





System i

Systems management
Work management

Version 6 Release 1



Note
Before using this information and the product it supports, read the information in

This edition applies to version 6, release 1, modification 0 of IBM i5/0S (product number 5761-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2004, 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.




Work management .
PDF file for Work management .
Introduction to work management .

Your system as a business .
A job’s life .

How work gets done

Concepts
The structure of your system

Memory pools

Jobs .

Contents

Submitting a job . . .
The job enters the job queue .
The job enters the subsystem .
The subsystem uses memory from the memory
pool to run the job .

The job finishes and moves to the output queue

What work is .

What happens before work enters the system
How work enters the system .

How work gets processed .

How work leaves the system .

Subsystems shipped with the system .
Start-up programs .

What happens during the IPL
Types of start-ups. .
Powering down your system
System i Navigator .

Subsystems

The controlling subsystem
Why consider multiple subsystems
Subsystem description.
Subsystem description attr1butes
Work entries .
Routing entries .
How a subsystem starts
How workstation devices are allocated .
Scenario: Workstation allocation

Types of memory pools

Pool numbering schemes .
Memory pool allocation .
Memory pool activity level .

Proper authorlty
Job characteristics
Job name syntax.
Job Attributes.
Job description
Job descriptions and securlty
Call stacks.
Class object
Job user identity .
Job user identity examples
Threads
Locked objects
Job types .
Autostart jobs
Batch jobs .

© Copyright IBM Corp. 2004, 2008

R G WNN - =,

O O 0NN OoOoN Q1 U1 U1 =

Q)0 L0 LY WL WD W W WRNRNNINNNDNDERNNRNNDDDN R s 2
N TR ORRPRPPRPO 00000 IAUTERE WNOODOVUIWNNR,OOOO

Communication jobs
Interactive jobs .
Prestart jobs . .
Reader and writer jobs
Server jobs
System jobs

Job scheduling options

Management Central scheduler

Advanced Job Scheduler .

Job schedule entries
Examples: job schedule entry

The submit job command.

Job scheduler considerations.

Job scheduling and system avallablhty

Job queues. e e e

Ordered list .

How a job queue works . .

How jobs are taken from a job queue.

Job queue entry .

How job queues are allocated to a subsystem

Multiple job queues

How jobs are taken from multlple ]ob queues

Job queue security .

Output queues .o

Attributes of an output queue .

Order of files .

Spooled files .

Output spooling . .

Output queues and spooled f1les

Default system output queues .

Spooling writers . .

Spooling writer commands .

Input spooling

Job input commands

Inline data files . .

Considerations for opening 1nl1ne data flles
Job logs. .

How job logs are created

Job log pending .

Job log server.

Job log display characterlstlcs
Job log headings.

Messages .
Interactive job logs .
QHST History Log .
Format of the History Log
Performance information and QHST
Spooled files .
Job accounting . .

How job accountmg works . . .
Job Accounting operating charactenstlcs.
Accounting Journal Processing .

When to use job accounting .

Security and job accounting .

About the accounting code .

Resource accounting

. 38
. 40
. 45
. 50
. 50
. 51
. 55
. 55
. 55
. 56
. 56
. 57
. 58
. 59
. 59
. 60
. 61
. 61
. 62

63

. 63

64

. 65
. 65
. 66
. 67
. 67
. 67
. 68
. 69
. 69
. 69
. 70
.72
.73

.74
.75
. 76
.77
.78
. 78
.79
. 80
. 80
. 81
. 82
. 83
. 83
. 84
. 86
. 86
. 87
. 87
. 88
. 89

iii



Resource accounting data.
Prestart communications jobs and ]ob
accounting.
System job processmg for ]ob accountmg
Batch processing and job accounting .
Interactive processing and job accounting
Printer file accounting .
Journal entries for job accounting .
Job accounting journal entry field
information .
Printer file accounting data for d1rect prlnt
and spooled print

Managing work .

iv

Calling a special IPL recovery program .
Monitoring system activity .

Checking memory pool usage .

Controlling levels of system activity .
Examples: activity control relationships

Determining the status of a job

Monitoring a subsystem .

System i Navigator .
Determining the number of subsystems usmg
a memory pool .

System i Navigator

Character-based interface
Viewing job performance statistics
Viewing overall system status .

Checking disk status .

Managing jobs . .

Common job tasks.

Starting a job

Ending a job.

Finding jobs . .

Viewing jobs on the job queue

Viewing jobs in the subsystem.

Viewing job attributes

Viewing call stacks

Placing a job on the job queue.

Moving a job to a different job queue

Moving a job up in priority within a ]ob

queue . . .

Tips for setting ]ob pr10r1t1es

Submitting a job once .

Viewing job affinity 1nformat10n .
Managing job descriptions .

Creating a job description

Changing a job description .

Using a job description . .

Controlling the job attribute source .

Deleting a job description
Managing batch jobs .

Submitting a batch job .

Starting a batch job that is wa1tmg in the

job queue. .

Managing interactive ]obs . .
Controlling inactive jobs and workstatlons
Ending interactive jobs . .
Disconnecting all jobs from a device.

Job disconnection considerations .

Avoiding a long-running function from a

workstation .

System i: Systems management Work management

.93

. 96

. 98
.99
.99
. 100

. 100

102

. 103
. 103
. 103

. 103
. 104
. 104
. 104
. 105
. 105
. 106
. 106
. 106
. 107
. 109
. 110
. 111
. 111
. 112
. 113
. 113

. 114
. 115
. 116
. 116
. 117
. 117
. 118
. 118
. 119
. 119
. 119
. 119

. 122

. 122
122

. 123
. 124
. 125

. 125

Managing prestart jobs .
Starting a prestart job .
Queueing or rejecting program start
requests . .
Tuning prestart ]ob entrles .

Changing job attributes for prestart ]obs

Ending a prestart job .
Managing job class objects .
Creating a class object

Changing a class object .
Managing threads .

Viewing threads running under a spec1f1c

job .

What you can do w1th threads
Viewing thread properties .
Ending or deleting threads .

Managing job scheduling

Scheduling a batch job using System i
Navigator

Scheduling a job us1ng Management Central

Scheduler. .

Advanced Job Scheduler
Advanced Job Scheduler for ereless
Scheduling jobs with Advanced Job
Scheduler. . .

Working with job schedule entrles
Adding a job schedule entry
Changing a job schedule entry
Holding a job schedule entry .

Printing a list of job scheduled entries .

Releasing a job schedule entry.
Removing a job schedule entry

Managing subsystems

Common subsystem tasks .
Viewing subsystem attributes .
Stopping a subsystem
Starting a subsystem .

Creating a subsystem descr1pt10n
Adding autostart job entries
Adding communications entries .
Adding job queue entries
Adding prestart job entries .
Adding routing entries .

Adding workstation entries.
Creating a sign-on display file.
Specifying the new sign-on display .

Changing a subsystem description .
Changing autostart job entries.
Changing communication entries .
Changing job queue entries.
Changing prestart entries
Changing routing entries
Changing workstation entries .
Changing the sign-on display .

Deleting a subsystem description.
Removing autostart job entries
Removing communication entries
Removing job queue entries
Removing prestart job entries .
Removing routing entries
Removing workstation entries .

. 126
. 126

. 126
. 127

130

. 131
. 132
. 132
. 133

. 133

. 133
. 134
. 135
. 135
. 136

. 136

. 137
. 137
. 138

. 138
. 161
. 161
. 161
. 162
. 162
. 163
. 163
. 164
. 164
. 164
. 165
. 167
. 167
. 168
. 169
. 169
. 170
. 170
. 171
. 171
. 172
. 173
. 173
. 174
. 175
. 175
. 176
. 176
. 177
. 177
. 178
. 178
. 179
. 179
. 180
. 180



Configuring an interactive subsystem
Creating a library .
Creating a class. . .
Creating the subsystem descrlptlon .
Creating a job queue .
Adding a routing entry .
Adding workstation entries.
Customizing QINTER
Configuring the console . .
Assigning users to a specific subsystem
Creating a controlling subsystem .
Placing the system in restricted state
Managing memory pools .
Viewing memory pool information .
System i Navigator
Character-based interface
Determining the number of subsystems usmg
a memory pool.
System i Navigator
Character-based interface
Determining the number of jobs in a memory
pool . .
Determining in wh1ch pool a smgle ]ob is
running
System i NaV1gator .
Managing tuning parameters for shared
pools . .
System i Nav1gator
Character-based interface
Managing a pool’s configuration .
System i Navigator
Character-based interface
Changing memory pool size
System i Navigator
Character-based interface .
Change the size of a shared pool .
Creating a private memory pool .
Managing job queues. .
Assigning the job queue to the subsystem
How a subsystem handles several job
queues .
Changing the number of ]obs rurmmg
simultaneously in a job queue.
Clearing a job queue .
System i Navigator
Character-based interface
Creating job queues
Deleting a job queue .
Determining which subsystem has a ]ob
queue allocated.
System i Navigator
Character-based interface
Holding a job queue .
System i Navigator
Releasing a job queue
System i Navigator
Character-based interface
Moving a job to a different job queue
System i Navigator
Placing a job on the job queue.
System i Navigator

. 180
. 181
. 181
. 181
. 182
. 182
. 182
. 183
. 183

184

. 185
. 186
. 187
. 187
. 188
. 188

. 188
. 188
. 189

. 189

. 189
. 190

. 190
. 191
. 191
. 191
. 191
. 192
. 192
. 192
. 193
. 193
. 193
. 194

194

. 195

. 196
. 196
. 196
. 196
. 197
. 197

. 198
. 198
. 198
. 198
. 199
. 199
. 199
. 199
. 200
. 200
. 200
. 201

Character-based interface

Searching all job queues for a specific ]ob .

System i Navigator
Character-based interface

Find a job when you do not know the

name of the job queue
Specifying the priority for the ]ob queue
Managing output queues

Creating an output queue .

Assigning the output queue to a ]ob or ]ob

description .

System i Nav1gator
Character-based interface

Accessing printer output
System i Navigator

Clearing output queues .

System i Navigator
Character-based interface
Deleting an output queue .
Viewing output queues on the system .
Managing job logs. .

Managing the job log server
Reconfiguring the job log server .
Ending the job log server

Starting the job log server .

System i Navigator
Character-based interface

How to display job logs .

System i Navigator .

What to do when the ]ob log does not

display

Specifying the output queue for a ]ob log .
Stopping production of a specific job log .

Preventing the production of a job log .
Controlling information in a job log .
Changing the log level of a job
Controlling batch job log information
Deleting job log output files .
Producing printer output from job log
pending . .
Cleaning up ]ob log pendmg .
System i Navigator
Character-based interface
Managing job accounting
Setting up job accounting

Controlling the assignment of accountmg

codes .
Displaying the data collected

Converting job accounting journal entries

Recovering and job accounting
Damaged job accounting journal or
journal receiver. .
Accessing the CPF1303 Message .
Reference. e
Group jobs .
Attention key handlmg program
Group job performance tips
Troubleshooting for work management.
My job is hung . e
My job is experiencing poor performance .
Prestart job investigation

Contents

. 201
. 201
. 201
. 201

. 202
. 202
. 202
. 203

. 203
. 203
. 203
. 204
. 204
. 204
. 204
. 204
. 204
. 205
. 205
. 205
. 206
. 206
. 207
. 207
. 208
. 208
. 208

. 209
. 210
. 210
. 211
. 212
. 212
. 213
. 214

. 215
. 215
. 216
. 216
. 216
. 216

. 217
. 218

219

. 220

. 221
. 221
. 222
. 222
. 225
. 227
. 227
. 227
. 229
. 230

A\



Related information for Work management . . . 231 Terms and conditions. . . . . . . . . . .235

Appendix. Notices . . . . . . . . . 233
Trademarks . . . . . . . . . . . . . .235

vi System i: Systems management Work management



Work management

Work management is an important building block within the i5/0S® operating system.

Its functions are the foundation through which all work enters the system, is processed, run, and
completed on System i® Navigator products. Whether you run a simple batch job once a week or you call
an application daily (like Lotus Notes®), work management helps manage the jobs and objects that run
on your system. It also supports the commands and internal functions necessary to control system
operations and allocate resources to applications when needed.

The System i product is set up and ready to use. Most users do not need to change the default settings.
However, if you need to tailor the work management piece to fit your company, you need to understand
the terms and concepts associated with it and how they integrate with each other to provide you with the
best performance from your system.

Whether you are an experienced System i user or just learning, this topic collection gives you an
easy-to-understand view of work management. This topic contains different entry points, so that you
choose where you want to start learning about work management.

Note: In addition, you can work with work management using System i Navigator tasks on the Web.
This allows you to work with work management functions using a Web browser. For more
information, see [System i Navigator tasks on the Web]

PDF file for Work management

You can view and print a PDF file of this information.

+ To view or download the PDF version of this document, select [Work management| (about 3300 KB).

* To view or download the PDF version of just the Advanced Job Scheduler portion of Work
management, select|[Advanced job scheduler| (about 390 KB).

You can view or download these related topics:

. (2000 KB) contains the following topics:
— Planning for performance
— Managing system performance

— Applications for performance management

+ [Management Central| (2500 KB) contains the information that helps you perform system management
tasks across one or more systems simultaneously.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDFE.
4. Click Save.

© Copyright IBM Corp. 2004, 2008 1



Downloading Adobe Reader

You need Adobe® Reader installed on your system to view or print these PDFs. You can download a free

copy from the [Adobe Web site| (www.adobe.com /products/acrobat/ readstep.html)-.ld' .

Introduction to work management

Work management supports the commands and internal functions necessary to control system operation
and the daily workload on the system. In addition, work management contains the functions that you
need to distribute resources for your applications so that your system can handle your applications.

The purpose of your system is to perform work. Work enters, work is processed, and work leaves the
system. If you think of work management in these three terms, work management will be easier to
understand. Work management describes where work enters the system, where and with what resources
work is processed, and where output from work goes.

Are you new to work management? The topic collection under the subject Introduction to work
management is designed to provide you with several different overall perspectives of work management.
In this way, you should be able to get a solid foundation in the underlying principles of work
management, regardless of your systems background.

Your system as a business

To make grasping the overall concept of work management easier, try comparing your system with a
business.

A simple system can be compared to a small business, and a complex system can be compared to a
shopping mall. Assume there is a small store in the business of building hand-crafted wood furniture.
Work enters, such as orders for small tables, chairs, and bookshelves. Work is processed, the carpenter calls
the customers to confirm the order, and they are consulted on design points including style, size, and
color. The carpenter designs each piece of furniture, gathers the necessary materials, and then builds the
furniture. After the furniture is completed, it is delivered: work leaves.

Since a complex system is a combination of many simple systems, a comparable example of a complex
system is a shopping mall, many small and large businesses in one area. Maybe the carpenter has a
business in the Northwest corner of the mall and a baker has a business along the East strip. The baker
and the carpenter have different input and different output, that is, their orders and their products are
very different. In addition, the time it takes each business to process their work is quite different, and
their users know and understand that.

Work management terms

A complex system (shopping mall) is a compilation of many simple systems (stores). These simple
systems are called subsystems.

Any piece of work within the business is considered a job. An example of a piece of work might be a
customer letter, a telephone call, an order, or nightly cleanup. The same can be said about the System i
product. On the system, each job has a unique name.

A job description describes how to handle the work coming into the subsystem. Job descriptions contain

pieces of information such as user IDs, job queues, and routing data. Information in the job description
might compare to descriptions of jobs in a small business.

2 System i: Systems management Work management


http://www.adobe.com/products/acrobat/readstep.html

What does the business look like? Every store has blueprints or store plans. These plans are really just
descriptions, in varying detail, of the physical makeup of the business. Maybe the business has a store
with: 2 floors, 5 doors, 3 mailboxes, and 2 telephones. On your system, a subsystem description contains all
the information about the subsystem.

Where does the work come from? For the carpenter, the work comes from customer calls, from
references, and from people that stop in. On your system, the work can come from many places.
Examples include job queues, workstations, communications, autostart jobs, and prestart jobs.

Where do they find the space? Within the mall, each business (subsystem) has a certain amount of floor
space. On the system, memory pools allow you to control the main storage (or floor space) each subsystem
(business) gets to do its work. The more floor space a store (subsystem) has, the more customers, or jobs,
can fit in the store.

How does the work come in? Customers that cannot find the store they need may find an information
booth to help send them in the right direction. The same is true on your system. Routing entries are
similar to store directories or an information booth. After the routing entry is found, it guides the job to
its correct place. The routing entry needs to be found first, however. That is done through routing data.
Routing data is what the job uses to find the right routing entry.

How is the work treated? A carpenter needs to place a priority on each job. The chair due at the end of
the week should be done before the bookshelf due at the end of the month. On your system, classes
provide information about how the job is handled while in the subsystem. This information includes
priority while running, maximum storage, maximum CPU time, and time slice. Each of these attributes
contribute to how and when a job is processed.

Just as there are rules that affect all the stores in the mall, there are rules that affect all the subsystems on
your system. An example of these rules is a system value. System values are pieces of information that
apply to the whole system. System values include information such as, date and time, configuration
information, sign-on information, system security and, storage handling.

Customers in a mall each have information specific to them. On your system, the user profile holds
information specific to a particular user. Similar to a customer’s credit card, a user profile gives that user
specific authorities and assigns the user attributes for that user’s jobs. These job attributes provide
information that includes, but is not limited to, the job description, the output queue or printer device,
the message queue, the accounting code, and the scheduling priority.

A job’s life
To understand the basics of System i work management, follow a simple batch job as it moves through
the system.

The life of a simple batch job begins when you submit it to the system. The job is then sent to a job
queue where it waits to enter a subsystem where it can run. After the job moves to the subsystem it is
allocated memory in which to run. The printer output file (also called spooled files) is then sent to the
output queue to await further instruction on what to do (for example, printing). While not every job
follows this exact path, you can better understand how other work is completed on the system by
learning more about this typical job life cycle.

Submit the job > Job enters the job queue > Job enters the subsystem » The memory pool allocates
memory to the subsystem > The job finishes and moves to the output queue

Submitting a job
When a job is submitted, it is created and enters the system. At this time, the attributes are given to the
job.

Work management 3



The job description holds attributes that the job will use to go through the work management life cycle.
These attributes include the user profile the job will start to run under, the request data (which tells the
job what it will do), and the initial user portion of the library list, and so on. The job description also
holds information that tells the job which job queue to enter and the routing data. The routing data is
later used by the subsystem to find the routing entry that contains information needed for the job to start
running. The output queue is also defined within the job description. It tells where printer output (also
called spooled files) from a job will go.

After the job receives its values (initialization, customization) for its job attributes, it moves to the job
queue where it waits to enter the subsystem.

The job enters the job queue
Job queues are work entry points for batch jobs to enter the system. They can be thought of as "waiting
rooms” for a subsystem.

A number of factors affect when the job is pulled off the job queue into the subsystem, such as the job
priority on the job queue, the sequence number of the job queue, and the maximum active jobs. When all
of these factors work together, the job will be pulled off the job queue to start running in the subsystem.

When the job enters the job queue, it is available to a subsystem that has the job queue allocated to it.
Because subsystems can have more than one job queue feeding into them (however, job queues cannot
feed into more than one subsystem), a sequence number in the subsystem determines when the
subsystem processes a job queue. The subsystem looks at the sequence number of the job queue before
the job priority of the jobs in the job queue. The subsystem uses the priority on the job queue to
determine when a job can enter relative to other jobs on the job queue. The job priority and the
maximum active jobs determine when a job enters the subsystem.

The job enters the subsystem

Subsystems are operating environments where the system manages the resources that jobs use and
controls the jobs that run within them. After jobs are running in the subsystem, the subsystem job carries
out user requests on a job such as holding, releasing, and ending a job. When the job enters the
subsystem it becomes active.

Like jobs, subsystems have descriptions that carry important information needed to complete the work.
In the subsystem description is the routing entry. The routing entry references the class object, which
contains the attributes that control the run-time environment. However, before the job can get its routing
entry, the routing data must make a match with a compare value in the routing entry. If this association is
not made, the job is not run.

After the association between the routing data and the routing entry is made, the class object the job uses
is determined. Some of the attributes that control the run-time environment include the run priority, the
time slice, the maximum wait time, the maximum processing time, the maximum temporary storage, and
the maximum number of threads.

The subsystem description defines the memory pools that are allocated to the subsystem. The subsystem
description also contains the maximum active jobs, which is the maximum number of active jobs at one
time in the subsystem.

Until a job gets its activity level and is assigned a memory pool, it cannot run. The subsystem
description, like the job description, carries information, such as the memory pool to use, the routing
entry, the maximum active jobs, and the number of active jobs currently in the subsystem.

The subsystem uses memory from the memory pool to run the job

Memory is a resource from the memory pool that the subsystem uses to run the job. The amount of
memory in a memory pool, as well as how many other jobs are competing for memory, affect how
efficiently a job runs.

4 System i: Systems management Work management



Memory pools provide jobs with memory in which to run. Many factors affect how the job runs in the
memory pool, such as the size of the memory pool, the activity level in the memory pool, and paging
and faulting. The activity level in memory pools directly relates to the number of threads that are
allowed to run in the memory pool at one time. Remember, every job has at least one active thread, but
some can have multiple threads. Threads give a job the ability to do more than one thing at a time. For
example, one thread can go out and do calculations while another thread waits for more data to process.

Paging is the movement of data in and out of memory, both synchronously and asynchronously. Pages
can be written out to storage or removed from memory without being written if they have not been
changed. Faulting causes paging to occur on the server. Faulting occurs when a referenced page, or piece
of data, is not in memory. This causes programs to stop because they must wait for the data to be paged
in.

Subsystems use different memory pools to support different types of jobs that run within them.

The job finishes and moves to the output queue

A job’s printer output (also called spooled files) is sent to an output queue where it waits to be sent to a
printer or file. The output queue is similar to the job queue in that it controls how the output is made
available to the printer. The output queue allows the user to control what files are printed first.

Output queues are areas where printer output files wait to be processed and sent to the printer. Printer
output is created either by the system or by the user using a print file. A print file is similar to a template
or a guideline where the default values for the attributes of printer output are set. It is the beginning of
the printer output life cycle.

The print file contains the output queue (OUTQ) and print device (DEV) attributes, which dictate how
the printer output is to be directed. The default settings are typically *JOB, meaning that the job attributes
of the output queue and printer device determine how the printer output is directed. The job attributes of
the output queue and printer device settings are based on information obtained when the job is created.
This is based on information from the user profile that the job is running under, the job description, the
workstation device description, and the Default printer (QPRTDEV) system value.

When the printer output is ready to be created, the system checks the print file and the job attributes (in
this order) to see what output queue will process the printer output and which printer device the system
will use. If a specified output queue cannot be found, the printer output will be directed to
QGPL/QPRINT.

After the printer output file is ready to be printed, a writer job, a job that processes the printer output
from the output queue to the printer device, takes data from the printer output file and sends it to the
designated printer.

How work gets done

This topic explains what work is, what needs to be set up before work begins, how work travels through
the system, and what happens to work after it is done running.

What work is
On your System i product, work is always being done, whether you initiate it or the system initiates it.
Any action done on the system has some type of work being performed to complete it.

Work is done when you turn on your system, when you open a file, or when you query a database. Each
piece of work on the system is performed by a job. A job can be as simple as an application that waits for
a user to call it or it can be as complex as a constantly running system query that monitors the number of
users on the system every hour. Some jobs, specifically batch and interactive jobs, have job descriptions
associated with them that tell when and where the job will run.

Work management 5



Jobs are made up of programs that perform certain functions. There is no limit to the amount of functions
a job performs. A job contains the step-by-step instructions that must be completed for work to be done.
The programs that make up the job run in a specific order. (For example, program A needs to run before
program B can begin.) Threads help a job complete its work. An active job contains at least one thread.
When a job contains multiple threads, it has the ability to do more than one thing at once. For example,
one thread can go out and do calculations while another thread waits for more data to process.

What happens before work enters the system

All jobs, with the exception of system jobs, run within subsystems. For work to start in an active
subsystem, memory pools and at least one source of work entry point need to be established. Job queues
are an example of a source of work.

The System i product includes a default set of job queues, subsystems, and memory pools, which can
allow work to begin as soon as the system is powered on.

You can tailor the subsystem and memory pool configurations to optimize the capabilities and
performance of your System i product. For example, if batch jobs are critical to the success of your
business, you may want to allocate more memory for them to run. Or, you may determine that the
number of jobs running at one time in your Qbatch subsystem should be lower so that those jobs can use
the maximum amount of resources to run. Also, you can create job queues, subsystems, and memory
pools specifically designed to complete specific types of work. For example, you can create a job queue
called Nightreps, where nightly batch reports are sent to a subsystem called Nightrep that allocates
memory exclusively for running these batch jobs.

How work enters the system
Work entries identify the sources where jobs enter a subsystem to become available to run. Each type of
job has different types of work entries that it uses.

For example, most batch jobs use job queues to enter the subsystem. Job queue entries are the mechanism
through which a job queue is defined as a source of work to a subsystem.

Work entries are kept in the subsystem description. If a subsystem description does not have a work
entry for the type of work being done, the job cannot run in that subsystem. The IBM-shipped
subsystems have default work entries in the subsystem descriptions. Keep in mind, some of the default
work entries that ship with the subsystems are already allocated to run specific jobs.

How work gets processed

When the system is started, a subsystem monitor job begins running. The subsystem monitor job controls
the jobs within subsystems. It also starts and ends work, as well as manages the resources for work in the
subsystem.

Work (or jobs) enters a subsystem through work entries where it becomes active and eligible to run. Work
can only be completed when the subsystem has allocated memory to run. Memory is allocated to the
subsystem by a memory pool.

How the subsystem description helps process work

Like a job, a subsystem has a description, called a subsystem description. The subsystem description
contains important information that tells how, where, how much work can be active in a subsystem at
one time, and which resources it can use to perform the work.

Routing entry
A routing entry exists within the subsystem description and tells the subsystem what program to
run for the job, what memory pool to run the job in, and which class object to use to run the job.

Class Object
The Class object defines the run priority, default wait time, time slice, and other attributes. The

6  System i: Systems management Work management



run priority is important because it determines when a job gets processor time in order to run.
The run priority scale goes from 0 to 99, with 0 being the highest priority. (Only system jobs are
given priority of 0 because they are the jobs that run the system.)

When a job enters the subsystem, the subsystem tries to match the routing data with the compare value
in the routing entry. If the routing data and the compare value in a routing entry match, the routing entry
is assigned to the job. If a match is not made in any routing entry, the job ends.

Another factor that affects when a job runs in the subsystem is the number of jobs that are allowed to be
active in the subsystem at one time (also known as maximum active jobs in the subsystem). When the
maximum number of active jobs in a subsystem has been met, no more jobs can enter the subsystem until
existing active jobs complete running. Memory has to be allocated to the subsystem for a job to run.
Memory pool activity levels tell the system how many threads can be active within a memory pool.
Remember, an active job contains at least one thread. When the memory pool activity level has been
reached, the job has to wait for another thread to give up its use of the activity level. Thus, a job can be
active in a subsystem and not be running.

Note: Do not confuse the subsystem maximum active jobs with the memory pool activity level.

How work leaves the system
The output queue works similarly to a job queue in that it schedules output to be printed. Both the
printer output and the output queue carry attributes that are used to print the information.

Printer output holds output data that is waiting to be processed, such as information waiting to be
printed. Printer output also holds important information that is used to schedule when it is printed.
Printer output attributes include the output queue in which the printer output resides, the priority, the
status and the schedule of the printer output.

The output queue contains attributes of its own that determine the order in which the printer output files
are processed. It also contains the authority that is needed to make changes to the printer output and the
output queue.

When the printer output is ready to be sent to the printer it is picked up by a writer job. The writer job
takes the data from the printer output and prepares it to be printed.

Concepts

Whether you are new to work management or have been using work management tools for years, these
work management concepts might be useful for you.

The structure of your system

After receiving your System i product, you might want to know what subsystems are included with the
system, whether you need to change any start-up programs, and what kind of user interface you will
work with.

Subsystems shipped with the system

Two complete subsystem configurations are supplied by IBM and can be used without being changed.

The configuration the system uses when the system is started is controlled by the Controlling
subsystem/library (QCTLSBSD) system value. The default configuration consists of the following
subsystem descriptions:

Subsystem Description

Qbase (controlling subsystem) | Qbase supports interactive, batch, and communications jobs. It has an autostart
) y PP )
job, which automatically starts the Qusrwrk, Qserver, and Qspl subsystems.

Work management 7



Qserver This is the file server subsystem.

Qspl This is the spool subsystem that supports reader and writer jobs.

Qsyswrk This is the system work subsystem. It contains jobs that support system functions
that are started automatically at system startup and when the system comes out of
restricted state.

Qusrwrk This is the user work subsystem. It contains jobs that are started by servers to do
work on behalf of a user.

The other configuration, which is supplied by IBM, consists of the following subsystem descriptions:

Subsystem Description

Qctl (controlling subsystem) | Qctl has an autostart job, which automatically starts the Qinter, Qbatch, Qcmn,
Qusrwrk, Qserver and Qspl subsystems.

Qinter This is the subsystem that supports interactive jobs, except those at the console.
Qbatch This is the subsystem that supports batch jobs.
Qcmn This is the subsystem that supports communications jobs, excluding TCP/IP

communications jobs. These communications jobs are necessary for various
communications protocols that the i5/OS system supports.

Qserver This is the file server subsystem.
Qspl This is the spool subsystem that supports reader and writer jobs.
Qsyswrk This is the system work subsystem. It contains jobs that support system functions

that are started automatically at system startup and when the system comes out of
restricted state.

Qusrwrk This is the user work subsystem. It contains jobs that are started by servers to do
work on behalf of a user.

The Qbase configuration gives the ability to run all of the same functions that you can run with the Qctl
configuration and is easier to manage because it consists of fewer subsystems.

The Qctl default configuration allows for more individualized control over your system operations by
dividing the system activity into different subsystems based on the type of activity. For example, if you
want to run batch jobs over the weekend, but do not want anyone to be able to sign on (except at the
console), you can easily do that with the Qctl configuration by ending the Qinter subsystem.

If you are considering creating your own subsystem configuration, you might also find that it is easier to
use the Qctl configuration as a starting point than the Qbase configuration.

Start-up programs

QSTRUPPGM is the start-up program. This is a system value which specifies the name of the program
called from an autostart job when the controlling subsystem is started. This program performs setup
functions, such as starting subsystems and printers. This system value can only be changed by the
security officer or by someone with security officer authority. A change to this system value takes effect
the next time an IPL is performed.

QSTRUPPGM can have these values:

* QSTRUP QSYS: The program specified is run as a result of a transfer of control to it from the autostart
job in the controlling subsystem.

* *NONE: The autostart job ends normally without calling a program.
Related information

[System values that control IP1}

8 System i: Systems management Work management



What happens during the IPL: The default startup program QSYS/QSTRUP does the following:
¢ Starts the QSPL subsystem for spooled work.

* Releases the QS36MRT and QS36EVOKE job queues if they were held (these are used by the
System/36" environment).

* Starts Operational Assistant cleanup, if allowed.

e Starts all print writers unless user specified not to on the IPL Options display.

e Starts the QSERVER and QUSRWRK subsystems.

¢ If the controlling subsystem is QCTL, it starts the QINTER, QBATCH, and QCMN subsystems.

Types of start-ups

During an initial program load (IPL), system programs load from the designated load source device in
the system auxiliary storage. The system hardware is also checked. The i5/0S control panel displays a
series of system reference codes that indicate its current status and warn you of any problems. When the
IPL is finished, the character-based interface presents the sign-on display, and users are able to sign on
with System i Navigator.

There are several options for starting your system. You can:
* Start the system without making configuration changes. This is referred to as an unattended IPL.
* Change your system configuration during an IPL. This is referred to as an attended IPL.

Attended IPL’s display various additional screens depending upon the options that you select on the
IPL options display. These can include displays that allow you to change system values and other
system attributes during the IPL, reconstruct access paths, verify the status of physical file restrictions,
configure and name new devices, and specify options for the operating environment.

* Change the type of IPL from your system control panel.
* Schedule a system shut down and restart.

General problems during an IPL is referred to as an abnormal IPL.

For more information about IPL and system shut down, see information about starting and stopping the
system.

Related information

[Starting and stopping the system|

Powering down your system
You must be cautious when turning off your system. If you turn off the system without completing
certain tasks, you can cause damage to data or cause the system to behave in unpredictable ways.

The following information center topics contain more information about safely powering down your
system.

 How to safely shut down your system when integrated Windows® servers are present
* Power down a system with logical partitions
* Power down System Exit Program
* Exit Program for Tailoring Power Off
Related information

[Shutting down your System i hardware when integrated Windows servers are present|

[Power down a system with logical partitions|

[Power Down System Exit Program API|

[Exit Program for Tailoring Power Off AP]|

Work management 9



System i Navigator

System i Navigator is a powerful graphical interface for Windows clients. With System i Navigator, you
can manage and administer your systems from your Windows desktop. You can use System i Navigator
to accomplish most of the tasks associated with work management.

This interface has been designed to make you more productive. Therefore, it is recommended that you
use System i Navigator, which has online help to guide you. While this interface is being developed, you
might still need to use a traditional emulator such as PC5250 to do some of your tasks. If a topic
discusses such a task, you will be directed to use the character-based interface within the instructional
steps of the topic.

Related information

[Getting to know System i Navigator]

[System i Navigator for Wireless|

[System i Navigator tasks on the Web|

Subsystems

The subsystem is where work is processed on the system. A subsystem is a single, predefined operating
environment through which the system coordinates the work flow and resource use. The system can
contain several subsystems, all operating independently of each other. Subsystems manage resources.

All jobs, with the exception of system jobs, run within subsystems. Each subsystem can run unique
operations. For instance, one subsystem may be set up to handle only interactive jobs, while another
subsystem handles only batch jobs. Subsystems can also be designed to handle many types of work. The
system allows you to decide the number of subsystems and what types of work each subsystem handles.

The run-time characteristics of a subsystem are defined in an object called a subsystem description. For
example, if you want to permanently change the amount of work (number of jobs) coming from a job
queue into a subsystem you only need to change the job queue entry in the subsystem description.

Related tasks

[“Common subsystem tasks” on page 164|
This information discuss the most common tasks that you can perform on a subsystem.

[‘Creating a subsystem description” on page 167
You can create a subsystem description in two ways. You can copy an existing subsystem description
and change it, or you can create an entirely new description.

Related information

[Experience Report: Subsystem Configuration|

The controlling subsystem

The controlling subsystem is the interactive subsystem that starts automatically when the system starts,
and it is the subsystem through which the system operator controls the system via the system console. It
is identified in the Controlling subsystem/library (QCTLSBSD) system value.

IBM supplies two complete controlling subsystem descriptions: QBASE (the default controlling
subsystem) and QCTL. Only one controlling subsystem can be active on the system at any time.

When the system is in the restricted condition, most of the activity on the system has ended, and only
one workstation is active. The system must be in this condition for commands such as Save System
(SAVSYS) or Reclaim Storage (RCLSTG) to run. Some programs for diagnosing equipment problems also
require the system to be in a restricted condition. To end this condition, you must start the controlling
subsystem again.

Note: There is also a batch restricted state in which one batch job can be active.

10 System i: Systems management Work management



When all of the subsystems, including the controlling subsystem are ended, a restricted condition is

created. You can end each subsystem individually or you can use the ENDSBS SBS(*ALL)
OPTION(*IMMED).

Important: The system cannot reach the restricted state until there is only one job remaining in the
controlling subsystem. Sometimes it may appear as though there is a single job remaining,
but the system does not go into the restricted state. In this case you need to verify that there
are no suspended system request jobs, suspended group jobs, or disconnected jobs on the
remaining active display. Use the Work with Active Jobs (WRKACT]JOB) command and press
F14=Include to display any suspended or disconnected jobs. If these jobs exist, you need to
end them in order for the system to reach the restricted state. The ENDSYS and ENDSBS
functions send a CP1091C information message to the command issuer when this condition is
detected.

Related tasks

[‘Creating a controlling subsystem” on page 185|

IBM supplies two complete controlling subsystem configurations: QBASE (the default controlling
subsystem), and QCTL. Only one controlling subsystem can be active on the system at one time.
Typically, the IBM supplied subsystem configurations should be sufficient for most business needs.

However, you can create your own version of a controlling subsystem and configure it to more closely
meet your company’s unique needs.

[‘Placing the system in restricted state” on page 186|
If all of the subsystems, including the controlling subsystem are ended, the system goes into a

restricted condition. You can place the system in a restricted condition by using one of two commands
from an interactive workstation.

Related information

[Experience Report: Restricted State|

Why consider multiple subsystems

As the number of users on the system increases, a single subsystem for a set of work is often insufficient.
By dividing your users into multiple subsystems you gain several advantages.

Improved manageability of work
You get better control over what work is running in each subsystem. For example, for server jobs,
you might want to isolate all of the database server jobs to one subsystem, the remote command
server jobs to a different subsystem, the DDM server jobs to yet a different subsystem and so on.
Additionally, by using multiple subsystems you can isolate groups of jobs with their own
memory pools. In this way, one group does not adversely impact other jobs.

Reduced downtime impact for users
For example, if every Friday afternoon you must bring the system to the restricted state for
backup purposes, you can gradually take users offline by ending one subsystem at a time.
Improved scalability and availability
By having a single subsystem do work for fewer users, the subsystem is less busy and can be
more responsive to the work requests it handles.
Improved error tolerance in interactive subsystems
By spreading the work across multiple subsystems, should a network failure occur, multiple
subsystems can manage the device recovery processing.
Improved interactive subsystem startup time
You can keep the subsystem startup times shorter by subdividing the work across multiple
subsystems.
Additional options for performance tuning

By using multiple subsystems you can set up the subsystems with a small number of routing
entries.

Related information

Work management 11



[Experience Report: Subsystem Configuration|

Subsystem description

A subsystem description is a system object that contains information defining the characteristics of an
operating environment controlled by the system. The system-recognized identifier for the object type is
*SBSD. A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the
subsystem description.

Like a set of detailed blueprints, each subsystem description is unique, containing the specific
characteristics that describe the subsystem. The description includes where work can enter the subsystem,
how much work the subsystem can handle, how much main storage (memory) is used, and how quickly
jobs in the subsystem can run.

You can use a subsystem description supplied with your system (with or without making changes to it),
or you can create your own.

Related tasks

[“Changing a subsystem description” on page 173|

The Change Subsystem Description (CHGSBSD) command changes the operational attributes of the

specified subsystem description. You can change the subsystem description while the subsystem is
active. To change a subsystem description, use the character based interface.

[“Creating a subsystem description” on page 167]
You can create a subsystem description in two ways. You can copy an existing subsystem description
and change it, or you can create an entirely new description.

Subsystem description attributes:

Subsystem description attributes are common overall system attributes. When you create a subsystem, the
first step is to define the subsystem attributes.

Subsystem attributes include:
¢ The name of the subsystem description and the library where it is stored
* All of the memory pool definitions that this subsystem uses

A subsystem definition can have a maximum of 10 memory pool definitions specified. Included in the
subsystem definition are:

— Pool definition identifier: This is the identifier inside the subsystem description, of the storage pool
definition.

— Size: This is the size of the storage pool expressed in KB (1K=1024 bytes) multiples and is the
amount of main storage that the pool can use.

— Activity level: This is the maximum number of threads that can run at the same time in the pool.
¢ The maximum number of jobs that can be active in the subsystem at the same time
* A text description of the subsystem description

* The name and library of the sign-on display file that is used to show sign-on displays at work stations
that are allocated to the subsystem

* A subsystem library name that you can use if you want to specify a library that should be entered
ahead of other libraries in the system portion of the library list (This parameter allows you to use a
secondary language library.)

Also included in the subsystem description is information about authority levels to the subsystem. This
information is kept by Security and is not stored with the other attributes of the subsystem description.
You can view the subsystem description authority by using the Display Object Authority (DSPOBJAUT)
command.

12 System i: Systems management Work management



Work entries:

Work entries identify the sources where jobs can enter a subsystem. Specific types of work entries are
used for different types of jobs. Work entries are part of the subsystem description.

The following information describes the different types of work entries and how to manage them. There
are five types of work entries; autostart job entries, communication entries, job queue entries, prestart job
entries, and workstation entries.

Autostart job entries:

Autostart job entries identify the autostart jobs to start as soon as the subsystem starts. When a

subsystem starts, the system allocates several items and starts autostart and prestart jobs before it is ready
for work.

The autostart jobs associated with a subsystem are automatically started each time the subsystem is
started. An autostart job in the controlling subsystem can be used to start other subsystems (as does the
IBM-supplied controlling subsystem). An autostart job is a batch job doing repetitive work.

For example: To call a special recovery program if the IPL senses that the previous system ending was
abnormal, you can add an autostart job entry to the subsystem description for the controlling subsystem.
This program checks the Previous system ending status (QABNORMSW) system value. For a normal
system ending, the value of QABNORMSW is ‘0", and for an abnormal system ending, the value of
QABNORMSW is "1".

Related tasks

[“Adding autostart job entries” on page 168

You use the character-based interface to add an autostart job entry. An autostart job starts
automatically when the associated subsystem starts. These jobs generally perform initialization work
that is associated with a particular subsystem. Autostart jobs can also perform repetitive work or
provide centralized service functions for other jobs in the same subsystem.

[‘Changing autostart job entries” on page 173|
You can specify a different job description for a previously defined autostart job entry. To change an
autostart job entry, use the character-based interface

[‘Removing autostart job entries” on page 178|

You can remove an autostart job entry from a subsystem description by using the character-based
interface.

Communications entries:

The communications work entry identifies to the subsystem the sources for the communications job it
processes. The job processing begins when the subsystem receives a communications program start
request from a remote system and an appropriate routing entry is found for the request.

For performance reasons, instead of starting a communications job each time a program start request is
received, you can configure a prestart job to handle a program start request from a remote system. For a
communications batch job to run on system, a subsystem description containing a work entry for
communications work must exist on the system.

Related tasks

[“Adding communications entries” on page 169

Each communication entry describes one or more communication device, device types, or remote
location for which the subsystem starts jobs when program start requests are received. The subsystem
can allocate a communication device if the device is not currently allocated to another subsystem or
job. A communications device that is currently allocated may eventually be de-allocated, making it
available to other subsystems. To add a communications entry to the subsystem description, use the
character-based interface.

Work management 13



[“Changing communication entries” on page 174|
You can change the attributes of an existing communications entry in an existing subsystem
description by using the character-based interface.

[‘Removing communication entries” on page 178|

You can remove communication entries from the subsystem description by using the character-based
interface. All jobs that are active through the communications entry being removed must be ended
before this command can be run.

Job queue entries:

Job queue entries in a subsystem description specify from which job queues a subsystem is to receive
jobs. When the subsystem is started, the subsystem tries to allocate each job queue defined in the
subsystem job queue entries.

For example, a job queue entry in the subsystem description QSYS/QBASE specifies that jobs can be
started using the job queue QGPL/QBATCH. Jobs can be placed on a job queue even if the subsystem
has not been started. When the subsystem QBASE is started, it processes the jobs on the queue. A
subsystem description can specify the maximum number of jobs (batch or interactive) that can be
processed at the same time. The number of jobs that can be active from any job queue is specified in the
job queue entry.

Related tasks

[“Adding job queue entries” on page 169

A job queue entry identifies a job queue from which jobs are selected for running in the subsystem.
Jobs started from a job queue are batch jobs. You add a job queue entry using the character-based
interface.

[“Changing job queue entries” on page 175|

You can change an existing job queue entry in the specified subsystem description. This command can
be issued while a subsystem is active or inactive. To change the job queue entry in a subsystem, use
the character-based interface.

[“Removing job queue entries” on page 179|

You can remove job queue entries from a subsystem description by using the character-based
interface. Jobs on the job queue remain on the queue when the job queue entry is removed from the
subsystem description. A job queue entry cannot be removed if any currently active jobs were started
from the job queue.

Prestart job entries:

You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.

The job attributes of a prestart job are not changed by the subsystem when a program start request
attaches to the prestart job. However, server jobs generally change job attributes to those of the swapped
user profile.

The Change Prestart Job (CHGP]) command allows the prestart job to change some of the job attributes
to those of the job description (specified in the job description associated with the user profile of the
program start request or in the job description specified in the prestart job entry).

Prestart jobs for servers:

In the prestart job model there is one primary listening job, generally called the daemon job or listener
job, and multiple server jobs that process the client requests. The daemon job listens on the port for
connection requests. When a new connection is received, the daemon does some general work, then gives
the socket descriptor to a waiting prestart server job.

14 System i: Systems management Work management



Prestart jobs can be reused. When the job has completed the work for one client, the environment is reset
and the job is made available to handle a request from a different client.

For server jobs that run user code (for example, the remote command server), the job typically is not
reused. This is because the user code might have changed something in the job and there is no sure way
to reset the environment for a new client. If your server does reuse the job, the Change Job
(QWTCHG]B) API can be used to change the job’s attribute back to a known state after the client’s
request has completed.

Servers that use the prestart job model include the host servers, SMTP server, PPP servers, DDM/DRDA
Server, the SQL Server, and others.

Related concepts

[“Prestart job investigation” on page 230|
This topic provides steps to help you answer the question, "How do I find the real user of a prestart
job and determine the resources used by that prestart job?”

Related information

[Experience Report: Tuning prestart job entries|

Workstation entries:

An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which may be specified in the
workstation entry or the user profile.

The workstation entry guides the subsystem to prospective workstations. If a workstation is available, the
subsystem sends a sign-on screen to the display.

Note: The subsystem description for the controlling subsystem must contain a workstation entry for the
console, and that entry must be of type *SIGNON. (*SIGNON is a value for the AT parameter,
specified on the Add Work Station Entry (ADDWSE) command.) The *SIGNON value indicates
that the sign-on display is shown at the workstation when the subsystem is started. This
requirement ensures that the subsystem has an interactive device for the entry of the system and
subsystem level commands. The End System (ENDSYS) command ends the System i licensed
program to a single session (or sign-on display) at the console in the controlling subsystem. A
subsystem description that does not contain a workstation entry for the console cannot be started
as a controlling subsystem.

Related tasks

[“Adding workstation entries” on page 171

A workstation entry is used when a job is started when a user signs on or transfers an interactive job
from another subsystem. You can specify the following items in a workstation entry. Parameter names
are given in parentheses. Use the character-based interface to add workstation entries.

[“Changing workstation entries” on page 176|
You can specify a different job description for a previously defined workstation entry by using the
character-based interface.

[“Removing workstation entries” on page 180

You can remove a workstation entry from a subsystem description by using the character-based
interface. The subsystem can be active at the time the command is run. However, all jobs that are
active through the workstation entry must be ended before it can be removed.

Routing entries:
The routing entry identifies the main storage subsystem pool to use, the controlling program to run

(typically the system-supplied program QCMD), and additional run-time information (stored in the class
object). Routing entries are stored in the subsystem description.

Work management 15



A routing entry can be likened to a single entry in a shopping mall directory. Customers that cannot find
the store they need may use a directory to help send them in the right direction. The same is true on
your system. Routing entries guide the job to the correct place. Routing entries in a subsystem description
specify the program to be called to control a routing step for a job running in the subsystem, which
memory pool the job uses, and from which class to get the run-time attributes. Routing data identifies a
routing entry for the job to use. Together, routing entries and routing data provide information about
starting a job in a subsystem.

Routing entries consist of these parts; the subsystem description, class, comparison data, maximum active
routing steps, memory pool ID, program to call, thread resources affinity, resources affinity group, and
the sequence number.

Related tasks

[“Adding routing entries” on page 170

Each routing entry specifies the parameters used to start a routing step for a job. Routing entries
identify the main storage subsystem pool to use, the controlling program to run (typically the
system-supplied program QCMD), and additional run-time information (stored in the class object). To
add a routing entry to a subsystem description, use the character-based interface.

[‘Changing routing entries” on page 176|

You can change a routing entry in the specified subsystem description by using the character-based
interface. The routing entry specifies the parameters used to start a routing step for a job. The
associated subsystem can be active when the changes are made.

[“Removing routing entries” on page 180|

You can remove a routing entry from the specified subsystem description by using the character-based
interface. The subsystem can be active at the time the command is run. However, the routing entry
cannot be removed if there are any currently active jobs that were started using the entry.

Class:

Job run-time attributes are contained in the class object that is specified in the (CLS) parameter in the
routing entry. If a job consists of multiple routing steps, the class used by each subsequent routing step is
specified in the routing entry used to start the routing step. If the class does not exist when the routing
entry is added, a library qualifier must be specified because the qualified class name is kept in the
subsystem description.

Run-time attributes that are included in a routing entry class are:

Run priority (RUNPTY)
The run priority is a value ranging from 1 (highest priority) through 99 (lowest priority) that
represents the priority at which the job competes for the processing unit relative to other jobs that
are active at the same time. For multi-threaded jobs, the run priority is also the highest run
priority allowed for any thread within the job. Individual threads within the job may have a
lower priority.

Time slice (TIMESLICE)
This is the time slice establishes the amount of time needed by a thread in a job to accomplish a
meaningful amount of processing. At the end of the time slice, the thread might be put in an
inactive state so that other threads can become active in the storage pool.

Default wait time (DFTWAIT)
This specifies the default maximum time (in seconds) that a thread in the job waits for a system
instruction, such as the LOCK machine interface (MI) instruction, to acquire a resource. This
default wait time is used when a wait time is not otherwise specified for a given situation.
Normally, this is the amount of time the system user might be willing to wait for the system
before the request is ended. If the wait time for any one instruction is exceeded, an error message
can be displayed or it can be automatically handled by a Monitor Message (MONMSG)
command.

16 System i: Systems management Work management



Maximum CPU time (CPUTIME)
This specifies the maximum processing unit time (in milliseconds) that the job can use. If the job
consists of multiple routing steps, each routing step is allowed to use this amount of processing
unit time. If the maximum time is exceeded, the job is ended.

Maximum temporary storage (MAXTMPSTG)
This specifies the maximum amount of temporary (auxiliary) storage that the job can use. If the
job consists of multiple routing steps, this is the maximum temporary storage that the routing
step can use. This temporary storage is used for storage required by the program itself and by
implicitly created internal system objects used to support the job. It does not include storage in
the QTEMP library. If the maximum temporary storage is exceeded, the job is ended. This
parameter does not apply to the use of permanent storage, which is controlled through the user
profile.

Maximum threads (MAXTHD)
This specifies the maximum number of threads that a job using this class can run with at any
time. If multiple threads are initiated simultaneously, this value may be exceeded. If this
maximum value is exceeded, the excess threads will be allowed to run to their normal
completion. Initiation of additional threads will be inhibited until the maximum number of
threads in the job drops below this maximum value.

Text description (TEXT)
This specifies the text that briefly describes the object. This is an attribute of the class object when
it is created, but it is not a run-time attribute for a job.

Authority (AUT)
This specifies the authority you are giving to users who do not have specific authority for the
object, who are not on an authorization list, and whose group profile or supplemental group
profiles do not have specific authority for the object. This is an attribute of the class object when
it is created, but it is not a run-time attribute for a job.

Comparison data:

The comparison value (CMPVAL) parameter of the routing entry specifies data that is compared with
routing data to determine which routing entry to use. (The routing entry also specifies the starting
position for the comparison.) The routing data is compared with the comparison value of each routing
entry in sequence number order until a match is found. The sequence number contained in a routing
entry defines the order in which the routing entries are scanned and can be used as the identifier of the
routing entry.

When a routing entry is found with a comparison value that matches the routing data, a routing step is
started and the program specified in the routing entry is called. The run-time attributes in the class
associated with the routing entry are used for the routing step, and the routing step runs in the storage
pool specified in the routing entry.

You can specify a comparison value of *ANY on the highest numbered routing entry. *ANY means that a
match is forced regardless of the routing data. Only one routing entry can contain the comparison value
of *ANY, and it must be the last (highest sequence number) entry in the subsystem description.

Maximum active routing steps:

The maximum active routing steps (MAXACT) parameter of the routing entry specifies the maximum
number of routing steps (jobs) that can be active at the same time through this routing entry.

In a job, only one routing step is active at a time. When a subsystem is active and the maximum number
of routing steps is reached, any subsequent attempt to start a routing step through this routing entry fails.
The job that attempted to start the routing step is ended, and a message is sent by the subsystem to the
job’s log.

Work management 17



Typically there is no reason to control the number of routing steps, thus the recommended value is
*NOMAX.

Memory pool ID:

The memory pool ID (POOLID) parameter of the routing entry specifies the pool identifier of the storage
pool in which the program runs. The pool identifier specified here relates to the storage pools in the
subsystem description.

Program to call

The program to call (PGM) parameter of the routing entry specifies the name and library of the program
called as the first program run in the routing step. No parameters can be passed to the specified
program. The program name can be either explicitly specified in the routing entry, or extracted from the
routing data.

If a program name is specified in a routing entry, selection of that routing entry results in the routing
entry program being called (regardless of the program name passed in an EVOKE function). If the
program specified in the EVOKE function is supposed to be called, *RTGDTA must be specified in this
parameter. If the program does not exist when the routing entry is added or changed, a library qualifier
must be specified because the qualified program name is kept in the subsystem description.

Sequence number

The sequence number (SEQNBR) parameter of the routing entry tells the subsystem the order in which
routing entries are to be searched for a routing data match. The routing entries are searched in sequence
number order. When you add routing entries to a subsystem description, you should order them so that
the entries likely to be compared most often are first. This reduces the search time.

Sequence Number Comparison Value
10 "ABC’

20 "AB’

30 A’

40 "E’

50 D’

In the above example, the routing entries are searched in sequence number order. If the routing data is
"A’, the search ends with routing entry 30. If the routing data is "AB’, the search ends with routing entry
20. If the routing data is "ABC’, the search ends with routing entry 10. Because routing data can be longer
than the comparison value of the routing entry, the comparison (which is done in left-to-right order)
stops when it reaches the end of the comparison value. Therefore, if the routing data is "ABCD’, the
search ends with routing entry 10.

When you define routing entries, they must be ordered from the most specific to the most general. The
following example shows a correct and incorrect way to define routing entries:

Correct Incorrect
Sequence Number Comparison Value Sequence Number Comparison Value
10 "ABC’ 10 "ABC’
20 "AB’ 20 "ABCD’
30 A
40 "E’
9999 *ANY

18 System i: Systems management Work management



In the incorrect example, it is no longer possible to match routing entry 20 because any routing data that
matches the comparison value for routing entry 20 matches the routing entry 10 first. When a routing
entry is changed or added to a subsystem description with a comparison value that causes this situation,
the system sends a diagnostic message identifying the situation.

The program named in the routing entry is given control when the routing step for the job is started.
Parameters to control the run-time environment (priority, time slice, and so on) of the routing step for the
job are taken from the class specified in the routing entry.

How a subsystem starts
When a subsystem starts, the system allocates several items and starts autostart and prestart jobs before
the subsystem is ready for work.

The subsystem description is used to determine how items are allocated. The following list represents the
sequence of events that occur when the subsystem starts:

1. Request to start subsystem is issued. The Start Subsystem (STRSBS) command is issued. Key startup
information is located in the subsystem description.

2. Memory pools are allocated. Memory is allocated to the pools defined in the subsystem description.
The memory that is allocated to each defined pool is taken from the Base memory pool. The system
does not allocate memory to a pool if the amount of memory available to the Base storage pool is less
than the minimum size specified by the Base memory pool minimum size system value QBASPOOL.
If the system cannot allocate all of the requested memory;, it allocates as much memory as is available
and allocates all the other as memory becomes available.

3. Prestart jobs are started. This information comes from the prestart job entries.
4. Autostart jobs are started. This information comes from the autostart jobs entries.

5. Display stations are allocated (sign-on displays are up). If there are workstation entries and the
device is varied on and has not been allocated by any other subsystem, the subsystem can allocate it
and display the sign-on display. If the device is varied on and has been allocated by another
subsystem and is at the sign-on display (the sign-on display was displayed before the second
subsystem was started), a second subsystem can allocate the device from the first subsystem and
display the sign-on display. If the device is not varied on, the subsystem cannot allocate it. The system
arbiter (QSYSARB) and the QCMNARB jobs hold locks on all varied-off devices. Workstation entries
provide the information about what devices to check for allocation.

Note: For virtual display devices, the sign-on display is shown when the device becomes fully varied
on. This happens when a user connects to the System i using that device description (assuming
the connection request does not carry the data that is used to bypass the sign-on display
processing). A device can be taken from a pool of previously created device descriptions and
varied on as part of that connection processing, or a device can be created and varied on. At a
subsystem start, the subsystem pends a lock for any of the previously created device
descriptions that the subsystem wants.

6. Job queues are allocated. The subsystem will not be able to allocate a job queue if it is already
allocated to another active subsystem. This information comes from the job queue entries.

7. Communications devices are allocated. Requests are sent to the QLUS (LU services) system job,
which handles device allocation for all communications devices. This information comes from the
communication entries.

8. The Environment is ready for work.

Related tasks

[“Starting a subsystem” on page 167

The Start Subsystem (STRSBS) command starts a subsystem using the subsystem description specified
in the command. When the subsystem is started, the system allocates the necessary and available
resources (storage, workstations, and job queues) that are specified in the subsystem description. You
can start a subsystem by using System i Navigator interface or the character-based interface.

Work management 19



How workstation devices are allocated:

Subsystems attempt to allocate all workstation devices in its subsystem description for AT(*SIGNON)
workstation entries.

The following situations might occur during the time the subsystem starts:

e If the device is not varied on, the subsystem cannot allocate it. The system arbiter (QSYSARB) and the
QCMNARBxx jobs hold locks on all varied-off devices.

* If the device is varied on and has not been allocated by any other subsystem, the subsystem can
allocate it and display the sign-on display.

* If the device is varied on and has been allocated by another subsystem and is at the sign-on display
(the sign-on display was displayed before the second subsystem was started), a second subsystem can
allocate the device from the first subsystem and display the sign-on display.

If more than one subsystem tries to allocate the same workstation (as specified in the workstation entries)
and the workstation is varied off, the subsystem that gets the workstation when it is varied on cannot be
predicted. Similarly, if a workstation entry specifies a workstation type instead of a workstation name, a
subsystem might get all, some, or none of the workstations of that type. (This also applies to workstation
entries with generic names.) To avoid such a situation, you can set up the workstation entries for the
subsystems so multiple subsystems are not using the same workstations.

After a user has signed on

When a user signs on to a workstation, the job runs in the subsystem that was shown on the sign-on
display on the workstation (the subsystem is identified in the IBM-supplied sign-on display). The
following situations might occur after the user has signed on:

 If a second subsystem is started and it tries to allocate the workstation on which the user signed on,
the second subsystem cannot allocate it. The user’s job continues to run in the first subsystem.

* If the user selects option 1 (Display sign-on for alternative job) on the System Request menu or issues
the Transfer to Secondary Job (TFRSECJOB) command, the new job runs in the same subsystem as the
original job.

* When the user signs off, the workstation remains allocated to the subsystem used when the user
signed on, unless the user transferred into the subsystem using the Transfer Job (TFRJOB) command,
and specified AT (*ENTER) for the workstation entry for this workstation. A sign-on display is shown,
and any subsequent jobs from that workstation continue to run in that subsystem, (unless another
subsystem is started up that allocates the workstation while it is at the sign-on display).

* If the user signs off and the subsystem in which his job was running is ended, the device is
deallocated. A second subsystem can then allocate the device and display the sign-on display.

Related tasks

[Assigning users to a specific subsystem|

You can use several techniques to assign device names and then associate those device names with
users. After this is accomplished, you can use the workstation entries to get the user to the correct
subsystem.

[Assigning users to a specific subsystem” on page 184|

You can use several techniques to assign device names and then associate those device names with
users. After this is accomplished, you can use the workstation entries to get the user to the correct
subsystem.

Related information

[Experience Report: Subsystem Configuration|

[Using Telnet exit point programs|

Scenario: Workstation allocation:

20 System i: Systems management Work management



This example illustrates how two workstations are allocated to two different subsystems.

In this scenario, subsystem A and subsystem B have workstations DSP01 and DSP02 in their subsystem
descriptions (the workstation entries specify AT(*SIGNON)).

Device Name Allocated to
DSP01 Subsystem A
DSP02 Subsystem A

Assume that both workstations are varied on when subsystem A is started.

Subsystem A allocates both workstations and shows the sign-on display on both. Even though subsystem
A has the sign-on display shown on the workstations, they can be allocated by another subsystem or job;
the workstation is then no longer available to subsystem A.

Device Name Allocated to
DSP01 USER1
DSP02 Subsystem A

When a user (USER1) signs on to workstation DSP01, the device is allocated to USER1’s job, which is
running in subsystem A. Workstation DSP02 is still at the sign-on display. Thus it can be allocated by
another subsystem or job. It is then no longer available to subsystem A.

Device Name Allocated to
DSP01 USER1
DSP02 Subsystem B

Subsystem B is started. Because USER1 has signed on to workstation DSP01, subsystem B cannot allocate
the device. Subsystem B requests allocation of the device when it becomes available. DSP02 is allocated to
subsystem B because no one has signed on to it in subsystem A. Any jobs started on DSP02 run in
subsystem B.

Device Name Allocated to
DSPo01 Subsystem A
DSP02 Subsystem B

USERL1 signs off. Because the user job was running in subsystem A, that subsystem displays the sign-on
display so that another user can sign on the workstation and run in subsystem A. If subsystem A is
ended, workstation DSPO01 is allocated by subsystem B (because it has an outstanding request to allocate
the device.)

The name of the subsystem that currently has a workstation allocated appears in the upper right corner
of the IBM-supplied sign-on display.

Related tasks

[“Assigning users to a specific subsystem” on page 184

You can use several techniques to assign device names and then associate those device names with
users. After this is accomplished, you can use the workstation entries to get the user to the correct
subsystem.

Related information

[Using Telnet exit point programs|

Work management 21




Memory pools

A memory pool is a logical division of main memory or storage that is reserved for processing a job or
group of jobs. On your system, all main storage can be divided into logical allocations called memory
pools. By default, the system manages the transfer of data and programs into memory pools.

The memory pool from which user jobs get their memory is always the same pool that limits their
activity level. (The activity level of a memory pool is the number of threads that can be active at same
time in a memory pool.) Exceptions to this are system jobs (such as Scpf, Qsysarb, and Qlus) that get
their memory from the Base pool but use the machine pool activity level. Additionally, subsystem
monitors get their memory from the first subsystem description pool, but it uses the machine pool
activity level. This allows a subsystem monitor to always be able to run regardless of the activity level
setting.

Why use memory pools

You can control how much work can be done in a subsystem by controlling the number and size of the
pools. The greater the size of the pools in a subsystem, the more work can be done in that subsystem.

Using shared memory pools allows the system to distribute jobs for interactive users across multiple
subsystems while still allowing their jobs to run in the same memory pool.

Multiple pools in a subsystem help you to control the jobs” competition for system resources. The
advantages of having multiple pools in a subsystem are that you can separate the amount of work done
and the response time for these jobs. For example, during the day you may want interactive jobs to run
with good response time. For better efficiency you can make the interactive pool larger. At night you
might be running many batch jobs, so you make the batch pool larger.

Note: Although tuning and managing your system can help the efficiency of the flow of work through
your system, it cannot account for inadequate hardware resources. Consider a hardware upgrade if
the demands of your workload are significant.

How data is handled in memory pools

If data is already in main storage, it can be referred to independently of the memory pool it is in.
However, if the needed data does not exist in any memory pool, it is brought into the same memory pool
for the job that referred to it (this is known as a page fault). As data is transferred into a memory pool,
other data is displaced and, if changed, is automatically recorded in auxiliary storage (this is called
paging). The memory pool size should be large enough to keep data transfers (paging) at a reasonable
level as the rate affects performance.

Related concepts

["Managing memory pools” on page 187]

Making sure that jobs get enough memory to complete efficiently is important. If too much memory is
given to subsystem A and not enough to subsystem B, jobs in subsystem B might begin to run poorly.
The following information describes the various tasks that are involved in managing memory pools.

Related information
[Retrieve System Status (QWCRSSTS) API|
IManaging system performancel

[Basic performance tuning]

[Applications for performance management
[Experience report: The Performance Adjuster (QPFRADY)|

22 System i: Systems management Work management



Types of memory pools

On the your system, all main storage can be divided into logical allocations called memory pools. All
memory pools in a system are either private or shared. There are private memory pools, shared memory
pools, and special shared memory pools. As many as 64 memory pools, in any combination of private
and shared pools, can be active at the same time.

Private memory pools

Private memory pools (also known as user-defined memory pools) contain a specific amount of main
storage that can be used by a single subsystem to run jobs. These pools cannot be shared by multiple
subsystems. They are identified in System i Navigator by the subsystem name. You can have as many as
62 private memory pools allocated for use in active subsystems.

Shared memory pools

Shared pools are either special or general; the Machine pool and Base pool are considered special shared
pools, and all other shared pools are considered general shared pools. You can specify 63 of the 64 shared
memory pools that are defined on the system for use when creating subsystem descriptions (the machine
pool is reserved for system use).

Special Shared Pools (*“MACHINE and *BASE)

*MACHINE
The Machine memory pool is used for highly-shared Machine and operating system programs. It
is identified as Machine in System i Navigator. The Machine memory pool provides storage for
tasks the system must run that do not require your attention. The size for this memory pool is
specified in the Machine memory pool size system value (QMCHPOOL). No user jobs run in this
memory pool. (On the Work with System Status display (WRKSYSSTS), the Machine memory
pool appears as system pool identifier 1.)

*BASE
The Base memory pool, identified as Base in System i Navigator, contains all unassigned main
storage on the system, (all main storage that is not required by another memory pool). The Base
pool contains storage that can be shared by many subsystems. The Base memory pool is used for
batch work and miscellaneous system functions. The Base memory pool minimum size
(QBASPOOL) system value specifies the minimum size of the Base memory pool. The activity
level for this memory pool is specified in the Base memory pool maximum eligible threads
(QBASACTLVL) system value. (On the Work with System Status display (WRKSYSSTS), the Base
memory pool appears as system pool identifier 2.)

General Shared Pools

General shared pools are pools of main storage that multiple subsystems can use at the same time. On the
character-based interface, they are identified as follows:

* *INTERACT is the interactive storage pool used for interactive jobs.
* *SPOOL is the storage pool used for spool writers.
e *SHRPOOL1 through *SHRPOOL60 are storage pools that you can use for your own use.

In System i Navigator, the general shared pools are identified as Interactive, Spool, and Shared 1 - Shared
60.

Related tasks

[‘Creating a private memory pool” on page 193|

Private memory pools (also known as user-defined memory pools) can be used by IBM-supplied
subsystems or by user-defined subsystems. You can define up to a maximum of 10 memory pool
definitions for a subsystem. You create a private memory pool in the subsystem description.

Work management 23



Related information

[Managing system performance

[Basic performance tuning]

[Applications for performance management|
[Experience report: The Performance Adjuster (QPFRAD])|
[Performance system values: Machine memory pool size|

[Performance system values: Base memory pool minimum size]

[Performance system values: Base memory pool maximum eligible threads|

Pool numbering schemes

Pools have two sets of numbering schemes: one is used within a subsystem and one is system-wide. The
subsystem uses a set of numbers that refer to the pools it uses. Thus, when you create or change a
subsystem description you can define one or more pools and label them 1, 2, 3, and so on. These are the
designations of the subsystem pools, and they do not correspond to the pool numbers shown on the

Work with System Status (WRKSYSSTS) display.

A different set of numbers is used to keep track of all pools on the system. The Work with Subsystems
(WRKSBS) display relates the subsystem pool identifiers and the column headings to the system pool

identifiers.
4 N
Work with Subsystems
System: XXXXXXXX
Type options, press Enter.
4=End subsystem 5=Display subsystem description
8=Work with subsystem jobs
Total — ----------- Subsystem Pools------------
Opt Subsystem Storage (M) 1 2 3 4 5 6 7 8 9 10
NYSBS 48 2 4 5
_ PASBS .97 2 6 5
_ QINTER 11.71 2 3
Bottom
Parameters or command
===5
F3=Exit F5=Refresh F11=Display system data Fl2=Cancel
Fl4=Work with system status )

Example: How pools are numbered

The following example illustrates how pools are numbered.

Subsystems

CRTSBSD QINTER
Pools (1 *BASE)
(2 1200 25)

(System pools 2, 3)

CRTSBSD NYSBS
Pools (1 *BASE)

(2 500 3)

(3 *SHRPOOL2)
(System pools 2, 4, 5)

CRTSBSD PASBS
Pools (1 *BASE)

(2 1000 3)

(3 *SHRPOOL2)
(System pools 2, 5, 6)

After QINTER starts, the following pools are allocated:

System Pool Number Description

QINTER

1 *Machine pool

24 System i: Systems management Work management




System Pool Number Description QINTER
2 *BASE pool 1
3 QINTER private pool 2

After NYSBS starts the following pools are allocated:

System Pool Number Description QINTER NYSBS
1 *MACHINE pool

2 *BASE pool 1 1

3 QINTER private pool 2

4 NYSBS private pool 2

5 *SHRPOOL2 shared pool 3

After PASBS starts the following pools are allocated:

System Pool Number Description QINTER NYSBS PASBS

1 *MACHINE pool

2 *BASE pool 1 1 1

3 QINTER private pool 2

4 NYSBS private pool 2

5 SHRPOOL2 shared 3 3
pool

6 PASBS private pool 2

Related tasks

[“Managing tuning parameters for shared pools” on page 190|
To manage tuning parameters for shared pools, use System i Navigator or character-based interface
commands.

[“Managing a pool’s configuration” on page 191
To change a pool’s size, activity level or paging option, use System i Navigator or character-based
interface commands.

[‘Changing memory pool size” on page 192

The size of a memory pool directly affects the amount of work that a subsystem can process. The
more memory a subsystem has, the more work it can potentially complete. It is important that you
monitor your system carefully before you start changing the parameters of your memory pools. You
also want to periodically recheck these levels, as some readjustment might need to be done.

Related information

[Managing system performance

[Basic performance tuning|

[Applications for performance management|
[Experience report: The Performance Adjuster (QPFRAD])|

Memory pool allocation
When you start a subsystem, the system attempts to allocate the user-defined storage pools that are
defined in the subsystem description of the started subsystem.

If the system cannot allocate all of the requested storage, it will allocate as much storage as is available
and then allocate the remainder of the storage as it becomes available. For example, consider the

Work management 25



following table. If 700KB is available, and if *SHRPOOL2 is defined to 500KB, then 300KB is allocated to
the first storage pool and 400KB is allocated to the second storage pool.

Pool ID Specified in SBSD 1 2

Storage Requested 300K *SHRPOOL2
System Pool ID 3 4

Storage Allocated 300K 400K
Activity Level 1

Pool Type Private Shared

The storage pools that you define decrease the size of the Base memory pool when they are allocated.
The system only allocates as much storage to a private pool as it has available in the Base memory pool.
The Base memory pool minimum size (QBASPOOL) system value determines the minimum Base pool
size.

Related tasks
[“Viewing memory pool information” on page 187

You can view information about the memory pools that are on your system by using System i
Navigator or the character-based interface.

[“Determining the number of subsystems using a memory pool” on page 18§|

Subsystems are allocated a certain percentage of memory to run jobs. It is important to know how
many different subsystems are pulling from the same memory pool. After you know how many
subsystems are submitting jobs to a pool and how many jobs are running in a pool, you might want
to reduce resource contention by adjusting the size and activity level of the pool.

[‘Determining the number of jobs in a memory pool” on page 189
System i Navigator provides you with a way to quickly display a list of jobs that are currently
running in a memory pool.

[“Determining in which pool a single job is running” on page 189

If you have a job that is not performing as you expect you might want to check the memory pool in
which the job is running. To determine in which pool a single job is running, use System i Navigator
or the character based interface.

Related information

[Managing system performance

[Basic performance tuning]

[Applications for performance management|
[Experience report: The Performance Adjuster (QPFRAD])|

Memory pool activity level

The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. This allows for efficient use of system resources. The system manages the control
of the activity level.

Often during processing in a thread, a program waits for a system resource or a response from a
workstation user. During such waits, a thread gives up its use of the memory pool activity level so that
another thread that is ready to be processed can take its place.

When more threads are started than can run at the same time the excess threads must wait to use the
processing unit (normally this wait is short). The memory pool activity level lets you limit the amount of

main memory contention in the various memory pools in your subsystems.

The number of threads running (or active threads) refers to the number of threads that are eligible to
compete for the processor and that count against the activity level for a memory pool. In this sense,

26 System i: Systems management Work management



active threads do not include threads that are waiting for input, for a message, for a device to be
allocated, or for a file to be opened. Active threads do not include threads that are ineligible (threads that
are ready to run but the memory pool activity level is at its maximum).

How activity levels work

More than one thread can be active at the same time in a memory pool because the processing for a
thread can be briefly interrupted while needed data is retrieved from auxiliary storage. During this delay,
which is typically short, another thread can run. Using the activity level, the machine can process a large
number of threads in a memory pool and at the same time hold the level of contention to the limit that
you specify.

Maximum activity level
After the maximum activity level for a memory pool has been reached, additional threads
needing the memory pool are placed in the ineligible state to wait for the number of active
threads in the memory pool to fall below the maximum activity level or for a thread to reach the
end of its time slice. As soon as a thread gives up its use of the memory pool, the other threads
that are not active become eligible to run by their priority. For example, if a running thread is
waiting for a response from a workstation, it gives up its activity level and the activity level is no
longer at its maximum.

Defining memory pool activity levels
Defining memory pools and activity levels correctly is generally dependent on size of the
memory pool, the number of CPUs, the number of disk unit arms, and the characteristics of the
application.

Related tasks

[Viewing memory pool information” on page 187]
You can view information about the memory pools that are on your system by using System i
Navigator or the character-based interface.

[‘Determining the number of subsystems using a memory pool” on page 18|

Subsystems are allocated a certain percentage of memory to run jobs. It is important to know how
many different subsystems are pulling from the same memory pool. After you know how many
subsystems are submitting jobs to a pool and how many jobs are running in a pool, you might want
to reduce resource contention by adjusting the size and activity level of the pool.

[‘Determining the number of jobs in a memory pool” on page 189
System i Navigator provides you with a way to quickly display a list of jobs that are currently
running in a memory pool.

[‘Determining in which pool a single job is running” on page 189

If you have a job that is not performing as you expect you might want to check the memory pool in
which the job is running. To determine in which pool a single job is running, use System i Navigator
or the character based interface.

Related information

[Managing system performance|

[Basic performance tuning]

[Applications for performance management|
[Experience report: The Performance Adjuster (QPFRAD])|

Jobs

All work done on a system is performed through jobs. Each job has a unique name within the system. All
jobs, with the exception of system jobs, run within subsystems. A job can enter the subsystem from any of
the work entries, such as a job queue entry, workstation entry, communications entry, autostart job entry,
or prestart job entry.

Work management 27



Each active job contains at least one thread (the initial thread) and may contain additional secondary
threads. Threads are independent units of work. Job attributes are shared among the threads of the job,
however threads also have some of their own attributes, such as a call stack. The job’s attributes contain
information about how the work is processed. The job serves as the owner for attributes that are shared
among threads within the same job. Work management provides a way for you to control the work done
on your system through a job’s attributes.

Proper authority
To make most changes to a job’s attributes, you need to have job control special authority (*JOBCTL) or
your user profile matches the job user identity of the job being changed.

There are a few attributes where having *JOBCTL special authority is necessary to make any changes.
These attributes are:

e Default wait time
* Run priority
¢ Time slice

Note: If you plan to make changes to the job’s accounting code, you need *USE authority to the Change
Accounting Code (CHGACGCDE) command in addition to *JOBCTL special authority or a user
profile matching the job’s job user identity.

For any job attributes that refer to an i5/0S object, such as job queues, output queues, and sort sequence
tables, you need to have the proper authority to the object. For more details about i5/0S authorities, see
[Authority required for objects used by commands|in the Security reference topic collection.

Related concepts

[‘Job user identity” on page 32|
The job user identity (JUID) is the name of the user profile by which this job is known to other jobs.
This name is used for authorization checks when other jobs attempt to operate against this job.

Job characteristics

Work management provides a way for you to control the work done on your system through a job’s
attributes. However, before you can control the various aspects of a job, you need to understand the
different characteristics of a job.

The following information describes the characteristics of jobs:
Job name syntax:

To make it easier to control and identify jobs on the system, each job has a unique qualified job name.
The qualified job name consists of three parts: the job name (or simple job name), the user name, and the
job number.

* For interactive jobs, the job name is the same as the name of the workstation or emulator session that
you signed on to. For batch jobs you can specify your own job name. The job name can be up to 10
characters long.

¢ The user name is the name of the user profile under which the job is started. For interactive jobs, the
user name is the user profile used to sign on to the system. This is the user name that you entered in
the user field on the sign-on display. If you are using Telnet and by-passing the sign-on, this is the user
name that you use to automatically sign on to the system. For batch jobs you can specify the user
profile under which the batch job is to run. The user name can be up to 10 characters long.

¢ The job number is a unique number assigned by the system so that you can identify jobs, even if more
than one has the same job name and user name. The job number is always 6 numeric digits.

28  System i: Systems management Work management



Syntax

The syntax for qualified job names is similar to qualified names for objects. For example, if the job name
is DSP01, the user is QPGMR, and the job number is 000578, the qualified job name is entered on the
Work with Job (WRKJOB) command as follows:

WRKJOB JOB(000578/QPGMR/DSPO1)

Another similarity to object names is that you do not need to specify all of the qualifiers. For example
consider the following:

WRKJOB JOB(QPGMR/DSPO1)

or
WRKJOB JOB(DSPO1)

This works the same as entering the entire qualified job name. If several jobs on the system match the
portion of the job name that you entered, the Select Job display appears. This display allows you to select
which job you want from a list of duplicate job names.

Job Attributes:

Job attributes determine how the system runs each job. Some job attributes are set from the user profile.
Other job attributes come from system values, from locales, from a Submit Job (SBMJOB) command, from
a job description, and from the Change Job (CHGJOB) command (from which you can change values for
attributes while the job is running).

Controlling job attributes gives you the flexibility to control jobs at the job level, user level, or system
level. For example, you can have your system set up to go all the way to the system value to get job
attributes (which is the system default). Then if you want to change a value for all new jobs on the
system, you can change the system value.

By specifying a value in a job description, you can affect all of the types of jobs that use that job
description. For example, if all of your batch jobs use the same job description, then changing the job
description for the batch jobs can affect all of your batch jobs and leave all other jobs unaffected.

Related information

[Experience report: Work management job attributes|

Job description:

The job description allows you to create a set of job attributes that are saved and available for multiple
uses. The job description can be used as the source for some of the job attributes that tell the system how
to run a job. The attributes tell the system when to start the job, where to get the job from, and how the
job will run. You can think of a job description as a template that many jobs can use, thereby reducing
the number of specific parameters that you need to set for each individual job.

Job descriptions are used by autostart, batch, interactive, and prestart job types. You can use the same job
description for multiple jobs. When you define a job, you can use the job description in one of two ways:
* Use a specified job description without overriding any of its attributes. For example:

SBMJOB JOB(OEDAILY) JOBD(QBATCH)

* Use a specified job description but override some of the attributes (using BCHJOB or SBMJOB
command). For example, to override the message logging in the job description QBATCH, specify:

SBMJOB JOB(OEDAILY) JOBD(QBATCH)
LOG(2 20 *SECLVL)

Work management 29



Note: You cannot override any job description attributes for autostart jobs, workstation jobs, or
communication jobs.

Related tasks

[“Creating a job description” on page 117

You can use the character-based interface, the Work With Job Description (WRKJOBD) command or
the Create Job Description (CRTJOBD) command to create job descriptions.

[“Using a job description” on page 118§|

The most common way to use a job description is by specifying it in the Submit Job (SBMJOB)
command. The job description (JOBD) parameter is where you specify the job description that you
want this job to use. When you define a batch job, you can use the job description in one of two ways:

Job descriptions and security:

Every job in the system uses a job description during job initiation. This controls the various attributes of
a job. The USER parameter controls the name of the user profile assigned to the job. A job description
that has a user profile name (USER) specified should be authorized only to specific individuals. If not, at
security level 30 and below, other users will be able to submit jobs to run under that user profile.

For example, consider
CRTJOBD JOBD(XX) USER(JONES) . . . AUT(*USE)

This example has security risks because any user can submit a job using the XX job description, and be
authorized to whatever JONES is authorized to. If this type of job description is used on a workstation
entry, it allows anyone to sign on as that user just by pressing the Enter key. To avoid any security
exposure, do not authorize this type of job description to *PUBLIC.

Note: At security level 40 and 50, the Submit Job (SBMJOB) command requires the submitter to be
authorized (*USE) to the user profile named in the job description. This assumes that the SBMJOB
specifies user (*JOBD). Nevertheless, avoid specifying a user in a job description unless it is needed
for some specific reason (such as an autostart job) and you tightly control access to it.

USER Parameter and Interactive Jobs

The job description to be used is defined on the Add Work Station Entry (ADDWSE) command. The
default is to use the job description in the user profile. If USER(*RQD) is specified in the job description,
the user must enter a user name. If USER(xxxx) is specified (where xxxx is a specific user profile name),
the user is allowed to press the Enter key on the sign-on display and operate under the xxxx user profile
name, unless the security level is 40 or higher.

USER Parameter and Batch Jobs

The job description used for batch jobs is specified on the Submit Job (SBMJOB) or Batch Job (BCHJOB)
command.

If an input stream is entered that contains the BCHJOB command, the user entering one of the Start
Reader commands ( STRDBRDR, STRDKTRDR) or one of the Submit Job commands (SBMDBJOB,
SBMDKTJOB, and so on.) must have object operational authority (*OBJOPR) to the job description that is
specified. When an input stream is used, jobs always operate under the user profile of the job description
and not of the user who is placing the jobs on the job queue. If USR(*RQD) is specified in the job
description, it is invalid to use the job description on a BCHJOB command.

If a SBMJOB command is used, the command defaults so that the batch job operates under the user

profile name of the submitter. However, if USER(*JOBD) is specified on the SBMJOB command, the job
operates under the name specified in the USER parameter of the job description.

30 System i: Systems management Work management



Frequently a specific name in the job description is required to let users submit work for a specific user
profile. For example, the QBATCH job description is shipped with USER(QPGMR) to allow this. To avoid
any security exposure, do not authorize this type of job description to *PUBLIC.

Call stacks:

The call stack is the ordered list of all programs or procedures currently running for a job. The programs
and procedures can be started explicitly with the CALL instruction, or implicitly from some other event.

The call stack is available at both the job level and the thread level. On the character-based interface, the
call stack is a last-in-first-out (LIFO) list of call stack entries, one entry for each called procedure or
program. In System i Navigator, by default, the last entry in the stack appears at the top of the list.
However, the ordering can be changed by using the Sort ascending or Sort descending buttons.

The information that is included in the Call Stack display includes the invocation information for the
original program model (OPM), integrated language environment (ILE), i5/OS Portable Application
Solutions Environment (PASE), and Java' applications. Also, if you are running under a user profile with
*SERVICE special authority, you can see additional entries for licensed internal code (LIC) and i5/0S
PASE Kernel.

Related tasks

[Viewing call stacks” on page 112|
You can view information about a job or thread’s call stack by using either System i Navigator or the
character-based interface.

Class object:

A class object contains the run attributes that control the run-time environment of a job. IBM-supplied
class objects, or classes, meet the needs of both typical interactive and batch applications. The following
classes (by name) are supplied with the system:

* QGPL/QBATCH: For use by batch jobs

* QSYS/QCTL: For use by the controlling subsystem

* QGPL/QINTER: For use by interactive jobs

* QGPL/QPGMR: For use by the programming subsystem

* QGPL/QSPL: For use by the spooling subsystem printer writer

* QGPL/QSPL2: For general spooling use in the Base system pool

Run-time attributes

The following is a list of some of the run-time attributes, or parameters, that are found in a class object
that are important to work management.

Run priority (RUNPTY)
A number that specifies the priority level assigned to all jobs running that use the class. The
priority level is used to determine which job, of all the jobs competing for system resources, is
run next. The value can be 1 through 99, where 1 is the highest priority (all jobs having a 1
priority are run first). This value is the highest run priority allowed for any thread within the job.
Individual threads within the job may have a lower priority. Changing the run priority of the job
affects the run priorities of all threads within the job. For example, if the job is running at priority
10, thread A within the job is running at priority 10 and thread B within the job is running at
priority 15. If the priority of the job is changed to 20, then the priority of thread A is adjusted to
20 and the priority of thread B is adjusted to 25.

Time slice (TIMESLICE)
The maximum amount of processor time (in milliseconds) given to each thread in a job using this
class before other threads in a job or other jobs are given the opportunity to run. The time slice

Work management 31



establishes the amount of time needed by a thread in a job to accomplish a meaningful amount of
processing. At the end of the time slice, the thread might be put in an inactive state so that other
threads can become active in the storage pool.

Default wait time (DFTWAIT)
The default amount of time that the system waits for the completion of an instruction that
performs a wait. This wait time applies to times when an instruction is waiting for a system
action, not to the time an instruction is waiting for a response from a user. Normally, this is the
amount of time you are willing to wait for the system before ending the request. If the wait time
is exceeded, an error message is passed to the job. This default wait time is used when a wait
time is not otherwise specified for a given situation.

The wait time used for allocating file resources is specified in the file description and can be
overridden by an override command. It specifies that the wait time specified in the class object is
used. If file resources are not available when the file is opened, the system waits for them until
the wait time ends.

Note: The class attributes apply to each routing step of a job. Most jobs have only one routing
step, but if the job is rerouted (because of something like the Reroute Job (RRTJOB) or
Transfer Job (TFRJOB) command) the class attributes are reset.

Maximum CPU time (CPUTIME)
The maximum amount of processor time allowed for a job’s routing step to complete processing.
If the job’s routing step is not completed in this amount of time, it is ended, and a message is
written to the job log.

Maximum temporary storage (MAXTMPSTG)
The maximum amount of temporary storage that can be used by a job’s routing step. This
temporary storage is used for the programs that run in the job, for the system objects used to
support the job, and for temporary objects created by the job.

Maximum threads (MAXTHD)
The maximum number of threads in which a job in this class can run at any time. If multiple
threads are initiated simultaneously, this value may be exceeded. The excess threads are allowed
to run their normal completion. Initiation of additional threads are inhibited until the maximum
number of threads in the job drops below this maximum value.

Note: The resources used by the threads and the resources available on the system can vary.
Therefore, the initiation of additional threads may be inhibited before this maximum value
is reached.

Related tasks

[“Creating a class object” on page 132

You can create a class object by using the character-based interface. The class defines the processing
attributes for jobs that use the class. The class used by a job is specified in the subsystem description
routing entry used to start the job. If a job consists of multiple routing steps, the class used by each
subsequent routing step is specified in the routing entry used to start the routing step.

[“Changing a class object” on page 133

You can change the attributes of a class object by using the character-based interface. Any attribute
can be changed, except for the public authority attribute. Refer to the Revoke Object Authority
(RVKOBJAUT) command and the Grant Object Authority (GRTOBJAUT) command for more
information about changing object authorizations.

Job user identity:

The job user identity (JUID) is the name of the user profile by which this job is known to other jobs. This
name is used for authorization checks when other jobs attempt to operate against this job.

32 System i: Systems management Work management



Some examples of functions that operate against another job include the Start Service Job (STRSRV]JOB)
command, the Retrieve Job Information (QUSRJOBI) API, the Change Job (QWTCHG]B) API], all job
control commands, and functions that send signals from one job to another.

In situations where jobs swap user profiles, the current user profile identifies the profile under which the
initial thread is running instead of the JUID.

The JUID is not used to make authorization checks from within a job. Authorization to perform a
function is always based on the current user profile of the thread in which the function is called.

When a job is on a job queue or output queue, the JUID is always the same as the user name of the job
and cannot be changed.

When a job starts, and at the start of any subsequent routing steps, the JUID is the same as the name of
the current user profile of the job. While a job is active, the JUID can be changed in the following ways.

¢ The JUID can be explicitly set by an application using the Set Job User Identify (QWTSJUID)
application program interface (API) or the QwtSetJuid() function. The JUID is set with the name of the
user profile that the thread that called the API or function is running under.

¢ The JUID can be explicitly cleared by an application using the QWTSJUID API or the QwtClearJuid()
function. The job must be running as a single threaded job at the time. When cleared, the JUID is
implicitly set by the system to the name of the user profile that the single thread of the job is running
under at that point.

* If the job is running as a single threaded job, and the JUID has not been explicitly set by an
application, then each time the job uses the Set Profile (QWTSETP) API to run under a different user

profile the JUID is implicitly set by the system to the name of the user profile that was set by
QWTSETP.

* When a single threaded job initiates a secondary thread and the JUID has not been explicitly set by an
application, then the system will implicitly set the JUID with the name of the user profile that the
single thread of the job was running under at the point that it initiated the secondary thread.

When the job returns to a single thread, the system implicitly sets the JUID to the name of the user
profile that the single thread of the job is running under at that point.

Related concepts

[Proper authority]
To make most changes to a job’s attributes, you need to have job control special authority (*JOBCTL)
or your user profile matches the job user identity of the job being changed.

Job user identity examples:

These examples illustrate how the job user identity (JUID) is assigned in different situations.

* Ajob runs under a user profile called USERA. The JUID is USERA. If the job uses the QWTSETP API
to switch to USERB, the JUID changes to USERB.

In this situation, the Set By value for the JUID is *DEFAULT. Because the job that is running
single-threaded, the job user identity is the current user profile under which the initial thread of
the job is running (unless, the job user identity was explicitly set by an application). For job queue
jobs and completed jobs, the job user identity is the user name from the qualified job name.

* A single-threaded job runs under user profile USERX. The JUID is USERX. If the job initiates secondary
threads, the JUID remains as USERX. If all the threads then swap to USERY, the JUID is still USERX.

In this situation, the Set By value for the JUID is *SYSTEM. Because this is an active job which is
currently running as a multi-threaded job, the job user identity is implicitly set by the system. The
job user identity is set to the name of the user profile under which the job was running when the
job became multi-threaded. When the job returns to running single-threaded, the job user identity
will be reset to the *DEFAULT value.

Work management 33



 If a server running under a user profile called SERVER calls the QWTSJUID AP]I, the JUID will be set
to SERVER. If the server then calls the Set Profile (QWTSETP) API to set its current user profile to
CLIENT while processing work on behalf of that client, the JUID remains as SERVER. Likewise, if the
server initiates secondary threads that each call QWTSETP to run under various user profiles, the JUID
remains as SERVER.

In this situation, the Set By value for the JUID is *APPLICATION. The job user identity is set
explicitly by an application using an API This value applies to both single-threaded and
multi-threaded jobs.

Threads:

The term thread is shorthand for "thread of control”. A thread is the path taken by a program while
running, the steps performed, and the order in which the steps are performed. A thread runs code from
its starting location in an ordered, predefined sequence for a given set of inputs.

The use of threads within a job allows many things to be done at once. For example, while a job is
processing, a thread may retrieve and calculate data needed by the job to finish processing

Every active job has at least one thread, which is called an initial thread. The initial thread is created as
part of starting the job. In the threads on System i Navigator, by default, you will see Initial as the type
of the first thread in the list. The initial thread is the first thread created within the job when it starts.

Thread types

The thread type determines how the thread was created on the system.

User The thread can be created by the customer application. The initial thread in a job is always a user
thread. The Allow multiple threads field must be set to yes for multiple user threads to be used.

System

The thread is created by the system on behalf of the user. Some system functions use system
threads to complete processing. If a customer’s application uses a system function that uses
threads, system threads are used.

Related tasks

[“Viewing thread properties” on page 135

Threads allow jobs to do more than one thing at a time. If a thread stops processing, it can stop the

job from running.

[Viewing threads running under a specific job” on page 133|

Every active job running on your system has at least one thread running under it. A thread is an
independent unit of work running within a job that uses the same resources as the job. Because a job
depends on the work done by a thread, it is important to know how to find the threads running
within a specific job.

[“Ending or deleting threads” on page 135|

An initial thread, which is created when the job starts, can never be deleted or ended. However,
sometimes it is necessary to end a secondary thread so that a job can continue to run. Be aware of the
thread you intend to end because the job it runs within might not be able to complete without that
thread’s work.

Related information

[Example: End a thread using Javal

[Thread management APIs|

Proper thread authority:

Certain authority levels are required before you can work with threads.

34 System i: Systems management Work management



To view and change most attributes of a thread you need to have *JOBCTL special authority, or your user
profile needs to match the job user identity of the job containing the thread. To change the run priority of
a thread, you must have *JOBCTL special authority. Thread Control authority allows you to view some of
the attributes of a thread.

To hold or release a thread, you need to have *JOBCTL special authority or Thread Control authority, or
your user profile needs to match the job user identity of the job containing the thread. To end a thread,
you need to have *SERVICE special authority or Thread Control authority.

For any thread attributes that refer to a System i object, such as a library in the library list, the user needs
to have the proper authority to the object.

For more details about i5/0S authorities, see |[Authority required for objects used by commands|in the
Security reference topic collection.

Note: With thread Control authority, you can retrieve information about threads of another job. Thread
Control can be granted and revoked for individual users by using System i Navigator Application
Administration support, or by using the Change Function Usage Information (QSYCHFUI) API,
with a function ID of QIBM_SERVICE_THREAD. For more detailed information about application
administration, see the Information Center topic Application Administration.

Thread status:

The current status of a thread is viewed from the General page in the Thread Properties window, under
Detailed status.

An example of a detailed status is:

Waiting for dequeue
The thread of the job is waiting for completion of a dequeue operation. A dequeue is an
operation for removing messages from queues. Messages are communications sent from one
person or program to another. In particular, a message is enqueued (placed) on a queue system
object by one thread and dequeued (removed) by another thread.

Note: When Waiting for dequeue is shown on a properties page, additional information that
identifies the queue being waited on is displayed. When the job or thread is waiting on the
dequeue operation to complete for an i5/0S object, you will see a 10-character object
name, its library, and the object type. If the job or thread is waiting on the dequeue
operation to complete for an internal object, you will see a 30-character object name. For
internal objects you need job control special authority (*JOBCTL) to see the 30-character
name.

The detailed status can display an associated status value, which provides additional details about the
current status of the thread. An example of a detailed status plus the associated status value is:

Held (n)
An individual thread is held. Unlike a job, a thread can have multiple holds on it at the same
time. A number (for example, Held (3)) following the thread status tells the user how many times
that thread has been held without being released. For example, if a thread has had three holds
put on it and then has been released once, it still has two holds against it. A number is only
shown when the status appears on the properties page and will not appear when displayed in a
list. To resume thread processing, select the Release action for the thread.

For more information about the different thread statuses, see the System i Navigator online help.

Locked objects:

Work management 35



Jobs and threads use objects to process work.

Because more than one piece of work is processing at a time, a lock is put on an object so that data
integrity is retained. Locked objects are system objects used by jobs and threads to process work. After the
job or thread is finished running, the object is unlocked and ready to be used to process more work.
Depending on the lock request type used, locking an object permits only one user to use an object at a
time. For example, if two or more users tried to change an object at the same time, the changes to the
object by the second user is locked out until the first user finished updating the object. With the use of
lock holders, a user can see what currently has a lock or is currently waiting on a lock for an object.

Scope specifies whether the lock is associated with a job, a thread, or a lock space. Scope also defines how
long the lock will be available and what lock request type and conflict rules the object has on it.

Lock request types are different levels of access that a job, thread or lock space can use to an object that is
locked. For example, a lock exclusive, no read lock type is used if an object is being changed or deleted
on the system. This lock request type does not allow anyone to use the object, nor does it allow anyone
to read the object.

The different lock request types are:

Exclusive - No read
The object is reserved for exclusive use. However, if the object is locked by any lock request type,
you cannot obtain exclusive use of the object. This lock state is appropriate when a user does not
want any other user to have access to the object until the function being performed is complete.

Exclusive-Read
The object can only be shared with the shared-read lock request type. This lock is appropriate
when a user wants to prevent other users from performing any operation other than a read.

Shared-Update
The object can be shared with either the shared-read or shared-update lock request type. That is,
another user can request either a shared-read lock state or a shared-update lock state for the same
object. This lock state is appropriate when a user intends to change an object but wants to allow
other users to read or change the same object.

Shared-No update
The object can be shared with only share - no update, and shared-read lock request types. This
lock state is appropriate when a user does not intend to change an object but wants to ensure
that no other user changes the object.

Shared-Read
The object can be shared with all lock requests other than exclusive - no read. That is, another
user can request an exclusive-read, shared-update, shared-read, or shared-no update lock state.

The lock status tells the state of the lock request. The different lock statuses are:
Held: The lock request has been fulfilled and the job, thread or lock space is holding the lock.
Waiting: The job or thread is waiting to obtain the lock.
Requested: The job or thread has requested the lock.

Lock holders are the jobs, threads and lock spaces that are currently holding a lock or are waiting for a
lock on a specific locked object.

Job types
Your system processes several different types of jobs. This information describes those jobs and how they
are used.

Autostart jobs:

36 System i: Systems management Work management



An autostart job is a batch job doing repetitive work, one-time initialization work that is associated with
a particular subsystem, initializes functions for an application, or provides centralized service functions
for other jobs in the same subsystem. An autostart job in the controlling subsystem can be used to start
other subsystems (as does the IBM-supplied controlling subsystem). The autostart jobs associated with a
subsystem are automatically started each time the subsystem is started.

Since all autostart jobs are started when the subsystem starts, the value specified for the maximum
number of jobs in the subsystem does not prevent the autostart jobs from starting. If the maximum
number of jobs in the subsystem is exceeded, no other jobs can be started. When enough autostart jobs
have completed so that the number of jobs running is below the maximum activity level, other jobs in the
subsystem can start.

The job description that is used for an autostart job is specified using the Add Autostart Job Entry
(ADDAJE) command. When the subsystem is started, the job operates under the user profile name in the
specified job description. You may not specify the job description which contains USER(*RQD). Because
the autostart job operates under the user profile that is specified by the job description, you need to
control who is allowed to change the job description.

If more than one autostart job is specified for a subsystem, all autostart jobs are started immediately
rather than one followed by another. If the maximum number of jobs of the subsystem is exceeded, no
other jobs can be started in the subsystem until enough autostart jobs have completed so that the number
of jobs running is below the maximum activity level.

Batch jobs:

A batch job is a predefined group of processing actions submitted to the system to be performed with
little or no interaction between the user and the system. Jobs that do not require user interaction to run
can be processed as batch jobs. A batch job typically is a low priority job and can require a special system
environment in which to run.

Batch jobs run in the system background, freeing the user who submitted the job to do other work.
Several batch jobs can be active at the same time.

The following list describes the different kinds of batch jobs:

Simple batch job
The simple batch job is a job that is submitted to a job queue. It waits in line with other batch
jobs and is processed according to its priority and sequence number.

Batch immediate job
A batch immediate job is a batch job that was started with many of the attributes of its parent
job. The job runs in the same subsystem as the parent job. (This is accomplished by using the
spawn() APL.) Because the job copies attributes from the parent job and does not go through a job
queue, it can start faster than jobs submitted to a job queue.

Batch MRT job
A batch MRT job is a multiple requester terminal (MRT) job. MRT jobs are S/36 Environment jobs
that act like servers, allowing other S/36 Environment jobs to attach to them in order to run an
MRT procedure.

Batch print job
Batch print jobs track the printer output files (also called spooled files) that were created by a job
whose current user profile is different from the user profile that it was started under.

Batch jobs can be started when a user:
* Causes a job to be placed in a job queue

* Issues a communication program start request

Work management 37



* Starts a subsystem with a prestart job
* Uses the spawn() API

How a batch job starts:

When a user submits a batch job, the job gathers information from several system objects before it is
placed on a job queue.

1. A user submits a job.

2. The job searches for job attributes. If the job attributes are not found on the Submit Job (SBMJOB)

command, the job looks in the job description (specified on the SBMJOB command), the current user’s
user profile, and the currently active job (the job issuing the SBMJOB command).

Note: Similar to interactive job initiation, you can specify in the job description to use the user profile.
The user profile can specify to use a system value to find certain job attributes.

3. Once the job has all of its attributes, it resides on the job queue.

4. When the subsystem is ready to handle a job, it looks for jobs in the job queues (those that the
subsystem has allocated).

5. Then, like interactive job processing, the subsystem checks the job description for the routing data.

6. The subsystem uses the routing data to find a routing entry. The routing entry provides information
about which pool the job uses, which routing program is used, and from which class the job gets its
run-time attributes.

7. After this information is obtained, the routing program is run. If you use QCMD, QCMD carries out
the SBMJOB command. It runs the command specified on the CMD or RQSDTA parameter.

Related tasks

[‘Submitting a batch job” on page 119

Since batch jobs are typically low priority jobs that require a special system environment in which to
run (such as running at night) they are placed in batch job queues. In the job queue the batch job
receives a run time schedule and a priority. To submit a job to a batch job queue, you use the
character-based interface and one of two commands.

[“Starting a batch job that is waiting in the job queue” on page 122|

Occasionally you might need to force a job to start immediately. While moving the job to a job queue
that is not busy is the most efficient method to accomplish this, there are some other methods that
you can use.

Related information

QPRTJOB job)

Spawn batch jobs:

Spawn is a function that creates a new job process (child process) that inherits many attributes of the
calling process (parent process). A new program is specified and starts running in the child process.
When you spawn a batch job you are using a parent job to pass along arguments and environment
variables to the child job. The spawn() API uses batch immediate jobs, prestart jobs, or prestart batch jobs.

Related information

[spawn()--Spawn Process|
[SPAWN CL command, QUSRTOOL example]

Communication jobs:

A communications job is a batch job that is started by a program start request from a remote system. Job
processing involves a communication request and appropriate specifications.

38 System i: Systems management Work management



For a communications batch job to run on an i5/0S system, a subsystem description containing a work
entry for communications jobs must exist on the system. The communications work entry identifies to the
subsystem the sources for the communications job it processes. The job processing begins when the
subsystem receives a communications program start request from a remote system and an appropriate
routing entry is found for the request.

Routing data for communication jobs

Job routing of communications jobs is determined by the program start request that is received from the
remote system. When a program start request is processed on the target system, a fixed-length data
stream that is used as routing data is created. Position 25 of the routing data always contains
PGMEVOKE for communications requests. Subsystem routing entries that specify a compare value of
PGMEVOKE in position 29 typically have *RTGDTA as the program name. This means that the program
name specified in the routing data (from the remote system’s program start request) is the program to
run.

If a special processing environment is required for certain communications jobs, you can add an
additional routing entry to the subsystem description, specifying a compare value whose starting position
is 37. This compare value should contain the program name for the program start request. The routing
entry must have a sequence number lower than the routing entry that uses PGMEVOKE as the compare
value. This method allows certain communications jobs to run with a different class or pool specification.

Security

The security on the system controls who can use communications devices as well as who can access the
commands uses with the associated device descriptions. You should consider additional security
measures when writing and running application programs on both remote and target systems.

Job description for communication jobs

The job description used for communications jobs is specified on the Add Communications Entry
(ADDCMNE) command. The user specified on this job description is ignored. The system gets the user
name for communications jobs from the program start request. If the program start request does not
specify a user name, the system uses the default user value from the communications entry. To ensure a
greater degree of system security, include user information about the program start request rather than
specifying a default user in the communications work entry.

Types of communications jobs:

This topic describes the most common types of communication jobs.

Qlus (logical unit services)
Qlus handles the event handling for logical unit devices, known as communications devices. Qlus
is also responsible for allocating devices to the correct communications subsystem.

Qcmnarbxx (communications arbiters)
The communications arbiters along with Qsysarb (system arbiter) and Qtaparb (tape arbiter)
process work for all types of devices, not just communications devices. This work includes
communications connection, disconnection, device locking, and error recovery processing.

The system value communication arbiter jobs, at restart (QCMNARB) determines the number of
communications arbiter jobs that are started. A minimum of three communications arbiters are
started on single-processor systems.

Qsyscomm1 (system communications)
This job handles some communications and input/output (I/O) activity.

Work management 39



Q400filsvr (remote file system communication)
This job performs the common programming interface communications (APPN or APPC) for the
remote file system.

Interactive jobs:

An interactive job is a job that starts when a user signs on to a display station and ends when the user
signs off. For the job to run, the subsystem searches for the job description, which can be specified in the
workstation entry or the user profile.

Interactive jobs require continual two-way communications between the user and the system to perform a
task. An interactive job begins when a user signs on to a system. The system requests sign-on
information. If the sign-on request is accepted by the system, then the system creates the interactive job.
The system then asks the user to supply a request. The user enters a request, and the system responds by
processing the request. This pattern is repeated until the user ends the interactive job by signing off the
system, or the job ends due to an application exception or device error recovery.

If an interactive job is part of a group of jobs or a pair of jobs, then it will have one of the following job
types:

Interactive - Group
An Interactive - Group job is part of a group of jobs that is associated with a single display
device.

Interactive - System request
An Interactive - System request job is one of a pair of jobs that is associated with each other by
the system request function.

Did you know? You can sign on to the system in two ways. You can manually enter the system by using
a user id and password. You can also create a program to automatically send the user id and password to
the server, thereby bypassing the sign-on screen.

How an interactive job starts:

When a user signs on to the system, the subsystem gathers information from several system objects
before the interactive job is ready.

1. The subsystem looks in the workstation entry for the job description in order to get the attributes for
the interactive job. If the workstation entry specifies *USRPRF for the job description, the job uses the
information from the user profile.

Note: This flexibility allows you to specify whether the job’s attributes are tied to the workstation or
to the individual user.

2. After the subsystem knows which job description to use, it might not find all of the job attributes in
the job description. Some attributes might be in the user profile. If the user profile does not have the
information, the subsystem looks at the system value.

Note: The user profile contains job attributes that allow you to tailor certain things specifically for
that user.

3. After the subsystem gathers all of the job’s attributes, it determines whether a new interactive job can
start or if an error message should be posted on the sign-on screen. The subsystem checks whether
the maximum number of jobs allowed by the subsystem or by the workstation entry has been
reached. Then it verifies that a valid user profile name has been supplied, that the user profile name
is an enabled user profile, and that the supplied password (if required) is valid. Next, it verifies that
the user has the proper authorities to the job description, the subsystem description, the workstation
device description, and the output queue and library. Finally, the subsystem checks whether the user

40 System i: Systems management Work management



has reached the limits for allowed sign-ons for that user profile. If any validation errors are
encountered, the sign-on screen displays with an appropriate message. Otherwise, the process of
starting the interactive job continues.

After the subsystem validates that the interactive job can start, it checks the job description for the
routing data. The subsystem uses the routing data to find a routing entry in the subsystem
description. The routing entry provides information about which pool the job uses, which routing
program is used, and from which class the job gets its run time attributes.

When all of these pieces are obtained, the routing program runs. IBM supplies a routing program
called QCMD, which you can use for all types of work. QCMD knows if the job is an interactive job
and checks the user profile for an initial program to run. If the initial program finishes running,
QCMD displays the initial menu.

Related tasks

[Avoiding a long-running function from a workstation” on page 125|
To avoid a long-running function (such as save/restore) from a workstation without tying it up, the
system operator can submit the job to a job queue.

Disconnecting interactive jobs:

When the Disconnect Job (DSCJOB) command is called, the job is disconnected and the sign-on display is
shown again. To connect with the job again, sign on to the same device from which you disconnected.
Another interactive job may be started on the device under a different user name.

An option on the System Request menu allows you to disconnect an interactive job, causing the
sign-on display to appear. The option calls the DSCJOB command.

When connecting with a job again, the values specified on the sign-on display for program, menu, and
current library are ignored.

A job which has PC organizer or PC text assist function active cannot be disconnected.

A TCP/IP TELNET job can be disconnected if the session is using a user specified named device
description. You can create a user specified named device description using one of the following ways:

Using Network Stations with the DISPLAY NAME parameter
Using System i Access PC 5250 Client Access support with the workstation ID function

Using the TCP/IP TELNET Device Initialization exit point to specify a workstation name
Telnet client (STRTCPTELN) with remote device parameter

Note: System specified device names, such as QPADEV*, do not allow the job to be disconnected
because it is unlikely the same user that signs on to the same device.

All jobs are disconnected for group jobs. When they are connected again, you return to the place where
the disconnect was issued. If the last active group job ends before you connect again, you return to the
next group job.

If the job cannot be disconnected for any reason, the job is ended instead.

All disconnected jobs in the subsystem end when the subsystem ends. If a subsystem is ending, the
DSCJOB command cannot be issued in any of the jobs in the subsystem.

The Disconnect Job Interval (QDSCJOBITV) system value can be used to indicate a time interval for
which a job can be disconnected. If the time interval is reached, the disconnected job ends.

Disconnected jobs that have not exceeded the QDSCJOBITV value end when the subsystem is ended or
when an IPL occurs.

Related concepts

[Job disconnection considerations” on page 125|
There are several factors that you must consider whenever you disconnect a job.

Related tasks

[“Ending interactive jobs” on page 123|
You can use several different methods to end an interactive job.

Work management 41



[“Disconnecting all jobs from a device” on page 124

The Disconnect Job (DSCJOB) command allows the interactive user to disconnect all interactive jobs at
the workstation and return to the sign-on display. The switched line is dropped only if that is
specified in the workstation device description of this workstation and if no other workstation on this
line is active. If the job is disconnected when the disconnect interval in the Time-out interval for
disconnected jobs (QDSCJOBITV) system value is reached, the job is ended and the job log is not
included with the job’s spooled output.

1/O error for job requester device:

A requester device is a workstation from which a user can log on to a domain and use network resources.
The Device Recovery Action (DEVRCYACN) job attribute specifies what action to take when an I/O error
occurs for a job’s requester device.

The DEVRCYACN attribute has the following options:

*SYSVAL
This is the default. It points to the Action to take when a device error occurs on the workstation
(QDEVRCYACN) system value . The system value supports all of the values that the job attribute
supports (except *SYSVAL).

*MSG Signals the I/O error message and lets the application program perform error recovery. This is
NOT the recommended setting.

*DSCMSG
Disconnect the job. This is the shipped default. Upon connecting again, a new error message
signals the user’s application program indicating the device was lost and recovered since the I/0,
and the contents of the display need to be shown again.

*DSCENDRQS
Disconnect the job. Upon connecting again, an end request function is performed to return
control of the job to the last request level.

*ENDJOB
End the job. A job log might be produced for the job. A message is sent to the job log and to the
QHST log indicating the job ended because of the device error.

*ENDJOBNOLIST
End the job. No job log is produced. A message is sent to the QHST log indicating the job ended
because of the device error.

Note: If *“DSCENDRQS, *ENDJOB, or *ENDJOBNOLIST is specified for DEVRCYACN, the recovery
action takes effect when the error occurs on the device. If one of the other values is specified, the
recovery action takes place at the next I/O to the device with the error.

Interactive jobs and routing steps:
Before the initial menu is called the routing data is compared with the routing entries in the subsystem
description. When a match is made, the program specified in the routing entry is called and the routing

step is started.

The following illustrates the subsequent activity leading up to starting a routing step and displaying the
initial menu for a user profile specifying an initial program.

42 System i: Systems management Work management



UserProfile SMITH Job 000901/SMITH/DSPO1

INLPGM = Authority

PROGR

RTGDTA=
QCMDI

&

T Job Attributes
Job Description QGPL/QDFTJOBD

Routing data definedinthe
jobdescriptionis compared

withthe routing entries
withinthe subsystem
description.

KB subsystem Description QSYS/QBASE

Routing
Entr :
Y hd
CMPVAL=
QCMDI

CLS=
QGPL/QINTER

PGM=
QSYS/QCMD

Subsystem finds a match for the routing data.
Routing stepis started.

Routing program starts running.

E Initial menu is called by routing program QCMD.

Figure 1. Subsystem Activity

Interactive Job Approaches

Initial program PROGR is called by routing program QCMD.

Class QGPL/QINTER

Subsystem QBASE

Processing
Altributes

}

Routing Step

S

l

Program QSYS/QCMD

}

Initial Program PROGR

B ospro1

Initial Menu

RSLS881-2

You can handle interactive jobs in various ways. These approaches are dependent upon how you control
the routing step. First you should determine the following:

* Which program will control the routing step: QSYS/QCMD or a user program?

Work management




* Will the routing be user-based or workstation-based?
Programs that control the routing step:

To determine the best approach for a particular job, you must first determine which program should
control the routing step.

Using QSYS/CMD for interactive jobs - benefits

The IBM-supplied command processor QSYS/QCMD gives the greatest flexibility in terms of making
functions available to workstation users. Using QCMD to control the routing step gives you the following
benefits:

* The attention program is activated if it is specified in the user profile.

* The initial program that is specified in the user profile is called.

* The initial menu that is specified in the user profile is called.

* The user is placed in System/36 environment as it is specified in the user profile.

In addition, the default using QCMD brings you to the Main Menu where you can enter commands
directly, including the CALL command, which is used to call user-written functions. Menu options with
online help are provided to give easy access to system functions. Also provided are command selection
menus, quick access to index search, and the command entry function (called by CALL QCMD). The
command entry functions are intended primarily for programmers and operators who require the full
range of functions available through the direct use of commands.

Calling a user program directly for interactive jobs - benefits

Your programs can be directly called to control the routing steps for interactive jobs. These programs can
be designed to give a more specialized access to functions needed by your workstation users than the
IBM-supplied programs give. In addition, because your programs are tailored for specific functions, they
should typically require even less system resource to support their running than the IBM-supplied
programs. You may also want to provide functions such as an initial program and initial menu.

Workstation versus user based routing:

After you have determined which program controls the routing step, you must determine if routing is to
be based on the workstation from which the job was started, or on the user (user profile) who signed on.

Routing based on the workstation is accomplished using the routing data specified in the job description
associated with the workstation entry or profile for the device. Routing based on a user can be done
using the initial program specified in the user profile or the job description in the user profile mapping to
a routing entry other than QCMD.

Initial program uses

Initial programs may interact with workstations to get input values from a workstation user. When an

initial program is called, it cannot receive parameter values. An initial program can be used in one of two

ways:

* To establish an initial environment for the user entering commands. For example, the library list can be
changed or print files and message files can be overridden. When an initial program completes its
function and returns to QSYS/QCMD, the initial menu is displayed.

* As the controlling program for the job. If the initial program does not return to QSYS/QCMD, it
becomes the controlling program for the routing step. The initial menu is not displayed. The user can
only request those functions available through the initial program.

For example, a menu can be displayed with specific application options. The user can only perform the
functions on the menu. One example of such an option is sign off. If the SSIGNOFF command is run,

44 System i: Systems management Work management



the job ends and the system Main Menu is never displayed. If you use this approach, consider using
the user profile option INLMNU to ensure that no menu is displayed.

An initial program can be written so that when a return is issued, it either does or does not return to
QSYS/QCMD. If the initial program returns to QSYS/QCMD, the initial menu is displayed.

When jobs end at the same time:

Sometimes, jobs end at the same time. For example, a network error occurs and the job attributes are set
to *ENDJOB or *ENDJOBNOLIST. In addition to the job ending, the following device recovery actions
occur.

* The job’s priority is lowered. This occurs so the job is no longer at the same priority as the other active
interactive jobs.

* The job’s time slice is set to 100 milliseconds. This occurs to give higher priority jobs a better chance of
getting processing resources.

Job logs for jobs with job attributes set to *ENDJOB or *ENDJOBNOLIST are in job log pending. To
produce printer output from a job log that is in job log pending, use the Display Job Log (DSPJOBLOG)
command.

When a job ends you can control how the job log is written to a spooled file. This can be done by the job
itself while it is ending, by a background server job, or not at all. The value that you specify can have a
significant impact on overall recovery time when many jobs end at the same time. For more information,
see the related concept Job log pending.

Related concepts

[“Job log pending” on page 76|

The job log pending state has been available for many years. When the job log attribute of a job is
*PND, no job log is produced. You can control how and under what circumstances the job log for a
specific job is produced.

Prestart jobs:

A prestart job is a batch job that starts running before a work request is received. The prestart jobs are
started before any other types of jobs in a subsystem. Prestart jobs are different from other jobs because
they use prestart job entries (part of the subsystem description) to determine which program, class, and
storage pool to use when they are started.

Within a prestart job entry, you must specify attributes that the subsystem uses to create and manage a
pool of prestart jobs. Use prestart jobs to reduce the amount of time required to handle a work request.
Two types of prestart jobs exist. Each type handles different types of requests. Before a job waits for its
first request, it will be shown as Prestart only because the system does not know yet what type of
requests the job will handle.

Prestart communications
The job is a communications batch job that starts running before a remote system sends a
program start request.

Prestart batch
The job is a batch job that starts before a work request is received.

A prestart job starts before a work request is received, either when the subsystem starts or as a result of
the Start Prestart Jobs (STRPJ) command. Prestart jobs start from a prestart job entry (PJE) in the
subsystem description. The prestart job entry specifies attributes such as what program to run in the
prestart job, the user profile under which the prestart job starts running, the job description, the class
used to specify the run-time attributes of the job, and the memory pool in which the prestart job runs.

Work management 45



Prestart jobs can start and initialize themselves before a work request is received. This reduces the
amount of time required to handle the requests. Prestart jobs provide the ability to initialize once and
handle many requests so that a new job is not needed for every request. Many client server applications
use prestart jobs to handle the requests for the client user. Having a job ready to go makes the
performance better in this situation because the prestart job can start processing the request for the user
immediately.

Note: The value specified for the maximum number of jobs in the subsystem can prevent prestart jobs
from starting. If the maximum number of jobs in the subsystem is exceeded, no prestart jobs can
be started. When enough jobs have completed so that the number of jobs running is below the
maximum number of jobs in the subsystem, prestart jobs in the subsystem can start.

Program Start Requests

A Program Start Request (PSR) is an architected way for SNA clients to connect to an SNA server. When
a prestart job is set up to handle PSRs, the external state of the job is in PSRW (Program Start Request
Wait).

Prestart jobs are also used for IBM-supplied TCP/IP servers, most notably the host servers. These prestart
jobs accept work via internal interfaces and PSRs are not used. However, prestart jobs that are waiting for
work, even if they are not using PSRs, still show a PSRW state.

Related concepts

[“Prestart communications jobs and job accounting” on page 90|

If your system uses job accounting, the prestart job program should run the Change Prestart Job
(CHGPJ) command with the program start request value for the accounting code parameter (CHGP]
ACGCDE(*PGMSTRRQS)) immediately after the program start request attaches to the prestart job.

Related tasks

[“Starting a prestart job” on page 126|

Prestart jobs typically start at the same time the subsystem is started. You manually start a prestart job
when all prestart jobs have been ended by the system due to an error or were never started during
subsystem start up due to STRJOBS (*NO) on the prestart job entry. To start a prestart job, use the
character-based interface.

[“Ending a prestart job” on page 131]
You can use the character-based interface to end a prestart job in an active subsystem.

Related information

[Experience Report: Tuning prestart job entries|

Prestart job name:
The fully qualified three-part name of the prestart job never changes once a prestart job is started. The

user name of the fully qualified three-part job name always contains the user profile under which the
prestart job is started.

If a spooled file is opened before a prestart job handles any work request, the spooled file is associated
with the prestart job entry user profile. Otherwise, it is associated with the current user profile of the job.

If the prestart job entry profile and the current user profile are different, spooled files are spooled under a
job with the job name being QPRTJOB and the user name of the current user profile. (This is also true for

prestart job entries for server jobs.)

The class (CLS) parameter on the prestart job entry provides a way to control the performance
characteristics of two classes of prestart jobs per prestart job entry.

How prestart jobs work:

46 System i: Systems management Work management



A prestart job is a job that is started before the work arrives. This allows the system to handle a request
for work without the delay caused by starting a new job.

A prestart job is a unique type of batch job. This means that the job has a job type of ‘B’ and a job
subtype of ’J’. The enhanced job type further defines the job as a prestart job (1610), prestart batch job
(1620), or prestart communications job (1630). The enhanced job type describes how the prestart job
accepts work requests. If the program running in the prestart job uses the communications interface for
accepting work, the job is a prestart communications job. If the program running in the prestart job
accepts work through a batch work interface, the job is a prestart batch job. If the program has not yet
reached the point of accepting work, the job is just a prestart job. Prestart batch jobs are often referred to
as server jobs because they provide service for the work requests.

A communications work request is handled by the subsystem that has the required communications
device allocated. A batch work request is typically handled by one of the basic subsystems that are
shipped with the system: QSYSWRK, QUSRWRK, or QSERVER.

Prestart jobs are started based on the information contained in the prestart job entries. The Start jobs
(STRJOBS) parameter of the Add Prestart Job Entry (ADDPJE) and the Change Prestart Job Entry
(CHGPJE) commands can specify that the prestart jobs are started when the subsystem is started or when
the Start Prestart Jobs (STRPJ]) command is entered. The Initial number of jobs (INLJOBS) parameter
determines the number of prestart jobs that initially start for a program.

As work requests arrive, more prestart jobs may be needed. The Threshold (THRESHOLD) parameter of
the Add Prestart Job Entry (ADDPJE) and the Change Prestart Job Entry (CHGPJE) commands tells when
to start more jobs. When the number of prestart jobs available to handle a request drops below the value
specified by the THRESHOLD parameter, the additional jobs are started. The Additional number of jobs
(ADLJOBS) parameter tells how many more jobs to start.

Some prestart jobs handle a work request and then become available to handle another work request. The
Maximum number of uses (MAXUSE) parameter allows you to specify how many work requests these
prestart jobs handle. Some prestart jobs handle a single work request and then end, ignoring the
MAXUSE value. Whether the prestart job handles multiple work requests or handles only a single work
request is determined by the program running in the prestart job.

When the prestart job ends after handling at least one work request, the subsystem compares the number
of jobs that are still running to the number specified in the INLJOBS parameter. If the number of jobs
remaining is less than INLJOBS, the subsystem starts another job.

If a prestart job ends without handling at least one work request and the job was not ended by the End
Job (ENDJOB) command, the prestart job program is considered to be in error. The subsystem ends the
prestart job entry in a controlled manner. This allows jobs that are servicing a work request to complete
that request, but prevents the subsystem from starting additional jobs.

The subsystem periodically checks the number of prestart jobs to determine if there are excessive
available prestart jobs. A prestart job is available when it is waiting for a work request.

Related information

[Experience Report: Tuning prestart job entries|

[Experience Report: Subsystem Configuration|

Prestart job entries:

You define the prestart job by using a prestart job entry. A prestart job entry does not affect the device
allocation or program start request assignment.

Work management 47



The job attributes of a prestart job are not changed by the subsystem when a program start request
attaches to the prestart job. However, server jobs generally change job attributes to those of the swapped
user profile.

The Change Prestart Job (CHGPJ) command allows the prestart job to change some of the job attributes
to those of the job description (specified in the job description associated with the user profile of the
program start request or in the job description specified in the prestart job entry).

Related concepts

[“Prestart job investigation” on page 230
This topic provides steps to help you answer the question, "How do I find the real user of a prestart
job and determine the resources used by that prestart job?”

Related tasks

[“Adding prestart job entries” on page 170|

Prestart job entries identify prestart jobs that may be started when the subsystem is started or when
the Start Prestart Jobs (STRPJ) command is entered. You can add prestart job entries to the subsystem
description by using the character-based interface.

[“Changing prestart entries” on page 175|

You can change a prestart job entry in the specified subsystem description. The subsystem may be
active when the prestart job entry is changed. Changes made to the entry when the subsystem is
active are reflected over time. Any new prestart jobs started after the command is issued use the new
job-related values. This command identifies prestart jobs that are started when the subsystem is
started or when the Start Prestart Jobs (STRP]) command is issued.

['Removing prestart job entries” on page 179

You can remove prestart job entries from the subsystem description by using the character-based
interface. A prestart job entry cannot be removed if any currently active jobs were started using the
entry.

Related information

[Experience Report: Tuning prestart job entries|

Prestart job handling program start requests:

When a prestart job starts, it runs under the prestart job user profile. When a program start request
attaches to a prestart job, the prestart job user profile is replaced by the program start request user
profile. When the prestart job is finished handling a program start request, the program start request user
profile is replaced by the prestart job user profile. If there is a group profile associated with the user
profile, the group profile is also swapped.

The swapped user profile is for authority checking only. None of the other attributes associated with the
user profile are swapped. Libraries on the library list to which the prestart job entry user profile is
authorized continue to be authorized to the prestart job when the program start request user profile
replaces the prestart job entry user profile. However, the library list can be changed by the Change
Library List (CHGLIBL) command.

Prestart job object authorization for program start requests

When a prestart job starts, authority checking against the prestart job entry user profile is performed on
every object that is needed for starting a job. Before a program start request is allowed to attach a prestart
job, only the program start request user profile/password and its authority to the communications
devices and library/program is checked.

To avoid occurrences where the program start request user profile is not authorized to objects that the
prestart job entry user profile is authorized to, you must ensure that the program start request user
profile is authorized to at least as many objects as the prestart job entry user profile. To accomplish this,
the prestart job program can be created by the prestart job entry user with USRPRF(*OWNER) specified

48  System i: Systems management Work management



on the CRTxxxPGM (where xxx is the program language) command. The program owner authority will
automatically be transferred to any programs called by the prestart job program. Otherwise, you may
choose to explicitly check object authorization (CHKOBJ) before referring to any objects.

Files and objects that the prestart job user profile is not authorized to should be closed and deallocated
before the end of the transaction is performed on the requestor device. If database files are left open in
the prestart job, in order to guarantee database security, the prestart job program must check the program
start request user profile authority to the open files.

Prestart jobs for batch applications:

Prestart jobs and server jobs that use prestart jobs present a unique situation for job accounting. If a
single prestart job services different users you might want to charge each of these users for their
resources used. In such a situation the accounting code needs to be updated before and after each service
request.

For more information about how job accounting and prestart jobs relate, see [“Prestart communications]
fiobs and job accounting” on page 90|

Performance tips for prestart jobs:

The prestart job should do as much work as possible before it attempts to acquire an ICF program device
or accept a CPI Communications conversation. The more work it does initially (allocating objects,
opening database files, and so on), the less it needs to do when a program start request is received,
therefore giving the transaction faster response time. The following are some additional performance
considerations when using prestart jobs:

Remember: If an active prestart job entry is in the subsystem, the subsystem periodically checks the
number of prestart jobs in a pool that are ready to service program start requests to
determine if there are excessive available prestart jobs. Excessive available prestart jobs are
ended by the subsystem gradually. However, the subsystem always leaves at least the
number of prestart jobs specified in the INLJOBS attribute in a pool.

* You should only deallocate resources specific to the transaction that you want performed. Any resource
that is commonly used for other transactions performed by the prestart job program should remain
allocated while the job is waiting for its next request. You should leave files open and objects allocated
to save time when the next request is received.

Note: Database files that are left open in the prestart job generally require the same considerations as
database files that are shared in the same job.

* Since the same QTEMP library is used for the entire life of a prestart job, objects that are no longer
needed should be deleted.

* Since the same Local Data Area (LDA) is used for the entire life of a prestart job, information can be
kept and passed to the next transaction.

* Since each prestart job can handle many program start requests, and has only one job log, you may
want your application to send messages to the job log identifying the activity of the prestart job. This is
also useful because the job logs of batch prestart jobs are cleared between uses.

* The job attributes of a prestart job are not changed by the subsystem when a program start request
attaches to a prestart job. The change Prestart Job (CHGPJ]) command allows the prestart job to change
some of the job attributes to those of the job description (specified in the job description associated
with the user profile of the program start request or in the job description specified in the prestart job
entry.)

¢ The class (CLS) parameter on the prestart job entry provides a way to control the performance
characteristics of two classes of prestart jobs per prestart job entry. For example, you can provide a
lower execution priority for work that arrives when the system is already busy.

Work management 49



Spooled file and the prestart job entry:

If a spooled file is opened before a prestart job handles any program start request, the spooled file is
associated with the prestart job entry user profile; otherwise it is associated with the current program
start request user profile.

If the prestart job entry profile and the current program start request user profile are different, spooled
files are spooled under a job with the first part of the three-part job name being QPRTJOB and the second
part being the name of the user profile.

Reader and writer jobs:

A reader job is a spooled input job, and a writer job is a spooled output job.

Reader
A reader job reads batch job streams from database files, and places the jobs on a job queue. The
reader job is part of input spooling and is an IBM-supplied program.

Writer A writer job writes records from printer output files (also called spooled files) to a printer. The
writer job is an IBM-supplied program, started in the spooling subsystem where it selects files
from the output queue to be printed.

Server jobs:
Server jobs are jobs that run continuously in the background on your system.

Work can come from network functions, operating system functions, on behalf of a user, another system
within the network, or from general system services, such as the clustering server jobs. Server jobs
typically run in one of three basic subsystems that are shipped with the system - QSYSWRK, QSERVER,
or QUSRWRK. Server jobs are most commonly associated with such functions as HTTP, Lotus Notes ,
and TCP/IP. Your system has three basic models for server jobs:

Threaded Job Model
In the threaded job model the server job is a job with multiple threads. One thread acts as the
distributor of work to the other threads. For example, when the server receives a client request,
the initial thread reads the request and passes it to another thread to fulfill the request. With this
model, the amount of jobs on the system is greatly reduced because work is handled in different
threads rather than requiring multiple jobs. A few examples of server jobs that use the threaded
job model are Domino®, HTTP server, and WebSphere®.

Prestart Job Model
In the prestart job model there is typically a primary job that acts as a listener for requests that
come into the system. This job is typically called the daemon job. The daemon job handles the
initial request and then passes the request to the appropriate prestart server job. With this job
model, using prestart jobs can reduce the number of jobs that are required because after a request
has been fulfilled the prestart server job waits for the next request. The server job is reused. Also,
from a performance perspective, the prestart job is already running and waiting to process the
request. Some examples of server jobs that use the prestart job model are SQL server, host
servers, and Simple Mail Transfer Protocol (SMTP).

Note: For jobs that run user code, typically the job is not reused (like most server jobs). This is
because the user code may have changed anything in the job (such as the remote
command server).

Multiple Listening Job Model
In the multiple listening job model, several server jobs are started. When a request comes in, the
job that receives the request handles the job request, while the next available server job waits for
the next request to come in. Once the server job completes the request, it closes the connection
and ends. A new server job starts and the cycle continues.

50 System i: Systems management Work management



With this model, you do not need to be concerned with prestart job entries. However, sometimes
configuring subsystems unique to your environment is not possible because this model runs in
the default subsystem. One exception is File Transfer Protocol (FITP). With file transfer protocol
you can configure the subsystem in which the file transfer protocol server runs. There is no
ability to have some FTP work to run in one subsystem and the rest of the work to run in a
different subsystem. Also, from a performance perspective, the cost of job initiation and job
termination cannot be avoided because once a job is run it is ended and another job starts.
However, because jobs end when the connection is complete and the next job is started, the new
job will generally be up and running when the next request is received, so the job initiation and
termination cost should not affect the time it takes to connect to the server.

Some examples of server jobs that use the multiple listening job model are FTP and line printer
daemon (LPD).

For more detailed information about the job names of the server jobs that run on the system, see
the server job table. This table shows you the subsystem and the job name so that you can find
the active job and its job logs. The table also shows the job description each server job uses. By
default most server jobs do not generate a job log when the job ends (the LOG parameter is set to
4 0 *NOLIST), which means that the job log is not created. If you want a job log to be generated
with all the messages sent to the job log, the LOG parameter needs to specify 4 0 *SECLVL.

Related information

Server job table|
System jobs:

System jobs are created by the operating system to control system resources and perform system
functions. System jobs run when the server starts or when an independent disk pool is varied on. These
jobs perform a variety of tasks from starting the operating system, to starting and ending subsystems, to
scheduling jobs.

System startup jobs:

Startup jobs are system jobs that run at IPL. They handle the tasks that get the operating system
environment up and ready for work. The following is a list of the various system startup jobs.

Scpf (start control program function)
This is the central job when you start the system. Scpf starts the Qsysarb series, but Qsysarb3
starts most of the other system jobs (not Qlus) and brings the system to a usable state. This job
remains active after the system starts, providing an environment for the running of low-priority
and possibly long-running system functions. Scpf also runs during the power down (Pwrdwnsys)
processing, and is the job that ends the machine processing.

Qwcbtclnup (job table cleanup)
This job is used during the start of the system to ensure that the job structures are available for
use. It typically completes processing before the end of the system startup, but it can continue
running after the system starts, if there are a lot of job structures to clean up. This system job
ends when it completes processing.

Qlpsvr (software agreements acceptance)
This job is automatically started during an IPL if online software agreements need to be accepted.
The job ends when all agreements are either accepted or declined.

System arbiters:
The system arbiters (QSYSARB and QSYSARB2 through QSYSARBS), started by an SCPF system job,

provide the environment for the running of high-priority functions. They allow subsystems to start and
end and keep track of the state of the system (for example, a restricted state).

Work management 51



The system arbiters, identified by the job name QSYSARB and QSYSARB2 through QSYSARBS, are the
central and highest priority jobs within the operating system. Each system arbiter responds to
system-wide events that must be handled immediately and those that can be handled more efficiently by
a single job than multiple jobs.

The system arbiter (QSYSARB) is also responsible for starting the Logical Unit Services (QLUS) job
during an IPL. The system arbiter remains active until the system is ended.

The following is a list of system arbiters.

Qsysarb (system arbiter)
The system arbiter provides the environment for the running of high-priority functions. It handles
system resources and keeps track of the state of the system. The system arbiter responds to
system-wide events that must be handled immediately and those that can be handled more
efficiently by a single job. Qsysarb, Qtaparb (tape arbiter), and Qcmnarbxx (communications
arbiters) are responsible for processing communication requests, device locking, line, controller,
and device configuration, and handling of other system-wide resources.

Qsysarb2 (system arbiter 2)
This job is responsible for managing tape resources, handling command analyzer spaces for
command processing and other system-wide processing for the operating system.

Qsysarb3 (system arbiter 3)
This job is responsible for creating and maintaining the job structures on the system. Whenever
temporary or permanent job structures are required for job initiation, the request is processed by
Qsysarb3. Qsysarb3 also starts and ends many of the system jobs.

Qsysarb4 (system arbiter 4)
This job is responsible for starting and ending subsystems. This includes the initial power down
(Pwrdwnsys) processing.

Qsysarb5 (system arbiter 5)
This job is responsible for processing machine events. This includes handling events to support
auxiliary power, system auxiliary storage pools (ASPs) and storage threshold, and lock table
limits. Usually, the machine events are handled and corresponding CPF messages are sent to
Qsysopr and Qhst.

System communication jobs:

This topic contains a list of system communication jobs.

Qlus (logical unit services)
Qlus handles the event handling for logical unit devices, known as communication devices. Qlus
is also responsible for allocating devices to the correct communications subsystem.

Qcmnarbxx (communication arbiters)
The communications arbiters with Qsysarb (system arbiter) and Qtaparb (tape arbiter) process
work for all types of devices, not just communication devices. This work includes
communications connection, disconnection, device locking, and error recovery processing. At
restart, the system value communication arbiter jobs (QCMNARB) determines the number of
communications arbiter jobs that are started. A minimum of three communications arbiters are
started on single-processor systems.

Qsyscomm1 (system communications)
This job handles some communications and input/output (I/0) activity.

Q400filsvr (remote file system communication)
This job performs the common programming interface communications (APPN or APPC) for
these remote file systems.

Database jobs:

52 System i: Systems management Work management



This information contains a list of database jobs.

Qdbfstccol (database file statistic collection)
This job collects database file statistics. These statistics are crucial to correct database query
optimization.

Qdbsrvxr (database cross-reference) and Qdbx###xr for independent disk pool group ###
This job maintains each of the file level system cross-reference files in Qsys. These files contain
cross-reference information about database files and SQL information across the system. The files
all begin with the prefix of Qadb in library Qsys. The primary file that must be maintained is
Qadbxref, the cross-reference file. This file contains a record of each physical database, logical
database, DDM, and Alias file on the system. Qdbsrvxr activates when a file is created, changed,
deleted, restored, renamed, or its ownership is changed.

Qdbsrvxr2 (database cross-reference 2) and Qdbx##H#xr2 for independent disk pool group ###
This job maintains the two field level cross-reference files. Qadbifld in library Qsys is the field
cross-reference file. Qadbkfld in library Qsys is the key field cross-reference file. Qdbsrvxr2 is
activated when a file is created, changed or deleted.

Qdbsrv01 (database server) and Qdbs###v01 for independent disk pool group ###
This job can be viewed as the database maintenance task dispatcher. The number of database
server jobs on the system is one plus twice the number of processors, or one plus twice the
number of ASPs, whichever is greater. The minimum started is five. Qsbsrv01 is the main system
job assigning work to the others. Typically, Qdbsrv01 is most active immediately after restoring a
library that contains database files. Its function includes:

* Signaling to the system-managed access path protection (SMAPP) Licensed Internal Code (LIC)
tasks that new access paths have been restored. SMAPP then determines whether these access
paths need to be protected.

* Preparing the list of access paths that are required to be rebuilt because the access paths were
not restored.

Of the remaining database server jobs, the first half process high-priority requests, and the second
half process low-priority requests. (Example: Qdbsrv02 through Qdbsrv05 are high priority,
Qdbsrv06 through Qdbsrv09 are low priority.)

Qdbsrvxx (database server, high priority) and Qdbs###vxx for independent disk pool group ###
These jobs perform journal and commitment control maintenance for the system and are
considered quick or short-running work.

Qdbsrvxx (database server, low priority) and Qdbs###vxx for independent disk pool group ###
These jobs perform access path maintenance on user data files. Typically, these jobs are inactive,
but in certain cases, they might activate to perform access path rebuilds. Some reasons why these
jobs might be active are:

* Restoring database files that were not saved with access paths
* Restoring logical files without the physical file they are based on
* Canceling of an Rgzpfm command while in process
¢ Invalidation of an index due to damage found in the index
* Post-iServer installation activity to complete cross-reference or other DB upgrade activity
* Constraint verification
Qqqtempl and Qqqtemp?2 (database parallelism)
The database parallelism system jobs perform asynchronous database processing for the DB2®

Multisystem. If users query distributed files, the jobs are used to speed up the queries by doing
certain tasks in parallel.

Other system jobs:

This information contains is a list of other kinds of system jobs.

Work management 53



Qalert (alert manager)
This job performs the tasks necessary to process alerts. This includes such activities as processing
alerts received from other systems, processing locally created alerts, and maintaining the sphere
of control.

Qdcpobjx (decompress system object)
This job decompresses newly installed operating system objects as needed. There is a storage
requirement in order for these jobs to run. If the available storage on your system drops below a
certain limit, these jobs will end. The number of decompress system object jobs is the number of
processors plus one.

Qfilesys1 (files system)
This job supports the background processing of the integrated file system. It ensures that changes
to the files are written to storage and also performs several general file system cleanup activities.

Qjobscd (job schedule)
This job controls the system’s job scheduling functions. Qjobscd monitors the timers for job
schedule entries and scheduled jobs.

Qli#HHtcl for independent disk pool group ### (library cleanup)
This job cleans up libraries on independent disk pools.

QlitHHtrp for independent disk pool group ### (object cleanup)
This job cleans up replaced objects on independent disk pool libraries.

Qlur (LU 6.2 resynchronization)
Qlur handles the two-phase commit resynchronization processing.

Qpfradj (performance adjustment)
This job manages changes to the storage pool sizes and activity levels. All requests to change
storage pools are processed by this job. In addition, if Automatically adjust memory pools and
activity levels (Qpfradj) system value is set to a value of 2 or 3, this job dynamically changes the
sizes and activity levels of storage pools to improve the system performance.

Osplmaint (system spool maintenance) and Qspmn##### for independent disk pool group #####
This job performs system spooling functions that include:

¢ Spooled file cleanup after an IPL or an independent disk pool group is varied on

* Moves stranded spooled files of damaged user output queues in the subsystem auxiliary
storage pool or in a basic user auxiliary storage pool into the output queue QSPRCLOUTQ in
library QRCL

¢ Clears the spooled database member which contained a deleted spooled file’s data and
attributes

* Deletes the spooled database members that have not been reused within the time specified in
Automatically clean up unused printer output storage (QRCLSPLSTG) system value

Qsppf#i#ii# for independent disk pool group #HHH# (system spool PRTQ updater)
This job performs spooled file operations for specific independent disk pool group.

Qtaparb (tape device)
This job processes work related to tape devices including device locking and error recovery
processing.

Qnwharbxx
These system jobs handle events related to the Network Server Host Adapter (NWSH) devices.
There will always be at least one of these jobs started during the current IPL.

Qwcpjobs
This job handles the background cleanup of permanent job structures.

Qwctjobs
This job handles the background cleanup of temporary job structures.

54  System i: Systems management Work management



Job scheduling options

The job schedule function allows for time-dependent scheduling of System i batch jobs. You can schedule
jobs to be released from the job queue at a particular time, or you can use a job schedule entry to submit
your job to the job queue automatically at the time you specify. Job scheduling allows you to control the
date and time a batch job is submitted to or becomes eligible to start from a job queue. This flexibility can
help you as you balance the work load on your system.

For example, you can use job scheduling to delegate the repetitive task of repeatedly submitting meeting
notices, payroll, or weekly and monthly reports from your schedule to the system’s schedule. There are
four methods for scheduling a batch job.

Management Central scheduler

System i Navigator provides an integrated scheduler, the Management Central scheduler, to organize
when you want your jobs to process. You have the option of choosing to perform a task immediately or
choosing a later time. You can use the Management Central scheduler to schedule almost any task in
Management Central.

The Management Central Scheduler window is available anytime you see a Schedule button on a System
i Navigator window.

Note: If you installed the Advanced Job Scheduler on the Management Central server, the Schedule
button will start the Advanced Job Scheduler instead of the Management Central scheduler.

Related tasks
[‘Scheduling a job using Management Central Scheduler” on page 137]

If you do not have the plug-in Advanced Job Scheduler installed, you can use the Management
Central Scheduler to schedule jobs.

Advanced Job Scheduler

The IBM® Advanced Job Scheduler for i5/0S (5761-JS1) licensed program is a powerful scheduler that
allows unattended job processing 24 hours a day, 7 days a week. This scheduling tool provides more
calendar features and offers greater control over scheduled events than the Management Central
scheduler. You can also view job completion history and manage notification of a job’s status.

If you want to schedule jobs on several systems in your network, the product must be installed on each
of your systems. If you want to use the Advanced Job Scheduler in System i Navigator (and in
Management Central), then you must install the client plug-in from a system that has the Advanced Job
Scheduler installed.

However, it is not necessary to install the Advanced Job Scheduler licensed program on each endpoint
system in your Management Central network. When you install the Advanced Job Scheduler on the
central system, jobs or tasks that you define on an endpoint system gather job information that is needed
from the central system. You must set up all job definition information on the central system.

If systems in your network have the Advanced Job Scheduler installed locally, you can schedule tasks
outside of the Management Central network. Under My Connections in System i Navigator, you have
access to the Advanced Job Scheduler on that local system when you expand Work Management.

What's new in Advanced Job Scheduler for V6R1

Enhancements were made to the IBM Advanced Job Scheduler for i5/0S (5761-JS1) in V6R1. For details

of the enhancements, see the features page in I]ob Scheduler for i5/ OSl-lér .

Note: For ordering information, see the [Iob Scheduler for i5/ OS| -lé Web site.

Work management 55


http://www.ibm.com/systems/i/software/jscheduler/v6r1_feat.html
http://www.ibm.com/servers/eserver/iseries/jscheduler/

Job schedule entries

If your system does not have the Management Central Scheduler or the Advanced Job Scheduler, you can
still schedule jobs using a job schedule entry, which is accessed from the character-based interface. Using
this method you can schedule jobs to recur or to run only once.

Since job schedule entries are entries in a permanent object, they do not stay on the job queue like the
scheduled jobs, and therefore they are not lost when the job queue is cleared. You can also save and
restore the job schedule object. This provides a method of backing up your job scheduling information.

When you want a job to process at regular intervals, you create a job schedule entry for the job. The job
schedule entry contains all of the information that is necessary to submit a job and its scheduling
information. Each entry in the object is uniquely identified by the job name that you supply and a 6-digit
entry number that is assigned by the system. No two entries have the same job name and entry number
combinations.

The job schedule entry also contains information used by the system to manage the entry in certain
situations. The information that defines the job is similar to the parameters specified on a Submit Job
(SBMJOB) command, including job name, job description, job queue, user profile, and message queue.
The local data area (LDA) of the job submitted from the job schedule entry is blank when the job starts.

All job schedule entries are contained in the job schedule object. The job schedule object, QDFTJOBSCD is
in the QUSRSYS library and has an object type of *JOBSCD. You cannot create, delete, rename, or
duplicate the job schedule object. You cannot move it to any other library. The job schedule object is
shipped with public authority of *CHANGE. This is the minimum authority necessary to add, change,
hold, release, and remove job schedule entries.

Note: You can also schedule recurring jobs by using the Management Central Scheduler or the Advanced
Job Scheduler.

Related concepts

[“Working with job schedule entries” on page 161

In addition to the System i Navigator Job Properties - Job Queue window, you can also change the job
schedule entry directly by using the character-based interface. The following is a list of common
character-based interface tasks that you can use when working with job schedule entries.

Examples: job schedule entry:
This topic provides examples for using the Add Job Schedule Entry (ADDJOBSCDE) command.
Example

Schedule a job monthly: This example shows how to submit a job to run program INVENTORY at 11:30
p-m. on the last day of every month except on New Year’s Eve.

ADDJOBSCDE JOB(MONTHEND)
CMD(CALL INVENTORY)
SCDDATE (*MONTHEND)
SCDTIME('23:30:00"')
FRQ(*MONTHLY)
OMITDATE('12/31/05")

Schedule a job daily: This example shows how to submit a job to run program DAILYCLEAN every day
at 6:00 p.m. The job runs under the user profile SOMEPGMR. This job is not submitted if the system is
down or is in restricted state at that time.

ADDJOBSCDE JOB (*JOBD)

CMD(CALL DAILYCLEAN)

SCDDAY (*ALL)
SCDTIME('18:00:00")

56 System i: Systems management Work management



SCDDATE (*NONE)
USER (SOMEPGMR)
FRQ(*WEEKLY)

RCYACN (*NOSBM)

Schedule a job weekly: This example shows how to submit a job to run program PGM1 every week
starting on 12/17/05 at the current time. Because 12/17/05 is a Saturday, the job is submitted every
Saturday, and it runs under the user profile

PGMR1. ADDJOBSCDE JOB(*JOBD)

CMD(CALL PGM1)

SCDDATE('12/17/05")

FRQ(*WEEKLY)

USER (PGMR1)

Schedule a job every third Monday and Wednesday: This example shows how to submit a job to run
program PGM2 on the third Monday and the third Wednesday at 11:30 p.m. This job will be submitted
on the next third Monday or third Wednesday at 11:30 p.m., depending on whether those days have
passed already this month. If yesterday was the third Monday, today is the third Tuesday, and tomorrow
is the third Wednesday, it will be submitted tomorrow, and then not again until next month.

ADDJOBSCDE JOB(*JOBD)

CMD(CALL PGM2)

SCDDAY (*MON *WED) FRQ(*MONTHLY)

SCDDATE (*NONE)

RELDAYMON(3) SCDTIME('23:30:00')

Schedule a job every first and third Monday: This example shows how to submit a job to run program
PAYROLL on the first and third Monday of every month at 9:00 a.m. The job runs under user profile
PAYROLLMGR.

ADDJOBSCDE JOB(PAYROLL)

CMD(CALL PAYROLL)

SCDDAY (*MON) FRQ(*MONTHLY)

SCDDATE (*NONE)

RELDAYMON(1 3) SCDTIME('09:00:00')

USER (PAYROLLMGR)

Schedule a job every weekday: This example shows how to submit a job to run PGM4 every weekday at
7:00 p.m.

ADDJOBSCDE JOB(*JOBD)

CMD(CALL PGM4)

SCDDAY (*MON *TUE *WED *THU *FRI)

SCDDATE (*NONE)

SCDTIME('19:00:00') FRQ(*WEEKLY)

Save a job schedule entry: This example shows how to submit a job once and save the entry.

ADDJOBSCDE JOB (*JOBD)
CMD(CALL SAVED)

FRQ (*ONCE)

SAVE (*YES)

The submit job command

This character-based interface command controls the time a job is released in the job queue. It is an easy
way to schedule a job that only needs to run once. It allows you to use many of the job attributes defined
for your current job.

When you schedule a job to run only once (character-based command SBMJOB), the job is released from

the job queue at the scheduled time. The following is a summary of the system tasks that occur when
you use SBMJOB to schedule a batch job.

Work management 57



. You schedule a job using either the System i Navigator interface (Basic Operations > Jobs ~

Right-click the job » Properties » Job Queue tab) or the character-based interface (SBMJOB command
with SCDATE and SCDTIME parameters specified).

The job remains on the job queue in a scheduled state (SCD status) until the date and time indicated
by the parameters.

At the scheduled time, the job is released from the job queue. The job’s status changes from scheduled
(SCD) to released (RLS), unless the job is held (SCDHLD), in which case it changes from scheduled to
held (HLD).

The job is processed like any other job on the job queue.

The job starts if normal conditions (such as a job queue allocated to an active subsystem and
maximum jobs not already active) exist.

Note: This method places the job on the job queue immediately, thus if the job queue is cleared before

the scheduled date and time, you loose your job.
Related tasks
[Submitting a job once” on page 116|
When you need to run a job once, whether immediately or at a scheduled date and time, use the
Submit Job (SBMJOB) command. This method places the job on the job queue immediately.

[Submitting a batch job” on page 119

Since batch jobs are typically low priority jobs that require a special system environment in which to
run (such as running at night) they are placed in batch job queues. In the job queue the batch job
receives a run time schedule and a priority. To submit a job to a batch job queue, you use the
character-based interface and one of two commands.

Job scheduler considerations
When choosing a job scheduler product, you need to consider a variety of different features. The
following is a list of features to consider when determining which job scheduler to use:

Automated job scheduling
— Flexibility in scheduling jobs

— Unattended (or attended) job processing 24 hours a day, 7 days a week, with total compliance to the
schedules you set

— Natural extension of the i5/OS operating system
— Complete control of how, when, and where a job is submitted

- Extensive job dependencies such as objects (existence of a file or records within a physical file), the
activity or inactivity of other jobs, or the status of a line, controller, or subsystem

— Complete calendaring functions, including fiscal and holiday calendars
— Multiple runs per day
System and user-defined parameters

— Current date, submission date, previous date, and current time can be passed into application
programs

— User-defined parameter values can be created, changed, and passed into application programs
Workload/history forecasting

— Forecasts all scheduled jobs to be run next week, next month, or next day

— Optimize production requirements

— Historical tracking and logging of all Advanced Job Scheduler activity

Network management

— Jobs can be set up on any System i product in the network to run on any other System i product on
the network

— Provides complete job history of the job on the submitting system
— Group and dependent jobs can be submitted through the network

58 System i: Systems management Work management



* Report distribution and management

- Routing, monitoring, and controlling of all output reports generated by Advanced Job Scheduler or
i5/0Soperating system

— Spooled file distribution to multiple output queues or to remote systems with optional banner pages
— Spooled output can be duplicated or sent to any user on the i5/0S network
* Security
— Existing i5/0S security can be utilized within Advanced Job Scheduler
— Specify who in your organization has authority to set up or change information about scheduled
jobs
— Authority can be specified for either the individual functions of Advanced Job Scheduler or for
specific jobs
* Graphical user interface
— Point and click capabilities when scheduling a job
- Manage jobs
— Maintain dependencies

Track scheduler activity and log information
e Other key features
— Multiple commands per job
— Definition for job LDA (Local Data Area)
— Console monitor to run jobs in restricted state
— Check maximum run time for each job
— Interface directly to a message-based third-party paging system
— Provisions for full online documentation of each job

— Extensive cursor-sensitive help text on all displays

Job scheduling and system availability

If the system is powered down or in restricted state when scheduled times are reached, jobs cannot be
submitted from job schedule entries and the status of scheduled jobs cannot be changed. However, you
can control how the system handles this situation after the system IPL or after it comes out of restricted
state.

The job schedule entries and the scheduled jobs are processed in the order that the missed occurrences
would have been handled normally. Work from other sources may enter the system while missed job
schedule entries and scheduled jobs are being processed.

* Job Schedule Entries: You can control how each entry is handled by the value you specify for the
recovery action of the entry. You can specify that a job still be submitted using the entry, that a job be
submitted and held on the job queue, or that a job should not be submitted. If you request that a job
be submitted, only one job is submitted from each entry, no matter how many submissions were
missed while the system was not available.

* Scheduled Job: The system checks to determine if any scheduled times have passed while the system
was not available. If a scheduled job with a passed time is found, the job’s status is updated.

Job queues

A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met.

In order for jobs on a job queue to be processed, there must be an active subsystem that is accepting
work from that job queue. When a subsystem starts, it attempts to allocate the job queues that it is

configured to accept work from, and it must successfully allocate a job queue in order to process jobs

Work management 59



from that job queue. Therefore, while one subsystem can process jobs from multiple job queues, only one
subsystem can process jobs from a particular job queue at a time.

Subsystems select jobs from job queues in priority order, within limits that can be configured for each
priority. Each job has a job queue priority that can be managed when the job is on the job queue through
job properties. A base set of job queues is provided with your system. In addition, you can create
additional job queues that you need.

Note: APIs, such as Open List of Job Queues (QSPOLJBQ) and Retrieve Job Queue Information
(QSPRJOBQ), can be called to get information about job queues.

Related concepts

[“Managing job queues” on page 194|

As you manage the work on your system, you might find it necessary to manipulate jobs that are
waiting in a job queue. Perhaps someone needs a job run immediately and the job is sitting in a queue
at a low priority. Or maybe you need to perform some maintenance on a subsystem and want to
move all of the jobs to a queue that is not associated with that particular subsystem.

Related tasks

[“Clearing a job queue” on page 196

When you clear a job queue, every job on the queue is deleted. This includes any jobs that are in the
hold state. You can use System i Navigator or the character-based interface to clear a job queue. Jobs
that are running are not affected because they are considered active jobs and are no longer on the
queue.

[“Creating job queues” on page 197]
To create a job queue, use the character-based interface.

[‘Deleting a job queue” on page 197
To delete a job queue, use the character-based interface.

[‘Holding a job queue” on page 198

When you place a job queue on hold you prevent the processing of all of the jobs that are currently
waiting on the job queue. Placing a job queue on hold has no effect on jobs that are running.
Additional jobs can be placed on the job queue while it is held, but they are not processed.

[‘Releasing a job queue” on page 199|

When you release a job queue, all of the jobs that were placed on hold as a result of placing the job
queue on hold are also released. If an individual job was placed on hold before the job queue was
held, then the job is not released.

Related information

[Work management API|

Ordered list

The ordered list refers to the order in which jobs appear on the job queue. The availability, priority, and
the date and time values help determine the order of jobs on the job queue.

The job number is not used to determine where the job appears in the job queue, nor does it affect when
the job is run.

Availability
Refers to the status of the job on the job queue. The possible values in order are waiting,
scheduled, and held.

Priority
Refers to the priority the job has on the job queue. The possible priority values are 0-9, with 0
being the highest priority. In cases where the jobs are scheduled jobs, the priority does not play a
part in the order of the jobs on the job queue. For instance, if two jobs are scheduled to run at
12:00:00, the jobs are ordered by their position in the job table.

60  System i: Systems management Work management



Date and time
Refers to the date and time of the job:

* If the job is scheduled, the date and time refers to when the job is scheduled to run.
* If the job is not scheduled, the date and time refers to when the job entered the system.

Note: There are cases where the date and time end up being a date and time manually set to
properly position a moved job to a particular job queue.

How a job queue works
Job queues are allocated by a subsystem via the job queue entry. Jobs can be placed on a job queue even
if the subsystem has not been started. When the subsystem is started, it processes the jobs on the queue.

The subsystem description specifies the maximum number of jobs (batch or interactive) that can be active
at the same time. The number of jobs that can be active from any job queue is specified in the job queue
entry.

Not all jobs on a job queue are necessarily available for processing when the subsystem is started.
Scheduled jobs can be placed on the job queue. Jobs can be held on a queue until the system operator
releases them. If the subsystem is ended before all of the jobs are processed, the jobs remain on the queue
until the subsystem is started again, until moved by the system operator to another job queue, until
deleted by the system operator, or until another subsystem allocates the same job queue.

More than one subsystem description can refer to the same job queue, but only one active subsystem at a
time can use the job queue as a source of batch jobs. Therefore, if a subsystem ends and jobs are still on
the job queue, another subsystem referring to that job queue can be started to process the jobs. If another
subsystem is already started and is waiting for the same job queue, the subsystem automatically allocates
the job queue when it becomes available.

Related concepts

[“How a subsystem handles several job queues” on page 195
To illustrate how a subsystem handles several job queues, consider this scenario.

Related tasks

[‘Determining which subsystem has a job queue allocated” on page 198|

You can determine which subsystem has allocated the job queue using the System i Navigator
interface or the character-based interface. This is useful when you find it necessary to delete the job
queue since you cannot delete a job queue to which a subsystem is active.

[‘Creating job queues” on page 197]
To create a job queue, use the character-based interface.

[“Assigning the job queue to the subsystem” on page 194]
To assign a job queue entry to a subsystem description, use the character-based interface.

How jobs are taken from a job queue
Different factors determine how the jobs are selected from a job queue and started.

Maximum active jobs for subsystems
This represents the maximum number of jobs that can be running in a subsystem. After this limit
is reached, no more jobs can start in the subsystem.

Maximum active jobs for job queues
This represents the maximum number of jobs from the job queue that can be running in a
subsystem at the same time. After this limit is reached, no more jobs can start from that job
queue.

Priority on job queue
Jobs that are waiting to run are selected based on the job queue priority. The subsystem attempts

to run higher priority jobs first (job queue priority ranges from 0 through 9 where 0 is the higher
priority), but if the number of jobs running from a priority level reaches the Maximum Active

Work management 61



Jobs value per priority level, the next priority level is processed. (If jobs with the same priority
enter the job queue, the first job submitted will run first, then the second, and so on.)

Sequence
You specify the sequence in the job queue entry of the subsystem description. The sequence
number defines the order in which the subsystem will process the job queues. The subsystem
takes jobs from the job queue with the lowest sequence number first. If there are no more jobs on
the job queue, or if one of the maximum values associated with the job queue is reached, the
subsystem will process the job queue with the next highest sequence number.

Related tasks
[“Placing a job on the job queue” on page 200
Jobs are placed on the job queue by either moving an existing job from one queue to another, or by

submitting a new job. Use System i Navigator to move jobs between queues. Use the character-based
interface to submit a new job.

[“Moving a job to a different job queue” on page 200

There are many reasons why you might want to move a job to another queue. For example,
sometimes jobs become backlogged in the queue because of a long running job. Perhaps the job’s
scheduled run time conflicts with a new job that has a higher priority. One way to manage this
situation is to move the waiting jobs to another queue that is not as busy.

[‘Changing the number of jobs running simultaneously in a job queue” on page 196|

The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

Job queue entry
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem. There
are five parameters in the job queue entry that control how the job queue should be handled.
Subsystem Description (SBSD)
This is the name and the library of the subsystem description to which the job queue entry is
added.
Job queue (JOBQ)
Specifies the name and library of the job queue that is a source of batch jobs that are started by
the subsystem.
Maximum active jobs (MAXACT)
Specifies the maximum number of jobs that can be active at the same time from this job queue.

Sequence number (SEQNBR)

Specifies a sequence number for this job queue, which is used by the subsystem to determine the
order in which the job queues are processed.

Max active priority 1 (through 9) (MAXPTYx)
Specifies the number of jobs that can be started for a specified job priority level.
Related tasks

[“Adding job queue entries” on page 169
A job queue entry identifies a job queue from which jobs are selected for running in the subsystem.

Jobs started from a job queue are batch jobs. You add a job queue entry using the character-based
interface.

[“Changing job queue entries” on page 175|

You can change an existing job queue entry in the specified subsystem description. This command can
be issued while a subsystem is active or inactive. To change the job queue entry in a subsystem, use
the character-based interface.

[“Removing job queue entries” on page 179|
You can remove job queue entries from a subsystem description by using the character-based

62  System i: Systems management Work management



interface. Jobs on the job queue remain on the queue when the job queue entry is removed from the
subsystem description. A job queue entry cannot be removed if any currently active jobs were started
from the job queue.

[‘Changing the number of jobs running simultaneously in a job queue” on page 196|

The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

How job queues are allocated to a subsystem

A job queue can be associated with several subsystems but it can only be allocated to one subsystem at a
time. When the subsystem is started, the subsystem monitor tries to allocate each job queue defined in
the subsystem job queue entries.

If a job queue was already allocated by another subsystem, the first subsystem must end and deallocate
the job queue before the second subsystem can allocate it. After it is started, this second subsystem
allocates job queues assigned to it as they become available.

If a job queue does not exist when the subsystem is started, the job queue is allocated to the subsystem
when one of the following occurs:

* The job queue is created.
* Ajob queue is renamed with the name defined to the subsystem.

* Ajob queue is moved to another library and the resulting qualified name matches the name in the
subsystem description.

* The library containing the job queue is renamed and the resulting qualified name matches the name in
the subsystem description.

Multiple job queues

In many cases, using QBATCH as the only job queue with the default of one active job will be adequate
for your needs. If this is not adequate, you might want to have multiple job queues so that some job
queues are active during normal working hours, some are for special purposes, and some are active after
normal working hours.

For example, you can designate different job queues for:

Long-running jobs so you can control how many jobs are active at the same time
You might also want these jobs to use a lower priority than the other batch jobs.

Overnight jobs that are inconvenient to run during normal working hours
For example, to run a Reorganize Physical File Member (RGZPFM) command on a large database
file requires an exclusive lock on the file. This means that other users cannot access the file while
this operation is taking place. Additionally, this operation can take a long time. It can be more
efficient to place this job on a job queue for jobs which run during off-shift hours.

High-priority jobs
You might want to have a job queue to which all high-priority work is sent. You can then ensure
that this work is completed rapidly and is not delayed by lower-priority jobs.

Jobs that are directed to particular resource requirement such as diskette or tape
Such a job queue needs a MAXACT parameter of 1 in the job queue entry of the subsystem
description so that only one job at a time uses the resource.

For example, if a tape is used for several jobs, all jobs using tape are be placed on a single job
queue. One job at a time are then selected from the job queue. This ensures that no two jobs
compete for the same device at the same time. If this happens, one of the jobs ends with an
allocation error.

Note: Tape output cannot be spooled.

Work management 63



Programmer work
You might want to have a job queue to handle programmer work or types of work that can be
held while production work is being run.

Sequential running of a series of jobs
You can have an application in which one job is dependent on the completion of another job. If
you place these jobs on a job queue that selects and runs one job at a time, this ensures the
running sequence of these jobs.

If a job requires exclusive control of a file, you might want to place it on a job queue when the
queue is the only one active on the server, such as during the night or on a weekend.

If you use multiple job queues, you will find that control of the various job queues is a main
consideration. You will typically want to control:

* How many job queues exist

* How many job queues are active in a particular subsystem at the same time

¢ How many active jobs can be selected from a particular job queue at a particular time
* How many jobs can be active in a subsystem at a particular time

How jobs are taken from multiple job queues
A subsystem processes jobs from a job queue based on sequence number. A subsystem can have more
than one job queue entry and can therefore allocate more than one job queue.

The maximum number of jobs from a queue is specified by the Maximum active jobs MAXACT
parameter on the Add Job Queue Entry (ADDJOBQE) or the Change Job Queue Entry (CHGJOBQE)
commands. You can also control how many jobs of each priority can be active by using the Maximum
active priority MAXACTx parameters. For example, if MAXACT=10, MAXACT5=2, and there are three
jobs on the job queue at priority level 5, then only two of them can become active at any given time.

The subsystem processes jobs from the job queue with the lowest sequence number first. When all of the
jobs that are on the job queue have been processed, or when the maximum number of jobs from the
queue is reached, the subsystem processes jobs from the queue with the next higher sequence number.

The sequence continues until the subsystem has processed all of the available job queue entries or until
the subsystem has reached its limit of jobs that can be running or waiting in the subsystem. The number
of jobs that can be running or waiting is determined by the Maximum active jobs (MAXACT) parameter
in the subsystem description. In some cases the sequence is interrupted as jobs end or are transferred.
Creating, holding, and releasing job queues can also change the sequence of job queues processed.

Related tasks

[Placing a job on the job queue” on page 200

Jobs are placed on the job queue by either moving an existing job from one queue to another, or by

submitting a new job. Use System i Navigator to move jobs between queues. Use the character-based
interface to submit a new job.

[“Moving a job to a different job queue” on page 200

There are many reasons why you might want to move a job to another queue. For example,
sometimes jobs become backlogged in the queue because of a long running job. Perhaps the job’s
scheduled run time conflicts with a new job that has a higher priority. One way to manage this
situation is to move the waiting jobs to another queue that is not as busy.

[‘Changing the number of jobs running simultaneously in a job queue” on page 196|

The QBASE subsystem is shipped with a job queue entry for the QBATCH job queue. This entry only
allows one batch job to run at a time. If you want more than one batch job from that job queue to run
simultaneously then you need to change the job queue entry.

64  System i: Systems management Work management



Job queue security

You can maintain a level of security with your job queue by authorizing only certain persons (user
profiles) to that job queue. In general, there are three ways that a user can become authorized to control a
job queue (for example, hold or release the job queue).

* User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user profile.

 User is assigned job control authority (SPCAUT(*JOBCTL)) in the user profile and the job queue can be
controlled by the operator (OPRCTL(*YES)).

* User has the required object authority to the job queue. The required object authority is specified by
the AUTCHK parameter on the CRTJOBQ command. A value of *OWNER indicates that only the
owner of the job queue is authorized via the object authority for the job queue. A value of *DTAAUT
indicates that users with *CHANGE authority for the job queue are authorized to control the job
queue.

Note: The specific authority required for *DTAAUT are *READ, *ADD, and *DLT data authority.

These three methods of authorization apply only to the job queue, not to the jobs on the job queue. The
normal authority rules for controlling jobs apply whether the job is on a job queue or whether it is
currently running.

Output queues

Output queues are areas where printer output files (also called spooled files) wait to be processed and
sent to the printer. Printer output is created either by the system or by the user using a print file.

A print file is similar to a template or a guideline where the default values for the attributes of printer
output are set. It is the beginning of the printer output life cycle.

The print file contains the output queue (OUTQ) and print device (DEV) attributes, which dictate how
the printer output is to be directed. The default settings are typically *JOB, meaning that the job attributes
of the output queue and printer device determine how the printer output is directed. The job attributes of
the output queue and printer device settings are based on information obtained when the job is created.
This is based on information from the user profile the job is running under, the job description, the
workstation device description, and the Printer device description (QPRTDEV) system value.

When the printer output is ready to be created, the system checks the print file and the job attributes (in
this order) to see what output queue will process the printer output and which printer device the system
will use. You can change the parameters of the output queue (OUTQ) and printer device (DEV) at the
time the job is submitted or at job run-time to bypass extended processing. For example, the user can set
the print file output queue to a specific queue and set the printer device to their specific printer in the
print file at job initiation for the changes to take effect immediately. In doing this, the printer output does
not need to go through the job attributes to find the output queue and printer device it will use. If a
specified output queue cannot be found, the printer output will be directed to QGPL/QPRINT. For more
information about how printer output is created, see Chapter 1 of the Printer Device Programming
manual.

Printer output files are files that hold information waiting to be printed or processed. The printer output
file holds important attributes that define the position of the printer output on the queue with relation to
other printer output. The position is defined by the priority, status, and schedule attributes.

Output queue
An output queue is an object that contains a list of printer output files to be written to an output
device. The output queue carries important attributes that determine the order in which printer
output is processed and the authority needed to make changes to the printer output file.

Priority
Printer output that is waiting to process is moved to the output queue based on its priority
(ranges from 1-9 where 1 is the highest priority).

Work management 65



Status The current status of printer output. You can view this status from the General page of the
Output properties window.

Schedule
The schedule attribute tells when the file should start physical printing of the output data.

Immediate
Print immediately, even if the printer output file is not closed.

File end (default)
Printing begins as soon as the printer output file is closed.

Job end
Printing begins when the job ends.

After the printer output file is ready to be printed, a writer job, a job that processes the printer output
from the output queue to the printer device, takes data from the printer output file and sends it to the
designated printer.

Related concepts

[“Managing output queues” on page 202|

Output queues help you manage printer output created when a job ends. It is important to
understand how to effectively maintain your output queues so that your printed output processes
smoothly.

Related information

[Experience Report: Spool Performance Considerations|

Basic Printing]
Attributes of an output queue

The output queue controls how printer output files (also called spooled files) are processed and who has
the authority to perform actions on the output queue and associated printer output.

Because most of the information that you print on your system is created as printer output, security is
necessary to prevent unauthorized users access to confidential or sensitive material. Authority to check,
data authorization, operator control, spool control, or being the owner allows you to access and makes
changes to an output queue or printer output file. You need one of the following authorities to perform
any action on an output queue or printer output:

Authority to check
You must be the owner of the queue or have data authorization.

Display data
When this authority is set to *YES, it allows you to perform such actions as viewing, moving,
sending output to another system, and copying printer output.

Operator control
If this attribute is set to *YES, users with *JOBCTL special authority are authorized to perform
actions like hold, release, and delete printer output from the output queue. Other actions on
printer output, output queues, and writers are allowed as well.

Spool control
Allows the user to perform all operations on printer output. The user must have *EXECUTE
authority to the library the output queue is located in to perform any actions on the output
queue.

Owner
This allows the user who owns the output queue to change or delete printer output.

Note: The default authority to the output queue is *USE public authority. Display Data authority is set to
*NO (meaning not just anyone can view printer output). Authority to check is *OWNER (so that

66 System i: Systems management Work management



the output queue owner can manipulate the printer output). Operator Control is set to *YES
(meaning a user with *JOBCTL can hold, release, and delete printer output).

For more information about i5/0S authorities, see [Authority required for objects used by commands|in
the Security reference topic collection.

Order of files
The Order of files on the queue (SEQ) attribute determines how the printer output will leave the output
queue to be processed.

This attribute has two values:

* *FIFO: The queue is first-in first-out within priority for each file. That is, new spooled files are placed
after all other entries on the queue of the same priority.

* *JOBNBR : The queue entries for spooled files are sorted in priority sequence using the job number
(actually, the date and time that the job entered the system is used) of the job that created the spooled
file.

Note: You can only change the output queue order of files attribute when no printer output files are on
the queue.

Spooled files

Spooling is a system function that saves data for later processing or printing. This data is stored in a
spooled file. Spooled files work in a similar manner to tape files or other device files. Spooled files allow
you to manage your data targeted for externally attached devices such as a printer.

Spooling functions help server users to manage input and output operations more efficiently. The server
supports two types of spooling, output spooling and input spooling. Output spooling can be used for
printer devices. Input spooling applies to database file input.

Related information

[Spooled files and output queues|

Output spooling:

Output spooling can be used for both printer and diskette devices. Output spooling sends job output to
disk storage instead of sending it directly to a printer or diskette output device. Output spooling allows
the job that produces the output to continue processing without consideration for the speed or
availability of output devices.

Additionally, output spooling allows the server to produce output on multiple output devices, such as
printer and diskette devices, in an efficient manner. It does this by sending the output of a job destined
for a printer to disk storage. This process breaks a potential job limitation imposed by the availability or
speed of the output devices.

The main elements of output spooling are:

* Device description: A description of the printer device.

* Spooled file: A file containing spooled output records that are to be processed on an output device.
¢ Output queue: An ordered list of spooled files.

* Writer: A program that sends files from an output queue to a device.

* Application program: A high-level language program that creates a spooled file using a device file
with the spooling attribute specified as SPOOL(*YES).

* Device file: A description of the format of the output and a list of attributes that describe how the
server should process the spooled file.

Work management 67



Output spooling functions are performed by the server without requiring any special operations by the
program that produces the output. When a device file is opened by a program, the operating system
determines whether the output is to be spooled. When a printer file that specifies spooling is opened, the
spooled file that contains the output of the program is placed on the appropriate output queue in the
server.

A spooled file can be made available for printing when the printer file is opened, when the printer file is
closed, or at the end of the job. A printer writer is started in the spooling subsystem to send the records
to the printer. The spooled file is selected from an output queue.

Spooling device descriptions

Device descriptions must be created for each printer and diskette device in order to define that device to
the server. Printer device descriptions are created using the Create Device Description for Printer
(CRTDEVPRT) command; diskette device descriptions are created using the Create Device Description for
Diskette (CRTDEVDKT) command.

File redirection of spooled files

File redirection occurs when a spooled file is sent to an output device other than the one for which it was
originally intended. File redirection can involve devices that process different media (such as printer
output sent to a diskette device) or devices that process the same type of media but are of different
device types (such as 5219 Printer output sent to a 4224 Printer).

Depending on the new output device for the spooled file, the file can be processed just as it would have
been on the originally specified device. However, differences in devices often cause the output to be
formatted differently. In these cases, the server sends an inquiry message to the writer’s message queue to
inform you of the situation and allow you to specify whether you want printing to continue.

Output queues and spooled files:

Batch and interactive job processing can result in spooled output records that are to be processed on an
output device, such as a printer or diskette drive. These output records are stored in spooled files until
they can be processed. A single job can have many spooled files.

When a spooled file is created, the file is placed on an output queue. Each output queue contains an
ordered list of spooled files. A job can have spooled files on one or more output queues. All spooled files
on a particular output queue should have a common set of output attributes, such as device, form type,
and lines per inch. Using common attributes on an output queue reduces the amount of intervention
required and increases the device throughput.

The following lists some of the parameters on the Create Output Queue (CRTOUTQ) command and what

they specify:

* MAXPAGES: Specifies the maximum spooled file size in pages that is allowed to be printed between a
starting and ending time of day.

e AUTOSTRWTR: Specifies the number of writers that are started automatically to this output queue.

¢ DSPDTA: Whether users without any special authority but who do have *USE authority to the output
queue can display, copy, or send the contents of spooled files other than their own. By specifying

*OWNER for DSPDTA, only the owner of the file or a user with *SPLCTL special authority can display,
copy, or send a file.

¢ JOBSEP: The number of job separator pages, if any, that are to be printed between the output of each
job when the output is printed.

* DTAQ: The data queue associated with this output queue. If specified, an entry is sent to the data
queue whenever a spooled file goes to ready status on the queue.

68  System i: Systems management Work management



¢ OPRCTL: Whether a user who has job control authority can control the output queue (for example, if
the user can hold the output queue).

¢ SEQ: Controls the order in which spooled files are sorted on the output queue.

* AUTCHK: Specifies what type of authority to the output queue that enables a user to control the
spooled files on the output queue (for example, enables a user to hold the spooled files on the output
queue).

* AUT: Public authority. Specifies what control users have over the output queue itself.

¢ TEXT: Text description. Up to 50 characters of text that describes the output queue.

Default system output queues:

Defaults on CL commands use the default output queue for the system printer as the default output
queue for all spooled output. The system printer is defined by the QPRTDEV server value.

When a spooled file is created by opening a device file and the output queue specified for the file cannot
be found, the system attempts to place the spooled file on output queue QPRINT in library QGPL. If for
any reason the spooled file cannot be placed on output queue QPRINT, an error message is sent and the
output is not spooled.

The following output queues are provided:

* QDKT: Default diskette output queue

* QPRINT: Default printer output queue

* QPRINTS: Printer output queue for special forms
* QPRINT2: Printer output queue for 2-part paper

Spooling writers:

A writer is an i5/0S program that takes spooled files from an output queue and produces them on an
output device. The spooled files that have been placed on a particular output queue remain stored in the
system until a writer is started to the output queue.

The writer takes spooled files one at a time from the output queue, based on their priority. The writer
processes a spooled file only if its entry on the output queue indicates that it has a ready (RDY) status.
You can display the status of a particular spooled file using the Work with Output Queue (WRKOUTQ)
command.

If the spooled file has a ready status, the writer takes the entry from the output queue and prints the
specified job or file separators or both, followed by the output data in the file. If the spooled file does not
have a ready status, the writer leaves the entry on the output queue and goes on to the next entry. In
most cases the writer continues to process spooled files (preceded by job and file separators) until all files
with a ready status have been taken from the output queue.

The AUTOEND parameter on the start writer commands determines whether the writer continues to wait
for new spooled files to become available to be written, end after processing one file, or end after all
spooled files that have a ready status have been taken from the output queue.

Spooling writer commands:

Here are the commands that you can use to control spooling writers.

* Start Diskette Writer (STRDKTWTR): Starts a spooling writer to a specified diskette device to process
spooled files on that device.

e Start Printer Writer (STRPRTWTR): Starts a spooling writer to a specified printer device to process
spooled files on that device.

Work management 69



 Start Remote Writer (STRRMTWTR): Starts a spooling writer that sends spooled files from an output
queue to a remote system.

¢ Change Writer (CHGWTR): Changes some writer attributes, such as form type, number of file
separator pages, or output queue attributes.

* Hold Writer (HLDWTR): Stops a writer at the end of a record, at the end of a spooled file, or at the
end of a page.

* Release Writer (RLSWTR): Releases a previously held writer for additional processing.

* End Writer (ENDWTR): Ends a spooling writer and makes the associated output device available to the
server.

Note: You can define some functions to provide additional spooling support. Example source and
documentation for the commands, files, and programs for these functions are part of library
QUSRTOOL, which is an optionally installed part of i5/0S.

Related information

[Start Printer Writer (STRPRTWTR) command|
[Start Remote Writer (STRRMTWTR) command|
[Change Writer (CHGWTR) command|

[Hold Writer (HLDWTR) command|

[Release Writer (RLSWTR) command|

[End Writer (ENDWTR) command|

Input spooling;:

Input spooling takes the information from the input device, prepares the job for scheduling, and places
an entry in a job queue. Using input spooling, you can typically shorten job run time, increase the
number of jobs that can be run sequentially, and improve device throughput.

The main elements of input spooling follow:
* Job queue: An ordered list of batch jobs submitted to the system for running and from which batch
jobs are selected to run.

* Reader: A function that takes jobs from an input device or database file and places them on a job
queue.

When a batch job is read from an input source by a reader, the commands in the input stream are stored
in the system as requests for the job, the inline data is spooled as inline data files, and an entry for the
job is placed on a job queue. The job information remains stored in the system where it was placed by
the reader until the job entry is selected from the job queue for processing by a subsystem.

70  System i: Systems management Work management



Input — | Feader

k J

Disk Storage
(job input)

Figure 2. Relationship of input spooling elements

Job Queue

o I
1
]
L 1

Subsystem
Frocessing

You can use the reader functions to read an input stream from diskette or database files.

Work management

71



ECHIOE - ECHICE Command b
o
.
[&Ta
2ne or more Batch
IMLIMNE DATA *Joh
FILES (Optional Input
[iT& RECCIRLE or ) g
- Input
" Stream
EMCECHICE - Zpticnal EMCECHICZE Command-~
ECHIZE
EMCECHIOE
ot

Figure 3. Typical organization of an input stream

The job queue on which the job is placed is specified on the JOBQ parameter of the Batch Job BCHJOB or
the Start Database Reader STRDBRDR command, or in the job description. The values of the JOBQ
parameter for the BCHJOB command follow:

* *RDR: The job queue is selected from the JOBQ parameter on the STRDBRDR command.
* *JOBD: The job queue is selected from the JOBQ parameter in the job description.
* A specific job queue: The specified queue is used.

For jobs with small input streams, you might improve system performance by not using input spooling.
The Submit Job (SBMJOB) command reads the input stream and places the job on the job queue in the
appropriate subsystem, bypassing the spooling subsystem and reader operations.

If your job requires a large input stream to be read, you should use input spooling (Start Diskette Reader
STRDKTRDR or STRDBRDR command) so that the job can be imported independent of when the job is
actually processed.

Job input commands:

You can use these commands to submit jobs to the system. The start reader commands can be used for
spooling job input; the submit job commands do not use spooling.

* Batch Job (BCHJOB): Marks the start of a job in a batch input stream and defines the operating
characteristics of the job.

e Data (DATA): Marks the start of an inline data file.
* End Batch Job (ENDBCHJOB): Marks the end of a job in a batch input stream.

72 System i: Systems management Work management



¢ End Input (ENDINP): Marks the end of the batch input stream.

* Submit Database Jobs (SBMDBJOB): Reads an input stream from a database file and places the jobs in
the input stream on the appropriate job queues.

* Submit Diskette Jobs (SBMDKTJOB): Reads an input stream from diskette and places the jobs in the
input stream on the appropriate job queues.

* Start Database Reader (STRDBRDR): Starts a reader to read an input stream from a database file and
places the job in the input stream on the appropriate job queue.

* Start Diskette Reader (STRDKTRDR): Starts a reader to read an input stream from diskette and places
the job in the input stream on the appropriate job queue.

Related information

[CL command finder]

[Batch Job (BCHJOB) command|

[Data (DATA) command|

[End Batch Job (ENDBCHJOB) command]

[End Input (ENDINP) command|

[Submit Data Base Jobs (SBMDBJOB) command|
[Start Data Base Reader (STRDBRDR) command]

Inline data files:

An inline data file is a data file that is included as part of a batch job when the job is read by a reader or
a submit jobs command. You use SBMDBJOB or STRDBRDR to queue a CL batch stream (stream of CL
commands to be run). That CL batch stream can include data to be placed into inline data files
(temporary files). When the job ends, the inline data files are deleted.

About this task

An inline data file is delimited in the job by a //DATA command at the start of the file and by an
end-of-data delimiter at the end of the file.

The end-of-data delimiter can be a user-defined character string or the default of //. The // must appear
in positions 1 and 2. If your data contains // in positions 1 and 2, you should use a unique set of
characters, such as // *** END OF DATA. To specify this as a unique end-of-data delimiter, the
ENDCHAR parameter on the //DATA command should be coded as:

ENDCHAR("'// *** END OF DATA')

Note: Inline data files can be accessed only during the first routing step of a batch job. If a batch job
contains a Transfer Job (TFRJOB), a Reroute Job (RRTJOB), or a Transfer Batch Job (TFRBCHJOB)
command, the inline data files cannot be accessed in the new routing step.

An inline data file can be either named or unnamed. For an unnamed inline data file, either QINLINE is
specified as the file name in the //DATA command or no name is specified. For a named inline data file,
a file name is specified.

A named inline data file has the following characteristics:

* It has a unique name in a job. No other inline data file can have the same name.
* It can be used more than once in a job.

* Each time it is opened, it is positioned to the first record.

To use a named inline data file, you must either specify the file name in the program or use an override

command to change the file name specified in the program to the name of the inline data file. The file
must be opened for input only.

Work management 73



An unnamed inline data file has the following characteristics:
* Its name is QINLINE. (In a batch job, all unnamed inline data files are given the same name.)
* It can only be used once in a job.

* When more than one unnamed inline data file is included in a job, the files must be in the input
stream in the same order as when the files are opened.

To use an unnamed inline data file, do one of the following:
* Specify QINLINE in the program.
* Use an override file command to change the file name that is specified in the program to QINLINE.

If your high-level language requires unique file names within one program, you can use QINLINE as a
file name only once. If you need to use more than one unnamed inline data file, you can use an override
file command in the program to specify QINLINE for additional unnamed inline data files.

Note: If you run commands conditionally and process more than one unnamed inline data file, the
results cannot be predicted if the wrong unnamed inline data file is used.

Related concepts

[‘Considerations for opening inline data files”|
You need to consider these elements when you open inline date files.

Considerations for opening inline data files:

You need to consider these elements when you open inline date files.

* The record length specifies the length of the input records. (The record length is optional.) When the
record length exceeds the length of the data, a message is sent to your program. The data is padded
with blanks. When the record length is less than the data length, the records are truncated.

* When a file is specified in a program, the system searches for the file as a named inline data file before
it searches for the file in a library. Therefore, if a named inline data file has the same name as a file that
is not an inline data file, the inline data file is always used, even if the file name is qualified by a
library name.

* Named inline data files can be shared between programs in the same job by specifying SHARE(*YES)
on a create file or override file command. For example, if an override file command specifying a file
named INPUT and SHARE(*YES) is in a batch job with an inline data file named INPUT, any
programs running in the job that specify the file name INPUT shares the same named inline data file.
Unnamed inline data files cannot be shared between programs in the same job.

¢ When you use inline data files, make sure the correct file type is specified on the //DATA command.
For example, if the file is to be used as a source file, the file type on the //DATA command must be
source.
* Inline data files must be opened for input only.
Related tasks
[“Inline data files” on page 73|
An inline data file is a data file that is included as part of a batch job when the job is read by a reader
or a submit jobs command. You use SBMDBJOB or STRDBRDR to queue a CL batch stream (stream of
CL commands to be run). That CL batch stream can include data to be placed into inline data files
(temporary files). When the job ends, the inline data files are deleted.

Job logs

A job log contains information related to requests entered for a job. A job log has two forms, a pending
form and a spooled form.

In its pending form, a job log for a completed job can change as other jobs (the subsystem, the system
operator, and so on) interact with the completed job. In its spooled form, a job log is a snapshot (a

74 System i: Systems management Work management



moment in time) and does not change (such as spooled files that are created by the Display Job Log
(DSPJOBLOG) command, or created after the job completes its activity).

Each job has an associated job log that can contain the following information for the job:
¢ The commands in the job

* The commands in a CL program (if the CL program was created with the LOG(*YES) option or with
the LOG(*JOB) option and a Change Job (CHGJOB) command was run with the LOGCLPGM(*YES)
option)

* All messages (the message and help text for the message) sent to the requester and not removed from
the program message queues

At the end of the job, the job log can be written to the spooled file QPJOBLOG so that it can be printed.
However, producing a job log doesn’t necessarily mean printing it or creating a spooled file. (For
example, the Control Job Log QMHCTLJL API can be used to specify that the job log is to be written to
an outfile at the end of job.)

You can reduce the number of job logs produced and reduce the contention for resources (such as output
queues). This reduces the resource consumption caused by producing job logs.

Related concepts

["Managing job logs” on page 205|

Most jobs on your system have a job log associated with it. Job logs tell you many different things
such as when the job starts, when the job ends, what commands are running, failure notices and error
messages. This information gives you a good idea of how the job cycle is running.

[‘Managing the job log server” on page 205
The QSYSWRK subsystem controls the job log server. However, there are some tasks that you can
perform to customize or manage the job log server.

Related tasks

[Deleting job log output files” on page 214|

Job logs are removed from the system when a job completes normally, or when the Remove Pending
Job Log (QWTRMV]JL) API or the End Job (ENDJOB) command is issued. Additionally if "clear
incomplete job logs” is specified on the IPL, all of the jobs in job log pending are removed from the
system during an IPL. Any remaining job log output files can be found under Basic Operations -»
Printer Output.

[“Controlling batch job log information” on page 213|

For your batch applications, you may want to change the amount of information logged. The log level
(LOG(40 *NOLIST)) specified in the job description for the IBM-supplied subsystem QBATCH
supplies a complete log if the job abnormally ends. If the job completes normally, no job log is
produced.

[“Changing the log level of a job” on page 212]

The log level of a job is a numeric level assigned to a specific combination of message types that are
logged. You can change the log level in the job description by using the character-based interface.
However, if you want to change the log level of a specific job, use the Job Properties - Job Log
window in System i Navigator.

Related information

[Experience Report: Spool Performance Considerations|

How job logs are created
The job logs are available when needed, but no work is done to produce job logs for which there is no
need.

The LOG parameter has three elements: the message (or logging) level, the message severity, and the
level of message text. Each of these elements have specific values that when combined determine the

amount and type of information sent to the job log by the job.

Work management 75



For example, the *NOLIST value of the Text element causes no job log to be produced if the job ends
normally. (The job log does not go into pending.) If the job ends abnormally (if the job end code is 20 or
higher), a job log is produced. The messages that appear in the job log contain both the message text and
the message help.

You can control what produces the job log. This is done with the LOGOUTPUT parameter. When a job
completes, one of three actions occur that affects how the job log is created. The following are values of
the LOGOUTPUT parameter:

* The job log server produces the job log: (*JOBLOGSVR)

* The job itself produces the job log: If the job cannot produce its own job log, the job log is produced
by a job log server. (*JOBEND)

* The job log is not produced: The job log remains in pending until it is removed. (*PND)

Note: These values do not affect job logs that are produced when the message queue is full and the job
message queue full action specifies *PRTWRAP. Messages in the job message queue are written to
a spooled file, from which the job log can be printed, unless the Control Job Log Output
(QMHCTLJL) API was used in the job to specify that the messages in the job log are to be written
to a database file.

What controls the job log parameters?

When a job starts, it gets its LOGOUTPUT value from the job description. If the job description specifies
*SYSVAL (the default for CRTJOBD), the job uses the job log output value that is specified in the Job log
output (QLOGOUTPUT) system value. (While the shipped value for the Job log output (QLOGOUTPUT)
system value is *JOBEND, the recommended value is *JOBLOGSVR.) After the job has established its
LOGOUTPUT job attribute, any changes to the job description or system value do not affect the active
job. Changes to the system value or to the job description take effect for jobs entering the system after the
change.

You can use the Change Job (CHGJOB) command or API (QWTCHG]B) to change the LOGOUTPUT job
attribute after it has already been set in the job. Changes to the job take effect immediately.

Regardless of the method that you choose, the options for handling job logs are the same. You can set the
job to not produce a job log (*PND), have the job produce the job log (*)OBEND), or have the job log
server produce the job log (*jOBLOGSVR).

Related tasks
[“Stopping production of a specific job log” on page 210|
If you only want to stop the production of a particular job log, do not use the End Job Log Server

(ENDLOGSVR) command. The ENDLOGSVR command ends all job log servers which results in
stopping the production of all job logs.

[‘Preventing the production of a job log” on page 211

Preventing the production of a job log is useful if you already know that you will not need the job log
and you want to conserve system resources. When you specify that you do not want to produce a job
log, the job log will not be produced and remains in pending until removed either by the Remove
Pending Job Log (QWTRMYVJL) command or the End Job (ENDJOB) command.

[Controlling information in a job log” on page 212|

When working with problems, you might want to record the maximum amount of information for
jobs that have frequent problems. Alternatively, you might not want to create a job log for jobs that
completed normally. Or you might want to exclude informational messages.

Job log pending

The job log pending state has been available for many years. When the job log attribute of a job is *PND,
no job log is produced. You can control how and under what circumstances the job log for a specific job
is produced.

76  System i: Systems management Work management



This feature is useful when you place the system into a restricted state. When the system goes into a
restricted state, subsystems end and a potential of thousands of jobs can end at once. This in turn can
create a large burden on the output resources. By preventing the production of these job logs, you can
significantly reduce the impact on these resources.

Another example of when you can use this feature is during a communications failure. Perhaps there are
many similar jobs that produce the same job log error messages. You can set the job log to not produce a
spooled file for all of the jobs. Then if there happens to be a communications failure, you can use the
Work with Job Log (WRKJOBLOG) command to determine which logs to print. You can also use the
Work with Job Logs (WRKJOBLOG) screen to manage job logs.

Jobs might be in a job log pending state due to the workings of the Power Down System (PWRDWNSYS)
command. The System i Navigator user interface shows the status "Completed - Job log pending” for
these jobs. This is a subset of character-based interface status of *OUTQ.

Taking advantage of these enhancements can help you to reduce the number of job logs produced and
thereby reduce the contention for resources. This can result in improved system performance.

Related concepts

[“When jobs end at the same time” on page 45|

Sometimes, jobs end at the same time. For example, a network error occurs and the job attributes are
set to *ENDJOB or *ENDJOBNOLIST. In addition to the job ending, the following device recovery
actions occur.

Related tasks

[“Cleaning up job log pending” on page 215|

There are a few ways to clean up, or remove jobs from job log pending. You can end the job with a
value of 0 for the Maximum log entries (LOGLMT) parameter. If the job is already ended, you can run

the Remove Pending Job Log (QWTRMV]JL) APL You can also use the Work with Job Logs
(WRKJOBLOG) command.

[‘Producing printer output from job log pending” on page 215|

Jobs that do not have the System i Navigator Job Properties - Job Log setting, Produce a job log field
selected do not produce job logs. Instead the job log is in job log pending. To produce printer output
from a job log that is in job log pending, use the character-based interface.

Job log server

Typically the job log server writes a job’s job log to a spooled file. You can route the job log to a printer
or to an outfile, (if specified to do so by using the QMHCTLJL, Control job log API), however this is not
the recommended method for producing job logs.

You can view information about the job log server via System i Navigator from the Work Management »
Server Jobs display, or the Work Management > Active Jobs display. (To make it easier to identify the
jobs running on the job log server, make sure that you include the Server column in your display.)

The maximum number of job log servers that can be active at one time is 30. You start additional job log
servers and manage them in the same way as other servers in your system. This is done by using the
character-based interface command STRLOGSVR.

How the job log server starts

By default, the job log server will start automatically when the QSYSWRK subsystem starts. The server
ends whenever the QSYSWRK subsystem is ended.

The Start Job Log Server (STRLOGSVR) command starts the job log server. The job log server writes job
logs for jobs that are in a job log pending state and that do not have the attribute of *PND. The job log
server writes a job’s job log either to a spooled file, to a printer, or to an outfile, (if specified to do so by
using the QMHCTLJL, Control job log API).

Work management 77



Related tasks

[‘Reconfiguring the job log server” on page 206|

As shipped, the job log server runs in QSYSWRK. QSYSWRK is continuously active. To enhance
performance, you might want to reconfigure your job log server to run in a different subsystem.
[“Starting the job log server” on page 207

By default, the job log server automatically starts when the QSYSWRK subsystem starts. You can
manually start a job log server by using the Start Job Log Server (STRLOGSVR) command.
[“Ending the job log server” on page 206|

The End Job Log Server (ENDLOGSVR) command is used to end the job log server(s). The job log
server writes job logs for jobs that are in a job log pending state. If more than one job log server job is
active at the time this command is issued, all of the job log server jobs are ended.

Related information

[Control Job Log Output (QMHCTLJL) API|

Job log display characteristics

System i Navigator provides you with a user friendly, easy to read interface from which you can view job
logs and the job log’s messages. You can also view job logs by using the character based interface.

You can control which columns appear in the job log list by using the Job Log - Columns window. (Work
Management » Active Jobs » Right-click a job and select Job Log » View menu » Customize this view
> Columns) The columns that you can choose to display in the job log list are:

Message 1D From Program
Message Request Level
Sent Severity
Thread To Program
Type

Character-based interface

When you use the Display Job Log (DSPJOBLOG) command, you see the Job Log display. This display
shows program names with special symbols, as follows:

>> The running command or the next command to be run. For example, if a CL or high-level
language program was called, the call to the program is shown.

> The command has completed processing.
The command has not yet been processed.

Reply message. This symbol marks both those messages needing a reply and those that have
been answered.

Job log headings:

Job log headings are located at the top of each page of the printed job log. These headings identify the
job to which the job log applies and the characteristics of each entry. The following is a list of possible
entries in the job log heading.

* The fully qualified name of the job (job name, user name, and the job number)
* The name of the job description used to start the job

e The date and time the job started

¢ The message identifier

* The message type

78  System i: Systems management Work management



¢ The message severity
* The date and time each message was sent

* The message. If the logging level specifies that second-level text is to be included, the second-level text
appears on subsequent lines below the message

¢ The program from which the message or request was sent
* The machine interface instruction number or the offset to the program to which the message was sent

Note: The machine interface instruction numbers appear only for escape, notify, and diagnostic
messages. For all other message types, the machine interface instruction number is set to zero.

* If the job uses APPC, the heading contains a line showing the unit of work identifier for APPC.
Messages:

Messages contain the job name, the message type, the date and time it was sent, the action that occurred,
and the necessary actions needed to fix a problem. This is useful when you are trying to troubleshoot any
problems that might occur on your servers. You can access job logs for server jobs through System i
Navigator. Messages fall into two categories, alertable messages and messages logged in a job log.

Alertable messages - These messages are sent to QSYSOPR because they need immediate action. The
message contains the problem, the cause, and the recovery action necessary. For example, the server fails
to start or the server ends unexpectedly. Some servers send alertable messages to QSYSOPR. These
messages have the Alert Option (ALROPT) defined in the message description. You can use alerts to
provide centralized handling of alertable messages.

Messages logged in a job log - These messages are diagnostic in nature, meaning that they are not
critical but are alerting the user of some action that was taken. These messages can be system generated
as well as user created.

Message logging level

The message logging level determines which messages and what message types should be logged for the
job. The following table explains what each level represents.

Level Description

Level 1 All messages sent to the job’s external message queue with a severity greater than or equal to the
message severity value. (In System i Navigator, the Message severity (0-99) value can be found on
the Job Properties - Job Log window. This is a value that you can control.)

Level 2 All messages that meet Level 1 qualifications and any request messages which result in a high level
message greater than or equal to the message severity value.

Note: A high-level message is one that is sent to the program message queue of the program that
receives the request message. (For example, QCMD is an IBM-supplied request processing program
that receives request messages.)

Level 3 All messages that meet Level 1 or Level 2 qualifications and all request messages. Additionally, any
commands from CL programs are included if the Log commands from CL programs box is
checked (Job Properties - Job Log window).

Note: The Log commands from CL programs box is equivalent to the log attribute of the CL
program.

Level 4 All request messages and all messages with a severity greater than or equal to the message logging
severity, including trace messages. Additionally, any commands from CL programs are included if
the Log commands from CL programs box is checked Job Properties - Job log window).

Note: The Log commands from CL programs box is equivalent to the log attribute of the CL
program.

Related tasks

Work management 79



[“Changing the log level of a job” on page 212|

The log level of a job is a numeric level assigned to a specific combination of message types that are
logged. You can change the log level in the job description by using the character-based interface.
However, if you want to change the log level of a specific job, use the Job Properties - Job Log
window in System i Navigator.

Interactive job logs

The IBM-supplied job descriptions QCTL, QINTER, and QPGMR all have a log level of LOG(4 0
*NOLIST); therefore all messages help text are written to the job log. However, the job logs are not
printed if the job ends normally unless you specify *LIST on the SIGNOFF command.

If a display station user uses and IBM-supplied menu or the command entry display, all error messages
are displayed. If the display station user uses a user-written initial program, any unmonitored message
causes the initial program to end and a job log to be produced. However, if the initial program monitors
for messages, it receives control when a message is received. In this case, it is important to ensure that
the job log is produced so that you can determine the specific error that occurred.

For example, assume that the initial program displays a menu that includes a signoff option, which
defaults to *NOLIST. The initial program monitors for all exceptions and includes a Change Variable
(CHGVAR) command that changes the signoff option to *LIST if an exception occurs:

PGM

DCLF MENU

DCL &SIGNOFFDPT TYPE(*CHAR) LEN(7)
VALUE (*NOLIST)

MONMSG MSG(CPFO000) EXEC(GOTO ERROR)
PROMPT: SNDRCVF RCDFMT (PROMPT)
CHGVAR &IN41 '0'

iF (%0PTION *EQ '90') SIGNOFF
LOG (&SIGNOFFOPT) 3

GOTO PROMPT

ERROR: CHGVAR&SIGNOFFOPT '#LIST'
CHGVAR &IN41 '1'

GOTO PROMPT

ENDPGM

If an exception occurs, the CHGVAR command changes the option on the SIGNOFF command to *LIST
and sets on an indicator. This indicator can be used to condition a constant that displays a message
explaining that an unexpected error occurred and telling the display station user what to do.

QHST History Log

The history (QHST) log consists of a message queue and a physical file known as a log-version. Messages
sent to the log message queue are written by the system to the current log-version physical file.

The history log (QHST) contains a high-level trace of system activities such as system, subsystem, job
information, device status, and system operator messages. Its message queue is QHST.

Log-Version

Each log-version is a physical file that is named in the following way:
Qxxxyydddn

80 System i: Systems management Work management



Where:
xxx is a 3 character description of the log type (HST)
yyddd is the Julia