10

int main(void)

{

 int result;

 int index = 3;

 wchar_t buffer1[SIZE] = L"abcdefg";

 wchar_t buffer2[SIZE] = L"abcfg";

 void print_result(int, wchar_t *, wchar_t *);

 result = wcscmp(buffer1, buffer2);

 printf("Comparison of each character\n");

 printf(" wcscmp: ");

 print_result(result, buffer1, buffer2);

 result = wcsncmp(buffer1, buffer2, index);

 printf("\nComparison of only the first %i characters\n", index);

 printf(" wcsncmp: ");

 print_result(result, buffer1, buffer2);

}

void print_result(int res, wchar_t * p_buffer1, wchar_t * p_buffer2)

{

 if (res == 0)

 printf("\"%ls\" is identical to \"%ls\"\n", p_buffer1, p_buffer2);

 else if (res < 0)

 printf("\"%ls\" is less than \"%ls\"\n", p_buffer1, p_buffer2);

 else

 printf("\"%ls\" is greater than \"%ls\"\n", p_buffer1, p_buffer2);

}

/**************** Output should be similar to: ******************

Comparison of each character

 wcscmp: "abcdefg" is less than "abcfg"

Comparison of only the first 3 characters

 wcsncmp: "abcdefg" is identical to "abcfg"

*/

466 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcsncpy() function copies up to count wide characters from string2 to string1. If string2 is shorter

than count characters, string1 is padded out to count characters with wchar_t null characters.

The wcsncpy() function operates on null-ended wide-character strings; string arguments to this function

should contain a wchar_t null character marking the end of the string. Only string2 needs to contain a

null character.

Return Value

The wcsncpy() returns a pointer to string1.

Related Information

v “strcpy() — Copy Strings” on page 364

v “strncpy() — Copy Strings” on page 380

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcsncat() — Concatenate Wide-Character Strings” on page 463

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “<wchar.h>” on page 18

__wcsnicmp() — Compare Wide Character Strings without Case

Sensitivity

Format

#include <wchar.h>;

int __wcsnicmp(const wchar_t *string1, const wchar_t *string2, size_t count);

Language Level: Extension

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this

function might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The __wcsnicmp() function compares up to count characters of string1 and string2 without sensitivity to

case. All alphabetic wide characters in string1 and string2 are converted to lowercase before comparison.

The __wcsnicmp() function operates on null terminated wide character strings. The string arguments to

the function are expected to contain a wchar_t null character (L’\0’) marking the end of the string.

Return Value

The__wcsnicmp() function returns a value indicating the relationship between the two strings, as follows:

Chapter 2. Library Functions 467

|

|

|
|
|
|
|
|

|

Table 11. Return values of __wcsicmp()

Value Meaning

Less than 0 string1 less than string2

0 string1 equivalent to string2

Greater than 0 string1 greater than string2

.

Example that uses __wcsnicmp()

This example uses __wcsnicmp() to compare two wide character strings.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *str1 = L"STRING ONE";

 wchar_t *str2 = L"string TWO";

 int result;

 result = __wcsnicmp(str1, str2, 6);

 if (result == 0)

 printf("Strings compared equal.\n");

 else if (result < 0)

 printf("\"%ls\" is less than \"%ls\".\n", str1, str2);

 else

 printf("\"%ls\" is greater than \"%ls\".\n", str1, str2);

 return 0;

}

/******** The output should be similar to: ***************

Strings compared equal.

***********************************/

Related Information

v “strcmp() — Compare Strings” on page 360

v “strncmp() — Compare Strings” on page 379

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcschr() — Search for Wide Character” on page 452

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “__wcsicmp() — Compare Wide Character Strings without Case Sensitivity” on page 460

v “<wchar.h>” on page 18

wcspbrk() — Locate Wide Characters in String

Format

#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *string1, const wchar_t *string2);

Language Level: XPG4

468 ILE C/C++ Runtime Library Functions V6R1

|
|

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcspbrk() function locates the first occurrence in the string pointed to by string1 of any wide

character from the string pointed to by string2.

Return Value

The wcspbrk() function returns a pointer to the character. If string1 and string2 have no wide characters

in common, the wcspbrk()function returns NULL.

Example that uses wcspbrk()

This example uses wcspbrk() to find the first occurrence of either ″a″ or ″b″ in the array string.

Related Information

v “strchr() — Search for Character” on page 359

v “strcspn() — Find Offset of First Character Match” on page 365

v “strpbrk() — Find Characters in String” on page 384

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcschr() — Search for Wide Character” on page 452

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<wchar.h>” on page 18

wcsptime()— Convert Wide Character String to Date/Time

Format

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t * result;

 wchar_t * string = L"The Blue Danube";

 wchar_t *chars = L"ab";

 result = wcspbrk(string, chars);

 printf("The first occurrence of any of the characters \"%ls\" in "

 "\"%ls\" is \"%ls\"\n", chars, string, result);

}

/**************** Output should be similar to: ******************

The first occurrence of any of the characters "ab" in "The Blue Danube"

is "anube"

**/

Chapter 2. Library Functions 469

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

#include <wchar.h>

wchar_t *wcsptime(const wchar_t *buf, const wchar_t *format, struct tm *tm);

Language Level: Extended.

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_UNI_CTYPE, LC_UNI_TIME,

and LC_UNI_TOD categories of the current locale. This function is only available when

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcsptime() function converts the wide character string pointed to by buf to values that are stored in

the tm structure pointed to by tm, using the format specified by format. This function is equivalent to

strptime(), except that it uses wide characters.

See “strptime()— Convert String to Date/Time” on page 385 for a description of the format string.

Return Value

On successful completion, the wcsptime() function returns a pointer to the character following the last

wide character parsed. Otherwise, a null pointer is returned. The value of errno may be set to

ECONVERT (conversion error).

Example that uses wcsptime()

#include <stdio.h>

#include <time.h>

#include <wchar.h>

int main(void)

{

 wchar_t buf[100];

 time_t t;

 struct tm *timeptr,result;

 t = time(NULL);

 timeptr = localtime(&t);

 wcsftime(buf, 100, L"%a %m/%d/%Y %r", timeptr);

 if (wcsptime(buf, L"%a %m/%d/%Y %r", &result) == NULL)

 printf("\nwcsptime failed\n");

 else

 {

 printf("tm_hour: %d\n",result.tm_hour);

 printf("tm_min: %d\n",result.tm_min);

 printf("tm_sec: %d\n",result.tm_sec);

 printf("tm_mon: %d\n",result.tm_mon);

 printf("tm_mday: %d\n",result.tm_mday);

 printf("tm_year: %d\n",result.tm_year);

 printf("tm_yday: %d\n",result.tm_yday);

 printf("tm_wday: %d\n",result.tm_wday);

 }

 return 0;

}

/**

470 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|

The output should be similar to:

 tm_hour: 14

 tm_min: 25

 tm_sec: 34

 tm_mon: 7

 tm_mday: 19

 tm_year: 103

 tm_yday: 230

 tm_wday: 2

**/

Related Information

v “asctime() — Convert Time to Character String” on page 39

v “asctime_r() — Convert Time to Character String (Restartable)” on page 41

v “ctime() — Convert Time to Character String” on page 71

v “ctime64() — Convert Time to Character String” on page 73

v “ctime64_r() — Convert Time to Character String (Restartable)” on page 76

v “ctime_r() — Convert Time to Character String (Restartable)” on page 74

v “gmtime() — Convert Time” on page 161

v “gmtime64() — Convert Time” on page 163

v “gmtime64_r() — Convert Time (Restartable)” on page 167

v “gmtime_r() — Convert Time (Restartable)” on page 165

v “localtime() — Convert Time” on page 185

v “localtime64() — Convert Time” on page 187

v “localtime64_r() — Convert Time (Restartable)” on page 189

v “localtime_r() — Convert Time (Restartable)” on page 188

v “setlocale() — Set Locale” on page 339

v “strftime() — Convert Date/Time to String” on page 370

v “strptime()— Convert String to Date/Time” on page 385

v “time() — Determine Current Time” on page 411

v “time64() — Determine Current Time” on page 412

v “<time.h>” on page 18

wcsrchr() — Locate Last Occurrence of Wide Character in String

Format

#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *string, wchar_t character);

Language Level: ANSI

Threadsafe: Yes

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcsrchr() function locates the last occurrence of character in the string pointed to by string. The

ending wchar_t null character is considered to be part of the string.

Return Value

Chapter 2. Library Functions 471

|

|

|
|

|

The wcsrchr() function returns a pointer to the character, or a NULL pointer if character does not occur in

the string.

Example that uses wcsrchr()

This example compares the use of wcschr() and wcsrchr(). It searches the string for the first and last

occurrence of p in the wide character string.

Related Information

v “strchr() — Search for Character” on page 359

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strcspn() — Find Offset of First Character Match” on page 365

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcschr() — Search for Wide Character” on page 452

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “<wchar.h>” on page 18

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buf[SIZE] = L"computer program";

 wchar_t * ptr;

 int ch = ’p’;

 /* This illustrates wcschr */

 ptr = wcschr(buf, ch);

 printf("The first occurrence of %c in ’%ls’ is ’%ls’\n", ch, buf, ptr);

 /* This illustrates wcsrchr */

 ptr = wcsrchr(buf, ch);

 printf("The last occurrence of %c in ’%ls’ is ’%ls’\n", ch, buf, ptr);

}

/**************** Output should be similar to: ******************

The first occurrence of p in ’computer program’ is ’puter program’

The last occurrence of p in ’computer program’ is ’program’

*/

472 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

wcsrtombs() — Convert Wide Character String to Multibyte String

(Restartable)

Format

Language Level: ANSI

Threadsafe: Yes, if the fourth parameter, ps, is not NULL.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

This function is the restartable version of wcstombs().

The wcsrtombs() function converts a sequence of wide characters from the array indirectly pointed to by

src into a sequence of corresponding multibyte characters that begins in the shift state described by ps,

which, if dst is not a null pointer, are then stored into the array pointed to by dst. Conversion continues

up to and including the ending null wide character, which is also stored. Conversion will stop earlier in

two cases: when a code is reached that does not correspond to a valid multibyte character, or (if dst is not

a null pointer) when the next multibyte element would exceed the limit of len total bytes to be stored into

the array pointed to by dst. Each conversion takes place as if by a call to wcrtomb().

If dst is not a null pointer, the object pointed to by src will be assigned either a null pointer (if conversion

stopped due to reaching a ending null character) or the address of the code just past the last wide

character converted. If conversion stopped due to reaching a ending null wide character, the resulting

state described will be the initial conversion state.

Return Value

If the first code is not a valid wide character, an encoding error will occur. wcsrtombs() stores the value

of the macro EILSEQ in errno and returns (size_t) -1, but the conversion state will be unchanged.

Otherwise it returns the number of bytes in the resulting multibyte character sequence, which is the same

as the number of array elements changed when dst is not a null pointer.

If a conversion error occurs, errno may be set to ECONVERT.

Example that uses wcsrtombs()

#include <wchar.h>

size_t wcsrtombs (char *dst, const wchar_t **src, size_t len,

 mbstate_t *ps);

Chapter 2. Library Functions 473

|
|
|
|
|

|

Related Information

v “mblen() — Determine Length of a Multibyte Character” on page 197

v “mbrlen() — Determine Length of a Multibyte Character (Restartable)” on page 199

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)” on page 206

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcstombs() — Convert Wide-Character String to Multibyte String” on page 483

v “<wchar.h>” on page 18

wcsspn() — Find Offset of First Non-matching Wide Character

Format

#include <wchar.h>

size_t wcsspn(const wchar_t *string1, const wchar_t *string2);

Language Level: ANSI

Threadsafe: Yes

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

#include <stdio.h>

#include <wchar.h>

#include <string.h>

#define SIZE 20

int main(void)

{

 char dest[SIZE];

 wchar_t *wcs = L"string";

 wchar_t *ptr;

 size_t count = SIZE;

 size_t length;

 mbstate_t ps = 0;

 ptr = (wchar_t *) wcs;

 length = wcsrtombs(dest, ptr, count, &ps);

 printf("%d characters were converted.\n", length);

 printf("The converted string is \"%s\"\n\n", dest);

 /* Reset the destination buffer */

 memset(dest, ’\0’, sizeof(dest));

 /* Now convert only 3 characters */

 ptr = (wchar_t *) wcs;

 length = wcsrtombs(dest, ptr, 3, &ps);

 printf("%d characters were converted.\n", length);

 printf("The converted string is \"%s\"\n\n", dest);

}

/***************** Output should be similar to: **********************

6 characters were converted.

The converted string is "string"

3 characters were converted.

The converted string is "str"

*/

474 ILE C/C++ Runtime Library Functions V6R1

|
|

|

The wcsspn() function computes the number of wide characters in the initial segment of the string

pointed to by string1, which consists entirely of wide characters from the string pointed to by string2.

Return Value

The wcsspn() function returns the number of wide characters in the segment.

Example that uses wcsspn()

This example finds the first occurrence in the array string of a wide character that is not an a, b, or c.

Because the string in this example is cabbage, the wcsspn() function returns 5, the index of the segment

of cabbage before a character that is not an a, b, or c.

Related Information

v “strchr() — Search for Character” on page 359

v “strcspn() — Find Offset of First Character Match” on page 365

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “wcscat() — Concatenate Wide-Character Strings” on page 451

v “wcschr() — Search for Wide Character” on page 452

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<wchar.h>” on page 18

wcsstr() — Locate Wide-Character Substring

Format

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t * string = L"cabbage";

 wchar_t * source = L"abc";

 int index;

 index = wcsspn(string, L"abc");

 printf("The first %d characters of \"%ls\" are found in \"%ls\"\n",

 index, string, source);

}

/**************** Output should be similar to: ******************

The first 5 characters of "cabbage" are found in "abc"

*/

Chapter 2. Library Functions 475

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *wcs1, const wchar_t *wcs2);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcsstr() function locates the first occurrence of wcs2 in wcs1.

Return Value

The wcsstr() function returns a pointer to the beginning of the first occurrence of wcs2 in wcs1. If wcs2

does not appear in wcs1, the wcsstr() function returns NULL. If wcs2 points to a wide-character string

with zero length, it returns wcs1.

Example that uses wcsstr()

This example uses the wcsstr() function to find the first occurrence of ″hay″ in the wide-character string

″needle in a haystack″.

Related Information

v “strstr() — Locate Substring” on page 391

v “wcschr() — Search for Wide Character” on page 452

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcswcs() — Locate Wide-Character Substring” on page 488

v “<wchar.h>” on page 18

wcstod() — Convert Wide-Character String to Double

Format

#include <wchar.h>

double wcstod(const wchar_t *nptr, wchar_t **endptr);

Language Level: XPG4

Threadsafe: Yes.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs1 = L"needle in a haystack";

 wchar_t *wcs2 = L"hay";

 printf("result: \"%ls\"\n", wcsstr(wcs1, wcs2));

 return 0;

 /***

 The output should be similar to:

 result: "haystack"

 ***/

}

476 ILE C/C++ Runtime Library Functions V6R1

|

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALE) is specified on the compilation command.

The behavior of this function might also be affected by the LC_UNI_CTYPE and LC_UNI_NUMERIC

categories of the current locale if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is

specified on the compilation command. This function is not available when LOCALETYPE(*CLD) is

specified on the compilation command. For more information, see “Understanding CCSIDs and Locales”

on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcstod() function converts the initial portion of the wide-character string pointed to by nptr to a

double value. The nptr parameter points to a sequence of characters that can be interpreted as a numeric

binary floating-point value. The wcstod() function stops reading the string at the first character that it

cannot recognize as part of a number. This character can be the wchar_t null character at the end of the

string.

The wcstod() function expects nptr to point to a string with the following form:

The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN

(ignoring case) is allowed.

Return Value

The wcstod() function returns the converted double value. If no conversion could be performed, the

wcstod() function returns 0. If the correct value is outside the range of representable values, the wcstod()

function returns +HUGE_VAL or -HUGE_VAL (according to the sign of the value), and sets errno to

ERANGE. If the correct value would cause underflow, the wcstod() function returns 0 and sets errno to

ERANGE. If the string nptr points to is empty or does not have the expected form, no conversion is

performed, and the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a

null pointer.

The wcstod() function does not fail if a character other than a digit follows an E or e that is read as an

exponent. For example, 100elf is converted to the floating-point value 100.0.

The value of errno may be set to ERANGE, range error.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN

yields a Quiet Not-A-Number (NAN) value.

Example that uses wcstod()

This example uses the wcstod() function to convert the string wcs to a binary floating-point value.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs = L"3.1415926This stopped it";

 wchar_t *stopwcs;

��

whitespace

+

–

 digits

.

digits

.

digits

e

digits

E

+

–

 ��

Chapter 2. Library Functions 477

|||

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

printf("wcs = \"%ls\"\n", wcs);

 printf(" wcstod = %f\n", wcstod(wcs, &stopwcs));

 printf(" Stop scanning at \"%ls\"\n", stopwcs);

 return 0;

 /**

 The output should be similar to:

 wcs = "3.1415926This stopped it"

 wcstod = 3.141593

 Stop scanning at "This stopped it"

 **/

}

Related Information

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character String to Decimal Floating-Point”

v “wcstol() — wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 481

v “wcstoul() — wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 486

v “<wchar.h>” on page 18

wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character

String to Decimal Floating-Point

Format

#include <wchar.h>

_Decimal32 wcstod32(const wchar_t *nptr, wchar_t **endptr);

_Decimal64 wcstod64(const wchar_t *nptr, wchar_t **endptr);

_Decimal128 wcstod128(const wchar_t *nptr, wchar_t **endptr);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE and

LC_NUMERIC categories of the current locale if LOCALETYPE(*LOCALE) is specified on the

compilation command. The behavior of these functions might also be affected by the LC_UNI_CTYPE

and LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. These functions are not

available when LOCALETYPE(*CLD) is specified on the compilation command. For more information,

see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcstod32(), wcstod64(), and wcstod128() functions convert the initial portion of the wide-character

string pointed to by nptr to a single-precision, double-precision, or quad-precision decimal floating-point

value. The parameter nptr points to a sequence of characters that can be interpreted as a numeric decimal

floating-point value. The wcstod32(), wcstod64(), and wcstod128() functions stop reading the string at

478 ILE C/C++ Runtime Library Functions V6R1

|
|

|

|

|

|

|
|
|
|

|

|

|
|
|
|
|
|
|

|

|

|
|
|
|

the first character that is not recognized as part of a number. This character can be the wchar_t null

character at the end of the string. The endptr parameter is updated to point to this character, provided

that endptr is not a NULL pointer.

The wcstod32(), wcstod64(), and wcstod128() functions expect nptr to point to a string with the following

form:

The first character that does not fit this form stops the scan. In addition, a sequence of INFINITY or NAN

(ignoring case) is allowed.

Return Value

The wcstod32(), wcstod64(), and wcstod128() functions return the value of the floating-point number,

except when the representation causes an underflow or overflow. For an overflow, wcstod32() returns

HUGE_VAL_D32 or -HUGE_VAL_D32; wcstod64() returns HUGE_VAL_D64 or -HUGE_VAL_D64;

wcstod128() returns HUGE_VAL_D128 or -HUGE_VAL_D128. For an underflow, all functions return

+0.E0.

In both the overflow and underflow cases, errno is set to ERANGE. If the string pointed to by nptr does

not have the expected form, a value of +0.E0 is returned and the value of nptr is stored in the object

pointed to by endptr, provided that endptr is not a NULL pointer.

The wcstod32(), wcstod64(), and wcstod128() functions do not fail if a character other than a digit

follows an E or e that is read as an exponent. For example, 100elf is converted to the floating-point value

100.0.

A character sequence of INFINITY (ignoring case) yields a value of INFINITY. A character value of NAN

(ignoring case) yields a Quiet Not-A-Number (NaN) value.

If necessary, the return value is rounded using the rounding mode Round to Nearest, Ties to Even.

Example that uses wcstod32(), wcstod64(), and wcstod128()

This example converts the string wcs to single-precision, double-precision, and quad-precision decimal

floating-point values.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs = L"3.1415926This stopped it";

 wchar_t *stopwcs;

 printf("wcs = \"%ls\"\n", wcs);

 printf("wcstod32 = %Hf\n", wcstod32(wcs, &stopwcs));

 printf(" Stopped scan at \"%ls\"\n", stopwcs);

 printf("wcs = \"%ls\"\n", wcs);

 printf("wcstod64 = %Df\n", wcstod64(wcs, &stopwcs));

 printf(" Stopped scan at \"%ls\"\n", stopwcs);

 printf("wcs = \"%ls\"\n", wcs);

 printf("wcstod128 = %DDf\n", wcstod128(wcs, &stopwcs));

 printf(" Stopped scan at \"%ls\"\n", stopwcs);

}

��

whitespace

+

–

 digits

.

digits

.

digits

e

digits

E

+

–

 ��

Chapter 2. Library Functions 479

|||

|
|

|
|
|

|
|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***************** Output should be similar to: *****************

wcs = "3.1415926This stopped it"

 wcstod = 3.141593

 Stopped scan at "This stopped it"

wcs = "3.1415926This stopped it"

 wcstod = 3.141593

 Stopped scan at "This stopped it"

wcs = "3.1415926This stopped it"

 wcstod = 3.141593

 Stopped scan at "This stopped it"

*/

Related Information

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “wcstod() — Convert Wide-Character String to Double” on page 476

v “wcstol() — wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 481

v “wcstoul() — wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 486

v “<wchar.h>” on page 18

wcstok() — Tokenize Wide-Character String

Format

#include <wchar.h>

wchar_t *wcstok(wchar_t *wcs1, const wchar_t *wcs2, wchar_t **ptr);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcstok() function reads wcs1 as a series of zero or more tokens and wcs2 as the set of wide

characters serving as delimiters for the tokens in wcs1. A sequence of calls to the wcstok() function

locates the tokens inside wcs1. The tokens can be separated by one or more of the delimiters from wcs2.

The third argument points to a wide-character pointer that you provide where the wcstok() function

stores information necessary for it to continue scanning the same string.

When the wcstok() function is first called for the wide-character string wcs1, it searches for the first token

in wcs1, skipping over leading delimiters. The wcstok() function returns a pointer to the first token. To

read the next token from wcs1, call the wcstok() function with NULL as the first parameter (wcs1). This

NULL parameter causes the wcstok() function to search for the next token in the previous token string.

Each delimiter is replaced by a null character to end the token.

The wcstok() function always stores enough information in the pointer ptr so that subsequent calls, with

NULL as the first parameter and the unmodified pointer value as the third, will start searching right after

the previously returned token. You can change the set of delimiters (wcs2) from call to call.

480 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|

|

|
|

|

|

Return Value

The wcstok() function returns a pointer to the first wide character of the token, or a null pointer if there

is no token. In later calls with the same token string, the wcstok() function returns a pointer to the next

token in the string. When there are no more tokens, the wcstok() function returns NULL.

Example that uses wcstok()

This example uses the wcstok() function to locate the tokens in the wide-character string str1.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 static wchar_t str1[] = L"?a??b,,,#c";

 static wchar_t str2[] = L"\t \t";

 wchar_t *t, *ptr1, *ptr2;

 t = wcstok(str1, L"?", &ptr1); /* t points to the token L"a" */

 printf("t = ’%ls’\n", t);

 t = wcstok(NULL, L",", &ptr1); /* t points to the token L"?b"*/

 printf("t = ’%ls’\n", t);

 t = wcstok(str2, L" \t,", &ptr2); /* t is a null pointer */

 printf("t = ’%ls’\n", t);

 t = wcstok(NULL, L"#,", &ptr1); /* t points to the token L"c" */

 printf("t = ’%ls’\n", t);

 t = wcstok(NULL, L"?", &ptr1); /* t is a null pointer */

 printf("t = ’%ls’\n", t);

 return 0;

 /**

 The output should be similar to:

 t = ’a’

 t = ’?b’

 t = ’’

 t = ’c’

 t = ’’

 **/

}

Related Information

v “strtok() — Tokenize String” on page 398

v “<wchar.h>” on page 18

wcstol() — wcstoll() — Convert Wide Character String to Long and

Long Long Integer

Format (wcstol())

#include <wchar.h>

long int wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

Format (wcstoll())

#include <wchar.h>

long long int wcstoll(const wchar_t *nptr, wchar_t **endptr, int base);

Language Level: ANSI

Threadsafe: Yes.

Chapter 2. Library Functions 481

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of

these functions might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. These functions are not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcstol() function converts the initial portion of the wide-character string pointed to by nptr to a

long integer value. The nptr parameter points to a sequence of wide characters that can be interpreted as

a numerical value of type long int. The wcstol()function stops reading the string at the first wide

character that it cannot recognize as part of a number. This character can be the wchar_t null character at

the end of the string. The ending character can also be the first numeric character greater than or equal to

the base.

The wcstoll() subroutine converts a wide-character string to a long long integer. The wide-character

string is parsed to skip the initial space characters (as determined by the iswspace subroutine). Any

non-space character signifies the start of a subject string that may form a long long int in the radix

specified by the base parameter. The subject sequence is defined to be the longest initial substring that is a

long long int of the expected form.

If the value of the endptr parameter is not null, then a pointer to the character that ended the scan is

stored in endptr. If a long long integer cannot be formed, the value of the endptrparameter is set to that of

the nptr parameter.

If the base parameter is a value between 2 and 36, the subject sequence’s expected form is a sequence of

letters and digits representing a long long integer whose radix is specified by the base parameter. This

sequence optionally is preceded by a positive (+) or negative (-) sign. Letters from a (or A) to z (or Z)

inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than that of the base

parameter are permitted. If the base parameter has a value of 16, the characters 0x or 0X optionally

precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if present.

If the value of the base parameter is 0, the string determines the base. Therefore, after an optional leading

sign, a leading 0 indicates octal conversion, and a leading 0x or 0X indicates hexadecimal conversion.

Return Value

The wcstol() function returns the converted long integer value. If no conversion could be performed, the

wcstol() function returns 0. If the correct value is outside the range of representable values, the

wcstol()function returns LONG_MAX or LONG_MIN (according to the sign of the value), and sets errno

to ERANGE. If the string nptr points to is empty or does not have the expected form, no conversion is

performed, and the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a

null pointer.

Upon successful completion, the wcstoll() subroutine returns the converted value. If no conversion

could be performed, 0 is returned, and the errno global variable is set to indicate the error. If the correct

value is outside the range of representable values, the wcstoll() subroutine returns a value of

LONG_LONG_MAX or LONG_LONG_MIN.

The value of errno may be set to ERANGE (range error), or EINVAL (invalid argument).

Example that uses wcstol()

482 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

This example uses the wcstol() function to convert the wide-character string wcs to a long integer value.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs = L"10110134932";

 wchar_t *stopwcs;

 long l;

 int base;

 printf("wcs = \"%ls\"\n", wcs);

 for (base=2; base<=8; base*=2) {

 l = wcstol(wcs, &stopwcs, base);

 printf(" wcstol = %ld\n"

 " Stopped scan at \"%ls\"\n\n", l, stopwcs);

 }

 return 0;

 /***

 The output should be similar to:

 wcs = "10110134932"

 wcstol = 45

 Stopped scan at "34932"

 wcstol = 4423

 Stopped scan at "4932"

 wcstol = 2134108

 Stopped scan at "932"

 ***/

}

Related Information

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “strtoul() — strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer”

on page 403

v “wcstod() — Convert Wide-Character String to Double” on page 476

v “wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character String to Decimal Floating-Point”

on page 478

v “wcstoul() — wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long

Integer” on page 486

v “<wchar.h>” on page 18

wcstombs() — Convert Wide-Character String to Multibyte String

Format

#include <stdlib.h>

size_t wcstombs(char *dest, const wchar_t *string, size_t count);

Language Level: ANSI

Threadsafe: Yes.

Chapter 2. Library Functions 483

|
|

|
|

|
|

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcstombs() function converts the wide-character string pointed to by string into the multibyte array

pointed to by dest. The converted string begins in the initial shift state. The conversion stops after count

bytes in dest are filled up or a wchar_t null character is encountered.

Only complete multibyte characters are stored in dest. If the lack of space in dest would cause a partial

multibyte character to be stored, wcstombs() stores fewer than n bytes and discards the invalid character.

Return Value

The wcstombs() function returns the length in bytes of the multibyte character string, not including a

ending null character. The value (size_t)-1 is returned if an invalid multibyte character is encountered.

The value of errno may be set to EILSEQ (conversion stopped due to input character), or ECONVERT

(conversion error).

Examples that use wcstombs()

This program is compiled with LOCALETYPE(*LOCALE) and SYSIFCOPT(*IFSIO):

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <wchar.h>

#define STRLENGTH 10

#define LOCNAME "qsys.lib/JA_JP.locale"

#define LOCNAME_EN "qsys.lib/EN_US.locale"

int main(void)

{

 char string[STRLENGTH];

 int length, sl = 0;

 wchar_t wc2[] = L"ABC";

 wchar_t wc_string[10];

 mbstate_t ps = 0;

 memset(string, ’\0’, STRLENGTH);

 wc_string[0] = 0x00C1;

 wc_string[1] = 0x4171;

 wc_string[2] = 0x4172;

 wc_string[3] = 0x00C2;

 wc_string[4] = 0x0000;

 /* In this first example we will convert a wide character string */

 /* to a single byte character string. We first set the locale */

 /* to a single byte locale. We choose a locale with */

 /* CCSID 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = wcstombs(string, wc2, 10);

 /* In this case wide characters ABC are converted to */

484 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|

/* single byte characters ABC, length is 3. */

 printf("string = %s, length = %d\n\n", string, length);

 /* Now lets try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = wcstombs(string, wc_string, 10);

 /* The hex look at string would now be: */

 /* C10E417141720FC2 length will be 8 */

 /* You would need a device capable of displaying multibyte */

 /* characters to see this string. */

 printf("length = %d\n\n", length);

}

/* The output should look like this:

string = ABC, length = 3

length = 8

 */

This program is compiled with LOCALETYPE(*LOCALEUCS2) and SYSIFCOPT(*IFSIO):

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <wchar.h>

#define STRLENGTH 10

#define LOCNAME "qsys.lib/JA_JP.locale"

#define LOCNAME_EN "qsys.lib/EN_US.locale"

int main(void)

{

 char string[STRLENGTH];

 int length, sl = 0;

 wchar_t wc2[] = L"ABC";

 wchar_t wc_string[10];

 mbstate_t ps = 0;

 memset(string, ’\0’, STRLENGTH);

 wc_string[0] = 0x0041; /* UNICODE A */

 wc_string[1] = 0xFF41;

 wc_string[2] = 0xFF42;

 wc_string[3] = 0x0042; /* UNICODE B */

 wc_string[4] = 0x0000;

 /* In this first example we will convert a wide character string */

 /* to a single byte character string. We first set the locale */

 /* to a single byte locale. We choose a locale with */

 /* CCSID 37. */

 if (setlocale(LC_ALL, LOCNAME_EN) == NULL)

 printf("setlocale failed.\n");

 length = wcstombs(string, wc2, 10);

 /* In this case wide characters ABC are converted to */

 /* single byte characters ABC, length is 3. */

 printf("string = %s, length = %d\n\n", string, length);

Chapter 2. Library Functions 485

/* Now lets try a multibyte example. We first must set the */

 /* locale to a multibyte locale. We choose a locale with */

 /* CCSID 5026 */

 if (setlocale(LC_ALL, LOCNAME) == NULL)

 printf("setlocale failed.\n");

 length = wcstombs(string, wc_string, 10);

 /* The hex look at string would now be: */

 /* C10E428142820FC2 length will be 8 */

 /* You would need a device capable of displaying multibyte */

 /* characters to see this string. */

 printf("length = %d\n\n", length);

}

/* The output should look like this:

string = ABC, length = 3

length = 8

 */

Related Information

v “mbstowcs() — Convert a Multibyte String to a Wide Character String” on page 207

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “wctomb() — Convert Wide Character to Multibyte Character” on page 492

v “<stdlib.h>” on page 17

wcstoul() — wcstoull() — Convert Wide Character String to Unsigned

Long and Unsigned Long Long Integer

Format (wcstoul())

#include <wchar.h>

unsigned long int wcstoul(const wchar_t *nptr, wchar_t **endptr, int base);

Format (wcstoull())

#include <wchar.h>

unsigned long long int wcstoull(const wchar_t *nptr, wchar_t **endptr, int base);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of these functions might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of

these functions might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. These functions are not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

486 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

The wcstoul() function converts the initial portion of the wide-character string pointed to by nptr to an

unsigned long integer value. The nptr parameter points to a sequence of wide characters that can be

interpreted as a numerical value of type unsigned long int. The wcstoul() function stops reading the

string at the first wide character that it cannot recognize as part of a number. This character can be the

wchar_t null character at the end of the string. The ending character can also be the first numeric

character greater than or equal to the base.

The wcstoull() subroutine converts a wide-character string to an unsigned long long integer. The

wide-character string is parsed to skip the initial space characters (as determined by the iswspace

subroutine). Any non-space character signifies the start of a subject string that may form an unsigned

long long int in the radix specified by the base parameter. The subject sequence is defined to be the

longest initial substring that is an unsigned long long int of the expected form.

If the value of the endptr parameter is not null, then a pointer to the character that ended the scan is

stored in endptr. If an unsigned long long integer cannot be formed, the value of the endptr parameter is

set to that of the nptr parameter.

If the base parameter is a value between 2 and 36, the subject sequence’s expected form is a sequence of

letters and digits representing an unsigned long long integer whose radix is specified by the base

parameter. This sequence optionally is preceded by a positive (+) or negative (-) sign. Letters from a (or

A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than

that of the base parameter are permitted. If the base parameter has a value of 16, the characters 0x or 0X

optionally precede the sequence of letters and digits, following the positive (+) or negative (-) sign, if

present.

If the value of the base parameter is 0, the string determines the base. Therefore, after an optional leading

sign, a leading 0 indicates octal conversion, and a leading 0x or 0X indicates hexadecimal conversion.

The value of errno may be set to EINVAL (endptr is null, no numbers are found, or base is invalid), or

ERANGE (converted value is outside the range).

Return Value

The wcstoul() function returns the converted unsigned long integer value. If no conversion could be

performed, the wcstoul() function returns 0. If the correct value is outside the range of representable

values, The wcstoul() function returns ULONG_MAX and sets errno to ERANGE. If the string nptr

points to is empty or does not have the expected form, no conversion is performed, and the value of nptr

is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Upon successful completion, the wcstoull() subroutine returns the converted value. If no conversion

could be performed, 0 is returned, and the errno global variable is set to indicate the error. If the correct

value is outside the range of representable values, wcstoull() subroutine returns a value of

ULONG_LONG_MAX.

Example that uses wcstoul()

This example uses the wcstoul() function to convert the string wcs to an unsigned long integer value.

#include <stdio.h>

#include <wchar.h>

#define BASE 2

int main(void)

{

 wchar_t *wcs = L"1000e13 camels";

 wchar_t *endptr;

 unsigned long int answer;

Chapter 2. Library Functions 487

answer = wcstoul(wcs, &endptr, BASE);

 printf("The input wide string used: `%ls`\n"

 "The unsigned long int produced: %lu\n"

 "The substring of the input wide string that was not"

 " converted to unsigned long: `%ls`\n", wcs, answer, endptr);

 return 0;

 /***

 The output should be similar to:

 The input wide string used: 1000e13 camels

 The unsigned long int produced: 8

 The substring of the input wide string that was not converted to

 unsigned long: e13 camels

 ***/

}

Related Information

v “strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double” on page

392

v “strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point” on page

395

v “strtol() — strtoll() — Convert Character String to Long and Long Long Integer” on page 400

v “wcstod() — Convert Wide-Character String to Double” on page 476

v “wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character String to Decimal Floating-Point”

on page 478

v “wcstol() — wcstoll() — Convert Wide Character String to Long and Long Long Integer” on page 481

v “<wchar.h>” on page 18

wcswcs() — Locate Wide-Character Substring

Format

#include <wchar.h>

wchar_t *wcswcs(const wchar_t *string1, const wchar_t *string2);

Language Level: XPG4

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcswcs() function locates the first occurrence of string2 in the wide-character string pointed to by

string1. In the matching process, the wcswcs() function ignores the wchar_t null character that ends

string2.

Return Value

The wcswcs() function returns a pointer to the located string or NULL if the string is not found. If string2

points to a string with zero length, wcswcs() returns string1.

Example that uses wcswcs()

488 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|

|

This example finds the first occurrence of the wide character string pr in buffer1.

Related Information

v “strchr() — Search for Character” on page 359

v “strcspn() — Find Offset of First Character Match” on page 365

v “strpbrk() — Find Characters in String” on page 384

v “strrchr() — Locate Last Occurrence of Character in String” on page 389

v “strspn() —Find Offset of First Non-matching Character” on page 390

v “strstr() — Locate Substring” on page 391

v “wcschr() — Search for Wide Character” on page 452

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcscspn() — Find Offset of First Wide-Character Match” on page 457

v “wcspbrk() — Locate Wide Characters in String” on page 468

v “wcsrchr() — Locate Last Occurrence of Wide Character in String” on page 471

v “wcsspn() — Find Offset of First Non-matching Wide Character” on page 474

v “<wchar.h>” on page 18

wcswidth() — Determine the Display Width of a Wide Character String

Format

#include <wchar.h>

int wcswidth (const wchar_t *wcs, size_t n);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this

function might also be affected by the LC_UNI_CTYPE category of the current locale if

LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer program";

 wchar_t * ptr;

 wchar_t * wch = L"pr";

 ptr = wcswcs(buffer1, wch);

 printf("The first occurrence of %ls in ’%ls’ is ’%ls’\n",

 wch, buffer1, ptr);

}

/**************** Output should be similar to: ******************

The first occurrence of pr in ’computer program’ is ’program’

*/

Chapter 2. Library Functions 489

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

Description

The wcswidth() function determines the number of printing positions that a graphic representation of n

wide characters (or fewer that n wide characters if a null wide character is encountered before n wide

characters have been exhausted) in the wide string pointed to by wcs occupies on a display device. The

number is independent of its location on the device.

The value of errno may be set to EINVAL (non-printing wide character).

Return Value

The wcswidth() function either returns:

v 0, if wcs points to a null wide character; or

v the number of printing positions occupied by the wide string pointed to by wcs; or

v -1, if any wide character in the wide string pointed to by wcs is not a printing wide character.

Example that uses wcswidth()

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs = L"ABC";

 printf("wcs has a width of: %d\n", wcswidth(wcs,3));

}

/************The output is as follows**************/

/*

 */

/* wcs has a width of: 3 */

/*

 */

/**/

Related Information

v “wcswidth() — Determine the Display Width of a Wide Character String” on page 489

v “<wchar.h>” on page 18

wcsxfrm() — Transform a Wide-Character String

Format

#include <wchar.h>

size_t wcsxfrm (wchar_t *wcs1, const wchar_t *wcs2, size_t n);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_COLLATE category of the

current locale if LOCALETYPE(*LOCALE) is specified on the compilation command. The behavior of this

function might also be affected by the LC_UNI_COLLATE category of the current locale if

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not supported

when LOCALETYPE(*LOCALEUCS2) is specified on the compilation command. This function is not

available when LOCALETYPE(*CLD) is specified on the compilation command. For more information,

see “Understanding CCSIDs and Locales” on page 524.

490 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcsxfrm() function transforms the wide-character string pointed to by wcs2 to values which represent

character collating weights and places the resulting wide-character string into the array pointed to by

wcs1.

Return Value

The wcsxfrm() function returns the length of the transformed wide-character string (not including the

ending null wide character code). If the value returned is n or more, the contents of the array pointed to

by wcs1 are indeterminate.

If wcsxfrm() is unsuccessful, errno is changed. The value of errno may be set to EINVAL (the wcs1 or

wcs2 arguments contain characters which are not available in the current locale).

Example that uses wcsxfrm()

Related Information

v “strxfrm() — Transform String” on page 404

v “<wchar.h>” on page 18

wctob() — Convert Wide Character to Byte

Format

#include <stdio.h>

#include <wchar.h>

int wctob(wint_t wc);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs;

 wchar_t buffer[80];

 int length;

 printf("Type in a string of characters.\n ");

 wcs = fgetws(buffer, 80, stdin);

 length = wcsxfrm(NULL, wcs, 0);

 printf("You would need a %d element array to hold the wide string\n", length);

 printf("\n\n%S\n\n transformed according", wcs);

 printf(" to this program’s locale. \n");

}

Chapter 2. Library Functions 491

|

|
|
|
|
|

|

Description

The wctob() function determines whether wc corresponds to a member of the extended character set,

whose multibyte character has a length of 1 byte when in the initial shift state.

Return Value

If c corresponds to a multibyte character with a length of 1 byte, the wctob() function returns the

single-byte representation. Otherwise, it returns EOF.

If a conversion error occurs, errno may be set to ECONVERT.

Example that uses wctob()

This example uses the wctob() function to test if the wide character A is a valid single-byte character.

Related Information

v “mbtowc() — Convert Multibyte Character to a Wide Character” on page 211

v “wctomb() — Convert Wide Character to Multibyte Character”

v “wcstombs() — Convert Wide-Character String to Multibyte String” on page 483

v “<wchar.h>” on page 18

wctomb() — Convert Wide Character to Multibyte Character

Format

#include <stdlib.h>

int wctomb(char *string, wchar_t character);

Language Level: ANSI

Threadsafe: No. Use wcrtomb() instead.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wint_t wc = L’A’;

 if (wctob(wc) == wc)

 printf("%lc is a valid single byte character\n", wc);

 else

 printf("%lc is not a valid single byte character\n", wc);

 return 0;

 /**

 The output should be similar to:

 A is a valid single byte character

 **/

}

492 ILE C/C++ Runtime Library Functions V6R1

|
|

|
|
|
|

|

Description

The wctomb() function converts the wchar_t value of character into a multibyte array pointed to by string.

If the value of character is 0, the function is left in the initial shift state. At most, the wctomb() function

stores MB_CUR_MAX characters in string.

The conversion of the wide character is the same as described in wcstombs(). See this function for a

Unicode example.

Return Value

The wctomb() function returns the length in bytes of the multibyte character. The value -1 is returned if

character is not a valid multibyte character. If string is a NULL pointer, the wctomb() function returns

nonzero if shift-dependent encoding is used, or 0 otherwise.

If a conversion error occurs, errno may be set to ECONVERT.

Example that uses wctomb()

This example converts the wide character c to a multibyte character.

Related Information

v “mbtowc() — Convert Multibyte Character to a Wide Character” on page 211

v “wcslen() — Calculate Length of Wide-Character String” on page 461

v “wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)” on page 446

v “wcstombs() — Convert Wide-Character String to Multibyte String” on page 483

v “wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)” on page 473

v “<stdlib.h>” on page 17

wctrans() —Get Handle for Character Mapping

Format

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 static char buffer[SIZE];

 wchar_t wch = L’c’;

 int length;

 length = wctomb(buffer, wch);

 printf("The number of bytes that comprise the multibyte "

 "character is %i\n", length);

 printf("And the converted string is \"%s\"\n", buffer);

}

/**************** Output should be similar to: ******************

The number of bytes that comprise the multibyte character is 1

And the converted string is "c"

*/

Chapter 2. Library Functions 493

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#include <wctype.h>

wctrans_t wctrans(const char *property);

Language Level: ANSI

Threadsafe: Yes.

Description

The wctrans() function returns a value with type wctrans_t. This value describes a mapping between

wide characters. The string argument property is a wide character mapping name. The wctrans_t

equivalent of the wide character mapping name is returned by this function. The toupper and tolower

wide character mapping names are defined in all locales.

Return Value

If property is a valid wide character mapping name, the wctrans() function returns a nonzero value that

is valid as the second argument to the towctrans() function. Otherwise, it returns 0.

Example that uses wctrans()

This example translates the lowercase alphabet to uppercase, and back to lowercase.

Related Information

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <wchar.h>

#include <wctype.h>

int main()

{

 char *alpha = "abcdefghijklmnopqrstuvwxyz";

 char *tocase[2] = {"toupper", "tolower"};

 wchar_t *wcalpha;

 int i, j;

 size_t alphalen;

 alphalen = strlen(alpha)+1;

 wcalpha = (wchar_t *)malloc(sizeof(wchar_t)*alphalen);

 mbstowcs(wcalpha, alpha, 2*alphalen);

 for (i=0; i<2; ++i) {

 printf("Input string: %ls\n", wcalpha);

 for (j=0; j<strlen(alpha); ++j) {

 wcalpha[j] = (wchar_t)towctrans((wint_t)wcalpha[j], wctrans(tocase[i]));

 }

 printf("Output string: %ls\n", wcalpha);

 printf("\n");

 }

 return 0;

/**************** Output should be similar to: ******************

Input string: abcdefghijklmnopqrstuvwxyz

Output string: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Input string: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Output string: abcdefghijklmnopqrstuvwxyz

***/

494 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|
|

v “towctrans() — Translate Wide Character” on page 417

v “<wctype.h>” on page 19

wctype() — Get Handle for Character Property Classification

Format

#include <wctype.h>

wctype_t wctype(const char *property);

Language Level: XPG4

Threadsafe: Yes.

Description

The wctype() function is defined for valid character class names. The property is a string that identifies a

generic character class. These character class names are defined in all locales: alnum, alpha, blank, cntrl,

digit, graph, lower, print, punct, space, upper, xdigit. The function returns a value of type wctype_t,

which can be used as the second argument to a call of the iswctype() function.

The wctype() function determines values of wctype_t according to rules of the coded character set that

are defined by character type information in the program’s locale (category LC_CTYPE). Values that are

returned by the wctype() are valid until a call to setlocale() that changes the category LC_CTYPE.

Return Value

The wctype() function returns zero if the given property name is not valid. Otherwise, it returns a value

of type wctype_t that can be used in calls to iswctype().

Example that uses wctype()

Chapter 2. Library Functions 495

|
|
|
|

|
|

#include <wchar.h>

#define UPPER_LIMIT 0xFF

 int main(void)

 {

 int wc;

 for (wc = 0; wc <= UPPER_LIMIT; wc++) {

 printf("%#4x ", wc);

 printf("%c", iswctype(wc, wctype("print")) ? wc : "

");

 printf("%s", iswctype(wc, wctype("alnum")) ? "AN" : "

");

 printf("%s", iswctype(wc, wctype("alpha")) ? "A" : "

");

 printf("%s", iswctype(wc, wctype("blank")) ? "B" : "

");

 printf("%s", iswctype(wc, wctype("cntrl")) ? "C" : "

");

 printf("%s", iswctype(wc, wctype("digit")) ? "D" : "

");

 printf("%s", iswctype(wc, wctype("graph")) ? "G" : "

");

 printf("%s", iswctype(wc, wctype("lower")) ? "L" : "

");

 printf("%s", iswctype(wc, wctype("punct")) ? "PU" : "

");

 printf("%s", iswctype(wc, wctype("space")) ? "S" : "

");

 printf("%s", iswctype(wc, wctype("print")) ? "PR" : "

");

 printf("%s", iswctype(wc, wctype("upper")) ? "U" : "

");

 printf("%s", iswctype(wc, wctype("xdigit")) ? "X" : "

");

 putchar(’\n’);

 }

 return 0;

 /***

 The output should be similar to :

 :

 0x1f C

 0x20 B S PR

 0x21 ! G PU PR

 0x22 " G PU PR

 0x23 # G PU PR

 0x24 $ G PU PR

 0x25 % G PU PR

 0x26 & G PU PR

 0x27 ’ G PU PR

 0x28 (G PU PR

 0x29) G PU PR

 0x2a * G PU PR

 0x2b + G PU PR

 0x2c , G PU PR

 0x2d - G PU PR

 0x2e . G PU PR

 0x2f / G PU PR

 0x30 0 AN D G PR X

 0x31 1 AN D G PR X

 0x32 2 AN D G PR X

 0x33 3 AN D G PR X

 0x34 4 AN D G PR X

 0x35 5 AN D G PR X

 :

 }

496 ILE C/C++ Runtime Library Functions V6R1

Related Information

v “<wchar.h>” on page 18

v “<wctype.h>” on page 19

wcwidth() — Determine the Display Width of a Wide Character

Format

#include <wchar.h>

int wcwidth (const wint_t wc);

Language Level: XPG4

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE category of the

current locale. The behavior might also be affected by the LC_UNI_CTYPE category of the current locale

if LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command. This function is not available when LOCALETYPE(*CLD) is specified on the compilation

command. For more information, see “Understanding CCSIDs and Locales” on page 524.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wcwidth() function determines the number of printing positions that a graphic representation of wc

occupies on a display device. Each of the printing wide characters occupies its own number of printing

positions on a display device. The number is independent of its location on the device.

The value of errno may be set to EINVAL (non-printing wide character).

Return Value

The wcwidth() function either returns:

v 0, if wc is a null wide character; or

v the number of printing position occupied by wc; or

v -1, if wc is not a printing wide character.

Example that uses wcwidth()

Related Information

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wint_t wc = L’A’;

 printf("%lc has a width of %d\n", wc, wcwidth(wc));

 return 0;

 /**

 The output should be similar to :

 A has a width of 1

 **/

}

Chapter 2. Library Functions 497

|
|
|
|
|

|

v “wcswidth() — Determine the Display Width of a Wide Character String” on page 489

v “<wchar.h>” on page 18

wfopen() —Open Files

Format

#include <ifs.h>

FILE * wfopen(const wchar_t *filename,const wchar_t *mode);

Language Level: ILE C Extension

Threadsafe: Yes

Locale Sensitive: This function is only available when LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wfopen() function works like the fopen() function, except:

v wfopen() accepts file name and mode as wide characters.

v The default CCSID for files opened with wfopen() (used when the ccsid=value, o_ccsid=value, and

codepage=value keywords are not specified) is UCS2 when LOCALETYPE(*LOCALEUCS2) is specified

on the compilation command. The default CCSID is UTF-32 when LOCALETYPE(*LOCALEUTF) is

specified on the compilation command.

wmemchr() —Locate Wide Character in Wide-Character Buffer

Format

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wmemchr() function locates the first occurrence of c in the initial n wide characters of the object

pointed to by s. If n has the value 0, the wmemchr() function finds no occurrence of c, and returns a NULL

pointer.

Return Value

The wmemchr() function returns a pointer to the located wide character, or a NULL pointer if the wide

character does not occur in the object.

Example that uses wmemchr()

498 ILE C/C++ Runtime Library Functions V6R1

|
|
|

|
|

|

|
|
|
|

|

This example finds the first occurrence of ’A’ in the wide-character string.

Related Information

v “memchr() — Search Buffer” on page 212

v “strchr() — Search for Character” on page 359

v “wcschr() — Search for Wide Character” on page 452

v “wmemcmp() —Compare Wide-Character Buffers”

v “wmemcpy() —Copy Wide-Character Buffer” on page 500

v “wmemmove() — Copy Wide-Character Buffer” on page 501

v “wmemset() — Set Wide Character Buffer to a Value” on page 502

v “<wchar.h>” on page 18

wmemcmp() —Compare Wide-Character Buffers

Format

#include <wchar.h>

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wmemcmp() function compares the first n wide characters of the object pointed to by s1 to the first n

wide characters of the object pointed to by s2. If n has the value 0, the wmemcmp() function returns 0.

Return Value

The wmemcmp() function returns a value according to the relationship between the two strings, s1 and s2:

 Integer Value Meaning

Less than 0 s1 less than s2

0 s1 equal to s2

Greater than 0 s1 greater than s2

#include <stdio.h>

#include <wchar.h>

main()

{

 wchar_t *in = L"1234ABCD";

 wchar_t *ptr;

 wchar_t fnd = L’A’;

 printf("\nEXPECTED: ABCD");

 ptr = wmemchr(in, L’A’, 6);

 if (ptr == NULL)

 printf("\n** ERROR ** ptr is NULL, char L’A’ not found\n");

 else

 printf("\nRECEIVED: %ls \n", ptr);

}

Chapter 2. Library Functions 499

|

Example that uses wmemcmp()

This example compares the wide-character string in to out using the wmemcmp()function.

Related Information

v “memcmp() — Compare Buffers” on page 213

v “strcmp() — Compare Strings” on page 360

v “wcscmp() — Compare Wide-Character Strings” on page 453

v “wcsncmp() — Compare Wide-Character Strings” on page 464

v “wmemchr() —Locate Wide Character in Wide-Character Buffer” on page 498

v “wmemcpy() —Copy Wide-Character Buffer”

v “wmemmove() — Copy Wide-Character Buffer” on page 501

v “wmemset() — Set Wide Character Buffer to a Value” on page 502

v “<wchar.h>” on page 18

wmemcpy() —Copy Wide-Character Buffer

Format

#include <wchar.h>

wchar_t *wmemcpy(wchar_t *s1, const wchar_t *s2, size_t n);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

#include <wchar.h>

#include <stdio.h>

#include <locale.h>

main()

{

 int rc;

 wchar_t *in = L"12345678";

 wchar_t *out = L"12AAAAAB";

 setlocale(LC_ALL, "POSIX");

 printf("\nGREATER is the expected result");

 rc = wmemcmp(in, out, 3);

 if (rc == 0)

 printf("\nArrays are EQUAL %ls %ls \n", in, out);

 else

 {

 if (rc > 0)

 printf("\nArray %ls GREATER than %ls \n", in, out);

 else

 printf("\nArray %ls LESS than %ls \n", in, out);

 }

 /**

 The output should be:

 GREATER is the expected result

 Array 12345678 GREATER than 12AAAAAB

 **/

}

500 ILE C/C++ Runtime Library Functions V6R1

|

The wmemcpy() function copies n wide characters from the object pointed to by s2 to the object pointed to

by s1. If s1 and s2 overlap, the result of the copy is unpredictable. If n has the value 0, the wmemcpy()

function copies 0 wide characters.

Return Value

The wmemcpy() function returns the value of s1.

Example that uses wmemcpy()

This example copies the first four characters from out to in. In the expected output, the first four

characters in both strings will be ″ABCD″.

Related Information

v “memcpy() — Copy Bytes” on page 214

v “strcpy() — Copy Strings” on page 364

v “strncpy() — Copy Strings” on page 380

v “wcscpy() — Copy Wide-Character Strings” on page 456

v “wcsncpy() — Copy Wide-Character Strings” on page 466

v “wmemchr() —Locate Wide Character in Wide-Character Buffer” on page 498

v “wmemcmp() —Compare Wide-Character Buffers” on page 499

v “wmemmove() — Copy Wide-Character Buffer”

v “wmemset() — Set Wide Character Buffer to a Value” on page 502

v “<wchar.h>” on page 18

wmemmove() — Copy Wide-Character Buffer

Format

#include <wchar.h>

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <wchar.h>

#include <stdio.h>

main()

{

 wchar_t *in = L"12345678";

 wchar_t *out = L"ABCDEFGH";

 wchar_t *ptr;

 printf("\nExpected result: First 4 chars of in change");

 printf(" and are the same as first 4 chars of out");

 ptr = wmemcpy(in, out, 4);

 if (ptr == in)

 printf("\nArray in %ls array out %ls \n", in, out);

 else

 {

 printf("\n*** ERROR ***");

 printf(" returned pointer wrong");

 }

}

Chapter 2. Library Functions 501

|

Description

The wmemmove() function copies n wide characters from the object pointed to by s2 to the object pointed to

by s1. Copying takes place as if the n wide characters from the object pointed to by s2 are first copied

into a temporary array, of n wide characters, that does not overlap the objects pointed to by s1 or s2.

Then, the wmemmove() function copies the n wide characters from the temporary array into the object

pointed to by s1. If n has the value 0, the wmemmove() function copies 0 wide characters.

Return Value

The wmemmove() function returns the value of s1.

Example that uses wmemmove()

This example copies the first five characters in a string to overlay the last five characters in the same

string. Since the string is only nine characters long, the source and target overlap.

Related Information

v “memmove() — Copy Bytes” on page 217

v “wmemchr() —Locate Wide Character in Wide-Character Buffer” on page 498

v “wmemcpy() —Copy Wide-Character Buffer” on page 500

v “wmemcmp() —Compare Wide-Character Buffers” on page 499

v “wmemset() — Set Wide Character Buffer to a Value”

v “<wchar.h>” on page 18

wmemset() — Set Wide Character Buffer to a Value

Format

#include <wchar.h>

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Language Level: ANSI

Threadsafe: Yes.

Wide Character Function: See “Wide Characters” on page 527 for more information.

#include <wchar.h>

#include <stdio.h>

void main()

{

 wchar_t *theString = L"ABCDEFGHI";

 printf("\nThe original string: %ls \n", theString);

 wmemmove(theString+4, theString, 5);

 printf("\nThe string after wmemmove: %ls \n", theString);

 return;

 /**

 The output should be:

 The original string: ABCDEFGHI

 The string after wmemmove: ABCDABCDE

 **/

}

502 ILE C/C++ Runtime Library Functions V6R1

|

Description

The wmemset() function copies the value of c into each of the first n wide characters of the object pointed

to by s. If n has the value 0, the wmemset() function copies 0 wide characters.

Return Value

The wmemset() function returns the value of s.

Example that uses wmemset()

This example sets the first 6 wide characters to the wide character ’A’.

Related Information

v “memset() — Set Bytes to Value” on page 218

v “wmemchr() —Locate Wide Character in Wide-Character Buffer” on page 498

v “wmemcpy() —Copy Wide-Character Buffer” on page 500

v “wmemcmp() —Compare Wide-Character Buffers” on page 499

v “wmemmove() — Copy Wide-Character Buffer” on page 501

v “<wchar.h>” on page 18

wprintf() — Format Data as Wide Characters and Print

Format

#include <stdio.h>

int wprintf(const wchar_t *format,...);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

#include <wchar.h>

#include <stdio.h>

void main()

{

 wchar_t *in = L"1234ABCD";

 wchar_t *ptr;

 printf("\nEXPECTED: AAAAAACD");

 ptr = wmemset(in, L’A’, 6);

 if (ptr == in)

 printf("\nResults returned - %ls \n", ptr);

 else

 {

 printf("\n** ERROR ** wrong pointer returned\n");

 }

}

Chapter 2. Library Functions 503

|
|
|
|
|
|

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

A wprintf(format, ...) is equivalent to fwprintf(stdout, format, ...).

Return Value

The wprintf() function returns the number of wide characters transmitted. If an output error occurred,

the wprintf() function returns a negative value.

Example that uses wprintf()

This example prints the wide character a. Date and time may be formatted according to your locale’s

representation. The output goes to stdout.

Related Information

v “printf() — Print Formatted Characters” on page 229

v “btowc() — Convert Single Byte to Wide Character” on page 53

v “mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)” on page 201

v “vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream” on page 428

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

v “vswprintf() — Format and Write Wide Characters to Buffer” on page 439

v “<wchar.h>” on page 18

wscanf() — Read Data Using Wide-Character Format String

Format

#include <stdio.h>

int wscanf(const wchar_t *format,...);

Language Level: ANSI

Threadsafe: Yes.

Locale Sensitive: The behavior of this function might be affected by the LC_CTYPE and LC_NUMERIC

categories of the current locale. The behavior might also be affected by the LC_UNI_CTYPE and

LC_UNI_NUMERIC categories of the current locale if LOCALETYPE(*LOCALEUCS2) or

#include <wchar.h>

#include <stdarg.h>

#include <locale.h>

int main(void)

{

 setlocale(LC_ALL, "POSIX");

 wprintf (L"%c\n", L’a’);

 return(0);

}

 /* A long ’a’ is written to stdout */

504 ILE C/C++ Runtime Library Functions V6R1

|
|

|

|
|
|

LOCALETYPE(*LOCALEUTF) is specified on the compilation command. This function is not available

when LOCALETYPE(*CLD) is specified on the compilation command. For more information, see

“Understanding CCSIDs and Locales” on page 524.

Integrated File System Interface: This function is not available when SYSIFCOPT(*NOIFSIO) is specified

on the compilation command.

Wide Character Function: See “Wide Characters” on page 527 for more information.

Description

The wscanf() function is equivalent to the fwscanf() function with the argument stdin interposed before

the arguments of the wscanf() function.

Return Value

If an input failure occurs before any conversion, the wscanf() function returns the value of the macro

EOF.

Otherwise, the wscanf() function returns the number of input items assigned. It can be fewer than

provided for, or even zero, in the event of an early matching failure.

Example that uses wscanf()

This example scans various types of data.

Related Information

v “fscanf() — Read Formatted Data” on page 132

v “fwprintf() — Format Data as Wide Characters and Write to a Stream” on page 143

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 int i;

 float fp;

 char c,s[81];

 printf("Enter an integer, a real number, a character and a string : \n");

 if (wscanf(L"%d %f %c %s", &i, &fp,&c, s) != 4)

 printf("Some fields were not assigned\n");

 else {

 printf("integer = %d\n", i);

 printf("real number = %f\n", fp);

 printf("character = %c\n", c);

 printf("string = %s\n", s);

 }

 return 0;

 /**

 The output should be similar to:

 Enter an integer, a real number, a character and a string :

 12 2.5 a yes

 integer = 12

 real number = 2.500000

 character = a

 string = yes

 **/

}

Chapter 2. Library Functions 505

|
|
|

|
|

|

v “fwscanf() — Read Data from Stream Using Wide Character” on page 147

v “scanf() — Read Data” on page 330

v “sscanf() — Read Data” on page 355

v “swprintf() — Format and Write Wide Characters to Buffer” on page 406

v “swscanf() — Read Wide Character Data” on page 407

v “vfscanf() — Read Formatted Data” on page 427

v “vfwscanf() — Read Formatted Wide Character Data” on page 430

v “vscanf() — Read Formatted Data” on page 433

v “vsscanf() — Read Formatted Data” on page 437

v “vswscanf() — Read Formatted Wide Character Data” on page 441

v “vwscanf() — Read Formatted Wide Character Data” on page 445

v “wprintf() — Format Data as Wide Characters and Print” on page 503

v “<wchar.h>” on page 18

506 ILE C/C++ Runtime Library Functions V6R1

Chapter 3. Runtime Considerations

This chapter provides the following information:

v Exception and condition management

v Interlanguage data type compatibility

v CCSID (Coded Character Set Identifier) source file conversion

errno Macros

The following table lists which error macros the ILE C library functions can set.

 Table 12. errno Macros

Error Macro Description Set by Function

EBADDATA The message data is not valid. perror, strerror

EBADF The catalog descriptor is not valid. catclose, catgets, clearerr, fgetc,

fgetpos, fgets, fileno, freopen, fseek,

fsetpos, getc, rewind

EBADKEYLN The key length specified is not valid. _Rreadk, _Rlocate

EBADMODE The file mode specified is not valid. fopen, freopen, _Ropen

EBADNAME Bad file name specified. fopen, freopen, _Ropen

EBADPOS The position specified is not valid. fsetpos

EBADSEEK Bad offset for a seek operation. fgetpos, fseek

EBUSY The record or file is in use. perror, strerror

ECONVERT Conversion error. wcstomb, wcswidth

EDOM Domain error in math function. acos, asin, atan2, cos, exp, fmod,

gamma, hypot, j0, j1, jn, y0, y1, yn,

log, log10, pow, sin, strtol, strtoul,

sqrt, tan

EGETANDPUT An illegal read operation occurred

after a write operation.

fgetc, fread, getc, getchar

EILSEQ The character sequence does not form

a valid multibyte character.

fgetwc, fgetws, getwc, mblen,mbrlen,

mbrtowc, mbsrtowcs, mbstowcs,

mbtowc, printf, scanf, ungetwc,

wcrtomb, wcsrtombs, wcstombs,

wctomb, wcswidth, wcwidth

EINVAL The signal is not valid. printf, scanf, signal, swprintf,

swscanf, wcstol, wcstoll, wcstoul,

wcstoull

EIO Consecutive calls of I/O occurred. I/O

EIOERROR A non-recoverable I/O error

occurred.

All I/O functions

EIORECERR A recoverable I/O error occurred. All I/O functions

ENODEV Operation attempted on a wrong

device.

fgetpos, fsetpos, fseek, ftell, rewind

ENOENT File or library is not found. perror, strerror

ENOPOS No record at specified position. fsetpos

© Copyright IBM Corp. 1999, 2008 507

Table 12. errno Macros (continued)

Error Macro Description Set by Function

ENOREC Record not found. fread, perror, strerror

ENOTDLT File is not opened for delete

operations.

_Rdelete

ENOTOPEN File is not opened. clearerr, fclose, fflush, fgetpos, fopen,

freopen, fseek, ftell, setbuf, setvbuf,

_Ropen, _Rclose

ENOTREAD File is not opened for read

operations.

fgetc, fread, ungetc, _Rreadd,

_Rreadf, _Rreadindv, _Rreadk,

_Rreadl, _Rreadn, _Rreadnc, _Rreadp,

_Rreads, _Rlocate

ENOTUPD File is not opened for update

operations.

_Rrlslck, _Rupdate

ENOTWRITE File is not opened for write

operations.

fputc, fwrite, _Rwrite, _Rwrited,

_Rwriterd

ENUMMBRS More than 1 member. ftell

ENUMRECS Too many records. ftell

EPAD Padding occurred on a write

operation.

fwrite

EPERM Insufficient authorization for access. perror, strerror

EPUTANDGET An illegal write operation occurred

after a read operation.

fputc, fwrite, fputs, putc, putchar

ERANGE Range error in math function. cos, cosh, gamma, exp, j0, j1, jn, y0,

y1, yn, log, log10, ldexp, pow, sin,

sinh, strtod, strtol, strtoul, tan,

wcstol, wcstoll, wcstoul, wcstoull,

wcstod

ERECIO File is opened for record I/O, so

character-at-a-time processing

functions cannot be used.

fgetc, fgetpos, fputc, fread, fseek,

fsetpos, ftell

ESTDERR stderr cannot be opened. feof, ferror, fgetpos, fputc, fseek,

fsetpos, ftell, fwrite

ESTDIN stdin cannot be opened. fgetc, fgetpos, fread, fseek, fsetpos,

ftell

ESTDOUT stdout cannot be opened. fgetpos, fputc, fseek, fsetpos, ftell,

fwrite

ETRUNC Truncation occurred on I/O

operation.

Any I/O function that reads or

writes a record sets errno to

ETRUNC.

errno Values for Integrated File System Enabled C Stream I/O

The following table describes the possible settings when using integrated file system enabled stream I/O.

 Table 13. errno Values for Integrated File System Enabled C Stream I/O

C Stream Function Possible errno Values

clearerr EBADF

fclose EAGAIN, EBADF, EIO, ESCANFAILURE, EUNKNOWN

508 ILE C/C++ Runtime Library Functions V6R1

Table 13. errno Values for Integrated File System Enabled C Stream I/O (continued)

C Stream Function Possible errno Values

feof EBADF

ferror EBADF

fflush EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fgetc EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD,

fgetpos EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOSYSRSC,

EUNATCH, EUNKNOWN

fgets EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

fgetwc EBADF, EILSEQ

fgetws EBADF, EILSEQ

fopen EAGAIN, EBADNAME, EBADF, ECONVERT, EDAMAGE, EEXITS, EFAULT, EINVAL, EIO,

EISDIR, ELOOP, ENOENT, ENOMEM, ENOSPC, ENOSYS, ENOSYSRSC, ENOTDIR,

ESCANFAILURE

fprintf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fputc EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fputs EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

fread EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

freopen EACCES, EAGAIN, EBADNAME, EBADF, EBUSY, ECONVERT, EDAMAGE, EEXITS, EFAULT,

EINVAL, EIO, EISDIR, ELOOP, EMFILE, ENAMETOOLONG, ENFILE, ENOENT, ENOMEM,

ENOSPC, ENOSYS, ENOSYSRSC, ENOTDIR

fscanf EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

fseek EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EINVAL, EIO, ENOENT, ENOSPC,

ENOSYSRSC, ESPIPE, EUNKNOWN, EFAULT, EPERM, EUNATCH, EUNKNOWN

fsetpos EACCES, EAGAIN, ABADF, EBUSY, EDAMAGE, EINVAL, EIO, ENOENT, ENOSPC,

ENOSYSRSC, ESPIPE, EUNKNOWN, EFAULT, EPERM, EUNATCH, EUNKNOWN

ftell EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOSYSRSC,

EUNATCH, EUNKNOWN

fwrite EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOSYSRSC,

EUNATCH, EUNKNOWN

getc EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

getchar EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

gets EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

getwc EBADF, EILSEQ

perror EBADF

printf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EILSEQ, EINVAL, EIO,

ENOMEM, ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

Chapter 3. Runtime Considerations 509

Table 13. errno Values for Integrated File System Enabled C Stream I/O (continued)

C Stream Function Possible errno Values

putc EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

putchar EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

puts EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

remove EACCES, EAGAIN, EBADNAME, EBADF, EBUSY, ECONVERT, EDAMAGE, EEXITS, EFAULT,

EINVAL, EIO, EISDIR, ELOOP, ENAMETOOLONG, ENOENT, ENOMEM, ENOSPC,

ENOTDIR, EPERM, EROOBJ, EUNKNOWN, EXDEV

rename EACCES, EAGAIN, EBADNAME, EBUSY, ECONVERT, EDAMAGE, EEXIST, EFAULT,

EINVAL, EIO, EISDIR, ELOOP, ENAMETOOLONG, ENOTEMPTY, ENOENT, ENOMEM,

ENOSPC, ENOTDIR, EMLINK, EPERM, EUNKNOWN, EXDEV

rewind EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EINVAL, EIO, ENOENT, ENOSPC,

ENOSYSRSC, ESPIPE, EUNKNOWN, EFAULT, EPERM, EUNATCH, EUNKNOWN

scanf EBADF, EACCES, EAGAIN, EBUSY, EDAMAGE, EFAULT, EILSEQ, EINVAL, EIO, ENOMEM,

EUKNOWN, EGETANDPUT, EDOM, ENOTREAD

setbuf EBADF, EINVAL, EIO

setvbuf EBADF, EINVAL, EIO

tmpfile EACCES, EAGAIN, EBADNAME, EBADF, EBUSY, ECONVERT, EDAMAGE, EEXITS, EFAULT,

EINVAL, EIO, EISDIR, ELOOP, EMFILE, ENAMETOOLONG, ENFILE, ENOENT, ENOMEM,

ENOSPC, ENOSYS, ENOSYSRSC, ENOTDIR, EPERM, EROOBJ, EUNKNOW N, EXDEV

tmpnam EACCESS, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EINVAL, EIO, ENOENT,

ENOSYSRSC, EUNATCH, EUNKNOWN

ungetc EBADF, EIO

ungetwc EBADF, EILSEQ

vfprintf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

vprintf EACCES, EAGAIN, EBADF, EBUSY, EDAMAGE, EFAULT, EFBIG, EINVAL, EIO, ENOMEM,

ENOSPC, ETRUNC, EUNKNOWN, EPUTANDGET, ENOTWRITE, EPAD

Record Input and Output Error Macro to Exception Mapping

The following table describes what occurs if the signal SIGIO is raised. Only *ESCAPE, *NOTIFY, and

*STATUS messages are monitored.

 Table 14. Record Input and Output Error Macro to Exception Mapping

Description Messages (_EXCP_MSGID) errno setting

*STATUS and *NOTIFY CPF4001 to CPF40FF, CPF4401 to

CPF44FF, CPF4901 to CPF49FF,

CPF5004

errno is not set, a default reply is

returned to the operating system.

Recoverable I/O error CPF4701 to CPF47FF, CPF4801 to

CPF48FF, CPF5001 to CPF5003,

CPF5005 to CPF50FF,

EIORECERR

510 ILE C/C++ Runtime Library Functions V6R1

Table 14. Record Input and Output Error Macro to Exception Mapping (continued)

Description Messages (_EXCP_MSGID) errno setting

Non-recoverable I/O error2 CPF4101 to CPF41FF, CPF4201 to

CPF42FF, CPF4301 to CPF43FF,

CPF4501 to CPF45FF, CPF4601 to

CPF46FF, CPF5101 to CPF51FF,

CPF5201 to CPF52FF, CPF5301 to

CPF53FF, CPF5401 to CPF54FF,

CPF5501 to CPF55FF, CPF5601 to

CPF56FF

EIOERROR

Truncation occurred at I/O operation C2M3003 ETRUNC

File is not opened C2M3004 ENOTOPEN

File is not opened for read operations C2M3005 ENOTREAD

File is not opened for write

operations

C2M3009 ENOTWRITE

Bad file name specified C2M3014 EBADNAME

The file mode specified is not valid C2M3015 EBADMODE

File is not opened for update

operations

C2M3041 ENOTUPD

File is not opened for delete

operations

C2M3042 ENOTDLT

The key length specified is not valid C2M3044 EBADKEYLN

A non-recoverable I/O error occurred C2M3101 EIOERROR

A recoverable I/O error occurred C2M3102 EIORECERR

Note:

v

1 The error is percolated to the user, therefore the user’s direct monitor handlers, ILE C condition handlers and

signal handler may get control. The initial setting for SIGIO is SIG_IGN.

v

2 The type of device determines whether the error is recoverable or not recoverable. The following IBM

publications contain information about recoverable and non-recoverable system exceptions for each specific file

type:

– ICF Programming

– ADTS/400: Advanced Printer Function

– Application Display Programming

– Database Programming

Signal Handling Action Definitions

The following table shows the initial state of the C signal values and their handling action definitions

when SYSIFCOPT(*NOASYNCSIGNAL) is specified on the compilation command. SIG_DFL always

percolates the condition tothe handler. Resume indicates the exception is handled, and the application

continues.

 Table 15. Handling Action Definitions for Signal Values

Signal Value Initial State SIG_DFL SIG_IGN Return from Handler

SIGABRT1 SIG_DFL Percolate Ignore Resume

SIGALL2 SIG_DFL Percolate Ignore Resume

SIGFPE SIG_DFL Percolate Ignore3 Resume4

SIGILL SIG_DFL Percolate Ignore3 Resume4

Chapter 3. Runtime Considerations 511

Table 15. Handling Action Definitions for Signal Values (continued)

Signal Value Initial State SIG_DFL SIG_IGN Return from Handler

SIGINT SIG_DFL Percolate Ignore Resume

SIGIO SIG_IGN Percolate Ignore Resume

SIGOTHER SIG_DFL Percolate Ignore3 Resume4

SIGSEGV SIG_DFL Percolate Ignore3 Resume4

SIGTERM SIG_DFL Percolate Ignore Resume

SIGUSR1 SIG_DFL Percolate Ignore Resume

SIGUSR2 SIG_DFL Percolate Ignore Resume

Note:

v

1 Can only be signaled by the raise() function or the abort() function

v

2 SIGALL cannot be signaled by the raise() function.

v

3 If the value of the signal is SIGFPE, SIGILL or SIGSEGV the behavior is undefined.

v

4 If the signal is hardware-generated, then the behavior undefined.

The following table shows the initial state of the C signal values and their handling action definitions

with SYSIFCOPT(*ASYNCSIGNAL) is specified on the compilation command.

 Table 16. Default Actions for Signal Values

Value Default Action Meaning

SIGABRT 2 Abnormal termination.

SIGFPE 2 Arithmetic exceptions that are not masked, such as overflow,

division by zero, and incorrect operation.

SIGILL 2 Detection of an incorrect function image.

SIGINT 2 Interactive attention.

SIGSEGV 2 Incorrect access to storage.

SIGTERM 2 Termination request sent to the program.

SIGUSR1 2 Intended for use by user applications.

SIGUSR2 2 Intended for use by user applications.

SIGALRM 2 A timeout signal that is sent by alarm().

SIGHUP 2 A controlling terminal is hung up, or the controlling process

ended.

SIGKILL 1 A termination signal that cannot be caught or ignored.

SIGPIPE 3 A write to a pipe that is not being read.

SIGQUIT 2 A quit signal for a terminal.

SIGCHLD 3 An ended or stopped child process. SIGCLD is an alias name

for this signal.

SIGCONT 5 If stopped, continue.

SIGSTOP 4 A stop signal that cannot be caught or ignored.

SIGTSTP 4 A stop signal for a terminal.

SIGTTIN 4 A background process attempted to read from a controlling

terminal.

SIGTTOU 4 A background process attempted to write to a controlling

terminal.

SIGIO 3 Completion of input or output.

512 ILE C/C++ Runtime Library Functions V6R1

Table 16. Default Actions for Signal Values (continued)

SIGURG 3 High bandwidth data is available at a socket.

SIGPOLL 2 Pollable event.

SIGBUS 2 Specification exception.

SIGPRE 2 Programming exception.

SIGSYS 2 Bad system call.

SIGTRAP 2 Trace or breakpoint trap.

SIGPROF 2 Profiling timer expired.

SIGVTALRM 2 Virtual timer expired.

SIGXCPU 2 Processor time limit exceeded.

SIGXFSZ 2 File size limit exceeded.

SIGDANGER 2 System crash is imminent.

SIGPCANCEL 2 Thread termination signal that cannot be caught or ignored.

Default Actions:

1 End the process immediately.

2 End the request.

3 Ignore the signal.

4 Stop the process.

5 Continue the process if it is currently stopped. Otherwise, ignore the signal.

Signal to i5/OS Exception Mapping

The following table shows the system exception messages that are mapped to a signal. All *ESCAPE

exception messages are mapped to signals. The *STATUS and *NOTIFY messages that map to SIGIO as

defined in Table 14 on page 510 are mapped to signals.

 Table 17. Signal to i5/OS Exception Mapping

Signal Message

SIGABRT C2M1601

SIGALL C2M1610 (if explicitly raised)

SIGFPE C2M1602, MCH1201 to MCH1204, MCH1206 to MCH1215, MCH1221 to MCH1224, MCH1838

to MCH1839

SIGILL C2M1603, MCH0401, MCH1002, MCH1004, MCH1205, MCH1216 to MCH1219, MCH1801 to

MCH1802, MCH1807 to MCH1808, MCH1819 to MCH1820, MCH1824 to MCH1825, MCH1832,

MCH1837, MCH1852, MCH1854 to MCH1857, MCH1867, MCH2003 to MCH2004, MCH2202,

MCH2602, MCH2604, MCH2808, MCH2810 to MCH2811, MCH3201 to MCH3203, MCH4201 to

MCH4211, MCH4213, MCH4296 to MCH4298, MCH4401 to MCH4403, MCH4406 to MCH4408,

MCH4421, MCH4427 to MCH4428, MCH4801, MCH4804 to MCH4805, MCH5001 to MCH5003,

MCH5401 to MCH5402, MCH5601, MCH6001 to MCH6002, MCH6201, MCH6208, MCH6216,

MCH6220, MCH6403, MCH6601 to MCH6602, MCH6609 to MCH6612

SIGINT C2M1604

SIGIO C2M1609, See Table 14 on page 510 for the exception mappings.

SIGOTHER C2M1611 (if explicitly raised)

Chapter 3. Runtime Considerations 513

Table 17. Signal to i5/OS Exception Mapping (continued)

Signal Message

SIGSEGV C2M1605, MCH0201, MCH0601 to MCH0606, MCH0801 to MCH0803, MCH1001, MCH1003,

MCH1005 to MCH1006, MCH1220, MCH1401 to MCH1402, MCH1602, MCH1604 to MCH1605,

MCH1668, MCH1803 to MCH1806, MCH1809 to MCH1811, MCH1813 to MCH1815, MCH1821

to MCH1823, MCH1826 to MCH1829, MCH1833, MCH1836, MCH1848, MCH1850, MCH1851,

MCH1864 to MCH1866, MCH1898, MCH2001 to MCH2002, MCH2005 to MCH2006, MCH2201,

MCH2203 to MCH2205, MCH2401, MCH2601, MCH2603, MCH2605, MCH2801 to MCH2804,

MCH2806 to MCH2809, MCH3001, MCH3401 to MCH3408, MCH3410, MCH3601 to MCH3602,

MCH3603 to MCH3604, MCH3802, MCH4001 to MCH4002, MCH4010, MCH4212, MCH4404 to

MCH4405, MCH4416 to MCH4420, MCH4422 to MCH4426, MCH4429 to MCH4437, MCH4601,

MCH4802 to MCH4803, MCH4806 to MCH4812, MCH5201 to MCH5204, MCH5602 to

MCH5603, MCH5801 to MCH5804, MCH6203 to MCH6204, MCH6206, MCH6217 to MCH6219,

MCH6221 to MCH6222, MCH6401 to MCH6402, MCH6404, MCH6603 to MCH6608, MCH6801

SIGTERM C2M1606

SIGUSR1 C2M1607

SIGUSR2 C2M1608

Cancel Handler Reason Codes

The following table lists the bits that are set in the reason code. If the activation group is to be stopped,

then the activation group is stopped bit is also set in the reason code. These bits must be correlated to

_CNL_MASK_T in _CNL_Hndlr_Parms_T in <except.h>. Column 2 contains the macro constant defined

for the cancel reason mask in <except.h>.

 Table 18. Determining Canceled Invocation Reason Codes

Function Bits set in reason code Rationale

Library routines

exit _EXIT_VERB The definition of exit is normal end of processing,

and therefore invocations canceled by this function

is done with a reason code of normal.

abort _ABNORMAL_TERM

 _EXIT_VERB

The definition of abort is abnormal end of

processing, and therefore invocations canceled by

this function are done with a reason code of

abnormal.

longjmp _JUMP The general use of the longjmp() function is to

return from an exception handler, although it may

be used in non-exception situations as well. It is

used as part of the ″normal″ path for a program,

and therefore any invocations canceled because of it

are cancelled with a reason code of normal.

Unhandled function

check

_ABNORMAL_TERM_

UNHANDLED_EXCP

Not handling an exception which is an abnormal

situation.

System APIs

CEEMRCR _ABNORMAL_TERM

_EXCP_SENT

This API is only used during exception processing. It

is typically used to cancel invocations where a

resume is not possible, or at least the behavior

would be undefined if control was resumed in them.

Also, these invocations have had a chance to handle

the exception but did not do so. Invocations

canceled by this API are done with reason code of

abnormal.

514 ILE C/C++ Runtime Library Functions V6R1

Table 18. Determining Canceled Invocation Reason Codes (continued)

Function Bits set in reason code Rationale

QMHSNDPM

/QMHRSNEM

(escape messages)

Message Handler

APIs

_ABNORMAL_TERM _EXCP_SENT All invocations down to the target invocation are

canceled without any chance of handling the

exception. The API topic contains information about

these APIs.

i5/OS commands

Process end _ABNORMAL_TERM

_PROCESS_TERM

_AG_TERMINATING

Any externally initiated shutdown of an activation

group is considered abnormal.

RCLACTGRP _ABNORMAL_TERM _RCLRSC The default is abnormal termination. The

termination could be normal if a normal/abnormal

flag is added to the command.

 Table 19. Common Reason Code for Cancelling Invocations

Bit Description Header File Constant <except.h>

Bits 0 Reserved

Bits 1 Invocation canceled due to sending exception message _EXCP_SENT

Bits 2-15 Reserved

Bit 16 0 - normal end of process 1 - abnormal end of process _ABNORMAL_TERM

Bit 17 Activation Group is ending. _AG_TERMINATING

Bit 18 Initiated by Reclaim Activation Group (RCLACTGRP) _RCLRSC

Bit 19 Initiated by the process end. _PROCESS_TERM

Bit 20 Initiated by an exit() function. _EXIT_VERB

Bit 21 Initiated by an unhandled function check. _UNHANDLED_EXCP

Bit 22 Invocation canceled due to a longjmp() function. _JUMP

Bit 23 Invocation canceled due to a jump because of exception

processing.

_JUMP_EXCP

Bits 24-31 Reserved (0)

Exception Classes

In a CL program, you can monitor for a selected group of exceptions, or a single exception, based on the

exception identifier. The only class2 values the exception handler will monitor for are _C2_MH_ESCAPE,

_C2_MH_STATUS, _C2_MH_NOTIFY, and _C2_MH_FUNCTION_CHECK. For more information about

using the #pragma exception handler directive, see the WebSphere Development Studio: ILE C/C++ Compiler

Reference. This table defines all the exception classes you can specify.

 Table 20. Exception Classes

Bit position Header File Constant in <except.h> Exception class

0 _C1_BINARY_OVERFLOW Binary overflow or divide by zero

1 _C1_DECIMAL_OVERFLOW Decimal overflow or divide by

zero

2 _C1_DECIMAL_DATA_ERROR Decimal data error

3 _C1_FLOAT_OVERFLOW Floating-point overflow or divide

by zero

Chapter 3. Runtime Considerations 515

Table 20. Exception Classes (continued)

Bit position Header File Constant in <except.h> Exception class

4 _C1_FLOAT_UNDERFLOW Floating-point underflow or

inexact result

5 _C1_INVALID_FLOAT_OPERAND Floating-point invalid operand or

conversion error

6 _C1_OTHER_DATA_ERROR Other data error, for example edit

mask

7 _C1_SPECIFICATION_ERROR Specification (operand alignment)

error

8 _C1_POINTER_NOT_VALID Pointer not set/pointer type

invalid

9 _C1_OBJECT_NOT_FOUND Object not found

10 _C1_OBJECT_DESTROYED Object destroyed

11 _C1_ADDRESS_COMP_ERROR Address computation underflow or

overflow

12 _C1_SPACE_ALLOC_ERROR Space not allocated at specified

offset

13 _C1_DOMAIN_OR_STATE_VIOLATION Domain/State protection violation

14 _C1_AUTHORIZATION_VIOLATION Authorization violation

15 _C1_JAVA_THROWN_CLASS Exception thrown for a Java class.

16-28 _C1_VLIC_RESERVED VLIC reserved

29 _C1_OTHER_MI_EXCEPTION Remaining MI-generated

exceptions (other than function

check)

30 _C1_MI_GEN_FC_OR_MC MI-generated function check or

machine check

31 _C1_MI_SIGEXP_EXCEPTION Message generated via Signal

Exception instruction

32-39 n/a reserved

40 _C2_MH_ESCAPE *ESCAPE

41 _C2_MH_NOTIFY *NOTIFY

42 _C2_MH_STATUS *STATUS

43 _C2_MH_FUNCTION_CHECK function check

44-63 n/a reserved

Data Type Compatibility

Each high-level language has different data types. When you want to pass data between programs that

are written in different languages, you must be aware of these differences.

Some data types in the ILE C programming language have no direct equivalent in other languages.

However, you can simulate data types in other languages that use ILE C data types.

516 ILE C/C++ Runtime Library Functions V6R1

The following table shows the ILE C data type compatibility with ILE RPG.

 Table 21. ILE C Data Type Compatibility with ILE RPG

ILE C declaration in

prototype ILE RPG D spec, columns 33 to 39 Length Comments

char[n]

char *

 nA n An array of characters where n=1

to 32766.

char 1A 1 An Indicator that is a variable

starting with *IN.

char[n] nS 0 n A zoned decimal.

char[2n] nG 2n A graphic added.

char[2n+2] Not supported. 2n+2 A graphic data type.

_Packed struct {short i;

char[n]}

Not supported. n+2 A variable length field where i is

the intended length and n is the

maximum length.

char[n] D 8, 10 A date field.

char[n] T 8 A time field.

char[n] Z 26 A timestamp field.

short int 5I 0 2 An integer field.

short unsigned int 5U 0 2 An unsigned integer field.

int 10I 0 4 An integer field.

unsigned int 10U 0 4 An unsigned integer field

long int 10I 0 4 An integer field.

long unsigned int 10U 0 4 An unsigned integer field.

struct {unsigned int :

n}x;

Not supported. 4 A 4-byte unsigned integer, a

bitfield.

float Not supported. 4 A 4-byte floating point.

double Not supported. 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

enum Not supported. 1, 2, 4 Enumeration.

* * 16 A pointer.

decimal(n,p) nP p n/2+1 A packed decimal. n must be less

than or equal to 30.

union.element <type> with keyword OVERLAY(longest

field)

element

length

An element of a union.

data_type[n] <type> with keyword DIM(n) 16 An array to which C passes a

pointer.

struct data structure n A structure. Use the _Packed

qualifier on the struct.

pointer to function *

with keyword PROCPTR

16 A 16-byte pointer.

Chapter 3. Runtime Considerations 517

The following table shows the ILE C data type compatibility with ILE COBOL.

 Table 22. ILE C Data Type Compatibility with ILE COBOL

ILE C declaration in

prototype

ILE COBOL LINKAGE

SECTION Length Comments

char[n]

char *

PIC X(n). n An array of characters where n=1 to

3,000,000

char PIC 1 INDIC .. 1 An indicator.

char[n] PIC S9(n) DISPLAY n A zoned decimal.

wchar_t[n] PIC G(n) 2n A graphic data type.

_Packed struct {short i;

char[n]}

05 VL-FIELD.

 10 i PIC S9(4)

 COMP-4.

 10 data PIC X(n).

n+2 A variable length field where i is the

intended length and n is the maximum

length.

char[n] PIC X(n). 6 A date field.

char[n] PIC X(n). 5 A day field.

char PIC X. 1 A day-of-week field.

char[n] PIC X(n). 8 A time field.

char[n] PIC X(n). 26 A time stamp field.

short int PIC S9(4) COMP-4. 2 A 2-byte signed integer with a range of

-9999 to +9999.

short int PIC S9(4) BINARY. 2 A 2-byte signed integer with a range of

-9999 to +9999.

int PIC S9(9) COMP-4. 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

int PIC S9(9) BINARY. 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

int USAGE IS INDEX 4 A 4-byte integer.

long int PIC S9(9) COMP-4. 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

long int PIC S9(9) BINARY. 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

struct {unsigned int : n}x; PIC 9(9) COMP-4.

PIC X(4).

4 Bitfields can be manipulated using hex

literals.

float Not supported. 4 A 4-byte floating point.

double Not supported. 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

enum Not supported. 1, 2, 4 Enumeration.

* USAGE IS POINTER 16 A pointer.

decimal(n,p) PIC S9(n-p)V9(p) COMP-3 n/2+1 A packed decimal.

decimal(n,p) PIC S9(n-p) 9(p)

PACKED-DECIMAL

n/2+1 A packed decimal.

union.element REDEFINES element

length

An element of a union.

data_type[n] OCCURS 16 An array to which C passes a pointer.

518 ILE C/C++ Runtime Library Functions V6R1

Table 22. ILE C Data Type Compatibility with ILE COBOL (continued)

ILE C declaration in

prototype

ILE COBOL LINKAGE

SECTION Length Comments

struct 01 record

 05 field1

 05 field2

n A structure. Use the _Packed qualifier

on the struct. Structures passed should

be passed as a pointer to the structure

if you want to change the contents of

the structure.

pointer to function PROCEDURE-POINTER 16 A 16 byte pointer to a procedure.

Not supported. PIC S9(18) COMP-4. 8 An 8 byte integer.

Not supported. PIC S9(18) BINARY. 8 An 8 byte integer.

The following table shows the ILE C data type compatibility with ILE CL.

 Table 23. ILE C Data Type Compatibility with ILE CL

ILE C declaration in

prototype CL Length Comments

char[n]

char *

*CHAR LEN(&N) n An array of characters where n=1 to

32766. A null-terminated string. For

example, CHGVAR &V1 VALUE (&V

*TCAT X’00’) where &V1 is one byte

bigger than &V.

char *LGL 1 Holds ’1’ or ’0’.

_Packed struct {short i;

char[n]}

Not supported. n+2 A variable length field where i is the

intended length and n is the maximum

length.

integer types Not supported. 1, 2, 4 A 1-, 2-, or 4- byte signed or unsigned

integer.

float constants CL constants only. 4 A 4- or 8- byte floating point.

decimal(n,p) *DEC n/2+1 A packed decimal. The limit of n is 15

and p is 9.

union.element Not supported. element

length

An element of a union.

struct Not supported. n A structure. Use the _Packed qualifier on

the struct.

pointer to function Not supported. 16 A 16-byte pointer.

The following table shows the ILE C data type compatibility with OPM RPG/400®.

 Table 24. ILE C Data Type Compatibility with OPM RPG/400

ILE C declaration in

prototype

OPM RPG/400 I spec, DS

subfield columns spec Length Comments

char[n]

char *

1 10 n An array of characters where n=1 to

32766.

char *INxxxx 1 An Indicator that is a variable starting

with *IN.

char[n] 1 nd (d>=0) n A zoned decimal. The limit of n is 30.

char[2n+2] Not supported. 2n+2 A graphic data type.

Chapter 3. Runtime Considerations 519

Table 24. ILE C Data Type Compatibility with OPM RPG/400 (continued)

ILE C declaration in

prototype

OPM RPG/400 I spec, DS

subfield columns spec Length Comments

_Packed struct {short i;

char[n]}

Not supported. n+2 A variable length field where i is the

intended length and n is the maximum

length.

char[n] Not supported. 6, 8, 10 A date field.

char[n] Not supported. 8 A time field.

char[n] Not supported. 26 A time stamp field.

short int B 1 20 2 A 2-byte signed integer with a range of

-9999 to +9999.

int B 1 40 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

long int B 1 40 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

struct {unsigned int : n}x; Not supported. 4 A 4-byte unsigned integer, a bitfield.

float Not supported. 4 A 4-byte floating point.

double Not supported. 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

enum Not supported. 1, 2, 4 Enumeration.

* Not supported. 16 A pointer.

decimal(n,p) P 1 n/2+1d n/2+1 A packed decimal. n must be less than

or equal to 30.

union.element data structure subfield element

length

An element of a union.

data_type[n] E-SPEC array 16 An array to which C passes a pointer.

struct data structure n A structure. Use the _Packed qualifier

on the struct.

pointer to function Not supported. 16 A 16 byte pointer.

The following table shows the ILE C data type compatibility with OPM COBOL/400®.

 Table 25. ILE C Data Type Compatibility with OPM COBOL/400

ILE C declaration in

prototype

OPM COBOL LINKAGE

SECTION Length Comments

char[n]

char *

PIC X(n). n An array of characters where n=1 to

3,000,000

char PIC 1 INDIC .. 1 An indicator.

char[n] PIC S9(n) USAGE IS DISPLAY n A zoned decimal. The limit of n is 18.

_Packed struct {short i;

char[n]}

05 VL-FIELD.

 10 i PIC S9(4)

 COMP-4.

 10 data PIC X(n).

n+2 A variable length field where i is the

intended length and n is the maximum

length.

char[n] PIC X(n). 6, 8, 10 A date field.

char[n] PIC X(n). 8 A time field.

char[n] PIC X(n). 26 A time stamp field.

520 ILE C/C++ Runtime Library Functions V6R1

Table 25. ILE C Data Type Compatibility with OPM COBOL/400 (continued)

ILE C declaration in

prototype

OPM COBOL LINKAGE

SECTION Length Comments

short int PIC S9(4) COMP-4. 2 A 2 byte signed integer with a range of

-9999 to +9999.

int PIC S9(9) COMP-4. 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

long int PIC S9(9) COMP-4. 4 A 4-byte signed integer with a range of

-999999999 to +999999999.

struct {unsigned int : n}x; PIC 9(9) COMP-4.

PIC X(4).

4 Bitfields can be manipulated using hex

literals.

float Not supported. 4 A 4-byte floating point.

double Not supported. 8 An 8-byte double.

long double Not supported. 8 An 8-byte long double.

enum Not supported. 1, 2, 4 Enumeration.

* USAGE IS POINTER 16 A pointer.

decimal(n,p) PIC S9(n-p)V9(p) COMP-3 n/2+1 A packed decimal. The limits of n and

p are 18.

union.element REDEFINES element

length

An element of a union.

data_type[n] OCCURS 16 An array to which C passes a pointer.

struct 01 record n A structure. Use the _Packed qualifier

on the struct. Structures passed should

be passed as a pointer to the structure

if you want to change the contents of

the structure.

pointer to function Not supported. 16 A 16-byte pointer.

Not supported. PIC S9(18) COMP-4. 8 An 8 byte integer.

The following table shows the ILE C data type compatibility with CL.

 Table 26. ILE C Data Type Compatibility with CL

ILE C declaration in

prototype CL Length Comments

char[n]

char *

*CHAR LEN(&N) n An array of characters where n=1 to

32766. A null terminated string. For

example, CHGVAR &V1 VALUE (&V

*TCAT X’00’) where &V1 is one byte

bigger than &V. The limit of n is 9999.

char *LGL 1 Holds ’1’ or ’0’.

_Packed struct {short i;

char[n]}

Not supported. n+2 A variable length field where i is the

intended length and n is the maximum

length.

integer types Not supported. 1, 2, 4 A 1-, 2- or 4- byte signed or unsigned

integer.

float constants CL constants only. 4 A 4- or 8- byte floating point.

decimal(n,p) *DEC n/2+1 A packed decimal. The limit of n is 15

and p is 9.

Chapter 3. Runtime Considerations 521

Table 26. ILE C Data Type Compatibility with CL (continued)

ILE C declaration in

prototype CL Length Comments

union.element Not supported. element

length

An element of a union.

struct Not supported. n A structure. Use the _Packed qualifier on

the struct.

pointer to function Not supported. 16 A 16-byte pointer.

The following table shows how arguments are passed from a command line CL call to an ILE C program.

 Table 27. Arguments Passed From a Command Line CL Call to an ILE C Program

Command Line Argument Argv Array ILE C Arguments

argv[0] ″LIB/PGMNAME″

argv[1..255] normal parameters

’123.4’ argv[1] ″123.4″

123.4 argv[2] 0000000123.40000D

’Hi’ argv[3] ″Hi″

Lo argv[4] ″LO″

A CL character array (string) will not be NULL-ended when passed to an ILE C program. A C program

that will receive such arguments from a CL program should not expect the strings to be NULL-ended.

You can use the QCMDEXC to ensure that all the arguments will be NULL-ended.

The following table shows how CL constants are passed from a compiled CL program to an ILE C

program.

 Table 28. CL Constants Passed from a Compiled CL Program to an ILE C Program

Compile CL Program Argument Argv Array ILE C Arguments

argv[0] ″LIB/PGMNAME″

argv[1..255] normal parameters

’123.4’ argv[1] ″123.4″

123.4 argv[2] 0000000123.40000D

’Hi’ argv[3] ″Hi″

Lo argv[4] ″LO″

A command processing program (CPP) passes CL constants as defined in Table 28. You define an ILE C

program as a command processing program when you create your own CL command with the Create

Command (CRTCMD) command to call the ILE C program.

The following table shows how CL variables are passed from a compiled CL program to an ILE C

program. All arguments are passed by reference from CL to C.

 Table 29. CL Variables Passed from a Compiled CL Program to an ILE C Program

CL Variables ILE C Arguments

DCL VAR(&v) TYPE(*CHAR) LEN(10) VALUE(’123.4’) 123.4

DCL VAR(&d) TYPE(*DEC) LEN(10) VALUE(123.4) 0000000123.40000D

522 ILE C/C++ Runtime Library Functions V6R1

Table 29. CL Variables Passed from a Compiled CL Program to an ILE C Program (continued)

CL Variables ILE C Arguments

DCL VAR(&h) TYPE(*CHAR) LEN(10) VALUE(’Hi’) Hi

DCL VAR(&i) TYPE(*CHAR) LEN(10) VALUE(Lo) LO

DCL VAR(&j) TYPE(*LGL) LEN(1) VALUE(’1’) 1

CL variables and numeric constants are not passed to an ILE C program with null-ended strings.

Character constants and logical literals are passed as null-ended strings, but are not padded with blanks.

Numeric constraints such as packed decimals are passed as 15,5 (8 bytes).

Runtime Character Set

Each EBCDIC CCSID consists of two character types: invariant characters and variant characters.

The following table identifies the hexadecimal representation of the invariant characters in the C

character set.

 Table 30. Invariant Characters

.

0x4b

<

0x4c

(

0x4d

+

0x4e

&

0x50

*

0x5c

)

0x5d

;

0x5e

-

0x60

¦

0x6a

,

0x6b

%

0x6c

_

0x6d

>

0x6e

?

0x6f

:

0x7a

@

0x7c

’

0x7d

=

0x7e

″

0x7f

a-i

0x81 -

0x89

j-r

0x91 -

0x99

s-z

0xa2 -

0xa9

A-I

0xc1 -

0xc9

J-R

0xd1 -

0xd9

S-Z

0xe2 -

0xe9

0-9

0xf0 -

0xf9

’\a’

0x2f

’\b’

0x16

’\t’

0x05

’\v’

0x0b

’\f’

0x0c

’\r’

0x0d

’\n’

0x15

’ ’

0x40

Note: Not all EBCDIC character sets have all invariant characters at the invariant code points. Here are

the exceptions:

v Code page 290, used in Japanese CCSIDs 290, 930, and 5026, has the lowercase Latin characters

a-z in a nonstandard position.

v Code page 420, used in some Arabic CCSIDs, does not have the back quotation mark (`) whose

hexadecimal value is 0x7a.

v Code page 423, used in some older Greek CCSIDs, does not have the ampersand (&) whose

hexadecimal value is 0x50.

v Code pages 905 and 1026, both used in some Turkish CCSIDs, have a hexadecimal value of 0xfc

for the double quotation mark instead of the invariant hexadecimal value of 0x7f.

The following table identifies the hexadecimal representation of the variant characters in the C character

set for the most commonly used CCSIDs.

 Table 31. Variant Characters in Different CCSIDs

CC-

SID | ! ¬ \ ` # ~ [] ^ { } / ¢ $

037 0x4f 0x5a 0x5f 0xe0 0x79 0x7b 0xa1 0xba 0xbb 0xb0 0xc0 0xd0 0x61 0x4a 0x5b

256 0xbb 0x4f 0xba 0xe0 0x79 0x7b 0xa1 0x4a 0x5a 0x5f 0xc0 0xd0 0x61 0xb0 0x5b

Chapter 3. Runtime Considerations 523

|
|

|
|

|
|

|
|

|
|

Table 31. Variant Characters in Different CCSIDs (continued)

CC-

SID | ! ¬ \ ` # ~ [] ^ { } / ¢ $

273 0xbb 0x4f 0xba 0xec 0x79 0x7b 0x59 0x63 0xfc 0x5f 0x43 0xdc 0x61 0xb0 0x5b

277 0xbb 0x4f 0xba 0xe0 0x79 0x4a 0xdc 0x9e 0x9f 0x5f 0x9c 0x47 0x61 0xb0 0x67

278 0xbb 0x4f 0xba 0x71 0x51 0x63 0xdc 0xb5 0x9f 0x5f 0x43 0x47 0x61 0xb2 0x67

280 0xbb 0x4f 0xba 0x48 0xdd 0xb1 0x58 0x90 0x51 0x5f 0x44 0x45 0x61 0xb0 0x5b

284 0x4f 0xbb 0x5f 0xe0 0x79 0x69 0xbd 0x4a 0x5a 0xba 0xc0 0xd0 0x61 0xb0 0x5b

285 0x4f 0x5a 0x5f 0xe0 0x79 0x7b 0xbc 0xb1 0xbb 0xba 0xc0 0xd0 0x61 0xb0 0x4a

297 0xbb 0x4f 0xba 0x48 0xa0 0xb1 0xbd 0x90 0x65 0x5f 0x51 0x54 0x61 0xb0 0x5b

500 0xbb 0x4f 0xba 0xe0 0x79 0x7b 0xa1 0x4a 0x5a 0x5f 0xc0 0xd0 0x61 0xb0 0x5b

See the i5/OS globalization topic for more information about coding variant characters in the other IBM

CCSIDs.

Understanding CCSIDs and Locales

CCSIDs of Characters and Character Strings

Every character or character string has a CCSID associated with it. The CCSID of the character or

character string depends on the origin of the data. You need to pay attention to the CCSID of a character

or character string. It is also important that values are converted to the appropriate CCSID when

required.

If LOCALETYPE(*LOCALEUTF) is not specified on the compilation command, the following assumptions

are made:

v The CCSID of the job is the same as the CCSID of the LC_CTYPE category of the current locale.

v The CCSID of character literal values matches the CCSID of the LC_CTYPE category of the current

locale.

v The CCSID of the LC_CTYPE category of the current locale is an EBCDIC CCSID.

v The CCSID that is used has all of the invariant characters in the proper positions, and some functions

assume that certain variant characters have the same hexadecimal value as they would in CCSID 37.

When LOCALETYPE(*LOCALEUTF) is specified, most functions (unless otherwise specified) expect

character data input in the CCSID of the LC_CTYPE category of the current locale, regardless of the

source of the character data. See “Unicode Support” on page 530 for more information.

For more information about variant and invariant characters, see “Runtime Character Set” on page 523.

For more information about CCSIDs, code pages, and other globalization concepts, see the i5/OS

globalization topic.

Character Literal CCSID

Character literal CCSID is the CCSID of the character and character string literals in compiled source

code. If a programmer does not take special action, the CCSID of these literals is set to the CCSID of the

source file. The CCSID of all the literals in a compilation unit can be changed by using the TGTCCSID

option on the compilation command. The #pragma convert directive can be used to change the CCSID of

character and character string literals within C or C++ source code. See WebSphere Development Studio: ILE

C/C++ Compiler Reference for more information.

If LOCALETYPE(*CLD) or LOCALETYPE(*LOCALE) is specified on the compilation command, all wide

character literals will be wide EBCDIC literals in the CCSID of the source file. If

524 ILE C/C++ Runtime Library Functions V6R1

|

|

|
|
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

LOCALETYPE(*LOCALEUCS2) is specified on the compilation command, all wide character literals will

be UCS-2 literals. If LOCALETYPE(*LOCALEUTF) is specified on the compilation command, all wide

characters will be UTF-32 literals.

The programmer must be aware of the CCSID of character literal values. The character literal CCSID

cannot be retrieved at run time.

Job CCSID

The CCSID of the job is always an EBCDIC CCSID. ASCII and Unicode job CCSIDs are not supported.

Data read from files is sometimes in the job CCSID. Some functions (for example, getenv()) produce job

CCSID output; some functions (for example, putenv()) expect job CCSID input. The CCSID used most

often by the C runtime is the CCSID of the LC_CTYPE category of the current locale. If the job CCSID

does not match the locale CCSID, conversion might be necessary.

Using the JOBI0400 receiver variable format, the job CCSID value can be retrieved at run time using the

QUSRJOBI API. The Default Coded Character Set ID field contains the job CCSID value.

File CCSID

When a file is opened, a CCSID is associated with it. Read operations of character and string values

return data in the CCSID of the file. Write operations to the file expect the data in the CCSID of the file.

The CCSID associated with a file when it is opened is dependent on the function that is used to open the

file:

v catopen function

The CCSID associated with a catalog file that is opened using catopen depends on the content of the

oflag parameter. Two of the flags that can be specified for the oflag parameter are

NL_CAT_JOB_MODE and NL_CAT_CTYPE_MODE. These flags are mutually exclusive.

– If NL_CAT_JOB_MODE is specified, the job CCSID is associated with the file.

– If NL_CAT_CTYPE_MODE is specified, the CCSID of the LC_CTYPE category of the current locale

is associated with the file.

– If neither flag is specified, no conversion takes place and the CCSID of the returned messages is the

same CCSID as that of the message file.
v fdopen() function

– If LOCALETYPE(*LOCALEUTF) is not specified, then the default CCSID for a file is the job CCSID.

The keyword ccsid=value, o_ccsid=value, or codepage=value can be used in the mode string on the

file open command to change the CCSID associated with the file. o_ccsid=value is the recommended

keyword. The standard files are always associated with the default file CCSID, so they are

associated with the job CCSID.

– If LOCALETYPE(*LOCALEUTF) is specified, then the default CCSID for a file is the CCSID of the

LC_CTYPE category of the current locale when the fopen() function is called. The keywords

described in the previous paragraph can still be used to override the CCSID associated with the file.

The standard files are always associated with the default file CCSID, so they are associated with the

CCSID of the LC_CTYPE category of the current locale when they are opened.
v fopen() and freopen() functions

– If LOCALETYPE(*LOCALEUTF) is not specified, the default CCSID for a file is the job CCSID.

- If SYSIFCOPT(*NOIFSIO) is specified on the compilation command, the keyword ccsid=value can

be used in the mode string on the file open command to change the CCSID of data read from or

written to the file.

- If SYSIFCOPT(*NOIFSIO) is not specified on the compilation command, the keyword ccsid=value,

o_ccsid=value, or codepage=value can be used in the mode string on the file open command to

change the CCSID associated with the file. o_ccsid=value is the recommended keyword.

The standard files are always associated with the default file CCSID, so they are associated with the

job CCSID.

Chapter 3. Runtime Considerations 525

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

|
|

– If LOCALETYPE(*LOCALEUTF) is specified, then the default CCSID for a file is the CCSID of the

LC_CTYPE category of the current locale when the fopen() or freopen() function is called. The

keyword ccsid=value, o_ccsid=value, or codepage=value can still be used to override the CCSID

associated with the file. The standard files are always associated with the default file CCSID, so they

are associated with the CCSID of the LC_CTYPE category of the current locale when they are

opened.
v _Ropen() function

The default CCSID associated with a file opened with the _Ropen() function is the job CCSID. The

ccsid=value keyword can be used in the mode parameter on the _Ropen() function to change the

CCSID associated with the file.

v wfopen() function

– If LOCALETYPE(*LOCALEUCS2) is specified, the default CCSID for a file is UCS-2. The keyword

ccsid=value, o_ccsid=value, or codepage=value can be used in the mode string on the file open

command to change the CCSID associated with the file. o_ccsid=value is the recommended

keyword.

– If LOCALETYPE(*LOCALEUTF) is specified, then the default CCSID for a file is UTF-32. The

keywords described in the previous paragraph can still be used to override the CCSID associated

with the file.

Locale CCSID

A CCSID is associated with each category of the locale (see “setlocale() — Set Locale” on page 339 for a

list of locale categories). The most commonly used CCSID from the locale is the CCSID associated with

the LC_CTYPE category of the locale. Confusion might arise if different locale categories have different

CCSID values, so it is recommended that all locale categories have the same CCSID value. You can

retrieve the CCSID of the LC_CTYPE category of the current locale by using the nl_langinfo() function

and specifying CODESET as the nl_item. Here are some additional locale CCSID details, broken down by

LOCALETYPE option specified on the compilation command:

v LOCALETYPE(*CLD)

LOCALETYPE(*CLD) is only supported by the ILE C compiler. Many POSIX functions are not

supported when LOCALETYPE(*CLD) is specified. One benefit of the LOCALETYPE(*CLD) option is

that all *CLD locales are CCSID 37. A limited number of locale objects are shipped with the system that

can be used with LOCALETYPE(*CLD). These objects all have the object type *CLD. To get a list of

*CLD locale objects, use the following command:

WRKOBJ OBJ(QSYS/*ALL) OBJTYPE(*CLD)

For more information about *CLD locales, see WebSphere Development Studio: ILE C/C++ Compiler

Reference.

v LOCALETYPE(*LOCALE)

This is the default LOCALETYPE setting for the ILE C compiler and ILE C++ compiler. The default

locale value usually has a CCSID that is equal to the job CCSID. A wide variety of locale objects exists

for this setting. These locale objects have the *LOCALE object type. The LOCALETYPE(*LOCALE)

option supports a larger number of CCSIDs and a larger number of functions than the

LOCALETYPE(*CLD) option.

v LOCALETYPE(*LOCALEUCS2)

This setting introduces a new set of locale categories for UCS-2 characters. These locale category names

begin with the LC_UNI_ substring. The original locale categories are still present, and all the preceding

notes for LOCALETYPE(*LOCALE) apply to LOCALETYPE(*LOCALEUCS2). This setting causes wide

characters to be interpreted as UCS-2 characters instead of wide EBCDIC characters. For more

information, see “Unicode Support” on page 530.

v LOCALETYPE(*LOCALEUTF)

The CCSID of the non-wide locale categories is UTF-8 (CCSID 1208) by default, but it can be changed

to have any single-byte or multibyte CCSID. The CCSID of the wide character (LC_UNI_*) locale

526 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|

categories is UTF-32. This setting includes limited CCSID neutrality. LOCALETYPE(*LOCALEUTF)

uses locale objects of type *LOCALE. For more information, see “Unicode Support” on page 530.

Wide Characters

The ILE C/C++ compilers support the following:

v If LOCALETYPE(*CLD) or LOCALETYPE(*LOCALE) is specified on the compilation command, wide

characters are treated as 2-byte wide EBCDIC characters.

v If LOCALETYPE(*LOCALEUCS2) is specified on the compilation command, wide characters are

treated as 2-byte UCS-2 characters.

v If LOCALETYPE(*LOCALEUTF) is specified on the compilation command, wide characters are treated

as 4-byte UTF-32 characters.

When EBCDIC wide characters are used, the CCSID of the EBCDIC characters depends on the CCSID of

the LC_CTYPE category of the current locale. See “Unicode Support” on page 530 for more information

about Unicode characters.

Wide Character Conversions to and from Single-Byte or Multibyte Characters

The character conversion routines examine the CCSID setting for the LC_CTYPE category of the current

locale to determine whether single-byte or multibyte characters are expected for the conversion from or to

wide characters.

The handling of wide character conversions (to and from single-byte or multibyte character strings) is

dependent on the LOCALETYPE parameter value specified on the compilation command. The handling

depends on the shift state of the single-byte or multibyte character string. The mbtowc, mbstowcs, wctomb,

and wcstombs functions maintain an internal shift state variable. The mbrtowc, mbsrtowcs, wcrtomb, and

wcsrtombs functions allow the shift state variable to be passed as a parameter. The second set of functions

is recommended because they are more versatile and are also threadsafe.

LOCALETYPE(*CLD) and LOCALETYPE(*LOCALE) behavior: When converting from a single-byte

CCSID to wide EBCDIC, the wide EBCDIC character is constructed by adding a zero byte to the

single-byte character. For example, the single-byte CCSID 37 character A (hexadecimal value 0xC1) would

have the hexadecimal value 0x00C1 when it is converted to a wide EBCDIC character.

When converting from a multibyte CCSID to wide EBCDIC, the conversion method depends on the shift

state of the input string. In the initial shift state, characters are read exactly as if they were single-byte

characters until a shift-out character (hexadecimal value 0x0E) is read. This character indicates a shift to

double-byte shift state. In the double-byte shift state, 2 bytes are read at a time: the first byte makes up

the first byte of the EBCDIC wide character and the second byte will be the second byte of the EBCDIC

wide character. If the shift-in character (hexadecimal value 0x0F) is encountered, the function returns to

the initial shift state parsing. For example, the multibyte string represented by the hexadecimal value

C10E43DA0FC2 is translated to the EBCDIC wide character string with the hexadecimal value

00C143DA00C2.

When converting from wide EBCDIC to a single-byte CCSID, if the character has a hexadecimal value

greater than 0x00FF, EOF is returned; otherwise, the top byte is truncated and the lower byte is returned.

For example, the wide EBCDIC character with the hexadecimal value 0x00C1 is converted to the

single-byte character whose hexadecimal value is 0xC1.

When converting from wide EBCDIC to a multibyte CCSID, the conversion method is determined by the

shift state of the output string:

v If the output string is in the initial shift state, any EBCDIC wide character with a hexadecimal value

that is less than or equal to 0x00FF is truncated to 1 byte and placed in the output string.

Chapter 3. Runtime Considerations 527

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

v If the output string is in the initial shift state, any EBCDIC wide character with a value that is greater

than 0x00FF causes a shift-out character (hexadecimal value 0x0E) to be generated in the output string.

The shift state of the output string is updated to double-byte, and both bytes of the EBCDIC wide

character are copied to the output string.

v If the output string is in the double-byte shift state and an EBCDIC wide character whose hexadecimal

value is less than or equal to 0x00FF is encountered, a shift-in character (hexadecimal value 0x0F) is

placed in the output string. The shift-in character is followed by the value of the EBCDIC wide

character that is truncated to 1 byte. The shift state of the output string is changed to single-byte.

v If the output string is in the double-byte shift state and an EBCDIC wide character whose value is

greater than 0x00FF is encountered, the 2 bytes of the EBCDIC wide character are copied to the output

string.

For example, the EBCDIC wide character string with the hexadecimal value 00C143DA00C2 is translated

to a multibyte string with the hexadecimal value C10E43DA0FC2.

LOCALETYPE(*LOCALEUCS2) and LOCALETYPE(*LOCALEUTF) behavior: If

LOCALETYPE(*LOCALEUCS2) is specified on the compilation command, wide character values are

2-byte UCS-2 values. All conversions between UCS-2 strings and single-byte or multibyte strings are

conducted as if the iconv() function were used. CCSID 13488 is used for the UCS-2 string, and the

CCSID of the LC_CTYPE category of the current locale is used for the single-byte or multibyte string.

If LOCALETYPE(*LOCALEUTF) is specified on the compilation command, wide character values are

4-byte UTF-32 values. All conversions between UTF-32 strings and single-byte or multibyte strings are

conducted as if the iconv() function were used. UTF-32 is not supported by the iconv() function.

Therefore, in conversions between a UTF-32 string and a single-byte or multibyte string, UTF-16 (CCSID

1200) is used as an intermediary data type. Transformations between UTF-32 and UTF-16 are

accomplished using the QlgTransformUCSData() API. The iconv() API is used for the conversion between

UTF-16 and the CCSID of the LC_CTYPE category of the current locale.

Wide Characters and File I/O

Wide character write routines: Several routines, including fwprintf, vwprintf, vfwprintf, wprintf,

fputwc, fputws, putwc, putwchar, and ungetwc can be used to write wide characters to a file. These

routines are not available when either LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the

compilation command.

If LOCALETYPE(*LOCALE) is specified on the compilation command, the wide characters that are

written are assumed to be wide character equivalents of the code points in the file CCSID. The CCSID of

the file is assumed to be a single or multibyte EBCDIC CCSID.

If LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command, the wide characters that are being written are assumed to be Unicode characters. For

LOCALETYPE(*LOCALEUCS2), they are assumed to be 2-byte UCS-2 characters. For

LOCALETYPE(*LOCALEUTF), they are assumed to be 4-byte UTF-32 characters. If the file that is being

written to is not one of the standard files, the Unicode characters are then written directly to the file as if

the file had been opened for writing in binary mode. The CCSID of the file is assumed to be a Unicode

CCSID that matches the locale setting. If the file that is being written to is a standard file, the Unicode

input is converted to the CCSID of the job before being written to the file.

Non-wide character write routines: The non-wide character write routines (fprintf, vfprintf, vprintf,

and printfcan) can take a wide character as input.

In all cases, the wide characters are converted to multibyte character strings in the CCSID of the

LC_CTYPE category of the current locale as if the wctomb function or the wcstombs function were used.

The file CCSID is assumed to match the CCSID of the LC_CTYPE category of the current locale.

528 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

If LOCALETYPE(*LOCALEUTF) is specified on the compilation command and the file that is being

written to is a standard file, the output will automatically be converted from the CCSID of the

LC_CTYPE category of the current locale to the CCSID of the file (which usually matches the job CCSID).

Wide character read routines: The routines that can read wide characters from a file include fgetwc,

fgetws, fwscanf, getwc, getwchar, vfwscanf, vwscanf, and wscanf. These routines are not available when

either LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on the compilation command.

If LOCALETYPE(*LOCALE) is specified on the compilation command, the wide characters read from the

file are assumed to be EBCDIC wide character equivalents of the code points in the file CCSID.

If LOCALETYPE(*LOCALEUCS2) or LOCALETYPE(*LOCALEUTF) is specified on the compilation

command, the input wide characters and the characters in the file are assumed to be Unicode characters.

For LOCALETYPE(*LOCALEUCS2), they are assumed to be 2-byte UCS-2 characters. For

LOCALETYPE(*LOCALEUTF), they are assumed to be 4-byte UTF-32 characters. If the file that is being

read is not one of the standard files, the Unicode characters are read directly from the file as if the file

had been opened in binary mode. The CCSID of the file is assumed to be a Unicode CCSID that matches

the locale setting. If the file that is being read is a standard file, then the job CCSID input that is read

from the file is converted to the appropriate Unicode CCSID.

Non-wide character read routines: The non-wide character read routines (fscanf, scanf, vfscanf, and

vscanf) can produce a wide character as output.

In all cases, the wide characters are converted from multibyte character strings in the CCSID of the

LC_CTYPE category of the current locale to the appropriate wide character type for the locale setting as if

the mbtowc function or the mbstowcs function were used.

Asynchronous Signal Model

The Asynchronous Signal Model (ASM) is used when the SYSIFCOPT(*ASYNCSIGNAL) option is

specified on the Create C Module (CRTCMOD) or Create Bound C Program (CRTBNDC) compilation

command. The ASM is also used when the RTBND(*LLP64) option is specified on the Create C++

Module (CRTCPPMOD) or Create Bound C++ Program (CRTBNDCPP) compilation command. It is

intended for compatibility with applications ported from the UNIX operating system. For modules that

use the ASM, the signal() and raise() functions are implemented using the i5/OS Signal APIs

described in the Application programming interfaces topic under the Programming heading in the i5/OS

Information Center.

i5/OS exceptions sent to an ASM module or program are converted to asynchronous signals. The

exceptions are processed by an asynchronous signal handler.

Modules compiled to use the ASM can be intermixed with modules using the Original Signal Model

(OSM) in the same processes, programs, and service programs. There are several differences between the

two signal models:

v The OSM is based on exceptions, while the ASM is based on asynchronous signals.

v Under the OSM, the signal vector and signal mask are scoped to the activation group. Under the ASM,

there is one signal vector per process and one signal mask per thread. Both types of signal vectors and

signal masks are maintained at run time.

v The same asynchronous signal vector and signal masks are operated on by all ASM modules in a

thread, regardless of the activation group the signal vector and signal masks belong to. You must save

and restore the state of the signal vector and signal masks to ensure that they are not changed by any

ASM modules. The OSM does not use the asynchronous signal vector and signal masks.

v Signals that are raised by OSM modules are sent as exceptions. Under the OSM, the exceptions are

received and handled by the _C_exception_router function, which directly calls the OSM signal

handler of the user.

Chapter 3. Runtime Considerations 529

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

Asynchronous signals are not mapped to exceptions, and are not handled by signal handlers that are

registered under the OSM. Under the ASM, the exceptions are received and handled by the

_C_async_exception_router function, which maps the exception to an asynchronous signal. An ASM

signal handler receives control from the i5/OS asynchronous signal component.

When an OSM module raises a signal, the generated exception percolates up the call stack until it finds

an exception monitor. If the previous call is an OSM function, the _C_exception_router catches the

exception and performs the OSM signal action. The ASM signal handler does not receive the signal.

If the previous call is an ASM function, the _C_async_exception_router handles the exception and

maps it to an asynchronous signal. The handling of the asynchronous signal then depends on the

asynchronous signal vector and mask state of the thread, as defined in the i5/OS Signal management

topic.

If the previous call is an ASM function within a different program or service program, one of two

actions occurs. If the OSM program that raises the signal is running in the same activation group with

the ASM program, the exception is mapped to an asynchronous signal using the mapping described

previously. The signal ID is preserved when the exception is mapped to a signal. So, signal handlers

that are registered with the asynchronous signal model are able to receive signals generated under the

original signal model. This approach can be used to integrate two programs with different signal

models.

If the OSM program that raises the signal is running in a different activation group than the ASM

program, any signal that is unmonitored in that activation group causes the termination of that

program and activation group. The unmonitored signal is then percolated to the calling program as a

CEE9901 exception. The CEE9901 exception is mapped to a SIGSEGV asynchronous signal.

v Under the ASM, the C functions raise() and signal() are integrated with the system signal functions,

such as kill() and sigaction(). These two sets of APIs can be used interchangeably. This cannot be

done under the OSM.

v A user-specified exception monitor established with #pragma exception_handler has precedence over

the compiler-generated monitor, which calls _C_async_exception_router. In some situations, this

precedence enables you to bypass the compiler-generated monitor, which invokes

_C_async_exception_router.

v The _GetExcData() function is not available under the ASM to retrieve the exception ID associated with

the signal. However, if an extended signal handler is established using the sigaction() function, it can

access the exception information from the signal-specific data structure. For more information, see

“_GetExcData() — Get Exception Data” on page 154.

Unicode Support

The Unicode Standard is a standardized character code designed to encode international texts for display

and storage. It uses a unique 16- or 32–bit value to represent each individual character, regardless of

platform, language, or program. Using Unicode, you can develop a software product that will work with

various platforms, languages, and countries or regions. Unicode also allows data to be transported

through many different systems.

There are two different forms of Unicode support available from the compiler and run time. This section

describes the two forms of Unicode support as well as some of the features of and considerations for

using that support. To obtain additional information about Unicode, visit the Unicode Home Page at

www.unicode.org.

The first type of Unicode support is UCS-2 support. When the LOCALETYPE(*LOCALEUCS2) option is

specified on the compilation command, the compiler and run time use wide characters (that is, characters

of the wchar_t type) and wide character strings (that is, strings of the wchar_t * type) that represent

2-byte Unicode characters. Narrow (non-wide) characters and narrow character strings represent EBCDIC

characters, just as they do when the UCS-2 support is not enabled. The Unicode characters represent

codepoints in CCSID 13488.

530 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

http://www.unicode.org/

The second type of Unicode support is UTF-8 or UTF-32 support (also known as UTF support). When the

LOCALETYPE(*LOCALEUTF) option is specified on the compilation command, the compiler and run

time use wide characters and wide character strings that represent 4-byte Unicode characters. Each 4-byte

character represents a single UTF-32 character. Narrow characters and narrow character strings represent

UTF-8 characters. Each UTF-8 character is from 1 to 4 bytes in size. Most normal characters are a single

byte in size, and, in fact, all 7-bit ASCII characters map directly to UTF-8 and are 1 byte in size. The

UTF-8 characters represent codepoints in CCSID 1208.

When the UTF support is enabled, not only do the wide characters become UTF-32 Unicode, but the

narrow characters become UTF-8 Unicode as well. As an example, consider the following HelloWorld

program.

#include <stdio.h>

int main() {

 printf("Hello World\n");

 return 0;

}

When this program is compiled with UTF support, the character string is stored within the program as

UTF-8 characters and not EBCDIC characters. The printf() function knows this and is able to parse the

UTF-8 characters and generate the output as expected. However, if this program called some other

user-supplied routine that did not know how to handle UTF-8 characters, the other routine might yield

incorrect results or behavior.

Reasons to Use Unicode Support

You might want to use Unicode support for your application in two situations. The first situation is if

your application is an international application and requires support for several different languages. The

Unicode character set provides an easy way to allow a single application to handle any language or

character set. The application can perform all input, processing, and output using Unicode characters.

Another situation for using Unicode support is for porting a 7-bit ASCII application. Because the UTF-8

character set is a superset of 7-bit ASCII, an ASCII application can be ported more easily to a UTF-8

environment than to an EBCDIC environment.

Pseudo-CCSID Neutrality

When a program is compiled with UTF support, the run time allows more than just UTF-8 characters,

and it essentially becomes CCSID neutral. The run time handles whatever CCSID is contained within the

current locale. By default, when a program is compiled with UTF support, the locale that is loaded is a

UTF-8 (CCSID 1208) locale. This allows the run time to handle CCSID 1208. If the setlocale() routine is

called to set the locale to an EBCDIC locale (for example, a CCSID 37 locale), the run time handles CCSID

37. This, along with the #pragma convert support within the compiler, can be used to provide

international application support. Here is an example:

#include <stdio.h>

#include <locale.h>

int main() {

 /* This string is in CCSID 1208 */

 printf("Hello World\n");

 /* Change locale to a CCSID 37 locale */

 setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE");

 #pragma convert(37)

 /* This string is in CCSID 37 */

 printf("Hello World\n");

 return 0;

}

Chapter 3. Runtime Considerations 531

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Unicode from Other ILE Languages

The Unicode routines are easily accessible in the C and C++ languages if you include the appropriate

header files and use the appropriate LOCALETYPE option on the C or C++ compilation command. The

Unicode routines are accessible from other ILE languages, such as RPG, COBOL, and CL, although no

header files are provided for these languages.

The following table shows the routines added for UCS-2 support. The support routines have a prefix of

UCS2 or _C_UCS2_ added to the standard routine name. The Unicode routine has the same parameters as

the standard (non-Unicode) routine.

 _C_UCS2_btowc

_C_UCS2_fgetwc

_C_UCS2_fgetws

_C_UCS2_fprintf

_C_UCS2_fputwc

_C_UCS2_fputws

_C_UCS2_fscanf

_C_UCS2_fwprintf

_C_UCS2_fwscanf

_C_UCS2_getwc

_C_UCS2_getwchar

_C_UCS2_iswalnum

_C_UCS2_iswalpha

_C_UCS2_iswcntrl

_C_UCS2_iswctype

_C_UCS2_iswdigit

_C_UCS2_iswgraph

_C_UCS2_iswlower

_C_UCS2_iswprint

_C_UCS2_iswpunct

_C_UCS2_iswspace

_C_UCS2_iswupper

_C_UCS2_iswxdigit

_C_UCS2_mblen

_C_UCS2_mbrlen

_C_UCS2_mbrtowc

_C_UCS2_mbsinit

_C_UCS2_mbsrtowcs

_C_UCS2_printf

_C_UCS2_putwc

_C_UCS2_putwchar

_C_UCS2_scanf

_C_UCS2_snprintf

_C_UCS2_sprintf

_C_UCS2_sscanf

_C_UCS2_swprintf

_C_UCS2_swscanf

_C_UCS2_towlower

_C_UCS2_towupper

_C_UCS2_ungetwc

_C_UCS2_vfprintf

_C_UCS2_vfscanf

_C_UCS2_vfwprintf

_C_UCS2_vfwscanf

_C_UCS2_vprintf

_C_UCS2_vscanf

_C_UCS2_vsnprintf

_C_UCS2_vsprintf

_C_UCS2_vsscanf

_C_UCS2_vswprintf

_C_UCS2_vswscanf

_C_UCS2_vwprintf

_C_UCS2_vwscanf

_C_UCS2_wcsftime

_C_UCS2_wcsicmp

_C_UCS2_wcslocaleconv

_C_UCS2_wcsnicmp

_C_UCS2_wcsrtombs

_C_UCS2_wcstod32

_C_UCS2_wcstod64

_C_UCS2_wcstod128

_C_UCS2_wctob

_C_UCS2_wprintf

_C_UCS2_wscanf

_UCS2_mbstowcs

_UCS2_mbtowc

_UCS2_setlocale

_UCS2_wcrtomb

_UCS2_wcstod

_UCS2_wcstol

_UCS2_wcstoll

_UCS2_wcstombs

_UCS2_wcstoul

_UCS2_wcstoull

_UCS2_wcswidth

_UCS2_wctomb

_UCS2_wcwidth

When you use the LOCALETYPE(*LOCALEUCS2) option with either the C or C++ compiler, the default

UCS-2 locale is loaded when the program starts. When you use any of the Unicode routines in the

preceding table from a different language, a call to _UCS2_setlocale(LC_ALL, "") should be added when

the application starts to ensure that the default UCS2 locale is loaded.

The following table shows the routines added for CCSID neutral and UTF-8 support. The routines have a

prefix of _C_NEU_DM_ (for data management I/O functions), _C_NEU_IFS_ or _C_UTF_IFS (for IFS I/O

functions), or _C_NEU_ or _C_UTF_ added to the standard routine name. The Unicode routine has the same

parameters as the standard (non-Unicode) routine.

Routines that operate on wide characters have UTF in the prefix. Routines that do not operate on wide

characters have NEU in the prefix.

532 ILE C/C++ Runtime Library Functions V6R1

|

|
|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

_C_NEU_asctime

_C_NEU_asctime_r

_C_NEU_atof

_C_NEU_atoi

_C_NEU_catopen

_C_NEU_ctime

_C_NEU_ctime_r

_C_NEU_ctime64

_C_NEU_ctime64_r

_C_NEU_DM_clearerr

_C_NEU_DM_feof

_C_NEU_DM_ferror

_C_NEU_DM_fflush

_C_NEU_DM_fgetc

_C_NEU_DM_fgetpos

_C_NEU_DM_fgets

_C_NEU_DM_fopen

_C_NEU_DM_fprintf

_C_NEU_DM_fputc

_C_NEU_DM_fputs

_C_NEU_DM_fread

_C_NEU_DM_freopen

_C_NEU_DM_fscanf

_C_NEU_DM_fseek

_C_NEU_DM_fsetpos

_C_NEU_DM_ftell

_C_NEU_DM_fwrite

_C_NEU_DM_getc

_C_NEU_DM_getchar

_C_NEU_DM_gets

_C_NEU_DM_perror

_C_NEU_DM_printf

_C_NEU_DM_putc

_C_NEU_DM_putchar

_C_NEU_DM_puts

_C_NEU_DM_remove

_C_NEU_DM_rename

_C_NEU_DM_rewind

_C_NEU_DM_ropen

_C_NEU_DM_scanf

_C_NEU_DM_setbuf

_C_NEU_DM_setvbuf

_C_NEU_DM_tmpfile

_C_NEU_DM_tmpnam

_C_NEU_DM_ungetc

_C_NEU_DM_vfprintf

_C_NEU_DM_vfscanf

_C_NEU_DM_vprintf

_C_NEU_DM_vscanf

_C_NEU_gcvt

_C_NEU_gmtime

_C_NEU_gmtime_r

_C_NEU_IFS_clearerr

_C_NEU_IFS_fdopen

_C_NEU_IFS_feof

_C_NEU_IFS_ferror

_C_NEU_IFS_fflush

_C_NEU_IFS_fgetc

_C_NEU_IFS_fgetpos

_C_NEU_IFS_fgetpos64

_C_NEU_IFS_fgets

_C_NEU_IFS_fopen

_C_NEU_IFS_fopen64

_C_NEU_IFS_fprintf

_C_NEU_IFS_fputc

_C_NEU_IFS_fputs

_C_NEU_IFS_fread

_C_NEU_IFS_freopen

_C_NEU_IFS_freopen64

_C_NEU_IFS_fscanf

_C_NEU_IFS_fseek

_C_NEU_IFS_fseeko

_C_NEU_IFS_fseeko64

_C_NEU_IFS_fsetpos

_C_NEU_IFS_fsetpos64

_C_NEU_IFS_ftell

_C_NEU_IFS_ftello

_C_NEU_IFS_ftello64

_C_NEU_IFS_fwrite

_C_NEU_IFS_getc

_C_NEU_IFS_getchar

_C_NEU_IFS_gets

_C_NEU_IFS_perror

_C_NEU_IFS_printf

_C_NEU_IFS_putc

_C_NEU_IFS_putchar

_C_NEU_IFS_puts

_C_NEU_IFS_remove

_C_NEU_IFS_rename_keep

_C_NEU_IFS_rename_unlink

_C_NEU_IFS_rewind

_C_NEU_IFS_scanf

_C_NEU_IFS_setbuf

_C_NEU_IFS_setvbuf

_C_NEU_IFS_tmpfile

_C_NEU_IFS_tmpfile64

_C_NEU_IFS_tmpnam

_C_NEU_IFS_ungetc

_C_NEU_IFS_vfprintf

_C_NEU_IFS_vfscanf

_C_NEU_IFS_vprintf

_C_NEU_IFS_vscanf

_C_NEU_isalnum

_C_NEU_isalpha

_C_NEU_iscntrl

_C_NEU_isdigit

_C_NEU_isgraph

_C_NEU_islower

_C_NEU_isprint

_C_NEU_ispunct

_C_NEU_isspace

_C_NEU_isupper

_C_NEU_isxdigit

_C_NEU_itoa

_C_NEU_localeconv

_C_NEU_localtime

_C_NEU_localtime_r

_C_NEU_localtime64

_C_NEU_localtime64_r

_C_NEU_ltoa

_C_NEU_memicmp

_C_NEU_mktime

_C_NEU_mktime64

_C_NEU_nl_langinfo

_C_NEU_snprintf

_C_NEU_sprintf

_C_NEU_sscanf

_C_NEU_strcasecmp

_C_NEU_strchr

_C_NEU_strcspn

_C_NEU_strerror

_C_NEU_strfmon

_C_NEU_strftime

_C_NEU_strncasecmp

_C_NEU_strpbrk

_C_NEU_strptime

_C_NEU_strrchr

_C_NEU_strspn

_C_NEU_strtod

_C_NEU_strtod32

_C_NEU_strtod64

_C_NEU_strtod128

_C_NEU_strtof

_C_NEU_strtok

_C_NEU_strtok_r

_C_NEU_strtol

_C_NEU_strtold

_C_NEU_strtoll

_C_NEU_strtoul

_C_NEU_strtoull

_C_NEU_system

_C_NEU_toascii

_C_NEU_tolower

_C_NEU_toupper

_C_NEU_ultoa

_C_NEU_vsnprintf

_C_NEU_vsprintf

_C_NEU_vsscanf

_C_NEU_wctrans

_C_NEU_wctype

_C_UTF_btowc

_C_UTF_IFS_fgetwc

_C_UTF_IFS_fgetws

_C_UTF_IFS_fputwc

_C_UTF_IFS_fputws

_C_UTF_IFS_fwprintf

_C_UTF_IFS_fwscanf

_C_UTF_IFS_getwc

_C_UTF_IFS_getwchar

_C_UTF_IFS_putwc

_C_UTF_IFS_putwchar

_C_UTF_IFS_ungetwc

_C_UTF_IFS_vfwprintf

_C_UTF_IFS_vfwscanf

Chapter 3. Runtime Considerations 533

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_C_UTF_IFS_vwprintf

_C_UTF_IFS_vwscanf

_C_UTF_IFS_wfopen

_C_UTF_IFS_wfopen64

_C_UTF_IFS_wprintf

_C_UTF_IFS_wscanf

_C_UTF_isalnum

_C_UTF_isalpha

_C_UTF_isascii

_C_UTF_iscntrl

_C_UTF_isdigit

_C_UTF_isgraph

_C_UTF_islower

_C_UTF_isprint

_C_UTF_ispunct

_C_UTF_isspace

_C_UTF_isupper

_C_UTF_iswalnum

_C_UTF_iswalpha

_C_UTF_iswcntrl

_C_UTF_iswctype

_C_UTF_iswdigit

_C_UTF_iswgraph

_C_UTF_iswlower

_C_UTF_iswprint

_C_UTF_iswpunct

_C_UTF_iswspace

_C_UTF_iswupper

_C_UTF_iswxdigit

_C_UTF_isxdigit

_C_UTF_mblen

_C_UTF_mbrlen

_C_UTF_mbrtowc

_C_UTF_mbsinit

_C_UTF_mbsrtowcs

_C_UTF_mbstowcs

_C_UTF_mbtowc

_C_UTF_regcomp

_C_UTF_regerror

_C_UTF_regexec

_C_UTF_setlocale

_C_UTF_strcoll

_C_UTF_strxfrm

_C_UTF_swprintf

_C_UTF_swscanf

_C_UTF_toascii

_C_UTF_tolower

_C_UTF_toupper

_C_UTF_towctrans

_C_UTF_towlower

_C_UTF_towupper

_C_UTF_vswprintf

_C_UTF_vswscanf

_C_UTF_wcrtomb

_C_UTF_wcscat

_C_UTF_wcschr

_C_UTF_wcscmp

_C_UTF_wcscoll

_C_UTF_wcscpy

_C_UTF_wcscspn

_C_UTF_wcsfmon

_C_UTF_wcsftime

_C_UTF_wcsicmp

_C_UTF_wcslen

_C_UTF_wcslocaleconv

_C_UTF_wcsncat

_C_UTF_wcsncmp

_C_UTF_wcsncpy

_C_UTF_wcsnicmp

_C_UTF_WCS_nl_langinfo

_C_UTF_wcspbrk

_C_UTF_wcsptime

_C_UTF_wcsrchr

_C_UTF_wcsrtombs

_C_UTF_wcsspn

_C_UTF_wcsstr

_C_UTF_wcstod

_C_UTF_wcstod32

_C_UTF_wcstod64

_C_UTF_wcstod128

_C_UTF_wcstok

_C_UTF_wcstol

_C_UTF_wcstoll

_C_UTF_wcstombs

_C_UTF_wcstoul

_C_UTF_wcstoull

_C_UTF_wcswcs

_C_UTF_wcswidth

_C_UTF_wcsxfrm

_C_UTF_wctob

_C_UTF_wctomb

_C_UTF_wcwidth

_C_UTF_wmemchr

_C_UTF_wmemcmp

_C_UTF_wmemcpy

_C_UTF_wmemmove

_C_UTF_wmemset

When you use the LOCALETYPE(*LOCALEUTF) option with either the C or C++ compiler, the default

UTF locale is loaded at program startup time. If you use any of the Unicode routines in the preceding

table from a different language, a call to _C_UTF_setlocale(LC_ALL, ″″) should be added when the

application starts to ensure that the default UTF locale is loaded.

Standard Files

When using the UTF support, the default standard input and output files stdin, stdout, and stderr have

some special processing done for them by the run time. Since a program using UTF support contains

data in UTF-8 and the standard files interact with the screen and spool files, there is a potential mismatch

in data. The screen and spool file routines are provided by the operating system and thus expect

EBCDIC. For stdout and stderr, the run time will automatically convert UTF-8 data to EBCDIC. For

stdin, the run time will automatically convert the incoming EBCDIC to UTF-8 data.

Considerations

Because the default environment for i5/OS is primarily an EBCDIC environment, you must be aware of

the situations described in this topic when you use UTF support in an application.

If a program or service program has some modules compiled with the UTF support and some modules

compiled without the UTF support, care must be taken to ensure that unexpected mismatches do not

occur. The wide characters and wide character strings are two bytes in size for a non-UTF module and

four bytes in size for a UTF module, so sharing wide characters between the modules may not work

534 ILE C/C++ Runtime Library Functions V6R1

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

correctly. The narrow (non-wide) characters and character strings are in job CCSID for a non-UTF module

and in CCSID 1208 for a UTF module, so sharing narrow characters between the modules may not work

correctly either.

Whenever a setlocale() is performed to set the locale to a different CCSID, the standard output files

should be flushed to avoid buffering problems with character data containing multiple CCSIDs. Since

stdout is line buffered by default, if each output line ends in a newline character, the problem will not

occur. However, if this is not done, the output may not be shown as intended. The following example

illustrates the problem.

#include <stdio>

#include <locale.h>

int main() {

 /* This string is in CCSID 1208 */

 printf("Hello World");

 /* Change locale to a CCSID 37 locale */

 setlocale(LC_ALL, "/QSYS.LIB/EN_US.LOCALE");

 #pragma convert(37)

 /* This string is in CCSID 37 */

 printf("Hello World\n");

 return 0;

}

In this case, the first printf() causes the CCSID 1208 string “Hello World” to be copied to the stdout

buffer. Before the setlocale() is done, stdout should be flushed to copy that string to the screen. The

second printf() causes the CCSID 37 string “Hello World\n” to be copied to the stdout buffer. Because

of the trailing newline character, the buffer is flushed at that point and the whole buffer is copied to the

screen. Because the CCSID of the current locale is 37 and the screen can handle CCSID 37 without

problems, the whole buffer is copied without conversion. The CCSID 1208 characters are displayed as

unreadable characters. If a flush had been done, the CCSID 1208 characters would have been converted

to CCSID 37 and would have been displayed correctly.

Nearly all of the runtime routines have been modified to support UTF, but there are a handful of them

that have not. Routines and structures that deal with exception handling, such as the _GetExcData()

function, the _EXCP_MSGID variable, and the exception handler structure _INTRPT_Hndlr_Parms_T are

provided by the operating system, not the run time. They are strictly EBCDIC. The getenv() and

putenv() functions handle only EBCDIC. The QXXCHGDA() and QXXRTVDA() functions handle only EBCDIC.

The argv and envp parameters are also EBCDIC only.

Some of the record I/O routines (that is, functions beginning with _R) do not completely support UTF.

The routines that do not support UTF are _Rformat(), _Rcommit(), _Racquire(), _Rrelease(), _Rpgmdev(),

_Rindara(), and _Rdevatr(). They are available when compiling with the UTF option, but they accept

and generate only EBCDIC. In addition, any character data within the structures returned by the _R

functions will be in EBCDIC rather than UTF.

Other operating system routines have not been modified to support UTF. For example, the integrated file

system routines, such as open(), still accept the job CCSID. Other operating system APIs still accept the

job CCSID. For UTF applications, the characters and character strings provided to these routines need to

be converted to the job CCSID using QTQCVRT, iconv(), #pragma convert, or some other method.

Default File CCSID

When the fopen() function is used to open files , the default CCSID of the file is different depending on

whether or not UTF support is used. If UTF support is not used (that is, if LOCALETYPE(*CLD),

LOCALETYPE(*LOCALE), or LOCALETYPE(*LOCALEUCS2) are specified on the compilation

Chapter 3. Runtime Considerations 535

|
|
|
|

command), the file CCSID defaults to the current job CCSID. Usually this works well because the job

CCSID is set correctly and the current locale is set to match the job CCSID.

With UTF support, the job CCSID cannot be set to UTF-8 because of system limitations. When

LOCALETYPE(*LOCALEUTF) is specified, the file CCSID defaults to the CCSID of the current locale. If

the default locale is being used, the CCSID defaults to UTF-8 (CCSID 1208). If this default is not desired,

the ccsid or o_ccsid keyword can be specified in the second parameter of the fopen() call. However,

database files are an exception, because DB2® for i5/OS does not completely support UTF-8. When

SYSIFCOPT(*NOIFSIO) is specified, and the CCSID of the current locale is 1208, the CCSID of the file

defaults to CCSID 65535 (no conversion) rather than CCSID 1208. This allows CCSID 1208 to be used

with database files. For more information about file CCSIDs, see “fopen() — Open Files” on page 109.

Newline Character

When the UTF support is not used, the hexadecimal value generated by the compiler for the character \n

and used by the run time has two different values. The hexadecimal value 0x15 is used if

SYSIFCOPT(*NOIFSIO) is specified on the compilation command. The hexadecimal value 0x25 is used if

SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS64IO) is specified on the compilation command. When the UTF

support is used, the newline character in UTF-8 will be hexadecimal 0x0a regardless of what SYSIFCOPT

value is used.

Conversion Errors

Some runtime routines perform a CCSID conversion from UTF-8 to an EBCDIC CCSID when required to

interface with an operating system function that does not support UTF-8. When a conversion error occurs

in these cases, a C2M1217 message is generated to the job log with the conversion information.

536 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|
|
|
|

Appendix A. Library Functions and Extensions

This chapter summarizes all the standard C library functions and the ILE C library extensions.

Standard C Library Functions Table, By Name

This table briefly describes the C library functions, listed in alphabetical order. This table provides the

include file name and the function prototype for each function.

 Table 32. Standard C Library Functions

Function

System Include

File Function Prototype Description

abort stdlib.h void abort(void); Stops a program abnormally.

abs stdlib.h int abs(int n); Calculates the absolute value of an

integer argument n.

acos math.h double acos(double x); Calculates the arc cosine of x.

asctime time.h char *asctime(const struct tm

*time);

Converts the time that is stored as a

structure to a character string.

asctime_r time.h char *asctime_r (const struct tm

*tm, char *buf);

Converts tm that is stored as a

structure to a character string.

(Restartable version of asctime.)

asin math.h double asin(double x); Calculates the arc sine of x.

assert assert.h void assert(int expression); Prints a diagnostic message and ends

the program if the expression is false.

atan math.h double atan(double x); Calculates the arc tangent of x.

atan2 math.h double atan2(double y, double

x);

Calculates the arc tangent of y/x.

atexit stdlib.h int atexit(void (*func)(void)); Registers a function to be called at

normal termination.

atof stdlib.h double atof(const char *string); Converts string to a double-precision

floating-point value.

atoi stdlib.h int atoi(const char *string); Converts string to an integer.

atol stdlib.h long int atol(const char *string); Converts string to a long integer.

bsearch stdlib.h void *bsearch(const void *key,

const void *base, size_t num,

size_t size, int (*compare) (const

void *element1, const void

*element2));

Performs a binary search on an array

of num elements, each of size bytes.

The array must be sorted in ascending

order by the function pointed to by

compare.

btowc stdio.h

wchar.h

wint_t btowc(int c); Determines whether c constitues a

valid multibyte character in the initial

shift state.

calloc stdlib.h void *calloc(size_t num, size_t

size);

Reserves storage space for an array of

num elements, each of size size, and

initializes the values of all elements to

0.

catclose6 nl_types.h int catclose (nl_catd catd); Closes a previously opened message

catalog.

© Copyright IBM Corp. 1999, 2008 537

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

catgets6 nl_types.h char *catgets(nl_catd catd, int

set_id, int msg_id, const char

*s);

Retrieves a message from an open

message catalog.

catopen6 nl_types.h nl_catd catopen (const char

*name, int oflag);

Opens a message catalog, which must

be done before a message can be

retrieved.

ceil math.h double ceil(double x); Calculates the double value

representing the smallest integer that is

greater than or equal to x.

clearerr stdio.h void clearerr(FILE *stream); Resets the error indicators and the

end-of-file indicator for stream.

clock time.h clock_t clock(void); Returns the processor time that has

elapsed since the job was started.

cos math.h double cos(double x); Calculates the cosine of x.

cosh math.h double cosh(double x); Calculates the hyperbolic cosine of x.

ctime time.h char *ctime(const time_t *time); Converts time to a character string.

ctime64 time.h char *ctime64(const time64_t

*time);

Converts time to a character string.

ctime_r time.h char *ctime_r(const time_t

*time, char *buf);

Converts time to a character string.

(Restartable version of ctime.)

ctime64_r time.h char *ctime64_r(const time64_t

*time, char *buf);

Converts time to a character string.

(Restartable version of ctime64.)

difftime time.h double difftime(time_t time2,

time_t time1);

Computes the difference between time2

and time1.

difftime64 time.h double difftime64(time64_t

time2, time64_t time1);

Computes the difference between time2

and time1.

div stdlib.h div_t div(int numerator, int

denominator);

Calculates the quotient and remainder

of the division of numerator by

denominator.

erf math.h double erf(double x); Calculates the error function of x.

erfc math.h double erfc(double x); Calculates the error function for large

values of x.

exit stdlib.h void exit(int status); Ends a program normally.

exp math.h double exp(double x); Calculates the exponential function of

a floating-point argument x.

fabs math.h double fabs(double x); Calculates the absolute value of a

floating-point argument x.

fclose stdio.h int fclose(FILE *stream); Closes the specified stream.

fdopen5 stdio.h FILE *fdopen(int handle, const

char *type);

Associates an input or output stream

with the file identified by handle.

feof stdio.h int feof(FILE *stream); Tests whether the end-of-file flag is set

for a given stream.

ferror stdio.h int ferror(FILE *stream); Tests for an error indicator in reading

from or writing to stream.

fflush1 stdio.h int fflush(FILE *stream); Writes the contents of the buffer

associated with the output stream.

538 ILE C/C++ Runtime Library Functions V6R1

|||
|
|

|||
|
|
|

|||
|
|
|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

fgetc1 stdio.h int fgetc(FILE *stream); Reads a single unsigned character from

the input stream.

fgetpos1 stdio.h int fgetpos(FILE *stream, fpos_t

*pos);

Stores the current position of the file

pointer associated with stream into the

object pointed to by pos.

fgets1 stdio.h char *fgets(char *string, int n,

FILE *stream);

Reads a string from the input stream.

fgetwc6 stdio.h

wchar.h

wint_t fgetwc(FILE *stream); Reads the next multibyte character

from the input stream pointed to by

stream.

fgetws6 stdio.h

wchar.h

wchar_t *fgetws(wchar_t *wcs,

int n, FILE *stream);

Reads wide characters from the stream

into the array pointed to by wcs.

fileno5 stdio.h int fileno(FILE *stream); Determines the file handle currently

associated with stream.

floor math.h double floor(double x); Calculates the floating-point value

representing the largest integer less

than or equal to x.

fmod math.h double fmod(double x, double

y);

Calculates the floating-point remainder

of x/y.

fopen stdio.h FILE *fopen(const char

*filename, const char *mode);

Opens the specified file.

fprintf stdio.h int fprintf(FILE *stream, const

char *format-string, arg-list);

Formats and prints characters and

values to the output stream.

fputc1 stdio.h int fputc(int c, FILE *stream); Prints a character to the output stream.

fputs1 stdio.h int fputs(const char *string,

FILE *stream);

Copies a string to the output stream.

fputwc6 stdio.h

wchar.h

wint_t fputwc(wchar_t wc,

FILE *stream);

Converts the wide character wc to a

multibyte character and writes it to the

output stream pointed to by stream at

the current position.

fputws6 stdio.h

wchar.h

int fputws(const wchar_t *wcs,

FILE *stream);

Converts the wide-character string wcs

to a multibyte-character string and

writes it to stream as a multibyte

character string.

fread stdio.h size_t fread(void *buffer, size_t

size, size_t count, FILE *stream);

Reads up to count items of size length

from the input stream, and stores them

in buffer.

free stdlib.h void free(void *ptr); Frees a block of storage.

freopen stdio.h FILE *freopen(const char

*filename, const char *mode,

FILE *stream);

Closes stream, and reassigns it to the

file specified.

frexp math.h double frexp(double x, int

*expptr);

Separates a floating-point number into

its mantissa and exponent.

fscanf stdio.h int fscanf(FILE *stream, const

char *format-string, arg-list);

Reads data from stream into locations

given by arg-list.

fseek1 stdio.h int fseek(FILE *stream, long int

offset, int origin);

Changes the current file position

associated with stream to a new

location.

Appendix A. Library Functions and Extensions 539

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

fsetpos1 stdio.h int fsetpos(FILE *stream, const

fpos_t *pos);

Moves the current file position to a

new location determined by pos.

ftell1 stdio.h long int ftell(FILE *stream); Gets the current position of the file

pointer.

fwide6 stdio.h

wchar.h

int fwide(FILE *stream, int

mode);

Determines the orientation of the

stream pointed to by stream.

fwprintf6 stdio.h

wchar.h

int fwprintf(FILE *stream, const

wchar_t *format, arg-list);

Writes output to the stream pointed to

by stream.

fwrite stdio.h size_t fwrite(const void *buffer,

size_t size,size_t count, FILE

*stream);

Writes up to count items of size length

from buffer to stream.

fwscanf6 stdio.h

wchar.h

int fwscanf(FILE *stream, const

wchar_t *format, arg-list)

Reads input from the stream pointed

to by stream.

gamma math.h double gamma(double x); Computes the Gamma Function

getc1 stdio.h int getc(FILE *stream); Reads a single character from the input

stream.

getchar1 stdio.h int getchar(void); Reads a single character from stdin.

getenv stdlib.h char *getenv(const char

*varname);

Searches environment variables for

varname.

gets stdio.h char *gets(char *buffer); Reads a string from stdin, and stores it

in buffer.

getwc6 stdio.h

wchar.h

wint_t getwc(FILE *stream); Reads the next multibyte character

from stream, converts it to a wide

character and advances the associated

file position indicator for stream.

getwchar6 wchar.h wint_t getwchar(void); Reads the next multibyte character

from stdin, converts it to a wide

character, and advances the associated

file position indicator for stdin.

gmtime time.h struct tm *gmtime(const time_t

*time);

Converts a time value to a structure of

type tm.

gmtime64 time.h struct tm *gmtime64(const

time64_t *time);

Converts a time value to a structure of

type tm.

gmtime_r time.h struct tm *gmtime_r (const

time_t *time, struct tm *result);

Converts a time value to a structure of

type tm. (Restartable version of

gmtime.)

gmtime64_r time.h struct tm *gmtime64_r (const

time64_t *time, struct tm

*result);

Converts a time value to a structure of

type tm. (Restartable version of

gmtime64.)

hypot math.h double hypot(double side1,

double side2);

Calculates the hypotenuse of a

right-angled triangle with sides of

length side1 and side2.

isalnum ctype.h int isalnum(int c); Tests if c is alphanumeric.

isalpha ctype.h int isalpha(int c); Tests if c is alphabetic.

isascii ctype.h int isascii(int c); Tests if c is within the 7-bit US-ASCII

range.

iscntrl ctype.h int iscntrl(int c); Tests if c is a control character.

540 ILE C/C++ Runtime Library Functions V6R1

|||
|
|
|

|||
|
|

|
|
|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

isdigit ctype.h int isdigit(int c); Tests if c is a decimal digit.

isgraph ctype.h int isgraph(int c); Tests if c is a printable character

excluding the space.

islower ctype.h int islower(int c); Tests if c is a lowercase letter.

isprint ctype.h int isprint(int c); Tests if c is a printable character

including the space.

ispunct ctype.h int ispunct(int c); Tests if c is a punctuation character.

isspace ctype.h int isspace(int c); Tests if c is a whitespace character.

isupper ctype.h int isupper(int c); Tests if c is an uppercase letter.

iswalnum4 wctype.h int iswalnum (wint_t wc); Checks for any alphanumeric wide

character.

iswalpha4 wctype.h int iswalpha (wint_t wc); Checks for any alphabetic wide

character.

iswcntrl4 wctype.h int iswcntrl (wint_t wc); Tests for any control wide character.

iswctype4 wctype.h int iswctype(wint_t wc,

wctype_t wc_prop);

Determines whether or not the wide

character wc has the property

wc_prop.

iswdigit4 wctype.h int iswdigit (wint_t wc); Checks for any decimal-digit wide

character.

iswgraph4 wctype.h int iswgraph (wint_t wc); Checks for any printing wide character

except for the wide-character space.

iswlower4 wctype.h int iswlower (wint_t wc); Checks for any lowercase wide

character.

iswprint4 wctype.h int iswprint (wint_t wc); Checks for any printing wide

character.

iswpunct4 wctype.h int iswpunct (wint_t wc); Test for a wide non-alphanumeric,

non-space character.

iswspace4 wctype.h int iswspace (wint_t wc); Checks for any wide character that

corresponds to an

implementation-defined set of wide

characters for which iswalnum is false.

iswupper4 wctype.h int iswupper (wint_t wc); Checks for any uppercase wide

character.

iswxdigit4 wctype.h int iswxdigit (wint_t wc); Checks for any hexadecimal digit

character.

isxdigit4 wctype.h int isxdigit(int c); Tests if c is a hexadecimal digit.

j0 math.h double j0(double x); Calculates the Bessel function value of

the first kind of order 0.

j1 math.h double j1(double x); Calculates the Bessel function value of

the first kind of order 1.

jn math.h double jn(int n, double x); Calculates the Bessel function value of

the first kind of order n.

labs stdlib.h long int labs(long int n); Calculates the absolute value of n.

ldexp math.h double ldexp(double x, int exp); Returns the value of x multiplied by (2

to the power of exp).

Appendix A. Library Functions and Extensions 541

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

ldiv stdlib.h ldiv_t ldiv(long int numerator,

long int denominator);

Calculates the quotient and remainder

of numerator/denominator.

localeconv locale.h struct lconv *localeconv(void); Formats numeric quantities in struct

lconv according to the current locale.

localtime time.h struct tm *localtime(const

time_t *timeval);

Converts timeval to a structure of type

tm.

localtime64 time.h struct tm *localtime64(const

time64_t *timeval);

Converts timeval to a structure of type

tm.

localtime_r time.h struct tm *localtime_r (const

time_t *timeval, struct tm

*result);

Converts a time value to a structure of

type tm. (Restartable version of

localtime.)

localtime64_r time.h struct tm *localtime64_r (const

time64_t *timeval, struct tm

*result);

Converts a time value to a structure of

type tm. (Restartable version of

localtime64.)

log math.h double log(double x); Calculates the natural logarithm of x.

log10 math.h double log10(double x); Calculates the base 10 logarithm of x.

longjmp setjmp.h void longjmp(jmp_buf env, int

value);

Restores a stack environment

previously set in env by the setjmp

function.

malloc stdlib.h void *malloc(size_t size); Reserves a block of storage.

mblen stdlib.h int mblen(const char *string,

size_t n);

Determines the length of a multibyte

character string.

mbrlen4 wchar.h int mbrlen (const char *s, size_t

n, mbstate_t *ps);

Determines the length of a multibyte

character. (Restartable version of

mblen.)

mbrtowc4 wchar.h int mbrtowc (wchar_t *pwc,

const char *s, size_t n,

mbstate_t *ps);

Convert a multibyte character to a

wide character (Restartable version of

mbtowc.)

mbsinit4 wchar.h int mbsinit (const mbstate_t

*ps);

Test state object *ps for initial state.

mbsrtowcs4 wchar.h size_t mbsrtowc (wchar_t *dst,

const char **src, size_t len,

mbstate_t *ps);

Convert multibyte string to a wide

character string. (Restartable version of

mbstowcs.)

mbstowcs stdlib.h size_t mbstowcs(wchar_t *pwc,

const char *string, size_t n);

Converts the multibyte characters in

string to their corresponding wchar_t

codes, and stores not more than n

codes in pwc.

mbtowc stdlib.h int mbtowc(wchar_t *pwc, const

char *string, size_t n);

Stores the wchar_t code corresponding

to the first n bytes of multibyte

character string into the wchar_t

character pwc.

memchr string.h void *memchr(const void *buf,

int c, size_t count);

Searches the first count bytes of buf for

the first occurrence of c converted to

an unsigned character.

memcmp string.h int memcmp(const void *buf1,

const void *buf2, size_t count);

Compares up to count bytes of buf1

and buf2.

memcpy string.h void *memcpy(void *dest, const

void *src, size_t count);

Copies count bytes of src to dest.

542 ILE C/C++ Runtime Library Functions V6R1

|||
|
|
|

|||
|
|

|
|
|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

memmove string.h void *memmove(void *dest,

const void *src, size_t count);

Copies count bytes of src to dest.

Allows copying between objects that

overlap.

memset string.h void *memset(void *dest, int c,

size_t count);

Sets count bytes of dest to a value c.

mktime time.h time_t mktime(struct tm *time); Converts local time into calendar time.

mktime64 time.h time64_t mktime64(struct tm

*time);

Converts local time into calendar time.

modf math.h double modf(double x, double

*intptr);

Breaks down the floating-point value x

into fractional and integral parts.

nextafter math.h double nextafter(double x,

double y);

Calculates the next representable value

after x in the direction of y.

nextafterl math.h long double nextafterl(long

double x, long double y);

Calculates the next representable value

after x in the direction of y.

nexttoward math.h double nexttoward(double x,

long double y);

Calculates the next representable value

after x in the direction of y.

nexttowardl math.h long double nexttowardl(long

double x, long double y);

Calculates the next representable value

after x in the direction of y.

nl_langinfo4 langinfo.h char *nl_langinfo(nl_item item); Retrieve from the current locale the

string that describes the requested

information specified by item.

perror stdio.h void perror(const char *string); Prints an error message to stderr.

pow math.h double pow(double x, double

y);

Calculates the value x to the power y.

printf stdio.h int printf(const char

*format-string, arg-list);

Formats and prints characters and

values to stdout.

putc1 stdio.h int putc(int c, FILE *stream); Prints c to the output stream.

putchar1 stdio.h int putchar(int c); Prints c to stdout.

putenv stdlib.h int *putenv(const char

*varname);

Sets the value of an environment

variable by altering an existing

variable or creating a new one.

puts stdio.h int puts(const char *string); Prints a string to stdout.

putwc6 stdio.h

wchar.h

wint_t putwchar(wchar_t wc,

FILE *stream);

Converts the wide character wc to a

multibyte character, and writes it to

the stream at the current position.

putwchar6 wchar.h wint_t putwchar(wchar_t wc); Converts the wide character wc to a

multibyte character and writes it to

stdout.

qsort stdlib.h void qsort(void *base, size_t

num, size_t width,

int(*compare)(const void

*element1, const void

*element2));

Performs a quick sort of an array of

num elements, each of width bytes in

size.

raise signal.h int raise(int sig); Sends the signal sig to the running

program.

rand stdlib.h int rand(void); Returns a pseudo-random integer.

Appendix A. Library Functions and Extensions 543

|||
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

rand_r stdlib.h int rand_r(void); Returns a pseudo-random integer.

(Restartable version)

realloc stdlib.h void *realloc(void *ptr, size_t

size);

Changes the size of a previously

reserved storage block.

regcomp regex.h int regcomp(regex_t *preg,

const char *pattern, int cflags);

Compiles the source regular expression

pointed to by pattern into an

executable version and stores it in the

location pointed to by preg.

regerror regex.h size_t regerror(int errcode, const

regex_t *preg, char *errbuf,

size_t errbuf_size);

Finds the description for the error code

errcode for the regular expression preg.

regexec regex.h int regexec(const regex_t *preg,

const char *string, size_t

nmatch, regmatch_t *pmatch, int

eflags);

Compares the null-ended string string

against the compiled regular

expression preg to find a match

between the two.

regfree regex.h void regfree(regex_t *preg); Frees any memory that was allocated

by regcomp to implement the regular

expression preg.

remove stdio.h int remove(const char

*filename);

Deletes the file specified by filename.

rename stdio.h int rename(const char *oldname,

const char *newname);

Renames the specified file.

rewind1 stdio.h void rewind(FILE *stream); Repositions the file pointer associated

with stream to the beginning of the file.

scanf stdio.h int scanf(const char

*format-string, arg-list);

Reads data from stdin into locations

given by arg-list.

setbuf stdio.h void setbuf(FILE *stream, char

*buffer);

Controls buffering for stream.

setjmp setjmp.h int setjmp(jmp_buf env); Saves a stack environment that can be

subsequently restored by longjmp.

setlocale locale.h char *setlocale(int category,

const char *locale);

Changes or queries variables defined

in the locale.

setvbuf stdio.h int setvbuf(FILE *stream, char

*buf, int type, size_t size);

Controls buffering and buffer size for

stream.

signal signal.h void(*signal (int sig,

void(*func)(int))) (int);

Registers func as a signal handler for

the signal sig.

sin math.h double sin(double x); Calculates the sine of x.

sinh math.h double sinh(double x); Calculates the hyperbolic sine of x.

snprintf stdio.h int snprintf(char *outbuf, size_t

n, const char*, ...)

Same as sprintf except that the

function will stop after n characters

have been written to outbuf.

sprintf stdio.h int sprintf(char *buffer, const

char *format-string, arg-list);

Formats and stores characters and

values in buffer.

sqrt math.h double sqrt(double x); Calculates the square root of x.

srand stdlib.h void srand(unsigned int seed); Sets the seed for the pseudo-random

number generator.

544 ILE C/C++ Runtime Library Functions V6R1

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

sscanf stdio.h int sscanf(const char *buffer,

const char *format, arg-list);

Reads data from buffer into the

locations given by arg-list.

strcasecmp strings.h int srtcasecmp(const char

*string1, const char *string2);

Compares strings without case

sensitivity.

strcat string.h char *strcat(char *string1, const

char *string2);

Concatenates string2 to string1.

strchr string.h char *strchr(const char *string,

int c);

Locates the first occurrence of c in

string.

strcmp string.h int strcmp(const char *string1,

const char *string2);

Compares the value of string1 to

string2.

strcoll string.h int strcoll(const char *string1,

const char *string2);

Compares two strings using the

collating sequence in the current locale.

strcpy string.h char *strcpy(char *string1, const

char *string2);

Copies string2 into string1.

strcspn string.h size_t strcspn(const char

*string1, const char *string2);

Returns the length of the initial

substring of string1 consisting of

characters not contained in string2.

strerror string.h char *strerror(int errnum); Maps the error number in errnum to an

error message string.

strfmon4 wchar.h int strfmon (char *s, size_t

maxsize, const char *format,

...);

Converts monetary value to string.

strftime time.h size_t strftime (char *dest, size_t

maxsize, const char *format,

const struct tm *timeptr);

Stores characters in an array pointed to

by dest, according to the string

determined by format.

strlen string.h size_t strlen(const char *string); Calculates the length of string.

strncasecmp strings.h int strncasecmp(const char

*string1, const char *string2,

size_t count);

Compares strings without case

sensitivity.

strncat string.h char *strncat(char *string1,

const char *string2, size_t

count);

Concatenates up to count characters of

string2 to string1.

strncmp string.h int strncmp(const char *string1,

const char *string2, size_t

count);

Compares up to count characters of

string1 and string2.

strncpy string.h char *strncpy(char *string1,

const char *string2, size_t

count);

Copies up to count characters of string2

to string1.

strpbrk string.h char *strpbrk(const char

*string1, const char *string2);

Locates the first occurrence in string1

of any character in string2.

strptime4 time.h char *strptime (const char *buf,

const char *format, struct tm

*tm);

Date and time conversion

strrchr string.h char *strrchr(const char *string,

int c);

Locates the last occurrence of c in

string.

strspn string.h size_t strspn(const char

*string1, const char *string2);

Returns the length of the initial

substring of string1 consisting of

characters contained in string2.

Appendix A. Library Functions and Extensions 545

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

strstr string.h char *strstr(const char *string1,

const char *string2);

Returns a pointer to the first

occurrence of string2 in string1.

strtod stdlib.h double strtod(const char *nptr,

char **endptr);

Converts nptr to a double precision

value.

strtod32 stdlib.h _Decimal32 strtod32(const char

*nptr, char **endptr);

Converts nptr to a single-precision

decimal floating-point value.

strtod64 stdlib.h _Decimal64 strtod64(const char

*nptr, char **endptr);

Converts nptr to a double-precision

decimal floating-point value.

strtod128 stdlib.h _Decimal128 strtod128(const

char *nptr, char **endptr);

Converts nptr to a quad-precision

decimal floating-point value.

strtof stdlib.h float strtof(const char *nptr,

char **endptr);

Converts nptr to a float value.

strtok string.h char *strtok(char *string1, const

char *string2);

Locates the next token in string1

delimited by the next character in

string2.

strtok_r string.h char *strtok_r(char *string,

const char *seps, char **lasts);

Locates the next token in string

delimited by the next character in seps.

(Restartable version of strtok.)

strtol stdlib.h long int strtol(const char *nptr,

char **endptr, int base);

Converts nptr to a signed long integer.

strtold stdlib.h long double strtold(const char

*nptr, char **endptr);

Converts nptr to a long double value.

strtoul stdlib.h unsigned long int strtoul(const

char *string1, char **string2, int

base);

Converts string1 to an unsigned long

integer.

strxfrm string.h size_t strxfrm(char *string1,

const char *string2, size_t

count);

Converts string2 and places the result

in string1. The conversion is

determined by the program’s current

locale.

swprintf wchar.h int swprintf(wchar_t *wcsbuffer,

size_t n, const wchar_t *format,

arg-list);

Formats and stores a series of wide

characters and values into the

wide-character buffer wcsbuffer.

swscanf wchar.h int swscanf (const wchar_t

*buffer, const wchar_t *format,

arg-list)

Reads data from buffer into the

locations given by arg-list.

system stdlib.h int system(const char *string); Passes string to the system command

analyzer.

tan math.h double tan(double x); Calculates the tangent of x.

tanh math.h double tanh(double x); Calculates the hyperbolic tangent of x.

time time.h time_t time(time_t *timeptr); Returns the current calendar time.

time64 time.h time64_t time64(time64_t

*timeptr);

Returns the current calendar time.

tmpfile stdio.h FILE *tmpfile(void); Creates a temporary binary file and

opens it.

tmpnam stdio.h char *tmpnam(char *string); Generates a temporary file name.

toascii ctype.h int toascii(int c); Converts c to a character in the 7-bit

US-ASCII character set.

546 ILE C/C++ Runtime Library Functions V6R1

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|

|||
|
|

|||
|
|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

tolower ctype.h int tolower(int c); Converts c to lowercase.

toupper ctype.h int toupper(int c); Converts c to uppercase.

towctrans wctype.h wint_t towctrans(wint_t wc,

wctrans_t desc);

Translates the wide character wc based

on the mapping described by desc.

towlower4 wctype.h wint_t towlower (wint_t wc); Converts uppercase letter to lowercase

letter.

towupper4 wctype.h wint_t towupper (wint_t wc); Converts lowercase letter to uppercase

letter.

ungetc1 stdio.h int ungetc(int c, FILE *stream); Pushes c back onto the input stream.

ungetwc6 stdio.h

wchar.h

wint_t ungetwc(wint_t wc,

FILE *stream);

Pushes the wide character wc back

onto the input stream.

va_arg stdarg.h var_type va_arg(va_list arg_ptr,

var_type);

Returns the value of one argument and

modifies arg_ptr to point to the next

argument.

va_end stdarg.h void va_end(va_list arg_ptr); Facilitates normal return from variable

argument list processing.

va_start stdarg.h void va_start(va_list arg_ptr,

variable_name);

Initializes arg_ptr for subsequent use

by va_arg and va_end.

vfprintf stdio.h stdarg.h int vfprintf(FILE *stream, const

char *format, va_list arg_ptr);

Formats and prints characters to the

output stream using a variable number

of arguments.

vfscanf stdio.h stdarg.h int vfscanf(FILE *stream, const

char *format, va_list arg_ptr);

Reads data from a specified stream

into locations given by a variable

number of arguments.

vfwprintf6 stdarg.h

stdio.h

wchar.h

int vfwprintf(FILE *stream,

const wchar_t *format, va_list

arg);

Equivalent to fwprintf, except that the

variable argument list is replaced by

arg.

vfwscanf stdio.h stdarg.h int vfwscanf(FILE *stream, const

wchar_t *format, va_list arg_ptr);

Reads wide data from a specified

stream into locations given by a

variable number of arguments.

vprintf stdio.h stdarg.h int vprintf(const char *format,

va_list arg_ptr);

Formats and prints characters to stdout

using a variable number of arguments.

vscanf stdio.h stdarg.h int vscanf(const char *format,

va_list arg_ptr);

Reads data from stdin into locations

given by a variable number of

arguments.

vsprintf stdio.h stdarg.h int vsprintf(char *target-string,

const char *format, va_list

arg_ptr);

Formats and stores characters in a

buffer using a variable number of

arguments.

vsnprintf stdio.h int vsnprintf(char *outbuf,

size_t n, const char*, va_list);

Same as vsprintf except that the

function will stop after n characters

have been written to outbuf.

vsscanf stdio.h stdarg.h int vsscanf(const char*buffer,

const char *format, va_list

arg_ptr);

Reads data from a buffer into locations

given by a variable number of

arguments.

vswprintf stdarg.h

wchar.h

int vswprintf(wchar_t

*wcsbuffer, size_t n, const

wchar_t *format, va_list arg);

Formats and stores a series of wide

characters and values in the buffer

wcsbuffer.

Appendix A. Library Functions and Extensions 547

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

vswscanf stdio.h wchar.h int vswscanf(const wchar_t

*buffer, const wchar_t *format,

va_list arg_ptr);

Reads wide data from a buffer into

locations given by a variable number

of arguments.

vwprintf6 stdarg.h

wchar.h

int vwprintf(const wchar_t

*format, va_list arg);

Equivalent to wprintf, except that the

variable argument list is replaced by

arg.

vwscanf stdio.h wchar.h int vwscanf(const wchar_t

*format, va_list arg_ptr);

Reads wide data from stdin into

locations given by a variable number

of arguments.

wcrtomb4 wchar.h int wcrtomb (char *s, wchar_t

wchar, mbstate_t *pss);

Converts a wide character to a

multibyte character. (Restartable

version of wctomb.)

wcscat wchar.h wchar_t *wcscat(wchar_t

*string1, const wchar_t

*string2);

Appends a copy of the string pointed

to by string2 to the end of the string

pointed to by string1.

wcschr wchar.h wchar_t *wcschr(const wchar_t

*string, wchar_t character);

Searches the wide-character string

pointed to by string for the occurrence

of character.

wcscmp wchar.h int wcscmp(const wchar_t

*string1, const wchar_t

*string2);

Compares two wide-character strings,

*string1 and *string2.

wcscoll4 wchar.h int wcscoll (const wchar_t

*wcs1, const wchar_t *wcs2);

Compares two wide-character strings

using the collating sequence in the

current locale.

wcscpy wchar.h wchar_t *wcscpy(wchar_t

*string1, const wchar_t

*string2);

Copies the contents of *string2

(including the ending wchar_t null

character) into *string1.

wcscspn wchar.h size_t wcscspn(const wchar_t

*string1, const wchar_t

*string2);

Determines the number of wchar_t

characters in the initial segment of the

string pointed to by *string1 that do

not appear in the string pointed to by

*string2.

wcsftime wchar.h size_t wcsftime(wchar_t *wdest,

size_t maxsize, const wchar_t

*format, const struct tm

*timeptr);

Converts the time and date

specification in the timeptr structure

into a wide-character string.

wcslen wchar.h size_t wcslen(const wchar_t

*string);

Computes the number of

wide-characters in the string pointed

to by string.

wcslocaleconv locale.h struct wcslconv

*wcslocaleconv(void);

Formats numeric quantities in struct

wcslconv according to the current

locale.

wcsncat wchar.h wchar_t *wcsncat(wchar_t

*string1, const wchar_t *string2,

size_t count);

Appends up to count wide characters

from string2 to the end of string1, and

appends a wchar_t null character to

the result.

wcsncmp wchar.h int wcsncmp(const wchar_t

*string1, const wchar_t *string2,

size_t count);

Compares up to count wide characters

in string1 to string2.

548 ILE C/C++ Runtime Library Functions V6R1

|

|

|

|

|

|

|

|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

wcsncpy wchar.h wchar_t *wcsncpy(wchar_t

*string1, const wchar_t *string2,

size_t count);

Copies up to count wide characters

from string2 to string1.

wcspbrk wchar.h wchar_t *wcspbrk(const

wchar_t *string1, const wchar_t

*string2);

Locates the first occurrence in the

string pointed to by string1 of any

wide characters from the string

pointed to by string2.

wcsptime wchar.h wchar_t *wcsptime (const

wchar_t *buf, const wchar_t

*format, struct tm *tm);

Date and time conversion. Equivalent

to strptime(), except that it uses wide

characters.

wcsrchr wchar.h wchar_t *wcsrchr(const

wchar_t *string, wchar_t

character);

Locates the last occurrence of character

in the string pointed to by string.

wcsrtombs4 wchar.h size_t wcsrtombs (char *dst,

const wchar_t **src, size_t len,

mbstate_t *ps);

Converts wide character string to

multibyte string. (Restartable version

of wcstombs.)

wcsspn wchar.h size_t wcsspn(const wchar_t

*string1, const wchar_t

*string2);

Computes the number of wide

characters in the initial segment of the

string pointed to by string1, which

consists entirely of wide characters

from the string pointed to by string2.

wcsstr wchar.h wchar_t *wcsstr(const wchar_t

*wcs1, const wchar_t *wcs2);

Locates the first occurrence of wcs2 in

wcs1.

wcstod wchar.h double wcstod(const wchar_t

*nptr, wchar_t **endptr);

Converts the initial portion of the

wide-character string pointed to by

nptr to a double value.

wcstod32 wchar.h _Decimal32 wcstod32(const

wchar_t *nptr, wchar_t

**endptr);

Converts the initial portion of the

wide-character string pointed to by

nptr to a single-precision decimal

floating-point value.

wcstod64 wchar.h _Decimal64 wcstod64(const

wchar_t *nptr, wchar_t

**endptr);

Converts the initial portion of the

wide-character string pointed to by

nptr to a double-precision decimal

floating-point value.

wcstod128 wchar.h _Decimal128 wcstod128(const

wchar_t *nptr, wchar_t

**endptr);

Converts the initial portion of the

wide-character string pointed to by

nptr to a quad-precision decimal

floating-point value.

wcstok wchar.h wchar_t *wcstok(wchar_t *wcs1,

const wchar_t *wcs2, wchar_t

**ptr)

Breaks wcs1 into a sequence of tokens,

each of which is delimited by a wide

character from the wide string pointed

to by wcs2.

wcstol wchar.h long int wcstol(const wchar_t

*nptr, wchar_t **endptr, int

base);

Converts the initial portion of the

wide-character string pointed to by

nptr to a long integer value.

wcstombs stdlib.h size_t wcstombs(char *dest,

const wchar_t *string, size_t

count);

Converts the wchar_t string into a

multibyte string dest.

Appendix A. Library Functions and Extensions 549

|

|

|

|||
|
|

|
|
|
|

|||
|
|

|
|
|
|

|||
|
|

|
|
|
|

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

wcstoul wchar.h unsigned long int

wcstoul(const wchar_t *nptr,

wchar_t **endptr, int base);

Converts the initial portion of the

wide-character string pointed to by

nptr to an unsigned long integer value.

wcsxfrm4 wchar.h size_t wcsxfrm (wchar_t *wcs1,

const wchar_t *wcs2, size_t n);

Transforms a wide-character string to

values which represent character

collating weights and places the

resulting wide-character string into an

array.

wctob stdarg.h

wchar.h

int wctob(wint_t wc); Determines whether wc corresponds to

a member of the extended character set

whose multibyte character

representation is a single byte when in

the initial shift state.

wctomb stdlib.h int wctomb(char *string,

wchar_t character);

Converts the wchar_t value of character

into a multibyte string.

wctrans wctype.h wctrans_t wctrans(const char

*property);

Constructs a value with type wctrans_t

that describes a mapping between

wide characters identified by the string

argument property.

wctype4 wchar.h wctype_t wctype (const char

*property);

Obtains handle for character property

classification.

wcwidth wchar.h int wcswidth(const wchar_t

*pwcs, size_t n);

Determine the display width of a wide

character string.

wmemchr wchar.h wchar_t *wmemchr(const

wchar_t *s, wchar_t c, size_t n);

Locates the first occurrence of c in the

initial n wide characters of the object

pointed to by s.

wmemcmp wchar.h int wmemcmp(const wchar_t

*s1, const wchar_t *s2, size_t n);

Compares the first n wide characters of

the object pointed to by s1 to the first

n characters of the object pointed to by

s2.

wmemcpy wchar.h wchar_t *wmemcpy(wchar_t

*s1, const wchar_t *s2, size_t n);

Copies n wide characters from the

object pointed to by s2 to the object

pointed to by s1.

wmemmove wchar.h wchar_t *wmemmove(wchar_t

*s1, const wchar_t *s2, size_t n);

Copies n wide characters from the

object pointed to by s2 to the object

pointed to by s1.

wmemset wchar.h wchar_t *wmemset(wchar_t *s,

wchar_t c, size_t n);

Copies the value of c into each of the

first n wide characters of the object

pointed to by s.

wprintf6 wchar.h int wprintf(const wchar_t

*format, arg-list);

Equivalent to fwprintf with the

argument stdout interposed before the

arguments to wprintf.

wscanf6 wchar.h int wscanf(const wchar_t

*format, arg-list);

Equivalent to fwscanf with the

argument stdin interposed before the

arguments of wscanf.

y0 math.h double y0(double x); Calculates the Bessel function value of

the second kind of order 0.

y1 math.h double y1(double x); Calculates the Bessel function value of

the second kind of order 1.

550 ILE C/C++ Runtime Library Functions V6R1

Table 32. Standard C Library Functions (continued)

Function

System Include

File Function Prototype Description

yn math.h double yn(int n, double x); Calculates the Bessel function value of

the second kind of order n.

Note:

1 This function is not supported for files opened with type=record.

Note:

2 This function is not supported for files opened with type=record and mode=ab+, rb+, or wb+.

Note:

3 The ILE C compiler only supports fully buffered and line-buffered streams. Since a block and a line are

equal to the record length of the opened file, fully buffered and line-buffered streams are supported in the same

way. The setbuf() and setvbuf() functions have no effect.

Note:

4 This function is not available when LOCALETYPE(*CLD) is specified on the compilation command.

Note:

5 This function is available only when SYSIFCOPT(*IFSIO) is specified on the CRTCMOD or CRTBNDC

command.

Note:

6 This function is not available when either LOCALETYPE(*CLD) or SYSIFCOPT(*NOIFSIO) is specified on

the compilation command.

ILE C Library Extensions to C Library Functions Table

This table briefly describes all the ILE C library extensions, listed in alphabetical order. This table

provides the include file name, and the function prototype for each function.

 Table 33. ILE C Library Extensions

Function

System

Include file Function prototype Description

_C_Get

_Ssn_Handle

stdio.h _SSN_Handle_T _C_Get_Ssn_Handle (void); Returns a handle to the C session for

use with DSM APIs.

_C_Quickpool

_Debug

stdio.h _C_Quickpool_Debug_T

_C_Quickpool_Debug(_C_Quickpool_Debug_T *newval);

Modifies Quick Pool memory

characteristics.

_C_Quickpool

_Init

stdio.h int _C_Quickpool_Init(unsigned int numpools, unsigned

int *cell_sizes, unsigned int *num_cells);

Initializes the use of the Quick Pool

memory management algorithm.

_C_Quickpool

_Report

stdio.h void _C_Quickpool_Report(void); Generates a spooled file that contains

a snapshot of the memory used by the

Quick Pool memory management

algorithm in the current activation

group.

_C_TS

_malloc64

stdlib.h void *_C_TS_malloc64(unsigned long long int); Same as _C_TS_malloc, but takes an

unsigned long long int so the user can

ask for more than 2 GB of storage on

a single request.

_C_TS

_malloc_info

mallocinfo.h int _C_TS_malloc_info(struct _C_mallinfo_t

*output_record, size_t sizeofoutput);

Returns current memory usage

information.

_C_TS

_malloc_debug

mallocinfo.h int _C_TS_malloc_debug(unsigned int dump_level,

unsigned int verify_level, struct _C_mallinfo_t

*output_record, size_t sizeofoutput);

Returns the same information as

_C_TS_malloc_info, plus produces a

spool file of detailed information

about the memory structure used by

C_TS_malloc functions.

_GetExcData signal.h void _GetExcData (_INTRPT_Hndlr_Parms_T *parms); Retrieves information about an

exception from within a signal

handler.

QXXCHGDA xxdtaa.h void QXXCHGDA(_DTAA_NAME_T dtaname, short int

offset, short int len, char *dtaptr);

Changes the i5/OS data area specified

on dtaname using the data pointed to

by dtaptr.

QXXDTOP xxcvt.h void QXXDTOP(unsigned char *pptr, int digits, int

fraction, double value);

Converts a double value to a packed

decimal value with digits total digits

and fraction fractional digits.

Appendix A. Library Functions and Extensions 551

|
|

|
|

|
|

|
|
|

Table 33. ILE C Library Extensions (continued)

Function

System

Include file Function prototype Description

QXXDTOZ xxcvt.h void QXXDTOZ(unsigned char *zptr, int digits, int

fraction, double value);

Converts a double value to a zoned

decimal value with digits total digits

and fraction fractional digits.

QXXITOP xxcvt.h void QXXITOP(unsigned char *pptr, int digits, int

fraction, int value);

Converts an integer value to a packed

decimal value.

QXXITOZ xxcvt.h void QXXITOZ(unsigned char *zptr, int digits, int

fraction, int value);

Converts an integer value to a zoned

decimal value.

QXXPTOD xxcvt.h double QXXPTOD(unsigned char *pptr, int digits, int

fraction);

Converts a packed decimal number to

a double value with digits total digits

and fraction fractional digits.

QXXPTOI xxcvt.h int QXXPTOI(unsigned char *pptr, int digits, int fraction

);

Converts a packed decimal number to

an integer value with digits total digits

and fraction fractional digits.

QXXRTVDA xxdtaa.h void QXXRTVDA(_DTAA_NAME_T dtaname, short int

offset, short int len, char *dtaptr);

Retrieves a copy of the i5/OS data

area specified on dtaname.

QXXZTOD xxcvt.h double QXXZTOD(unsigned char *zptr, int digits, int

fraction);

Converts a zoned decimal number to

a double value with digits total digits

and fraction fractional digits.

QXXZTOI xxcvt.h int QXXZTOI(unsigned char *zptr, int digits, int fraction

);

Converts a zoned decimal value to an

integer value with digits total digits

and fraction fractional digits.

_Racquire recio.h int _Racquire(_RFILE *fp, char *dev); Prepares a device for record I/O

operations.

_Rclose recio.h int _Rclose(_RFILE *fp); Closes a file that is opened for record

I/O operations.

_Rcommit recio.h int _Rcommit(char *cmtid); Completes the current transaction, and

establishes a new commitment

boundary.

_Rdelete recio.h _RIOFB_T *_Rdelete(_RFILE *fp); Deletes the currently locked record.

_Rdevatr xxfdbk.h

recio.h

_XXDEV_ATR_T *_Rdevatr(_RFILE *fp, char *pgmdev); Returns a pointer to a copy of the

device attributes feedback area for the

file referenced by fp and the device

pgmdev.

_Rfeod recio.h int _Rfeod(_RFILE *fp); Forces an end-of-file condition for the

file referenced by fp.

_Rfeov recio.h int _Rfeov(_RFILE *fp); Forces an end-of-volume condition for

the tape file referenced by fp.

_Rformat recio.h void Rformat(_RFILE *fp, char *fmt); Sets the record format to fmt for the

file referenced by fp.

_Rindara recio.h void _Rindara (_RFILE *fp, char *indic_buf); Sets up the separate indicator area to

be used for subsequent record I/O

operations.

_Riofbk recio.h

xxfdbk.h

_XXIOFB_T *_Riofbk(_RFILE *fp); Returns a pointer to a copy of the I/O

feedback area for the file referenced

by fp.

_Rlocate recio.h _RIOFB_T *_Rlocate(_RFILE *fp, void *key, int klen_rrn,

int opts);

Positions to the record in the file

associated with fp and specified by the

key, klen_rrn and opt parameters.

_Ropen recio.h _RFILE *_Ropen(const char *filename, const char *mode

...);

Opens a file for record I/O operations.

_Ropnfbk recio.h

xxfdbk.h

_XXOPFB_T *_Ropnfbk(_RFILE *fp); Returns a pointer to a copy of the

open feedback area for the file

referenced by fp.

_Rpgmdev recio.h int _Rpgmdev(_RFILE *fp, char *dev); Sets the default program device.

552 ILE C/C++ Runtime Library Functions V6R1

|
|

Table 33. ILE C Library Extensions (continued)

Function

System

Include file Function prototype Description

_Rreadd recio.h _RIOFB_T *_Rreadd(_RFILE *fp, void *buf, size_t size, int

opts, long rrn);

Reads a record by relative record

number.

_Rreadf recio.h _RIOFB_T *_Rreadf(_RFILE *fp, void *buf, size_t size, int

opts);

Reads the first record.

_Rreadindv recio.h _RIOFB_T *_Rreadindv(_RFILE *fp, void *buf, size_t size,

int opts);

Reads a record from an invited device.

_Rreadk recio.h _RIOFB_T *_Rreadk(_RFILE *fp, void *buf, size_t size, int

opts, void *key, int klen);

Reads a record by key.

_Rreadl recio.h _RIOFB_T *_Rreadl(_RFILE *fp, void *buf, size_t size, int

opts);

Reads the last record.

_Rreadn recio.h _RIOFB_T *_Rreadn(_RFILE *fp, void *buf, size_t size, int

opts);

Reads the next record.

_Rreadnc recio.h _RIOFB_T *_Rreadnc(_RFILE *fp, void *buf, size_t size); Reads the next changed record in the

subfile.

_Rreadp recio.h _RIOFB_T *_Rreadp(_RFILE *fp, void *buf, size_t size, int

opts);

Reads the previous record.

_Rreads recio.h _RIOFB_T *_Rreads(_RFILE *fp, void *buf, size_t size, int

opts);

Reads the same record.

_Rrelease recio.h int _Rrelease(_RFILE *fp, char *dev); Makes the specified device ineligible

for record I/O operations.

_Rrlslck recio.h int _Rrlslck(_RFILE *fp); Releases the currently locked record.

_Rrollbck recio.h int _Rrollbck(void); Reestablishes the last commitment

boundary as the current commitment

boundary.

_Rupdate recio.h _RIOFB_T *_Rupdate(_RFILE *fp, void *buf, size_t size); Writes to the record that is currently

locked for update.

_Rupfb recio.h _RIOFB_T *_Rupfb(_RFILE *fp); Updates the feedback structure with

information about the last record I/O

operation.

_Rwrite recio.h _RIOFB_T *_Rwrite(_RFILE *fp, void *buf, size_t size); Writes a record to the end of the file.

_Rwrited recio.h _RIOFB_T *_Rwrited(_RFILE *fp, void *buf, size_t size,

unsigned long rrn);

Writes a record by relative record

number. It only writes over deleted

records.

_Rwriterd recio.h _RIOFB_T *_Rwriterd(_RFILE *fp, void *buf, size_t size); Reads and writes a record.

_Rwrread recio.h _RIOFB_T *_Rwrread(_RFILE *fp, void *inbuf, size_t

in_buf_size, void *out_buf, size_t out_buf_size);

Functions as _Rwriterd, except

separate buffers may be specified for

input and output data.

__wcsicmp wchar.h int __wcsicmp(const wchar_t *string1, const wchar_t

*string2);

Compares wide character strings

without case sensitivity.

__wcsnicmp wchar.h int __wcsnicmp(const wchar_t *string1, const wchar_t

*string2, size_t count);

Compares wide character strings

without case sensitivity.

Appendix A. Library Functions and Extensions 553

554 ILE C/C++ Runtime Library Functions V6R1

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2008 555

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This ILE C/C++ Runtime Library Functions publication documents intended Programming Interfaces that

allow the customer to write programs to obtain the services of IBM i5/OS.

556 ILE C/C++ Runtime Library Functions V6R1

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

COBOL/400

DB2

i5/OS

IBM

IBM (logo)

Integrated Language Environment

RPG/400

System i

WebSphere

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Appendix B. Notices 557

558 ILE C/C++ Runtime Library Functions V6R1

Bibliography

For additional information about topics related to

ILE C/C++ programming on the System i

platform, refer to the following IBM System i

publications and i5/OS Information Center topics:

(http://www.ibm.com/systems/i/infocenter/)

v The Application programming interfaces topic

in the Programming category of the i5/OS

Information Center provides information for

experienced application and system

programmers who want to use the i5/OS

application programming interfaces (APIs).

v Application Display Programming, SC41-5715-02,

provides information about using DDS to create

and maintain displays, creating and working

with display files, creating online help

information, using UIM to define displays, and

using panel groups, records, and documents.

v The Backup and recovery topic in the Systems

management category of the i5/OS Information

Center includes information about how to plan

a backup and recovery strategy, how to back

up your system, how to manage tape libraries,

and how to set up disk protection for your

data. It also includes information about the

Backup, Recovery and Media Services plug-in

to System i Navigator, information about

recovering your system, and answers to some

frequently asked questions about backup and

recovery.

v Recovering your system, SC41-5304-09 provides

general information about recovery and

availability options for the System i platform. It

describes the options available on the system,

compares and contrasts them, and tells where

to find more information about them.

v The Control language topic in the

Programming category of the i5/OS

Information Center provides a description of

the i5/OS control language commands. It also

provides a wide-ranging discussion of i5/OS

programming topics including a general

discussion on objects and libraries, CL

programming, controlling flow and

communicating between programs, working

with objects in CL programs, and creating CL

programs. Other topics include predefined and

impromptu messages and message handling,

defining and creating user-defined commands

and menus, application testing, including

debug mode, breakpoints, traces, and display

functions.

v Standard C/C++ Library Reference, SC09-4949-01

contains reference information for the C/C++

languages.

v Communications Management, SC41-5406-02,

provides information about work management

in a communications environment,

communications status, tracing and diagnosing

communications problems, error handling and

recovery, performance, and specific line speed

and subsystem storage information.

v The Files and file systems category in the

i5/OS Information Center provides information

about using files in application programs.

v The i5/OS globalization topic in the

Programming category of the i5/OS

Information Center provides information for

planning, installing, configuring, and using

globalization and multilingual support of the

System i product. It also provides an

explanation of the database management of

multilingual data and application

considerations for a multilingual system.

v The ICF Programming, SC41-5442-00, manual

provides information needed to write

application programs that use i5/OS

communications and the i5/OS intersystem

communications function (i5/OS-ICF). It also

contains information about data description

specifications (DDS) keywords, system-supplied

formats, return codes, file transfer support, and

program examples.

v ILE Concepts, SC41-5606-08, explains concepts

and terminology pertaining to the Integrated

Language Environment architecture of the

i5/OS licensed program. Topics covered include

creating modules, binding, running programs,

debugging programs, and handling exceptions.

v ILE C/C++ for AS/400 MI Library Reference,

SC09-2418-00, provides information about

Machine Interface instructions available in the

ILE C compiler that provide system-level

programming capabilities.

v The Printing category of information in the

i5/OS Information Center provides information

about how to plan for and configure printing

functions, as well as basic printing information.

© Copyright IBM Corp. 1999, 2008 559

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

 |
 |
 |

 |
 |
 |
 |
 |
 |
 |
 |
 |

 |
 |
 |
 |
 |
 |
 |
 |
 |

 |
 |
 |
 |
 |
 |

 |
 |
 |
 |

v The Basic printing topic provides specific

information about printing elements and

concepts of the System i product, printer file

and print spooling support, and printer

connectivity.

v The Security category in the i5/OS Information

Center provides information about how to set

up and plan for your system security, how to

secure network and communications

applications, and how to add highly secure

cryptographic processing capability to your

System i product. It also includes information

about object signing and signature validation,

identity mapping, and solutions to Internet

security risks.

v ILE C/C++ for AS/400 MI Library Reference,

SC09-2418-00 contains reference information for

the C/C++ languages.

v Security reference, SC41-5302-10, tells how

system security support can be used to protect

the system and data from being used by people

who do not have the proper authorization,

protect data from intentional or unintentional

damage or destruction, keep security

information up-to-date, and set up security on

the system.

v The Systems management category in the

i5/OS Information Center provides information

about the system unit control panel, starting

and stopping the system, using tapes and

diskettes, working with program temporary

fixes, as well as handling problems.

v WebSphere Development Studio: ILE C/C++

Language Reference, SC09-7852-01, contains

reference information for the C/C++ languages.

v WebSphere Development Studio: ILE C/C++

Compiler Reference, SC09-4816-04, contains

reference information about using preprocessor

statements, macros defined by and pragmas

recognized by the ILE C/C++ compiler,

command line options for both System i and

QShell working environments, and I/O

considerations for the System i environment.

v WebSphere Development Studio: ILE C/C++

Programmer’s Guide, SC09-2712-06, provides

information about how to develop applications

using the ILE C language. It includes

information about creating, running and

debugging programs. It also includes

programming considerations for interlanguage

program and procedure calls, locales, handling

exceptions, database, externally described and

device files. Some performance tips are also

described. An appendix includes information

about migrating source code from EPM C or

System C to ILE C.

For more information about programming

utilities, see the following books at the IBM

Publications Center:

v ADTS/400: Programming Development Manager,

SC09-1771-00

v ADTS for AS/400: Screen Design Aid,

SC09-2604-00

v ADTS for AS/400: Source Entry Utility,

SC09-2605-00

560 ILE C/C++ Runtime Library Functions V6R1

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

Index

Special characters
__EXBDY built-in 6

__VBDY built-in 6

_C_Get_Ssn_Handle() function 55

_C_Quickpool_Debug() function 66

Quick Pool Memory Management

Debug 66

_C_Quickpool_Init() function 68

Initialize Quick Pool Memory

Management 68

_C_Quickpool_Report() function 70

Generate Quick Pool Memory

Management Report 70

_C_TS_malloc 196, 551

_C_TS_malloc_debug 551

_C_TS_malloc_debug() function 77

_C_TS_malloc_info 551

_C_TS_malloc_info() function 79

_C_TS_malloc64 196, 551

_EXBDY macro 6

_fputchar() function 120

_gcvt() function 151

_GetExcData() function 154

_INTRPT_Hndlr_Parms_T 4

_itoa() function 176

_ltoa() function 192

_Racquire() function 257

_Rclose() function 258

_Rcommit() function 259

_Rdelete() function 261

_Rdevatr() function 263

_Rfeod() function 278

_Rfeov() function 279

_Rformat() function 280

_Rindara() function 282

_Riofbk() function 284

_Rlocate() function 286

_Ropen() function 289

_Ropnfbk() function 293

_Rpgmdev() function 294

_Rreadd() function 295

_Rreadf() function 297

_Rreadindv() function 299

_Rreadk() function 302

_Rreadl() function 305

_Rreadn() function 306

_Rreadnc() function 308

_Rreadp() function 310

_Rreads() function 312

_Rrelease() function 314

_Rrlslck() function 316

_Rrollbck() function 317

_Rupdate() function 319

_Rupfb() function 320

_Rwrite() function 322

_Rwrited() function 324

_Rwriterd() function 327

_Rwrread() function 328

_ultoa() function 419

_VBDY macro 6

_wcsicmp() function 460

_wcsnicmp() function 467

A
abnormal program end 36

abort() function 36

abs() function 37

absolute value
abs() function 37

fabs 90

labs 177

access mode 92, 109

acos() function 38

acquire a program device 257

adding data to streams 92

append mode
using fopen() function 109

appending data to files 92

arccosine 38

arcsine 42

arctangent 44

argument list functions 30

asctime_r() function 41

asctime() function 39

asin() function 42

assert.h include file 3

assert() function 43

atan() function 44

atan2() function 44

atexit() function 45

atof() function 46

atoi() function 48

atol() function 49

atoll() function
strings to long long values 49

B
bessel functions 23, 50

binary files 111

binary search 51

blksize 111

block size 111

bsearch() function 51

btowc() function 53

buffers
assigning 336

comparing 213

copying 214, 217

flushing 96

searching 212

setting characters 218

bufsiz constant 16

builtins
__EXBDY 6

__VBDY 6

C
calculating

absolute value 37

absolute value of long integer 177

arccosine 38

arctangent 44

base 10 logarithm 191

calculate the next representable

floating-point value 223

cosine 64

error functions 87

exponential function 89

floating-point absolute value 90

floating-point remainder 108

hyperbolic cosine 65

hyperbolic sine 349

hypotenuse 168

logarithm 191

natural logarithm 191

quotient and remainder 86

sine 348

time difference 82, 84

calloc() function 55

cancel handler reason codes 514

case mapping functions 34

catclose() function 57

catgets() function 58

catopen() function 59

ceil() function 61

ceiling function 61

changing
data area 247

environment variables 240

file position 134

reserved storage block size 264

character
converting

to floating-point 49

to integer 48

to long integer 49

reading 98, 152

setting 218

ungetting 420

writing 118, 239

character case mapping
tolower 416

toupper 416

towlower 418

towupper 418

character testing
ASCII value 171

character property 172, 175

isalnum 169

isalpha 169

iscntrl 169

isdigit 169

isgraph 169

islower 169

isprint 169

ispunct 169

isspace 169

© Copyright IBM Corp. 1999, 2008 561

character testing (continued)
isupper 169

isxdigit 169

wide alphabetic character 173

wide alphanumeric character 173

wide control character 173

wide decimal-digit character 173

wide hexadecimal digit 173

wide lowercase character 173

wide non-alphanumeric

character 173

wide non-space character 173

wide printing character 173

wide uppercase character 173

wide whitespace character 173

character testing functions 33

clear error indicators 62

clearerr 62

clock() function 63

CLOCKS_PER_SEC 63

closing
file 258

message catalog 57

stream 91

comparing
buffers 213

strings 360, 363, 365, 379

comparing strings 357, 376

compile regular expression 267

concatenating strings 358, 377

conversion functions
QXXDTOP 248

QXXDTOZ 249

QXXITOP() 250

QXXITOZ 250

QXXPTOD 251

QXXPTOI 252

QXXZTOD 254

QXXZTOI 255

converting
character case 416

character string to decimal

floating-point 395

character string to double 392

character string to long integer 400

date 385, 469

double to zoned decimal 249

floating-point numbers to integers and

fractions 222

floating-point to packed decimal 248

from structure to string 39

from structure to string (restartable

version) 41

integer to a character in the ASCII

charactger set 415

integer to packed decimal 250

integer to zoned decimal 250

local time 218, 220

monetary value to string 368

multibyte character to a wide

character 201

multibyte character to wchar_t 211

multibyte string to a wide character

string 206

packed decimal to double 251

packed decimal to integer 252

single byte to wide character 53

converting (continued)
string segment to unsigned

integer 403

string to formatted date and

time 458

strings to floating-point values 46

strings to integer values 48

strings to long values 49

time 161, 163, 165, 167, 185, 187, 188,

189, 385, 469

time to character string 71, 73, 74, 76

wide character case 418

wide character string to multibyte

string 473

wide character to a multibyte

character 446

wide character to byte 491

wide character to long integer 481

wide character to multibyte

character 492

wide-character string to decimal

floating-point 478

wide-character string to double 476

wide-characterc string to unsigned

long 486

zoned decimal to double 254

zoned decimal to integer 255

copying
bytes 214, 217

strings 364, 380

cos() function 64

cosh() function 65

creating
a temporary file 414

ctime_r() function 74

ctime() function 71

ctime64_r() function 76

ctime64() function 73

ctype functions 169

ctype.h include file 3

currency functions 24

D
data conversion

atof() function 46

atoi() function 48

atol() function 49

data items 126

data type compatibility
CL 519, 521, 522

COBOL 520

ILE COBOL 518

RPG 516, 519

data type limits 7

date and time conversion 385, 469

decimal.h include file 3

deleting
file 274

record 261, 274

determine the display width of a wide

character 497

determining
display width of a wide character

string 489

display width of a wide-character

string 490

determining (continued)
length of a multibyte character 199

differential equations 23

difftime() function 82

difftime64() function 84

divf() function 86

E
end-of-file indicator 62, 95

ending a program 36, 88

environment
functions 32

interaction 32

retrieving information 181

table 154

variables 154, 240

environment variables
adding 240

changing 240

searching 154

eofile
clearing 276

macro 16

resetting error indicator 62

erf() function 87

erfc() function 87

errno 4

errno macros 507

errno values for Integrated File

System 508

errno variable 227

errno.h include file 4

error handling
assert 43

clearerr 62

ferror 95

functions 21

perror 227

stream I/O 95

strerror 367

error indicator 95

error macros, mapping stream I/O

exceptions 510

error messages
printing 227

except.h include file 4

exception class
listing 515

mapping 513

EXIT_FAILURE 17, 88

EXIT_SUCCESS 17, 88

exit() function 88

exp() function 89

exponential functions
exp 89

frexp 132

ldexp 178

log 191

log10 191

pow 228

sqrt 353

562 ILE C/C++ Runtime Library Functions V6R1

F
fabs() function 90

fclose() function 91

fdopen() function 92

feof() function 95

ferror() function 95

fflush() function 96

fgetc() function 98

fgetpos() function 99

fgets() function 101

fgetwc() function 102

fgetws() function 104

file
appending to 92

handle 106

include 3

maximum opened 16

name length 16

positioning 276

renaming 275

updating 92

file errors 62

file handling
remove 274

rename 275

tmpnam 414

file name length 16

file names, temporary 16

file positioning 99, 134, 136, 138

FILE type 16

fileno() function 106

float.h include file 7

floor() function 107

flushing buffers 96

fmod() function 108

fopen, maximum simultaneous files 16

fopen() function 109

format data as wide characters 143

formatted I/O 116

fpos_t 16

fprintf() function 116

fputc() function 118

fputs() function 121

fputwc() function 122

fputws() function 124

fread() function 126

free() function 128

freopen() function 130

frexp() function 132

fscanf() function 132

fseek() function 134

fseeko() function 134

fsetpos() function 136

ftell() function 138

fwide() function 140

fwprintf() function 143

fwrite() function 146

fwscanf() function 147

G
gamma() function 150

getc() function 152

getchar() function 152

getenv() function 154

gets() function 156

getting
handle for character mapping 493

handle for character property

classification 495

wide character from stdin 159

getwc() function 157

getwchar() function 159

gmtime_r() function 165

gmtime() function 161

gmtime64_r() function 167

gmtime64() function 163

H
handling interrupt signals 346

HUGE_VAL 8

hypot() function 168

hypotenuse 168

I
I/O errors 62

idate
correcting for local time 185, 187,

188, 189

functions 24

include files
assert.h 3

ctype.h 3

decimal.h 3

errno.h 4

except.h 4

float.h 7

inttypes.h 7

limits.h 7

locale.h 7

math.h 8

pointer.h 9

recio.h 9

regex.h 12

setjmp.h 13

signal.h 13

stdarg.h 13

stddef.h 13

stdint.h 14

stdio.h 15

stdlib.h 17

string.h 17

time.h 18

xxcvt.h 19

xxdtaa.h 19

xxenv.h 19

xxfdbk.h 19

indicators, error 62

initial strings 380

integer
pseudo-random 256

Integrated File System errno values 508

internationalization 7

interrupt signal 346

inttypes.h include file 7

invariant character
hexadecimal representation 523

isalnum() function 169

isalpha()function 169

isascii() function 171

isblank() function 172

iscntrl() function 169

isdigit() function 169

isgraph() function 169

islower() function 169

isprint() function 169

ispunct() function 169

isspace()function 169

isupper() function 169

iswalnu() function 173

iswcntrl() function 173

iswctype() function 175

iswdigit() function 173

iswgraph() function 173

iswlower() function 173

iswprint() function 173

iswpunct() function 173

iswspace() function 173

iswupper() function 173

iswxdigit() function 173

isxdigit() function 169

L
labs() function 177

langinfo.h include file 7

language collation string

comparison 455

ldexp() function 178

ldiv() function 179

length function 375

length of variables 516

library functions
absolute value

abs 37

fabs 90

labs 177

character case mapping
tolower 416

toupper 416

towlower 418

towupper 418

character testing
isalnum 169

isalpha 169

isascii 171

iscntrl 169

isdigit 169

isgraph 169

islower 169

isprint 169

ispunct 169

isspace 169

isupper 169

iswalnum 173

iswalpha 173

iswcntrl 173

iswctype 175

iswdigit 173

iswgraph 173

iswlower 173

iswprint 173

iswpunct 173

iswspace 173

iswupper 173

iswxdigit 173

isxdigit 169

Index 563

library functions (continued)
conversion

QXXDTOP 248

QXXDTOZ 249

QXXITOP 250

QXXITOZ 250

QXXPTOD 251

QXXPTOI 252

QXXZTOD 254

QXXZTOI 255

strfmon 368

strptime 385

wcsftime 458

wcsptime 469

data areas
QXXCHGDA 247

QXXRTVDA 252

error handling
_GetExcData 154

clearerr 62

raise 255

strerror 367

exponential
exp 89

frexp 132

ldexp 178

log 191

log10 191

pow 228

file handling
fileno 106

remove 274

rename 275

tmpfile 414

tmpnam 414

locale
localeconv 181

nl_langinfo 224

setlocale 339

strxfrm 404

math
acos 38

asin 42

atan 44

atan2 44

bessel 50

ceil 61

cos 64

cosh 65

div 86

erf 87

erfc 87

floor 107

fmod 108

frexp 132

gamma 150

hypot 168

ldiv 179

log 191

log10 191

modf 222

sin 348

sinh 349

sqrt 353

tan 409

tanh 410

library functions (continued)
memory management

_C_TS_malloc_debug 77

_C_TS_malloc_info 79

calloc 55

free 128

malloc 195

realloc 264

memory operations
memchr 212

memcmp 213

memcpy 214

memmove 217

memset 218

wmemchr 498

wmemcmp 499

wmemcpy 500

wmemmove 501

wmemset 502

message catalog
catclose 57

catgets 58

catopen 59

miscellaneous
assert 43

getenv 154

longjmp 193

perror 227

putenv 240

rand 256

rand_r 256

setjmp 338

srand 354

multibyte
_wcsicmp 460

_wcsnicmp 467

btowc 53

mblen 197

mbrlen 199

mbrtowc 201

mbsinit 205

mbsrtowcs 206

mbstowcs 207

mbtowc 211

towctrans 417

wcrtomb 446

wcscat 451

wcschr 452

wcscmp 453

wcscoll 455

wcscpy 456

wcscspn 457

wcslen 461

wcslocaleconv 462

wcsncat 463

wcsncmp 464

wcsncpy 466

wcspbrk 468

wcsrchr 471

wcsrtombs 473

wcsspn 474

wcstombs 483

wcswcs 488

wcswidth 489

wcsxfrm 490

wctob 491

wctomb 492

library functions (continued)
multibyte (continued)

wctrans 493

wctype 495

wcwidth 497

program
abort 36

atexit 45

exit 88

signal 346

regular expression
regcomp 267

regerror 269

regexec 271

regfree 273

searching
bsearch 51

qsort 245

stream input/output
fclose 91

feof 95

ferror 95

fflush 96

fgetc 98

fgetpos 99

fgets 101

fgetwc 102

fgetws 104

fprintf 116

fputc 118

fputs 121

fputwc 122

fputws 124

fread 126

freopen 130

fscanf 132

fseek 134

fsetpos 136

ftell 138

fwide 140

fwprintf 143

fwrite 146

fwscanf 147

getc 152

getchar 152

gets 156

getwc 157

getwchar 159

printf 229

putc 239

putchar 239

puts 241

putwc 242

putwchar 244

scanf 330

setbuf 336

setvbuf 344

sprintf 352

sscanf 355

swprintf 406

swscanf 407

ungetc 420

ungetwc 422

vfprintf 425

vfscanf 427

vfwprintf 428

vfwscanf 430

564 ILE C/C++ Runtime Library Functions V6R1

library functions (continued)
stream input/output (continued)

vprintf 432

vscanf 433

vsnprintf 435

vsprintf 436

vsscanf 437

vswprintf 439

vswscanf 441

vwprintf 443

vwscanf 445

wprintf 503

wscanf 504

string manipulation
strcat 358

strchr 359

strcmp 360

strcoll 363

strcpy 364

strcspn 365

strlen 375

strncmp 379

strncpy 380

strpbrk 384

strrchr 389

strspn 390

strstr 391

strtod 392

strtok 398

strtok_r 399

strtol 400

strtoul 403

strxfrm 404

wcsstr 475

wcstok 480

time
asctime 39

asctime_r 41

clock 63

ctime 71

ctime_r 74

ctime64 73

ctime64_r 76

difftime 82

difftime64 84

gmtime 161

gmtime_r 165

gmtime64 163

gmtime64_r 167

localtime 185

localtime_r 188

localtime64 187

localtime64_r 189

mktime 218

mktime64 220

strftime 370

wcsftime 458

trigonometric
acos 38

asin 42

atan 44

atan2 44

cos 64

cosh 65

sin 348

sinh 349

tan 409

library functions (continued)
trigonometric (continued)

tanh 410

type conversion
atof 46

atoi 48

atol 49

strol 400

strtod 392

strtoul 403

toascii 415

wcstod 476

wcstol 481

wcstoul 486

variable argument handling
va_arg 423

va_end 423

va_start 423

vfprintf 425

vfscanf 427

vfwscanf 430

vprintf 432

vscanf 433

vsnprintf 435

vsprintf 436

vsscanf 437

vswscanf 441

vwscanf 445

library introduction 21

limits.h include file 7

llabs() subroutine
absolute value of long long

integer 177

lldiv() subroutine
perform long long division 179

local time corrections 185, 187

local time corrections (restartable

version) 188, 189

locale functions
localeconv 181

setlocale 339

strxfrm 404

locale.h include file 7

localeconv() function 181

locales
retrieve information 224

setting 339

localtime_r() function 188

localtime() function 185

localtime64_r() function 189

localtime64() function 187

locating storage 128

log() function 191

log10() function 191

logarithmic functions
log 191

log10 191

logic errors 43

logical record length 111

longjmp() function 193

lrecl 111

M
malloc() function 195

math functions
abs 37

math functions (continued)
acos 38

asin 42

atan 44

atan2 44

bessel 50

div 86

erf 87

erfc 87

exp 89

fabs 90

floor 107

fmod 108

frexp 132

gamma 150

hypot 168

labs 177

ldexp 178

ldiv 179

log 191

log10 191

modf 222

pow 228

sin 348

sinh 349

sqrt 353

tan 409

tanh 410

math.h include file 8

mathematical functions 22

maximum
file name 16

opened files 16

temporary file name 16

MB_CUR_MAX 17

mblen() function 197

mbrlen() function 199

mbrtowc() function 201

mbsinit() function 205

mbsrtowcs() function 206

mbstowcs() function 207

mbtowc() function 211

memchr() function 212

memcmp() function 213

memcpy() function 214

memicmp() function 215

memmove() function 217

memory allocation
_C_TS_malloc_debug 77

_C_TS_malloc_info 79

calloc 55

free 128

malloc 195

realloc 264

memory management
_C_TS_malloc_debug 77

_C_TS_malloc_info 79

calloc 55

free 128

malloc 195

realloc 264

memory object functions 31

memory operations
memchr 212

memcmp 213

memcpy 214

memmove 217

Index 565

memory operations (continued)
memset 218

wmemchr 498

wmemcmp 499

wmemcpy 500

wmemmove 501

wmemset 502

memset() function 218

miscellaneous functions
assert 43

getenv 154

longjmp 193

perror 227

putenv 240

rand 256

rand_r 256

setjmp 338

srand 354

mktime() function 218

mktime64() function 220

modf() function 222

monetary functions 24

monetary.h include file 8

multibyte functions
_wcsicmp 460

_wcsnicmp 467

btowc 53

mblen 197

mbrlen 199

mbrtowc 201

mbsinit 205

mbsrtowcs 206

mbstowcs 207

mbtowc 211

towctrans 417

wcrtomb 446

wcscat 451

wcschr 452

wcscmp 453

wcscoll 455

wcscpy 456

wcscspn 457

wcsicmp 460

wcslen 461

wcslocaleconv 462

wcsncat 463

wcsncmp 464

wcsncpy 466

wcsnicmp 467

wcspbrk 468

wcsrchr 471

wcsrtombs 473

wcsspn 474

wcstombs 483

wcswcs 488

wcswidth 489

wcsxfrm 490

wctob 491

wctomb 492

wctrans 493

wctype 495

wcwidth 497

N
NDEBUG 3, 43

nextafter() function 223

nextafterl() function 223

nexttoward() function 223

nexttowardl() function 223

nl_langinfo() function 224

nltypes.h include file 9

nonlocal goto 193, 338

NULL pointer 14, 16, 17

O
offsetof macro 14

opening
message catalog 59

P
passing

constants 522

variables 522

perror() function 227

pointer.h include file 9

pow() function 228

printf() function 229

printing
error messages 227

process control
signal 346

program termination
abort 36

atexit 45

exit 88

pseudo-random integers 256

pseudorandom number functions
rand 256

rand_r 256

srand 354

ptrdiff_t 13

pushing characters 420

putc() function 239

putchar() function 239

putenv() function 240

puts() function 241

putwc() function 242

putwchar() function 244

Q
qsort() function 245

quick sort 245

QXXCHGDA() function 247

QXXDTOP() function 248

QXXDTOZ() function 249

QXXITOP() function 250

QXXITOZ() function 250

QXXPTOD() function 251

QXXPTOI() function 252

QXXRTVDA() function 252

QXXZTOD() function 254

QXXZTOI() function 255

R
raise() function 255

RAND_MAX 17

rand_r() function 256

rand() function 256

random access 134, 138

random number generator 256, 354

read operations
character from stdin 152

character from stream 152

data items from stream 126

formatted 132, 330, 355

line from stdin 156

line from stream 101

reading a character 98

scanning 132

reading
character 152

data 330

data from stream using wide

character 147

data using wide-character format

string 504

formatted data 132

items 126

line 156

messages 58

stream 101

wide character from stream 102, 157

wide-character string from

stream 104

realloc() function 264

reallocation 264

recfm 111

recio.h include file 9

record format 111

record input/ouput
_Racquire 257

_Rclose 258

_Rcommit 259

_Rdelete 261

_Rdevatr 263

_Rfeod 278

_Rfeov 279

_Rformat 280

_Rindara 282

_Riofbk 284

_Rlocate 286

_Ropen 289

_Ropnfbk 293

_Rpgmdev 294

_Rreadd 295

_Rreadf 297

_Rreadindv 299

_Rreadk 302

_Rreadl 305

_Rreadn 306

_Rreadnc 308

_Rreadp 310

_Rreads 312

_Rrelease 314

_Rrlslck 316

_Rrollbck 317

_Rupdate 319

_Rupfb 320

_Rwrite 322

_Rwrited 324

_Rwriterd 327

_Rwrread 328

record program ending 45

redirection 130

566 ILE C/C++ Runtime Library Functions V6R1

regcomp() function 267

regerror() function 269

regex.h include file 12

regexec() function 271

regfree() function 273

remove() function 274

rename() function 275

reopening streams 130

reserving storage
_C_TS_malloc_debug 77

_C_TS_malloc_info 79

malloc 195

realloc 264

retrieve data area 252

retrieve locale information 224

rewind() function 276

S
scanf() function 330

searching
bsearch function 51

environment variables 154

strings 359, 384, 390

strings for tokens 398, 399

searching and sorting functions 22

seed 354

send signal 255

separate floating-point value 132

setbuf() function 336

setjmp.h include file 13

setjmp() function 338

setlocale() function 339

setting
bytes to value 218

setvbuf() function 344

signal handling 511

signal.h include file 13

signal() function 346

sin() function 348

sine 348

sinh() function 349

size_t 13

snprintf() function 350

sorting
quick sort 245

sprintf() function 352

sqrt() function 353

srand() function 354

sscanf() function 355

standard types
FILE 16

stdarg.h include file 13

stddef.h include file 13

stdint.h include file 14

stdio.h include file 15

stdlib.h include file 17

stopping
program 36

storage allocation 55

strcasecmp() function 357

strcat() function 358

strchr() function 359

strcmp() function 360

strcmpi() function 362

strcoll() function 363

strcpy() function 364

strcspn() function 365

strdup() function 366

stream I/O functions 27

stream input/output
fclose 91

feof 95

ferror 95

fflush 96

fgetc 98

fgets 101

fopen 109

fprintf 116

fputc 118

fputs 121

fputwc 122

fputws 124

fread 126

freopen 130

fscanf 132

fseek 134

ftell 138

fwrite 146

getc 152

getchar 152

gets 156

printf 229

putc 239

putchar 239

puts 241

rewind 276

scanf 330

setbuf 336

setvbuf 344

snprintf 350

sprintf 352

sscanf 355

swprintf 406

swscanf 407

tmpfile 414

ungetc 420

ungetwc 422

va_arg 423

va_end 423

va_start 423

vfprintf 425

vfscanf 427

vfwprintf 428

vfwscanf 430

vprintf 432

vscanf 433

vsnprintf 435

vsprintf 436

vsscanf 437

vswprintf 439

vswscanf 441

vwprintf 443

vwscanf 445

wprintf 503

wscanf 504

stream orientation 140

streams
access mode 130

appending 109, 130

binary mode 130

buffering 336

changing current file position 134,

138

streams (continued)
changing file position 276

formatted I/O 132, 229, 330, 352, 355

opening 109

reading characters 98, 152

reading data items 126

reading lines 101, 156

reopening 130

rewinding 276

text mode 130

translation mode 130

ungetting characters 420

updating 109, 130

writing characters 118, 239

writing data items 146

writing lines 241

writing strings 121

strerror() function 367

strfmon() function 368

strftime() function 370

stricmp() function 374

string manipulation
strcasecmp 357

strcat 358

strchr 359

strcmp 360

strcoll 363

strcpy 364

strcspn 365

strlen 375

strncasecmp 376

strncat 377

strncmp 379

strncpy 380

strpbrk 384

strrchr 389

strspn 390

strstr 391

strtod 392

strtok 398

strtok_r 399

strtol 400

strxfrm 404

wcsstr 475

wcstok 480

string.h include file 17

strings
comparing 365, 379

concatenating 358

converting
to floating-point 49

to integer 48

to long integer 49

copying 364

ignoring case 360, 363, 365

initializing 380

length of 375

reading 101

searching 359, 384, 390

searching for tokens 398, 399

strstr 391

writing 121

strlen() function 375

strncasecmp() function 376

strncat() function 377

strncmp() function 379

strncpy() function 380

Index 567

strnicmp() function 382

strnset() function 383

strpbrk() function 384

strptime() function 385

strrchr() function 389

strset() function 383

strspn() function 390

strstr() function 391

strtod() function 392

strtod128() function 395

strtod32() function 395

strtod64() function 395

strtok_r() function 399

strtok() function 398

strtol() function 400

strtoll() subroutine
character string to long long

integer 400

strtoul() function 403

strtoull() subroutine
character string to unsigned long long

integer 403

strxfrm() function 404

swprintf() function 406

swscanf() function 407

system() function 408

T
tan() function 409

tangent 409

tanh() function 410

testing
ASCII value 171

character property 172, 175

isalnum 169

isalpha 169

iscntrl 169

isdigit 169

isgraph 169

islower 169

isprint 169

ispunct 169

isspace 169

isupper 169

isxdigit 169

state object for initial state 205

wide alphabetic character 173

wide alphanumeric character 173

wide control character 173

wide decimal-digit character 173

wide hexadecimal digit 173

wide lowercase character 173

wide non-alphanumeric

character 173

wide non-space character 173

wide printing character 173

wide uppercase character 173

wide whitespace character 173

testing state object for initial state 205

time
asctime 39

asctime_r 41

converting from structure to

string 39

converting from structure to string

(restartable version) 41

time (continued)
correcting for local time 185, 187,

188, 189

ctime 71

ctime_r 74

ctime64 73

ctime64_r 76

difftime 82

difftime64 84

function 185, 187, 188, 189

functions 24

gmtime 161

gmtime_r 165

gmtime64 163

gmtime64_r 167

localtime 185

localtime_r 188

localtime64 187

localtime64_r 189

mktime 218

mktime64 220

strftime 370

time 411

time64 412

time.h include file 18

time() function 411

time64() function 412

tm structure 161, 163, 165, 167

TMP_MAX 414

tmpfile() function
names 16

number of 16

tmpnam() function
file names 16

tmpnam() 414

toascii() function 415

tokens
strtok 398

strtok_r 399

tokenize string 398

tolower() function 416

toupper() function 416

towctrans() function 417

towlower() function 418

towupper() function 418

trigonometric functions
acos 38

asin 42

atan 44

atan2 44

cos 64

cosh 65

sin 348

sinh 349

tan 409

tanh 410

type conversion
atof 46

atoi 48

atol 49

strtod 392

strtol 400

strtoul 403

toascii 415

wcstod 476

wcstol 481

wcstoul 486

U
ungetc() function 420

ungetwc() function 422

updating files 92

V
va_arg() function 423

va_end() function 423

va_start() function 423

variable argument functions 30

verify condition 43

vfprintf() function 425

vfscanf() function 427

vfwprintf() function 428

vfwscanf() function 430

vprintf() function 432

vscanf() function 433

vsnprintf() function 435

vsprintf() function 436

vsscanf() function 437

vswprintf() function 439

vswscanf() function 441

vwprintf() function 443

vwscanf() function 445

W
wchar.h include file 18

wcrtomb() function 446

wcscat() function 451

wcschr() function 452

wcscmp() function 453

wcscoll() function 455

wcscpy() function 456

wcscspn() function 457

wcsftime() function 458

wcslen() function 461

wcslocaleconv() function 462

wcsncat() function 463

wcsncmp() function 464

wcsncpy() function 466

wcspbrk() function 468

wcsptime() function 469

wcsrchr() function 471

wcsrtombs() function 473

wcsspn() function 474

wcsstr() function 475

wcstod() function 476

wcstod128() function 478

wcstod32() function 478

wcstod64() function 478

wcstok() function 480

wcstol() function 481

wcstoll() subroutine
wide character to long long

integer 481

wcstombs() function 483

wcstoul() function 486

wcstoull() subroutine
wide-character string to unsigned long

long 486

wcswcs() function 488

wcswidth() function 489

wcsxfrm() function 490

wctob() function 491

568 ILE C/C++ Runtime Library Functions V6R1

wctomb() function 492

wctrans() function 493

wctype.h include file 19

wctype() function 495

wcwidth() function 497

wide character string functions 34

wmemchr() function 498

wmemcmp() function 499

wmemcpy() function 500

wmemmove() function 501

wmemset() function 502

wprintf() function 503

write operations
character to stdout 118, 239

character to stream 118, 239, 420

data items from stream 146

formatted 116, 229, 352

line to stream 241

printing 146

string to stream 121

writing
character 118, 239

data items from stream 146

formatted data to a stream 116

string 121, 241

wide character 122, 242, 244

wide characters to a stream 143

wide-character string 124

wscanf() function 504

X
xxcvt.h include file 19

xxdtaa.h include file 19

xxenv.h include file 19

xxfdbk.h include file 19

Index 569

570 ILE C/C++ Runtime Library Functions V6R1

Readers’ Comments — We’d Like to Hear from You

System i

ILE C/C++ Runtime Library Functions

Version 6 Release 1

 Publication No. SC41-5607-03

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: United States and Canada: 1-800-937-3430
Other countries or regions: 1-507-253-5192

v Send your comments via e-mail to: RCHCLERK@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC41-5607-03

SC41-5607-03

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION

ATTN DEPT 542 IDCLERK

3605 HWY 52 N

ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

SC41-5607-03

	Contents
	Tables
	About ILE C/C++ Runtime Library Functions (SC41-5607)
	Who should read this book
	A note about examples

	Prerequisite and related information
	How to send your comments

	Summary of Changes
	Part 1. Runtime Library Functions
	Chapter 1. Include Files
	<assert.h>
	<ctype.h>
	<decimal.h>
	<errno.h>
	<except.h>
	<float.h>
	<inttypes.h>
	<langinfo.h>
	<limits.h>
	<locale.h>
	<math.h>
	<mallocinfo.h>
	<monetary.h>
	<nl_types.h>
	<pointer.h>
	<recio.h>
	<regex.h>
	<setjmp.h>
	<signal.h>
	<stdarg.h>
	<stddef.h>
	<stdint.h>
	<stdio.h>
	<stdlib.h>
	<string.h>
	<strings.h>
	<time.h>
	<wchar.h>
	<wctype.h>
	<xxcvt.h>
	<xxdtaa.h>
	<xxenv.h>
	<xxfdbk.h>
	Machine Interface (MI) Include Files

	Chapter 2. Library Functions
	The C/C++ Library
	Error Handling
	Searching and Sorting
	Mathematical
	Time Manipulation
	Type Conversion
	Conversion
	Record Input/Output
	Stream Input/Output
	Handling Argument Lists
	Pseudorandom Numbers
	Dynamic Memory Management
	Memory Objects
	Environment Interaction
	String Operations
	Character Testing
	Multibyte Character Testing
	Character Case Mapping
	Multibyte Character Manipulation
	Data Areas
	Message Catalogs
	Regular Expression

	abort() — Stop a Program
	abs() — Calculate Integer Absolute Value
	acos() — Calculate Arccosine
	asctime() — Convert Time to Character String
	asctime_r() — Convert Time to Character String (Restartable)
	asin() — Calculate Arcsine
	assert() — Verify Condition
	atan() – atan2() — Calculate Arctangent
	atexit() — Record Program Ending Function
	atof() — Convert Character String to Float
	atoi() — Convert Character String to Integer
	atol() — atoll() — Convert Character String to Long or Long Long Integer
	Bessel Functions
	bsearch() — Search Arrays
	btowc() — Convert Single Byte to Wide Character
	_C_Get_Ssn_Handle() — Handle to C Session
	calloc() — Reserve and Initialize Storage
	catclose() — Close Message Catalog
	catgets() — Retrieve a Message from a Message Catalog
	catopen() — Open Message Catalog
	ceil() — Find Integer >=Argument
	clearerr() — Reset Error Indicators
	clock() — Determine Processor Time
	cos() — Calculate Cosine
	cosh() — Calculate Hyperbolic Cosine
	_C_Quickpool_Debug() — Modify Quick Pool Memory Management Characteristics
	_C_Quickpool_Init() — Initialize Quick Pool Memory Management
	_C_Quickpool_Report() — Generate Quick Pool Memory Management Report
	ctime() — Convert Time to Character String
	ctime64() — Convert Time to Character String
	ctime_r() — Convert Time to Character String (Restartable)
	ctime64_r() — Convert Time to Character String (Restartable)
	_C_TS_malloc_debug() — Determine amount of teraspace memory used (with optional dumps and verification)
	_C_TS_malloc_info() — Determine amount of teraspace memory used
	difftime() — Compute Time Difference
	difftime64() — Compute Time Difference
	div() — Calculate Quotient and Remainder
	erf() – erfc() — Calculate Error Functions
	exit() — End Program
	exp() — Calculate Exponential Function
	fabs() — Calculate Floating-Point Absolute Value
	fclose() — Close Stream
	fdopen() — Associates Stream With File Descriptor
	feof() — Test End-of-File Indicator
	ferror() — Test for Read/Write Errors
	fflush() — Write Buffer to File
	fgetc() — Read a Character
	fgetpos() — Get File Position
	fgets() — Read a String
	fgetwc() — Read Wide Character from Stream
	fgetws() — Read Wide-Character String from Stream
	fileno() — Determine File Handle
	floor() —Find Integer <=Argument
	fmod() — Calculate Floating-Point Remainder
	fopen() — Open Files
	fprintf() — Write Formatted Data to a Stream
	fputc() — Write Character
	_fputchar - Write Character
	fputs() — Write String
	fputwc() — Write Wide Character
	fputws() — Write Wide-Character String
	fread() — Read Items
	free() — Release Storage Blocks
	freopen() — Redirect Open Files
	frexp() — Separate Floating-Point Value
	fscanf() — Read Formatted Data
	fseek() — fseeko() — Reposition File Position
	fsetpos() — Set File Position
	ftell() — ftello() — Get Current Position
	fwide() — Determine Stream Orientation
	fwprintf() — Format Data as Wide Characters and Write to a Stream
	fwrite() — Write Items
	fwscanf() — Read Data from Stream Using Wide Character
	gamma() — Gamma Function
	_gcvt - Convert Floating-Point to String
	getc() – getchar() — Read a Character
	getenv() — Search for Environment Variables
	_GetExcData() — Get Exception Data
	gets() — Read a Line
	getwc() — Read Wide Character from Stream
	getwchar() — Get Wide Character from stdin
	gmtime() — Convert Time
	gmtime64() — Convert Time
	gmtime_r() — Convert Time (Restartable)
	gmtime64_r() — Convert Time (Restartable)
	hypot() — Calculate Hypotenuse
	isalnum() - isxdigit() — Test Integer Value
	isascii() — Test for Character Representable as ASCII Value
	isblank() — Test for Blank or Tab Character
	iswalnum() to iswxdigit() — Test Wide Integer Value
	iswctype() — Test for Character Property
	_itoa - Convert Integer to String
	labs() — llabs() — Calculate Absolute Value of Long and Long Long Integer
	ldexp() — Multiply by a Power of Two
	ldiv() — lldiv() — Perform Long and Long Long Division
	localeconv() — Retrieve Information from the Environment
	localtime() — Convert Time
	localtime64() — Convert Time
	localtime_r() — Convert Time (Restartable)
	localtime64_r() — Convert Time (Restartable)
	log() — Calculate Natural Logarithm
	log10() — Calculate Base 10 Logarithm
	_ltoa - Convert Long Integer to String
	longjmp() — Restore Stack Environment
	malloc() — Reserve Storage Block
	mblen() — Determine Length of a Multibyte Character
	mbrlen() — Determine Length of a Multibyte Character (Restartable)
	mbrtowc() — Convert a Multibyte Character to a Wide Character (Restartable)
	mbsinit() — Test State Object for Initial State
	mbsrtowcs() — Convert a Multibyte String to a Wide Character String (Restartable)
	mbstowcs() — Convert a Multibyte String to a Wide Character String
	mbtowc() — Convert Multibyte Character to a Wide Character
	memchr() — Search Buffer
	memcmp() — Compare Buffers
	memcpy() — Copy Bytes
	memicmp() - Compare Bytes
	memmove() — Copy Bytes
	memset() — Set Bytes to Value
	mktime() — Convert Local Time
	mktime64() — Convert Local Time
	modf() — Separate Floating-Point Value
	nextafter() — nextafterl()— nexttoward() — nexttowardl() — Calculate the Next Representable Floating-Point Value
	nl_langinfo() —Retrieve Locale Information
	perror() — Print Error Message
	pow() — Compute Power
	printf() — Print Formatted Characters
	putc() – putchar() — Write a Character
	putenv() — Change/Add Environment Variables
	puts() — Write a String
	putwc() — Write Wide Character
	putwchar() — Write Wide Character to stdout
	qsort() — Sort Array
	QXXCHGDA() — Change Data Area
	QXXDTOP() — Convert Double to Packed Decimal
	QXXDTOZ() —Convert Double to Zoned Decimal
	QXXITOP() — Convert Integer to Packed Decimal
	QXXITOZ() — Convert Integer to Zoned Decimal
	QXXPTOD() — Convert Packed Decimal to Double
	QXXPTOI() — Convert Packed Decimal to Integer
	QXXRTVDA() — Retrieve Data Area
	QXXZTOD() — Convert Zoned Decimal to Double
	QXXZTOI() — Convert Zoned Decimal to Integer
	raise() — Send Signal
	rand(), rand_r() — Generate Random Number
	_Racquire() — Acquire a Program Device
	_Rclose() — Close a File
	_Rcommit() — Commit Current Record
	_Rdelete() — Delete a Record
	_Rdevatr() — Get Device Attributes
	realloc() — Change Reserved Storage Block Size
	regcomp() — Compile Regular Expression
	regerror() — Return Error Message for Regular Expression
	regexec() — Execute Compiled Regular Expression
	regfree() — Free Memory for Regular Expression
	remove() — Delete File
	rename() — Rename File
	rewind() — Adjust Current File Position
	_Rfeod() — Force the End-of-Data
	_Rfeov() — Force the End-of-File
	_Rformat() — Set the Record Format Name
	_Rindara() — Set Separate Indicator Area
	_Riofbk() — Obtain I/O Feedback Information
	_Rlocate() — Position a Record
	_Ropen() — Open a Record File for I/O Operations
	_Ropnfbk() — Obtain Open Feedback Information
	_Rpgmdev() — Set Default Program Device
	_Rreadd() — Read a Record by Relative Record Number
	_Rreadf() — Read the First Record
	_Rreadindv() — Read from an Invited Device
	_Rreadk() — Read a Record by Key
	_Rreadl() — Read the Last Record
	_Rreadn() — Read the Next Record
	_Rreadnc() — Read the Next Changed Record in a Subfile
	_Rreadp() — Read the Previous Record
	_Rreads() — Read the Same Record
	_Rrelease() — Release a Program Device
	_Rrlslck() — Release a Record Lock
	_Rrollbck() — Roll Back Commitment Control Changes
	_Rupdate() — Update a Record
	_Rupfb() — Provide Information on Last I/O Operation
	_Rwrite() — Write the Next Record
	_Rwrited() — Write a Record Directly
	_Rwriterd() — Write and Read a Record
	_Rwrread() — Write and Read a Record (separate buffers)
	scanf() — Read Data
	setbuf() — Control Buffering
	setjmp() — Preserve Environment
	setlocale() — Set Locale
	setvbuf() — Control Buffering
	signal() — Handle Interrupt Signals
	sin() — Calculate Sine
	sinh() — Calculate Hyperbolic Sine
	snprintf() — Print Formatted Data to Buffer
	sprintf() — Print Formatted Data to Buffer
	sqrt() — Calculate Square Root
	srand() — Set Seed for rand() Function
	sscanf() — Read Data
	strcasecmp() — Compare Strings without Case Sensitivity
	strcat() — Concatenate Strings
	strchr() — Search for Character
	strcmp() — Compare Strings
	strcmpi() - Compare Strings Without Case Sensitivity
	strcoll() — Compare Strings
	strcpy() — Copy Strings
	strcspn() — Find Offset of First Character Match
	strdup - Duplicate String
	strerror() — Set Pointer to Runtime Error Message
	strfmon() — Convert Monetary Value to String
	strftime() — Convert Date/Time to String
	stricmp() - Compare Strings without Case Sensitivity
	strlen() — Determine String Length
	strncasecmp() — Compare Strings without Case Sensitivity
	strncat() — Concatenate Strings
	strncmp() — Compare Strings
	strncpy() — Copy Strings
	strnicmp - Compare Substrings Without Case Sensitivity
	strnset - strset - Set Characters in String
	strpbrk() — Find Characters in String
	strptime()— Convert String to Date/Time
	strrchr() — Locate Last Occurrence of Character in String
	strspn() —Find Offset of First Non-matching Character
	strstr() — Locate Substring
	strtod() — strtof() — strtold — Convert Character String to Double, Float, and Long Double
	strtod32() — strtod64() — strtod128() — Convert Character String to Decimal Floating-Point
	strtok() — Tokenize String
	strtok_r() — Tokenize String (Restartable)
	strtol() — strtoll() — Convert Character String to Long and Long Long Integer
	strtoul() — strtoull() — Convert Character String to Unsigned Long and Unsigned Long Long Integer
	strxfrm() — Transform String
	swprintf() — Format and Write Wide Characters to Buffer
	swscanf() — Read Wide Character Data
	system() — Execute a Command
	tan() — Calculate Tangent
	tanh() — Calculate Hyperbolic Tangent
	time() — Determine Current Time
	time64() — Determine Current Time
	tmpfile() — Create Temporary File
	tmpnam() — Produce Temporary File Name
	toascii() — Convert Character to Character Representable by ASCII
	tolower() – toupper() — Convert Character Case
	towctrans() — Translate Wide Character
	towlower() –towupper() — Convert Wide Character Case
	_ultoa - Convert Unsigned Long Integer to String
	ungetc() — Push Character onto Input Stream
	ungetwc() — Push Wide Character onto Input Stream
	va_arg() – va_end() – va_start() — Access Function Arguments
	vfprintf() — Print Argument Data to Stream
	vfscanf() — Read Formatted Data
	vfwprintf() — Format Argument Data as Wide Characters and Write to a Stream
	vfwscanf() — Read Formatted Wide Character Data
	vprintf() — Print Argument Data
	vscanf() — Read Formatted Data
	vsnprintf() — Print Argument Data to Buffer
	vsprintf() — Print Argument Data to Buffer
	vsscanf() — Read Formatted Data
	vswprintf() — Format and Write Wide Characters to Buffer
	vswscanf() — Read Formatted Wide Character Data
	vwprintf() — Format Argument Data as Wide Characters and Print
	vwscanf() — Read Formatted Wide Character Data
	wcrtomb() — Convert a Wide Character to a Multibyte Character (Restartable)
	wcscat() — Concatenate Wide-Character Strings
	wcschr() — Search for Wide Character
	wcscmp() — Compare Wide-Character Strings
	wcscoll() —Language Collation String Comparison
	wcscpy() — Copy Wide-Character Strings
	wcscspn() — Find Offset of First Wide-Character Match
	wcsftime() — Convert to Formatted Date and Time
	__wcsicmp() — Compare Wide Character Strings without Case Sensitivity
	wcslen() — Calculate Length of Wide-Character String
	wcslocaleconv() — Retrieve Wide Locale Information
	wcsncat() — Concatenate Wide-Character Strings
	wcsncmp() — Compare Wide-Character Strings
	wcsncpy() — Copy Wide-Character Strings
	__wcsnicmp() — Compare Wide Character Strings without Case Sensitivity
	wcspbrk() — Locate Wide Characters in String
	wcsptime()— Convert Wide Character String to Date/Time
	wcsrchr() — Locate Last Occurrence of Wide Character in String
	wcsrtombs() — Convert Wide Character String to Multibyte String (Restartable)
	wcsspn() — Find Offset of First Non-matching Wide Character
	wcsstr() — Locate Wide-Character Substring
	wcstod() — Convert Wide-Character String to Double
	wcstod32() — wcstod64() — wcstod128()— Convert Wide-Character String to Decimal Floating-Point
	wcstok() — Tokenize Wide-Character String
	wcstol() — wcstoll() — Convert Wide Character String to Long and Long Long Integer
	wcstombs() — Convert Wide-Character String to Multibyte String
	wcstoul() — wcstoull() — Convert Wide Character String to Unsigned Long and Unsigned Long Long Integer
	wcswcs() — Locate Wide-Character Substring
	wcswidth() — Determine the Display Width of a Wide Character String
	wcsxfrm() — Transform a Wide-Character String
	wctob() — Convert Wide Character to Byte
	wctomb() — Convert Wide Character to Multibyte Character
	wctrans() —Get Handle for Character Mapping
	wctype() — Get Handle for Character Property Classification
	wcwidth() — Determine the Display Width of a Wide Character
	wfopen() —Open Files
	wmemchr() —Locate Wide Character in Wide-Character Buffer
	wmemcmp() —Compare Wide-Character Buffers
	wmemcpy() —Copy Wide-Character Buffer
	wmemmove() — Copy Wide-Character Buffer
	wmemset() — Set Wide Character Buffer to a Value
	wprintf() — Format Data as Wide Characters and Print
	wscanf() — Read Data Using Wide-Character Format String

	Chapter 3. Runtime Considerations
	errno Macros
	errno Values for Integrated File System Enabled C Stream I/O
	Record Input and Output Error Macro to Exception Mapping
	Signal Handling Action Definitions
	Signal to i5/OS Exception Mapping

	Cancel Handler Reason Codes
	Exception Classes
	Data Type Compatibility
	Runtime Character Set
	Understanding CCSIDs and Locales
	CCSIDs of Characters and Character Strings
	Character Literal CCSID
	Job CCSID
	File CCSID
	Locale CCSID

	Wide Characters
	Wide Character Conversions to and from Single-Byte or Multibyte Characters
	Wide Characters and File I/O

	Asynchronous Signal Model
	Unicode Support
	Reasons to Use Unicode Support
	Pseudo-CCSID Neutrality
	Unicode from Other ILE Languages
	Standard Files
	Considerations
	Default File CCSID
	Newline Character
	Conversion Errors

	Appendix A. Library Functions and Extensions
	Standard C Library Functions Table, By Name
	ILE C Library Extensions to C Library Functions Table

	Appendix B. Notices
	Programming interface information
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

