
System i

i5/OS Network File System Support

Version 6 Release 1

SC41-5714-03

���

System i

i5/OS Network File System Support

Version 6 Release 1

SC41-5714-03

���

Note

Before using this information and the product it supports, read the information in “Notices” on

page 95.

This edition applies to version 6, release 1, modification 0 of IBM i5/OS (product number 5761–SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CICS models.

© Copyright International Business Machines Corporation 1999, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

About i5/OS Network File System

Support (SC41-5714) ix

Who should read this book ix

Prerequisite and related information ix

System i Navigator x

How to send your comments x

Chapter 1. What is the Network File

System? 1

Introduction 1

A Brief History 3

The Network File System as a File System 3

Stateless and Stateful Network Protocols 3

Overview of the TULAB Scenario 4

Chapter 2. The Network File System

Client/Server Model 5

Network File System Client/Server Communication

Design 6

Network File System Process Layout 6

Network File System Stack Description 7

System i as a Network File System Server 8

Network File System Server-Side Daemons . . . 8

System i as a Network File System Client 10

Network File System Client-Side Daemons . . . 10

NFS Client-Side Caches 11

Chapter 3. NFS and the User-Defined

File System (UDFS) 13

User File System Management 13

Create a User-Defined File System 13

Display a User-Defined File System 15

Delete a User-Defined File System 16

Mount a User-Defined File System 17

Unmount a User-Defined File System 18

Saving and Restoring a User-Defined File System 18

Perform UDFS operations in System i Navigator 18

Mount a UDFS in System i Navigator 20

User-Defined File System Functions in the Network

File System 21

Using User-Defined File Systems with Auxiliary

Storage Pools 21

Chapter 4. Server Exporting of File

Systems 23

What is Exporting? 23

Why Should I Export? 24

TULAB Scenario 24

What File Systems Can I Export? 25

How Do I Export File Systems? 26

Rules for Exporting File Systems 26

CHGNFSEXP (Change Network File System

Export) Command 27

Exporting from System i Navigator 30

Find out what is exported 34

Exporting Considerations 36

Chapter 5. Client Mounting of File

Systems 37

What Is Mounting? 37

Why Should I Mount File Systems? 39

What File Systems Can I Mount? 40

Where Can I Mount File Systems? 40

Mount Points 42

How Do I Mount File Systems? 43

ADDMFS (Add Mounted File System) Command 43

RMVMFS (Remove Mounted File System)

Command 45

DSPMFSINF (Display Mounted File System

Information) Command 47

Chapter 6. Using the Network File

System with i5/OS File Systems 51

″Root″ File System (/) 52

Network File System Differences 52

Open Systems File System (QOpenSys) 53

Network File System Differences 53

Library File System (QSYS.LIB) 54

Network File System Differences 54

Document Library Services File System (QDLS) . . 56

Network File System Differences 56

Optical File System (QOPT) 57

Network File System Differences 57

User-Defined File System (UDFS) 58

Network File System Differences 58

Administrators of UNIX Clients 59

Network File System Differences 59

Chapter 7. NFS Startup, Shutdown, and

Recovery 61

Configuring TCP/IP 61

Implications of Improper Startup and Shutdown . . 62

Proper Startup Scenario 62

STRNFSSVR (Start Network File System Server)

Command 63

Proper Shutdown Scenario 65

Shutdown Consideration 66

ENDNFSSVR (End Network File System Server)

Command 66

Start or stop NFS in System i Navigator 68

Locks and Recovery 70

Why Should I Lock a File? 71

How Do I Lock A File? 71

© Copyright IBM Corp. 1999, 2008 iii

Stateless System Versus Stateful Operation . . . 71

RLSIFSLCK (Release File System Locks)

Command 71

Chapter 8. Integrated File System APIs

and the Network File System 75

Error Conditions 75

ESTALE Error Condition 75

EACCES Error Condition 75

API Considerations 75

User Datagram Protocol (UDP) Considerations 75

Client Timeout Solution 76

Network File System Differences 76

open(), create(), and mkdir() APIs 76

fcntl() API 76

Unchanged APIs 77

Chapter 9. Network File System

Security Considerations 79

The Trusted Community 79

Network Data Encryption 80

User Authorities 80

User Identifications (UIDs) 81

Group Identifications (GIDs) 81

Mapping User Identifications 81

Proper UID Mapping 83

Securely Exporting File Systems 84

Export Options 85

Appendix A. Summary of Common

Commands 87

Appendix B. Understanding the /etc

Files 89

Editing files within the /etc directory 89

Edit stream files using the Edit File (EDTF)

command 89

Edit stream files using a PC-based editor . . . 90

Edit stream files using a UNIX editor through

NFS 90

/etc/exports File 90

Formatting Entries in the /etc/exports File . . . 90

Examples of Formatting /etc/exports with

HOSTOPT Parameter 91

/etc/netgroup File 92

/etc/rpcbtab File 93

/etc/statd File 93

Notices 95

Programming interface information 96

Trademarks 97

Terms and conditions 97

Bibliography 99

Index 101

iv System i: i5/OS Network File System Support

Figures

 1. The local client and its view of the remote

server before exporting data 1

 2. The local client and its view of the remote

server after exporting data 2

 3. The local client mounts data from a remote

server 2

 4. Remote file systems function on the client 2

 5. The TULAB network namespace 5

 6. The NFS Client/Server Model 6

 7. A breakdown of the NFS client/server protocol 7

 8. The NFS Server 8

 9. The NFS Client 10

10. Using the Create User-Defined FS (CRTUDFS)

display 14

11. Display User-Defined FS (DSPUDFS) output

(1/2) 15

12. Display User-Defined FS (DSPUDFS) output

(2/2) 16

13. Using the Delete User-Defined FS (DLTUDFS)

display 17

14. A Windows view of using the CRTUDFS

(Create UDFS) command 19

15. A Windows view of using the DSPUDFS

(Display UDFS) command 20

16. A Windows view of Mounting a user-defined

file system 21

17. Exporting file systems with the /etc/exports

file 23

18. Dynamically exporting file systems with the

″-I″ option 24

19. Before the server has exported information 25

20. After the server has exported /classes/class2 25

21. A directory tree before exporting on TULAB2 26

22. The exported directory branch /classes on

TULAB2 26

23. The exported directory branch /classes/class1

on TULAB2 27

24. Using the Change NFS Export (CHGNFSEXP)

display 28

25. The System i Navigator interface. 31

26. The NFS Export dialog box. 32

27. The Add Host/Netgroup dialog box. 33

28. The Customize NFS Clients Access dialog box. 34

29. The NFS exports dialog box. 35

30. A local client and remote server with exported

file systems 37

31. A local client mounting file systems from a

remote server 38

32. The mounted file systems cover local client

directories 38

33. The local client mounts over a high-level

directory 39

34. The local client mounts over the /2 directory 39

35. Views of the local client and remote server 40

36. The client mounts /classes/class1 from

TULAB2 41

37. The /classes/class1 directory covers

/user/work 41

38. The remote server exports /engdata 41

39. The local client mounts /engdata over a

mount point 42

40. The /engdata directory covers /user/work 42

41. Using the Add Mounted FS (ADDMFS)

display 44

42. Using the Remove Mounted FS (RMVMFS)

display 46

43. Using the Display Mounted FS Information

(DSPMFSINF) display 47

44. Display Mounted FS Information

(DSPMFSINF) output (1/2) 48

45. Display Mounted FS Information

(DSPMFSINF) output (2/2) 48

46. The ″Root″ (/) file system accessed through

the NFS Server 52

47. The QOpenSys file system accessed through

the NFS Server 53

48. The QSYS.LIB file system accessed through the

NFS Server 54

49. The QDLS file system accessed through the

NFS Server 56

50. The QOPT file system accessed through the

NFS Server 57

51. The UDFS file system accessed through the

NFS Server 58

52. Using the Start NFS Server (STRNFSSVR)

display 64

53. Using the End NFS Server (ENDNFSSVR)

display 67

54. Starting or stopping NFS server daemons. 69

55. NFS Properties dialog box. 70

56. Client outside the trusted community causing

a security breach 80

© Copyright IBM Corp. 1999, 2008 v

vi System i: i5/OS Network File System Support

Tables

1. RLSIFSLCK parameters 72

2. CL Commands Used in Network File System

Applications 87

© Copyright IBM Corp. 1999, 2008 vii

||

viii System i: i5/OS Network File System Support

About i5/OS Network File System Support (SC41-5714)

The purpose of this book is to explain what the Network File System is, what it does, and how it works

on the i5/OS platform. The book shows real-world examples of how you can use NFS to create a secure,

useful integrated file system network. The intended audiences for this book are:

v System administrators developing a distributed network using the Network File System.

v Users or programmers working with the Network File System

Chapters one and two introduce NFS by giving background and conceptual information on its protocol,

components, and architecture. This is background information for users who understand how the i5/OS

platform works, but do not understand NFS.

The rest of the book (chapters three through nine) shows detailed examples of what NFS can do and how

you can best use it. The overall discussion topic of this book is how to construct a secure, user-friendly

distributed namespace. Included are in-depth examples and information regarding mounting, exporting,

and the following topics:

v How NFS functions in the client/server relationship

v NFS exceptions for i5/OS file systems

v NFS startup, shutdown, and recovery

v File locking

v New integrated file system error conditions and how NFS affects them

v Troubleshooting procedures for NFS security considerations

It is assumed that the reader has experience with i5/OS client/server model, though not necessarily with

the Network File System.

Who should read this book

This book is for i5/OS users, programmers, and administrators who want to know about the Network

File System on the i5/OS platform. This book contains:

v Background theory and concepts regarding NFS and how it functions

v Examples of commands, i5/OS displays, and other operations you can use with NFS

v Techniques on how to construct a secure, efficient namespace with NFS

Prerequisite and related information

Use the i5/OS Information Center as your starting point for looking up i5/OS technical information.

You can access the Information Center two ways:

v From the following Web site:

http://www.ibm.com/systems/i/infocenter/

v From CD-ROMs that ship with your IBM i5/OS order:

i5/OS Information Center, SK3T-4091-07. This package also includes the PDF versions of i5/OS

manuals, , which replaces the Softcopy Library CD-ROM.

The i5/OS Information Center contains advisors and important topics such as Java™, TCP/IP, Web

serving, secured networks, logical partitions, clustering, CL commands, and system application

programming interfaces (APIs). It also includes links to related IBM® Redbooks™ publication and Internet

links to other IBM Web sites such as the Technical Studio and the IBM home page.

© Copyright IBM Corp. 1999, 2008 ix

With every new hardware order, you receive the System i Setup and Operations, SK3T-4098. This DVD

contains IBM System i Access for Windows. System i Access Family offers a powerful set of client and

server capabilities for connecting PCs to System i™ servers.

For other related information, see the “Bibliography” on page 99.

System i Navigator

IBM System i Navigator is a powerful graphical interface for managing your System i product. System i

Navigator functionality includes system navigation, configuration, planning capabilities, and online help

to guide you through your tasks. System i Navigator makes operation and administration of the server

easier and more productive and is the only user interface to the new, advanced features of the i5/OS

operating system. It also includes Management Central for managing multiple servers from a central

server.

You can find more information on System i Navigator in the i5/OS Information Center and at the

following Web site:

http://www.ibm.com/eserver/iseries/navigator/

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you

have any comments about this book or any other i5/OS documentation, fill out the readers’ comment

form at the back of this book.

v If you prefer to send comments by mail, use the readers’ comment form with the address that is

printed on the back. If you are mailing a readers’ comment form from a country other than the United

States, you can give the form to the local IBM branch office or IBM representative for postage-paid

mailing.

v If you prefer to send comments by FAX, use either of the following numbers:

– United States, Canada, and Puerto Rico: 1-800-937-3430

– Other countries: 1-507-253-5192
v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:

 RCHCLERK@us.ibm.com
– Comments on the i5/OS Information Center:

 RCHINFOC@us.ibm.com

Be sure to include the following:

v The name of the book or i5/OS Information Center topic.

v The publication number of a book.

v The page number or topic of a book to which your comment applies.

x System i: i5/OS Network File System Support

Chapter 1. What is the Network File System?

Introduction

i5/OS Network File System Support introduces a system function for the i5/OS platform that aids users and

administrators who work with network applications and file systems. You can use the Network File

System (NFS**) to construct a distributed network system where all users can access the data they need.

Furthermore, the Network File System provides a method of transmitting data in a client/server

relationship.

The Network File System makes remote objects stored in file systems appear to be local, as if they reside

in the local host. With NFS, all the servers in a network can share a single set of files. This eliminates the

need for duplicate file copies on every network system. Using NFS aids in the overall administration and

management of users, systems, and data.

NFS gives users and administrators the ability to distribute data across a network by:

v Exporting local file systems from a local server for access by remote clients. This allows centralized

administration of file system information. Instead of duplicating common directories on every server,

NFS shares a single copy of a directory with all the proper clients from a single server.––

v Mounting remote server file systems over local client directories. This allows i5/OS platform to work

with file systems that have been exported from a remote server. The mounted file systems will act and

perform as if they exist on the local server.

The following figures show the process of a remote NFS server exporting directories to a local client.

Once the client is aware of the exported directories, the client then mounts the directories over local

directories. The remote server directories will now function locally on the client.

Before the server exports information, the client does not know about the existence of file systems on the

server. Furthermore, the client does not know about any of the file systems or objects on the server.

Figure 1. The local client and its view of the remote server before exporting data

© Copyright IBM Corp. 1999, 2008 1

After the server exports information, the proper client (the client with the proper authorities) can be

aware of the existence of file systems on the server. Furthermore, the client can mount the exported file

systems or directories or objects from the server.

The mount command makes a certain file system, directory, or object accessible on the client. Mounting

does not copy or move objects from the server to the client. Rather, it makes remote objects available for

use locally.

When remote objects are mounted locally, they cover up any local objects that they are placed over.

Mounted objects also cover any objects that are downstream of the mount point, the place on the client

where the mount to the server begins. The mounted objects will function locally on the client just as they

do remotely on the server.

For more information on these aspects of NFS, see the following sections:

v Chapter 4, “Server Exporting of File Systems,” on page 23

v Chapter 5, “Client Mounting of File Systems,” on page 37

NFS is the replacement for the TCP/IP File Server Support/400 (FSS/400) system application. If you are

accustomed to working with FSS/400, you will notice many similarities between FSS/400 and NFS. It is

Figure 2. The local client and its view of the remote server after exporting data

Figure 3. The local client mounts data from a remote server

Figure 4. Remote file systems function on the client

2 System i: i5/OS Network File System Support

important to note, however, that FSS/400 and NFS are not compatible with each other. FSS/400 can exist

on the same server with NFS, but they cannot operate together. Do not start or use FSS/400 and NFS at

the same time.

A Brief History

Sun Microsystems, Inc.** released NFS in 1984. Sun introduced NFS Version 2 in 1985. In 1989, the

Request For Comments (RFC) standard 1094, describing NFS Version 2, was published. X/Open

published a compatible version that is a standard for NFS in 1992. Sun published the NFS Version 3

protocol in 1993.

Sun developed NFS in a UNIX** environment; therefore, many UNIX® concepts (for example, the UNIX

authentication) were integrated into the final protocol. Even so, NFS is platform independent. Today,

almost all UNIX platforms use NFS, as do many PCs, mainframes, and workstations. The i5/OS

implementation of NFS supports Version 2 and Version 3 of the protocol.

The Network File System as a File System

The i5/OS file systems provide the support that allows users and applications to access specific segments

of storage. These logical units of storage are the following:

v libraries

v directories

v folders

The logical storage units can contain different types of data:

v objects

v files

v documents

Each file system has a set of logical structures and rules for interacting with information in storage. These

structures and rules may be different from one file system to another, depending on the type of file

system. The i5/OS support for accessing database files and various other object types through libraries

can be thought of as a file system. Similarly, the i5/OS support for accessing documents through folders

can be thought of as a separate file system. For more information on i5/OS file systems, please see File

systems in the integrated file system in the File systems and management topic of the i5/OS Information

Center.

The Network File System provides seemingly “transparent” access to remote files. This means that local

client files and files that are accessed from a remote server operate and function similarly and are

indistinguishable. This takes away many complex steps from users, who need a set of files and directories

that act in a consistent manner across many network clients. A long-term goal of system administrators is

to design such a transparent network that solidifies the belief of users that all data exists and is processed

on their local workstations. An efficient NFS network also gives the right people access to the right

amount of data at the right times.

Files and directories can be made available to clients by exporting from the server and mounting on

clients through a pervasive NFS client/server relationship. An NFS client can also, at the same time,

function as an NFS server, just as an NFS server can function as a client.

Stateless and Stateful Network Protocols

NFS incorporates the Remote Procedure Call (RPC) for client/server communication. RPC is a high-end

network protocol that encompasses many simpler protocols, such as Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP).

Chapter 1. What is the Network File System? 3

Network File System version 2 (NFSv2) and Network File System version 3 (NFSv3) are stateless

protocols, which maintain absolutely no saved or archived information from client/server

communications. State is the information regarding a request that describes exactly what the request does.

Statelessness is a condition where no information is retained about users and their requests. This

condition demands that the information surrounding a request be sent with every single request. When

using NFSv2 or NFSv3, each RPC request contains all the required information for the client and server

to process user requests.

Network File System version 4 (NFSv4) is a stateful protocol, which saves information about users and

requests for use with many procedures. The server owns and maintains the state data.

By using NFS, you can bypass the details of the network interface. NFS isolates applications from the

physical and logical elements of data communications and allows applications to use a variety of

different transports.

In short, the NFS protocol is useful for applications that need to transfer information over a client/server

network. For more information about RPC and NFS, see “Network File System Stack Description” on

page 7.

Overview of the TULAB Scenario

This book uses the fictional namespace TULAB to describe detailed applications of NFS concepts. A

namespace is a distributed network space where one or more servers look up, manage, and share

ordered, deliberate object names.

TULAB exists only in a hypothetical computer-networked environment at a fictitious Technological

University. It is run by a network administrator, a person who defines the network configuration and

other network-related information. This person controls how an enterprise or system uses its network

resources. The TULAB administrator, Chris Admin, is trying to construct an efficient, transparent, and

otherwise seamless distributed namespace for the diverse people who use the TULAB:

v Engineering undergraduate students

v Humanities undergraduate students

v Engineering graduate students

v TULAB consultants

Each group of users works on sets of clients that need different file systems from the TULAB server. Each

group of users has different permissions and authorities and will pose a challenge to establishing a safe,

secure NFS namespace.

Chris Admin will encounter common problems that administrators of NFS namespaces face every day.

Chris Admin will also work through some uncommon and unique NFS situations. As this book describes

each command and parameter, Chris Admin will give a corresponding example from TULAB. As this

book explains applications of NFS, Chris Admin will show exactly how he configures NFS for TULAB.

The network namespace of TULAB is complex and involves two NFS server systems:

1. TULAB1 — A UNIX server system

2. TULAB2 — An i5/OS server system

The following figure describes the layout of the TULAB namespace.

4 System i: i5/OS Network File System Support

Chapter 2. The Network File System Client/Server Model

To understand how the Network File System works on the i5/OS platform, you must first understand the

communication relationship between a server and various clients. The client/server model involves a

local host (the client) that makes a procedure call that is usually processed on a different, remote network

system (the server). To the client, the procedure appears to be a local one, even though another system

processes the request. In some cases, however, a single computer can act as both an NFS client and an

NFS server.

Figure 5. The TULAB network namespace

© Copyright IBM Corp. 1999, 2008 5

There are various resources on the server that are not available on the client, hence the need for such a

communication relationship. The host owning the needed resource acts as a server that communicates to

the host, which initiates the original call for the resource, the client. In the case of NFS, this resource is

usually a shared file system, a directory, or an object.

RPC is the mechanism for establishing such a client/server relationship within NFS. RPC bundles up the

arguments intended for a procedure call into a packet of data called a network datagram. The NFS client

creates an RPC session with an NFS server by connecting to the proper server for the job and

transmitting the datagram to that server. The arguments are then unpacked and decoded on the server.

The operation is processed by the server, and a return message (should one exist) is sent back to the

client. On the client, this reply is transformed into a return value for NFS. The user’s application is

re-entered as if the process had taken place on a local level.

Network File System Client/Server Communication Design

The logical layout of the Network File System on the client and server involves numerous daemons,

caches, and the NFS protocol breakdown. An overview of each type of process follows.

A daemon is a process that performs continuous or system-wide functions, such as network control. NFS

uses many different types of daemons to complete user requests.

A cache is a type of high-speed buffer storage that contains frequently accessed instructions and data.

Caches are used to reduce the access time for this information. Caching is the act of writing data to a

cache.

For information about NFS server daemons, see “Network File System Server-Side Daemons” on page 8.

For information about NFS client daemons, see “Network File System Client-Side Daemons” on page 10.

For information about client-side caches, see “NFS Client-Side Caches” on page 11 Detailed information

about the NFS protocol can be found in “Network File System Stack Description” on page 7.

Network File System Process Layout

Figure 6. The NFS Client/Server Model

6 System i: i5/OS Network File System Support

Local processes that are known as daemons are required on both the client and the server. These

daemons process both local and remote requests and handle client/server communication. Both the NFS

client and server have a set of daemons that carry out user tasks. In addition, the NFS client also has data

caches that store specific types of data locally on the on the client. For more information about the NFS

client data caches, see “NFS Client-Side Caches” on page 11.

Network File System Stack Description

Simple low-end protocols make up a high-end complex protocol like NFS. For an NFS client command to

connect with the server, it must first use the Remote Procedure Call (RPC) protocol. The request is

encoded into External Data Representation (XDR) and then sent to the server using a socket. The simple

User Datagram Packet (UDP) protocol actually communicates between client and server. Some aspects of

NFS use the Transmission Control Protocol (TCP) as the base communication protocol.

The operation of NFS can be seen as a logical client-to-server communications system that specifically

supports network applications. The typical NFS flow includes the following steps:

1. The server waits for requests from one or more clients.

2. The client sends a request to the server and blocks (waits for a response).

3. When a request arrives, the server calls a dispatch routine.

4. The dispatch routine performs the requested service and returns with the results of the request. The

dispatch routine can also call a sub-routine to handle the specific request. Sometimes the sub-routine

will return results to the client by itself, and other times it will report back to the dispatch routine.

5. The server sends those results back to the client.

6. The client then de-blocks.

The overhead of running more than one request at the same time is too heavy for an NFS server, so it is

designed to be single-threaded. This means that an NFS server can only process one request per session.

Figure 7. A breakdown of the NFS client/server protocol

Chapter 2. The Network File System Client/Server Model 7

The requests from the multiple clients that use the NFS server are put into a queue and processed in the

order in which they were received. To improve throughput, multiple NFS servers can process requests

from the same queue.

System i as a Network File System Server

The NFS server is composed of many separate entities that work together to process remote calls and

local requests. These are:

v NFS server daemons. These daemons handle access requests for local files from remote clients.

Multiple instances of particular daemons can operate simultaneously.

v Export command. This command allows a user to make local directories accessible to remote clients.

v /etc/exports file. This file contains the local directory names that the NFS server exports

automatically when starting up. The administrator creates and maintains this file, which is read by the

export command. For more information about the /etc/exports file, see “/etc/exports File” on page 90

and Chapter 4, “Server Exporting of File Systems,” on page 23.

v Export table. This table contains all the file systems that are currently exported from the server. The

export command builds the /etc/exports file into the export table. You can dynamically update the

export table with the export command.

For more information about the Change Network File System Export (CHGNFSEXP) and Export File

System (EXPORTFS) commands and how they work with the /etc/exports file, see Chapter 4, “Server

Exporting of File Systems,” on page 23.

Network File System Server-Side Daemons

NFS is similar to other RPC-based services in its use of server-side daemons to process incoming

requests. NFS may also use multiple copies of some daemons to improve overall performance and

efficiency.

RPC Binder Daemon

The RPC binder daemon is analogous to the port mapper daemon, which many implementations of NFS

use in UNIX. Clients determine the port of a specified RPC service by using the RPC binder daemon.

Local services register themselves with the local RPC binder daemon (port mapper) when initializing. On

i5/OS, you can register your own RPC programs with the RPC binder daemon.

Figure 8. The NFS Server

8 System i: i5/OS Network File System Support

NFS Server Daemons

The most pressing need for NFS server daemons centers around the need for multi-threading NFS RPC

requests. Running daemons in user-level processes allows the server to have multiple, independent

threads of processes. In this way, the server can handle several NFS requests at once. As a daemon

completes the processing of a request, the daemon returns to the end of a line of daemons that wait for

new requests. Using this schedule design, a server always has the ability to accept new requests if at least

one server daemon is waiting in the queue. Multiple instances of this daemon can perform tasks

simultaneously.

Mount Daemon

Each NFS server system runs a mount daemon which listens to requests from client systems. This

daemon acts on mount and unmount requests from clients. If the mount daemon receives a client mount

request, then the daemon checks the export table. The mount daemon compares it with the mount

request to see if the client is allowed to perform the mount. If the mount is allowed, the mount daemon

will send to the requesting client an opaque data structure, the file handle. This structure uniquely

describes the mounting point that is requested by the client. This will enable the client to represent the

root of the mounted file system when making future requests.

Network Status Monitor Daemon

The Network Status Monitor (NSM) is a stateful NFS service that provides applications with information

about the status of network hosts. The Network Lock Manager (NLM) daemon heavily uses the NSM to

track hosts that have established locks as well as hosts that maintain such locks.

There is a single NSM server per host. It keeps track of the state of clients and notifies any interested

party when this state changes (usually after recovery from a crash).

The NSM daemon keeps a notify list that contains information on hosts to be informed after a state

change. After a local change of state, the NSM notifies each host in the notify list of the new state of the

local NSM. When the NSM receives a state change notification from another host, it will notify the local

network lock manager daemon of the state change.

Network Lock Manager Daemon

The Network Lock Manager (NLM) daemon is a stateful service that provides advisory byte-range

locking for NFS files. The NLM maintains state across requests, and makes use of the Network Status

Monitor daemon (NSM) which maintains state across crashes (using stable storage).

The NLM supports two types of byte-range locks:

1. Monitored locks. These are reliable and helpful in the event of system failure. When an NLM server

crashes and recovers, all the locks it had maintained will be reinstated without client intervention.

Likewise, NLM servers will release all old locks when a client crashes and recovers. A Network Status

Manager (NSM) must be functioning on both the client and the server to create monitored locks.

2. Unmonitored locks. These locks require explicit action to be released after a crash and re-established

after startup. This is an alternative to monitoring locks, which requires the NSM on both the client

and the server systems.

NFS Registry Daemon

In NFSv2 and NFSv3, the client and server pass file ownership information using numeric UIDs and

GIDs. In NFSv4, the client and server pass file ownership information using UTF-8 strings instead. The

NFS registry daemon can convert UTF-8 encoded strings to numeric UIDs and GIDs, and vice versa.

Generic Security Service (GSS) Daemon

The GSS daemon is used for Kerberos authentication. The GSS daemon job handles requests from the

kernel GSS interface for user credentials to be used with the RPCSEC_GSS authentication flavor. The

daemon obtains or verifies GSS credentials on behalf of the requesting kernel thread. When a GSS context

is established in the GSS daemon, it is cached in the daemon job and a key is returned to the kernel GSS

interface for later use.

Chapter 2. The Network File System Client/Server Model 9

System i as a Network File System Client

Several entities work together to communicate with the server and local jobs on the NFS client. These

processes are the following:

v RPC Binder Daemon. This daemon communicates with the local and remote daemons by using the

RPC protocol. Clients look for NFS services through this daemon.

v Network Status Monitor and Network Lock Manager. These two daemons are not mandatory on the

client. Many client applications, however, establish byte-range locks on parts of remote files on behalf

of the client without notifying the user. For this reason, it is recommended that the NSM and NLM

daemons exist on both the NFS client and server.

v Block I/O daemon. This daemon manages the data caches and is therefore stateful in operation. It

performs caching, and assists in routing client-side NFS requests to the remote NFS server. Multiple

instances of this daemon can perform tasks simultaneously.

v Data and attribute caches. These two caches enhance NFS performance by storing information on the

client-side to prevent a client/server interaction. The attribute cache stores file and directory attribute

information locally on the client, while the data cache stores frequently used data on the client.

v Mount and Unmount commands. Users can mount and unmount a file system in the client namespace

with these commands. These are general tools, used not only in NFS, but also to dynamically mount

and unmount other local file systems. For more information about the Add Mounted File System

(ADDMFS) and Remove Mounted File System (RMVMFS) commands, see Chapter 5, “Client Mounting

of File Systems,” on page 37.

Network File System Client-Side Daemons

Besides the RPC Daemon, the NFS client has only one daemon to process requests and to transfer data

from and to the remote server, the block I/O daemon. NFS differs from typical client/server models in

that processes on NFS clients make some RPC calls themselves, independently of the client block I/O

daemon. An NFS client can optionally use both a Network Lock Manager (NLM) and a Network Status

Monitor (NSM) locally, but these daemons are not required for standard operation. It is recommended

that you use both the NLM and NSM on your client because user applications often establish byte-range

locks without the knowledge of the user.

Block I/O Daemon

The block I/O daemon handles requests from the client for remote files or operations on the server. The

block I/O daemon may handle data requests from the client to remote files on the server. Running only

on NFS clients or servers that are also clients, this daemon manages the data caches for the user. The

block I/O daemon is stateful and routes client application requests either to the caches or on to the NFS

Figure 9. The NFS Client

10 System i: i5/OS Network File System Support

server. The user can specify the regular intervals for updating all data that is cached by the block I/O

daemon. Users can start multiple daemons to perform different operations simultaneously.

NFS Client-Side Caches

Caching file data or attributes gives administrators a way of tuning NFS performance. The caching of

information allows you to delay writes or to read ahead.

Client-side caching in NFS reduces the number of RPC requests sent to the server. The NFS client can

cache data, which can be read out of local memory instead of from a remote disk. The caching scheme

available for use depends on the file system being accessed. Some caching schemes are prohibited

because they cannot guarantee the integrity and consistency of data that multiple clients simultaneously

change and update. The standard NFS cache policies ensure that performance is acceptable while also

preventing the introduction of state into the client/server communication relationship.

There are two types of client caches: the directory and file attribute cache and the data cache.

Directory and File Attribute Cache

Not all file system operations use the data in files and directories. Many operations get or set the

attributes of the file or directory, such as its length, owner, and modification time. Because these

attribute-only operations are frequent and do not affect the data in a file or directory, they are prime

candidates for using cached information.

The file and directory cache on the client store file attributes. The server does this so that every operation

that gets or sets attributes does not have to go through the connection to the NFS server. When the server

reads a file’s attributes, the attributes remain valid on the client for a minimum period of time, typically

30 seconds. You can set this time period by using the acregmin option on the MOUNT command. If the

file is changed, the attributes are updated, which makes changes to the local copy of the attributes and

extends the cache validity period for another minimum period of time.

The attributes of a file remain unchanged for some maximum period of time, typically 60 seconds. You

can set this time period with the acregmax option on the MOUNT command. The server then deletes file

attributes from the cache and writes changed file attributes back to the server.

To force a refresh of attributes when opening a file, use the nocto option on the MOUNT command.

Specifying the noac option stops the local caching of attributes, negating the acregmin, acregmax,

acdirmin, and the acdirmax options on the MOUNT command.

The same mechanism is used for directory attributes, although they are given a longer period of time to

be valid. The minimum and maximum period of time for directory attributes in the cache is set by the

acdirmin and acdirmax options on the MOUNT command.

Attribute caching allows you to make multiple changes to a file or directory without having to constantly

get and set attributes from the server. Intermediate attributes are cached, and all updates are written to

the server when the maximum attribute cache period expires. Frequently accessed files and directories

have their attributes cached locally on the client so that some NFS requests can be performed without

having to make an RPC call. By preventing this type of client/server interaction, caching attributes

improves the performance of NFS.

For more information on the ADDMFS and MOUNT commands, see Chapter 5, “Client Mounting of File

Systems,” on page 37. See the CL topic in the i5/OS Information Center for more information on the

options to the ADDMFS and MOUNT commands.

Data Cache

The data cache is very similar to the directory and file attribute cache in that it stores frequently used

information locally on the client. The data cache, however, stores data that is frequently or likely to be

Chapter 2. The Network File System Client/Server Model 11

used instead of file or directory attributes. The data cache provides data in cases where the client would

have to access the server to retrieve information that has already been read. This operation improves the

performance of NFS.

Whenever a user makes a request on a remote object, a request is sent to the server. If the request is to

read a small amount of data, for example, 1 byte (B), then the server returns 4 kilobytes (KB) of data.

This “extra” data is stored in the client caches because, presumably, it will soon be read by the client.

When users access the same data frequently over a given period of time, the client can cache this

information to prevent a client/server interaction. This caching also applies to users who use data in one

“area” of a file frequently. This is called locality and involves not only the primary data that is retrieved

from the server, but also a larger block of data around it. When a user requests data frequently from one

area, the entire block of data is retrieved and then cached. There is a high probability that the user will

soon want to access this surrounding data. Because this information is already cached locally on the

client, the performance of NFS is improved.

Client Timeout

If the client does not have a cache loaded, then all requests will go to the server. This takes extra time to

process each client operation. With the mount command, users can specify a timeout value for re-sending

the command. The mount command cannot distinguish between a slow server and a server that does not

exist, so it will retry the command.

The default retry value is 2 seconds. If the server does not respond in this time, then the client will

continue to retry the command. In a network environment, this can overload the server with duplicate

i5/OS client requests. The solution to this difficulty is to increase the timeout value on the mount

command to 5-10 seconds.

12 System i: i5/OS Network File System Support

Chapter 3. NFS and the User-Defined File System (UDFS)

A user-defined file system (UDFS) is a type of file system that you directly manage through the end user

interface. This contrasts with a system-defined file system (SDFS), which i5/OS server code creates.

QDLS, QSYS.LIB, and QOPT are all examples of SDFSs.

The UDFS introduces a concept that allows you to create and manage your own file systems on a

particular user Auxiliary Storage Pool (ASP). An ASP is a storage unit that is defined from the disk units

or disk unit sub-systems that make up auxiliary storage. ASPs provide a means for placing certain objects

on specific disk units to prevent the loss of data due to disk media failures on other disk units.

The concept of Block Special Files (*BLKSF objects) allows a user to view a UDFS as a single entity whose

contents become visible only after mounting the UDFS in the local namespace. An unmounted UDFS

appears as a single, opaque entity to the user. Access to individual objects within a UDFS from the

integrated file system interface is permissible only when the UDFS is mounted.

UDFS support enables you to choose which ASP will contain the file system, as well as manage file

system attributes like case-sensitivity. You can export a mounted UDFS to NFS clients so that these clients

can also share the data that is stored on your ASP. This chapter explains how to create and work with a

UDFS so that it can be used through NFS.

User File System Management

The UDFS provides new file management strategies to the user and includes several new and changed

CL commands specific to UDFSs.

For more information about the various UDFS CL commands and their associated parameters and

options, see the CL topic in the i5/OS Information Center.

Create a User-Defined File System

The Create User-Defined File System (CRTUDFS) command creates a file system whose contents can be

made visible to the rest of the integrated file system namespace via the ADDMFS (Add Mounted File

System) or MOUNT command. A UDFS is represented by the object type *BLKSF, or block special file.

Users can create a UDFS in an ASP of their own choice and have the ability to specify case-sensitivity.

Restrictions:

1. You must have *IOSYSCFG special authority to use this command.

© Copyright IBM Corp. 1999, 2008 13

CRTUDFS Display

 When you use the CRTUDFS command, you can specify many parameters and options:

v The required UDFS parameter determines the name of the new UDFS. This entry must be of the form

/DEV/QASPXX/name.udfs, where the XX is one of the valid Auxiliary Storage Pool (ASP) numbers on the

system, and name is the name of the user-defined file system. All other parts of the path name must

appear as in the example above. The name part of the path must be unique within the specified QASPXX

directory.

v The DTAAUT parameter on the CRTUDFS command specifies the public data authority given to the

user for the new UDFS.

v The OBJAUT parameter on the CRTUDFS command specifies the public object authority given to users

for the new UDFS.

v The CRTOBJAUD parameter on the CRTUDFS command specifies the auditing value of objects created

in the new UDFS.

v The CASE parameter on the CRTUDFS command specifies the case-sensitivity of the new UDFS. You

can specify either the *MONO value or the *MIXED value. Using the *MONO value creates a

case-insensitive UDFS. Using the *MIXED value creates a case-sensitive UDFS.

v The DFTFILEFMT specifies the format of stream files (*STMF) created in the UDFS. You can specify

either the *TYPE1 value or the *TYPE2 value. A *TYPE1 *STMF has the same value as *STMF objects in

releases prior to version 4, release 4 of OS/400®.

v The TEXT parameter on the CRTUDFS command specifies the text description for the new UDFS.

Examples

Example 1: Create UDFS in System ASP on TULAB2

CRTUDFS UDFS(’/DEV/QASP01/A.udfs) CASE(*MONO)

This command creates a case-insensitive user-defined file system (UDFS) named A.udfs in the system

Auxiliary Storage Pool (ASP), qasp01.

Example 2: Create UDFS in user ASP on TULAB2

CRTUDFS UDFS(’/DEV/QASP02/kate.udfs’) CASE(*MIXED)

This command creates a case sensitive user-defined file system (UDFS) named kate.udfs in the user

Auxiliary Storage Pool (ASP), qasp02.

Create User-Defined FS (CRTUDFS)

 Type choices, press Enter.

 User-defined file system > ’/DEV/QASP02/kate.udfs’

 Public authority for data . . . *INDIR Name, *INDIR, *RWX, *RW...

 Public authority for object . . *INDIR *INDIR, *NONE, *ALL...

 + for more values

 Auditing value for objects . . . *SYSVAL *SYSVAL, *NONE,

*USRPRF...

 Additional Parameters

 Case sensitivity *MIXED *MIXED, *MONO

 Default file format *TYPE2 *TYPE1, *TYPE2

 Text ’description’ *BLANK

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 10. Using the Create User-Defined FS (CRTUDFS) display

14 System i: i5/OS Network File System Support

Display a User-Defined File System

The Display User-Defined File System (DSPUDFS) command presents the attributes of an existing UDFS,

whether mounted or unmounted.

DSPUDFS Display

When you use the DSPUDFS command, you only have to specify one parameter:

v The UDFS parameter determines the name of the UDFS to display. This entry must be (or resolve to a

pathname) of the form /DEV/QASP02/name.udfs, where the XX is one of the valid user Auxiliary Storage

Pool (ASP) numbers on the system, and name is the name of the UDFS. All other parts of the path

name must appear as in the example above.

When you use the DSPUDFS command successfully, a screen will appear with information about your

UDFS on it:

Display User-Defined FS (DSPUDFS)

 Type choices, press Enter.

 User-defined file system /DEV/QASP02/kate.udfs

 Output * *, *PRINT

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 11. Display User-Defined FS (DSPUDFS) output (1/2)

Chapter 3. NFS and the User-Defined File System (UDFS) 15

Example

Display UDFS in user ASP on TULAB2

DSPUDFS UDFS(’/DEV/QASP02/kate.udfs’)

This command displays the attributes of a user-defined file system (UDFS) named kate.udfs in the user

Auxiliary Storage Pool (ASP), qasp02.

Delete a User-Defined File System

The Delete User-Defined File System command (DLTUDFS) deletes an existing, unmounted UDFS and all

the objects within it. The command will fail if the UDFS is mounted. Deletion of a UDFS will cause the

deletion of all objects in the UDFS. If the user does not have the necessary authority to delete any of the

objects within a UDFS, none of the objects in the UDFS will be deleted.

Restrictions:

1. The UDFS being deleted must not be mounted.

2. Only a user with *IOSYSCFG special authority can use this command.

Display User-Defined FS

 User-defined file system . . . : /DEV/QASP02/kate.udfs

 Owner : PATRICK

 Code page : 37

 Case sensitivity : *MIXED

 Creation date/time : 02/26/96 08:00:00

 Change date/time : 08/30/96 12:30:42

 Path where mounted : Not mounted

 Description :

 Bottom

 Press Enter to continue.

 F3=Exit F12=Cancel

 (C) COPYRIGHT IBM CORP. 1980, 1996.

Figure 12. Display User-Defined FS (DSPUDFS) output (2/2)

16 System i: i5/OS Network File System Support

DLTUDFS Display

 When you use the DLTUDFS command, you only have to specify one parameter:

v The UDFS parameter determines the name of the unmounted UDFS to delete.

This entry must be of the form /DEV/QASPXX/name.udfs, where the XX is one of the valid Auxiliary Storage

Pool (ASP) numbers on the system, and name is the name of the UDFS. All other parts of the path name

must appear as in the example above. Wildcard characters such as ’*’ and ’?’ are not allowed in this

parameter. The command will fail if the UDFS specified is currently mounted.

Example

Unmount and Delete a UDFS in the user ASP on TULAB2

UNMOUNT TYPE(*UDFS) MFS(’DEV/QASP02/kate.udfs’)

This command will unmount the user-defined file system (UDFS) named kate.udfs from the integrated

file system namespace. A user must unmount a UDFS before deleting it. After unmounting a UDFS, a

user can now proceed to delete the UDFS and all objects within it using the DLTUDFS command:

DLTUDFS UDFS(’/DEV/QASP02/kate.udfs’)

This command deletes the user-defined file system (UDFS) named kate.udfs from the user Auxiliary

Storage Pool (ASP) qasp02.

Mount a User-Defined File System

The Add Mounted File System (ADDMFS) and MOUNT commands make the objects in a file system

accessible to the integrated file system namespace. To mount a UDFS, you need to specify TYPE (*UDFS)

for the ADDMFS command.

You can use the ADDMFS command (or its alias, MOUNT) to dynamically mount a file system, whether

that file system is UDFS or NFS.

To export a UDFS to NFS clients, complete these steps:

1. Mount the block special file locally (TYPE *UDFS).

2. Export the path to the UDFS mount point (the directory you mounted over in step 1).

The previous steps ensure that the remote view of the namespace is the same as the local view.

Afterward, the exported UDFS file system can be mounted (Type *NFS) by remote NFS clients. However,

you must have previously mounted it on the local namespace.

Delete User-Defined FS (DLTUDFS)

 Type choices, press Enter.

 User-defined file system > ’/DEV/QASP02/kate.udfs’

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 13. Using the Delete User-Defined FS (DLTUDFS) display

Chapter 3. NFS and the User-Defined File System (UDFS) 17

ADDMFS/MOUNT Display

For a display of the ADDMFS (Add Mounted File System) and MOUNT commands, please see

“RMVMFS/UNMOUNT Display” on page 46.

Example

Mount and Export a UDFS on TULAB2

MOUNT TYPE(*UDFS) MFS(’/DEV/QASP02/kate.udfs’) MNTOVRDIR(’/usr’)

This command mounts the user-defined file system (UDFS) that is named kate.udfs on the integrated file

system namespace of TULAB2 over directory /usr.

CHGNFSEXP OPTIONS(’-I -O ACCESS=Prof:1.234.5.6’)

 DIR(’/usr’)

This command exports the user-defined file system (UDFS) that is named kate.udfs and makes it

available to appropriate clients Prof and 1.234.5.6.

For more information about the MOUNT and ADDMFS commands, see Chapter 5, “Client Mounting of

File Systems,” on page 37. For more information about the EXPORTFS and CHGNFSEXP commands, see

Chapter 4, “Server Exporting of File Systems,” on page 23.

Unmount a User-Defined File System

The Remove Mounted File System (RMVMFS) or UNMOUNT commands will make a mounted file

system inaccessible to the integrated file system namespace. If any of the objects in the file system are in

use (for example, a file is opened) at the time of using the unmount command, an error message will be

returned to the user. If the user has mounted over the file system itself, then this file system cannot be

unmounted until it is uncovered.

Note: Unmounting an exported UDFS which has been mounted by a client will cause the remote client to

receive the ESTALE return code for a failed operation upon the next client attempt at an operation

that reaches the server.

RMVMFS/UNMOUNT Display

For a display of the RMVMFS (Remove Mounted File System) and UNMOUNT commands, please see

“RMVMFS (Remove Mounted File System) Command” on page 45.

For more information about the UNMOUNT and RMVMFS commands, see Chapter 5, “Client Mounting

of File Systems,” on page 37.

Saving and Restoring a User-Defined File System

The user has the ability to save and restore all UDFS objects, as well as their associated authorities. The

Save command (SAV) allows a user to save objects in a UDFS while the Restore command (RST) allows a

user to restore UDFS objects. Both commands will function whether the UDFS is mounted or unmounted.

Perform UDFS operations in System i Navigator

System i Navigator, a graphical user interface (GUI) for the i5/OS platform, provides easy and

convenient access to user-defined file systems. System i Navigator allows you to create, delete, mount,

and unmount a UDFS from a Windows** client.

To create a new user-defined file system (UDFS):

1. In System i Navigator, expand your server.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand Root.

18 System i: i5/OS Network File System Support

5. Expand Dev.

6. Click the auxiliary storage pool (ASP) that you want to contain the new UDFS.

7. Select New UDFS from the File menu.

8. On the New User-Defined File System dialog, specify the UDFS name, description (optional),

auditing values, default file format, and whether the files in the new UDFS will have case-sensitive

file names.

The following graphics are examples of a UDFS in System i Navigator if you are connected to the system

through your PC:

In System i Navigator, you can specify the name, auditing value, case-sensitivity, and other options of the

UDFS. For more information about the CRTUDFS command, see “Create a User-Defined File System” on

page 13.

Figure 14. A Windows® view of using the CRTUDFS (Create UDFS) command

Chapter 3. NFS and the User-Defined File System (UDFS) 19

In System i Navigator, you can display the properties of the UDFS. For more information about the

DSPUDFS command, see “Display a User-Defined File System” on page 15.

Mount a UDFS in System i Navigator

When accessing a System i platform using System i Navigator, you can dynamically mount user-defined

file systems.

To mount a user-defined file system (UDFS):

1. In System i Navigator, expand your server.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand Root.

5. Expand Dev.

6. Click the auxiliary storage pool (ASP) that contains the UDFS that you want to mount.

7. In the UDFS Name column of System i Navigator’s right pane, right-click the UDFS that you want to

mount, and select Mount.

Tip: If you like to drag and drop, you can mount a UDFS by dragging it to a folder within the integrated

file system on the same server. You cannot drop the UDFS on /dev, /dev/QASPxx, another server, or the

desktop.

Figure 15. A Windows view of using the DSPUDFS (Display UDFS) command

20 System i: i5/OS Network File System Support

The following graphic shows the System i Navigator dialog box for mounting a user-defined file system:

User-Defined File System Functions in the Network File System

To export the contents of a UDFS, you must first mount it on the local namespace. Once the Block Special

File (*BLKFS) mounts, it behaves like the ″root″ or QOpenSys file systems. The UDFS contents become

visible to remote clients when the server exports them.

It is possible to export an unmounted UDFS (*BLKSF object) or the ASP in which it resides. However, the

use of such objects is limited from remote NFS clients. You will have minimal use of mounting and

viewing from most UNIX clients. You cannot mount a *BLKSF object on i5/OS clients or work with them

in NFS mounted directories. For this reason, exporting /DEV or objects within it can cause administrative

difficulties. The next sections describe how you can work around one such scenario.

Using User-Defined File Systems with Auxiliary Storage Pools

This scenario involves an eager user, a non-communicative system administrator, and a solution to an

ASP problem through the Network File System.

A user, Jeff, accesses and works with the TULAB2 namespace each time he logs into his account on a

remote NFS client. In this namespace exist a number of user-defined file systems (A.udfs, B.udfs,

C.udfs, and D.udfs) in an ASP connected to the namespace as /DEV/QASP02/. Jeff is used to working with

these directories in their familiar form every day.

One day, the system administrator deletes the UDFSs and physically removes the ASP02 from the server.

The next time Jeff logs in, he can’t find his UDFSs. So, being a helpful user, Jeff creates a /DEV/QASP02/

directory using the CRTDIR or MKDIR command and fills the sub-directories with replicas of what he

had before. Jeff replaces A.udfs, B.udfs, C.udfs, and D.udfs with 1.udfs, 2.udfs, 3.udfs, and 4.udfs.

This is a problem for the network because it presents a false impression to the user and a liability on the

server. Because the real ASP directories (/DEV/QASPXX) are only created during IPL by the system, Jeff’s

Figure 16. A Windows view of Mounting a user-defined file system

Chapter 3. NFS and the User-Defined File System (UDFS) 21

new directories do not substitute for actual ASPs. Also, because they are not real ASP directories

(/DEV/QASPXX), all of Jeff’s new entries take up disk space and other resources on the system ASP, not the

QASP02, as Jeff believes.

Furthermore, Jeff’s objects are not UDFSs and may have different properties than he expects. For

example, he cannot use the CRTUDFS command in his false /DEV/QASP02 directory.

The system administrator then spontaneously decides to add a true ASP without shutting the system

down for IPL. At the next IPL, the new ASP will be mounted over Jeff’s false /dev/qasp02 directory. Jeff

and many other users will panic because they suddenly cannot access their directories, which are

“covered up” by the system-performed mount. This new ASP cannot be unmounted using either the

RMVMFS or UNMOUNT commands. For Jeff and other users at the server, there is no way to access

their directories and objects in the false ASP directory (such as 1.udfs, 2.udfs, 3.udfs, and 4.udfs)

Recovery with the Network File System

The NFS protocol does not cross mount points. This concept is key to understanding the solution to the

problem described above. While the users at the server cannot see the false ASP and false UDFSs covered

by the system-performed mount, these objects still exist and can be accessed by remote clients using NFS.

The recovery process involves action taken at both the client and the server:

1. The administrator can export a directory above the false ASP (and everything “downstream” of it)

with the EXPORTFS command. Exporting /DEV exports the underlying false ASP directory, but not the

true ASP directory that is mounted over the false ASP directory. Because NFS does not cross the

mount point, NFS recognizes only the underlying directories and objects.

EXPORTFS OPTIONS(’-I -O ROOT=TUclient52X’) DIR(’/DEV’)

2. Now the client can mount the exported directory and place it over a convenient directory on the

client, like /tmp.

MOUNT TYPE(*NFS) MFS(’TULAB2:/DEV’) MNTOVRDIR(’/tmp’)

3. If the client uses the WRKLNK command on the mounted file system, then the client can now access

the false ASP directory and connecting directories will be maintained.

WRKLNK ’/tmp/*’

4. The server then needs to export a convenient directory, like /safe, which will serve as the permanent

location of the false ASP directory and its contents.

EXPORTFS OPTIONS (’-I -O ROOT=TUclient52X’) DIR(’/safe’)

5. The client can mount the directory /safe from the server to provide a final storage location for the

false ASP directory and its contents.

MOUNT TYPE(*NFS) DIR(’/safe’) MNTOVRDIR(’/user’)

6. Finally, the client can copy the false ASP directory and the false objects 1.udfs, 2.udfs, 3.udfs, and

4.udfs on the server by copying them to the /safe directory that has been mounted on the client.

COPY OBJ(’/temp/*’) TODIR(’/user’)

The false QASP02 directory and the false objects that were created with it are now accessible to users at

the server. The objects are now, however, located in /safe on the server.

22 System i: i5/OS Network File System Support

Chapter 4. Server Exporting of File Systems

A key feature of the Network File System is its ability to make various local file systems, directories, and

objects available to remote clients through the export command. Exporting is the first major step in

setting up a “transparent” relationship between client and server.

Before exporting from the server, remote clients cannot “see” or access a given file system on the local

server. Furthermore, remote clients are completely unaware of the existence file systems on the server.

Clients cannot mount or work with server file systems in any way. After exporting, the clients authorized

by the server will be able to mount and then work with server file systems. Exported and mounted file

systems will perform as if they were located on the local workstation. Exporting allows the NFS server

administrator a great range of control as to exactly what file systems are accessible and which clients can

access them.

What is Exporting?

Exporting is the process by which users make local server file systems accessible to remote clients.

Assuming that remote clients have the proper authorities and access identifications, they can see as well

as access exported server file systems.

Using either the CHGNFSEXP or EXPORTFS command, you can add directory names from the

/etc/exports file to the export table for export to remote clients. You can also use these commands to

dynamically export from the NFS server, bypassing the /etc/exports file.

A host system becomes an NFS server if it has file systems to export across the network. A server does

not advertise these file systems to all network systems. Rather, it keeps a list of options for exported file

systems and associated access authorities and restrictions in a file, /etc/exports. The /etc/exports file is

built into the export table by the export command. The command reads the export options and applies

them to the file systems to be exported at the time the command is used. Another way of exporting file

systems is to do so individually with the “-I” option of the export command. This command will not

process any information stored in the /etc/exports file.

Figure 17. Exporting file systems with the /etc/exports file

© Copyright IBM Corp. 1999, 2008 23

The mount daemon checks the export table each time a client makes a request to mount an exported file

system. Users with the proper authority can update the /etc/exports file to export file systems at will by

adding, deleting, or changing entries. Then the user can use the export command to update the export

table. Most system administrators configure their NFS server so that, as it starts up, it checks for the

existence of /etc/exports, which it immediately processes. Administrators can accomplish this by

specifying *ALL on the STRNFSSVR (Start Network File System Server) command. Once the server finds

/etc/exports in this way, it uses the export command to create the export table. This makes the file

systems immediately available for client use.

Why Should I Export?

Exporting gives a system administrator the opportunity to easily make any file system accessible to

clients. The administrator can perform an export at will to fulfill the needs of any particular user or

group of users, specifying to whom the file system is available and how.

With an efficient system of exporting, a group of client systems needs only one set of configuration and

startup files, one set of archives, and one set of applications. The export command can make all of these

types of data accessible to the clients at any time.

Although there are many insecure ways to export file systems, using the options on the export command

allow administrators to export file systems safely. Exported file systems can be limited to a group of

systems in a trusted community of a network namespace.

Using the ability to export allows for a simpler and more effective administration of a namespace, from

setting up clients to determining what authority is needed to access a sensitive data set. A properly used

/etc/exports file can make your namespace safe and secure while providing for the needs of all your

users.

TULAB Scenario

In TULAB, a group of engineering undergraduate students are working with a group of engineering

graduate students. Both sets of students have access to their remote home directories and applications on

the server through NFS. Their research involves the controversial history of local bridge architecture. The

students will be working in different rooms of the same campus building. Chris Admin needs a way to

make data available to both groups of computers and students without making all the data available to

everyone.

Chris Admin can export a directory containing only the database files with statistics of the bridge

construction safety records. This operation can be performed without fear of unknown users accessing the

sensitive data. Chris Admin can use the export command to allow only selected client systems to have

access to the files. This way, both groups of students will be able to mount and access the same data and

work with it on their separate, different workstations.

Figure 18. Dynamically exporting file systems with the ″-I″ option

24 System i: i5/OS Network File System Support

What File Systems Can I Export?

You can export any of the following file systems:

v “Root” (/)

v QOpenSys

v QSYS.LIB

v QOPT

v UDFS

Note: Document library services file system (QDLS) cannot be exported with the NFSv4 protocol.

You cannot export other file systems that have been mounted from remote servers. This includes entire

directory trees as well as single files. The i5/OS platform follows the general rules for exporting as

detailed in “Rules for Exporting File Systems” on page 26. This set of rules also includes the general NFS

“downstream” rule for exporting file systems. Remember that whenever you export a file system, you

also export all the directories and objects that are located hierarchically beneath (“downstream” from)

that file system.

The CHGNFSEXP or EXPORTFS command is the key for making selected portions of the local user view

part of the remote client view.

Exported file systems will be listed in the export table built from the /etc/exports file. These file systems

will be accessible to client mounting, assuming the client has proper access authorities. Users will be able

to mount and access exported data as if it were local to their client systems. The administrator of the

server can also change the way file systems are exported dynamically to present remote clients with a

different view of file systems.

 Before exporting, a remote client cannot view any local server file systems.

 After exporting, a remote client can view the exported file systems PROJ2 and PROJ3.

Figure 19. Before the server has exported information

Figure 20. After the server has exported /classes/class2

Chapter 4. Server Exporting of File Systems 25

|

Not all the file systems on the server are visible to remote clients. Only the exported file systems are

available for mounting by clients with proper authorities as specified on the export command or in the

/etc/exports file. Remote clients cannot see anything except for their own local files and those that the

various remote servers have exported. Before remote clients can access server data, that data must first be

exported and then mounted.

How Do I Export File Systems?

You can export NFS server file systems for mounting on a client with the CHGNFSEXP (Change Network

File System Export) or the EXPORTFS CL commands.

For a discussion of specific special considerations regarding export procedures, please see Chapter 9,

“Network File System Security Considerations,” on page 79.

Rules for Exporting File Systems

There are four conceptual rules that apply when exporting the file systems of an NFS server so that they

are accessible to clients:

1. Any file system, or proper subset of a file system, can only be exported from a system that runs NFS.

A proper subset of a file system is defined as a file or directory that starts below the path of the file

system being exported. This capability allows you to export only certain parts of large file systems at

any one time instead of the entire file system all at once.

For example, /usr is a file system, and the /usr/public_html directory is part of that file system.

Therefore, /usr/public_html (and all of the objects, files, and sub-directories located within that

directory) is a proper subset of the /usr file system.

You might want to think of the exporting process as you would think of a river. When you throw an

object into a river, it flows downstream. When you export a file system, you also export all of the

“downstream” directories, file systems, and other objects. Just as rivers flow from upstream to

downstream, so do your exports.

 On any given server file system, when you start exporting, all the objects beneath the export point

will also be exported. This includes directories, files, and objects.

 For example, if you export /classes from TULAB2, then everything below /classes is also exported,

including /classes/class1, /classes/class2 and their associated sub-directories. If your clients only

Figure 21. A directory tree before exporting on TULAB2

Figure 22. The exported directory branch /classes on TULAB2

26 System i: i5/OS Network File System Support

need access to /classes/class1, then you have exported too much data.

A wiser decision is to only export what clients need. If clients need access only to /classes/class1,

then export only /classes/class1. This makes work on the client easier by creating less waste on the

client namespace. Furthermore, it guards against additional security concerns on the NFS server.

2. You cannot export any sub-directory of an already-exported file system unless the sub-directory exists

on a different local file system.

For example, the directory /bin has been exported, and /bin/there is a sub-directory of /bin. You

cannot now export /bin/there unless it exists on a different local file system.

3. You cannot export any parent directory of an exported file system unless the parent is on a different

local file system.

For example, the file system /home/sweet/home has been exported, and /home/sweet is a parent

directory of /home/sweet/home. You cannot now export /home/sweet unless it exists on a different local

file system.

4. You can only export local file systems. Any file systems or proper subsets of file systems that exist on

remote servers cannot be exported except by those remote servers.

For example, /help exists on a different server than the one you are currently accessing. You must be

able to access that remote server in order to export /help.

A more complicated example involves trying to export a file system which a local client mounts from

a remote server. For example, the file system /home/troupe resides on a local client, and the file

system /remote1 exists on a remote server. If the client mounts /remote1 over /home/troupe, then the

client cannot export /home/troupe. This is because it actually exists on a remote server and not the

local client.

The first rule allows you to export only selected portions of a large file system. You can export and

mount a single file, a feature which is used extensively by clients without local disks. The second and

third rules say that you can export a local file system in one way, and one way only. Once you export a

sub-directory of a file system, you cannot go upstream and export the whole file system. Also, once you

have made the entire file system public, you cannot restrict the downstream flow of the export to include

only a few files.

Exporting sub-directories is similar to creating views on a relational database. You choose the portions of

the database that a user needs to see, hiding information that is either extraneous or confidential. In this

way, system administrators can limit access to sensitive material.

CHGNFSEXP (Change Network File System Export) Command

Purpose

The Change Network File System Export (CHGNFSEXP) command adds directory names to (exports) the

list of directory trees that are currently exported to NFS clients (the export table). This command also

removes (unexports) the list of directory trees that are currently exported to NFS clients. The flags in the

OPTIONS list indicate what actions you want the CHGNFSEXP command to perform. see the CL topic in

the i5/OS Information Center for a complete description of CHGNFSEXP options.

Figure 23. The exported directory branch /classes/class1 on TULAB2

Chapter 4. Server Exporting of File Systems 27

A list of directories and options for exporting a file system and its contents is stored in the /etc/exports

file. The CHGNFSEXP command allows you to export all of the directory trees specified in the file using

the ’-A’ flag. CHGNFSEXP also allows you to export a single directory tree by specifying the directory

name. When the directory tree being exported exists in the /etc/exports file, you can export it with the

options specified there, or you can use the ’-I’ flag to override the options, specifying the new options on

the CHGNFSEXP command.

You can also export a directory tree not previously defined in the /etc/exports file by providing the ’-I’

and the options for it on the CHGNFSEXP command. You can unexport directory trees by using the ’-U’

flag on the CHGNFSEXP command. You can unexport any file systems that you have previously

exported, even if remote clients have mounted them. The result is that the NFS server will send the

remote clients the ESTALE error number on their next attempt to operate on an object in that file system.

You can export to specific groups of clients by using the /etc/netgroup file. This file contains an alias for

a group of clients to whom file systems will be exported. No other systems outside of the netgroup will

be able to access the file systems. For more information about the /etc/netgroup file, see “/etc/netgroup

File” on page 92.

Users can call this command by using the following alternative command name:

v EXPORTFS

For more information on how to edit the /etc/exports file, see “Edit stream files using the Edit File

(EDTF) command” on page 89.

Restrictions:

The following restrictions apply when changing export entries:

1. The user must have *IOSYSCFG special authority to use this command.

2. The user must have read (*R) and write (*W) data authority to the /etc directory.

For more information about the CHGNFSEXP and EXPORTFS commands and the associated parameters,

see the CL topic in the i5/OS Information Center.

CHGNFSEXP/EXPORTFS Display

Change NFS Export (CHGNFSEXP)

 Type choices, press Enter.

 NFS export options > ’-I -O RO,ANON=199,ACCESS=Prof:1.234.5.6’

 Directory > ’/engdata/mech’

 Additional Parameters

 Host options:

 Host name TULAB1 Character value, *DFT

 Data file CCSID 850 1-65533, *BINARY, *ASCII...

 Path name CCSID 850 1-65533, *ASCII, *JOBCCSID

 Force synchronous write . . . *SYNC *SYNC, *ASYNC

 + for more values

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 24. Using the Change NFS Export (CHGNFSEXP) display

28 System i: i5/OS Network File System Support

When you use the CHGNFSEXP or EXPORTFS commands, you can specify many parameters and

options:

v The export options list contains some flags followed optionally by a list containing a character string of

characteristics for the directory tree being exported. Each flag consists of a minus ’-’ followed by a

character. The options you list here will appear in the OPTIONS parameter on the CHGNFSEXP

command. The flags are separated by spaces. Only certain combinations of flags are allowed. If a

combination that is not valid is detected, an error will be returned.

v The directory entry is the name of the directory that you want to export. The pathname you specify

will be listed in the DIR parameter on the CHGNFSEXP command. This entry specifies the path name

of the existing directory to be exported (made available to NFS clients) or unexported (made

unavailable to NFS clients). This directory cannot be a sub-directory or a parent of an already exported

directory (unless it is in a different file system). This parameter is not allowed when the -A flag is

specified on the OPTIONS parameter.

v The HOSTOPT parameter has four elements that specify additional information about the NFS clients

that a directory tree is being exported to. If you do not specify a HOSTOPT parameter for a host name

you are exporting the directory tree to, the defaults for each of the elements of the HOSTOPT

parameter are assumed for that host.

1. The name of the host for which you are specifying additional options. This host should be specified

above in the OPTIONS -O list as a host that has access to the exported directory tree. Specify either a

single host name that is an alias for an address of a single host or a netgroup name to be associated

with these options. You can assign names to an internet address with the Work with TCP/IP host

table entries option on the Configure TCP/IP menu (CFGTCP command). Also, a remote name

server can be used to map remote system names to internet addresses.

2. The network data file CCSID is used for data of the files sent and received from the specified

HOST NAME (or netgroup name). For any hosts not specified on the HOSTOPT parameter, the

default network CCSID (binary, no conversion) is used.

When new files are created, they are tagged with this CCSID unless the value is *BINARY. If the

file has a *BINARY value, then it is tagged with the network path name CCSID.

3. The network path name CCSID is used for the path name components of the files sent to and

received from the specified HOST NAME (or netgroup name). For any hosts not specified on the

HOSTOPT parameter, the default network path name CCSID (ASCII) is used.

4. The write mode specifies whether write requests are handled synchronously or asynchronously for

this HOST NAME (or netgroup name). The default *SYNC value means that data may will be

written to disk immediately. The *ASYNC value does not guarantee that data is written to disk

immediately, and can be used to improve server performance.

Note: The Network File System protocol has traditionally used synchronous writes. Synchronous

writes do not return control of the server to the client until after the data has been written by

the server. Asynchronous writes are not guaranteed to be written.

Examples

Example 1: Exporting all entries from /etc/exports.

CHGNFSEXP OPTIONS(’-A’)

CHGNFSEXP ’-A’

Both of these commands export all entries that exist in the /etc/exports file.

Example 2: Exporting one directory with options.

CHGNFSEXP OPTIONS(’-I -O RO,ANON=199,ACCESS=Prof:1.234.5.6’)

 DIR(’/engdata/mech’)

 HOSTOPT((TULAB1 850 850))

Chapter 4. Server Exporting of File Systems 29

This command exports the directory tree under the path name /engdata/mech as read-only. This

command allows only two clients to mount this directory tree. It takes advantage of the positional

parameters, which do not require keywords. It uses the HOSTOPT parameter to specify code pages for

the host TULAB1.

Example 3: Exporting a directory to many netgroups.

CHGNFSEXP OPTIONS(’-I -O ACCESS=students:LabSystems:Profs, ANON=-1’)

 DIR(’/home’)

This command exports the directory tree under the path name /home to three netgroups defined in the

/etc/netgroup file:

1. students

2. LabSystems

3. Profs

However, not all members of these netgroups have read/write access to the /home directory. Individual

and group permissions still apply to the path. This command also specifies ANON=-1, which does not

allow access to this system by anonymous users.

Example 4: Forcing read-only permissions on an export.

CHGNFSEXP OPTIONS(’-I -O RO, RW=students:LabSystems, ANON=-1,

 ACCESS=Profs:LabSystems:students’)

 DIR(’/classes’)

This command exports the directory tree under the path name /classes to the netgroups Profs,

LabSystems, and students. However, only students and LabSystems have read/write authority to the

exported tree. This command also specifies ANON=-1, which does not allow access to this system by

anonymous users.

Exporting from System i Navigator

You can also export local file systems using System i Navigator. Perform the following steps to export

from System i Navigator:

 1. In System i Navigator, expand your server.

 2. Expand File Systems.

The following figure shows an example of the System i Navigator interface:

30 System i: i5/OS Network File System Support

3. Expand Integrated File System. Continue to expand until the file system or folder you want to

export is visible.

 4. Right click the file system or folder and select NFS Export –> Properties. The figure below shows

the dialog box in System i Navigator:

Figure 25. The System i Navigator interface.

Chapter 4. Server Exporting of File Systems 31

5. On the General tab, insert user ID that will be assigned to unknown or anonymous users who log

on to the NFS server in the Anonymous User Mapping field.

 6. Click the Access tab and select the appropriate access settings for the export.

 7. Click Add Host/Netgroup to add other clients with specific privileges. The figure below shows a

display of the Add Host/Netgroup dialog box:

Figure 26. The NFS Export dialog box.

32 System i: i5/OS Network File System Support

8. Click OK to add your selected clients in the Add Host/Netgroup dialog box. You are brought back

to the New NFS Export dialog.

 9. Click Customize to configure the Path CCSID and Data CCSID options. The figure below shows an

example of the Customize NFS Clients Access dialog box:

Figure 27. The Add Host/Netgroup dialog box.

Chapter 4. Server Exporting of File Systems 33

10. Click OK to add your customized settings to the export. You are brought back to the New NFS

Export dialog.

11. Click Export.

The new export will take place immediately. You also have the option of updating the /ETC/EXPORTS

file with the new or changed export.

Find out what is exported

Often, you need to know the items that are currently exported on a server. There are three ways to do

this:

1. Using System i Navigator

2. Using Retrieve Network File System Export Entries (QZNFRTVE) API

Figure 28. The Customize NFS Clients Access dialog box.

34 System i: i5/OS Network File System Support

3. Using the UNIX showmount command on the network

Using System i Navigator

You can use System i Navigator to find objects that are currently exported on a server. To find objects

that are currently exported:

1. In System i Navigator, expand your server.

2. Expand Network.

3. Expand Servers.

4. Click TCP/IP. The status of NFS and other servers are displayed in the right panel.

5. Right-click NFS and select Exports. From here, you can add new exports or remove entries from the

list.

The figure below shows the dialog box for NFS exports:

6. Click OK.

Retrieve Network File System Export Entries (QZNFRTVE) API

A second method of finding currently exported items on the system is using the Retrieve Network File

System Export Entries (QZNFRTVE) API. This programming interface allows you to retrieve all of the

information about one or more exported entries. To call this API from the command line, type:

CALL QZNFRTVE

Figure 29. The NFS exports dialog box.

Chapter 4. Server Exporting of File Systems 35

This lists all of the current exports if you are viewing detailed messages. Hitting PF1 on an individual

export displays the configuration details for that entry. For more information about the QZNFRTVE API,

please refer to the API topic in the i5/OS Information Center.

UNIX showmount command

A third method involves displaying the exports from a UNIX system on the network. The Mount daemon

provides the service of returning the exports. The following command issued on TULAB1 shows how to

use this service to find the exported entries on TULAB2:

> showmount -e tulab2

export list for tulab2:

/classes/class1 host1,host2

/engdata/civil (everyone)

Exporting Considerations

Mounted File System Loops

Users and administrators can encounter difficulty with the inability of NFS to export an already-mounted

Network File System. NFS will not allow the export of a mounted file system because of the possibility of

mounted file system loops. This problem would occur if NFS allowed the mount and then new clients

mounted the namespace. The new clients would then discover that to find the mount point, they would

have to pass through the mount point. They would never get to the bottom of the directory, which would

keep recycling the path to infinity. The mount daemon would run into a never-ending string, thus

causing client failure.

Mounted File System Loops Solution

This problem will not occur because NFS will not allow the export of an already-mounted NFS file

system.

Symbolic Links

The Network File System supports the use of symbolic links. Symbolic links are the representations of

path names that are in the form of a path contained in a file. The actual path is determined by doing a

path search based on the contents of the file.

Two path names can lead to the same object because one is a symbolic link. For example, the directory

/nancy can contain a symbolic link to /home/grad/kathryn so that the path to an object in

/home/grad/kathryn can also be /nancy. The two path names are the same. If a user exports both entries,

then both will export normally. Exporting /home/grad/kathryn is the same as exporting /nancy. NFS

exports objects, and not path names, so the last occurrence of the object export will be the only one that

requires saving in the export table.

For more information about symbolic links, see Symbolic links in the File systems and management topic

of the i5/OS Information Center.

36 System i: i5/OS Network File System Support

Chapter 5. Client Mounting of File Systems

The mount command places the remote file system over a local directory on an NFS client. After

exporting, mounting a file system is the second major step in setting up a “transparent” relationship

between client and server.

Mounting allows clients to actually make use of the various file systems that the server has exported.

Clients can use the mount command to map an exported file system over all or just part of a local file

system. This action occurs so seamlessly that local applications will probably not distinguish between file

systems mounted from a remote server and file systems existing locally. Multiple clients can mount and

work with a single or multiple file systems at the same time.

Once file systems have been exported from a remote server, clients can then mount these accessible file

systems and make them a part of their local namespace. Clients can dynamically mount and unmount all

or part of exported server file systems. Once a client has mounted a file system onto its own local

namespace, any local file system information below the mount point will be “covered up.” This renders

the “covered” or “hidden” file system inaccessible until the remote file system is unmounted.

What Is Mounting?

Mounting is a client-side operation that gives the local client access to remote server file systems. The

mount command does not copy the file systems over to the client. Rather, it makes the remote file

systems appear as if they physically exist on the client. In reality, the file systems exist only on the server

and the client is only accessing them. The interface, however, is designed to give the impression that the

mounted file systems are local. In most cases, neither applications nor users can tell the difference.

Figure 30. A local client and remote server with exported file systems

© Copyright IBM Corp. 1999, 2008 37

Given the proper authority, an NFS client can mount any file system, or part of a file system, that has

been exported from an NFS server. Mounting is the local client action of selecting an exported directory

from a remote server and making it accessible to the integrated file system namespace of the local client.

In many UNIX implementations of NFS, a user can list a remote file system in the /etc/fstab file on the

client where it is automatically mounted after IPL. On i5/OS NFS implementation, however, there is a

program that operates at IPL that is typically used to start up various user-selectable system tasks. The

name of this IPL-time startup program is stored in a system value called QSTRUPPGM The default name of

the program is QSTRUP, which is located in the QSYS library. Users can edit this program to include the

ADDMFS (Add Mounted File System) or MOUNT commands that will automatically mount remote file

systems during startup. It is recommended that you use the STRNFSSVR *ALL command before using

any mount commands. Remote exported file systems can also be explicitly mounted at any time after IPL

by clients with proper authority using the ADDMFS or MOUNT commands.

When file systems are mounted on the client, they will “cover up” any file system, directories, or objects

that exist beneath the mount point. This means that mounted file systems will also cause any file

systems, directories, or objects that exist locally downstream from the mount point to become

inaccessible.

Figure 31. A local client mounting file systems from a remote server

Figure 32. The mounted file systems cover local client directories

38 System i: i5/OS Network File System Support

There is a “downstream” principle for mounting that is similar to the “downstream” rule for exporting.

Whenever you mount a remote file system over a local directory, all of the objects “downstream” of the

mount point are “covered up”. This renders them inaccessible to the local namespace. If you mount at a

high level of a local directory tree, then you will cause most of your objects to become inaccessible.

If you mount remote file systems over a lower point of the local directory tree, then you will not “cover

up” as many of your objects, if any.

This “covering” aspect of mounting causes whatever local data beneath the newly mounted file system to

become “invisible” to the user. They will not appear in the integrated file system namespace. “Covered”

file systems are inaccessible until the mounted file system is unmounted. The client can dynamically

unmount any file system that has previously been mounted. This action allows for the “uncovering” of a

file system, directory, or object that has been mounted over. It also breaks the connection with the server

(and therefore access) for that particular mounted file system.

Why Should I Mount File Systems?

Mounting file systems gives a client system the ability to work with files and other objects that were

previously only available on the server. This is helpful in dispersing needed or important information to

a wide variety of users and systems. Mounting also makes for less repetition when starting up a network.

Each client can mount a startup configuration directly from the server that can be re-configured

spontaneously, if necessary.

Mounting gives the remote client ease and freedom in deciding how to structure directories. File systems

can be dynamically mounted and unmounted at will. Furthermore, users can specify parameters and

options on the mount command that give clients and servers the most resources and highest security

possible.

Sometimes the namespace of a client can become too complicated or overwhelmed with information. The

unmount command is an easy way to slowly disengage from the server one file system at a time. To

unmount all file systems, specify the *ALL value for the TYPE parameter on the UNMOUNT or RMVMFS

(Remove Mounted File System) commands.

Figure 33. The local client mounts over a high-level directory

Figure 34. The local client mounts over the /2 directory

Chapter 5. Client Mounting of File Systems 39

For detailed information on how to mount and unmount file systems, see “ADDMFS (Add Mounted File

System) Command” on page 43 and “RMVMFS (Remove Mounted File System) Command” on page 45.

What File Systems Can I Mount?

Users can mount three different types of file systems on i5/OS:

Network File Systems

Despite the fact that users will mount most file systems at startup time, there may be a need to

dynamically mount and unmount file systems. Remote file systems exported by the server can be

mounted at any time, assuming the local client has appropriate access authorities.

User-Defined File Systems

On i5/OS, a UDFS is a local object that is visible as an opaque object in the integrated file system

namespace. The contents of a UDFS are accessible only when it has been mounted within the

integrated file system namespace. Although UDFSs can be mounted at the time of startup, users

can dynamically mount and unmount a UDFS at any time.

Where Can I Mount File Systems?

It is possible to mount an NFS file system over all or part of another client file system. This is possible

because the directories used as mount points appear the same no matter where they actually reside.

To the client, NFS file systems appear to be and function as “normal,” local file systems. Users can mount

network file systems over the following i5/OS client file systems:

v “Root” (though not over the root directory itself)

v QOpenSys

v NFS

v UDFS

When a client mounts an exported file system, the newly mounted file system will cover up whatever is

beneath it. This is true for mounting remote file systems over local directories as well as mounting

remote file systems over previously-mounted remote file systems. Any file system that is covered up in

such a manner is inaccessible until all of the file systems “on top” are unmounted.

For example, TULAB2 exports /classes/class1, which contains the directory /classes/class1/proj1. A

remote client has a local directory /user, which contains the directory /user/work, which contains the

directory /user/work/time. The client mounts /classes/class1/ over /user/work, which causes the

mounted file system to completely cover up everything on the local directory tree that is “downstream”

from the mount point. The mount point is /user/work. The /user/work directory now contains only

proj1. Should the client try to access the data that is “covered up,” (/user/work/time) an error message

returns to the user. Data that has been covered by a mounted file system is inaccessible until the file

system is unmounted.

Figure 35. Views of the local client and remote server

40 System i: i5/OS Network File System Support

To continue this example, another remote file system is exported by TULAB2, /engdata. In keeping with

the “downstream” rule of exporting, all of the sub-directories of /engdata are also exported. The client

can mount the exported sub-directory over the mount point that already exists. When a user mounts

/engdata over the directory /user/work, all of the contents of /user/work, including /user/work/proj1

become covered by the mount. This renders them inaccessible. The new local directory tree on the client

will display /user/work and the various contents and sub-directories, as shown here.

Figure 36. The client mounts /classes/class1 from TULAB2

Figure 37. The /classes/class1 directory covers /user/work

Figure 38. The remote server exports /engdata

Chapter 5. Client Mounting of File Systems 41

Note: NFS clients will always see the most recent view of a file system. If the client dynamically mounts

or unmounts a file system, the change will be reflected on the namespace of the client after the

next refresh.

It is possible to mount several different remote file systems over the same mount point. Users can mount

file systems from various remote servers over the same directory on a local client without any prior

unmounting. When unmounting the “stacked” file systems, the last mount is the first to be removed.

Mount Points

Mount points mark the area of the local client and remote server namespaces where users have mounted

exported file systems. Mount points show where the file system has been mounted from on the server and

show where it is mounted to on the client.

For example, the system exports the /home/consults directory from TULAB1 and mounts it over the

/test directory on a remote client. The mount point on the client is /test. The old directory, /test, and its

contents are covered up, and it becomes a window into the namespace of the server, TULAB1. To see

which remote file system corresponds with a mount point or path, use the DSPMFSINF command. For

example:

DSPMFSINF OBJ(’/test’)

For more information on this command, see “DSPMFSINF (Display Mounted File System Information)

Command” on page 47.

Figure 39. The local client mounts /engdata over a mount point

Figure 40. The /engdata directory covers /user/work

42 System i: i5/OS Network File System Support

How Do I Mount File Systems?

Users make remote server file systems accessible to the local namespace using the MOUNT and ADDMFS

(Add Mounted File System) CL commands. The UNMOUNT and RMVMFS (Remove Mounted File

System) commands will remove a mounted file system from the namespace. The DSPMFSINF (Display

Mounted File System Information) command will provide information about a mounted file system. You

can also reach these commands through a menu. Type GO CMDMFS (Go to the Mounted File System

Commands menu) at any command line.

Before attempting to mount NFS file systems, you need to verify that the correct TCP/IP configuration

exists on your server. Refer to the Configure TCP/IP topic in the i5/OS Information Center for more

information.

ADDMFS (Add Mounted File System) Command

Purpose

The Add Mounted File System (ADDMFS) command makes the objects in a file system accessible to the

integrated file system name space. The file system to be mounted can be either of the following:

1. A user-defined file system (*UDFS) on the local server

2. A remote file system accessed by a local Network File System client (*NFS)

The directory that is the destination for the mount must exist. After completion of the mount, the

contents of this directory will be “covered up” and rendered inaccessible to the integrated file system

namespace.

Users can issue this command by using the following alternative command name:

v MOUNT

Restrictions:

1. You must have *IOSYSCFG special authority to use this command.

2. If you are mounting a user-defined file system or a Network File System, then you require *R (read)

authority to the file system being mounted.

3. You must have *W (write) authority to the directory being mounted over.

For more information about the ADDMFS and MOUNT commands and the associated parameters and

options, see the CL topic in the i5/OS Information Center.

ADDMFS/MOUNT Display

Chapter 5. Client Mounting of File Systems 43

|

|

When you use the ADDMFS or MOUNT commands, you can specify many parameters and options:

v The required TYPE parameter on the ADDMFS command specifies the type of file system being

mounted. The type of mount determines the correct form for the MFS parameter.

v The required MFS parameter on the ADDMFS command specifies the path name of the file system to

be mounted. It can be the path to a local block special file (*BLKSF) or a remote NFS path name.

v The required MNTOVRDIR parameter on the ADDMFS command specifies the path name of the

existing directory that the file system will be mounted over. This directory gets “covered” by the

mounted file system.

v The mount options list contains a character string of mount options. The keywords are separated by

commas. For some keywords, an equal ’=’ and a value follow the keyword. If a keyword is not

specified, the default value for that option will be used. The options list may contain spaces.

v The coded character set ID (CCSID) parameter on the ADDMFS command specifies a pair of CCSIDs

for NFS. The CCSID values should be for pure single or double-byte CCSIDs.

v The data file CCSID specifies what CCSID should be assumed for data files on the remote server. You

should specify a CCSID that has the same number of bytes per character as the original data.

v The path name CCSID specifies what CCSID should be assumed for path names on the remote server.

This is a CCSID to be assumed for path names on the remote server.

Examples of the MOUNT command

Example 1: Mounting a User-Defined File System.

ADDMFS TYPE(*UDFS) MFS(’/DEV/QASP02/PROJ.UDFS’)

 MNTOVRDIR(’/REPORT’)

This command mounts a user-defined file system PROJ.UDFS over the directory /report. This command

uses the defaults for the other parameters.

Example 2: Mounting a Network File System from TULAB2.

ADDMFS TYPE(*NFS) MFS(’TULAB2:/QSYS.LIB/SCHOOL.LIB’)

 MNTOVRDIR(’/HOME’)

This command mounts the remote /qsys.lib/school.lib file system from the remote system TULAB2

over the directory /home on a local client.

Add Mounted FS (ADDMFS)

 Type choices, press Enter.

 Type of file system > *NFS *NFS, *UDFS

 File system to mount > ’TULAB2:/QSYS.LIB/SCHOOL.LIB’

 Directory to mount over > ’/HOME’

 Mount options ’rw,suid,retry=5,rsize=8096,wsize=8096,timeo

=20,retrans=5,acregmin=30,acregmax=60,acdirmin=30,acdirmax=60,hard’

 Coded character set ID:

 Data file CCSID *BINARY 1-65533, *ASCII, *JOBCCSID...

 Path name CCSID *ASCII 1-65533, *ASCII, *JOBCCSID

 Code page:

 Data file code page *BINARY 1-32767, *ASCII, *JOBCCSID...

 Path name code page *ASCII 1-32767, *ASCII, *JOBCCSID

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 41. Using the Add Mounted FS (ADDMFS) display

44 System i: i5/OS Network File System Support

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Example 3: Mounting a Network File System with Options.

ADDMFS TYPE(*NFS) MFS(’TULAB2:/QSYS.LIB/WORK.LIB’)

 MNTOVRDIR(’/HOME’)

 OPTIONS(’ro, nosuid, rsize=256, retrans=10’)

 CCSID(*JOBCCSID)

This command mounts the /qsys.lib/work.lib file system from the remote system TULAB2 onto the

local client directory /HOME. This command also specifies:

v Mount as read-only

v Disallow setuid execution

v Set the read buffer to 256 bytes

v Set the retransmission attempts to 10

The default job CCSID is used to determine the code page of the data on the remote system.

RMVMFS (Remove Mounted File System) Command

Purpose

The Remove Mounted File System (RMVMFS) command will make a previously mounted file system

inaccessible within the integrated file system name space. The file system to be made inaccessible can be

either of the following:

1. A user-defined file system (*UDFS) on the local server

2. A remote file system accessed by a Network File System (*NFS) server

If any of the objects in the file system are in use, the command will return an error message to the user.

Note that if any part of the file system has itself been mounted over, then this file system cannot be

unmounted until it is uncovered. If multiple file systems are mounted over the same mount point, the

last to be mounted will be the first to be removed.

Users can also issue this command by using the following alternative command name:

v UNMOUNT

Restrictions

1. You must have *IOSYSCFG special authority to use this command.

For more information about the RMVMFS and UNMOUNT commands and the associated parameters

and options, see the CL topic in the i5/OS Information Center.

Chapter 5. Client Mounting of File Systems 45

|

|

RMVMFS/UNMOUNT Display

 When you use the RMVMFS or UNMOUNT commands, you can specify many parameters and options:

v The TYPE parameter on the ADDMFS command specifies the type of file system being unmounted.

v The MNTOVRDIR parameter on the ADDMFS command specifies the path name of the directory that

was mounted over (“covered”) by a previous ADDMFS command.

v The MFS parameter on the ADDMFS command specifies the file system to be unmounted.

Note: This parameter can only be used to unmount a block special file (*BLKSF object) when you

specify the *UDFS value in the TYPE parameter on the ADDMFS command.

Examples

Example 1: Unmounting a Directory.

RMVMFS TYPE (*NFS) MNTOVRDIR(’/tools’)

This command unmounts a Network File System that is accessible on directory /tools.

Example 2: Unmounting a User-Defined File System.

RMVMFS TYPE(*UDFS) MFS(’/DEV/QASP02/A.udfs’)

This command unmounts the user-defined file system /DEV/QASP02/A.udfs.

Example 3: Unmounting all mounted file systems on a client.

RMVMFS TYPE(*ALL) MNTOVRDIR(*ALL)

This command unmounts all the file systems that a client has mounted.

Example 4: Unmounting all mounted file systems on a specific client directory.

RMVMFS TYPE(*ALL) MNTOVRDIR(’/napa’)

This command unmounts all the file systems that a client has mounted over /napa.

Remove Mounted FS (RMVMFS)

 Type choices, press Enter.

 Type of file system > *NFS *NFS, *UDFS, *ALL

 Directory mounted over > ’/USER/WORK’

 Mounted file system > ’/CLASSES/CLASS1’

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 42. Using the Remove Mounted FS (RMVMFS) display

46 System i: i5/OS Network File System Support

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DSPMFSINF (Display Mounted File System Information) Command

Purpose

The Display Mounted File System Information (DSPMFSINF) command displays information about a

mounted file system.

Users can also issue this command by using the following alternative command name:

v STATFS

For more information about the DSPMFSINF command and the associated parameters and options, see

the CL topic in the i5/OS Information Center.

DSPMFSINF/STATFS Display

When you use the DSPMFSINF command, you only have to specify one parameter:

v The required OBJ parameter �1� on the DSPMFSINF command specifies the path name of an object

that is within the mounted file system whose statistics are to be displayed. Any object in the mounted

file system can be specified. For example, it can be a directory (*DIR) or a stream file (*STMF).

When you use the DSPMFSINF or STATFS command, you will view a series of displays like the two that

follow:

Display Mounted FS Information (DSPMFSINF)

 Type choices, press Enter.

 Object /dev/qasp02/kate.udfs

 Output * *, *PRINT

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 43. Using the Display Mounted FS Information (DSPMFSINF) display

Chapter 5. Client Mounting of File Systems 47

This first display shows basic information about a mounted file system.

You can see from this display advanced types of information are not supported for user-defined file

systems.

Examples

Example 1: Displaying Statistics of a Mounted File System.

DSPMFSINF OBJ(’/home/students/ann’)

This command displays the statistics for the mounted file system that contains /home/students/ann.

Example 2: Displaying ’/QSYS.LIB’ File System Statistics.

Display Mounted FS Information

 Object : /home/students/ann

 File system type : User-defined file system

 Block size : 4096

 Total blocks : 2881536

 Blocks free : 1016026

 Object link maximum : 32767

 Directory link maximum : 32767

 Pathname component maximum . . : 510

 Path name maximum : No maximum

 Change owner restricted . . . : Yes

 No truncation : Yes

 Case Sensitivity : No

 More...

 Press Enter to continue.

 F3=Exit F12=Cancel

 (C) COPYRIGHT IBM CORP. 1980, 1996.

Figure 44. Display Mounted FS Information (DSPMFSINF) output (1/2)

Display Mounted FS Information

 Path of mounted file system . : /dev/qasp02/kate.udfs

 Path mounted over : /home/students/ann

 Protection : Read-write

 Setuid execution : Not supported

 Mount type : Not supported

 Read buffer size : Not supported

 Write buffer size : Not supported

 Timeout : Not supported

 Retry Attempts : Not supported

 Retransmission Attempts . . . : Not supported

 Regular file attribute minimum

 time : Not supported

 Regular file attribute maximum

 time : Not supported

 More...

 Press Enter to continue.

 F3=Exit F12=Cancel

Figure 45. Display Mounted FS Information (DSPMFSINF) output (2/2)

48 System i: i5/OS Network File System Support

DSPMFSINF OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

This command displays the statistics for the /QSYS.LIB file system that contains *FILE object MYFILE in

library MYLIB.

Chapter 5. Client Mounting of File Systems 49

50 System i: i5/OS Network File System Support

Chapter 6. Using the Network File System with i5/OS File

Systems

There are several exceptions to using i5/OS file systems with NFS on various clients. This is because you

are able to export several different file systems on an i5/OS NFS server. Each file system has its own set

of requirements and deviations through NFS from its normal functioning state. The purpose of this

chapter is to make you aware of these differences for the specific file system you are accessing through

NFS.

With OS/400 Version 4 Release 4 (V4R4), the following file systems received enhancements to support

stream files larger than 2 gigabytes:

v Library File System (QSYS.LIB)

v Open Systems File System (QOpenSys)

v ″Root″ (/)

v User-Defined File System (UDFS)

NFS on i5/OS also supports these large files in V4R4 with the exception of byte-range locking. The fcntl()

API will only function with these files from an NFS client if the byte-range locking sizes and offsets fall

under the 2 GB limit.

For detailed information on the file systems that NFS supports and large file support, refer to Large file

support for integrated file system APIs in the File systems and management topic of the i5/OS

Information Center.

© Copyright IBM Corp. 1999, 2008 51

″Root″ File System (/)

Network File System Differences

Case-Sensitivity

When a remote UNIX client mounts an object that the server exports from the “root” (/) file system, it

will always function as case-insensitive.

Read/Write Options

No matter what options the client specifies on the MOUNT command, some server file systems from

“root” (/) exist as only read-write. However the client mounts a file system determines how the file

system is treated and how it functions on the client.

Figure 46. The ″Root″ (/) file system accessed through the NFS Server

52 System i: i5/OS Network File System Support

Open Systems File System (QOpenSys)

Network File System Differences

Case-Sensitivity

When a remote UNIX client mounts an object that the server exports from the QOpenSys file system, the

object will always function as case-sensitive.

Read/Write Options

No matter what options the client specifies on the MOUNT command, some server file systems from

QOpenSys exist as read-only or read-write. However the client mounts a file system determines how the

file system is treated and how it functions on the client.

Figure 47. The QOpenSys file system accessed through the NFS Server

Chapter 6. Using the Network File System with i5/OS File Systems 53

Library File System (QSYS.LIB)

Network File System Differences

Exporting and QSYS.LIB

You can export some .LIB and .FILE objects. If you export .SAVE files and a client mounts them, then all

attempts to open the files will fail. In general, you should export only things that clients need access to.

All object types in the QSYS.LIB file system can be exported and mounted successfully without error. All

operations on exported and mounted file systems will function as if the object existed locally on the

server. For example, the only object types in the QSYS.LIB file system that support all file input/output

(I/O) operations are database members (.MBR) and user spaces (.USRSPC).

NFS always opens data files in binary mode. If you are reading source physical file members, you may

not see line feeds or carriage returns. Use the CPYTOIMPF command first in order to view the line feeds

and carriage returns of the file member.

QPWFSERVER Authorization List

The QPWFSERVER is an authorization list (object type *AUTL) that provides additional access

requirements for all objects in the QSYS.LIB file system being accessed through remote clients. The

authorities specified in this authorization list apply to all objects within the QSYS.LIB file system.

The default authority to this object is PUBLIC *USE authority. The administrator can use the EDTAUTL

(Edit Authorization List) or WRKAUTL (Work With Authorization List) commands to change the value of

this authority. The administrator can assign PUBLIC *EXCLUDE authority to the authorization list so that

the general public cannot access QSYS.LIB objects from remote clients.

Figure 48. The QSYS.LIB file system accessed through the NFS Server

54 System i: i5/OS Network File System Support

Mounting and QSYS.LIB

Users can mount the QSYS.LIB file system on a client, but users cannot mount over the QSYS.LIB file

system. Users should export and mount a sub-library from QSYS.LIB rather than mounting QSYS.LIB

directly on the client. The reason for this is that QSYS.LIB contains hundreds of objects. Trying to display

or process all of the objects can affect client performance.

Support for User Spaces

NFS supports the exporting and mounting of user spaces, with the following exceptions:

v User spaces cannot be over 16 megabytes

v User spaces are not CCSID-tagged or tagged for a code page by default. If a CCSID is asked for, NFS

will translate the data if the user specifies the CCSID.

v User space files (*USRSPC object type) can be appended to using NFS, but this may produce

unpredictable results with how data is written.

File Modes of Database Members

The file mode of any database members needs to be the same as the file mode of the parent file. No

matter what users specify, NFS will always create new database members with the file mode of the

parent. If users specify other file modes than that of the parent, they will not receive an error return code.

NFS will create the new member with the file mode of the parent no matter what the user specifies.

Path Names of .FILE Objects

Users need to be aware of the maximum database record length when editing database members. Users

specify the record length when creating a physical file. The default record length for all .FILE objects

created in QSYS.LIB is 92 bytes if created with one of the following methods:

1. mkdir() API

2. MKDIR (Make Directory) command

3. MD (Make Directory) command

4. CRTDIR (Create Directory) command

Source physical files contain a date stamp (6 bytes) and sequence number (6 bytes), using 12 total bytes

of data. This is accounted for by subtracting 12 bytes from 92, which leaves a default of 80 bytes per

record for source physical files. For any record length specified, the real amount of bytes per record is the

number specified minus 12 bytes for source physical files.

Byte-Range Locks

QSYS.LIB does not support byte-range locking. The fcntl() API will fail with error condition ENOSYS if

used by clients.

Case-Sensitivity

QSYS.LIB is case-insensitive. UNIX clients are typically case-sensitive. How users read directories and

match patterns will determine which files the system displays when displaying QSYS.LIB through a

UNIX client.

For example, there is one file in a given directory, AMY.FILE. The UNIX LS (list) command will display all

the contents of the directory. When users issue the following command:

ls a*

The system will display no files or objects.

However, when users issue this command:

ls A*

The system will display AMY.FILE

Chapter 6. Using the Network File System with i5/OS File Systems 55

Pattern matching occurs in the client, not the server, and all entries come from QSYS because NFS only

reads directories, but does not match patterns. The command ls annie.file will work because it does

not rely on pattern-matching. Quoted (extended) names are returned exactly as they are stored, as they

are case-sensitive.

Document Library Services File System (QDLS)

Network File System Differences

Mounting and QDLS

Users can mount the QDLS file system on a client, but users cannot mount over the QDLS file system.

File Creation

Users cannot create regular files in the top-level /QDLS directory. Users can only create files in the

sub-directories of /QDLS.

Path Name Length

The name of any QDLS component can be up to 8 characters long, and the extension (if any) can be up

to 3 characters long. The maximum length of the path name is 82 characters, assuming an absolute path

name beginning with /QDLS. When mounting the QDLS file system on a client, the complete path name

cannot exceed 87 characters (including /QDLS).

Anonymous Users

Clients can mount the QDLS file system through the NFS server. If anonymous clients plan to use objects

within QDLS, however, they must first register with the document library services through enrollment.

Administrators can enroll QNFSANON or other users with the QDLS Folder Management Services (FMS)

Figure 49. The QDLS file system accessed through the NFS Server

56 System i: i5/OS Network File System Support

by using the ADDDIRE (Add Directory Entry) command. All anonymous client requests that are mapped

to QNFSANON will fail at the server if you do not enroll the QNFSANON user profile in FMS.

For more information regarding the QDLS file system, see

v Document library services file system (QDLS) topic in the i5/OS Information Center

Optical File System (QOPT)

Network File System Differences

Mounting and QOPT

Users can export QOPT file system and mount it on a client. You cannot mount over the QOPT file

system. Due to the statelessness of NFS and the fact that optical storage cannot be reused unless the

entire optical volume is re-initialized, the QOPT file system will be treated as a read-only file system once

exported and mounted on a client. i5/OS users on the server will continue to be able to write to the

QOPT file system.

QOPT can be exported with both read and write access.

Case-Sensitivity

QOPT is case-insensitive. It converts lowercase English alphabetic characters to uppercase when used in

object names. Therefore, the path name /QOPT/volume/dir/file represents the same path as

/QOPT/VOLUME/DIR/FILE..

Security and Authorization

The QOPT file system offers volume-level security, as opposed to file or directory-level security. Each

optical volume is secured by an authorization list. If a user needs access to directories or files on a

Figure 50. The QOPT file system accessed through the NFS Server

Chapter 6. Using the Network File System with i5/OS File Systems 57

|

volume, they will need access to the optical volume. The system administrator, or a user with

authorization list management authority, can grant access by doing the following:

1. Use the Work with Optical Volumes (WRKOPTVOL) command to find out which authorization list

secures the volume.

2. Use the Edit Authorization List (EDTAUTL) command to add the user to the authorization list.

For more information on optical security, see the Optical Support book.

User-Defined File System (UDFS)

Network File System Differences

Case-Sensitivity

When remote UNIX clients mount objects that the server exports from a UDFS, the case-sensitivity is

variable, depending on how the user created the UDFS. A UDFS that is mounted on a UNIX client can

cause the case-sensitivity to change in the middle of a directory tree.

System and User Auxiliary Storage Pools

The contents of a UDFS exist in a user auxiliary storage pool (ASP), but the UDFS block special file itself

always lies in the system ASP.

Figure 51. The UDFS file system accessed through the NFS Server

58 System i: i5/OS Network File System Support

Administrators of UNIX Clients

Network File System Differences

Directory Authority

UNIX clients need *X (execute) authority to create files within a directory. This is true when working with

any mounted i5/OS file system. By default, UNIX clients may not create directories with *X (execute)

authority attached. UNIX clients may need to change the UMASK mode bits to ALL on the execute bit

when directories are created. This will allow objects to be created within that directory.

Chapter 6. Using the Network File System with i5/OS File Systems 59

60 System i: i5/OS Network File System Support

Chapter 7. NFS Startup, Shutdown, and Recovery

NFS startup performs separately and independently on each machine. The startup of an NFS component

on one server does not trigger the startup of an NFS component on another server. For example, if you

start the Network Lock Manager on a client, the NLM on the server will not automatically start up. For

proper functioning of NFS, there is an implied order in which the daemons should be started on any

given server or network.

For example, the NFS server daemon must be operational on a given machine before an NFS client on

another server can successfully issue any requests to that server. Similarly, the mount daemon on a given

server must be operational before another machine can successfully issue a mount request to that

daemon.

Administrators have the ability to start and end NFS servers and clients at any time, in any order. This

action will not cause error messages to be issued. However, it is recommended that users should start

and end NFS in the order that is specified below for best operation.

Note: Do not start File Server Support/400 (FSS/400) and NFS at the same time. Only one of these server

applications can operate on i5/OS at any given time. If FSS/400 is operating at the time of NFS startup,

the RPC Binder Daemon (port mapper) will fail to connect to port 111. Furthermore, the RPC daemon

will not be able to assign any ports to server processes. The use of NFS is recommended.

Configuring TCP/IP

You must install and properly configure TCP/IP prior to starting NFS support for the first time. NFS uses

the system configuration to determine the local server name. There must be an entry in the hosts table for

both the ″short″ and ″long″ name, unless you are using a Domain Name Server (DNS). Perform the

following steps to correctly configure TCP/IP and its options:

1. Go to the Configure TCP/IP menu (CFGTCP).

2. Select option 12 (Change TCP/IP Domain or CHGTCPDMN).

You can find the short name in the Host name parameter. The long name is the short name appended

by a ’.’ and the Domain name (the next parameter). For example, ASHOST01 is a short name, and

ASHOST01.NETWORK.DOMAIN.COM is a long name.

3. Update information if needed.

The Host name search priority tells the system the order in which to try to resolve host names.

*LOCAL means to search the TCP/IP host table first, and *REMOTE says to use a DNS first at the

specified IP address. If you do not need to update information on this screen, press PF12.

4. Select option 10 (Work with TCP/IP Host Table Entries).

5. Verify that there is both a long and short host name entry for the IP address of the local system. If

you do not know this address, select option 1 from the CFGTCP menu. Additionally, you can select

one of the two following options:

a. Select option 2 (Change) from the CFGTCP menu to add a name for an address.

b. Select option 1 from the CFGTCP menu to add an entire new address with names.
6. Verify that the names LOOPBACK and LOCALHOST are associated with the IP address 127.0.0.1 in the host

table.

7. Verify that the long and short names of each NFS server you need access to are included in the host

table. You only need to do this if you will be using the system as an NFS client. If they are not in the

host table, and a DNS is not being used, then you must add the long and short names.

Here is an example of a TCP/IP Host table:

© Copyright IBM Corp. 1999, 2008 61

Internet Host

Opt Address Name

 19.45.216.4 THISHOST

 THISHOST.COMPANY.DOM1.COM

 19.45.216.93 NFSSERV1

 NFSSERV1.COMPANY.DOM1.COM

 127.0.0.1 LOOPBACK

 LOCALHOST

Implications of Improper Startup and Shutdown

The various components of the Network File System make up a complex and interdependent system.

This means that they rely on each other for common, efficient functioning. There are, therefore, many

functions that can fail if users startup or shutdown improperly:

v If the user does not start the RPC binder daemon first, then all local server ports will fail to map

properly. No requests from the client will be processed.

v If the client starts before the server has loaded the mount daemon, any mount requests the client

makes will fail. Furthermore, the NLM and NSM daemons will not be able to grant locks until users

start them on both the client and the server.

v Should the client be started and make mount requests before the server has issued the export

command, all mount requests will fail.

v If a user ends the RPC binder daemon (port mapper) first, then all the other daemons cannot

unregister with the RPC binder (port mapper) daemon.

v If users do not end all the daemons, then there can be confusion on the next startup of which daemons

are operating and which are not.

Proper Startup Scenario

In an NFS server startup:

1. The user starts the RPC binder (port mapper) daemon (QNFSRPCD). This daemon then waits on a

known port (#111) for local RPC requests to register a service. This daemon also waits for remote RPC

requests to query a local service.

2. The user starts the NFS registry daemon (QNFSRGYD). This daemon converts profile names to and

from UIDs and GIDs.

3. The user starts the GSS daemon (QNFSGSSD). This daemon is used for Kerberos authentication.

4. The user calls the export command, creating a list of exported directories in the export table from

information contained in the /etc/exports file.

5. The user starts the NFS server daemon (QNFSNFSD) or daemons. It registers to the local RPC binder

daemon, which knows on which port the NFS server waits for requests (the standard is #2049). All

server daemons will use this same port. The NFS server daemons then wait on the port for RPC

requests from NFS clients to access local files.

6. The user starts the mount daemon (QNFSMNTD). This daemon registers to the local RPC binder

daemon. It then waits on the assigned port for RPC requests from NFS clients to mount local file

systems.

7. The user starts the NSM daemon (QNFSNSMD). It registers to the local RPC binder daemon. It then

waits on the assigned port for RPC requests to monitor systems.

8. The user starts the NLM daemon (QNFSNLMD). It registers to the local RPC binder daemon. It then

waits on the assigned port for RPC requests to manage locks.

In a typical startup, if you specify *ALL for the SERVER parameter for the Start Network File System

Server (STRNFSSVR) command, you will automatically start all the daemons in the correct order.

In an NFS client startup:

62 System i: i5/OS Network File System Support

1. The user starts the RPC binder (port mapper) daemon, if it is not already operational. On a given

system, a single port mapper is used for both client and server.

2. The user starts the block I/O daemon (QNFSBIOD) or daemons. This daemon controls the caching of

data and attributes that have been transmitted from the server.

3. The user starts the NFS registry daemon (QNFSRGYD). This daemon converts profile names to and

from UIDs and GIDs.

4. The user starts the GSS daemon (QNFSGSSD). This daemon is used for Kerberos authentication.

5. The user starts the NSM daemon, if it is not already operational. On a given system, a single NSM

operates for both the client and server.

6. The user starts the NLM daemon, if it is not already operational. On a given system, a single NLM is

used for both the client and server.

STRNFSSVR (Start Network File System Server) Command

Purpose

The Start Network File System Server (STRNFSSVR) command starts one or all of the Network File

System (NFS) server daemons.

You should use the SERVER(*ALL) option, which starts the daemons in the following order, as well as

call the export command. This order is the recommended order for starting the Network File System.

v The Remote Procedure Call (RPC) binder daemon

v The block I/O (BIO) daemon

v The Generic Security Service (GSS) daemon

v The NFS registry daemon

v The server (SVR) daemon

v The mount (MNT) daemon

v The network status monitor (NSM) daemon

v The network lock manager (NLM) daemon

If you are choosing to start just one daemon, be sure you understand the appropriate order for starting

NFS daemons and the possible consequences of starting daemons in an order other than that specified

above.

If you attempt to start a daemon or daemons that are already running, they do not cause the command to

fail, and the command continues to start other daemons you have requested to start. The command

issues diagnostic message CPDA1BA or CPDA1BD if the daemon is already running. For best results, end

NFS daemons before attempting to run the STRNFSSVR command.

Displaying NFS Server Daemons

To determine if an NFS daemon is running, use the Work with Active Jobs (WRKACTJOB) command and

look in the subsystem QSYSWRK for the existence of the following jobs:

v QNFSBIOD, the block I/O (BIO) daemon

v QNFSGSSD, the GSS security daemon

v QNFSMNTD, the mount (MNT) daemon

v QNFSNFSD, the NFS server (SVR) daemon

v QNFSNLMD, the network lock manager (NLM) daemon

v QNFSNSMD, the network status monitor (NSM) daemon

v QNFSRGYD, the Registry (RGY) daemon

v QNFSRPCD, the RPCBind daemon

Status Consideration

When displaying the status of NFS server daemons (NFSD) using the WRKACTJOB (Work with Active

Jobs) command, there may be different status values listed. The status of the first NFSDs not in use will

be TIMW and all other NFSDs will be listed as MTXW.

Chapter 7. NFS Startup, Shutdown, and Recovery 63

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Restrictions

1. You must have *IOSYSCFG special authority to use this command.

2. You must be enrolled in the system distribution directory. Use the ADDDIRE command to enroll in

the system distribution directory.

3. To use the STRNFSSVR command, you must first have TCP/IP operating on i5/OS.

For more information about the STRNFSSVR command and its parameters and options, see the CL topic

in the i5/OS Information Center.

STRNFSSVR Display

 When you use the STRNFSSVR command, you can specify many parameters:

v The required Server daemon (SERVER) parameter on the STRNFSSVR command specifies the Network

File System daemon jobs to be started by this command. The specified daemon should not already be

running.

*ALL

All NFS daemons are started.

*RPC

The NFS RPCBind daemon are started.

*BIO

The NFS block input/output (I/O) daemons are started. This daemon job is multi-threaded. It

dynamically adjusts the number of daemon threads based on demand.

*GSS

The NFS Generic Security Service (GSS) daemon are started.

*RGY

The NFS registry daemon are started.

*SVR

The NFS server daemons are started. This daemon job is multi-threaded. It dynamically adjusts the

number of daemon threads based on demand.

*MNT

The NFS mount daemon are started.

Start NFS Server (STRNFSSVR)

 Type choices, press Enter.

 Server daemon > *ALL *ALL, *RPC, *BIO, *GSS, *RGY...

 Number of server daemons 1 1-20 server daemons

 Number of block I/O daemons . . 1 1-20 server daemons

 Retrieve RPC registration . . . *NO *NO, *YES

 Timeout for start of daemon . . *NOMAX 1-3600 seconds

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 52. Using the Start NFS Server (STRNFSSVR) display

64 System i: i5/OS Network File System Support

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

*NSM

The NFS network status monitor daemon are started.

*NLM

The NFS network lock manager daemon are started.
v The Number of server daemons (NBRSVR) parameter on the STRNFSSVR command has been

deprecated at i5/OS V6R1. Any value specified for this parameter is ignored.

v The Number of block I/O daemons (NBRBIO) parameter on the STRNFSSVR command has been

deprecated at i5/OS V6R1. Any value specified for this parameter is ignored.

v The Retrieve RPC registration (RTVRPCREG) parameter on the STRNFSSVR command specifies

whether to retrieve previously recorded registration information when the RPCBind daemon is started.

If registration information is retrieved, any services already registered with the RPCBind daemon do

not have to re-register with the RPCBind daemon. This parameter can only be used if you specify

SERVER(*RPC) or (SERVER(*ALL).

*NO

Do not retrieve registration information.

*YES

Retrieve registration information.
v The Timeout for start of daemon (STRJOBTIMO) parameter on the STRNFSSVR command specifies the

number of seconds to wait for each daemon to successfully start. If a daemon does not start within the

timeout value, the command fails.

30 Default seconds before timeout.

*NOMAX

There is no maximum time to wait for daemons to start. Do not time out.

1-3600

Specify a number of seconds to wait for daemons to start before timing out and failing the

command. Timeout values less than 30 seconds are rounded up to 30 seconds.

Examples

Example 1: Start All NFS Daemons

STRNFSSVR SERVER(*ALL) STRJOBTIMO(*NOMAX)

This command starts all NFS daemons, and waits forever for them to start. No daemons should be

previously running.

Example 2: Start Only One Daemon

STRNFSSVR SERVER(*MNT)

This command starts the NFS mount daemon, and waits up to the default of 30 seconds for it to start.

The mount daemon should not be already running, and other daemons have been started in the

appropriate order.

Proper Shutdown Scenario

Shutting down an NFS server properly allows for all jobs to finish and all requests to be completed. In

general, the order of actions required for the server to shutdown are the exact opposite of actions

required for the server to startup:

1. The user ends the NLM daemon (QNFSNLMD).

2. The user ends the NSM daemon (QNFSNSMD). All locks that are held on local files by remote client

applications are disengaged.

3. The user ends the mount daemon (QNFSMNTD). All remote client mounts of local file systems are

disengaged.

Chapter 7. NFS Startup, Shutdown, and Recovery 65

|
|
|
|
|

|
|

|
|

4. The user ends the NFS server daemon (QNFSNFSD) or daemons.

5. The user ends the RPC binder (port mapper) daemon (QNFSRPCD).

If you specify *ALL for the SERVER parameter for the End Network File System Server (ENDNFSSVR)

command will automatically end all the daemons in the correct order.

The order of client shutdown processes is generally the opposite from which the user starts the processes.

1. The user ends the NLM daemon, if it exists on the client. A single server NLM can operate for both

the client and server.

2. The user ends the NSM daemon, if it exists on the client. A single server NSM can operate for both

the client and server.

3. The user ends the block I/O daemon (QNFSBIOD) or daemons.

4. The RPC binder (port mapper) daemon is ended.

Shutdown Consideration

TCP/UDP Timeout Conflict

When ending the NFS server, the socket port closes. If the NFS server is immediately re-started, then the

server may not be able to connect to the socket port. The underlying TCP/IP support on i5/OS renders

this port unavailable for a short period. If you wait for a short period before re-starting the NFS server,

then it will connect to the socket port as usual.

ENDNFSSVR (End Network File System Server) Command

Purpose

The End Network File System Server (ENDNFSSVR) command ends one or all of the Network File

System (NFS) server daemons.

You should use SERVER(*ALL), which will end the daemons in the following order. (This order is the

recommended order for ending the Network File System daemons.)

v The network lock manager (NLM) daemon

v The network status monitor (NSM) daemon

v The mount (MNT) daemon

v The server (SVR) daemon

v The NFS registry daemon

v The Generic Security Service (GSS) daemon

v The block input/output (I/O) (BIO) daemon(s)

v The Remote Procedure Call (RPC) binder daemon

If you are choosing to end just one daemon, be sure you understand the appropriate order for ending

NFS daemons and the possible consequences of ending daemons in an order other than that specified

above.

If you attempt to end a daemon or daemons that are not running, they will not cause the command to

fail, and it will continue to end other daemons you have requested to end.

Displaying NFS Client Daemons

To determine if an NFS daemon is running, use the Work with Active Jobs (WRKACTJOB) command and

look in the subsystem QSYSWRK for the existence of the following jobs:

v QNFSBIOD, the block I/O (BIO) daemon

v QNFSGSSD, the Generic Security Service (GSS) daemon

v QNFSMNTD, the mount (MNT) daemon

v QNFSNFSD, the server (SVR) daemon

v QNFSNLMD, the network lock manager (NLM) daemon

v QNFSNSMD, the network status monitor (NSM) daemon

66 System i: i5/OS Network File System Support

|
|
|
|
|
|
|
|

v QNFSRGYD, the Registry (RGY) daemon

v QNFSRPCD, the RPCBind daemon

Restrictions

1. You must have input/output (I/O) system configuration (*IOSYSCFG) special authority to use this

command.

2. You must have job control (*JOBCTL) special authority to end any daemon jobs that were started by

someone else.

For more information about the ENDNFSSVR command and its parameters and options, see the CL topic

in the i5/OS Information Center.

ENDNFSSVR Display

When you use the ENDNFSSVR command, you can specify many parameters:

v The required Server daemon (SERVER) parameter on the ENDNFWSVR command specifies the

Network File System daemon jobs to end.

*ALL

All NFS daemons are ended.

*RPC

The NFS Remote Procedure Call (RPC) RPCBind daemon is ended.

*BIO

All NFS block input/output (I/O) daemons that are running are ended.

*GSS

The NFS Generic Security Service (GSS) daemon is ended.

*RGY

The NFS registry daemon is ended.

*SVR

All NFS server daemons that are running are ended.

*MNT

The NFS mount daemon is ended.

*NSM

The NFS network status monitor daemon is ended.

End NFS Server (ENDNFSSVR)

 Type choices, press Enter.

 Server daemon *ALL *ALL, *RPC, *BIO, *GSS, *RGY...

 Timeout for end of daemon . . . 30 1-3600 seconds

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 53. Using the End NFS Server (ENDNFSSVR) display

Chapter 7. NFS Startup, Shutdown, and Recovery 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

*NLM

The NFS network lock manager daemon is ended.
v The Timeout for end of daemon (ENDJOBTIMO) parameter on the ENDNFSSVR command specifies

the number of seconds to wait for each daemon to successfully end. If a daemon does not ended

within the timeout value, the command fails.

30 Wait 30 seconds for the daemon job to end.

*NOMAX

There is no maximum wait time for daemons to end. Do not time out.

1-3600

Specify the number of seconds to wait for daemons to end before timing out and failing the

command. Timeout values less than 30 seconds are rounded up to 30 seconds.

Examples

Example 1: End All Daemons

ENDNFSSVR SERVER(*ALL)

This command ends all NFS daemon jobs that are running.

Example 2: End a Single Daemon

ENDNFSSVR SERVER(*MNT) ENDJOBTIMO(*NOMAX)

This command ends the NFS mount daemon, and waits forever for it to end. The mount daemon was

previously running, and other daemons have been ended in the appropriate order.

Start or stop NFS in System i Navigator

NFS servers can also be managed using System i Navigator. To start or stop NFS server daemons,

perform the following steps:

1. In System i Navigator, expand your server.

2. Expand Network.

3. Expand Servers.

4. Click TCP/IP. The right panel displays a list of TCP/IP servers.

5. Right-click NFS and select Start or Stop, depending on which task you want to perform. You can start

or stop all the NFS server daemons, or start or stop them individually.

The following figure displays these steps. In the figure, NFS has a status of stopped.

68 System i: i5/OS Network File System Support

You can also display the status of each individual daemon by choosing Properties when you right-click

on NFS. This brings up the following dialog box:

Figure 54. Starting or stopping NFS server daemons.

Chapter 7. NFS Startup, Shutdown, and Recovery 69

In the example, Chris Admin has decided to start 4 of the Server type daemons to give better throughput.

You can start up to 20 of these daemons from the General tab of the previous dialog box. Notice that the

Network lock manager daemon is stopped. This could indicate that it encountered a problem by trying to

start up. Alternately, it could mean that the administrator chose to end it specifically because of no need

for byte range locking.

Both NFS and RPC share the same Remote Procedure Call Binder daemon. Starting or stopping NFS will

start or stop RPC, and vice versa. For example, stopping the RPC server will end the Remote procedure

call NFS daemon and may cause NFS to stop functioning correctly.

Locks and Recovery

Clients can also introduce locks onto mounted server file systems. Locks will give a user shared or

exclusive access to a file or part of a file. When a user locks a file, any process requiring access to the file

must wait for the lock to be released before processing can continue.

There are two kinds of locks that clients can establish on all or part of a file: exclusive and shared. When

a client obtains an exclusive lock, no other processes can obtain a lock on that portion of the file. When a

client obtains a shared lock, other processes can obtain a shared lock to the same portion of the file.

Figure 55. NFS Properties dialog box.

70 System i: i5/OS Network File System Support

Why Should I Lock a File?

A user or application can use byte-range locks through NFS to improve NFS performance. Because the

NFS protocol is stateless, a given client may not be aware of changes made on the server (due to client

caches). Locking ensures that this problem will not occur during critical times when the server updates

files.

How Do I Lock A File?

An application at the client, controlled by the user, can start a lock request against a remote file that is

mounted with NFS. The client will then send the operation to its local network lock manager Daemon

through an RPC request. The client-side NLM daemon will then forward the request to the corresponding

server-side NLM through RPC.

Users can call the fcntl() API to lock parts of files and specify lock parameters. For a complete description

of the fcntl() API, see the API topic in the i5/OS Information Center.

The server NLM daemon will then perform the lock operation against the corresponding file. The server

NLM daemon generates a response that the client NLM daemon receives. The client NLM daemon

generates a response for the NFS client with the results of the lock request. The NFS client will then

return the result to the user through the application.

Stateless System Versus Stateful Operation

The statelessness of the Network File System version 3 and version 2 do not integrate well with the

statefulness of file locks. Problems can occur in releasing locks if either the client or server fails while

their respective daemons hold a lock or locks. Network File System version 4 (NFSv4) is stateful. You can

use the Release Integrated File System Locks (RLSIFSLCK) command to release the NFSv4 state.

If a client with a granted lock request should happen to fail, a specific set of operations will occur at

startup time to recover the locks:

1. When the user restarts the NSM daemon on a system, the daemon will send a change of state RPC to

other NSM daemons in the network. This message is transmitted only to the other NSM daemons that

the failed system is aware of in the network.

2. After receiving a change of state from a remote system, the NSM uses RPC to communicate with the

local NLM. The NSM informs the NLM that a lock was held at the time of system failure.

3. If the failed system is a server, then after recovery, the local server NLM attempts to re-establish file

locks that client processes might have held. The information about which remote clients held locks on

the server is stored in the local file /etc/statd. Users should not edit or change this file in any way.

Improperly changing this file may affect recovery from a server failure.

When the local system is a server, and the client never restarts, then an infinite backlog of requests will

build up for the locked file. This file will never be released from its lock. This can be averted with the

Release Integrated File System Locks (RLSIFSLCK) command.

RLSIFSLCK (Release File System Locks) Command

Purpose

You can use the Release File System Locks (RLSIFSLCK) command to:

v Release all Network File System (NFS) byte-range locks held by a specified NFS client.

v Release all byte-range locks (of any type) held on a specified object.

v Release all byte-range locks and the NFS version 4 state held by the NFS server on an entire file

system.

This command should only be used to free resources that cannot be freed using normal means.

Chapter 7. NFS Startup, Shutdown, and Recovery 71

|

|

|

|
|

For more information about byte-range locks and a complete description of the fcntl() API, see the API

topic in the i5/OS Information Center.

Restrictions

1. You must have input/output (I/O) system configuration *IOSYSCFG special authority to use this

command.

2. You must have execute (*X) authority to the directories in the path name prefixes.

3. You must have read (*R) authority to the object whose locks are being released.

For more information about the RLSIFSLCK command and associated parameters and options, see the CL

topic in the i5/OS Information Center.

Parameters

 Table 1. RLSIFSLCK parameters

Keyword Description Choices Notes

RMTLOCNAME Remote location Character value Optional, Positional 1

OBJ Object Path name Optional, Positional 2

NFSSVRLCK NFS server locks *NO, *YES Optional, Positional 3

LCLBRNGLCK Local byte-range locks *NO, *YES Optional, Positional 4

OBJMFS Object’s file system *NO, *YES Optional, Positional 5

Remote location (RMTLOCNAME)

The RMTLOCNAME keyword specifies the host name or the Internet address (IPv4/IPv6) of a remote

system whose NFS-related locks on local files are to be released.

For the command to be successful, the remote system name must be valid. You can assign host names to

an Internet address with the Work with TCP/IP host table entries option on the Configure TCP/IP menu

(CFGTCP) command. Also, you can use a remote name server to map remote system names to Internet

addresses. Use the Change remote name server option on the CFGTCP menu to specify a remote name

server.

Host names must follow these conventions:

v The first character must be either A through Z or 0 through 9.

v The last character must be either A through Z or 0 through 9.

v Uppercase and lowercase characters are allowed, but no significance is attached to the case.

v Blanks () are not allowed.

v The special characters period (.) and minus (-) are allowed.

v Parts of the name separated by periods (.) cannot exceed 63 characters in length.

v Names must be from 1 to 255 characters in length.

remote-location-name

Specifies the host name or Internet address of a remote system whose NFS-related locks on local

files are to be released.

Note: Either the RMTLOCNAME or the Object (OBJ) parameter must be specified, but not both.

Object (OBJ)

The Object (OBJ) parameter specifies the path name of an object or an entire file system on which all

byte-range locks are to be released. The NFS server locks (NFSSVRLCK) and Local byte-range locks

72 System i: i5/OS Network File System Support

|
|

|

|

|

||

||||

||||

||||

||||

||||

||||
|

|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

(LCLBRNGLCK) parameters specify which locks are to be released. The Object’s file system (OBJMFS)

parameter specifies if the OBJ parameter represents the actual object or the file system of the actual

object.

path-name

Specifies the path name of the object that represents whose locks are to be released.

Notes::

1. Either the Remote location (RMTLOCNAME) or OBJ parameter must be specified, but not

both. For more information on specifying path names, refer to the Object naming rules topic

in the CL topic collection in the Programming category in the i5/OS Information Center at

http://www.ibm.com/systems/i/infocenter/.

2. The OBJ parameter is Unicode-enabled. See the Unicode support in CL topic in the CL topic

collection in the Programming category in the i5/OS Information Center at

http://www.ibm.com/systems/i/infocenter/ for additional information.

NFS server locks (NFSSVRLCK)

The NFS server locks (NFSSVRLCK) parameter specifies whether all NFS version 4 locks and state for

the specified object are to be released. If OBJ parameter is not specified, this parameter is ignored.

*YES

All NFS version 4 locks and state held by the NFS server are released for the object.

*NO

NFS version 4 locks and state held by the NFS server are not released.

 Local byte-range locks (LCLBRNGLCK)

The Local byte-range locks (LCLBRNGLCK) parameter specifies whether all local byte-range locks of the

specified object are to be released. This parameter releases all locks on that object, regardless of the type

of lock or the type of process that is holding them. If OBJ parameter is not specified, this parameter is

ignored.

Note: You can specify either the LCLBRNGLCK parameter or the Object’s file system (OBJMFS)

parameter, but not both.

*YES

All local byte-range locks on the specified object are to be released.

*NO

Local byte-range locks on the specified object are not to be released.

 Object’s file system (OBJMFS)

The Object’s file system (OBJMFS) parameter specifies whether all NFS version 4 locks and state are to

be released for the mounted file system that the specified object is within. If OBJ parameter is not

specified, this parameter is ignored.

Note: You can specify either the OBJMFS parameter or the Local byte-range locks (LCLBRNGLCK)

parameter, but not both.

*NO

All NFS version 4 locks and state for the file system that the specified object is within are not

released.

*YES

NFS version 4 locks and state for the file system that the specified object is within are released.

Chapter 7. NFS Startup, Shutdown, and Recovery 73

|
|
|

|
|

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|
|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|
|

|
|

Examples

Example 1: Releasing Locks for a Remote Client.

RLSIFSLCK RMTLOCNAME(’rainbow1’)

This command releases the NFS-related locks held on local files by the system named rainbow1.

Example 2: Releasing Locks for a Local Object.

RLSIFSLCK OBJ(’/CustAccounts/May’)

This command releases all byte-range locks held on the object /CustAccounts/May.

Example 3: Releasing Locks for a File System

RLSIFSLCK OBJ(’/CustAccounts/April’) NFSSVRLCK(*YES)

 LCLBRNGLCK(*NO) OBJMFS(*YES)

This command releases all NFS version 4 locks and state for the file system where /CustAccounts/April

resides.

Error messages

*ESCAPE Messages

CPFA09C

Not authorized to object. Object is &1.

CPFA0A9

Object not found. Object is &1.

CPFA1B6

Unable to release locks, reason code &1.

CPFA1B8

*IOSYSCFG authority required to use &1.

74 System i: i5/OS Network File System Support

|
|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Chapter 8. Integrated File System APIs and the Network File

System

Error Conditions

There are two error conditions that commonly appear when working with the Network File System

through integrated file system APIs (application program interface) that require special consideration.

These error conditions are the ESTALE and EACCES error conditions.

ESTALE Error Condition

The return of this error number means that the server has rejected the file or object handle.

If you are accessing a remote file through the Network File System, the file may have been deleted at the

server. Or, the file system that contains the object may no longer be accessible.

EACCES Error Condition

The return of this error number means that the server denies permission to the object.

A process or job made an attempt to access an object in a way that the object access permissions forbid.

The process or job does not have access to the specified file, directory, component, or path.

If you access a remote file through NFS, the client will not reflect any file permissions at the client until

local data updates occur. There are several options to the Add Mounted File System (ADDMFS) and

MOUNT commands that determine the time between refreshes of local data. Access to a remote file may

also fail due to different UID or GID mapping on the local and remote systems.

API Considerations

When using APIs that either create or remove files, there are considerations that deal with the throughput

of the NFS server. If a server is busy, a client making requests can timeout and send the same requests

multiple times to the server. Because of this, clients may receive either the EEXIST or ENOENT error

conditions when they create or remove files using APIs. These error conditions may appear even though

the operation completely successfully.

User Datagram Protocol (UDP) Considerations

To create or remove a file, the client sends a request to the server. If the server is busy, the client may

timeout a number of times before the server completes the original request. The underlying UDP support

of the NFS protocol may incorrectly handle these multiple requests.

UDP does not guarantee the delivery or order of data returned to clients. A client may receive any one of

the following return codes for a successful operation:

1. Return code=0 (RC=0). The operation is completed successfully.

2. EEXIST. The operation is completed successfully. This error condition was returned to the client

because the return code of 0 (RC=0) was either lost or received out of order.

3. ENOENT. The operation is completed successfully. This error condition was returned to the client

because the return code of 0 (RC=0) was either lost or received out of order.

© Copyright IBM Corp. 1999, 2008 75

Client Timeout Solution

To reduce the confusion of receiving unexpected return codes and error conditions for file creation and

removal, users can perform the following tasks:

1. Increase the period of client timeout so that the client will timeout less often when making server

requests. This will cause fewer repeats of the same request to be transmitted to the server.

2. Increase server throughput in the following ways:

v Start more NFS server daemons (NFSD) to handle client requests

v Decrease the load of requests on the server

v Decrease the amount of clients who access and make requests of the server

Network File System Differences

The following APIs have an updated set of usage notes for when users work with the Network File

System:

v open()

v create()

v mkdir()

v access()

v fstat()

v lseek()

v lstat()

v stat()

v read()

v write()

v fcntl()

In general, users of these APIs should remember that local access to remote files through the Network

File System may produce unexpected results. Conditions at the server dictate the properties of client

access to remote files. Creation of a file or directory may fail if permissions and other attributes that are

stored locally are more restrictive than those at the server. A later attempt to create a file can succeed

when you refresh the local data or when you remount the file system. Several options on the Add

Mounted File System (ADDMFS) command determine the time between refreshes of local data.

Once a file or directory is open, subsequent requests to perform operations on a file or directory can fail.

This is because attributes are checked at the server on each request. When permissions on the object are

more restrictive at the server, your operations on an open file descriptor will fail when NFS receives

updates. When the server unlinks the object or makes it unavailable, then your operations on an open file

descriptor will fail when NFS receives updates. The local Network File System also affects operations that

retrieve file or directory attributes. Recent changes at the server may not be available at your client yet,

and the server may return old values for your operations.

For more information on the usage notes for Integrated file system APIs, see the API topic in the i5/OS

Information Center.

open(), create(), and mkdir() APIs

If you try to re-create a file or directory that was recently deleted, the request may fail. This is because

the local data that NFS stores still has a record of the existence of the file or directory. File or directory

creation will succeed once you update the local data.

fcntl() API

Reading and writing to a file with the Network File System relies on byte-range locking to guarantee data

integrity. To prevent data inconsistency, use the fcntl() API to get locks and release locks.

For more information on the fcntl() API, see the API topic in the i5/OS Information Center.

76 System i: i5/OS Network File System Support

Unchanged APIs

These APIs do not take a file descriptor, directory pointer, or path name, and are not creation functions.

Therefore, NFS does not return the EACCES and ESTALE error numbers for the following APIs. All other

APIs may receive the EACCESS and ESTALE error numbers.

v getegid()

v geteuid()

v getgid()

v getgrgid()

v getgrnam()

v getgroups()

v getpwnam()

v getpwuid()

v getuid()

v sysconf()

v umask()

Chapter 8. Integrated File System APIs and the Network File System 77

78 System i: i5/OS Network File System Support

Chapter 9. Network File System Security Considerations

You can use the Network File System to create a seamless, transparent namespace where all users have

access to the right information at any given time. However, NFS also has special security considerations.

These considerations deal mainly with user, group, and supplemental user identifications. This chapter

discusses these concerns along with certain parameters and options of the CHGNFSEXP command.

This section describes a number of NFS security issues while explaining how to best avoid security

problems and breaches while maintaining a secure namespace.

For more information about i5/OS security, see:

v The Security topic in the i5/OS Information Center

v The Security Reference book in the i5/OS Information Center

The Trusted Community

The trusted community is made up of only the “approved” NFS servers and clients that represent a

trusted network of users. Inside this group, users export and mount file systems based on a system of

individual responsibility to keep the namespace secure from outside, non-trusted users.

The other defining feature of a trusted community is that no special data encryption of any sort occurs in

client/server relationships. The transmissions between the NFS clients and servers are not encoded. Only

the applications running on the client will minimally encrypt and send data between client and server.

This is why it is important to pay attention to how you export files from an NFS server. If the client and

server transmissions are not encrypted, and you export to “the world,” then anybody can access your

exported file systems. For more information on exporting securely, see “Securely Exporting File Systems”

on page 84.

For a detailed discussion of export options, see “Export Options” on page 85.

© Copyright IBM Corp. 1999, 2008 79

Network Data Encryption

 A client existing outside the trusted community can become aware of the community’s existence.

Furthermore, a malignant client can introduce a “sniff” program that can read and change data as it

transfers in the client/server relationship. It accomplishes this by intercepting the data flow and altering

the data on contact. The system sends unencrypted data as plain text between the client and server.

Therefore, any system that is “sniffing” for such data can access it for reading by interacting with the

token ring, ethernet, or other network interfaces.

There are various ways to protect the individual servers and clients in the community from outside

intruders. There are also methods of protecting data as it is being sent from client to server and back

again:

1. Users can code data with encryption engines, if they are located on both the client and the server.

These engines code information as it leaves the “source” client or server and then decode the

information when it reaches the “target” client or server.

2. The identities of users can be authenticated using the following methods:

a. AUTH_UNIX. Authorization to objects is controlled by user identification (UID) only. There is no

encryption whatsoever. i5/OS automatically performs this type of object authorization.

b. AUTH_DES. This is the Data Encryption Standard (DES). Using this type of encryption will

protect data.

c. AUTH_KERBEROS. This type of encryption protects the user through a third party administrator

who administers authority tokens that are based on a trusted token manager. Kerberos security can

enforce the trusted community. Kerberos is the authentication protocol used to implement private

key authorization. Kerberos relies on complete and total authentication of users and authorities

within the trusted community, allowing no one else access to data.

User Authorities

As users log on to NFS clients and servers, the user authority of each user dictates what they can and

cannot do. User authorities are assigned to users by administrators, and usually take the form of user

identifications (UIDs) for particular users, group identifications (GIDs) for groups of users, and

supplemental GIDs, which list various group identifications that a user belongs to.

Figure 56. Client outside the trusted community causing a security breach

80 System i: i5/OS Network File System Support

Properly assigning user authorities for users and systems can help you to construct a secure, efficient

namespace. Users will always have access to the right data when they need it. Improperly assigning user

and system authorities will lead to an insecure namespace with major internal and external security

breaches.

User Identifications (UIDs)

A UID is a user identification. UIDs are made up of a number that represents the user on a particular

system. The UID does not include a user’s name or any other information about the user at all. UIDs are

simply a way for the system to recognize users and activate their user profile for use with authorization

checking. Users may have access to a various number of systems, so they could maintain a number of

different UIDs and associated authorities across those systems. Users should only ever have the access

authority that they need, and no more.

For example, on one i5/OS platform, Bill might have a UID of 136. On a different i5/OS platform, his

UID could be 142. On yet another, Bill might have a UID of 2700. All of these UIDs could potentially

carry with them a number of different authorities on each network system. Bill could have *USER

authority on one system and *QSECOFR authority on the next, and so on. The improper administration

of such varied UIDs that can lead to NFS security hazards.

Group Identifications (GIDs)

A GID is a group identification. It operates in the same fashion as a UID as a way of identifying a user’s

access on a given system. The GID goes one step further, however, by acting as a general authority for a

group of users or machines. GIDs are not at all relative to UIDs and do not correspond with UIDs. A user

profile may or may not have a GID associated with it.

GIDs, therefore, might function for a department in a company or for a set of workstations in a computer

lab. GIDs can function as a second method of access to a given file or object if a particular UID does not

have access authority to that file or object. A GID never takes away authority from the user profile

associated with it; GIDs can only add authority. If a GID exists on the server that matches the request of a

client, then the associated authority is added to the request. If the GID does not exist on the server, then

the GID is ignored.

There are also supplemental GIDs, which can act as a third or fourth or nth method of access authority to

an object. GIDs are assigned to users based on what groups a user in question belongs to. UNIX servers

and clients can use supplemental GIDs to determine the authority of a user. NFS on i5/OS supports

supplemental GIDs. If a user on the client system is a member of multiple groups, then the system sends

the GIDs for those groups to the server. The server will use the GIDs that have existing group profiles as

the list of supplemental GIDs for the mapped NFS user on the server. Because GIDs and supplemental

GIDs add to a user’s authority, GIDs may allow users to access objects that are ordinarily forbidden to

their profiles. It is important to become aware of which users from which groups have access to your

data. GIDs can help a user from a powerful group gain unauthorized access to sensitive data.

The various IDs a user has and the attached authorities can create NFS security hazards. This is

particularly crucial when dealing with the CHGNFSEXP command options for making file system

available to clients. For more information regarding exporting safely, see “Securely Exporting File

Systems” on page 84.

Mapping User Identifications

Whenever users successfully log onto a server, the server automatically and immediately grants the

authorities for their user profiles on that server.

When users access remote server files through local client systems, their requests are sent to that remote

server. The server will check the user’s UID and authority with each request, due to the statelessness of

NFS. As a user accesses a remote server, the request carries only the UID and not the user profile name

Chapter 9. Network File System Security Considerations 81

(nor any password). The server then maps the UID to a matching authority no matter what user profile

name it actually has. This can cause problems if UIDs from different systems match each other, yet

belong to different users. See “UID Mapping Examples” for more information about improper UID

mapping.

Potential User Identification Mapping Scenarios

There are four possibilities for UID mapping across a distributed network:

1. The UID of a user on a client and server map to the same user profile. There is no conflict.

2. The UID of a user exists on both the client and server, but is mapped to different profiles. This can

cause security conflicts because users can be mapped to profiles with more or less authority than

what is required.

3. The UID of a user exists on the client, but does not exist on the server. In this case, the export entry is

checked for an entry for the ANON parameter. If a profile is found for mapping anonymous users,

then the UID of the user will be mapped to this profile. If the server does not allow the mapping of

anonymous users, then a user making this request will receive the EACCES error condition. See

“Anonymous Users” on page 85 for more information about the ANON parameter and allowing

anonymous users access to your exports.

Because of differing UID mapping across a network, users may have problems working with files on a

remote system. This occurs because users do not have the same authority on the remote system as on the

local system.

Administrating User Identifications

The administrator of an NFS namespace must be ready to:

1. Set up matching authorities, whenever possible, for users. This ensures that they will not become

confused while crossing mount points and working on both local and remote systems. This includes

properly mapping UIDs and GIDs throughout the network.

2. Create appropriate individual authorities that are tailored to both the system and the user. These

authorities need not be matching, but they should be appropriate to both the user and the system in

question. Just because users need *SECOFR authority on one system does not mean that they need

that same authority on all machines.

UID Mapping Examples

In the TULAB, an engineering graduate student named Bill has a UID of 136 on TULAB1 and a UID of

142 on TULAB2. If Bill wants to mount or otherwise access a file on TULAB1, his UID of 136 will be

transmitted to that server. TULAB1 will then run an authority check on him as 136 before it lets him

access the object he requested. Even if Bill is the administrator of TULAB2, if his TULAB1 UID maps to a

profile that lacks proper authority, he will not be able to access the object he has requested.

It is important, therefore, to make sure that all your users have properly mapped UIDs. In this case, a

user was unable to access data he felt he had authority to access, but improper UID mapping can also

have worse effects.

A new undergraduate engineering student named Jennifer has the exact opposite UIDs of Bill: 142 on

TULAB1 and 136 on TULAB2. When Jennifer makes a request from TULAB1 to TULAB2, her UID and

associated authority is transmitted over to the server. Because she and Bill have the same UID, TULAB2

will assume that she is Bill. TULAB2 will allow her access to all objects and actions that Bill normally has

access to.

In this case, a user with little to no authority on one server unknowingly created chaos on another server

simply because of poor UID mapping. It is of utmost importance to pay attention to the big picture of the

namespace when assigning UIDs and their associated authorities. Give users access only to what they

will need and make sure that none of the UIDs overlap. The result will be a much more secure

namespace.

82 System i: i5/OS Network File System Support

For example, Chris Admin can correct this situation by making sure that Bill has a UID of 136 on both

systems. He can also ensure that Jennifer has a UID of 142 on both machines. Furthermore, Chris Admin

can erase the UID of 142 on a system if Jennifer does not need access and, therefore, a user profile there.

In the above example, a user unwittingly assumed the UID of another user. Sometimes, however, users

will knowingly impersonate the UIDs of other users. Users might attempt this to gain excess authorities

and permissions to file systems or objects that were previously out of reach or to cause mischief. Either

way, a smart system administrator can stop this from happening.

For example, on TULAB1 and TULAB2, there exists a user named Ray. Ray has a UID of 2700 on

TULAB1, where he holds *SECADM authority. He also has a UID of 150 on TULAB2, where he is a

regular user.

Another user named Joe also has regular user access to TULAB2, where his UID is 170. A problem can

exist if Ray accesses Joe’s user profile and discovers Joe’s UID. Ray can then set up a FOOL=170 UID on

TULAB1 and make requests to TULAB2. When the server checks Ray’s FOOL UID, it will assume that

FOOL is the same as Joe. TULAB1 will then grant Ray access to Joe’s home directory and any objects that

he owns. Ray then has the authority to completely delete Joe’s home directory, remove Joe’s access to the

system, and generally perform any other act that Joe was capable of.

There are other ways to tap into a system of users and the objects owned by them. The administrator of a

client can deliberately impersonate a remote server UID.

For example, the administrator of a client can log on and access the UID of a user, Mary on TULAB2,

who accesses the client. If the UID of Mary is 123, then the client administrator can assume this UID and,

in effect, become Mary on both systems.

There exists on TULAB2 a file named /home/mary/index.html. Before any users perform actions on this

file, they must have its file handle. Users with proper authorities can get this handle by making a request

to the parent directory. The parent directory of /home/mary/index.html is /home/mary. A file handle is a

unique identifier of an object that describes the object without ever changing. A file handle will last

through multiple IPLs, crashes, and so on.

If the client administrator successfully impersonates Mary with a UID of 123, then the administrator can

gain access to file handles. The client administrator would then have the ability to read, write, change,

and delete Mary’s files.

The solution in this case is for namespace administrators to follow the rules of proper and appropriate

UID mapping across the namespace. Administrators also need to pay attention to how they export file

systems. The trusted community should not be opened up to outside clients or anonymous users who

request access.

Proper UID Mapping

An administrator needs to properly map UIDs to provide a secure namespace where users have access to

the appropriate information on the appropriate servers. There is a step-by-step process for doing this one

user and server at a time.

For example, a user named Joan has a UID of 27 on TULAB1 and a UID of 14 on TULAB2. Chris Admin

feels that these UIDS should be the same across the two systems to provide matching profiles that he has

set up. If Joan owns any objects within the integrated file system, then Chris Admin cannot change her

UID on TULAB2. He performs this series of events:

1. Chris Admin chooses one UID number for Joan’s universal Network File System UID. This number

will be Joan’s UID across the entire network namespace. In this case, Chris decodes that JOAN=27.

2. He creates the temporary UID of TEMP=27 on TULAB2. If this UID is not already in use and

processes correctly, then Chris Admin continues with the process.

Chapter 9. Network File System Security Considerations 83

3. He uses the CHGUSRPRF (Change User Profile) command to change the UID of TEMP to any unused

number (12345).

4. Chris Admin then uses the DLTUSRPRF (Delete User Profile) command to delete all of Joan’s

directories and objects from TULAB2. Before he completes this command, however, he uses an option

to transfer ownership of all these objects to TEMP.

5. He then uses the CRTUSRPRF (Create User Profile) command to create JOAN=27 on TULAB2.

6. Chris Admin uses the DLTUSRPRF command once again to delete the TEMP user profile and restore

ownership of all objects back to Joan, whose universal NFS UID is now 27.

However, instead of changing the UID and user profile for each user on each system, administrators can

use the QSYCHGID API. This new API can be called from i5/OS command lines, C programs, COBOL

programs, and through other interfaces as well. This function can change the UIDs and GIDs of both

system-provided profiles and regular user profiles. To use this command, an administrator must include

the following entries:

1. A ten-character profile name. This is the name of the user or system profile that is to be changed. An

example of such a profile name would be BILL or QUSER.

2. A UID value. This is the new value for the UID of the user or system profile that you specified. A

value of ’-1’ indicates that the UID will not change.

3. A GID value. This is the new value for the GID of the user or system profile that you specified. A

value of ’-1’ indicates that the GID will not change. A value of ’0’ indicates that the GID will be

removed from the user or system profile.

4. A pointer to an error code structure. This pointer cannot be provided from a command line, although

it works through a programming interface. If a value of ’0’ is specified for this parameter, the user

will be sent exceptions if the command fails to function.

To operate QSYCHGID, an administrator must first end all jobs that are currently running under the

system or user profile name. If this is a system-provided profile, the system may require an entrance into

“restricted state,” meaning that all interactive, batch, daemon, and request jobs are ended. You can

establish a “restricted state” with the ENDSBS command. All that should be left operating is the system

console, the console that is directly attached to the system.

QSYCHGID will update a user or system profile with the appropriate UID value, as well as all objects

that a user or system owns. If the objects that are owned by a user or system fail to be updated, then you

should use the Reclaim Storage (RCLSTG) command to reclaim any possible lost objects.

Note: QSYCHGID will always fail if a UID number is chosen that is already allocated to an existing user

or system profile. No UID value can belong to more than a single profile.

Note: UIDs and GIDs are not mutually exclusive. That is, a UID value of 500 and a GID value of 500 do

not signify the same profile.

Securely Exporting File Systems

When namespace administrators export file systems, these are the rules they should consider:

1. Use an exact list of clients who have access to mount and otherwise work with the file systems that

are exported. This will keep sensitive information out of the reach of clients that are not listed with

the ACCESS option of the OPTIONS parameter of the CHGNFSEXP command.

2. Use QNFSANON extremely carefully when allowing anonymous UIDs access to exported file

systems. When coupled with the ROOT parameter, it can give unknown (anonymous) users access to

your namespace.

3. Always exclude access to the /etc/exports file. Do not export this file. A user may find a way to

access this file and make data available to other users that would otherwise be safely guarded.

84 System i: i5/OS Network File System Support

When administrators export file systems, they should never do the following:

1. Administrators should never export the “root” (/) Directory. Remember that whenever you export a

file system, you also export all of the directories and objects “downstream” of the path. Should the

“root” (/) directory become exported, all the other directories and objects downstream of “root” (/)

will become exported as well. Export only what is needed by clients.

2. Administrators should never export any file system to “the world,” allowing universal client access to

information. Instead, administrators should tailor each exported file system to the needs of each client.

Opening up the server to access from “the world” allows for unknown users to mount and change

your files at will. Export only to specific clients.

See “Exporting to ″The World″” for more information about limiting your exports.

3. Administrators should very cautiously give QNFSANON universal access to any file system

whatsoever. Doing so allows unknown (anonymous) users to mount and change file systems. Export

only to clients who need file systems.

See “Anonymous Users” for more information about limiting access to anonymous users.

Export Options

There are two major ways to export a file insecurely to the network namespace:

1. Administrators can give anonymous users access to exported file systems by allowing unknown users

to read and make changes to data.

2. Administrators can export to “the world,” meaning that all those users both within and outside of the

trusted community can access the exported data.

It is not necessary to distribute file systems to unknown users or systems not in the trusted community.

The administrator of an NFS server should only ever export the proper data for the proper clients at any

given time.

Anonymous Users

To prohibit anonymous users from gaining access to exported file systems, it is important to completely

understand the ANON option of the CHGNFSEXP command. You can specify that anonymous or

unknown UIDs be mapped to the QNFSANON UID, giving those users a level of access to the system.

To prevent this from occurring, an administrator can specify ANON=-1 to prohibit anonymous users from

mapping to QNFSANON on the system. Remember that the default option value is QNFSANON, which

translates to giving anonymous users *USER authority. This will allow anonymous users to read files, but

not write to them. Administrators can also specify a UID with a different default authority with this

option.

When users are mapped to QNFSANON, any objects they create belong to that profile, and not to their

user profile. For example, a user named Cayce has a UID of 123 and mounts a server file system on a

client. Cayce then creates a file. The owner of this file is QNFSANON, not Cayce. A display of the

permissions reveals the read, write, and execute authorities belong only to the owning profile,

QNFSANON. Cayce has no access to the file he just created because he is not the owner.

The solution to this problem is to follow one of these procedures:

v Create the file with open permissions for “the world”

v Change the file permissions for “the world” while still mapped to QNFSANON

Exporting to ″The World″

Instead of making exported data accessible to everyone, an administrator can employ the technique of

specifying selective clients. Administrators can use the ACCESS option of the CHGNFSEXP command to

use this technique. This option will also accept particular UIDs, GIDs, and supplemental GIDs. Using the

ACCESS option limits access to exported files to only the specified clients. The server will ignore access

requests from all other clients. The file /etc/netgroup allows you to create names for groups of clients.

Chapter 9. Network File System Security Considerations 85

These netgroup names can be used on the ACCESS option of the CHGNFSEXP command. For more

information on the use of netgroups in exporting, see “How Do I Export File Systems?” on page 26 and

“/etc/netgroup File” on page 92.

The only method of limiting access to NFS exports is to use the ACCESS= option the export command.

Even if you add values to or change the RW= and ROOT= options, the export command will still provide

read-only access to “the world.” The RW= option gives only the listed clients read/write access to the

mount. Using the ROOT= option disallows root access for any hosts that are not listed. Using the

ACCESS= option makes the export accessible to only the clients that are listed.

If users specify no options with the CHGNFSEXP command, the default is to export file systems to “the

world,” allowing all clients access to data. This can cause a major breach of security because information

that may be sensitive will be passed outside of the NFS namespace trusted community. Administrators

should only ever export data to those who need it.

Root User Mappings

Lori has a UID of 165 and *ALLOBJ authority on a remote TULAB2. She also has a UID of 165 on a local

XHOST1, a UNIX client. If Chris Admin has correctly exported the file systems Lori requests access to on

which she has *ALLOBJ authority, then Lori’s requests for access will fail. However, if Lori is on the list

of ROOT= clients, her requests will not fail.

UNIX servers and i5/OS servers map UIDs differently. A UNIX server will treat a user that comes in with

a UID of 0 as a root user. If the client originating the request is not on the ROOT= list in the export

options, the user is mapped to the anonymous user. The i5/OS’ definition of a root user is broader. If the

incoming UID maps to any user profile with *ALLOBJ authority on the server, that user is mapped to the

anonymous user profile. This is only if the request came from a client that is not on the ROOT= list. In

this example, even though Lori is not the root user on her UNIX client, she is still be mapped to the

anonymous profile on TULAB2. This is because the profile with UID 165 has *ALLOBJ special authority.

The i5/OS considers her a root user. This ensures greater security for exported file systems by not

allowing remote users to assume this special authority unless specifically specified on the export request.

86 System i: i5/OS Network File System Support

Appendix A. Summary of Common Commands

 Table 2. CL Commands Used in Network File System Applications

Command Description

ADDMFS Add Mounted File System. Places exported, remote server file

systems over local client directories.

CHGNFSEXP Change Network File System Export. Adds or removes directory

trees to the export table of file systems that are exported to NFS

clients.

CRTUDFS Create UDFS. Creates a User-Defined File System.

DLTUDFS Delete UDFS. Deletes a User-Defined File System.

DSPMFSINF Display Mounted File System Information. Displays information

about a mounted file system.

DSPUDFS Display UDFS. Displays information about a User-Defined File

System.

EXPORTFS Change Network File System Export. Adds or removes directory

trees to the export table of file systems that are exported to NFS

clients.

ENDNFSSVR End Network File System Server. Ends one or all of the NFS

daemons on the server and the client.

MOUNT Add Mounted File System. Places exported, remote server file

systems over local client directories.

RMVMFS Remove Mounted File System. Removes exported, remote server file

systems from the local client namespace.

RLSIFSLCK Release Integrated File System Locks. Releases all NFS byte-range

locks held by a client or on an object.

STATFS Display Mounted File System Information. Displays information

about a mounted file system. This command is an alias for the

DSPMFSINF command.

STRNFSSVR Start Network File System Server. Starts one or all of the NFS

daemons on the server and client.

UNMOUNT Remove Mounted File System. Removes exported, remote server file

systems from the local client namespace.

© Copyright IBM Corp. 1999, 2008 87

88 System i: i5/OS Network File System Support

Appendix B. Understanding the /etc Files

A directory named /etc exists within the integrated file system namespace. This directory contains

important system files that users should never write to or change unless they are experienced NFS

administrators. NFS uses these files to perform specific system functions. The following files are located

in the /etc directory:

v /etc/exports

v /etc/netgroup

v /etc/rpcbtab

v /stc/statd

Whenever you use the export command, the command searches for the /etc/exports and /etc/netgroup

files. If they do not exist, the system creates these files by using characters from the ASCII default CCSID

of the system. When the system creates these files, they will contain introductory help information. If you

update these files at any time, you must use the export command (with the ’-A’ option) to make your

exports current.

Editing files within the /etc directory

The files stored within the /etc directory are stream files. You can edit them in the following ways:

1. Using the Edit File (EDTF) command

2. Using a PC-based editor

3. Using a UNIX editor through NFS

Edit stream files using the Edit File (EDTF) command

The Edit File (EDTF) command allows you to edit stream files or database files. By default, this command

is not part of the base operating system. A Program Temporary Fix (PTF) provides the command. The

PTF in V3R7 is SF38832. Refer to the cover letter of the PTF for instructions on how to install the

commands it contains. Once you have installed the PTF, you can edit the desired file by specifying the

absolute or relative path name.

The difference between the absolute and the relative path name is the ″/″ at the beginning of the path

name. The ″/″ as the first character signifies an absolute path name. Absolute path names start from the

root directory every time. Relative path names start from the current directory.

Absolute Path Name

EDTF STMF(’/etc/exports’)

This command edits the stream file exports within the directory /etc.

EDTF FILE(PGMLIB/ACCOUNT) MBR(ACC1)

This command edits the file member ACC1 within the physical file PGMLIB/ACCOUNT.

Relative Path Name

EDTF STMF(’exports’)

This command edits the file exports within the current directory.

In the EDTF utility, you find all the appropriate line commands by pressing the F1 (Help) Function Key.

Note: You can also use option 2 on the WRKLNK command to edit the file.

© Copyright IBM Corp. 1999, 2008 89

Edit stream files using a PC-based editor

The second way to edit the netgroup file is using a PC-based editor. Use either System i Navigator or File

Transfer Protocol (FTP) to access the /etc directory on the i5/OS platform. If you are using System i

Navigator, you must have access to the /etc directory.

To use FTP to edit a stream file, perform the following steps:

1. Transfer the file to your PC using FTP.

2. Perform your desired changes using the editor of your choice.

3. Transfer the file back to the /etc directory using FTP.

Edit stream files using a UNIX editor through NFS

A third way to edit stream files on the i5/OS platform is using a UNIX editor through NFS. In order to

do this, perform the following steps:

1. Export the /etc directory on the NFS server using the EXPORTFS command.

2. Mount the /etc/ directory to your UNIX system by using the MOUNT command.

3. Change into the /etc directory by using the Change Directory (CD) command.

4. Edit the desired file by using the VI editor or an editor of your choice.

/etc/exports File

The/etc/exports file contains the default exports for the NFS server. The file is processed whenever the

STRNFSSVR command is used with the *ALL parameter. When created by the system, the file is written

in ASCII characters.

Formatting Entries in the /etc/exports File

There are several restrictions on the format of path names in the /etc/exports file:

 1. All entries are ended by the end of a line.

 2. The continuation character ’\’ can be used to extend one entry across multiple lines when it is the

last character in the line.

 3. All path names must be absolute, beginning at “root” (/).

 4. The first character must be a slash (/).

 5. There can be no spaces within the path name.

 6. Elements of a path must be separated by the ’/’ character.

 7. Each path element cannot be longer than 255 characters.

 8. No hexadecimal characters are allowed.

 9. No control-characters are allowed (this includes any characters below ASCII x020).

10. No tabs or line feeds can be used in the path name.

11. All characters following the pound sign ’#’ are considered comments until the end of the line. The

only exception to this rule is the HOSTOPT parameter, which uses the ’#’ character as a starting

point for each HOSTOPT entry.

Formatting the HOSTOPT (Host Options) Parameter

In the /etc/exports file, you can provide additional information for each export entry related to the

remote NFS clients who will access your entry. For each remote NFS client, you can specify the following

items:

/path_name #HOSTOPT HostName=client1,

 PathNameCCSID=NNN,

 DataFileCCSID=NNN,

 NoWaitForWrites

90 System i: i5/OS Network File System Support

HostName

The name of the remote NFS client for which you are specifying additional export options. You

should specify this client by name in one of the lists as a host that has access to this export entry.

You can also use netgroups for this entry. You can list multiple clients and netgroups for every

entry, each with its own list of specific export options.

 For more information about the HostName option on the HOSTOPT parameter, see

“CHGNFSEXP/EXPORTFS Display” on page 28.

PathNameCCSID

The path name CCSID is used for the path name components of the files exported to and

mounted on the specified NFS client or netgroup. For any clients or netgroups not specified on

the HostName parameter, the default network path name CCSID (ASCII) is used.

DataFileCCSID

The data file CCSID is used for data of the files exported to and mounted on the specified NFS

client or netgroup. For any hosts not specified on the HostName parameter, the default network

data CCSID (binary, no conversion) is used.

NoWaitForWrites

The NoWaitForWrites option specifies whether write requests are handled synchronously or

asynchronously for the NFS client or netgroup name. The absence of this option means that data

will be written to disk immediately (synchronously). If this flag is used, then the data is not

guaranteed to be written to disk immediately and can be used to improve performance

(asynchronously).

Additional Format Rules for the HOSTOPT (Host Options) Parameter

1. The options must start with #HOSTOPT. There must only be one #HOSTOPT although you could

have many host names.

2. Additional host names and their options must be separated by a colon.

3. Options are case-insensitive.

4. Options that are not specified will be processed as the defaults described in “Formatting the

HOSTOPT (Host Options) Parameter” on page 90.

Examples of Formatting /etc/exports with HOSTOPT Parameter

Example 1: Exporting to a host and specifying all options.

/home/joe access=sammy \

#HOSTOPT HostName=sammy, \

 PathNameCCSID=367, \

 DataFileCCSID=850, \

 NoWaitForWrites

A user exports /home/joe to host sammy, specifying CCSIDs for both path names and data files. Data

written is not guaranteed to be written immediately to disk (asynchronously). Note the use of the

continuation character ’\’ to break the long entry into more readable lines.

Example 2: Exporting with options to multiple clients and netgroups.

/home/selfe access=sammy:rainfall:dept-OA5 \

#HOSTOPT HostName=sammy, \

 PathNameCCSID=367: \

 hostname=rainfall, \

 NoWaitForWrites

A user exports /home/selfe to host sammy, rainfall, and the netgroup dept-OA5. For the host sammy, a

CCSID for path names has been specified. For the host rainfall, data is not guaranteed to be written

immediately (asynchronously) to disk.

Example 3: Exporting a directory within QSYS.LIB with options.

Appendix B. Understanding the /etc Files 91

/qsys.lib/jon.lib access=dept-OA5 \

#HOSTOPT HostName=wheatley, \

DataFileCCSID=367

A user exports /qsys.lib/jon.lib to the netgroup dept-OA5. A CCSID is specified for data files. This

causes the data to be converted to this CCSID before being sent to the client that is requesting the data.

/etc/netgroup File

The /etc/netgroup file contains definitions for netgroups. A netgroup is a mechanism used to associate a

list of systems with one name. For example:

department-OA5 (larrys-box,,),(safe-house,,)

my-hosts (rainfall,,),(sammy,,),(department-OA5,,)

The above example defines the netgroup my-hosts, which is a list of the following: rainfall, sammy,

larrys-box, and safe-house. Note that larrys-box and safe-house were included because

department-OA5 is itself a netgroup. Netgroups can be nested within other netgroups.

Traditionally, netgroups are defined as:

netgroup-name

(host-name,user-name,domain-name)

host-name

The name of any host from the /etc/hosts file. i5/OS does not support the /etc/hosts file as a

separate integrated file system file. The /etc/hosts is built in to i5/OS server TCP/IP support.

user-name

The name of any user from the /etc/passwd file. i5/OS does not support the /etc/passwd file

concept.

domain-name

The name of any domain.

On i5/OS, the following format rules apply to netgroups:

 1. All entries are ended by the end of a line.

 2. The continuation character ’\’ can be used to extend one entry across multiple lines when it is the

last character in the line.

 3. All characters following the pound sign ’#’ are considered comments until the end of the line.

 4. In the triple (host-name,user-name,domain-name) only the host-name is recognized. Any value

supplied for user-name or domain-name will be ignored.

 5. Commas ’,’ should be used to separate elements in a list.

 6. A blank host-name will not be considered as a wild-card. There is no wild-card support.

 7. Blanks are allowed anywhere except within a netgroup-name or a host-name.

 8. Imbedded hexadecimal characters are not allowed.

 9. No control-characters are allowed (this includes any characters below ASCII x020).

10. Entries are not case-sensitive.

11. Triplets (x,y,z) (a,b,c) may be separated by spaces or commas only.

92 System i: i5/OS Network File System Support

/etc/rpcbtab File

The /etc/rpcbtab file is used by the RPC binder (port mapper) daemon. Information for all daemons is

stored in this file, which is used to register daemons upon recovery of an RPC binder (port mapper)

daemon crash.

Note: It is recommended that users never write to or change the /etc/rpcbtab file.

/etc/statd File

The /etc/statd file is used exclusively by the server Network Status Monitor daemon. This file stores

information about any clients that hold byte-range locks on open server files. When a user starts the NSM

daemon after a crash, the NSM daemon contacts all the clients listed in this file so that the clients can

release any locks they hold on the server.

Note: It is recommended that users never write to or change the /etc/statd file.

Appendix B. Understanding the /etc Files 93

94 System i: i5/OS Network File System Support

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2008 95

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This i5/OS® Network File System Support publication documents intended Programming Interfaces that

allow the customer to write programs to obtain the services of IBM i5/OS.

96 System i: i5/OS Network File System Support

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

i5/OS

IBM

IBM (logo)

OS/400

Redbooks

System i

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 97

98 System i: i5/OS Network File System Support

Bibliography

This bibliography lists publications that contain

background information or more details for

information that this book discusses.

The list below gives the full title and order

number of each book. OS/400 Network File

System Support may use a shortened version of

the title when referring to these books.

v CL topic in the i5/OS Information Center

(formerly SC41-4722)

These articles provide a description of i5/OS

Control Language (CL) and commands. Each

command description includes a syntax

diagram, parameters, default values, keywords,

and an example.

v Exploring the NFS on i5/OS (SG24–2158)

This redbook explores the Network File System

on the i5/OS platform. It helps you use the

features of the NFS to share data across

systems. It further explains topics that include

security considerations, National Language

Support, migrating from FSS/400 to NFS, and a

few common problems you might come across

while using the NFS and how to solve them.

v Integrated File System topic in the i5/OS

Information Center (formerly SC41-4711)

These articles describe the associated concepts

and terminology of the integrated file system

for i5/OS. They also discuss interfaces, CL

commands, and APIs, as well as the specific

characteristics of each i5/OS file system.

v Optical Support (formerly SC41-4310)

This book serves as a user’s guide and

reference for IBM Optical Support on i5/OS.

The information in this book can help the user

understand optical library dataserver concepts

for use in administering an optical library

dataserver.

v Basic system security and planning topic in the

i5/OS Information Center (formerly SC41-4301)

These articles provide general information

about i5/OS security and authorities.

v Security Reference (formerly SC41-4302)

This book provides detailed technical

information about i5/OS security.

v API topic in the i5/OS Information Center

(formerly SC41-4801)

These articles provide a description of each

i5/OS API, including the integrated file system

APIs.

v Work management topic in the i5/OS

Information Center

These articles describe work and job

management concepts.

© Copyright IBM Corp. 1999, 2008 99

http://www.redbooks.ibm.com/abstracts/sg242158.html

100 System i: i5/OS Network File System Support

Index

Special characters
/etc files 89, 90, 91

/etc/exports file 90

description 90

formatting entries 90, 91

purpose 90

/etc/netgroup file 92

description 92

format rules 92

purpose 92

/etc/pmap file 93

description 93

purpose 93

/etc/statd file 93

description 93

purpose 93

description 89

export command
/etc/exports 89

/etc/netgroup 89

file creation 89

introduction 89

/etc/exports file 90, 91

description 90

formatting entries 90

HOSTOPT parameter 90

HOSTOPT parameter format

rules 91

purpose 90

/etc/netgroup file
description 92

format rules 92

purpose 92

/etc/pmap file
description 93

purpose 93

/etc/statd file
description 93

purpose 93

A
ADDMFS command 44

CODEPAGE parameter
data file code page 44

path name code page 44

description 43

display 43

examples 20

graphical user interface (GUI) 44

MFS parameter 44

MNOTOVRDIR parameter 44

options 11

options list 44

OPTIONS parameter 44

purpose 43

restrictions 43

TYPE parameter 44

application program interfaces (APIs) 75

application program interfaces (APIs)

(continued)
error conditions

EEXIST error condition 75

ENOENT error condition 75

application programming interfaces

(APIs) 75, 76, 77, 84

additional error numbers 75

error conditions
EACCES error condition 75

ESTALE error condition 75

Network File System functions 75

QSYCHGID 84

process 84

required entries 84

updated APIs
create() 76

fcntl() 76

mkdir() 76

open() 76

application programming Interfaces

(APIs) 76

auxiliary storage pool (ASP) 14

CRTUDFS command 13

examples 14

UDFS parameter 14

CRTUDFS display 14

definition 13

introduction 13

scenario 21

using with UDFS 21

B
bibliography 99

block I/O daemon (BIOD)
description 10

displaying 66

block special files (*BLKSF objects)
concept 13

definition 13

byte-range locks
introduction 70

monitored 9

process 71

reasons for using 71

RLSIFSLCK command 71

statefulness 71

statelessness 71

unmonitored 9

C
caches 11, 12

data cache
client timeout 12

description 11

functions 11

locality 12

definition 6

caches (continued)
directory and file attribute cache

description 11

functions 11

introduction 11

case-sensitivity 14

/etc/netgroup file 93

CASE parameter 14

create a udfs
case-insensitive 14

case-sensitive 14

create a UDFS 13

CRTUDFS command 13, 14

CRTUDFS display 14

pattern-matching 56

QSYS.LIB file system 55

root (/) file system 52

UDFS support 13

user-defined file system (UDFS) 58

CHGNFSEXP command 29

description 27

DIR parameter 29

directory entry 29

display 28

examples 29

HOSTOPT parameter
host name 29

network data file code page 29

network path name code page 29

write mode 29

introduction 25

options list 29

OPTIONS parameter 29

purpose 27

restrictions 28

CL commands
ADDMFS (add mounted file

system) 17

ADDMFS (add mounted file

systems) 43

CHGNFSEXP (change Network File

System exports) 27

common commands 87

CRTUDFS (create user-defined file

system) 13

DLTUDFS (delete user-defined file

system) 16

DSPMFSINF (display mounted file

system information) 47

DSPUDFS (display user-defined file

system) 15

ENDNFSSVR (end Network File

System server) 66

EXPORTFS (change Network File

System exports) 27

MOUNT (add mounted file

system) 17

MOUNT (add mounted file

systems) 43

RLSIFSLCK (release integrated file

system locks) 71

© Copyright IBM Corp. 1999, 2008 101

CL commands (continued)
RMVMFS (remove mounted file

system) 18

RMVMFS (remove mounted file

systems) 45

RST (restore) 18

SAV (save) 18

STATFS (display mounted file system

information) 47

STRNFSSVR (start Network File

System server) 63

table of commands 87

UNMOUNT (remove mounted file

system) 18

UNMOUNT (remove mounted file

systems) 45

client/server relationship
client 6, 75

client definition 5

client/server communication 6

client/server model 5

communication design 6

introduction 5

server 6

server definition 5

CRTUDFS command
CASE parameter 14

CRTOBJAUD parameter 14

DTAAUT parameter 14

OBJAUT parameter 14

TEXT parameter 14

UDFS parameter 14

D
daemons 9

block I/O daemon (BIOD) 10

client daemons 10

definition 6

displaying NFS client daemon 66

displaying NFS server daemons 63

mount daemon (MNTD) 9

network lock manager daemon

(NLMD) 9

NFS server daemon (NFSD) 9

NFS server daemons 8

RPC binder daemon (RPCD) 8

data encryption
definition of types 80

introduction 80

displays
ADDMFS display 43

CHGNFSEXP display 28

CRTUDFS display 14

DLTUDFS display 17

DSPMFSINF display 47

DSPMFSINF display output (1/2) 47

DSPMFSINF display output (2/2) 48

DSPUDFS display 15

DSPUDFS output (1/2) 15

DSPUDFS output (2/2) 15

ENDNFSSVR display 67

EXPORTFS display 28

MOUNT display 43

RLSIFSLCK display 72

RMVMFS display 45

STATFS display 47

displays (continued)
STATFS display output (1/2) 47

STATFS display output (2/2) 48

STRNFSSVR display 64

UNMOUNT display 45

DLTUDFS command
UDFS parameter 17

DSPMFSINF command
description 47

display 47

examples 48

OBJ parameter 47

purpose 47

DSPUDFS command
UDFS parameter 15

E
encryption

definition of types 80

introduction 80

ENDNFSSVR command 68

display 67

ENDJOBTIMO parameter 67

purpose 66

restrictions 67

SERVER parameter 67

error conditions
additional error numbers 75

EEXIST error condition 75

ENOENT error condition 75

Error Conditions
EACCES error condition 75

ESTALE error condition 75

EXPORTFS
restrictions 28

EXPORTFS command 29

description 27

DIR parameter 29

directory entry 29

display 28

examples 29

HOSTOPT parameter
host name 29

network data file code page 29

network path name code page 29

write mode 29

options list 29

OPTIONS parameter 29

purpose 27

exporting file systems
/etc/netgroup 28

anonymous users 85

CHGNFSEXP command 27

definition 1

description 23

display 28

downstream metaphor 26

examples 29

EXPORTFS command 27

exporting to ″the world″ 85

general description 1

how do I export file systems? 26

introduction 23

process 26

restrictions 28

rules for exporting 26

exporting file systems (continued)
scenario 30

scenario of exporting to ″the

world″ 86

security considerations 84, 85, 86

simple graphical representation 1

what file systems can I export? 25

Exporting File Systems 25

/etc/exports file 23

CHGNFSEXP command
introduction 25

export options 85

export table 23

process 23

what is exporting? 23

why should I export? 24

F
file systems 3, 13, 51, 52, 53, 54, 55, 56,

57, 58

document library services file system

(QDLS)
anonymous users 56

file creation 56

mounting 56

Network File System

differences 56

path name length 56

exporting 25

i5/OS file systems 51

library file system (QSYS.LIB)
.FILE objects 55

byte-range locks 55

case-sensitivity 55

database members 55

exporting 54

file modes 55

mounting 55

Network File System

differences 54

path names 55

QPWFSERVER authorization

list 54

user spaces 55

logical organization 3

Network File System
description 3

open systems file system (QOpenSys)
case-sensitivity 53

Network File System

differences 52

read/write options 53

optical file system (QOPT)
authorization 57

case-sensitivity 57

mounting 57

Network File System

differences 57

security 57

root (/) file system
case-sensitivity 52

Network File System

differences 51

read/write options 52

user-defined file system (UDFS)
auxiliary storage pools (ASPs) 58

102 System i: i5/OS Network File System Support

file systems (continued)
user-defined file system (UDFS)

(continued)
case-sensitivity 58

Network File System

differences 58

what you can export 25

what you can mount 43

where you can mount 40

FSS/400
introduction 2

description 2

G
GIDs

definition 81

introduction 81

K
Kerberos

authorization 80

definition 80

encryption 80

M
monitored locks

definition 9

MOUNT command 44

CODEPAGE parameter
data file code page 44

path name code page 44

description 43

display 43

examples 20

graphical user interface (GUI) 44

MFS parameter 44

MNOTOVRDIR parameter 44

options 11

options list 44

OPTIONS parameter 44

purpose 43

restrictions 43

TYPE parameter 44

mount daemon (MNTD)
description 9

displaying 63, 66

order of shutdown 66

order of startup 63

mount points
description 42

mounting file systems 40, 41, 45

/etc/fstab file 38

accessibility 38

ADDMFS command 43

covered objects 38

definition 1

description 37

display 43, 45, 47

DSPMFSINF command 47

examples 20, 46, 48

file systems
mounting over 40

mounting over a mount 41

mounting file systems (continued)
file systems (continued)

where you can mount 40

general description 1

graphical user interface (GUI) 44

how do I mount file systems? 43

introduction 37

MOUNT command 43

mount point 2

mount points 42

process 43

QSTRVPPGM program 38

restrictions 43, 45

RMVMFS command
description 45

purpose 45

simple graphical representation 1

STATFS command 47

what file systems can I mount? 40

Network File Systems 40

user-defined file systems 40

what is mounting? 37

what you can mount 43

where can I mount file systems? 40

why should I mount file systems? 39

N
namespace

auxiliary storage pools (ASPs) 21

byte-range locks 71

concept 4

definition 4

exporting file systems 24, 26

rules for exporting 26

mounting file systems 39

overview 4

scenario 4

security considerations 79

trusted community 79

TULAB namespace 5, 21, 24, 26, 40,

82, 83

user-defined file systems (UDFSs) 21

Network File System 6, 8, 9, 10, 11, 12,

61, 62, 63, 65, 66, 70, 71, 79

APIs 75

application programming interfaces

(APIs) 75

brief history 3

byte-range locks
how do I lock a file? 71

recovery 70

RLSIFSLCK command 71

statefulness 71

statelessness 71

why should I lock a file? 71

caches
definition 6

client 6, 10, 75

block I/O daemon (BIOD) 10

caches 11

contents 10

daemons 10

data cache 11, 12

directory and file attribute

cache 11

client/server communication 6

Network File System (continued)
client/server model 5

client/server relationship 6

daemons
definition 6

description 3

encoding 7

exporting file systems 23

integrated file system 75

introduction 1

mounting file systems 37

overview of functions 1

process layout 6

protocol 7

security considerations
introduction 79

server 6, 8

contents 8

mount daemon (MNTD) 9

network lock manager daemon

(NLMD) 9

network status monitor daemon

(NSMD) 9

NFS server daemons (NFSD) 9

RPC binder daemon (port

mapper) 8

shutdown
implications 62

introduction 61

NFS client 66

NFS client scenario 66

NFS server 66

NFS server scenario 65

stack description 7

startup
implications 62

introduction 61

NFS client 63

NFS client scenario 62

NFS server 63

NFS server scenario 62

transmission 7

user-defined file system (UDFS) 13

using i5/OS file systems 51

what is NFS? 1

network lock manager daemon (NLMD)
byte-range locks 71

description 9

displaying 63, 66

order of shutdown 66

order of startup 63

Network Lock Manager Daemon

(NLMD)
byte-range locks 9

network status monitor daemon (NSMD)
description 9

displaying 63, 66

order of shutdown 66

order of startup 63

Network Status Monitor Daemon

(NSMD)
notify list 9

NFS client 10, 11, 12

attribute cache 10

block I/O daemon (BIOD) 10

caches
data cache 11, 12

Index 103

NFS client (continued)
contents 10

daemon
description 10

data cache 10

description 10

directory and file attribute cache
descriptions 11

function 11

displaying daemon 66

mount command 10

network lock manager (NLM) 10

network status monitor (NSM) 10

RPC binder daemon (RPCD) 10

unmount command 10

NFS Client 11

caches
introduction 11

NFS server 8

/etc/exports file 8

contents 8

daemons
description 8

description 8

export command 8

export table 8

how to display daemons 63

mount daemon (MNTD) 9

network lock manager daemon

(NLMD) 9

network status monitor daemon

(NSMD) 9

NFS server daemon (NFSD) 9

NFS server daemons 8

port mapper 8

RPC binder daemon (RPCD) 8

NFS server daemon (NFSD)
description 9

NFS Server Daemon (NFSD)
displaying 63

order of shutdown 66

order of startup 63

P
protocols 7, 75

NFS 3, 7

single-threaded 7

NFS protocol 75

RPC 3, 7

stateless 4

TCP 3, 7, 66

UDP 3, 7, 66

considerations 75

XDR 7

Q
QDLS file system 56

Network File System differences 56

anonymous users 56

file creation 56

mounting 56

path name length 56

QOpenSys file system 53

QOpenSys file system (continued)
Network File System differences

case-sensitivity 53

read/write options 53

Network File System Differences 52

QOPT file system 57

Network File System differences 57

authorization 57

case-sensitivity 57

mounting 57

security 57

QSYCHGID API
description 84

introduction 84

process 84

required entries 84

QSYS.LIB file system 54, 55

Network File System differences 54

.FILE objects 55

byte-range locks 55

case-sensitivity 55

database members 55

exporting 54

file modes 55

mounting 54

path names 55

QPWFSERVER authorization

list 54

user spaces 55

R
related printed information 99

remote procedure call (RPC)
client/server communication 6

definition 3

introduction 3

RLSIFSLCK command
display 72

purpose 71

restrictions 72

RMVMFS command
description 45

display 45

examples 46

purpose 45

restrictions 45

root (/) file system 52

Network File System differences 51

case-sensitivity 52

read/write options 52

RPC binder (port mapper) daemon

(RPCD)
description 8

RPC binder daemon (RPCD)
displaying 63, 66

order of shutdown 66

order of startup 63

S
security 81, 82, 83, 85, 86

considerations 79, 80, 84

data encryption 80

exporting file systems 84, 85, 86

export options 85

security (continued)
introduction 79

trusted community 79

user authorities 80

GIDs 81

supplemental GIDs 81

UIDs 81, 82, 83

Security
data encryption 80

shutdown 66

NFS client
ENDNFSSVR command 66

NFS client scenario 66

NFS server
ENDNFSSVR command 66

NFS server scenario 65

Shutdown 62

improper shutdown
implications 62

introduction 61

startup 63

NFS client
STRNFSSVR command 63

NFS client scenario 62

NFS server
STRNFSSVR command 63

NFS server scenario 62

Startup 62

improper startup
implications 62

introduction 61

state 4

statefulness
definition 4

statelessness
definition 4

STATFS command
description 47

display 47

examples 48

OBJ parameter 47

purpose 47

STRNFSSVR command
display 64

examples 65

NBRBIO parameter 64

NBSVR parameter 64

purpose 63

restrictions 63

SERVER parameter 64

STRJOBTIMO parameter 64

Sun Microsystems, Inc.
brief history 3

first NFS release 3

supplemental GIDs
definition 81

introduction 81

T
TCP/IP

timeout conflict 66

TCP/IP File Server Support/400

(FSS/400)
description 2

introduction 2

104 System i: i5/OS Network File System Support

U
UIDs 82, 83, 84

changing UIDs
process 83

QSYCHGID API 84

definition 81

introduction 81

mapping 81

administrative duties 82

changing UIDs 83, 84

examples 82

possibilities 82

proper mapping 83

UNIX 8, 38, 52, 55, 58, 59

/etc/fstab file 38

authority
*X (execute) authority 59

authorization 80

automatic mounting
/etc/fstab file 38

case-sensitivity 55, 58

directory creation 59

LS (list) command 55

mounting file systems 58

Network File System differences 59

NFS development 3

NFS requests 86

pattern-matching 55

port mapper daemon 8

remote client
QSYS.LIB file system 55

root (/) file system 52

user-defined file system

(UDFS) 58

remote clients 59

RPC binder daemon (RPCD)
port mapper daemon 8

supplemental group identifications

(GIDs) 81

user identification (UID) mapping 86

unmonitored locks 9

definition 9

UNMOUNT command
description 45

display 45

examples 46

purpose 45

restrictions 45

user authorities 81, 82, 83

GIDs
definition 81

introduction 81

introduction 80

supplemental GIDs
definition 81

introduction 81

UIDs
administrative duties 82

definition 81

examples 82

introduction 81

mapping 81, 83

user-defined file system (UDFS) 13, 14,

15, 16, 17, 18, 21, 58

*BLKSF objects 13, 21

auxiliary storage pool (ASP) 13

block special files 13, 21

user-defined file system (UDFS)

(continued)
create a UDFS 13

display 14

examples 14

restrictions 13

definition 13

delete a UDFS 16

display 17

examples 17

restrictions 16

description 13

display a UDFS 15

display 15

example 16

file system management 13

graphical user interface (GUI) 18

mount a UDFS 17

display 17

example 18

process 17

Network File System differences 58

auxiliary storage pools (ASPs) 58

case-sensitivity 58

Network File System functions 21

auxiliary storage pools (ASPs) 21

restoring 18

saving 18

unmount a UDFS 18

display 18

Index 105

106 System i: i5/OS Network File System Support

����

Printed in USA

SC41-5714-03

	Contents
	Figures
	Tables
	About i5/OS Network File System Support (SC41-5714)
	Who should read this book
	Prerequisite and related information
	System i Navigator

	How to send your comments

	Chapter 1. What is the Network File System?
	Introduction
	A Brief History
	The Network File System as a File System
	Stateless and Stateful Network Protocols
	Overview of the TULAB Scenario

	Chapter 2. The Network File System Client/Server Model
	Network File System Client/Server Communication Design
	Network File System Process Layout
	Network File System Stack Description

	System i as a Network File System Server
	Network File System Server-Side Daemons
	RPC Binder Daemon
	NFS Server Daemons
	Mount Daemon
	Network Status Monitor Daemon
	Network Lock Manager Daemon
	NFS Registry Daemon
	Generic Security Service (GSS) Daemon

	System i as a Network File System Client
	Network File System Client-Side Daemons
	Block I/O Daemon

	NFS Client-Side Caches
	Directory and File Attribute Cache
	Data Cache
	Client Timeout

	Chapter 3. NFS and the User-Defined File System (UDFS)
	User File System Management
	Create a User-Defined File System
	Restrictions:
	CRTUDFS Display
	Examples

	Display a User-Defined File System
	DSPUDFS Display
	Example

	Delete a User-Defined File System
	Restrictions:
	DLTUDFS Display
	Example

	Mount a User-Defined File System
	ADDMFS/MOUNT Display
	Example

	Unmount a User-Defined File System
	RMVMFS/UNMOUNT Display

	Saving and Restoring a User-Defined File System
	Perform UDFS operations in System i Navigator
	Mount a UDFS in System i Navigator

	User-Defined File System Functions in the Network File System
	Using User-Defined File Systems with Auxiliary Storage Pools
	Recovery with the Network File System

	Chapter 4. Server Exporting of File Systems
	What is Exporting?
	Why Should I Export?
	TULAB Scenario

	What File Systems Can I Export?
	How Do I Export File Systems?
	Rules for Exporting File Systems
	CHGNFSEXP (Change Network File System Export) Command
	Purpose
	Restrictions:
	CHGNFSEXP/EXPORTFS Display
	Examples

	Exporting from System i Navigator
	Find out what is exported
	Using System i Navigator
	Retrieve Network File System Export Entries (QZNFRTVE) API
	UNIX showmount command

	Exporting Considerations
	Mounted File System Loops
	Mounted File System Loops Solution
	Symbolic Links

	Chapter 5. Client Mounting of File Systems
	What Is Mounting?
	Why Should I Mount File Systems?
	What File Systems Can I Mount?
	Where Can I Mount File Systems?
	Mount Points

	How Do I Mount File Systems?
	ADDMFS (Add Mounted File System) Command
	Purpose
	Restrictions:
	ADDMFS/MOUNT Display
	Examples of the MOUNT command

	RMVMFS (Remove Mounted File System) Command
	Purpose
	Restrictions
	RMVMFS/UNMOUNT Display
	Examples

	DSPMFSINF (Display Mounted File System Information) Command
	Purpose
	DSPMFSINF/STATFS Display
	Examples

	Chapter 6. Using the Network File System with i5/OS File Systems
	"Root" File System (/)
	Network File System Differences
	Case-Sensitivity
	Read/Write Options

	Open Systems File System (QOpenSys)
	Network File System Differences
	Case-Sensitivity
	Read/Write Options

	Library File System (QSYS.LIB)
	Network File System Differences
	Exporting and QSYS.LIB
	QPWFSERVER Authorization List
	Mounting and QSYS.LIB
	Support for User Spaces
	File Modes of Database Members
	Path Names of .FILE Objects
	Byte-Range Locks
	Case-Sensitivity

	Document Library Services File System (QDLS)
	Network File System Differences
	Mounting and QDLS
	File Creation
	Path Name Length
	Anonymous Users

	Optical File System (QOPT)
	Network File System Differences
	Mounting and QOPT
	Case-Sensitivity
	Security and Authorization

	User-Defined File System (UDFS)
	Network File System Differences
	Case-Sensitivity
	System and User Auxiliary Storage Pools

	Administrators of UNIX Clients
	Network File System Differences
	Directory Authority

	Chapter 7. NFS Startup, Shutdown, and Recovery
	Configuring TCP/IP
	Implications of Improper Startup and Shutdown
	Proper Startup Scenario
	STRNFSSVR (Start Network File System Server) Command
	Purpose
	Displaying NFS Server Daemons
	Status Consideration
	Restrictions
	STRNFSSVR Display
	Examples

	Proper Shutdown Scenario
	Shutdown Consideration
	TCP/UDP Timeout Conflict

	ENDNFSSVR (End Network File System Server) Command
	Purpose
	Displaying NFS Client Daemons
	Restrictions
	ENDNFSSVR Display
	Examples

	Start or stop NFS in System i Navigator
	Locks and Recovery
	Why Should I Lock a File?
	How Do I Lock A File?
	Stateless System Versus Stateful Operation
	RLSIFSLCK (Release File System Locks) Command
	Purpose
	Restrictions
	Parameters
	Examples
	Error messages

	Chapter 8. Integrated File System APIs and the Network File System
	Error Conditions
	ESTALE Error Condition
	EACCES Error Condition

	API Considerations
	User Datagram Protocol (UDP) Considerations
	Client Timeout Solution

	Network File System Differences
	open(), create(), and mkdir() APIs
	fcntl() API

	Unchanged APIs

	Chapter 9. Network File System Security Considerations
	The Trusted Community
	Network Data Encryption

	User Authorities
	User Identifications (UIDs)
	Group Identifications (GIDs)
	Mapping User Identifications
	Potential User Identification Mapping Scenarios
	Administrating User Identifications
	UID Mapping Examples

	Proper UID Mapping

	Securely Exporting File Systems
	Export Options
	Anonymous Users
	Exporting to "The World"
	Root User Mappings

	Appendix A. Summary of Common Commands
	Appendix B. Understanding the /etc Files
	Editing files within the /etc directory
	Edit stream files using the Edit File (EDTF) command
	Absolute Path Name
	Relative Path Name

	Edit stream files using a PC-based editor
	Edit stream files using a UNIX editor through NFS

	/etc/exports File
	Formatting Entries in the /etc/exports File
	Formatting the HOSTOPT (Host Options) Parameter
	Additional Format Rules for the HOSTOPT (Host Options) Parameter

	Examples of Formatting /etc/exports with HOSTOPT Parameter

	/etc/netgroup File
	/etc/rpcbtab File
	/etc/statd File

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

	Bibliography
	Index

