
System i

IBM Content Manager OnDemand for i5/OS

Common Server Indexing Reference

Version 6 Release 1

SC27-1160-04

���

System i

IBM Content Manager OnDemand for i5/OS

Common Server Indexing Reference

Version 6 Release 1

SC27-1160-04

���

Note

Before using this information and the product it supports, read the information in “Notices” on page

65.

This edition applies to IBM Content Manager OnDemand for i5/OS Version 6 Release 1 and to all subsequent

releases and modifications until otherwise indicated in new editions. This edition replaces SC27-1160-03.

© Copyright International Business Machines Corporation 2001, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About IBM Content Manager OnDemand for i5/OS Common Server

Indexing Reference (SC27-1160) vii

Who should read this book . vii

How this book is organized . vii

Prerequisite and related information vii

Other information available on the World Wide Web vii

System i Navigator . viii

OnDemand Information Center viii

Accessibility information for OnDemand viii

How to send your comments . viii

Summary of changes . ix

Part 1. OS/400 indexer reference . 1

Chapter 1. Using the OS/400 indexer 3

Indexing concepts . 3

Indexing parameters . 3

Using BREAK=YES versus BREAK=NO in indexer parameters 5

Controlling maximum number of pages per group 6

Defining multi-key indexes . 6

An example . 7

Defining transaction fields . 10

An example . 10

Assigning default index values 13

Defining text search fields . 13

Handling SCS spooled files that have AFP overlays 15

Using a mask when defining applications fields 15

Using Tag Logical Elements (TLEs) 16

Part 2. PDF indexer reference . 17

Chapter 2. Overview . 19

What is the PDF indexer? . 19

How OnDemand uses index information 21

Processing PDF input files with the graphical indexer 21

Manually indexing input data . 24

Indexing concepts . 24

Coordinate system . 25

Indexing parameters . 25

How to create indexing parameters 27

Chapter 3. System considerations 29

System limitations . 29

Input data requirements . 29

NLS considerations . 30

Chapter 4. Parameter reference 31

COORDINATES . 31

Syntax . 31

Options and values . 31

FIELD . 31

© Copyright IBM Corp. 2001, 2008 iii

||

||

||

||
||

||

||

||

Trigger field syntax . 31

Constant field syntax . 34

Related parameters . 34

FONTLIB . 34

Syntax . 35

Options and values . 35

INDEX . 35

Syntax . 35

Options and values . 35

Examples . 36

Related parameters . 36

INDEXDD . 36

Syntax . 36

Options and values . 36

INDEXSTARTBY . 36

Syntax . 37

Options and values . 37

INPUTDD . 37

Syntax . 38

Options and values . 38

MSGDD . 38

Syntax . 38

Options and values . 38

OUTPUTDD . 38

Syntax . 38

Options and values . 38

PARMDD . 39

Syntax . 39

Options and values . 39

TEMPDIR . 39

Syntax . 39

Options and values . 39

TRACEDD parameter . 39

TRIGGER . 39

Syntax . 40

Options and values . 40

Examples . 40

Related parameters . 41

Chapter 5. Message reference 43

Chapter 6. ARSPDOCI reference 45

Purpose . 45

Syntax . 45

Description . 45

Parameters . 45

IFS location . 46

Chapter 7. ARSPDUMP reference 47

Purpose . 47

Syntax . 47

Description . 47

Parameters . 47

Examples . 48

IFS location . 48

iv Indexing Reference

Chapter 8. Trace facility . 49

Part 3. Generic indexer reference . 51

Chapter 9. Overview . 53

Loading data . 53

Processing AFP data . 54

Chapter 10. Specifying the parameter file 55

CODEPAGE: . 55

Syntax . 55

Options and values . 55

Example . 55

COMMENT: . 56

Syntax . 56

Options and values . 56

Example . 56

GROUP_FIELD_NAME: . 56

Syntax . 56

Options and values . 56

Example . 56

GROUP_FIELD_VALUE: . 57

Syntax . 57

Options and values . 57

Example . 57

GROUP_FILENAME: . 57

Syntax . 58

Options and values . 58

Example . 58

GROUP_LENGTH: . 59

Syntax . 59

Options and values . 59

Example . 59

GROUP_OFFSET: . 59

Syntax . 59

Options and values . 60

Example . 60

Chapter 11. Parameter file examples 61

Chapter 12. Additional indexing topics 63

Postprocessor program . 63

Index (.ind) files in IFS . 63

Recommended order for defining triggers and fields 63

Notices . 65

Trademarks . 67

Index . 69

Contents v

||
||
||
||

vi Indexing Reference

About IBM Content Manager OnDemand for i5/OS Common

Server Indexing Reference (SC27-1160)

This book contains information about indexing methods, preparing index data, and

using tools to index reports that you plan to store in and retrieve from IBM® Content

Manager OnDemand for i5/OS Common Server Version 6 Release 1 (OnDemand).

Who should read this book

This book is of primary interest to administrators and other people in an

organization who are responsible for preparing data to be stored in OnDemand.

How this book is organized

This book is organized in the following parts. Each part contains information about

one of the indexing tools provided with OnDemand:

v Part 1, “OS/400 indexer reference,” on page 1 explains how to use the

administrative client graphical tool to define the index criteria that the OS/400®

indexer uses to locate and create index data for your spooled files.

v Part 2, “PDF indexer reference,” on page 17 describes how to use the

OnDemand PDF Indexer to generate index data for Adobe PDF files

v Part 3, “Generic indexer reference,” on page 51 describes how to use the

OnDemand Generic Indexer to specify index data for other types of input data

Prerequisite and related information

Use the IBM i5/OS Information Center as your starting point for looking up System

i5™ technical information.

You can access the Information Center two ways:

v From the following Web site: http://www.ibm.com/systems/i/infocenter

v From CD-ROMs that ship with your i5/OS order: System i5 Information Center

SK3T-4091-07

The IBM i5/OS Information Center contains:

v Updated and new information, including i5/OS installation and upgrades, data

migration, service and troubleshooting, availability, System i integration,

connecting to System i, database, Linux, WebSphere, Java, CL commands,

system APIs, and manuals.

v Advisors and other interactive tools to assist in troubleshooting and configuring

your i5/OS software.

Other information available on the World Wide Web

More System i5 information is available on the World Wide Web. You can access

general information from the System i5 home page, which is at the following Web

site: http://www.ibm.com/systems/i/

To access workshops on advanced System i5 functions, use the Technical Studio,

located at: http://www.redbooks.ibm.com/tstudio

Worldwide, you can read about, select, order and take delivery of System i5

program temporary fixes (PTF) over the Internet. System i5 Internet PTFs

© Copyright IBM Corp. 2001, 2008 vii

|
|
|

|

|

|
|

|

|
|
|
|

|
|

(downloads) and Preventive Service Planning (PSP) information are available at the

following Internet location: http://as400service.ibm.com

Product documentation was moved from the library page to the support page on the

CM OnDemand for System i5 product Web site. To see a list of all available

OnDemand for System i5 product documentation, go to http://www.ibm.com/
software/data/ondemand/400/support.html. Look in the ″Learn″ heading, and select

"Version 6.1 documentation (all supported languages)."

System i Navigator

IBM System i Navigator is a powerful graphical interface for managing your System

i5™ servers. System i Navigator functionality includes system navigation,

configuration, planning capabilities, and online help to guide you through your tasks.

System i Navigator makes operation and administration of the server easier and

more productive and is the only user interface to the new, advanced features of

i5/OS.. It also includes Management Central for managing multiple servers from a

central system.

You can find more information on System i Navigator in the i5/OS Information

Center and at the following Web site: http://www.ibm.com/eserver/iseries/
navigator/

OnDemand Information Center

In addition to the i5/OS Information Center, be sure to visit the OnDemand

Information Center, which focuses only on information pertaining to CM OnDemand.

The OnDemand Information Center provides fast, online centralized access to

product information. It is a task-based documentation repository that allows you to

search across the entire product library for commands, error codes, or any other

topic of interest. You can bookmark pages of interest or common reference,

allowing them to easily be retrieved for future reference.

To access the OnDemand Information center, go to http://publib.boulder.ibm.com/
infocenter/cmod/v8r4m0/index.jsp

Accessibility information for OnDemand

For complete information about accessibility features that are supported by this

product, see your IBM Content Manager OnDemand for i5/OS Common Server

Administration Guide.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any comments

you have about this publication or other OnDemand documentation. Visit the IBM

Data Management Online Reader's Comment Form (RCF) page at

www.ibm.com/software/data/rcf.

Be sure to include the name of the product, the version number of the product, and

the name of the book. If you are commenting on specific text, please include the

location of the text (for example, a chapter and section title, a table number, a page

number, or a help topic title).

viii Indexing Reference

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/cmod83/index.jsp
http://publib.boulder.ibm.com/infocenter/cmod83/index.jsp

Summary of changes

This edition of IBM Content Manager OnDemand for i5/OS Common Server

Indexing Reference contains new technical information. There might be some

instances where changes were made, but change bars are missing. Significant

changes to note are:

v A new batch administration API (ARSXML) is now available that performs many

administrative functions (such as adding users, changing permissions, and

exporting/importing definitions) in a batch environment that previously could be

done only by using the interactive OnDemand Administrator Client.

v Tivoli Storage Manager (TSM) support was added to the product in release

V6R1.

v Independent Auxiliary Storage Pools (IASPs) are now supported as an option for

your OnDemand instance libraries and archive media.

v An NFS-mounted file system can now be used as a disk pool, either as primary

or backup media. Go to the OnDemand Support web site at

http://www.ibm.com/software/data/ondemand/400/support.html and enter the

search words ’NFS disk pool’ to locate detailed setup instructions.

v The IFS structure of disk pools for newly-archived data has changed to include

an additional directory level. As objects are placed in a disk pool, a subdirectory

is created for the year, month, and day (YYYYMMDD) the object was moved to

the disk pool, and the object is placed under that subdirectory. Objects that are

already in the disk pool will stay where they are and will not be included in the

new structure. Over time as these objects expire or move to another level, the

disk pool will end up with objects only in the new structure. This new structure

will allow for more granular backups to be made. Backups can then be done for

a specific year, or year and month, or even a specific day.

v New logging and tracing options are now available for enhanced problem

determination. These tracing parameters can be set by using the OnDemand

Administrator Client.

v Two new commands were added to the OnDemand licensed program product in

release V6R1. The Change Policy Level Date (CHGPLDOND) command

provides flexibility in changing the date that archived data will move from one

archive medium to another. The Migrate Media (MGRMEDRDAR) command

provides a tool to move migrated Spool File Archive data from one media type to

another.

v New parameters were added to the ARSLOAD API.

v The COPIES and PAGERANGE optional parameters have been removed from

the Print Report from OnDemand (PRTRPTOND) command in release V6R1, and

should be removed from any CL programs or job scheduler entries that may

currently specify them.

v The VALIDATE optional parameter has been removed from the Start Disk

Storage Management (STRDSMOND) command in release V6R1, and should be

removed from any CL programs or job scheduler entries that may currently

specify them.

v The postprocessor program sample code and documentation have been

significantly enhanced.

v Spool File Archive, Object Archive, Record Archive, AnyStore, and Spool File

Archive Client/Server support (product options 1, 2, 3, 4, and 5) have been

removed from the OnDemand licensed program product in release V6R1. As

stated in IBM Announcement Letter 206-030, dated 14 February 2006, and in

both V5.3 and V5.4 OnDemand Read This First documents, V5.4 was the last

© Copyright IBM Corp. 2001, 2008 ix

|

|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

release that Spool File Archive, AnyStore, Record Archive, and Object Archive

will be shipped and supported. Beginning with OnDemand V5.3, a Spool File

Archive migration utility has been included with the OnDemand licensed program

product, providing capability to migrate report definitions and indexes from the

legacy Spool File Archive environment to the Common Server environment.

Spool File Archive customers have been encouraged to learn about Common

Server and plan for their migration to Common Server. New installations and new

applications of OnDemand should be deployed using the Common Server

environment.

v The migration utility for Spool File Archive to Common Server migration (and

related documentation in Appendices A and B of the Common Server Planning

and Installation Guide) has been removed from the OnDemand licensed program

product (in conjunction with Spool File Archive no longer shipping with release

V6.1). Refer to the 5.4 version of the publication if you need information on

migration.

x Indexing Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Part 1. OS/400 indexer reference

This part provides information about the OS/400 indexer. You can use the OS/400

indexer to specify indexing parameters for SCS, SCS-extended, Advanced Function

Presentation™ (AFP™), and Line spooled files that you want to store in the system.

The OS/400 indexer is the primary indexer used when you are running on an i5/OS

system.

© Copyright IBM Corp. 2001, 2008 1

2 Indexing Reference

Chapter 1. Using the OS/400 indexer

The OS/400 indexer is the most common OnDemand indexer used for i5/OS

spooled files. The OS/400 indexer is called by the ADDRPTOND command for

SCS, SCS-extended, Advanced Function Presentation (AFP), and Line spooled

files. You use the OnDemand administrative client’s graphical indexing tool to define

the index criteria that the OS/400 indexer uses to locate and create index data for

your spooled files.

The graphical tool can be invoked in one of two ways:

v By clicking the Select Sample Data button within the Report Wizard, or

v Selecting Sample Data and clicking the Modify button on the Indexer Information

panel while creating an OnDemand application definition

OnDemand will use the OS/400 indexer by default for SCS, SCS-extended, AFP,

and Line spooled files. See the Report Wizard section in the Introduction of the IBM

Content Manager OnDemand for i5/OS Common Server: Administration Guide for

more information on the Report Wizard. See the section on Adding the Application

in the Examples chapter of the IBM Content Manager OnDemand for i5/OS

Common Server: Administration Guide for more information on defining an

application without using the Report Wizard.

Indexing concepts

Indexing parameters include information that allows OnDemand to identify key items

in the print data stream and create index elements pointing to these items. You can

specify the index information that allows OnDemand to segment the data stream

into individual items called groups. A group is a collection of one or more pages.

You define the bounds of the collection; for example, a bank statement, insurance

policy, phone bill, or other logical segment of a report file. A group can also

represent a specific number of pages in a report. For example, you might decide to

segment a 10,000 page report into groups of 100 pages. OnDemand creates

indexes for each group. Groups are determined when the value of an index

changes (for example, account number), or when the maximum number of pages

for a group is reached.

Index data is made up of an attribute name (for example, Customer_Name) and an

attribute value (for example, Frank Booth), with a defined tag that identifies the

location of the data on the print page. For example, the Account_Number tag with

the pointer 1,21,16 means OnDemand can expect to find Account_Number values

starting in column 21 of specific input records. OnDemand collects 16 bytes of

information starting at column 21 and adds it to a list of attribute values found in the

input. OnDemand creates an index file when you index report files. The index file

includes index elements that contain the offset and length of a group. OnDemand

calculates an index element for every group found in the input file. OnDemand then

writes the attribute values extracted from the input file to the index file.

Indexing parameters

Indexing parameters can contain indexing, conversion, and resource collection

parameters, options, and values. For most reports, OnDemand requires three

indexing parameters to extract or generate index data:

v TRIGGER OnDemand uses triggers to determine where to locate data. A trigger

instructs OnDemand to look for certain information in a specific location in the

© Copyright IBM Corp. 2001, 2008 3

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

report file. When OnDemand finds a record in the data stream that contains the

information specifies in the trigger, it can begin to look for index information.

– OnDemand compares data in the report file with the set of characters

specified in a trigger, byte for byte.

– A maximum of eight triggers can be specified.

– All fixed group triggers must match before OnDemand can generate index

information. However, floating triggers can occur anywhere in the data stream.

That is, index data based on a floating trigger can be collected from any

record in the report file.

v FIELD The field parameter identifies the location, offset, and length of the data

OnDemand uses to create index values.

– Field definitions are based on TRIGGER1 by default, but can be based on

any of eight TRIGGER parameters.

– A maximum of 32 fields can be defined.

– A field can also specify all or part of the actual index value stored in the

database.

v INDEX The index parameter is where you specify the attribute name, identify the

field or fields on which the index is based, and specify the type of index that

OnDemand generates. For the group-level indexes OnDemand stores in the

database, you should name the attributes the same as the application group

database field names.

– OnDemand can create indexes for a page, group of pages, and the first and

last sorted values on a page or group of pages. OnDemand stores group-level

index values in the database. Users can search for items using group-level

indexes. Page-level indexes are stored with the document (for example, a

statement). After retrieving a document that contains page-level indexes, you

can move to a specific page by using the page-level indexes.

OnDemand can only generate this type of page-level information when

converting the input data to AFP. This type of page-level information is

generated by specifying the CONVERT=YES and INDEXOBJ=ALL

parameters, and by creating an index field with the TYPE=PAGE option.

– You can concatenate field parameters to form an index.

– A maximum of 32 index parameters can be specified.

OnDemand creates a new group and extracts new index values when one or more

of the fixed group index values change, or the GROUPMAXPAGES value is

reached.

The following indexing parameters can be used to generate index data for the

report shown in Figure 1. The TRIGGER definitions tell OnDemand how to identify

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9

01 Page 0001

1

2 Jack Straw

3 4 Buxanchange Way

4 Wichitaw KS 99999-9999

5

6 Statement Date: 06/15/07

7 Account Number: 1234-5678-9876-0000

8

9 Balance: $2,984.17

Figure 1. Indexing a report

4 Indexing Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|
|

the beginning of a group in the input. OnDemand requires two TRIGGER definitions

to identify the beginning of a group (statement) in the sample file. For example:

v TRIGGER1 looks for a 1 in the first byte of each input record.

v TRIGGER2 looks for the string Page 0001 in column 72 of the same record.

Together, the triggers uniquely identify the start of a statement in the report.

The FIELD definitions determine the location of the index values in a statement.

Fields are based on the location of trigger records. For example:

v FIELD1 identifies customer name index values, beginning in column 40 of the

second record following the TRIGGER1 record.

v FIELD2 identifies the statement data index values, beginning in column 56 of the

sixth record following the TRIGGER1 record.

v FIELD3 identifies the account number index values, beginning in column 56 of

the seventh record following the TRIGGER1 record.

An INDEX definition identifies the attribute name of the index field. Indexes are

based on one or more field definitions. For example:

v INDEX1 identifies the attribute name custnam, for values extracted using FIELD1.

v INDEX 2 identifies the attribute name sdate, for values extracted using FIELD2.

v INDEX3 identifies the attribute name acctnum, for values extracted using FIELD3.

The following table lists the maximum values for certain indexing attributes:

 Indexing attribute Maximum value

Maximum number of lines per spooled file page 512

Maximum number of index records per group (document) 5000

Maximum number of index values per group (document) 9999

Maximum number of pages per group (document) 9999

Maximum number of triggers per page 512

Maximum number of index values per page 1024

Maximum number of fields per page 1024

Using BREAK=YES versus BREAK=NO in indexer parameters

A group is a set of pages that logically belong together. For example, all the pages

in a single bank statement could comprise a group. A group is a single document,

or a segment, as it was known in Spool File Archive. A group break is the process

of closing the current group and starting a new group. In Spool File Archive, this

process was known as segmentation. For a specific group index, the BREAK

setting determines whether the OS/400 indexer begins a new document when that

index’s value changes.

When you specify BREAK=YES, the OS/400 indexer begins a new group when the

value of the field on which the index is based changes. For example, when the

account number changes. BREAK=NO is useful when you define two or more fields

and you want the OS/400 indexer to begin a new group only when the other of the

two fields’ value changes. Specify BREAK=YES only for the index that is based on

the field that you want the OS/400 indexer to use to control the group break.

Specify BREAK=NO for all the other indexes in the group.

Chapter 1. Using the OS/400 indexer 5

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|||

||

||

||

||

||

||

||
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

To expand on the bank statement example, consider storing bank statements. Each

statement begins with a change in account number from the previous statement.

You defined indexes for Account Number, Customer Name, and Statement Date.

Most likely, you want Account Number to be set to BREAK=YES, Customer Name

to BREAK=NO, and Statement Date to BREAK=NO. Doing this ensures that a

group break occurs only when Account Number changes. The corresponding

indexer parameters in the Application definition might look like this:

INDEX1=X’C1838396A495A3D5A494828599’,FIELD1,(TYPE=GROUP,BREAK=YES) /* AccountNumber */

INDEX2=X’C3A4A2A396948599D5819485’,FIELD2,(TYPE=GROUP,BREAK=NO) /* CustomerName */

INDEX3=X’E2A381A385948595A3C481A385’,FIELD3,(TYPE=GROUP,BREAK=NO) /* StatementDate */

OnDemand’s Administrator client’s Report Wizard is designed to simplify the

process of defining application groups, applications, and folders. The Wizard makes

the assumption that any change in an index should cause a group break. Thus, it

sets all index fields to BREAK=YES. If the requirements for your data are such that

not all indexes should cause a group break, then you should make the change from

BREAK=YES to BREAK=NO in the indexer parameters of the Application. You

make the change using one of two methods: Using the Administrator client, select

Update for the Application, go to the Indexer tab, and then manually edit the indexer

parameters and key in the change, or use the graphical indexer to open the

properties for the index, then click on the No radio button.

 Note that if the index is based on a float trigger, you can only set BREAK to NO.

Also note that if you have selected the Allow Multiple Values option, BREAK is

automatically set to NO.

If you already archived data with all of your indexes set to BREAK=YES, you can

still make this change. Changing some of your indexes from BREAK=YES to

BREAK=NO can be done at any time. As with any change to your indexer

parameters, you should verify that your reports archive correctly after the change.

Any reports already archived do not need to be rearchived; however, the change

will only affect reports that are archived after the change is made.

Controlling maximum number of pages per group

You might want to set a maximum number of pages for each group that is indexed.

OnDemand can use the value of the GROUPMAXPAGES indexer parameter to

determine the number of pages in a group. For example, you need to index a report

consisting of thousands of pages of detail. If your BREAK=YES criteria do not result

in small enough groups of pages (or segments) of the report, you can use

GROUPMAXPAGES=100, for example, to force OnDemand to close the current

group and begin a new group for any group that reaches 100 pages. In other

words, if the GROUPMAXPAGES value is reached before the value of a group

index changes, OnDemand forces the creation of a new group. If you do not specify

a value for the GROUPMAXPAGES parameter, OnDemand does not terminate the

current group and begin a new group until the value of one of the fields named by

an INDEX with BREAK=YES changes.

Defining multi-key indexes

Multi-key indexes can be used when an index value occurs multiple times within a

single document. For example, invoices might have invoice number, customer

number, and customer name defined as the first three index fields, each occurring

once within a given invoice. Then you might also want to define item number as a

multi-key index, since there might be multiple item numbers within one invoice. With

multi-key support, an end-user could search by item number to find any invoice for

6 Indexing Reference

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

a given item number, no matter where that item number appeared in the list of

invoiced items. Without the multi-key capability, only the first item number on the

page would be indexed.

To enable multi-key indexing, the keyword ALLOWMULTIPLEVALUES=YES must

be added to each INDEX statement that is to have multiple values captured per

document. For example:

INDEX2=X’97969596’,FIELD2,(TYPE=GROUP,BREAK=NO,ALLOWMULTIPLEVALUES=YES)

The new keyword would be added to the OnDemand Application definition. Go to

the Indexer Information tab, then click on Keyboard and then Modify to edit the

Application’s Indexer Parameters. Note that this new keyword

ALLOWMULTIPLEVALUES is only valid when BREAK=NO. Also note that unlike the

OnDemand Spool File Archive multi-key rule, defining an index as multi-key does

not require all subsequent index fields to also be defined as multi-key. In a

Common Server environment, as is shown in the example, you can define an index

as multi-key and then define another one below it that is not multi-key. However, a

field used for a multi-key index must be found on or below the row containing the

float trigger used to locate that field.

An example

The following example demonstrates how to define a multi-key index using the

Report Wizard and the graphical indexer. The sample report to be archived is an

AFP invoice. The following pieces of information should be used as indexes:

v Customer Number

v Invoice Number

v Invoice Date

v Item Number (this will be the multi-key index)

v Total Due

As a general rule, you should define triggers and fields from top left to bottom right

of the report. This has the added benefit of making your indexer parameters easier

to understand.

Figure 2 on page 8 shows a page from the sample report.

Chapter 1. Using the OS/400 indexer 7

|
|
|
|
|
|
|
|
|
|

To begin, first start the OnDemand administrative client and log on to your

instance’s server. Next, click the Report Wizard toolbar button. Then select the data

type; for the example, select AFP. Then select the sample input file. The graphical

indexer should now display the spooled file.

The sample report contains AFP data, and only the text is displayed by the

graphical indexer, not the AFP resources (such as special fonts, bar codes,

graphics, and overlays).

Define the first trigger. Select the / (forward slash) character in the ship date as

Trigger1. This trigger will be used to locate the Customer Number, Invoice Number,

and Ship Date.

Define the second trigger. Select the . (period) character in the price as Trigger2.

This trigger must be defined as a float trigger and will be used to locate the Item

Numbers.

Define the third trigger. Select the / (forward slash) character in the payment due

date as Trigger3. This trigger will be used to locate the Total Due.

After the triggers are defined, define the fields and indexes. When using the Report

Wizard, the fields and indexes are defined in one step. If using the graphical

indexer from within an application definition rather than the Report Wizard, the fields

and indexes are defined in separate steps.

The first field and index are for the customer number. The customer number is

located by using Trigger1. On the Database Field Attributes page, the customer

number field is defined as a string data type.

Figure 2. Multi-key index sample report

8 Indexing Reference

|

|
|
|

The second field and index are for the invoice number. The invoice number is

located by using Trigger1. On the Database Field Attributes page, invoice number is

defined as a string data type.

The third field and index are for the invoice date. The invoice date is located by

using Trigger1. On the Database Field Attributes page, invoice date is defined as a

date data type, and selected as our segment field.

The fourth field and index are for the item number. The item number is located by

using Trigger2. On the Database Field Attributes tab, item number is defined as a

string data type.

The Mask parameter is used to specify a pattern that the field data must match in

order to be used as an index. In the example, a field must consist of eight numeric

characters (each # represents one numeric character). This could be useful if the

trigger (a period) could be present in row that did not contain an item number.

After defining all of the fields, you must go back and mark the item number index as

multi-key (as described below).

The fifth field and index are for the total due. The total due is located by using

Trigger3. On the Database Field Attributes tab, total due is defined as a string data

type.

That completes defining the fields and the indexes.

Now you must go back and specify the item number, which is Index4, as the

multi-key. Click on the Toggle select Trigger, Index, Field Parameters toolbar button.

The administrative client opens the Select dialog box.

Click on Index 4. Then click on the Properties button to open the Update an Index

dialog box.

Click on the Allow Multiple Values check box. Note: This requires Version 7.1.0.8 or

later of the OnDemand administrative client.

Click on the OK button to save the item number index as a multi-key index.

Close the Select dialog box.

To verify how the system will index the document, click on the Toggle between

Display and Add Parameters toolbar button.

The defined triggers will be highlighted in red. The defined fields will be highlighted

in blue.

You can now close the graphical indexer window and complete the process of using

the Report Wizard to define the application group, application, and folder.

The indexer parameters that were generated for the example report are shown in

Figure 3 on page 10.

Chapter 1. Using the OS/400 indexer 9

After loading the example report, you can start the OnDemand Client, open the new

folder, and search for documents.

Defining transaction fields

A transaction report contains pages of records with one or more columns of sorted

data. For example, each page of a general ledger report contains up to 80

transaction records. Each record contains a unique value, such as a transaction

number. The records in the report are sorted on the transaction number.

Rather than storing every transaction number in the database (perhaps hundreds of

thousands of rows), you can break the report into groups of pages (say, 100 pages

in a group), extract the beginning and ending transaction number for each group of

pages, and store the values in the database. Then, to retrieve the group of the

report that contains a specific transaction number, a user specifies a transaction

number. OnDemand compares the transaction number with the beginning and

ending values stored in the database and retrieves the group that matches the

query.

To define a transaction report that contains one or more columns of sorted data as

described in the example, a transaction field is used. A transaction field allows

OnDemand to index a group of pages using the first index value on the first page

and the last index value on the last page.

The easiest method of specifying a transaction field is to use the Report Wizard and

the graphical indexer.

The indexer parameter for the transaction field will look similar to the following:

FIELD1=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYCOL)

The indexer parameter for the index created from the transaction field will look

similar to the following:

INDEX1=X’D3968195’,FIELD1,(TYPE=GROUPRANGE,BREAK=NO)

These indexer parameters would be added by the Report Wizard to the OnDemand

Application definition. To see them, go to the Indexer Information tab, then click on

Keyboard and then Modify to view the Application’s Indexer Parameters.

An example

The following example demonstrates how to define a transaction report using the

Report Wizard and the graphical indexer. The sample report that we are archiving is

an Loan Delinquency Report. Each page of the loan delinquency report contains

TRIGGER1=*,55,X’61’,(TYPE=GROUP) /* / */

TRIGGER2=*,64,X’4B’,(TYPE=FLOAT) /* . */

TRIGGER3=*,31,X’61’,(TYPE=FLOAT) /* / */

FIELD1=0,15,6,(TRIGGER=1,BASE=0)

FIELD2=0,33,6,(TRIGGER=1,BASE=0)

FIELD3=0,50,8,(TRIGGER=1,BASE=0)

FIELD4=0,19,8,(TRIGGER=2,BASE=0,MASK=’########’)

FIELD5=0,69,12,(TRIGGER=3,BASE=0)

INDEX1=X’83A4A2A39596’,FIELD1,(TYPE=GROUP,BREAK=YES) /* custno */

INDEX2=X’8995A59596’,FIELD2,(TYPE=GROUP,BREAK=YES) /* invno */

INDEX3=X’8995A58481A385’,FIELD3,(TYPE=GROUP,BREAK=YES) /* invdate */

INDEX4=X’89A3859495A494’,FIELD4,(TYPE=GROUP,BREAK=NO,ALLOWMULTIPLEVALUES=YES)/* itemnum */

INDEX5=X’A396A3819384A485’,FIELD5,(TYPE=GROUP,BREAK=NO) /* totaldue*/

Figure 3. Multi-key index Indexer Parameters

10 Indexing Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

loan records. Each record contains a unique value, the loan number. The records in

the report are sorted on the loan number. We want to use the following pieces of

information as indexes:

v Report Date

v Starting Page Number

v Loan Number (this will be the transaction field)

As a general rule you should define triggers and fields from top left to bottom right

of the report. This has the added benefit of making your indexer parameters easier

to understand.

A sample page of the report is shown in Figure 4.

To begin, first start the OnDemand administrative client and log on to your

instance’s server. Next, click the Report Wizard toolbar button. Then select the data

type; for the example, select SCS. Then select the sample input file. The graphical

indexer should now display the spooled file.

Define the first trigger. Select the word REPORT for Trigger1. This trigger will be

used to determine the start of the document, and to locate the Report Date and

Starting Page Number fields.

Trigger1 is the only trigger required. Next, define fields and indexes. When using

the report wizard, the fields and indexes are defined in one step. If using the

graphical indexer within the application definition rather than the Report Wizard, the

fields and indexes are defined in separate steps.

The first field and index are for the report date. The report date is located by using

Trigger1. On the Database Field Attributes page, the report date is defined as a

date data type and is selected as the segment field.

The second field and index are for the starting page number. The starting page

number is located by using Trigger1. On the Database Field Attributes page, the

starting page number is defined as an integer data type.

After defining all of the fields, you must change the starting page number field so

that a new document group is not created each time the page number changes.

REPORT D33313001 ONDEMAND NATIONAL BANK DATE 01-15-00

BANK 001 TIME 16:03:46

FROM 01/01/99 MODE 9

TO 12/31/99 LOAN DELINQUENCY REPORT PAGE 0001

 LOAN CUSTOMER LOAN DELINQUENT DELINQUENT DELINQUENT

 NUMBER NAME AMOUNT 30 DAYS 60 DAYS 90 DAYS

 0100000000 AARON, ROBERT $10000000.00 $ 50.00 $ 50.00 $.00

 0100000001 ABBOTT, DAVID $ 11000.00 $ 100.00 $ 200.00 $.00

 0100000002 ABBOTT, DAVID $ 12000.00 $ 140.00 $.00 $.00

 0100000003 ABBOTT, DAVID $ 13000.00 $ 150.00 $.00 $.00

 0100000005 ROBINS, STEVEN $ 500.00 $ 50.00 $.00 $.00

 0100000006 ARNOLD, SAMUEL $ 1000.00 $ 75.00 $ 150.00 $ 225.00

 0100000007 PETERS, PAUL $ 650.00 $ 50.00 $.00 $.00

 0100000008 ROBERTS, ABRAHAM $ 9000.00 $ 120.00 $.00 $.00

 0100000009 SMITH, RANDOLPH $ 8000.00 $ 115.00 $.00 $.00

 0100000010 KLINE, PETER $ 8500.00 $ 110.00 $.00 $.00

Figure 4. Transaction Field Sample Report

Chapter 1. Using the OS/400 indexer 11

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

The second field and index are for the loan number. The loan number is located by

using a mask. The Mask parameter is used to specify a pattern that the transaction

field data must match in order to be used as an index. In the example, the field

must consist of ten numeric characters (each # represents a numeric character). A

transaction field does not use a trigger to locate the data, it uses the mask to define

how the data must be structured, and uses any data on that page that matches that

mask.

The Database Field Attributes page has specific parameters to support a

transaction field. The end user of the sample report will see the folder field names.

The database field names are using internally to OnDemand and are not seen by

end users.

The end user will enter search criteria (the loan number) into the field that is

identified by the Query Folder Field. The document list will show two loan numbers.

These are the starting and ending loan numbers of the group of the report that

contains the loan number that was searched for.

The loan number is defined as a string data type.

Now you must go back and specify that the starting page number, which is Index2,

should not start a new document group when the value changes. Click the Toggle

select Trigger, Index, Field Parameters toolbar button.

The administrative client opens the Select dialog box.

Click on Index 2. Then click on the Properties button to open the Update an Index

dialog box.

Under Break, select the No option. Click the OK button to save the starting page

number index as a Break=No index. A change in the starting page number will no

longer cause a new document group to be created.

Close the Select dialog box.

To verify how the system will index the document, click on the Toggle between

Display and Add Parameters toolbar button.

The defined triggers will be highlighted in red. The defined fields will be highlighted

in blue. The defined transactions fields will be highlighted in green.

You can now close the graphical indexer window and complete the process of using

the Report Wizard to define the application group, application, and folder.

The indexer parameters that were generated for the example report are shown in

Figure 5.

TRIGGER1=*,2,X’D9C5D7D6D9E3’,(TYPE=GROUP) /* REPORT */

FIELD1=0,83,8,(TRIGGER=1,BASE=0)

FIELD2=3,87,4,(TRIGGER=1,BASE=0)

FIELD3=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYROW)

INDEX1=X’998481A385’,FIELD1,(TYPE=GROUP,BREAK=YES) /* rdate */

INDEX2=X’A297818785’,FIELD2,(TYPE=GROUP,BREAK=NO) /* spage */

INDEX3=X’D396819540D5A494828599’,FIELD3,(TYPE=GROUPRANGE,BREAK=NO) /* Loan Number */

Figure 5. Transaction Field Indexer Parameters

12 Indexing Reference

|
|
|
|
|
|
|
||
|
|

After archiving the example report, you can start the OnDemand client, open the

new folder, and search for documents.

Assigning default index values

You can create an OnDemand application definition with an index field that does not

always exist on the print page. If a value is not found for that field during indexing

(in other words, if only blanks are found or the field location does not exist on the

particular print page), then the DEFAULT keyword is used to determine the default

value to use. The DEFAULT keyword can be placed on the FIELD indexer

parameter line of the indexer parameters for a particular application definition.

The DEFAULT keyword can be specified in one of two ways. The first method

allows you to specify an actual value (given in alphanumeric or hex format). The

second method allows you to use the default value that you have specified on the

Load Information tab of the OnDemand application definition and index propagation

(described below).

Examples of the first method:

DEFAULT=’your_Value’ (such as DEFAULT=’ABC’)

or

DEFAULT=x’your_Hex’ (such as DEFAULT=x’C1C2C3’)

Examples of the second method:

DEFAULT=’_*USELOADDEFAULTORPROPAGATION’

or

DEFAULT=x’6D5CE4E2C5D3D6C1C4C4C5C6C1E4D3E3D6D9D7D9D6D7C1C7C1E3C9D6D55C6D’

(In this second case, the hex value specified is the hexadecimal representation of

the character string _*USELOADDEFAULTORPROPAGATION*_.)

The second method (using _*USELOADDEFAULTORPROPAGATION*_ or its

hexadecimal representation) allows the load process to assign the default value

from the Load Information tab of the application definition or for propagation to

occur. To have the load process assign a default from the Load Information tab, you

must specify one by using the OnDemand Administrator Client. If you have not

specified a default, propagation occurs. Propagation is the process of carrying a

value over from its previously found value. This can be useful but can also have

unintended results. For example, if the field was a customer number, the value for

customer number is carried from the previous document if one was not found for

the current document. This might not be what you intend to happen. Exercize

caution when using this second method, as propagation can occur.

Defining text search fields

The text search function is used to search for documents that contain a specified

word or phrase that is not already defined as an index field for the documents.

Initially, the specified index field values are used for the document search. Then,

any document that matches the index fields criteria is searched for the specified

text search word or phrase. For example, if the other index fields are date and

account number, only documents that match the specified date and account number

Chapter 1. Using the OS/400 indexer 13

|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

are searched for the specified text search word or phrase. Then, if a document

contains the specified word or phrase, the document is added to the document list.

Notes:

1. You can define only one text search field per folder.

2. The only valid search operator for a text search field is EQUAL.

3. Wildcards and pattern matching are not supported in a text search field.

4. The case of the specified word or phrase is ignored. For example, the phrase

customer xyz matches customer xyz, Customer Xyz, and CUSTOMER XYZ.

The text search function is performed entirely on the System i5 server. Any

performance impact will depend on the size and number of documents that are

searched and on the performance of the system under the pre-existing workload. To

limit the number of documents that are searched, users should specify criteria for

some or all of the other index fields.

To create a text search field in an OnDemand folder definition, follow these steps:

1. Create the application group, application, and folder by using the Report Wizard.

(The Report Wizard does not include a provision for creating a text search field.

However, doing so can be accomplished in just a few steps outside the Report

Wizard.)

2. Copy the folder.

3. Change the name of the new folder.

4. On the Field Definition tab, add a field named Full Text Search and select Text

Search for the field type. Click the Add button to add the field.

5. Click OK to save the new folder.

If you bprefer, you can delete the folder that was created by the Report Wizard, and

always use the new folder that you created to contain the Text Search field. After

archiving some documents into the application group, you can try the text search

function.

You may want to set a number of options within the OnDemand client to enhance

the use of text search:

v From the Options menu, select the Show Search String option. This option

causes the text search string that you enter to be highlighted within the document

after it is opened.

v If the Autoview option is set to either First Document or Single Document, the

document automatically displays with the text search string highlighted. Single

Document will cause the document to automatically display if only one document

meets the search criteria. First Document always causes the first document in

the document list to automatically display, not matter how many documents meet

the search criteria.

When you are ready to try your text search field, open the folder that contains the

text search field and perform a text search. The text search string can be one or

more words. Open one of the documents from the document list. The text search

string should be highlighted in the document. You can use the Find Next toolbar

button to find the next occurrence of the string in the document. Note that you can

still perform standard searches with the folder; you do not have to specify a text

search every time that you search for documents.

To use the text search function with AFP or SCS-Extended documents, you must

have the Portable Application Solutions Environment (PASE; a product option of

14 Indexing Reference

i5/OS) installed. If PASE is not installed, you will receive message 161 in the

OnDemand system log when attempting to perform a text search on AFP or

SCS-Extended documents. To use the text search function with SCS or Line

documents, you do not need PASE.

Handling SCS spooled files that have AFP overlays

The preferred method of handling SCS spooled files that have an AFP overlay

named in their associated printer file is to simply change the DEVTYPE parameter

of the printer file used to create the original spooled file to *AFPDS. This will cause

i5/OS to put the data into spool as *AFPDS, which is the most efficient way for

OnDemand to capture (load) this type of spooled data. However, making this

change will require the original, production spooled file to be printed on an AFPDS

printer. In most cases, if you really are printing it with an overlay, then this should

not be a problem. However, if you are printing it on a line printer with preprinted

forms, this approach will not work.

If, for some reason you cannot change the original printer file’s DEVTYPE

parameter to *AFPDS, OnDemand can do the conversion to AFP automatically,

allowing the spooled file to be viewed and printed with fidelity. (This method is more

time-consuming than letting i5/OS do it using the DEVTYPE parameter of the

printer file.) To enable this conversion, simply specify both the data type and the

DOCTYPE indexer parameter in the OnDemand Application definition as AFP rather

than SCS. When OnDemand encounters an *SCS spooled file that has an overlay,

and the Application definition and DOCTYPE indexer parameter both specify AFP

as the data type, OnDemand will convert the *SCS data to *AFPDS and store that

newly created *AFPDS spooled file. Reprints out of OnDemand will require an

AFP-capable printer, but that should be expected due to the overlay. If you specify

a data type of AFP in your OnDemand Application definitions for any other type of

non-AFP spooled file, the loading of the data will fail.

Using a mask when defining applications fields

A mask specifies the pattern of symbols that the indexing program matches with

data located for a particular field. With the OS/400 indexer, a mask can be used

with either a trigger-based field or a transaction field. If the data matches the mask,

then the indexer selects the field. If the data does not match the mask, then the

field is treated as if the trigger or transaction field was not found.

You can specify the following symbols in the mask:

@ Matches alphabetic characters

Matches numeric characters

= Matches any character

¬ Matches any non-blank character

∧ Matches any non-blank character

% Matches the blank character and numeric characters

For example, a mask of ####.## would cause the indexer to select the field only if

the data in the field (from left to right) contains four numeric characters, followed by

a decimal point, followed by two numeric characters.

An example of the indexer parameter syntax for a field with a mask is as follows:

FIELD4=0,-24,7,(TRIGGER=3),BASE=TRIGGER,MASK=’####.##’)

Chapter 1. Using the OS/400 indexer 15

|
|
|
|
|
|
|
|
|
|
|
|
|

Note: You may need to manually add the MASK keyword to the correct field

definition if you are using a group trigger-based field. Support for group

trigger-based field masks may not be available with the graphical indexing tool for

the version of the OnDemand administrative client that you are using. Support for

float trigger-based field masks was added in Version 7.1.0.6 version of the

administrative client.

Using Tag Logical Elements (TLEs)

Using Tag Logical Elements (TLEs) to identify index data requires no special check

boxes or other special setup. The OnDemand graphical indexer (which is invoked

by the OnDemand Administrator Client when defining an application) automatically

displays TLE data at the top of each print page before displaying the data itself,

allowing you to use the TLE data just as you use the print data itself to extract

index information (such as a customer number or invoice number).

An example of the data you might see in the OnDemand Administrator Client's

graphical indexer when you are working with TLEs in an AFPDS spooled file is

shown below. The four lines near the top, immediately following the

*GROUP_START line, represent the TLE information. The AFP datastream text

must be encoded in EBCDIC and not ASCII. This is also true of TLEs.

*GROUP_START 113928

Invoice Number 113928

Invoice Date 06/15/07

Customer Number 44332

Invoice Total $ 2,859.36

 ABC COMPANY

 101 Plagioclase Blvd.

 Deva Station VA 55564

 528 555-1234

SHIP DATE 04/07/73

 Dewey Cheatham & Howe

 P.O. Box 47899

 Ridiculous TN 79832

 CUSTOMER NUMBER 44332

 PURCHASE ORDER NO. - C3050279

17 IGUANAS 3.23 0.11 77.34

93 SHOE HORNS 18.95 13.13 127.83

55 RUNCIBLE SPOONS 43.43 9.23 239.01

55 HATRACKS 97.00 43.83 4,721.64

93 THELMIN WIRES 0.54 2.32 14.12

09 TOOTHPICKS 53.00 19.91 102.43

 5282.37

16 Indexing Reference

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Part 2. PDF indexer reference

This part provides information about the OnDemand PDF indexer. You can use the

PDF indexer to specify indexing parameters for Adobe PDF input files that you want

to store in the system.

© Copyright IBM Corp. 2001, 2008 17

18 Indexing Reference

Chapter 2. Overview

What is the PDF indexer?

The OnDemand PDF indexer is a program that you can use to extract index data

from and generate index data about Adobe PDF input files. The index data can

enhance your ability to store, retrieve, and view documents with OnDemand. The

PDF indexer supports PDF Version 1.3 input and output data streams. For more

information about the PDF data stream, see the Portable Document Format

Reference Manual, published by Adobe Systems Incorporated. Adobe also provides

online information with the Acrobat Exchange and Acrobat Distiller products,

including online guides for Adobe Capture, PDFWriter, Distiller, and Exchange.

You define and store PDF documents on the server using standard OnDemand

functions. You must define an OnDemand application and application group. As part

of the application, you must define the indexing parameters used by the PDF

indexer to process input files. You can automate the indexing and loading of data by

using special parameters of the ADDRPTOND (using *STMF for the INPUT

parameter) or STRMONOND (using *DIR for the TYPE parameter) commands or

the ARSLOAD API program. See the Command Reference appendix of the IBM

Content Manager OnDemand for i5/OS Common Server: Administration Guide for

more information on the ADDRPTOND and STRMONOND commands. See the API

Reference appendix of the IBM Content Manager OnDemand for i5/OS Common

Server: Administration Guide for more information on the ARSLOAD API program

and its parameters.

After you index and store input files in OnDemand, you use the OnDemand client

program to view the PDF document or documents created during the indexing and

loading process. You can also print pages of the PDF document you are viewing

from the OnDemand client program.

Figure 6 on page 20 illustrates the process of indexing and loading PDF input files.

© Copyright IBM Corp. 2001, 2008 19

The PDF indexer processes PDF input files. A PDF file is a distilled version of a

PostScript file, adding structure and efficiency.

OnDemand retrieves processing information from application and application group

definitions that are stored in the database. The application definition identifies the

type of input data, the indexing program used to index the input files, the indexing

parameters, and other information about the input data. The application group

identifies the database and storage management characteristics of the data. You

can use the administrative client to create the application and the indexing

parameters.

When OnDemand processes a PDF input file and the application Indexing

Information page specifies PDF as the indexer, it automatically calls the PDF

indexer to process the input file. The PDF indexer processes the PDF input file with

indexing parameters that determine the location and attributes of the index data.

The PDF indexer extracts index data from the PDF file and generates an index file

and an output file. The output file contains groups of indexed pages. A group of

indexed pages can represent the entire input file or, more typically, one or more

pages from the input file. If the input file contains logical groups of pages, such as

statements or policies, the PDF indexer can create an indexed group for each

statement or policy in the input file. That way, users can retrieve a specific

statement or set of statements, rather than the entire file. After indexing the data,

OnDemand stores the index data in the database and the indexed groups on disk

or archive storage volumes.

PostScript
Data

Application

Application
Group

Acrobat
Distiller

PDF Data

OnDemand
Indexer and
Loader

Database

Storage
Volumes

Index
Data

Indexed
Groups

Resources

Figure 6. Processing PDF input files in OnDemand

20 Indexing Reference

|

|
|
|

How OnDemand uses index information

Every item stored in OnDemand is indexed with one or more group-level indexes.

Groups are determined when the value of an index changes (for example, account

number). When you load a PDF file into the system, OnDemand invokes the PDF

indexer to process the indexing parameters and create the index data. OnDemand

then loads the index data into the database, storing the group-level attribute values

that the PDF indexing program extracted from the data into their corresponding

database fields. Figure 7 illustrates the index creation and data loading process.

You typically create an application for each report that you plan to store in

OnDemand. When you create an application, you define the indexing parameters

that the indexing program uses to process the report and create the index data that

is loaded into the database. For example, an INDEX parameter includes an attribute

name and identifies the FIELD parameter that the indexing program uses to locate

the attribute value in the input data. When you create an application, you must

assign the application to an application group. The attribute name you specify on an

INDEX parameter should be the same as the name of the application group

database field into which you want OnDemand to store the index values.

You define database fields when you create an application group. OnDemand

creates a column in the application group table for each database field that you

define. When you index a report, you create index data that contains index field

names and index values extracted from the report. OnDemand stores the index

data into the database fields.

To search for reports stored in OnDemand, the user opens a folder. The search

fields that appear when the user opens the folder are mapped to database fields in

an application group (which, in turn, represent index attribute names). The user

constructs a query by entering values in one or more search fields. OnDemand

searches the database for items that contain the values (index attribute values) that

match the search values entered by the user. Each item contains group-level index

information. OnDemand lists the items that match the query. When the user selects

an item for viewing, the OnDemand client program retrieves the selected item from

disk or archive storage.

Processing PDF input files with the graphical indexer

This section describes how to use the graphical indexer to create indexing

information for PDF input files.

Report Indexer

Application
Definitions

Index
Data

Application
Group
Definitions

Index
Attribute
Names

Database
Field
Names

Indexed
Groups

Loader Database

Figure 7. Indexing and loading data

Chapter 2. Overview 21

Important: If you plan to use the Report Wizard or the graphical indexer to process

PDF input files, then you must first install Adobe Acrobat on the PC

from which you plan to run the administrative client. You must purchase

Adobe Acrobat from Adobe or some other software vendor.

OnDemand provides the ARSPDF32.API file to enable PDF viewing from

the client. If you install the client after you install Adobe Acrobat, then

the installation program will copy the API file to the Acrobat plug-in

directory. If you install the client before you install Adobe Acrobat, then

you must copy the API file to the Acrobat plug-in directory. Also, if you

upgrade to a new version of Acrobat, then you must copy the API file to

the new Acrobat plug-in directory. The default location of the API file is

\Program Files\IBM\OnDemand32\PDF. The default Acrobat plug-in

directory is \Program Files\Adobe\Acrobat x.y\Acrobat\Plug_ins,

where x.y is the version of Acrobat, for example, 4.0, 5.0, and so forth.

Beginning with Version 5.2, you can define indexing information in a visual

environment. You begin by opening a sample input file with the graphical indexer.

(Note: The input file is limited to a PC file when using the graphical PDF indexer.

The graphical PDF indexer is designed to work with workstation PDF files, not PDF

spooled files in an output queue on the System i5 server.) You can run the

graphical indexer from the report wizard or by choosing the sample data option from

the Indexing Information page of the application. After you open an input file in the

graphical indexer, you define triggers, fields, and indexes. The PDF indexer uses

the triggers, fields, and indexes to locate the beginning of a document in the input

data and extract index values from the input data. Once you have defined the

triggers, fields, and indexes, you can save them in the application so that

OnDemand can use them later on to process the input files that you load into the

system.

You define a trigger, field, or index by drawing a box around a text string with the

mouse and then specifying properties. For example, to define a trigger that

identifies the beginning of a document, you could draw a box around the text string

Account Number on the first page of a statement in the input file. Then, on the Add a

Trigger dialog box, you would accept the default values provided, such as the

location of the text string on the page. When processing an input file, the PDF

indexer attempts to locate the specified string in the specified location. When a

match occurs, the PDF indexer knows that it has found the beginning of a

document. The fields and indexes are based on the location of the trigger.

The PDF file that you open with the graphical indexer should contain a

representative sample of the type of input data that you plan to load into the

system. For example, the sample input file must contain at least one document. A

good sample should contain several documents so that you can verify the location

of the triggers, fields, and indexes on more than one document. The sample input

file must contain the information that you need to identify the beginning of a

document in the input file. The sample input file should also contain the information

that you need to define the indexes. When you load an input file into the system,

the PDF indexer will use the indexing information that you create to locate and

extract index values for each document in the input file.

The following example describes how to use the graphical indexer from the Report

Wizard to create indexing information for an input file. The indexing information

consists of a trigger that uniquely identifies the beginning of a document in the input

file and the fields and indexes for each document.

 1. To begin, start the administrative client.

22 Indexing Reference

2. Log on to a server.

 3. Start the report wizard by clicking the Report Wizard icon on the toolbar. The

report wizard opens the Sample Data dialog box.

 4. Click Select Sample Data to open the Open dialog box. Note: The Sample

Data is limited to a PC file when using the graphical PDF indexer. The

graphical PDF indexer is designed to work with workstation PDF files, not PDF

spooled files in an output queue on the System i5 server.

 5. Type the name or full path name of a file in the space provided or use the

Look in or Browse commands to locate a file.

 6. Click Open. The graphical indexer opens the input file in the report window.

 7. Press F1 to open the main help topic for the report window. The main help

topic contains general information about the report window and contains links

to other topics that describe how to add triggers, fields, and indexes. Under

Options and Commands, click Indexer Information page to open the Indexing

Commands topic. (You can also use the content help tool to display

information about the icons on the toolbar.) Under Tasks, Indexer Information

page, click Adding a trigger (PDF).

 8. Close any open help topics and return to the report window.

 9. Define a trigger.

v Find a text string that uniquely identifies the beginning of a document. For

example, Account Number, Invoice Number, Customer Name, and so forth.

v Using the mouse, draw a box around the text string. Start just outside of the

upper left corner of the string. Click and hold mouse button one. Drag the

mouse towards the lower right corner of the string. As you drag the mouse,

the graphical indexer uses a dotted line to draw a box. When you have

enclosed the text string completely inside of a box, release the mouse

button. The graphical indexer highlights the text string inside of a box.

v Click the Define a Trigger icon on the toolbar to open the Add a Trigger

dialog box. Verify the attributes of the trigger. For example, the text string

that you selected in the report window should be displayed under Value; for

Trigger1, the Pages to Search should be set to Every Page. Click Help for

assistance with the other options and values that you can specify.

v Click OK to define the trigger.

v To verify that the trigger uniquely identifies the beginning of a document, first

put the report window in display mode. Then click the Select tool to open

the Select dialog box. Under Triggers, double click the trigger. The graphical

indexer highlights the text string in the current document. Double click the

trigger again. The graphical indexer should highlight the text string on the

first page of the next document. Use the Select dialog box to move forward

to the first page of each document and return to the first document in the

input file.

v Put the report window in add mode.

10. Define a field and an index.

v Find a text string that can be used to identify the location of the field. The

text string should contain a sample index value. For example, if you want to

extract account number values from the input file, then find where the

account number is printed on the page.

v Using the mouse, draw a box around the text string. Start just outside of the

upper left corner of the string. Click and hold mouse button one. Drag the

mouse towards the lower right corner of the string. As you drag the mouse,

the graphical indexer uses a dotted line to draw a box. When you have

Chapter 2. Overview 23

enclosed the text string completely inside of a box, release the mouse

button. The graphical indexer highlights the text string inside of a box.

v Click the Define a Field icon on the toolbar to open the Add a Field dialog

box.

v On the Field Information page, verify the attributes of the index field. For

example, the text string that you selected in the report window should be

displayed under Reference String; the Trigger should identify the trigger on

which the field is based. Click Help for assistance with the options and

values that you can specify.

v On the Database Field Attributes page, verify the attributes of the database

field. In the Database Field Name space, enter the name of the application

group field into which you want OnDemand to store the index value. In the

Folder Field Name space, enter the name of the folder field that will appear

on the client search screen. Click Help for assistance with the other options

and values that you can specify.

v Click OK to define the field and index.

v To verify the locations of the fields, first put the report window in display

mode. The fields should have a blue box drawn around them. Next, click the

Select tool to open the Select dialog box. Under Fields, double-click Field 1.

The graphical indexer highlights the text string in the current document.

Double click Field 1 again. The graphical indexer should move to the next

document and highlight the text string. Use the Select dialog box to move

forward to each document and display the field. Then return to the first

document in the input file.

v Put the report window in add mode.

11. Click the Display Indexer Parameters tool to open the Display Indexer

Parameters dialog box. The Display Indexer Parameters dialog box lists the

indexing parameters that the PDF indexer will use to process the input files

that you load into the application. At a minimum, you need one trigger, one

field, and one index. See Chapter 4, “Parameter reference,” on page 31 for

details about the indexing parameters.

12. When you have finished defining all of the triggers, fields, and indexes, close

the report window.

13. Click Yes to save the changes to the indexer parameters.

14. On the Sample Data window, click Next to continue with the report wizard.

Manually indexing input data

Note: If you prefer creating your own PDF indexing parameters manually rather

than using the graphical PDF indexer, you can use the instructions in the

remainder of this chapter to do so.

Indexing concepts

Indexing parameters include information that allow the PDF indexer to identify key

items in the print data stream, tag these items, and create index elements pointing

to the tagged items. OnDemand uses the tag and index data for efficient, structured

search and retrieval. You specify the index information that allows the PDF indexer

to segment the data stream into individual items, called groups. A group is a

collection of one or more pages, such as a bank statement, insurance policy, phone

bill, or other logical segment of a report. The PDF indexer creates indexes for each

group when the value of an index changes (for example, account number).

24 Indexing Reference

A tag is made up of an attribute name, for example, Customer Name, and an

attribute value, for example, Earl Hawkins. Tags also include information that tell the

PDF indexer where to locate the attribute value on a page. For example, a tag used

to collect customer name index values provides the PDF indexer with the starting

and ending position on the page where the customer name index values appear.

The PDF indexer generates index data and stores it in a generic index file.

Coordinate system

The location of the text strings the PDF indexer uses to determine the beginning of

a group and index values are described as x and y pairs in a coordinate system

imposed on the page. For each text string, you identify its upper left and lower right

position on the page. The upper left corner and lower right corner form a string box.

The string box is the smallest rectangle that completely encloses the text string.

The origin is in the upper left hand corner of the page. The x coordinate increases

to the right and y increases down the page. You also identify the page on which the

text string appears. For example, the text string Customer Name, that starts 4

inches to the right and 1 inch down and ends 5.5 inches to the right and 1.5 inches

down on the first page in the input file can be located as follows:

 ul(4,1),lr(5.5,1.5),1,’Customer Name’

OnDemand provides the ARSPDUMP command to help you identify the locations of

text strings on the page. See Chapter 7, “ARSPDUMP reference,” on page 47 for

more information about ARSPDUMP.

Indexing parameters

Processing parameters can contain index and conversion parameters, options, and

values. For most reports, the PDF indexer requires at least three indexing

parameters to generate index data:

v TRIGGER

The PDF indexer uses triggers to determine where to locate data. A trigger

instructs the PDF indexer to look for certain information in a specific location on a

page. When the PDF indexer finds the text string in the input file that contains

the information specified in the trigger, it can begin to look for index information.

– The PDF indexer compares words in the input file with the text string specified

in a trigger.

– The location of the trigger string value must be identified using the x,y

coordinate system and page offsets.

– A maximum of 16 triggers can be specified.

– All triggers must match before the PDF indexer can begin to locate index

information.

v FIELD

The field parameter specifies the location of the data that the PDF indexer uses

to create index values.

– Field definitions are based on TRIGGER1 by default, but can be based on

any of 16 TRIGGER parameters.

– The location of the field must be identified using the x,y coordinate system

and page offsets.

– A maximum of 32 fields can be defined.

– A field parameter can also specify all or part of the actual index value stored

in the database.

v INDEX

Chapter 2. Overview 25

The index parameter is where you specify the attribute name and identify the

field or fields on which the index is based. We strongly encourage you to name

the attribute the same as the application group database field name.

– The PDF indexer creates indexes for a group of one or more pages.

– You can concatenate field parameters to form an index.

– A maximum of 32 index parameters can be specified.

The PDF indexer creates a new group and extracts new index values when one

or more of the index values change.

Figure 8 depicts a portion of a page from a sample input file. The text strings that

determine the beginning of a group and the index values are enclosed in

rectangles.

TRIGGER parameters tell the PDF indexer how to identify the beginning of a group

in the input. The PDF indexer requires one TRIGGER parameter to identify the

beginning of a group (statement) in the sample file. FIELD parameters determine

the location of index values in a statement. Fields are based on the location of

trigger records. INDEX parameters identify the attribute names of the index fields.

Indexes are based on one or more field parameters. The following parameters

could be used to index the report depicted in Figure 8. See Chapter 4, “Parameter

reference,” on page 31 for details about the parameter syntax.

Page 001

08/31/2003Statement Date:

0000-3727-1644-0099Account Number:

$1,096.54Balance:

John Smyth

123 Ubik Way North

Meadow Ridge WV 99999-0000

0.
25

0.
75

0.
25

0.
75

0.
25

0.
25

0.
50

0.
25

3.
25

0.75 0.25 1.00 0.75 0.50

3.25

Figure 8. Indexing data with the PDF indexer

26 Indexing Reference

|

|
|
|

v Define a trigger to search each page in the input data for the text string that

identifies the start of a group (statement):

 TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 001’

v Define fields to identify the location of index data. For the sample report, we

might define four fields:

– FIELD1 identifies the location of customer name index values.

 FIELD1=ul(1,1),lr(2,1.25),0

– FIELD2 identifies the location of statement date index values.

 FIELD2=ul(2,2),lr(2.75,2.25),0

– FIELD3 identifies the location of account number index values.

 FIELD3=ul(2,2.25),lr(3.25,2.5),0

– FIELD4 identifies the location of the balance index values.

 FIELD4=ul(2,3),lr(2.75,3.25),0

v Define indexes to identify the attribute name for an index value and the field

parameter used to locate the index value.

– INDEX1 identifies the customer name, for values extracted using FIELD1.

 INDEX1=’cust_name’,FIELD1

– INDEX2 identifies the statement date, for values extracted using FIELD2.

 INDEX2=’sdate’,FIELD2

– INDEX3 identifies the account number, for values extracted using FIELD3.

 INDEX3=’acct_num’,FIELD3

– INDEX4 identifies the balance, for values extracted using FIELD4.

 INDEX4=’balance’,FIELD4

How to create indexing parameters

There are two parts to creating indexing parameters. First, process sample input

data to determine the x,y coordinates of the text strings the PDF indexer uses to

identify groups and locate index data. Then, create the indexing parameters using

the administrative client.

OnDemand provides the ARSPDUMP command to help you determine the location

of trigger and field string values in the input data. The ARSPDUMP command

processes one or more pages of sample report data and generates an output file.

The output file contains one record for each text string on a page. Each record

contains the x,y coordinates for a box imposed over the text string (upper left, lower

right). See Chapter 7, “ARSPDUMP reference,” on page 47 for more information

about ARSPDUMP.

The process works as follows:

v Obtain a printed copy of the sample report.

v Identify the string values that you want to use to locate triggers and fields

v Identify the number of the page where each string value appears. The number is

the sheet number, not the page identifier. The sheet number is the order of the

page as it appears in the file, beginning with the number 1 (one), for the first

page in the file. A page identifier is user-defined information that identifies each

page (for example, iv, 5, and 17-3).

v Process one or more pages of the report with the ARSPDUMP command.

v In the output file, locate the records that contain the string values and make a

note of the x,y coordinates.

Chapter 2. Overview 27

v Create TRIGGER and FIELD parameters using the x,y coordinates, page

number, and string value.

Indexing parameters are part of the OnDemand application. The administrative

client provides an edit window you can use to maintain indexing parameters for the

application.

28 Indexing Reference

Chapter 3. System considerations

System limitations

If you are using the PDF indexer to generate index data for PostScript and PDF

files that are created by user-defined programs, you need to keep the following in

mind:

v The PDF indexer can process PDF input files that contain up to approximately

3,000 pages, regardless of file size. This maximum varies (increases or

decreases) depending on the type and number of fonts and images contained in

the file.

v IBM recommends that the CCSID of the PDF input file be 1252

(WinAnsiEncoding). Using another CCSID may cause unexpected results.

v The PDF indexer supports DBCS languages. However, IBM does not provide any

DBCS fonts. You can purchase DBCS fonts from Adobe. The PDF indexer

supports all DBCS fonts, except encrypted Japanese fonts.

v Input data delimited with PostScript Passthrough markers cannot be indexed

v The Adobe Toolkit does not validate link destinations or bookmarks to other

pages in a document or to other documents. Links or bookmarks may or may not

resolve correctly, depending on how you segment your documents.

v If a font is referenced in an input file but not embedded in the file and the PDF

indexer cannot locate the font, the referenced font is substituted by using one of

the base Adobe Type 1 fonts that are provided by IBM. If the customer

purchases additional fonts and installs them on the system, the additional fonts

can be embedded at indexing time if they are referenced in an input file and the

location is specified on the FONTLIB parameter. See “FONTLIB” on page 34 for

more information.

Input data requirements

The PDF indexer processes PDF input data. PostScript data generated by

applications must be processed by Acrobat Distiller before you run the PDF indexer.

The online documentation provided with Acrobat Distiller describes methods you

can use to generate PDF data.

If you plan to automate the data indexing and loading process on the OnDemand

server, the input file name must identify the application group and application to

load. Use the following convention to name your input files:

 MVS.JOBNAME.DATASET.FORM.YYDDD.HHMMSST.PDF

Important: The .PDF file name extension is required to initiate a load process.

Unless you specify otherwise, the ARSLOAD program uses the FORM part of the

filename to identify the application group to load. However, you can use the -G

parameter to specify a different part of the filename (MVS™, JOBNAME, or

DATASET) that identifies the application group to load. For example, arsload -G

JOBNAME.

If the application group contains more than one application, you must identify the

application to load; otherwise the load will fail. You can run the ARSLOAD program

with the -A parameter to specify the part of the input file name (MVS, JOBNAME,

DATASET, or FORM) that identifies the application. For example, arsload -A

DATASET.

© Copyright IBM Corp. 2001, 2008 29

|
|
|
|

The case of the identifier PDF is ignored. Application group and application names

are case sensitive and may include special characters such as the blank character.

NLS considerations

The PDF indexer supports DBCS languages. However, IBM does not provide any

DBCS fonts. You can purchase DBCS fonts from Adobe. The PDF indexer supports

all DBCS fonts, except encrypted Japanese fonts.

Data values that you specify on TRIGGER and FIELD parameters must be encoded

in the same code page as the document. For example, if the characters in the

document are encoded in code page 1252, any data values that you specify on

TRIGGER and FIELD parameters must be encoded in code page 1252. Examples

of data values that you might specify include TRIGGER string values and FIELD

default and constant values.

When loading data using the PDF indexer, the locale must be set appropriately for

the code page of the documents. For example, if the code page of the documents

is 954, set the locale environment variable to ja_JP or some other locale that

correctly identifies upper and lower case characters in code page 954.

For more information about NLS in OnDemand, see the IBM Content Manager

OnDemand for i5/OS Common Server Planning and Installation Guide.

30 Indexing Reference

Chapter 4. Parameter reference

This parameter reference assumes that you will use the ARSLOAD program to

process your input files. When you use the ARSLOAD program to process input

files, the PDF indexer ignores any values that you may provide for the INDEXDD,

INPUTDD, MSGDD, OUTPUTDD, and PARMDD parameters. If you run the

ARSPDOCI program from the command prompt or call it from a user-defined

program, then you must provide values for the INPUTDD, OUTPUTDD, and

PARMDD parameters and verify that the default values for the INDEXDD and

MSGDD parameters are correct.

COORDINATES

Identifies the metrics used for x,y coordinates in the FIELD and TRIGGER

parameters.

Required?

No

Default Value

IN

Syntax

COORDINATES=metric

Options and values

The metric can be:

 IN

The coordinate metrics are specified in inches (the default).

 CM

The coordinate metrics are specified in centimeters.

 MM

The coordinate metrics are specified in millimeters.

FIELD

Identifies the location of index data and can provide default and constant index

values. You must define at least one field. You can define up to 32 fields. You can

define two types of fields: a trigger field, which is based on the location of a trigger

string value and a constant field, which provides the actual index value that is

stored in the database.

Required?

Yes

Default Value

<none>

Trigger field syntax

FIELDn=ul(x,y),lr(x,y),page[,(TRIGGER=n,BASE={0 | TRIGGER},

MASK=’field_mask’,DEFAULT=’value’)]

© Copyright IBM Corp. 2001, 2008 31

Options and values

 n

The field parameter identifier. When adding a field parameter, use the next

available number, beginning with 1 (one).

 ul(x,y)

The coordinates for the upper left corner of the field string box. The field string

box is the smallest rectangle that completely encloses the field string value (one

or more words on the page). The PDF indexer must find the field string value

inside the field string box. The supported range of values is 0 (zero) to 45, page

width and length, in inches.

 lr(x,y)

The coordinates for the lower right corner of the field string box. The field string

box is the smallest rectangle that completely encloses the field string value (one

or more words on the page). The PDF indexer must find the field string value

inside the field string box. The supported range of values is 0 (zero) to 45, page

width and length, in inches.

 page

The sheet number where the PDF indexer begins searching for the field, relative

to a trigger or 0 (zero) for the same page as the trigger. If you specify BASE=0,

the page value can be –16 to 16. If you specify BASE=TRIGGER, the page

value must be 0 (zero), which is relative to the sheet number where the trigger

string value is located.

 TRIGGER=n

Identifies the trigger parameter used to locate the field. This is an optional

keyword, but the default is TRIGGER1. Replace n with the number of a defined

TRIGGER parameter.

 BASE={0|TRIGGER}

Determines whether the PDF indexer uses the upper left coordinates of the

trigger string box to locate the field. Choose from 0 (zero) or TRIGGER. If

BASE=0, the PDF indexer adds zero to the field string box coordinates. If

BASE=TRIGGER, the PDF indexer adds the upper left coordinates of the

location of the trigger string box to the coordinates provided for the field string

box. This is an optional keyword, but the default is BASE=0.

You should use BASE=0 if the field data always starts in a specific area on the

page. You should use BASE=TRIGGER if the field is not always located in the

same area on every page, but is always located a specific distance from a

trigger. This capability is useful when the number of lines on a page varies,

causing the location of field values to change. For example, given the following

parameters:

TRIGGER2=ul(4,4),lr(5,8),1,’Total’

FIELD2=ul(1,0),lr(2,1),0,(TRIGGER=2,BASE=TRIGGER)

The trigger string value can be found in a one by four inch rectangle. The PDF

indexer always locates the field in a one inch box, one inch to the right of the

location of the trigger string value. If the PDF indexer finds the trigger string

value in location ul(4,4),lr(5,5), it attempts to find the field in location

ul(5,4),lr(6,5). If the PDF indexer finds the trigger string value in location

ul(4,6),lr(5,7), it attempts to find the field in location ul(5,6),lr(6,7).

Note: Beginning with Version 5.2, a field that is based on the location of a

trigger (BASE=TRIGGER) can be defined at any location on the page

that contains the trigger. Previously, a field that was based on the

location of a trigger had to be defined to the right and below the upper

32 Indexing Reference

left point of the trigger. With this change, the x or y values can be

negative, so long as the resulting absolute field coordinates of the field

string rectangle are still in the range of 0 <= x <= 45 and 0 <= y <= 45.

The ul(x,y) and lr(x,y) coordinates of the FIELD parameter are

relative offsets from the ul(x,y) coordinates of the trigger. For example,

suppose the field string rectangle is located at ul(1,1), lr(2,2) which is

an absolute location on the page. If the trigger string rectangle is located

at ul(5,5), lr(7,7), then the field coordinates would be ul(-4,-4),

lr(-3,-3).

 MASK=’field_mask’

The pattern of symbols that the PDF indexer matches to data located in the

field. When you define a field that includes a mask, an INDEX parameter based

on the field cannot reference any other fields. Valid mask symbols can include:

@ Matches alphabetic characters. For example:

MASK=’@@@@@@@@@@@@@@@’

Causes the PDF indexer to match a 15-character alphabetic field, such

as a name.

Matches numeric characters. For example:

MASK=’##########’

Causes the PDF indexer to match a 10-character numeric field, such as

an account number.

¬ Matches any non-blank character.

∧ Matches any non-blank character.

% Matches the blank character and numeric characters.

= Matches any character.

Note: The string that you specify for the mask can contain any character. For

example, given the following definitions:

 TRIGGER2=*,25,’ACCOUNT’

 FIELD2=0,38,11,(TRIGGER=2,BASE=0,MASK=’@000-####-#’)

The PDF indexer selects the field only if the data in the field columns

contains an eleven-character string comprised of any letter, three zeros, a

dash character, any four numbers, a dash character, and any number.

 DEFAULT=’value’

Defines the default index value, when there are no words within the coordinates

provided for the field string box.

For example, assume that an application program generates statements that

contain an audit field. The contents of the field can be PASSED or FAILED.

However, if a statement has not been audited, the application program does not

generate a value. In that case, there are no words within the field string box. To

store a default value in the database for unaudited records, define the field as

follows:

FIELD3=ul(8,1),lr(8.5,1.25),1,(DEFAULT=’NOT AUDITED’)

The PDF indexer assigns the index associated with FIELD3 the value NOT

AUDITED, if the field string box is blank.

Chapter 4. Parameter reference 33

Examples

The following field parameter causes the PDF indexer to locate the field at the

coordinates provided for the field string box. The field is based on TRIGGER1 and

located on the same page as TRIGGER1. Specify BASE=0 because the field string

box always appears in a specific location on the page.

TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 0001’

FIELD1=ul(1,1),lr(3.25,1.25),0,(TRIGGER=1,BASE=0)

Constant field syntax

FIELDn=’constant’

Options and values

 n

The field parameter identifier. When adding a field parameter, use the next

available number, beginning with 1 (one).

 ’constant’

The literal (constant) string value of the field. This is the index value stored in

the database. The constant value can be 1 to 250 bytes in length. The PDF

indexer does not validate the type or content of the constant.

Examples

The following field parameter causes the PDF indexer to store the same text string

in each INDEX1 value it creates.

FIELD1=’000000000’

INDEX1=’acct’,FIELD1

The following field parameters cause the PDF indexer to concatenate a constant

value with the index value extracted from the data. The PDF indexer concatenates

the constant value specified in the FIELD1 parameter to each index value located

using the FIELD2 parameter. The concatenated string value is stored in the

database. In this example, the account number field in the data is 14 bytes in

length. However, the account number in the database is 19 bytes in length. Use a

constant field to concatenate a constant five byte prefix (0000–) to all account

numbers extracted from the data.

FIELD1=’0000-’

FIELD2=ul(2,2),lr(2.5,2.25),0,(TRIGGER=1,BASE=0)

INDEX1=’acct_num’,FIELD1,FIELD2

Related parameters

 INDEX parameter on page 35.

 TRIGGER parameter on page 39.

FONTLIB

Identifies the directory or directories in which fonts are stored. Specify any valid

path. The PDF indexer searches for fonts in the order that the paths are listed. If a

font is referenced in an input file but not embedded in the file, the PDF indexer

attempts to locate the font in the directory or directories listed on the FONTLIB

parameter. If the font is located, the PDF indexer adds it to the output file. If a font

is referenced in an input file and the PDF indexer cannot locate the font, the

referenced font is substituted by using one of the base Adobe Type 1 fonts that are

provided by IBM. If the customer purchases additional fonts and installs them on

34 Indexing Reference

the system, the additional fonts can be embedded at indexing time if they are

referenced in an input file and are present in one of the directories specified on the

FONTLIB parameter.

Required?

No

Default Value

/QIBM/ProdData/OnDemand/Adobe/fonts

Syntax

FONTLIB=pathlist

Options and values

The pathlist is a colon-separated string of one or more valid path names. For

example:

/QIBM/ProdData/OnDemand/Adobe/fonts:/mycustom/fonts

The PDF indexer searches the paths in the order in which they are specified.

Delimit path names with the colon (:) character.

INDEX

Identifies the index name and the field or fields on which the index is based. You

must specify at least one index parameter. You can specify up to 32 index

parameters. When you create index parameters, IBM recommends that you name

the index the same as the application group database field name.

Required?

Yes

Default Value

<none>

Syntax

INDEXn=’name’,FIELDnn[,...FIELDnn]

Options and values

 n

The index parameter identifier. When adding an index parameter, use the next

available number, beginning with 1 (one).

 ’name’

Determines the index name associated with the actual index value. For

example, assume INDEX1 is to contain account numbers. The string acct_num

would be a meaningful index name. The index value of INDEX1 would be an

actual account number, for example, 000123456789.

The index name is a string from 1 to 250 bytes in length. We strongly

encourage you to name the index the same as the application group database

field name.

 FIELDnn

The name of the field parameter or parameters that the PDF indexer uses to

locate the index. You can specify a maximum of 32 field parameters. Separate

the field parameter names with a comma. The total length of all the specified

field parameters cannot exceed 250 bytes.

Chapter 4. Parameter reference 35

Examples

The following index parameter causes the PDF indexer to create group-level

indexes for date index values (the PDF indexer supports group-level indexes only).

When the index value changes, the PDF indexer closes the current group and

begins a new group.

INDEX1=’report_date’,FIELD1

The following index parameters cause the PDF indexer to create group-level

indexes for customer name and account number index values. The PDF indexer

closes the current group and begins a new group when either the customer name

or the account number index value changes.

INDEX1=’name’,FIELD1

INDEX2=’acct_num’,FIELD2

Related parameters

FIELD parameter on page 31.

INDEXDD

Determines the name or the full path name of the index object file. The PDF

indexer writes indexing information to the index object file. If you specify the file

name without a path, the PDF indexer puts the index object file in the current

directory. If you do not specify the INDEXDD parameter, the PDF indexer writes

indexing information to the file INDEX.

Required?

No

Note: When you process input files with the ARSLOAD program, the PDF

indexer ignores any value that you may supply for the INDEXDD

parameter. If you process input files with the ARSPDOCI program,

then verify the value of the INDEXDD parameter.

Default Value

INDEX

Syntax

INDEXDD=filename

Options and values

The filename is a valid filename or full path name.

INDEXSTARTBY

Determines the page number by which the PDF indexer must locate the first group

(document) within the input file. The first group is identified when all of the triggers

and fields are found. For example, with the following parameters:

 TRIGGER1=ul(4.72,1.28),lr(5.36,1.45),*,’ACCOUNT’

 TRIGGER2=ul(6.11,1.43),lr(6.79,1.59),1,’SUMMARY’

 INDEX1=’Account’,FIELD1,FIELD2

 FIELD1=ul(6.11,1.29).lr(6.63,1.45),2

 FIELD2=ul(6.69,1.29),lr(7.04,1.45),2

 INDEX2=’Total’,FIELD3

 FIELD3=ul(6.11,1.43),lr(6.79,1.59),2

 INDEXSTARTBY=3

36 Indexing Reference

The word ACCOUNT must be found on a page in the location described by

TRIGGER1. The word SUMMARY must be found on a page following the page on

which ACCOUNT was found, in the location specified by TRIGGER2. In addition,

there must be one or more words found for fields FIELD1, FIELD2, and FIELD3 in

the locations specified by FIELD1, FIELD2, and FIELD3 which are located on a

page that is two pages after the page on which TRIGGER1 was found.

In the example, the first group in the file must start on either page one, page two, or

page three. If TRIGGER1 is found on page one, then TRIGGER2 must be found on

page two and FIELD1, FIELD2, and FIELD3 must be found on page three.

The PDF indexer stops processing if it does not locate the first group by the

specified page number. This parameter is optional, but the default is that the PDF

indexer must locate the first group on the first page of the input file. This parameter

is helpful if the input file contains header pages. For example, if the input file

contains two header pages, you can specify a page number one greater than the

number of header pages (INDEXSTARTBY=3) so that the PDF indexer will stop

processing only if it does not locate the first group by the third page in the input

data.

Note: When you use INDEXSTARTBY to skip header pages, the PDF indexer does

not copy non-indexed pages to the output file or store them in OnDemand.

For example, if you specify INDEXSTARTBY=3 and the first group is found

on page three, then pages one and two are not copied to the output file or

stored in OnDemand. If you specify INDEXSTARTBY=3 and the first group is

found on page two, then page one is not copied to the output file or stored in

OnDemand.

Required?

No

Default Value

1

Syntax

INDEXSTARTBY=value

Options and values

The value is the page number by which the PDF indexer must locate the first group

(document) in the input file.

INPUTDD

Identifies the name or the full path name of the PDF input file that the PDF indexer

will process.

Required?

No

Note: When you process input files with the ARSLOAD program, the PDF

indexer ignores any value that you may supply for the INPUTDD

parameter. If you process input files with the ARSPDOCI program,

then you must specify a value for the INPUTDD parameter.

Default Value

<none>

Chapter 4. Parameter reference 37

Syntax

INPUTDD=name

Options and values

The name is the file name or full path name of the input file. If you specify the file

name without a path, the PDF indexer searches the current directory for the

specified file.

MSGDD

Determines the name or the full path name of the file where the PDF indexer writes

error messages. If you do not specify the MSGDD parameter, the PDF indexer

writes messages to the display (interactive) or the joblog (batch).

Required?

No

Note: When you process input files with the ARSLOAD program, the PDF

indexer ignores any value that you may supply for the MSGDD

parameter. If you process input files with the ARSPDOCI program,

then verify the value of the MSGDD parameter.

Default Value

the display (interactive) or the joblog (batch), which are sometimes referred

to as stderr (standard error)

Syntax

MSGDD=name

Options and values

The name is the file name or full path name where the PDF indexer writes error

messages. If you specify the file name without a path, the PDF indexer places the

error file in the current directory.

OUTPUTDD

Identifies the name or the full path name of the output file.

Required?

No

Note: When you process input files with the ARSLOAD program, the PDF

indexer ignores any value that you may supply for the OUTPUTDD

parameter. If you process input files with the ARSPDOCI program,

then you must specify a value for the OUTPUTDD parameter.

Default Value

<none>

Syntax

OUTPUTDD=name

Options and values

The name is the file name or full path name of the output file. If you specify the file

name without a path, the PDF indexer puts the output file in the current directory.

38 Indexing Reference

PARMDD

Identifies the name or the full path name of the file that contains the indexing

parameters used to process the input data.

Required?

No

Note: When you process input files with the ARSLOAD program, the PDF

indexer ignores any value that you may supply for the PARMDD

parameter. If you process input files with the ARSPDOCI program,

then you must specify a value for the PARMDD parameter.

Default Value

<none>

Syntax

PARMDD=name

Options and values

The name is the file name or full path name of the file that contains the indexing

parameters. If you specify the file name without a path, the PDF indexer searches

for the file in the current directory.

TEMPDIR

Determines the name of the directory that the PDF indexer uses for temporary work

space.

Required?

No

Default Value

/arstmp

Syntax

TEMPDIR=directory

Options and values

The directory is a valid directory name.

TRACEDD parameter

The TRACEDD parameter was added in Version 5.3. For more information, see

Chapter 8, “Trace facility,” on page 49.

TRIGGER

Identifies locations and string values required to uniquely identify the beginning of a

group and the locations and string values of fields used to define indexes. You must

define at least one trigger, and can define up to 16 triggers. You cannot define

float-type triggers (TYPE=FLOAT) for use with the PDF Indexer.

Required?

Yes

Chapter 4. Parameter reference 39

|
|

|
|
|
|

|
|

Default Value

<none>

Syntax

TRIGGERn=ul(x,y),lr(x,y),page,’value’

Options and values

 n

The trigger parameter identifier. When adding a trigger parameter, use the next

available number, beginning with 1 (one).

 ul(x,y)

The coordinates for the upper left corner of the trigger string box. The trigger

string box is the smallest rectangle that completely encloses the trigger string

value (one or more words on the page). The PDF indexer must find the trigger

string value inside the trigger string box. The supported range of values is 0

(zero) to 45, page width and length, in inches.

 lr(x,y)

The coordinates for the lower right corner of the trigger string box. The trigger

string box is the smallest rectangle that completely encloses the trigger string

value (one or more words on the page). The PDF indexer must find the trigger

string value inside the trigger string box. The supported range of values are 0

(zero) to 45, page width and length, in inches.

 page

The page number in the input file on which the trigger string value must be

located.

– For TRIGGER1, the page value must be an asterisk (*), to specify that the

trigger string value can be located on any page in the input file. The PDF

indexer begins searching on the first page in the input file. The PDF indexer

continues searching until the trigger string value is located, the

INDEXSTARTBY value is reached, or the last page of the input file is

searched, whichever occurs first. If the PDF indexer reaches the

INDEXSTARTBY value or the last page and the trigger string value is not

found, then an error occurs and indexing stops.

– For all other triggers, the page value can be 0 (zero) to 16, relative to

TRIGGER1. For example, the page value 0 (zero) means that the trigger is

located on the same page as TRIGGER1; the value 1 (one) means that the

trigger is located on the page after the page that contains TRIGGER1; and

so forth. For TRIGGER2 through TRIGGER16, the trigger string value can be

a maximum of 16 pages from TRIGGER1.

 ’value’

The actual string value the PDF indexer uses to match the input data. The string

value is case sensitive. The value is one or more words that can be found on a

page.

Examples

TRIGGER1

The following TRIGGER1 parameter causes the PDF indexer to search the

specified location on every page of the input data for the specified string. You must

define TRIGGER1 and the page value for TRIGGER1 must be an asterisk.

TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 0001’

40 Indexing Reference

|
|

Group triggers

The following trigger parameter causes the PDF indexer to attempt to match the

string value Account Number within the coordinates provided for the trigger string

box. The trigger can be found on the same page as TRIGGER1.

TRIGGER2=ul(1,2.25),lr(2,2.5),0,’Account Number’

The following trigger parameter causes the PDF indexer to attempt to match the

string value Total within the coordinates provided for the trigger string box. In this

example, a one by four inch trigger string box is defined, because the vertical

position of the trigger on the page may vary. For example, assume that the page

contains account numbers and balances with a total for all of the accounts listed.

There can be one or more accounts listed. The location of the total varies,

depending on the number of accounts listed. The field parameter is based on the

trigger so that the PDF indexer can locate the field regardless of the actual location

of the trigger string value. The field is a one inch box that always begins one inch to

the right of the trigger. After locating the trigger string value, the PDF indexer adds

the upper left coordinates of the trigger string box to the coordinates provided for

the field. The trigger can be found on the page following TRIGGER1.

TRIGGER2=ul(4,4),lr(5,8),1,’Total’

FIELD2=ul(1,0),lr(2,1),0,(TRIGGER=2,BASE=TRIGGER)

Related parameters

The FIELD parameter on page 31.

Chapter 4. Parameter reference 41

42 Indexing Reference

Chapter 5. Message reference

The PDF indexer creates a message list at the end of each indexing run. A return

code of 0 (zero) means that processing completed without any errors.

The PDF indexer detects a number of error conditions that can be logically grouped

into several categories:

v Informational

When the PDF indexer processes a file, it issues informational messages that

allow the user to determine if the correct processing parameters have been

specified. These messages can assist in providing an audit trail.

v Warning

The PDF indexer issues a warning message and a return code of 4 (four) when

the fidelity of the document may be in question.

v Error

The PDF indexer issues an error message and return code of 8 (eight) or 16

(sixteen) and terminates processing the current input file. Most error conditions

detected by the PDF indexer fall into this category. The exact method of

termination may vary. For certain severe errors, the PDF indexer may fail with a

segment fault. This is generally the case when some system service fails. In

other cases, the PDF indexer terminates with the appropriate error messages

written either to standard error or to a file. When the PDF indexer is invoked by

the ARSLOAD program, error messages are automatically written to the system

log. If you run the ARSPDOCI command, you can specify the name or the full

path name of the file to hold the processing messages by using the MSGDD

parameter.

v Adobe Toolkit

v Internal Error

The PDF indexer issues an error message and return code of 16 (sixteen) and

terminates processing the current input file.

See IBM DB2® Content Manager OnDemand: Messages and Codes, SC27-1379 for

a list of the messages that may be generated by the PDF indexer, along with

explanations of the messages and actions that you can take to respond to the

messages. The messages that are generated by the PDF indexer are listed in the

Common Server section of the messages publication.

© Copyright IBM Corp. 2001, 2008 43

44 Indexing Reference

Chapter 6. ARSPDOCI reference

Purpose

Generate index data for a PDF file.

The ARSPDOCI program uses the identified locations of text strings on a page of a

PDF document to produce a text index file as well as a byte offset indexed PDF

document. You can use the ARSPDUMP program to list the locations of text strings

in a document. See Chapter 7, “ARSPDUMP reference,” on page 47 for more

information.

Syntax

Note: The following syntax should be used only when you run the ARSPDOCI

program from the command line or call it from a user-defined program.

�� ARSPDOCI

COORDINATES=metric
 FIELDn=spec

FONTLIB=pathList
 �

� INDEXn=spec

INDEXDD=fileName

INDEXSTARTBY=pageNumber
 �

� INPUTDD=fileName

MSGDD=fileName
 OUTPUTDD=fileName PARMDD=fileName �

�
TEMPDIR=fileSystem

 TRIGGERn=spec ��

Description

The ARSPDOCI program can be used to index a PDF file. The ARSLOAD program

automatically calls the ARSPDOCI program if the input data type is PDF and the

indexer is PDF. If you need to index a PDF file and you do not want to use the

ARSLOAD program to process the file, then you can run the ARSPDOCI program

from the command line or call it from a program.

The ARSPDOCI program requires two input files: a PDF document and a parameter

file.

If a font is referenced in an input file but not embedded in the file and the PDF

indexer cannot locate the font, the referenced font is substituted by using one of the

base Adobe Type 1 fonts that are provided by IBM. If the customer purchases

additional fonts and installs them on the system, the additional fonts can be

embedded at indexing time if they are referenced in an input file and the location is

specified on the FONTLIB parameter. See “FONTLIB” on page 34 for more

information.

Parameters

Refer to Chapter 4, “Parameter reference,” on page 31 for details about the

parameters that you can specify when you run the ARSPDOCI program from the

command line or a user-defined program.

© Copyright IBM Corp. 2001, 2008 45

IFS location

/usr/bin/arspdoci

The executable program.

46 Indexing Reference

Chapter 7. ARSPDUMP reference

Purpose

Print the locations of text strings on a page.

The ARSPDUMP program lists the locations of text strings on a page in a PDF file.

The output of the ARSPDUMP program contains a list of the text strings on the

page and the coordinates for each string. You can use the information that is

generated by the ARSPDUMP program to create the parameter file that is used by

the ARSPDOCI program to index PDF files. See Chapter 6, “ARSPDOCI reference,”

on page 45 for more information.

Syntax

�� ARSPDUMP -f inputFile

-F

fontFile

-h

-o

outputFile
 �

� -p sheetNumber

-t

tempDir
 ��

Description

The ARSPDUMP program can be used to identify the locations of text strings on a

page in a PDF file.

The output of the ARSPDUMP program contains a list of the text strings on the

page and the coordinates for each string.

If a font is referenced in a PDF file, but not embedded, then the ARSPDUMP

program attempts to find the font using information provided with the -F parameter.

If the ARSPDUMP program does not find the font, then it uses a substitute Adobe

Type 1 font.

Parameters

-f inputFile

The file name or full path name of the PDF file to process.

-F fontDir

Identifies directories in which fonts are stored. Specify any valid path. Use

the colon (:) character to separate path names. The ARSPDUMP program

searches the paths in the order in which they are specified. If you do not

specify this flag and name a font directory, then the ARSPDUMP program

attempts to locate fonts in the /QIBM/ProdData/OnDemand/Adobe/fonts

directory.

-h Lists the parameters and their descriptions for the ARSPDUMP program.

-o outputFile

The file name or full path name of the file into which the ARSPDUMP

program writes output messages. If you do not specify this flag and name a

file, then the ARSPDUMP program writes output to the display (interactive)

or the joblog (batch).

© Copyright IBM Corp. 2001, 2008 47

-p sheetNumber

The number of the page in the PDF file that you want the ARSPDUMP

program to process. This is the page that contains the text strings that you

want to use to define triggers and fields. The sheet number is the order of

the page as it appears in the file, beginning with the number 1 (one), for the

first page in the file. Contrast with page identifier, which is user-defined

information that identifies each page (for example, iv, 5, and 17-3).

-t tempDir

Identifies the directory that the ARSPDUMP program uses for temporary

work space. Specify any valid directory name. If you do not specify this flag

and name a directory, then the ARSPDUMP program uses the /arstmp

directory for temporary work space.

Examples

The following example shows how to invoke the ARSPDUMP program within

QSHELL to print the strings and locations of text found on page number three of

sample.pdf to sample.out:

 arspdump -f sample.pdf -o sample.out -p 3

See the IBM Content Manager OnDemand for i5/OS Common Server Administration

Guide for more information about running ARSPDUMP using QSHELL.

IFS location

/usr/bin/arspdump

The executable program.

48 Indexing Reference

Chapter 8. Trace facility

Beginning with Version 5.3, an enhanced tracing capability for the PDF indexer is

now available. The tracing capability provides assistance to users attempting to

debug problems, such as when the system fails during the indexing and loading of

PDF documents.

To trace or debug a problem with the PDF indexer, the following is required:

v The parameter file, which specifies the fields, triggers, indexes and other

indexing information

v The PDF input file to process

The parameter file and PDF input file can be processed by running the PDF indexer

from the command line. For example:

arspdoci parmdd=filen.parms inputdd=filen.pdf outputdd=filen.out indexdd=filen.ind

tracedd=filen.trace

Where:

 arspdoci is the name of the command-line version of the PDF indexer program

 parmdd= specifies the name of the input file that contains the indexing

parameters

 inputdd= specifies the name of the PDF input file to process

 outputdd= specifies the name of the output file that contains the indexed PDF

documents created by the PDF indexer

 indexdd= specifies the name of the output file that contains the index information

that will be loaded into the database

 tracedd= specifies the name of the output file that contains the trace information

Note: See Chapter 6, “ARSPDOCI reference,” on page 45 for more information

about the parameters that may be specified when running the ARSPDOCI program.

After running the PDF indexer with the trace, the output file specified by the

tracedd= parameter will contain detailed information about the processing that took

place and where the PDF indexer is failing during the process. The trace

information will identify whether a trigger was not found, a field was not found, the

PDF data is corrupted, there was a problem extracting a PDF page from the

document, or even if there is not enough memory or disk space to complete the

required operations. Figure 9 on page 50 shows an example of the trace

information that may be generated by the PDF indexer.

© Copyright IBM Corp. 2001, 2008 49

COORDINATES=IN

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

TRIGGER1=UL(7.00,0.25),LR(7.70,0.57),*,’Page:’

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

ARSPDOCI completed code parse_trigger <----------------

ARSPDOCI completed code parse_quoted_parm <----------------

ARSPDOCI completed code parse_quoted_parm 001 ---------------->

ARSPDOCI completed code parse_trigger 001 ---------------->

FIELD1=UL(7.00,0.48),LR(7.90,0.77),0,(TRIGGER=1,BASE=0)

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

ARSPDOCI completed code parse_field <----------------

ARSPDOCI completed code parse_subfields <----------------

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

ARSPDOCI completed code parse_subfields 001 ---------------->

ARSPDOCI completed code parse_field 001 ---------------->

FIELD2=UL(6.11,1.39),LR(7.15,1.57),0,(TRIGGER=1,BASE=0)

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

ARSPDOCI completed code parse_field <----------------

ARSPDOCI completed code parse_subfields <----------------

ARSPDOCI completed code get_keyword <------------------

 .

 .

 .

ARSPDOCI completed code get_keyword <------------------

ARSPDOCI completed code get_keyword 003 ------------------>

ARSPDOCI completed code arspparm_final_sanity_check <----------------

ARSPDOCI completed code arspparm_final_sanity_check 001 ---------------->

ARSPDOCI completed code ArspProcessOpt <------------

ARSPDOCI completed code ArspOpenIndex <-------------

ARSPDOCI completed code ArspOpenIndex 001 ------------->

Adobe PDF Library version -732512488.-1

Editing is : -1

Number of input pages = 130

ARSPDOCI completed code ArspProcessOpt:Calling ArspSearchDocPages()

ARSPDOCI completed code ArspSearchDocPages <------------

ARSPDOCI completed code ArspSearchDocPages: ArspCreateWordFinder()

ARSPDOCI completed code ArspSearchDocPages: PDWordFinderAcquireWordList()

ARSPDOCI completed code ArspSearchDocPages: PDDocAcquirePage()

ARSPDOCI completed code ArspSearchDocPages: ArspSearchPage()

ARSPDOCI completed code ArspSearchDocPages: PDPageRelease()

ARSPDOCI completed code ArspSearchDocPages: PDWordFinderReleaseWordList()

Trigger(s) not found by page 1

ARSPDOCI completed code ArspSearchDocPages 004 ------------>

ARSPDOCI completed code ArspProcessOpt:Calling ArspCloseIndex()

ARSPDOCI completed code ArspCloseIndex <------------

ARSPDOCI completed code ArspCloseIndex 001 ------------>

ARSPDOCI completed code ArspProcessOpt:Calling PDDocClose()

ARSPDOCI completed code ArspProcessOpt 002 ------------>

ARSPDOCI completed code 1

ARSPDOCI completed code ArspFreeParms ()

Figure 9. Trace Information for the PDF indexer

50 Indexing Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Part 3. Generic indexer reference

This part provides information about the OnDemand generic indexer. You can use

the generic indexer to specify index data for other types of input files that you want

to store in the system. (Input files that do not contain PDF, SCS, SCS-extended,

Advanced Function Presentation (AFP), or Line spooled data.)

© Copyright IBM Corp. 2001, 2008 51

52 Indexing Reference

Chapter 9. Overview

OnDemand provides the generic indexer to allow you to specify indexing

information for input data that you cannot or do not want to index with the OS/400

Indexer or the PDF Indexer. For example, suppose that you want to load files into

the system that were created by using a word processor. The files can be stored in

the system in the same format in which they were created. The files can be

retrieved from the system and viewed by using the word processor. However,

because the documents do not contain PDF, SCS, SCS-extended, AFP, or LINE

spooled data, you cannot index them with the other indexers that are provided with

the OnDemand product. You can specify index information about the files in the

format that is used by the Generic indexer, and load the index data and files into

the system. Users can then search for and retrieve the files by using the

OnDemand client program.

To use the Generic indexer, you must specify all of the index data for each input file

or document that you want to store in and retrieve from the system. You specify the

index data in a parameter file. The parameter file contains the index fields, index

values, and information about the input files or documents that you want to process.

The Generic indexer retrieves the index data from the parameter file and generates

the index information that is loaded into the database. OnDemand creates one

index record for each input file (or document) that you specify in the parameter file.

The index record contains the index values that uniquely identify a file or document

in OnDemand.

The generic indexer supports group-level indexes. Group indexes are stored in the

database and used to search for documents. You must specify one set of group

indexes for each file or document that you want to process with the Generic

indexer.

Loading data

Most customers use the ARSLOAD program to load data into the system. If the

input data needs to be indexed, the ARSLOAD program will call the appropriate

indexing program (based on the type of input data or, for the Generic indexer, the

presence of a valid parameter file). For example, the ARSLOAD program can

invoke the Generic indexer to process the parameter file and generate the index

data. The ARSLOAD program can then add the index information to the database

and load the input files or documents specified in the parameter file on to storage

volumes.

There are two ways to run the ARSLOAD program:

v Daemon mode. The ARSLOAD program runs as a daemon (UNIX® servers) or

service (Windows® servers) to periodically check a specified directory for input

files to process. When running the ARSLOAD program in daemon mode, a

dummy file with the file type extension of .ARD is required to initiate a load

process. In addition, the Generic indexer parameter file (.IND) must be located in

the specified directory. The GROUP_FILENAME: parameter in the .IND file

specifies the full path name of the actual input file to be processed.

v Manual mode. The ARSLOAD program is run from the command line to process

a specific file. When running the ARSLOAD program in manual mode, specify

only the name of the file to process. The ARSLOAD program adds the .IND file

name extension to the name that you specify. For example, if you specify

arsload ... po3510, where po3510 is the name of the input file, the ARSLOAD

© Copyright IBM Corp. 2001, 2008 53

program processes the po3510.ind Generic indexer parameter file. The

GROUP_FILENAME: parameter in the Generic indexer parameter file specifies

the full path name of the actual input file to be processed.

After successfully loading the data, the system deletes the input file that is specified

on the GROUP_FILENAME: parameter if the file name extension is .OUT, and for

daemon mode processing, the rest of the input file name is the same as the .ARD

file name. The system also deletes the .IND file (the Generic indexer parameter file)

and the .ARD file (the dummy file that is used to initiate a load process when the

ARSLOAD program is running in daemon mode).

The following shows an example of file names in daemon processing mode:

 MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD

 MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.IND

 MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.OUT

The MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD file is the dummy file that

triggers a load process in daemon mode. The

MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.IND file is the Generic indexer

parameter file, and contains a GROUP_FILENAME: parameter that specifies the

input file to process: MVS.JOBNAME.DATASET.FORM.YYYYDDD.HHMMSST.ARD.OUT. After

successfully loading the data, the system deletes all three files.

Processing AFP data

You can specify a parameter file for input files that contain AFP resources and

documents and process them with the Generic indexer. However, when you specify

the parameter file:

v The starting location (byte offset) of the first AFP document in the input file

should always be 0 (zero), even though the actual starting location is not zero

when AFP resources are contained in the input. AFP resources are always

located at the beginning of an input file. The actual starting location of the first

document in the input file is zero plus the number of bytes that comprise the

resources. However, to process AFP documents with the generic indexer, you do

not need to calculate the number of bytes taken by the resources.

v The starting locations of the other documents in the input file should be

calculated using the length of and offset from the previous document in the input

file.

The Generic indexer determines where the AFP resources end in the file and

process the documents using the offsets and lengths that you provide, relative to

where the resources end.

54 Indexing Reference

Chapter 10. Specifying the parameter file

The Generic indexer requires one or more input files that you want to load into the

system and a parameter file that contains the indexing information for the input files.

To use the Generic indexer, you must create a parameter file that contains the

indexing information for the input files. This section describes the parameter file that

is used by the Generic indexer.

There are three types of statements that you can specify in a parameter file:

v Comments. You can place a comment line anywhere in the parameter file.

v Code page. You must specify a code page line at the beginning of the parameter

file, before you define any groups.

v Groups. A group represents a document that you want to index. Each group

contains the application group field names and their index values, the location of

the document in the input file, the number of bytes (characters) that make up the

document, and the name of the input file that contains the document.

Important:

1. The parameter names in the parameter file are case sensitive and must appear

in upper case. For example, GROUP_FIELD_NAME:account is valid, while

group_field_name:account is not.

2. When loading data using the Generic indexer, the locale must be set

appropriately for the CODEPAGE: parameter. For example, if CODEPAGE:954 is

specified, set the locale environment variable to ja_JP or some other locale that

correctly identifies upper and lower case characters in code page 954.

CODEPAGE:

Specifies the code page of the input data. You must specify one and only one code

page. The CODEPAGE: line must appear before you specify any of the groups. The

CODEPAGE: line is required.

Important: When loading data using the Generic indexer, the locale must be set

appropriately for the CODEPAGE: parameter. For example, if CODEPAGE:954 is

specified, set the locale environment variable to ja_JP or some other locale that

correctly identifies upper and lower case characters in code page 954.

Syntax

CODEPAGE:cpgid

Options and values

The character string CODEPAGE: identifies the line as specifying the code page of

the input data. The string cpgid can be any valid code page, a three to five

character identifier of an IBM-registered or user-defined code page.

The CODEPAGE: parameter is required.

Example

The following illustrates how to specify a code page of 37 for the input data:

 CODEPAGE:37

© Copyright IBM Corp. 2001, 2008 55

COMMENT:

Specifies a comment line. You can place comment lines anywhere in the parameter

file.

Syntax

COMMENT: text on a single line

Options and values

The character string COMMENT: identifies the line as containing a comment.

Everything after the colon character to the end of the line is ignored.

Example

The following are examples of comment lines:

 COMMENT:

 COMMENT: this is a comment

GROUP_FIELD_NAME:

Specifies the name of an application group field. Each group that you specify in the

parameter file must contain one GROUP_FIELD_NAME: line for each application

group field. (The application group is where you store a file or document in

OnDemand. You specify the name of the application group to the ARSLOAD

program.) OnDemand supports up to 32 fields per application group. If the field

names that you specify are different than the application group field names, then

you must map the field names that you specify to the application group field names

on the application Load Information page.

Specify a pair of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines for

each application group field. For example, if the application group contains two

fields, then each group that you specify in the parameter file must contain two pairs

of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines. The following is an

example of a group with two application group fields:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

The group lines must appear after the CODEPAGE: line.

Syntax

GROUP_FIELD_NAME:applgrpFieldName

Options and values

The character string GROUP_FIELD_NAME: identifies the line as containing the

name of an application group field. The string applgrpFieldName specifies the name

of an application group field. OnDemand ignores the case of application group field

names.

Example

The following shows examples of application group field names:

56 Indexing Reference

GROUP_FIELD_NAME:rdate

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_NAME:account#

GROUP_FIELD_VALUE:

Specifies an index value for an application group field. Each group that you specify

in the parameter file must contain one GROUP_FIELD_VALUE: line for each

application group field. (The application group is where you store a file or document

in OnDemand. You specify the name of the application group to the ARSLOAD

program.) OnDemand supports up to 32 fields per application group. The

GROUP_FIELD_VALUE: line must follow the GROUP_FIELD_NAME: line for

which you are specifying the index value.

Specify a pair of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines for

each application group field. For example, if the application group contains two

fields, then each group that you specify in the parameter file must contain two pairs

of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines. The following is an

example of a group with two application group fields:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

The group lines must appear after the CODEPAGE: line.

Syntax

GROUP_FIELD_VALUE:value

Options and values

The character string GROUP_FIELD_VALUE: identifies the line as containing an

index value for an application group field. The string value specifies the actual

index value for the field.

Example

The following shows examples of index values:

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_VALUE:0012345678

 GROUP_FIELD_VALUE:0000-1111-2222-3333

GROUP_FILENAME:

The file name or full path name of the input file. If you do not specify a path, then

the generic indexer searches the current directory for the specified file; however,

you should always specify the full path name of the input file.

Each group that you specify in the parameter file must contain one

GROUP_FILENAME: line. The GROUP_FILENAME: line must follow the

GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines that comprise a group.

The following is an example of a group:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_NAME:studentID

Chapter 10. Specifying the parameter file 57

GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:0

 GROUP_LENGTH:0

 GROUP_FILENAME:/tmp/statements.out

If the GROUP_FILENAME line does not contain a value (blank), the Generic

indexer uses the value of the GROUP_FILENAME line from the previous group to

process the current group. In the following example, the input data for the second

and third groups is retrieved from the input file that is specified for the first group:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:0

 GROUP_LENGTH:8124

 GROUP_FILENAME:/tmp/statements.out

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:06/30/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:8124

 GROUP_LENGTH:8124

 GROUP_FILENAME:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:07/31/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:16248

 GROUP_LENGTH:8124

 GROUP_FILENAME:

If the first GROUP_FILENAME line in the parameter file is blank, you must specify

the name of the input file when you run the ARSLOAD program.

The group lines must appear after the CODEPAGE: line.

After successfully loading the data, the system deletes the input file that is specified

on the GROUP_FILENAME: parameter if the file name extension is .OUT, and for

daemon mode processing, the rest of the input file name is the same as the .ARD

file name. The system also deletes the .IND file (the Generic indexer parameter file)

and the .ARD file (the dummy file that is used to initiate a load process when the

ARSLOAD program is running in daemon mode). See “Loading data” on page 53

for more information.

Syntax

GROUP_FILENAME:fileName

Options and values

The character string GROUP_FILENAME: identifies the line as containing the input

file to process. The string fileName specifies the full path name of the input file. You

should always specify the full path name of the input file to process. For example:

GROUP_FILENAME:/tmp/ondemand/inputfiles/f1b0a1600.out

Example

The following are valid file name lines:

58 Indexing Reference

GROUP_FILENAME:/tmp/statements

 GROUP_FILENAME:D:\ARSTMP\statements

 GROUP_FILENAME:/tmp/ondemand/inputfiles/f1b0a1600.out

 GROUP_FILENAME:

GROUP_LENGTH:

Specifies the number of contiguous bytes (characters) that comprise the document

to be indexed. Specify 0 (zero) to indicate the entire input file or the remainder of

the input file. Each group that you specify in the parameter file must contain one

GROUP_LENGTH: line. The GROUP_LENGTH: line must follow the

GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines that comprise a group.

For example:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:0

 GROUP_LENGTH:0

The group lines must appear after the CODEPAGE: line.

Syntax

GROUP_LENGTH:value

Options and values

The character string GROUP_LENGTH: identifies the line as containing the byte

count of the data to be indexed. The string value specifies the actual byte count.

The default value is 0 (zero), for the entire (or remainder) of the file.

Example

The following illustrates how to specify length values:

 GROUP_LENGTH:0

 GROUP_LENGTH:8124

GROUP_OFFSET:

Specifies the starting location (byte offset) into the input file of the data to be

indexed. Specify 0 (zero) for the first byte (the beginning) of the file. (If processing

AFP documents and resources with the Generic indexer, see “Processing AFP data”

on page 54.) Each group that you specify in the parameter file must contain one

GROUP_OFFSET: line. The GROUP_OFFSET: line must follow the

GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines that comprise a group.

For example:

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:05/31/00

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:0

The group lines must appear after the CODEPAGE: line.

Syntax

GROUP_OFFSET:value

Chapter 10. Specifying the parameter file 59

Options and values

The character string GROUP_OFFSET: identifies the line as containing the byte

offset (location) of the data to be indexed. The string value specifies the actual byte

offset. Specify 0 (zero), to indicate the beginning of the file.

Example

The following illustrates offset values for three documents from the same input file.

The documents are 8 KB in length.

 GROUP_OFFSET:0

 GROUP_OFFSET:8124

 GROUP_OFFSET:16248

60 Indexing Reference

Chapter 11. Parameter file examples

The following example shows how to specify indexing information for three groups

(documents). Each document will be indexed using two fields. The input data for

each document is contained in a different input file.

 COMMENT:

 COMMENT: Generic Indexer Example 1

 COMMENT: Different input file for each document

 COMMENT:

 COMMENT: Specify code page of the index data

 CODEPAGE:37

 COMMENT: Document #1

 COMMENT: Index field #1

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:07/13/99

 COMMENT: Index field #2

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 COMMENT: document data starts at beginning of file

 GROUP_OFFSET:0

 COMMENT: document data goes to end of file

 GROUP_LENGTH:0

 GROUP_FILENAME:/arstmp/statement7.out

 COMMENT: Document #2

 COMMENT: Index field #1

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:08/13/99

 COMMENT: Index field #2

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:0

 GROUP_LENGTH:0

 GROUP_FILENAME:/arstmp/statement8.out

 COMMENT: Document #3

 COMMENT: Index field #1

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:09/13/99

 COMMENT: Index field #2

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 GROUP_OFFSET:0

 GROUP_LENGTH:0

 GROUP_FILENAME:/arstmp/statement9.out

 COMMENT:

 COMMENT: End Generic Indexer Example 1

© Copyright IBM Corp. 2001, 2008 61

The following example shows how to specify indexing information for three groups

(documents). Each document will be indexed using two fields. The input data for all

of the documents is contained in the same input file.

 COMMENT:

 COMMENT: Generic Indexer Example 2

 COMMENT: One input file contains all documents

 COMMENT:

 COMMENT: Specify code page of the index data

 CODEPAGE:37

 COMMENT: Document #1

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:07/13/99

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 COMMENT: first document starts at beginning of file (byte 0)

 GROUP_OFFSET:0

 COMMENT: document length 8124 bytes

 GROUP_LENGTH:8124

 GROUP_FILENAME:/arstmp/accounting.student information.loan.out

 COMMENT: Document #2

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:08/13/99

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 COMMENT: second document starts at byte 8124

 GROUP_OFFSET:8124

 COMMENT: document length 8124 bytes

 GROUP_LENGTH:8124

 COMMENT: use prior GROUP_FILENAME:

 GROUP_FILENAME:

 COMMENT: Document #3

 GROUP_FIELD_NAME:rdate

 GROUP_FIELD_VALUE:09/13/99

 GROUP_FIELD_NAME:studentID

 GROUP_FIELD_VALUE:0012345678

 COMMENT: third document starts at byte 16248

 GROUP_OFFSET:16248

 COMMENT: document length 8124 bytes

 GROUP_LENGTH:8124

 COMMENT: use prior GROUP_FILENAME:

 GROUP_FILENAME:

 COMMENT:

 COMMENT: End Generic Indexer Example 2

62 Indexing Reference

Chapter 12. Additional indexing topics

This section presents information on indexing topics not covered elsewhere in this

manual, that applies to all indexers (OS/400, PDF, and Generic), unless otherwise

specified.

Postprocessor program

If you require a postprocessor program to further process the index data that is

extracted from your input data, you can create a custom-written program that

OnDemand calls to process all the index records immediately before loading them

into the database. For the latest instructions and sample programs, go to the

OnDemand for i5/OS® Support Web site at http://www.ibm.com/software/data/
ondemand/400/support.html, and search for "postprocessor."

Index (.ind) files in IFS

You may notice files in IFS on your i5/OS server that may look similar to this:

/SP_QPRLR133_QPRTJOB_TKRUPA_067503_000003_MYSYSTEM_1040629_083851.ind

These are either a result of running the Add Report to OnDemand (ADDRPTOND)

command with the Index Only (IDXONLY) parameter set to *YES, or from a failed

archive initiated by the ADDRPTOND command, an OnDemand monitor job, or one

of the ARSxxx APIs. If a home directory exists for the user profile running the

archive job, these files will be put in that user's home directory. Otherwise, the files

will be in the root directory, and may be a little harder to notice and maintain.

The purpose of these files is to help determine why the archive processing failed.

These .ind files contain the index data captured during the processing of the file,

and may help to easily point out the cause of the problem. If you have a large

number of these files on your system, you should investigate the cause (unless you

know that testing has been done with IDXONLY(*YES) specified as described

above).

If these files are not needed for problem determination or testing, they can be

deleted.

Recommended order for defining triggers and fields

As a general rule, you should define triggers and fields from the top left to the

bottom right of the report. This has the added benefit of making your indexer

parameters easier to understand.

© Copyright IBM Corp. 2001, 2008 63

|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

64 Indexing Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only the IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe on any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001, 2008 65

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator

3605 Highway 52 N

Rochester, MN 55901–7829

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, results obtained in other operating environments may vary

significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

66 Indexing Reference

Trademarks

Advanced Function Presentation, AFP, i5/OS, IBM, System i5, Operating

System/400®, OS/400, and Redbooks™ are trademarks of International Business

Machines Corporation in the United States, other countries, or both.

Adobe, the Adobe logo, Acrobat, and the Acrobat logo are trademarks of Adobe

Systems Incorporated, which may be registered in certain jurisdictions.

Java™ and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 67

68 Indexing Reference

Index

A
Adobe PDF documents

See PDF indexer

AFP
generic indexer, processing with 54

indexing with the generic indexer 54

processing with the generic indexer 54

ARSPDOCI 17

COORDINATES parameter 31

error messages 43

FIELD parameter 31

FONTLIB parameter 34

INDEX parameter 35

INDEXDD parameter 36

INDEXSTARTBY parameter 36

INPUTDD parameter 37

messages 43

MSGDD parameter 38

OUTPUTDD parameter 38

PARMDD parameter 39

reference 31, 45

TEMPDIR parameter 39

TRACEDD parameter 39

TRIGGER parameter 39

ARSPDUMP program
reference 47

B
bookmarks

PDF indexer 29

C
code page

DBCS 30

generic indexer 55

PDF indexer 30

CODEPAGE: parameter 55

commands
ARSPDOCI 45

ARSPDUMP 47

COMMENT: parameter 56

constant field 34

coordinate system 25

coordinates
on FIELD parameter for PDF indexer 32

on TRIGGER parameter for PDF indexer 40

COORDINATES parameter 31

flags and values 31

D
DBCS

PDF indexer 30

debugging 49

default index value
FIELD parameter option 33

document
generic indexer parameter 57, 59

E
error messages

ARSPDOCI program 43

PDF indexer 43

examples
generic indexer 61

F
FIELD parameter 31

constant field 34

default index value 33

flags and values 31

mask option 33

trigger field 31

fields
constant field 34

default index value 33

generic indexer parameter 56, 57

mask option 33

PDF indexer parameter 31

trigger field 31

files
PDF indexer 29

FONTLIB parameter 34

flags and values 34

fonts
PDF indexer 29, 34

G
generic indexer

about 51, 54

AFP data, processing 54

application group field names 56

code page 55

CODEPAGE: parameter 55

COMMENT: parameter 56

document 57, 59

examples 61

field names 56

field values 57

group indexes, defining 56, 57

GROUP_FIELD_NAME: parameter 56

GROUP_FIELD_VALUE: parameter 57

GROUP_FILENAME: parameter 57

GROUP_LENGTH: parameter 59

GROUP_OFFSET: parameter 59

input file 57, 59

introduction 51

national language support (NLS) 55

© Copyright IBM Corp. 2001, 2008 69

generic indexer (continued)
NLS 55

overview 51

parameter file 55, 61

using 51

graphical indexer 3

group indexes
defining 35, 56

defining for generic indexer 57

GROUP_FIELD_NAME: parameter 56

GROUP_FIELD_VALUE: parameter 57

GROUP_FILENAME: parameter 57

GROUP_LENGTH: parameter 59

GROUP_OFFSET: parameter 59

H
header pages

skipping 36

I
IFS location 45

INDEX parameter 35

flags and values 35

INDEXDD parameter 36

flags and values 36

indexer parameters
using break=yes versus break=no 5

indexes
generic indexer parameter 57

PDF indexer parameter 35

indexing
Adobe PDF documents 17

constant field 34

default index value 33

field mask 33

fields for PDF indexer 31

generic indexer 51

group indexes 35

header pages 36

indexes 35

mask option 33

OS/400 indexer 1

parameters 25

PDF indexer 17

skipping header pages 36

trigger field 31

triggers 39

INDEXSTARTBY parameter 36

flags and values 36

input file
generic indexer parameter 57, 59

INPUTDD parameter 37

flags and values 37

L
limitations

PDF indexer 29

links
PDF indexer 29

M
mask

FIELD parameter option 33

messages
ARSPDOCI program 43

PDF indexer 43

MSGDD parameter 38

flags and values 38

N
naming input files

PDF indexer 29

national language support (NLS) 55

PDF indexer 30

NLS 55

PDF indexer 30

O
OS/400 indexer

about 1

introduction 1

overview 1

using 1

OUTPUTDD parameter 38

flags and values 38

P
parameter file

ARSPDOCI program 31

generic indexer 61

PDF indexer 25, 31

parameters 17

ARSPDOCI program 31, 45

ARSPDUMP program 47

CODEPAGE: 55

COMMENT: 56

COORDINATES 31

FIELD 31

FONTLIB 34

generic indexer 55

GROUP_FIELD_NAME: 56

GROUP_FIELD_VALUE: 57

GROUP_FILENAME: 57

GROUP_LENGTH: 59

GROUP_OFFSET: 59

INDEX 35

INDEXDD 36

indexing 47

INDEXSTARTBY 36

INPUTDD 37

MSGDD 38

OUTPUTDD 38

PARMDD 39

70 Indexing Reference

parameters (continued)
PDF indexer 25, 31

TEMPDIR 39

TRACEDD 39

TRIGGER 39

PARMDD parameter 39

flags and values 39

PDF indexer
about 17

Adobe PDF 45

ARSPDOCI reference 45

ARSPDUMP reference 47

bookmarks 29

code page 30

concepts 24

constant field 34

coordinate system 25

DBCS 30

default index value 33

error messages 43

field mask 33

fields 31

file naming conventions 29

fonts 29, 34

group indexes 35

indexes 35

indexing concepts 24

introduction 17

limitations 29

links 29

mask option 33

messages 43

naming input files 29

national language support (NLS) 30

NLS 30

overview 17

parameter file 25

parameter reference 31

printing 29

restrictions 29

transferring input files to 29

trigger field 31

triggers 39

using 17

x, y coordinate system 25

Portable Document Format (PDF)
See PDF indexer

printing
PDF indexer 29

R
report wizard 3

restrictions
PDF indexer 29

S
skipping header pages 36

Syntax
Constant field 31

Syntax (continued)
COORDINATES 31

Field 31

FONTLIB 31

INDEXDD 31

INDEXn 31

INDEXSTARTBY 31

INPUTDD 31

MSGDD 31

OUTPUTDD 31

PARMDD 31

TEMPDIR 31

TRIGGER 31

T
TEMPDIR parameter 39

flags and values 39

trace facility 49

TRACEDD parameter 39

flags and values 39

trace facility 49

trigger field 31

TRIGGER parameter 39

options and values 39

triggers
PDF indexer parameter 39

Triggers
field syntax 31

Group Triggers 31

TRIGGER1 31

X
x,y coordinate system 25

Index 71

72 Indexing Reference

����

Program Number: 5761-RD1

SC27-1160-04

	Contents
	About IBM Content Manager OnDemand for i5/OS Common Server Indexing Reference (SC27-1160)
	Who should read this book
	How this book is organized
	Prerequisite and related information
	Other information available on the World Wide Web
	System i Navigator
	OnDemand Information Center
	Accessibility information for OnDemand

	How to send your comments

	Summary of changes
	Part 1. OS/400 indexer reference
	Chapter 1. Using the OS/400 indexer
	Indexing concepts
	Indexing parameters
	Using BREAK=YES versus BREAK=NO in indexer parameters
	Controlling maximum number of pages per group
	Defining multi-key indexes
	An example

	Defining transaction fields
	An example

	Assigning default index values
	Defining text search fields
	Handling SCS spooled files that have AFP overlays
	Using a mask when defining applications fields
	Using Tag Logical Elements (TLEs)

	Part 2. PDF indexer reference
	Chapter 2. Overview
	What is the PDF indexer?
	How OnDemand uses index information
	Processing PDF input files with the graphical indexer
	Manually indexing input data
	Indexing concepts
	Coordinate system
	Indexing parameters

	How to create indexing parameters

	Chapter 3. System considerations
	System limitations
	Input data requirements
	NLS considerations

	Chapter 4. Parameter reference
	COORDINATES
	Syntax
	Options and values

	FIELD
	Trigger field syntax
	Options and values
	Examples

	Constant field syntax
	Options and values
	Examples

	Related parameters

	FONTLIB
	Syntax
	Options and values

	INDEX
	Syntax
	Options and values
	Examples
	Related parameters

	INDEXDD
	Syntax
	Options and values

	INDEXSTARTBY
	Syntax
	Options and values

	INPUTDD
	Syntax
	Options and values

	MSGDD
	Syntax
	Options and values

	OUTPUTDD
	Syntax
	Options and values

	PARMDD
	Syntax
	Options and values

	TEMPDIR
	Syntax
	Options and values

	TRACEDD parameter
	TRIGGER
	Syntax
	Options and values
	Examples
	TRIGGER1
	Group triggers

	Related parameters

	Chapter 5. Message reference
	Chapter 6. ARSPDOCI reference
	Purpose
	Syntax
	Description
	Parameters
	IFS location

	Chapter 7. ARSPDUMP reference
	Purpose
	Syntax
	Description
	Parameters
	Examples
	IFS location

	Chapter 8. Trace facility
	Part 3. Generic indexer reference
	Chapter 9. Overview
	Loading data
	Processing AFP data

	Chapter 10. Specifying the parameter file
	CODEPAGE:
	Syntax
	Options and values
	Example

	COMMENT:
	Syntax
	Options and values
	Example

	GROUP_FIELD_NAME:
	Syntax
	Options and values
	Example

	GROUP_FIELD_VALUE:
	Syntax
	Options and values
	Example

	GROUP_FILENAME:
	Syntax
	Options and values
	Example

	GROUP_LENGTH:
	Syntax
	Options and values
	Example

	GROUP_OFFSET:
	Syntax
	Options and values
	Example

	Chapter 11. Parameter file examples
	Chapter 12. Additional indexing topics
	Postprocessor program
	Index (.ind) files in IFS
	Recommended order for defining triggers and fields

	Notices
	Trademarks

	Index

