
IBM Information Integration

Version 9.5

SQL Replication Guide and Reference

SC19-1030-01

���

IBM Information Integration

Version 9.5

SQL Replication Guide and Reference

SC19-1030-01

���

Note

Before using this information and the product that it supports, read the information in “Notices” on page 463.

© Copyright International Business Machines Corporation 1994, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Planning for SQL replication 1

Migration planning 1

Memory planning 1

Memory used by the Capture program 1

Memory used by the Apply program 3

Storage planning 3

Log impact for DB2 source servers 3

Log impact for target servers 4

Storage requirements of target tables and control

tables 4

Space requirements for spill files for the Capture

program 6

Space requirements for spill files for the Apply

program 6

Space requirements for diagnostic log files (z/OS,

Linux, UNIX, Windows) 7

Conflict detection planning 7

Non-DB2 relational source planning 8

Transaction throughput rates for Capture triggers 8

Log impact for non-DB2 relational source servers 8

Coexistence of existing triggers with Capture

triggers 8

Locks for Oracle source servers 9

Code page conversion planning 9

Replication between databases with compatible

code pages 9

National language support (NLS) for replication 10

Replication planning for DB2 for z/OS 11

Performance tuning 11

Chapter 2. Setting up user IDs and

passwords for SQL replication 13

Authorization requirements for administration . . 13

Authorization requirements for the Capture

program 14

Authorization requirements for the Apply program 15

Authorization requirements for Capture triggers on

non-DB2 relational databases 16

Storing user IDs and passwords for SQL replication

(Linux, UNIX, Windows) 17

Chapter 3. Configuring servers for SQL

replication 19

Connectivity requirements for SQL replication . . . 19

Connecting to System i servers from Windows . 19

Connecting to non-DB2 relational servers . . . 20

Creating control tables for SQL replication 20

Creating control tables for SQL replication . . . 21

Creating control tables (System i) 22

Creating control tables for non-DB2 relational

sources 22

Creating multiple sets of Capture control tables 23

Capture control tables on multiple database

partitions 23

Setting up the replication programs 24

Setting up the replication programs (Linux,

UNIX, Windows) 24

Creating SQL packages to use with remote

systems (System i) 27

Setting up the replication programs (z/OS) . . . 28

Capture for multiple database partitions 28

Setting up journals (System i) 29

Chapter 4. Registering tables and

views as SQL replication sources . . . 33

Registering DB2 tables as sources 33

Registering non-DB2 relational tables as sources . . 35

Registration options for source tables 37

Registering a subset of columns (vertical

subsetting) 37

Change-capture replication and full-refresh

copying 37

After-image columns and before-image columns 39

Before-image prefix 41

Stop the Capture program on error 41

Options for how the Capture program stores

updates 42

Preventing the recapture of changes

(update-anywhere replication) 42

Options for conflict detection (update-anywhere

replication) 46

Registering tables that use remote journaling

(System i) 47

Using relative record numbers (RRN) instead of

primary keys (System i) 48

How views behave as replication sources 49

Views over a single table 49

Views over a join of two or more tables 49

Registering views of tables as sources 51

Maintaining CCD tables as sources (IMS) 52

Chapter 5. Subscribing to sources for

SQL replication 53

Planning how to group sources and targets 53

Planning the number of subscription-set

members 53

Planning the number of subscription sets per

Apply qualifier 54

Creating subscription sets 55

Processing options for subscription sets 57

Specifying whether the subscription set is active 57

Specifying how many minutes worth of data the

Apply program retrieves 58

Load options for target tables with referential

integrity 59

Specifying how the Apply program replicates

changes for subscription set members 60

Defining SQL statements or stored procedures for

the subscription set 61

© Copyright IBM Corp. 1994, 2007 iii

Options for scheduling replication of subscription

sets 61

Scheduling the subscription set 63

Creating subscription-set members 63

Target table types 65

Common properties for all target table types . . 75

Chapter 6. Replicating special data

types in SQL replication 81

General data restrictions for replication 81

Large object data types 82

Chapter 7. Subsetting data in an SQL

replication environment 85

Subsetting data during registration 85

Subsetting source data using views 85

Defining triggers on CD tables to prevent specific

rows from being captured 86

Subsetting data during subscription 87

Chapter 8. Manipulating data in an SQL

replication environment 89

Enhancing data using stored procedures or SQL

statements 90

Mapping source and target columns that have

different names 91

Creating computed columns 91

Chapter 9. Operating the Capture

program for SQL replication 93

Starting the Capture program (Linux, UNIX,

Windows, and z/OS) 93

Starting the Capture program (System i) 94

Default operating parameters for the Capture

program 95

Descriptions of Capture operating parameters . . . 97

Methods of changing Capture parameters 104

Altering the behavior of a running Capture

program 106

Changing saved operating parameters in the

IBMSNAP_CAPPARMS table 107

Stopping the Capture program 108

Reinitializing Capture 109

Suspending the Capture program (Linux, UNIX,

Windows, z/OS) 109

Resuming Capture (Linux, UNIX, Windows, z/OS) 110

Prompting a Capture program to ignore

transactions 110

Chapter 10. Operating the Apply

program for SQL replication 113

Starting the Apply program (Linux, UNIX,

Windows, z/OS) 113

Starting an Apply program (System i) 115

Default operating parameters for the Apply

program 115

Descriptions of Apply operating parameters . . . 117

Methods of changing Apply operating parameters 124

Changing saved Apply parameters in the

IBMSNAP_APPPARMS table (z/OS, Linux, UNIX,

Windows) 125

Stopping the Apply program 125

Modifying the ASNDONE exit routine (z/OS,

Linux, UNIX, Windows) 126

Modifying the ASNDONE exit routine (System i) 127

Refreshing target tables using the ASNLOAD exit

routine 128

Refreshing target tables with the ASNLOAD exit

routine (Linux, UNIX, Windows) 128

Refreshing target tables with the ASNLOAD exit

routine (z/OS) 130

Customizing ASNLOAD exit behavior (z/OS,

Linux, UNIX, Windows) 131

Refreshing target tables with the ASNLOAD exit

routine (System i) 133

Chapter 11. Operating the replication

programs (z/OS) 135

Using system-started tasks to operate the

replication programs 135

Using JCL to operate replication programs . . . 135

Starting the Apply program on z/OS with JCL . . 136

Starting the Capture program on z/OS with JCL 137

Using Automatic Restart Manager (ARM) to

automatically restart replication and publishing

(z/OS) 137

Migrating your replication environment to

data-sharing mode (z/OS) 138

Chapter 12. Changing an SQL

replication environment 141

Registering new objects 141

Changing registration attributes for registered

objects 142

Adding columns to source tables 142

Stop capturing changes for registered objects . . . 144

Making registrations eligible for reactivation . . . 145

Removing registrations 146

Changing Capture schemas 147

Creating new subscription sets 148

Adding new subscription-set members to existing

subscription sets 149

Disabling subscription-set members from existing

subscription sets 150

Enabling subscription-set members to existing

subscription sets 150

Changing properties of subscription sets 151

Changing subscription set names 152

Splitting a subscription set 153

Merging subscription sets 157

Changing Apply qualifiers of subscription sets . . 159

Deactivating subscription sets 161

Removing subscription sets 162

Coordinating replication events with database

application events 163

Setting an event END_SYNCHPOINT using the

USER type signal 163

When to use the Capture CMD STOP signal . . 164

iv SQL Replication Guide and Reference

Performing a CAPSTART handshake signal

outside of the Apply program 167

Performing a CAPSTOP signal 168

Adjusting for Daylight Savings Time (System i) 169

Options for promoting your replication

configuration to another system 170

Chapter 13. Maintaining a SQL

replication environment 173

Maintaining source systems 173

Access to source tables and views 173

Source logs and journal receivers 173

Maintaining control tables 177

The RUNSTATS utility for SQL replication

(Linux, UNIX, Windows, z/OS) 177

Rebinding packages and plans (z/OS, Linux,

UNIX, Windows) 177

Reorganizing your control tables 178

Pruning dynamic control tables maintained by

the Capture programs (Linux, UNIX, Windows,

z/OS) 178

CD and UOW table pruning 179

Recommendations for pruning other dynamic

control tables 180

Preventing replication failures and recovering

from errors 181

Maintaining target tables 183

Chapter 14. Detecting and repairing

differences between source and target

tables 185

Table difference utility (asntdiff) 185

Table repair utility (asntrep) 188

Chapter 15. Replication Alert Monitor 191

Monitoring replication with the Replication Alert

Monitor 191

Alert conditions and notifications for the

Replication Alert Monitor 194

Alert conditions for the Replication Alert

Monitor 194

E-mail notifications for replication alert

conditions 196

Sending alerts to the z/OS console 198

The ASNMAIL exit routine for sending alerts in

replication (Linux, UNIX, Windows) 199

Setting up the Replication Alert Monitor 199

Memory used by the Replication Alert Monitor 200

Authorization requirements for the Replication

Alert Monitor 200

Optional: Binding the Replication Alert Monitor

program packages (Linux, UNIX, Windows) . . 200

Creating control tables for the Replication Alert

Monitor 201

Defining contact information for the Replication

Alert Monitor 202

Creating monitors for replication or publishing 203

Selecting alert conditions for the Replication

Alert Monitor 204

Changing alert conditions for the Replication

Alert Monitor 205

Defining suspension periods for the Alert

Monitor 205

Operating the Replication Alert Monitor 206

Starting monitors 206

Reinitializing monitors 207

Suspending and resuming a monitor 207

Ending a monitor suspension 208

Stopping monitors 209

Reviewing Monitor program messages 209

Parameters of the Replication Alert Monitor . . . 209

Default values of Replication Alert Monitor

parameters 209

Descriptions of the Replication Alert Monitor

parameters 210

Changing runtime parameters for the

Replication Alert Monitor 212

Specifying how often the Replication Alert

Monitor runs 213

Specifying notification criteria for selected alert

conditions 213

Specifying notification criteria for operational

errors 214

Specifying prune intervals for data from the

Replication Alert Monitor 214

Chapter 16. Replication services

(Windows) 215

Description of Windows services for replication 215

Creating a replication service 216

Starting a replication service 216

Stopping a replication service 217

Viewing a list of replication services 217

Dropping a replication service 217

Chapter 17. Scheduling SQL

replication programs on various

operating systems 219

Scheduling programs on Linux and UNIX

operating systems 219

Scheduling programs on Windows operating

systems 219

Scheduling programs on z/OS operating systems 220

Scheduling programs on the System i operating

system 220

Chapter 18. Viewing reports about the

SQL replication programs 221

Checking the status of replication programs (z/OS,

Linux, UNIX, Windows) 221

Reviewing historical data for trends 222

Reviewing Capture program messages 223

Examining Capture program throughput . . . 223

Displaying latency of data processed by the

Capture program 224

Reviewing Apply program messages 224

Examining Apply program throughput 225

Contents v

Displaying the average length of time taken to

replicate transactions 225

Checking the status of the Capture and Apply

journal jobs (System i) 226

Monitoring the progress of the Capture program

(System i) 227

Chapter 19. Customizing and running

replication SQL scripts for SQL

replication 229

Chapter 20. How the SQL replication

components communicate 231

The Replication Center, ASNCLP, the Capture

program or triggers, and the Apply program . . . 231

The Capture program and the Apply program . . 232

The Capture triggers and the Apply program . . . 233

The administration tools and the Replication Alert

Monitor 234

The Replication Alert Monitor, the Capture

program, and the Apply program 235

Chapter 21. Naming rules for SQL

replication objects 237

Chapter 22. System commands for

SQL replication (Linux, UNIX,

Windows, z/OS) 239

asncap: Starting Capture 239

asnccmd: Operating Capture 246

asnapply: Starting Apply 249

asnacmd: Operating Apply 255

asnanalyze: Operating the Analyzer 256

asnmon: Starting a Replication Alert Monitor . . . 259

asnmcmd: Working with a running Replication

Alert Monitor 264

asnpwd: Creating and maintaining password files 266

asnscrt: Creating a replication service 270

asnsdrop: Dropping replication services 273

asnslist: Listing replication services 274

asntdiff: Comparing data in source and target

tables 275

asntrc: Operating the replication trace facility . . . 278

asntrep: Repairing differences between source and

target tables 285

Chapter 23. System commands for

SQL replication (System i) 289

ADDDPRREG: Adding a DPR registration (System

i) 289

ADDDPRSUB: Adding a DPR subscription set

(System i) 297

ADDDPRSUBM: Adding a DPR subscription-set

member (System i) 312

ANZDPR: Operating the Analyzer (System i) . . . 322

CHGDPRCAPA: Changing DPR Capture attributes

(System i) 325

CRTDPRTBL: Creating the replication control tables

(System i) 330

ENDDPRAPY: Stopping Apply (System i) 331

ENDDPRCAP: Stopping Capture (System i) . . . 334

GRTDPRAUT: Authorizing users (System i) . . . 336

INZDPRCAP: Reinitializing DPR Capture (System

i) 344

OVRDPRCAPA: Overriding DPR Capture

attributes (System i) 345

RMVDPRREG: Removing a DPR registration

(System i) 350

RMVDPRSUB: Removing a DPR subscription set

(System i) 351

RMVDPRSUBM: Removing a DPR subscription-set

member (System i) 352

RVKDPRAUT: Revoking authority (System i) . . . 354

STRDPRAPY: Starting Apply (System i) 355

STRDPRCAP: Starting Capture (System i) 362

WRKDPRTRC: Using the DPR trace facility

(System i) 369

Chapter 24. SQL replication table

structures 375

Tables at the Capture control server 375

IBMSNAP_CAPENQ table (z/OS, Linux, UNIX,

Windows) 376

IBMSNAP_CAPMON table 377

IBMSNAP_CAPPARMS table 379

IBMSNAP_CAPSCHEMAS table 382

IBMSNAP_AUTHTKN table (System i) 383

IBMSNAP_CAPTRACE table 384

CCD table (non-DB2) 385

CD table 386

IBMQREP_IGNTRAN table 387

IBMQREP_IGNTRANTRC table 388

IBMSNAP_PARTITIONINFO table 389

IBMSNAP_PRUNCNTL table 389

IBMSNAP_PRUNE_LOCK table 392

IBMSNAP_PRUNE_SET table 392

IBMSNAP_REG_EXT (System i) 393

IBMSNAP_REGISTER table 394

IBMSNAP_REG_SYNCH table (non-DB2

relational) 401

IBMSNAP_RESTART table 401

IBMSNAP_SEQTABLE table (Informix) 403

IBMSNAP_SIGNAL table 404

IBMSNAP_UOW table 406

Tables at the Apply control server 408

ASN.IBMSNAP_APPENQ table 409

ASN.IBMSNAP_APPLY_JOB (System i) 409

ASN.IBMSNAP_APPPARMS table 410

ASN.IBMSNAP_APPLYTRACE table 413

ASN.IBMSNAP_APPLYTRAIL table 414

ASN.IBMSNAP_SUBS_COLS table 419

ASN.IBMSNAP_SUBS_EVENT table 420

ASN.IBMSNAP_SUBS_MEMBR table 421

ASN.IBMSNAP_SUBS_SET table 425

ASN.IBMSNAP_SUBS_STMTS table 430

Control tables at the Monitor control server . . . 432

IBMSNAP_ALERTS table 433

IBMSNAP_CONDITIONS table 434

vi SQL Replication Guide and Reference

IBMSNAP_CONTACTGRP table 439

IBMSNAP_CONTACTS table 440

IBMSNAP_GROUPS table 441

IBMSNAP_MONENQ table 441

IBMSNAP_MONPARMS table 441

IBMSNAP_MONSERVERS table 443

IBMSNAP_MONTRACE table 445

IBMSNAP_MONTRAIL table 445

IBMSNAP_SUSPENDS table 447

IBMSNAP_TEMPLATES table 448

Tables at the target server 448

Base aggregate table 449

Change aggregate table 449

CCD targets 450

Point-in-time table 450

Replica table 451

User copy table 451

Appendix A. UNICODE and ASCII

encoding schemes for SQL replication

(z/OS) 453

Rules for choosing an encoding scheme 453

Setting encoding schemes 453

Appendix B. Starting the SQL

replication programs from within an

application (Linux, UNIX, Windows) . . 455

Appendix C. How the Capture

program processes journal entry

types for SQL replication (System i) . 457

Accessing information about the

product 459

Providing comments on the documentation . . . 459

Accessible documentation 461

Notices 463

Trademarks 465

Index 467

Contents vii

viii SQL Replication Guide and Reference

Chapter 1. Planning for SQL replication

When planning for SQL replication, you might need to consider planning for

migration, memory, storage, conflicts, source systems, code page conversion, and

performance.

Migration planning

Planning migration involves planning for issues that might arise while migrating

from one version of replication to another.

If you are migrating from an existing replication environment, certain migration

issues need to be considered. WebSphere Information Integration Migrating to

Replication Version 9 describes how to migrate to Version 9 replication. To migrate

to Version 9, your servers must first be at Version 8. WebSphere Information

Integration Migrating to SQL Replication Version 8 describes how to migrate to

Version 8 replication. It also describes how to migrate replication environments

that currently use DB2® DataJoiner® to replicate data to or from non-DB2 relational

servers. These documents are available online at from the WebSphere® Information

Integration support site for your product.

Memory planning

Memory planning involves planning for the amount of memory required by

replication. Replication uses memory only as needed. The amount of memory

required is directly proportional to how much data is being replicated from the

source and the concurrency of the transactions. Basically, the more data that is

being replicated and the more concurrent transactions you have, the more memory

is required by replication.

Running the Capture and Apply programs can consume a significant amount of

memory.

Memory used by the Capture program

The Capture program uses memory when it reads the DB2 recovery log. It stores

individual transaction records in memory until it reads the associated commit or

abort record. Data associated with an aborted transaction is cleared from memory,

and data associated with a commit record is written to the CD table and the UOW

table. The committed transactions stay in memory until the Capture program

commits its work when it reaches its commit interval.

To monitor how much memory the Capture program is using, look in the

CURRENT_MEMORY column of the IBMSNAP_CAPMON table.

You can set the memory_limit parameter when you start the Capture program to

ensure that Capture uses a specified amount of memory for storage that is

associated with transactions. Other storage use is not limited by this parameter.

You can also change the memory_limit parameter while the Capture program is

running. If Capture reaches the memory limit, it writes some transactions to a spill

file. You need to consider the memory resources that are used by the Capture

program in relation to its storage space requirements.

© Copyright IBM Corp. 1994, 2007 1

You should also consider the size of user transactions and the commit interval

when planning for the Capture program’s memory requirements. Long running

batch jobs without interim commits take a lot of memory when you run the

Capture program. Generally, the smaller the commit interval, the less memory

required by the Capture program.

Information about active registrations is read and stored in memory when you

start an instance of the Capture program and when you add registrations

dynamically while the Capture program is running.

When replication reads log records it uses a memory buffer. The default

size on the z/OS® operating system is sixty-six 1 KB pages, and it is ECSA

(extended common service area) storage. Replication uses ECSA only in

this situation. The default size of the buffer on Linux®, UNIX® and

Windows® operating systems is fifty 4 KB pages.

CURRENT_MEMORY is the up-to-date account of extra memory allocated

for holding the transaction records beyond the memory used by standard

I/O buffers for the active CD tables. It is an indication of how much extra

memory is being used to hold the large number of transactions. It is not an

accurate sum of all the memory used by the specific journal job.

 Information stored in the IBMSNAP_CAPMON table provides operational statistics

to help you tune memory usage. Note that the values in this table are for a

particular Capture monitor interval, they are not cumulative across monitor

intervals. The data in the CURRENT_MEMORY column does not contain an

additive count. It reflects the memory in use at the end of the monitor interval

when the record is created. The Capture monitor interval determines how

frequently the Capture program inserts data into this table. Use one of the

following methods to tune the amount of memory being used by the Capture

program:

Tuning memory limit to allow for spills:

1. When you start the Capture program, use the default memory limit.

2. Check if data spilled from memory to a temporary file by looking at the

TRANS_SPILLED column in the IBMSNAP_CAPMON table. This column

shows the number of source system transactions that spilled to disk due to

memory restrictions during a particular Capture monitor interval.

3. If data spilled from memory, either use a higher memory limit or a lower

commit interval.

Tuning memory limit to prevent spills:

1. When you start the Capture program, set a high memory limit. (How high

depends on your system resources.)

2. Check how much memory is being used by looking at the

CURRENT_MEMORY column in the IBMSNAP_CAPMON table. This column

shows the amount of memory (in bytes) that the Capture program used during

a particular Capture monitor interval.

3. If much less memory is being used than what you specified for the memory

limit, set a lower value for the memory limit.

2 SQL Replication Guide and Reference

Memory used by the Apply program

The Apply program uses memory when it fetches data. The amount of memory

used is proportional to the size of the table columns and the number of rows

fetched at one time. For example, if the Apply program is fetching a LOB column,

it could potentially use 2 GB of memory.

Information about active subscription sets is read and stored in memory when the

Apply program is running. The amount of memory used at one time by the Apply

program is generally proportional to the amount of memory required to process

the subscription set that has the most members.

Storage planning

Storage planning is important for log impact for DB2 source servers, log impact for

target servers, storage requirements of target tables and control tables, space

requirements for diagnostic log files (Linux, UNIX, Windows, z/OS), space

requirements for spill files for the Capture program, and space requirements for

the spill files for the Apply program.

In addition to the storage required for DB2, you must ensure that storage is

available for replication for the following topics. All of the sizes given in these

topics are estimates only. To prepare and design a production-ready system, you

must also account for such things as failure prevention. For example, the holding

period of data might need to be increased to account for potential network

outages.

Tip: If storage estimates seem unreasonably high, reexamine how frequently the

Apply program runs subscription sets and how frequently your replication tables

are pruned. You must consider trade-offs between storage usage, capacity for

failure tolerance, and CPU overhead.

Log impact for DB2 source servers

In general you need an additional three times the current log volume for all tables

involved in replication. Basically, you need log space for the source table as well as

the CD table and the replication control tables. This section provides other factors

that can help you make a more accurate estimate of the log impact that you can

expect in your replication environment.

Consider the updates made to the source database by your applications and the

replication requirements. For example, if an updating application typically updates

60 percent of the columns in a table, the replication requirements could cause the

log records to grow by more than half compared to a similar table that is not

replicated.

v DB2 logs full-row images for each UPDATE statement. This occurs

because, before you can replicate a table, you must create it (or alter it)

with the DATA CAPTURE CHANGES keywords.

v One of the replication requirements that adds the most to the log is the

capturing of before- and after-images (as for replica target tables in

update-anywhere replication scenarios). One way to reduce the log

volume is to reduce the number of columns defined for the replication

source. For example, do not capture before-images if they’re not

required.

Chapter 1. Planning for SQL replication 3

v DB2 logs full-row images for each UPDATE statement. One way to

reduce the log volume is to reduce the number of columns defined for

the replication source, for example, do not capture before-images if

they’re not required.

v To minimize the amount of storage used for CD tables and UOW tables,

frequently reorganize these tables because pruning does not recover

DASD for you. You can use the keyword RGZCTLTBL (Reorganize

control tables) on the ENDDPRCAP command to reorganize control

tables. Observe the DASD usage patterns under normal operating

conditions to help you predict and manage DASD usage. If journaling is

on, also take into account that the log or journal volume increases as

DB2 log insertions to and deletions from the UOW table and CD tables.

v When the current receiver is full, the system switches to a new one; you

can optionally save and delete old ones no longer needed for replication.

When a system handles a large number of transactions, the Capture

program can occasionally lag behind. If Capture is frequently lagging

behind, you can separate your source tables into multiple journals to

distribute the workload to multiple instances of the Capture program.

Log impact for target servers

In addition to logging for the source database, there is also logging for the target

database, where the rows are applied. The impact to the log depends on the

commit mode that you choose for the Apply program.

Table mode

In table-mode processing, the Apply program issues a single commit after

all fetched data is applied. The Apply program does not issue interim

checkpoints. In this case, you should estimate the maximum amount of

data that the Apply program will process in one time interval and adjust

the log space to accommodate that amount of data.

Transaction mode

In transaction-mode processing, the Apply program copies every update in

the source transaction order to the target tables and commits these changes

on a transaction boundary at an interval. You set the interval for the

interim commits by setting the value of x in the subscription set option

commit_count(x). After the Apply program fetches all answer sets, it

applies the contents of the spill files in the order of commit sequence. This

type of processing allows all spill files to be open and processed at the

same time. For example, if you set commit count to 1, the Apply program

commits after each transaction, if you set commit count to 2, it commits

after each set of two transactions.

You also need to consider the log space (journal receivers

space) of the target tables. Because journal receivers for target tables on System i™

can be created with the MNGRCV(*SYSTEM) and DLTRCV(*YES) parameters,

and because you need to journal only the after-image columns, use the following

formula to estimate the volume of the journal receivers for the target tables:

journal_receiver_volume=target_table_row_length X journal_receiver_threshold

Storage requirements of target tables and control tables

You must estimate the volume of new target tables. The space required for a target

table is usually no greater than that of the source table, but can be much larger if

the target table is denormalized or includes before-images (in addition to

4 SQL Replication Guide and Reference

after-images) or history data. Target table size depends on what you choose to

replicate, for example, the percentage of the source table you are replicating, the

data type of columns you’re replicating, whether you’re replicating before- and

after-images, whether you’re adding computed columns, whether you’re subsetting

rows, whether any transformations are performed during replication.

The CD tables and some replication control tables (IBMSNAP_UOW,

IBMSNAP_CAPTRACE, IBMSNAP_APPLYTRACE, IBMSNAP_APPLYTRAIL,

IBMSNAP_CAPMON, IBMSNAP_ALERTS) also affect the disk space required for

DB2 source databases. These tables can grow very large depending on how you set

up your replication environment. The space required for the other replication

control tables is generally small and static.

The CD tables grow in size for every change made to a source table until the

Capture program prunes the CD table. To estimate the space required for the CD

tables, first determine how long you want to keep the data before pruning it, then

specify how often the Capture program should automatically prune these tables or

how often you will prune the tables using a command.

When calculating the number of bytes of data replicated, you need to include 21

bytes for overhead data for each row that is added to the CD tables by the Capture

program. Determine the period of time for which the Capture program should be

able to keep capturing data into CD tables, even when the data cannot be applied -

for example, in the case of a network outage. Estimate the number of inserts,

updates, and deletes that typically would be captured for the source table within

that contingency time period.

To determine the recommended size for the CD table, use the following guideline:

recommended_CD_size =

 ((21 bytes) + sum(length of all registered columns)) X

 (number of inserts, updates, and deletes to source table

 during the contingency period)

Example

If the rows in the CD table are 100 bytes long (plus the 21 bytes for overhead), and

100,000 updates are captured during a 24-hour contingency period, the storage

required for the CD table is about 12 MB.

Registered columns in this formula include both before- and after-image columns.

If updates are being converted to pairs of INSERT and DELETE operations, then

take them into account when determining the total number of inserts, updates, and

deletes. For example, count each update to the source table as two rows in the CD

table.

The UOW table grows and shrinks based on the number of rows inserted by the

Capture program during a particular commit interval and on the number of rows

that are pruned. A row is inserted in the UOW table each time an application

transaction issues a COMMIT and the transaction executed an INSERT, DELETE,

or UPDATE operation against a registered replication source table. You should

initially over-estimate the space required by the table and monitor the space

actually used to determine if any space can be recovered.

Chapter 1. Planning for SQL replication 5

Space requirements for spill files for the Capture program

If the Capture program does not have sufficient memory, it writes (or spills)

transactions to spill files. The Capture program writes the biggest transaction to

file; however, the biggest transaction is not necessarily the one that exceeded the

memory limit.

Spill files go to virtual I/O (VIO).

Spill files are always on disk. One file per transaction is created in the

capture_path directory.

Spill files are created in library QTEMP, one spill file for each registration

that needs a spill file.

The size of the Capture spill files depends on the following factors:

Memory limit

Use the memory_limit operational parameter to specify how much

memory can be used by the Capture program. The more memory you

allow, the less likely the Capture program will spill to files.

Size of transactions

Larger transactions might increase the need to spill to file.

Number of concurrent transactions

If the Capture program processes more transactions at the same time, or

processes interleaved transactions, the Capture program needs to store

more information in memory or on disk.

Commit interval

Typically the lower the commit interval the lower the need for storage

because Capture has to store information in memory for a shorter period

of time before committing it.

Space requirements for spill files for the Apply program

The Apply program requires temporary space to store data. (If you are using the

ASNLOAD utility, you might have a load input file instead of a load spill file.) The

Apply program uses spill files to hold the updates until it applies them to the

target tables. In general, the spill files are disk files; however, on z/OS operating

systems, you can specify that data be spilled to memory. Unless you have virtual

memory constraints, store the spill files in virtual memory rather than on disk.

The size of the spill file is proportional to the size of the data selected for

replication during each replication interval. Typically the spill file is approximately

two times the size of the data. You can estimate the size of the spill file by

comparing the frequency interval (or data-blocking value) planned for the Apply

program with the volume of changes in that same time period (or in a peak period

of change).

The row size of the spill file is the target

row size, including any replication overhead columns. The row size is not in DB2

packed internal format, but is in expanded, interpreted character format (as fetched

from the SELECT). The row also includes a row length and null terminators on

individual column strings. The following example estimates the size of the spill file

6 SQL Replication Guide and Reference

that is required for the data selected for replication and it does not take into

account the extra space needed for the other data that is stored in the spill file.

The row size of the spill file is a constant 32 KB.

Example

If change volume peaks at 12,000 updates per hour and the Apply program

frequency is planned for one-hour intervals, the spill file must hold one-hour’s

worth of updates, or 12,000 updates. If each update represents 100 bytes of data,

the spill file will be approximately 1.2 MB at a minimum. Additional space is

required for the other data that is stored in the spill file.

Space requirements for diagnostic log files (z/OS, Linux,

UNIX, Windows)

Diagnostic log files store information about the activities of replication programs,

such as when the program started and stopped, and other informational or error

messages from the program. By default, the program appends messages to its log

file, even after the program is restarted. Ensure that the directories that contain

these log files have enough space to store the files.

The location of the diagnostic log files depends on the value that you set for the

capture_path, apply_path, and monitor_path start-up parameters when you

started the Capture program, Apply program, and Replication Alert Monitor

program.

If you are concerned about storage, you have the option of reusing the program

logs so that each time the program starts it deletes its log and recreates it. You can

specify if you want to reuse the log when you start the program.

Conflict detection planning

If you use standard or enhanced conflict detection, you must store before-images in

the CD (or CCD) tables for the replica target tables. Also, the referential integrity

rules are restricted. In peer-to-peer and update-anywhere scenarios, or when the

Apply program uses transaction mode processing, you should define referential

integrity rules that are in keeping with the source rules. If you use peer-to-peer

replication or update-anywhere replication and you do not want to turn on conflict

detection, you should design your application environment to prevent update

conflicts. If conflicts cannot occur in your application environment, you can save

processing cycles by not using conflict detection.

Use either of the following methods to prevent conflicts in peer-to-peer and

update-anywhere replication:

Fragmentation by key

Design your application so that the replication source is updated by

replicas for key ranges at specific sites. For example, your New York site

can update sales records only for the Eastern United States (using ZIP

codes1 less than or equal to 49999 as the key range), but can read all sales

records.

1. United States postal codes.

Chapter 1. Planning for SQL replication 7

Fragmentation by time

Design your application so that the table can be updated only during

specific time periods at specific sites. The time periods must be sufficiently

separated to allow for the replication of any pending changes to be made

to the site that is now becoming the master version. Remember to allow for

time changes, such as Daylight Savings Time or Summer Time, and for

time-zone differences.

Non-DB2 relational source planning

Capture triggers are used instead of the Capture program if you are replicating

from non-DB2 relational databases. These triggers capture changed data from a

non-DB2 relational source table and commit the changed data into CCD tables.

Capture triggers affect your transaction throughput rates and log space

requirements. Also, if you have existing triggers in your environment you might

need to merge them with the new Capture triggers. For more information, see the

following sections:

Transaction throughput rates for Capture triggers

The transaction workload for your source system will increase; trigger-based

change capture has an impact on transaction throughput rates.

Capture triggers increase the response time for updating transactions. The impact

is greatest for those transactions that heavily update application source tables that

are to be replicated.

Log impact for non-DB2 relational source servers

For non-DB2 relational source servers, your source applications will need more

active log space because the log volume approximately triples for replicated source

tables. Changes are captured by triggers on the source tables and are stored in

CCD tables, changed data is written within the same commit scope as the

changing source tables, and data is later deleted through a trigger-based pruning

mechanism.

Each source INSERT, UPDATE, or DELETE operation becomes an INSERT,

UPDATE, or DELETE operation, plus an INSERT operation, plus a DELETE

operation. The log volume increases even more if you change updates to pairs of

DELETE and INSERT operations.

If you run out of log space and the Capture trigger cannot insert a record into the

CCD table, the transaction attempted by the user or application program will not

complete successfully.

Coexistence of existing triggers with Capture triggers

The Capture trigger logic is in the SQL script generated by the Replication Center

when you register a source.

By default, an INSERT trigger, an UPDATE trigger, and a DELETE trigger are

created so that those types of changes (insert, update, delete) can be replicated

from the source table. The trigger name consists of the name of the CCD table

preceded by a letter describing the type of trigger: I for INSERT, U for UPDATE, D

for DELETE. For example, if the CCD table name is undjr02.ccd001, the name of

8 SQL Replication Guide and Reference

the generated DELETE trigger is undjr02.dccd001. You must not change the names

of the triggers that are generated in the script.

If a trigger already exists on the table that you want to register for replication and

that trigger has the same name as the one that is in the generated script, you’ll

receive a warning when the script is generated. Do not run the generated script

because the RDBMS might overwrite the existing trigger. Determine how you want

to merge the preexisting triggers with the new triggers, and create a script that

merges your existing logic with the trigger logic generated by the Replication

Center.

If the type of trigger that you want to create already exists on the table that you

want to register for replication, and the RDBMS allows only one such trigger per

table, you must merge the logic before you run the generated script.

Locks for Oracle source servers

Any application currently updating the Oracle source must finish before the Apply

program can start applying data.

The Apply program must lock the CCD table so that it can process data and set its

synchpoint. The locks on the CCD tables are held only until the Apply program

sets its synchpoint, not through the entire Apply cycle. Applications that need to

update the source table must wait until the Apply program unlocks the CCD table.

Code page conversion planning

Replication components are database applications that rely on the DB2 databases

on various operating systems to handle conversion of data that uses different code

pages.

Replication components work with data using SQL SELECT, INSERT, UPDATE,

and DELETE statements.

Replication between databases with compatible code pages

If your replication configuration requires SQL statements and data to go between

systems with differing code pages, the underlying DB2 protocols such as DRDA®

handle code page conversion. Also, if data is passed between DB2 and non-DB2

relational databases, DB2 replication relies on the underlying database products to

handle any necessary code page conversion.

If you plan to replicate between databases with differing code pages, check the

IBM Information Management Software for z/OS Solutions Information Center or DB2

Information Center to determine if the code pages you have are compatible. For

example, if you are using DB2 for Linux, UNIX, and Windows, see the section on

the conversion of character data.

Once you have verified that your databases have compatible code pages,

determine if the databases use code pages differently. For example, assume that

one database product allows a different code page for each column in a table while

another database product requires the code page to be specified only at the

database level. A table with multiple code pages in the first product cannot be

replicated to a single database in the second product. Therefore, how the databases

handle code pages affects how you must set up replication to ensure that data is

successfully replicated between the various databases in your environment.

Chapter 1. Planning for SQL replication 9

National language support (NLS) for replication

The NLS configuration for replication is defined when you set up database

connectivity between systems. However, if you are running the Capture or Apply

programs on Linux, UNIX or Windows operating systems, some configuration

steps may be necessary.

On Linux, UNIX, and Windows, the Capture program must run in the same code

page as the database from which it is capturing the data. If the Capture program is

not run in the same code page, you must set a DB2 environment variable or

registry variable called DB2CODEPAGE so that Capture uses the same code page

as the database.

When running the Apply program on Linux, UNIX, or Windows, if any source

table is in UNICODE, the Apply application code should be in UNICODE. If the

data in the source table is in ASCII, the application code page can be in ASCII or

UNICODE. You can also set the DB2CODEPAGE variable for the Apply program.

Setting the code page variable

DB2 derives the code page for an application from the active environment

in which the application is running. Typically, when the DB2CODEPAGE

variable is not set, the code page is derived from the language ID that is

specified by the operating system. In most situations, this value is correct

for the Capture or Apply programs if you use the default code page when

you create your database. However, if you create your database with an

explicit code page that is something other than the default code page, you

must set the DB2CODEPAGE variable. Otherwise, data might not be

translated correctly. The value that you use for the DB2CODEPAGE

variable must be the same as what you specify on your CREATE

DATABASE statement. See the DB2 Information Center for details about

setting the DB2CODEPAGE variable.

Replicating from a code page

If you are replicating source data with a single-byte character set (SBCS)

code page to a target with Unicode UTF-8, some single-byte characters in

the source database might be translated by DB2 to two or more bytes in

the target database. All single-byte characters whose hexadecimal value is

0x80 to 0xff are translated to their two-byte 1208 equivalent. This means

that target columns might need to be larger than source columns,

otherwise the Apply program might receive SQL errors from DB2.

 Some database products implement code page support differently from

others, which can impact your replication configuration. For example, DB2

on System i allows a code page to be specified at the column level, but

DB2 for Linux, UNIX, and Windows allows a code page to be specified

only at the database level. Therefore, if you have a System i table with

multiple columns using different code pages, those columns cannot be

replicated to a single DB2 for Linux, UNIX, and Windows database unless

all the code pages are compatible.

Setting the LANG variable

If you are running the Capture and Apply programs on a Linux or UNIX

system, you might need to set the LANG environment variable. The

Capture and Apply programs use the contents of this environment variable

to find their message library for your language. For example, if the LANG

environmental variable is set to en_US, the Capture program looks for its

English message library in the DB2 instance’s /sqllib/msg/en_US

10 SQL Replication Guide and Reference

subdirectory. If Capture cannot find its message library, all messages

written to the IBMSNAP_CAPTRACE table are ASN0000S.

Replication planning for DB2 for z/OS

SQL replication for DB2 for z/OS supports schema and table names of up to 128

bytes.

To take advantage of the long-name support:

v Create your Capture, Apply, and Monitor control tables under DB2 for z/OS

Version 8 or later in new-function mode.

v Run the Capture, Apply, and Monitor servers under DB2 for z/OS Version 8 or

later in new-function mode

Restriction: If you want to replicate between DB2 for z/OS new-function mode

subsystems and DB2 for Linux, UNIX, Windows or DB2 for iSeries™, you must use

schema names that are 30 bytes or shorter. If you use schema names that are

longer than 30 characters on DB2 for z/OS Version 8 in new-function mode, you

cannot replicate between that platform and DB2 for Linux, UNIX, Windows or DB2

for iSeries.

Performance tuning

Performance tuning involves tuning your replication environment for optimal

performance.

WebSphere Information Integration Tuning for SQL Replication Performance describes

how to tune the major components of a DB2 replication environment for maximum

performance. This document is available online the WebSphere Information

Integration support site for your product.

Chapter 1. Planning for SQL replication 11

12 SQL Replication Guide and Reference

Chapter 2. Setting up user IDs and passwords for SQL

replication

To use the SQL replication programs, you need to set up user IDs and passwords

for accessing DB2 servers on local and remote systems.

The following topics explain the authorities and privileges that you need, and how

you can store necessary user IDs and passwords in an encrypted password file that

the SQL replication programs can share.

Authorization requirements for administration

To set up replication, you run generated SQL to create objects, and bind plans and

create SQL packages (System i). Authorities required for these tasks vary by

operating system.

To administer replication, you must have at least one user ID on all databases

involved in the replication configuration and that user ID must have the authority

to set up replication. Your user ID does not need to be the same on all systems,

although it would be easier for you if it was.

 Ensure that the user IDs that you use to set up replication can perform the

following tasks:

v Connect to all the servers (source server, Capture control server, Apply

control server, Monitor control server, target server).

v Select from catalog tables on the source server, Capture control server,

Monitor control server, and target server.

v Create tables (including replication control tables), table spaces, and

views at the source server, Monitor control server, Capture control

server, and Apply control server.

v If you use the replication programs to create new target tables: Create

tables and table spaces on the target server. (Not required if you use

existing tables as targets).

v Bind plans or create packages on each DB2 database involved in

replication, including the source server, target server, Monitor control

server, and Apply control server.

v Create stored procedures using a shared library and call stored

procedures (Linux, UNIX, Windows only).

For non-DB2 relational databases, the user ID must be able to do the

following actions:

v Create tables.

v Create Capture triggers on source tables and control tables.

v Create procedures.

v Create nicknames on the federated database.

v Create sequences (for Oracle databases only).

v Select from catalog tables.

© Copyright IBM Corp. 1994, 2007 13

Most replication administrators have DBADM or SYSADM privileges. On

DB2 for z/OS the replication administrator should be at least authorized to

select from the catalog and should have all privileges necessary to create

tables with the ASN schema and to create CD and target tables with the

characteristics of the source tables, including index creation privileges.

 Ensure that the user IDs you use to set up replication can perform the

following tasks:

v Connect to all the servers (source server, Capture control server, Apply

control server, Monitor control server, target server).

v Select from catalog tables on the source server, Capture control server,

Monitor control server, and target server.

v Create tables (including replication control tables) and views at the

source server, Monitor control server, Capture control server, and Apply

control server.

v If you use the DB2 Replication programs to create new target tables:

Create tables on the target server. (Not required if you use existing tables

as targets.)

v Bind plans or create packages on each DB2 database involved in

replication, including the source server, target server, Monitor control

server, and Apply control server.

Most replication administrators have DBADM or SYSADM privileges.

 Use the Grant DPR Authority (GRTDPRAUT) command to authorize a

user to register sources, subscribe to those sources, and create control

tables. If you are replicating only between System i systems, you should

use the same user ID for all servers.

 If the Grant DPR Authority (GRTDPRAUT) command is not installed on a

machine, you must use the Grant Object Authority (GRTOBJAUT)

command.

Authorization requirements for the Capture program

The user ID that runs the Capture program must be able to access the DB2 system

catalog, access and update all replication control tables on the Capture control

server, and execute the Capture program packages.

You can use the replication administrator user ID to run the Capture program, but

this is not a requirement.

The user ID used to run the Capture program must be registered with

access to USS. That means the user ID must be defined to use z/OS UNIX

or OS/390® UNIX (it must have an OMVS segment).

 Also, ensure that the Capture load library is APF-authorized and that the

user ID that runs the Capture program has the following privileges:

v WRITE access to a temporary directory; either the /tmp directory or the

directory specified by the TMPDIR environment variable.

v SELECT, UPDATE, INSERT, and DELETE privileges for all replication

tables on the Capture control server.

14 SQL Replication Guide and Reference

v SELECT privilege for the DB2 catalog (SYSIBM.SYSTABLES,

SYSIBM.SYSCOLUMNS. and SYSIBM.SYSPLAN).

v TRACE privilege.

v MONITOR1 and MONITOR2 privilege.

v EXECUTE privilege for the Capture program packages.

Also, ensure that the user ID has WRITE access to the capture path

directory (USS) or high-level qualifier (z/OS). To run the Capture program

in the USS shell, the STEPLIB system variable must be set and it must

include the Capture load library. The HFS path, /usr/lpp/db2repl_09_01/
bin, must be in your PATH.

Ensure that the user IDs that run the Capture program have the following

authorities and privileges:

v DBADM or SYSADM authority.

v WRITE privilege on the directory specified by the capture_path

parameter. The Capture program creates diagnostic files in this directory.

Use the Grant DPR Authority (GRTDPRAUT) command to authorize a

user to run the Capture program on a local system. If you are replicating

between only System i systems, you should use the same user ID for all

servers. If the GRTDPRAUT command is not installed on a machine, you

must use the Grant Object Authority (GRTOBJAUT) command.

Authorization requirements for the Apply program

The user ID that runs the Apply program must be able to access the DB2 system

catalog, access and update all replication control tables on the Capture control and

target server, and execute the Apply program packages.

You can use different user IDs at each server in your replication environment. You

can use the replication administrator user ID to run the Apply program, but this is

not a requirement.

Ensure that the user IDs that run the Apply program have the following

authorities and privileges:

v WRITE access to a temporary directory; either the /tmp directory or the

directory specified by the TMPDIR environment variable.

v SELECT, UPDATE, INSERT, and DELETE privileges for all replication

tables on the Apply control server.

v SELECT authority for the DB2 catalog (SYSIBM.SYSTABLES,

SYSIBM.SYSCOLUMNS. and SYSIBM.SYSPLAN).

Note: The user ID used to run the Apply program must be registered with

access to USS. That means the user ID must be defined to use z/OS UNIX

or OS/390 UNIX (it must have an OMVS segment). The load library must

be APF-authorized only if the Apply program is to be registered with

ARM. To run the Apply program in the USS shell, the STEPLIB system

variable must be set and it must include the apply load library. The HFS

path, /usr/lpp/db2repl_09_01/bin, must be in your PATH.

Chapter 2. Setting up user IDs and passwords for SQL replication 15

Ensure that the user IDs that run the Apply program have the following

authorities and privileges:

v WRITE privileges to the apply path directory

v Access privileges to the replication source tables (including associated

CD and CCD tables).

v Access and update privileges to the replication target tables.

v Access and update privileges to all control tables that are generated by

replication programs and built at the Capture control server and the

Apply control server.

v READ privileges for any password file used by the Apply program.

Note: If your source tables are on a non-DB2 relational database

management system: The user ID must have sufficient privileges in both

the federated database and in the non-DB2 relational database to access the

source tables through nicknames, which are defined on the federated

database.

Use the Grant DPR Authority (GRTDPRAUT) command to authorize a

user to run the Apply program on a local system. If you are replicating

only between System i systems, you should use the same user ID for all

servers. If the GRTDPRAUT command is not installed on a machine, you

must use the Grant Object Authority (GRTOBJAUT) command.

non-DB2 databases

If your control tables are on non-DB2 databases, the user ID that is

pushing changed data to a non-DB2 relational target or pulling data from

it must have sufficient privileges in the federated database and in the

non-DB2 relational database.

 For non-DB2 relational targets, the user ID running the Apply program

needs the privilege to WRITE to nicknames on the federated database and,

through user mappings, the privilege to WRITE to the actual non-DB2

target.

 For non-DB2 relational sources, the ID running the Apply program needs

the following privileges:

v Privilege to READ from and WRITE to nicknames on the federated

database and, through user mappings, the privilege to READ from and

WRITE to the Capture control tables.

v Privilege to READ from nicknames on the federated database and,

through user mappings, the privilege to READ from the actual CCD

table on the non-DB2 server.

v Privilege to READ from nicknames on the federated database and,

through user mappings, the privilege to READ from the actual source

table on the non-DB2 server.

Authorization requirements for Capture triggers on non-DB2 relational

databases

If you are replicating from a non-DB2 database, Capture triggers are used to

capture changes from the source. Remote user IDs (for example, from user

applications) that change the remote source tables need authority to make inserts

into the CCD table.

16 SQL Replication Guide and Reference

In most cases, you do not need explicit authority to execute INSERT, UPDATE, or

DELETE triggers because, after the triggers are defined on a table, the execution of

the triggers is transparent to the application that is performing the INSERT,

UPDATE, or DELETE. In the case of Informix® databases, the remote user IDs that

perform INSERT, UPDATE, and DELETE actions against the registered source table

need EXECUTE PROCEDURE privilege.

Storing user IDs and passwords for SQL replication (Linux, UNIX,

Windows)

You use the asnpwd command to create and maintain a password file so that the

Apply program, the Replication Alert Monitor, and the Replication Analyzer can

access data on remote servers. The Capture program does not require a password

file.

The information in the password file is encrypted to ensure confidentiality.

If your replication environment is not distributed across servers, you do nott need

to store user IDs and passwords. In most replication environments; however, data

is distributed across servers. If you have such an environment, when you try to

connect to a database, you must provide a valid user ID and password so that DB2

can verify your identity.

You store the password information differently for the Replication Center and the

other replication programs. For information about password requirements for the

Replication Center, see the online help.

Chapter 2. Setting up user IDs and passwords for SQL replication 17

18 SQL Replication Guide and Reference

Chapter 3. Configuring servers for SQL replication

Before you can replicate data, you must create and configure your servers and

ensure that they can connect to each other.

For more detail about configuring servers on z/OS, see

WebSphere Information Integration Replication Installation and Customization Guide for

z/OS.

Connectivity requirements for SQL replication

Any workstation that runs the Apply program, the Replication Center, or the

replication commands must be able to connect to the source server, Capture control

server, Apply control server, and target server databases.

If you use the Replication Alert Monitor, the workstation on which it runs must be

able to connect to the Monitor control server and to any server that it monitors. If

you want to use the Replication Center to set up monitoring, ensure that the

Replication Center can connect to the Monitor control server.

If your replication design involves staging data at a server that is different from

the source database, you must carefully consider the communications between the

various servers. Be sure to limit the layers of emulation, LAN bridges, and router

links required, because these can all affect replication performance.

When the databases are connected to a network, connectivity varies according to

the operating systems being connected.

The following topics provide detail about connectivity requirements.

Connecting to System i servers from Windows

You can administer replication on System i servers by connecting from a Windows

workstation.

Before you begin

v You must have a DB2 or DB2 Connect™ installed on your workstation.

v You must have TCP/IP set up on your workstation.

Procedure

To connect to a System i server from a DB2 for Windows workstation:

1. Log on to the System i server and locate the relational database:

a. Log on to the System i server to which you want to connect.

b. Submit a dsprdbdire command, then specify local for *LOCAL.

c. Locate the name of the relational database in the output. For example, in the

following output, the database is called DB2400E:

 MYDBOS2 9.112.14.67

 RCHASDPD RCHASDPD

 DB2400E *LOCAL

 RCHASLJN RCHASLJN

2. Catalog the System i database in DB2 for Windows:

© Copyright IBM Corp. 1994, 2007 19

a. From a Windows command prompt, enter db2clp. The DB2 CLP command

window opens.

b. In the command window, type the following three commands in exact

order:

db2 catalog tcpip node server_name remote server_name server 446 system

server_name ostype OS400

db2 catalog dcs database rdb_name AS rdb_name

db2 catalog database rdb_name AS rdb_name at node server_name

authentication dcs

Where server_name is the TCP/IP host name of the System i system, and

rdb_name is the name of the System i relational database that you found in

Step 1.
3. In the command window, issue the following command:

db2 terminate

4. Ensure that the System i user profile that you will use to log on to your System

i system uses CCSID37:

a. Log on to the System i system.

b. Type the following command, where user is the user profile:

CHGUSRPRF USRPRF (user) CCSID(37)

c. Make sure that the DDM server is started on the System i system type:

STRTCPSVR SERVER(*DDM)

5. Make sure that DB2 for Windows and DB2 for System i are connected:

db2 connect to rdb_name user user_name using password

Connecting to non-DB2 relational servers

If you want to replicate data to or from a non-DB2 relational server, you must be

able to access the non-DB2 relational server and connect to it.

Before you attempt to replicate from non-DB2 relational source servers, you must

set up your federated server and database. There are three main setup steps:

1. Define a wrapper so that the DB2 database can access other non-DB2 relational

databases.

2. Define a non-DB2 relational database using a server mapping.

3. If the user ID and password combination that is used to connect to the DB2

database differs from the one used to access the non-DB2 relational database,

you must create a user mapping.

For more detail on configuring a federated environment, see the DB2 Information

Center or the WebSphere Information Integration Federated Systems Guide.

Creating control tables for SQL replication

The replication programs use control tables to store information about registered

tables, subscription sets, operational parameters, and user preferences. You create

control tables before defining your sources and targets for replication.

The following topics describe creating control tables for SQL replication.

20 SQL Replication Guide and Reference

Creating control tables for SQL replication

You can use the ASNCLP command-line program or Replication Center to create

control tables for the Capture and Apply programs.

Restrictions

v The Replication Center or ASNCLP must be able to connect to the server where

you want to create the control tables.

v In a multiple database partition environment, all of the table spaces that are

used by the control tables must be on the catalog partition. If you use an

existing table space, the table space must be non-partitioned and it must be on

the catalog partition.

About this task

If you do not customize the way that the control tables are created, two table

spaces are created, one for the UOW table and one for the other control tables. If

you do not want to use the default replication table spaces, you can specify

existing table spaces, create new table spaces, or use the current DB2 default table

space.

If Capture is started in a multiple database partition environment, Capture creates

an additional control table (IBMSNAP_PARTITIONINFO) in the same table space

as the IBMSNAP_RESTART table.

Both replication administration tools allow you to create a profile for to identify

the defaults to be used when you create control tables for a given operating system

or environment. After you set the profiles for these control tables, you do not have

to set them for every set of control tables that you create. You can override the

defaults when you create the control tables. You can also modify the profile at any

time, but the changes will affect only the control tables that you create after you

modified the profile.

Procedure

To create control tables, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE CONTROL TABLES FOR command to create a

new set of Capture or Apply control tables. For example, the

following commands set the environment and create Capture

control tables:

SET SERVER CAPTURE TO DB SAMPLE

SET OUTPUT CAPTURE SCRIPT "capctrl.sql";

SET LOG "capctrl.err";

SET RUN SCRIPT LATER;

CREATE CONTROL TABLES FOR CAPTURE SERVER

IN UW UOW TSUOW100 OTHERS TSASN100;

Replication Center Use either the Create Control Tables or Create Control Tables -

Quick windows for Capture and Apply. To open the windows,

right-click a Capture Control Servers or Apply Control Servers

folder in the object tree and click one of the following options:

v Create Capture Control Tables

v Create Capture Control Tables → Quick

v Create Apply Control Tables

v Create Apply Control Tables → Quick

Chapter 3. Configuring servers for SQL replication 21

Creating control tables (System i)

Replication control tables are created automatically when you install DB2

DataPropagator™ for System i. You can also use a command to create control

tables.

About this task

During the installation, control tables are created in the DataPropagator default

schema (ASN), if they do not already exist. You can create additional sets of

control tables if your control tables are accidentally deleted or corrupted. For

Capture, you can create the new set of control tables with a different schema. You

can create a maximum of 25 schemas.

For a user-defined file system, you can create the replication control tables in the

base Auxiliary Storage Pool (ASP) or in Independent Auxiliary Storage Pool (IASP)

groups, but not in both. If you create control tables in an IASP group, you must

first remove all Capture and Apply control tables from the base ASP. Issue the

SETASPGRP command for the ASP group that contains the ASN library (or any

other library for a Capture schema) before you start the Capture or Apply

programs.

Procedure

To create control tables on System i, use the Create DPR Tables (CRTDPRTBL)

command.

Restriction: Use only the CRTDPRTBL command to create control tables on

System i. The ASNCLP command-line program and Replication Center do not

support the creation of control tables for System i.

Creating control tables for non-DB2 relational sources

If you want to use a non-DB2 database such as Informix as a replication source,

you can use the Replication Center or ASNCLP command-line program to create

control tables.

About this task

For these types of sources, the Replication Center creates the following Capture

control tables in the non-DB2 relational database:

v IBMSNAP_PRUNCNTL

v IBMSNAP_PRUNE_SET

v IBMSNAP_REG_SYNCH

v IBMSNAP_REGISTER

v IBMSNAP_SEQTABLE on Informix only

v IBMSNAP_SIGNAL

Nicknames are created in a federated database for all but IBMSNAP_SEQTABLE.

(This table is used only by the Informix triggers. The Apply program does not use

it.) Triggers are created automatically on the IBMSNAP_SIGNAL table and the

IBMSNAP_REG_SYNCH table.

22 SQL Replication Guide and Reference

Important: Do not remove or modify the triggers that are created on the

IBMSNAP_SIGNAL and IBMSNAP_REG_SYNCH tables.

Creating multiple sets of Capture control tables

If you want to use more than one Capture program on a server you must create

more than one set of Capture control tables and ensure that each set of tables has a

unique Capture schema.

About this task

This schema identifies the Capture program that uses a set of tables. Multiple

Capture schemas enable you to run multiple Capture programs concurrently.

You might want to run multiple Capture programs in the following situations:

v To optimize performance by treating low-latency tables differently from other

tables. If you have low latency tables, you might want to replicate those tables

with their own Capture program. That way, you can give them a different

run-time priority. Also, you can set the Capture program parameters, such as

pruning interval and monitor interval, to suit the low latency of these tables.

v To potentially provide higher Capture throughput. This can be a significant

benefit in a source environment with multiple CPUs. The trade-off for the higher

throughput is additional CPU overhead associated with multiple log readers.

If you want to replicate from multiple non-DB2 source databases within the same

federated database, you must create multiple sets of Capture control tables, with

each set having its own schema. Or, if you prefer, you can use separate federated

databases, in which case the Capture control tables on each server can use the

default ASN schema.

You can use multiple Capture schemas it you want to work

with UNICODE and EBCDIC encoding schemes separately or if you want to run

more than one instance of the Capture program on a subsystem.

Use the Create DPR Tables (CRTDPRTBL) command to create

the extra set of Capture control tables by using the CAPCTLLIB parameter to

specify the schema name.

Capture control tables on multiple database partitions

When you create Capture control tables in a multiple partitioned database, all of

the table spaces used by those control tables must be on the catalog partition.

If you use an existing table space, the table space must be non-partitioned and on

the catalog node.

If you are starting the Capture program for the first time and select the WARMSI

start mode, the IBMSNAP_PARTITIONINFO table does not exist. The Capture

program creates this table and a unique index for it in the table space that the

IBMSNAP_RESTART table is located. After the IBMSNAP_PARTITIONINFO table

is created, the Capture program inserts a row into it for every database partition.

If this is not the first time that you started the Capture program and you select one

of the warm start modes, the IBMSNAP_PARTITIONINFO table already exists. In

the Replication Center, if you selected the One or more partitions have been

added since Capture was last run check box, the Capture program inserts a row

Chapter 3. Configuring servers for SQL replication 23

into the IBMSNAP_PARTITIONINFO table for every database partition that you

added since the Capture program last ran.

Setting up the replication programs

Before you can replicate, you need to set up the Capture program, Apply program,

and other replication programs for the servers in your environment.

The following topics describe required setup for the replication programs.

Setting up the replication programs (Linux, UNIX, Windows)

To set up the replication programs you need to set environment variables, prepare

the database for the Capture program, and optionally bind packages.

Setting environment variables for the replication programs

(Linux, UNIX, Windows)

You must set environment variables before you start and stop the Capture

program, the Apply program, or the Replication Alert Monitor program, and

before you use the Replication Center or replication system commands.

Procedure

To set the environment variables:

1. Set the environment variable for the DB2 instance name (DB2INSTANCE) as

shown:

 Operating system Command

export DB2INSTANCE=db2_instance_name

SET DB2INSTANCE=db2_instance_name

2. If you created the source database with a code page other than the default code

page value, set the DB2CODEPAGE environment variable to that code page.

Note: Capture must be run in the same code page as the database for which it

is capturing data. DB2 derives the Capture code page from the active

environment where Capture is running. If DB2CODEPAGE is not set, DB2

derives the code page value from the operating system. The value derived from

the operating system is correct for Capture if you used the default code page

when creating the database.

3. Optional: Set environment variable DB2DBDFT to the source server.

4.

Make sure the library path and executable path system

variables specific to your system include the directory where the replication

libraries and executables are installed.

Preparing the DB2 database to run the Capture program (Linux,

UNIX, Windows)

To prepare the DB2 database to run the Capture program, you enable archival

logging. You can also set other database configuration parameters.

Procedure

To prepare the DB2 database to run the Capture program:

1. Connect to the Capture control server database by entering the following

command:

24 SQL Replication Guide and Reference

db2 connect to database

Where database is the Capture control server database.

2. Enable archival logging and prepare the Capture control server database for

roll-forward recovery by issuing the update database configuration command

(LOGRETAIN RECOVERY) and the backup database command.

Note: The Capture program supports both the LOGRETAIN and

LOGARCHMETH1 parameters for specifying roll-forward recovery. If you

specify LOGARCHMETH1=LOGRETAIN, the Capture program automatically

sets LOGRETAIN RECOVERY.

For multiple database partition environments, every partition must be set up to

allow roll-forward recovery for every partition that the Capture will capture

changes from.

3. You might need to increase configuration values based on your installation

requirements.

v For transactions with a large number of rows or very large rows it is

recommended to increase the value of the Capture memory_limit parameter.

v The following database configuration values are adequate for many large

workstation scenarios: APPLHEAPSZ 1000, LOGFILSIZ 4000, LOGPRIMARY

8, LOGSECOND 40, DBHEAP 1000, LOGBUFSZ 16, MAXAPPLS 200.

Optional: Binding the Capture program packages (Linux, UNIX,

Windows)

The Capture program is bound automatically on Linux, UNIX, and Windows

during execution. You can bind packages manually if you want to specify bind

options, schedule binding, or check that all bind processes completed successfully.

Procedure

To bind the Capture program packages:

1. Connect to the Capture control server database by entering the following

command:

db2 connect to database

Where database is the Capture control server database.

2. Change to the directory where the Capture program bind files are located.

db2homedir/sqllib/bnd

 Where db2homedir is the DB2 instance home directory.

drive:\...\sqllib\bnd

 Where drive: is the drive where DB2 is installed.
3. Create and bind the Capture program package to the source server database by

entering the following command:

db2 bind @capture.lst isolation ur blocking all

Where ur specifies the list in uncommitted read format for greater performance.

These commands create packages, the names of which are in the file capture.lst.

Chapter 3. Configuring servers for SQL replication 25

Optional: Binding the Apply program packages (Linux, UNIX,

Windows)

The Apply program is bound automatically on Linux, UNIX, and Windows during

execution. You can bind packages manually if you want to specify bind options,

schedule binding, or check that all bind processes completed successfully.

Procedure

To bind the Apply program packages:

1. Change to the directory where the Apply program bind files are located.

db2homedir/sqllib/bnd

 Where db2homedir is the DB2 instance home directory.

drive:\...\sqllib\bnd

 Where drive: is the drive where DB2 is installed.
2. For each source server, target server, Capture control server, and Apply control

server to which the Apply program connects, do the following steps:

a. Connect to the database by entering the following command:

db2 connect to database

Where database is the source server, target server, Capture control server, or

Apply control server. If the database is cataloged as a remote database, you

might need to specify a user ID and password on the db2 connect to

command. For example:

db2 connect to database user userid using password

3. Create and bind the Apply program package to the database by entering the

following commands:

db2 bind @applycs.lst isolation cs blocking all grant public

db2 bind @applyur.lst isolation ur blocking all grant public

Where cs specifies the list in cursor stability format, and ur specifies the list in

uncommitted read format.

These commands create packages, the names of which are in the files applycs.lst

and applyur.lst.

Binding the Apply program packages for Sybase sources

If you are replicating from a Sybase data source, you need to manually bind the

Apply program packages to specify an isolation level of cursor stability (CS).

About this task

The Sybase wrapper that SQL replication uses to connect to a Sybase data source

requires an isolation level of CS. If you replication from Sybase without manually

binding the Apply packages, you will receive a SQL1822N error.

Procedure

To manually bind Apply packages for Sybase sources:

26 SQL Replication Guide and Reference

1. Connect to the Sybase source database, the Apply control server, and the target

database.

2. Set the isolation level to CS by using the following command:

db2 bind ~/sqllib/bnd/@applyur.lst isolation cs

db2 bind ~/sqllib/bnd/@applycs.lst isolation cs

Creating SQL packages to use with remote systems (System i)

You need to create packages using the CRTSQLPKG command in some cases on

System i.

About this task

Use this command to create packages in the following cases:

v When using remote journaling. Run the CRTSQLPKG command on the system

where the Capture program is running and point to the system where the source

table is located.

v Before using the ADDDPRSUB or ADDDPRSUBM command to add a

subscription set or subscription set member. Run the CRTSQLPKG command on

the target server and use the following guidelines:

– If the source table is on a different machine, point to the system where the

source table is located.

– If the Apply control server is on a different machine, point to the Apply

control server.

The SQL packages allow replication programs to operate in a distributed

replication environment, whether that environment is one in which you are

replicating between System i systems or between a System i system and some

other operating system (such as Linux, UNIX, or Windows).

For information about using the CRTSQLPKG command, see DB2 for i5/OS SQL

Programming.

The packages are created using the ASN qualifier. On System i they are created in

the ASN library. On other operating systems, they are created in the ASN schema.

The following topics provide more detail on creating SQL packages:

Creating SQL packages for the Apply program (System i)

You must create SQL packages for the Apply program on System i so it can

interact with all the remote servers to which it needs to connect.

Procedure

To create SQL packages for the Apply program:

Run this command on the system where Apply is running to enable it to connect

to a remote system:

CRTSQLPKG PGM(QDP4/QZSNAPV2) RDB(remote_system)

Where remote_system is the relational database entry name for the remote system to

which the Apply program needs to connect.

Chapter 3. Configuring servers for SQL replication 27

Creating SQL packages for the Replication Analyzer (System i)

You must create SQL packages for the Replication Analyzer on System i so it can

interact with the servers that you are analyzing, such as the Capture control server

or the target server.

Procedure

To create SQL packages for the Replication Analyzer:

Run this command on the system where the Replication Analyzer is running:

CRTSQLPKG PGM(QDP4/QZSNANZR) RDB(remote_system)

Where remote_system is the name of the system that you are analyzing.

Granting privileges to the SQL packages (System i)

After you create SQL packages on System i, you must grant *EXECUTE privileges

to all users who will be subscribing to files registered on the source database.

Procedure

To grant privileges for SQL packages:

Log on to the System i system where the source database resides and use one of

the following methods:

 Method Description

GRTOBJAUT

command

Use the Grant Object Authority (GRTOBJAUT) command, for

example:

GRTOBJAUT OBJ(ASN/package_name) OBJTYPE(*SQLPKG)

 USER(subscriber_name) AUT(*OBJOPR *EXECUTE)

GRANT SQL

statement

Use SQL to connect to the source database and run the GRANT

SQL statement:

CONNECT TO data_server_RDB_name

GRANT EXECUTE ON PACKAGE ASN/package_name TO subscriber_name

GRTDPRAUT

command

Use the GRTDPRAUT command, if it is installed on the local

system.

Setting up the replication programs (z/OS)

You must set up and customize the replication programs when you install SQL

replication on z/OS.

See the instructions in the WebSphere Information Integration Replication Installation

and Customization Guide for z/OS.

Capture for multiple database partitions

If you are replicating data on the DB2 Enterprise Server Edition, you can capture

changes to source tables that are spread across multiple database partitions.

The Capture program keeps a list of database partitions belonging to its partition

group in the IBMSNAP_PARTITIONINFO table. This table is created by the

Capture program when the Capture program is started for the first time and finds

that there is more than one database partition in its partition group.

28 SQL Replication Guide and Reference

Whenever the Capture program is warm started, Capture reads the list of database

partitions for the partition group in which its control tables are located. Capture

compares the number of database partitions known to DB2 with the number of

database partitions listed in the IBMSNAP_PARTITIONINFO table. The number of

database partitions listed in the IBMSNAP_PARTITIONINFO table must match the

number known to DB2 or the Capture program will not run.

If you have added one or more database partitions since the last time you ran the

Capture program, you must tell the Capture program about the new database

partitions. You can do this in the Replication Center by selecting the One or more

partitions have been added since Capture was last run check box when you set

the STARTMODE parameter to any of the warm start modes on the Start Capture

window.

Setting up journals (System i)

DB2 DataPropagator for System i uses the information that it receives from the

journals about changes to the data to populate the CD and UOW tables for

replication.

DB2 DataPropagator for System i runs under commitment control for most

operations and therefore requires journaling on the control tables. (The QSQJRN

journal is created when the CRTDPRTBL command creates a collection.)

Administrators must make sure the libraries containing the source table, CD table,

and target table contain journals. They must also ensure that all the source tables

are journaled correctly.

Before you register a table for replication on System i, the table must be journaled

for both before-images and after-images.

The following topics describe the journal setup required for replication.

Setting up journals for source tables (System i)

To set up journaling for a source table, you create a journal receiver, create a

journal, and then start journaling.

Before you begin

You must have authority to create journals and journal receivers for the source

tables to be defined.

Restrictions

Use a different journal for the source tables than one of those created by DB2

DataPropagator for System i in the library for the ASN schema (or other Capture

schema).

Procedure

To create a source table journal:

1. Create a journal receiver in a library of your choice using the Create Journal

Receiver (CRTJRNRCV) command. Place the journal receiver in a library that is

saved regularly. Choose a journal receiver name that can be used to create a

naming convention for future journal receivers, such as RCV0001. You can use

the *GEN option to continue the naming convention when you change journal

Chapter 3. Configuring servers for SQL replication 29

receivers. This type of naming convention is also useful if you choose to let the

system manage the changing of your journal receivers. The following example

uses a library named JRNLIB for journal receivers.

CRTJRNRCV JRNRCV(JRNLIB/RCV0001)

 THRESHOLD(100000)

 TEXT(’DataPropagator Journal Receiver’)

2. Create the journal by using the Create Journal (CRTJRN) command, as in the

following example:

CRTJRN JRN(JRNLIB/DJRN1)

 JRNRCV(JRNLIB/RCV0001)

 MNGRCV(*SYSTEM) DLTRCV(*YES)

 TEXT(’DataPropagator Journal’)

v Specify the name of the journal receiver that you created in Step 1.

v Use the Manage receiver (MNGRCV) parameter to have the system change

the journal receiver and attach a new one when the attached receiver

becomes too large. If you choose this option, you do not need to use the

CRTJRN command to detach receivers and create and attach new receivers

manually.

v Use the default attribute MINENTDTA(*NONE). Other values are not valid

for this keyword.

v Specify DLTRCV(*NO) only if you have overriding reasons to do so (for

example, if you need to save these journal receivers for recovery reasons). If

you specify DLTRCV(*YES), these receivers might be deleted before you have

a chance to save them.

You can use two values on the RCVSIZOPT parameter of the CRTJRN

command (*RMVINTENT and *MINFIXLEN) to optimize your storage

availability and system performance. See the System i Programming: Performance

Tools Guide for more information.

3. Start journaling the source table using the Start Journal Physical File

(STRJRNPF) command, as in the following example:

STRJRNPF FILE(library/file)

 JRN(JRNLIB/DJRN1)

 OMTJRNE(*OPNCLO)

 IMAGES(*BOTH)

Specify the name of the journal that you created in Step 2. The Capture

program requires a value of *BOTH for the IMAGES parameter.

4. Change the source table journaling setup:

a. Use IMAGES(*BOTH) to make sure that the source table is journaled for

both before- and after-images.

b. Make sure that the journal has the following attributes:

MNGRCV(*SYSTEM) and DLTRCV(*YES).

c. Make sure that the journal has the MINENTDTA(*NONE) attribute.

d. For journals on remote systems, specify the MNGRCV(*SYSTEM),

DLTRCV(*YES), and MINENTDTA(*NONE) attributes on the source journal.

To define the remote journal, specify the DLTRCV(*YES) attribute on the

ADDRMTJRN command.

Managing journals and journal receivers (System i)

The Capture program uses the Receive Journal Entry (RCVJRNE) command to

receive journals.

The following topics describe how to manage journals and journal receivers.

30 SQL Replication Guide and Reference

Specifying system management of journal receivers (System i):

You should let the System i system manage the changing of journal receivers. This

is called system change journal management.

 Restrictions

When you use the RTVJRNE command to retrieve journal entries, no more than

299 source physical files can use the same journal and Capture schema. If you need

to register more than 299 files in the same journal, break your source registrations

into multiple Capture schemas.

Procedure

To specify system management of journal receivers, specify MNGRCV(*SYSTEM)

when you create the journal, or change the journal to that value. If you use system

change journal management support, you must create a journal receiver that

specifies the threshold at which you want the system to change journal receivers.

The threshold must be at least 5 000 KB, and should be based on the number of

transactions on your system. The system automatically detaches the receiver when

it reaches the threshold size and creates and attaches a new journal receiver if it

can.

Changing definitions of work management objects (System i):

You can alter the default definitions for the three types of work management

objects that are created during installation of DB2 DataPropagator for System i, or

provide your own definitions.

 About this task

The installation program creates an SQL journal, an SQL journal receiver for this

library, and work management objects.

Table 1 lists the objects that are created.

 Table 1. Work management objects

Description Object type Name

Subsystem description *SBSD QDP4/QZSNDPR

Job queue *JOBQ QDP4/QZSNDPR

Job description *JOBD QDP4/QZSNDPR

If you create your own subsystem description, you must name the subsystem

QZSNDPR and create it in a library other than QDP4. See System i Work

Management Guide (SC41-5306) for more information about changing these

definitions.

Specifying user management of journal receivers (System i):

If you specify MNGRCV(*USER) when you create the journal (meaning you want

to manage changing your own journal receivers), a message is sent to the journal’s

message queue when the journal receiver reaches a storage threshold, if one was

specified for the receiver.

Chapter 3. Configuring servers for SQL replication 31

About this task

Use the CHGJRN command to detach the old journal receiver and attach a new

one. This command prevents Entry not journaled error conditions and limits the

amount of storage space that the journal uses. To avoid affecting performance, do

this at a time when the system is not at maximum use.

You can switch journal receiver management back to the system by specifying

CHGJRN MNGRCV(*SYSTEM).

You should regularly detach the current journal receiver and attach a new one for

two reasons:

v Analyzing journal entries is easier if each journal receiver contains the entries for

a specific, manageable time period.

v Large journal receivers can affect system performance and take up valuable

space on auxiliary storage.

The default message queue for a journal is QSYSOPR. If you have a large volume

of messages in the QSYSOPR message queue, you might want to associate a

different message queue, such as DPRUSRMSG, with the journal. You can use a

message handling program to monitor the DPRUSRMSG message queue. For an

explanation of messages that can be sent to the journal message queue, see System i

Backup and Recovery.

Delete journal receiver exit routine (System i):

The delete journal receiver exit routine (DLTJRNRCV) helps ensure that journal

receivers are not deleted if the Capture program has not processed all the entries

they contain.

 When you install DB2 DataPropagator for System i, this exit routine is registered

automatically. It is called any time a journal receiver is deleted, whether or not it is

used for journaling the source tables. This exit routine determines whether or not a

journal receiver can be deleted.

To take advantage of the delete journal receiver exit routine and leave journal

management to the system, specify DLTRCV(*YES) and MNGRCV(*SYSTEM) on

the CHGJRN or CRTJRN command.

Attention: If you remove the registration for the delete journal receiver exit

routine, you must change all the journals used for source tables to have the

DLTRCV(*NO) attribute.

If the journal that is associated with the receiver is not associated with any of the

source tables, this exit routine approves the deletion of the receiver.

If the journal receiver is used by one or more source tables, this exit routine makes

sure that the receiver being deleted does not contain entries that have not been

processed by the Capture program. The exit routine disapproves the deletion of the

receiver if the Capture program still needs to process entries on that receiver.

If you must delete a journal receiver and the delete journal receiver exit routine

does not approve the deletion, specify DLTJRNRCV DLTOPT(*IGNEXITPGM) to override

the exit routine.

32 SQL Replication Guide and Reference

Chapter 4. Registering tables and views as SQL replication

sources

With SQL replication, you identify the tables and views that you want to use as

replication sources by registering them.

When you register a particular table or view for replication, you create a source of

available data that you can later use with different targets for various purposes.

The administration tasks described in this section help you set up the control

information that defines how data is captured from each source based on your

replication goals.

When you register a source, you identify the table or view that you want to use as

a replication source, which table columns you want to make available for

replication, and the properties for how SQL replication captures data and changes

from the source.

For SQL replication, you can register the following objects as sources:

v A DB2 table

v A non-DB2 relational table through a nickname

v A subset of the data in a table (DB2 or non-DB2 relational)

v A view over a single table (DB2)

v A view that represents an inner join of two or more tables (DB2)

This section contains the following topics.

Registering DB2 tables as sources

When you register a DB2 table as a replication source, you specify the source

server, source table name, and the Capture schema. A CD (change-data) table is

created for you.

Before you begin

v For all DB2 sources except for System i, the source table DDL requires the DATA

CAPTURE CHANGES option. Do not remove this option from your source.

v Capture control tables must already exist on the Capture control server that will

process the table that you want to register as a source.

Restrictions

v Because SQL statements are limited to a length of 32,000 characters, you

can register only approximately 2000 columns per table; the exact

number of columns depends on the length of the column names.

v For a single Capture schema, do not register more than 300 source tables

that use the same journal.

v Source tables, CD tables, and journals for the source tables must all be in

the same Auxiliary Storage Pool (ASP) as the Capture control tables that

contain the registration information for these source tables.

© Copyright IBM Corp. 1994, 2007 33

v Replication is not supported from source tables that are partitioned by

range (using the PARTITION BY clause of the CREATE TABLE

statement).

v Replication is not supported if a table space is placed in a

multiple-partition database partition group.

About this task

SQL replication supports the following types of DB2 tables as sources:

v DB2 tables that your application maintains

v Catalog tables

v External CCD tables

v DB2 tables that your application maintains (locally or remotely

journaled)

v External CCD tables

v DB2 tables that your application maintains

v Catalog tables (for full-refresh-only replication)

v Materialized query tables

v External CCD tables

v Tables that are partitioned with the DISTRIBUTE BY clause of the

CREATE TABLE statement

You can register the same table multiple times by using different Capture schemas.

Procedure

To register a DB2 table, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE REGISTRATION command to register a source

table, view, or nickname. For example, the following commands set

the environment and register the STAFF table in the DB2 SAMPLE

database.

SET SERVER CAPTURE TO DB SAMPLE;

SET OUTPUT CAPTURE SCRIPT "register.sql";

SET LOG "register.err";

SET RUN SCRIPT LATER;

CREATE REGISTRATION (DB2ADMIN.STAFF)

DIFFERENTIALREFRESH STAGE CDSTAFF;

34 SQL Replication Guide and Reference

Method Description

Replication Center Use the Register Tables window. In the object tree, expand your

chosen Capture schema, right click the Registered Tables folder,

and click Register Tables. .

Tip: To save time when registering, you can set up a source object

profile ahead of time for the Capture control server. When you

register a table, the Replication Center then uses the defaults that

you defined in the source object profile instead of the Replication

Center defaults. This can save you time when registering because

you can overwrite the defaults once instead of having to select

each table one at a time and change the default settings manually.

ADDDPRREG system

command

Use the ADDDPRREG command to register a table on System i.

For example, to register a source table named EMPLOYEE from the

HR library under the BSN Capture schema and to create a CD

table named CDEMPLOYEE under the HRCDLIB library:

ADDDPRREG SRCTBL(HR/EMPLOYEE) CAPCTLLIB(BSN)

CDLIB(HRCDLIB) CDNAME(CDEMPLOYEE)

When you register a table as a source, the Capture program that is associated with

the registered table reads the log for the source and stores inflight changes that

occur for registered columns in memory until the transaction commits or rolls

back. For a rollback, the changes are deleted from memory. For a commit, the

changes are inserted into the CD table as soon as the Capture program reads the

commit log record. Those changes are left in memory until the Capture program

commits the changes after each Capture cycle. The Capture program does not start

capturing data for a DB2 source table until a CAPSTART signal has been issued,

either by you or the Apply program.

For non-relational source tables: You can register DB2 tables that contain data

from non-relational database management systems, such as IMS™. To do this, you

need an application, such as IMS DataPropagator or Data Refresher, to populate a

CCD table with the data from the non-relational database. The application captures

changes to the non-relational segments in the IMS database and populates a CCD

table. The CCD table must be complete, but it can be either condensed or

non-condensed. Like other CCD sources, there is no Capture program that is

associated with a CCD source table because the table already stores changed data

from the non-relational source table. IMS DataPropagator and Data Refresher

products maintain the values in the IBMSNAP_REGISTER table so that the Apply

program can read from this source table correctly.

Registering non-DB2 relational tables as sources

When you register a non-DB2 relational table, you specify the nickname of the

source table that you want to register. A CCD (consistent-change data) table is

created for you.

Before you begin

Capture control tables must already exist on the Capture control server that will

process this source.

Restrictions

v If you are using a single federated database to access multiple non-DB2

relational source servers, you must use a different Capture schema for each

Chapter 4. Registering tables and views as SQL replication sources 35

non-DB2 relational source server on that single federated database. No two

schemas can be the same. You can register a non-DB2 relational table under only

one Capture schema.

v You cannot register LOB columns in non-DB2 relational tables. If you register a

table that includes this data type, you must register a column subset.

About this task

By default, the CCD owner is derived from the schema name of the source table. If

you modify the CCD owner so that it does not match the schema name, make sure

that the source table owner is authorized to write to the CCD table. If the source

table owner cannot update the CCD table, triggers on the source table will not be

able to write changes to the CCD table.

Procedure

To register a non-DB2 relational table, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE REGISTRATION command to register a source

table, view, or nickname. For example, the following commands set

the environment and create a registration with the following

characteristics:

v Non-IBM server that contains the Oracle database V9ORA

v Federated server FEDORADB

v CCD table in the Oracle database undjr09.ccdtest

v CCD nickname in the federated server repldba.ccdtestnk

v Source nickname that is being registered repldba.tesnk

v All columns in repldba.tesnk are registered with after images

SET SERVER CAPTURE TO DB FEDORADB NONIBM SERVER V9ORA

ID repldba PASSWORD "passw0rd";

SET OUTPUT CAPTURE SCRIPT "ora_reg.sql";

SET CAPTURE SCHEMA SOURCE ASNORA;

SET LOG "orareg.out";

CREATE REGISTRATION (repldba.testnk)

DIFFERENTIALREFRESH STAGE repldba.ccdtestnk

CONDENSED OFF NONIBM undjr09.ccdtest

COLS ALL IMAGE AFTER;

The CONDENSED OFF option is required for federated sources.

Replication Center Use the Register Nicknames window. From the object tree, expand

the non-DB2 relational database that contains the nicknames that

you want to register. Right-click the Registered Nicknames folder

and select Register Nicknames. .

Tip: To save time when registering, you can set up a source object

profile ahead of time for the Capture control server. When you

register a table, the Replication Center then uses the defaults that

you defined in the source object profile for CCD tables and

nicknames for CCD tables instead of the Replication Center

defaults. This can save you time when registering because you can

overwrite the defaults once instead of having to select each table

one at a time and change the default settings manually.

36 SQL Replication Guide and Reference

When a change for a registered non-DB2 relational table occurs, the Capture

triggers simulate the Capture program and insert the change in the CCD table. The

Capture triggers start capturing changes for a non-DB2 relational source table at

the time you register the source.

Registration options for source tables

SQL replication provides many options when you register a table as a replication

source. These options are part of the larger task of registering a table.

After you choose which table that you want to register, you can identify which

columns you want to make available for replication, and you can define properties

that determine how registered data from this source will be handled and stored.

You can also specify other registration options, such as how you want the Capture

program to store source data in the CD table (or how you want the Capture

triggers to store data in the CCD table).

The following topics detail options for registering tables:

Registering a subset of columns (vertical subsetting)

You can register a subset of the source table columns for replication, for example if

you do not want all of the columns available for targets to subscribe to or if target

tables do not support all data types that are defined for the source table.

By default, all columns are registered. To register a subset of the columns, select

only those columns that you want to make available for replication to a target

table.

Because CD and CCD tables must contain sufficient key data for some types of

target tables (such as point-in-time), make sure that your subset contains the

columns that will act as the key columns (primary key or unique index) for the

target.

Tip: Register a subset of the source columns only if you are sure that you will

never want to replicate the unregistered columns. If you later want to replicate

columns that you didn’t register, you must alter your registrations to add

unregistered columns. (For non-DB2 relational sources, you must redefine your

registrations altogether to add new columns to a registration.) If you plan to have

an internal CCD associated with this source, it can be even more difficult to add

columns later because registering new columns adds them to the CD table but not

the internal CCD. To avoid these problems, you might want to register all columns

and use the Apply program to subset which columns are replicated to targets.

Change-capture replication and full-refresh copying

By default, only changes that occurred at the source table since the last replication

cycle are replicated (change-capture replication). You can also replicate all data in

the source table during each cycle (full-refresh-only replication).

Change-capture replication

During change-capture replication, only changed data is replicated to the target

table. Depending on the type of target table you choose for this source, you must

perform an initial load of the table. In most cases, the Apply program performs an

initial full refresh, and then continues with change-capture replication.

Chapter 4. Registering tables and views as SQL replication sources 37

If you choose not to allow full refresh for target tables, you must manually reload

the table if the source and target tables need to be resynchronized. After the target

is loaded with the initial source data, the Capture program captures changes that

occur at the source and stores them in the CD table. In change-capture replication

for non-DB2 relational sources, the Capture triggers capture changes at the source

and store them in the CCD table. The Apply program reads the changes from the

CD or CCD table and applies the changes to the targets that subscribe to the

registered source.

When you define a DB2 source table for change-capture replication, you might not

want to store all changes that occur at the source in the CD table. You can register

a row (horizontal) subset that filters the changes so that fewer are captured in the

CD table than actually occur at the source. You can select from the following two

row-capture rules to determine which changed rows from the source table the

Capture program records in the CD table:

v Changes to all rows are captured.

v Changes are captured only if the change occurred in a registered column. (DB2

only)

By default, changes are captured whenever a row is updated for any column

(registered or unregistered) at the source table. If you register only a subset of the

columns, the Capture program records the row values for the registered columns

in the CD table every time a change occurs to the source table, even if the columns

that changed are different from the registered columns. Use this default option if

you want to keep a history of all changes to the source table. This is the only

option available for non-DB2 relational sources, the Capture triggers capture all

changed rows at the source, even if the change occurs in an unregistered column.

Example: Assume that you have 100 columns in your table and you register 50 of

those columns for replication. By default, any time a change is made to any of the

100 columns in your table, the Capture program will write a row to the CD table

(or the Capture triggers will write a row to the CCD table).

If you have a DB2 source, you might want the Capture program to capture

changes for registered columns only. In this case, the Capture program writes a

row to the CD table only when changes occur to registered columns.

Tip: Choose to capture changes for all rows if you need information for auditing

purposes, or if changes in the table almost always occur in registered columns

only. Choose to capture changes for only registered columns if changes frequently

occur that only affect unregistered columns. Use this option if you don’t want to

keep a history of all changes to the source table.

Full-refresh-only replication

When targets subscribe to a source that is registered for full-refresh-only

replication, the Apply program deletes all data from the target table, copies the

data that is in the registered columns at the source, and populates the targets with

the source data during each replication cycle. The Capture program is not

involved, and there is no CD table; the Apply program reads data directly from the

source table.

Small tables

You might want to choose full-refresh only replication if you have a very

small source table that does not take much time or resources to copy.

38 SQL Replication Guide and Reference

Large tables

If you have larger tables and want to use full-refresh only replication, you

might want to use the ASNLOAD exit routine to load your tables faster.

Restriction: If you plan to have a condensed target table that subscribes to this

source and you cannot come up with a unique index for that target table, you

must register the source for full-refresh-only replication.

After-image columns and before-image columns

When you register a source for change-capture replication, by default only the

changed (after-image) value in a column is captured. You can also choose to

capture the previous (before-image) value.

You can select whether to capture before-image values for individual

columns in a table.

You can select whether to capture before images for all or none of the

columns in a table. You cannot select this option for each individual

column.

Sybase or Microsoft® SQL Server

A table can contain only one column of type TIMESTAMP. When the data

source is Sybase or Microsoft SQL Server and the source table has a

column of type TIMESTAMP, select after images only for this column when

you define it as part of the replication source.

Restriction: You cannot include before-image values in the CD table for columns

with LOB data types.

The sections below discuss when you should choose each option.

Capturing after-image values only

For each column that you register for change-capture replication, you can choose

for the Capture program or triggers to record only the after-image value for each

change. When you select to capture after-image values only, the CD (or CCD) table

contains one column for each changed value, which stores the value of the source

column after the change occurred.

You do not need before images if you plan to use only base aggregate and change

aggregate target-table types for this source. Before-image columns do not make

sense if you plan to use your target table for computed values because there is no

before image for computed columns. All other target-table types can make use of

before-image columns.

Capturing before-image and after-image values

For each column that you register for change-capture replication, you can choose

for the Capture program or triggers to record both the before-image and

after-image value for each change. When you select to capture before-image and

after-image values, the CD (or CCD) table contains two columns for each changed

value: one for the value in source column before the change occurred, and one for

the value after the change occurred.

Chapter 4. Registering tables and views as SQL replication sources 39

When you choose to store both the before and after images in the CD (or CCD)

table, the before-image columns and after-image columns have different values for

different actions performed on the source tables:

Insert The before-image column contains a NULL value. The after-image column

contains the inserted value.

Update

The before-image column contains the column value before the change

occurred. The after-image value contains the column value after the change

occurred.

 When you choose to have updates captured as delete and insert pairs, the

delete row contains the before image from the update in both the

before-image and after-image columns of the row, and the insert row

contains NULL values in the before-image column and the after image in

the after-image column.

Delete The before-image and after-image columns contain the column value

before the change occurred.

For tables in DB2 for z/OS, you can use 18-character column

names, but replication will replace the 18th character with the before-image column

identifier in target tables, so you must ensure that the first 17 characters of the

name are unique.

For columns that have before-images

defined, DB2 replication limits column names to 29 characters because the entire

column name can have only 30 characters. If the column name is longer, replication

truncates the additional characters from the right by default, unless you have set

your profile to truncate from the left. Because replication adds a before-image

column identifier (usually X) to target columns and each column name must be

unique, you cannot use column names that are longer than 29 characters. For

tables that you do not plan to replicate, you can use longer column names, but

consider using 29-character names in case you might want to replicate these

columns in the future.

The following list describes cases in which you might want to capture

before-image values:

For keeping a history of your source data

If you want to keep data for auditing purposes, you might want to select

both before and after images so that you have a record of how the data has

changed over a period of time. A set of before-image and after-image

copies is useful in some industries that require auditing or application

rollback capability.

For update-anywhere configurations with conflict detection

In update-anywhere configurations where conflicts are possible between

replica tables (where conflict detection is set to anything other than None),

you must register both after-image and before-image columns for the CD

table of the replicas so that changes can be rolled back if a conflict occurs.

When the key columns at the target are subject to update

When registering a source, consider the potential target tables that you

might define using this table as the source. Typically target tables are

condensed and require a column or set of columns that make each row in

that target table unique. These unique columns make up what is called the

target key. If any of these target key columns might be updated at the

40 SQL Replication Guide and Reference

source, SQL replication requires special handling to ensure that the correct

rows at the target table are updated. To ensure that SQL replication

updates the correct rows in the target table with the new key value, you

can select to capture both after-images and before-images for the columns

that will make up the target key. The Apply program needs the

before-image values for these registered columns when it applies the

changes of non-key source columns to target key columns in the target

table. When applying the changes, the Apply program searches in the

target table for the row by looking for the target key values that match the

before-image value in the source’s CD (or CCD) table, and then it updates

that target row with the after-image value in the source CD (or CCD) table.

 Although you register these before-image values when you register the

source table or view, replication does not know that your application will

make updates to the target key. Later when you define which targets

subscribe to this source (by creating subscription sets), you can specify for

the Apply program to perform special updates when applying changes

from non-key columns at the source to key columns at the target.

Before-image prefix

If you capture after-image and before-image columns, the after-image column takes

the name of the column at the source table, and the before-image column takes the

name of the column at the source table with a one-character prefix.

The default before-image prefix assigned by the ASNCLP command-line program

and Replication Center is X. The default for the System i commands is @.

You can change the default prefix. The combination of the before-image prefix and

the CD (or CCD) column name cannot be the same as a current or potential

column name in the CD (or CCD) table.

Example: If you use X as your before-image prefix and you register a source

column named COL, you cannot register a column named XCOL because it is unclear

whether XCOL is an actual column name of another source column, or the name of

a before-image column with a column name of COL and a before-image prefix of X.

Restriction: You cannot use a blank character as the before-image prefix.

If you are not replicating any before-image columns for a table, you can choose not

to have a before-image prefix and set this property to null.

Stop the Capture program on error

When the Capture program detects certain problems while processing registrations,

by default it stops. You can choose to let the program keep running.

The following list provides detail to help you choose the best option for your

environment.

Stop Capture on error

With this option, the Capture program writes an error message in the

IBMSNAP_CAPTRACE table and terminates.

 The Capture program stops when the following fatal errors occur:

v The CD table space is full.

v SQLCODE-911 error occurs 10 times in a row.

v Unexpected SQL errors occur.

Chapter 4. Registering tables and views as SQL replication sources 41

The Capture program does not stop when certain non-fatal errors occur, for

example:

v SQLCODES indicate invalid length of data.

v

The compression dictionary does not exist.

When those non-fatal errors occur, the Capture program invalidates the

registrations and keeps running.

Do not stop Capture on error

The Capture program continues to run when certain errors occur. If it

encounters errors during the first time trying to process the source, it does

not activate the registration. If the registered source was already active, it

stops processing the registration. The registration is stopped in either case.

A stopped registration has a value of ″S″ (stopped) in the STATE column of

the IBMSNAP_REGISTER control table.

 This option does not stop the Capture program when the following

non-fatal errors occur:

v The registration is not defined correctly.

v The Capture program did not find the CD table when it tried to insert

rows of changed data.

v The DATA CAPTURE CHANGES option on the (non-System i) source

table was detected as being turned OFF when the Capture program was

started or reinitialized.

If the registered state of a subscription-set member is in the stopped state

due to an error, the Apply program will not be able to process the set.

Options for how the Capture program stores updates

By default updates to the source table are stored in a single row in the CD table. In

some cases you should instruct the Capture program or triggers to capture updates

as DELETE and INSERT pairs that are stored in two rows.

You must capture updates as DELETE and INSERT statements when your source

applications update one or more columns referenced by a predicate on the

subscription-set member.

Example: Suppose that you plan to define a target that subscribes only to source

data with a predicate based on a specific column value (for example, WHERE

DEPT = ’J35’). When you change that column (for example, to DEPT=’FFK’), the

captured change will not be selected for replication to the target because it does

not meet the predicate criteria. That is, your new FFK department will not be

replicated because your subscription-set member is based on Department J35.

Converting the updates to a DELETE and INSERT pair ensures that the target-table

row is deleted.

Each captured update is converted to two rows in the CD (or CCD) table for all

columns. You might need to adjust the space allocation for the CD (or CCD) table

to accommodate this increase in captured data.

Preventing the recapture of changes (update-anywhere

replication)

For update-anywhere replication, you can use the recapture option to control

whether changes that are replicated from one site are recaptured at the second site

for replication to additional sites.

42 SQL Replication Guide and Reference

Restriction: Tables from non-DB2 relational databases cannot participate in

update-anywhere. This option is for only DB2 sources.

In update-anywhere replication, changes can originate at the master table or at the

associated replica tables. When you register a table that you plan to use in

update-anywhere replication, SQL replication assumes that it will be the master

table in your configuration.

During registration, you set the recapture option for the master table. Later, when

you map the master source table with its replica targets, you can set whether

changes at the replica are recaptured and forwarded to other tables.

When you are registering the source table that will act as the master in your

update-anywhere configuration, you can choose from the following two options:

Recapture changes at master

Updates to the master that originated at a replica are recaptured at the

master and forwarded to other replicas.

Do not recapture changes at master

Updates to the master that originated at a replica are not recaptured at the

master and forwarded to other replicas.

When you are registering the replica table in your update-anywhere configuration,

you can choose from the following two options:

Recapture changes at replica

Updates to the replica that originated at the master are recaptured at the

replica and forwarded to other replicas that subscribe to this replica.

Do not recapture changes at replica

Updates to the replica that originated at the master are not recaptured at

the replica and forwarded to other replicas that subscribe to this replica.

Preventing changes from being recaptured can increase performance and reduce

storage costs because the Capture program is not capturing the same changes

again for each replica.

The following topics discuss how to decide whether to recapture changes based on

your update-anywhere configuration.

Masters with only one replica

If you plan to have only one replica in your update-anywhere configuration, create

your registration so that changes are not recaptured at either the master table or

the replica table.

This setting is optimal if the master table is not a source for other replica tables

and the replica is not a source for other replicas (in a multi-tier configuration). If

there are only these two tables involved, then a change that originates at the

replica does not need to be recaptured at the master, and any change that

originates at the master does not need to be recaptured at the single replica.

Multiple replicas that are mutually exclusive partitions of the

master

For multiple replicas that are mutually exclusive partitions of the master, create

your registration so that changes are not recaptured at either the master table or

the replica tables.

Chapter 4. Registering tables and views as SQL replication sources 43

If you plan to have several replicas that are partitions of the master table, you

might want to prevent changes from being recaptured at both the master and each

replica. This setting is optimal if none of the replicas is a source for other replica

tables. When replicas are partitions of the master, no two replicas ever subscribe to

the same data at the master. Therefore, any change that originates at any replica

does not need to be recaptured at the master and forwarded on to the other

replicas because only the replica where the change occurred subscribes to that

source data.

Masters that replicate changes to multiple replicas

For masters that replicate changes to multiple replicas, create your registration so

that changes are recaptured at the master table but not recaptured at the replica

tables.

Changes that originate at a replica are then recaptured at the master and replicated

down to other replicas that subscribe to the updated master data.

Figure 1. Recapture option for replicas that are mutually exclusive partitions of the master. When you have multiple

replicas that do not subscribe to the same data in the master, you do not need to use the recapture option for any of

the tables.

Figure 2. Recapture option for masters that replicate changes to multiple replicas. When you have multiple replicas

that subscribe to the same data in the master, you can use the recapture option at the master so that changes that

occur at one replica are recaptured at the master and forwarded to the other replica tables.

44 SQL Replication Guide and Reference

Replicas that replicate changes to other replicas (multi-tier)

For replicas that replicate changes to other replicas (multi-tier), create your

registration so that changes are not recaptured at the master table but are

recaptured at the replica tables.

You can have a multi-tier configuration in which the master (tier 1) acts as a source

to a replica (tier 2), and then that replica also acts as a source to another replica

(tier 3). If you plan to have this type of configuration, you might want the Capture

program to recapture changes at the middle replica (tier 2) so that changes that

originated at the master are forwarded to the next replica (tier 3).

 Also, when you have recapture set for the middle replica (tier 2), changes that

originate at the final replica (tier 3) are recaptured at the middle replica (tier 2) and

forwarded to the master (tier 1).

Figure 3. Recapture option at tier 2 allows changes at tier 1 to be replicated down to tier 3. When you have a replica

table that acts as a middle tier in a multi-tier configuration, you can use the recapture option at the replica so that

changes that occur at the master are recaptured at the replica in the middle tier and forwarded to the replica in the

subsequent tier.

Chapter 4. Registering tables and views as SQL replication sources 45

Options for conflict detection (update-anywhere replication)

In update-anywhere configurations, conflicts can sometimes occur between the

master and its replicas. When you register a source, you can select among three

levels of conflict detection: none, standard, and enhanced.

Conflicts can happen when:

v An update is made to a row in the master table and a different update is made

to the same row in one or more replica tables, and the Apply program processes

the conflicting changes during the same cycle.

v Constraints are violated.

Although you set the conflict-detection level for individual replication sources, the

Apply program uses the highest conflict-detection level of any subscription-set

member as the level for all members of the set.

Restrictions:

v Tables from non-DB2 relational databases cannot participate in update-anywhere;

therefore, non-DB2 relational sources do not have conflict detection.

v If you have an update-anywhere configuration that includes LOB columns, you

must specify None for the conflict-detection level.

Based on your tolerance for lost or rejected transactions and performance

requirements, you can decide which type of detection to use:

Figure 4. Recapture option at tier 2 allows changes at tier 3 to be replicated up to tier 1. When you have a replica

table that acts as a middle tier in a multi-tier configuration, you can use the recapture option at the replica so that

changes that occur at the replica in the subsequent tier are recaptured at the replica in the middle tier and forwarded

to the master.

46 SQL Replication Guide and Reference

None No conflict detection. Conflicting updates between the master table and the

replica table will not be detected. This option is not recommended for

update-anywhere replication.

Standard

Moderate conflict detection.

 During each Apply cycle, the Apply program compares the key values in

the master’s CD table with those in the replica’s CD table. If the same key

value exists in both CD tables, it is a conflict. In case of a conflict, the

Apply program will undo the transaction that was previously committed at

the replica by reading from the replica’s CD table and keeping only the

changes that originated at the master.

Enhanced

Conflict detection that provides the best data integrity among the master

and its replicas.

 Like with standard detection, the Apply program compares the key values

in the master’s CD table with those in the replica’s CD table during each

Apply cycle. If the same key value exists in both CD tables, it is a conflict.

However, with enhanced detection, the Apply program waits for all

inflight transactions to commit before checking for conflicts. To ensure that

it catches all inflight transactions, the Apply program locks all target tables

in the subscription set against further transactions and begins conflict

detection after all changes are captured in the CD table. In case of a

conflict, the Apply program will undo the transaction that was previously

committed at the replica by reading from the replica’s CD and keeping

only the changes that originated at the master.

 Restriction: Even if you specify enhanced conflict detection, when the

Apply program runs in an occasionally connected environment (started

with the COPYONCE keyword), the Apply program uses standard conflict

detection.

 The Apply program cannot detect read dependencies. If, for example, an

application reads information that is subsequently removed (by a DELETE

statement or by a rolled back transaction), the Apply program cannot detect the

dependency.

If you set up a replication configuration where conflicts are possible (by selecting

either no detection or standard detection), you should include a method for

identifying and handling any conflicts that occur. Even though the replication

infrastructure has detected and backed out transaction updates that were in

conflict, the application designer must decide what to do about transactions that

were at one time committed and now have been backed out. Because the

ASNDONE exit routine runs at the end of each subscription cycle, the application

designer can use it as a launching point for such application-specific logic. The

information regarding conflicting updates that were backed out will remain in the

CD and UOW tables until they are eligible for retention limit pruning.

Registering tables that use remote journaling (System i)

When registering System i tables that use remote journaling, you can specify the

remote journal as the replication source instead of the local journal.

By selecting the remote journaling option for replication, you move the CD tables,

the Capture program, and the Capture control tables to a System i database server

that is separate from the System i server that the source table is on.

Chapter 4. Registering tables and views as SQL replication sources 47

When you register tables on System i as sources, the default assumes that you do

not want to use remote journaling.

Recommendation: Whenever you are replicating data from one System i table to

another System i table and you have a remote journal set up, it is highly

recommended that you use the remote journaling function when registering. Using

remote journaling in replication will greatly increase performance. Because the

remote journal function makes it possible to move the registration, the Capture

program, and the Capture control tables away from the system on which the

source table resides, more resources are left available on that system. This reduces

processor usage and saves disk space. Also, when you use a remote journal that

resides at the target server, the CD table is on the same system as the target table,

which allows the Apply program to apply changes directly from the CD table to

the target table without using a spill file. Not using a spill file reduces the amount

of resources used by the Apply program.

Recommendation: Register tables that use remote journals as sources only if the

registration resides on the same System i system as the replication target. SQL

replication allows you to register remote journals as sources even if the registration

does not reside on the same System i system as the target, but then you don’t get

the performance advantages that you do from having the journal on the target

system.

Before you register a System i table that uses remote journaling, make sure that

your remote journal is in an active state.

Restriction: Replica target table types are not supported in a remote journal

configuration.

For more information about the remote journal function, see Backup and Recovery,

SC41-5304, and System i Remote Journal Function for High Availability and Data

Replication, SG24-5189.

Using relative record numbers (RRN) instead of primary keys

(System i)

If you are registering a System i table that does not have a primary key, a unique

index, or a combination of columns that can be used as a unique index, you must

register the table using the relative record numbers (RRN).

When you choose to replicate using the RRN, both the CD table and the target

table have an extra column, IBMQSQ_RRN of type INTEGER, which contains a

unique value for each row. This column contains the RRN that corresponds to each

source table row.

The RRN is used as a primary key for the source table row as long as the source

table is not reorganized. When the source table is reorganized, the RRN of each

source table row changes; therefore, the RRN in the CD and target table rows no

longer has the correct value that reflects the row’s new position in the source table.

Any time that you reorganize a source table (to compress deleted rows, for

example), DB2 DataPropagator for System i performs a full refresh of all the target

tables in the set of that source table. For this reason, place target tables that use

RRN as primary keys in subscription sets with other targets that use RRNs, and

not in sets with tables that use some other uniqueness factor.

48 SQL Replication Guide and Reference

How views behave as replication sources

When you register views for replication, they inherit the registration options of

their underlying tables, particularly the option of change-capture or full-refresh

replication.

The following topics describe how registered views behave in various scenarios.

Views over a single table

You can register a view over a single table if the underlying table is registered for

replication. The view inherits the type of replication from the underlying table.

Full refresh only

If the underlying table is registered for full-refresh-only replication, the

view has full-refresh-only replication. You cannot register the view for

change-capture replication because the underlying table does not have a

CD table associated with it to keep track of changes.

Change capture

If the underlying table is registered for change-capture replication, the

view has change-capture replication and cannot be registered for

full-refresh only.

 When you register a view over a table that is registered for change-capture

replication, a view is created for you over the CD table of the underlying

table. This CD view contains only the columns referenced by the registered

view.

 You cannot register a subset of columns in the view. All of the columns in

the view are automatically registered.

Views over a join of two or more tables

When you register a view over a join of two or more tables, at least one of the

underlying tables in the join must be registered. You can also have inner-joins of

CCD tables that are registered as sources.

When you register a join as a replication source, SQL replication adds multiple

rows in the IBMSNAP_REGISTER table with identical SOURCE_OWNER and

SOURCE_TABLE values. These rows are distinguished by their

SOURCE_VIEW_QUAL values. Each of these entries identifies a component of the

join.

Restriction: If you define a join that includes a CCD table, all other tables in that

join must be CCD tables.

For a join view to be a viable replication source, you must create it using a

correlation ID. (Views over single tables do not require a correlation ID.)

Example:

create view REGRES1.VW000 (c000,c1001,c2001,c2002,c1003) as

 select a.c000,a.c001,b.c001,b.c002,a.c003

 from REGRES1.SRC001 a, REGRES1.SRC005 b

 where a.c000=b.c000;

Chapter 4. Registering tables and views as SQL replication sources 49

VW000 is the name of the view. SRC001 and SRC005 are the tables that are part of

the view and C000, C001, C002, and C003 are the columns that are part of the view

under the condition that the C000 columns are equal in both tables (SRC001 and

SRC005).

The type of replication that the view inherits depends on the combination of its

underlying tables, each of which can be:

v Registered for change-capture replication

v Registered for full-refresh-only replication

v Not registered

Table 2 shows the various combinations of underlying tables and what type of

source view and CD view results from each combination.

 Table 2. Combinations of underlying tables for views

Table 1 Table 2 Description of join view and CD view

Registered for change

capture

Registered for change

capture

The view is registered for change-capture replication. The CD

views contain the referenced columns from Table 1’s CD table

and from Table 2’s CD table.

Registered for change

capture

Registered for full-refresh

only

The view is registered for change-capture replication. The CD

view contains the referenced columns from Table 1’s CD table

and the referenced columns from Table 2. Only changes to

columns that are in Table 1 will be replicated to the registered

view’s target during each replication cycle.

Registered for full-refresh

only

Registered for full-refresh

only

The view is registered for full-refresh-only replication. There

is no CD view.

Registered for full-refresh

only

Not registered The view is registered for full-refresh-only replication. There

is no CD view.

Registered for change

capture

Not registered The view is registered for change-capture replication. The CD

view contains referenced columns from Table 1’s CD table

and the referenced columns from Table 2. Only changes to

columns that are in Table 1 will be replicated to the registered

view’s target during each replication cycle.

Not registered Not registered The view is not a valid replication source and cannot be

registered.

Avoiding double deletes

When you define a view that includes two or more source tables as a replication

source, you must take care to avoid double deletes. A double-delete occurs when

you delete a row during the same replication cycle from both tables that are part of

a view. For example, suppose that you create a view that contains the

CUSTOMERS table and the CONTRACTS table. A double-delete occurs if you

delete a row from the CUSTOMERS table and also delete the corresponding row

(from the join point of view) from the CONTRACTS table during the same

replication cycle. The problem is that, because the row was deleted from the two

source tables of the join, the row does not appear in the views (neither base views

nor CD-table views), and thus the double-delete cannot be replicated to the target.

To avoid double-deletes, you must define a CCD table for one of the source tables

in the join. This CCD table should be condensed and non-complete and should be

located on the target server. Defining a condensed and non-complete CCD table for

one of the source tables in the join solves the double-delete problem in most

50 SQL Replication Guide and Reference

situations because the IBMSNAP_OPERATION column in the CCD table allows

you to detect the deletes. Simply add an SQL statement to the definition of the

subscription set that should run after the subscription cycle. This SQL statement

removes all the rows from the target table for which the IBMSNAP_OPERATION

is equal to “D” in the CCD table.

Problems with updates and deletes can still occur if, during the same Apply cycle,

a row is updated on the source table that has the CCD while the corresponding

row is deleted on the other table in the join. As a result, the Apply program is

unable to find the corresponding row in the joined table and cannot replicate the

updated value.

Registering views of tables as sources

When you register a view as a source for replication, the view inherits the

registration options of the source table on which the view is based.

Before you begin

v Capture control tables must already exist on the Capture control server that will

process the view that you want to register as a source.

v The name of the source views must follow the DB2 table naming conventions.

v You must register at least one of the view’s underlying base tables as a source.

When you register the base table, use the same Capture schema that you plan to

use when you register the view.

Restrictions

v You cannot register views of non-DB2 relational tables.

v You cannot register a view that is over another view.

v All CCD tables that have views defined over them must be complete and

condensed to be registered as a replication source.

v

Because SQL statements are limited to a length of 32,000

characters, you can register only approximately 2000 columns per view; the exact

number of columns depends on the length of the column names.

Procedure

Use one of the following methods to register a view:

 Method Description

ASNCLP

command-line

program

Use the CREATE REGISTRATION command and specify the view

name for the objowner (object owner) and objname (object name).

For views, the command decides whether the source can be

registered as differential or full refresh.

Replication Center Use the Register Views window. Expand the Capture schema

under which you want to register views. Right-click the Registered

Views folder and click Register Views. .

ADDDPRREG system

command

Use the ADDDPRREG command to register a view on System i.

Chapter 4. Registering tables and views as SQL replication sources 51

Maintaining CCD tables as sources (IMS)

If you have externally populated CCD tables that are maintained by a program

such as IMS DataPropagator or DataRefresher™, you must maintain these tables so

that the Apply program can read the CCD tables as sources.

Procedure

To maintain a CCD table that is populated by an external tool:

Update three columns in the IBMSNAP_REGISTER table

(CCD_OLD_SYNCHPOINT, SYNCHPOINT, and SYNCHTIME) for each of the

following types of events:

 Event Required updates

Initial full refresh or

load of the CCD

table

v Set CCD_OLD_SYNCHPOINT to a value that represents the

minimum value of IBMSNAP_COMMITSEQ from the CCD

table.

v Set SYNCHPOINT to a value that represents the maximum

value of IBMSNAP_COMMITSEQ from the CCD table. Do not

set SYNCHPOINT to 0. If you are creating your own values for

sequencing, start with a SYNCHPOINT value of 1.

v Set SYNCHTIME to a value that represents the maximum

timestamp value of IBMSNAP_LOGMARKER from the CCD

table.

Any update to the

CCD table after the

full refresh or load

v Do not change the CCD_OLD_SYNCHPOINT value.

v Set SYNCHPOINT to a value that represents the new maximum

value of IBMSNAP_COMMITSEQ from the CCD table.

v Set SYNCHTIME to a value that represents the new maximum

timestamp value of IBMSNAP_LOGMARKER from the CCD

table.

Any subsequent full

refresh or load of the

CCD table

v Set CCD_OLD_SYNCHPOINT to a value that represents the

minimum value of IBMSNAP_COMMITSEQ from the CCD

table.

v Set SYNCHPOINT to a value that represents the maximum

value of IBMSNAP_COMMITSEQ from the CCD table.

v Set SYNCHTIME to a value that represents the maximum

timestamp value of IBMSNAP_LOGMARKER from the CCD

table.

Important: This assumes that the values that are used in the CCD table for

IBMSNAP_COMMITSEQ and IBMSNAP_LOGMARKER are always increasing

values. The Apply program will not detect that a full refresh has been performed

on the source CCD table unless the CCD_OLD_SYNCHOINT value is larger than

the most recently applied SYNCHPOINT value.

52 SQL Replication Guide and Reference

Chapter 5. Subscribing to sources for SQL replication

After you register tables or views as replication sources, you can define a

subscription for your target tables or views so that they receive the initial source

data and subsequent changes.

The administration tasks described in this section help you set up the control

information that the Capture and Apply programs use to copy source data or to

capture changed data and replicate it to the target tables at the appropriate

interval.

The following topics provide details on subscribing to sources.

Planning how to group sources and targets

Before you define which targets subscribe to which sources, you need to plan how

you want to group your sources and targets.

SQL replication processes source-to-target mappings in groups. These groups

consist of one or more sources that are processed by the same Capture program

and one or more targets that subscribe to all or part of the source data, which are

processed by the same Apply program. These groups are called subscription sets,

and the source-to-target mappings are called subscription-set members.

When planning for subscription sets, be aware of the following rules and

constraints:

v A subscription set maps a source server with a target server. A subscription-set

member maps a source table or view with a target table or view. Subscription

sets and subscription-set members are stored in the Apply control server.

v The Apply program processes all members in a subscription set as a single

group. Because of this, if any member of the subscription set requires full-refresh

copying for any reason, all members for the entire set are refreshed.

v All source tables and views in the members of a set must have the same Capture

schema.

v On System i, all source tables in the members of a subscription set must be

journaled to the same journal.

v All external CCD tables created by IMS DataPropagator that are members of a

subscription set must have the same Capture schema.

A single Apply program, which has a unique Apply qualifier, can process one or

many subscription sets. A single subscription set can contain one or many

subscription-set members.

The following topics discuss the trade-offs in grouping subscription sets per Apply

program and subscription-set members per subscription set.

Planning the number of subscription-set members

When you add members to a subscription set, you must decide whether to group

all of your source-target pairs (subscription-set members) into one subscription set,

create separate subscription sets for each pair, or create a small number of

subscription sets, each with a number of pairs.

© Copyright IBM Corp. 1994, 2007 53

Because the Apply program replicates the members of a subscription set in one

(logical) transaction, you should group multiple members into one subscription set

in either of the following situations:

v If the source tables are logically related to one another.

v If the target tables have referential integrity constraints.

By grouping multiple members into one subscription set, you can ensure that

replication for all members begins at the same time. Also, you reduce the number

of database connections needed to process the subscription sets and you reduce the

administration overhead for maintaining your replication environment. If the

subscription set contains SQL statements or stored procedures, you can use those

statements or procedures to process all of the members of the subscription set.

If there are no logical or referential integrity relationship between the tables in a

subscription set, you can group them into one subscription set or into several

subscription sets. The main reason for limiting the number of subscription sets is

to make administration of the replication environment simpler. But by increasing

the number of subscription sets, you minimize the affect of replication failures.

If you want to be able to more easily locate any errors that cause the Apply

program to fail, add only a small number of members to a subscription set. With

fewer members, you will likely find the source of the problem more quickly than if

the set contains a large number of members. If one member of a subscription set

fails, all of the data that has been applied to other members of the set is rolled

back; so that no member can complete the cycle successfully unless all members

do. The Apply program rolls back a failed subscription set to its last successful

commit point, which could be within the current Apply cycle if you specified the

commit_count keyword when you started the Apply program.

Planning the number of subscription sets per Apply qualifier

When you define a subscription set, you specify the Apply qualifier for that

subscription set. The Apply qualifier associates an instance of the Apply program

with one or more subscription sets.

Each subscription set is processed by only one Apply program, but each Apply

program can process one or more subscription sets during each Apply cycle.

You can run as many instances of the Apply program (each with its own Apply

qualifier) as you need, and each Apply program can process as many subscription

sets as you need. You have two basic options:

Associate each Apply qualifier with one subscription set

Each Apply program processes exactly one subscription set.

 If speed is important, you can spread your sets among several Apply

qualifiers, which allows you to run several instances of the Apply program

at the same time.

 If you decide to have an Apply-program instance process one subscription

set, you can use the Apply program OPT4ONE startup option, which loads

the control-table information for the subscription set into memory.

 If you use this option, the Apply program does not read the control tables

for the subscription-set information for every Apply cycle. Therefore, the

Apply program performs better. However, the more Apply-program

instances that you run, the more system resources they will use, and the

slower their overall performance might be.

54 SQL Replication Guide and Reference

Associate each Apply qualifier with multiple subscription sets

Each Apply program processes many subscription sets.

 By using more than one Apply qualifier, you can run more than one

instance of the Apply program from a single user ID.

 The Apply program tries to keep all sets for a given Apply qualifier as

current as possible. When an Apply cycle starts, the Apply program

determines which of the subscription sets contains the least current data

and starts processing that set first.

 If speed is not your main goal, you might want to replicate a large number

of subscription sets with one Apply qualifier. For example, this could be a

very good option if you wait until after business hours before replicating.

 One disadvantage of having one Apply program process multiple

subscription sets is that the Apply program processes the subscription sets

sequentially; thus, your overall replication latency can increase.

 If you have specific requirements for certain subscription sets, you can combine

these two options. For example, you could have one Apply program process most

of your subscription sets and thus take advantage of using one Apply program to

process related subscription sets together, and you can have another Apply

program process a single subscription set and thus ensure minimum replication

latency for that subscription set. And by using two instances of the Apply

program, you increase the overall parallelism for your subscription sets.

Creating subscription sets

Before you replicate data from a registered source, you must create subscription

sets, which are collections of subscription-set members (source-to-target mappings)

that the Apply program processes as a set.

Before you begin

v Create the Apply control tables in the Apply control server for the subscription

set.

v Before you add subscription-set members to subscription sets, register the tables

or views that you want to use as sources. You should also consider how you

want to group your sets.

About this task

When you create a subscription set, you specify the source and target servers,

which Capture and Apply programs you want to use, and when and how you

want the Apply program to process the set.

You don’t have to add subscription-set members to a subscription set. You can

create an empty set that doesn’t contain any source-to-target mappings. You might

want to create an empty set for the following reasons:

v You plan to add members to a set later and don’t plan to activate the

subscription set until you add members.

v You want the Apply program to process the empty subscription set in order to

call an SQL statement or a stored procedure whenever the set is eligible for

processing.

Procedure

Chapter 5. Subscribing to sources for SQL replication 55

To create a subscription set, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE SUBSCRIPTION SET command. This command

can create only empty subscription sets, whereas the Replication

Center allows you to add members to the set while creating it.

The following commands set the environment and create a

subscription set named SET00 with an Apply qualifier of AQ00.

SET SERVER CAPTURE TO DB SAMPLE;

SET SERVER CONTROL TO DB TARGET;

SET OUTPUT CAPTURE SCRIPT "capsubset.sql"

CONTROLSCRIPT "appsubset.sql";

SET LOG "subset.err";

SET RUN SCRIPT LATER;

CREATE SUBSCRIPTION SET SETNAME SET00 APPLYQUAL AQ00

ACTIVATE YES TIMING INTERVAL 1 START DATE "2006-10-22"

TIME "09:00:00.000000";

Replication Center Use the Create Subscription Set notebook. To open the notebook,

expand the Apply control server where the set will be defined,

right click the Subscription Sets folder and click Create.

ADDDPRSUB system

command

Use the Add DPR subscription set (ADDDPRSUB) command to

create a subscription set with either one member or no members.

For example, to create a subscription set named SETHR under the

AQHR Apply qualifier:

ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

TGTTBL(TGTLIB/TGTEMPL)

This subscription set, which contains one subscription-set member,

replicates data from the registered source table named EMPLOYEE

under the HR library to the target table named TGTEMPL under

the TGTLIB library.

You provide these basic characteristics:

Apply control server alias

 The local alias of the server containing the control tables for the Apply

program that will process the subscription set. Define the same alias for

the Apply control server in every database from which you run the

Replication Center, ASNCLP, or the Apply program so that the

administration tools will populate the Apply control tables correctly and so

that every Apply program will connect to the correct server using a

standard alias name.

Subscription set name

 The name of the subscription set. At the Apply control server that

processes this subscription set, the set name must be unique for a given

Apply qualifier. The name can be up to 18 characters long.

Apply qualifier

 The name of a new or existing Apply qualifier, which identifies which

Apply program will process this subscription set. You can use the same

Apply qualifier to process multiple subscription sets. Subscription sets that

have the same Apply qualifier must be defined in the same Apply control

server.

Capture control server alias

56 SQL Replication Guide and Reference

The alias of the server containing the control tables for the Capture

program that will process the registered sources for the subscription set.

Define the same alias for the Capture control server in every database from

which you run the Replication Center, ASNCLP, or the Apply program so

that the administration tools will populate the Capture and Apply control

tables correctly and so that every Apply program will connect to the

correct server using a standard alias name.

Capture schema

 The name of the Capture schema that identifies the set of Capture control

tables that define the registered sources for the subscription set. All of the

source tables in a subscription set must reside on the same server, and only

one Capture program can be capturing the changes for them.

Target server alias

 The name of the target server that contains the tables or views to which

the Apply program will replicate changes from the source. Define the same

alias for the target server in every database from which you run the

Replication Center, ASNCLP, or the Apply program so that the

administration tools will populate the Apply control tables correctly and so

that every Apply program will connect to the correct server using a

standard alias name.

When you create a subscription set, you can use the default settings for how the

Apply program processes the set, or you can modify the subscription properties to

meet your replication needs.

Processing options for subscription sets

When you create a subscription set, you define options for how the Apply program

processes the set.

The following topics help you to decide which settings to select based on your

replication needs.

Specifying whether the subscription set is active

You can specify whether you want the Apply program to begin processing the

subscription set. When you activate a subscription set, the Apply program initiates

a full refresh for that set.

You have three activation levels to choose from:

Active The Apply program processes the set during its next cycle. Activate the set

if you want the Apply program to process the set the next time it runs.

You can still add members to the set later. When you activate the set, it

remains active and the Apply program continues to process it until you

deactivate it.

Inactive

The Apply program does not process the set. Leave the set inactive if you

are not ready for the Apply program to process it.

Active only once

The Apply program processes the set during its next cycle and then

deactivates the set. Specify this option if you want the set to run only once.

Make sure that you add all the subscription-set members before selecting

Chapter 5. Subscribing to sources for SQL replication 57

this option because the Apply program will not process members that you

add later, unless you reactivate the subscription set.

Specifying how many minutes worth of data the Apply

program retrieves

You can specify an approximate number of minutes worth of data for the Apply

program to retrieve from the replication source during each Apply cycle.

This option is useful in several situations:

v When the amount of data to be processed within one subscription-set cycle is

large.

Subscription sets that replicate large blocks of changes in one Apply cycle can

cause the spill files or logs (for the target database) to overflow. For example,

batch-Apply scenarios can produce a large backlog of enqueued transactions that

need to be replicated.

v An extended outage of the network can cause a large block of data to

accumulate in the CD tables, which can cause the Apply program’s spill file and

the target’s log to overflow.

The number of minutes that you specify is called the data block. The data-blocking

value that you specify is stored in the MAX_SYNCH_MINUTES column of the

IBMSNAP_SUBS_SET table. If the accumulation of data is greater than the size of

the data block, then the Apply program converts a single Apply cycle into several

mini-cycles. If resources are still not sufficient to handle the blocking factor

provided, the Apply program reduces the size of the data block to match available

system resources. By retrieving smaller sets of data, the Apply program can lessen

both the network load and the temporary space required for the retrieved data.

During each Apply cycle, if a subscription set’s MAX_SYNCH_MINUTES value is

NULL, or is set to a numeric value less than 1, the Apply program processes all

eligible data for that set in a single Apply cycle. If your CD and UOW tables

contain large volumes of data, this situation can lead to such problems as the

database transaction log becoming full or a spill file overflowing. You can change

MAX_SYNCH_MINUTES to a non-NULL value using the following guidelines:

v If the SLEEP_MINUTES column of the ASN.IBMSNAP_SUBS_SET table is set to

5 minutes (or less) for a given subscription set, set MAX_SYNCH_MINUTES to 5

minutes.

v If SLEEP_MINUTES is set to 30 minutes (or more) for a given subscription set,

set MAX_SYNCH_MINUTES to 60 minutes.

v For SLEEP_MINUTES between 5 and 30 minutes, set MAX_SYNCH_MINUTES

equal to SLEEP_MINUTES.

Monitor your replication environment and adjust the MAX_SYNCH_MINUTES as

needed. Ensure that the numeric value for MAX_SYNCH_MINUTES is greater

than zero.

Example: If you specify that the Apply program should retrieve at most 10

minutes’ worth of data per mini-cycle, the Apply program will retrieve an amount

of committed data from the CD table at the source that is within approximately 10

minutes of the last mini-cycle.

In addition to preventing the logs and spill files from overflowing, these

mini-cycles have several other benefits. If there is an error during the replication

cycle, the Apply program must roll back only the changes that it made during the

58 SQL Replication Guide and Reference

mini-cycle that failed. If replication fails during a mini-cycle, the Apply program

tries to process the subscription set from the last successful mini-cycle, which can

save a significant amount of time if a large amount of changed data is available to

be processed.Figure 5 shows how the changed data is broken down into subsets of

changes.

 The number of minutes that you set should be small enough so that all

transactions for the subscription set that occur during the interval can be copied

without causing the spill files or log to overflow during the mini-cycle.

When processing data, the Apply program does not take any of the following

actions:

v Split a unit of work (meaning that a long running batch job without commits

cannot be broken up by the data blocking factor).

v Roll back previously committed mini-subscription cycles.

v Use the data blocking factor during a full refresh.

Load options for target tables with referential integrity

In some cases you might want to postpone adding referential integrity constraints

between target tables until after these tables are loaded with source data.

You decide how targets will be loaded when you set startup parameters for the

Apply program. Consider these alternatives for creating referential integrity

relationships between the target tables:

Before target tables are loaded

This requires that no changes are made at the source table during the

entire extract and load stage of the target table. Also, you must start the

Apply program using the LOADX startup option to bypass referential

constraint checking during the load. If you do not use the LOADX option,

the inserts into the target table could fail. A full refresh will typically be

much faster using the LOADX startup option.

Figure 5. Data blocking. You can reduce the amount of network traffic by specifying a data-blocking value.

Chapter 5. Subscribing to sources for SQL replication 59

After the load completes and Apply has completed one cycle of applying

changes to the targets

With this option, changes can be made at the source table while the target

tables are being loaded. You can start the Apply program with or without

the LOADX startup option, because there are no constraints that need to be

bypassed. During the initial population of the target tables, the targets

might be out of synch with each other regarding their referential integrity

relationships. As the tables are loaded, all changes are being captured for

the set. After the Apply program replicates the first set of changes, all

target tables will contain the same transactions and will have referential

integrity. At this point, you can deactivate the set, add the referential

integrity constraints, and then reactivate the set.

Specifying how the Apply program replicates changes for

subscription set members

When a subscription set has change-capture replication, you can decide whether

the Apply program commits changes to the target table or view once for each

subscription-set member or after applying a number of transactions.

After target tables are initially loaded, the Apply program starts to read the CD (or

CCD) tables and collects the changes into spill files. The program then applies

changes in one of two ways:

Table mode

The Apply program commits changes once for each subscription-set

member.

 The Apply program reads all changes from a spill file for a CD (or CCD)

table, applies the changes to the corresponding target tables, and then

begins to process the spill file for the next CD (or CCD) table. When it is

done reading and applying changes from all the CD (or CCD) tables in the

set, it then issues a DB2 commit to commit all of the changes to all of the

target tables in the subscription set.

Transaction mode

The Apply program commits changes after applying a number of

transactions that you specify. Use transaction-mode processing when you

have referential integrity constraints on target tables in the subscription set.

 In this mode, the Apply program opens all of the spill files at once and

processes the changes at the same time. Changes are applied in the order

in which they took place at the source tables. The COMMIT_COUNT

column in the IBMSNAP_SUBS_SET table controls how changes are

applied and committed to all target tables for that subscription set.

 Transaction-mode processing only changes the Apply program’s behavior

for sets with user-copy and point-in-time target tables. Also, note the

following limitations:

v Sets containing CCD tables are always processed in table mode.

v Sets containing replica tables are always processed in transaction mode.

 Having one commit can reduce the latency for the subscription set, but having

multiple commits allows the Apply program to apply the data in the original

commit sequence.

You can also use a mixture of table-mode and transaction-mode processing,

depending on the target-table types in the subscription set.

60 SQL Replication Guide and Reference

Defining SQL statements or stored procedures for the

subscription set

You can define SQL statements or stored procedures that run each time the Apply

program processes the subscription set. These statements can be useful for pruning

CCD tables or manipulating source data before it is applied to targets.

You can specify when and where the SQL statements or stored procedures should

run:

v At the Capture control server before the Apply program applies the data.

v At the target server before the Apply program applies the data.

v At the target server after the Apply program applies the data.

When you use the Replication Center to add SQL statements to a subscription set,

you can click Prepare statement in the Add SQL Statement or Procedure Call

window to verify the syntax.

Options for scheduling replication of subscription sets

You can specify how often the Apply program processes a subscription set to

control the currency of data in your target tables. You can use time-based

scheduling, event-based scheduling, or a combination of these options.

For example, you can set an interval of one day between apply cycles, and also

specify an event that triggers the cycle. If you use both of these scheduling options,

the subscription set will be eligible for processing at both the scheduled time and

when the event occurs.

In update-anywhere replication, you can use the same or different timing for the

master-to-replica and replica-to-master subscription sets.

If there is a large amount of data to be replicated during an interval or between

events, the Apply program might not be able to process a subscription set until it

finishes applying data for all sets in the prior interval or for the prior event. In this

case, you might not get the expected replication latency, but you won’t lose any

data.

Time-based scheduling

The simplest method of controlling when the set is processed is to use time-based

scheduling (also known as relative timing or interval timing). You determine a

specific start date, time, and interval. The interval can be specific (from one minute

to one year) or continuous, but time intervals are approximate.

The Apply program begins processing a subscription set as soon as it is able, based

on its workload and the availability of resources. Choosing a timing interval does

not guarantee that the frequency of replication will be exactly at that interval. If

you specify continuous timing, the Apply program replicates data as frequently as

it is able.

Event-based scheduling

To replicate data using event-based scheduling (also known as event timing), you

specify an event name when you define the subscription set. You must also

populate the IBMSNAP_SUBS_EVENT table with a timestamp for the event name.

When the Apply program detects the event, it begins replication.

Chapter 5. Subscribing to sources for SQL replication 61

The IBMSNAP_SUBS_EVENT table has four columns, as shown in Table 3.

 Table 3. Example of data stored in the IBMSNAP_SUBS_EVENT table

EVENT_NAME EVENT_TIME END_OF_PERIOD END_SYNCHPOINT

END_OF_DAY 2002-05-01-
17.00.00.000000

2002-05-01-
15.00.00.000000

The EVENT_NAME column stores the name of the event that you specify while

defining the subscription set. EVENT_TIME is the timestamp for when the Apply

program begins to process the set. END_OF_PERIOD is an optional value that

indicates that updates that occur after the specified time should be deferred until a

future event or time. END_SYNCHPOINT is also an optional value that indicates

that updates that occur after the specified log-sequence number should be deferred

until a future event or time. If you specify values for both END_OF_PERIOD and

END_SYNCHPOINT, the value for END_SYNCHPOINT takes precedence. Set the

EVENT_TIME value using the clock at the Apply control server, and set the

END_OF_PERIOD value using the clock at the source server. This distinction is

important if the two servers are in different time zones.

In Table 3, for the event named END_OF_DAY, the timestamp value for

EVENT_TIME (2002-05-01-17.00.00.000000) is the time when the Apply program

should begin processing the subscription set. The END_OF_PERIOD timestamp

value (2000-05-01-15.00.00.000000) is the time after which updates are not replicated

and will be replicated on the next day’s cycle. That is, the event replicates all

outstanding updates made before this time, and defers all subsequent updates.

You or your applications must post events to the IBMSNAP_SUBS_EVENT table

using an SQL INSERT statement to insert a row into the table to activate the event.

For example, use the current timestamp plus one minute to trigger the event

named by EVENT_NAME. Any subscription set tied to this event becomes eligible

to run in one minute. You must manually post events for both full refresh and

change-capture replication.

You can post events in advance, such as next week, next year, or every Saturday. If

the Apply program is running, it starts at approximately the time that you specify.

If the Apply program is stopped at the time that you specify, when it restarts, it

checks the subscription events table and begins processing the subscription set for

the posted event.

The Apply program does not prune the table. You must populate and maintain this

table. Also, you cannot use the Replication Center to update the subscription

events table. You must issue SQL statements or define automated procedures to

add events to this table.

Example:

INSERT INTO ASN.IBMSNAP_SUBS_EVENT

 (EVENT_NAME, EVENT_TIME)

 VALUES (’EVENT01’, CURRENT TIMESTAMP + 1 MINUTES)

Any event that occurs prior to the most recent time that the Apply program

processed the subscription set (as specified by the value in the LASTRUN column

of the subscription-set control table) is considered to be an expired event and is

ignored. Therefore, if the Apply program is running, you should post events that

are slightly in the future to avoid posting an expired event.

62 SQL Replication Guide and Reference

Scheduling the subscription set

Define subscription-set timing information after you map sources to targets (or

create an empty subscription set).

After you map sources to targets (or create an empty subscription set), define

subscription-set timing information. On the Schedule page of the Create

Subscription Set window, specify when the subscription set should first be eligible

for processing; the default is the current date and time of the local machine. Also,

specify the timing for how often the subscription set should be eligible for

processing:

v Time-based replication

The Apply program will process this subscription set using a regular time

interval.

v Event-based replication

The Apply program will process this subscription set whenever an event occurs.

v Both time-based and event-based replication

The Apply program will process this subscription set using both a regular time

interval and whenever an event occurs. In this case, the subscription set will be

eligible for processing at both the scheduled time and when the event occurs.

Creating subscription-set members

Within a subscription set, you can add source-to-target mappings for the Apply

program to process as a group. These source-to-target mappings are called

subscription-set members.

Before you begin

Before you set up targets that subscribe to changes at sources, you must register

the tables or views that you want to use as sources. You should also create a

subscription set and plan for how many members you want to add in a set.

Restrictions

v SQL replication does not support views of non-DB2 relational tables as sources.

v If you define a target view, that view must be an insertable view. That is, all of

the columns in the view must be updateable and the full select for the view

cannot include the keywords UNION ALL.

v If you are using the Replication Center, you cannot add a column to a

subscription-set member if that column does not already exist in the target table.

v z/OS: Do not select ROWID columns for replication except when the ROWID

column is the only unique index that is specified for replication.

Recommendation: Use an IDENTITY column rather than a ROWID column as

the unique index for replication.

v

You can define a maximum of 200

members for each subscription set.

v

You can define a maximum of 78 members for each

subscription set.

About this task

Chapter 5. Subscribing to sources for SQL replication 63

When defining a subscription-set member, you specify which target table or view

subscribes to the source data, and you can define how you want the replicated

data to appear at the target.

Procedure

To add a subscription-set member, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE MEMBER command to add a subscription-set

member to an existing subscription set. For example, the following

commands:

v Set the environment.

v Create a profile, TBSPROFILE, to store options for the tablespace

that is used by the target table.

v Specify the SET00 subscription set, AQ00 Apply qualifier, and

the STAFF source table.

v Specify that a new target table, TRGSTAFF, is created as a user

copy with all columns registered.

SET SERVER CAPTURE TO DB SAMPLE;

SET SERVER CONTROL TO DB TARGET;

SET SERVER TARGET TO DB TARGET;

SET OUTPUT CAPTURE SCRIPT "capmember.sql"

CONTROLSCRIPT "appmember.sql"

SET LOG "member.err";

SET RUN SCRIPT LATER;

SET PROFILE TBSPROFILE FOR OBJECT TARGET TABLESPACE

OPTIONS UW USING FILE "/tmp/db/ts/TSTRG.TS" SIZE 700 PAGES;

CREATE MEMBER IN SETNAME SET00 APPLYQUAL AQ00

ACTIVATE YES SOURCE STAFF TARGET NAME TRGSTAFF

DEFINITION IN TSTRG00 CREATE USING PROFILE TBSPROFILE

TYPE USERCOPY COLSALL REGISTERED;

Replication Center Use one of the following notebooks:

v Create Subscription Set. Use this notebook when you create the

subscription set. Expand the Apply control server where the set

will be defined, right click the Subscription Sets folder and click

Create.

v Subscription Set Properties. Use this notebook if you have

already created the subscription set and want to add one or

more subscription-set members to it. Right-click the subscription

set and select Properties.

v Add Members to Subscription Sets. Use this notebook to add

one member to multiple subscription sets. Each member must

use the same source. Right-click the subscription sets to which

you want to add a member and select Add Member.

ADDDPRSUBM

system command

Use the ADDDPRSUBM command to add a member to a

subscription set. For example, to add a subscription-set member to

a subscription set named SETHR under the AQHR Apply qualifier:

ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX)

TGTTBL(TGTHR/TGTTAX)

To map a source with a target, specify the following information about the

registered table or view that you want to use as the source:

v The source table or view and a target table or view (including a table space and

index for the target table).

v The type of target table.

64 SQL Replication Guide and Reference

v The registered columns from the source table that you want to replicate to the

target table.

When you use the Replication Center to map a source with a target, LOB

columns are not automatically included in the column mapping. You must

explicitly select those columns.

v The rows from the source table that you want to replicate to the target table

(you include a WHERE clause to specify the rows).

To map the chosen source to a DB2 target

Specify the following information about the target table or view:

v The schema.

v The name of the table or view you want to use as the target.

Default: The default name comes from the target object profile for the

target server, if there is one. If you have not set this profile, the default

is TG followed by the name of the source table or view. (For example, if

the name of your source table is EMPLOYEE, the name of your target

table defaults to TGEMPLOYEE.)

v The type of target table

Default: user copy

If the specified target table does not exist, the administration tools or the

ADDDPRSUBM system command creates it.

To map the chosen source to a non-DB2 relational target

Specify the following information about the target table:

v The nickname schema

v The nickname

v The remote schema

v The name of the remote table

Default: The default name comes from the target object profile for the

target server, if there is one. If you have not set this profile, the default

is TG followed by the name of the source table or view. (For example, if

the name of your source table is EMPLOYEE, the name of your target

table defaults to TGEMPLOYEE.)

v The type of target table

Default: user copy

When you add a subscription-set member, you can use the default target table type

of user copy, or you can select another target table type to meet your replication

needs.

When you add a subscription-set member for a target table that does not yet exist,

you can use the default settings, or you can modify the member properties to meet

your replication needs. You can first pick the type of target table that you want to

use, and you can then set properties for how the Apply program replicates data to

that target.

Target table types

The type of target table depends on how you want your data to appear and on

your replication configuration. You can use an existing table as your target, or you

can create a new table.

Chapter 5. Subscribing to sources for SQL replication 65

Restrictions

v The null attributes of after-image target columns must be compatible with the

null attributes for those columns of the source table or view. Use the SQL

COALESCE expression to provide compatibility with existing columns.

v For source tables on non-DB2 relational databases, you can define only the

following types of target tables:

– User copy tables

– Point-in-time tables

– External CCD tables
v The names of all non-DB2 relational target tables and indexes must follow the

DB2 table and index naming conventions.

v

For source tables on System i that use RRN columns as their

key columns, you can define only the following types of target tables:

– Point-in-time tables

– External CCD tables

v

For source tables in a z/OS subsystem, the encoding scheme

for the CD and UOW tables must be the same if the Apply program will join

these tables to satisfy a subscription-set WHERE clause for a user-copy table.

Target types

You can select from the following types of target tables:

User copy

Read-only target table that includes only those columns defined in the

subscription-set member. A user-copy table can have the same structure as

the source table or it can have a subset of source columns, with or without

before images or calculated columns. SQL replication assumes that it is the

only application writing to user-copy target tables. Direct changes to

user-copy tables by end-users or applications can be overwritten by SQL

replication and can cause the data in the source and target tables to not

match. If you need to update both the source and target tables, consider

using update-anywhere replication.

Point-in-time

Read-only target table that includes the columns defined in the

subscription-set member and a timestamp column. A point-in-time table

can have the same structure as the source table or it can have a subset of

source columns, with or without before images or calculated columns.

Base aggregate

Read-only target table that uses SQL column functions (such as SUM and

AVG) to compute summaries of the entire contents of the source table.

 A base-aggregate table summarizes the contents of a source table. A

base-aggregate table also includes a timestamp of when the Apply program

performed the aggregation. Use a base-aggregate table to track the state of

a source table on a regular basis.

Change aggregate

Read-only target table that uses SQL column functions (such as SUM and

AVG) to compute summaries of the entire contents of recent changes made

to the source table, which are stored in the CD table or in an internal CCD

table.

66 SQL Replication Guide and Reference

A change-aggregate table summarizes the contents of a CD table or in an

internal CCD table, rather than the source table. A change-aggregate table

also includes two timestamps to mark the time interval for when the

changes were captured (written to the CD or CCD table). Use a

change-aggregate table to track the changes (UPDATE, INSERT, and

DELETE operations) made between replication cycles.

CCD (consistent-change data)

Read-only target table with additional columns for replication control

information. These columns include: a log-record number (or

journal-record number), an indicator of whether the source table was

changed using an SQL INSERT, DELETE, or UPDATE statement, and the

log record number and timestamp of the commit statement associated with

the insert, delete, or update. You can also optionally include before-image

columns and columns from the UOW table.

Replica

Read/write target table for update-anywhere replication. A replica table is

the only type of target table that your application programs and users can

update directly. Thus, a replica table receives changes from the master table

and from local application programs or users. Replica tables can have the

same structure as the source table or they can have a subset of source

columns, but they do not include any additional replication control

columns (such as timestamps). Replica tables are supported only for DB2

databases.

The following topics describe uses for each target type and how you can set the

target-table properties to meet your replication needs:

Read-only target tables

Depending on how you want the source data to appear at your target, you can

define read-only target tables to contain a copy of the source table or view, a

history of changes, or a computed summary.

The following topics provide more detail on these types of read-only targets.

User copy and point-in-time targets:

By default, a user copy table will be created as your target type when you define a

subscription-set member. Select point-in-time as your target type to keep track of

the time at which changes were applied to the target.

User copy

Use this default type if you want the target table to match the source table

at the time the copy is made. User copy tables do not contain any

additional replication-control columns, but they can contain a subset of the

rows or columns in the source table or additional columns that are not

replicated.

Point in time

Select point-in-time as your target type if you want to keep track of the

time at which changes were applied to the target. A point-in-time target

contains the same data as your source table, with an additional timestamp

column added to let you know when the Apply program committed each

row to the target. The timestamp column is originally null. Point-in-time

tables can contain a subset of the rows or columns in the source table or

additional columns that are not replicated.

Chapter 5. Subscribing to sources for SQL replication 67

Restriction: DB2 prevents values from being inserted in columns of a DB2 table

that are defined AS IDENTITY GENERATED ALWAYS. To avoid this restriction,

you can:

v Create the target table without the IDENTITY CLAUSE

v Create the target table with the column AS IDENTITY GENERATED BY

DEFAULT

Base aggregate or change aggregate targets:

You can create target tables that contain summaries of the entire contents of the

source tables or of the most recent changes made to the source table data.

 For aggregate target-table types, you can define target columns by using aggregate

SQL column functions such as COUNT, SUM, MIN, MAX, and AVG. These

columns do not contain the original source data; they contain the computed values

of the SQL function that you define. The Apply program doesn’t create

aggregations during full refresh; rows are appended over time as the Apply

program processes the set. An advantage of using an aggregate table is that SQL

replication can replicate summary information only rather than each individual

row, thus saving both network bandwidth and space in the target table.

Base-aggregate targets

Use a base-aggregate target table to track the state of a source table during each

replication cycle. For a base-aggregate target table, the Apply program aggregates

(reads and performs calculations) from the source table. A base-aggregate table also

includes a timestamp of when the Apply program performed the aggregation.

If a registered source table has only a base-aggregate table as its target, you do not

need to capture changes for the source table.

Example: Suppose that you want to know the average number of customers that

you have each week. If your source table has a row for each customer, the Apply

program would calculate the sum of the number of rows in your source table on a

weekly basis and store the results in a base aggregate table. If you perform the

aggregation every week, the target table will have 52 entries that show the number

of customers you had for each week for the year.

Change-aggregate targets

Use a change-aggregate target table to track the changes (UPDATE, INSERT, and

DELETE operations) made between replication cycles at the source table. For a

change-aggregate target table, the Apply program aggregates (reads and performs

calculations) from the CD or internal CCD table. A change-aggregate table also

includes two timestamps to mark the time interval for when the Capture program

inserted changes into the CD or CCD table.

Example: Suppose that you want to know how many new customers you gained

each week (INSERTs) and how many existing customers you lost (DELETEs). You

would count the number of inserted rows and deleted rows in the CD table on a

weekly basis and store that number in a change-aggregate table.

Important: If the source table for a subscription-set member is registered for

full-refresh only replication, then you cannot have a change aggregate target table,

which requires a CD or CCD table at the source.

68 SQL Replication Guide and Reference

CCD targets:

You might want to audit the source data or keep a history of how the data is used.

By using a consistent-change-data (CCD) table as your target type, you can track

the history of source changes.

 For example, you can track before and after comparisons of the data, when

changes occurred, and which user ID made the update to the source table.

To define a read-only target table that keeps a history of your source table, define

the target CCD table to include the following attributes:

Noncondensed

To keep a record of all of the source changes, define the CCD table to be

noncondensed, so it stores one row for every change that occurs. Because

noncondensed tables contain multiple rows with the same key value, do

not define a unique index. A noncondensed CCD table holds one row per

UPDATE, INSERT, or DELETE operation, thus maintaining a history of the

operations performed on the source table. If you capture UPDATE

operations as INSERT and DELETE operations (for partitioning key

columns), the CCD table will have two rows for each update, a row for the

DELETE and a row for the INSERT.

Complete or noncomplete

You can choose whether you want the CCD table to be complete or

noncomplete. Because noncomplete CCD tables do not contain a complete

set of source rows initially, create a noncomplete CCD table to keep a

history of updates to a source table (the updates since the Apply program

began to populate the CCD table).

Include UOW columns

For improved auditing capability, include the extra columns from the UOW

table. If you need more user-oriented identification, columns for the DB2

for z/OS correlation ID and primary authorization ID or the System i job

name and user profile are available in the UOW table.

Internal CCD targets:

If changes occur frequently at a source table, you can create an internal CCD table

to summarize the committed changes that occurred at the source since the last

Apply cycle.

 Because the CD table is constantly in flux when the Capture program appends

changes from the log, the local cache of source changes in the CCD acts as a more

stable source for your targets.

When the original source table is updated, the Capture program reads the frequent

changes in the source’s log and adds them to the source’s CD table. From that CD

table, an Apply program reads the changes in the CD table and populates the

internal CCD table. You can define the internal CCD table to contain only the most

recent change for each row in the CD table that occurred during the last cycle.

Therefore, the CCD table is static between Apply cycles (for the Apply program

replicating from the CD table to the CCD table) and thus makes a more stable

source for targets. By condensing changes from the source, you can improve

overall replication performance by not replicating many updates for the same row

to the target table.

Chapter 5. Subscribing to sources for SQL replication 69

Because the Capture program is constantly adding new changes to the CD table, a

second Apply program reads changes from the internal CCD table, instead of the

CD table, so that it doesn’t replicate different changes to different targets and can

keep the targets in synch with one another. The second Apply program uses the

original source table for full refreshes, and it uses the internal CCD table for

change-capture replication.

Important for update-anywhere: If you define an internal CCD table, the Apply

program ignores it when processing a subscription set with a replica as a target,

and it applies changes to the replica from the master source’s CD table.

Recommendations

v Define a subscription-set member between the source table and the internal CCD

table before defining other subscription-set members between the source table

and other target tables. That way, the Apply program will use the internal CCD

table rather than the CD table for replicating changes from the source table. If

you define other subscription-set members and begin replication using those

members before you define the internal CCD table for the source table, you

might have to perform a full refresh for all targets of the source table.

v Combine all internal CCD tables into one subscription set to ensure that all

target tables for the source database are in synch with one another.

v Even if you only want a subset of the frequently changing source columns to be

applied to other targets, use the default that all registered source columns are

replicated to the internal CCD. That way, you can use the internal CCD table as

a source for future target tables that might need data from the other registered

columns in the original source table. Only columns in the internal CCD table

will be available for change-capture replication for any future target.

Attributes of internal CCD tables

You use an internal CCD table as an implicit source for replication; you cannot

explicitly define it as a replication source. When you add a subscription-set

member, you map the original source table (not the internal CCD table) to the

target table. An internal CCD table has the following attributes:

Internal

The CCD table acts as an alternative to the source’s CD table. Information

about the internal CCD table is stored in the same row as its source table

in the IBMSNAP_REGISTER table. An internal CCD table does not have its

own row in the register table. The Apply program automatically replicates

changes from an internal CCD table, if one exists, rather than from CD

tables. Only one internal CCD table can exist for each replication source.

Restriction: The user table does not include computed columns; therefore,

do not include computed columns in the CCD subscriptions.

Local The CCD table is in the same database as the source table.

Noncomplete

Because the Apply program uses the original source table for full refreshes

and not the internal CCD, the CCD is noncomplete because the subsequent

target will already have an initial copy of all the source rows.

Condensed

The internal CCD is condensed, meaning that table contains one row for

every key value, so that the Apply program applies the most recent change

for each row in the CCD table, instead of applying a row for every change.

70 SQL Replication Guide and Reference

No UOW columns

Internal CCD tables do not support additional UOW table columns. You

cannot use an internal CCD table if you already defined a target CCD table

that includes UOW columns.

Defining middle tiers in a multi-tier configuration

The basic replication model is a two-tier model, with a single source and one or

more targets. You can also set up configurations with three or more tiers.

Restrictions

The middle tier in multi-tier configurations must be a DB2 table.

About this task

A multi-tier configuration has a source table and a target table, and then that target

table acts as a source to other target tables.

One reason to set up a multi-tier replication environment is to move the overhead

of distribution from the source system to a second system. You can also avoid

many of the database connections to your source system, thus moving the

connection cost to the second tier. Also, because you can collect changes from tier 1

in CCD tables at tier 2, you can control how often you replicate changes to each

tier and reduce the number of changes replicated to the target (tier 3).

For example, in a three-tier model, the first tier (tier 1) is the source database, the

second tier (tier 2) is the target for tier 1. Tier 2 is also a source for a third tier of

targets (tier 3), and can distribute changes to one or many tier-3 databases. When

you have more than two tiers in your replication configuration, the middle tiers,

which act as both sources and targets, are CCD tables.

This procedure also applies for replica tables. CCD tables are usually used for

read-only replication, but replica tables are used for update-anywhere replication.

Procedure

To set up multi-tier replication so that your target table acts as a source to

subsequent targets:

1. Register the source table (tier 1) for replication. The Capture program for this

source captures changes that occur at tier 1 and stores them in tier 1’s CD table.

2. Create a subscription set between the source server and the target server (for

tier 2). The Apply program for this subscription set applies changes from tier 1

to the CCD table at tier 2.

3. Define a subscription-set member that maps the source table (tier 1) and a CCD

target table (tier 2).

Figure 6. Three-tier replication model. You can replicate data from a source table to a target table, and then from that

table to another target table.

Chapter 5. Subscribing to sources for SQL replication 71

When defining the target table for this member, select for the target table to be

a CCD table with the following attributes:

External registered source

You must define the source as an external target table and register the

table so that it can act as a source for the subsequent tier. Like other

registered sources, an external CCD table has its own row in the

IBMSNAP_REGISTER table. External CCD tables that also act as

sources can be populated only by a single source table.

 You must register all external CCD tables in a subscription set with the

same Capture schema.

 You can replicate to an external CCD table without joining the

change-data (CD) table and the IBMSNAP_UOW table. The new table

type is specified with a value of 9 in the TARGET_STRUCTURE

column of the IBMSNAP_SUBS_MEMBR table. Although the type 9

CCD table includes the IBMSNAP_LOGMARKER column, the Apply

program does not require a join of the CD table and IBMSNAP_UOW

table to obtain the source commit timestamp for this column. Instead,

the Apply program generates the same value in the

IBMSNAP_LOGMARKER column for all of the rows in the same cycle.

The new CCD table type has the same structure as a type 3 CCD table.

The table contains four mandatory IBM® columns in addition to the

user columns:

IBMSNAP_COMMITSEQ

IBMSNAP_INTENTSEQ

IBMSNAP_OPERATION

IBMSNAP_LOGMARKER

user_columns

This target table type can be registered as a source table for a three-tier

replication configuration.

Attention: For type 9 CCD tables, the data blocking factor

(MAX_SYNCH_MINUTES in the IBMSNAP_SUBS_SET control table)

should be unset (NULL).

Complete

You must use a complete CCD table because the Apply program will

use this table to perform both full refresh and change-capture

replication for the subsequent tier.

Condensed

Use a condensed CCD, meaning that table contains one row for every

key value, to ensure that only the most recent changes are replicated to

the subsequent tier. The Apply program applies the most recent change

for each row in the CCD table, instead of applying a row for every

change. Because condensed tables require unique key values for each

row, you must define a unique index.
4. Because the CCD table is registered, create the Capture control tables in the

middle-tier database, if they do not already exist.

5. Create a subscription set between the tier 2 server that contains registered CCD

table and the subsequent target server (for tier 3). The Apply program for this

set applies changes from the CCD table to the target tables in the subsequent

tier. The Apply program uses the CCD table for both full refresh and

change-capture replication. Usually, you use a different Apply qualifier than the

one used to populate the CCD, but you can use the same one.

72 SQL Replication Guide and Reference

6. Define a subscription-set member mapping the CCD source table (tier 2) and

the subsequent target table (tier 3). You can set up multiple members with

target tables that subscribe to this CCD source table. If this is the final tier in

your multi-tier configuration, then the target table can be any type. However, if

you plan to have more than three tiers, define the tier-3 target table as specified

in step 3, and repeat steps 4 through 5 to add subsequent tiers.

Important: If a full refresh occurs on the external CCD (the middle tier), then the

Apply programs for all subsequent tiers that use that external CCD as a source

will perform full refreshes. This is called a cascade full refresh.

Defining read-write targets (update-anywhere)

In update-anywhere replication, changes at the master source table are replicated

to dependent target tables, and changes at the replica tables can be replicated back

to the master source table.

Before you begin

v You must use declarative referential-integrity constraints because no single

application program updates both master and replica tables. Referential-integrity

violations cannot be detected in application logic.

v You must include all referential constraints that exist among the master tables in

the replica tables to prevent referential-integrity violations. If you omit some

referential constraints, an update made to a replica table could cause an

referential-integrity violation when it is replicated to the master table. The

administration tools do not copy referential-constraint definitions from a source

table to target tables, nor can they generate new constraints.

v To bypass referential-integrity checking during full refresh, you must use the

ASNLOAD exit routine.

Restrictions

v Replica target table types are not supported in a remote journal configuration.

v You cannot use CCD tables as sources or targets in update-anywhere replication.

v To allow columns of LOB data type to participate in update-anywhere

replication, the CONFLICT_LEVEL in the register table must be set to 0.

v Non-DB2 databases cannot have replica target-table types and, therefore, cannot

participate in update-anywhere replication.

About this task

In update-anywhere replication, the master table and its replicas are read-write

tables that all act as both sources and targets.

Procedure

To set up an update-anywhere configuration between a master table and one or

more replica tables (where each replica table is in a separate database):

1. Create the Capture control tables in each database that will contain a replica

table, if they do not already exist.

2. Register the source table (the master table) for replication.

3. Create a subscription set between the master database and the target database

that will contain the one or more replicas.

Chapter 5. Subscribing to sources for SQL replication 73

If all replica tables are in the same database and all master tables are in another

database, you need only one subscription set. If the replica tables are in

multiple databases, you need as many subscription sets as you have replica

databases.

4. Define a subscription-set member for each mapping between each master table

and its associated replica table.

In this configuration, there is only one Apply program, which typically runs at

the server that contains the replica tables. The Apply program for this set pulls

the changes from the master’s CD table and applies them to the replica tables.

The Apply program also pushes changes from the replica table’s CD table and

applies them to the master table.

Important: Because the master table and replica tables in update-anywhere

configurations replicate data back and forth to one another, replica target tables

should contain the same columns as the source table. You can create a replica

target that contains a subset of the columns in the master table only if the

missing columns are defined as nullable or NOT NULL WITH DEFAULT at the

master site, but you should not add new columns or rename columns at the

replica.

5. Define source properties for the replica table. When you create a

subscription-set member with a replica table, SQL replication automatically

registers the replica table as a replication source. Because replica target tables

act as sources, they have properties that you can set in addition to the common

target table properties, which determine how the Capture program handles

changes to the replica. There are two properties, however, that are inherited

from the master table and cannot be changed for the replica table: the

conflict-detection level and whether full refreshes are disabled. The Capture

program for this source captures changes at the replica table and stores them in

the replica’s CD table.

Important: Even though the master and replica act as both sources and targets,

full-refresh copying occurs only from the master to the replica, not from replica

to master.

To prevent conflicts, you must make the target key for the replica tables the

same as the master source table’s primary key or unique index. Because the

master table can update the replicas and the replicas can update the master,

there is a potential for conflicts to occur if an update is made to a row in the

master table and a different update is made to the same row in one or more

replica tables between Apply cycles (so that the changes are in the master CD

table and the replica CD table). A replica table inherits the level of conflict

detection from the master source table or view. It is best to design your

application so that a conflict can never occur when data is replicated from the

master to all of the replica tables. When you registered the master source, you

had three levels of conflict detection to choose from.

If you defined referential integrity constraints for the source table, you must

define the same referential integrity constraints for the replica table to prevent

integrity violations. If a referential-integrity violation occurs, the subscription

cycle is automatically retried.

Using an existing table as the target table

You can define a subscription-set member to include an existing target table that

you defined outside of SQL replication.

Such a user-defined target table can be any of the valid target-table types for

replication (user copy, point in time, base or change aggregate, CCD, or replica) as

74 SQL Replication Guide and Reference

long as the structure of the table is valid. For example, a user-defined point-in-time

table must include a column of type TIMESTAMP called

IBMSNAP_LOGMARKER.

Requirements

v If the subscription-set member definition contains fewer columns than are in the

existing target table, the target-table columns that are not involved in replication

must allow nulls or be defined as NOT NULL WITH DEFAULT.

v There must be a unique index for point-in-time, user copy, replica, and

condensed CCD tables. When you define the subscription-set member using the

existing target table, you can use the existing unique index or specify a new one.

Restrictions

v A subscription-set member definition cannot contain more columns than are in

the existing target table.

v If you are using the Replication Center, you cannot add a column to a

subscription-set member if that column does not already exist in the target table.

Replication checks for inconsistencies between your existing target table and the

subscription-set member definition.

Important for multi-tier: If you want to set up a multi-tier configuration with a

source table as tier 1, a CCD table as tier 2, and an existing table as tier 3, define

the CCD table to match the attributes specified for the existing target table when

defining the subscription-set member between tier 1 and tier 2. Then define a

subscription-set member for the existing target table in which the CCD table is the

source table.

Common properties for all target table types

You can set properties when creating a target table, regardless of type, based on

the replication environment that you want.

The following topics explain the common characteristics that you can define for

how the source data maps to the target tables.

Replicating a subset of source columns

By default, the target table contains all registered source columns except LOB

columns. You might not want to replicate all columns, or the target table might not

support all data types defined at the source.

In this case, select only those source columns that you want to replicate to the

target table. The registered columns in the source table that you do not select are

still available for other subscription-set members, but are not included for the

current source-to-target mapping.

You can also add calculated columns to a target table. These columns can be

defined by SQL scalar functions, such as SUBSTR, or they can be derived columns,

such as the division of the value of column A by the value of column B

(colA/colB). These calculated columns can refer to any columns from the source

table.

Replicating a subset of source rows

By default, the target table contains all the rows in the source table. You might not

want to replicate all rows, or you might want to replicate rows containing different

sorts of data to different target tables.

Chapter 5. Subscribing to sources for SQL replication 75

You can define a row (horizontal) subset in the subscription-set member that

contains rows matching a certain condition (an SQL WHERE clause).

The SQL predicate can contain ordinary or delimited identifiers. See the DB2 SQL

Reference for more information about WHERE clauses.

For example, you could define a WHERE clause to replicate all rows for one

division of a company. Or you could define a WHERE clause in one

subscription-set member to replicate all LOB columns (plus the primary-key

column) to one target table, and a WHERE clause in another subscription-set

member to replicate all other columns to a separate target table. Thus, your target

database can have all of the data from the source table, but denormalize the source

table in the target database to adjust query performance for a data warehouse.

Row predicate restrictions

v Do not type WHERE in the clause; it is implied. Type WHERE in the clause only for

subselect statements.

v Do not end the clause with a semicolon (;).

v If your WHERE clause contains the Boolean expression OR, enclose the predicate

in parentheses; for example, (COL1=X OR COL2=Y).

v If the target table is a change aggregate table and contains before-image

columns, you must include the before-image columns in a GROUP BY clause.

Examples

The following examples show WHERE clauses that you can use to filter rows of

the target table. These examples are very general and are designed for you to use

as a model.

WHERE clause specifying rows with specific values

To copy only the rows that contain a specific value, such as MGR for

employees that are managers, use a WHERE clause like:

EMPLOYEE = ’MGR’

WHERE clause specifying rows with a range of values

To copy only the rows within a range, such as employee numbers between

5000 and 7000 to the target table, use a WHERE clause like:

EMPID BETWEEN 5000 AND 7000

How source columns map to target columns

By default, column names in a target table that is created by SQL replication match

the column names in the source table. You can change the names and data lengths

of most target columns and still map them to source columns.

You can change the names of all columns in your target tables except the

replication control columns (which begin with IBMSNAP or IBMQSQ). If the target

table exists, the Replication Center will map the columns by name.

Target table columns can have different lengths than source columns. If the target

column is shorter than the source column, you can use an expression in the

subscription-set member to map the characters from the longer column to the

shorter column, or register a view that includes the expression. For example, if the

source column is char(12) and the target column is char(4), you can use the

following expression to truncate the values from COL1 during replication:

substr(col1, 1,4)

76 SQL Replication Guide and Reference

If the target column name is longer, pad the target column name with blanks.

Note: Some restrictions exist for mapping LONG VARCHAR columns in DB2 for

Linux, UNIX, and Windows to both DB2 for z/OS and DB2 for i5/OS®.

Using the Replication Center

When you are creating a target table using the Replication Center, you can rename

columns at the target regardless of the target-table type. Also, you can change

column attributes (data type, length, scale, precision, and whether it is nullable)

where the attributes are compatible.

You cannot use the Replication Center to rename columns of existing target tables.

If the source and target columns do not match, you can either use the Replication

Center to map the columns from the source to the target, or you can create a view

of the target table that contains a match to the source column names.

Mapping to non-DB2 relational tables

If you are mapping a DB2 table to a non-DB2 relational table with an existing

nickname for the non-DB2 relational table, the data types of some columns might

not be compatible. If the data types of the source columns are not compatible with

the data types in the target columns, you can modify the data type at the target to

make it compatible with the source:

v You can add calculated columns to adjust the data types from the source to

match the required data type for the target.

v You can alter the nickname for a non-DB2 relational target table to change the

data-type conversions.

Example: You want to replicate data from a DB2 source table with a DB2 column

of data type DATE to an Oracle target table with an Oracle column of data type

DATE.

 Table 4. Mapping a DB2 DATE column to an Oracle DATE column

DB2 Column Nickname Data Mapping Oracle Column

A_DATE DATE A_DATE TIMESTAMP A_DATE DATE

A_DATE DATE

The Oracle target table is created with an Oracle data type of DATE (which can

contain both date and timestamp data). The initial nickname for an Oracle DATE

data type in a federated database maps the DB2 data type as a TIMESTAMP. The

DB2 Replication Center and the System i commands for replication alter the

nickname data type to DATE, so that a DATE is replicated to Oracle and not a

TIMESTAMP.

Target key

When a condensed target table is involved in change-capture replication, the Apply

program requires it to have a primary key or unique index, which is called the

target key.

You can choose which columns you want to use as the unique index for your

target table. The following types of target tables are condensed and require a target

key:

v User copy

v Point-in-time

Chapter 5. Subscribing to sources for SQL replication 77

v Replica

v Condensed CCD

If you are creating a new target table, you can use the default index name and

schema or change the defaults to match your naming conventions.

The default name comes from the target object profile for the target server, if there

is one. If you have not set this profile, the default is IX plus the name of target

table. For example, if the name of your target table is TGEMPLOYEE, the name of

your target table index defaults to IXTGEMPLOYEE.

Options for unique indexes

Your options for creating unique indexes depend on whether you are creating a

new target table or using an existing target table.

New target table

To create a unique index for a new target table, you have two options:

v Specify the columns that you want as the unique index for the target

table.

v Have SQL replication select a unique index for you.

If you do not select columns for the unique index, SQL replication

checks the source table for one of the following definitions, in the

following order:

1. A primary key

2. A unique constraint

3. A unique index

If SQL replication finds one of these definitions for the source table, and

the associated columns are registered and part of the target table, SQL

replication uses the source table’s primary key (or unique index or RRN)

as the target key. In the case of a unique constraint, SQL replication

creates a unique index for the target table using the constraint columns.

For a System i source table that does not have a

primary key or unique index, modify the registration for that table to

use the relative record number (RRN) as a uniqueness factor. When you

define the subscription-set member, specify the RRN column as the

unique index for the target table.

For target tables on System i that use the RRN as the

target key, you should run the Apply program on System i to replicate

to these target tables.

Existing target table

For existing target tables, you must select the unique index. You can select

one of the following options:

v Use an index that already exists for the target table.

To use an existing index, select the columns that represent the index in

the Replication Center. If the Replication Center finds an exact match

then it only sets a target key for the Apply program to use, otherwise it

creates the unique index and sets a target key for the Apply program to

use.

v Create another index for the target table.

The unique index will be created if it does not already exist, and the

target key will be set for the Apply program to use.

78 SQL Replication Guide and Reference

Important: If you select a key for the target table that includes columns that can

be updated at the source table, you must instruct the Apply program to make

special updates to the target key columns.

How the Apply program updates the target key columns with the

target-key change option

If you choose the target-key change option when you define a subscription-set

member, the Apply program makes special updates to the target key columns

when the target key changes.

Prerequisite

In order for the Apply program to update target key columns, the source columns

that are part of the target key must be registered with the before-image columns in

the CD (or CCD) table. If you did not define the source registration to capture the

before-image values of the columns that make up the target key, then you must

alter your registration to include them before subscribing to a target table with a

different key.

Restrictions

v You cannot use the target-key-change option for source tables that are registered

to capture updates as delete/insert pairs.

v You cannot map an expression in a source table to a key column in a target table

if the Apply program updates the target table based on the before images of the

target key column (that is, if the TARGET_KEY_CHG column of the

IBMSNAP_SUBS_MEMBR table has a value of Y for that target table).

After you ensure that the before-image values of the target key columns are in the

CD (or CCD) table, select the subscription-set member option for the Apply

program to use the before-image values when updating target key columns.

If you do not specify for the Apply program to use the before-image values when

updating target key columns, SQL replication will not replicate data correctly when

you update the columns in the source table that are part of the target key.

The Apply program tries to update the row in the target table with the new value,

but it does not find the new key value in the target table to update it. The Apply

program then converts the update to an INSERT and inserts the new key value in

the target table. In this case, the old row with the old key value remains in the

target table (and is unnecessary).

When you specify that you want changes to target key columns to be processed

using before-image values, the Apply program is able to find the row with the old

key value, and update the row using the new values. For example, if the

target_key_chg variable is set to N, the SQL statement for the update operation is:

UPDATE targettable SET <non-key columns>= after-image values

WHERE <key columns> = after-image values

If the target_key_chg variable is set to Y, the SQL statement for the update operation

is:

UPDATE targettable SET <all columns> = after-image values

WHERE <key columns> = before-image values

Chapter 5. Subscribing to sources for SQL replication 79

80 SQL Replication Guide and Reference

Chapter 6. Replicating special data types in SQL replication

When you replicate special data types, such as LOB, ROWID, or non-DB2 data

types, you should be aware of certain conditions and restrictions. In some cases,

you might have to perform additional setup steps to get SQL replication to work

with these data types.

The following topics provide information on replicating special data types:

General data restrictions for replication

SQL replication has specific restrictions for certain data types including data

encryption restrictions and data type restrictions.

Data encryption restrictions

SQL replication can replicate some types of encrypted data.

EDITPROC

SQL replication supports DB2 for z/OS source tables that are

defined with an edit routine (EDITPROC) to provide additional

data security. To use these tables as sources for replication, the DB2

subsystem that contains the tables must be at Version 8 with APAR

PK13542.

Encrypt scalar function in DB2 for Linux, UNIX, and Windows

Column data can be encrypted and decrypted using the encrypt

scalar function in DB2 for Linux, UNIX, and Windows. To use this

with replication, the data type must be VARCHAR FOR BIT DATA

at the source. This data replicates successfully as long as the source

and target use the same code page and the decrypt functions are

available. Replication of columns with encrypted data should only

be used with servers that support the DECRYPT_BIN or

DECRYPT_CHAR function.

Data type restrictions

SQL replication cannot replicate the following data types:

v LOB columns from non-DB2 relational sources

v Any column on which any of the following procedures is defined:

– FIELDPROC

– VALIDPROC

SQL replication can replicate the following data types under certain

circumstances:

v Long variable graphic (LONG VARGRAPHIC) data if the source and

target tables reside in DB2 for z/OS.

v Long variable character (LONG VARCHAR and LONG VARGRAPHIC)

data requires either that the source database tables be in DB2 for z/OS

or both the source and target tables be in DB2 for Linux, UNIX, and

Windows. When you specify DATA CAPTURE CHANGES for a source

table when the table is created, any LONG VARCHAR and LONG

VARGRAPHIC columns are automatically enabled for replication. If you

add LONG VARCHAR columns to the table using the ALTER TABLE

statement and the table previously had no LONG columns, you must

© Copyright IBM Corp. 1994, 2007 81

use the ALTER TABLE statement to enable DATA CAPTURE CHANGES

INCLUDE LONGVAR COLUMNS for the new LONG VARCHAR or

LONG VARGRAPHIC columns.

SQL replication cannot replicate a table that contains abstract data types.

 SQL replication can replicate tables with spatial data type columns but

cannot replicate the actual spatial data type columns.

 User-defined data types (distinct data types in DB2) are converted to the

base data type in the change-data (CD) table before replication. In addition,

if SQL replication creates the target table as part of the subscription-set

member definition, user-defined types are converted to the base data type

in the target table as well as in the CD table.

Large object data types

SQL replication supports large object (LOB) data types, including binary LOB

(BLOB), character LOB (CLOB), and double-byte character LOB (DBCLOB).

This topic refers to BLOB, CLOB, and DBCLOB data types as LOB data

The Capture program reads the LOB descriptor in the log records to determine if

any data in the LOB column has changed and thus should be replicated, but does

not copy the LOB data to the change-data (CD) tables. When a LOB column

changes, the Capture program sets an indicator in the CD table. When the Apply

program reads this indicator, the Apply program then copies the entire LOB

column (not just the changed portions of LOB columns) directly from the source

table to the target table.

Because a LOB column can contain up to two gigabytes of data, you must ensure

that you have sufficient network bandwidth for the Apply program. Likewise, your

target tables must have sufficient disk space to accommodate LOB data.

Restrictions:

v The Apply program always copies the most current version of a LOB column

directly from the source table (not the CD table), even if that column is more

current than other columns in the CD table. Therefore, if the LOB column in the

target row changes, it is possible that this LOB column could be inconsistent

with the rest of the data in that target row. To reduce this possibility of

inconsistent data in the target row, ensure that the interval between the Apply

cycles is as short as practical for your application.

v You can replicate 10 LOB columns or fewer per table. If you register a table with

more than 10 LOB columns, the Apply program returns an error message. The

Replication Center returns an error message if you attempt to register more than

10 LOB columns per table.

v You can copy LOB data to replica tables provided that conflict detection is

disabled.

v To copy LOB data between DB2 for OS/390 Version 6 (or later) and DB2 for

Linux, UNIX, and Windows, you need DB2 Connect Version 7 or later.

v You cannot refer to LOB data using nicknames.

v Before-image values for LOB or ROWID columns are not supported.

82 SQL Replication Guide and Reference

v Replication is not supported for DB2 Extenders™ for Text, Audio, Video, Image,

or other extenders where additional control files associated with the extender’s

LOB column data are maintained outside of the database.

v SQL replication can replicate a full LOB only. It cannot replicate parts of a LOB.

v You cannot replicate LOB columns if you use a remote journal setup in your

replication environment on System i.

Chapter 6. Replicating special data types in SQL replication 83

84 SQL Replication Guide and Reference

Chapter 7. Subsetting data in an SQL replication environment

Replication usually involves subsetting. It might involve the choice of certain

columns and rows to replicate from a source table when you register a replication

source. It might involve the choice of certain registered columns to replicate to

each target table when you create subscription sets.

Depending on your replication requirements, you can subset data at the source

during registration or at the target during subscription:

v If you have only one target for a source, or if multiple targets need exactly the

same data, then it is possible to subset or manipulate data at registration

because you do not need to consider potentially different needs of different

targets.

v If you have one source and multiple targets, and the multiple targets have

different requirements regarding the data to be applied, then it might not be

possible to subset at registration. In this case, you would subset data at

subscription.

Do not use any of these techniques if you are replicating to replica target tables.

The master table and replica tables in update-anywhere configurations replicate

data back and forth to one another. Replica tables can have a subset of the source

table columns as long as the columns that are not used are nullable. Otherwise,

replica tables must contain the same columns as the source table so you cannot

subset columns, add new columns, or rename columns.

The following topics provide more detail.

Subsetting data during registration

Certain advanced techniques are useful when subsetting your data before or after

it is captured from a registered source. These techniques are especially useful if

you want to capture the same subset of data once and replicate that subset to

many target tables.

You can choose to subset data either before or after it is captured from a registered

source. The techniques in this section can be used in all replication configurations

except update-anywhere or peer-to-peer replication.

Subsetting data during registration can improve replication performance because it

reduces the amount of data that the Capture program adds to the CD table and the

amount that the Apply program reads. It also reduces storage because there are

fewer rows in the CD table.

This following topics discuss ways to subset data during registration.

Subsetting source data using views

When you register a source, you choose the columns that you want to make

available for replication. The columns that you select are captured for replication.

In some cases, after you register a source for change replication, you might want to

register a view of the source.

© Copyright IBM Corp. 1994, 2007 85

For example, assume that the Human Resources department maintains a table that

contains personnel data, including salary information. To maintain a backup

database, the whole personnel table is registered and subscribed to at the backup

site. However, if another target site wants to subscribe to the personnel table, you

might want to hide the salary information from this second subscriber. The

solution is to register a view over the personnel table, and allow access privileges

on only the registered view for the second subscriber, so that the salary

information is protected from access. A subscription can be created on this

registered view.

You can also register views that include two or more source tables. For example, if

you have a customer table and a branch table, the only way to adequately subset

the customers to the target correctly might be by joining the two tables so that only

the customers for a certain branch are replicated to a certain target. In this case,

you must take care to avoid double-deletes.

Defining triggers on CD tables to prevent specific rows from

being captured

In some replication scenarios, you might want to prevent certain changes in rows

from being captured and replicated to the target tables. To suppress certain

changes from being captured, define triggers on your CD tables.

When you register a source, the administration tools let you select which columns

you want captured, but they does not let you prevent certain changes in those

rows from being replicated. In some replication scenarios, you might want to

prevent certain changes in rows from being captured and replicated to the target

tables. For example, if you want your target tables to contain all rows and you

never want any rows deleted from them, you do not want to replicate deletions

from the source.

To suppress capture of certain changes, define triggers on your CD tables. These

triggers specify what changes the Capture program should ignore, preventing the

addition of rows corresponding to changes made in the CD table. You cannot

create these triggers using the Replication Center, but you can manually create

these triggers for an existing CD table (that is, after the source is registered). The

Capture program ignores any trigger failure that shows an SQLSTATE of 99999

and the row is not inserted into the CD table.

For example, suppose that you want all source table DELETE operations to be

suppressed during replication from the table SAMPLE.TABLE, where the CD table

is SAMPLE.CD_TABLE. The following trigger suppresses any rows that are

DELETE operations from being inserted into the CD table:

CREATE TRIGGER SAMPLE.CD_TABLE_TRIGGER

NO CASCADE BEFORE INSERT ON SAMPLE.CD_TABLE

REFERENCING NEW AS CD

FOR EACH ROW MODE DB2SQL

WHEN (CD.IBMSNAP_OPERATION = ’D’)

SIGNAL SQLSTATE ’99999’ (’CD INSERT FILTER’)

You might want to add the create trigger statement to the SQL that was generated

during registration. You must run the modified SQL to complete the registration

and to create the triggers on the CD tables.

These triggers execute every time the Capture program tries to insert a row in the

CD table, so you need to consider if using triggers here will give you the best

performance in your replication configuration. You can increase or decrease data

86 SQL Replication Guide and Reference

throughput by adding triggers to CD tables. Use triggers on the CD table to

suppress a significant number of changes at the source. If you plan to capture most

of the changes, but want to suppress some of them from being replicated, you

might want to suppress the unwanted rows during subscription.

Subsetting data during subscription

Subsetting data during subscription can improve replication performance by

reducing the amount of data that the Apply program fetches. Fewer rows in the

target tables also reduces storage requirements.

The Apply program uses predicates to determine what data to copy during full

refresh and change-capture replication. The Replication Center and ASNCLP allow

you to specify predicate values for full refresh and change-capture replication. You

might want to add additional predicate information to use only for change-capture

replication because that information is not available during full refresh. You must

add this additional predicate information to the IBMSNAP_SUBS_MEMBR table in

the UOW_CD_PREDICATES column through SQL that you provide.

For example, suppose that you have a registered table called ALL.CUSTOMERS,

and its associated CD table is called ALL.CD_CUSTOMERS. Assume that you want

the subscription target to contain only a subset of ALL.CUSTOMERS where the

ACCT_BALANCE column is greater than 50000, and you want to maintain

historical data in the target table (that is, you do not want any data deleted from

the target table). You can create the subscription-set member with a PREDICATES

value of ’ACCT_BALANCE > 50000’.

You cannot use the Replication Center or ASNCLP to prevent deletes at the target

table, because the information about the type of operation is stored in the CD table

and is not available at the source table or view. Therefore, you must generate the

additional change-capture predicate by using an SQL statement that includes the

following information. Depending on your scenario, you might need to add

columns to the update statement to ensure that you update a single row in the

IBMSNAP_SUBS_MEMBR table:

UPDATE ASN.IBMSNAP_SUBS_MEMBR SET UOW_CD_PREDICATES = ’IBMSNAP_OPERATION <>’’D’’’

 WHERE APPLY_QUAL = ’apply_qual’ AND SET_NAME = ’set_name’ AND

 SOURCE_OWNER = ’ALL’ AND SOURCE_TABLE = ’CUSTOMERS’

You must set up the UOW_CD_PREDICATES column manually for any

subscription-set member predicate that references any column that is not available

during full refresh, including the before-image columns in the CD table, any

overhead columns from the CD table, or any column from the UOW table.

By default, the Apply program does not join the UOW table and the CD table for

user-copy target tables; it fetches and applies data directly from the CD table. If the

predicate has to reference the UOW table, and the target table is a user copy, you

must set the value of the JOIN_UOW_CD column to Y in the

IBMSNAP_SUBS_MEMBR table. Setting this flag ensures that the Apply program

joins the UOW and CD tables.

If you want to specify predicates that exceed 1024 bytes (the capacity of the

PREDICATES column of the IBMSNAP_SUBS_MEMBR table) for a row subset, you

must use a source view.

Chapter 7. Subsetting data in an SQL replication environment 87

If you are using complex predicate statements for a subscription set, enclose the

entire expression in parentheses. For example, when using the AND and OR

clauses in a predicate statement, enclose the expression as follows:

((TOSOURCE = 101 AND STATUS IN (202,108,109,180,21,29,32,42))

OR (SOURCE = 101))

88 SQL Replication Guide and Reference

Chapter 8. Manipulating data in an SQL replication

environment

You can transform or enhance your source data before it is replicated to the target

tables.

For example, you might want to manipulate your data in any of the following

ways:

v Perform data cleansing

v Perform data aggregation

v Populate columns at the target table that do not exist at the source

Use the Apply program to manipulate data, either before or after it applies data to

the target, in any of the following ways:

v Using stored procedures or SQL statements

v “Mapping source and target columns that have different names” on page 91

v “Creating computed columns” on page 91

You can manipulate data either before or after it is captured. Manipulate your data

at registration instead of at subscription if you want to manipulate the data once

and replicate transformed data to many target tables. Manipulate your data during

subscription instead of registration if you want to capture all of the source data

and selectively apply transformed data to individual targets.

In some replication scenarios, you might want to manipulate the content of the

source data that is stored in the CD table. A trigger, an expression through the

subscription, or a source view can all be used to get the same job done. Each

method has its pros and cons. A trigger might be too costly in terms of CPU cycles

used. A view lets you set up the function once rather than in multiple

subscriptions.

For example, if a particular value is missing in the source table, you might not

want the Capture program to capture null values.

You can use triggers on your CD table to specify conditions for the Capture

program to enhance the data when inserting data to the CD table. In this case, you

can specify that the Capture program should insert a default value in the CD table

when it encounters a null value in the source. You can use the following code to

create a trigger that supplies an unambiguous default if data is missing from the

source table update:

CREATE TRIGGER ENHANCECD

NO CASCADE BEFORE INSERT ON CD_TABLE

REFERENCING NEW AS CD

FOR EACH ROW MODE DB2SQL

WHEN (CD.COL1 IS NULL)

SET CD.COL1 =’MISSING DATA’

END

Instead of the trigger, you can use the COALESCE scalar function of DB2 in a

registered source view or in a subscription expression. In a registered view, the

coalesce function returns the first non-null value.

© Copyright IBM Corp. 1994, 2007 89

Partial sample using a source view:

CREATE VIEW SAMPLE.SRCVIEW (columns) AS SELECT

 ... COALESCE(A.COL1, ’MISSING DATA’) ...

 FROM SAMPLE.TABLE A

Partial sample using an expression:

COALESCE(CD.COL1, ’MISSING DATA’)

Enhancing data using stored procedures or SQL statements

When you define subscription set information, you can also define run-time

processing statements using SQL statements or stored procedures that you want

the Apply program to run every time it processes a specific set. These run-time

processes enable data manipulation during replication.

When you define subscription set information, you can also define run-time

processing statements using SQL statements or stored procedures that you want

the Apply program to run every time it processes a specific set. These run-time

processes enable you to manipulate the data during replication. Such statements

are useful for pruning CCD tables and controlling the sequence in which

subscription sets are processed. You can run the run-time processing statements at

the Capture control server before a subscription set is processed, or at the target

server before or after a subscription set is processed. For example, you can execute

SQL statements before retrieving the data, after replicating it to the target tables, or

both.

Restriction for nicknames: Federated DB2 tables (using nicknames) are usually

updated within a single unit of work. When you add an SQL statement to a

subscription set that runs after the Apply program applies all data to the targets,

you must precede that SQL statement with an SQL COMMIT statement in either of

the following two situations:

v The SQL statement inserts into, updates, or deletes from a nickname on a server

other than the server where the target tables or target nicknames for the

subscription set are located.

v The SQL statement inserts into, updates, or deletes from a table local to the

Apply control server, but the target nicknames for the subscription set are

located on a remote server.

The extra COMMIT statement commits the Apply program’s work before it

processes your added SQL statement.

Stored procedures use the SQL CALL statement without parameters. The

procedure name must be 18 characters or less in length (for System i, the

maximum is 128). If the source or target table is in a non-DB2 relational database,

the SQL statements are executed against the federated DB2 database. The SQL

statements are never executed against a non-DB2 database. The run-time

procedures of each type are executed together as a single transaction. You can also

define acceptable SQLSTATEs for each statement.

Use the ASNDONE exit routine if you want to manipulate data after processing of

each set completes (rather than after processing of a specific set completes).

90 SQL Replication Guide and Reference

Mapping source and target columns that have different names

When you are using the Replication Center or ASNCLP command-line program to

define a subscription-set member and the target table being referenced does not

exist, you can rename columns at the target, regardless of the target-table type. You

can also change compatible column attributes.

Also, you can change column attributes (data type, length, scale, precision, and

nullability) where they are compatible. You cannot use the replication

administration tools to rename columns of existing target tables.

The administration tools try to map columns by name if the target table that is

referenced by the subscription-set member exists. If the source and target columns

do not match, you can either use the tools to map the columns from the source to

the target, or you can create a view of the target table that contains a match to the

source column names.

Creating computed columns

Although you cannot change the names of columns in existing target tables, you

can modify the expressions of the source columns so that they map correctly to, or

are compatible with, the columns in existing target tables.

Using SQL expressions, you can also derive new columns from existing source

columns. For aggregate target-table types, you can define new columns by using

aggregate functions such as COUNT or SUM. For other types of target tables, you

can define new columns using scalar functions in expressions. If the columns in

source and target tables only differ by name but are otherwise compatible, you can

use the Replication Center or ASNCLP to map one column to the other.

For example, assume that you have existing source table (SRC.TABLE) and target

table (TGT.TABLE):

CREATE TABLE SRC.TABLE (SRC_COL1 CHAR(12) NOT NULL, SRC_COL2 INTEGER,

 SRC_COL3 DATE, SRC_COL4 TIME, SRC_COL5 VARCHAR(25))

CREATE TABLE TGT.TABLE (TGT_COL1 CHAR(12) NOT NULL,

 TGT_COL2 INTEGER NOT NULL, TGT_COL3 TIMESTAMP, TGT_COL4 CHAR(5))

Use the following steps to map the desired target table using computed columns

during subscription:

1. Use the Replication Center to map SRC_COL1 from the source table to

TGT_COL1 in the target table. Since these columns are compatible, you do not

have to use an expression to map one to the other.

2. Use the expression COALESCE(SRC_COL2, 0) to compute the column values

and map to provide TGT_COL2. Because SRC_COL2 is nullable and

TGT_COL2 is NOT NULL, you must perform this step to ensure that a NOT

NULL value is provided for TGT_COL2.

3. Use the expression TIMESTAMP(CHAR(SRC_COL3) CONCAT

CHAR(SRC_COL4)) to compute the column values and map to provide

TGT_COL3. This column expression provides data to map to the timestamp

column in the target database.

4. Use the expression SUBSTR(SRC_COL5, 1,5) to compute the column values and

map to provide TGT_COL4.

Chapter 8. Manipulating data in an SQL replication environment 91

92 SQL Replication Guide and Reference

Chapter 9. Operating the Capture program for SQL replication

This section pertains to log-based capture for DB2 databases. If you are using

trigger-based capture, the triggers are created at registration, and you do not

perform the operations described in this section.

Starting the Capture program (Linux, UNIX, Windows, and z/OS)

Start the Capture program to begin capturing data from the log for DB2 databases.

If you are using trigger-based capture for a non-DB2 relational source, triggers are

created at registration and you do not need to start the Capture program.

Before you begin

v Configure connections to the source server and the Capture control server.

v Ensure that you have the proper authorization.

v Create control tables for the appropriate Capture schema.

v Define registrations.

v Configure the Capture and Apply programs.

About this task

Note: The Capture program does not capture any changes made by DB2 utilities,

because the utilities do not log changes in a way that is visible to the Capture

program.

When you start the Capture program, you can also specify startup parameters.

After you start the Capture program, the Capture program might not start

capturing data right away. It will start capturing data only after the Apply

program signals the Capture program that it has refreshed a target table fully. Then

the Capture program starts capturing changes from the log for a given source

table.

Procedure

To start the Capture program on Linux, UNIX, Windows, and z/OS, use one of the

following methods:

 Method Description

Replication Center Use the Start Capture window. To open the window, click the

Capture Control Servers folder in the Operations branch of the

object tree, and in the contents pane right-click the Capture control

server on which the Capture program that you want to start is

located. Select Start Capture.

asncap system

command

Use this command to start the Capture program and optionally

specify startup parameters.

© Copyright IBM Corp. 1994, 2007 93

Method Description

z/OS console or TSO

On z/OS, you can start the Capture program using JCL or as a

system-started task. You can specify new invocation parameter

values when you start a Capture program with JCL. The best

method for specifying invocation parameters when using JCL is to

store them in the IBMQREP_CAPPARMS table. The PARM

parameter of the EXEC statement cannot have subparameters that

exceed 100 characters.

Windows services

You can create a DB2 replication service on Windows operating

systems to start the Capture program automatically when the

system is started.

To verify whether a Capture program started, use one of the following methods:

v

If you are running in batch mode, examine the z/OS console

or z/OS job log for messages that indicate that the program started.

v Examine the Capture diagnostic log file (capture_server.capture_schema.CAP.log on

z/OS and db2instance.capture_server.capture_schema.CAP.log on Linux, UNIX, and

Windows) for a message that indicates that the program is capturing changes.

For example:

ASN0104I Change capture has been started for the source

table "REGRESS.TABLE1" for changes found in the log beginning

with log sequence number "0000:0275:6048".

v Check the IBMSNAP_CAPTRACE table for a message that indicates that the

program is capturing changes.

v Use the Capture Messages window in the Replication Center to see a message

that indicates that the program started. To open the window, right-click the

Capture server that contains the Capture program whose messages you want to

view and select Reports → Capture Messages.

v Use the Check Status window in the Replication Center or the asnccmd status

command to view the status of all Capture threads. To open the window,

right-click the Capture server where the Capture program that you want to

check is located and select Check Status.

Starting the Capture program (System i)

Start the Capture program to begin capturing data from the journal.

Before you begin

Before you start the Capture program, ensure that the following prerequisites are

met:

v You have the proper authorization.

v The control tables are created for the appropriate Capture schema, and

registrations are defined.

v The replication programs are configured if the Capture program is reading a

remote journal.

About this task

94 SQL Replication Guide and Reference

After you start the Capture program, the Capture program might not start

capturing data right away. It will start capturing data only after the Apply

program signals the Capture program to start capturing changes from the log for a

given source table.

Procedure

To start the Capture program on System i, use one of the following methods:

 Method Description

STRDPRCAP system

command (System i)

Use the Start DPR Capture (STRDPRCAP) command to start

capturing changes.

Replication Center Use the Start Capture window. To open the window, click the

Capture Control Servers folder in the Operations branch of the

object tree, and in the contents pane right-click the Capture control

server on which the Capture program that you want to start is

located. Select Start Capture.

Default operating parameters for the Capture program

When you create the Capture control tables, default values for the Capture

program’s operating parameters are saved in the IBMSNAP_CAPPARMS table.

The default values are shown in Table 5 and Table 6 on page 96.

 Table 5. Default settings for Capture operational parameters (Linux, UNIX, Windows, z/OS)

Operational parameter Default value Column name in

IBMSNAP_CAPPARMS table

capture_server DB2DBDFT1 not applicable

capture_schema ASN2 not applicable

add_partition n4 not applicable

asynchlogrd n4 not applicable

retention_limit 10080 minutes RETENTION_LIMIT

lag_limit 10080 minutes LAG_LIMIT

commit_interval 30 seconds COMMIT_INTERVAL

prune_interval 300 seconds PRUNE_INTERVAL

trace_limit 10080 minutes TRACE_LIMIT

monitor_limit 10080 minutes MONITOR_LIMIT

monitor_interval 300 seconds MONITOR_INTERVAL

memory_limit 32 MB MEMORY_LIMIT

autoprune y3 AUTOPRUNE

term y3 TERM

autostop n4 AUTOSTOP

logreuse n4 LOGREUSE

logstdout n4 LOGSTDOUT

sleep_interval 5 seconds SLEEP

Chapter 9. Operating the Capture program for SQL replication 95

333

Table 5. Default settings for Capture operational parameters (Linux, UNIX, Windows,

z/OS) (continued)

Operational parameter Default value Column name in

IBMSNAP_CAPPARMS table

capture_path Directory where Capture

was started5

CAPTURE_PATH

startmode warmsi6 STARTMODE

Note:

1. The Capture control server is the value of the DB2DBDFT environment variable for

Windows, Linux, and UNIX, if that variable is specified. There is no default value for

z/OS.

2. You cannot change the default for the Capture schema. To use another Capture schema,

use the capture_schema startup parameter.

3. Yes

4. No

5. If Capture starts as a Windows service, its capture path is \sqllib\bin.

6. The Capture program warm starts. It switches to cold start only if this is the first time

that the program is starting.

 Table 6. Default settings for Capture operational parameters (System i)

Operational parameter Default value Column name in

IBMSNAP_CAPPARMS table

CAPCTLLIB ASN1 not applicable

JOBD *LIBL/QZSNDPR not applicable

JRN *ALL not applicable

RETAIN 10080 minutes RETENTION_LIMIT

LAG 10080 minutes LAG_LIMIT

FRCFRQ 30 seconds COMMIT_INTERVAL

CLNUPITV *IMMED

2 not applicable

CLNUPITV 86400 seconds2 PRUNE_INTERVAL

CLNUPITV *IMMED

2 not applicable

TRCLMT 10080 minutes TRACE_LIMIT

MONLMT 10080 minutes MONITOR_LIMIT

MONITV 300 seconds MONITOR_INTERVAL

MEMLMT 32 MB MEMORY_LIMIT

WAIT 120 seconds not applicable

RESTART *YES3 not applicable

Note:

1. You cannot change the default for the Capture schema. To use another Capture schema,

specify the CAPCTLLIB parameter when you start the Capture program. The default

values for most other operational parameters are stored in the IBMSNAP_CAPPARMS

table.

2. CLNUPITV has two sub-parameters. By default, the Capture program prunes soon after

it starts running and again after every prune interval is reached (which, by default, is

every 24 hours).

3. By default, the Capture program warm starts.

96 SQL Replication Guide and Reference

Descriptions of Capture operating parameters

When you start the Capture program, you can optionally select startup parameters.

Here are the startup parameters and recommendations for when to choose one

value over another for each parameter.

All parameters apply to z/OS, Linux, UNIX, and Windows, unless otherwise

noted.

v “add_partition (Linux, UNIX, Windows)”

v “autoprune”

v “autostop” on page 98

v “capture_path” on page 98

v “capture_schema” on page 99

v “capture_server” on page 99

v “commit_interval” on page 100

v “lag_limit” on page 100

v “logreuse” on page 100

v “logstdout” on page 101

v “memory_limit” on page 101

v “monitor_interval” on page 101

v “prune_interval” on page 102

v “retention_limit” on page 102

v “sleep_interval” on page 103

v “startmode” on page 103

v “term” on page 104

v “trace_limit” on page 104

add_partition (Linux, UNIX, Windows)

Default: add_partition=n

The add_partition parameter specifies whether the Capture program starts reading

the log file for the newly added partitions since the last time the Capture program

was restarted.

Set add_partition=y to have the Capture program read the log files. On each new

partition, when the Capture program is started in the warm start mode, Capture

will read the log file starting from the first log sequence number (LSN) that DB2

used after the first database CONNECT statement is issued for the DB2 instance.

autoprune

Default: autoprune=y

The autoprune parameter specifies whether or not the Capture program

automatically prunes some of its control tables. By default, with autoprune=y, the

Capture program automatically prunes the rows in the CD and UOW tables as

well as IBMSNAP_CAPTRACE, IBMSNAP_CAPMON, and IBMSNAP_SIGNAL

tables. If you set autoprune=n, you must use the prune command to prune these

tables.

Chapter 9. Operating the Capture program for SQL replication 97

If you start Capture with autopruning on, set the prune interval to optimize the

pruning frequency for your replication environment. The Capture program uses

the following parameters to determine which rows are old enough to prune:

v retention_limit for CD, UOW, and signal tables

v monitor_limit for monitor tables

v trace_limit for the Capture trace table

autostop

Default: autostop=n

The autostop parameter controls whether the Capture program stays up or

terminates after it reaches the end of the log.

By default (autostop=n) the Capture program does not terminate after retrieving

the transactions.

Use the autostop=y option if you are replicating in a mobile or an occasionally

connected environment. Autostop ensures that the Capture program retrieves all

eligible transactions and stops when it reaches the end of the log. You need to start

Capture again to retrieve more transactions. You might want to use the autostop=y

option in a test environment, too.

Recommendation: In most cases you should not use autostop=y because it adds

overhead to the administration of replication (for example, you need to keep

restarting the Capture program).

capture_path

The Capture path is the directory where the Capture program stores its work files

and log file. By default, the Capture path is the directory where you start the

program.

Because the Capture program is a POSIX application, the default Capture

path depends on how you start the program:

USS command line prompt

The directory where you started the program.

Started task or through JCL

the home directory of the user ID associated with the started task

or job.

You can specify either a path name or a High Level Qualifier(HLQ), such

as //CAPV9. When you use a HLQ, sequential files are created that

conform to the file naming conventions for z/OS sequential data set file

names. The sequential data sets are relative to the user ID that is running

the progam. Otherwise these file names are similar to those stored in an

explicitly named directory path, with the HLQ concatenated as the first

part of the file name. For example, sysadm.CAPV8.filename.

You can change the Capture path to specify where you want the Capture

program to store its files. You can specify a path name, for example:

98 SQL Replication Guide and Reference

/home/db2inst/capture_files. If you start the Capture program as a

Windows service, by default the Capture program starts in the \sqllib\bin

directory.

capture_schema

Default: capture_schema=ASN

The capture_schema parameter identifies which Capture program you want to

start. By default, the Capture schema is ASN.

If you already set up another schema, you can start the Capture program by

specifying that schema using the capture_schema parameter.

You might use multiple Capture schemas in the following situations:

Achieving application independence

Create multiple Capture schemas so that you can have one Capture

program for application A and another Capture program for application B.

Each Capture program uses its own control tables. If one of the Capture

programs is down, only one application is affected. The other application is

not affected because it is being serviced by another Capture program.

Meeting different application requirements

Create multiple Capture schemas if you have different applications that use

the same source tables but have different data requirements. For example,

a payroll application needs sensitive employee data while an internal

employee registry does not. You can register the confidential information in

one Capture schema, but not in the other Capture schema. Similarly, you

can register a table more than once if some applications need the Capture

program to behave differently. For example, perhaps some applications

require that the Capture program saves updates as delete and insert pairs.

Isolating problems with registrations

If you have a problem with one registration, you can create another

Capture schema and move the working registrations to it. That way you

can debug the problem registration in the original schema and run the

unaffected registrations using the other schema.

capture_server

Default: capture_server=None

Default: capture_server=value of DB2DBDFT environment

variable, if it is set

The capture_server parameter specifies the Capture control server.

The capture control tables are located at the DB2 subsystem

name. Because the Capture program reads the DB2 log, the Capture program must

run at the same server as the source database.

The capture control tables (such as the register table) contain

the registration information for the source tables and are located at the capture

control server.

Chapter 9. Operating the Capture program for SQL replication 99

commit_interval

Default: commit_interval=30

The commit_interval parameter specifies how often, in seconds, the Capture

program commits data to the Capture control tables, including the UOW and CD

tables. By default, the Capture program waits 30 seconds before committing data

to the CD and UOW tables. Locks are held on the tables updated within the

commit interval. Higher values for the commit_interval parameter reduce CPU

usage for the Capture program but also might increase the latency for frequently

running subscription sets because the Apply program can fetch only committed

data.

lag_limit

Default: lag_limit=10 080

The lag_limit parameter represents the number of minutes that the Capture

program can lag in processing records from the DB2 log.

By default, if log records are older than 10 080 minutes (seven days), the Capture

program will not start unless you specify a value for the startmode parameter that

allows the Capture program to switch to a cold start.

If the Capture program will not start because the lag limit is reached, you should

determine why the Capture program is behind in reading the log. If you are in a

test environment, where you have no practical use for the lag limit parameter, you

might want to set the lag limit higher and try starting the Capture program again.

Alternatively, if you have very little data in the source table in your test

environment, you might want to use a cold start and fully refresh the data in all

the target tables.

logreuse

Default: logreuse=n

The Capture program stores operational information in a log file.

The log file name does not contain a DB2 instance name. For

example, SRCDB1.ASN.CAP.log. This file is stored in the directory that is specified

by the capture_path parameter. If the capture_path parameter is specified as a

High Level Qualifier (HLQ), the file naming conventions of z/OS sequential data

set files apply; therefore, the capture_schema name that is used to build the log file

name is truncated to the first 8 characters of the name.

The name of the log file is

db2instance.capture_server.capture_schema.CAP.log. For example,

DB2INST.SRCDB1.ASN.CAP.log.

By default (logreuse=n), the Capture program appends messages to the log file,

even after the Capture program is restarted. Keep the default if you want the

history of the messages. In the following situations you might want the Capture

program to delete the log and re-create it when it restarts (logreuse=y):

v The log is getting large and you want to clean out the log.

v You don’t need the history that is stored in the log.

100 SQL Replication Guide and Reference

v You want to save space.

logstdout

Default: logstdout=n

The logstdout parameter is available only if you use the asncap command, it is not

available in the Replication Center.

By default, the Capture program sends some warning and informational messages

only to the log file. You might choose to send such messages to standard output

(logstdout=y) if you are troubleshooting or if you are monitoring how your

Capture program is operating in a test environment.

memory_limit

Default: memory_limit=32

The memory_limit parameter specifies the amount of memory, in megabytes, that

the Capture program can use.

By default, the Capture program uses 32 megabytes of memory to store transaction

information before it spills to a file located in the capture_path directory. You can

modify the memory limit based on your performance needs. Setting the memory

limit higher can improve the performance of Capture but decreases the memory

available for other uses on your system. Setting the memory limit lower frees

memory for other uses. If you set the memory limit too low and the Capture

program spills to a file, you will use more space on your system and the I/O will

slow down your system.

You can monitor the memory limit by using the Replication Alert Monitor. You can

also use the data in the CAPMON table to determine the number of source system

transactions spilled to disk due to memory restrictions. Sum the values in the

TRANS_SPILLED column of the CAPMON table.

monitor_interval

Default: monitor_interval=300

The monitor_interval parameter specifies how often the Capture program writes

information to the IBMSNAP_CAPMON table.

By default, the Capture program inserts rows into the Capture monitor table every

300 seconds (5 minutes). This operational parameter works in conjunction with the

commit interval. If you are interested in monitoring data at a granular level, use a

monitor interval that is closer to the commit interval.

monitor_limit

Default: monitor_limit=10080

The monitor_limit parameter specifies how old the rows must be in the monitor

table before they can be pruned.

By default, rows in the IBMSNAP_CAPMON table that are older than 10 080

minutes (seven days) are pruned. The IBMSNAP_CAPMON table contains

Chapter 9. Operating the Capture program for SQL replication 101

operational statistics for the Capture program. Use the default monitor limit if you

need less than one week of statistics. If you monitor the statistics frequently, you

probably do not need to keep one week of statistics and can set a lower monitor

limit so that the Capture monitor table is pruned more frequently and older

statistics are removed. If you want to use the statistics for historical analysis and

you need more than one week of statistics, increase the monitor limit.

prune_interval

Default: prune_interval=300

The prune_interval parameter specifies how often the Capture program tries to

prune old rows from some of its control tables. This parameter is valid only if

autoprune=y.

By default, the Capture program prunes the CD and UOW tables every 300

seconds (five minutes). If the tables are not pruned often enough, the table space

that they are in can run out of space, which forces the Capture program to stop. If

they are pruned too often or during peak times, the pruning can interfere with

application programs running on the same system. You can set the optimal

pruning frequency for your replication environment. Performance will generally be

best when the tables are kept small.

Before you lower the prune interval, ensure that data is being applied frequently

so that pruning can occur. If the Apply program is not applying data frequently, it

is useless to set the prune interval lower because the Apply program must

replicate the data to all targets before the CD and UOW tables can be pruned.

The prune interval determines how often the Capture program tries to prune the

tables. It works in conjunction with the following parameters, which determine

when data is old enough to prune: trace_limit, monitor_limit, retention_limit. For

example, if the prune_interval is 300 seconds and the trace_limit is 10080 seconds,

the Capture program will try to prune every 300 seconds. If it finds any rows in

the trace table that are older than 10080 minutes (7 days), it will prune them.

retention_limit

Default: retention_limit=10 080

The retention_limit parameter determines how long old data remains in the CD,

UOW, and IBMSNAP_SIGNAL tables before becoming eligible for retention limit

pruning.

If the normal pruning process is inhibited due to deactivated or infrequently run

subscription sets, data remains in the CD and UOW tables for long periods of time.

If this data becomes older than the current DB2 timestamp minus the retention

limit value, the retention limit pruning process deletes this data from the tables. If

you run your subscription sets very infrequently or stop your Apply programs,

your CD and UOW tables can grow very large and become eligible for retention

limit pruning.

Your target tables must be refreshed to synchronize them with the source if any of

the rows that are pruned are candidates for replication but for some reason they

were not yet applied to the target table. You can avoid a full refresh from

happening by using higher retention limits; however, your CD and UOW tables

will grow and use space on your system.

102 SQL Replication Guide and Reference

If you are doing update-anywhere replication, retention limit pruning ensures that

rejected transactions are deleted. Rejected transactions result if you use conflict

detection with replica target tables and conflicting transactions are detected. The

rows in the CD and UOW tables that pertain to those rejected transactions are not

replicated and they are pruned when the retention limit is reached. A full refresh is

not required if all the old rows that were deleted pertained to rejected transactions.

Retention pruning also ensures that signal information that is no longer required is

deleted from the IBMSNAP_SIGNAL table.

sleep_interval

Default: sleep_interval=5

The sleep interval is the number of seconds that the Capture program waits before

it reads the log again after it reaches the end of the log and the buffer is empty.

For data sharing on the z/OS operating system, the sleep interval represents the

number of seconds that the Capture program sleeps after the buffer returns less

than half full.

By default, the Capture program sleeps 5 seconds. Change the sleep interval if you

want to reduce the overhead of the Capture program reading the log. A smaller

sleep interval means there is less chance of delay. A larger sleep interval gives you

potential CPU savings in a system that is not updated frequently.

startmode

Default: startmode=warmsi

You can start Capture using one of the following start modes:

warmsi (warm start, switch initially to cold start)

The Capture program warm starts; except if this is the first time you’re

starting the Capture program then it switches to cold start. Use this start

mode if you want to ensure that cold starts only happen when you start

the Capture program initially.

warmns (warm start, never switch to cold start)

The Capture program warm starts. If it can’t warm start, it does not switch

to cold start. When you use warmns in your day-to-day replication

environment, you have an opportunity to repair any problems (such as

unavailable databases or table spaces) that are preventing a warm start

from occurring. Use this start mode to prevent a cold start from occurring

unexpectedly. When the Capture program warm starts, it resumes

processing where it ended. If errors occur after the Capture program

started, the Capture program terminates and leaves all tables intact.

 Tip: You cannot use warmns to start the Capture program for the first time

because there is no warm start information when you initially start the

Capture program. Use the cold startmode the first time you start the

Capture program, then use the warmns startmode. If you do not want to

switch startmodes, you can use warmsi instead.

cold During cold start, the Capture program deletes all rows in its CD tables

and UOW table during initialization. All subscription sets to these

replication sources are fully refreshed during the next Apply processing

cycle (that is, all data is copied from the source tables to the target tables).

Chapter 9. Operating the Capture program for SQL replication 103

If the Capture program tries to cold start but you disabled full refresh, the

Capture program will start, but the Apply program will fail and will issue

an error message.

 You rarely want to explicitly request that the Capture program performs a

cold start. Cold start is necessary only the first time the Capture program

starts, and warmsi is the recommended start mode.

 Important: Do not cold start the Capture program if you want to maintain

accurate histories of change data. A gap might occur if the Apply program

cannot replicate changes before the Capture program shuts down. Also,

because you want to avoid cold starts, do not put cold start as the default

for STARTMODE in the IBMSNAP_CAPPARMS table.

term

Default: term=y

The term parameter determines how the status of DB2 affects the operation of the

Capture program.

By default, the Capture program terminates if DB2 terminates.

Use term=n if you want the Capture program to wait for DB2 to start if DB2 is not

active. If DB2 quiesces, Capture does not terminate; it remains active but it does

not use the database.

trace_limit

Default: trace_limit10080

The trace_limit specifies how old the rows must be in the IBMSNAP_CAPTRACE

table before they are pruned.

When Capture prunes, by default, the rows in the IBMSNAP_CAPTRACE table are

eligible to be pruned every 10080 minutes (seven days). The CAPTRACE table

contains the audit trail information for the Capture program. Everything that

Capture does is recorded in this table; therefore this table can grow very quickly if

the Capture program is very active. Modify the trace limit depending on your need

for audit information.

Methods of changing Capture parameters

You can change the saved values of Capture operating parameters, and you can

also temporarily override these values when you start the program or while the

program is running.

Setting new default values in the IBMSNAP_CAPPARMS table

 The IBMSNAP_CAPPARMS table contains parameters that you can modify

to control the operation of the Capture program. The schema name of the

table is the Capture schema. After the table is created, it contains the

default values that are shipped for the Capture program. If the column

value in the IBMSNAP_CAPPARMS table is not set, the default values are

used.

Specifying values for parameters when you start the Capture program

You can specify values for the Capture program when you start it. The

104 SQL Replication Guide and Reference

values that you set during startup control the behavior of Capture for the

current session, they override the default operational parameter values and

any values that might exist in the Capture parameters table. They do not

update the values in the Capture parameters table. If you do not modify

the Capture parameters table before you start the Capture program, and

you do not specify any parameters when you start the Capture program,

default values are used for the operational parameters.

Changing parameter values while the Capture program is running

While Capture is running, you can change its operational parameters

temporarily. The Capture program will use the new values until you

change the values again, or until you stop and restart the Capture

program. You can change the Capture parameters as often as you like

during the session.

 Example 1

Assume that you do not want to use the default settings for the Capture commit

interval for Capture schema ASNPROD.

1. Update the Capture parameters table for the ASNPROD Capture schema. Set

the commit interval to 60 seconds; therefore, when you start the Capture

program in the future, the commit interval will default to 60 seconds.

 update asnprod.ibmsnap_capparms set commit_interval=60;

2. Eventually you might want to do some performance tuning so you decide to

try starting Capture using a lower commit interval. Instead of changing the

value in the Capture parameters table, you simply start the Capture program

with the commit interval parameter set to 20 seconds. While the Capture

program runs using a 20-second commit interval, you monitor its performance.

 asncap capture_server=srcdb1 capture_schema=asnprod commit_interval=20

3. You decide that you want to try an even lower commit interval. Instead of

stopping the Capture program, you submit a change parameters request that

sets the commit interval to 15 seconds. The Capture program continues to run,

only now it commits data every 15 seconds.

 asnccmd capture_server=srcdb1 capture_schema=asnprod chgparms

commit_interval=15

Important: The parameter that you are changing must immediately follow the

chgparms.

4. You can continue monitoring the performance and changing the commit

interval parameter without stopping the Capture program. Eventually, when

you find the commit interval that meets your needs, you can update the

Capture parameters tables (as described in step 1) so that the next time you

start the Capture program it uses the new value as the default commit interval.

Example 2

Assume that you do not want to use the default settings for the Capture commit

interval for Capture schema ASNPROD.

1. Update the Capture parameters table for the ASNPROD Capture schema. Set

the commit interval to 90 seconds; therefore, when you start the Capture

program in the future the commit interval will default to 90 seconds.

 CHGDPRCAPA CAPCTLLIB(ASNPROD) FRCFRQ(90)

2. Eventually you might want to do some performance tuning so you decide to

try starting Capture using a lower commit interval. Instead of changing the

Chapter 9. Operating the Capture program for SQL replication 105

value in the Capture parameters table, you simply start the Capture program

with the commit interval parameter set to 45 seconds. As the Capture program

runs using a 45-second commit interval, you monitor its performance.

 STRDPRCAP CAPCTLLIB(ASNPROD) FRCFRQ(45)

3. You decide that you want to try an even lower commit interval. Instead of

stopping the Capture program, you submit a change parameters request that

sets the commit interval to 30 seconds. The Capture program continues to run,

only now it commits data every 30 seconds. (Note: On System i, you cannot set

the commit interval to less than 30 seconds.)

 OVRDPRCAPA CAPCTLLIB(ASNPROD) FRCFRQ(30)

4. Eventually, when you find the commit interval that meets your needs, you can

update the Capture parameters tables (as described in step 1 on page 105) so

that the next time you start the Capture program it will use the new value as

the default commit interval.

Altering the behavior of a running Capture program

You can dynamically change the value of one or more Capture operating

parameters. The changes are not saved in the IBMSNAP_CAPPARMS table, but are

used until you stop the Capture program or supply new values.

About this task

You can change the following Capture

parameters while the Capture program is running:

v autoprune

v autostop

v commit_interval

v lag_limit

v logreuse

v logstdout

v memory_limit

v monitor_interval

v monitor_limit

v prune_interval

v retention_limit

v sleep_interval

v term

v trace_limit

Restriction:

The amount of memory that the Capture program

can use to build messages is determined when the Capture program starts, based

on the value of the memory_limit parameter and the REGION size that is specified

in the JCL. The value of memory_limit cannot be altered with the Capture

program is running. To change the value you must first stop the Capture program.

You can override the values for the following operational

parameters for a given Capture schema:

v CLNUPITV

v FRCFRQ

106 SQL Replication Guide and Reference

v MEMLMT

v MONLMT

v MONITV

v PRUNE

v RETAIN

v TRCLMT

When you change the values, the effects might not be immediate for all

parameters.

Procedure

To alter the behavior of a running Capture program, use one of the following

methods:

 Method Description

Replication Center Use the Change Parameters for Running Capture Program window.

This method allows you to see the current values of the parameters

before changing them. To open the window, open the Operations

branch of the object tree, click Capture Control Servers, right click

a Capture control server in the contents pane, and click Change

Parameters → Running Capture Program.

asnccmd chgparms

system command

This method does not show the current values of the parameters.

OVRDPRCAPA

system command

Use the Override DPR Capture attributes (OVRDPRCAPA)

command to alter the behavior of a running Capture program.

Changing saved operating parameters in the IBMSNAP_CAPPARMS

table

The IBMSNAP_CAPPARMS table contains the saved operating parameters for the

Capture program. When you start the Capture program, it uses values from this

table unless you temporarily override these values using startup parameters or

while the program is running.

About this task

Only one row is allowed in the IBMSNAP_CAPPARMS table. If you want to

change one or more of the default values, you can update columns instead of

inserting rows. If you delete the row, the Capture program will still start using the

defaults, unless those defaults are overridden by the startup parameters.

The Capture program reads this table only during startup. Changing the Capture

parameters table while the Capture program is running and reinitializing the

Capture program will not change the operation of the Capture program.

Procedure

Chapter 9. Operating the Capture program for SQL replication 107

To change the parameters saved in the IBMSNAP_CAPPARMS table, use one of

the following methods:

 Method Description

Replication Center Use the Change Parameters - Saved window. To open the window,

open the Operations branch of the object tree, click Capture

Control Servers, right click a Capture control server in the contents

pane, and click Change Parameters → Saved.

CHGDPRCAPA

system command

Use the Change DPR Capture Attributes (CHGDPRCAPA)

command to change the global operating parameters that are used

by the Capture program and are stored in the

IBMSNAP_CAPPARMS table.

The parameter changes take effect only after you stop and start the Capture

program.

Stopping the Capture program

You can stop the Capture program for a particular Capture schema. When you

stop the Capture program, it no longer captures data from the source.

About this task

If you choose to reorganize the UOW table and all the CD

tables that were open at the time that the Capture program stopped, the Capture

program needs time to shut down (it does not shut down immediately).

Procedure

To stop the Capture program, use one of the following methods:

 Method Description

Replication Center Use the Stop Capture window. To open the window, open the

Operations branch of the object tree, click Capture Control

Servers, right click a Capture control server in the contents pane,

and click Stop Capture.

asnccmd stop system

command

Use this command to stop Capture.

ENDDPRCAP system

command

Use the End DPR Capture (ENDDPRCAP) command to stop the

Capture program.

If you stop or suspend the Capture program during pruning, pruning is also

suspended. When you resume or restart the Capture program, pruning resumes

based on the autoprune parameter.

You do not need to stop the Capture program to drop a registration. Always

deactivate the registration before you drop it.

108 SQL Replication Guide and Reference

Reinitializing Capture

Reinitialize the Capture program if you change any attributes of existing registered

objects while the Capture program is running.

About this task

For example, you must reinitialize the Capture program if you change the

CONFLICT_LEVEL, CHGONLY, RECAPTURE, CHG_UPD_TO_DEL_INS values in

the IBMSNAP_REGISTER table.

For Capture on System i, reinitialize is also needed to start capturing data for a

journal that was not being captured previously.

Procedure

To reinitialize the Capture program, use one of the following methods:

 Method Description

Replication Center Use the Reinitialize Capture window. To open the window, open

the Operations branch of the object tree, click Capture Control

Servers, right click a Capture control server in the contents pane,

and click Reinitialize Capture.

asnccmd reinit system

command

Use this command to reinitialize Capture.

INZDPRCAP system

command

Use the Initialize DPR Capture (INZDPRCAP) command to

initialize the Capture program.

Suspending the Capture program (Linux, UNIX, Windows, z/OS)

You can suspend the Capture program to free operating system resources during

peak periods without destroying the Capture program environment.

Before you begin

The Capture program with the specific Capture schema must be started.

About this task

You can also suspend the Capture program instead of stopping it if you do not

want the Capture program to shut down after it finishes work in progress. When

you tell the Capture to resume, you do not require the overhead of Capture

starting again.

Important: Do not suspend the Capture program before you remove a replication

source. Instead, deactivate then remove the replication source.

Procedure

Chapter 9. Operating the Capture program for SQL replication 109

To suspend the Capture program, use one of the following methods:

 Method Description

Replication Center Use the Suspend Capture window. To open the window, open the

Operations branch of the object tree, click Capture Control

Servers, right click a Capture control server in the contents pane,

and click Suspend Capture.

asnccmd suspend

system command

Use this command to suspend Capture.

If you stop or suspend the Capture program during pruning, pruning is also

suspended. When you resume or restart the Capture program, pruning resumes

based on the autoprune parameter.

Resuming Capture (Linux, UNIX, Windows, z/OS)

You must resume a suspended Capture program if you want it to start capturing

data again.

Procedure

To resume a suspended Capture program, use one of the following methods:

 Method Description

Replication Center Use the Resume Capture window. To open the window, open the

Operations branch of the object tree, click Capture Control

Servers, right click a Capture control server in the contents pane,

and click Resume Capture.

asnccmd resume

system command

Use this command to resume Capture.

If you stop or suspend the Capture program during pruning, pruning is also

suspended. When you resume or restart the Capture program, pruning resumes

based on the autoprune parameter.

Prompting a Capture program to ignore transactions

You can prompt a Capture program to ignore transactions in the DB2 recovery log,

and these transactions will not be captured.

About this task

You can specify which transactions to ignore by using one or more of the following

identifiers:

v Transaction ID

v Authorization ID

110 SQL Replication Guide and Reference

v

Authorization token

v

Plan name

To prompt the Capture program to ignore transactions based on their transaction

identifier, you use an asncap command parameter when you start the Capture

program.

To ignore transactions based on authorization ID, authorization token, or plan

name, you use SQL to insert the identifiers into the IBMQREP_IGNTRAN control

table at the Capture server.

Procedure

To prompt the Capture program to ignore transactions, use one of the following

methods depending on the identifier you plan to use:

 Identifier Procedure

Transaction ID Use the asncap command with the ignore_transid parameter to

specify one transaction to be ignored. The format of the command

is as follows:

asnqap capture_server=q_capture_server

capture_schema=q_capture_schema

ignore_transid=transaction_ID

Where transaction_ID is a 10-byte hexadecimal identifier in the

following format:

0000:xxxx:xxxx:xxxx:mmmm

 Where xxxx:xxxx:xxxx is the transaction ID, and mmmm is

the data-sharing member ID. You can find the member ID

in the last 2 bytes of the log record header in the LOGP

output. The member ID is 0000 if data-sharing is not

enabled.

 For example, the following command specifies that a

transaction be ignored in a data-sharing environment,

with a member ID of 0001:

asncap capture_server=sample

capture_schema=ASN

ignore_transid=0000:BD71:1E23:B089:0001

nnnn:0000:xxxx:xxxx:xxxx

 Where xxxx:xxxx:xxxx is the transaction ID, and nnnn is

the partition identifier for partitioned databases (this value

is 0000 for non-partitioned databases).

 For example, the following command specifies that a

transaction be ignored in a non-partitioned database:

asncap capture_server=sample

capture_schema=ASN

ignore_transid=0000:0000:0000:0000:BE97

To ignore more than one transaction, stop the Capture program

and start it in warm mode with another transaction identifier

specified.

Chapter 9. Operating the Capture program for SQL replication 111

Identifier Procedure

Authorization ID,

authorization token

(z/OS), or plan name

(z/OS)

Use SQL to insert one or more of the identifiers into the

IBMQREP_IGNTRAN control table. Insert the appropriate

identifiers into the following columns:

AUTHID

The authorization ID.

AUTHTOKEN

The authorization token (job name).

PLANNAME

The plan name.

For example, the following statement specifies that the Capture

program ignore a transaction with an authorization ID of repldba:

insert into schema.IBMQREP_IGNTRAN (

 AUTHID,

 AUTHTOKEN,

 PLANNAME)

values (

 ’repldba’,

 NULL,

 NULL);

The following statement specifies that

transactions with an authorization token of IGN1 and a plan name

of ZPLAN be ignored on z/OS:

insert into schema.IBMQREP_IGNTRAN (

 AUTHID,

 AUTHTOKEN,

 PLANNAME)

values (

 NULL,

 ’IGN1’,

 ’ZPLAN’);

When the Capture program ignores a transaction, it inserts a row into the

IBMQREP_IGNTRANTRC table that records the identifier of the transaction that

was ignored.

112 SQL Replication Guide and Reference

Chapter 10. Operating the Apply program for SQL replication

Operation of the Apply program includes such tasks as starting and stopping and

using the ASNDONE and ASNLOAD exit routines.

Starting the Apply program (Linux, UNIX, Windows, z/OS)

You can start an instance of the Apply program to begin applying data to your

targets.

Before you begin

Ensure that:

v Connections are configured to all necessary replication servers.

v You have the proper authorization.

v The control tables that contain the source and control data for the desired Apply

qualifier are created.

v The replication programs are configured.

v

You manually bound the Apply program to all necessary

servers.

v

A password file exists for end-user authentication for remote

servers.

Also, make sure that the following conditions are met:

v At least one active subscription set exists for the Apply qualifier and that the

subscription set contains one or more of the following items:

– Subscription-set member

– SQL statement

– Procedure
v All condensed target tables must have a target key, which is a set of unique

columns, either a primary key or unique index, that the Apply program uses to

track which changes it replicates during each Apply cycle. (Non-condensed CCD

tables do not have primary keys or unique indexes.)

About this task

When you start the Apply program, you can also specify startup parameters.

Procedure

To start the Apply program:

© Copyright IBM Corp. 1994, 2007 113

Use one of the following methods:

 Option Description

Replication Center Use the Start Apply window. To open the window, open the Apply

Control Servers folder in the Operations branch of the object tree

and click the Apply Qualifiers folder. In the contents pane,

right-click the Apply qualifier that represents the Apply program

that you want to start and click Start Apply.

asnapply system

command

Use this command to start Apply.

z/OS console or TSO

On z/OS, you can start the Apply program using JCL or as a

system-started task. You can specify new invocation parameter

values when you start an Apply program with JCL. These values

will override the parameter values that are stored in the

IBMSNAP_APPPARMS table. The PARM parameter of the EXEC

statement cannot have subparameters that exceed 100 characters.

Windows services

You can create a DB2 replication service on the Windows operating

system to start the Q Apply program automatically when the

system starts.

After you start the Apply program, it runs continuously (unless you used the

copyonce startup parameter) until one of the following events occurs:

v You stop the Apply program using the Replication Center or a command.

v The Apply program cannot connect to the Apply control server.

v The Apply program cannot allocate memory for processing.

To verify whether an Apply program started, use one of the following methods:

v

If you are running in batch mode, examine the z/OS console

or z/OS job log for messages that indicate that the program started.

v Examine the Apply diagnostic log file (apply_server.apply_qualifier.APP.log on

z/OS and db2instance.apply_server.apply_qualifier.APP.log on Linux, UNIX, and

Windows) for a message that indicates that the program is capturing changes.

v Check the IBMSNAP_APPLYTRACE table for a message that indicates that the

program is applying changes.

v Use the Apply Messages window in the Replication Center to see a message that

indicates that the program started. To open the window, right-click the Apply

qualifier in the contents pane that identifies the Apply program whose messages

you want to view and select Reports → Apply Messages.

v Use the Check Status window in the Replication Center or the asnacmd status

command to view the status of all Apply threads. To open the window,

right-click the Apply qualifier in the contents pane that identifies the Apply

program that you want to check and select Check Status.

114 SQL Replication Guide and Reference

Starting an Apply program (System i)

You can start an instance of the Apply program to begin applying data to your

targets.

Before you begin

Ensure that your system is set up correctly:

v Connections are configured to all replication servers.

v You have the proper authorization.

v The control tables are created.

v The replication programs are configured.

Also, make sure that the following conditions are met:

v At least one active subscription set exists for the Apply qualifier and that

subscription set contains one or more of the following items:

– Subscription-set member

– SQL statement

– Procedure
v All condensed target tables must have a target key, which is a set of unique

columns, either a primary key or unique index, that the Apply program uses to

track which changes it replicates during each Apply cycle. (Non-condensed CCD

tables do not have primary keys or unique indexes.)

Procedure

To start an Apply program, use one of the following methods:

 Method Description

STRDPRAPY system

command

Use the Start DPR Apply (STRDPRAPY) command to start an

Apply program on your local system.

Replication Center Use the Start Apply window. To open the window, open the Apply

Control Servers folder in the Operations branch of the object tree

and click the Apply Qualifiers folder. In the contents pane,

right-click the Apply qualifier that represents the Apply program

that you want to start and click Start Apply.

After you start the Apply program, it runs continuously unless one of the

following conditions are true:

v You started the program using the COPYONCE(*YES) start-up parameter.

v You specified ALWINACT(*NO) and there is no data to be processed.

v You stop the Apply program using the Replication Center or a command.

v The Apply program cannot connect to the Apply control server.

v The Apply program cannot allocate memory for processing.

Default operating parameters for the Apply program

When you create the Apply control tables, default values for the Apply operating

parameters are saved in the IBMSNAP_APPPARMS table.

Chapter 10. Operating the Apply program for SQL replication 115

The default values are shown in Table 7 and Table 8.

 Table 7. Default settings for Apply operational parameters (z/OS, Linux, UNIX, Windows)

Operational parameter Default value Column name in

IBMSNAP_APPPARMS table

apply_qual No default APPLY_QUAL

apply_path Directory where Apply was

started1

APPLY_PATH

control_server DB2DBDFT2 not applicable

copyonce n3 COPYONCE

db2_subsystem No default4 not applicable

delay 6 seconds DELAY

errwait 300 seconds ERRWAIT

inamsg y5 INAMSG

loadxit n3 LOADXIT

logreuse n3 LOGREUSE

logstdout n3 LOGSTDOUT

notify n3 NOTIFY

opt4one n3 OPT4ONE

pwdfile asnpwd.aut not applicable

spillfile disk6 SPILLFILE

sleep y5 SLEEP

sqlerrcontinue n3 SQLERRCONTINUE

term y5 TERM

trlreuse n3 TRLREUSE

Note:

1. If Apply starts as a Windows service, its path is sqllib\bin

2. The Apply control server is the value of the DB2DBDFT environment variable, if

specified. For Linux, UNIX, and Windows operating systems only.

3. no

4. The DB2 subsystem name can be a maximum of four characters. This parameter is

required. The DB2 subsystem name is only applicable to z/OS operating systems.

5. yes

6. On z/OS operating systems, the default is MEM.

 Table 8. Default settings for Apply operational parameters (System i)

Operational parameter Description of (*value)

USER (*CURRENT) The user who signed on to the system.

JOBD (*LIBL/QZSNDPR) Product library name / job description.

APYQUAL (*USER) Current user name (from above).

CTLSVR (*LOCAL) Local RDB server name.

TRACE (*NONE) Do not generate a trace.

FULLREFPGM (*NONE) Do not run the ASNLOAD exit routine.

116 SQL Replication Guide and Reference

Table 8. Default settings for Apply operational parameters (System i) (continued)

Operational parameter Description of (*value)

SUBNFYPGM (*NONE) Do not run the ASNDONE exit routine.

INACTMSG (*YES) When the Apply program begins an inactive period, it

generates message ASN1044, which describes how long

the program will be inactive.

ALWINACT (*YES) Sleep if there is nothing to process.

DELAY (6) Wait 6 seconds after an Apply cycle before processing

again.

RTYWAIT (300) Wait 300 seconds before retrying a failed operation.

COPYONCE (*NO) Do not terminate after completing one copy cycle,

continue processing.

TRLREUSE (*NO) Do not empty the IBMSNAP_APPLYTRAIL table when

the Apply program starts.

OPTSNGSET (*NO) Do not optimize performance of the Apply program for

processing a single subscription set.

Descriptions of Apply operating parameters

When you start the Apply program, you can optionally select startup parameters.

Here are the startup parameters and recommendations for when to choose one

value over another for each parameter.

These parameters apply to z/OS, Linux, UNIX, and Windows unless otherwise

specified.

v “apply_path” on page 118

v “apply_qual” on page 118

v “control_server” on page 118

v “copyonce” on page 119

v “db2_subsystem (z/OS)” on page 119

v “delay” on page 119

v “errwait” on page 120

v “inamsg” on page 120

v “loadxit” on page 120

v “logreuse” on page 121

v “logstdout” on page 121

v “notify” on page 121

v “opt4one” on page 121

v “pwdfile” on page 122

v “sleep” on page 122

v “spillfile” on page 123

v “sqlerrcontinue” on page 123

v “term” on page 124

v “trlreuse” on page 124

Chapter 10. Operating the Apply program for SQL replication 117

apply_path

Default: apply_path=current_directory

Default (service on Windows): apply_path sqllib\bin

The Apply path is the directory where the Apply program stores its log and work

files. By default, the Apply path is the directory where you start the program. You

can change the Apply path to store the log and work files elsewhere (for example

/home/db2inst/apply_files on an AIX® system). Keep track of what directory you

choose because you might need to go to this directory to access the Apply log file.

See the SASNSAMP(ASNSTRA) job for information on how

you can change the Apply path.

Important: Make sure that the directory that you choose has enough space for the

temporary files used by the Apply program.

Starting instances of Apply on one Windows system: When

you start the Apply program using either the Replication Center or the asnapply

command, you must specify the Apply path if you have two or more Apply

qualifiers that are identical except for their capitalization. File names on Windows

systems are not case-sensitive. For example, assume that you have three Apply

qualifiers: APPLYQUAL1, ApplyQual1, applyqual1. Each of these Apply instances

must be started with a different apply_path to prevent file name conflicts of the

log files for each instance of the Apply program.

apply_qual

You must specify the Apply qualifier for the subscription sets that you want to

process. (You defined the Apply qualifier when you created your subscription set.)

You can specify only one Apply qualifier per start command.

Important: The Apply qualifier is case-sensitive and the value that you enter must

match the value of the APPLY_QUAL column in the IBMSNAP_SUBS_SET table.

If you have more than one Apply qualifier defined, you can start another instance

of the Apply program. Each instance of the Apply program that you start will

process different subscription sets that are represented in the same Apply control

server. For example, assume that you have two subscription sets defined and each

set has a unique Apply qualifier: APPLY1 and APPLY2. You can start two instances

of the Apply program (one for each Apply qualifier), and each instance uses the

control tables on the Apply control server called CNTRLSVR. Each instance of

Apply processes its own subscription sets independently, providing better

performance than if a single instance of Apply processes all the sets.

control_server

Default: None

Default: The value of the DB2DBDFT environment variable, if

available

118 SQL Replication Guide and Reference

The Apply control server is the server on which the subscription definitions and

the Apply control tables reside. Specify only one control server per Apply qualifier.

If you do not specify a value, the Apply program will start on the default server.

The default depends on your operating system.

If the Apply program cannot connect to the control server, the Apply program

terminates. If it can’t connect to other servers, it does not terminate. In this case it

issues an error message and continues processing.

copyonce

Default: copyonce=n

The copyonce parameter determines the copy cycle for the Apply program.

When you start the Apply program using copyonce=y, it processes each eligible

subscription set only once, and then it terminates. In this case, a subscription set is

eligible to be processed if one of the following conditions is met:

v The subscription set uses relative timing, the time has elapsed, and the

subscription set is activated.

v The subscription set uses event-based timing, it is activated, and the event has

occurred but the Apply program hasn’t processed the subscription set yet.

Typically you want to start the Apply program using copyonce=n because you

want the Apply program to continue running and processing eligible subscriptions.

If you are running the Apply program from a dial-in environment that is

occasionally connected to the network, use copyonce=y instead of copyonce=n.

You might also want to use copyonce=y if you are running the Apply program in

a test environment.

Tip: Use sleep=ninstead of copyonce=y if you want the Apply program to process

each subscription set multiple times, as long as the set is eligible and data is

available for replication. copyonce=y processes each set only once even if there is

more data to replicate.

db2_subsystem (z/OS)

The db2_subsystem parameter specifies the name of the DB2 subsystem, if you are

running Apply on z/OS. The DB2 subsystem name that you enter can be a

maximum of four characters. There is no default for this parameter. This parameter

is required.

delay

Default: delay=6 seconds

The delay parameter sets an amount of time in seconds that the Apply program

waits at the end of the Apply cycle.

By default, during continuous replication (that is, when your subscription set uses

sleep=0 minutes), the Apply program waits 6 seconds after a subscription set is

processed successfully before retrying the subscription set. Use a non-zero delay

value to save CPU cycles when there is no database activity to be replicated. Use a

lower delay value for low latency.

Chapter 10. Operating the Apply program for SQL replication 119

Note: The delay parameter is ignored if copyonce is specified.

errwait

Default: errwait=300 seconds (5 minutes)

The errwait parameter specifies the number of seconds that the Apply program

waits before retrying a subscription set after a subscription cycle failed

By default, the Apply program waits 300 seconds before it retries a subscription set

after a subscription cycle failed. You might want to use a smaller value in a test

environment. The minimum value is 1 second. In a production environment,

consider the trade-offs before you change the default for this parameter:

v If you use a smaller value, you might waste CPU cycles if the Apply program

keeps retrying hard errors. For example, you will use CPU cycles unnecessarily

if the Apply program keeps retrying to process a subscription set when there is

a problem with a target table. You might get an undesirably large number of

messages in the log file and, if the Apply program runs on z/OS, on the

operator console.

v If you use a larger value, you might increase latency if the Apply program must

wait to retry transient error conditions. For example, you will increase latency if

you use a larger value for the errwait parameter because the Apply program

waits unnecessarily after it encounters a network error that might be corrected

quickly.

Note: The errwait parameter is ignored if copyonce is specified.

inamsg

Default: inamsg=y

The inamsg parameter specifies whether or not the Apply program issues a

message when it becomes inactive.

By default, the Apply program issues a message when it becomes inactive. You

might not want the Apply program to issue a message when it becomes inactive

because the messages will take up a lot of space in the Apply log file, especially if

the Apply program is not waiting long between processing subscription sets. To

turn off these messages, use inamsg=n.

loadxit

Default: loadxit=n

The loadxit parameter specifies whether or not the Apply program should refresh

target tables using the ASNLOAD exit routine.

By default, the Apply program does not use the ASNLOAD exit routine to refresh

target tables (loadxit=n). Use loadxit=y if you want the Apply program to invoke

the ASNLOAD exit routine to refresh target tables. Consider using the ASNLOAD

exit if there is a large amount of data to be copied to the target tables during a full

refresh.

120 SQL Replication Guide and Reference

logreuse

Default: logreuse=n

The Apply program stores operational information in a log file. The parameter

specifies whether to append to the log file or to overwrite it.

The name of the log file is control_server.apply_qualifier.APP.log.

The name of the log file is db2instance.control_server.apply_qualifier.APP.log.

By default, the Apply program appends messages to the log file (logreuse=n) each

time that you start the Apply program. Keep the default if you want the history of

the messages that are issued by the Apply program. In the following situations you

might want to use logreuse=y, where the Apply program deletes the log and

re-creates the log when it starts:

v The log is getting large, and you want to clean out the log to save space.

v You don’t need the history that is stored in the log.

logstdout

Default: logstdout=n

The logstdout parameter is available only if you use the asnapply command;

logstdout is not available in the Replication Center.

The logstdout parameter specifies whether the Apply program sends completion

messages (ASN10251) to both the log file and to standard output.

By default, the Apply program does not send completion messages to standard

output (STDOUT). If you specify logstdout=y, the Apply program will send

completion messages to both the log file and to standard output (STDOUT). You

might choose to send messages to standard output if you are troubleshooting or

monitoring how your Apply program is operating.

notify

Default: notify=n

The notify parameter specifies whether the Apply program notifies the ASNDONE

exit routine after it processes a subscription.

By default, the Apply program does not notify the ASNDONE exit routine after

subscription processing completes. If you specify notify=y, after the Apply

program completes a subscription cycle it invokes ASNDONE to perform

additional processing, such as examining the Apply control tables or sending

e-mail messages.

opt4one

Default: opt4one=n

The opt4one parameter specifies whether or not the Apply program processing is

optimized for one subscription set.

Chapter 10. Operating the Apply program for SQL replication 121

Note: The opt4one parameter is ignored if copyonce is specified.

By default, the Apply program is optimized for many subscription sets. The Apply

program reads the information from the replication control tables at the beginning

of each copy cycle. If you have one subscription set for the Apply qualifier, start

the Apply program using opt4one=y so that the Apply program caches in memory

information about the subscription set members and columns and reuses it. When

you optimize the Apply program for one subscription set, the Apply program uses

less CPU, and you improve throughput rates.

Important: When you use opt4one=y and you add a member to a set or otherwise

modify a set, you must stop the Apply program and start it again so that the

Apply program picks up the changes in the control tables.

pwdfile

Default: pwdfile=asnpwd.aut

If your data is distributed across servers, you can store user IDs and passwords in

an encrypted password file so that the Apply program can access data on remote

servers.

sleep

Default: sleep=y

The sleep parameter specifies whether the Apply program continues running in

sleep mode or terminates after it processes eligible subscription sets.

By default, the Apply program starts with sleep=y. It checks for eligible

subscription sets. If it finds an eligible subscription set, it processes it and

continues looking for another eligible set. Apply continues to process eligible sets if

it finds them. When it cannot find any more eligible sets, the Apply program

continues running in sleep mode and it ″wakes up″ periodically to check if any

subscription sets are eligible. Usually you want to start the Apply program in this

way because you want updates applied over time and you expect the Apply

program to be up and running.

Note: The sleep parameter is ignored if copyonce is specified.

When you start the Apply program with sleep=n, the Apply program checks for

eligible subscription sets and processes them. It continues processing eligible

subscription sets until it can’t find any more eligible sets, and it repeats the process

for eligible sets until there is no more data to replicate; then, the Apply program

terminates. Typically you want to use sleep=n in a mobile environment or in a test

environment where you want the Apply program to run only if it finds eligible

subscription sets, and then you want it to terminate. You don’t want the Apply

program to wait in sleep mode and wake up periodically to check for more eligible

sets. In these environments you want to control when Apply runs rather than have

it run endlessly.

Tip: Use copyonce=y instead of sleep=n if you want to process each subscription

set only once.

122 SQL Replication Guide and Reference

spillfile

Default: spillfile=MEM

Default: spillfile=disk

Apply retrieves data from the source tables and places it in a spill file on the

system where the Apply program is running.

On z/OS operating systems, including USS, the spill file is

stored in memory by default. If you specify to store the spill file on disk, the

Apply program uses the specifications on the ASNASPL DD statement to allocate

spill files. If the ASNASPL DD statement is not specified, it uses VIO.

The only valid setting for spillfile is disk because spill files are

always on disk in the location specified by the apply_path parameter.

sqlerrcontinue

Default: sqlerrcontinue=n

The sqlerrcontinue parameter specifies how the Apply program should react to

certain SQL errors.

By default, when the Apply program encounters any SQL error, it stops processing

that subscription set and generates an error message. Typically you would use the

default in your production environment.

If you are in a test environment, you can expect certain SQL errors to occur when

inserting data into target tables. Sometimes those errors are acceptable to you, but

they would cause the current subscription cycle to stop. In those situations, you

can start the Apply program using sqlerrcontinue=y so that it ignores those errors

and does not rollback replicated data from that cycle. If the Apply program

receives an SQL error when inserting data into a target table, it checks the values

in the apply_qualifier.sqs file. If it finds a match, it writes the details about the error

to an error file, apply_qualifier.err, and it continues processing. If the Apply

program encounters an SQL error that is not listed in the <apply_qualifier.sqs file, it

stops processing the set and goes on to the next set.

Before you start the Apply program using the sqlerrcontinue=y option, you must

create the apply_qualifier.sqs file and store it in the directory from which you invoke

the Apply program. List up to 20 five-byte values, one after the other, in the file. If

you change the contents of this file when the Apply program is running, stop the

Apply program and start it again so that it recognizes the new values.

Example: Assume that you want the Apply program to continue processing a

subscription set if a target table gets the following error (sqlstate/code):

42704/-803

Duplicate index violation

You would create an SQL state file that contains the following SQL state:

42704

Chapter 10. Operating the Apply program for SQL replication 123

If the SQL state is returned when updating the target table, the Apply program

applies the changes to the other target tables within the set and creates an error file

indicating both the error and the rejected rows.

Tip: Check the STATUS column of the IBMSNAP_APPLYTRAIL table. A value of

16 indicates that the Apply program processed the subscription set successfully, but

some of the allowable errors, which you defined in the apply_qualifier.sqs file,

occurred.

term

Default: term=y

The term parameter determines how the status of DB2 affects the operation of the

Apply program.

By default, the Apply program terminates if DB2 is stopped or quiesced.

Use term=n if you want the Apply program to wait for DB2 to start if DB2 is not

active. The Apply program will stay active and will reconnect until DB2 is started

or unquiesced.

Note: The term parameter is ignored if copyonce is specified.

trlreuse

Default: trlreuse=n

The trlreuse parameter specifies whether or not the IBMSNAP_APPLYTRAIL table

should be reused (appended to) or overwritten when the Apply program starts.

By default, when the Apply program starts, it appends entries to the Apply trail

table. This table contains the history of operations for all Apply instances at the

Apply control server. It is a repository of diagnostic and performance statistics.

Keep the default if you want the history of updates. In the following situations

you might want the Apply program to empty the Apply trail table when it starts

instead of appending to it (trlreuse=y):

v The Apply trail table is getting too large, and you want to clean it out to save

space.

v You don’t need the history that is stored in the table.

Tip: Instead of using trlreuse=y, you can use SQL processing after the Apply

program successfully completes a subscription set (where status=0) to delete rows

from the Apply trail table.

Methods of changing Apply operating parameters

You can change the default values for the operational parameters to values that

you typically use in your environment. You can also override these default values

when you start the Apply program.

Setting new default values in the IBMSNAP_APPPARMS table

 The IBMSNAP_APPPARMS table contains parameters that you can modify

to control the operation of the Apply program. After the table is created, it

contains the default values for the Apply program.

124 SQL Replication Guide and Reference

Specifying values for parameters when you start the Apply program

You can specify values for the Apply program when you start it. The

values that you set during startup control the behavior of Apply for the

current session, they override the default operational parameter values and

any values that might exist in the Apply parameters table. They do not

update the values in the Apply parameters table. If you do not modify the

Apply parameters table before you start the Apply program, and you do

not specify any of the optional parameters when you start the Apply

program, default values are used for the operational parameters.

 Example

Assume that you do not want to use the default settings for errwait for the Apply

qualifier ASNPROD. Update the Apply parameters table for the ASNPROD Apply

qualifier. Set the errwait interval to 600 seconds.

update asn.ibmsnap_appparms set errwait=600 where apply_qual=’ASNPROD’

Changing saved Apply parameters in the IBMSNAP_APPPARMS table

(z/OS, Linux, UNIX, Windows)

The IBMSNAP_APPPARMS table contains the saved operating parameters for the

Apply program. When you start the Apply program, it uses values from this table

unless you temporarily override these values using startup parameters.

About this task

Only one row is allowed for each Apply qualifier. If you want to change one or

more of the default values, you can update columns instead of inserting rows. If

you delete the row, the Apply program will still start using the shipped defaults,

unless those defaults are overridden by the startup parameters.

The Apply program reads this table only during startup; therefore, you should stop

and start the Apply program if you want the Apply program to run with the new

settings. Changing the Apply parameters table while the Apply program is running

will not change the operation of the Apply program.

Stopping the Apply program

When you stop the Apply program, it no longer copies data to the target tables,

and it updates the control tables to ensure that the program starts cleanly the next

time that you start it.

Procedure

To stop the Apply program:

Use one of the following methods:

 Option Description

Replication Center Use the Stop Apply window. To open the window, open the Apply

Control Servers folder in the Operations branch of the object tree

and click the Apply Qualifiers folder. In the contents pane,

right-click the Apply qualifier that represents the Apply program

that you want to start and click Stop Apply.

Chapter 10. Operating the Apply program for SQL replication 125

Option Description

asnacmd stop system

command

Use this command to stop Apply.

ENDDPRAPY system

command

Use the End DPR Apply (ENDDPRAPY) command to stop an

Apply program on your local system.

Modifying the ASNDONE exit routine (z/OS, Linux, UNIX, Windows)

You can customize the ASNDONE exit routine on Linux, UNIX, Windows, and

z/OS operating systems to modify the behavior of the Apply program after it

finishes processing subscriptions.

About this task

If you start the Apply program with the notify=y parameter, the Apply program

calls the ASNDONE exit routine after it finishes processing subscriptions,

regardless of whether the subscriptions were processed successfully. The following

list describes some examples of how you might modify the ASNDONE exit routine

to use it in your replication environment:

v Use the exit routine to examine the UOW table for rejected transactions and

initiate further actions (for example, send e-mail automatically to the replication

operator, issue a message, or generate an alert) if a rejected transaction is

detected.

v Use the exit routine to deactivate a failed subscription set so that the Apply

program avoids retrying that subscription set until it is fixed. To detect a failed

subscription set, modify the exit routine to look for STATUS= -1 in the

IBMSNAP_APPLYTRAIL table. To deactivate the subscription set, configure the

exit routine so that it sets ACTIVATE=0 in the IBMSNAP_SUBS_SET table.

v Use the exit routine to manipulate data after it is applied for each subscription

set. (Alternatively, you can define run-time processing statements using SQL

statements or stored procedures that run before or after the Apply program

processes a specific subscription set.)

Procedure

To use a modified version of the ASNDONE sample exit routine:

1. Modify the ASNDONE routine to meet your requirements.

v

See the PROLOG section of the sample program

SASNSAMP(ASNDONE).

v

See the PROLOG section of the sample program

(\sqllib\samples\repl\asndone.smp) for information about how to modify

this exit routine.
2. Compile, link, and bind the program and place the executable in the

appropriate directory.

3. Start the Apply program with the notify=y parameter to call the ASNDONE

exit routine.

126 SQL Replication Guide and Reference

Modifying the ASNDONE exit routine (System i)

You can customize the ASNDONE exit routine on System i operating systems to

modify the behavior of the Apply program after it finishes processing

subscriptions.

About this task

If you start the Apply program with the SUBNFYPGM parameter set to the name

of the ASNDONE exit routine, the Apply program calls the ASNDONE exit routine

after it finishes processing subscriptions, regardless of whether the subscriptions

were processed successfully. The following list describes some examples of how

you might modify the ASNDONE exit routine to use it in your replication

environment:

v Use the exit routine to examine the UOW table for rejected transactions and

initiate further actions (for example, send e-mail automatically to the replication

operator, issue a message, or generate an alert) if a rejected transaction is

detected.

v Use the exit routine to deactivate a failed subscription set so that the Apply

program avoids retrying that subscription set until it is fixed. To detect a failed

subscription set, modify the exit routine to look for STATUS= -1 in the

IBMSNAP_APPLYTRAIL table. To deactivate the subscription set, configure the

exit routine so that it sets ACTIVATE=0 in the IBMSNAP_SUBS_SET table.

v Use the exit routine to manipulate data after it is applied for each subscription

set. (You can also can define run-time processing statements using SQL

statements or stored procedures that run before or after the Apply program

processes a specific subscription set.)

Procedure

To use a modified version of the ASNDONE sample exit routine:

1. Modify the ASNDONE exit routine to meet your requirements. Table 9 indicates

where you can find the source code for this routine in C, COBOL, and RPG

languages:

 Table 9. Source code for ASNDONE

Compiler language Library name Source file name Member name

C QDP4 QCSRC ASNDONE

COBOL QDP4 QCBLLESRC ASNDONE

RPG QDP4 QRPGLESRC ASNDONE

When modifying the program, consider these activation group concerns:

If the program is created to run with a new activation group

The Apply program and the ASNLOAD program will not share SQL

resources, such as relational database connections and open cursors.

The activation handling code in the System i operating system frees

any resources allocated by the ASNLOAD program before control is

returned to the Apply program. Additional resource is used every time

that the Apply program calls the ASNLOAD program.

If the program is created to run in the caller’s activation group

It shares SQL resources with the Apply program. Design the program

so that you minimize its impact on the Apply program. For example,

Chapter 10. Operating the Apply program for SQL replication 127

the program might cause unexpected Apply program processing if it

changes the current relational database connection.

If the program is created to run in a named activation group

It does not share resources with the Apply program. Use a named

activation group to avoid the activation group overhead every time the

ASNLOAD program is called. Run-time data structures and SQL

resources can be shared between invocations. Application clean-up

processing is not performed until the Apply program is ended, so

design the subscription notify program to ensure that it does not cause

lock contention with the Apply program by leaving source tables, target

tables, or control tables locked when control is returned to the Apply

program.
2. Compile, link, and bind the program, and place the executable in the

appropriate directory.

3. Start the Apply program and specify the name of the ASNDONE program

using the parameter SUBNFYPGM on the STRDPRAPY command.

For example, if the program is named ASNDONE_1 and resides in library APPLIB,

use the following command:

SUBNFYPGM(APPLIB/ASNDONE_1)

Refreshing target tables using the ASNLOAD exit routine

You can use the ASNLOAD exit routine to perform a full refresh of target tables

more efficiently than the Apply program’s normal method of loading data into

targets.

By default, the Apply program does not use the ASNLOAD exit routine when it

performs a full refresh for each target table in a subscription set. It does a full

select against the source table, brings the data to a spill file on the server where the

Apply program is running, and uses INSERT statements to populate the target

table. If you have large source tables, you might want to use the ASNLOAD exit

routine instead.

The sample exit routine differs on each DB2 platform to take advantage of the

utility options offered on that platform:

The ASNLOAD exit routine is shipped as a sample exit routine in both a

source format and a compiled format.

ASNLOAD is shipped in a source format only.

 If an error occurs when the Apply program calls the ASNLOAD exit routine, the

Apply program issues a message, stops processing the current subscription set, and

processes the next subscription set.

Refreshing target tables with the ASNLOAD exit routine

(Linux, UNIX, Windows)

You can use the ASNLOAD exit routine to refresh target tables more efficiently on

Linux, UNIX, and Windows operating systems. You can also modify the routine

before using it.

128 SQL Replication Guide and Reference

Before you begin

v The target-table columns must match both the order and data type of the source

tables.

v The target table must contain only columns that are part of the replication

mapping.

v The user ID that runs Apply must be the user ID for the DB2 instance where

ASNLOAD runs. For example, on Linux and UNIX, make sure that both the

DB2 instance and Apply user ID are members of a common group. Next, set the

permission bits for the Apply starting directory to provide write access for the

DB2 instance using the chmod 775 command.

Restrictions

The ASNLOAD exit routine works with the EXPORT, IMPORT, and LOAD utilities,

including the LOAD FROM CURSOR function. LOAD FROM CURSOR is the

default option used by the ASNLOAD exit if the source for a subscription-set

member is a nickname, or if the target database is the same as the source database.

LOAD FROM CURSOR can also be used with DB2 data sources if the following

actions have been performed:

v A nickname for the source table was created in the target database.

v Columns in the IBMSNAP_SUBS_MEMBR table for the subscription-set member

were set to indicate that the LOAD FROM CURSOR function is to be used. The

value of these columns can be set using the Replication Center:

– The LOADX_TYPE column must be set to indicate the LOAD FROM

CURSOR function will be used.

– The LOADX_SRC_N_OWNER and LOADX_SRC_N_TABLE columns must

specify the source nickname information for the subscription-set member that

includes the source table.

About this task

When you invoke the sample exit routine, by default it chooses which utility to use

based on the source server, target server, and run-time environment. The routine

can use the DB2 EXPORT utility with either the DB2 IMPORT utility or the DB2

LOAD utility, or it can use the LOAD FROM CURSOR utility.

You can use the compiled exit routine, you can configure its behavior by

customizing the replication configuration, or you can customize the exit code itself.

You can customize the replication configuration by either updating columns in the

IBMSNAP_SUBS_MEMBR table or by updating a sample configuration file

(asnload.ini).

To use the ASNLOAD routine as provided, start the Apply program using the

loadxit=y parameter.

Procedure

To use a modified version of the ASNLOAD exit routine:

1. Modify the ASNLOAD routine to meet your site’s requirements. See the

PROLOG section of the sample program (\sqllib\samples\repl\asnload.smp)

for information about how to modify this exit routine.

Important: The sample source uses user ID and password combinations from

the asnload.ini file. If the asnload.ini file does not have a user ID and password

Chapter 10. Operating the Apply program for SQL replication 129

for a particular server, or if the asnload.ini file is not available, the exit will

attempt to connect without the user or using parameters.

2. Compile, link, and bind the program and place the executable in the

appropriate directory.

3. Set LOADX_TYPE to 2 for members that will be populated using the code you

provide.

4. Start the Apply program with the loadxit=y parameter to call the ASNLOAD

exit routine.

The ASNLOAD exit routine generates the following files in the apply_path

directory for the Apply instance that invoked the ASNLOAD exit routine:

asnload apply_qualifier.trc

This file contains trace information if the trace is turned on. The

ASNLOAD exit routine creates this file. If the file exists, information is

appended to the file.

asnload apply_qualifier.msg

This file contains general exit failure, warning, and informational messages,

including load statistics. The ASNLOAD exit routine creates this file. If the

file exists, information is appended to the file.

asnaEXPT apply_qualifier.msg

This file contains error, warning, or informational messages issued by the

DB2 EXPORT utility. The ASNLOAD exit routine creates this file. If the file

exists, information is appended to the file.

asnaIMPT apply_qualifier.msg

This file contains error, warning, or informational messages issued by the

DB2 IMPORT utility. The ASNLOAD exit routine creates this file. If the file

exists, information is appended to the file.

asnaLOAD apply_qualifier.msg

This file contains error, warning, or informational messages issued by the

DB2 LOAD utility. The ASNLOAD exit routine creates this file. If the file

exists, information is appended to the file.

Refreshing target tables with the ASNLOAD exit routine (z/OS)

You can use the ASNLOAD exit routine to refresh target tables more efficiently on

z/OS operating systems. You can also modify the routine before using it.

Before you begin

v The target-table columns must match both the order and data type of the source

tables.

v The target table must contain only columns that are part of the replication

mapping.

About this task

The ASNLOAD exit routine calls the LOAD FROM CURSOR utility that is

available with the DB2 V7 (or higher) Utilities Suite. The utility does cursor-based

fetches to get data from the source and loads the data to the target.

The ASNLOAD exit routine uses LOAD with LOG NO and resets the COPYPEND

status of the table space. You can modify the sample ASNLOAD source code to

change the load options. The source consists of two header files and three C++

programs.

130 SQL Replication Guide and Reference

To use the ASNLOAD routine as provided, start the Apply program using the

loadxit=y parameter.

Procedure

To use a modified version of the ASNLOAD exit routine:

1. Modify the routine to meet your site’s requirements. See the PROLOG section

of the sample program SASNSAMP(ASNLOAD) for information about how to

modify this exit routine.

2. Compile, link, and bind the program and place the executable in the

appropriate directory.

a. Make sure that the following conditions are met:

v DB2 Universal Database™ for z/OS and OS/390 Version 7 or later, with

utility support, is installed.

v DSNUTILS stored procedure is running. DSNUTILS must run in a WLM

environment. For more information about using DSNUTILS, see the DB2

for z/OS V8 Utility Guide and Reference.
b. Use the sample zmak file (SASNSAMP(ASNCMPLD)) to compile and

linkedit the ASNLOAD user exit program in USS.

c. Bind the ASNLOAD exit routine with DSNUTILS and the Apply package.

The sample ASNLOAD runs load with LOG NO and then repairs the table

space to set nocopypend. It does not back up the table spaces. By default,

ASNLOAD creates two temporary files under the user ID that is running

the instance of the Apply program, unless the apply_path parameter with

the APPLY_PATH=// option is specified for that Apply instance. If this is

the case, then two temporary files will be created under the high level

qualifier specified in APPLY_PATH. The routine also creates a file that

contains all the information regarding the load.
3. Set loadx_type = 2 for members that will be populated using the code you

provided.

4. Start the Apply program with the loadxit=y parameter to call the ASNLOAD

exit routine.

The ASNLOAD exit routine generates the following files in the apply_path

directory or HLQ for the Apply instance that invoked the ASNLOAD exit routine:

userid.apply_qual.LOADMSG

This file contains failure, warning, and informational messages, including

load statistics. The ASNLOAD exit routine creates this file. If the file exists,

information is appended to the file.

userid.apply_qual.LOADTRC

This file contains trace information if the trace is turned on. The

ASNLOAD exit routine creates this file. If the file exists, information is

appended to the file.

Customizing ASNLOAD exit behavior (z/OS, Linux, UNIX,

Windows)

In addition to customizing the exit code itself, you can customize the behavior of

the ASNLOAD exit routine by either updating columns in the

IBMSNAP_SUBS_MEMBR table or by updating a configuration file.

Chapter 10. Operating the Apply program for SQL replication 131

Using the IBMSNAP_SUBS_MEMBR table to set ASNLOAD

options

You can use columns in the IBMSNAP_SUBS_MEMBR table to customize the

behavior of the ASNLOAD exit routine.

About this task

Use the LOADX_TYPE column to specify a load option. The valid values for

LOADX_TYPE are:

null (default)

Use the LOAD FROM CURSOR utility.

The ASNLOAD exit routine determines the most

appropriate utility (option 3, 4, or 5).

1 Do not call ASNLOAD exit routine for this member.

 Set LOADX_TYPE to 1 if you do not want the ASNLOAD exit routine to

be called for that member.

2 Provide your own exit logic.

 If you want to provide your own logic in the ASNLOAD exit routine, set

LOADX_TYPE to 2 for those subscription set members that you want

populated by the ASNLOAD exit routine. If you set LOADX_TYPE to 2

but you do not provide exit logic, the exit will fail.

3 Use the LOAD FROM CURSOR utility.

The LOAD FROM CURSOR function requires a

SELECT statement to fetch the data that is to be loaded to the target table

(the target table must reside in a local database). This statement can refer

either to a DB2 table or to a nickname, and the setup must be as follows:

 If you are replicating from a non-IBM source to a DB2 table where the

registered source nickname is on a different database from the target

database or if you are replicating from a DB2 table to another DB2 table

and the source database is different from the target database, you need to

do the following steps:

1. Create a nickname for the source table(s) in the target server database.

2. Update the nickname owner and the table name columns

(LOADX_SRC_N_OWNER and LOADX_SRC_N_TABLE) of the

IBMSNAP_SUBS_MEMBR table.

If you are replicating from a DB2 table to another DB2 table and the source

and target database are the same, or if you are replicating from a non-IBM

source to a DB2 table where the registered source nickname is on the same

database as the target database, no additional actions are needed to use the

LOAD FROM CURSOR utility.

4

Use a combination of the EXPORT utility and the LOAD utility.

5

Use a combination of the EXPORT utility and the IMPORT utility.

132 SQL Replication Guide and Reference

Using the configuration file for ASNLOAD (Linux, UNIX,

Windows)

You can use an optional configuration file to configure input to the ASNLOAD exit

routine. This file is not required for ASNLOAD to run.

About this task

The configuration file must have the file name asnload.ini. The ASNLOAD exit

routine looks for this optional configuration file in the directory specified by the

apply_path parameter.

Procedure

To use the ASNLOAD configuration file:

1. Edit the sample file sqllib/samples/repl/asnload.ini.

2. Store the file in the directory specified by the apply_path parameter for the

Apply instance that invoked the ASNLOAD exit routine.

Refreshing target tables with the ASNLOAD exit routine

(System i)

You can use the ASNLOAD exit routine to refresh target tables more efficiently on

System i. You can also modify the routine before using it.

Before you begin

v The target-table columns must match both the order and data type of the source

tables.

v The target table can only contain columns that are part of the replication

mapping.

About this task

For example, if you are copying every row and every column from a source table

to a target table, you can design a full-refresh exit routine that uses a Distributed

Data Management (DDM) file and the Copy File (CPYF) CL command to copy the

entire file from the source table to the target table.

To use the ASNLOAD exit routine as provided, start the Apply program using the

FULLREFPGM parameter.

Procedure

To use a modified version of the ASNLOAD exit routine:

1. Modify the ASNLOAD exit routine to meet your site’s requirements. See the

PROLOG section of the sample program for information about how to modify

this exit routine. The source is available in C, COBOL, and RPG languages, as

shown in Table 10.

 Table 10. Source code for ASNLOAD

Compiler language Library name Source file name Member name

C QDP4 QCSRC ASNLOAD

COBOL QDP4 QCBLLESRC ASNLOAD

RPG QDP4 QRPGLESRC ASNLOAD

Chapter 10. Operating the Apply program for SQL replication 133

2. Compile, link, and bind the program and place the executable in the

appropriate directory. To avoid interference with the Apply program, compile

the exit routine so that it uses a new activation group (not the activation group

of the caller).

You can compile the exit routine with a named activation group or with a new

activation group. To get better performance, use a named activation group.

With a named activation group, the exit routine must commit or roll back

changes as needed. The Apply program will not cause changes to be committed

or rolled back (unless it ends). The exit routine should either explicitly commit

changes, or it should be compiled to implicitly commit changes when it

completes. Any uncommitted changes when the exit routine completes are not

committed until either:

v The Apply program calls another exit routine with the same activation

group.

v The job started for the Apply program ends.
3. Start the Apply program with the FULLREFPGM parameter set to the name of

the ASNLOAD program. When you start the Apply program, it uses the

ASNLOAD exit routine that you specified. If you want it to use another

ASNLOAD exit routine, end the Apply program and start it again.

When you run the ASNLOAD exit routine, it refreshes all the target tables, table by

table.

134 SQL Replication Guide and Reference

Chapter 11. Operating the replication programs (z/OS)

The following topics describe operating the replication programs on the z/OS

operating system.

Using system-started tasks to operate the replication programs

You can use system-started tasks to operate the Capture program, Apply program,

and the Replication Alert Monitor.

Procedure

To use system started tasks to operate the replication programs, use this example

from the Capture program:

1. Create a procedure procname in your PROCLIB.

2. Create an entry in the RACF® STARTED class for the procname. This entry

associates the procname with the RACF user ID to be used to start the Capture

program. Make sure that the necessary DB2 authorization is granted to this

user ID before you start the Capture program.

3. From the MVS™ system console, run the command start procname.

The following sample procedure is for the Capture program:

//CAPJAYC PROC

//ASNCAP EXEC PGM=ASNCAP,REGION=M,

//PARM=’V71A autostop LOGSTDOUT startmode=COLD

//capture_schema=JAY logreuse’

//STEPLIB DD DISP=SHR,DSN=DPROPR.ASN81 .SASNLOAD

//DD DISP=SHR,DSN=SYS1.SCEERUN

//DD DISP=SHR,DSN=DSN7.SDSNLOAD

//CEEDUMP DD SYSOUT=

//SYSPRINT DD SYSOUT=

//SYSTERM DD DUMMY

//

Using JCL to operate replication programs

On z/OS, you can use JCL to start, stop, and modify running replication programs.

This allows you to save scripts if you will perform the operation repeatedly.

About this task

The SQL replication V9 samples library contains sample JCL and scripts.

Recommendation: Copy the jobs from the SASNSAMP library to a different

library before making changes. See the Program Directory for a complete list of the

sample jobs found in the SASNSAMP library.

Procedure

To operate the replication programs with JCL:

© Copyright IBM Corp. 1994, 2007 135

1. Start the replication programs.

 Option Description

Start the Capture

program with a batch

job.

Prepare the JCL for z/OS by specifying the appropriate optional

invocation parameters in the PARM field of the ASNSTRC batch

job. Run the job from TSO or the z/OS console. You can find the

job in the SASNSAMP sample library.

Start the Apply

program with a batch

job.

Prepare the JCL for z/OS by specifying the appropriate optional

invocation parameters in the PARM field of the ASNSTRA batch

job. Run the job from TSO or the z/OS console. You can find the

job in the SASNSAMP sample library.

Start the Replication

Alert Monitor with a

batch job.

Prepare the JCL for z/OS by specifying the appropriate optional

invocation parameters in the PARM field of the ASNSTRM batch

job. Run the job from TSO or the z/OS console. You can find the

job in the SASNSAMP sample library.

Start the Replication

Alert Monitor with

JCL.

Prepare the JCL for z/OS by specifying the appropriate invocation

parameters in the PARM field of the Replication Alert Monitor job.

Customize the JCL to meet your site’s requirements. A sample of

invocation JCL in library SASNSAMP(ASNMON#) is included with

the Replication Alert Monitor for z/OS.

An example of this line in the invocation JCL is:

//monasn EXEC PGM=ASNMON,PARM=’monitor_server=DSN

 monitor_qual=monqual’

where DSN is a subsystem name and monqual is the monitor

qualifier.

2. Optional: Modify replication programs that have already started.

After you start the Capture program, the Apply program, or the Replication

Alert Monitor program, you can use the MODIFY command to stop the

program or to perform related tasks. You must run the MODIFY command

from an MVS console. You can use the abbreviation F, as shown in the

following syntax example:

�� F jobname , Parameters ��

Basically, F jobname , replaces the actual command name: asnacmd, asnccmd,

or asnmcmd. For example, to stop the Capture program you would use the

following command:

F capjfa,stop

For information about MODIFY, see z/OS MVS System Commands.

Starting the Apply program on z/OS with JCL

You can start the Apply program on z/OS by modifying and running a prepared

sample script from your samples directory.

Procedure

To start the Apply program on z/OS with JCL:

1. Prepare the JCL for z/OS by specifying the appropriate invocation parameters

in the PARM field of the Apply job.

2. Customize the JCL to meet your site’s requirements.

For z/OS operating systems, an example of this line in the invocation JCL is:

136 SQL Replication Guide and Reference

//apyasn EXEC PGM=ASNAPPLY,PARM=’control_server=CTLDB1

 DB2_SUBSYSTEM=DSN

 apply_qual=myqual spillfile=disk’

For UNIX and Window operating systems, an example of this line in the

invocation JCL is:

//apyasn EXEC PGM=ASNAPPLY,PARM=’control_server=CTLDB1

 apply_qual=myqual spillfile=disk’

3. Submit the JCL from TSO or from the MVS console.

Starting the Capture program on z/OS with JCL

You can start the Capture program on z/OS by modifying and running a prepared

sample script from your samples directory.

Procedure

To start the Capture program on z/OS with JCL:

1. Prepare the JCL for z/OS.

a. Specify the appropriate optional invocation parameters in the PARM field of

the Capture job.

b. If you did not set the TZ environment variable in either the system-wide

/etc/profile file or in the .profile file in the home directory of the user

running the replication program, you must set the TZ and language

environment variables in the JCL. For more information about setting the

TZ variable, see the WebSphere Information Integration Replication Installation

and Customization Guide for z/OS.

The following example of this line in the invocation JCL includes setting the TZ

and LANG variables:

//CAPJFA EXEC PGM=ASNCAP, PARM=’ENVAR(’TZ=PST8PDT’,’LANG=en_US’)/

 DSN6 cold capture_schema=JFA autostop’

2. Submit the JCL from TSO or from the MVS console.

Using Automatic Restart Manager (ARM) to automatically restart

replication and publishing (z/OS)

You can use the Automatic Restart Manager (ARM) recovery system on z/OS to

restart the Q Capture, Q Apply, Capture, Apply, and Replication Alert Monitor

programs.

Before you begin

Ensure that ARM is installed and that the replication programs are set up correctly.

To use ARM with a replication program, ensure that the program is APF

authorized. For example, to use ARM with the Q Apply, Apply, or Replication

Alert Monitor program, you must copy the appropriate load module into an APF

authorized library. (The Q Capture and Capture programs must be APF authorized

regardless of whether or not you are using ARM.)

About this task

ARM is a z/OS recovery function that can improve the availability of specific

batch jobs or started tasks. When a job or task fails, or the system on which it is

running fails, ARM can restart the job or task without operator intervention.

Chapter 11. Operating the replication programs (z/OS) 137

ARM uses element names to identify the applications with which it works. Each

ARM-enabled application generates a unique element name for itself that it uses in

all communication with ARM. ARM tracks the element name and has its restart

policy defined in terms of element names. For details about setting up ARM, see

z/OS MVS Sysplex Services Guide.

Procedure

To use ARM to automatically restart replication and publishing programs:

1. Specify one of the following element names when you configure ARM:

 Program Element name

Q Capture ASNQCxxxxyyyy

Q Apply ASNQAxxxxyyyy

Capture ASNTC xxxxyyyy

Apply ASNTA xxxxyyyy

Replication Alert Monitor ASNAM xxxxyyyy

Where xxxx is the DB2 subsystem name and yyyy is the data-sharing member

name (the latter is needed only for data-sharing configurations). The element

name is always 16 characters long, padded with blanks.

2. Optional: If you have more than one instance of a replication or publishing

program running within a data-sharing member, specify the arm parameter

when you start the programs to create a unique ARM element name for each

program instance.

The arm parameter takes a three-character value that is appended to the

element names that are listed in the previous table. The syntax is arm=zzz,

where zzz can be any length of alphanumeric string. The replication program,

however, will concatenate only up to three characters to the current name and

pad with blanks, if necessary, to make a unique 16-byte name.

The replication programs use the element name to register with ARM during

initialization. They do not provide ARM with an event exit when they register. The

event exit is not needed because the replication programs do not run as a z/OS

subsystem. ARM restarts registered programs if they terminate abnormally (for

example, if a segment violation occurs). A registered replication program

de-registers if it terminates normally (for example, due to a STOP command) or if

it encounters an invalid registration.

Tip: If you start the Q Capture, Q Apply, Capture, Apply, or Replication Alert

Monitor program using the parameter term=n, the program does not stop when

DB2 is quiesced or stopped. In this case, the program does not de-register from

ARM. It continues to run but does not perform its actual work until DB2 is

unquiesced or started.

Migrating your replication environment to data-sharing mode (z/OS)

If the Capture program is running in non-data sharing mode but you migrate your

installation to data-sharing mode, you must prepare your systems to run in a

Sysplex by running the ASNPLXFY utility once.

Before you begin

138 SQL Replication Guide and Reference

Use either the same user ID that you use to run the Capture program, or one that

has the same privileges. Ensure that the ASNPLXFY utility is APF authorized. The

ASNPLXFY plan must be bound to the subsystem. Also, the subsystem must be

running in data sharing mode. For details about binding this utility, see the

Program Directory.

About this task

Run this utility on the data sharing configuration before warm-starting the Capture

program so that the Capture program starts at the correct LRSN. This utility

migrates the data in the IBMSNAP_RESTART table. It converts the non-data

sharing log sequence numbers (RBA) to the equivalent sequence numbers (LRSN)

in a data-sharing environment.

Procedure

To run the ASNPLXFY utility in the USS data-sharing environment:

1. Stop the Capture program.

2. Issue the ASNPLXFY command from a command line. Here is an example:

ASNPLXFY yoursubsystem captureschema

where the name of the subsystem is required and the Capture schema is

optional. The default Capture schema is ASN.

3. Warm-start the Capture program.

Chapter 11. Operating the replication programs (z/OS) 139

140 SQL Replication Guide and Reference

Chapter 12. Changing an SQL replication environment

The following topics explain procedures and issues and for making day-to-day

changes to a Q replication environment.

Registering new objects

You can register a new table, view, or nickname in your replication environment at

any time. You do not need to reinitialize the Capture program.

About this task

A new registered object is automatically initialized by the Capture program the

first time that the Apply program processes a subscription set that refers to that

object. The Apply program signals the Capture program to begin capturing

changes for this new object.

Procedure

To register new objects:

Use one of the following methods to register new objects:

 Method Desrcription

ASNCLP

command-line

program

Use the CREATE REGISTRATION command to register a source

table, view, or nickname. For example, the following commands set

the environment and register the DEPARTMENT table in the DB2

SAMPLE database for full refresh replication.

SET SERVER CAPTURE TO DB SAMPLE;

SET OUTPUT CAPTURE SCRIPT "registernew.sql";

SET LOG "registernew.err";

SET RUN SCRIPT LATER;

CREATE REGISTRATION (DB2ADMIN.DEPARTMENT) FULL REFRESH ONLY;

Replication Center Use one of the following windows:

v Registered Table Properties notebook

v Registered View Properties notebook

v Registered Nickname Properties notebook

To open the windows, click the Registered Tables, Registered

Views, or Registered Nicknames folder in the object tree under a

Capture control server, right-click the registered object in the

contents pane, and select Properties.

ADDDPRREG system

command

Use the Add DPR registration (ADDDPRREG) command to register

a new table on System i.

© Copyright IBM Corp. 1994, 2007 141

Changing registration attributes for registered objects

You can change the registration attributes of existing registered objects at any time.

Procedure

To change registration attributes for registered objects:

1. Change the attributes by using one of the following methods.

 Method Description

ASNCLP

command-line

program

Use the ALTER REGISTRATION command to change the

properties of a registered object. For example, the following

commands set the environment and change the registration for the

STAFF table in the DB2 SAMPLE database so that updates are

captured as delete-insert pairs:

SET SERVER CAPTURE TO DB SAMPLE;

SET OUTPUT CAPTURE SCRIPT "register.sql";

SET LOG "register.err";

SET RUN SCRIPT LATER;

ALTER REGISTRATION (DB2ADMIN.STAFF)

UPDATE AS DELETE INSERT ON;

Replication Center Use one of the following windows:

v Registered Table Properties notebook

v Registered View Properties notebook

v Registered Nickname Properties notebook

To open the windows, click the Registered Tables, Registered

Views, or Registered Nicknames folder in the object tree under a

Capture control server, right-click the registered object in the

contents pane, and select Properties.

2. After you change the attributes, reinitialize the Capture program.

Adding columns to source tables

If you need to add columns to a registered source table, first consider how DB2

replication uses this table. If you need to replicate the new columns in this source

table, you must ensure that the existing Capture and Apply programs recognize

the new columns and continue processing without interruption.

Before you begin

Before using this procedure, familiarize yourself with the structures of your source,

change-data (CD), and target tables and with the registrations and subscription sets

defined on your system.

Restrictions

Do not use these steps if you are adding columns to a System i

table that uses a relative record number (RRN) as the primary key. The RRN must

be the last column in the CD table. When adding columns to a System i table with

an RRN, remove the registration, add the column to the source table, and then add

this table again as a new registration specifying that the RRN will be captured.

You cannot use these steps to add columns to registered sources on non-DB2

relational databases. A registration for a non-DB2 relational source includes a set of

142 SQL Replication Guide and Reference

triggers used for capturing changes. You cannot alter these triggers. Therefore, if

you need to add new columns to this source table and need to replicate the data in

these columns, you must drop and recreate the existing registered source.

About this task

You might need to perform special processing steps depending on whether or not

you want to replicate the data in the new columns.

Not replicated

If you do not want to replicate the data in the new columns, you do not

need to perform any special processing steps. The Capture program

immediately recognizes the changes and continues running.

Replicated

If you want to replicate the data in these new columns, follow these steps

to ensure that the new column data is captured and that the Capture and

Apply programs continue to run without errors.

Procedure

To add columns to source tables:

 1. Quiesce all activity against the source table that you want to alter.

 2. Stop the Capture program.

 3. Optional: If you need to keep the Capture program active during this

procedure, insert a USER signal in the IBMSNAP_SIGNAL table after stopping

activity against the source table. Wait for the Capture program to process the

USER signal. After the Capture program processes the USER signal, the

Capture program has no more activity to process against the associated CD

table and no longer requires access to this CD table.

 4. Deactivate all subscription sets that subscribe to this source table from the

Replication Center.

Note: If you do not want to deactivate the subscription sets during this

process, verify that no Apply programs associated with these subscriptions

sets will be running against this source table when you are adding the new

columns. Alternatively, ensure that these Apply programs have processed data

up to the signal log sequence number (LSN) that is associated with the prior

USER signal.

The methods in this step ensure exclusive access to the CD table so that you

can alter the table.

 5. Submit an ALTER TABLE ADD statement in SQL to add the new columns to

the source table.

 6. Add the new columns to the CD table by using the ALTER REGISTRATION

command in the ASNCLP command-line program or the Registered Table

Properties notebook in the Replication Center. The Capture program

automatically reinitializes the registration and captures the changes to these

new columns when the Capture program first reads log data with the new

columns.

 7. Submit an ALTER TABLE ADD statement in SQL to add the new columns to

the target table.

 8. Deactivate any associated subscription sets that you did not already deactivate

from the Replication Center. If absolutely necessary, you can now resume

activity against this source table. However, because the associated

Chapter 12. Changing an SQL replication environment 143

subscriptions sets have not yet been changed, you must keep these

subscription sets deactivated so that you do not lose any changes made to

these new columns.

 9. Add the new columns to the associated subscription-set members by using the

ALTER MEMBER ADD COLS command in the ASNCLP command-line

program or the Add Column to Target Table window in the Replication

Center.

10.

If you are running the Apply program

with opt4one set to y, stop and then restart the Apply program.

11. Reactivate the subscription sets.

Stop capturing changes for registered objects

You should deactivate a registered object before you delete it to ensure that the

Capture programs finish any necessary processing of the object. Also, you can

deactivate a registered object if you want to stop capturing changes for this object

temporarily but need to keep your Capture programs running for other registered

objects.

Restrictions

You can deactivate only DB2 registered objects that are defined as Capture

program sources.

You cannot deactivate non-DB2 relational database objects that are used by

Capture triggers.

About this task

The Capture program stops capturing changes for the source objects that have been

deactivated; however, the change-data (CD) tables, registration attributes, and

subscription sets that are associated with these source objects remain on the

system.

Before you deactivate a registered object, you should deactivate all of the

subscriptions sets that are associated with this registered object. This ensures that

your Apply programs will not interfere with the deactivation process by

automatically reactivating the object before you delete it or before you are ready to

reactivate it.

All subscription sets that are associated with the registered object are affected

when the object is deactivated and when SQL replication stops capturing changes

for that object. If you want to continue running these subscription sets, you must

remove the subscription-set members that use this registered object as a source

from the deactivated subscription sets.

Procedure

To deactivate a registered object:

1. Deactivate all associated subscription sets using the Replication Center. Click

the Subscription Sets folder, right-click the active subscription sets in the

contents pane and select Deactivate.

144 SQL Replication Guide and Reference

2. Deactivate the registered object using one of the following methods:

 Method Description

Replication Center Click the Registered Tables folder, right-click the registered table

in the contents pane and select Stop Capturing Changes.

SQL Manually insert a CAPSTOP signal into the IBMSNAP_SIGNAL

table.

Making registrations eligible for reactivation

When you reactivate a registration, the Capture program reactivates the

registration after the Apply program sends a CAPSTART signal. If, however, the

Capture program deactivates a registration because of an unexpected error, you

must take special action to reactivate the registration.

Before you begin

Read the error messages that were generated by the Capture program regarding

any deactivated registrations.

Familiarize yourself with the structure of the Capture control tables and with the

Capture programs running on your system.

About this task

Unexpected errors can cause the Capture program to set the value of the STATE

column to S (Stopped) in the IBMSNAP_REGISTER table if the STOP_ON_ERROR

column value for this registration is set to N. This STATE column value indicates

that the Capture program stopped processing this registration and that the

registration must be repaired. The Apply program does not issue a CAPSTART

signal for any registration that is in a stopped state.

Procedure

To correct unexpected errors and make registration eligible for reactivation:

1. Change your registration by using the information contained in the error

messages.

2. From the Capture control server, run the following SQL script to reset the

STATE column in the IBMSNAP_REGISTER table:

UPDATE schema.IBMSNAP_REGISTER

 SET STATE = ’I’

 WHERE

 SOURCE_OWNER = ’SrcSchema’ AND

 SOURCE_TABLE = ’SrcTbl’ AND

 SOURCE_VIEW_QUAL = SrcVwQual AND

 STATE = ’S’;

where schema is the name of the Capture schema, SrcSchema is the registered

source table schema, SrcTbl is the name of the registered source table, and

SrcVwQual is the source-view qualifier for this source table. After the STATE

column is set to I (Inactive), the Capture program is ready to begin capturing

data as soon as a CAPSTART signal is received, usually from the Apply

program.

Chapter 12. Changing an SQL replication environment 145

Suppose that the source table for an active registration was inadvertently altered to

DATA CAPTURE NONE (and should be DATA CAPTURE CHANGES). Also,

suppose that this registration was defined with STOP_ON_ERROR = ’N’, which

specifies that the Capture program will not stop when it encounters errors. At the

next restart or reinitialization of the Capture program, the Capture program will

recognize this incorrect condition of the source table and will set the STATE

column to S (Stopped) in the IBMSNAP_REGISTER table for this registration. You

will receive an error message when the Apply program tries to process the

corresponding subscription set, because the registration will be in a stopped state.

You must:

v Correct the setting of the source table through SQL by submitting an ALTER

TABLE statement that resets the table option to DATA CAPTURE CHANGES.

v Manually reset the registration from a stopped state to an inactive state, using

the above SQL script.

The Apply program will then perform a full refresh of the entire subscription set.

Removing registrations

If you remove a registration, SQL replication removes the registration of the object,

drops the associated change-data (CD) or consistent-change data (CCD) tables, and

drops the CCD object nickname and any Capture triggers for non-DB2 relational

database sources. The actual source table or view remains in the database.

Before you begin

v Deactivate the registration to ensure that the Capture program finishes any

current processing of this object.

v Deactivate the subscription sets associated with the source.

About this task

Important: Deactivation is an asynchronous process. Be sure that the deactivation

process finishes before you remove the object.

If changes are made while the Capture program is running, these changes will not

be recognized by the Capture program until you either reinitialize, or stop and

restart the Capture program.

Procedure

To remove registrations, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the DROP REGISTRATION command to drop one or more

registrations. For example, the following commands set the

environment and drop the registration for the DEPARTMENT table

in the DB2 SAMPLE database:

SET SERVER CAPTURE TO DB SAMPLE;

SET OUTPUT CAPTURE SCRIPT "dropregis.sql";

SET LOG "dropregis.err";

SET RUN SCRIPT LATER;

DROP REGISTRATION (DB2ADMIN.DEPARTMENT);

146 SQL Replication Guide and Reference

Method Description

Replication Center Use the Delete Registered Tables or Delete Registered Views

windows. To open the windows, click the Registered Tables

orRegistered Views folder in the object tree under a Capture

control server, right-click the registered object in the contents pane,

and select Delete.

RMVDPRREG system

command

Use the Remove DPR registration (RMVDPRREG) command to

remove a single source table from the IBMSNAP_REGISTER table.

Changing Capture schemas

You can change an existing Capture schema.

Before you begin

v Familiarize yourself with the SQL replication control tables and with the

subscription sets that are defined on your system.

v Determine the new Capture schema name.

v Verify that your Capture control server and all of the Apply control servers that

are associated with this Capture control server have been migrated to Version 8

or later.

Restrictions

You should not use this procedure if your source server is a non-DB2 relational

database.

About this task

Tip: If you set up monitoring definitions or started Replication Alert Monitor

programs under the Capture schema that you are going to change, drop these

monitoring definitions. After you change the Capture schema, recreate the

monitoring definitions with the new Capture schema name. Then, you can

reinitialize the associated monitors using the asnmcmd reinit system command.

You can also stop the monitors by using the asnmcmd stop system command and

then restart the programs using the asnmon system command.

Procedure

To change capture schemas:

1. Create control tables for a new Capture schema.

2. Stop the Capture program.

3. Deactivate all associated subscription sets by using the Replication Center.

4. From the Apply control server, run the following SQL statement to change the

Capture schema names for the associated subscription sets with source tables

that belong to this Capture schema:

UPDATE ASN.IBMSNAP_SUBS_SET

 SET CAPTURE_SCHEMA = ’NewSchema’

 WHERE

 CAPTURE_SCHEMA = ’ExistingSchema’;

Chapter 12. Changing an SQL replication environment 147

where NewSchema is the new Capture schema name, and ExistingSchema is the

name of the Capture schema that you are changing.

5. If you created subscription sets with target tables (for example, CCD or replica

type tables) that are registered in this Capture schema, run the following SQL

statement from the Apply control server to change the target schema name of

these subscription sets:

UPDATE ASN.IBMSNAP_SUBS_SET

 SET TGT_CAPTURE_SCHEMA = ’NewSchema’

 WHERE

 TGT_CAPTURE_SCHEMA = ’ExistingSchema’;

where NewSchema is the new Capture schema name, and ExistingSchema is the

name of the Capture schema that you are changing.

6. From the Capture control server, run an SQL statement to copy the active

information from each existing Capture control table to each new

corresponding Capture control table that you created in step 1. For example, to

copy the active information to the IBMSNAP_REGISTER table:

INSERT INTO NewSchema.IBMSNAP_REGISTER

 SELECT * FROM

 ExistingSchema.IBMSNAP_REGISTER;

where NewSchema is the new Capture schema name, and ExistingSchema is the

name of the Capture schema that you are changing.

Repeat this step for each existing Capture control table, including some or all of

the following tables:

v IBMSNAP_CAPMON

v IBMSNAP_CAPPARMS

v IBMSNAP_CAPTRACE

v IBMSNAP_PRUNCNTL

v IBMSNAP_PRUNE_SET

v IBMSNAP_REG_EXT (System i only)

v IBMSNAP_REGISTER

v IBMSNAP_RESTART

v IBMSNAP_SIGNAL

v IBMSNAP_UOW

You do not need to repeat this step for the IBMSNAP_CAPENQ (on UNIX,

Windows, z/OS) or the IBMSNAP_PRUNE_LOCK control table, because there

are no rows in these tables.Do not change the CD tables.

7. Drop the existing schema and its associated Capture control tables using the

Replication Center or ASNCLP.

8. Restart the Capture program with the new schema name.

9. Reactivate the associated subscription sets using the Replication Center.

Creating new subscription sets

You can create new subscription sets and add new subscription-set members to

sets at any time for an existing registered object.

Before you begin

Before you create a new subscription set, register the tables or views that you want

to use as sources.

148 SQL Replication Guide and Reference

Restrictions

If the corresponding Apply program is active, do not activate the new subscription

set until the subscription set is fully defined.

About this task

This procedure addresses the addition of a new subscription set, with or without

subscription-set members.

Procedure

To create a new subscription set, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE SUBSCRIPTION SET command to create an

empty set.

Replication Center Use the Create Subscription Set notebook to create a set and add a

member or to create an empty set.

To open the notebook, expand the Apply control server where the

set will be defined, right click the Subscription Sets folder and

click Create.

ADDDPRSUB system

command

Use the Add DPR subscription set (ADDDPRSUB) command to

create a subscription set with either one member or no members.

Adding new subscription-set members to existing subscription sets

You can add one or more members that each use the same source table to one or

more existing subscription sets. For example, if you select three subscription sets,

you can add one member to each of those subscription sets, all of them using the

same replication source.

About this task

When you add a member to a subscription set, you are inserting information about

the new member into the Apply control tables. In most cases, the Apply program

will read this information at the beginning of the next Apply cycle.

However, if you add a member to a subscription set that is being processed with

the OPT4ONE option on Linux, UNIX, Windows, or z/OS or with the

OPTSNGSET option on System i, you must stop the Apply program for the

subscription set and then restart it. If you process a set with the OPT4ONE option,

the Apply program reads into memory the control table information for the set so

that it does not need to go to the control tables to read the information for the set

at the beginning of each Apply cycle.

If the source table for the member is registered for differential replication and the

Capture program is already running, you do not need to stop or reinitialize the

Capture program before you add the member. Because the added member must

use a registered table as its source, the Capture program will already be capturing

changes for it.

Chapter 12. Changing an SQL replication environment 149

Procedure

To add new subscription-set members to existing subscription sets, use one of the

following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE MEMBER command to add a subscription-set

member to an existing subscription set.

Replication Center Use the Add Member to Subscription Set notebook.

To open the notebook, click the Registered Tables folder. In the

contents pane, right-click a registered table that you want to use

and click Add Member.

ADDDPRSUBM

system command

Use the Add DPR subscription-set member (ADDDPRSUBM)

command to add a member to an existing subscription set.

Disabling subscription-set members from existing subscription sets

If you want the Apply program to ignore a failing subscription-set member and

continue processing the rest of the subscription set, you must disable the failing

subscription-set member.

About this task

If there is a problem replicating to a table in the subscription set, the Apply

program inserts an error messages into the IBMSNAP_APPLYTRAIL table and

continues processing other members in the Apply cycle.

Procedure

To disable a subscription-set member, issue the following SQL UPDATE statement:

UPDATE ASN.IBMSNAP_SUBS_MEMBR

 SET MEMBER_STATE = ’D’

 WHERE APPLY_QUAL= apply_qualifier

 SET_NAME = set_name

 WHOS_ON_FIRST = whos_on_first

 SOURCE_OWNER = source_owner

 SOURCE_TABLE = source_table

 SOURCE_VIEW_QUAL = source_view_qualifier

 TARGET_OWNER = target_owner

 TARGET_TABLE = target_table

The Apply program will not process this member until the member is re-enabled.

Enabling subscription-set members to existing subscription sets

You can add or re-enable disabled members in a subscription set by changing the

MEMBER_STATE to N (new).

Procedure

To re-enable a subscription-set member, issue the following SQL UPDATE

statement:

150 SQL Replication Guide and Reference

UPDATE ASN.IBMSNAP_SUBS_MEMBR

 SET MEMBER_STATE = ’N’

 WHERE APPLY_QUAL= apply_qualifier

 SET_NAME = set_name

 WHOS_ON_FIRST = whos_on_first

 SOURCE_OWNER = source_owner

 SOURCE_TABLE = source_table

 SOURCE_VIEW_QUAL = source_view_qualifier

 TARGET_OWNER = target_owner

 TARGET_TABLE = target_table

Changing properties of subscription sets

You can change the properties of a subscription set while Apply continues to run

and process other sets, and then reactivate the set before the next Apply cycle.

About this task

The following list describes attributes that you might need to change:

v Schedules for applying updates (time-based replication or event-based

replication)

v Subscription statements

v WHERE clause predicates of subscription-set members

v Commit count

v Data blocking value (MAX_SYNCH_MINUTES)

By first deactivating the subscription set, you prevent the Apply program from

processing the set while you enter your changes. The Apply program recognizes

your subscription set changes during the next Apply cycle after you reactivate the

set.

Procedure

To change the properties of a subscription set:

1. Deactivate the subscription set by using the Replication Center.

2. Use one of the following methods to change the subscription set:

 Method Description

ASNCLP

command-line

program

Use the ALTER SUBSCRIPTION SET command.

The following commands set the environment and change the

subscription set SET00 to lower the timing interval to 15 minutes:

SET SERVER CAPTURE TO DB SAMPLE;

SET SERVER CONTROL TO DB TARGET;

SET OUTPUT CAPTURE SCRIPT "capsubsetchg.sql"

CONTROLSCRIPT "appsubsetchg.sql";

SET LOG "subsetchg.err";

SET RUN SCRIPT LATER;

ALTER SUBSCRIPTION SET SETNAME SET00

APPLYQUAL AQ00 SETTYPE R ACTIVATE YES

TIMING INTERVAL 15 COMMIT COUNT NULL;

Replication Center Use the Subscription Set Properties notebook. To open the

notebook, click the Subscription Sets folder within an Apply

control server, right-click the subscription set in the contents pane

and click Properties.

3. Reactivate the subscription set.

Chapter 12. Changing an SQL replication environment 151

If you set the opt4one Apply program

parameter to y, stop and then restart the Apply program or your changes will not

be recognized.

Changing subscription set names

You can change the name of a subscription set without having to drop and recreate

the subscription set and all of its members.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the

SQL replication control tables and with the subscription sets defined on your

system.

Tip: If you set up monitoring definitions or started Replication Alert Monitor

programs to detect alert conditions for the subscription set, drop these definitions.

After you change the subscription-set name, re-create the monitoring definitions

through the Replication Center or ASNCLP. Then, you can reinitialize the monitors

using the asnmcmd reinit system command. You can also stop the monitors using

the asnmcmd stop command and then restart the programs using the asnmon

command.

Procedure

To change the name of a subscription set:

1. Use the Replication Center to deactivate the subscription set.

2. From the Apply control server, run the following SQL statements to change the

name of the subscription set in the IBMSNAP_SUBS_SET,

IBMSNAP_SUBS_MEMBR, and IBMSNAP_SUBS_COLS tables:

UPDATE ASN.IBMSNAP_SUBS_SET

 SET SET_NAME = ’NewSetName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistSetName’ AND

 WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_MEMBR

 SET SET_NAME = ’NewSetName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistSetName’ AND

 WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_COLS

 SET SET_NAME = ’NewSetName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistSetName’ AND

 WHOS_ON_FIRST = ’Val’;

Where NewSetName is the new subscription set name, ApplyQual is the Apply

qualifier, ExistSetName is the existing name of the subscription set, and Val is

either F or S.

3. If this subscription set uses before or after SQL statements or procedure calls,

run the following SQL script from the Apply control server to change the

subscription set name in the IBMSNAP_SUBS_STMTS table:

152 SQL Replication Guide and Reference

UPDATE ASN.IBMSNAP_SUBS_STMTS

 SET SET_NAME = ’NewSetName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistSetName’ AND

 WHOS_ON_FIRST = ’Val’;

where NewSetName is the new subscription set name, ApplyQual is the Apply

qualifier, ExistSetName is the existing name of the subscription set, and Val is

either F or S.

4. From the Capture control server, run the following SQL statements to change

the subscription set name in the IBMSNAP_PRUNE_SET and

IBMSNAP_PRUNCNTL tables:

UPDATE Schema.IBMSNAP_PRUNE_SET

 SET SET_NAME = ’NewSetName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistSetName’ AND

 TARGET_SERVER = ’Target_Server’;

UPDATE Schema.IBMSNAP_PRUNCNTL

 SET SET_NAME = ’NewSetName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistSetName’ AND

 TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, NewSetName is the new

subscription set name, ApplyQual is the Apply qualifier, ExistSetName is the

existing name of the subscription set, and Target_Server is the database location

of the target tables.

5. If you are running the Apply program on Linux, UNIX, Windows, or z/OS,

with opt4one set to y, stop and then restart the Apply program.

6. Reactivate the subscription set from the Replication Center.

Splitting a subscription set

You can split a subscription set into two or more sets without having to remove

and re-create subscription set information.

Before you begin

v Before running these SQL statements, familiarize yourself with the structure of

the SQL replication control tables and with the subscription sets defined on your

system.

v Identify the subscription-set members of the subscription set that you want to

split, and determine the source and target tables associated with these

subscription-set members.

v Identify the Capture control server, target server, and Apply control server of the

subscription set that you want to split. You must use these Capture control

server, target server, and Apply control server locations for the new subscription

set that you want to create using this procedure.

About this task

Tip: If you set up monitoring definitions or started Replication Alert Monitor

programs to detect alert conditions for the subscription set, drop these definitions.

After you split the subscription-set, re-create the monitoring definitions through

the Replication Center or ASNCLP. Then, you can reinitialize the monitors using

Chapter 12. Changing an SQL replication environment 153

the asnmcmd reinit system command. You can also stop the monitors using the

asnmcmd stop command and then restart the programs using the asnmon

command.

Procedure

To split a subscription set:

 1. Deactivate the subscription set that you want to split from the Replication

Center. From the Subscription Sets folder, right-click the active subscription set

in the contents pane and select Deactivate.

 2. Create a new subscription set. The new set is represented by a new row in the

IBMSNAP_SUBS_SET table. Leave this new subscription set inactive.

 3. From the Apply control server, run the following SQL statement to copy

information from the existing subscription set into the new subscription set

row in the IBMSNAP_SUBS_SET table:

UPDATE ASN.IBMSNAP_SUBS_SET

 SET STATUS =

 (SELECT STATUS FROM ASN.IBMSNAP_SUBS_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’),

 LASTRUN =

 (SELECT LASTRUN FROM ASN.IBMSNAP_SUBS_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’),

 SYNCHPOINT =

 (SELECT SYNCHPOINT FROM ASN.IBMSNAP_SUBS_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’),

 SYNCHTIME =

 (SELECT SYNCHTIME FROM ASN.IBMSNAP_SUBS_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’),

 LASTSUCCESS =

 (SELECT LASTSUCCESS FROM ASN.IBMSNAP_SUBS_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’)

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’NewName’ AND

 WHOS_ON_FIRST = ’Val’;

where ApplyQual is the Apply qualifier, ExistName is the name of the existing

subscription set that is being split, Val is either F or S, and NewName is the

name of the new subscription set that you are creating.

 4. From the Capture control server, run the following SQL statement to insert a

new row for the new subscription set into the IBMSNAP_PRUNE_SET table:

INSERT INTO Schema.IBMSNAP_PRUNE_SET

 (APPLY_QUALIFIER,

 SET_NAME,

 TARGET_SERVER,

 SYNCHTIME,

 SYNCHPOINT

 VALUES (’ApplyQual’,

 ’NewName’,

154 SQL Replication Guide and Reference

’Target_Server’,

 NULL,

 x’00000000000000000000’);

where Schema is the name of the Capture schema, ApplyQual is the Apply

qualifier, NewName is the name of the new subscription set that you are

creating, and Target_Server is the database location of the target tables.

 5. From the Capture control server, run the following SQL statement to copy

information from the existing subscription set row to the new subscription set

row in the IBMSNAP_PRUNE_SET table:

UPDATE Schema.IBMSNAP_PRUNE_SET

 SET SYNCHPOINT =

 (SELECT SYNCHPOINT FROM Schema.IBMSNAP_PRUNE_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 TARGET_SERVER = ’Target_Server’),

 SYNCHTIME =

 (SELECT SYNCHTIME FROM Schema.IBMSNAP_PRUNE_SET B

 WHERE APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 TARGET_SERVER = ’Target_Server’)

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’NewName’ AND

 TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, ApplyQual is the Apply

qualifier, ExistName is the name of the existing subscription set that is being

split, Target_Server is the database location of the target tables, and NewName

is the name of the new subscription set that you are creating.

 6. From the Apply control server, run the following SQL statements to change

the subscription set name in the IBMSNAP_SUBS_MEMBR table and the

IBMSNAP_SUBS_COLS tables for each subscription-set member that you are

moving into the new subscription set:

UPDATE ASN.IBMSNAP_SUBS_MEMBR

 SET SET_NAME = ’NewName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’ AND

 SOURCE_OWNER = ’SrcSchema’ AND

 SOURCE_TABLE = ’SrcTbl’ AND

 SOURCE_VIEW_QUAL = SrcVwQual AND

 TARGET_OWNER = ’TgtSchema’ AND

 TARGET_TABLE = ’TgtTbl’;

UPDATE ASN.IBMSNAP_SUBS_COLS

 SET SET_NAME = ’NewName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’ AND

 TARGET_OWNER = ’TgtSchema’ AND

 TARGET_TABLE = ’TgtTbl’;

where NewName is the name of the new subscription set that you are creating,

ApplyQual is the Apply qualifier, ExistName is the name of the existing

subscription set being split, Val is either F or S, SrcSchema is the source table

schema, SrcTbl is the source table name, SrcVwQual is the source-view

qualifier for this source table, TgtSchema is the schema of the target table, and

TgtTbl is the target table name.

Chapter 12. Changing an SQL replication environment 155

Repeat this step for each subscription-set member that you want to move to

the new subscription set.

 7. If the subscription set that you are splitting uses before or after SQL

statements or procedure calls, move the applicable statements to the new

subscription set in the IBMSNAP_SUBS_STMTS table:

a. Run the following SQL script from the Apply control server to move the

statements:

UPDATE ASN.IBMSNAP_SUBS_STMTS

 SET SET_NAME = ’NewName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 WHOS_ON_FIRST = ’Val’ AND

 STMT_NUMBER in (Stmt1,Stmt2,..Stmtn);

where NewName is the name of the new subscription set that you are

creating, ApplyQual is the Apply qualifier, ExistName is the name of the

existing subscription set being split, Val is either F or S, and Stmt1, Stmt2,

and Stmtn correspond to the numbers of the statements that you are

moving to the new subscription set.

b. Adjust the AUX_STMTS column values in the IBMSNAP_SUBS_SET table

to reflect the new count of statements for both subscription sets. Renumber

the statements to eliminate any duplicates, if necessary.
 8. From the Capture control server, run the following SQL statement to change

the name of the subscription set in the IBMSNAP_PRUNCNTL table for each

subscription-set member that you moved:

UPDATE Schema.IBMSNAP_PRUNCNTL

 SET SET_NAME = ’NewName’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’ExistName’ AND

 TARGET_SERVER = ’Target_Server’ AND

 SOURCE_OWNER = ’SrcSchema’ AND

 SOURCE_TABLE = ’SrcTbl’ AND

 SOURCE_VIEW_QUAL = SrcVwQual AND

 TARGET_OWNER = ’TgtSchema’ AND

 TARGET_TABLE = ’TgtTbl’;

where Schema is the name of the Capture schema, NewName is the name of the

new subscription set that you created in step 2, ApplyQual is the Apply

qualifier, ExistName is the name of the existing subscription set that was split,

Target_Server is the database location of the target tables, SrcSchema is the

source table schema, SrcTbl is the source table name, SrcVwQual is the

source-view qualifier for this replication source table, TgtSchema is the target

table schema, and TgtTbl is the target table name.

Repeat this step for each subscription-set member that you moved to the new

subscription set.

 9.

If you are running the Apply program

with opt4one set to y, stop and then restart the Apply program.

10. Reactivate both subscription sets from the Replication Center.

156 SQL Replication Guide and Reference

Merging subscription sets

You can merge two subscriptions sets into one. You might want to merge

subscription sets if you want the target tables within these two subscription sets to

have the same transaction consistency but you do not want to delete and then

recreate subscription set information.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the

SQL replication control tables and with the subscription sets defined on your

system.

Identify the Capture control server, target server, and Apply control server of each

subscription set that you want to merge. Verify that all of the subscription sets that

you want to merge were created with the same Capture control server, target

server, and Apply control server.

Restrictions

The two subscription sets that you want to merge must derive their source data

from the same Capture server and through the same Capture schema.

Important: The two subscription sets must have processed the source data up to

the identical synchpoint value to prevent a loss of data when the subscription sets

are merged.

Procedure

To merge subscription sets:

1. Stop the associated Capture program. Wait until both subscription sets reach

the same synchpoint and synchtime as indicated in the IBMSNAP_SUBS_SET

table.

Tip: If you do not want to stop the Capture program, insert a USER signal in

the IBMSNAP_SIGNAL table, and generate an event with the

END_SYNCHPOINT (in the IBMSNAP_SUBS_EVENT table) set to the value of

the SIGNAL_LSN column in the IBMSNAP_SIGNAL table so that only the data

up to that end point is applied.

2. Deactivate both subscription sets from the Replication Center.

3. From the Apply control server, run the following SQL statement to delete the

row from the IBMSNAP_SUBS_SET table that corresponds to the subscription

set that you are moving into the other subscription set:

DELETE FROM ASN.IBMSNAP_SUBS_SET

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Subset_To_Move’ AND

 WHOS_ON_FIRST = ’Val’;

where ApplyQual is the Apply qualifier, Subset_To_Move is the name of the

subscription set that you are moving into another existing subscription set, and

Val is either F or S.

4. From the Capture control server, run the following SQL statement to delete the

row from the IBMSNAP_PRUNE_SET table that corresponds to the subscription

set that you are moving into the other subscription set:

Chapter 12. Changing an SQL replication environment 157

DELETE FROM Schema.IBMSNAP_PRUNE_SET

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Subset_To_Move’ AND

 TARGET_SERVER = ’Target_Server’ ;

where Schema is the name of the Capture schema, ApplyQual is the Apply

qualifier, Subset_To_Move is the name of the subscription set that you are

moving into another existing subscription set, and Target_Server is the database

location of the target tables.

5. From the Apply control server, run the following SQL statements to change the

name of the subscription set that you are moving to the name of the other

subscription set in the IBMSNAP_SUBS_MEMBR and IBMSNAP_SUBS_COLS

tables:

UPDATE ASN.IBMSNAP_SUBS_MEMBR

 SET SET_NAME = ’Existing_Merged_Subset’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Subset_To_Move’ AND

 WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_COLS

 SET SET_NAME = ’Existing_Merged_Subset’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Subset_To_Move’ AND

 WHOS_ON_FIRST = ’Val’;

where Existing_Merged_Subset is the name of the existing subscription set being

merged with the subscription set that you are moving, ApplyQual is the Apply

qualifier, Subset_To_Move is the name of the subscription set that you are

moving into the existing subscription set, and Val is either F or S.

6. If the subscription set that you are moving uses before or after SQL statements

or procedure calls, change the name of the subscription set in the

IBMSNAP_SUBS_STMTS table:

a. Run the following SQL script from the Apply control server to change the

name of the subscription set:

UPDATE ASN.IBMSNAP_SUBS_STMTS

 SET SET_NAME = ’Existing_Merged_Subset’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Subset_To_Move’ AND

 WHOS_ON_FIRST = ’Val’;

where Existing_Merged_Subset is the name of the existing subscription set

that is being merged with the subscription set that you are moving,

ApplyQual is the Apply qualifier, Subset_To_Move is the name of the

subscription set that you are moving into the existing subscription set, and

Val is either F or S.

b. Adjust the AUX_STMTS column value in the IBMSNAP_SUBS_SET table to

reflect the new count of statements in the existing merged subscription set.

Renumber the statements to eliminate any duplicates, if necessary.
7. From the Capture control server, run the following SQL statement to change the

name of the subscription set that was moved to the name of the merged

subscription set in the IBMSNAP_PRUNCNTL table:

158 SQL Replication Guide and Reference

UPDATE Schema.IBMSNAP_PRUNCNTL

 SET SET_NAME = ’Existing_Merged_Subset’

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Subset_To_Move’ AND

 TARGET_SERVER = ’Target_Server’ ;

where Schema is the name of the Capture schema, Existing_Merged_Subset is the

name of the existing subscription set being merged with the subscription set

that you are moving, ApplyQual is the Apply qualifier, Subset_To_Move is the

name of the subscription set that you are moving into another existing

subscription set, and Target_Server is the database location of the target tables.

8.

If you are running the Apply program

with opt4one set to y, stop and then restart the Apply program.

9. Reactivate the merged subscription set from the Replication Center.

Changing Apply qualifiers of subscription sets

If you need to change the Apply qualifier of a subscription set, you can use SQL to

make the change without deleting and recreating the subscription set.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the

SQL replication control tables and with the subscription sets defined on your

system.

You must also determine the following information:

v The name of the new Apply qualifier.

v The subscription sets that you want to move from the existing Apply qualifier to

the new Apply qualifier.

v Any before or after SQL statements or procedure calls that are defined for these

subscription sets.

About this task

If you have several subscription sets using the same Apply qualifier, you might

want to move some of the subscription sets to a new Apply qualifier to balance the

workloads of the Apply programs.

Tip: If you set up monitoring definitions or started Replication Alert Monitor

programs to detect alert conditions for the Apply qualifier, drop these definitions.

After you change the qualifier, re-create the monitoring definitions through the

Replication Center or ASNCLP. Then, you can reinitialize the monitors using the

asnmcmd reinit system command. You can also stop the monitors using the

asnmcmd stop command and then restart the programs using the asnmon

command.

You must run the SQL statements in this procedure for each subscription set that

you want to move.

Procedure

To change Apply qualifiers of subscription sets:

Chapter 12. Changing an SQL replication environment 159

1. Deactivate the subscription sets that you want to change using the Replication

Center.

2. From the Apply control server, run the following SQL statements to change the

Apply qualifier of the subscription set in the IBMSNAP_SUBS_SET,

IBMSNAP_SUBS_MEMBR, and IBMSNAP_SUBS_COLS tables:

UPDATE ASN.IBMSNAP_SUBS_SET

 SET APPLY_QUAL = ’NewApplyQual’

 WHERE

 APPLY_QUAL = ’ExistApplyQual’ AND

 SET_NAME = ’Name’ AND

 WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_MEMBR

 SET APPLY_QUAL = ’NewApplyQual’

 WHERE

 APPLY_QUAL = ’ExistApplyQual’ AND

 SET_NAME = ’Name’ AND

 WHOS_ON_FIRST = ’Val’;

UPDATE ASN.IBMSNAP_SUBS_COLS

 SET APPLY_QUAL = ’NewApplyQual’

 WHERE

 APPLY_QUAL = ’ExistApplyQual’ AND

 SET_NAME = ’Name’ AND

 WHOS_ON_FIRST = ’Val’;

where NewApplyQual is the new Apply qualifier, ExistApplyQual is the existing

Apply qualifier, Name is the name of the subscription set, and Val is either F or

S.

3. If this subscription set uses before or after SQL statements or procedure calls,

run the following SQL statements at the Apply control server to change the

Apply qualifier of the subscription set in the IBMSNAP_SUBS_STMTS table:

UPDATE ASN.IBMSNAP_SUBS_STMTS

 SET APPLY_QUAL = ’NewApplyQual’

 WHERE

 APPLY_QUAL = ’ExistApplyQual’ AND

 SET_NAME = ’Name’ AND

 WHOS_ON_FIRST = ’Val’;

where NewApplyQual is the new Apply qualifier, ExistApplyQual is the existing

Apply qualifier, Name is the name of the subscription set, and Val is either F or

S.

4. From the Capture control server, run the following SQL statements to change

the Apply qualifier of the subscription set in the IBMSNAP_PRUNE_SET and

IBMSNAP_PRUNCNTL tables:

UPDATE Schema.IBMSNAP_PRUNE_SET

 SET APPLY_QUAL = ’NewApplyQual’

 WHERE

 APPLY_QUAL = ’ExistApplyQual’ AND

 SET_NAME = ’Name’ AND

 TARGET_SERVER = ’Target_Server’;

UPDATE Schema.IBMSNAP_PRUNCNTL

 SET APPLY_QUAL = ’NewApplyQual’

 WHERE

 APPLY_QUAL = ’ExistApplyQual’ AND

 SET_NAME = ’Name’ AND

 TARGET_SERVER = ’Target_Server’;

160 SQL Replication Guide and Reference

where Schema is the name of the Capture schema, NewApplyQual is the new

Apply qualifier, ExistApplyQual is the existing Apply qualifier, Name is the

name of the subscription set, and Target_Server is the database location of the

target tables.

5. Repeat steps 2 through 4 for each remaining subscription set that you want to

move.

6. If you are running the Apply program with opt4one set to y on Linux, UNIX,

Windows or z/OS, stop and then restart the Apply program.

7. Reactivate the subscription sets using the Replication Center.

Deactivating subscription sets

You can deactivate a subscription set without removing it. When you deactivate a

subscription set, the Apply program completes its current processing cycle and

then suspends operations for that subscription set.

Before you begin

Before running these SQL statements, familiarize yourself with the structure of the

SQL replication control tables and with the subscription sets defined on your

system.

About this task

You might need to perform special maintenance on these deactivated subscription

sets depending on how long they must remain deactivated:

Short time-period

There are no special processing requirements for subscription sets that you

temporarily deactivate. You should temporarily deactivate a subscription

set while changing its attributes or while fixing failures on target tables.

 Use the Replication Center to deactivate, change, and then reactivate a

subscription set.

Longer time-period

You can deactivate a subscription set that you do not currently need but

might want to use in the future. However, you must take additional action

if this subscription set needs to remain deactivated for a time period that is

long enough for changed data to accumulate and to affect the performance

of the Capture and Apply programs.

 The Capture program uses information from active Apply programs during

the pruning process. If the Apply programs are inactive or the

subscriptions sets are deactivated for long periods of time, the pruning

information becomes stale and the unit-of-work (UOW) and possibly the

change-data (CD) tables cannot be pruned quickly and efficiently if active

registrations that are associated with the deactivated subscription sets

remain. This stale information can seriously degrade the performance of

the remaining active Apply programs and cause unnecessary and costly

CPU consumption by the pruning process. The UOW and CD tables are

eventually pruned based on the retention limit (with a default value of

seven days) of the Capture program. However, large amounts of data

might accumulate during this time depending on the size of your

replication environment.

Chapter 12. Changing an SQL replication environment 161

To prevent these pruning problems, you can use SQL to reset the pruning

information for a subscription set that must remain deactivated for a

longer time-period.

If you deactivated all the subscription sets associated with a registered object, you

should also deactivate the registered object to prevent the Capture program from

capturing data unnecessarily.

Procedure

1. From the Replication Center, deactivate the set. Click the Subscription Sets

folder, right-click the active subscription set in the contents pane and select

Deactivate.

2. From the Capture control server, run the following SQL statements to reset the

pruning information in the IBMSNAP_PRUNE_SET and

IBMSNAP_PRUNCNTL tables for the deactivated subscription set:

UPDATE Schema.IBMSNAP_PRUNE_SET

 SET SYNCHPOINT = x’00000000000000000000’ AND

 SYNCHTIME = NULL

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Name’ AND

 TARGET_SERVER = ’Target_Server’;

UPDATE Schema.IBMSNAP_PRUNCNTL

 SET SYNCHPOINT = NULL AND

 SYNCHTIME = NULL

 WHERE

 APPLY_QUAL = ’ApplyQual’ AND

 SET_NAME = ’Name’ AND

 TARGET_SERVER = ’Target_Server’;

where Schema is the name of the Capture schema, ApplyQual is the Apply

qualifier, Name is the name of the subscription set, and Target_Server is the

database location of the target tables.

Removing subscription sets

If you no longer need to replicate the data in a particular subscription set, you can

remove the subscription set. However, if your Apply program is processing the

subscription set that you remove, your Apply program job abends and any other

subscription sets in that job are not processed until you restart the job.

Procedure

To remove subscriptions sets:

1. To ensure that the Apply program has completed any current processing for the

subscription set, deactivate the subscription set before you remove it, from the

Replication Center Click the Subscription Sets folder, right-click the active

subscription set in the contents pane and select Deactivate.

162 SQL Replication Guide and Reference

2. Use one of the following methods to remove a deactivated subscription set:

 Method Description

ASNCLP

command-line

program

Use the DROP SUBSCRIPTION SET command.

The following commands set the environment and drop a

subscription set named SET00 with an Apply qualifier of AQ00.

SET SERVER CAPTURE TO DB SAMPLE;

SET SERVER CONTROL TO DB TARGET;

SET OUTPUT CAPTURE SCRIPT "drpcapsubset.sql"

CONTROLSCRIPT "drpappsubset.sql";

SET LOG "drpsubset.err";

SET RUN SCRIPT LATER;

DROP SUBSCRIPTION SET SETNAME SET00 APPLYQUAL AQ00;

Replication Center Use the Delete Subscription Set window. To open the window, click

the Subscription Sets folder, right-click the active subscription set

in the contents pane and select Delete.

RMVDPRSUB system

command

Use the Remove DPR subscription set (RMVDPRSUB) command to

remove a subscription set.

The Capture program continues capturing data and writing rows to the

change-data (CD) table even if you remove all subscription sets for the registered

object. To prevent this continued processing by the Capture program, deactivate or

remove the registered object after removing its subscription sets.

Coordinating replication events with database application events

You can coordinate database and replication events by manually inserting rows

into the IBMSNAP_SIGNAL table. These rows, known as signals, instruct running

Capture programs to take specific actions.

Setting an event END_SYNCHPOINT using the USER type

signal

You can set the SIGNAL_TYPE column value to USER to establish a precise point

on the DB2 recovery log and to coordinate a replication event with a database

application event.

About this task

For example, if you are replicating online transaction processing (OLTP) data to a

separately maintained data warehouse, you might want to keep the warehouse

data fairly stable for ad hoc query processing. So you update the warehouse data

with only the changes that occurred up to a specific point in time in the OLTP

application business day. In this case, the database application event is the logical

end of the business day. The replication event would be the application of the

changes from the close of business on one specific day to the close of business on

the following day. Assume that the subscription sets are configured for event

processing only.

Procedure

To create a USER type signal:

Chapter 12. Changing an SQL replication environment 163

1. Create a Capture USER type signal by inserting the following row into the

IBMSNAP_SIGNAL table:

INSERT INTO Schema.IBMSNAP_SIGNAL

 (signal_type,

 signal_subtype,

 signal_state)

 VALUES(’USER’,

 ’USER APPLY EVENT SIGNAL’,

 ’P’);

Run this SQL INSERT statement when the database application event occurs (in

this case at the end of the application business day).

The Capture program acts on this signal table log record after the Capture

program finds this record on the database recovery log and only when the

Capture program finds the corresponding commit record for this insert,

verifying that this event was committed.

When a USER type signal is committed, the Capture program updates the

following IBMSNAP_SIGNAL column values that correspond to the insert log

record being processed:

v SIGNAL_STATE = ’R’ (received by the Capture program)

v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert
2. Use the value that is now in the SIGNAL_LSN column of the inserted signal

row to insert an END_SYNCHPOINT value in the IBMSNAP_SUBS_EVENT

control table. This new value alerts the Apply program that all the data for the

new business day has been collected by the Capture program and that the

Apply program should fetch and apply data only up to the value of the

SIGNAL_LSN column.

You can automate the insert into the IBMSNAP_SUBS_EVENT table by creating

an update trigger on the IBMSNAP_SIGNAL table:

CREATE TRIGGER EVENT_TRIG

 NO CASCADE AFTER UPDATE ON Schema.IBMSNAP_SIGNAL

 REFERENCING NEW AS N

 FOR EACH ROW MODE DB2SQL

 WHEN (N.SIGNAL_SUBTYPE = ’USER APPLY EVENT SIGNAL’)

 INSERT INTO ASN.IBMSNAP_SUBS_EVENT VALUES

 (’WH_APPLY_EVENT’,

 (CURRENT TIMESTAMP + 2 MINUTES),

 N.SIGNAL_LSN,

 null);

This trigger fires each time that the IBMSNAP_SIGNAL table is updated by the

Capture program. When a SIGNAL_SUBTYPE column is updated to USER

APPLY EVENT SIGNAL’, the trigger inserts a row into the

IBMSNAP_SUBS_EVENT table. This row indicates to the Apply program that it

must fetch and apply the work from the latest business day (which has been

committed prior to the SIGNAL_LSN value as computed by the Capture

program) after two minutes have elapsed.

When to use the Capture CMD STOP signal

You can set the SIGNAL_TYPE column value to CMD and the SIGNAL_SUBTYPE

column value to STOP to stop a Capture program process at a precise point on the

DB2 recovery log.

You can use the Capture CMD STOP signal in the following situations:

164 SQL Replication Guide and Reference

v To coordinate the Capture program with any source table changes that render

previous log records unreadable. This could occur if you dropped and then

re-created a table or if you reorganized a table without setting the

KEEPDICTIONARY option to YES.

v To coordinate a common recovery point between replicated distributed database

systems.

Coordinating a source table change with the Capture program

You can use a Capture CMD type STOP subtype signal to shut down a Capture

program and to coordinate source table changes.

Procedure

To coordinate source table changes:

1. Create a Capture CMD type STOP subtype signal by inserting a row into the

IBMSNAP_SIGNAL table using the following SQL statement:

INSERT INTO Schema.IBMSNAP_SIGNAL

 (signal_type,

 signal_subtype,

 signal_state)

 VALUES(’CMD’,

 ’STOP’,

 ’P’);

You should insert this row when the database application event occurs, after

the source table activity has been quiesced but prior to the activity that causes

problematic log record changes.

The Capture program acts on this signal table log record after the Capture

program finds this record on the database recovery log and only when the

Capture program finds the corresponding commit record for this insert,

verifying that this event was committed.

The Capture program shuts down all Capture threads in an orderly manner

after committing all captured data from the transactions on the log that are

prior to the commit log record for the DB2 unit of work that contains this

inserted IBMSNAP_SIGNAL row. Before terminating, the Capture program also

updates the following values in the IBMSNAP_SIGNAL table row that

corresponds to the insert log record being processed:

v SIGNAL_STATE = ’R’ (received by the Capture program)

v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert

All log records for the changing source table are processed by the Capture

program when it terminates.

2. Depending on your scenario, drop and re-create your source table, or

reorganize and compress your source table without set the KEEPDICTIONARY

option to YES.

3. If you dropped or altered replicated columns, you should now alter the

corresponding registrations and subscription sets that you created for this

source table. Such changes, if necessary, can be further coordinated with the

Apply program by waiting for the affected subscription sets to catch up to the

currently stopped Capture program. A subscription set is in synch with the

Capture program when the SYNCHPOINT column value in the

IBMSNAP_SUBS_SET table is equal to the MAX_COMMITSEQ column value in

the Schema.IBMSNAP_RESTART table.

Chapter 12. Changing an SQL replication environment 165

Setting a distributed recovery point

You can use a Capture CMD type STOP subtype signal to set your source and

target databases to equivalent recovery points and recover the databases at a

common point of consistency.

Before you begin

Before using this procedure, verify that your Apply control tables have been

created in the target database.

Also, verify that all activity against the source database has been quiesced before

inserting the row into the IBMSNAP_SIGNAL table. However, do not create the

backup or image copy of the database tables until after you insert the row into the

IBMSNAP_SIGNAL table.

If your subscription sets are not typically configured for event processing, then you

must temporarily set your subscription sets to event-based timing. Use the

following SQL statement to insert a row into the subscription events

IBMSNAP_SUBS_EVENT table:

INSERT INTO ASN.IBMSNAP_SUBS_EVENT

 VALUES(’RECOVERY_EVENT’,

 CURRENT TIMESTAMP + 2 MINUTES,

 SIGNAL_LSN_value,

 NULL);

where SIGNAL_LSN_value is the log sequence number set by the Capture program

and stored in the IBMSNAP_SIGNAL table.

Procedure

To set a distributed recovery point:

1. Create a Capture CMD type STOP subtype signal by inserting a row into the

IBMSNAP_SIGNAL table using the following SQL statement:

INSERT INTO Schema.IBMSNAP_SIGNAL

 (signal_type,

 signal_subtype,

 signal_state)

 VALUES(’CMD’,

 ’STOP’,

 ’P’);

The Capture program acts on this signal table log record after the Capture

program finds this record on the database recovery log and only when the

Capture program finds the corresponding commit record for this insert,

verifying that this event was committed.

The Capture program shuts down all Capture threads in an orderly manner

after committing all captured data from the transactions on the log that is prior

to the commit log record for the DB2 unit of work that contains this inserted

IBMSNAP_SIGNAL row. Before terminating, the Capture program also updates

the following values in the IBMSNAP_SIGNAL table row that corresponds to

the insert log record being processed:

v SIGNAL_STATE = ’R’ (received by the Capture program)

v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert

All log records for the source database are processed by the Capture program

when it terminates.

166 SQL Replication Guide and Reference

2. Run the source database backup or image copy utilities.

3. Use the value in the SIGNAL_LSN column from the IBMSNAP_SIGNAL table

row that you inserted as an END_SYNCHPOINT value in the

IBMSNAP_SUBS_EVENT table. This value alerts the Apply program that all the

data committed prior to the backup point has been collected by the Capture

program and that the Apply program should fetch and apply data only up to

the value of the SIGNAL_LSN column. The subscription sets process all data

up to the SIGNAL_LSN value.

4. Run the target database backup or image copy utilities. The source and target

databases now have equivalent recovery points, and you can recover both

databases at a common point of consistency.

You can resume all source database activity as soon as the Apply events have been

set and the source database backup or image copy utility activity is complete. You

can also start the Capture program. After the target database backup or image

copy utility activity is complete, you can change the scheduling options of your

subscription sets back to their original settings (time-based, event-based, or both).

You can send the STOP signal to stop a single journal job or to

stop all the journal jobs. To stop a single journal job, insert the signal into the

signal table designated for that journal (the IBMSNAP_SIGNAL_xxxx_yyyy table,

where xxxx is the journal library and yyyy is the journal name. To stop all the

journal jobs, insert the signal into the schema.IBMSNAP_SIGNAL table. To stop a

single journal job in a remote journal configuration, insert the signal into the

journal signal table on the source server. See for a description of how to create

journal signal tables in a remote journal configuration.

Performing a CAPSTART handshake signal outside of the

Apply program

Before any subscription set can be used by the Apply program to fetch and apply

changes from the CD tables, there must be a ″handshake″ (synchronized

communication) between the Capture and Apply programs of each subscription-set

member in that subscription set.

About this task

The Apply program initiates the handshake by inserting a CMD type CAPSTART

subtype signal into the IBMSNAP_SIGNAL table. The Apply program inserts this

signal before performing a full refresh of any subscription-set member with a

target table that is defined as complete.

Procedure

To perform a CAPSTART handshake signal outside the Apply program:

Create a Capture CMD type CAPSTART subtype signal by inserting a row into the

IBMSNAP_SIGNAL table using the following SQL statement:

INSERT INTO Schema.IBMSNAP_SIGNAL

 (signal_type,

 signal_subtype,

 signal_input_in,

 signal_state)

 VALUES(’CMD’,

 ’CAPSTART’,

 mapid,

 ’P’);

Chapter 12. Changing an SQL replication environment 167

where mapid is the MAP_ID column value of the Schema.IBMSNAP_PRUNCNTL

table and corresponds to the row for the subscription-set member requiring the

handshake.

Note: Run this SQL INSERT statement before performing a full refresh of the

subscription-set member, if necessary.

The Capture program acts on this signal table log record after the Capture program

finds this record on the database recovery log and only when the Capture program

finds the corresponding commit record for this insert, verifying that this event was

committed.

The Capture program checks if it already placed the associated registration into

memory based on prior use of the registered table. If the registered table is not in

use, the Capture program reads the associated registration information into

memory and sets values in the IBMSNAP_REGISTER table to show that this

registered table is now active and in use.

Regardless of whether or not the registered table is in use, the Capture program

sets the values of the SYNCHPOINT and SYNCHTIME columns in the associated

row in the Schema.IBMSNAP_PRUNCNTL table to the log sequence number from

the commit log record for the DB2 unit of work that contains this inserted signal

row and to the timestamp from that same commit log record, respectively.

The Capture program updates the following values in the IBMSNAP_SIGNAL

table row that corresponds to the insert log record being processed:

v SIGNAL_STATE = ’C’ (received and completed by the Capture program)

v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert

Performing a CAPSTOP signal

You can initiate a CAPSTOP signal if you want to manually stop capturing changes

for a registration. You can use this signal when deactivating a registration or before

you remove a registration.

Procedure

To perform a CAPSTOP signal:

1. Create a Capture CMD type CAPSTOP subtype signal by inserting a row into

the IBMSNAP_SIGNAL table using the following SQL statement:

INSERT INTO Schema.IBMSNAP_SIGNAL

 (signal_type,

 signal_subtype,

 signal_input_in,

 signal_state)

 VALUES(’CMD’,

 ’CAPSTOP’,

 source_owner.source_table,

 ’P’);

where Schema is the name of the Capture schema and source_owner.source_table

is the fully qualified name of the table that no longer requires captured

changes.

The Capture program acts on this signal table log record after the Capture

program finds this record on the database recovery log and only when the

168 SQL Replication Guide and Reference

Capture program finds the corresponding commit record for this insert,

verifying that this event was committed.

The Capture program checks if it has already placed the associated registration

into memory based on prior use of the registered table. If the registered table is

not currently in use, the Capture program ignores the CAPSTOP signal.

If the registered table is in use, the Capture program clears the memory

associated with this registration and inactivates the registration (by setting the

STATE column in the IBMSNAP_REGISTER table to ’I’). The Capture program

then stops capturing changes for this registered table.

The Capture program updates the following column values in the

IBMSNAP_SIGNAL table row that corresponds to the insert log record being

processed:

v SIGNAL_STATE = ’C’ (received and completed by the Capture program)

v SIGNAL_LSN = the log sequence number from the commit log record for the

DB2 unit of work that contains this signal row insert
2. Optional: Optional: Remove the registration.

3.

Optional: You can also send a CAPSTOP signal to stop

capturing changes for a registration by inserting the signal into the

IBMSNAP_SIGNAL_xxxx_yyyy table, where xxxx is the journal library and yyyy

is the journal name of the subject journal. To stop capturing changes for a

registration in a remote journal configuration, insert the CAPSTOP signal on

the source server.

Adjusting for Daylight Savings Time (System i)

On System i, the Capture program uses a timestamp and the journal sequence

number when reading changes from a journal. This process can create problems

when it is necessary to adjust the system clock for U.S. Daylight Savings Time in

the autumn and spring.

About this task

System i systems provide two methods for adjusting to Daylight Savings Time:

V5R3 The system either slows down its clock (autumn) or speeds up (spring) to

avoid skipping or duplicating any timestamps. If you are running the

Capture program on System i V5R3 and use this new method to make the

time change, you do not need to use the procedure below.

Before V5R3

You must stop all activity on the system for one hour and then move the

clock back one hour in autumn. With this method, you need to use the

procedure below.

Procedure

To do adjust for Daylight Savings Time:

1. Follow these steps when you must turn back the clock by one hour in autumn:

a. Stop the Capture program and any applications that update the source

tables.

b. Wait for the system time to move forward by at least an hour without any

new journal entries to the source journal.

c. Set the system time back by an hour.

d. Restart the Capture program.

Chapter 12. Changing an SQL replication environment 169

The following example demonstrates the use of this procedure:

a. At 12:00 you stop the Capture program and all applications.

b. You wait until 13:00 so that the journal entry timestamps only have values

up to 12:00.

c. You set the system time back to 12:00.

d. You make a change. The journal entry timestamp for the change will be

12:01.

e. You restart Capture. Capture will start from 12:00 and therefore will capture

the change that came at 12:01 (Daylight Savings Time), which would have

been 13.01 in Standard time.

The Capture program restarts with a timestamp that is lower than the current

system time. No journal entries will be added until the new system time is

greater than the system time just before the time change, so there is no

possibility of missing any data.

Recommendation: Although the time change has no effect on the Apply

program, stop and restart the Apply program during the time change also.

2. Follow this procedure when you must move the clock forward by one hour in

spring:

a. Stop the Capture program and make the time change. The Capture program

responds as though an hour passed with no changes to the source tables.

Options for promoting your replication configuration to another

system

When you define registered objects or subscription sets on one system (a test

system, for example), and you need to copy the replication environment to another

system (a production system, for example), you can use the promote functions of

the Replication Center.

The promote functions reverse engineer your registered objects or subscription sets

to create script files with appropriate data definition language (DDL) and data

manipulation language (DML). You can copy the replication definitions to another

database without having to re-register the sources or re-create the subscription sets.

For example, use the promote functions to define subscription sets for remote

target databases. After you define a model target system in your test environment,

you can create subscription-set scripts (and modify which Apply qualifier is used

and so on) for your remote target systems, which are not otherwise supported

from a central control point.

Important: The promote functions do not connect to the destination target system

and do not validate the replication configuration parameters of that system.

The following list describes the three options for promoting your replication

configuration to another system.

Promote registered tables

This function promotes registration information for specified tables. This

function optionally promotes base table, index and table space definitions.

You can specify a different Capture schema and a different server name for

the tables that you promote. Also, you can change the schema name for the

change-data (CD) tables associated with the promoted source tables.

170 SQL Replication Guide and Reference

You can promote multiple registered tables at one time. The new schema

names that you provide are applied to all the promoted tables.

 This function promotes tables that are registered under DB2 Version 8 or

later only.

Promote registered views

This function promotes registration information for specified views. This

function optionally promotes base view, unregistered base table (on which

a view is based), index, and table space definitions. You can specify a

different Capture schema and a different server name for the views that

you promote. Also, you can change the schema name for the CD views

that are associated with the promoted source views and the CD tables on

which these CD views are based.

 You can promote multiple registered views at one time. The new schema

names that you provide are applied to all the promoted views.

Important: If the view that you are promoting is based on a registered

source table, you must promote the registered source table separately by

using the promote registered tables function. These registered source tables

are not automatically promoted by the promote registered view function.

However, the unregistered base tables, upon which this view is based, are

promoted by this function, if required.

Promote subscription sets

This function promotes subscriptions sets. This function enables you to

copy a subscription set (with all of its subscription-set members) from one

database to another.

 You should use the promote subscription sets function with the promote

registered tables function.

Important: You can use the promote functions to promote registered objects and

subscription sets that reside on all supported operating systems. The promote

functions copy replication definitions between like systems only, for example from

one DB2 for z/OS system to another DB2 for z/OS system.

You cannot use the promote functions to copy replication definitions to or from

non-DB2 relational databases. Additionally, you cannot use the promote functions

to copy replication definitions that include System i remote journals.

Chapter 12. Changing an SQL replication environment 171

172 SQL Replication Guide and Reference

Chapter 13. Maintaining a SQL replication environment

You should maintain the source systems, control tables, and target tables that

reside on your database and are used by SQL replication.

SQL replication works with your database system and requires limited changes to

your existing database activities. However, to ensure that your entire system

continues to run smoothly and to avoid potential problems, you should determine

the processing requirements of your replication environment and the potential

impact of these requirements on your database system.

The following topics discuss the maintenance requirements of source systems,

control tables, and target tables.

Maintaining source systems

The replication source system contains the change-capture mechanism, the source

tables that you want to replicate (including any remote journals used on System i),

the log data used by the Capture program, and any Capture triggers that are used

on non-DB2 relational database sources.

These topics explain how to maintain your source tables and log files properly and

how to ensure that these tables and files are always accessible to SQL replication.

Access to source tables and views

You need to consider the availability of source tables to SQL replication so that the

Capture and Apply programs are always able to proceed.

Replication source objects are database tables and views that require the same

maintenance as other database tables and views on your system. Continue to run

your existing utilities and maintenance routines on these objects.

SQL replication does not require direct access to source tables during most

replication processing. However, SQL replication must access your source tables or

table spaces directly when one of the following two actions occurs:

v The Apply program performs a full refresh.

v The log manager attempts to read compressed log records (z/OS only).

Make sure that read access is available to your source tables to avoid disrupting

the Apply program during a full refresh. Also, on z/OS, make sure that your

utilities run in an online mode so that DB2 can obtain a latch against the

compressed log record table space if your source tables are compressed. If your

utilities and maintenance routines run in an exclusive mode that requires your

database (or the compressed table space on z/OS) to be taken offline, your source

objects will be unavailable to replication.

Source logs and journal receivers

Your DB2 recovery logs serve two purposes: to provide DB2 recovery capabilities

and to provide information to your running Capture programs.

© Copyright IBM Corp. 1994, 2007 173

You need to retain log data for both DB2 recovery and for SQL replication, and

you must be absolutely certain that the Capture programs and DB2 are completely

finished with a set of logs or journal receivers before you delete this data.

Note: SQL replication does not use log data from non-DB2 relational databases.

Retaining log data (Linux, UNIX, Windows)

Log data resides in log buffers, active logs, or archive logs. Each time the Capture

program warm starts it requires all the DB2 logs created since it stopped as well as

any DB2 logs that it did not completely process.

Before you begin

Note: You must configure your database to use user-exit archiving for your

Capture programs to retrieve data from archived logs.

About this task

If you run the Capture program whenever DB2 is running, the Capture program is

typically up to date with the recovery logs of DB2. If you run Capture programs

whenever DB2 is up or you retain log records for a week or longer, you can

continue to use your existing log retention procedures. However, you should

change your log retention procedures to accommodate SQL replication if:

v You typically delete log records as soon as DB2 completes a backup, and these

log records are no longer needed for forward recovery.

v You face storage constraints and need to delete your archived recovery logs

frequently.

Procedure

To determine which log records must be retained for use by the Capture program

and which log records can be deleted:

1. Run the following SQL statement to obtain the MIN_INFLIGHTSEQ value from

the IBMSNAP_RESTART table:

For partitioned databases: In a multi-partitioned environment, this procedure

must be extended to each partition because each partition maintains its own set

of log files. Use the SEQUENCE column from the IBMSNAP_PARTITIONINFO

table to determine this information for each partition.

SELECT MIN_INFLIGHTSEQ

FROM ASN.IBMSNAP_RESTART

WITH UR;

The MIN_INFLIGHTSEQ value appears. The MIN_INFLIGHTSEQ value is a

CHAR(10) FOR BIT DATA column, which looks like 20 hexadecimal characters.

For example:

00000000123456123456

Make note of the last 12 characters of the MIN_INFLIGHTSEQ value. In the

example:

123456123456

174 SQL Replication Guide and Reference

Attention: The Capture program updates the IBMSNAP_RESTART each time

it commits data, based on the value of the commit_interval parameter. Because

the SELECT statement that is used in this procedure specifies an uncommitted

read (UR), you might receive an uncommitted value for MIN_INFLIGHTSEQ.

To ensure that you have the most accurate value, run the SELECT statement,

wait for the commit interval to elapse, and then run the SELECT again. Use the

lower value for MIN_INFLIGHTSEQ for the rest of this procedure.

2. From a command line, type the db2 get db cfg command to obtain the path for

the active log files. For example:

db2 get db cfg for yourdbname

where yourdbname is the database name. From the output displayed on the

screen, note the path for the active log files. For example:

Path to log files =C:\DB2\NODE0000\SQL00001\SQLOGDIR\

3. From a DB2 command line, type the db2flsn command and enter the last 12

characters of the MIN_INFLIGHTSEQ value. For example:

C:\DB2\NODE0000\SQL00001\>db2flsn 123456123456

To run the db2flsn command, you must have access to the either the

SQLOGCTL.LFH.1 file or its mirror copy, SQLOGCTL.LFH.2. Both files are

located in the database directory. The system retrieves and displays the name of

the file that contains the log record that is identified by the log sequence

number. For example:

Given LSN is contained in the log file S000123.LOG

Access to journal receivers (System i)

It is important to retain all journal receivers that are required by the Capture

program.

When you restart the Capture program with the RESTART(*YES) parameter, the

Capture program continues processing from where it ended previously and

requires all the journal receivers used by one or more of the source tables.

To make certain your Capture program can access all required journal receivers,

use the delete journal receiver exit program, which was registered automatically

when you installed DB2 DataPropagator for System i. This exit program is invoked

any time you or one of your applications programs attempts to delete a journal

receiver. This exit program then determines whether or not a journal receiver can

be deleted.

Recommendation: Specify DLTRCV(*YES) and MNGRCV(*SYSTEM) on the

CHGJRN or CRTJRN command to use the delete journal receiver exit program and

leave journal management to the system.

If the journal receiver is used by one or more source tables, the delete journal

receiver exit program checks that the receiver being deleted does not contain

entries that have not been processed by the Capture program. The exit program

disapproves the deletion of the receiver if the Capture program still needs to process

entries on that receiver.

Considerations for managing compression dictionaries (z/OS)

If you are using DB2 compression dictionary utilities, you must coordinate the use

of these utilities with your Capture programs.

Updating DB2 compression dictionaries (z/OS)

Chapter 13. Maintaining a SQL replication environment 175

When the Capture program requests log records, DB2 must decompress the

log records of any table that is stored in a compressed table space. DB2

uses the current compression dictionary for decompression. In some cases

the compression dictionary may be unavailable. The Capture program

takes different actions in each case:

If the compression dictionary is temporarily unavailable

DB2 returns an error to the Capture program. The Capture

program makes several attempts to continue processing. If the

dictionary remains unavailable, the Capture program issues an

ASN0011E message and terminates.

If the compression dictionary is permanently unavailable

A compression dictionary may be lost if you use the REORG utility

without specifying KEEPDICTIONARY=YES. In this case, the

Capture program follows the error action that is specified by the

STOP_ON_ERROR option for the registration. If

STOP_ON_ERROR=N (no), Capture deactivates the registration. If

STOP_ON_ERROR=Y (yes), the Capture program issues an

ASN0011E message and terminates.

With APAR PK19539 (DB2 for z/OS Version 8), DB2 will keep one backup

of the compression dictionary in memory when you use the REORG utility

without specifying KEEPDICTIONARY=YES. So you do not need to

specify KEEPDICTIONARY=YES unless:

v You restart DB2.

v You use the REORG utility twice for the same tablespace before the

Capture program reads all of the old log records for that table.

To avoid these situations in DB2 for z/OS Version 7, let the Capture

program process all log records for a table before performing any activity

that affects the compression dictionary for that table. Some of the following

activities can affect compression dictionaries:

v Altering a table space to change its compression setting

v Using DSN1COPY to copy compressed table spaces from one subsystem

to another, including from data sharing to non-data-sharing

environments

v Running the REORG utility on the table space

Latching DB2 compression dictionaries (z/OS)

 You should also consider the availability of your compression directory.

When the Capture program reads compressed log records, DB2 takes a

latch on the source compressed table space to access the dictionary. The

Capture program stops if the compressed table space on the source system

is in the STOPPED state when the DB2 Log Read Interface needs this latch.

Conversely, a utility that requires complete access to the source table space

or that requires the table space to be in a STOPPED state can be locked out

by the latch held by the Capture program while it is reading the dictionary.

 To prevent any temporary lockout due to an unavailable latch, suspend the

Capture program when a source compressed table space needs to be used

exclusively by a DB2 (or vendor) utility.

176 SQL Replication Guide and Reference

Maintaining control tables

SQL replication uses control tables to store source definitions, subscription-set

definitions, and other replication-specific control information. Although the size of

some control tables remains static, other control tables can grow (and later shrink)

dynamically depending on the size of your database and your replication

requirements.

The size of the following tables changes frequently during normal processing:

v

IBMSNAP_APPLY_JOB

v IBMSNAP_APPLYTRACE

v IBMSNAP_APPLYTRAIL

v IBMSNAP_CAPMON

v IBMSNAP_CAPTRACE

v CD tables

v CCD tables

v IBMSNAP_ALERTS

v IBMSNAP_MONTRACE

v IBMSNAP_MONTRAIL

v IBMSNAP_SIGNAL

v BMSNAP_SUBS_EVENT

v IBMSNAP_UOW

The size and growth of these dynamic control tables can affect the performance of

your system.

The RUNSTATS utility for SQL replication (Linux, UNIX,

Windows, z/OS)

The RUNSTATS utility updates statistics about the physical characteristics of your

tables and associated indexes.

You should continue to run the RUNSTATS utility on your existing tables at the

same frequency as before you used SQL replication. However, you should run the

RUNSTATS utility on your change-data (CD), IBMSNAP_UOW, and other dynamic

control tables only one time when these tables contain substantial amounts of data.

RUNSTATS reports meaningful information about these dynamic tables when these

tables are at their maximum production-level size, and the optimizer gains the

necessary statistics to determine the best strategy for accessing data.

Rebinding packages and plans (z/OS, Linux, UNIX, Windows)

Binding your packages and plans with the isolation level set to UR (uncommitted

reads) ensures optimal system performance.

Many of the SQL replication packages and plans are bound using isolation UR. If

you must rebind your packages and plans, note that your internal maintenance

programs used for automatic rebinding of these packages and plans can cause

contention problems between Capture and Apply if these programs rebind the

replication packages with standard options such as cursor stability. SQL replication

packages must remain bound with isolation UR to maintain optimal system

performance.

Chapter 13. Maintaining a SQL replication environment 177

Reorganizing your control tables

You should regularly reorganize dynamic control tables that are frequently

updated.

About this task

Your CD and IBMSNAP_UOW tables receive many INSERTS during change

capture and many DELETES during pruning. The size of the IBMSNAP_CAPMON,

IBMSNAP_CAPTRACE, and IBMSNAP_APPLYTRAIL tables can change

dramatically depending on the update rates of your replication source tables.

Recommendation: Reorganize the following dynamic control tables once a week:

v CD tables

v IBMSNAP_ALERTS

v IBMSNAP_APPLYTRACE

v IBMSNAP_APPLYTRAIL

v IBMSNAP_CAPMON

v IBMSNAP_CAPTRACE

v IBMSNAP_MONTRAIL

v IBMSNAP_MONTRACE

v IBMSNAP_UOW

You do not need to run any utilities that reclaim unused space or generate

frequently updated optimizer statistics on the other control tables.

Procedure

To reorganize your control tables, use one of the following methods:

 Method Description

REORG utility with

the PREFORMAT

option

The PREFORMAT option of this utility speeds up the insert

processing of the Capture program.

RGZPFM

(Reorganize Physical

File Member)

command

You can reorganize the UOW table and active CD tables when the

Capture program ends by specifying the RGZCTLTBL(*YES)

parameter on the ENDDPRCAP command.

REORG command

Use this command to eliminate fragmented data and reclaim space.

Pruning dynamic control tables maintained by the Capture

programs (Linux, UNIX, Windows, z/OS)

You can manually or automatically prune tables that fluctuate in size.

About this task

You should monitor the growth of and consider the various pruning methods

available for the following dynamic control tables:

v CD tables

178 SQL Replication Guide and Reference

v IBMSNAP_UOW

v IBMSNAP_CAPMON

v IBMSNAP_CAPTRACE

v IBMSNAP_SIGNAL

v

IBMSNAP_AUTHTKN

You can set your Capture programs to prune these tables automatically at regular

intervals. Or you can prune on demand by launching the pruning process once; the

Capture program does not prune again until you enter the next prune command.

Procedure

To prune dynamic control tables that are maintained by the Capture program:

1. If you want to prune the dynamic control tables automatically, set the

autoprune parameter to yes using one of the following methods:

 Method Description

Start a Capture

program with

automatic pruning.

Issue the asncap system command with autoprune=y. Set the

prune_interval parameter to specify how frequently the automatic

pruning process occurs.

Enable automatic

pruning for a

running Capture

program.

Issue the asnccmd chgparms command with autoprune=y. Set the

prune_interval parameter to specify how frequently the automatic

pruning process occurs.

2. If you want to prune the dynamic control tables once, use one of the following

methods:

 Method Description

Replication Center Use the Prune Capture Control Tables window to prune the tables

once. To open the window, click the Capture Control Servers

folder in the Operations branch of the object tree, right-click a

server in the contents pane, and click Prune Capture.

Initiate pruning once

from a running

Capture program.

Issue the asnccmd system command with the prune parameter.

CD and UOW table pruning

During each pruning cycle, whether invoked automatically or on demand, the

Capture program prunes the CD and UOW tables based on the progress reported

by the Apply programs.

Pruning progress is indicated by the SYNCHPOINT column value in the

IBMSNAP_PRUNE_SET table. This normal pruning is based on the minimum

synchpoint value over all Apply programs that subscribe to each CD table and on

the minimum overall synchpoint value for the UOW table.

Normal pruning, however, does not prune the CD and UOW tables effectively if

the associated subscriptions sets run very infrequently. Keep pruning effectiveness

in mind when deciding how often to run the associated Apply programs, when

stopping these Apply programs, and when deactivating the subscription sets for

more than a brief period of time.

Chapter 13. Maintaining a SQL replication environment 179

If you run your subscription sets very infrequently or stop your Apply programs,

your CD and UOW tables can grow very large and become eligible for retention

limit pruning. The retention limit is an operational parameter of the Capture

program, with a default value of one week. It determines how long old data

remains in the tables before becoming eligible for retention limit pruning.

If the normal pruning process is inhibited due to deactivated or infrequently run

subscription sets, data can remain in the table for long periods of time. If this data

becomes older than the current DB2 timestamp minus the retention limit value, the

retention limit pruning process prunes this data from the tables.

Try to avoid conditions that require retention limit pruning, because the

accumulation of old data can lead to storage overflows and performance

degradation.

Recommendation: Run your Apply programs at least once per day for all of your

subscription sets.

If the source server is supplying changed data to a variety of target systems, each

with very different requirements and some with infrequently running Apply

programs for few registered sources, consider the use of multiple Capture

programs. You can use multiple Capture programs and manage the various

processing requirements with different Capture schemas, using one Capture

schema to isolate those tables that are infrequently pruned due to specific

subscription-set timing requirements and using another Capture schema for the

remaining source tables.

Recommendations for pruning other dynamic control tables

You should regularly prune your replication control tables to remove obsolete data

and to improve system performance.

The Capture program performs pruning operations for only the tables that it

maintains. The Apply program maintains consistent-change data (CCD) tables;

therefore, the Capture program does not automatically prune these tables. Some

types of CCD tables do not require pruning. Complete condensed CCD tables are

updated in place.

The only records that you might want to remove from complete condensed CCD

tables are those with an IBMSNAP_OPERATION column value of D (Delete) that

have already been replicated to the dependent target tables. Noncondensed CCD

tables contain historical data and can grow very large. Because you should

preserve this data for auditing purposes, you should not perform pruning

operations on noncondensed CCD tables.

You should, however, consider pruning your internal CCD tables. These tables can

grow quickly if there is heavy update activity on your system. Only the most

recent changes are fetched from internal CCD tables, so you do not need to retain

the older rows.

To enable pruning for internal CCD tables, consider adding after-SQL statements to

associated subscription sets to prune change data that has already been applied to

all dependent targets. Alternatively, you can also add the necessary SQL DELETE

statements to your automatic scheduling facilities to delete rows from these tables.

180 SQL Replication Guide and Reference

You should also manually prune the IBMSNAP_APPLYTRAIL and

IBMSNAP_APPLYTRACE tables. If you define and use multiple subscription sets

with frequently run Apply programs, the IBMSNAP_APPLYTRAIL table grows

rapidly and requires frequent pruning. The best way to manage the growth of

these tables is to add an after-SQL statement or procedure call to one of your

subscription sets. Alternatively, you can add an SQL DELETE statement to your

automatic scheduling facilities.

Preventing replication failures and recovering from errors

These topics describe methods to prevent and recover from replication failures that

can affect your control tables and replication data.

Preventing cold starts of the Capture program

You should perform a cold start of the Capture program only if you are starting

the program for the first time or you need to refresh your control and target tables.

If you cold start the Capture program, all of the target tables in your replication

environment are refreshed.

When a Capture program starts with the

warmns or warmsi option, the program attempts to retrieve log records based on

the restart point in the IBMSNAP_RESTART table. If the Capture program cannot

find the log, the Capture warm start fails.

To prevent a cold start of the Capture program, consider the following

recommendations.

v

Start the capture program with the RESTART(*YES)

parameter. The Capture program continues processing from the point where it

was when it ended previously. Retain sufficient DB2 log data or journal receivers

on your system and that this data is available to SQL replication.

v Use the Replication Alert Monitor or other mechanism to check the status of the

historical data from your Capture programs. You can then use this information

to verify that the Capture programs are always running if DB2 is active.

v Make sure that you retain sufficient DB2 log data or journal receivers on your

system and that this data is available to SQL replication.

Recovering from I/O errors and connectivity failures on your

control tables

If replication loses connectivity to a control table, you can recover the table, for

other errors the replication programs will shut down.

About this task

If the Capture program detects an I/O error or connectivity failure, the program

issues an appropriate error message and shuts down.

The Apply program shuts down if it detects catastrophic errors on the control

tables. If the Apply program detects errors on target tables or errors with network

connectivity, the program writes the error to the IBMSNAP_APPLYTRAIL table

and then continues processing.

Procedure

To recover from errors and connectivity failures to your control tables:

Chapter 13. Maintaining a SQL replication environment 181

1. If you experience an I/O error or connectivity failure on any control table, use

a standard DB2 recovery procedure to forward recover the table. The table will

not lose any data.

2. If the programs shut down, restart the Capture program from the point of

failure and restart the Apply program.

Retrieving lost source data

If you lose source you can possibly retrieve it through a recovery point method or

a full refresh.

About this task

If a source table is forward recovered to the point of failure, SQL replication

proceeds normally. After the table is recovered, the Capture program continues

collecting data changes for the table.

However, the Capture and Apply programs do not detect a point-in-time recovery

of a read-only target table. If you recover a source table, the Apply program might

have replicated changes to the target tables that no longer exist at the source,

leaving inconsistencies between your source tables and target tables if you cannot

take the target tables back to the same logical point in time.

This scenario becomes even more complex when there are multiple levels of

replication. You must either develop a mechanism that provides matching recovery

points among the various levels or use a full refresh as your recovery method of

choice.

Procedure

Recover your source data using one of the following methods:

 Method Description

Recovery point

mechanism

Develop a mechanism that provides matching recovery points

among the various levels of replication.

Full refresh Use a full refresh as your recovery method of choice

IBMSNAP_CAPMON and IBMSNAP_CAPTRACE table pruning

Your operating parameter values determine pruning of the IBMSNAP_CAPMON

and IBMSNAP_CAPTRACE tables.

During each pruning cycle, the Capture program prunes the IBMSNAP_CAPMON

and the IBMSNAP_CAPTRACE tables based on the values of the following

operational parameters of the Capture program:

v The monitor_limit parameter (Linux, UNIX, Windows, z/OS) and the

MONLMT parameter (System i) determine how long rows remain in the

IBMSNAP_CAPMON table

v The trace_limit parameter (Linux, UNIX, Windows, z/OS) and the TRCLMT

parameter (System i) determine how long rows remain in the

IBMSNAP_CAPTRACE table

Both the monitor limit and the trace limit parameters have a default value of one

week. You can change these values depending on how long you need to preserve

182 SQL Replication Guide and Reference

the historical Capture latency and throughput information in the

IBMSNAP_CAPMON table and the auditing and troubleshooting data from the

IBMSNAP_CAPTRACE table.

IBMSNAP_SIGNAL table pruning

Because, rows are constantly being added during replication, the

IBMSNAP_SIGNAL table is pruned automatically.

The IBMSNAP_SIGNAL table is also pruned during each pruning cycle. A signal

row is eligible for pruning if the SIGNAL_STATE column value is equal to C. A

value of C indicates that the signal information is complete and is no longer

required by the Capture program or for any user processing and is eligible for

pruning. A signal row with a SIGNAL_TIME column value that is older than the

current DB2 timestamp minus the retention limit parameter value is eligible for

retention limit pruning.

Maintaining target tables

Maintain the tables on the target server in the same way that you maintain other

tables on your database system.

Use your current backup and maintenance routines on these target tables, whether

the target tables are existing database tables or tables that you specified to be

automatically generated by SQL replication.

Note: Deactivate your Apply programs before taking a target table offline to run

any utility.

Chapter 13. Maintaining a SQL replication environment 183

184 SQL Replication Guide and Reference

Chapter 14. Detecting and repairing differences between

source and target tables

The asntdiff and asntrep utilities allow you to detect and repair differences

between source and target tables in Q replication and SQL replication without

manually comparing the tables or performing a load (full refresh) of the target.

About this task

Source and target tables can lose synchronization, for example if a target table is

unexpectedly changed by a user or application, or if you experienced an extended

network or target system outage.

The asntdiff and asntrep utilities run independently of the Q Capture, Q Apply,

Capture, and Apply programs. They use DB2 SQL to fetch data from the source

table and the target table and do not use WebSphere MQ queues. The utilities do

not depend on logs, triggers, or isolation level.

Procedure

To detect and repair differences between source and target tables, run the asntdiff

utility, and then run the asntrep utility.

Table difference utility (asntdiff)

The asntdiff utility compares all columns in a source table to their corresponding

columns in a target table and generates a list of differences between the two tables

in the form of a DB2 table.

To use the asntdiff utility, you run the asntdiff command and specify the name of a

Q subscription (Q replication) or subscription set member (SQL replication) that

contains the source and target tables that you want to compare.

You can run the asntdiff command on Linux, UNIX, Windows, and z/OS operating

systems. The command compares tables on Linux, UNIX, Windows, z/OS, or

System i operating systems. The asntdiff command can be used with federated

sources and targets if the corresponding columns in the two tables have the same

data types.

For Q replication, the target must be a table and not a stored procedure. For SQL

replication, the target must be a user table, point-in-time table, replica table, or

user-copy table.

When you run the command, you specify an SQL WHERE clause that uniquely

identifies the Q subscription or subscription set member:

Q replication

The WHERE clause identifies a row in the IBMQREP_SUBS control table at

the Q Capture server, based on the value of the SUBNAME column. For

example:

where="subname = ’my_qsub’"

© Copyright IBM Corp. 1994, 2007 185

SQL replication

The WHERE clause identifies a row in the IBMSNAP_SUBS_MEMBR table

at the Apply control server, based on the value of the SET_NAME column.

For example:

where="set_name = ’my_set’ and source_table=’EMPLOYEE’"

You might need to use more predicates in the WHERE clause to uniquely

identify the subscription set member. For example, you might need to add

the APPLY_QUAL, the SOURCE_OWNER, the TARGET_OWNER, or the

TARGET_TABLE column from the IBMSNAP_SUBS_MEMBR table to the

clause.

Difference table

The asntdiff command creates a difference table in the source database or

subsystem for Q replication and SQL replication.

The difference table is named schema.ASNTDIFF, where schema is the value

specified in the DIFF_SCHEMA parameter. If the schema is not specified, it

defaults to ASN. You can also use the DIFF parameter to specify a table name.

By default, the difference table is created in the default DB2 user table space. You

can specify a different table space by using the DIFF_TABLESPACE parameter. You

can also create the difference table and specify a different table space. If you create

the difference table, any rows that it contains will be deleted when you use the

asntdiff command.

The difference table has two or more columns. One column is named DIFF , with a

blank space at the end. The value in the DIFF column is a character that indicates

an insert, update, or delete operation followed by a numeric value that indicates

which table contains a row with differences. The other columns contain the value

of replication key columns. There is one row in the difference table for each

unmatched row in the target table.

The difference table uses three identifiers that indicate the operation that is needed

to change the target table so that it matches the source table:

D (delete)

Indicates that a row with the key value exists only at the target and not at

the source.

U (update)

Indicates that rows with the same key value exist at both the source and

target, but at least one non-key column is different at the target.

I (insert)

Indicates that a row with the key value exists only at the source and not at

the target.

A value of ? 1 indicates that there is an invalid character in one or more source

columns.

A value of ? 2 indicates that there is an invalid character in one or more target

columns.

186 SQL Replication Guide and Reference

Example

The following list of values is returned by comparing an EMPLOYEE table at the

source with a target copy of the same table. The key column for replication is the

employee number, EMPNO:

DIFF EMPNO

U 2 000010

I 2 000020

I 2 000040

D 2 000045

I 2 000050

D 2 000055

The first row in the example shows that a row with the key value 000010 exists at

both the source and target tables, but at least one non-key column at the target has

a different value. The next two rows show that rows with the key values 000020

and 000040 exist only at the source. The fourth row shows that a row with the key

value 000045 exists only at the target.

The values ? 1 and ? 2 are not shown in the example.

Suppressed delete operations

In Q replication, you can choose to suppress replication of delete operations from

the source table. If you do not replicate delete operations, rows that exist in the

target table may not exist in the source table. When the SUPPRESS_DELETES

value for a Q subscription is Y, the asntdiff utility ignores the rows that are unique

to the target and reports no differences. A warning is issued to indicate how many

rows were suppressed.

Different data types in sources and targets

The asntdiff utility builds two SELECT SQL statements that are based on the

description of a subscription. To obtain the differences between the source and

target tables, the utility compares the data that result from executing both

statements. The data types of the columns for both SQL statements must be the

same.

SQL replication

The utility builds the SQL statement for the source by using the

EXPRESSION column in the IBMSNAP_SUBS_COLS table.

Q replication

The data types for both the source and the target must be the same.

Comparing the GRAPHIC data type

Columns with the GRAPHIC data type at the source and target might not match

when you use the asntdiff utility to compare the source and target tables. DB2

columns with the GRAPHIC data type have blank padding after the graphic data.

This padding might be single-byte or double-byte spaces, depending on the code

page that the database was created in. This padding might cause data to not match

between the source and the target tables, especially if the source and target tables

are in different code pages. This padding applies only to GRAPHIC data types and

not other graphic data types such as VARGRAPHIC or LONG VARGRAPHIC.

To compare columns with GRAPHIC data types, you must remove the blank

padding in the data before you compare the source and target tables by using the

Chapter 14. Detecting and repairing differences between source and target tables 187

DB2 scalar function rtrim(<column>. This function eliminates the code page

differences for single-byte or double-byte spaces and ensures that the asntdiff

utility compares the GRAPHIC data in a consistent manner.

Predicates

In some cases, differences between source and target tables are intentional, for

example, if you use a search condition in Q replication to filter which rows are

replicated. The utility will not show differences between source and target tables

that are a result of predicates.

SQL replication

The utility uses the PREDICATES column in the IBMSNAP_SUBS_MEMBR

table to select rows from the source tables. The value of the

UOW_CD_PREDICATES column is ignored (asntdiff looks directly at the

source table, where the Apply program looks at the CD table).

Q replication

The utility uses the value of the SEARCH_CONDITION column in the

IBMQREP_SUBS table to build the WHERE clause for the SELECT

statement.

When to use the asntdiff utility

The best time to use the asntdiff utility is when the source and target tables are

stable. You might want to run the utility when the Q Capture and Q Apply

programs or Capture and Apply programs are idle. For example, you could run

the utility when the Q Capture program reached the end of the DB2 recovery log

and all changes are applied at the target. If applications are still updating the

source, the comparison might not be accurate.

If the replication programs are running, you might need to run the asntdiff

command more than once to get a complete picture of evolving differences

between the source and target tables.

Table repair utility (asntrep)

The asntrep utility repairs differences between source and target tables on all DB2

servers by deleting, inserting, and updating rows in the target table. The utility

runs on Linux, UNIX, or Windows operating systems.

The asntrep utility uses the difference table that is generated by the asntdiff utility

to do the following:

v Delete rows from the target table that have no matching key in the source table

v Insert rows that are in the source table but have no matching key in the target

table

v Update target rows that have matching keys in the source but different non-key

data

For Q replication, the target must be a table; it cannot be a stored procedure. For

SQL replication, the target must be a user table, a point-in-time table, a replica

table, or a user-copy table. If you use the asntrep utility with a Q subscription for

peer-to-peer replication, you must repair all of the copies of a logical table two

copies at a time.

188 SQL Replication Guide and Reference

To use the asntrep utility, you run the asntrep command after you run the asntdiff

command. The asntrep command copies the difference table from the source

database or subsystem to the target, and then uses the copy to repair the target

table.

The asntrep command does not drop the difference table from the target database

or subsystem. You must drop the table manually.

To use the asntrep command, you provide the same WHERE clause that you used

for the asntdiff command to identify the Q subscription or subscription set member

that contains the source and target tables that you want to synchronize.

During the repair process, referential integrity constraints on the target table are

not dropped. An attempt to insert or delete a row from a target table can fail if the

insert or delete operation violates a referential integrity constraint. Also, a

duplicate source row might be impossible to repair at the target if the target has a

unique index.

Chapter 14. Detecting and repairing differences between source and target tables 189

190 SQL Replication Guide and Reference

Chapter 15. Replication Alert Monitor

You can use the Replication Alert Monitor to monitor an SQL replication, Q

replication, or event publishing environment.

The Replication Alert Monitor cannot check the status of Classic replication sources

but it can monitor the DB2 or federated target servers in a Classic replication

configuration.

The following topics explain how the Replication Alert Monitor works and how to

configure and operate monitors for your replication or publishing environment.

Monitoring replication with the Replication Alert Monitor

The Replication Alert Monitor is a program that can alert you to changes in the

status of your replication environment.

When the Replication Alert Monitor is running, it automatically checks the status

of replication and notifies you about certain conditions that occur in you

replication environment. For example, in SQL replication, the Replication Alert

Monitor can notify you when any Apply program terminates. Similarly, in Q

replication, the Replication Alert Monitor can notify you when any Q Capture

program deactivates a Q subscription.

Restriction: The Replication Alert Monitor cannot check the status of Classic

replication sources but it can monitor the DB2 or federated target servers in a

Classic replication configuration.

You can configure the Replication Alert Monitor in one of two ways:

One monitor

Typically you use one monitor when you have few replication programs to

monitor. If you set up a single monitor, all the control information is stored

on one server. Each monitor can monitor multiple replication programs,

but the monitor checks for alerts on each server one at a time. It must

check all of the other servers that it monitors before it returns to any one

server.

Multiple monitors

Use additional monitors to monitor many replication programs, prioritize

the monitoring of certain programs, or split up the monitoring workload.

You create independent monitors to check the servers in your system.

These monitors do not communicate with each other, but they each send

alerts about the servers. When you set up multiple monitors, the control

information for each monitor is stored on the server that it is assigned to

monitor. Use multiple monitors to:

v Monitor some replication programs more frequently than others. Set

up a monitor with a smaller monitor_interval to check replication

programs for alert conditions more frequently. For example, you can

assign one monitor to monitor one Capture server for the

CAPTURE_WARNINGS alert condition every 15 minutes. You can assign

another monitor to monitor another Capture server for the

CAPTURE_WARNINGS alert condition every 50 minutes.

© Copyright IBM Corp. 1994, 2007 191

v Monitor different applications separately. Set up monitors for each

replication application. For example, separate monitors can send alerts to

different groups or help an administrator separate the alerts for two

different applications. Similarly, separate monitors can be assigned to

check for different alert conditions.

v Prioritize alert conditions. For example, you might want to monitor the

status of a Q Apply program every 10 minutes by using the

QAPPLY_STATUS alert condition. But, you might also want to monitor

the memory of the same Q Apply program every 300 minutes by using

the QAPPLY_MEMORY alert condition.

The following terms describe components of the Replication Alert Monitor:

Monitor

A monitor is one instance or occurrence of the Replication Alert Monitor.

You can set up a monitor to check the status of the replication programs

that are running on a server or servers. Each monitor checks the replication

activity on the server, or servers, that it is assigned to.

Monitor qualifier

A monitor qualifier is a name that you specify for a monitor. Every

monitor has a unique monitor qualifier.

Monitor control server

A monitor control server is any server containing control information for

the Replication Alert Monitor.

Alerts Alerts are notices that tell you about events and conditions in your

replication environment. The Replication Alert Monitor sends alerts via

e-mail or pager.

Alert conditions

Alert conditions are conditions of the replication environment that cause

the Replication Alert Monitor to send alerts. There are three kinds of alert

conditions: alert conditions that are triggered by status, alert conditions

that are triggered by events, and alert conditions that are triggered by

thresholds.

Alert conditions that are triggered by status

Status alert conditions inform you about the state of the replication

programs. For example, if you specify the APPLY_STATUS alert

condition, the Replication Alert Monitor will send an alert if an

Apply program is not running.

Alert conditions that are triggered by events

Event alert conditions tell you when specific events in replication

happen. For example, if you specify the QAPPLY_ERRORS alert

condition, the Replication Alert Monitor will send an alert anytime

the Q Apply program records an error in the

IBMQREP_APPLYTRACE table.

Alert conditions that are triggered by thresholds

Threshold alert conditions tell you when a threshold has been

exceed in your replication environment. For example, if you specify

the QCAPTURE_MEMORY alert condition, the Replication Alert

Monitor will notify you anytime the Q Capture program uses more

memory than its threshold allows.

Contacts

A contact is an e-mail address or a pager address where alerts from the

192 SQL Replication Guide and Reference

Replication Alert Monitor are sent. Alerts can also be directed to the z/OS

console. The ASNMAIL exit routine sends e-mail notifications for the

monitor. You can modify this exit routine to put the alerts elsewhere such

as in a problem management system.

Contact groups

A contact group is a collection of contacts that receive the same alerts.

You can also specify that alerts are sent to the z/OS console.

The Replication Alert Monitor monitors servers on DB2 for Linux, UNIX,

Windows, or z/OS operating systems. You can monitor replication programs

whose control tables are at Version 8 architecture or later.

Restrictions

v Some platform-specific restrictions apply for monitoring the status of the Q

Capture, Q Apply, Capture, or Apply programs. These restrictions apply to the

following alert conditions:

– QCAPTURE_STATUS

– QAPPLY_STATUS

– CAPTURE_STATUS

– APPLY_STATUS

A monitor that runs from a z/OS server cannot monitor the status of the

replication programs unless the programs are running on the same z/OS

subsystem as the monitor.

If the monitor is running on a distributed platform and you want to

monitor the status of the replication programs, the DB2 Administration

Server must be running on the same system as the Q Capture, Q Apply,

Capture, or Apply program whose status you want to monitor. The DAS

is required to monitor status regardless of whether the replication

programs are running on a distributed platform or z/OS.

 For example, MONITOR1, which runs on the SERVER_LINUX1 server,

can monitor the status of a Q Apply program that runs on the

SERVER_ZOS1 server if the DB2 Administration Server is installed and

running on SERVER_ZOS1.See the IBM WebSphere Information Integration

Replication Installation and Customization Guide for z/OS for details.

 v For non-DB2 relational databases, the Replication Alert Monitor does not

monitor triggers that are associated with such databases used as sources in a

federated database system.

v

The Replication Alert Monitor can send e-mail notifications

by using an SMTP server, but cannot use the ASNMAIL exit routine to handle

notification.

v

To monitor System i servers, the Replication Alert Monitor

must run on a Linux, UNIX, or Windows server and monitor the System i server

remotely. You cannot set up Monitor control servers on DB2 for i5/OS servers.

Chapter 15. Replication Alert Monitor 193

Alert conditions and notifications for the Replication Alert Monitor

The Replication Alert Monitor can send notifications when certain alert conditions

occur.

Alert conditions for the Replication Alert Monitor

Alert conditions are conditions of the replication environment that cause a monitor

to send alerts. Alerts are messages that describe the status, event or threshold that

triggers an alert condition.

Some alerts also report relevant parameter values. For example, the message for

the QCAPTURE_MEMORY alert condition reports the amount of memory that the

Q Capture program is using and the memory threshold value that was exceeded.

The following sections describe alert conditions that you can use to monitor your

replication environment.

v “Alert conditions for the Q Capture program”

v “Alert conditions for the Q Apply program”

v “Alert conditions for the Capture program” on page 195

v “Alert conditions for the Apply program” on page 196

Alert conditions for the Q Capture program

Table 11 describes the alert conditions for the Q Capture program.

 Table 11. Alert conditions for the Q Capture program

Alert condition Description

QCAPTURE_STATUS The Replication Alert Monitor sends an alert when a Q Capture program

is not running.

QCAPTURE_ERRORS The Replication Alert Monitor sends an alert when it finds a row with the

value of ERROR in the OPERATION column of the

IBMQREP_CAPTRACE table.

QCAPTURE_WARNINGS The Replication Alert Monitor sends an alert when it finds a row with the

value of WARNING in the OPERATION column in the

IBMQREP_CAPTRACE table.

QCAPTURE_LATENCY Q Capture latency measures the difference between the time that data was

written to the database and the time that the Q Capture program passes it

on. The Replication Alert Monitor sends an alert when the Q Capture

latency exceeds the threshold that you specify. Q Capture latency is

measured in seconds.

QCAPTURE_MEMORY The Replication Alert Monitor sends an alert when a Q Capture program

uses more memory than the threshold that you specify. Memory is

measured in megabytes.

QCAPTURE_TRANSIZE The Replication Alert Monitor sends an alert when a transaction that the Q

Capture program is processing uses more memory than the threshold that

you specify. Memory is measured in megabytes.

QCAPTURE_SUBSINACT The Replication Alert Monitor sends an alert when a Q Capture program

deactivates a Q subscription.

Alert conditions for the Q Apply program

Table 12 on page 195 describes the alert conditions for the Q Apply program.

194 SQL Replication Guide and Reference

Table 12. Alert conditions for the Q Apply program

Alert condition Description

QAPPLY_STATUS The Replication Alert Monitor sends an alert when a Q Apply program is

not running.

QAPPLY_ERRORS The Replication Alert Monitor sends an alert when it finds a row with the

value of ERROR in the OPERATION column in the

IBMQREP_APPLYTRACE table.

QAPPLY_WARNINGS The Replication Alert Monitor sends an alert when it finds a row with the

value of WARNING in the OPERATION column in the

IBMQREP_APPLYTRACE table.

QAPPLY_LATENCY Q Apply latency measures the time it takes for a transaction to be applied

to a target table after the Q Apply program gets the transaction from a

receive queue. The Replication Alert Monitor sends an alert when the Q

Apply latency exceeds the threshold that you specify. Q Apply latency is

measured in milliseconds.

QAPPLY_EELATENCY Q Apply end-to-end latency measures the total time that replication

requires to capture changes and apply those changes to a target database.

The Replication Alert Monitor sends an alert when the Q Apply

end-to-end latency exceeds the threshold that you specify. Q Apply

end-to-end latency is measured in seconds.

QAPPLY_MEMORY The Replication Alert Monitor sends an alert when a Q Apply program

uses more memory than the threshold that you specify. Memory is

measured in megabytes.

QAPPLY_EXCEPTIONS The Replication Alert Monitor sends an alert when a row is inserted in

the IBMQREP_EXCEPTIONS table because of a conflict or SQL error at a

target.

QAPPLY_RECVQINACT The Replication Alert Monitor sends an alert when a receive queue is

deactivated.

QAPPLY_SPILLQDEPTH The Replication Alert Monitor sends an alert when the fullness of the spill

queue exceeds the threshold that you specify. Fullness is expressed as a

percentage.

QAPPLY_QDEPTH The Replication Alert Monitor sends an alert when the fullness of any

queue exceeds the threshold that you specify. Fullness is expressed as a

percentage.

Alert conditions for the Capture program

Table 13 describes the alert conditions for the Capture program.

 Table 13. Alert conditions for the Capture program

Alert condition Description

CAPTURE_STATUS The Replication Alert Monitor sends an alert when a Capture program is

not running.

CAPTURE_ERRORS The Replication Alert Monitor sends an alert when it finds a row with

the value of ERROR in the OPERATION column of the

IBMSNAP_CAPTRACE table.

CAPTURE_WARNINGS The Replication Alert Monitor sends an alert when it finds a row with

the value of WARNING in the OPERATION column of the

IBMSNAP_CAPTRACE table.

CAPTURE_LASTCOMMIT The Replication Alert Monitor sends an alert when the time that elapsed

from the last commit of a Capture program exceeds the threshold that

you specify. Time elapsed is measured in seconds.

Chapter 15. Replication Alert Monitor 195

Table 13. Alert conditions for the Capture program (continued)

Alert condition Description

CAPTURE_CLATENCY The current capture latency measures the difference between the time

that data was written to the database and the time that the Q Capture

program passes it on. The Replication Alert Monitor sends an alert when

the current Capture latency exceeds the threshold that you specify.

CAPTURE_HLATENCY Historic Capture latency is a composite of every Capture latency

measurement since the monitor last checked a server for alert conditions.

The Replication Alert Monitor sends an alert when the historic Capture

latency exceeds the threshold that you specify.

CAPTURE_MEMORY The Replication Alert Monitor sends an alert when a Capture program

uses more memory than the threshold that you specify. Memory is

measured in megabytes.

Alert conditions for the Apply program

Table 14 describes the alert conditions for the Apply program.

 Table 14. Alert Conditions for the Apply program

Alert condition Description

APPLY_STATUS The Replication Alert Monitor sends an alert when an Apply program is

not running.

APPLY_SUBSFAILING The Replication Alert Monitor sends an alert when a subscription fails.

APPLY_SUBSINACT The Replication Alert Monitor sends an alert when a subscription is

deactivated.

APPLY_ERRORS The Replication Alert Monitor sends an alert when it finds a row with

the value of ERROR in the OPERATION column in the

IBMSNAP_APPLYTRACE table

APPLY_WARNINGS The Replication Alert Monitor sends an alert when it finds a row with

the value of WARNING in the OPERATION column in the

IBMSNAP_APPLYTRACE table

APPLY_FULLREFRESH The Replication Alert Monitor sends an alert when there is a full refresh.

APPLY_REJTRANS The Replication Alert Monitor sends an alert when a transaction is

rejected in a subscription set.

APPLY_SUBSDELAY The Replication Alert Monitor sends an alert when the delay in

processing a subscription is longer than the threshold that you specify.

APPLY_REWORKED The Replication Alert Monitor sends an alert when the Apply program

reworks more rows in a subscription set than the threshold that you

specify.

APPLY_LATENCY Apply end-to-end latency measures the total time that replication

requires to capture changes and apply those changes to a target database.

The Replication Alert Monitor sends an alert when the Apply end-to-end

latency exceeds the threshold that you specify. Apply end-to-end latency

is measured in seconds.

E-mail notifications for replication alert conditions

The Replication Alert Monitor can send an e-mail when an alert condition occurs.

The content of the e-mail notification depends on whether the e-mail address that

you provided is for a pager. The following examples show the type of information

that you can expect in each case, for one set of alerts. The e-mail that is sent to

196 SQL Replication Guide and Reference

non-pager devices shows the time when each alert condition occurred at the

specific server. It also shows the number of times that each alert condition occurred

and the associated message. The e-mail that the Replication Alert Monitor sends to

pagers contains a summary of the parameters that triggered the alert instead of a

complete message. If an alert condition occurred many times, the timestamp

reflects the last time that the alert condition occurred.

Setting ASNSENDER variable to prevent e-mail filtering

Some providers such as pager services require a full valid return address for

filtering unsolicited messages. If a valid return address is not provided, the e-mail

might be blocked.

If you are not receiving alerts to your e-mail address or pager, take the following

steps:

1. Stop the Replication Alert Monitor.

2. Set the ASNSENDER environment variable to a valid e-mail address. For

example:

SET ASNSENDER=replmon@server.com

3. Start the monitor.

Example e-mail notification to non-pager devices (SQL

replication)

To: repladmin@company.com

From: replmon@server.com

Subject: Monitor: "MONQUAL" Alerts issued

ASN5129I MONITOR "MONQUAL". The Replication Alert Monitor on

server "WSDB" reports an e-mail alert

2002-01-20-10.00.00 1 ASN0552E Capture : "ASN" The program

encountered an SQL error. The server name is "CORP". The SQL

request is "PREPARE". The table name "PROD1.INVOICESCD".

The SQLCODE is "-204". The SQLSTATE is "42704". The SQLERRMC

is "PROD1.INVOICESCD". The SQLERRP is "readCD"

2002-01-20-10.05.00 2 ASN5152W Monitor "MONQUAL". The current

Capture latency exceeds the threshold value. The Capture control

server is "CORP". The schema is "ASN". The Capture

latency is "90" seconds. The threshold is "60" seconds

2002-01-20-10.05.00 4 ASN5154W Monitor "MONQUAL". The memory

used by the Capture program exceeds the threshold value. The

Capture control server is "CORP". The schema is "ASN".

The amount of memory used is "34" bytes. The threshold is

"30" megabytes.

Example e-mail notification to pagers (SQL replication)

To: repladmin@company.com

From: replmon@server.com

Subject: Monitor: "MONQUAL" Alerts issued

MONQUAL - MONDB

2002-01-20-10.00.00 ASN0552E 1 CAPTURE-ERRORS - CORP - ASN

2002-01-20-10.05.00 ASN5152W 2 CAPTURE_CLATENCY - CORP - ASN - 90 - 60

2002-01-20-10.05.00 ASN5154W 4 CAPTURE_MEMORY - CORP - ASN - 34 - 30

Chapter 15. Replication Alert Monitor 197

In SQL replication, the monitor groups alerts by Capture control servers and Apply

control servers when it sends notifications. If a server is both a Capture control

server and an Apply control server, then the monitor groups all alerts for that

server together.

In Q replication, the monitor groups alerts by Q Capture servers and Q Apply

servers when it sends notifications. If a server is both a Q Capture server and a Q

Apply server, then the monitor groups all alerts for that server together.

If the size of the e-mail notification exceeds the limit for the type of e-mail, the

monitor sends notification in multiple e-mails. The maximum size of a regular

e-mail notification is 1024 characters. For a pager e-mail address the limit is 250

characters.

The ASNMAIL exit routine sends e-mail notifications for the monitor. You can

modify this exit routine to handle alerts differently. For example, you could have

the ASNMAIL user exit routine store the alerts in a problem management system.

Sending alerts to the z/OS console

The Replication Alert Monitor can send alerts to the z/OS console as well as to an

e-mail address or pager. The monitor must run on z/OS to write to the z/OS

console.

About this task

If you already configured an e-mail server to receive alerts from the monitor and

then choose to send alerts to the z/OS console, alerts are sent to both the z/OS

console and the e-mail server.

Procedure

To set up the Replication Alert Monitor to send alerts to the z/OS console:

1. Create a contact for receiving monitor alerts that specifies the z/OS console.

Use one of the following methods:

 Method Description

ASNCLP

command-line

program

In the CREATE ALERT CONDITIONS FOR command, use the

NOTIFY OPERATOR CONSOLE keywords to define the z/OS

console as the destination for alerts that are triggered by the

condition that you are creating. For example:

CREATE ALERT CONDITIONS FOR QCAPTURE SCHEMA ASN1

MONITOR QUALIFIER MONQUAL NOTIFY OPERATOR CONSOLE

(STATUS DOWN, ERRORS, WARNINGS)

Replication Center In the Alert Conditions window, check the Send notification to the

operator console check box.

2. Set the console parameter to Y by using one of the following options.

 Option Description

JCL Specify CONSOLE=Y in the job that will start the monitor.

asnmon command

(USS)

From a USS command prompt, issue the asnmon command with

the console parameter set to Y. For example:

asnmon monitor_server=SAMPLE

monitor_qualifier=monqual console=y

198 SQL Replication Guide and Reference

Option Description

Replication Center Use the Run Now or Save Command window to edit the

operational command that will start the monitor so that the

console parameter is set to Y, then start the monitor.

The ASNMAIL exit routine for sending alerts in replication

(Linux, UNIX, Windows)

The ASNMAIL exit routine distributes alerts that notify you about specific

conditions in your replication environment.

The Replication Alert Monitor cannot use the ASNMAIL exit

routine to handle notification on z/OS. An SMTP server can be used instead.

This exit routine takes the following input:

asnmail email_serverto_addresssubjectalert_messagealert_message

Table 15 describes the inputs for the ASNMAIL exit routine.

 Table 15. Inputs for the ASNMAIL exit routine

Input Description

email_server This is the address of an e-mail server that uses the

SMTP protocol. This server address is passed from the

email_server parameter specified in at the start of the

asnmon command.

to_address This is the e-mail address of the contact to be notified.

subject This is the subject in the notification.

alert_message This is the string that contains the alert message.

Instead of sending alerts by e-mail, you can modify the ASNMAIL exit routine to

put the alerts elsewhere such as in a problem management system. The

\sqllib\samples\repl\ directory contains a sample of the ASNMAIL exit routine.

The asnmail.smp sample contains the input parameters and directions for using the

sample program.

Setting up the Replication Alert Monitor

Your replication environment consists of the replication programs that run on

servers and the control tables that support them. The Replication Alert Monitor

monitors this environment for you.

About this task

The following topics describe things to consider before setting up the monitor.

v “Authorization requirements for the Replication Alert Monitor” on page 200

v “Memory used by the Replication Alert Monitor” on page 200

v “Optional: Binding the Replication Alert Monitor program packages (Linux,

UNIX, Windows)” on page 200

Procedure

To set up the monitor:

1. Create control tables for each Monitor control server.

Chapter 15. Replication Alert Monitor 199

2. Define contact information for the monitor.

3. Create one or more monitors.

4. Select alert conditions.

5. Operate the monitor.

6. Optional: Define suspension periods for the monitor.

Memory used by the Replication Alert Monitor

The Replication Alert Monitor uses memory to store definitions and to keep alerts

in memory before they are sent as notifications.

The amount of memory needed for the definitions is directly proportional to the

number of definitions. The Replication Alert Monitor reserves 32 KB of memory for

storing alert notifications. More memory is requested, as needed, and released

when no longer required.

Recommendation: Do not set a memory quota for the Replication Alert Monitor. If

you need to set one, set it to 3 MB.

Authorization requirements for the Replication Alert Monitor

All user IDs that run a Replication Alert Monitor must have authorization to access

the Q Capture server or Q Apply server that you want to monitor. A user ID must

also have access to the Monitor control tables on the Monitor control server.

User IDs that run a monitor must have the following authorities and privileges:

v SELECT, UPDATE, INSERT, and DELETE privileges for the Monitor control

tables

v SELECT privileges on the Q Capture and Q Apply control tables on the servers

that you want to monitor

v BINDADD authority (required only if you want to use the autobind feature for

the monitor packages)

v EXECUTE privilege for the Monitor program packages

v WRITE privilege on the monitor_path directory where the Replication Alert

Monitor stores diagnostic files

v

Read access to the password file that is used by the

Replication Alert Monitor

Optional: Binding the Replication Alert Monitor program

packages (Linux, UNIX, Windows)

The Replication Alert Monitor program is bound automatically on Linux, UNIX,

and Windows during execution. You can bind packages manually if you want to

specify bind options, schedule binding, or check that all bind processes completed

successfully.

Procedure

To bind the Monitor program packages:

200 SQL Replication Guide and Reference

1. Change to the directory where the Monitor program bind files are located.

 Platform Location of bind files

drive:\...\sqllib\bnd

Where drive: is the drive where DB2 is

installed.

db2homedir/sqllib/bnd

Where db2homedir is the DB2 instance home

directory.

2. For each Monitor control server, do the following steps:

a. Connect to the database by entering the following command:

db2 connect to database

Where database is the Monitor control server. If the database is cataloged as

a remote database, you might need to specify a user ID and password on

the db2 connect to command. For example:

db2 connect to database user userid using password

b. Create and bind the Replication Alert Monitor program package to the

database by entering the following commands:

db2 bind @asnmoncs.lst isolation cs blocking all grant public

db2 bind @asnmonur.lst isolation ur blocking all grant public

Where cs specifies the list in cursor stability format, and ur specifies the list

in uncommitted read format.

These commands create packages, the names of which are in the files

asnmoncs.lst and asnmonur.lst.

3. For each server that you are monitoring and to which the Replication Alert

Monitor program connects, do the following steps:

a. Connect to the database by entering the following command:

db2 connect to database

Where database is the server that you want to monitor. If the database is

cataloged as a remote database, you might need to specify a user ID and

password on the db2 connect to command. For example:

db2 connect to database user userid using password

b. Create and bind the Replication Alert Monitor program package to the

database by entering the following command:

db2 bind @asnmonit.lst isolation ur blocking all grant public

Where ur specifies the list in uncommitted read format.

These commands create packages, the names of which are in the file

asnmonit.lst.

Creating control tables for the Replication Alert Monitor

Before you can use the Replication Alert Monitor, you must create monitor control

tables. These tables store alert conditions, contact information, run-time

parameters, and other metadata for the monitor.

About this task

Chapter 15. Replication Alert Monitor 201

The server where you create the monitor control tables is called a Monitor control

server.

The Monitor control server can be a DB2 for Linux, UNIX, Windows database or a

DB2 for z/OS subsystem. In most cases you will need only one Monitor control

server, but you can use multiple servers depending on your replication

environment. For example, if you want monitors to run on the same system as the

replication programs that they monitor, create one set of control tables for each

local monitor on the server where the monitor runs.

Procedure

To create monitor control tables, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use the CREATE CONTROL TABLES FOR command. For example:

CREATE CONTROL TABLES FOR

MONITOR CONTROL SERVER;

Replication Center Use the Create Monitor Control Tables window. To open the

window, right-click the Monitor Control Servers folder and select

Create Monitor Control Tables.

Defining contact information for the Replication Alert Monitor

You must define contact information for the individuals or groups that you want

to notify of alert conditions before you use the Replication Alert Monitor for the

first time.

About this task

Contact information is stored on Monitor control servers. Monitors running on the

same Monitor control server can share contacts. If you have multiple Monitor

control servers, you must define contacts for each server. You can change contact

information after monitors are running.

After you define contacts by specifying the e-mail address for and the name of

each contact, you can put contacts into groups. For example, you could set up a

contact group called replication administrators that contains the contact

information for all your replication administrators. You can also copy contact and

group information from one server to another.

Contacts that you create for the Replication Alert Monitor in the Replication Center

cannot be used in other DB2 centers such as the Task Center or the Health Center.

Contacts created in other DB2 centers cannot be used by the Replication Alert

Monitor.

Procedure

To define contact information for the Replication Alert Monitor:

1. Create contacts and contact groups for the monitors on a Monitor control server

by using one of the following methods:

202 SQL Replication Guide and Reference

Method Description

ASNCLP

command-line

program

Use the CREATE CONTACT command. For example:

CREATE CONTACT REPLADMIN

EMAIL "repladmin@us.ibm.com"

DESCRIPTION "replication administration";

Replication Center Use the Create Contact window or Create Contact Group window.

To open the windows, expand the Monitor control server for which

you want to add a contact or contact group, right-click the

Contacts folder and select Create Contact → Person or Create

Contact → Group.

2. Optional: Copy contact information from one Monitor control server to another

by using the Copy Contacts and Contact Groups window in the Replication

Center. To open the window, expand the Monitor control server on which the

contacts or contact groups are located. Select the Contacts folder. In the

contents pane, right-click the contacts or contact groups that you want to copy,

and select Copy.

3. Optional: Use the DELEGATE CONTACTS command in the ASNCLP

command-line program to to delegate an existing contact to a new contact for a

specific period of time. For example:

DELEGATE CONTACT REPLADMIN TO PERFORMACE FROM "2007-11-22" TO "2007-12-06"

Creating monitors for replication or publishing

After you create monitor control tables, you can use the Create Monitor wizard in

the Replication Center to create monitors and select the alert conditions that will be

used to monitor your replication or publishing environment.

Before you begin

Before you create monitors, you must set up the Replication Alert Monitor.

Procedure

To create a monitor:

1. In the Replication Center, open the Create Monitor wizard and specify the

name of the monitor and the replication or publishing programs that the

monitor will check for alert conditions:

a. To open the wizard, expand the Monitor control server on which you want

to create a monitor, right-click the Monitors folder, and select Create.

b. On the Start page, specify a monitor qualifier. Then, specify the programs

that you would like this monitor to check for alert conditions. You can also

monitor subscription sets that are used in SQL replication.

The wizard directs you to one or more of the following pages where you can

select alert conditions, depending on which replication programs you want this

monitor to check for alert conditions:

v Select alert conditions for Q Capture programs

v Select alert conditions for Q Apply programs

v Select alert conditions for Capture programs

v Select alert conditions for Apply programs

v Select alert conditions for subscription sets

Chapter 15. Replication Alert Monitor 203

See the online help for details. For example, if you specified that you want to

monitor Q Capture programs and Q Apply programs, then the Create Monitor

wizard directs you to the Select alert conditions for Q Capture programs page

and the Select alert conditions for Q Apply programs page.

2. From one of the pages that are listed above, open secondary dialogs where you

can:

a. Specify the programs or subscription sets that you want to monitor.

b. Specify the alert conditions that you want to check for, and the parameters

for the appropriate alert conditions. For example, you can set the

monitor_interval parameter value to 60 to make the monitor check for alert

conditions once every minute.
3. On the Summary page, click Finish.

Selecting alert conditions for the Replication Alert Monitor

When you create a monitor, you select the alert conditions that will prompt that

monitor to send alerts. You can select alert conditions for each Q Capture program,

Q Apply program, Capture program, Apply program, or subscription set that a

monitor is monitoring.

About this task

The Replication Alert Monitor monitors the activity of the replication and

publishing programs at the following times:

v Each monitor checks for alert conditions immediately when you start it.

v Each monitor checks for alert conditions periodically, at timed intervals that you

specify.

Procedure

To select alert conditions for the Replication Alert Monitor, use one of the

following methods:

 Method Description

ASNCLP

command-line

program

Use one of the following commands:

v CREATE ALERT CONDITIONS FOR APPLY

v CREATE ALERT CONDITIONS FOR CAPTURE

v CREATE ALERT CONDITIONS FOR Q CAPTURE

v CREATE ALERT CONDITIONS FOR Q APPLY

Replication Center Use one or more of the following pages in the Create Monitor

wizard in the Replication Center, depending on which program

you chose to monitor:

v Select alert conditions for Q Capture programs

v Select alert conditions for Q Apply programs

v Select alert conditions for Capture programs

v Select alert conditions for Apply programs

v Select alert conditions for subscription sets

Specify thresholds that are compatible with your environment. For example, if a

Capture program is running with a commit interval of 30 seconds, specify a

threshold for Capture latency that is greater than 30 seconds. Or, if you schedule

an Apply program to process subscription sets every 10 minutes, set the threshold

of the APPLY_SUBSDELAY alert condition to a value that is greater than 10

minutes.

204 SQL Replication Guide and Reference

Changing alert conditions for the Replication Alert Monitor

You can change alert conditions while the monitor is running. You do this by

changing the alert conditions and then reinitializing the monitor.

Procedure

To change alert conditions, use one of the following methods:

 Method Description

ASNCLP

command-line

program

Use one of the following commands:

v ALTER ALERT CONDITIONS FOR APPLY

v ALTER ALERT CONDITIONS FOR CAPTURE

v ALTER ALERT CONDITIONS FOR Q CAPTURE

v ALTER ALERT CONDITIONS FOR Q APPLY

Replication Center Use the Alert Conditions window for a Q Capture program, Q

Apply program, Capture program, Apply program, or subscription

set. To open the windows, select a monitor in the object tree,

right-click a schema or subscription set in the contents pane, and

click Change.

After you change the alert conditions, reinitialize the monitor.

Defining suspension periods for the Alert Monitor

You can define suspension periods for a Replication Alert Monitor program. You

can create a repeating suspension (for example, every Sunday morning for two

hours) or suspend the monitor for a single time period.

About this task

While the monitor is suspended, it will stop checking Q Capture, Q Apply, Capture

control, or Apply control servers for all defined alert conditions. When the

suspension period ends, the monitor will resume checking.

To define a suspension that repeats, you create a suspension template. If you create a

template, you can reuse the template on multiple monitored servers.

If you do not create a template, you can specify a start date and time and end date

and time for which monitoring on a server is suspended one time.

All dates and times for monitor suspensions are based on the clock at the system

where the monitor is running.

Restrictions

Suspensions and suspension templates can only be defined through the ASNCLP

command-line program and cannot be defined or viewed through the Replication

Center.

Procedure

To suspend the monitor for a defined period:

Chapter 15. Replication Alert Monitor 205

1. Optional: Use the CREATE MONITOR SUSPENSION TEMPLATE command in

the ASNCLP command-line program to create a template to define a repeating

suspension.

For example, the following command creates a template that suspends the

monitor program from 00:00:00 to 04:00:00 every Sunday:

CREATE MONITOR SUSPENSION TEMPLATE SUNDAY START TIME 00:00:00

REPEATS WEEKLY DAY OF WEEK SUNDAY FOR DURATION 4 HOURS

2. Use the CREATE MONITOR SUSPENSION command in the ASNCLP

command-line program to define a start and end point for a one-time

suspension or use a suspension template.

For example, the following command creates a suspension called S1, which

uses the template SUNDAY to suspend the monitor control server QSRVR1:

CREATE MONITOR SUSPENSION NAME S1 FOR SERVER QSRVR1 STARTING DATE 2006-12-10

USING TEMPLATE SUNDAY ENDING DATE 2007-12-31

3. Reinitialize the monitor that you want to suspend by using the asnmcmd reinit

command.

You can also use the Reinitialize Monitor window in the Replication Center. To

open the window, right-click a monitor qualifier in the contents pane and click

Reinitialize Monitor.

4. Optional: Use one of the following commands in the ASNCLP command-line

program to list, change, or drop monitor suspensions or suspension templates:

 Command Description

LIST MONITOR SUSPENSION Generates a list of suspensions on a monitor

control server.

ALTER MONITOR SUSPENSION Allows you to change the following

properties of a suspension:

v The template that is used

v The start or end date for using a template

v The start or end date for suspending the

monitor program one time

DROP MONITOR SUSPENSION Deletes a suspension from the monitor

control tables.

LIST MONITOR SUSPENSION

TEMPLATE

Generates a list of suspension templates on a

monitor control server.

ALTER MONITOR SUSPENSION

TEMPLATE

Allows you to change the frequency and

length of monitor suspensions as defined in

a suspension template.

DROP MONITOR SUSPENSION

TEMPLATE

Deletes a suspension template from the

monitor control tables.

Operating the Replication Alert Monitor

You can start, stop, suspend, reinitialize, and perform other operations on the

Replication Alert Monitor.

Starting monitors

You can use several methods to start a monitor. You can also decide whether to

run the monitor continuously or for only one monitor cycle. You can also set

values for parameters, and enter the e-mail address of the person to contact if the

monitor itself encounters an error while running.

206 SQL Replication Guide and Reference

Before you begin

v Create monitor control tables and a monitor, which includes selecting contacts

and alert conditions.

v Create a password file.

v Make sure that you have the correct authorization to access the Monitor control

tables and servers where the programs that you want to monitor are running.

Procedure

To start a monitor, use one of the following methods:

 Method Description

Replication Center Use the Start Monitor window. To open the window, right-click the

Monitor qualifier that identifies the monitor that you want to start,

and select Start Monitor.

asnmon system

command

Use this command to start a monitor and optionally specify startup

parameters.

Automatic Restart

Manager

You can set up the ARM recovery system to start a monitor from

the z/OS console or TSO.

Windows service

You can set up the monitor to run as a Windows service.

Reinitializing monitors

You can reinitialize a monitor while it is running. Reinitializing a monitor causes it

to recognize any updates that you have made to contacts, alert conditions, and

parameter values. For example, reinitialize a monitor if you added a new e-mail

address for a contact while the monitor is running.

Procedure

To reinitialize a monitor, use one of the following methods.

 Method Description

asnmcmd system

command

Use the asnmcmd reinit command to reinitialize a running monitor.

Replication Center Use the Reinitialize Monitor window to reinitialize a monitor. To

open the window, right-click the Monitor qualifier that identifies

the monitor that you want to reinitialize, and select Reinitialize

Monitor.

Suspending and resuming a monitor

You can suspend and resume a monitor when you want to temporarily stop

monitoring your replication or publishing environment.

About this task

Chapter 15. Replication Alert Monitor 207

You might consider suspending and resuming a monitor instead of stopping and

restarting it in the following situations:

v You do not have the authority to stop and start a monitor.

v A server in your replication environment is being serviced. For example, if a

monitor named MONITOR1 is monitoring SERVER_GREEN, which is a Q

capture server, and SERVER_GREEN will be shut down for maintenance

between 4 and 7 p.m., you could suspend MONITOR1 at 4 p.m. and resume it at

7 p.m. This would prevent MONITOR1 from issuing a QCAPTURE_STATUS

alert condition.

If you suspend the monitor while the Capture, Apply, Q Capture, or Q Apply

programs are running, the monitor continues where it left off when you resume it.

When a monitor is suspended and then resumed, it will not check for alert

conditions or issue alerts for conditions that were met while the monitor was

suspended.

Procedure

To suspend and resume a monitor:

1. Suspend the monitor by issuing the asnmcmd suspend command. The monitor

stops checking for alert conditions.

2. Resume the monitor by issuing the asnmcmd resume command. The monitor

resumes checking for alert conditions.

Ending a monitor suspension

You can end a monitor suspension before its regularly scheduled expiration time

by removing the suspension from the monitor control tables and then reinitializing

the monitor.

Procedure

To end a monitor suspension:

1. Use the DROP MONITOR SUSPENSION command in the ASNCLP

command-line program to remove the suspension from the control tables at the

monitor server.

For example, the following command removes a suspension named SUSP1:

DROP MONITOR SUSPENSION NAME SUSP1

2. Reinitialize the monitor by using one of the following methods:

 Method Description

asnmcmd

command

Use the asnmcmd reinit command to prompt the monitor to read its

control tables for the most recent changes. The following command

reinitializes the monitor identified by the monitor qualifier myqual at

the Monitor control server wsdb:

asnmcmd monitor_server=wsdb monitor_qual=myqual reinit

Replication

Center

Use the Reinitialize Monitor window. In the contents pane, right-click

the monitor qualifier that identifies the monitor that you want to

reinitialize and click Reinitialize Monitor.

Note: You can also stop and then start the monitor to prompt it to read its

control tables.

208 SQL Replication Guide and Reference

Stopping monitors

When you stop a monitor, it stops checking the replication or publishing programs

for alert conditions. You can use the Replication Center, a system command, or a

DB2 replication service to stop a monitor.

About this task

If the monitor stops while the Capture, Apply, Q Capture, or Q Apply programs

are running, then the next time the monitor starts it performs the following actions:

v Checks for alert conditions that were met while the monitor was stopped.

v Issues alerts for any conditions that were met.

Procedure

To stop a monitor, use one of the following methods:

 Method Description

asnmcmd stop

command

Use this command to stop a monitor.

Replication Center Use the Stop Monitor window to stop a monitor. To open the

window, right-click the Monitor qualifier that identifies the monitor

that you want to stop, and select Stop Monitor.

Windows Service

Control Manager

Stop the DB2 replication service. The monitor will stop

automatically when the replication service stops.

Reviewing Monitor program messages

Use the Monitor Messages window to review the messages that were inserted in

the IBMSNAP_MONTRACE table over a specified period of time. The

IBMSNAP_MONTRACE table contains rows for significant events such as actions,

warnings, and errors that are issued by the Monitor program.

For example, from the Monitor Messages window, you can review all the error and

warning messages that are recorded by the Monitor program during one week.

You can also print or save data to a file from the Monitor Messages window.

Parameters of the Replication Alert Monitor

You can determine the behavior of the Replication Alert Monitor by setting values

for various parameters.

Default values of Replication Alert Monitor parameters

When you use the replication administration tools to create Monitor control tables,

default values are set for the monitor operating parameters.

Table 16 shows the default value for each parameter.

 Table 16. Default values for Replication Alert Monitor operating parameters

Operational parameter Default value

alert_prune_limit 10080 minutes

autoprune Y

email_server no default value

Chapter 15. Replication Alert Monitor 209

Table 16. Default values for Replication Alert Monitor operating parameters (continued)

Operational parameter Default value

max_notification_minutes 60 minutes

max_notifications_per_alert 3

monitor_errors no default value

monitor_interval 300 seconds

monitor_limit 10080 minutes

monitor_path the directory where the asnmon

command was invoked.

runonce N

trace_limit 10080 minutes

Descriptions of the Replication Alert Monitor parameters

This topic describes the following parameters you can use to operate the

Replication Alert Monitor:

v “alert_prune_limit”

v “autoprune”

v “email_server” on page 211

v “max_notification_minutes” on page 211

v “max_notifications_per_alert” on page 211

v “monitor_errors” on page 211

v “monitor_interval” on page 211

v “monitor_limit” on page 211

v “monitor_path” on page 212

v “runonce” on page 212

v “trace_limit” on page 212

alert_prune_limit

Default: alert_prune_limit=10080 minutes (seven days.)

When the Replication Alert Monitor starts a new monitor cycle, it prunes the rows

from the IBMSNAP_ALERTS table that are eligible for pruning. By default, the

Replication Alert Monitor prunes the rows that are older than 10080 minutes

(seven days). The alert_prune_limit parameter controls how much old data the

Replication Alert Monitor stores in the table. The parameter specifies how old the

data must be before the Replication Alert Monitor prunes it.

You can reduce the value of alert_prune_limit parameter if the storage space on

your system is small for the IBMSNAP_ALERTS table. A lower prune limit saves

space, but increases processing costs. Alternatively, you might want to increase the

value for the alert_prune_limit parameter to maintain a history of all the alert

activity. In SQL replication only, a higher prune limit requires more space for

change-data (CD) tables and UOW tables, but decreases processing costs.

autoprune

Default: autoprune=y

210 SQL Replication Guide and Reference

The autoprune parameter controls automatic pruning. The Replication Alert

Monitor automatically prunes rows from the IBMSNAP_ALERTS table that it has

already copied into the Monitor control tables.

email_server

The email_server parameter enables the ASNMAIL exit routine. The default

ASNMAIL routine enables the Replication Alert Monitor to send alerts via e-mail.

Set the value of this parameter to the address of an e-mail server that is set to use

the Simple Mail Transfer Protocol (SMTP).

max_notification_minutes

Default: max_notifications_minutes=60

The max_notifications_minutes parameter specifies how long that a monitor will

track an alert condition to see if it occurs more than once. By default, if an alert

condition occurs more than once within 60 minutes, the Replication Alert Monitor

will send a maximum of three alerts during the 60 minute period. The

max_notifications_per_alert parameter tells the Monitor how many notifications to

send during the period of time specified by the max_notifications_minutes

parameter for any alert condition.

max_notifications_per_alert

Default: max_notifications_per_alert=3

The max_notifications_per_alert parameter tells the Replication Alert Monitor the

maximum number of notifications to send for any one alert. By default, if the

Replication Alert Monitor receives an alert condition more than once, it sends a

maximum of three notifications for that alert condition in a period of 60 minutes.

monitor_errors

The Replication Alert monitor stores any errors that occur in the monitoring

process. One example of an operational error is when the Replication Alert

Monitor cannot connect to the Monitor control server. You must specify an e-mail

address for the monitor_errors parameter if you want to receive notification of

operational errors. If you do not specify an e-mail address, the Replication Alert

Monitor logs operational errors, but it does not send notification of the errors.

The Replication Alert Monitor ignores the monitor_errors parameter if the

email_server parameter does not describe a valid e-mail server.

monitor_interval

Default: monitor_interval=300 seconds (5 minutes)

The monitor_interval parameter tells the Replication Alert Monitor how often to

check for alert conditions. By default, the Replication Alert Monitor checks for all

alert conditions for the specific monitor on the server every 300 seconds.

monitor_limit

Default: monitor_limit=10080 minutes (7 days)

Chapter 15. Replication Alert Monitor 211

For Q replication, the monitor_limit parameter specifies how long to keep rows in

the IBMQREP_CAPMON and the IBMQREP_CAPQMON tables before the Q

Capture program can prune them. For SQL replication, the monitor_limit

parameter specifies how long to keeps rows in the IBMSNAP_CAPMON table

before the Q Capture program can prune them. At each pruning interval, the

Capture and Q Capture programs prune rows in these tables if the rows are older

than this limit based on the current timestamp.

monitor_path

Default: monitor_path=the directory where the asnmon command was invoked

The monitor_path parameter specifies the location of the log files that the

Replication Alert Monitor uses.

runonce

Default: runonce=n

When you start the Replication Alert Monitor, by default, it runs at intervals to

monitor any alert conditions that you selected. You can schedule the Replication

Alert Monitor to run hourly, at some other time interval, or even just one time.

When you specify runonce=y, the Replication Alert Monitor checks one time for all

the alert conditions that you selected and ignores the monitor_interval parameter.

You can use runonce when you run the Replication Alert Monitor in a batch

process. For example, after the Apply program completes, you can use runonce=y

to determine if any subscription sets failed. Then, if a subscription set did fail, the

Replication Alert Monitor sends notification to your contact person or group.

By default, the monitor_interval is 300 seconds (five minutes). The Replication

Alert Monitor checks for all the alert conditions for each monitor on the server

every 300 seconds. If the Replication Alert Monitor finds an alert condition, it

sends notification.

trace_limit

Default: trace_limit=10080 minutes (7 days)

The trace_limit parameter tells the Replication Alert Monitor how often to prune

the IBMSNAP_MONTRACE and IBMSNAP_MONTRAIL tables. The Replication

Alert Monitor stores the rows in these tables for 10080 minutes (seven days). The

Replication Alert Monitor prunes any rows older than the value that you specify

for the trace_limit parameter.

Changing runtime parameters for the Replication Alert Monitor

You can change runtime parameters for the Replication Alert Monitor when you

start the monitor or while the monitor is running.

About this task

You set initial parameter values when you create a monitor. These values are

stored in the IBMSNAP_MONPARMS control table. When you start the monitor, it

reads this control table and uses the parameter values.

212 SQL Replication Guide and Reference

You can override the saved values at runtime when you start the monitor or while

the monitor is running. Any runtime values that you set will only last for the

current run. If the monitor is stopped and restarted, it uses the values saved in the

control table.

Procedure

1. Change parameters when you start the monitor. Use one of the following

methods.

 Method Description

asnmon system

command

Specify one or more parameters and values when you use this

command to start the monitor.

Replication Center Use the Specify Monitor Startup Parameters window. To open the

window, right-click a Monitor qualifier in the contents pane that

identifies the monitor that you want to start, and click Start

Monitor. Then click Parameters on the Start Monitor window.

2. Use the asnmcmd chgparms system command to change parameters while the

monitor is running. You can change the following parameters:

v monitor_interval

v autoprune

v alert_prune_limit

v trace_limit

v max_notifications_per_alert

v max_notifications_minutes

Specifying how often the Replication Alert Monitor runs

You must decide how often the Replication Alert Monitor will check for alert

conditions for your replication environment.

Procedure

To specify how often the Replication Alert Monitor runs, use the following

methods:

v Use the runonce parameter of the asnmon command to specify if the Replication

Alert Monitor will run repeatedly or only once.

v Use the monitor_interval parameter of the asnmon command to specify how

often the Replication Alert Monitor will run when runonce=n.

v Use the Replication Center to specify run times when you start the Replication

Alert Monitor.

Specifying notification criteria for selected alert conditions

The Replication Alert Monitor stores any alert conditions that you select. You can

set up notification parameters to notify a contact of the alert conditions

automatically via electronic mail (e-mail).

Procedure

To specify notification criteria for alert conditions, use the following methods:

v Set the max_notifications_per_alert parameter to control the maximum

notification for a particular time period. Specify the maximum number of

Chapter 15. Replication Alert Monitor 213

notifications you want to receive about a particular alert condition within the

time period specified by the max_notifications_minutes parameter.

v Set the email_server parameter to enable DB2 to notify you by e-mail when an

alert condition occurs. Set the value of this parameter to the address of an e-mail

server by using the SMTP protocol.

v Optional: Write your own extensions to the ASNMAIL exit routine to customize

how alert conditions are handled. This option is useful for integrating with

problem management and other systems.

Specifying notification criteria for operational errors

The Replication Alert Monitor sends notification if it causes an error during its

operation.

Procedure

To specify notification criteria for operational errors, set the value of the

monitor_errors parameter to an e-mail address. The monitor will send notification

of operational errors that it causes to this address. Enter the e-mail address by

using the Simple Mail Transfer Protocol (SMTP) protocol.

Specifying prune intervals for data from the Replication Alert

Monitor

The Replication Alert Monitor can automatically prune your Monitor control tables.

You must decide whether the Monitor will prune the tables automatically, and if

so, how the Monitor will prune the tables.

Procedure

To specify how often to prune your monitor tables, use the following methods:

v Specify whether you want the Replication Alert Monitor to automatically prune

its control tables by using the autoprune parameter.

v Change the value for the alert_prune_limit parameter to control how much

historic data you want the Replication Alert Monitor to store in the table. Specify

how old the data must be before the Replication Alert Monitor prunes it from

the IBMSNAP_ALERTS table.

v Change the value for the trace_limit parameter to control how long the

Replication Alert Monitor stores rows in your monitor tables.

214 SQL Replication Guide and Reference

Chapter 16. Replication services (Windows)

You can run the replication programs as a system service on the Windows

operating system by using the Windows Service Control Manager (SCM).

Description of Windows services for replication

On the Windows operating system, a replication service is a program that starts

and stops the Q Capture, Q Apply, Capture, Apply, or Replication Alert Monitor

programs.

When you create a replication service, it is added to the SCM in Automatic mode

and the service is started. Windows registers the service under a unique service

name and display name.

The following terms describe naming rules for replication services:

Replication service name

 The replication service name uniquely identifies each service and is used to

stop and start a service. It has the following format:

DB2.instance.alias.program.qualifier_or_schema

Table 17 describes the inputs for the replication service name.

 Table 17. Inputs for the replication service name

Input Description

instance The name of the DB2 instance.

alias The database alias of the Q Capture server, Q Apply

server, Capture control server, Apply control server, or

Monitor control server.

program One of the following values: QCAP (for Q Capture

program), QAPP (for Q Apply program), CAP (for

Capture program), APP (for Apply program), or MON

(for Replication Alert Monitor program).

qualifier_or_schema One of the following identifiers: Q Capture schema, Q

Apply schema, Capture schema, Apply qualifier, or

Monitor qualifier.

Example: The following service name is for a Q Apply program that has

the schema ASN and is working with database DB1 under the instance

called INST1:
DB2.INST1.DB1.QAPP.ASN

Display name for the replication service

 The display name is a text string that you see in the Services window and

it is a more readable form of the service name. For example:

DB2 - INST1 DB1 QAPPLY ASN

If you want to add a description for the service, use the Service Control Manager

(SCM) after you create a replication service. You can also use the SCM to specify a

user name and a password for a service.

© Copyright IBM Corp. 1994, 2007 215

Creating a replication service

You can create a DB2 replication service to start a Q Capture program, Q Apply

program, Capture program, Apply program, and the Replication Alert Monitor

program on Windows operating systems.

Before you begin

Before you create a replication service, make sure that the DB2 instance service is

running. If the DB2 instance service is not running when you create the replication

service, the replication service is created but it is not started automatically.

About this task

When you create a service, you must specify the account name that you use to log

on to Windows and the password for that account name.

You can add more than one replication service to your system. You can add one

service for each schema on every Q Capture, Q Apply, or Capture control server,

and for each qualifier on every Apply control server and Monitor control server,

respectively. For example, if you have five databases and each database is an Q

Apply control server and a Monitor control server, you can create ten replication

services. If you have multiple schemas or qualifiers on each server, you could

create more services.

Procedure

To create a replication service:

Use the asnscrt command.

When you create a service, you must specify the account name that you use to log

on to Windows and the password for that account name.

Tip: If your replication service is set up correctly, the service name is sent to

stdout after the service is started successfully. If the service does not start, check

the log files for the program that you were trying to start. By default, the log files

are in the directory specified by the DB2PATH environment variable. You can

override this default by specifying the path parameter

(capture_path,apply_path,monitor_path) for the program that is started as a

service. Also, you can use the Windows Service Control Manager (SCM) to view

the status of the service.

Starting a replication service

After you create a replication service, you can stop it and start it again.

About this task

Important: If you started a replication program from a service, you will get an

error if you try to start the program using the same schema or qualifier.

Procedure

To start a replication service:

216 SQL Replication Guide and Reference

Use one of the following methods.

v The Windows Service Control Manager (SCM)

v net stop command

Stopping a replication service

After you create a replication service, you can stop it and start it again.

About this task

When you stop a replication service, the program associated with that service stops

automatically. However, if you stop a program by using a replication system

command (asnqacmd, asnqccmd, asnccmd, asnacmd, or asnmcmd), the service that

started the program continues to run. You must stop it explicitly.

Procedure

To stop a replication service:

Use one of the following methods.

v The Windows Service Control Manager (SCM)

v net stop command

Viewing a list of replication services

You can view a list of all your replication services and their properties by using the

asnlist command.

Procedure

To view a list of replication services:

1. Use the asnlist command.

2. Optional: Use the asnlist command with the details parameter to view a list of

replication services and descriptions of each service.

Dropping a replication service

If you no longer need a replication service you can drop it so that it is removed

from the Windows Service Control Manager (SCM).

About this task

If you want to change the start-up parameters for a program that is started by a

service, you must drop the service and then create a new one using new start-up

parameters.

Procedure

To drop a service for replication commands, use the asnsdrop command.

Chapter 16. Replication services (Windows) 217

218 SQL Replication Guide and Reference

Chapter 17. Scheduling SQL replication programs on various

operating systems

You might want to schedule the Capture program, the Apply program, or the

Replication Alert Monitor program to start at a prescribed time using the

commands that are available on your operating system.

Scheduling programs on Linux and UNIX operating systems

You can schedule when to start the replication programs on the Linux and UNIX

operating system.

Procedure

To schedule replication programs on Linux and UNIX

Use the at command to start a replication program at a specific time. Table 18

shows commands that are used to start the replication programs at 3:00 p.m. on

Friday:

 Table 18. Scheduling commands for the replication programs (Linux, UNIX)

Replication program Linux or UNIX command

Capture at 3pm Friday asncap autoprune=n

Apply at 3pm Friday asnapply applyqual=myqual

Replication Alert Monitor at 3pm Friday asnmon

monitor_server=db2srv1

monitor_qualifier=mymon

Scheduling programs on Windows operating systems

You can schedule when to start the replication programs on the Windows

operating system.

Procedure

If you are not using the Windows Service Control Manager, use the AT command

to start the programs at a specific time. Before you enter the AT command, start

the Windows Schedule Service.Table 19 shows commands that are used to start the

replication programs at 3:00 p.m. on Friday:

 Table 19. Scheduling commands for the replication programs (Windows)

Replication program Windows command

Capture c:\>at 15:00/interactive"c:\SQLLIB\BIN\
db2cmd.exe c:\CAPTURE\asncap.exe"

Apply c:\>AT 15:00 /interactive

"c:\SQLLIB\BIN\db2cmd.exe

c:\SQLLIB\BIN\asnapply.exe

control_server=cntldb apply_qual=qualid1"

© Copyright IBM Corp. 1994, 2007 219

Table 19. Scheduling commands for the replication programs (Windows) (continued)

Replication program Windows command

Replication Alert Monitor c:\>AT 15:00 /interactive

"c:\SQLLIB\BIN\db2cmd.exe

c:\CAPTURE\asnmon.exe

monitor_server=db2srv1

monitor_qualifier=mymon"

Scheduling programs on z/OS operating systems

You can schedule when to start the replication programs on the z/OS operating

system using two different commands.

Procedure

To schedule programs on the z/OS operating system, use the following methods:

1. Create a procedure that calls the program for z/OS in the PROCLIB.

2. Modify the ICHRIN03 RACF module (or appropriate definitions for your MVS

security package) to associate the procedure with a user ID.

3. Link-edit the module in SYS1.LPALIB.

4. Use either the $TA JES2 command or the AT NetView command to start the

Capture program or the Apply program at a specific time. See MVS/ESA JES2

Commands for more information about using the $TA JES2 command. See the

NetView for MVS Command Reference for more information about using the AT

NetView command.

Scheduling programs on the System i operating system

You can schedule when to start the replication programs on the System i operating

system.

Procedure

1. If you want to start the Apply program, issue the ADDJOBSCDE command.

2. If you want to start the Capture program, issue the SBMJOB command. For

example:

SBMJOB CMD(’STRDPRCAP...’)SCDDATE(...)SCDTIME(...)

220 SQL Replication Guide and Reference

Chapter 18. Viewing reports about the SQL replication

programs

The following topics describe methods you can use to report on and analyze your

replication environment. Use the information to check the current status of the

replication programs or to review historical data to determine recent messages and

throughput or latency statistics.

Checking the status of replication programs (z/OS, Linux, UNIX,

Windows)

You can quickly assess the current status of the Capture program, Apply program,

or Replication Alert Monitor program.

Use one of the following commands to check the status of the replication

programs:

Capture program

asnccmd system command, status parameter

Apply program

asnacmd system command, status parameter

Replication Alert Monitor

asnmcmd system command, status parameter

 When you query the status of a program, you receive messages that describe the

state of each thread that is associated with that program:

v The Capture program has the following threads:

 Worker thread

 Administration thread

 Pruning thread

 Serialization thread

 Transaction reader thread (if the asynchlogrd startup parameter is set to yes)
v The Apply program has the following threads:

 Administration thread

 Worker thread

 Serialization thread
v The Replication Alert Monitor program has the following three threads:

 Administration thread

 Worker thread

 Serialization thread

Use the messages you receive to determine if your programs are working correctly.

Typically, worker threads, administration threads, and pruning threads are in a

working state and are performing the tasks that they were designed to perform.

Serialization threads, global signal handlers, are typically in the waiting state and

usually waiting for signals. The pruning thread prunes the CD tables and the

following replication control tables.

v IBMSNAP_UOW table

© Copyright IBM Corp. 1994, 2007 221

v IBMSNAP_CAPTRACE table

v IBMSNAP_CAPMON table

v IBMSNAP_SIGNAL table

If the messages that you receive indicate that a program is functioning, but you

find evidence in your environment to the contrary, you must investigate further.

For example, if you query the status of the Apply program and you find that the

worker thread is working, but you notice that data is not being applied to the

target tables as you expected, examine the IBMSNAP_APPLYTRAIL table for

messages that might explain why the data is not being applied. System resource

problems might prevent the program from working properly.

Reviewing historical data for trends

You can review historical data from your recent replication operations and evaluate

the data for trends. The trends that you recognize over time might demonstrate to

you that a steady volume of data is being replicated or that adjustments could be

made to improve performance.

You can review historical data from your recent replication operations and evaluate

the data for trends. The trends that you recognize over time might demonstrate to

you that a steady volume of data is being replicated or that adjustments could be

made to improve performance.

Historical data is derived from the following control tables:

v IBMSNAP_APPLYTRAIL

v IBMSNAP_APPLYTRACE

v IBMSNAP_CAPMON

v IBMSNAP_CAPTRACE

The frequency with which you prune these tables affects the reports that you can

generate. It is recommended that you retain at least one week of data in these

tables for the purpose of examination when you are troubleshooting or evaluating

performance.

Table 20 describes the historical data that you can view.

 Table 20. Where to find historical information

To answer this question: Use the following Replication Center window:

What are the recent messages from the

Capture, Apply, and Monitor programs?

Capture Messages

Apply Messages

Monitor Message

On average:

v How many rows were processed in

the CD table for a given period of

time?

v How many rows were pruned?

v How many transactions were

committed?

v How much memory is the Capture

program using?

Capture Throughput Analysis

222 SQL Replication Guide and Reference

Table 20. Where to find historical information (continued)

To answer this question: Use the following Replication Center window:

On average, what is the approximate

length of time between when data was

updated at the source and when it was

captured by the Capture program?

Capture Latency

What are the recent messages from the

Apply program?

Apply Report

On average,

v How many rows were processed in

the target table for a given period of

time?

v What is the elapsed time for

processing of subscription sets?

Apply Throughput Analysis

On average, approximately how much

time has elapsed between the time when

the source table was updated and when

the corresponding target table was

updated?

End-to-End Latency

You can select a range of time to identify how much data you want to analyze.

Specify the dates and times for both the beginning and the end of a time range,

and then specify that the results be displayed as an average of the calculated rates.

You can select intervals of time (one second, one minute, one hour, one day, or one

week) to group the results. For example, if you chose to analyze the Apply

throughput from 9:00 p.m. and 9:59 p.m., and you want the data displayed in

one-minute intervals, the results are displayed in 60 rows, each row summarizing

the activity for a single minute out of the 60-minute range. Alternatively, if you

chose a one-hour interval, the results are displayed in 1 row, showing the average

throughput for the specified hour time period. If you do not specify an interval,

you can view raw data from the IBMSNAP_APPLYTRAIL table.

The Replication Center windows show results from information contained in

various control tables and log files. The following topics describe how you can use

historical data to evaluate your replication operations with the Replication Center.

Reviewing Capture program messages

Use the Capture Messages window to review the messages that were inserted in

the IBMSNAP_CAPTRACE table over a specific period of time. The

IBMSNAP_CAPTRACE table contains a row for significant events such as

initialization, pruning, warnings, and errors that are issued by the Capture

program.

For example, using the Capture Messages window, you can review all of the error

and warning messages that are recorded by the Capture program during one week.

You can also print or save data to a file from the Capture Messages window.

Examining Capture program throughput

Use the Capture Throughput Analysis window to display the performance results

of a Capture program over a specific time period. The Capture program regularly

records statistical information in the IBMSNAP_CAPMON table, and during

pruning it records pruning statistics in the IBMSNAP_CAPTRACE table.

Chapter 18. Viewing reports about the SQL replication programs 223

Using information from these tables, the Capture Throughput Analysis window

displays the calculated results of the performance rates of four different tasks. You

can examine the results of all four types of information to assess the throughput

performance of the Capture program. You have the option to specify that the

following results display in absolute or average values.

v Number of rows inserted from a log or skipped

v Number of rows pruned from a CD table

v Number of transactions committed

v Use of memory

For example, using the Capture Throughput Analysis window, you can review the

average weekly performance of the Capture program throughput. To do so, specify

the dates and times for both the beginning and the end of a time range; then,

specify that the results be displayed as an average of the calculated rates.

Displaying latency of data processed by the Capture program

Use the Capture Latency window to approximate the intervening time period

between the update of certain data at the source and its capture by the Capture

program. This elapsed time provides you with some ndication of the currency of

the data in CD tables over time. This average latency is derived from information

located in the IBMSNAP_CAPMON table, which derives its information from the

IBMSNAP_REGISTER table.

The current Capture latency is calculated as the difference between the

CURRENT_TIMESTAMP value in the SYNCHTIME column and the global record

in the IBMSNAP_REGISTER table:

(CURRENT_TIMESTAMP) - (SYNCHTIME)

 Table 21. Example of values for calculating current Capture latency

Parameter Column value

CURRENT_TIMESTAMP 2006–10–20–10:30:25

SYNCHTIME 2006–10–20–10:30:00

For example, using the values in Table 21, the current latency is 25 seconds:

10:30:25 - 10:30:00

The Capture latency period changes as time goes by and the history of these

changes is stored in the IBMSNAP_CAPMON table. The Replication Center also

uses information located in the Capture monitor table to calculate average or

historical latency. This formula differs from the formula used to calculate current

latency in that it uses the MONITOR_TIME value instead of the

CURRENT_TIMESTAMP value to calculate average latency. The MONITOR_TIME

value is a timestamp indicating when the Capture program inserted a row in the

Capture monitor table. You can show the average latency per second, minute, hour,

day, or week. For example, from the Capture Latency window, you can display the

average latency for a Capture program per hour, over the duration of the past

week.

Reviewing Apply program messages

Use the Apply Messages window to review any messages that were inserted in the

IBMSNAP_APPLYTRACE table over a specific period of time. The

224 SQL Replication Guide and Reference

IBMSNAP_APPLYTRACE table contains rows for significant events such as

initialization, warnings, and errors that might be issued by the Apply program.

For example, from the Apply Messages window, you can review all of the error

and warning messages that might have been recorded by the Apply program

during one week. You can also print or save that data to a file from the Apply

Messages window.

Use the Apply Report window to check the success of a specific Apply program

over a specific period of time by reviewing the data that was inserted into the

IBMSNAP_APPLYTRAIL table. The IBMSNAP_APPLYTRAIL table contains data

about the execution of subscription sets, including their status, error messages, and

the number of rows processed.

In the Apply Report window, you can display the following data:

v All subscription sets

v Failed subscription sets

v Successful subscription sets

v Error summaries for failed subscription sets

For example, from the Apply Report window, you can determine whether the

Apply program successfully processed subscription sets during the last week. You

can view the error messages issued by the Apply program for any subscription sets

that could not be replicated. In addition, you can use the Apply Report window in

conjunction with the Apply Throughput Analysis window. After you use the Apply

Report window to find out which sets were successfully replicated, you can use

the Apply Throughput Analysis window to determine the number of rows

replicated and the length of time that replication took.

You can also use the Apply Report window to display all of the data from a

particular row in the IBMSNAP_APPLYTRAIL table.

Examining Apply program throughput

Use the Apply Throughput Analysis window to examine the performance statistics

for a specific Apply qualifier. You can filter and group data without writing SQL

statements.

Use the Apply Throughput Analysis window to examine the performance statistics

for a specific Apply qualifier. You can filter and group data without writing SQL

statements.

For example, you can view the number of rows that were inserted into, updated

in, deleted from, and reworked in the target tables in the subscription set that was

processed by a specific Apply qualifier. You can also determine the length of time

the Apply program spent processing subscription sets for a particular Apply

qualifier.

Displaying the average length of time taken to replicate

transactions

Use the End-to-End Latency window to display an approximate value for the

average length of time used to replicate transactions in a particular subscription

set.

Chapter 18. Viewing reports about the SQL replication programs 225

From the End-to-End Latency window, for example, you can view the approximate

latency for a subscription set for each Apply cycle during a period of time. You can

also divide the time period into intervals and display the average latency for each

interval.

The Replication Center uses the following formula to calculate the end-to-end

latency:

(ENDTIME - LASTRUN) + (SOURCE_CONN_TIME - SYNCHTIME)

v ENDTIME is the time at which the Apply program finishes processing the

subscription set.

v LASTRUN is the time at which the Apply program starts processing a

subscription set.

v SOURCE_CONN_TIME is the time at which the Apply program connects to the

Capture control server to fetch data.

v SYNCHTIME is the time of the most current commit of data to the CD tables by

the Capture program.

 Table 22. Example of values for calculating end-to-end latency

Parameter Column value

ENDTIME 2006–10–20–10:01:00

LASTRUN 2006–10–20–10:00:30

SOURCE_CONN_TIME 2006–10–20–10:00:32

SYNCHTIME 2006–10–20–10:00:00

For example, assume a particular subscription set has the values that are shown in

Table 22. Using the previous equation, the average end-to-end latency for this

subscription set is 62 seconds:

(10:01:00 - 10:00:30) + (10:00:32 - 10:00:00) = 62

Checking the status of the Capture and Apply journal jobs (System i)

On DB2 for System i, use the Work with Subsystem Jobs (WRKSBSJOB) system

command to check the status of the journal jobs for the Capture and Apply

programs.

Procedure

To check the status of the journal jobs for the Capture and Apply programs:

Use the Work with Subsystem Jobs (WRKSBSJOB) system command as follows:

1. Enter the command:

WRKSBSJOB subsystem

Where subsystem is the subsystem name. In most cases, the subsystem is

QZSNDPR, unless you created your own subsystem description

2. Identify jobs of interest from among those listed as running.

The journal job is named after the journal to which it was assigned. If no job is

listed there, use the Work with Submitted Jobs (WRKSBMJOB) system

command or the Work with Job (WRKJOB) system command to locate the job.

Find the job’s joblog to verify that it completed successfully or to identify why

it failed.

226 SQL Replication Guide and Reference

Monitoring the progress of the Capture program (System i)

If the Capture program has terminated, you can inspect the IBMSNAP_RESTART

table to determine how much progress the Capture program made before

termination. There is one row for each journal used by the source tables. The

LOGMARKER column provides the timestamp of the last journal entry processed

successfully. The SEQNBR column provides the sequence number of that journal

entry.

About this task

If the Capture program has terminated, you can inspect the IBMSNAP_RESTART

table to determine how much progress the Capture program made before

termination. There is one row for each journal used by the source tables. The

LOGMARKER column provides the timestamp of the last journal entry processed

successfully. The SEQNBR column provides the sequence number of that journal

entry.

Procedure

To determine progress of the Capture program while it is running:

1. Open the CD table for each source table being captured.

2. In the last row of each CD table, note the hex value in the COMMITSEQ

column.

3. Identify a row in the IBMSNAP_UOW table with the same COMMITSEQ hex

value. If no matching COMMITSEQ value exists in the IBMSNAP_UOW table,

repeat the process with the second-to-last row in the CD table. Proceed

backward through the CD table until you identify a matching hex value.

4. When you find a matching COMMITSEQ hex value, note the value in the

LOGMARKER column of the UOW row. This is the timestamp of the last

journal entry processed. All changes to the source table up to that time are

ready to be applied.

5. Use the Display Journal (DSPJRN) system command to determine how many

journal entries remain to be processed by the Capture program. Direct the

output to an output file (or printer) to preserve the report, as shown in the

following example:

DSPJRN FILE(JRNLIB/DJRN1)

 RCVRNG(*CURCHAIN)

 FROMTIME(timestamp)

 TOTIME(*LAST)

 JRNCDE(J F R C)

 OUTPUT(*OUTFILE)

 ENTDTALEN(1) OUTFILE(library/outfile)

where timestamp is the timestamp that you identified in 4.

The number of records in the output file is the approximate number of journal

entries that remain to be processed by the Capture program.

Chapter 18. Viewing reports about the SQL replication programs 227

228 SQL Replication Guide and Reference

Chapter 19. Customizing and running replication SQL scripts

for SQL replication

To create control tables, register source tables, and create subscription sets and

members, you must run SQL scripts that are generated by the Replication Center

and ASNCLP command-line program. You can run the SQL scripts using the

Replication Center or you can run them from a DB2 command line. If necessary,

you can modify the SQL scripts to meet your needs.

Before you begin

If you run the SQL scripts from a DB2 command line, you must connect to servers

manually when you run the SQL script, edit the SQL statements to specify the user

ID and password for the server to which you are connecting. For example, look for

a line that resembles the following example and add your information by typing

over the placeholders (XXXX):

CONNECT TO srcdb USER XXXX USING XXXX ;

About this task

You have the option in the ASNCLP and Replication Center to run a generated

SQL script immediately or to save the generated SQL script to run later. Even if

you choose to run the SQL now, you might also want to save it for future

reference. For example, if you save the definitions of a large replication

subscription set in an SQL file, you can rerun the definitions as necessary.

When editing the generated SQL scripts, be careful not to change the termination

characters. Also, do not change the script separators if there are multiple scripts

saved to a file.

You might want to customize the SQL scripts for your environment to perform the

following tasks:

v Create multiple copies of the same replication action, customized for multiple

servers.

v Set the size of the table spaces or databases of the CD tables.

v Define site-specific standards.

v Combine definitions together and run as a batch job.

v Defer the replication action until a specified time.

v Create libraries of SQL scripts for backup, site-specific customization, or to run

standalone at distributed sites, such as for an occasionally connected

environment.

v Edit create table and index statements to represent database objects.

v For Informix and other non-DB2 relational databases, ensure that tables are

created in the dbspaces or table spaces that you want.

v For Microsoft SQL Server, create control tables on an existing segment.

v Review and edit subscription-set member predicates as a way of defining

multiple subscription sets at one time. You can use substitution variables in your

predicates and resolve the variables with programming logic.

Procedure

© Copyright IBM Corp. 1994, 2007 229

Use one of the following methods to run the files containing SQL scripts from a

DB2 command line:

v Use this command if the SQL script has a semicolon (;) as a termination

character: db2 -tvf filename

v Use this command if the SQL script has some other character as the delimiter (in

this example, as in heterogeneous replication, the pound sign (#) is the

termination character): db2 -td# -vf filename

230 SQL Replication Guide and Reference

Chapter 20. How the SQL replication components

communicate

The various replication components run independently of one another, but rely on

one another for information that each stores in the replication control tables to

communicate with one another.

The administration tools

The Replication Center or ASNCLP command-line program creates SQL

scripts that insert the initial information about registered sources,

subscription sets, and alert conditions in the control tables.

The Capture program or triggers

The Capture program and the Capture triggers update the control tables to

indicate the progress of replication and to coordinate the processing of

changes.

The Apply program

The Apply program updates the control tables to indicate the progress of

replication and to coordinate the processing of changes.

The Replication Alert Monitor

The Replication Alert Monitor reads the control tables that have been

updated by the Capture program, Apply program, and the Capture

triggers to understand any problems and progress at a server.

The Replication Center, ASNCLP, the Capture program or triggers, and

the Apply program

When you register a table, view, or nickname as a replication source, the

Replication Center or ASNCLP command-line program creates an SQL script that

stores the information for this source in the replication control table that contains

all registration information, the IBMSNAP_REGISTER table. The SQL script

generated by the administration tools also creates the CD tables for the registered

sources.

The IBMSNAP_REGISTER table contains one row for every registered source table,

and one row for every underlying table in a registered view. This table contains the

following kinds of information about each registered source:

v The schema name and name of the source table

v The structure type of each registered source table

v The schema name and name of the CD table

v The names of the CD tables for the underlying tables in this view (only for

registered views, and only if the underlying tables are registered)

v The schema name and name of the internal CCD table (where one exists)

v The conflict-detection level for update-anywhere sources

The Capture and Apply programs use the information in the IBMSNAP_REGISTER

table to communicate their respective status to one another. This table has several

more columns for related information.

© Copyright IBM Corp. 1994, 2007 231

For System i sources, including tables that are journaled remotely, there is also an

extension to the IBMSNAP_REGISTER table, IBMSNAP_REG_EXT, which contains

extra information that is unique to System i, for example, the journal library and

the journal name.

When you create a subscription set and add members to it, the Replication Center

creates an SQL script that stores the information for this subscription set in the

replication control tables that contain all subscription-set information as follows:

v IBMSNAP_SUBS_SET table

v IBMSNAP_SUBS_MEMBR table

v IBMSNAP_SUBS_COLS table

v IBMSNAP_SUBS_STMTS table

If the target tables do not already exist, the SQL script generated by the Replication

Center also creates them.

The main subscription-set table, IBMSNAP_SUBS_SET, contains one row for every

subscription set. This table contains the following kinds of information about each

subscription set:

v The Apply qualifier

v The name of the subscription set

v The type of subscription set: read only or read/write (update anywhere)

v The names and aliases of the source and target databases

v The timing for processing the subscription set

v The current status for the subscription set

This table also has several more columns for related information.

The other subscription-set tables contain information about the subscription-set

members, columns, and SQL statements (or stored procedures) that are processed

with the set.

The Capture program and the Apply program

The Capture program uses some of the replication control tables to indicate what

changes have been made to the source database, and the Apply program uses

these control-table values to detect what needs to be copied to the target database.

The Capture program does not capture any information until the Apply program

signals it to do so, and the Apply program does not signal the Capture program to

start capturing changes until you define a replication source and associated

subscription sets.

The following lists describe how the Apply and Capture programs communicate in

a typical replication scenario to ensure data integrity:

Capturing data from a source database

1. The Capture program reads the IBMSNAP_REGISTER table during

startup to identify those registered replication sources for which it must

capture changes. Having done so, it holds their registration information

in memory.

2. The Capture program reads the DB2 log or journal continuously to

detect change records (INSERT, UPDATE, and DELETE) for registered

source tables or views. It also detects inserts to the IBMSNAP_SIGNAL

232 SQL Replication Guide and Reference

table in order to pick up signal actions that have been initialized by the

Apply program or a user. When the Apply program inserts a

CAPSTART signal in the IBMSNAP_SIGNAL table and the Capture

program detects the committed signal, the Capture program initializes

the registration and starts capturing changes for the associated source.

3. Once the Capture program has started capturing changes for a

registered source, the program writes one row (or two rows if you

specified that updates should be saved as DELETE and INSERT

statements) to the CD table for each committed change that it finds in

the DB2 log or journal. The Capture program keeps uncommitted

changes in memory until the changes are committed or aborted. Each

registered replication source that is not an external CCD table has an

associated CD table.

4. At each commit interval, the Capture program commits the data that it

has written to the CD and UOW tables, and also updates the

IBMSNAP_REGISTER table to flag which CD tables have new

committed changes.

Applying data to a target database

1. For all newly defined subscription sets, the Apply program first signals

the Capture program to start capturing changes. Then, a full refresh is

performed for each member of the set (unless it is not a complete target

table).

2. When any subscription set is eligible for replication, the Apply program

checks the IBMSNAP_REGISTER table to determine whether there are

changes that need to be replicated.

3. The Apply program copies any changes from the CD table to the target

table.

4. The Apply program updates the IBMSNAP_SUBS_SET table to record

how much data the Apply program copied for each subscription set.

5. The Apply program updates the IBMSNAP_PRUNE_SET table with a

value that indicates the point to which it has read changes from the CD

table.

Pruning the CD tables

When the Capture program prunes the CD tables, it uses the information

located in the IBMSNAP_PRUNE_SET table to determine which changes

were applied, and deletes those changes already replicated from the CD

table.

The Capture triggers and the Apply program

The Capture triggers use some of the replication control tables to indicate what

changes have been made to the source database, and the Apply program uses

these control-table values to detect what needs to be copied to the target database.

The Capture triggers start capturing information immediately. Unlike the Capture

program, they do not wait for a signal from the Apply program.

The following lists describe how the Capture triggers and the Apply program

communicate, in a typical replication scenario, to ensure data integrity:

Capturing data from a source

1.

Chapter 20. How the SQL replication components communicate 233

Whenever a DELETE, UPDATE, or INSERT operation occurs at the

registered replication source table, a Capture trigger records the change

in the CCD table for that source table.

Applying data to a target

1. For all newly defined subscription sets, the Apply program first signals

the Capture triggers to mark a valid starting point within the CCD

table from which to start fetching changed data. Then a full refresh is

performed for each member of the set (unless it is not a complete target

table).

2. When the Apply program processes a subscription set for a non-DB2

relational source, it updates the IBMSNAP_REG_SYNCH table, which

causes an UPDATE trigger on that table to fire. The trigger updates the

SYNCHPOINT value in the IBMSNAP_REGISTER table to mark the

highest SYNCHPOINT value in the CCD tables that it copied to the

targets. During the next cycle, the Apply program will process new

data in the CCD table that has a SYNCHPOINT value that is less than

or equal to this SYNCHPOINT. Because the IBMSNAP_REG_SYNCH

table is in the non-DB2 database, the Apply program writes to the table

using the nickname for it that was created by the Replication Center.

3. The Apply program checks the IBMSNAP_REGISTER table to

determine whether there are changes that need to be replicated.

4. The Apply program copies the changes from the CCD table to the

target table.

5. The Apply program updates the IBMSNAP_SUBS_SET table to record

how much data the Apply program copied for each subscription set.

6. The Apply program updates the IBMSNAP_PRUNCNTL table for each

registered source with a value that indicates the point to which it has

read changes from the CCD table.

Pruning the CCD tables

The UPDATE trigger on the IBMSNAP_PRUNCNTL table checks all of the

CCD tables in the source database, and deletes the already-replicated

changes from the CCD table.

The administration tools and the Replication Alert Monitor

When you define an alert condition with contacts who will be notified when the

condition occurs, the Replication Center or ASNCLP command-line programs

create an SQL script that stores the information for this alert condition and its

contacts in the replication control tables that contain all alert-condition and

notification information.

The following control tables are updated:

v IBMSNAP_CONDITIONS table

v IBMSNAP_CONTACTS table

v IBMSNAP_GROUPS table

v IBMSNAP_CONTACTGRP table

The IBMSNAP_CONDITIONS tables contains one row for each condition that you

want to be monitored. The table contains the following kinds of information about

each alert condition:

v The Monitor qualifier

v The name and aliases of the Capture server or Apply server you want monitored

234 SQL Replication Guide and Reference

v The component that you want monitored (the Capture program or the Apply

program)

v The Capture schema or Apply qualifier

v The name of the subscription set (if you want to monitor a set)

v The alert condition that you want monitored

v The contact to be notified if the condition occurs

This table has several more columns for related information.

The other tables for the Replication Alert Monitor contain information about who

will be notified if the alert condition occurs (either an individual contact, a group

of contacts, or the z/OS console), how that contact will be notified (through e-mail

or pager), and how often the contact will be notified should the condition persist.

The Replication Alert Monitor, the Capture program, and the Apply

program

The Replication Alert Monitor uses some of the Capture control tables to monitor

the Capture program, and uses some of the Apply control tables to monitor the

Apply program. It reads from different replication control tables at each Capture

control server or Apply control server, depending on what it is monitoring.

The Replication Alert Monitor does not interfere or communicate with the Capture

or Apply program.

The following steps describe how the Replication Alert Monitor monitors

conditions for the Capture or Apply program and notifies contacts when an alert

condition occurs:

1. The Replication Alert Monitor reads the alert conditions and the contact for

each condition (for a Monitor qualifier) in the IBMSNAP_CONDITIONS table.

2. For each Capture control server or Apply control server that has a defined alert

condition, the Replication Alert Monitor performs the following tasks:

a. The Replication Alert Monitor connects to the server and reads the

replication control tables associated with each alert condition for that server

to see if any of the conditions are met.

b. If any condition is met, the Replication Alert Monitor stores the data that is

related to that condition in memory and continues processing the remaining

alert conditions for that server.

c. When it is finished processing all the alert conditions for that server, the

Replication Alert Monitor disconnects from the Capture control or Apply

control server, inserts the alerts in the IBMSNAP_ALERTS table, and notifies

the contacts for that condition.

Chapter 20. How the SQL replication components communicate 235

236 SQL Replication Guide and Reference

Chapter 21. Naming rules for SQL replication objects

The following table lists the limits for names of replication objects.

 Table 23. Name limits for replication objects

Object Name limits

Source and target tables

Follow the naming rules for your database

management system.

Names cannot include blanks, asterisks

(*), question marks (?), single quotation marks (’), double

quotation marks (″), or a slash (/).

Source and target columns Follow the naming rules for your database management system.

(Note that all before-image columns have a one-character prefix

added to them. To avoid ambiguous before-image column

names, ensure that source column names are unique to 29

characters and that the before-image column names will not

conflict with existing column names when the before-image

character prefix is added to the column name.)

Subscription set A subscription-set name can include any characters allowed by

DB2 for varying-character (VARCHAR) columns.

Recommendation: Follow the naming rules for DB2 table and

column names. Because DB2 replication stores the

subscription-set name in each replication control server, be sure

that the name is compatible for all three servers’ code pages.

Capture schema

The Capture schema can be a string of 30

or fewer characters1.

The Capture schema can be a string of 18

or fewer characters; on DB2 UDB for z/OS Version 8

new-function mode subsystems it can be 128 characters1.

The Capture schema (CAPCTLLIB) can be

a string of 10 or fewer alphanumeric characters1.

Apply qualifier

The Apply qualifier

can be a string of 18 or fewer characters1.

The Apply qualifier can be a string of 18

or fewer characters but, because Apply jobs can be only up to

10 characters long, the first 10 characters must be unique for a

given Apply qualifier1.

Monitor qualifier

The Monitor

qualifier can be a string of 18 or fewer characters1.

© Copyright IBM Corp. 1994, 2007 237

Table 23. Name limits for replication objects (continued)

Object Name limits

Note:

1. For Capture schemas, Apply qualifiers, and Monitor qualifiers, ensure that you use only

the following valid characters in the names of these objects:

v A through Z (uppercase letters)

v a through z (lowercase letters)

v Numerals (0 through 9)

v The underscore character ″_″

Blanks are not allowed; neither are other special characters such as the colon ″:″ and the

plus sign ″+″.

Replication system commands and the Replication Center, by default, convert all

names that you provide to uppercase. Enclose a mixed-case character name in

double quotation marks (or whatever character the target system is configured to

use) to preserve the case and save the name exactly as you typed it. For example,

if you type myqual or MyQual or MYQUAL, the name is saved as MYQUAL. If you type

those same names and enclose them in double quotation marks, they are saved as

myqual or MyQual or MYQUAL, respectively. Some operating systems don’t recognize

double quotation marks and you might have to use an escape character, typically a

backslash (\).

On Windows operating systems, you must use a unique path

to differentiate between names that are otherwise identical. For example, assume

that you have three Apply qualifiers: myqual , MyQual, and MYQUAL. The three names

use the same characters but different case. If these three qualifiers are in the same

Apply path, they will cause name conflicts.

Important: When setting up Windows services for Capture, Apply, or the

Replication Alert Monitor, you must use unique names for the Capture schema,

Apply qualifier, and Monitor qualifier. You cannot use case to differentiate names.

238 SQL Replication Guide and Reference

Chapter 22. System commands for SQL replication (Linux,

UNIX, Windows, z/OS)

This section describes commands for Linux, UNIX, Windows, and UNIX System

Services (USS) on z/OS that let you start, operate, modify, and monitor SQL

replication programs.

All of these commands have a prefix of asn and are entered at an operating system

command prompt or in a shell script. One of the commands, asnanalyze, also

works with remote data residing on System i.

asncap: Starting Capture

Use the asncap command to start the Capture program on Linux, UNIX, Windows,

and UNIX System Services (USS) on z/OS. Run this command at an operating

system prompt or in a shell script.

After you start the Capture program, it runs continuously until you stop it or it

detects an unrecoverable error.

Syntax

�� asncap

capture_server=db_name

capture_schema=schema
 �

�
capture_path=path

n

asynchlogrd=

y

y

autoprune=

n

 �

�
n

autostop=

y

commit_interval=n
 �

�
ignore_transid=transaction_ID

lag_limit=n

n

logreuse=

y

 �

�
n

logstdout=

y

memory_limit=n

monitor_interval=n
 �

�
monitor_limit=n

asnpwd.aut

pwdfile=

filename

prune_interval=n
 �

�
retention_limit=n

sleep_interval=n

warmsi

startmode=

warmns

cold

 �

�
y

term=

n

trace_limit=n
 �

© Copyright IBM Corp. 1994, 2007 239

�
Optional

z/OS

parameter

Optional

Linux,

UNIX,

Windows

parameter

 �

� Optional z/OS parameter:

arm=identifier
 ��

Optional Linux, UNIX, Windows parameter:

n

add_partition=

y

Parameters

Table 24 defines the invocation parameters.

 Table 24. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

capture_server=db_name Specifies the name of the Capture control server.

Specifies the name of the DB2

subsystem where the Capture program will run. For data

sharing, do not use the group attach name. Instead, specify

a member subsystem name.

If you do not specify a Capture

control server, this parameter defaults to the value from the

DB2DBDFT environment variable.

add_partition=y/n

Specifies whether the Capture

program starts reading the log file for the newly added

partitions since the last time the Capture program was

restarted.

n (default)

No new partitions have been added since the last

time the Capture program was restarted.

y The Capture program starts reading the log file on

one or more of the new partitions. On each

partition, the Capture program starts reading the

log from the log sequence number (LSN) that was

initially used the last time the database was started.

arm=identifier

Specifies a three-character

alphanumeric string that is used to identify a single instance

of the Capture program to the Automatic Restart Manager.

The value that you supply is appended to the ARM element

name that Capture generates for itself: ASNTCxxxxyyyy

(where xxxx is the data-sharing group attach name, and yyyy

is the DB2 member name). You can specify any length of

string for the arm parameter, but the Capture program will

concatenate only up to three characters to the current name.

If necessary, the Capture program will pad the name with

blanks to make a unique 16-byte name.

240 SQL Replication Guide and Reference

Table 24. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

asynchlogrd=y/n

n (default)

Specifies that you want the Capture program to use

the same thread for reading the DB2 recovery log

and processing transactions that were captured

from the log.

y Specifies that you want the Capture program to use

a dedicated thread for capturing transactions from

the DB2 recovery log. The transaction reader thread

prefetches committed transactions in a memory

buffer, from which another thread gets the

transactions and processes them into SQL

statements for insertion into the CD table. This

asynchronous mode can improve Capture

performance in all environments with particular

benefits for partitioned databases and z/OS

data-sharing. On systems with very high activity

levels, this prefetching might lead to more memory

usage. Adjust the memory_limit parameter

accordingly.

capture_schema=schema Specifies the name of the Capture schema that is used to

identify a particular Capture program. The schema name

that you enter must be 1 to 30 characters in length. The

default is ASN.

capture_path=path Specifies the location of the work files used by the Capture

program. The default is the directory where the asncap

command was invoked.

autoprune=y/n Specifies whether automatic pruning of the rows in the

change-data (CD), unit-of-work (UOW),

IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and

IBMSNAP_SIGNAL tables is enabled.

y (default)

The Capture program automatically prunes the

eligible rows at the interval specified in the

IBMSNAP_CAPPARMS table. The Capture program

prunes the CD, UOW, and IBMSNAP_SIGNAL

rows that are older than the retention limit,

regardless of whether the rows have been

replicated.

n Automatic pruning is disabled.

autostop=y/n Specifies whether the Capture program terminates after

retrieving all the transactions that were logged before the

Capture program started.

n (default)

The Capture program does not terminate after

retrieving the transactions.

y The Capture program terminates after retrieving

the transactions.

commit_interval=n Specifies the number of seconds that the Capture program

waits before committing rows to the unit-of-work (UOW)

and change-data (CD) tables. The default is 30 seconds.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 241

Table 24. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

ignore_transid=transaction_ID Specifies that the Capture program will not capture the

transaction that is identified by transaction_ID.

The value for transaction_ID is a 10-byte hexadecimal

identifier in the following format:

0000:xxxx:xxxx:xxxx:mmmm

 Where xxxx:xxxx:xxxx is the transaction ID, and

mmmm is the data-sharing member ID. You can find

the member ID in the last 2 bytes of the log record

header in the LOGP output. The member ID is 0000

if data-sharing is not enabled.

nnnn:0000:xxxx:xxxx:xxxx

 Where xxxx:xxxx:xxxx is the transaction ID, and

nnnn is the partition identifier for partitioned

databases (this value is 0000 if for non-partitioned

databases).

lag_limit=n Specifies the number of minutes that the Capture program is

allowed to lag in processing log records. The default is

10080 minutes (seven days). The Capture program checks

the value of this parameter only during a warm start. If this

limit is exceeded, the Capture program will not start.

logreuse=y/n Specifies whether the Capture program reuses or appends

messages to the log file.

n (default)

The Capture program appends messages to the log

file, even after the Capture program is restarted.

y The Capture program reuses the log file by first

truncating the current log file and then starting a

new log when the Capture program is restarted.

The log file name does not contain the

DB2 instance name: capture_server.capture_schema.CAP.log.

The log file name includes the DB2

instance name:

db2instance.capture_server.capture_schema.CAP.log.

logstdout=y/n Specifies where the Capture program directs the log file

messages:

n (default)

The Capture program directs most log file messages

to the log file only. Initialization messages go to

both the log file and the standard output

(STDOUT).

y The Capture program directs log file messages to

both the log file and the standard output

(STDOUT).

242 SQL Replication Guide and Reference

Table 24. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

memory_limit=n Specifies the maximum size (in megabytes) of memory that

the Capture program can use to build transactions. After

reaching this memory limit, the Capture program spills

transactions to a file. The default is 32 megabytes.

If you specify memory_limit=0, the

Capture program determines the amount of memory to use

from the region size parameter of the Capture job. The

memory allocation is 80 percent of the region size.

monitor_interval=n Specifies how frequently (in seconds) the Capture program

inserts rows into the IBMSNAP_CAPMON table. The

default is 300 seconds (five minutes).

monitor_limit=n Specifies how long (in minutes) a row can remain in the

IBMSNAP_CAPMON table before it becomes eligible for

pruning. All IBMSNAP_CAPMON rows that are older than

the value of the monitor_limit parameter are pruned at the

next pruning cycle. The default is 10 080 minutes (seven

days).

pwdfile=filename Specifies the name of the password file. If you do not

specify a password file, the default is asnpwd.aut.

This command searches for the password file in the

directory specified by the capture_path parameter. If no

capture_path parameter is specified, this command searches

for the password file in the directory where the command

was invoked.

prune_interval=n Specifies how frequently (in seconds) the change-data (CD),

unit-of-work (UOW), IBMSNAP_CAPMON,

IBMSNAP_CAPTRACE, and IBMSNAP_SIGNAL tables are

pruned. This parameter is ignored if you set the autoprune

parameter to n. The default is 300 seconds (five minutes).

retention_limit=n Specifies how long (in minutes) a row can remain in the

change-data (CD), unit-of-work (UOW), or

IBMSNAP_SIGNAL table before it becomes eligible for

pruning. Each row that is older than the value of the

retention_limit parameter is pruned at the next pruning

cycle. The default is 10 080 minutes (seven days).

sleep_interval=n Specifies the number of seconds that the Capture program

sleeps when it finishes processing the active log and

determines that the buffer is empty. The default is five

seconds.

Specifies the number of seconds that

the Capture program sleeps after the buffer returns less than

half full.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 243

Table 24. asncap invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

startmode=mode Specifies the processing procedure used by the Capture

program during a Capture startup.

warmsi (default)

The Capture program resumes processing where it

ended in its previous run if warm start information

is available. If this is the first time that you are

starting the Capture program, it automatically

switches to a cold start.

 During a warm start, the Capture program leaves

the IBMSNAP_CAPTRACE, change-data (CD),

unit-of-work (UOW), and IBMSNAP_RESTART

tables intact. If errors occur after the Capture

program started, the Capture program terminates.

warmns

The Capture program resumes processing where it

ended in its previous run if warm start information

is available. If errors occur after the Capture

program started, the Capture program terminates.

If the Capture program cannot warm start, it does

not switch to a cold start.

cold The Capture program starts by deleting all rows in

its CD and UOW tables. Most registrations are reset

so that all subscriptions to those sources are fully

refreshed during the next Apply processing cycle.

Registrations for external CCDs and those

subscriptions whose targets are noncomplete CCDs

are not fully refreshed.

term=y/n Specifies whether the Capture program terminates if DB2 is

quiesced or stopped.

y (default)

The Capture program terminates if DB2 is quiesced

or stopped.

n The Capture program continues running if DB2 is

quiesced or stopped. When DB2 initializes, the

Capture program starts in warm mode and begins

capturing at the point it left off when DB2 was

quiesced or stopped.

If DB2 terminates via FORCE or due to abnormal

termination, the Capture program terminates even if you set

this parameter to n.

If you set this parameter to n and start DB2 with restricted

access (ACCESS MAINT), the Capture program cannot

connect and subsequently terminates.

trace_limit=n Specifies how long (in minutes) a row can remain in the

IBMSNAP_CAPTRACE table before it becomes eligible for

pruning. All IBMSNAP_CAPTRACE rows that are older

than the value of the trace_limit parameter are pruned at

the next pruning cycle. The default is 10 080 minutes (seven

days).

244 SQL Replication Guide and Reference

Return codes

The asncap command returns a zero return code upon successful completion. A

nonzero return code is returned if the command is unsuccessful.

Examples for asncap

The following examples illustrate how to use the asncap command.

Example 1

To start a Capture program for the first time using a Capture control server named

db and a Capture schema of ASN with work files located in the

/home/files/capture/logs/ directory:

asncap capture_server=db capture_schema=ASN

 capture_path=/home/files/capture/logs/ startmode=cold

Example 2

To restart a Capture program without pruning after the Capture program was

stopped:

asncap capture_server=db autoprune=n sleep_interval=10 startmode=warmsi

The Capture program in this example retains all rows in the corresponding control

tables and sleeps for ten seconds after it finishes processing the active log and

determines that the buffer is empty. The Capture program resumes processing

where it ended in its previous run and switches to a cold start if warm start

information is unavailable.

Example 3

To restart a Capture program with the warmns startmode and changed parameter

settings:

asncap capture_server=db autoprune=y prune_interval=60 retention_limit=1440

 startmode=warmns

This command restarts the Capture program and uses new parameter settings to

decrease the amount of time before the CD, UOW, and IBMSNAP_SIGNAL tables

become eligible for pruning and to increase the frequency of pruning from the

default parameter settings. The Capture program resumes processing where it

ended in its previous run but does not automatically switch to a cold start if warm

start information is unavailable.

Example 4

To start a Capture program that sends all of its work files to a new subdirectory

called capture_files:

1. Go to the appropriate directory, and then create a new subdirectory called

capture_files:

cd /home/db2inst

 mkdir capture_files

2. Start the Capture program, and specify a Capture path that is located in the

new subdirectory that you just created:

asncap capture_server=db capture_schema=ASN

 capture_path=/home/db2inst/capture_files startmode=warmsi

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 245

asnccmd: Operating Capture

Use the asnccmd command to send a command to a running Capture program on

Linux, UNIX, Windows, and UNIX System Services (USS) on z/OS. Run this

command at an operating system prompt or in a shell script.

Syntax

�� asnccmd

capture_server=db_name

capture_schema=schema
 �

� chgparms parameters

prune

qryparms

reinit

suspend

resume

status

stop

 ��

Parameters:

y

autoprune=

n

n

autostop=

y

commit_interval=n
 �

�
n

logreuse=

y

n

logstdout=

y

memory_limit=n
 �

�
monitor_interval=n

monitor_limit=n

prune_interval=n
 �

�
retention_limit=n

sleep_interval=n

y

term=

n

 �

�
trace_limit=n

246 SQL Replication Guide and Reference

Parameters

Table 25 defines the invocation parameters for the asnccmd command.

 Table 25. Definitions for asnccmd invocation parameters

Parameter Definition

capture_server=y/n Specifies the name of the Capture control server.

The name of the database server that connects to

the control server. For data sharing, use either the

group attach name or a member subsystem name.

If you do not specify a Capture control server, this

parameter defaults to the value from the

DB2DBDFT environment variable.

capture_schema=schema Specifies the name of the Capture schema that is used to

identify a particular Capture program. The schema name

must be 1 to 30 characters in length. The default is ASN.

chgparms Specify to change one or more of the following operational

parameters of a Capture program while it is running:

v autostop

v commit_interval

v logreuse

v logstdout

v memory_limit

v monitor_interval

v monitor_limit

v prune_interval

v retention_limit

v signal_limit

v sleep_interval

v term

v trace_limit

Restriction:

The value of

memory_limit cannot be altered with the Capture program

is running. To change the value you must first stop the

Capture program.

You can specify multiple parameters in one asnccmd

chgparms command, and you can change these parameter

values as often as you want. The changes temporarily

override the values in the IBMSNAP_CAPPARMS table, but

they are not written to the table. When you stop and restart

the Capture program, it uses the values in

IBMSNAP_CAPPARMS. “asncap: Starting Capture” on page

239 includes descriptions of the parameters that you can

override with this command.

prune Specify this parameter if you want to prune the change-data

(CD), unit-of-work (UOW), IBMSNAP_CAPMON,

IBMSNAP_CAPTRACE, and IBMSNAP_SIGNAL tables

once. The Capture program issues a message when the

command is successfully queued.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 247

Table 25. Definitions for asnccmd invocation parameters (continued)

Parameter Definition

qryparms Specify if you want the current operational parameter values

written to the standard output (stdout).

reinit Specify to have the Capture program obtain newly added

replication sources from the IBMSNAP_REGISTER table. For

example, use this parameter if you add a new replication

source or if you use the ALTER ADD statement to add a

column to a replication source and change-data (CD) table

while the Capture program is running.

suspend Specify to relinquish operating system resources to

operational transactions during peak periods without

destroying the Capture program environment.

Attention: Do not suspend Capture to cancel a replication

source. Instead, stop the Capture program.

resume Specify to have a suspended Capture program resume

capturing data.

status Specify to receive messages that indicate the state of each

Capture thread (administration, pruning, serialization, and

worker).

stop Specify to stop the Capture program in an orderly way and

commit the log records processed up to that point.

Examples for asnccmd

The following examples illustrate how to use the asnccmd command.

Example 1

To enable a running Capture program to recognize newly added replication sources:

asnccmd capture_server=db capture_schema=ASN reinit

Example 2

To prune the CD, UOW, IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and IBMSNAP_SIGNAL tables

once:

asnccmd capture_server=db capture_schema=ASN prune

Example 3

To receive messages about the state of each Capture thread:

asnccmd capture_server=db capture_schema=ASN status

Example 4

To send the current operational values of a Capture program to the standard output:

asnccmd capture_server=db capture_schema=ASN qryparms

Example 5

To disable the automatic pruning in a running Capture program:

asnccmd capture_server=db capture_schema=ASN chgparms autoprune=n

248 SQL Replication Guide and Reference

Example 6

To stop a running Capture program:

asnccmd capture_server=db capture_schema=ASN stop

asnapply: Starting Apply

Use the asnapply command to start the Apply program on Linux, UNIX, Windows,

and UNIX System Services (USS) on z/OS. Run this command at an operating

system prompt or in a shell script.

After you start the Apply program, it runs continuously until you stop it or it

detects an unrecoverable error.

Syntax

�� asnapply Required z/OS parameters

Required

Linux,

UNIX

and

Windows

parameter
 �

�
control_server=db_name

apply_path=pathname
 �

�
asnpwd.aut

pwdfile=

filename

n

logreuse=

y

n

logstdout=

y

 �

�
n

loadxit=

y

y

inamsg=

n

n

notify=

y

 �

�
n

copyonce=

y

y

sleep=

n

n

trlreuse=

y

 �

�
n

opt4one=

y

delay=n

errwait=n

y

term=

n

 �

�
Optional

z/OS

parameters

Optional

Linux,

UNIX

and

Windows

parameters

 ��

Required z/OS parameters:

 apply_qual=apply_qualifier db2_subsystem=name

Required Linux, UNIX and Windows parameter:

 apply_qual=apply_qualifier

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 249

Optional z/OS parameters:

mem

spillfile=

disk

arm=identifier

Optional Linux, UNIX and Windows parameters:

n

sqlerrcontinue=

y

disk

spillfile=

Parameters

Table 26 defines the invocation parameters.

 Table 26. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

apply_qual=apply_qualifier Specifies the Apply qualifier that the Apply program uses to

identify the subscriptions sets to be served.

The value that you enter must match the value of the

APPLY_QUAL column in the IBMSNAP_SUBS_SET table.

The Apply qualifier name is case sensitive and can be a

maximum of 18 characters.

db2_subsystem=name

Specifies the name of the DB2

subsystem where the Apply program will run. The

subsystem name that you enter can be a maximum of four

characters. There is no default for this parameter. This

parameter is required.

control_server=db_name Specifies the name of the Apply control server on which the

subscription definitions and Apply program control tables

reside.

Specifies the location name of the

Apply control server.

If you do not specify an Apply control

server, this parameter defaults to the value from the

DB2DBDFT environment variable.

apply_path=pathname Specifies the location of the work files used by the Apply

program. The default is the directory where the asnapply

command was invoked.

pwdfile=filename Specifies the name of the password file. If you do not

specify a password file, the default is asnpwd.aut.

This command searches for the password file in the

directory specified by the apply_path parameter. If no

apply_path parameter is specified, this command searches

for the password file in the directory where the command

was invoked.

250 SQL Replication Guide and Reference

Table 26. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

logreuse=y/n Specifies whether the Apply program reuses or appends

messages to the log file.

n (default)

The Apply program appends messages to the log

file, even after the Apply program is restarted.

y The Apply program reuses the log file by deleting

it and then re-creating it when the Apply program

is restarted.

The log file name does not contain the

DB2 instance name: control_server.apply_qualifier.APP.log.

The log file name contains the DB2

instance name:

db2instance.control_server.apply_qualifier.APP.log.

logstdout=y/n Specifies where the Apply program directs the log file

messages:

n (default)

The Apply program directs most log file messages

to the log file only. Initialization messages go to

both the log file and the standard output

(STDOUT).

y The Apply program directs log file messages to

both the log file and the standard output

(STDOUT).

loadxit=y/n Specifies whether the Apply program invokes ASNLOAD.

ASNLOAD is an IBM-supplied exit routine that uses the

export and load utilities to refresh target tables.

n (default)

The Apply program does not invoke ASNLOAD.

y The Apply program invokes ASNLOAD.

inamsg=y/n Specifies whether the Apply program issues a message

when the Apply program is inactive.

y (default)

The Apply program issues a message when

inactive.

n The Apply program does not issue a message when

inactive.

notify=y/n Specifies whether the Apply program should invoke

ASNDONE. ASNDONE is an exit routine that returns

control to you when the Apply program finishes copying a

subscription set.

n (default)

The Apply program does not invoke ASNDONE.

y The Apply program invokes ASNDONE.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 251

Table 26. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

copyonce=y/n Specifies whether the Apply program executes one copy

cycle for each subscription set that is eligible at the time the

Apply program is invoked. Then the Apply program

terminates. An eligible subscription set meets the following

criteria:

v (ACTIVATE > 0) in the IBMSNAP_SUBS_SET table. When

the ACTIVATE column value is greater than zero, the

subscription set is active indefinitely or is used for a

one-time-only subscription processing.

v (REFRESH_TYPE = R or B) or (REFRESH_TYPE = E and

the specified event occurred). The REFRESH_TYPE

column value is stored in the IBMSNAP_SUBS_SET table.

The MAX_SYNCH_MINUTES limit from the subscription

sets table and the END_OF_PERIOD timestamp from the

IBMSNAP_SUBS_EVENT table are honored if specified.

n (default)

The Apply program does not execute one copy

cycle for each eligible subscription set.

y The Apply program executes one copy cycle for

each eligible subscription set.

sleep=y/n Specifies how the Apply program is to proceed if no new

subscription sets are eligible for processing.

y (default)

The Apply program sleeps.

n The Apply program stops.

trlreuse=y/n Specifies whether the Apply program empties the

IBMSNAP_APPLYTRAIL table when the Apply program

starts.

n (default)

The Apply program appends entries to the

IBMSNAP_APPLYTRAIL table. The Apply program

does not empty the table.

y The Apply program empties the

IBMSNAP_APPLYTRAIL table during program

startup.

opt4one=y/n Specifies whether the performance of the Apply program is

optimized if only one subscription set is defined for the

Apply program.

n (default)

The performance of the Apply program is not

optimized for one subscription set.

y The performance of the Apply program is

optimized for one subscription set. If you set

optimization to y, the Apply program caches and

reuses the information about the subscription-set

members. This reuse of subscription-set member

information reduces CPU usage and improves

throughput rates.

252 SQL Replication Guide and Reference

Table 26. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

delay=n Specifies the delay time (in seconds) at the end of each

Apply cycle when continuous replication is used, where

n=0, 1, 2, 3, 4, 5, or 6. The default is 6, and is used during

continuous replication (that is, when the subscription set

uses sleep=0 minutes). This parameter is ignored if

copyonce is specified.

errwait=n Specifies the number of seconds (1 to 65535) that the Apply

program waits before retrying after the program encounters

an error condition. The default value is 300 seconds (five

minutes).

Note: Do not specify too small a number, because the Apply

program runs almost continuously and generates many rows

in the IBMSNAP_APPLYTRAIL table.

term=y/n Specifies how the status of DB2 affects the operation of the

Apply program.

y (default)

The Apply program terminates if DB2 is quiesced

or stops.

n The Apply program does not terminate and instead

waits for DB2 to start if DB2 is quiesced or stops.

spillfile=filetype Specifies where the fetched answer set is stored.

Valid values are:

mem (default)

A memory file. The Apply program fails if there is

insufficient memory for the answer set.

disk A disk file.

Valid values are:

disk (default)

A disk file.

arm=identifier

Specifies a three-character

alphanumeric string that is used to identify a single instance

of the Apply program to the Automatic Restart Manager.

The value that you supply is appended to the ARM element

name that Apply generates for itself: ASNTAxxxxyyyy

(where xxxx is the data-sharing group attach name, and yyyy

is the DB2 member name). You can specify any length of

string for the arm parameter, but the Apply program will

concatenate only up to three characters to the current name.

If necessary, the Apply program will pad the name with

blanks to make a unique 16-byte name.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 253

Table 26. asnapply invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

sqlerrcontinue=y/n Specifies whether the Apply program continues processing

when it encounters certain SQL errors.

The Apply program checks the failing SQLSTATE against

the values specified in the SQLSTATE file, which you create

before running the Apply program. If a match is found, the

Apply program writes the information about the failing row

to an error file (apply_qualifier.ERR) and continues

processing. The SQLSTATE file can contain up to 20

five-byte values.

n (default)

The Apply program does not check the SQLSTATE

file.

y The Apply program checks the SQLSTATE file

during processing.

Return codes

The asnapply command returns a zero return code upon successful completion. A

nonzero return code is returned if the command is unsuccessful.

Examples for asnapply

The following examples illustrate how to use the asnapply command.

Example 1

To start an Apply program using an Apply qualifier named AQ1, a control server

named dbx with work files located in the /home/files/apply/ directory:

asnapply apply_qual=AQ1 control_server=dbx apply_path=/home/files/apply/

 pwdfile=pass1.txt

The Apply program searches the /home/files/apply/ directory for the password

file named pass1.txt.

Example 2

To start an Apply program that invokes the ASNLOAD exit routine:

asnapply apply_qual=AQ1 control_server=dbx pwdfile=pass1.txt loadxit=y

In this example, the Apply program searches the current directory for the

password file named pass1.txt.

Example 3

To start an Apply program that executes one copy cycle for each eligible

subscription set:

asnapply apply_qual=AQ1 control_server=dbx apply_path=/home/files/apply/

 copyonce=y

254 SQL Replication Guide and Reference

In this example, the Apply program searches the /home/files/apply/ directory for

the default password file named asnpwd.aut.

asnacmd: Operating Apply

Use the asnacmd command to operate the Apply program on Linux, UNIX,

Windows, and UNIX System Services (USS) on z/OS. Run this command at an

operating system prompt or in a shell script.

Syntax

�� asnacmd apply_qual=apply_qualifier

control_server=db_name
 �

� status

stop
 ��

Parameters

Table 27 defines the invocation parameters.

 Table 27. asnacmd invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

apply_qual=apply_qualifier Specifies the Apply qualifier that the Apply program uses to

identify the subscriptions sets to be served.

You must specify an Apply qualifier. The value that you

enter must match the value of the APPLY_QUAL column in

the IBMSNAP_SUBS_SET table. The Apply qualifier name is

case sensitive and can be a maximum of 18 characters.

control_server=db_name Specifies the name of the Apply control server on which the

subscription definitions and Apply control tables reside.

The control server parameter is the

name of the database server that connects to the control

server.

If you do not specify an Apply control

server, this parameter defaults to the value from the

DB2DBDFT environment variable.

status Specify to receive messages that indicate the state of each

thread (administration and worker) in Apply.

stop Specify to stop the Apply program in an orderly way.

Examples for asnacmd

The following examples illustrate how to use the asnacmd command.

Example 1

To receive messages about the state of each Apply thread:

asnacmd apply_qual=AQ1 control_server=dbx status

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 255

Example 2

To stop the Apply program:

asnacmd apply_qual=AQ1 control_server=dbx stop

asnanalyze: Operating the Analyzer

Use the asnanalyze command to generate reports about the state of the replication

control tables. This command analyzes replication control tables that reside on any

operating system, including System i; however, you must invoke the command

from Linux, UNIX or Windows.

You must type a space between the asnanalyze command and the first parameter

to invoke the command. If you issue the command without any parameters, you

receive command help on the screen.

Syntax

��

asnanalyze

�

-db

db_alias

standard

-la

detailed

simple

-tl

n

�

�
-at

n

-ct

n

-cm

n

-sg

n

�

-aq

apply_qualifier

 �

�
-cs

capture_schema

-od

output_directory

-fn

output_filename
 �

�
-pw

password_filepath
 ��

Parameters

Table 28 defines the invocation parameters.

 Table 28. asnanalyze invocation parameter definitions for Linux, UNIX and Windows

operating systems

Parameter Definition

-db db_alias Specifies the Capture control server, target server, and Apply

control server.

You must provide at least one database alias. If there is

more than one database alias, use blank spaces to separate

the values.

256 SQL Replication Guide and Reference

Table 28. asnanalyze invocation parameter definitions for Linux, UNIX and Windows

operating systems (continued)

Parameter Definition

-la level_of_analysis Specifies the level of analysis to be reported:

standard (default)

Generates a report that includes the contents of the

control tables and status information from the

Capture and Apply programs.

detailed

Generates the information in the standard report

and:

v Change-data (CD) and unit-of-work (UOW) table

pruning information

v DB2 for z/OS table space partitioning and

compression information

v Analysis of target indexes for subscription keys

simple Generates the information in the standard report,

but excludes the detailed information from the

IBMSNAP_SUBS_COLS table.

-tl n Specifies the date range (0 to 30 days) of entries to be

retrieved from the IBMSNAP_APPLYTRAIL table. The

default is 3 days.

-at n Specifies the date range (0 to 30 days) of entries to be

retrieved from the Apply trace IBMSNAP_APPLYTRACE

table. The default is 3 days.

-ct n Specifies the date range (0 to 30 days) of entries to be

retrieved from the IBMSNAP_CAPTRACE table. The default

is 3 days.

-cm n Specifies the date range (0 to 30 days) of entries to be

retrieved from the IBMSNAP_CAPMON table. The default

is 3 days.

-sg n Specifies the date range (0 to 30 days) of entries to be

retrieved from the IBMSNAP_SIGNAL table. The default is 3

days.

-aq apply_qualifier Specifies the Apply qualifier that identifies the specific

subscription sets to be analyzed.

You can specify more than one Apply qualifier. If there is

more than one Apply qualifier, use blank spaces to separate

the values. If no Apply qualifier is specified, all subscription

sets for the specified database aliases are analyzed.

-cs capture_schema Specifies the name of the Capture schema that you want to

analyze.

If you use this parameter, you can specify only one Capture

schema.

-od output_directory Specifies the directory in which you want to store the

Analyzer report. The default is the current directory.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 257

Table 28. asnanalyze invocation parameter definitions for Linux, UNIX and Windows

operating systems (continued)

Parameter Definition

-fn output_filename Specifies the name of the file that will contain the Analyzer

report output.

Use the file naming conventions of the operating system

that you are using to run the Analyzer. If the file name

already exists, the file is overwritten. The default file name

is asnanalyze.htm.

-pw password_filepath Specifies the name and path of the password file. If you do

not specify this parameter, the Analyzer checks the current

directory for the asnpwd.aut file.

Examples for asnanalyze

The following examples illustrate how to use the asnanalyze command.

Example 1

To analyze the replication control tables on a database called proddb1:

asnanalyze -db proddb1

Example 2

To obtain a detailed level of analysis about the replication control tables on the

proddb1 and proddb2 databases:

asnanalyze -db proddb1 proddb2 -la detailed

Example 3

To analyze the last two days of information from the IBMSNAP_APPLYTRAIL,

IBMSNAP_APPLYTRACE, IBMSNAP_CAPTRACE, IBMSNAP_CAPMON, and

IBMSNAP_SIGNAL tables on the proddb1 and proddb2 databases:

asnanalyze -db proddb1 proddb2 -tl 2 -at 2 -ct 2 -cm 2 -sg 2

Example 4

To obtain a simple level of analysis about the last two days of information from

the IBMSNAP_APPLYTRAIL, IBMSNAP_APPLYTRACE, IBMSNAP_CAPTRACE,

IBMSNAP_CAPMON, and IBMSNAP_SIGNAL tables on the proddb1 and proddb2

databases for only the qual1 and qual2 Apply qualifiers:

asnanalyze -db proddb1 proddb2 -la simple -tl 2 -at 2 -ct 2 -cm 2 -sg 2

 -aq qual1 qual2 -od c:\mydir -fn anzout -pw c:\SQLLIB

This command example writes the analyzer output to a file named anzout under

the c:\mydir directory and uses the password information from the c:\SQLLIB

directory.

Example 5

To analyze a specific Capture schema:

asnanalyze -db proddb1 proddb2 -cs BSN

258 SQL Replication Guide and Reference

Example 6

To display command help:

asnanalyze

asnmon: Starting a Replication Alert Monitor

Use the asnmon command to start a Replication Alert Monitor on Linux, UNIX,

Windows, and UNIX System Services (USS) on z/OS. Run this command at an

operating system prompt or in a shell script.

The Replication Alert Monitor records the following information:

v The status of Q Capture, Q Apply, Capture, and Apply programs

v Error messages written to the control tables

v Threshold values

Syntax

�� asnmon

monitor_server=server
 monitor_qual=mon_qual �

�
monitor_interval=n

n

runonce=

y

arm=identifier
 �

�
y

autoprune=

n

n

logreuse=

y

n

logstdout=

y

 �

�
y

term=

n

alert_prune_limit=n

trace_limit=n
 �

�
max_notifications_per_alert=n

max_notifications_minutes=n
 �

�
asnpwd.aut

pwdfile=

filepath

monitor_path=path
 �

�

�

,

monitor_errors=

″

address

″

email_server=servername
 �

�
n

console=

y

 ��

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 259

Parameters

Table 29 defines the invocation parameters for the asnmon command.

 Table 29. asnmon invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

monitor_server=server Specifies the name of the Monitor control server where the

Replication Alert Monitor program runs and the monitor

control tables reside. This must be the first parameter if

entered.

If you do not specify a Monitor

control server, this parameter defaults to the value from

the DB2DBDFT environment variable.

The default is DSN.

monitor_qual=mon_qual Specifies the monitor qualifier that the Replication Alert

Monitor program uses. The monitor qualifier identifies the

server to be monitored and the associated monitoring

conditions.

You must specify a monitor qualifier. The monitor

qualifier name is case sensitive and can be a maximum of

18 characters.

monitor_interval=n Specifies how frequently (in seconds) the Replication Alert

Monitor program runs for this monitor qualifier. The

default is 300 seconds (five minutes).

This parameter is ignored by the Replication Alert

Monitor if you set the runonce parameter to y.

Important: This monitor_intervalparameter affects the

Replication Alert Monitor program only. This parameter

does not affect Q Capture, Q Apply, Capture, and Apply

programs.

runonce=y/n Specifies whether the Replication Alert Monitor program

runs only one time for this monitor qualifier.

n (default)

The Replication Alert Monitor program runs at

the frequency indicated by the monitor_interval

parameter.

y The Replication Alert Monitor program runs only

one monitor cycle.

 If you set the runonce parameter to y, the

monitor_interval parameter is ignored by the

Replication Alert Monitor.

260 SQL Replication Guide and Reference

Table 29. asnmon invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

arm=identifier

Specifies a three-character

alphanumeric string that is used to identify a single

instance of the Replication Alert Monitor program to the

Automatic Restart Manager. The value that you supply is

appended to the ARM element name that the monitor

program generates for itself: ASNAMxxxxyyyy (where

xxxx is the data-sharing group attach name, and yyyy is

the DB2 member name). You can specify any length of

string for the arm parameter, but the monitor program

will concatenate only up to three characters to the current

name. If necessary, the monitor program will pad the

name with blanks to make a unique 16-byte name.

autoprune=y/n Specifies whether automatic pruning of the rows in the

Replication Alert Monitor alerts (IBMSNAP_ALERTS)

table is enabled.

y (default)

The Replication Alert Monitor program

automatically prunes the rows in the

IBMSNAP_ALERTS table that are older than the

value of the alert_prune_limit parameter.

n Automatic pruning is disabled.

logreuse=y/n Specifies whether the Replication Alert Monitor program

reuses or appends messages to its diagnostic log file (

db2instance.monitor_server.mon_qual.MON.log).

n (default)

The Replication Alert Monitor program appends

messages to the log file.

y The Replication Alert Monitor program reuses the

log file by deleting it and then recreating it when

the Replication Alert Monitor program is

restarted.

logstdout=y/n Specifies where messages are sent by the Replication Alert

Monitor program.

n (default)

The Replication Alert Monitor program sends

messages to the log file only.

y The Replication Alert Monitor program sends

messages to both the log file and the standard

output (stdout).

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 261

Table 29. asnmon invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

term=y/n Specifies whether a monitor program keeps running when

DB2 is quiesced.

y (default)

The monitor program stops when DB2 is

quiesced.

n The monitor program keeps running while DB2

is in quiesce mode and has forced all applications

to disconnect (including the monitor program).

When DB2 is taken out of quiesce mode, the

monitor program goes back to monitoring

replication.
Regardless of the setting for the term parameter, a

monitor program stops when DB2 shuts down. When DB2

starts again, you must restart the monitor program.

alert_prune_limit=n Specifies how long (in minutes) rows are kept in the

Replication Alert Monitor alerts (IBMSNAP_ALERTS)

table. Any rows older than this value are pruned. The

default is 10 080 minutes (seven days).

trace_limit=n Specifies how long (in minutes) a row can remain in the

Replication Alert Monitor trace (IBMSNAP_MONTRACE)

table before it becomes eligible for pruning. All

IBMSNAP_MONTRACE rows that are older than the

value of this trace_limit parameter are pruned at the next

pruning cycle. The default is 10 080 minutes (seven days).

max_notifications_per_alert=n Specifies the maximum number of the same alerts that are

sent to a user when the alerts occurred during the time

period specified by the max_notifications_minutes

parameter value. Use this parameter to avoid re-sending

the same alerts to a user. The default is 3.

max_notifications_minutes=n This parameter works with the

max_notifications_per_alert parameter to indicate the

time period when alert conditions occurred. The default is

60 minutes.

pwdfile=filepath Specifies the fully qualified name of the password file.

You define this file using the asnpwd command. The

default file name is asnpwd.aut.

monitor_path=path Specifies the location of the log files used by the

Replication Alert Monitor program. The default is the

directory where the asnmon command was invoked.

monitor_errors=address Specifies the e-mail address to which notifications are sent

if a fatal error is detected before the alert monitor connects

to the Monitor control server. Use this parameter to send a

notification that the Monitor control server connection

failed because of invalid start parameters, an incorrect

monitor qualifier, a down database, or other error.

Type double quotation marks around the e-mail address

text.

You can enter multiple e-mail addresses. Separate the

e-mail addresses with commas. You can type spaces before

or after the commas.

262 SQL Replication Guide and Reference

Table 29. asnmon invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

email_server=servername Specifies the e-mail server address. Enter this parameter

only if you use the ASNMAIL exit routine with SMTP

(Simple Mail Transfer Protocol).

console=y/n

Specifies whether the Replication

Alert Monitor program sends alert notifications to the

z/OS console. If you set this parameter to Y (yes) and an

e-mail server was already configured, alerts are sent to

both the z/OS console and the e-mail server.

n (default)

The Replication Alert Monitor program does not

send alert notifications to the z/OS console.

y The Replication Alert Monitor program sends

alert notifications to the z/OS console.

Return codes

The asnmon command returns a zero return code upon successful completion. A

nonzero return code is returned if the command is unsuccessful.

Examples for asnmon

The following examples illustrate how to use the asnmon command.

Example 1

To start the Replication Alert Monitor with the default parameters:

asnmon monitor_server=wsdb monitor_qual=monqual

Example 2

To start a Replication Alert Monitor that runs every 120 seconds (two minutes) for

the specified monitor qualifier:

asnmon monitor_server=wsdb monitor_qual=monqual monitor_interval=120

Example 3

To start a Replication Alert Monitor and specify that it run only once for the

specified monitor qualifier:

asnmon monitor_server=wsdb monitor_qual=monqual runonce=y

Example 4

To start a Replication Alert Monitor that sends e-mail notifications if it detects

monitoring errors:

asnmon monitor_server=wsdb monitor_qual=monqual

 monitor_errors="repladm@company.com, dbadmin@company.com"

Example 5

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 263

To start a Replication Alert Monitor that runs every 120 seconds (two minutes) and

waits 1440 minutes (24 hours) before sending alerts:

asnmon monitor_server=wsdb monitor_qual=monqual monitor_interval=120

 max_notifications_per_alert=2 max_notifications_minutes=1440

This Replication Alert Monitor program sends a maximum of two alerts when the

alerts occurred during the time period specified by the max_notifications_minutes

parameter value (1440 minutes).

asnmcmd: Working with a running Replication Alert Monitor

Use asnmcmd to send commands to a running Replication Alert Monitor on Linux,

UNIX, Windows, and UNIX System Services (USS) on z/OS. Run this command at

an operating system prompt or in a shell script.

Syntax

�� asnmcmd

monitor_server=server
 monitor_qual=mon_qual �

� chgparms parameters

reinit

status

stop

qryparms

suspend

resume

 ��

Parameters:

monitor_interval=n

y

autoprune=

n

alert_prune_limit=n
 �

�
trace_limit=n

max_notifications_per_alert=n
 �

�
max_notifications_minutes=n

Parameters

Table 30 on page 265 defines the invocation parameters for the asnmcmd

command.

264 SQL Replication Guide and Reference

Table 30. asnmcmd invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

monitor_server=server Specifies the name of the Monitor control server where the

Replication Alert Monitor program runs and the monitor

control tables reside. This must be the first parameter if

entered.

If you do not specify a Monitor

control server, this parameter defaults to the value from

the DB2DBDFT environment variable.

The default is DSN.

monitor_qual=mon_qual Specifies the monitor qualifier that the Replication Alert

Monitor program uses. The monitor qualifier identifies the

server to be monitored and the associated monitoring

conditions.

You must specify a monitor qualifier. The monitor qualifier

name is case sensitive and can be a maximum of 18

characters.

chgparms Specify to change one or more of the following operational

parameters of the Replication Alert Monitor while it is

running:

v monitor_interval

v autoprune

v alert_prune_limit

v trace_limit

v max_notifications_per_alert

v max_notifications_minutes

You can specify multiple parameters in one chgparms

subcommand, and you can change these parameter values

as often as you want. The changes temporarily override

the values in the IBMSNAP_MONPARMS table, but they

are not saved in the table. When you stop and restart the

Replication Alert Monitor, it uses the values in

IBMSNAP_MONPARMS. “asnmon: Starting a Replication

Alert Monitor” on page 259 includes descriptions of the

parameters that you can override with this subcommand.

Important: The parameter that you are changing must

immediately follow the chgparms subcommand.

reinit Specify to have the Replication Alert Monitor program

read its control tables to refresh the data that it has for

contacts, alert conditions, and parameters in its memory.

When all values are read, the Monitor program begins its

cycle of checking conditions on the servers. After this cycle

is complete, the next monitor cycle begins after the time

specified in monitor_interval has elapsed.

status Specify to receive messages that indicate the state of each

thread (administration, serialization, and worker) in the

Replication Alert Monitor.

qryparms Specify if you want the current operational parameter

values for the Replication Alert Monitor written to the

standard output (stdout).

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 265

Table 30. asnmcmd invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

suspend Specify if you want the Replication Alert Monitor to stop

checking conditions on servers temporarily until you issue

the resume command.

resume Specify if the Replication Alert Monitor has been

suspended and you want the Monitor program to begin

checking conditions on servers again.

stop Specify to stop the Replication Alert Monitor in an orderly

way.

Examples for asnmcmd

The following examples illustrate how to use the asnmcmd command.

Example 1

To stop the Replication Alert Monitor for the specified monitor qualifier:

asnmcmd monitor_server=wsdb monitor_qual=monqual stop

Example 2

To receive messages that indicate the status of the Replication Alert Monitor

threads:

asnmcmd monitor_server=wsdb monitor_qual=monqual status

Example 3

To refresh the Replication Alert Monitor with current values from the monitor

control tables:

asnmcmd monitor_server=wsdb monitor_qual=monqual reinit

Example 4

To reduce the maximum number of notifications that the Replication Alert Monitor

sends during a specified time period from the default of 3:

asnmcmd monitor_server=wsdb monitor_qual=monqual

chgparms max_notifications_per_alert=2

Example 5

To send the current operational parameters of the Replication Alert Monitor to the

standard output:

asnmcmd monitor_server=wsdb monitor_qual=monqual qryparms

asnpwd: Creating and maintaining password files

Use the asnpwd command to create and change password files on Linux, UNIX,

and Windows. Run this command at the command line or in a shell script.

Command help appears if you enter the asnpwd command without any

parameters, followed by a ?, or followed by incorrect parameters.

266 SQL Replication Guide and Reference

Syntax

�� asnpwd init Init parameters

add

Add

parameters

modify

Modify

parameters

delete

Delete

parameters

list

List

parameters

 ��

Init parameters:

encrypt

all

password

asnpwd.aut

using

filepath_name

Add parameters:

 alias db_alias id userid password password �

�
asnpwd.aut

using

filepath_name

Modify parameters:

 alias db_alias id userid password password �

�
asnpwd.aut

using

filepath_name

Delete parameters:

 alias db_alias

asnpwd.aut

using

filepath_name

List parameters:

asnpwd.aut

using

filepath_name

Parameters

Table 31 defines the invocation parameters for the asnpwd command.

 Table 31. asnpwd invocation parameter definitions for Linux, UNIX, and Windows operating

systems

Parameter Definition

init Specify to create an empty password file. This command

will fail if you specify the init parameter with a password

file that already exists.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 267

Table 31. asnpwd invocation parameter definitions for Linux, UNIX, and Windows operating

systems (continued)

Parameter Definition

add Specify to add an entry to the password file. This command

will fail if you specify the add parameter with an entry that

already exists in the password file. Use the modify

parameter to change an existing entry in the password file.

modify Specify to modify the password or user ID for an entry in

the password file.

delete Specify to delete an entry from the password file.

list Specify to list the aliases and user ID entries in a password

file. This parameter can be used only if the password file

was created using the encrypt parameter. Passwords are

never displayed by the list command.

encrypt Specifies which entries in a file to encrypt.

all (default)

Encrypt all entries in the specified file such that you

cannot list the database aliases, user names, and

passwords that are in the file. This option reduces the

exposure of information in password files.

password

Encrypt the password entry in the specified file. This

option allows users to list the database aliases and user

names stored in their password file. Passwords can

never be displayed.

using filepath_name Specifies the path and name of the password file. Follow the

file naming conventions of your operating system. An

example of a valid password file on Windows is

C:\sqllib\mypwd.aut.

If you specify the path and name of the password file, the

path and the password file must already exist. If you are

using the init parameter and you specify the path and name

of the password file, the path must already exist and the

command will create the password file for you.

If you do not specify this parameter, the default file name is

asnpwd.aut and the default file path is the current directory.

alias db_alias Specifies the alias of the database to which the user ID has

access. The alias is always folded to uppercase, regardless of

how it is entered.

id userid Specifies the user ID that has access to the database.

password password Specifies the password for the specified user ID. This

password is case sensitive and is encrypted in the password

file.

Return Codes

The asnpwd command returns a zero return code upon successful completion. A

nonzero return code is returned if the command is unsuccessful.

268 SQL Replication Guide and Reference

Examples for asnpwd

The following examples illustrate how to use the asnpwd command.

Example 1

To create a password file with the default name of asnpwd.aut in the current

directory:

asnpwd INIT

Example 2

To create a password file named pass1.aut in the c:\myfiles directory:

asnpwd INIT USING c:\myfiles\pass1.aut

Example 3

To create a password file named mypwd.aut using the encrypt all parameter:

asnpwd INIT ENCRYPT ALL USING mypwd.aut

Example 4

To create a password file named mypwd.aut using the encrypt password

parameter:

asnpwd INIT ENCRYPT PASSWORD USING mypwd.aut

Example 5

To create a default password file using the encrypt password parameter:

asnpwd INIT ENCRYPT PASSWORD

Example 6

To add a user ID called oneuser and its password to the password file named

pass1.aut in the c:\myfiles directory and to grant this user ID access to the db1

database:

asnpwd ADD ALIAS db1 ID oneuser PASSWORD mypwd using c:\myfiles\pass1.aut

Example 7

To modify the user ID or password of an entry in the password file named

pass1.aut in the c:\myfiles directory:

asnpwd MODIFY AliaS sample ID chglocalid PASSWORD chgmajorpwd

 USING c:\myfiles\pass1.aut

Example 8

To delete the database alias called sample from the password file named pass1.aut

in the c:\myfiles directory:

asnpwd delete alias sample USING c:\myfiles\pass1.aut

Example 9

To see command help:

asnpwd

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 269

Example 10

To list the entries in a default password file:

asnpwd LIST

Example 11

To list the entries in a password file named pass1.aut:

asnpwd LIST USING pass1.aut

The output from this command depends on how the password file was initialized:

v If it was initialized using the encrypt all parameter, the following message is

issued:

ASN1986E "Asnpwd" : "". The password file "pass1.aut" contains

encrypted information that cannot be listed.

v If it was not initialized using the encrypt all parameter, the following details are

listed:

asnpwd LIST USING pass1.aut

Alias: SAMPLE ID: chglocalid

Number of Entries: 1

asnscrt: Creating a replication service

Use the asnscrt command to create a replication service in the Windows Service

Control Manager (SCM) and invoke the asnqcap, asnqapp, asnmon, asncap, and

asnapply commands. Run the asnscrt command on the Windows operating system.

Syntax

�� asnscrt -QC

-QA

-M

-C

-A

 db2_instance account password asnqcap_command

asnqapp_command

asnmon_command

asncap_command

asnapply_command

 ��

Parameters

Table 32 defines the invocation parameters for the asnscrt command.

 Table 32. asnscrt invocation parameter definitions for Windows operating systems

Parameter Definition

-QC Specifies that you are starting a Q Capture program.

-QA Specifies that you are starting a Q Apply program.

-M Specifies that you are starting a Replication Alert Monitor

program.

-C Specifies that you are starting a Capture program.

-A Specifies that you are starting an Apply program.

db2_instance Specifies the DB2 instance used to identify a unique DB2

replication service. The DB2 instance can be a maximum of

eight characters.

270 SQL Replication Guide and Reference

Table 32. asnscrt invocation parameter definitions for Windows operating

systems (continued)

Parameter Definition

account Specifies the account name that you use to log on to

Windows. If the account is local it must begin with a period

and a backslash (.\). Otherwise the domain or machine name

must be specified (for example, domain_name\
account_name).

password Specifies the password used with the account name. If the

password contains special characters, type a backslash (\)

before each special character.

asnqcap_command Specifies the complete asnqcap command to start a Q capture

program. Use the documented asnqcap command syntax with

the appropriate asnqcap parameters.

If the DB2PATH environment variable is not defined, you

must specify a location for the work files by including the

capture_path parameter with the asnqcap command. If the

DB2PATH variable is defined and you specify a capture_path,

the capture_path parameter overrides the DB2PATH variable.

The asnscrt command does not validate the syntax of the

asnqcap parameters that you enter.

asnqapp_command Specifies the complete asnqapp command to start a Q apply

program. Use the documented asnqapp command syntax

with the appropriate asnqapp parameters.

If the DB2PATH environment variable is not defined, you

must specify the location for the work files by including the

apply_path parameter with the asnqapp command. If the

DB2PATH variable is defined and you specify an apply_path,

the apply_path parameter overrides the DB2PATH variable.

The asnscrt command does not validate the syntax of the

asnqapp parameters that you enter.

asnmon_command Specifies the complete asnmon command to start a

Replication Alert Monitor program. Use the documented

asnmon command syntax with the appropriate asnmon

parameters.

If the DB2PATH environment variable is not defined, you

must specify a location for the log files by including the

monitor_path parameter with the asnmon command. If the

DB2PATH variable is defined and you specify a

monitor_path, the monitor_path parameter overrides the

DB2PATH variable.

The asnscrt command does not validate the syntax of the

asnmon parameters that you enter.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 271

Table 32. asnscrt invocation parameter definitions for Windows operating

systems (continued)

Parameter Definition

asncap_command Specifies the complete asncap command to start a Capture

program. Use the documented asncap command syntax with

the appropriate asncap parameters.

If the DB2PATH environment variable is not defined, you

must specify a location for the work files by including the

capture_path parameter with the asncap command. If the

DB2PATH variable is defined and you specify a capture_path,

the capture_path parameter overrides the DB2PATH variable.

The asnscrt command does not validate the syntax of the

asncap parameters that you enter.

asnapply_command Specifies the complete asnapply command to start an Apply

program. Use the documented asnapply command syntax

with the appropriate asnapply parameters.

If the DB2PATH environment variable is not defined, you

must specify the location for the work files by including the

apply_path parameter with the asnapply command. If the

DB2PATH variable is defined and you specify an apply_path,

the apply_path parameter overrides the DB2PATH variable.

The asnscrt command does not validate the syntax of the

asnapply parameters that you enter.

Examples for asnscrt

The following examples illustrate how to use the asnscrt command.

Example 1

To create a DB2 replication service that invokes a Q apply program under a DB2

instance called inst2 using a logon account of .\joesmith and a password of

my$pwd:

asnscrt -QA inst2 .\joesmith my\$pwd asnqapp apply_server=mydb2 apply_schema =as2

 apply_path=X:\sqllib

Example 2

To create a DB2 replication service that invokes a Capture program under a DB2

instance called inst1:

asnscrt -C inst1 .\joesmith password asncap capture_server=sampledb

 capture_schema=ASN capture_path=X:\logfiles

Example 3

To create a DB2 replication service that invokes an Apply program under a DB2

instance called inst2 using a logon account of .\joesmith and a password of

my$pwd:

asnscrt -A inst2 .\joesmith my\$pwd asnapply control_server=db2 apply_qual=aq2

 apply_path=X:\sqllib

Example 4

272 SQL Replication Guide and Reference

To create a DB2 replication service that invokes a Replication Alert Monitor

program under a DB2 instance called inst3:

asnscrt -M inst3 .\joesmith password asnmon monitor_server=db3 monitor_qual=mq3

 monitor_path=X:\logfiles

Example 5

To create a DB2 replication service that invokes a Capture program under a DB2

instance called inst4 and overrides the default work file directory with a fully

qualified capture_path:

asnscrt -C inst4 .\joesmith password X:\sqllib\bin\asncap capture_server=scdb

 capture_schema=ASN capture_path=X:\logfiles

Example 6

To create a DB2 replication service that invokes a Q capture program under a DB2

instance called inst1:

asnscrt -QC inst1 .\joesmith password asnqcap capture_server=mydb1

 capture_schema=QC1 capture_path=X:\logfiles

asnsdrop: Dropping replication services

Use the asnsdrop command to drop replication services from the Windows Service

Control Manager (SCM) on the Windows operating system. (You create a

replication service using the asnscrt command.)

Syntax

�� asnsdrop service_name

ALL
 ��

Parameters

Table 33 defines the invocation parameters for the asnsdrop command.

 Table 33. asnsdrop invocation parameter definitions for Windows operating systems

Parameter Definition

service_name Specifies the fully qualified name of the DB2 replication

service. Enter the Windows SCM to obtain the DB2

replication service name. On Windows operating systems,

you can obtain the service name by opening the Properties

window of the DB2 replication service.

If the DB2 replication service name contains spaces, enclose

the entire service name in double quotation marks.

ALL Specifies that you want to drop all DB2 replication services.

Examples for asnsdrop

The following examples illustrate how to use the asnsdrop command.

Example 1

To drop a DB2 replication service:

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 273

asnsdrop DB2.SAMPLEDB.SAMPLEDB.CAP.ASN

Example 2

To drop a DB2 replication service with a schema named A S N (with embedded

blanks), use double quotation marks around the service name:

asnsdrop "DB2.SAMPLEDB.SAMPLEDB.CAP.A S N"

Example 3

To drop all DB2 replication services:

asnsdrop ALL

asnslist: Listing replication services

Use the asnslist command to list replication services in the Windows Service

Control Manager (SCM). You can optionally use the command to list details about

each service. Run the asnslist command on the Windows operating system.

Syntax

�� asnslist

DETAILS
 ��

Parameters

Table 34 defines the invocation parameter for the asnslist command.

 Table 34. asnslist invocation parameter definition for Windows operating systems

Parameter Definition

details Specifies that you want to list detailed data about all DB2

replication services on a system.

Examples for asnlist

The following examples illustrate how to use the asnslist command.

Example 1

To list the names of DB2 replication services on a system:

asnslist

Here is an example of the command output:

DB2.DB2.SAMPLE.QAPP.ASN

DB2.DB4.SAMPLE.QCAP.ASN

Example 2

To list details about all services on a system:

asnslist details

Here is an example of the command output:

274 SQL Replication Guide and Reference

DB2.DB2.SAMPLE.QAPP.ASN

Display Name: DB2 DB2 SAMPLE QAPPLY ASN

Image Path: ASNSERV DB2.DB2.SAMPLE.APP.AQ1 -ASNQAPPLY QAPPLY_SERVER=SAMPLE AP

 PLY_SCHEMA=ASN QAPPLY_PATH=C:\PROGRA~1\SQLLIB

Dependency: DB2-0

DB2.DB4.SAMPLE.QCAP.ASN

Display Name: DB2 DB4 SAMPLE QAPPLY ASN

Image Path: ASNSERV DB2.DB4.SAMPLE.APP.AQ1 -ASNQCAP QCAPTURE_SERVER=SAMPLE CA

 PTURE_SCHEMA=ASN QCAPTURE_PATH=C:\PROGRA~1\SQLLIB

Dependency: DB4-0

asntdiff: Comparing data in source and target tables

Use the asntdiff command to compare a source table with a target table and

generate a list of differences between the two. Run the asntdiff command on Linux,

UNIX, Windows, or z/OS at an operating system prompt or in a shell script.

The asntdiff command compares DB2 tables on Linux, UNIX, Windows, z/OS, and

System i operating systems.

Syntax

�� asntdiff DB=server DB2_SUBSYSTEM=subsystem

SCHEMA=schema
 �

�
DIFF_SCHEMA=difference_table_schema

DIFF_TABLESPACE=tablespace
 �

�
n

DIFF_DROP=

y

MAXDIFF=difference_limit
 WHERE=WHERE_clause �

�
DIFF_PATH=log_path

PWDFILE=filename

DIFF=table_name
 ��

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 275

Parameters

Table 35 defines the invocation parameters for the asntdiff command.

 Table 35. asntdiff invocation parameter definitions for Linux, UNIX, Windows and z/OS

operating systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores

information about the source and target tables that

will be compared. The value differs depending on

whether you are using Q replication or SQL

replication:

Q replication

The name of the Q Capture server, which

contains the IBMQREP_SUBS table.

The location name of

the Q Capture server, which contains the

IBMQREP_SUBS table.

SQL replication

The name of the Apply control server,

which contains the

IBMSNAP_SUBS_MEMBR table.

The location name of

the Apply control server, which contains

the IBMSNAP_SUBS_MEMBR table.

DB2_SUBSYSTEM=subsystem

Specifies the name of the

subsystem where you run the asntdiff utility.

SCHEMA=schema Specifies the schema of the Q Capture control tables

for Q replication, or the schema of the Apply control

tables for SQL replication. The default is ASN.

DIFF_SCHEMA=

difference_table_schema

Specifies the schema that qualifies the difference

table. The default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space where the difference table

will be placed. If this parameter is not specified, the

table will be created in the default table space in the

database or subsystem where the asntdiff command

was run.

This is a two-part name,

dbname.tablespace, where dbname is the logical

database name and tablespace is the table space

name.

DIFF_DROP=y/n Specifies whether an existing difference table will be

dropped and recreated before it is used to record

differences. If the table does not exist, the asntdiff

command creates it.

n (default)

The difference table will be used as is and

the existing rows will be deleted.

y The difference table will be dropped and

recreated.

276 SQL Replication Guide and Reference

Table 35. asntdiff invocation parameter definitions for Linux, UNIX, Windows and z/OS

operating systems (continued)

Parameter Definition

MAXDIFF=difference_limit Specifies the maximum number of differences that

you want the asntdiff command to process before it

stops. The default value is 10000.

WHERE=WHERE_clause Specifies a SQL WHERE clause that uniquely

identifies one row of the control table that stores

information about the source and target tables that

will be compared. The WHERE clause must be in

double quotation marks. The value of this parameter

differs depending on whether you are using Q

replication or SQL replication:

Q replication

The WHERE clause specifies a row in the

IBMQREP_SUBS table, using the

SUBNAME column to identify the Q

subscription that contains the source and

target tables.

SQL replication

The WHERE clause specifies a row in the

IBMSNAP_SUBS_MEMBR table, using the

SET_NAME, APPLY_QUAL,

TARGET_SCHEMA, and TARGET_TABLE

columns to identify the subscription set

member that contains the source and target

tables.

DIFF_PATH=log_path Specifies the location where you want the asntiff

utility to write its log. The default value is the

directory where you ran the command. The value

must be an absolute path name. Use double

quotation marks (″″) to preserve case.

PWDFILE=filename Specifies the name of the password file that is used

to connect to databases. If you do not specify a

password file, the default value is asnpwd.aut (the

name of the password file that is created by the

asnpwd command). The asntdiff command searches

for the password file in the directory that is

specified by the DIFF_PATH parameter. If no value

for the DIFF_PATH parameter is specified, the

command searches for the password file in the

directory where the command was run.

DIFF=table_name Specifies the name of the table that will be created

in the source database to store differences between

the source and target tables. The table will have one

row for each difference that is detected. If you do

not include this parameter, the difference table will

be named ASN.ASNTDIFF.

Examples for asntdiff

The following examples illustrate how to use the asntdiff command.

See the asntdiff sample program for sample JCL to run the asntdiff command.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 277

Example 1

In Q replication, to find the differences between a source and target table that are specified in a Q

subscription named my_qsub, on a Q Capture server named source_db with a Q Capture schema of asn:

asntdiff db=source_db schema=asn where="subname = ’my_qsub’"

Example 2

In SQL replication, to find the differences between a source and target table that are specified in a

subscription set called my_set, with a target table named trg_table, on an Apply control server named

apply_db, with an Apply schema of asn, and to name the difference table diff_table:

asntdiff DB=apply_db schema=asn where="set_name = ’my_set’

 and target_table = ’trg_table’" diff=diff_table

asntrc: Operating the replication trace facility

Use the asntrc command to run the trace facility on Linux, UNIX, Windows, and

UNIX System Services (USS) on z/OS. The trace facility logs program flow

information from Q Capture, Q Apply, Capture, Apply, and Replication Alert

Monitor programs. You can provide this trace information to IBM Software

Support for troubleshooting assistance. Run this command at an operating system

prompt or in a shell script.

You run this command at an operating system prompt or in a shell script.

Syntax

�� asntrc �

278 SQL Replication Guide and Reference

� on -db db_name -qcap On parameters

-schema

qcapture_schema

-qapp

-schema

qapply_schema

-cap

-schema

capture_schema

-app

-qualifier

apply_qualifier

-mon

-qualifier

monitor_qualifier

off

-db

db_name

-qcap

kill

-schema

qcapture_schema

clr

-qapp

diag

-schema

qapply_schema

resetlock

-cap

-schema

capture_schema

-app

-qualifier

apply_qualifier

-mon

-qualifier

monitor_qualifier

dmp

filename

-db

db_name

-qcap

-schema

qcapture_schema

-holdlock

-qapp

-schema

qapply_schema

-cap

-schema

capture_schema

-app

-qualifier

apply_qualifier

-mon

-qualifier

monitor_qualifier

flw

Format

parameters

fmt

-qcap

v7fmt

-db

db_name

-schema

qcapture_schema

-qapp

-schema

qapply_schema

-cap

-schema

capture_schema

-app

-qualifier

apply_qualifier

-mon

-qualifier

monitor_qualifier

stat

statlong

-qcap

-db

db_name

-schema

qcapture_schema

-qapp

-schema

qapply_schema

-cap

-schema

capture_schema

-app

-qualifier

apply_qualifier

-mon

-qualifier

monitor_qualifier

-fn

filename

-db

db_name

-qcap

Change

settings

parameters

-schema

qcapture_schema

-qapp

-schema

qapply_schema

-cap

-schema

capture_schema

-app

-qualifier

apply_qualifier

-mon

-qualifier

monitor_qualifier

-help

-listsymbols

 ��

On parameters:

-b

buffer_size

-fn

filename

-fs

filesize
 �

�
-d

diag_mask

-df

function_name|component_name diag_mask

Format parameters:

-fn

filename

-d

diag_mask
 �

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 279

�
-df

function_name|component_name diag_mask

-holdlock

Change settings parameters:

-d

diag_mask

-df

function_name|component_name diag_mask

Parameters

Table 36 defines the invocation parameters for the asntrc command.

 Table 36. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

on Specify to turn on the trace facility for a specific Q

Capture, Q Apply, Capture, Apply, or Replication Alert

Monitor program. The trace facility creates a shared

memory segment used during the tracing process.

-db db_name

Specifies the name of the database to be traced:

v Specifies the name of the Q Capture server for the Q

Capture program to be traced.

v Specifies the name of the Q Apply server for the Q

Apply program to be traced.

v Specifies the name of the Capture control server for

the Capture program to be traced.

v Specifies the name of the Apply control server for the

Apply program to be traced.

v Specifies the name of the Monitor control server for

the Replication Alert Monitor program to be traced.

-qcap Specifies that a Q Capture program is to be traced. The

Q Capture program is identified by the -schema

parameter.

-schema qcapture_schema Specifies the name of the Q Capture program to be

traced. The Q Capture program is identified by the Q

Capture schema that you enter. Use this parameter with

the -qcap parameter.

-qapp Specifies that a Q Apply program is to be traced. The Q

Apply program is identified by the -schema parameter.

-schema qapply_schema Specifies the name of the Q Apply program to be

traced. The Q Apply program is identified by the Q

Apply schema that you enter. Use this parameter with

the -qapp parameter.

-cap Specifies that a Capture program is to be traced. The

Capture program is identified by the -schema

parameter.

-schema capture_schema Specifies the name of the Capture program to be traced.

The Capture program is identified by the Capture

schema that you enter. Use this parameter with the -cap

parameter.

280 SQL Replication Guide and Reference

Table 36. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

-app Specifies that an Apply program is to be traced. The

Apply program is identified by the -qualifier

parameter.

-qualifier apply_qualifier Specifies the name of Apply program to be traced. This

Apply program is identified by the Apply qualifier that

you enter. Use this parameter with the -app parameter.

-mon Specifies that a Replication Alert Monitor program is to

be traced. The Replication Alert Monitor program is

identified by the -qualifier parameter.

-qualifier monitor_qualifier Specifies the name of Replication Alert Monitor

program to be traced. This Replication Alert Monitor

program is identified by the monitor qualifier that you

enter. Use this parameter with the -mon parameter.

off

Specify to turn off the trace facility for a specific Q

Capture, Q Apply, Capture, Apply, or Replication Alert

Monitor program and free the shared memory segment

in use.

kill Specify to force an abnormal termination of the trace

facility.

Use this parameter only if you encounter a problem and

are unable to turn the trace facility off with the off

parameter.

clr Specify to clear a trace buffer. This parameter erases the

contents of the trace buffer but leaves the buffer active.

diag Specify to view the filter settings while the trace facility

is running.

resetlock

Specify to release the buffer latch of a trace facility. This

parameter enables the buffer latch to recover from an

error condition in which the trace program terminated

while holding the buffer latch.

dmp filename Specify to write the current contents of the trace buffer

to a file.

-holdlock Specifies that the trace facility can complete a file dump

or output command while holding a lock, even if the

trace facility finds insufficient memory to copy the

buffer.

flw Specify to display summary information produced by

the trace facility and stored in shared memory or in a

file. This information includes the program flow and is

displayed with indentations that show the function and

call stack structures for each process and thread.

fmt Specify to display detailed information produced by the

trace facility and stored in shared memory or in a file.

This parameter displays the entire contents of the traced

data structures in chronological order.

v7fmt Specify to display information produced by the trace

facility and stored in shared memory or in a file. This

trace information appears in Version 7 format.

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 281

Table 36. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

stat Specify to display the status of a trace facility. This

status information includes the trace version,

application version, number of entries, buffer size,

amount of buffer used, status code, and program

timestamp.

statlong Specify to display the status of a trace facility with

additional z/OS version level information. This

additional information includes the service levels of

each module in the application and appears as long

strings of text.

-fn filename Specifies the file name containing the mirrored trace

information, which includes all the output from the

trace facility.

-help Displays the valid command parameters with

descriptions.

-listsymbols Displays the valid function and component identifiers

to use with the -df parameter.

-b buffer_size Specifies the size of the trace buffer (in bytes). You can

enter a K or an M after the number to indicate kilobytes

or megabytes, respectively; these letters are not case

sensitive.

-fs filesize Specifies the size limit (in bytes) of the mirrored trace

information file.

-d diag_mask Specifies the types of trace records to be recorded by the

trace facility. Trace records are categorized by a

diagnostic mask number:

1 Flow data, which includes the entry and exit

points of functions.

2 Basic data, which includes all major events

encountered by the trace facility.

3 Detailed data, which includes the major events

with descriptions.

4 Performance data.
Important: The higher diagnostic mask numbers are not

inclusive of the lower diagnostic mask numbers.

You can enter one or more of these numbers to

construct a diagnostic mask that includes only the trace

records that you need. For example, specify -d 4 to

record only performance data; specify -d 1,4 to record

only flow and performance data; specify -d 1,2,3,4 (the

default) to record all trace records. Separate the

numbers with commas.

Enter a diagnostic mask number of 0 (zero) to specify

that no global trace records are to be recorded by the

trace facility. Type -d 0 to reset the diagnostic level

before specifying new diagnostic mask numbers for a

tracing facility.

282 SQL Replication Guide and Reference

Table 36. asntrc invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

-df function_name|component_name

diag_mask

Specifies that a particular function or component

identifier is to be traced.

Type the diagnostic mask number (1,2,3,4) after the

function or component identifier name. You can enter

one or more of these numbers. Separate the numbers

with commas.

Examples for asntrc

The following examples illustrate how to use the asntrc command. These examples

can be run on Linux, UNIX, Windows, or z/OS operating systems.

Example 1

To trace a running Capture program:

1. Start the trace facility, specifying a trace file name with a maximum buffer and

file size:

asntrc on -db mydb -cap -schema myschema -b 256k -fn myfile.trc -fs 500m

2. Start the Capture program, and let it run for an appropriate length of time.

3. While the trace facility is on, display the data directly from shared memory.

To display the summary process and thread information from the trace facility:

asntrc flw -db mydb -cap -schema myschema

To view the flow, basic, detailed, and performance data records only from the

Capture log reader:

asntrc fmt -db mydb -cap -schema myschema -d 0

 -df "Capture Log Read" 1,2,3,4

4. Stop the trace facility:

asntrc off -db mydb -cap -schema myschema

The trace file contains all of the Capture program trace data that was generated

from the start of the Capture program until the trace facility was turned off.

5. After you stop the trace facility, format the data from the generated binary file:

asntrc flw -fn myfile.trc

and

asntrc fmt -fn myfile.trc -d 0 -df "Capture Log Read" 1,2,3,4

Example 2

To start a trace facility of a Replication Alert Monitor program:

asntrc on -db mydb -mon -qualifier monq

Example 3

To trace only performance data of an Apply program:

asntrc on -db mydb -app -qualifier aq1 -b 256k -fn myfile.trc -d 4

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 283

Example 4

To trace all flow and performance data of a Capture program:

asntrc on dbserv1 -cap -schema myschema -b 256k

 -fn myfile.trc -d 1,4

Example 5

To trace all global performance data and the specific Capture log reader flow data

of a Capture program:

asntrc on -db mydb -cap -schema myschema -b 256k -fn myfile.trc -d 4

 -df "Capture Log Read" 1

Example 6

To trace a running Capture program and then display and save a point-in-time

image of the trace facility:

1. Start the trace command, specifying a buffer size large enough to hold the

latest records:

asntrc on -db mydb -cap -schema myschema -b 4m

2. Start the Capture program, and let it run for an appropriate length of time.

3. View the detailed point-in-time trace information that is stored in shared

memory:

asntrc fmt -db mydb -cap -schema myschema

4. Save the point-in-time trace information to a file:

asntrc dmp myfile.trc -db mydb -cap -schema myschema

5. Stop the trace facility:

asntrc off -db mydb -cap -schema myschema

Examples for asntrc using shared segments

The standalone trace facility, asntrc, uses a shared segment to communicate with

the respective Q Capture, Q Apply, Capture, Apply or Replication Alert Monitor

programs to be traced. The shared segment will also be used to hold the trace

entries if a file is not specified. Otherwise, matching options must be specified for

both the asntrc command and for the respective programs to be traced to match

the correct shared segment to control traces. The following examples show the

options that need to be specified when the trace facility is used in conjunction with

Q Capture, Q Apply, Capture, Apply or Alert Monitor programs.

With the Q Capture program, the database specified by the -db parameter with the

asntrc command needs to match the database specified by the capture_server

parameter with the asnqcap command:

asntrc -db ASN6 -schema EMI -qcap

asnqcap capture_server=ASN6 capture_schema=EMI

With the Q Apply program, the database specified by the -db parameter with the

asntrc command needs to match the database specified by the apply_server

parameter with the asnqapp command:

asntrc -db TSN3 -schema ELB -qapp

asnqapp apply_server=TSN3 apply_schema=ELB

284 SQL Replication Guide and Reference

With the Capture program, the database specified by the -db parameter with the

asntrc command needs to match the database specified by the capture_server

parameter with the asncap command:

asntrc -db DSN6 -schema JAY -cap

asncap capture_server=DSN6 capture_schema=JAY

With the Apply program, the database specified by the -db parameter with the

asntrc command needs to match the database specified by the control_server

parameter with the asnapply command:

asntrc -db SVL_LAB_DSN6 -qualifier MYQUAL -app

asnapply control_server=SVL_LAB_DSN6 apply_qual=MYQUAL

With the Replication Alert Monitor program, the database specified by the -db

parameter with the asntrc command needs to match the database specified by the

monitor_server parameter with the asnmon command:

asntrc -db DSN6 -qualifier MONQUAL -mon

asnmon monitor_server=DSN6 monitor_qual=MONQUAL

asntrep: Repairing differences between source and target tables

Use the asntrep command to synchronize a source and target table by repairing

differences between the two tables. Run the asntrep command on Linux, UNIX,

Windows, or z/OS at an operating system prompt or in a shell script.

Syntax

�� asntrep DB=server DB2_SUBSYSTEM=subsystem

SCHEMA=schema
 �

�
DIFF_SCHEMA=difference_table_schema

DIFF_TABLESPACE=tablespace
 �

� WHERE=WHERE_clause

DIFF_PATH=log_path

PWDFILE=filename
 �

�
DIFF=table_name

 ��

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 285

Parameters

Table 37 defines the invocation parameters for the asntrep command.

 Table 37. asntrep invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems

Parameter Definition

DB=server Specifies the DB2 alias of the database that stores

information about the source and target tables that

you want to synchronize. The value differs

depending on whether you are using Q replication

or SQL replication:

Q replication

The value is the name of the Q Capture

server, which contains the IBMQREP_SUBS

table.

SQL replication

The value is the name of the Apply control

server, which contains the

IBMSNAP_SUBS_MEMBR table.

The value of this parameter is

a location name.

DB2_SUBSYSTEM=subsystem

Specifies the name of the

subsystem where you run the asntrep utility.

SCHEMA=schema Specifies the schema of the Q Capture control tables

for Q replication, or the Apply control tables for

SQL replication.

DIFF_SCHEMA=

difference_table_schema

Specifies the schema that qualifies the difference

table. The default is ASN.

DIFF_TABLESPACE=tablespace Specifies the table space where a copy of the

difference table is placed in the target database or

subsystem. The copy is then used to repair the

target table. If this parameter is not specified, the

table will be created in the default table space in the

database or subsystem in which the asntrep

command was run.

286 SQL Replication Guide and Reference

Table 37. asntrep invocation parameter definitions for Linux, UNIX, Windows, and z/OS

operating systems (continued)

Parameter Definition

WHERE=WHERE_clause Specifies a SQL WHERE clause that uniquely

identifies one row of the control table that stores

information about the source and target tables that

you are synchronizing. The WHERE clause must be

in double quotation marks. The value of this

parameter differs depending on whether you are

using Q replication or SQL replication:

Q replication

The WHERE clause specifies a row in the

IBMQREP_SUBS table, using the

SUBNAME column to identify the Q

subscription that contains the source and

target tables.

SQL replication

The WHERE clause specifies a row in the

IBMSNAP_SUBS_MEMBR table, using the

SET_NAME, APPLY_QUAL,

TARGET_SCHEMA, and TARGET_TABLE

columns to identify the subscription set

member that contains the source and target

tables.

DIFF_PATH=log_path Specifies the location where you want the asntrep

utility to write its log. The default value is the

directory where you ran the command. The value

must be an absolute path name. Use double

quotation marks (″″) to preserve case.

PWDFILE=filename Specifies the name of the password file that is used

to connect to databases. If you do not specify a

password file, the default value is asnpwd.aut (the

name of the password file that is created by the

asnpwd command). The asntrep utility searches for

the password file in the directory that is specified

by the DIFF_PATH parameter. If no value for the

DIFF_PATH parameter is specified, the command

searches for the password file in the directory where

the command was run.

DIFF=table_name Specifies the name of the table that was created in

the source database using the asntdiff command to

store differences between the source and target

tables. The information that is stored in this table

will be used to synchronize the source and target

tables.

Examples for asntrep

The following examples illustrate how to use the asntrep command.

Example 1

In Q replication, to synchronize a source and target table that are specified in a Q subscription named

my_qsub, on a Q Capture server named source_db, with a Q Capture schema of asn, and whose

differences are stored in a table called q_diff_table:

Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS) 287

asntrep db=source_db schema=asn where="subname = ’my_qsub’" diff=q_diff_table

Example 2

In SQL replication, to synchronize a source and target table that are specified in a subscription set called

my_set, with a target table named trg_table, on an Apply control server named apply_db, with an Apply

schema of asn, and whose differences are stored in a table called sql_diff_table:

asntrep DB=apply_db SCHEMA=asn WHERE="set_name = ’my_set’

 and target_table = ’trg_table’" diff=sql_diff_table

288 SQL Replication Guide and Reference

Chapter 23. System commands for SQL replication (System i)

Some replication commands are specific to the System i operating system on

System i servers. You can enter these commands at an operating system command

prompt or through a command line program.

The following topics describe these commands.

ADDDPRREG: Adding a DPR registration (System i)

Use the Add DPR registration (ADDDPRREG) command to register a table as a

source table for DB2 DataPropagator for iSeries.

Restriction: You can register a table only if the ASN (Capture schema) library is in

the same Auxiliary Pool (either base or independent ASP) where the ASN library is

located.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� ADDDPRREG SRCTBL (library-name/file-name) �

�
ASN

CAPCTLLIB

(

library-name

)

*SRCTBL

CDLIB

(

library-name

)

 �

�
*DEFAULT

CDNAME

(

cdname

)

*USERTABLE

SRCTYPE

(

*POINTINTIME

)

*BASEAGR

*CHANGEAGR

*REPLICA

*USERCOPY

*CCD

 �

�
*YES

REFRESH

(

*NO

)

*NONE

TEXT

(

’

description

’

)

 �

�

�

*ALL

*NONE

(1)

CAPCOL

(

column-name

)

*NO

CAPRRN

(

*YES

)

 �

© Copyright IBM Corp. 1994, 2007 289

�
*AFTER

IMAGE

(

*BOTH

)

*DEFAULT

PREFIX

(

*NULL

)

character

 �

�

*YES

CONDENSED

(

*NO

)

*AGGREGATE

*YES

COMPLETE

(

*NO

)

 �

�
*LOCAL

SRCTBLRDB

(

rdbname

)

 �

�
*SRCTBL

RMTJRN

(

library-name/journal-name

)

 �

�

*NONE

CONFLICT

(

*STANDARD

)

*ENHANCED

*NO

UPDDELINS

(

*YES

)

 �

�
*ALLCHG

GENCDROW

(

*REGCOLCHG

)

*YES

RECAP

(

*NO

)

 �

�
*NO

STOPONERR

(

*YES

)

 ��

Notes:

1 You can specify up to 300 column names.

Table 38 lists the invocation parameters.

 Table 38. ADDDPRREG command parameter definitions for System i

Parameter Definition and prompts

SRCTBL Specifies the table that you want to register as a source table. The

Capture program supports any physical file in a System i library or

collection that is externally defined and in single format. This parameter

is required.

library-name/file-name

Represents the qualified name of the table that you want to register.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which

the Capture control tables reside.

ASN (default)

The Capture control tables reside in the ASN library.

library-name

The name of the library that contains the Capture control tables.

You can create this library using the CRTDPRTBL command with

the CAPCTLLIB parameter.

290 SQL Replication Guide and Reference

Table 38. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

CDLIB Specifies the library in which the change-data (CD) table for this

registered source is created.

*SRCTBL (default)

Creates the CD table in the library in which the source table resides.

library-name

Creates the CD table in this specified library name.

CDNAME Specifies the name of the change-data (CD) table.

*DEFAULT (default)

Creates the CD table with the default name, which is based on the

current timestamp. For example, if the current timestamp is January

23, 2002 at 09:58:26, the default name is ASN020123095826CD.

cdname

Creates the CD table with this specified name.

Chapter 23. System commands for SQL replication (System i) 291

Table 38. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTYPE Specifies the type of source table that you are registering. Choose a

source type based on your replication configuration:

v Use the default of USERTABLE for a basic data distribution or a data

consolidation configuration.

v Use REPLICA for an update-anywhere configuration.

v Use POINTINTIME, BASEAGR, CHANGEAGR, USERCOPY, or CCD

if you have a multi-tier configuration and want the target table to be a

source for a subsequent tier in your replication configuration.

If you are registering an existing target table as a source, the registration

fails if the target table does not contain the IBMSNAP table columns

indicated by the specified source type.

*USERTABLE (default)

A user database table, which is the most common type of registered

table. The table cannot contain any columns that start with a DB2

DataPropagator for System i column identifier of either IBMSNAP

or IBMQSQ.

*POINTINTIME

A point-in-time copy table, which includes content that matches all

or part of the content of a source table and a DB2 DataPropagator

for System i system column that identifies the time when a

particular row was last inserted or updated at the source system.

The table must contain the IBMSNAP_LOGMARKER timestamp

column and can optionally contain an INTEGER column called

IBMQSQ_RRN.

*BASEAGR

A base aggregate copy, which contains data aggregated at intervals

from a user table or from a point-in-time table. The base aggregate

table must contain the IBMSNAP_HLOGMARKER and

IBMSNAP_LLOGMARKER timestamp columns.

*CHANGEAGR

A change aggregate copy table, which contains data aggregations

that are based on changes recorded for a source table. The table

must contain the IBMSNAP_HLOGMARKER and

IBMSNAP_LLOGMARKER timestamp columns.

*REPLICA

A target table for a replica subscription. Register this type of table

so that changes from the target table are replicated back to the

original source table. This table cannot contain any DB2

DataPropagator for System i system columns or any columns that

start with the DB2 DataPropagator for System i column identifier of

either IBMSNAP or IBMQSQ. The table contains all of the columns

from the original source table.

*USERCOPY

A target table with content that matches all or part of the content of

a source table. The user copy table contains only user data columns.

292 SQL Replication Guide and Reference

Table 38. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTYPE
(Continued)

*CCD

A consistent-change data (CCD) table, which contains

transaction-consistent data from the source table. The table must

contain columns that are defined as follows:

v IBMSNAP_INTENTSEQ CHAR(10) FOR BIT DATA NOT NULL

v IBMSNAP_OPERATION CHAR(1) NOT NULL

v IBMSNAP_COMMITSEQ CHAR(10) FOR BIT DATA NOT NULL

v IBMSNAP_LOGMARKER TIMESTAMP NOT NULL

REFRESH Specifies whether the full-refresh capability is enabled. You can use this

value to turn off the capability of the Apply program to perform a full

refresh from the source database.

*YES (default)

Full refreshes are allowed.

*NO

Full refreshes are not allowed.

 If the target table is a base aggregate or change aggregate, you

should set this parameter to *No.

TEXT Specifies the textual description that is associated with this registration.

*NONE (default)

No description is associated with the entry.

description

The textual description of this registration. You can enter a

maximum of 50 characters and must enclose the text in single

quotation marks.

CAPCOL Specifies the columns for which changes are captured for this registered

table.

*ALL (default)

Changes are captured for all columns.

*NONE

Changes are not captured for this table. Use this value to specify

that you want this table registered for full refresh only. The

change-data (CD) table is not created with this registered table, and

the Capture program will not capture changes for the table.

column-name

The column names for which changes are captured. You can type

up to 300 column names. Separate the column names with spaces.

CAPRRN Specifies whether the relative record number (RRN) of each changed

record is captured.

*NO (default)

The relative record number is not captured.

*YES

The relative record number is captured. An additional column called

IBMQSQ_RRN is created in the change-data (CD) table.

 Set this parameter to *YES only if there are no unique keys in the

source table.

Chapter 23. System commands for SQL replication (System i) 293

Table 38. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

IMAGE Specifies whether the change-data (CD) table contains both before and

after images of the changes to the source table. This applies globally to

all columns specified on the Capture columns (CAPCOL) parameter.

This IMAGE parameter is not valid when the CAPCOL parameter is set

to *NONE.

The source table must be journaled with *BOTH images even if you

specify *AFTER on this parameter.

*AFTER (default)

The Capture program records only after images of the source table

in the CD table.

*BOTH

The Capture program records both before images and after images

of the source table in the CD table.

PREFIX Specifies the prefix character identifying before-image column names in

the change-data (CD) table. You must ensure that none of the registered

column names of the source table begins with this prefix character.

*DEFAULT (default)

The default prefix (@) is used.

*NULL

No before images are captured. This value is not valid if the

IMAGE parameter is set to *BOTH.

character

Any single alphabetic character that is valid in an object name.

CONDENSED Specifies whether the source table is condensed. A condensed table

contains current data with no more than one row for each primary key

value in the table.

*YES (default)

The source table is condensed.

*NO

The source table is not condensed.

*AGGREGATE

The source table type is either *BASEAGR (base aggregate) or

*CHANGEAGR (change aggregate). If this value is used, you must

set the COMPLETE parameter to *No

COMPLETE Specifies whether the source table is complete, which means that the

table contains a row for every primary key value of interest.

*YES (default)

The source table is complete.

*NO

The source table is not complete.

294 SQL Replication Guide and Reference

Table 38. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTBLRDB Specifies whether you want to use remote journaling, in which the

source table and the remote journal reside on different systems. Use this

parameter to specify the location of the source table.

*LOCAL (default)

The source table resides locally (on the machine where you are

running the ADDDPRREG command).

rdbname

The name of the relational database where the source table exists.

You can use the Work with RDB Directory Entries (WRKRDBDIRE)

command to find this relational database name.

RMTJRN Specifies the name of the remote journal when the name of this journal

and the name of the journal on the source system are different. You

must issue this command from the system where the remote journal

resides.

*SRCTBL (default)

The remote journal name is the same as the journal name of the

source table.

library-name/journal-name

The qualified library and journal name that reside on this system

and are used for journaling the remote source table.

You can specify a remote journal name only if you specified a remote

source table location using the SRCTBLRDB parameter.

CONFLICT Specifies the conflict level that is used by the Apply program when

detecting conflicts in a replica subscription.

*NONE (default)

No conflict detection.

*STANDARD

Moderate conflict detection. The Apply program searches for

conflicts in rows that are already captured in the replica

change-data (CD) tables.

*ENHANCED

Enhanced conflict detection. This option provides the best data

integrity among all replicas and source tables.

UPDDELINS Determines how the Capture program stores updated source data in the

change-data (CD) table.

*NO (default)

The Capture program stores each source change in a single row in

the CD table.

*YES

The Capture program stores each source change using two rows in

the CD table, one for the delete and one for the insert. The Apply

program processes the delete row first and the insert row second.

Chapter 23. System commands for SQL replication (System i) 295

Table 38. ADDDPRREG command parameter definitions for System i (continued)

Parameter Definition and prompts

GENCDROW Specifies whether the Capture program captures changes from all rows

in the source table.

*ALLCHG (default)

The Capture program captures changes from all rows in the source

table (including changes in unregistered columns) and adds these

changes to the change-data (CD) table.

*REGCOLCHG

The Capture program captures changes only if the changes occur in

registered columns. The Capture program then adds these rows to

the CD table.

 You cannot specify *REGCOLCHG if the CAPCOL parameter is set

to *ALL or *NONE.

RECAP Specifies whether the changes made by the Apply program are

recaptured by the Capture program.

*YES (default)

Changes made to the source table by the Apply program are

captured and entered into the change-data (CD) table.

*NO

Changes that were made to the source table by the Apply program

are not captured and, therefore, do not appear in the CD table. You

should use this option when registering REPLICA type tables.

STOPONERR Specifies whether the Capture program stops when it encounters an

error.1

*NO (default)

The Capture program does not stop when it encounter an error. The

Capture program issues messages, deactivates the registration that

caused the error, and then continues processing.

*YES

The Capture program issues messages and then stops when it

encounters an error.

Note:

1. If this parameter is set to Yes (Y), the Capture journal job stops while other journal jobs

continue to run. If this parameter is set to No (N), the Capture program stops the

registration file that contains the error.

This parameter also sets the columns in the register table rows. The STATE column is set

to ’S’ and the STATE_INFO column to is set 200Axxxx where xxxx is the reason code. To

set the registration back to the Action (’A’) state, perform the following steps:

v Correct the ASN200A message. Refer to the appropriate System i documentation for

the corrected action.

v Use the Replication Center or the System i command STRSQL to set the columns in

the IBMSNAP_REGISTER table row. Set the STATE column to ’A’, and the

STATE_INFO column to null.

v If Capture is running, issue the INZDPRCAP command to reinitialize data replication

for that journal.

Examples for ADDDPRREG

The following examples illustrate how to use the ADDDPRREG command.

Example 1:

296 SQL Replication Guide and Reference

To register a source table named EMPLOYEE from the HR library under the

default Capture schema:

ADDDPRREG SRCTBL(HR/EMPLOYEE)

Example 2:

To register a source table named EMPLOYEE from the HR library under the BSN

Capture schema and to create a CD table named CDEMPLOYEE under the

HRCDLIB library:

ADDDPRREG SRCTBL(HR/EMPLOYEE) CAPCTLLIB(BSN) CDLIB(HRCDLIB) CDNAME(CDEMPLOYEE)

Example 3:

To register a source table with a source type of point-in-time that is named SALES

from the DEPT library under the BSN Capture schema:

ADDDPRREG SRCTBL(DEPT/SALES) CAPCTLLIB(BSN) SRCTYPE(*POINTINTIME)

Example 4:

To register a source table named SALES from the DEPT library and to specify that

the CD table contains both before and after images of source table changes:

ADDDPRREG SRCTBL(DEPT/SALES) IMAGE(*BOTH)

Example 5:

To register a source table named SALES from the DEPT library of the relational

database named RMTRDB1 using remote journals:

ADDDPRREG SRCTBL(DEPT/SALES) SRCTBLRDB(RMTRDB1) RMTJRN(RMTJRNLIB/RMTJRN)

Example 6:

To register the EMPLOYEE source table from the HR library and to capture

changes only for the EMPNO, NAME, DEPT, and NETPAY columns:

ADDDPRREG SRCTBL(HR/EMPLOYEE) CAPCOL(EMPNO NAME DEPT NETPAY)

ADDDPRSUB: Adding a DPR subscription set (System i)

Use the Add DPR subscription set (ADDDPRSUB) command to create a

subscription set with either one member or no members.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� ADDDPRSUB APYQUAL (apply-qualifier) SETNAME (set-name) �

Chapter 23. System commands for SQL replication (System i) 297

�
 *NONE

SRCTBL

(

library-name/file-name

)
 *NONE

TGTTBL

(

library-name/file-name

)

�

�
*LOCAL

CTLSVR

(

rdb-name

)

*LOCAL

SRCSVR

(

rdb-name

)

 �

�
*USERCOPY

TGTTYPE

(

*POINTINTIME

)

*BASEAGR

*CHANGEAGR

*CCD

*REPLICA

*INTERVAL

TIMING

(

*EVENT

)

*BOTH

 �

�
*NONE

EVENT

(

event-name

)

 �

�
INTERVAL

(

num *MIN) (num *HOUR) (num *DAY) (num *WEEK

)
 �

�
*YES

ACTIVATE

(

*NO

)

*YES

CRTTGTTBL

(

*NO

)

*YES

CHKFMT

(

*NO

)

 �

�
ASN

CAPCTLLIB

(

library-name

)

*CAPCTLLIB

TGTCCLIB

(

library-name

)

 �

�
*NONE

FEDSVR

(

server-name

)

*DEFAULT

CMTCNT

(

*NULL

)

num-transactions

 �

�
*NO

TGTKEYCHG

(

*YES

)

�

*ALL

COLUMN

(

*NONE

)

(1)

column-name

 �

�
*YES

UNIQUE

(

*NO

)

�

*SRCTBL

KEYCOL

(

*RRN

)

*NONE

(2)

column-name

 �

�

�

*COLUMN

(3)

TGTCOL

(

(column-name new-name)

)

 �

�

�

*NONE

(4)

CALCCOL

(

(column-name expression)

)

*NO

ADDREG

(

*YES

)

 �

298 SQL Replication Guide and Reference

�
*ALL

ROWSLT

(

WHERE-clause

)

 �

�
0

MAXSYNCH

(num *MIN) (num *HOUR) (num *DAY) (num *WEEK)

 �

�

�

�

*NONE

*NONE

(5)

*TGTSVR

(6)

SQLBEFORE

(

SQL-statement

*SRCSVR

SQL-states

)

 �

�

�

�

*NONE

*NONE

(7)

*TGTSVR

(8)

SQLAFTER

(

SQL-statement

SQL-states

)

 ��

Notes:

1 You can specify up to 300 column names.

2 You can specify up to 120 column names.

3 You can specify up to 300 column names.

4 You can specify up to 100 column names and expressions.

5 You can specify up to 3 SQL statements.

6 You can specify up to 10 SQLSTATES.

7 You can specify up to 3 SQL statements.

8 You can specify up to 10 SQLSTATES.

Table 39 lists the invocation parameters.

 Table 39. ADDDPRSUB command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that identifies which Apply program

processes this subscription set. Subscription sets under an Apply

qualifier run in a separate job. This parameter is required.

apply-qualifier

The name of the Apply qualifier.

SETNAME Specifies the subscription-set name. This parameter is required.

set-name

The name of the subscription set. The subscription-set name that

you enter must be unique for the specified Apply qualifier or the

ADDDPRSUB command produces an error. Because the Apply

program handles the set of target tables as a group, when one target

table fails for any reason, the entire subscription set fails.

Chapter 23. System commands for SQL replication (System i) 299

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTBL Specifies the name of the source table that is used to copy information

into your subscription set. You must register this table at the Capture

control server before this table can become a member of a subscription

set. This parameter is required.

*NONE (default)

This subscription set does not have a source member. Use when

creating a subscription set without members.

library-name/file-name

The qualified name of the source table. Use when creating a

subscription set with one member.

TGTTBL Specifies the name of the target table. The target table is automatically

created if you set the CRTTGTTBL parameter to *YES and the target

table does not already exist. This parameter is required.

*NONE (default)

This subscription set does not have a target member. Use when

creating a subscription set without members.

library-name/file-name

The qualified name of the target table. Use when creating a

subscription set with one member.

CTLSVR Specifies the relational database name of the system that contains the

Apply control tables.

*LOCAL (default)

The Apply control tables reside locally (on the machine from which

you are running the ADDDPRSUB command).

rdb-name

The name of the relational database where the Apply control tables

reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

SRCSVR Specifies the relational database name of the system that contains the

Capture control tables.

*LOCAL (default)

The source table is registered on the local machine (the machine

from which you are running the ADDDPRSUB command).

rdb-name

The name of the relational database where the Capture control

tables reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

300 SQL Replication Guide and Reference

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE Specifies the target table type. After you create a target table as one of

these types, you can use this parameter value on the SRCTBL

parameter of the Add DPR Registration (ADDDPRREG) command to

register this target table as a source table for multi-tier replication.

*USERCOPY (default)

The target table is a user copy, which is a target table with content

that matches all or part of the content of a source table. A user copy

is handled like a point-in-time copy but does not contain any of the

DB2 DataPropagator for System i system columns that are present

in the point-in-time target table.

 This value is not valid when a value of *RRN is specified on the

KEYCOL parameter.

 The table that you specified with the SRCTBL parameter must be

one of the following types: user database, point-in-time copy, or

consistent-change data (CCD).

 Important: If the target table already exists, DB2 DataPropagator for

System i does not automatically journal changes to it. You must

start journaling outside of DB2 DataPropagator for System i.

*POINTINTIME

The target table is a point-in-time copy. A point-in-time copy is a

target table with content that matches all or part of the content of

the source table and includes the DB2 DataPropagator for System i

system column (IBMSNAP_LOGMARKER), which identifies when a

particular row was inserted or updated at the Capture control

server.

*BASEAGR

The target table is a base aggregate copy, which is a target table that

contains data that is aggregated (calculated) from a source table.

The source table for a base aggregate target must be either a user

table or a point-in-time table. This target table must contain the

IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system

timestamp columns.

*CHANGEAGR

The table is a change aggregate copy, which is a target table that

contains data that is aggregated (calculated) based on the contents

of a change-data (CD) table. This target table is created with the

IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system

timestamp columns.

Chapter 23. System commands for SQL replication (System i) 301

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE
(Continued)

*CCD

The table is a consistent-change data (CCD) table, which is a target

table created from a join of data in the change-data (CD) table and

the unit-of-work (UOW) table. A CCD table provides

transaction-consistent data for the Apply program and must include

the following columns:

v IBMSNAP_INTENTSEQ

v IBMSNAP_OPERATION

v IBMSNAP_COMMITSEQ

v IBMSNAP_LOGMARKER

*REPLICA

The target table is a replica table, which is used only for

update-anywhere replication. The replica target table receives

changes from the master source table, and changes to the replica

target table are propagated back to the master source table. A

replica table is automatically registered as a source table.

TIMING Specifies the type of timing (scheduling) that the Apply program uses to

process the subscription set.

*INTERVAL (default)

The Apply program processes the subscription set at a specific time

interval (for example, once a day).

*EVENT

The Apply program processes the subscription set when a specific

event occurs.

*BOTH

The Apply program processes the subscription set either at a

specific interval or when an event occurs, whichever occurs first.

EVENT Specifies an event. The event that you enter must match an event name

in the IBMSNAP_SUBS_EVENT) table.

*NONE (default)

No event is used.

event-name

A unique character string that represents an event described in the

IBMSNAP_SUBS_EVENT table.

302 SQL Replication Guide and Reference

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

INTERVAL Specifies the time interval (weeks, days, hours, and minutes) from start

time to start time between refreshes of the target copy. This is a two-part

value. The first part is a number; the second part is the unit of time:

*MIN

Minutes

*HOUR

Hours

*DAY

Days

*WEEK

Weeks

You can specify combinations of numbers with units of time. For

example, ((2 *WEEK) (3 *DAY) (35 *MIN)) specifies a time interval of

two weeks, three days, and 35 minutes. If you specify multiple

occurrences of the same unit of time, the last occurrence is used.

ACTIVATE Specifies whether the subscription set is active. The Apply program does

not process this subscription set unless this parameter is set to *YES.

*YES (default)

The subscription set is active.

*NO

The subscription set is not active.

CRTTGTTBL Specifies whether the target table (or view) is created.

*YES (default)

Creates the target table (or view) if it does not exist. Otherwise, the

existing table or view becomes the target, and the format of this

existing table or view is checked if the value of the CHKFMT

parameter is set to *YES. An additional index, with the values that

you specified by the UNIQUE and KEYCOL parameters, is created

for a target table if no such index currently exists. The command

fails if an existing target table contains rows that violate the

conditions of the additional index.

*NO

Does not create the target table or view. You must create the table or

view with the correct attributes before starting the Apply program.

If the table or view exists and you set CHKFMT to *YES, the

ADDDPRSUB command ensures that the format of the existing table

matches the subscription-set definition that you set. If CHKFMT is *NO,

you must ensure that the format of the existing table matches the

subscription-set definition.

Important: If the table or view already exists, DB2 DataPropagator for

System i does not automatically journal changes to the existing object.

You must start journaling outside of DB2 DataPropagator for System i.

Chapter 23. System commands for SQL replication (System i) 303

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

CHKFMT Specifies whether DB2 DataPropagator for System i checks the

subscription set and the target table to ensure that the columns match.

This parameter is ignored if the CRTTGTTBL parameter is *YES; this

parameter is also ignored if the CRTTGTTBL parameter is set to *NO

and the target table does not exist.

*YES (default)

DB2 DataPropagator for System i verifies that the columns defined

for this subscription set match the columns in the target table. This

command fails if a mismatch is detected.

*NO

DB2 DataPropagator for System i ignores the differences between

the subscription set and the existing target table. You must ensure

that the target table is compatible with the subscription set.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which

the Capture control tables reside. These Capture control tables process

the source for this subscription set.

ASN (default)

The Capture control tables reside in the ASN library.

library-name

The name of a library that contains the Capture control tables. This

is the library in which the source table was registered.

TGTCCLIB Specifies the target control library.

*CAPCTLLIB (default)

The target control library is the same library in which the Capture

control tables reside.

library-name

The name of a library that contains the target control tables.

If you are using a target table as a source for another subscription set

(such as an external CCD table), this parameter value is the Capture

schema when this table is used as a source.

FEDSVR Specifies whether a federated database system is the source for this

subscription set.

*NONE (default)

The source server is not a federated database system.

server-name

The name of the federated database system for this subscription set

(for non-DB2 relational sources).

304 SQL Replication Guide and Reference

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

CMTCNT Specifies the commitment count, which is the number of transactions

that the Apply program processes before a commit.

*DEFAULT (default)

The command determines the value to use. If the TGTTYPE is set

to *REPLICA, then the CMTCNT is zero (0). If the TGTTYPE is

anything other than *REPLICA, the CMTCNT is null.

*NULL

The subscription set is read-only. The Apply program will fetch

answer sets for the subscription-set members one member at a time,

until all data has been processed and then will issue a single

commit for the entire subscription set.

num-transactions

Specifies the number of transactions processed before the Apply

program commits the changes. This parameter is valid only if the

TGTTYPE parameter is set to *REPLICA.

TGTKEYCHG Specifies how the Apply program handles updates when changes occur

in source columns that are part of the target key columns for the target

table. This parameter works in conjunction with the USEDELINS

parameter on the ADDDPRREG command:

v If USEDELINS is YES and TGTKEYCHG is YES, updates are not

allowed.

v If USEDELINS is YES and TGTKEYCHG is NO, updates become

delete and insert pairs.

v If USEDELINS is NO and TGTKEYCHG is YES, the Apply program

handles this condition with special logic.

v If USEDELINS is NO and TGTKEYCHG is NO, the Apply program

processes the changes as normal updates.

*NO (default)

Updates to the source table are staged by the Capture program and

processed by the Apply program to the target table.

*YES

The Apply program updates the target table based on the before

images of the target key column, meaning that the Apply program

changes the predicate to the old values instead of the new.

Chapter 23. System commands for SQL replication (System i) 305

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

COLUMN Specifies the columns to be included in the target table. The column

names must be unqualified. Choose the column names from the list of

column names that you specified with the CAPCOL parameter when

you registered the source table.

If you set the IMAGE parameter to *BOTH when registering this table,

you can specify before-image column names. The before-image column

names are the original column names with a prefix. This prefix is the

character that you specified in the PREFIX parameter of the

ADDDPRREG command.

*ALL (default)

All of the columns that you registered in the source are included in

the target table.

*NONE

No columns from the source table are included in the target table.

You can use *NONE when you want only computed columns in the

target table. This value is required if the CALCCOL parameter

contains summary functions but no GROUP BY is performed.

column-name

The names of up to 300 source columns that you want to include in

the target table. Separate the column names with spaces.

UNIQUE Specifies whether the target table has unique keys as indicated by the

KEYCOL parameter.

*YES (default)

The target table supports one net change per key; only one row

exists in the target table for that key regardless of how many

changes are made to the key.

 This value specifies that the table contains current data rather than

a history of changes to the data. A condensed table includes no

more than one row for each primary key value in the table and can

be used to supply current information for a refresh.

*NO

The target table supports multiple changes per key. The changes are

appended to the target table.

 This value specifies that the table contains a history of changes to

the data rather than current data. A non-condensed table includes

more than one row for each key value in the table and can be used

to supply a history of changes to the data. A non-condensed table

cannot supply current data for a refresh.

306 SQL Replication Guide and Reference

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

KEYCOL Specifies columns that describe the key of the target table. The column

names must be unqualified. For *POINTINTIME, *REPLICA, and

*USERCOPY target tables (as specified on the TGTTYPE parameter),

you must identify one or more columns as the target key for the target

table. This target key is used by the Apply program to identify each

unique row that changes during change-capture replication.

*SRCTBL (default)

The key columns in the target table are the same as those in the

source table. The ADDDPRREG command uses the key that is

specified in the source table if the source table is keyed. The

following key columns are used:

v Key columns that you defined through DDS when creating the

table with the Create Physical File (CRTPF) command

v Primary and unique keys that you defined with the CREATE

TABLE and ALTER TABLE SQL statements

v Unique keys that you defined with the CREATE INDEX SQL

statements

If you use a column as a key more than once and with different

ordering, the target table key is defined with ascending order.

*RRN

The key column in the target table is the IBMQSQ_RRN column.

The target table is created with an IBMQSQ_RRN column, and this

column is used as the key. When the Apply program runs, if the

source table is a user table and the target table is a point-in-time or

user copy, the IBMQSQ_RRN column in the target table is updated

with the relative record number of the associated record in the

source table. Otherwise, the IBMQSQ_RRN column in the target

table is updated with the value of the IBMQSQ_RRN column in the

source table.

*NONE

The target copy does not contain a target key. You cannot specify

*NONE if the target table type is *POINTINTIME, *REPLICA, or

*USERCOPY.

column-name

The names of the target columns that you want to use as the target

key columns. You can specify up to 120 column names. Separate the

column names with spaces.

Chapter 23. System commands for SQL replication (System i) 307

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTCOL Specifies the new names for all the columns that the Apply program

updates in the target table. These names override the column names

taken from the source table. The column names must be unqualified. If

you specified a value of *NONE for the COLUMN parameter, do not

use this parameter.

Use this parameter to give more meaningful names to the target table

columns. Specify each source column name and the name of the

corresponding column on the target table.

*COLUMN (default)

The target columns are the same as the columns you specified in

the COLUMN parameter.

column-name

The column names from the source table that you want to change at

the target. You can list up to 300 column names.

new-name

The new names of the target columns. You can list up to 300 new

column names. If you do not use this parameter, the name of the

column on the target table will be the same as the source column

name.

CALCCOL Specifies the list of user-defined or calculated columns in the target

table. The column names must be unqualified. Enclose each column

name and expression pair in parenthesis.

You must specify a column name for each SQL expression. If you want

to define any column as an SQL expression without a GROUP BY

statement, you must set the COLUMN parameter to *NONE.

*NONE (default)

No user-defined or calculated columns are included in the target

table.

column-name

The column names of the user-defined or calculated columns in the

target table. You can list up to 100 column names.

expression

The expressions for the user-defined or calculated columns in the

target table. You can list up to 100 SQL column expressions.

ADDREG Specifies whether the target table is automatically registered as a source

table. Use this parameter to register CCD target type tables.

*NO (default)

The target table is not registered as a source table. DB2

DataPropagator for System i ignores this parameter value if the

target type is *REPLICA. Replica target tables are always

automatically registered as source tables.

*YES

The target table is registered as a source table. This command fails

if you already registered the target table.

Do not set this parameter to *YES if the target table type is *USERCOPY,

*POINTINTIME, *BASEAGR, or *CHANGEAGR.

If you set the CRTTGTTBL parameter to *NO, you must create the

target table before attempting to register it as a source.

308 SQL Replication Guide and Reference

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

ROWSLT Specifies the predicates to be placed in an SQL WHERE clause. The

Apply program uses these predicates to determine which rows in the

change-data (CD) table of the source to apply to the target table. Use

this parameter if you want only a subset of the source changes to be

replicated to the target table.

*ALL (default)

The Apply program applies all changes in the CD table to the target

table.

WHERE-clause

The SQL WHERE clause that specifies which rows from the CD

table the Apply program applies to the target table. Do not include

the WHERE keyword; it is implied on this parameter. This WHERE

clause must be valid on the data server you are using to run the

clause.

Note: The WHERE clause on this parameter is unrelated to any WHERE

clauses specified on the SQLBEFORE or SQLAFTER parameters.

MAXSYNCH Specifies the maximum synch minutes. This parameter is the

time-threshold limit used to regulate the amount of change data that the

Capture and Apply programs process during a subscription cycle. You

can specify the time-threshold limit using a two-part value. The first

part is a number; the second part is the unit of time:

*MIN

Minutes

*HOUR

Hours

*DAY

Days

*WEEK

Weeks

You can specify combinations of numbers with units of time. For

example, ((1 *WEEK) (2 *DAY) (35 *MIN)) specifies a time interval of

one week, two days, and 35 minutes. If you specify multiple occurrences

of the same unit of time, the last occurrence is used.

The default is zero (0), which indicates that all of the change data is to

be applied.

Chapter 23. System commands for SQL replication (System i) 309

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

SQLBEFORE Specifies the SQL statements that run before the Apply program

refreshes the target table. This parameter has three elements:

Element 1: SQL code

*NONE (default)

No SQL statement is specified.

SQL-statement

The SQL statement that you want to run. Ensure that the syntax of

the SQL statement is correct. DB2 DataPropagator for System i does

not validate the syntax. In addition, you must use the proper SQL

naming conventions. SQL file references must be in the form of

LIBRARY.FILE instead of the system naming convention

(LIBRARY/FILE). You can specify up to three SQL statements.

Element 2: Server to run on

*TGTSVR (default)

The SQL statement runs at the target server on which the target

table is located.

*SRCSVR

The SQL statement runs at the Capture control server on which

the source table is located.

Element 3: Allowed SQLSTATE values

*NONE (default)

Only an SQLSTATE value of 00000 is considered successful.

SQL-states

A list of one to ten allowable SQLSTATE values. Separate the

SQLSTATE values with spaces. An SQLSTATE value is a five-digit

hexadecimal number ranging from 00000 to FFFFF.

The SQL statement is successful if it completes with an SQLSTATE value

of 00000 or with one of the allowable SQLSTATE values that you listed.

310 SQL Replication Guide and Reference

Table 39. ADDDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

SQLAFTER Specifies SQL statements that run after the Apply program refreshes the

target table. This parameter has three elements:

Element 1: SQL code

*NONE (default)

No SQL statement is specified.

SQL-statement

The SQL statement that you want to run. Ensure that the syntax of

the SQL statement is correct. DB2 DataPropagator for System i does

not validate the syntax. In addition, you must use the proper SQL

naming conventions. SQL file references must be in the form of

LIBRARY.FILE instead of the system naming convention

(LIBRARY/FILE). You can specify up to three SQL statements.

Element 2: Server to run on

*TGTSVR (default)

The SQL statement runs at the target server on which the target

table is located.

Element 3: Allowed SQLSTATE values

*NONE (default)

Only an SQLSTATE value of 00000 is considered successful.

SQL-states

A list of one to ten allowable SQLSTATE values. Separate the

SQLSTATE values with spaces. An SQLSTATE value is a five-digit

hexadecimal number ranging from 00000 to FFFFF.

The SQL statement is successful if it completes with an SQLSTATE value

of 00000 or with one of the allowable SQLSTATE values that you listed.

Examples for ADDDPRSUB

The following examples illustrate how to use the ADDDPRSUB command.

Example 1:

To create a subscription set named SETHR under the AQHR Apply qualifier:

ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

 TGTTBL(TGTLIB/TGTEMPL)

This subscription set, which contains one subscription-set member, replicates data

from the registered source table named EMPLOYEE under the HR library to the

target table named TGTEMPL under the TGTLIB library.

Example 2:

To create a subscription set named SETHR with only two columns, EMPNO (the

key) and NAME, from the registered source table named EMPLOYEE and replicate

these columns to an existing target table named TGTEMPL:

ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

 TGTTBL(TGTLIB/TGTEMPL) CRTTGTTBL(*NO) COLUMN(EMPNO NAME) KEYCOL(EMPNO)

Example 3:

Chapter 23. System commands for SQL replication (System i) 311

To create a subscription set named SETHR with data from the registered source

table named EMPLOYEE and to replicate this data to a replica type target table

named TGTREPL:

ADDDPRSUB APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/EMPLOYEE)

 TGTTBL(TGTLIB/TGTREPL) TGTTYPE(*REPLICA)

Example 4:

To create a subscription set named NOMEM with no subscription-set members:

ADDDPRSUB APYQUAL(AQHR) SETNAME(NOMEM) SRCTBL(*NONE) TGTTBL(*NONE)

ADDDPRSUBM: Adding a DPR subscription-set member (System i)

Use the Add DPR subscription-set member (ADDDPRSUBM) command to add a

member to an existing subscription set.

You can create the subscription set with the ADDDPRSUB command, with the

system commands on UNIX, Windows, or z/OS, or through the Replication Center.

All the source tables in the subscription set must already be journaled and

registered before you can use this command.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� ADDDPRSUBM APYQUAL (apply-qualifier) SETNAME (set-name) �

� SRCTBL (library-name/file-name) TGTTBL (library-name/file-name) �

�
*LOCAL

CTLSVR

(

rdb-name

)

*LOCAL

SRCSVR

(

rdb-name

)

 �

�
*USERCOPY

TGTTYPE

(

*POINTINTIME

)

*BASEAGR

*CHANGEAGR

*CCD

*REPLICA

*ALL

ROWSLT

(

WHERE-clause

)

 �

�
*YES

CRTTGTTBL

(

*NO

)

*YES

CHKFMT

(

*NO

)

 �

312 SQL Replication Guide and Reference

�
*NO

TGTKEYCHG

(

*YES

)

�

*ALL

COLUMN

(

*NONE

)

(1)

column-name

 �

�
*YES

UNIQUE

(

*NO

)

�

*SRCTBL

KEYCOL

(

*RRN

)

*NONE

(2)

column-name

 �

�

�

*COLUMN

(3)

TGTCOL

(

(column-name new-name)

)

 �

�

�

*NONE

(4)

CALCCOL

(

(column-name expression)

)

 �

�
*NO

ADDREG

(

*YES

)

 ��

Notes:

1 You can specify up to 300 column names.

2 You can specify up to 120 column names.

3 You can specify up to 300 column names.

4 You can specify up to 100 column names and expressions.

Table 40 lists the invocation parameters.

 Table 40. ADDDPRSUBM command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that identifies which Apply program

processes this subscription set. Subscription sets under an Apply

qualifier run in a separate job. This parameter is required.

apply-qualifier

The name of the Apply qualifier.

SETNAME Specifies the name of the subscription set. This parameter is required.

set-name

The name of the subscription set. The subscription-set name that

you enter must be unique for the specified Apply qualifier or the

ADDDPRSUBM command produces an error. Because the Apply

program handles the set of target tables as a group, when one target

table fails for any reason, the entire set fails.

Chapter 23. System commands for SQL replication (System i) 313

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

SRCTBL Specifies the name of the table that is the source for this subscription-set

member. You must register this table at the Capture control server before

this table can become a member of a subscription set. This parameter is

required.

library-name/file-name

The qualified name of the source table.

TGTTBL Specifies the name of the target table for this subscription-set member.

The target table is automatically created if you set the CRTTGTTBL

parameter to *YES and the target table does not already exist. This

parameter is required.

library-name/file-name

The qualified name of the target table.

CTLSVR Specifies the relational database name of the system that contains the

Apply control tables.

*LOCAL (default)

The Apply control tables reside locally (on the machine from which

you are running the ADDDPRSUBM command).

rdb-name

The name of the relational database where the Apply control tables

reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

SRCSVR Specifies the relational database name of the system that contains the

Capture control tables.

*LOCAL (default)

The source table is registered on the local machine (the machine

from which you are running the ADDDPRSUBM command).

rdb-name

The name of the relational database where the Capture control

tables reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

314 SQL Replication Guide and Reference

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE Specifies the target table type. These are SQL replication terms that

describe the contents of the target table. After you create a target table

as one of these types, you can use this parameter value on the SRCTBL

parameter of the Add DPR Registration (ADDDPRREG) command to

register this target table as a source table.

*USERCOPY (default)

The target table is a user copy, which is a target table with content

that matches all or part of the content of a source table. A user copy

is handled like a point-in-time table but does not contain any of the

DB2 DataPropagator for System i system columns that are present

in the point-in-time target table.

 This value is not valid when a value of *RRN is specified on the

KEYCOL parameter.

 The table that you specified with the SRCTBL parameter must be

one of the following types: user database, point-in-time table, or

consistent-change data (CCD).

 Important: If the target table already exists, DB2 DataPropagator for

System i does not automatically journal changes to it. You must

start journaling outside of DB2 DataPropagator for System i.

*POINTINTIME

The target table is a point-in-time table. A point-in-time table is a

target table with content that matches all or part of the content of

the source table and includes the DB2 DataPropagator for System i

system column (IBMSNAP_LOGMARKER), which identifies when a

particular row was inserted or updated at the Capture control

server.

*BASEAGR

The target table is a base aggregate table, which is a target table

that contains data that is aggregated (calculated) from a source

table. The source table for a base aggregate target must be either a

user table or a point-in-time table. This target table must contain the

IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system

timestamp columns.

*CHANGEAGR

The table is a change aggregate table, which is a target table that

contains data that is aggregated (calculated) based on the contents

of a change-data (CD) table. This target table is created with the

IBMSNAP_HLOGMARKER and IBMSNAP_LLOGMARKER system

timestamp columns.

Chapter 23. System commands for SQL replication (System i) 315

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTTYPE
(Continued)

*CCD

The table is a consistent-change data (CCD) table, which is a target

table created from a join of data in the change-data (CD) table and

the unit-of-work (UOW) table. A CCD table provides

transaction-consistent data for the Apply program and must include

the following columns:

v IBMSNAP_INTENTSEQ

v IBMSNAP_OPERATION

v IBMSNAP_COMMITSEQ

v IBMSNAP_LOGMARKER

*REPLICA

The target table is a replica table, which is used only for

update-anywhere replication. The replica target table receives

changes from the master source table, and changes to the replica

target table are propagated back to the master source table. A

replica table is automatically registered as a source table.

ROWSLT Specifies the predicates to be placed in an SQL WHERE clause. The

Apply program uses these predicates to determine which rows in the

change-data (CD) table of the source to apply to the target table. Use

this parameter if you want only a subset of the source changes to be

replicated to the target table.

*ALL (default)

The Apply program applies all changes in the CD table to the target

table.

WHERE-clause

The SQL WHERE clause that specifies which rows from the CD

table the Apply program applies to the target table. Do not include

the WHERE keyword; it is implied on this parameter. This WHERE

clause must be valid on the data server you are using to run the

clause.

Note: The WHERE clause on this parameter is unrelated to any WHERE

clauses specified on the SQLBEFORE or SQLAFTER parameters.

316 SQL Replication Guide and Reference

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

CRTTGTTBL Specifies whether the target table (or view) is created.

*YES (default)

Creates the target table (or view) if it does not exist. Otherwise, the

existing table or view becomes the target, and the format of this

existing table or view is checked if the value of the CHKFMT

parameter is set to *YES. An additional index, with the values that

you specified by the UNIQUE and KEYCOL parameters, is created

for a target table if no such index currently exists. The command

fails if an existing target table contains rows that violate the

conditions of the additional index.

*NO

Does not create the target table or view. You must create the table or

view with the correct attributes before starting the Apply program.

If the table or view exists and you set CHKFMT to *YES, the

ADDDPRSUBM command ensures that the format of the existing table

matches the subscription-set definition that you set. If CHKFMT is *NO,

you must ensure that the format of the existing table matches the

subscription-set definition.

Important: If the table or view already exists, DB2 DataPropagator for

System i does not automatically journal changes to the existing object.

You must start journaling outside of DB2 DataPropagator for System i.

CHKFMT Specifies whether DB2 DataPropagator for System i checks the definition

of the subscription-set member against the existing target table to ensure

that the columns match. This parameter is ignored if the CRTTGTTBL

parameter is *YES; this parameter is also ignored if the CRTTGTTBL

parameter is set to *NO and the target table does not exist.

*YES (default)

DB2 DataPropagator for System i verifies that the columns defined

for this subscription-set member match the columns in the target

table. This command fails if a mismatch is detected.

*NO

DB2 DataPropagator for System i ignores differences between the

subscription-set member and the existing target table. You must

ensure that the target table is compatible with the subscription-set

member.

Chapter 23. System commands for SQL replication (System i) 317

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTKEYCHG Specifies how the Apply program handles updates when changes occur

in source columns that are part of the target key columns for the target

table. This parameter works in conjunction with the USEDELINS

parameter on the ADDDPRREG command:

v If USEDELINS is YES and TGTKEYCHG is YES, updates are not

allowed.

v If USEDELINS is YES and TGTKEYCHG is NO, updates become

delete and insert pairs.

v If USEDELINS is NO and TGTKEYCHG is YES, the Apply program

handles this condition with special logic.

v If USEDELINS is NO and TGTKEYCHG is NO, the Apply program

processes the changes as normal updates.

*NO (default)

Updates to the source table are staged by the Capture program and

processed by the Apply program to the target table.

*YES

The Apply program updates the target table based on the before

images of the target key column, meaning that the Apply program

changes the predicate to the old values instead of the new.

COLUMN Specifies the columns to be included in the target table. The column

names must be unqualified. Choose the column names from the list of

column names that you specified on the CAPCOL parameter when you

registered the source table.

If you set the IMAGE parameter to *BOTH when registering this table,

you can specify before-image column names. The before-image column

names are the original column names with a prefix. This prefix is the

character that you specified in the PREFIX parameter of the

ADDDPRREG command.

*ALL (default)

All of the columns that you registered in the source are included in

the target table.

*NONE

No columns from the source table are included in the target table.

You can use *NONE when you want only computed columns in the

target table. This value is required if the CALCCOL parameter

contains summary functions but no grouping is performed.

column-name

The names of up to 300 source columns that you want to include in

the target table. Separate the column names with spaces.

318 SQL Replication Guide and Reference

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

UNIQUE Specifies whether the target table has unique keys as indicated by the

KEYCOL parameter.

*YES (default)

The target table supports one net change per key; only one row

exists in the target table for that key regardless of how many

changes are made to the key.

 This value specifies that the table contains current data rather than

a history of changes to the data. A condensed table includes no

more than one row for each primary key value in the table and can

be used to supply current information for a refresh.

*NO

The target table supports multiple changes per key. The changes are

appended to the target table.

 This value specifies that the table contains a history of changes to

the data rather than current data. A non-condensed table includes

more than one row for each key value in the table and can be used

to supply a history of changes to the data. A non-condensed table

cannot supply current data for a refresh.

Chapter 23. System commands for SQL replication (System i) 319

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

KEYCOL Specifies columns that describe the key of the target table. The column

names must be unqualified. For *POINTINTIME, *REPLICA, and

*USERCOPY target tables (as specified on the TGTTYPE parameter),

you must identify one or more columns as the target key for the target

table. This target key is used by the Apply program to identify each

unique row that changes during change-capture replication.

*SRCTBL (default)

The key columns in the target table are the same as those in the

source table. The ADDDPRREG command uses the key that is

specified in the source table if the source table has a key. The

following key columns are used:

v Key columns that you defined through DDS when creating the

table with the Create Physical File (CRTPF) command

v Primary and unique keys that you defined with the CREATE

TABLE and ALTER TABLE SQL statements

v Unique keys that you defined with the CREATE INDEX SQL

statements

If you use a column as a key more than once and with different

ordering, the target table key is defined with ascending order.

*RRN

The key column in the target table is the IBMQSQ_RRN column.

The target table is created with an IBMQSQ_RRN column, and this

column is used as the key. When the Apply program runs, if the

source table is a user table and the target table is a point-in-time

table or user copy, the IBMQSQ_RRN column in the target table is

updated with the relative record number of the associated record in

the source table. Otherwise, the IBMQSQ_RRN column in the target

table is updated with the value of the IBMQSQ_RRN column in the

source table.

*NONE

The target copy does not contain a target key. You cannot specify

*NONE if the target table type is *POINTINTIME, *REPLICA, or

*USERCOPY.

column-name

The names of the target columns that you want to use as the target

key columns. You can specify up to 120 column names. Separate the

column names with spaces.

320 SQL Replication Guide and Reference

Table 40. ADDDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

TGTCOL Specifies the new names for all the columns that the Apply program

updates in the target table. These names override the column names

taken from the source table. The column names must be unqualified. If

you specified a value of *NONE for the COLUMN parameter, do not

use the TGTCOL parameter.

Use this parameter to give more meaningful names to the target table

columns. Specify each source column name and the name of the

corresponding column on the target table.

*COLUMN (default)

The target columns are the same as the columns you specified in

the COLUMN parameter.

column-name

The column names from the source table that you want to change at

the target. You can list up to 300 column names.

new-name

The new names of the target columns. You can list up to 300 new

column names. If you do not use this parameter, the name of the

column on the target table will be the same as the source column

name.

CALCCOL Specifies the list of user-defined or calculated columns in the target

table. The column names must be unqualified. Enclose each column

name and expression pair in parenthesis.

You must specify a column name for each SQL expression. If you want

to define any column as an SQL expression without a GROUP BY

clause, you must set the COLUMN parameter to *NONE.

*NONE (default)

No user-defined or calculated columns are included in the target

table.

column-name

The column names of the user-defined or calculated columns in the

target table. You can list up to 100 column names.

expression

The expressions for the user-defined or calculated columns in the

target table. You can list up to 100 SQL column expressions.

ADDREG Specifies whether the target table is automatically registered as a source

table. Use this parameter to register CCD target type tables.

*NO (default)

The target table is not registered as a source table. DB2

DataPropagator for System i ignores this parameter value if the

target type is *REPLICA. Replica target tables are always

automatically registered as source tables.

*YES

The target table is registered as a source table. This command fails

if you already registered the target table.

Do not set this parameter to *YES if the target table type is *USERCOPY,

*POINTINTIME, *BASEAGR, or *CHANGEAGR.

If you set the CRTTGTTBL parameter to *NO, you must create the

target table before attempting to register it as a source.

Chapter 23. System commands for SQL replication (System i) 321

Examples for ADDDPRSUBM

The following examples illustrate how to use the ADDDPRSUBM command.

Example 1:

To add a subscription-set member to a subscription set named SETHR under the

AQHR Apply qualifier:

ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX) TGTTBL(TGTHR/TGTTAX)

Example 2:

To add a subscription-set member with only two columns, AMOUNT and NAME,

from the registered source table named YTDTAX and to replicate these columns to

an existing target table named TGTTAX:

ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX) TGTTBL(TGTLIB/TGTTAX)

 CRTTGTTBL(*NO) COLUMN(AMOUNT NAME) CHKFMT(*YES)

This command verifies that the AMOUNT and NAME columns defined for this

subscription-set member match the columns in the target table.

Example 3:

To add a subscription-set member to subscription set named SETHR and to

replicate this data to a consistent-change data target table named TGTYTD:

ADDDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) SRCTBL(HR/YTDTAX) TGTTBL(TGTLIB/TGTYTD)

 TGTTYPE(*CCD) ADDREG (*YES)

This command registers the target table as a source table for DB2 DataPropagator

for System i.

ANZDPR: Operating the Analyzer (System i)

Use the Analyze DPR (ANZDPR) command to analyze a failure from a Capture or

Apply program, to verify the setup of your replication configuration, or to obtain

problem diagnosis and performance tuning information.

Run this command after you set up your replication configuration.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� ANZDPR

�

*LOCAL

(1)

RDB

(

rdb-name

)

 �

322 SQL Replication Guide and Reference

�
*CURLIB

ANZDPR

OUTFILE

(

library-name

file-name

)

 �

�

*STANDARD

ANZLVL

(

*SIMPLE

)

*DETAILED

3

CAPTRC

(

no-of-days

)

 �

�
3

APYTRC

(

no-of-days

)

3

APYTRAIL

(

no-of-days

)

 �

�
3

SIGTBL

(

no-of-days

)

3

CAPMON

(

no-of-days

)

 �

�
*ALL

APYQUAL

(

apply-qualifier

)

 �

�
*ALL

CAPCTLLIB

(

library-name

)

 ��

Notes:

1 You can specify up to 10 databases.

Table 41 lists the invocation parameters.

 Table 41. ANZDPR command parameter definitions for System i

Parameter Definition and prompts

RDB Specifies the databases to be analyzed.

*LOCAL (default)

The database on your local system.

rdb-name

The RDB Directory Entry name, which indicates the database.

You can enter up to 10 databases. If you want to analyze multiple

databases including the database on your local system, make sure that

*LOCAL is the first entry in the list. Also, verify that you can connect to

all these databases from your current system.

Chapter 23. System commands for SQL replication (System i) 323

Table 41. ANZDPR command parameter definitions for System i (continued)

Parameter Definition and prompts

OUTFILE Specifies the library and file name used to store the analyzer output.

This command writes the output to an HTML file.

*CURLIB (default)

The current library.

library-name

The name of the library.

ANZDPR (default)

The output is written to an HTML file named ANZDPR.

file-name

The name of the HTML output file.

If the file name already exists, the file is overwritten. If the file name

does not exist, the command creates the file with attributes of

RCDLEN(512) and SIZE(*NOMAX).

ANZLVL Specifies the level of analysis to be reported. The level of analysis can

be:

*STANDARD (default)

Generates a report that includes the contents of the control

tables as well as Capture and Apply program status

information.

*SIMPLE

Generates the information in the standard report but excludes

subcolumn details. Use this option if you want to generate a

smaller report that requires less system resources.

*DETAILED

Generates a report with the most complete analysis. The

detailed report includes the information from the standard

report in addition to subscription set information.

CAPTRC Specifies the date range (0 to 30 days) of entries to be reported from the

IBMSNAP_CAPTRACE table. The default is 3.

no-of-days

The number of days to be reported.

APYTRC Specifies the date range (0 to 30 days) of entries to be reported from the

IBMSNAP_APPLYTRACE table. The default is 3.

no-of-days

The number of days to be reported.

APYTRAIL Specifies the date range (0 to 30 days) of entries to be reported from the

IBMSNAP_APPLYTRAIL table. The default is 3.

no-of-days

The number of days to be reported.

SIGTBL Specifies the date range (0 to 30 days) of entries to be reported from the

IBMSNAP_SIGNAL table. The default is 3.

no-of-days

The number of days to be reported.

CAPMON Specifies the date range (0 to 30 days) of entries to be reported from the

IBMSNAP_CAPMON table. The default is 3.

no-of-days

The number of days to be reported.

324 SQL Replication Guide and Reference

Table 41. ANZDPR command parameter definitions for System i (continued)

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifiers to be analyzed.

*ALL (default)

All Apply qualifiers are analyzed.

apply-qualifier

The name of the Apply qualifier to be analyzed. You can enter up to

10 Apply qualifiers.

CAPCTLLIB Specifies the Capture schemas, which are the names of the Capture

control libraries that you want to analyze. You can analyze a specific

Capture control library, or you can choose the default of *ALL to

analyze all the Capture control libraries.

*ALL (default)

All of the Capture control libraries will be analyzed.

library-name

The name of the specific Capture control library that you want to

analyze.

Examples for ANZDPR

The following examples illustrate how to use the ANZDPR command.

Example 1:

To run the Analyzer on both your local database and a remote database named

RMTRDB1 using a standard level of analysis:

ANZDPR RDB(*LOCAL RMTRDB1) OUTFILE(MYLIB/ANZDPR) ANZLVL(*STANDARD) CAPTRC(1)

 APYTRC(1) APYTRAIL(1) SIGTBL(1) CAPMON(1) APYQUAL(*ALL)

This example generates one day of entries from the IBMSNAP_CAPTRACE,

IBMSNAP_APPLYTRACE, IBMSNAP_APPLYTRAIL, IBMSNAP_SIGNAL, and

IBMSNAP_CAPMON tables for all Apply qualifiers and writes the output to an

HTML file named ANZDPR in the library called MYLIB.

Example 2:

To run the Analyzer with all default values:

ANZDPR

CHGDPRCAPA: Changing DPR Capture attributes (System i)

Use the Change DPR Capture Attributes (CHGDPRCAPA) command to change the

global operating parameters that are used by the Capture program and are stored

in the IBMSNAP_CAPPARMS table.

These parameter changes do not take effect until you perform one of the following

actions:

v Issue an INZDPRCAP command.

v End and then restart the Capture program.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

Chapter 23. System commands for SQL replication (System i) 325

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� CHGDPRCAPA

ASN

CAPCTLLIB(

library-name

)

 �

�
*SAME

RETAIN

(

retention-limit

)

*SAME

LAG

(

lag-limit

)

 �

�
*SAME

FRCFRQ

(

force-frequency

)

 �

�
*SAME

CLNUPITV

(

prune-interval

)

*SAME

TRCLMT

(

trace-limit

)

 �

�
*SAME

MONLMT

(

monitor-limit

)

*SAME

MONITV

(

monitor-interval

)

 �

�
*SAME

MEMLMT

(

memory-limit

)

 ��

Table 42 lists the invocation parameters.

 Table 42. CHGDPRCAPA command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in

which the Capture control tables reside.

ASN (default)

The Capture control tables are in the ASN library.

library-name

The name of a library that contains the Capture control tables.

326 SQL Replication Guide and Reference

Table 42. CHGDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

RETAIN Specifies the new retention limit, which is the number of minutes that

data is retained in the change-data (CD), unit-of-work (UOW),

IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN tables before this

data is removed. This value is stored in the RETENTION_LIMIT

column of the IBMSNAP_CAPPARMS table.

This value works with the CLNUPITV parameter value. When the

CLNUPITV value is reached, the CD, UOW, IBMSNAP_SIGNAL, and

IBMSNAP_AUTHTKN data is removed if this data is older than the

retention limit.

Ensure that the Apply intervals are set to copy changed information

before the data reaches this RETAIN parameter value to prevent

inconsistent data in your tables. If the data becomes inconsistent, the

Apply program performs a full refresh.

The default is 10 080 minutes (seven days). The maximum is 35000000

minutes.

*SAME (default)

This value is not changed.

retention-limit

The new retention limit value.

LAG Specifies the new lag limit, which is the number of minutes that the

Capture program can fall behind in processing before restarting. This

value is stored in the LAG_LIMIT column of the

IBMSNAP_CAPPARMS table.

When the lag limit is reached (that is, when the timestamp of the

journal entry is older than the current timestamp minus the lag limit),

the Capture program initiates a cold start for the tables that it is

processing for that journal. The Apply program then performs a full

refresh to provide the Capture program with a new starting point.

The default is 10 080 minutes (seven days). The maximum is 35000000

minutes.

*SAME (default)

This value is not changed.

lag-limit

The new lag limit value.

Chapter 23. System commands for SQL replication (System i) 327

Table 42. CHGDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

FRCFRQ Specifies how often (from 30 to 600 seconds) the Capture program

writes changes to the change-data (CD) and UOW tables. This value is

stored in the COMMIT_INTERVAL column of the

IBMSNAP_CAPPARMS table.

The Capture program makes these changes available to the Apply

program either when the buffers are filled or when the FRCFRQ time

limit expires, whichever is sooner.

Use this parameter to make changes more readily available to the

Apply program on servers with a low rate of source table changes.

The FRCFRQ parameter value is a global value used for all defined

source tables. Setting the FRCFRQ value to a low number can affect

system performance.

The default is 30 seconds.

*SAME (default)

This value is not changed.

force-frequency

The new commit interval value, which is the number of seconds

that the Capture program keeps CD and UOW table changes in

buffer space before making these changes available to the Apply

program.

CLNUPITV Specifies the maximum amount of time (in hours) before the Capture

program prunes old records from the change-data (CD), UOW,

IBMSNAP_SIGNAL, IBMSNAP_CAPMON, IBMSNAP_CAPTRACE,

and IBMSNAP_AUTHTKN tables.

This parameter works in conjunction with the RETAIN parameter to

control pruning of the CD, UOW, IBMSNAP_SIGNAL, and

IBMSNAP_AUTHTKN tables, with the MONLMT parameter to

control pruning of the IBMSNAP_CAPMON table, and with the

TRCLMT parameter to control pruning of the IBMSNAP_CAPTRACE

table. (Use the STRDPRCAP command to set the RETAIN, MONLMT,

and TRCLMT parameters for a Capture program.)

The value of this parameter is automatically converted from hours to

seconds and is stored in the PRUNE_INTERVAL column of the

IBMSNAP_CAPPARMS table. If the PRUNE_INTERVAL column is

changed manually (not using the CHGDPRCAPA command), you

might see changes due to rounding when you prompt using the F4

key.

*SAME (default)

This Capture attribute value is not changed.

prune-interval

The pruning interval expressed as a specific number of hours (1

to 100).

328 SQL Replication Guide and Reference

Table 42. CHGDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

TRCLMT Specifies the trace limit (in minutes). This value is stored in the

TRACE_LIMIT column of the IBMSNAP_CAPPARMS table.

The Capture programs prune any IBMSNAP_CAPTRACE rows that

are older than the trace limit. The default is 10 080 minutes (seven

days of trace entries).

*SAME (default)

This value is not changed.

trace-limit

The number of minutes of trace data kept in the

IBMSNAP_CAPTRACE table after pruning.

MONLMT Specifies the monitor limit (in minutes). This value is stored in the

MONITOR_LIMIT column of the IBMSNAP_CAPPARMS table.

The Capture program prunes any IBMSNAP_CAPMON rows that are

older than the monitor limit.

The default is 10 080 minutes (seven days of monitor entries).

*SAME (default)

This value is not changed.

monitor-limit

The number of minutes of monitor data kept in the

IBMSNAP_CAPMON table after pruning.

MONITV Specifies how frequently (in seconds) the Capture program inserts

rows into the IBMSNAP_CAPMON table. This value is stored in the

MONITOR_INTERVAL column of the IBMSNAP_CAPPARMS table.

The default is 300 seconds (five minutes).

*SAME (default)

This value is not changed.

monitor-interval

The number of seconds between row insertion into the

IBMSNAP_CAPMON table. The monitor interval must be at least

120 seconds (two minutes). If you specify a number that is less

than 120, this command automatically sets this parameter value to

120.

MEMLMT Specifies the maximum size (in megabytes) of memory that the

Capture journal job can use. This value is stored in the

MEMORY_LIMIT column of the IBMSNAP_CAPPARMS table.

The default is 32 megabytes.

*SAME (default)

This value is not changed.

memory-limit

The maximum number of megabytes for memory.

Examples for CHGDPRCAPA

The following examples illustrate how to use the CHGDPRCAPA command.

Example 1:

Chapter 23. System commands for SQL replication (System i) 329

To change the frequency of row insertion to 6 000 seconds (100 minutes) by the

Capture program into the IBMSNAP_CAPMON table:

CHGDPRCAPA CAPCTLLIB(ASN) MONITV(6000)

This frequency value is stored in the IBMSNAP_CAPPARMS table that is located

in the default ASN library.

Example 2:

To change the retention limit, lag limit, trace limit, and monitor limit in the

IBMSNAP_CAPPARMS table located in a Capture control library called LIB1:

CHGDPRCAPA CAPCTLLIB(LIB1) RETAIN(6000) LAG(3000) TRCLMT(3000) MONLMT(6000)

Example 3:

To change the commit interval, which indicates how frequently the Capture

program writes changes to the CD and UOW tables:

CHGDPRCAPA CAPCTLLIB(ASN) FRCFRQ(360)

CRTDPRTBL: Creating the replication control tables (System i)

Use the Create DPR Tables (CRTDPRTBL) command to create replication control

tables that are accidentally deleted or corrupted.

Important: The CRTDPRTBL command is the only command that you should use

to create System i control tables. Do not use the Replication Center or ASNCLP

command-line program to create the control tables.

Restriction: If you create an alternate Capture schema, you must created it in the

same Auxiliary Storage Pool (either base or independent) where the ASN library is

located.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� CRTDPRTBL

ASN

CAPCTLLIB

(

library-name

)

 ��

330 SQL Replication Guide and Reference

Table 43 lists the invocation parameters.

 Table 43. CRTDPRTBL command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library where

the newly created Capture control tables are placed.

ASN (default)

The Capture control tables are placed in the ASN library.

library-name

The name of the library where the Capture control tables are placed.

Examples for CRTDPRTBL

The following examples illustrate how to use the CRTDPRTBL command.

Example 1:

To create new replication control tables in the default ASN library:

CRTDPRTBL CAPCTLLIB(ASN)

Example 2:

To create new replication control tables for a Capture schema called DPRSALES:

CRTDPRTBL CAPCTLLIB(DPRSALES)

ENDDPRAPY: Stopping Apply (System i)

Use the End DPR Apply (ENDDPRAPY) command to stop an Apply program on

your local system.

You should stop the Apply program before any planned system down time. You

might also want to end the Apply program during periods of peak system activity.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

�� ENDDPRAPY

*CURRENT

USER(

user-name

)

*CNTRLD

OPTION(

*IMMED

)

 �

�
*USER

APYQUAL(

apply-qualifier

)

*LOCAL

CTLSVR(

rdb-name

)

 ��

Chapter 23. System commands for SQL replication (System i) 331

Table 44 lists the invocation parameters.

 Table 44. ENDDPRAPY command parameter definitions for System i

Parameter Definition and prompts

USER This parameter is ignored unless the APYQUAL parameter has a value

of *USER, in which case this parameter specifies the Apply qualifier

associated with the Apply program.

*CURRENT (default)

The Apply program of the user associated with the current job.

user-name

The Apply program of the specified user.

 When prompting on the ENDDPRAPY command, you can press the

F4 key to see a list of users who defined subscriptions.

OPTION Specifies how to stop the Apply program.

*CNTRLD (default)

The Apply program completes all of its tasks before stopping. These

tasks might take a considerable period of time if the Apply program

is completing a subscription set.

*IMMED

The Apply program completes all of its tasks with the ENDJOB

OPTION(*IMMED) command. The tasks end immediately, without

any cleanup. Use this option only after a controlled end is

unsuccessful, because it can cause undesirable results. (Unless the

Apply program was asleep when you issued the ENDDPRAPY

command, you should verify the target table contents.)

 If the Apply program was performing a full refresh to the target

table, the target table might be empty as a result of ending the

Apply program before the table was refreshed with the source table

contents. If the target table is empty, you must force a full refresh

for this replication target.

 You might find that a subscription set is considered IN USE (the

STATUS column in the IBMSNAP_SUBS_SET table has a value of 1).

If it is, reset the value to 0 or -1. This allows the subscription set to

be run again by the Apply program.

APYQUAL Specifies the Apply qualifier that is used by the Apply program.

*USER (default)

The user name specified on the USER parameter is the Apply

qualifier.

apply-qualifier

The name used to group the subscription sets that this Apply

program runs. You can specify a maximum of 18 characters for the

Apply qualifier name. This name follows the same naming

conventions as a relational database name. You identify the

subscriptions being run by the records in the IBMSNAP_SUBS_SET

table with this value in the APPLY_QUAL column.

 When prompting on the ENDDPRAPY command, you can press the

F4 key to see a list of Apply qualifier names with existing

subscriptions.

332 SQL Replication Guide and Reference

Table 44. ENDDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

CTLSVR Specifies the relational database name of the system that contains the

Apply control tables.

*LOCAL (default)

The Apply control tables reside locally (from the machine on which

you are running the ENDDPRAPY command).

rdb-name

The name of the relational database where the Apply control tables

reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

 When prompting on the ENDDPRAPY command, you can press the

F4 key to choose from the list of databases in the RDB directory.

Usage notes

The ENDDPRAPY command uses the value of the APYQUAL and CTLSVR parameters to search the

IBMSNAP_APPLY_JOB table for the job name, job number, and job user for the referenced Apply

program, and ends that job.

ENDDPRAPY issues an error message if the following conditions occur:

v If the IBMSNAP_APPLY_JOB table does not exist or is corrupted.

v If there is no record in the IBMSNAP_APPLY_JOB table for the Apply qualifier and control server

name.

v If the Apply job already ended.

v If the user ID running the command is not authorized to end the Apply job.

Examples for ENDDPRAPY

The following examples illustrate how to use the ENDDPRAPY command.

Example 1:

To end the Apply program that uses the AQHR Apply qualifier:

ENDDPRAPY OPTION(*CNTRLD) APYQUAL(AQHR)

The Apply program ends after all of its tasks are completed.

Example 2:

To end the Apply program immediately:

ENDDPRAPY OPTION(*IMMED) APYQUAL(AQHR)

The tasks of the Apply program end immediately, without any cleanup.

Example 3:

To end an Apply program that uses Apply control tables that reside on a relational database named

DB1X:

ENDDPRAPY OPTION(*CNTRLD) APYQUAL(AQHR) CTLSVR(DB1X)

Chapter 23. System commands for SQL replication (System i) 333

ENDDPRCAP: Stopping Capture (System i)

Use the End DPR Capture (ENDDPRCAP) command to stop the Capture program.

Use this command to stop the Capture program before shutting down the system.

You might also want to stop the program during periods of peak system use to

increase the performance of other programs that run on the system.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� ENDDPRCAP

*CNTRLD

OPTION(

*IMMED

)

 �

�
ASN

CAPCTLLIB

(

library-name

)

*NO

RGZCTLTBL

(

*YES

)

 ��

Table 45 lists the invocation parameters.

 Table 45. ENDDPRCAP command parameter definitions for System i

Parameter Definition and prompts

OPTION Specifies how to stop the Capture program.

*CNTRLD (default)

The Capture program stops normally after completing all tasks.

 The ENDDPRCAP command might take longer when you specify

the *CNTRLD option because the Capture program completes all of

its subordinate processes before stopping.

*IMMED

The Capture program stops normally after completing all tasks with

the ENDJOB OPTION(*IMMED) command.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which

the Capture control tables are located. This library includes the

IBMSNAP_REGISTER table, which stores the registration information of

the source tables.

ASN (default)

The Capture control tables are in the ASN library. The ASN library

is the default library.

library-name

The name of a library that contains the Capture control tables.

334 SQL Replication Guide and Reference

Table 45. ENDDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

RGZCTLTBL Specifies whether a Reorganize Physical File Member (RGZPFM)

command is performed on the control tables (including the change-data

(CD) and unit-of-work (UOW) tables) when the Capture program ends.

The system does not recover disk space unless the RGZPFM command

process is performed on the tables. The RGZPFM command will not be

performed if the control tables are being accessed by an Apply program

or by other application programs.

*NO (default)

The RGZPFM command is not performed.

*YES

The RGZPFM command is performed.

Usage notes

If you use the ENDJOB command, temporary objects might be left in the QDP4

library. These objects have the types *DTAQ and *USRSPC, and are named

QDP4nnnnnn, where nnnnnn is the job number of the job that used them. You can

delete these objects when the job that used them (identified by the job number in

the object name) is not active.

If the job under the Capture control library will not end after issuing this

command, use the ENDJOB command with *IMMED option to end this job and all

the journal jobs running in the DB2 DataPropagator for System i subsystem. Do

not end Apply jobs running in the same subsystem if you want to end only the

Capture program.

In rare cases when the Capture control job ends abnormally, the journal jobs

created by Capture control job (which is named according to the CAPCTLLIB

parameter) might still be left running. The only way to end these jobs is to use the

ENDJOB command with either the *IMMED or *CNTRLD option.

Examples for ENDDPRCAP

The following examples illustrate how to use the ENDDPRCAP command.

Example 1:

To end the Capture program, which uses Capture control tables in the ASN library,

after all processing tasks are completed:

ENDDPRCAP OPTION(*CNTRLD) CAPCTLLIB(ASN) RGZCTLTBL(*NO)

Example 2:

To end the Capture program immediately for the Capture schema BSN:

ENDDPRCAP OPTION(*IMMED) CAPCTLLIB(BSN) RGZCTLTBL(*NO)

Example 3:

To end the Capture program after all processing tasks are completed and to

reorganize the Capture control tables:

ENDDPRCAP OPTION(*CNTRLD) CAPCTLLIB(ASN) RGZCTLTBL(*YES)

Chapter 23. System commands for SQL replication (System i) 335

GRTDPRAUT: Authorizing users (System i)

Use the Grant DPR Authority (GRTDPRAUT) command to authorize a list of users

to access the replication control tables in order to run the Capture and Apply

programs.

For example, the authority requirements for the user who is running the Capture

and Apply programs might differ from the authority requirements for the user

who defines replication sources and targets.

You must have *ALLOBJ authority to grant authorities.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� GRTDPRAUT

ASN

CAPCTLLIB

(

library-name

)

 �

�

USER(

user-name

)

*PUBLIC

 *REGISTRAR

AUT(

*SUBSCRIBER

)

*CAPTURE

*APPLY

�

�
 *ALL

APYQUAL(

*USER

)

apply-qualifier

��

Table 46 lists the invocation parameters.

 Table 46. GRTDPRAUT command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the library that contains the

replication control tables to which the user is granted authority.

ASN (default)

The Capture control tables reside in the ASN library.

library-name

The name of the library that contains the replication control tables.

USER Specifies the users who have authority.

user-name

The names of up to 50 users who have authority.

*PUBLIC

Indicates that *PUBLIC authority is granted to the file, but (if

insufficient for the task) is used only for those users who have no

specific authority, who are not on the authorization list associated

with the file, and whose group profile does not have any authority.

336 SQL Replication Guide and Reference

Table 46. GRTDPRAUT command parameter definitions for System i (continued)

Parameter Definition and prompts

AUT Specifies the type of authority being granted.

*REGISTRAR (default)

The users are granted the authorities to define, change, and remove

registrations.

 For a complete list of authorities with AUT(*REGISTRAR), see

Table 47 on page 338.

*SUBSCRIBER

The users are granted authority to define, change, and remove

subscription sets.

 For a complete list of authorities with AUT(*SUBSCRIBER), see

Table 48 on page 339.

*CAPTURE

The users are granted authority to run the Capture program.

 For a complete list of authorities granted with AUT(*CAPTURE),

see Table 49 on page 340.

*APPLY

The users are granted authority to run the Apply program.

 The command does not grant authority to any of the objects that

reside on other databases accessed by the Apply program.

 When an Apply program is invoked, the user associated with the

DRDA application server job must also be granted *APPLY

authority. If the source is a System i server, you should run the

GRTDPRAUT command on the source server system, with the

application server job user specified on the USER parameter and

the Apply qualifier specified on the APYQUAL parameter.

 Authorities are not granted to the target tables unless the target

server is the same as the control server and both reside on the

system where the command is run.

 For a complete list of authorities granted with AUT(*APPLY), see

Table 50 on page 342.

Chapter 23. System commands for SQL replication (System i) 337

Table 46. GRTDPRAUT command parameter definitions for System i (continued)

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier to be used by the user as specified with the

USER parameter. This parameter is used only when AUT(*APPLY) or

AUT(*SUBSCRIBER) is specified.

*ALL (default)

The user is granted authority to run the Apply program or to define

and remove subscription sets for all Apply qualifiers.

*USER

The users specified on the USER parameter are granted authority to

the subscription sets with an Apply qualifier that is the same as the

user name.

apply-qualifier

The user is granted authority to run the Apply program or define

and remove subscription sets for the Apply qualifiers associated

with this Apply qualifier.

v The user is granted authority to all replication sources,

change-data (CD) tables, and consistent-change data (CCD) tables

associated with records in the IBMSNAP_PRUNCNTL table that

have a value in the APPLY_QUAL column matching the value

input with the APYQUAL parameter.

v The user is granted authority to the subscription sets listed in the

IBMSNAP_SUBS_MEMBR table that reside on this system.

Usage notes

You cannot use the GRTDPRAUT command while the Capture or Apply programs

are running, or when applications that use the source tables are active because

authorizations cannot be changed on files that are in use.

The following tables list the authorities granted when you specify:

v AUT(*REGISTRAR)

v AUT*(SUBSCRIBER)

v AUT(*CAPTURE)

v AUT(*APPLY)

on the GRTDPRAUT command.

The following table lists the authorities granted when you specify the

AUT(*REGISTRAR) parameter on the GRTDPRAUT command.

 Table 47. Authorities granted with GRTDPRAUT AUT(*REGISTRAR)

Library Object Type Authorizations

QSYS capctllib *LIB *USE, *ADD

capctllib1 QSQJRN *JRN *OBJOPR,

*OBJMGT

capctllib1 QZS8CTLBLK *USRSPC *CHANGE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR, *READ,

*ADD, *UPDT,

*DLT

338 SQL Replication Guide and Reference

Table 47. Authorities granted with GRTDPRAUT AUT(*REGISTRAR) (continued)

Library Object Type Authorizations

capctllib1 IBMSNAP_REGISTERX *FILE *OBJOPR, *READ,

*ADD, *UPDT,

*DLT

capctllib1 IBMSNAP_REGISTERX1 *FILE *OBJOPR, *READ,

*ADD, *UPDT,

*DLT

capctllib1 IBMSNAP_REGISTERX2 *FILE *OBJOPR, *READ,

*ADD, *UPDT,

*DLT

capctllib1 IBMSNAP_REG_EXT *FILE *OBJOPR, *READ,

*ADD, *UPDT,

*DLT

capctllib1 IBMSNAP_REG_EXTX *FILE *OBJOPR, *READ,

*ADD, *UPDT,

*DLT

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX1 *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX2 *FILE *OBJOPR, *READ

capctllib1 IBMSNAP_PRUNCNTLX3 *FILE *OBJOPR, *READ

ASN ASN4B* *SQLPKG *USE

ASN ASN4C* *SQLPKG *USE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB

parameter of the GRTDPRAUT command; this command updates authority to only one

Capture control library at a time.

The following table lists the authorities granted when you specify the

AUT(*SUBSCRIBER) parameter on the GRTDPRAUT command.

 Table 48. Authorities granted with GRTDPRAUT AUT(*SUBSCRIBER)

Library Object Type Authorizations

QSYS ASN *LIB *OBJOPR, *READ,

*ADD, *EXECUTE

QSYS capctllib *LIB *OBJOPR, *READ,

*ADD, *EXECUTE

ASN IBMSNAP_SUBS_SET *FILE *CHANGE

ASN IBMSNAP_SUBS_COLS *FILE *CHANGE

ASN IBMSNAP_SUBS_EVENT *FILE *CHANGE

ASN IBMSNAP_SUBS_STMTS *FILE *CHANGE

ASN IBMSNAP_SUBS_MEMBR *FILE *CHANGE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_REG_EXT *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

Chapter 23. System commands for SQL replication (System i) 339

Table 48. Authorities granted with GRTDPRAUT AUT(*SUBSCRIBER) (continued)

Library Object Type Authorizations

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR, *READ,

*DLT, *ADD,

*EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX *FILE *USE

ASN ASN4A* *SQLPKG *USE

ASN ASN4U* *SQLPKG *USE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB

parameter of the GRTDPRAUT command; this command updates authority to only one

Capture control library at a time.

The following table lists the authorities granted when you specify the

AUT(*CAPTURE) parameter on the GRTDPRAUT command.

 Table 49. Authorities granted with GRTDPRAUT AUT(*CAPTURE)

Library Object Type Authorizations

QSYS capctllib *LIB *OBJOPR,

*OBJMGT, *READ,

*EXECUTE

QSYS QDP4 *LIB *OBJOPR, *ADD,

*READ, *EXECUTE

capctllib1 QZSN *MSGQ *CHANGE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR,

*OBJMGT, *READ,

*ADD, *UPD,

*EXECUTE

capctllib1 IBMSNAP_REGISTERX *FILE *OBJOPR,

*OBJMGT, *READ,

*ADD, *UPD,

*EXECUTE

capctllib1 IBMSNAP_REGISTERX1 *FILE *OBJOPR,

*OBJMGT, *READ,

*ADD, *UPD,

*EXECUTE

capctllib1 IBMSNAP_REGISTERX2 *FILE *OBJOPR,

*OBJMGT, *READ,

*ADD, *UPD,

*EXECUTE

capctllib1 IBMSNAP_REG_EXT *FILE *OBJOPR,

*OBJMGT, *READ,

*ADD, *UPD,

*EXECUTE

capctllib1 IBMSNAP_REG_EXTX *FILE *OBJOPR,

*OBJMGT, *READ,

*ADD, *UPD,

*EXECUTE

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR,

*OBJMGT, *READ,

*UPD, *EXECUTE

340 SQL Replication Guide and Reference

Table 49. Authorities granted with GRTDPRAUT AUT(*CAPTURE) (continued)

Library Object Type Authorizations

capctllib1 IBMSNAP_PRUNCNTLX *FILE *OBJOPR,

*OBJMGT, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX1 *FILE *OBJOPR,

*OBJMGT, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX2 *FILE *OBJOPR,

*OBJMGT, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_PRUNCNTLX3 *FILE *OBJOPR,

*OBJMGT, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_CAPTRACE *FILE *CHANGE

capctllib1 IBMSNAP_CAPTRACEX *FILE *CHANGE

capctllib1 IBMSNAP_RESTART *FILE *CHANGE

capctllib1 IBMSNAP_RESTARTX *FILE *CHANGE

capctllib1 IBMSNAP_AUTHTKN *FILE *CHANGE

capctllib1 IBMSNAP_AUTHTKNX *FILE *CHANGE

capctllib1 IBMSNAP_UOW *FILE *OBJOPR,

*OBJMGT, *READ,

*UPD, *DLT, *ADD,

*EXECUTE

capctllib1 IBMSNAP_UOW_IDX *FILE *CHANGE

capctllib1 IBMSNAP_PRUNE_SET *FILE *CHANGE

capctllib1 IBMSNAP_PRUNE_SETX *FILE *CHANGE

capctllib1 IBMSNAP_CAPPARMS *FILE *READ, *EXECUTE

capctllib1 IBMSNAP_SIGNAL *FILE *CHANGE

capctllib1 IBMSNAP_SIGNALX *FILE *CHANGE

capctllib1 IBMSNAP_CAPMON *FILE *CHANGE

capctllib1 IBMSNAP_CAPMONX *FILE *CHANGE

capctllib1 IBMSNAP_PRUNE_LOCK *FILE *CHANGE

ASN ASN4B* *SQLPKG *USE

ASN ASN4C* *SQLPKG *USE

ASN QZS8CTLBLK *USRSPC *CHANGE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB

parameter of the GRTDPRAUT command; this command updates authority to only one

Capture control library at a time.

The following table lists the authorities granted when you specify the

AUT(*APPLY) parameter on the GRTDPRAUT command.

Chapter 23. System commands for SQL replication (System i) 341

Table 50. Authorities granted with GRTDPRAUT AUT(*APPLY)

Library Object Type Authorizations

QSYS ASN *LIB *OBJOPR, *READ,

*EXECUTE

QSYS capctllib *LIB *OBJOPR, *READ,

*EXECUTE

QDP4 QZSNAPV2 *PGM *OBJOPR, *READ,

*OBMGT,

*OBJALTER,

*EXECUTE

capctllib1 IBMSNAP_REGISTER *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTERX *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTERX1 *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTERX2 *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTER_EXT *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_REGISTER_EXTX *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

capctllib1 IBMSNAP_SIGNAL *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

capctllib1 IBMSNAP_SIGNALX *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

capctllib1 IBMSNAP_PRUNE_LOCK *FILE *CHANGE

capctllib1 IBMSNAP_UOW *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

capctllib1 IBMSNAP_PRUNCNTL *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

capctllib1 IBMSNAP_AUTHTKN *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

capctllib1 IBMSNAP_AUTHTKNX *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

ASN IBMSNAP_SUBS_SET *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

ASN IBMSNAP_SUBS_SETX *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

ASN IBMSNAP_APPLYTRAIL *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

ASN IBMSNAP_APPLYTRACE *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

342 SQL Replication Guide and Reference

Table 50. Authorities granted with GRTDPRAUT AUT(*APPLY) (continued)

Library Object Type Authorizations

ASN IBMSNAP_APPLYTRACX *FILE *OBJOPR, *READ,

*UPD, *EXECUTE

ASN IBMSNAP_SUBS_COLS *FILE *USE

ASN IBMSNAP_SUBS_EVENT *FILE *USE

ASN IBMSNAP_SUBS_STMTS *FILE *USE

ASN IBMSNAP_SUBS_MEMBR *FILE *USE

ASN ASN4A* *SQLPKG *USE

ASN ASN4U* *SQLPKG *USE

ASN IBMSNAP_APPLY_JOB *FILE *OBJOPR, *READ,

*UPD, *ADD,

*EXECUTE

Note:

1. The entry capctllib in the Library column refers to the value passed to the CAPCTLLIB

parameter of the GRTDPRAUT command; this command updates authority to only one

Capture control library at a time.

Examples for GRTDPRAUT

The following examples illustrate how to use the GRTDPRAUT command.

Example 1:

To authorize a user named USER1 to define and modify registrations:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*REGISTRAR)

Example 2:

To authorize a user named USER1 to define and modify subscription sets:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*SUBSCRIBER)

Example 3:

To authorize a user named USER1 to run Capture programs:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*CAPTURE)

Example 4:

To authorize a user named USER1 to define and modify existing subscription sets

that are associated with Apply qualifier A1:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*SUBSCRIBER) APYQUAL(A1)

Example 5:

To authorize a user to run the Apply program on the control server system for all

subscription sets associated with Apply qualifier A1, where the target server is the

same as the control server:

1. Run the following command on the system where the Apply program will run:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*APPLY) APYQUAL(A1)

2. Run the appropriate GRTDPRAUT command on the source server system:

Chapter 23. System commands for SQL replication (System i) 343

v If the application server job on the source server used by the Apply program

runs under user profile USER1, run the following command on the source

server systems:

GRTDPRAUT CAPCTLLIB(ASN) USER(USER1) AUT(*APPLY) APYQUAL(A1)

v If the application server job on the source server used by the Apply program

runs under a different user profile, for example, QUSER, the command is:

GRTDPRAUT CAPCTLLIB(ASN) USER(QUSER) AUT(*APPLY) APYQUAL(A1)

INZDPRCAP: Reinitializing DPR Capture (System i)

Use the Initialize DPR Capture (INZDPRCAP) command to initialize the Capture

program by directing the Capture program to work with an updated list of source

tables.

Source tables under the control of a Capture program can change while the

Capture program is running. Use the INZDPRCAP command to ensure that the

Capture program processes the most up-to-date replication sources.

The Capture program must be running before you can run this command.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� INZDPRCAP

ASN

CAPCTLLIB

(

library-name

)

 �

�

�

*ALL

JRN(

library-name/journal-name

)

 ��

Table 51 lists the invocation parameters.

 Table 51. INZDPRCAP command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which

the Capture control tables reside.

ASN (default)

The Capture control tables reside in the ASN library. The ASN

library is the default library.

library-name

The name of a library that contains the Capture control tables.

344 SQL Replication Guide and Reference

Table 51. INZDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

JRN Specifies a subset of up to 50 journals that you want the Capture

program to work with. The Capture program starts processing all the

source tables that are currently journaled to this journal.

*ALL (default)

The Capture program works with all the journals.

library-name/journal-name

The qualified name of the journal that you want the Capture

program to work with.

Examples for INZDPRCAP

The following examples illustrate how to use the INZDPRCAP command.

Example 1:

To initialize a Capture program using the QSQJRN journal under a library named

TRAINING:

INZDPRCAP CAPCTLLIB(ASN) JRN(TRAINING/QSQJRN)

The Capture control tables reside in the default ASN schema.

Example 2:

To initialize a Capture program that works with all the journals:

INZDPRCAP CAPCTLLIB(BSN) JRN(*ALL)

The Capture control tables reside in a schema called BSN.

OVRDPRCAPA: Overriding DPR Capture attributes (System i)

Use the Override DPR Capture attributes (OVRDPRCAPA) command to alter the

behavior of a running Capture program.

This command alters the program behavior by overriding the values that were

passed to the Capture program from the IBMSNAP_CAPPARMS table or from the

STRDPRCAP command when the Capture program started.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

��

OVRDPRCAPA
 ASN

CAPCTLLIB

(

library-name

)

�

Chapter 23. System commands for SQL replication (System i) 345

�
*SAME

RETAIN

(

retention-limit

)

*SAME

FRCFRQ

(

force-frequency

)

 �

�
*SAME

CLNUPITV

(

prune-interval

)

*SAME

TRCLMT

(

trace-limit

)

 �

�
*SAME

MONLMT

(

monitor-limit

)

*SAME

MONITV

(

monitor-interval

)

 �

�
*SAME

MEMLMT

(

memory-limit

)

*SAME

PRUNE

(

*IMMED

)

*DELAYED

*NO

 ��

Table 52 lists the invocation parameters.

 Table 52. OVRDPRCAPA command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which

the Capture control tables reside. This library includes the

IBMSNAP_REGISTER table, which stores the registration information of

the source tables. This parameter is required.

ASN (default)

The Capture control tables reside in the ASN library.

library-name

The name of a library that contains the Capture control tables. You

can create this library using the CRTDPRTBL command with the

CAPCTLLIB parameter.

346 SQL Replication Guide and Reference

Table 52. OVRDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

RETAIN Specifies the number of minutes that data is retained in the change-data

(CD), UOW, IBMSNAP_SIGNAL), and IBMSNAP_AUTHTKN tables

before the data is removed.

This value works with the CLNUPITV parameter value from the Start

DPR Capture (STRDPRCAP) command. First, the Capture program

deletes any CD, UOW, IBMSNAP_SIGNAL, or IBMSNAP_AUTHTKN

rows that are older than the oldest currently running Apply program.

Then, a new or remaining row from the CD, UOW, IBMSNAP_SIGNAL,

or IBMSNAP_AUTHTKN table is subsequently deleted when its age

reaches the value of the RETAIN parameter.

Ensure that the Apply intervals are set to copy changed information

before the data reaches this RETAIN parameter value to prevent

inconsistent data in your tables. If the data becomes inconsistent, the

Apply program performs a full refresh.

The default is 10 080 minutes (seven days). The maximum is 35000000

minutes.

*SAME (default)

This value is not changed.

retention-limit

The new retention limit value.

FRCFRQ Specifies how often (from 30 to 600 seconds) the Capture program

writes changes to the change-data (CD) and unit-of-work (UOW) tables.

The Capture program makes these changes available to the Apply

program either when the buffers are filled or when the FRCFRQ time

limit expires, whichever is sooner. This parameter value affects the

amount of time that it takes for the Capture program to respond to

changes from the Initialize DPR Capture (INZDPRCAP) command.

Use this parameter to make changes more readily available to the Apply

program on servers with a low rate of source table changes. The

FRCFRQ parameter value is a global value used for all registered source

tables. Setting the FRCFRQ value to a low number can affect system

performance.

The default is 30 seconds.

*SAME (default)

This value is not changed.

force-frequency

The new number of seconds that the Capture program keeps CD

and UOW table changes in buffer space before making these

changes available to the Apply program.

Chapter 23. System commands for SQL replication (System i) 347

Table 52. OVRDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

CLNUPITV Specifies the maximum amount of time (in hours) before the Capture

program prunes old records from the change-data (CD), unit-of-work

(UOW), IBMSNAP_SIGNAL, IBMSNAP_CAPMON,

IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables.

This parameter works with the RETAIN parameter to control pruning of

the CD, UOW, IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN tables,

with the MONLMT parameter to control pruning of the

IBMSNAP_CAPMON table, and with the TRCLMT parameter to control

pruning of the IBMSNAP_CAPTRACE table.

(Use the STRDPRCAP command to set the RETAIN, MONLMT, and

TRCLMT parameters for a Capture program.)

The value of the CLNUPITV parameter is automatically converted from

hours to seconds and is stored in the PRUNE_INTERVAL column of the

IBMSNAP_CAPPARMS table.

*SAME (default)

This Capture attribute value is not changed.

prune-interval

The pruning interval expressed as a specific number of hours (1 to

100).

TRCLMT Specifies the trace limit, which indicates how frequently the

IBMSNAP_CAPTRACE table is pruned.

*SAME (default)

The Capture program continues using the current trace limit value.

trace-limit

The number of minutes between each pruning operation of the

IBMSNAP_CAPTRACE table.

MONLMT Specifies the monitor limit, which indicates how frequently the

IBMSNAP_CAPMON table is pruned.

*SAME (default)

The Capture program continues using the current monitor limit

value.

monitor-limit

The number of minutes between each pruning operation of the

IBMSNAP_CAPMON table.

MONITV Specifies the monitor interval (in seconds), which indicates how

frequently the Capture program inserts rows into the

IBMSNAP_CAPMON table.

*SAME (default)

The Capture program continues using the current monitor interval

value.

monitor-interval

The number of seconds between row insertion into the

IBMSNAP_CAPMON table. The monitor interval must be at least

120 seconds (two minutes). If you type a number that is less than

120, the command automatically sets this parameter value to 120.

348 SQL Replication Guide and Reference

Table 52. OVRDPRCAPA command parameter definitions for System i (continued)

Parameter Definition and prompts

MEMLMT Specifies the maximum size (in megabytes) of memory that the Capture

journal job can use.

*SAME (default)

The Capture program continues using the current memory limit

value.

memory-limit

The maximum number of megabytes for memory.

PRUNE Use this parameter to change the way that the Capture program prunes

rows from the change-data (CD), unit-of-work (UOW),

IBMSNAP_SIGNAL, IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and

IBMSNAP_AUTHTKN tables.

*SAME (default)

The Capture program continues using the pruning parameters that

you specified when you started the STRDPRCAP command.

*IMMED

The Capture program starts pruning the tables immediately,

regardless of the value of the CLNUPITV parameter that you

specified when you started the STRDPRCAP command.

*DELAYED

The Capture program prunes the old rows at the end of the

specified pruning interval.

 PRUNE(*DELAYED) does not affect the frequency of pruning if you

set the second part of the CLNUPITV parameter to *IMMED or

*DELAYED on the STRDPRCAP command. However,

PRUNE(*DELAYED) does initiate pruning if you set the second part

of the CLNUPITV parameter to *NO when you started the

STRDPRCAP command.

*NO

The Capture program does not initiate pruning. This value

overrides the CLNUPITV parameter setting from the STRDPRCAP

command.

Examples for OVRDPRCAPA

The following examples illustrate how to use the OVRDPRCAPA command.

Example 1:

To change the pruning parameters of the CD, UOW, IBMSNAP_SIGNAL,

IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables

(which reside under the default ASN library) and to change the

IBMSNAP_CAPMON monitor interval and memory limit of Capture journal jobs

in a running Capture program:

OVRDPRCAPA CAPCTLLIB(ASN) CLNUPITV(12) MONITV(600) MEMLMT(64)

Example 2:

To initiate pruning of the CD, UOW, IBMSNAP_SIGNAL, IBMSNAP_CAPMON,

IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables, which reside in the

BSN library:

OVRDPRCAPA CAPCTLLIB(BSN) PRUNE(*IMMED)

Chapter 23. System commands for SQL replication (System i) 349

RMVDPRREG: Removing a DPR registration (System i)

Use the Remove DPR registration (RMVDPRREG) command to remove a single

source table from the IBMSNAP_REGISTER table so that the source table is no

longer used for replication.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� RMVDPRREG SRCTBL(library-name/file-name) �

�
ASN

CAPCTLLIB

(

library-name

)

 ��

Table 53 lists the invocation parameters.

 Table 53. RMVDPRREG command parameter definitions for System i

Parameter Definition and prompts

SRCTBL Identifies the registration that you want to remove. This is a required

parameter.

library-name/file-name

The qualified name of the registered file.

CAPCTLLIB Specifies the Capture schema, which is the name of the library in which

the Capture control tables reside.

ASN (default)

The Capture control tables are in the ASN library.

library-name

The name of a library containing the Capture control tables.

Examples for RMVDPRREG

The following examples illustrate how to use the RMVDPRREG command.

Example 1:

To remove the registration for the source table named EMPLOYEE of the HR

library in the default ASN Capture schema:

RMVDPRREG SRCTBL(HR/EMPLOYEE)

Example 2:

To remove the registration for the source table named SALES of the DEPT library

under a Capture schema called BSN:

RMVDPRREG SRCTBL(DEPT/SALES) CAPCTLLIB(BSN)

350 SQL Replication Guide and Reference

RMVDPRSUB: Removing a DPR subscription set (System i)

Use the Remove DPR subscription set (RMVDPRSUB) command to remove a

subscription set. If you set the RMVMBRS parameter to *YES, this command

removes the subscription set and all of its members.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� RMVDPRSUB APYQUAL (apply-qualifier) SETNAME (set-name) �

�
*LOCAL

CTLSVR

(

rdb-name

)

*NO

RMVREG

(

*YES

)

 �

�
*NO

DLTTGTTBL

(

*YES

)

*NO

RMVMBRS

(

*YES

)

 ��

Table 54 lists the invocation parameters.

 Table 54. RMVDPRSUB command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that the Apply program uses to identify the

subscription set. This parameter is required.

apply-qualifier

The name of the Apply qualifier.

SETNAME Specifies the name of the subscription set. This parameter is required.

set-name

The name of the subscription set. You receive an error message if

you enter a subscription-set name that does not exist for the

specified Apply qualifier.

CTLSVR Specifies the relational database name of the system that contains the

Apply control tables.

*LOCAL (default)

The Apply control tables reside locally (on the machine from which

you are running the RMVDPRSUB command).

rdb-name

The name of the relational database where the Apply control tables

reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

Chapter 23. System commands for SQL replication (System i) 351

Table 54. RMVDPRSUB command parameter definitions for System i (continued)

Parameter Definition and prompts

RMVREG Specifies whether this command removes the registrations that are

associated with the target tables of all the subscription-set members in

the subscription set. Use this parameter only if you have set the

RMVMBRS parameter to *YES.

*NO (default)

The registrations are not removed.

*YES

The registrations are removed.

DLTTGTTBL Specifies whether this command drops the target tables of the

subscription-set members after the subscription set is removed. Use this

parameter only if you set the RMVMBRS parameter to *YES.

*NO (default)

The target tables are not dropped.

*YES

The target tables are dropped.

RMVMBRS Specifies whether this command removes the subscription set and all the

members in that subscription set.

*NO (default)

The subscription set is not removed if there are existing members in

the subscription set.

*YES

The subscription set and all its subscription-set members are

removed.

Examples for RMVDPRSUB

The following examples illustrate how to use the RMVDPRSUB command.

Example 1:

To remove a subscription set named SETHR that contains no subscription-set

members:

RMVDPRSUB APYQUAL(AQHR) SETNAME(SETHR)

Example 2:

To remove a subscription set named SETHR and all its subscription-set members:

RMVDPRSUB APYQUAL(AQHR) SETNAME(SETHR) RMVMBRS(*YES)

Example 3:

To remove a subscription set named SETHR, all its subscription-set members, and

the associated registrations:

RMVDPRSUB APYQUAL(AQHR) SETNAME(SETHR) RMVREG(*YES) RMVMBRS(*YES)

RMVDPRSUBM: Removing a DPR subscription-set member (System i)

Use the Remove DPR subscription-set member (RMVDPRSUBM) command to

remove a single subscription-set member from a subscription set.

352 SQL Replication Guide and Reference

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� RMVDPRSUBM APYQUAL (apply-qualifier) SETNAME (set-name) �

� TGTTBL (library-name/file-name)

*LOCAL

CTLSVR

(

rdb-name

)

 �

�
*NO

RMVREG

(

*YES

)

*NO

DLTTGTTBL

(

*YES

)

 ��

Table 55 lists the invocation parameters.

 Table 55. RMVDPRSUBM command parameter definitions for System i

Parameter Definition and prompts

APYQUAL Specifies the Apply qualifier that the Apply program uses to identify the

subscription set. This parameter is required.

apply-qualifier

The name of the Apply qualifier.

SETNAME Specifies the name of the subscription set. This parameter is required.

set-name

The name of the subscription set. You receive an error message if

you enter a subscription-set name that does not exist for the

specified Apply qualifier.

TGTTBL Specifies the target table that is registered for the subscription-set

member. This parameter is required.

library-name/file-name

The qualified name of the target table.

CTLSVR Specifies the relational database name of the system that contains the

Apply control tables.

*LOCAL (default)

The Apply control tables reside locally (on the machine from which

you are running the RMVDPRSUBM command).

rdb-name

The name of the relational database where the Apply control tables

reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

RMVREG Specifies whether this command removes the registration that is

associated with the target table for the subscription-set member.

*NO (default)

The registration is not removed.

*YES

The registration is removed.

Chapter 23. System commands for SQL replication (System i) 353

Table 55. RMVDPRSUBM command parameter definitions for System i (continued)

Parameter Definition and prompts

DLTTGTTBL Specifies whether this command drops the target table of the

subscription-set member after the subscription-set member is removed.

*NO (default)

The target table is not dropped.

*YES

The target table is dropped.

Examples for RMVDPRSUBM

The following examples illustrate how to use the RMVDPRSUBM command.

Example 1:

To remove a subscription-set member, which uses a target table named EMP, from

the SETEMP subscription set on the relational database named RMTRDB1:

RMVDPRSUBM APYQUAL(AQHR) SETNAME(SETEMP) TGTTBL(TGTEMP/EMP) CTLSVR(RMTRDB1)

Example 2:

To remove a subscription-set member from the SETHR subscription set, remove the

registration, and then drop the table:

RMVDPRSUBM APYQUAL(AQHR) SETNAME(SETHR) TGTTBL(TGTHR/YTDTAX) RMVREG(*YES)

 DLTTGTTBL(*YES)

RVKDPRAUT: Revoking authority (System i)

The Revoke DPR Authority (RVKDPRAUT) command revokes authority to the

replication control tables so that users can no longer define or modify replication

sources and subscription sets.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

��

�

RVKDPRAUT

USER(

user-name

)

ASN

*PUBLIC

CAPCTLLIB

(

library-name

)

��

354 SQL Replication Guide and Reference

Table 56 lists the invocation parameters.

 Table 56. RVKDPRAUT command parameter definitions for System i

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library under

which user authority is being revoked.

ASN (default)

The Capture control tables reside in the ASN library.

library-name

The name of the library that contains the replication control tables.

USER Specifies the users whose authority is revoked. This parameter is

required.

user-name

Specifies the names of up to 50 users whose authority is revoked.

*PUBLIC

Specifies that authority is revoked from all users without specific

authority, who are not on the authorization list, and whose group

profile does not have any authority.

Usage notes

The command returns an error message if any of the following conditions exist:

v A specified user does not exist.

v The user running the command is not authorized to the specified user profiles.

v The user running the command does not have permission to revoke authorities

to the DB2 DataPropagator for System i control tables.

v The DB2 DataPropagator for System i control tables do not exist.

v The Capture or Apply programs are running.

Examples for RVKDPRAUT

The following examples illustrate how to use the RVKDPRAUT command.

Example 1:

To revoke the authority from a user named HJONES to the control tables under the

ASN library:

RVKDPRAUT CAPCTLLIB(ASN) USER(HJONES)

Example 2:

To revoke the authority from all users that were not specified in the GRTDPRAUT

command so that they cannot access the control tables in the ASN library:

RVKDPRAUT CAPCTLLIB(ASN) USER(*PUBLIC)

STRDPRAPY: Starting Apply (System i)

Use the Start DPR Apply (STRDPRAPY) command to start an Apply program on

your local system. The Apply program continues to run until you stop it or until it

detects an unrecoverable error.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

Chapter 23. System commands for SQL replication (System i) 355

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

�� STRDPRAPY

*CURRENT

USER(

*JOBD

)

user-name

 �

�
*LIBL/QZSNDPR

JOBD(

library-name/job-description-name

)

 �

�
*USER

APYQUAL(

apply-qualifier

)

*LOCAL

CTLSVR(

rdb-name

)

 �

�
*NONE

TRACE(

*ERROR

)

*ALL

*PRF

*REWORK

 �

�
*NONE

FULLREFPGM(

library-name/program-name

)

 �

�
*NONE

SUBNFYPGM(

library-name/program-name

)

*YES

INACTMSG(

*NO

)

 �

�
*YES

ALWINACT(

*NO

)

6

DELAY(

delay-time

)

 �

�
300

RTYWAIT(

retry-wait-time

)

*NO

COPYONCE(

*YES

)

 �

�
*NO

TRLREUSE(

*YES

)

*NO

OPTSNGSET(

*YES

)

 ��

356 SQL Replication Guide and Reference

Table 57 lists the invocation parameters.

 Table 57. STRDPRAPY command parameter definitions for System i

Parameter Definition and prompts

USER Specifies the name of the user ID for which to start the Apply program.

When you run this command, you must be authorized (have *USE

rights) to the specified user profile; the Apply program runs under this

specified user profile.

The control tables are located on the relational database specified by the

CTLSVR parameter. The same control tables are used regardless of the

value specified on the USER parameter.

*CURRENT (default)

The user ID associated with the current job is the same user ID

associated with this Apply program.

*JOBD

The user ID specified in the job description associated with this

Apply program. The job description cannot specify USER(*RQD).

user-name

The user ID associated with this Apply program. The following

IBM-supplied objects are not valid on this parameter: QDBSHR,

QDFTOWN, QDOC, QLPAUTO, QLPINSTALL, QRJE, QSECOFR,

QSPL, QSYS, or QTSTRQS.

 When prompting on the STRDPRAPY command, you can press the

F4 key to see a list of users who defined subscription sets.

JOBD Specifies the name of the job description to use when submitting the

Apply program.

*LIBL/QZSNDPR (default)

The default job description provided with DB2 DataPropagator for

System i.

library-name/job-description-name

The name of the job description used for the Apply program.

APYQUAL Specifies the Apply qualifier to be used by the Apply program. All

subscriptions sets that are grouped together with this Apply qualifier are

run by the Apply program.

*USER (default)

The USER parameter value that you enter is used as the name of

the Apply qualifier.

apply-qualifier

The name used to group the subscription sets that are to be run by

this Apply program. You can specify a maximum of 18 characters

for the Apply qualifier name. This name follows the same naming

conventions as a relational database name.

 When prompting on the STRDPRAPY command, you can press the

F4 key to see a list of Apply qualifier names with existing

subscription sets.

Chapter 23. System commands for SQL replication (System i) 357

Table 57. STRDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

CTLSVR Specifies the relational database name of the system that contains the

Apply control tables.

*LOCAL (default)

The Apply control tables reside locally (on the machine where you

are running the STRDPRAPY command).

rdb-name

The name of the relational database where the Apply control tables

reside. You can use the Work with RDB Directory Entries

(WRKRDBDIRE) command to find this name.

 When prompting on the STRDPRAPY command, you can press the

F4 key to see a list of available RDB names.

TRACE Specifies whether the Apply program should generate a trace. The

Apply program writes the trace data to a spool file called QPZSNATRC.

*NONE (default)

No trace is generated.

*ERROR

The trace contains error information only.

*ALL

The trace contains error and execution flow information.

*PRF

The trace contains information that can be used to analyze

performance at different stages of the Apply program execution.

*REWORK

The trace contains information about rows that were reworked by

the Apply program.

FULLREFPGM Specifies whether the Apply program is to invoke an exit routine to

initialize a target table. When the Apply program is ready to perform a

full refresh of a target table, the Apply program invokes the specified

exit routine rather than performing the full refresh itself.

When a full-refresh exit routine is used by the Apply program, the value

of the ASNLOAD column in the IBMSNAP_APPLYTRAIL table is Y.

*NONE (default)

A full-refresh exit routine is not used.

library-name/program-name

The qualified name of the program that is called by the Apply

program performing a full refresh of a target table. For example, to

call program ASNLOAD in library DATAPROP, the qualified name

is DATAPROP/ASNLOAD.

358 SQL Replication Guide and Reference

Table 57. STRDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

SUBNFYPGM Specifies whether the Apply program is to invoke an exit routine when

the program finishes processing a subscription set. Input to the exit

routine includes the subscription set name, Apply qualifier, completion

status, and statistics with the number of rejects.

The notify program allows you to examine the unit-of-work (UOW)

table to determine when transactions have been rejected and when to

take further actions, such as issuing a message or generating an event.

*NONE (default)

An exit routine is not used.

library-name/program-name

The qualified name of the exit routine program called by the Apply

program when processing a subscription set. For example, to call

program APPLYDONE in library DATAPROP, the qualified name is

DATAPROP/APPLYDONE.

INACTMSG Specifies whether the Apply program is to generate a message whenever

the program completes its work and becomes inactive for a period of

time.

*YES (default)

The Apply program generates message ASN1044 before beginning a

period of inactivity. Message ASN1044 indicates how long the

Apply program remains inactive.

*NO

No message is generated.

ALWINACT Specifies whether the Apply program can run in an inactive (sleep)

state.

*YES (default)

The Apply program sleeps if there is nothing to process.

*NO

If the Apply program has nothing to process, the job that submitted

and started the Apply program ends.

DELAY Specifies the delay time (in seconds) at the end of each Apply program

cycle when continuous replication is used.

6 (default)

The delay time is six seconds.

delay-time

The delay time, entered as a number between 0 and 6 inclusive.

RTYWAIT Specifies how long (in seconds) the Apply program is to wait after it

encounters an error before it retries the operation that failed.

300 (default)

The retry wait time is 300 seconds (five minutes).

retry-wait-time

The wait time, entered as a number between 0 and 35000000

inclusive, before the Apply program retries the failed operation.

Chapter 23. System commands for SQL replication (System i) 359

Table 57. STRDPRAPY command parameter definitions for System i (continued)

Parameter Definition and prompts

COPYONCE Specifies whether the Apply program executes one copy cycle for each

subscription set that is eligible at the time the Apply program is

invoked. Then the Apply program terminates. An eligible subscription

set meets the following criteria:

v (ACTIVATE > 0) in the IBMSNAP_SUBS_SET table. When the

ACTIVATE column value is greater than zero, the subscription set is

active indefinitely or is used for a one-time-only subscription

processing.

v (REFRESH_TYPE = R or B) or (REFRESH_TYPE = E and the specified

event occurred). The REFRESH_TYPE column value is stored in the

IBMSNAP_SUBS_SET table.

The MAX_SYNCH_MINUTES limit from the IBMSNAP_SUBS_SET table

and the END_OF_PERIOD timestamp from the

IBMSNAP_SUBS_EVENT table are honored if specified.

*NO (default)

The Apply program does not execute one copy cycle for each

eligible subscription set.

*YES The Apply program executes one copy cycle for each eligible

subscription set and then terminates.

TRLREUSE Specifies whether the Apply program empties the

IBMSNAP_APPLYTRAIL table when the Apply program starts.

*NO (default)

The Apply program does not empty the

IBMSNAP_APPLYTRAIL table during program startup.

*YES The Apply program empties the IBMSNAP_APPLYTRAIL table

during program startup.

OPTSNGSET Specifies whether the performance of the Apply program is optimized if

only one subscription set is processed. This parameter does not pertain

to replica target tables.

If you set this parameter to *YES, the Apply program fetches the

members and columns of a subscription set only once and reuses this

fetched information when processing the same subscription set in two or

more consecutive processing cycles.

*NO (default)

The performance of the Apply program is not optimized if only

one subscription set is processed.

*YES The performance of the Apply program is optimized if only

one subscription set is processed. The Apply program reuses

the subscription set information during subsequent processing

cycles, requiring fewer CPU resources and improving

throughput rates.

Usage notes

You can set up the system to start the subsystem automatically by adding the command that is referred

to in the QSTRUPPGM value on your system. If you use the QDP4/QZSNDPR subsystem, it is started as

part of the STRDPRAPY command processing.

360 SQL Replication Guide and Reference

If the relational database (RDB) specified by the CTLSVR parameter is a DB2 for i5/OS database, the

tables on the server are found in the ASN library. If the RDB is not a DB2 for i5/OS database, you can

access the tables by using ASN as the qualifier.

Error conditions when starting the Apply program

The STRDPRAPY command issues an error message if any of the following conditions occur:

v If the user does not exist.

v If the user running the command is not authorized to the user profile specified on the command or the

job description.

v If an instance of the Apply program is already active on the local system for this combination of Apply

qualifier and control server.

v If the RDB name specified by the CTLSVR parameter is not in the relational database directory.

v If the control tables do not exist on the RDB specified by the CTLSVR parameter.

v If no subscription sets are defined for the Apply qualifier specified by the APYQUAL parameter.

An Apply program must be started for each unique Apply qualifier in every IBMSNAP_SUBS_SET table.

You can start multiple Apply programs by specifying a different Apply qualifier each time that you issue

the STRDPRAPY command. These Apply programs will run under the same user profile.

Identifying Apply program jobs

Each Apply program is identified using both the Apply qualifier and the control server names. When

run, the job started for the Apply program does not have sufficient external attributes to correctly identify

which Apply program is associated with a particular Apply qualifier and control server combination.

Therefore, the job is identified in the following way:

v The job is started under the user profile associated with the USER parameter.

v The first 10 characters of the Apply qualifier are truncated and become the job name.

v DB2 DataPropagator for System i maintains an IBMSNAP_APPLY_JOB table named in the ASN library

on the local system. The table maps the Apply qualifier and control server values to the correct Apply

program job.

v You can view the job log. The Apply qualifier and control server names are used in the call to the

Apply program.

In general, you can identify the correct Apply program job by looking at the list of jobs running in the

QZSNDPR subsystem if both:

v The first 10 characters of the Apply qualifier name are unique.

v The Apply program is started for the local control server only.

Examples for STRDPRAPY

The following examples illustrate how to use the STRDPRAPY command.

Example 1:

To start the Apply program that uses the AQHR Apply qualifier and Apply control tables that reside

locally and to generate a trace file that contains error and execution flow information:

STRDPRAPY APYQUAL(AQHR) CTLSVR(*LOCAL) TRACE(*ALL)

Example 2:

To start an Apply program with Apply control tables that reside locally and to specify that the job that

started this Apply program automatically end when the Apply program has nothing left to process:

STRDPRAPY APYQUAL(AQHR) CTLSVR(*LOCAL) ALWINACT(*NO)

Chapter 23. System commands for SQL replication (System i) 361

Example 3:

To start an Apply program that empties the IBMSNAP_APPLYTRAIL table during program startup:

STRDPRAPY APYQUAL(AQHR) CTLSVR(*LOCAL) TRLREUSE(*YES)

Example 4:

To start an Apply program with all default values:

STRDPRAPY

STRDPRCAP: Starting Capture (System i)

Use the Start DPR Capture (STRDPRCAP) command to start capturing changes to

System i database tables on System i servers.

Because this command processes all replication sources in the

IBMSNAP_REGISTER table, make sure that you are running this command with

the proper authority.

After you start the Capture program, it runs continuously until you stop it or it

detects an unrecoverable error.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� STRDPRCAP

*YES

RESTART(

*NO

)

 �

�
*LIBL/QZSNDPR

JOBD(

library-name/job-description-name

)

 �

�
120

WAIT

(

value

)

 �

�
*DFT

*IMMED

CLNUPITV

(

hours-to-wait

*DELAYED

)

*NO

 �

�
ASN

CAPCTLLIB

(

library-name

)

 �

362 SQL Replication Guide and Reference

�

�

*ALL

(1)

JRN

(

library-name/journal-name

)

 �

�
*DFT

TRCLMT

(

trace-limit

)

*DFT

MONLMT

(

monitor-limit

)

 �

�
*DFT

MONITV

(

monitor-interval

)

*DFT

MEMLMT

(

memory-limit

)

 �

�
*DFT

RETAIN

(

retention-limit

)

*DFT

LAG

(

lag-limit

)

 �

�
*DFT

FRCFRQ

(

force-frequency

)

 ��

Notes:

1 You can specify up to 50 journals.

Table 58 lists the invocation parameters.

 Table 58. STRDPRCAP command parameter definitions for System i

Parameter Definition and prompts

RESTART Specifies how the Capture program handles warm and cold starts.

*YES (default)

The Capture program continues processing the changes from the

point where it was when it ended previously. This is also known

as a warm start and is the normal mode of operation.

*NO

The Capture program removes all information from the

change-data (CD) tables. The Capture program also removes all

information from the unit-of-work (UOW) table when you specify

JRN(*ALL).

 All subscriptions for affected source tables are fully refreshed

before change capturing resumes. This process is also known as a

cold start.

 By specifying RESTART(*NO) and JRN(library-name/journal-name),

you can cold start the Capture program for specified journals.

JOBD Specifies the name of the job description to use when submitting the

Capture program.

*LIBL/QZSNDPR (default)

Specifies the default job description provided with DB2

DataPropagator for System i.

library-name/job-description-name

The name of the job description used for the Capture program.

Chapter 23. System commands for SQL replication (System i) 363

Table 58. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

WAIT Specifies the maximum number of seconds (60 to 6 000) to wait before

the Capture program checks its status. You can use this value to tune

the responsiveness of the Capture program.

A low value reduces the time that the Capture program takes before

ending or initializing, but can have a negative effect on system

performance. A higher value increases the time that the Capture

program takes before ending or initializing, but can improve system

performance. A value that is too high can result in decreased

responsiveness while the Capture program is performing periodic

processing. The amount of the decrease in responsiveness depends on

the amount of change activity to source tables and the amount of

other work occurring on the system.

120 (default)

The Capture program waits 120 seconds.

value

The maximum number of seconds that the Capture program

waits.

CLNUPITV Specifies the maximum amount of time (in hours) before the Capture

program prunes old records from the change-data (CD), unit-of-work

(UOW), IBMSNAP_SIGNAL, IBMSNAP_CAPMON,

IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables.

This parameter works with the RETAIN parameter to control pruning

of the CD, UOW, IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN

tables, with the MONLMT parameter to control pruning of the

IBMSNAP_CAPMON table, and with the TRCLMT parameter to

control pruning of the IBMSNAP_CAPTRACE table.

(Use the STRDPRCAP command to set the RETAIN, MONLMT, and

TRCLMT parameters for a Capture program. Use the CHGDPRCAPA

or OVRDPRCAPA command to change these parameter settings.)

There are two parts to the CLNUPITV parameter:

*DFT (default)

The Capture program uses the value of the PRUNE_INTERVAL

column from the IBMSNAP_CAPPARMS table.

hours-to-wait

The pruning interval expressed as a specific number of hours (1

to 100).

*IMMED (default)

The Capture program prunes old records at the beginning of the

specified interval (or immediately), and at each interval thereafter.

*DELAYED

The Capture program prunes old records at the end of the

specified interval, and at each interval thereafter.

*NO

The Capture program does not prune records.

364 SQL Replication Guide and Reference

Table 58. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

CAPCTLLIB Specifies the Capture schema, which is the name of the library in

which the Capture control tables reside.

ASN (default)

The default library in which the Capture control tables reside.

library-name

The name of the library in which the Capture control tables

reside.

JRN Specifies a subset of up to 50 journals that you want the Capture

program to work with. The Capture program starts processing all the

source tables that are currently journaled to this journal.

*ALL (default)

The Capture program starts working with all of the journals that

have any source tables journaled to them.

library-name/journal-name

The qualified name of the journal that you want the Capture

program to work with. When entering multiple journals, separate

the journals with spaces.

TRCLMT Specifies the trace limit (in minutes). The Capture program prunes any

IBMSNAP_CAPTRACE table rows that are older than the trace limit.

The default is 10 080 minutes (seven days of trace entries).

*DFT (default)

The Capture program uses the TRACE_LIMIT column value from

the IBMSNAP_CAPPARMS table.

trace-limit

The number of minutes of trace data kept in the

IBMSNAP_CAPTRACE table after pruning.

MONLMT Specifies the monitor limit (in minutes). The Capture programs prunes

any IBMSNAP_CAPMON table rows that are older than the monitor

limit. The default is 10 080 minutes (seven days of monitor entries).

*DFT (default)

The Capture program uses the MONITOR_LIMIT column value

from the IBMSNAP_CAPPARMS table.

monitor-limit

The number of minutes of monitor data kept in the

IBMSNAP_CAPMON table after pruning.

Chapter 23. System commands for SQL replication (System i) 365

Table 58. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

MONITV Specifies how frequently (in seconds) the Capture program inserts

rows into the IBMSNAP_CAPMON table. The default is 300 seconds

(five minutes).

*DFT (default)

The Capture program uses the MONITOR_INTERVAL column

value from the IBMSNAP_CAPPARMS table.

monitor-interval

The number of seconds between row insertion into the

IBMSNAP_CAPMON table. The monitor interval must be at least

120 seconds (two minutes). If you type a number that is less than

120, this parameter value is set to 120.

MEMLMT Specifies the maximum size (in megabytes) of memory that the

Capture journal job can use. The default is 32 megabytes.

*DFT (default)

The Capture program uses the MEMORY_LIMIT column value

from the IBMSNAP_CAPPARMS table.

memory-limit

The maximum number of megabytes for memory.

RETAIN Specifies the new retention limit, which is the number of minutes that

data is retained in the change-data (CD), unit-of-work (UOW),

IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN tables before it is

removed. This value works with the CLNUPITV parameter value.

When the CLNUPITV value is reached, the CD, UOW,

IBMSNAP_SIGNAL, and IBMSNAP_AUTHTKN data is removed if

this data is older than the retention limit.

Ensure that the Apply intervals are set to copy changed information

before the data reaches this RETAIN parameter value to prevent

inconsistent data in your tables. If the data becomes inconsistent, the

Apply program performs a full refresh.

The default is 10 080 minutes (seven days). The maximum is 35000000

minutes.

*DFT (default)

The Capture program uses the RETENTION_LIMIT column value

from the IBMSNAP_CAPPARMS table.

retention-limit

The number of minutes that the CD, UOW, IBMSNAP_SIGNAL,

and IBMSNAP_AUTHTKN data is retained.

366 SQL Replication Guide and Reference

Table 58. STRDPRCAP command parameter definitions for System i (continued)

Parameter Definition and prompts

LAG Specifies the new lag limit, which is the number of minutes that the

Capture program can fall behind in processing before restarting.

When the lag limit is reached (that is, when the timestamp of the

journal entry is older than the current timestamp minus the lag limit),

the Capture program initiates a cold start for the tables that it is

processing in that journal. The Apply program then performs a full

refresh to provide the Capture program with a new starting point.

The default is 10 080 minutes (seven days). The maximum is 35000000

minutes.

*DFT (default)

The Capture program uses the LAG_LIMIT column value from

the IBMSNAP_CAPPARMS table.

lag-limit

The number of minutes that the Capture program is allowed to

fall behind.

FRCFRQ Specifies how often (30 to 600 seconds) that the Capture program

writes changes to the change-data (CD) and unit-of-work (UOW)

tables. The Capture program makes these changes available to the

Apply program either when the buffers are filled or when the

FRCFRQ time limit expires, whichever is sooner.

Use this parameter to make changes more readily available to the

Apply program on servers with a low rate of source table changes.

The FRCFRQ parameter value is a global value used for all defined

source tables. Setting the FRCFRQ value to a low number can affect

system performance.

The default is 30 seconds.

*DFT (default)

The Capture program uses the COMMIT_INTERVAL column

value from the IBMSNAP_CAPPARMS table.

force-frequency

The number of seconds that the Capture program keeps CD and

UOW table changes in buffer space before making these changes

available to the Apply program.

Usage notes

The CLNUPITV parameter on the STRDPRCAP command specifies the maximum

number of hours that the Capture program waits before pruning old records from

the change-data (CD), unit-of-work (UOW), IBMSNAP_SIGNAL,

IBMSNAP_CAPMON, IBMSNAP_CAPTRACE, and IBMSNAP_AUTHTKN tables.

You can run the STRDPRCAP command manually, or you can run the command

automatically as a part of the initial program load (IPL startup program).

If the job description specified with the JOBD parameter uses job queue

QDP4/QZSNDPR and the DB2 DataPropagator for System i subsystem is not

active, the STRDPRCAP command starts the subsystem. If the job description is

Chapter 23. System commands for SQL replication (System i) 367

defined to use a different job queue and subsystem, you must start this subsystem

manually with the Start Subsystem (STRSBS) command either before or after

running the STRDPRCAP command:

STRSBS QDP4/QZSNDPR

You can set up the system to start the subsystem automatically by adding the

STRSBS command to the program that is referred to in the QSTRUPPGM system

value on your system.

Restarting Capture using warm or cold starts

The value of the RESTART parameter on the STRDPRCAP command controls how

the Capture program handles warm and cold starts.

Warm start process

Warm start information is saved in most cases. Occasionally, warm start

information is not saved. In this case, the Capture program uses the CD

tables, UOW table, or the IBMSNAP_PRUNCNTL table to resynchronize to

the time that it was stopped.

Automatic cold starts

Sometimes the Capture program automatically switches to a cold start,

even if you specified a warm start. On System i systems, cold starts work

on a journal-by-journal basis. So, for example, if a journal exceeds the lag

limit, all replication sources using that journal are started in cold mode,

whereas replication sources using a different journal are not started in cold

mode.

Examples for STRDPRCAP

The following examples illustrate how to use the STRDPRCAP command.

Example 1:

To initiate a warm start of a Capture program for two different journals:

STRDPRCAP RESTART(*YES) JRN(HR/QSQJRN ACCTS/QSQJRN)

Example 2:

To start a Capture program for one specified journal:

STRDPRCAP CAPCTLLIB(BSN) JRN(MARKETING/QSQJRN)

The Capture control tables reside under a library named BSN.

Example 3:

To start a Capture program without pruning for two journals:

STRDPRCAP RESTART(*YES) CLNUPITV(*DFT *NO) JRN(HR/QSQJRN ACCTS/QSQJRN)

Example 4:

To start a Capture program for one specified journal under the default Capture

control library and to change the default trace limit pruning, monitor limit

pruning, IBMSNAP_CAPMON table insertion, and memory limit parameters:

STRDPRCAP CAPCTLLIB(ASN) JRN(SALES/QSQJRN) TRCLMT(1440) MONLMT(1440)

 MONITV(3600) MEMLMT(64)

368 SQL Replication Guide and Reference

Example 5:

To initiate a cold start of a Capture program:

STRDPRCAP RESTART(*NO)

WRKDPRTRC: Using the DPR trace facility (System i)

Use the DPR trace (WRKDPRTRC) command only if you are instructed to use the

command by IBM software support. The command runs the trace facility to log

program flow information for specified Apply programs.

After you type the command name on the command line, you can press the F4 key

to display the command syntax.

To display a complete description of this command and all of its parameters, move

the cursor to the command at the top of the screen and press the F1 key. To

display a description of a specific parameter, place the cursor on that parameter

and press the F1 key.

Syntax

�� WRKDPRTRC

*ON

OPTION

(

*OFF

)

*CHG

*FMT

*STC

*STCG

*STCL

*DMP

*FLW

FMTOPT

(

*FMT

)

*V7FMT

 �

�
*

BUFSZ

(

buffer-size

)

*NONE

FILE

(

file-name

)

 �

�
*

FSZ

(

file-size

)

ID

(

*APPLY

)
 �

�
APYQUAL

(

apply-qualifier

)

�

(1)

DIALVL

(

1

)

2

3

4

*SAME

 �

�

�

(2)

*ALL

FNCLVL

(

function-name/diagnostic-level

)

component-name/diagnostic-level

 ��

Notes:

1 You can specify multiple values.

2 You can specify up to 20 functions or components.

Chapter 23. System commands for SQL replication (System i) 369

1
1

Table 59 lists the invocation parameters.

 Table 59. WRKDPRTRC command parameter definitions for System i

Parameter Definition

OPTION Specify one trace facility function.

*ON (default)

Turn the trace facility on. This option automatically

creates a shared memory segment for tracing.

*OFF

Turn the trace facility off.

*CHG

Change the values of the trace facility parameters.

*FMT

Format the trace facility output from shared

memory.

*STC

Display the status of a trace facility. This status

information includes the trace version, application

version, number of entries, buffer size, amount of

buffer used, status code, and program timestamp.

 This parameter option is equivalent to the stat

option of the asntrc command used on UNIX,

Windows, and z/OS operating systems.

*STCG

Display the status of a trace facility in Replication

Center readable format.

*STCL

Display the status of a trace facility with additional

version level information. This additional

information includes the service levels of each

module in the application and appears as long

strings of text.

 This parameter option is equivalent to the statlong

option of the asntrc command used on UNIX,

Windows, and z/OS operating systems.

*DMP

Write the current contents of the trace buffer to a

file.

When prompting on the WRKDPRTRC command, you

can press the F4 key to see a list of trace options.

370 SQL Replication Guide and Reference

Table 59. WRKDPRTRC command parameter definitions for System i (continued)

Parameter Definition

FMTOPT Specifies the options of the format ID and is used with

the OPTION(*FMT) parameter.

*FLW (default)

Display the flow of the function calls.

*FMT

Display the format of the trace buffer or trace file.

Shows all the detailed data.

*V7FMT

Format the trace buffer or trace file information in

Version 7 format.

When prompting on the WRKDPRTRC command, you

can press the F4 key to see a list of format options.

BUFSZ Specifies the size (in bytes) of the trace buffer. You can

enter an M, K, or G after the number to indicate

megabytes, kilobytes, or gigabytes, respectively.

The default is two megabytes.

* (default)

Use the two megabyte default size.

buffer-size

The buffer size in bytes.

FILE Specifies whether the trace output is written to a file.

*NONE (default)

The trace output goes to shared memory only.

file-name

The name of the output file. If you are using the

OPTION(*DMP) parameter, this file name

represents the name of a dump file.

FSZ Specifies the size (in bytes) of the file where the trace

data is stored. You can enter an M, K, or G after the

number to indicate megabytes, kilobytes, or gigabytes,

respectively.

The default is two gigabytes.

* (default)

Use the two gigabyte default size.

file-size

The file size in bytes.

ID Specifies the type of program to be traced.

*APPLY (default)

An Apply program trace.

APYQUAL Specifies the name of Apply program to be traced.

apply-qualifier

The name of the Apply qualifier.

Chapter 23. System commands for SQL replication (System i) 371

Table 59. WRKDPRTRC command parameter definitions for System i (continued)

Parameter Definition

DIALVL Specifies the types of trace records to be recorded by the

trace facility. Trace records are categorized by a

diagnostic mask number:

1 Flow data, which includes the entry and exit

points of functions.

2 Basic data, which includes all major events

encountered by the trace facility.

3 Detailed data, which includes the major events

with descriptions.

4 Performance data.

*SAME

This command uses the diagnostic level

settings from the previous trace facility.

You can enter one or more diagnostic mask numbers.

The numbers that you enter must be in ascending order.

Do not type spaces between the numbers.

Important: The number levels are not inclusive.

When you start the trace facility, the default is

DIALVL(1234). When you subsequently invoke the trace

facility, the default is *SAME.

When prompting on the WRKDPRTRC command, you

can press the F4 key to see a list of available diagnostic

levels.

FNCLVL Specifies if a particular function or component identifier

is to be traced.

*ALL (default)

All functions and components are included in the

trace facility.

function-name/diagnostic-level

The name of the function to be traced and the

corresponding diagnostic mask numbers.

component-name/diagnostic-level

The name of the component to be traced and the

corresponding diagnostic mask numbers.

You can enter up to 20 function or component names.

Examples for WRKDPRTRC

The following examples illustrate how to use the WRKDPRTRC command.

Example 1:

To start an Apply trace on the Apply qualifier AQ1 for all functions and

components with output written to a file called TRCFILE:

WRKDPRTRC OPTION(*ON) FILE(TRCFILE) ID(*APPLY) APYQUAL(AQ1)

Example 2:

372 SQL Replication Guide and Reference

To end an Apply trace on the Apply qualifier AQ1:

WRKDPRTRC OPTION(*OFF) ID(*APPLY) APYQUAL(AQ1)

Example 3:

To change an Apply trace on the Apply qualifier AQ1 to diagnostic levels 3 and 4

(detailed and performance data) for all functions and components:

WRKDPRTRC OPTION(*CHG) ID(*APPLY) APYQUAL(AQ1) DIALVL(34)

Example 4:

To display the status of an Apply trace on the Apply qualifier AQ1:

WRKDPRTRC OPTION(*STC) ID(*APPLY) APYQUAL(AQ1)

Example 5:

To display the function calls on the Apply qualifier AQ1 at diagnostic levels 3 and

4:

WRKDPRTRC OPTION(*FMT) FMTOPT(*FLW) ID(*APPLY) APYQUAL(AQ1) DIALVL (34)

Example 6:

To write the Apply trace information of the Apply qualifier AQ1 to a dump file

named DMPFILE:

WRKDPRTRC OPTION(*DMP) FILE(DMPFILE) ID(*APPLY) APYQUAL(AQ1)

Chapter 23. System commands for SQL replication (System i) 373

374 SQL Replication Guide and Reference

Chapter 24. SQL replication table structures

Relational database tables are used to store information for the replication program

at each server: Capture control server, Apply control server, Monitor control server,

and target server. These tables are called control tables.

The following topics describe the structure of the control tables and other tables

that are specific to SQL replication.

Tables at the Capture control server

The tables stored at the Capture control server contain information about your

registered sources and how the Capture program or triggers process the sources.

For Linux, UNIX, Windows, and z/OS, you build these control tables to your

specifications using the ASNCLP command-line program or Replication Center. For

System i, these control tables are created automatically for you in the ASN library

when you install DataPropagator for System i. You can use the System i commands

to create Capture control tables in alternate capture schemas.

Table 60 describes the control tables at the Capture server.

 Table 60. Quick reference for tables used at the Capture control server

Table name Description

“IBMSNAP_CAPSCHEMAS table”

on page 382

Contains the names of all Capture schemas

IBMSNAP_AUTHTKN table (System

i)

Contains information to support update-anywhere

replication.

“IBMSNAP_CAPENQ table (z/OS,

Linux, UNIX, Windows)” on page

376

For each Capture schema, this table is used to ensure

that:

v

For DB2 for Linux, UNIX and

Windows, only one Capture program is running

per database.

v

For non-data-sharing DB2 for

z/OS, only one Capture program is running per

subsystem.

v

For data-sharing DB2 for

z/OS, only one Capture program is running per

data-sharing group.

“CD table” on page 386 Contains information about changes that occur at the

source. This table is not created until you register a

replication source.

“CCD table (non-DB2)” on page 385 Contains information about changes that occur at the

source and additional columns to identify the

sequential ordering of those changes.

“IBMSNAP_CAPMON table” on

page 377

Contains operational statistics that help monitor the

progress of the Capture program.

“IBMSNAP_CAPPARMS table” on

page 379

Contains parameters that you can specify to control

the operations of the Capture program.

© Copyright IBM Corp. 1994, 2007 375

Table 60. Quick reference for tables used at the Capture control server (continued)

Table name Description

“IBMSNAP_CAPTRACE table” on

page 384

Contains messages from the Capture program.

“IBMQREP_IGNTRAN table” on

page 387

Can be used to inform the Capture program about

transactions that you do not want to be captured

from the DB2 recovery log.

“IBMQREP_IGNTRANTRC table” on

page 388

Records information about transactions that were

specified to be ignored.

“IBMSNAP_PARTITIONINFO table”

on page 389

Contains information that enables the Capture

program to restart from the earliest required log

sequence number.

“IBMSNAP_PRUNE_LOCK table”

on page 392

Used to serialize the Capture program’s access of CD

tables during a cold start or during retention-limit

pruning (pruning when the retention limit is reached

or exceeded).

“IBMSNAP_PRUNE_SET table” on

page 392

Coordinates the pruning of CD tables.

“IBMSNAP_PRUNCNTL table” on

page 389

Coordinates synchpoint updates between the Capture

and Apply programs.

IBMSNAP_REG_EXT (System i)

An extension of the register table. Contains additional

information about replication sources, such as the

journal name and the remote source table’s database

entry name.

“IBMSNAP_REGISTER table” on

page 394

Contains information about replication sources, such

as the names of the replication source tables, their

attributes, and their corresponding CD and CCD

table names.

“IBMSNAP_REG_SYNCH table

(non-DB2 relational)” on page 401

Used when replicating from a non-DB2 relational

data source. An update trigger on this table simulates

the Capture program by initiating an update of the

SYNCHPOINT value for all the rows in the register

table before the Apply program reads the information

from the register table.

“IBMSNAP_RESTART table” on

page 401

Contains information that enables the Capture

program to resume capturing from the correct point

in the log or journal. For System i environments, this

table is also used to determine the starting time of

theRCVJRNE (Receive Journal Entry) command.

“IBMSNAP_SEQTABLE table

(Informix)” on page 403

Contains a sequence of unique numbers that SQL

replication uses as the equivalent of log sequence

numbers for Informix tables.

“IBMSNAP_SIGNAL table” on page

404

Contains all signals used to prompt the Capture

program. These signals can be sent manually or by

the Apply program.

“IBMSNAP_UOW table” on page

406

Provides additional information about transactions

that have been committed to a source table.

IBMSNAP_CAPENQ table (z/OS, Linux, UNIX, Windows)

For a single Capture schema, the IBMSNAP_CAPENQ table ensures that only one

Capture program is running per database, subsystem, or data-sharing group.

376 SQL Replication Guide and Reference

Server: Capture control server

Default schema: ASN

Index: None

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

The IBMSNAP_CAPENQ table is not used on non-DB2 relational or System i

servers.

While running, the Capture program exclusively locks this table.

Table 61 provides a brief description of the column in the IBMSNAP_CAPENQ

table.

 Table 61. Column in the IBMSNAP_CAPENQ table

Column name Description

LOCKNAME Data type: CHAR(9); Nullable: Yes

This column contains no data.

IBMSNAP_CAPMON table

The Capture program inserts a row in the IBMSNAP_CAPMON table after each

interval to provide you with operational statistics. The Replication Center uses

information in this table (and in other tables) so that you can monitor the status of

the Capture program.

Server: Capture control server

Default schema: ASN

Index: MONITOR_TIME

In the IBMSNAP_CAPPARMS table, the value that you specify for

MONITOR_INTERVAL indicates how frequently the Capture program makes

inserts into the Capture monitor table, and the value that you specify for the

MONITOR_LIMIT indicates the number of minutes that rows remain in the table

before they are eligible for pruning.

Table 62 provides a brief description of the columns in the IBMSNAP_CAPMON

table.

 Table 62. Columns in the IBMSNAP_CAPMON table

Column name Description

MONITOR_TIME Data type: TIMESTAMP; Nullable: No

The timestamp (at the Capture control server) when the row was inserted into

this table.

RESTART_TIME Data type: TIMESTAMP; Nullable: No

The timestamp when the current invocation of the Capture program was

restarted.

Chapter 24. SQL replication table structures 377

Table 62. Columns in the IBMSNAP_CAPMON table (continued)

Column name Description

CURRENT_MEMORY Data type: INT; Nullable: No

The amount of memory (in bytes) that the Capture program used.

CD_ROWS_INSERTED Data type: INT; Nullable: No

The number of rows that the Capture program inserted into the CD table for all

source tables.

RECAP_ROWS_SKIPPED Data type: INT; Nullable: No

For update-anywhere replication, this is the number of rows that the Capture

program processed but did not insert into the CD table. The rows were skipped

because the registration was defined for the Capture program to not recapture

changes that have been replicated to this table that did not originate at this

source server.

TRIGR_ROWS_SKIPPED Data type: INT; Nullable: No

The number of rows that the Capture program processed but did not insert into

the CD table. The rows were skipped because you defined a trigger on the

registration for the Capture program to suppress certain rows.

CHG_ROWS_SKIPPED Data type: INT; Nullable: No

The number of rows that the Capture program processed but did not insert into

the CD table. The rows were skipped because the registration was defined for

the Capture program to only capture changes that occur in registered columns.

TRANS_PROCESSED Data type: INT; Nullable: No

The number of transactions at the source system that the Capture program

processed.

TRANS_SPILLED Data type: INT; Nullable: No

The number of transactions at the source system that the Capture program

spilled to disk due to memory restrictions.

MAX_TRAN_SIZE Data type: INT; Nullable: No

The largest transaction that occurred at the source system. Knowing the

transaction size might influence you to change the memory parameters.

LOCKING_RETRIES Data type: INT; Nullable: No

The number of times a deadlock caused rework.

JRN_LIB (System i) Data type: CHAR(10); Nullable: Yes

The library name of the journal that the Capture program

was processing.

JRN_NAME (System i) Data type: CHAR(10); Nullable: Yes

The name of the journal that the Capture program was processing.

LOGREADLIMIT Data type: INT; Nullable: No

The number of times that the Capture program paused from reading log records

because 1000 records had been read, but no completed transactions had yet been

encountered within those 1000 records.

378 SQL Replication Guide and Reference

Table 62. Columns in the IBMSNAP_CAPMON table (continued)

Column name Description

CAPTURE_IDLE Data type: INT; Nullable: No

The number of times that the Capture program slept because it didn’t have any

work to process.

SYNCHTIME Data type: TIMESTAMP; Nullable: No

The current value of SYNCHTIME read from the global row of the register table

when the monitor record was inserted into this table.

IBMSNAP_CAPPARMS table

The IBMSNAP_CAPPARMS table contains parameters that you can modify to

control the operations of the Capture program. You can define these parameters to

set values such as the length of time that the Capture program retains data in the

CD and UOW tables before pruning and the amount of time that the Capture

program is allowed to lag in processing log records. If you make changes to the

parameters in this table, the Capture program reads your modifications only

during startup.

Server: Capture control server

Default schema: ASN

Index: None

This table contains information that you can update by using SQL.

Table 63 provides a brief description of the columns in the IBMSNAP_CAPPARMS

table.

 Table 63. Columns in the IBMSNAP_CAPPARMS table

Column name Description

RETENTION_LIMIT Data type: INT; Nullable: Yes

The length of time that rows remain in the CD, UOW, and signal tables before

they become eligible for pruning, in cases where they have not been pruned

based on the normal criteria. Normally, CD and UOW rows are pruned after

they are applied to all targets, and signal rows are pruned when their cycle is

complete (SIGNAL_STATE = C).

LAG_LIMIT Data type: INT; Nullable: Yes

The number of minutes that the Capture program is allowed to lag when

processing log records before it shuts itself down. During periods of high update

frequency, full refreshes can be more economical than updates.

COMMIT_INTERVAL Data type: INT; Nullable: Yes

How often, in seconds, the Capture program commits data to the Capture

control tables, including the UOW and CD tables. This value should be less than

the DB2 lockout value to prevent contention between the Capture and pruning

threads.

Chapter 24. SQL replication table structures 379

Table 63. Columns in the IBMSNAP_CAPPARMS table (continued)

Column name Description

PRUNE_INTERVAL Data type: INT; Nullable: Yes

How often, in seconds, the Capture program automatically prunes

(AUTOPRUNE = Y) rows in the CD, UOW, signal, trace, and Capture monitor

tables that are no longer needed. A lower prune interval saves space, but

increases processing costs. A higher prune interval requires more CD and UOW

table space, but decreases processing costs.

TRACE_LIMIT Data type: INT; Nullable: Yes

The number of minutes that rows remain in the IBMSNAP_CAPTRACE table

before they are eligible for pruning. During the pruning process, the rows in the

Capture trace table are pruned if the number of minutes (current timestamp - the

time a row was inserted in the Capture trace table) exceeds the value of

TRACE_LIMIT.

MONITOR_LIMIT Data type: INT; Nullable: Yes

The number of minutes that rows remain in the IBMSNAP_CAPMON table

before they are eligible for pruning. During the pruning process, rows in the

Capture monitor table are pruned if the value of minutes (current timestamp -

MONITOR_TIME) exceeds the value of MONITOR_LIMIT.

MONITOR_INTERVAL Data type: INT; Nullable: Yes

How often, in seconds, that the monitor thread adds a row to the Capture

monitor IBMSNAP_CAPMON table. For Capture for System i, enter an interval

greater than 120 seconds.

MEMORY_LIMIT Data type: SMALLINT; Nullable: Yes

The amount of memory, in megabytes, that the Capture program is allowed to

use. After this allocation is used up, memory transactions will spill to a file.

REMOTE_SRC_SERVER Data type: CHAR(18); Nullable: Yes

Reserved for future options of SQL replication. Currently this column contains

the default value of null.

AUTOPRUNE Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program automatically prunes rows

that are no longer needed from the CD, UOW, signal, trace, and Capture monitor

tables:

Y Autopruning is on.

N Autopruning is off.

TERM Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program terminates when DB2 is

quiesced or stopped:

Y The Capture program terminates when DB2 is quiesced or stopped.

N The Capture program stays active and waits for DB2 to be restarted or

unquiesced.

380 SQL Replication Guide and Reference

Table 63. Columns in the IBMSNAP_CAPPARMS table (continued)

Column name Description

AUTOSTOP Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program stops capturing changes as

soon as it reaches the end of the active logs:

Y The Capture program stops as soon as it reaches the end of the active

logs.

N The Capture program continues running when it reaches the end of the

active logs.

LOGREUSE Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program overwrites the Capture log

file or appends to it.

Y The Capture program reuses the log file by first deleting it and then

recreating it when the Capture program is restarted.

N The Capture program appends new information to the Capture log file.

LOGSTDOUT Data type: CHAR(1); Nullable: Yes

A flag that indicates where the Capture program directs the log file messages:

Y The Capture program directs log file messages to both the standard out

(STDOUT) and the log file.

N The Capture program directs most log file messages to the log file only.

Initialization messages go to both the standard out (STDOUT) and the

log file.

SLEEP_INTERVAL (z/OS, Linux,

UNIX, Windows)

Data type: SMALLINT; Nullable: Yes

The number of seconds that the Capture program sleeps when it reaches the end

of the active logs (in Linux, UNIX and Windows, or in z/OS non-data-sharing

environments), or when an inefficient amount of data has been returned (in

z/OS data-sharing environments).

CAPTURE_PATH Data type: VARCHAR(1040); Nullable: Yes

The path where the output from the Capture program is sent.

Chapter 24. SQL replication table structures 381

Table 63. Columns in the IBMSNAP_CAPPARMS table (continued)

Column name Description

STARTMODE Data type: VARCHAR(10); Nullable: Yes

The processing procedure that the Capture program uses when it is started:

cold The Capture program deletes all rows in its CD tables and UOW table

during initialization. All subscriptions to these replication sources are

fully refreshed during the next Apply processing cycle (that is, all data

is copied from the source tables to the target tables). If the Capture

program tries to cold start but you disabled full refresh, the Capture

program will start but the Apply program will fail and will issue an

error message.

warmsi The Capture program warm starts; except if this is the first time you are

starting the Capture program then it switches to a cold start. The

warmsi start mode ensures that cold starts happen only when you

initially start the Capture program.

warmns

The Capture program warm starts. If it can’t warm start, it does not

switch to cold start. The warmns start mode prevents cold starts from

occurring unexpectedly and is useful when problems arise (such as

unavailable databases or table spaces) that require repair and that

prevent a warm start from proceeding. When the Capture program

warm starts, it resumes processing where it ended. If errors occur after

the Capture program started, the Capture program terminates and

leaves all tables intact.

IBMSNAP_CAPSCHEMAS table

The IBMSNAP_CAPSCHEMAS table holds the names of all Capture schemas. It

allows the administration tools and other utilities to quickly find all of the tables

for a given Capture control server. A row is automatically inserted each time you

create a new Capture schema.

Server: Capture control server

Index: CAP_SCHEMA_NAME

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results while using the administration tools.

The following two tables show operating system-specific layouts of the

IBMSNAP_CAPSCHEMAS table.

 Table 64. Columns in the IBMSNAP_CAPSCHEMAS table for all operating systems other than System i

Column name Description

CAP_SCHEMA_NAME Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode; Nullable: Yes

The name of a Capture schema. A row exists for each Capture schema.

382 SQL Replication Guide and Reference

Table 65. Columns in the Capture schemas table for System i

Column name Description

CAP_SCHEMA_NAME Data type: VARCHAR(30); Nullable: Yes

The name of a Capture schema. A row exists for each Capture schema.

STATUS Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program that is identified by this

Capture schema is running:

Y The Capture program is running.

N The Capture program is not running.

IBMSNAP_AUTHTKN table (System i)

The IBMSNAP_AUTHTKN table is used in the System i environment only. This

table is used during update-anywhere replication to keep track of the transactions

that have been processed by a particular Apply program. The Capture program

prunes this table based on the retention limit that you set.

Server: Capture control server

Default schema: ASN

Index: JRN_LIB, JRN_NAME

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 66 provides a brief description of the columns in the IBMSNAP_AUTHTKN

table.

 Table 66. Columns in the IBMSNAP_AUTHTKN table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier that identifies which Apply program processed the

transaction. This qualifier is used during update-anywhere replication to prevent

the Apply program from replicating the same changes repeatedly.

IBMSNAP_AUTHTKN Data type: CHAR(26); Nullable: No

The job name that is associated with the transaction. Capture for System i

matches the name in this column with the name of the job that issued the

transaction to determine whether the transaction was issued by either the Apply

program or a user application. If the job names match, then Capture for System i

copies the Apply qualifier that’s in the APPLY_QUAL column of this table to the

APPLY_QUAL column in the corresponding row of the UOW table. If the names

do not match, then Capture for System i sets the APPLY_QUAL column of the

UOW row to null. This column is not automatically copied to other tables; you

must select it and copy it as a user data column.

JRN_LIB Data type: CHAR(10); Nullable: No

The library name of the journal from which the transactions came.

JRN_NAME Data type: CHAR(10); Nullable: No

The name of the journal from which the transactions came.

Chapter 24. SQL replication table structures 383

Table 66. Columns in the IBMSNAP_AUTHTKN table (continued)

Column name Description

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The approximate time that the transaction was committed at the Capture control

server.

IBMSNAP_CAPTRACE table

The Capture trace table contains messages from the Capture program.

Server: Capture control server

Default schema: ASN

Index: TRACE_TIME

The following two tables show operating system-specific layouts of the

IBMSNAP_CAPTRACE table.

 Table 67. Columns in the IBMSNAP_CAPTRACE table for Linux, UNIX, Windows, and z/OS

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of Capture program operation, for example, initialization, capture, or

error condition.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time at the Capture control server that the row was inserted in the Capture

trace table.

DESCRIPTION Data type: VARCHAR(1024); Nullable: No

The message ID followed by the message text. It can be an error message, a

warning message, or an informational message. This column contains

English-only text.

 Table 68. Columns in the Capture trace table for System i

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of operation that the Capture program performed, for example,

initialization, capture, or error condition.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time that the row was inserted in the Capture trace table. TRACE_TIME

rows that are eligible for trace limit pruning will be deleted when the Capture

program prunes the CD and UOW tables.

384 SQL Replication Guide and Reference

Table 68. Columns in the Capture trace table for System i (continued)

Column name Description

JOB_NAME Data type: CHAR(26); Nullable: No

The fully qualified name of the job that wrote this trace entry.

Position

Description

1–10 The Capture schema name or the journal job name

11–20 The ID of the user who started the Capture program

21–26 The job number

JOB_STR_TIME Data type: TIMESTAMP; Nullable: No

The starting time of the job that is named in the JOB_NAME column.

DESCRIPTION Data type: VARCHAR(298); Nullable: No

The message ID followed by the message text. The message ID is the first seven

characters of the DESCRIPTION column. The message text starts at the ninth

position of the DESCRIPTION column.

CCD table (non-DB2)

Consistent-change-data (CCD) tables at the Capture control server are tables that

contain information about changes that occur at a non-DB2 source and additional

columns to identify the sequential ordering of those changes. A CCD table at the

Capture control server is a table that is populated by a program other than the

Apply program.

Server: Capture control server

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause a loss of data.

The Capture control server can be either:

v An internal CCD table for a non-DB2 relational source.

For change-capture replication, the Capture triggers insert changes in this table

as updates occur at the non-DB2 relational source. The name of this type of CCD

table is stored on the same row in the IBMSNAP_REGISTER table as the

replication source that it holds changes from. This table is automatically pruned

by the pruning trigger that is created when you register a non-DB2 relational

source.

v An external CCD table for non-relational and multi-vendor data.

External programs can create CCD tables to be used by SQL replication as

replication sources. These external programs capture IMS changes in a CCD

table, so that copies of IMS data can be recreated in a relational database. The

external programs must initialize, maintain, and supply the correct values for

the control columns. If you have externally populated CCD tables that are not

maintained by a program such as IMS DataPropagator or DataRefresher, you

must maintain these tables yourself so that the Apply program can read the

CCD tables as sources and function correctly.

Table 69 on page 386 provides a brief description of the columns in the CCD table.

Chapter 24. SQL replication table structures 385

Table 69. Columns in the CCD table

Column name Description

IBMSNAP_INTENTSEQ A sequence number that uniquely identifies a change. This value is globally

ascending.

IBMSNAP_OPERATION A flag that indicates the type of operation for a record:

I Insert

U Update

D Delete

IBMSNAP_COMMITSEQ A sequence number that provides transactional order.

IBMSNAP_LOGMARKER The time that the data was committed.

user key columns If the CCD table is condensed, this column contains the columns that make up

the target key.

user non-key columns The non-key data columns from the source table. The column names that are in

the source table do not need to match these column names, but the data types

must be compatible.

user computed columns User-defined columns that are derived from SQL expressions. You can use

computed columns with SQL functions to convert source data types to different

target data types.

CD table

Change-data (CD) tables record all committed changes made to a replication

source. Pruning of the CD table is coordinated by the IBMSNAP_PRUNE_SET

table. Unlike other Capture control tables, CD tables are created when you define a

replication source; they are not created automatically when you generate the

control tables for the Capture control server.

Server: Capture control server

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause a loss of data.

Table 70 provides a list and a brief description of the columns in the CD table.

 Table 70. Columns in the CD table

Column name Description

IBMSNAP_COMMITSEQ The log sequence number of the captured commit statement. This column, which

is also in the UOW table, is included in the CD table to allow the Apply

program to process user copy target tables without needing to join the CD table

with the UOW table. In cases where a join between the CD table and the UOW

table is required, the join is done using the IBMSNAP_COMMITSEQ column.

IBMSNAP_INTENTSEQ The log sequence number of the log record of the change (insert, update, or

delete). This value is globally ascending. If you selected for updates to be

processes as delete/insert pairs, the IBMSNAP_INTENTSEQ value for the delete

row is manufactured to be slightly smaller than the corresponding value for the

insert row.

IBMSNAP_OPERATION A flag that indicates the type of operation for a record:

I Insert

U Update

D Delete

386 SQL Replication Guide and Reference

Table 70. Columns in the CD table (continued)

Column name Description

user column after-image In most cases, the after-image column contains the value that is in the source

column after the change occurs. This column has the same name, data type, and

null attributes as the source column. In the case of an update, this column

reflects the new value of the data that was updated. In the case of a delete, this

column reflects the value of the data that was deleted. In the case of an insert,

this column reflects the value of the data that was inserted.

user column before-image This column only exists in the CD table if you registered the source to include

before-image column values. In most cases, the before-image column contains

the value that was in the source column before the change occurred. This

column has the same name as the source column, prefixed by the value in the

BEFORE_IMG_PREFIX column in the IBMSNAP_REGISTER table. It also has the

same data type as the source column; however, it always allows null values for

insert operations regardless of the source column’s null attributes. In the case of

an update, this column reflects the data that was updated. In the case of a

delete, this column reflects the data that was deleted. In the case of an insert,

this column is null.

IBMQREP_IGNTRAN table

The IBMQREP_IGNTRAN table can be used to inform the Q Capture or Capture

program about transactions that you do not want to be captured from the DB2

recovery log. You use SQL to insert rows in the table that inform the programs to

ignore transactions based on authorization ID, authorization token (z/OS only), or

plan name (z/OS only).

Server: Q Capture server, Capture control server

Default schema: ASN

Table 71 provides a brief description of the columns in the IBMQREP_IGNTRAN

table.

 Table 71. Columns in the IBMQREP_IGNTRAN table

Column name Description

AUTHID Data type: CHAR(128); Nullable: Yes

The primary authorization ID for the transaction that you want to ignore.

AUTHTOKEN Data type: CHAR(30); Nullable: Yes

The authorization token (job name) for the transaction that

you want to ignore.

PLANNAME Data type: CHAR(8); Nullable: Yes

The plan name for the transaction that you want to ignore.

Chapter 24. SQL replication table structures 387

Table 71. Columns in the IBMQREP_IGNTRAN table (continued)

Column name Description

IGNTRANTRC Data type: CHAR(1); Nullable: No, with default

A flag that tells the Q Capture or Capture program whether to trace transactions

that were ignored based on the AUTHID, AUTHTOKEN, or PLANNAME value

that was specified in the IBMQREP_IGNTRAN table:

Y (default)

Tracing is enabled. Each time a transaction is ignored, a row is inserted

into the IBMQREP_IGNTRANTRC table and a message is issued.

N Tracing is disabled.

IBMQREP_IGNTRANTRC table

The IBMQREP_IGNTRANTRC table records information about transactions that

were specified to be ignored.

Server: Q Capture server, Capture control server

Default schema: ASN

Important: Do not alter this table using SQL. Altering this table inappropriately

can cause unexpected results and loss of data.

A row is inserted in the IBMQREP_IGNTRANTRC table when a transaction is

ignored in the DB2 recovery log. This table is pruned according to the trace_limit

parameter for the Q Capture or Capture program.

Table 72 provides a brief description of the columns in the

IBMQREP_IGNTRANTRC table.

 Table 72. Columns in the IBMQREP_IGNTRANTRC table

Column name Description

IGNTRAN_TIME Data type: TIMESTAMP; Nullable: No, with default

The time when the transaction was ignored. Default: Current timestamp

AUTHID Data type: CHAR(128); Nullable: Yes

The primary authorization ID of the transaction that was ignored.

AUTHTOKEN Data type: CHAR(30); Nullable: Yes

The authorization token (job name) for the transaction that

was ignored.

PLANNAME Data type: CHAR(8); Nullable: Yes

The plan name for the transaction that was ignored.

TRANSID Data type: CHAR(10) FOR BIT DATA; Nullable: No

The transaction identifier for the transaction that was ignored.

COMMITLSN Data type: CHAR(10) FOR BIT DATA; Nullable: No

The commit log sequence number or time sequence for the transaction that was

ignored.

388 SQL Replication Guide and Reference

IBMSNAP_PARTITIONINFO table

The IBMSNAP_PARTITIONINFO table augments the IBMSNAP_RESTART table in

a multi-partitioned environment, and contains information that enables the Capture

program to restart from the earliest required log sequence number within each

partition’s set of log files.

Server: Capture control server

Default schema: ASN

Index: PARTITIONID, USAGE

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data. If you delete the

row from this table, the Capture program is forced to cold start.

In a multi-partitioned environment, the IBMSNAP_PARTITIONINFO table and the

IBMSNAP_RESTART table replace the IBMSNAP_WARM_START table from SQL

replication Version 7 and earlier versions. A row is inserted into this table every

time a partition is added. The Capture program will start reading the log file of

any new partitions from the first log sequence number that DB2 used after the first

database CONNECT was issued.

If you have never started the Capture program, then this table is empty, and the

Capture program must perform a cold start.

Table 73 provides a brief description of the columns in the

IBMSNAP_PARTITIONINFO table.

 Table 73. Columns in the IBMSNAP_PARTITIONINFO table

Column name Description

PARTITIONID Data type: INT; Nullable: No

The partition ID for each valid partition.

USAGE Data type: CHAR(1); Nullable: No

The usage of the log sequence number (LSN). An ″R″ in this column indicates

that the LSN has been restarted.

SEQUENCE Data type: CHAR(10) for bit data; Nullable: No

The restart LSN for the node that has the partition ID.

STATUS Data type: CHAR(1); Nullable: Yes

The status of the partition. An A in this column indicates that the partition is

active. This column is reserved for future use.

LAST_UPDATE Data type: TIMESTAMP; Nullable: Yes

The timestamp when the restart LSN for the node that has the partition ID was

last updated.

IBMSNAP_PRUNCNTL table

The pruning control table contains detailed information regarding all subscription

set members that are defined for this Capture schema. This table is used in

Chapter 24. SQL replication table structures 389

conjunction with the IBMSNAP_PRUNE_SET table during pruning. It is also used

during the initialization handshake process between the Apply and Capture

programs.

Server: Capture control server

Default schema: ASN

Index: SOURCE_OWNER, SOURCE_TABLE, SOURCE_VIEW_QUAL,

APPLY_QUAL, SET_NAME, TARGET_SERVER, TARGET_TABLE,

TARGET_OWNER

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

For DB2 sources, you can invoke pruning by issuing the prune command or have

it done automatically. For non-DB2 relational sources, pruning is done by the

pruning trigger that was created when you registered the source.

Table 74 provides a brief description of the columns in the IBMSNAP_PRUNCNTL

table.

 Table 74. Columns in the IBMSNAP_PRUNCNTL table

Column name Description

TARGET_SERVER Data type: CHAR(18); Nullable: No

The server name where target table or view for this member resides.

TARGET_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode; Nullable: No

The high-level qualifier for the target table or view for this member.

TARGET_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The name of the target table or view for this member.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Capture program sets this timestamp during the initialization handshake

process with the Apply program. The value comes from the timestamp of the

commit log record that is associated with the transaction of the CAPSTART

signal insert. It will not be updated again unless a subsequent initialization

process takes place.

SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

The Capture program sets this value during the initialization handshake process

with the Apply program. The value comes from the log sequence number of the

commit log record that is associated with the transaction of the CAPSTART

signal insert. It will not be updated again unless a subsequent initialization

process takes place.

SOURCE_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode; Nullable: No

The high-level qualifier of the source table or view for this member.

SOURCE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The name of the source table or view for this member.

390 SQL Replication Guide and Reference

Table 74. Columns in the IBMSNAP_PRUNCNTL table (continued)

Column name Description

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

This column is used to support multiple registrations for different source views

with identical SOURCE_OWNER and SOURCE_TABLE column values. This

value is set to 0 for physical tables that are defined as sources and is greater than

0 for views that are defined as sources.

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier that identifies which Apply program is processing this

member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that this subscription-set member belongs to.

CNTL_SERVER Data type: CHAR(18); Nullable: No

The name of the server where the Apply control tables reside for this Apply

program, which is identified by the APPLY_QUAL.

TARGET_STRUCTURE Data type: SMALLINT; Nullable: No

A value that identifies the type of target table or view:

1 Source table

3 CCD table

4 Point-in-time table

5 Base aggregate table

6 Change aggregate table

7 Replica table

8 User copy table

9 CCD table without a join of the IBMSNAP_UOW and CD tables

CNTL_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the Apply control server named in the

CNTL_SERVER column.

PHYS_CHANGE_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode; Nullable: Yes

The value in the PHYS_CHANGE_OWNER column from the

IBMSNAP_REGISTER table that is associated with the source of this particular

subscription-set member.

PHYS_CHANGE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier;Nullable: Yes

The value in the PHYS_CHANGE_TABLE column from the

IBMSNAP_REGISTER table that is associated with the source of this particular

subscription-set member.

MAP_ID Data type: VARCHAR(10); Nullable: No

A uniqueness factor that provides a shorter, more easily used index into this

table. It is also used to associate CAPSTART inserts into the signal table with the

appropriate row in the pruning control table.

Chapter 24. SQL replication table structures 391

IBMSNAP_PRUNE_LOCK table

The IBMSNAP_PRUNE_LOCK table is used to serialize the access of CD tables

during a cold start or retention-limit pruning. This table ensures that the Apply

program does not access the CD table during these critical phases. There are no

rows in this table.

Server: Capture control server

Default schema: ASN

Index: None

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

IBMSNAP_PRUNE_SET table

The IBMSNAP_PRUNE_SET table tracks the progress of the Capture and Apply

programs for each subscription set to help coordinate the pruning of the CD and

UOW tables. Unlike the IBMSNAP_PRUNCNTL table, which has one row for each

source-to-target mapping, the IBMSNAP_PRUNE_SET table has one row for each

subscription set.

Server: Capture control server

Default schema: ASN

Index: TARGET_SERVER, APPLY_QUAL, SET_NAME

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 75 provides a brief description of the columns in the IBMSNAP_PRUNE_SET

table.

 Table 75. Columns in the IBMSNAP_PRUNE_SET table

Column name Description

TARGET_SERVER Data type: CHAR(18); Nullable: No

The server name where target tables or views for this set reside.

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier that identifies which Apply program is processing this set.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has

processed data up to this timestamp for the subscription set.

SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: No

The Apply program uses this column to record its progress, indicating that it has

processed data up to this synchpoint value for the subscription set.

392 SQL Replication Guide and Reference

IBMSNAP_REG_EXT (System i)

The IBMSNAP_REG_EXT table is a System i-specific table that provides

supplemental information for the IBMSNAP_REGISTER table. For every row in the

IBMSNAP_REGISTER table, there is a matching row in the IBMSNAP_REG_EXT

table that contains additional System i-specific columns.

Server: Capture control server

Default schema: ASN

Index: VERSION, SOURCE_OWNER, SOURCE_TABLE, SOURCE_VIEW_QUAL

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

This table is maintained by a trigger program (program QZSNJLV8 in library

QDP4) on the IBMSNAP_REGISTER table. The trigger is defined at the time the

IBMSNAP_REGISTER table is created.

The information from this table is used to track where and how you defined your

replication sources on an System i server.

Table 76 provides a brief description of the columns in the IBMSNAP_REG_EXT

table.

 Table 76. Columns in the IBMSNAP_REG_EXT table

Column name Description

VERSION Data type: INT; Nullable: No

The version of DB2 DataPropagator for System i that you used to register the

source.

SOURCE_OWNER Data type: VARCHAR(30); Nullable: No

The high-level qualifier of the source table or view that you registered.

SOURCE_TABLE Data type: VARCHAR(128); Nullable: No

The name of the source table or view that you registered.

SOURCE_NAME Data type: CHAR(10); Nullable: Yes

A ten-character system name of the source table or view that you used to

issue the commands.

SOURCE_MBR Data type: CHAR(10); Nullable: Yes

The name of the source table member, which is used for issuing Receive

Journal Entry (RCVJRNE) commands and ALIAS support.

SOURCE_TABLE_RDB Data type: CHAR(18); Nullable: Yes

When using remote journals, this column contains the database name of the

system where the source table actually resides. For local journals, this column

is null.

JRN_LIB Data type: CHAR(10); Nullable: Yes

The library name of the journal that the source table uses.

Chapter 24. SQL replication table structures 393

Table 76. Columns in the IBMSNAP_REG_EXT table (continued)

Column name Description

JRN_NAME Data type: CHAR(10); Nullable: Yes

The name of the journal that is used by a source table. An asterisk followed

by nine blanks in this column means that the source table is currently not in a

journal, and it is not possible for the Capture program to capture data for this

source.

FR_START_TIME Data type: TIMESTAMP; Nullable: Yes

The time when the Apply program began to perform a full refresh.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

Supports the view of subscriptions by matching the similar column in the

register table. This value is set to equal 0 for physical tables that are defined

as a source and is greater than 0 for views that are defined as sources. You

must have this column to support multiple subscriptions for different source

views containing identical SOURCE_OWNER and SOURCE_TABLE column

values.

CMT_BEHAVIOR_CASE Data type: SMALLINT; Nullable: No, with default; Default: 0

An integer that represents how the application programs that are updating the

source table use commitment control. The Capture program uses this value to

manage its memory usage for CD rows that it has constructed but is not yet

ready to write to the CD tables.

-1 The commitment control pattern is not yet established for the

applications. This is the initial value in the column.

0 None of the applications that update the source uses commitment

control.

1 All of the applications that update the source use commitment

control. Therefore, two different applications never update the same

source table under commitment control at the same time.

2 For concurrent applications that update the source, some use

commitment control and others do not. It is possible that there are

two applications updating the source table using commitment control

concurrently.

MAX_ROWS_BTWN_CMTS Data type: SMALLINT; Nullable: No, with default; Default: 0

The maximum number of rows that the Capture program can process before it

commits data to the CD table.

IBMSNAP_REGISTER table

The IBMSNAP_REGISTER table contains information about replication sources,

such as the names of the replication source tables, their attributes, and the names

of the CD and CCD tables associated with them. A row is automatically inserted

into this table every time you define a new replication source table or view for the

Capture program to process.

Server: Capture control server

Default schema: ASN

Index: SOURCE_OWNER, SOURCE_TABLE, SOURCE_VIEW_QUAL

394 SQL Replication Guide and Reference

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

The register table is the place you should look if you need to know how you

defined your replication sources.

Table 77 provides a brief description of the columns in the IBMSNAP_REGISTER

table.

 Table 77. Columns in the IBMSNAP_REGISTER table

Column name Description

SOURCE_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The high-level qualifier of the source table or view that you registered.

SOURCE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The name of the source table or view that you registered.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

This column is used to support multiple registrations for different source views

with identical SOURCE_OWNER and SOURCE_TABLE column values. This

value is set to 0 for physical tables that are defined as sources, and is greater

than 0 for views that are defined as sources.

GLOBAL_RECORD Data type: CHAR(1); Nullable: No

SOURCE_STRUCTURE Data type: SMALLINT; Nullable: No

A value that identifies the structure of the source table or view:

1 User table

3 CCD table

4 Point-in-time table

5 Base aggregate table

6 Change aggregate table

7 Replica table

8 User copy table

9 CCD table without a join of the IBMSNAP_UOW and CD tables

SOURCE_CONDENSED Data type: CHAR(1); Nullable: No

A flag that indicates whether the source table is a condensed table, meaning that

all rows with the same key are condensed to one row:

Y The source is condensed.

N The source is not condensed.

A The source is a base-aggregate or change-aggregate table.

SOURCE_COMPLETE Data type: CHAR(1); Nullable: No

A flag that indicates how the source table stores rows of primary key values:

Y The source table contains a row for every primary key value of interest.

N The source table contains a subset of rows of primary key values.

Chapter 24. SQL replication table structures 395

Table 77. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

CD_OWNER Data type: VARCHAR(30), DB2 UDB for z/OS Version 8 new-function mode

subsystems; Nullable: Yes

The high-level qualifier of the source’s CD table.

For tables as sources

For all registered source tables that are not external CCD tables, this

column contains the high-level qualifier of the CD table associated with

that source table.

For views as sources

This column contains the high-level qualifier of the CD view.

For external CCD tables as sources

This column is null.

CD_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: Yes

The name of the source’s CD table.

For tables as sources

For all registered source tables that are not external CCD tables, this

column contains the name of the CD table that holds captured updates

of the source table.

For views as sources

This column contains the name of the CD view.

For external CCD tables as sources

This column is null.

PHYS_CHANGE_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: Yes

The high-level qualifier of the table or view that the Apply program uses for

change-capture replication:

For tables as sources

For all registered source tables that are not external CCD tables, this

column contains the high-level qualifier of the physical CD table that is

associated with that source table.

For views as sources

This column contains the high-level qualifier of the physical CD table

that is associated with that source view.

For external CCD tables as sources

This column contains the high-level qualifier of the external CCD table.

396 SQL Replication Guide and Reference

Table 77. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

PHYS_CHANGE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: Yes

The name of the table or view that the Apply program uses for change-capture

replication:

For tables as sources

For all registered source tables that are not external CCD tables, this

column contains the name of the physical CD table that is associated

with that source table.

For views as sources

This column contains the name of the physical CD table that is

associated with that source view.

For external CCDs as sources

This column contains the name of the external CCD table.

CD_OLD_SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

This column is used for the initial handshake between the Apply program and

the Capture program. The Capture program then begins capturing data from this

log sequence number in the source log. This column is also used to show that

retention-limit pruning has occurred for a CD table. If this value is null, then the

registration is inactive.

CD_NEW_SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

The Capture program advances this column as it inserts new rows into the CD

table. The Apply program uses this column to see if there are new changes to be

replicated.

DISABLE_REFRESH Data type: SMALLINT; Nullable: Yes

A flag that indicates whether full refreshes are allowed:

0 Full refreshes are allowed.

1 Full refreshes are prevented.

CCD_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 for z/OS Version 8

new-function mode subsystems; Nullable: Yes

For a source that has an internal CCD table associated with it, this column

contains the high-level qualifier of the internal CCD. For an external CCD table,

this column is null.

CCD_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: Yes

For a source that has an internal CCD table associated with it, this column

contains the name of the internal CCD. For an external CCD table, this column is

null.

CCD_OLD_SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

The log sequence number when the CCD table was reinitialized. This column is

related to full-refresh processing against CCD tables. The value in this column

needs to be changed only when the CCD table is initially or subsequently fully

refreshed. This value can be much older than any row remaining in the CCD

table. If this column is not maintained, the Apply program using the CCD table

as a replication source will not know that the CCD table was reinitialized, so it

will fail to reinitialize complete copies of the CCD source.

Chapter 24. SQL replication table structures 397

Table 77. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

In the global row (where GLOBAL_RECORD = Y), the synchpoint represents the

log sequence number of the last log or journal record processed by the Capture

program. In any row in the IBMSNAP_REGISTER table that contains registration

information about a CCD table (internal or external), the synchpoint value is

advanced by the program that maintains the CCD table to indicate that there is

new data available in that CCD table.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

In the global row (where GLOBAL_RECORD = Y), the synchtime represents the

timestamp from the last log or journal record processed by the Capture program.

If the Capture program has reached the end of the DB2 log, the synchtime is

advanced to the current DB2 timestamp. In any row in the IBMSNAP_REGISTER

table that contains registration information about a CCD table (internal or

external), the synchtime value is advanced by the program that maintains the

CCD table to indicate the currency of data available in that CCD table.

CCD_CONDENSED Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the internal CCD that is associated with this source

is condensed, meaning that all rows with the same key are condensed to one

row:

Y The internal CCD is condensed.

N The internal CCD is not condensed.

NULL No internal CCD table is defined for this source.

CCD_COMPLETE Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the internal CCD table that is associated with this

source is complete, meaning that it initially contained all the rows from the

source table:

N The internal CCD is not complete.

NULL No internal CCD table is defined for this source.

ARCH_LEVEL Data type: CHAR(4); Nullable: No

The architectural level of the replication control tables:

0801 Version 8 SQL Replication

0803 Version 8 SQL Replication with enhanced support for Oracle sources

0805 Version 8 SQL Replication with support for DB2 for z/OS new-function

mode

DESCRIPTION Data type: CHAR(254); Nullable: Yes

A description of the replication source.

398 SQL Replication Guide and Reference

Table 77. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

BEFORE_IMG_PREFIX Data type: VARCHAR(4); Nullable: Yes

The one-character prefix that identifies before-image column names in the CD

table. The combination of the before-image prefix and the CD column name must

be unambiguous, meaning that a prefixed CD column name cannot be the same

as a current or potential after-image column name. The length in bytes of the

BEFORE_IMG_PREFIX is:

1 For an ASCII or an EBCDIC single byte prefix character.

2 For an ASCII double byte prefix character.

4 For an EBCDIC DBCS prefix character. This length allows for shift-in

and shift-out characters.

CONFLICT_LEVEL Data type: CHAR(1); Nullable: Yes

A flag that indicates the level of conflict detection for this source:

0 The Apply program does not check for conflicts. Data consistency must

be enforced by your application to avoid potential conflicting updates.

1 Standard detection with cascading transaction rejection. The Apply

program checks for conflicts based on the changes captured to this

point. The Apply program will reverse any conflicting transaction at the

replica, as well as any transactions with dependencies on the conflicting

transaction. Changes captured after the Apply program begins conflict

detection will not be checked during this Apply cycle.

2 Enhanced detection with cascading transaction rejection. The Apply

program waits until the Capture program captures all changes from the

log or journal (see description of the SYNCHTIME column) and then

does a standard conflict detection as when set to 1. During the wait

time, the Apply program holds a LOCK on the source tables to ensure

that no changes are made during the conflict detection process.

CHG_UPD_TO_DEL_INS Data type: CHAR(1); Nullable: Yes

A flag that indicates how the Capture program stores updates in the CD table.

Y The Capture program stores updates using two rows in the CD table,

one for the delete and one for the insert. The Apply program processes

the delete first and the insert second. When this Y flag is set, every

update to a replication source is stored in the CD table using two rows.

This flag ensures that updates made to partitioning columns or columns

referenced by a subscription-set predicate are processed correctly.

N Each update to the source table is stored in a single row in the CD

table.

Chapter 24. SQL replication table structures 399

Table 77. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

CHGONLY Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program captures all changes that

occur at the source or only changes that occur in registered columns. Typically

you should have this option set to Y to minimize the number of rows that the

Capture program inserts into the CD table, but you might want to set this option

to N in order to track exactly which rows in the source table were updated. For

example, you might just be capturing the primary key column values to audit

which rows have been changed in a source table.

Y The Capture program only captures changes that occur in registered

columns in the source table.

N The Capture program captures changes from all columns in the source

table.

RECAPTURE Data type: CHAR(1); Nullable: Yes

This column is for update-anywhere replication and contains a flag that indicates

whether changes that originate from a table or view are recaptured and

forwarded to other tables or views.

For tables at the master site:

N Updates to the master that were applied from a replica are not

recaptured and will not be replicated to other replicas.

Y Updates to the master that were applied from a replica and will be

replicated to other replicas.

For tables at a replica site:

Y Updates to the replica that were applied from the master are recaptured

and are available to be replicated to another table that uses the replica

as its source.

N Updates to the replica that were applied from the master are not

recaptured.

OPTION_FLAGS Data type: CHAR(4); Nullable: No

Reserved for future options of SQL replication. Currently this column contains

the default value of NNNN.

STOP_ON_ERROR Data type: CHAR(1); Nullable: Yes, with default; Default: Y.

A flag that indicates whether the Capture program will terminate or just stop

processing the registration if it encounters errors while trying to start, initiate,

reinitiate, or insert a row into the CD table:

Y The Capture program terminates when an error occurs while it is trying

to start, initiate, reinitiate, or insert a row into the CD table.

N The Capture program stops the registration but does not terminate

when an error occurs while it is trying to start, reinitialize, or insert a

row into the CD table; it continues to process other registrations.

400 SQL Replication Guide and Reference

Table 77. Columns in the IBMSNAP_REGISTER table (continued)

Column name Description

STATE Data type: CHAR(1); Nullable: Yes, with default; Default: I.

A flag that indicates what state the registration is in:

S The Capture program has stopped processing this registration. The

Apply program will not work with this registration until you repair the

registration and place it in the I (inactive) state.

A The registration is active.

I The registration is inactive.

STATE_INFO Data type: CHAR(8); Nullable: Yes;

If the Capture program stopped processing the registration, this column contains

the error message that was issued regarding the failure.

IBMSNAP_REG_SYNCH table (non-DB2 relational)

The IBMSNAP_REG_SYNCH table uses an update trigger to initiate an update of

the SYNCHPOINT value for all the rows in the IBMSNAP_REGISTER table when

the Apply program is preparing to fetch data from a non-DB2 relational data

source.

Server: Capture control server

Default schema: ASN

Index: TRIGGER_ME

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 78 provides a brief description of the columns in the

IBMSNAP_REG_SYNCH table.

 Table 78. IBMSNAP_REG_SYNCH table columns

Column name Description

TRIGGER_ME Data type: CHAR(1); Nullable: No

A flag of Y that indicates whether a trigger was initiated to update the

SYNCHPOINT value for all rows in the register table.

TIMESTAMP For Microsoft SQL Server and Sybase sources, this column contains the unique

number that is generated by the system when an update occurs on a timestamp

column at that table. This value is used to derive the SYNCHPOINT value that is

recorded in the IBMSNAP_REGISTER table.

IBMSNAP_RESTART table

The IBMSNAP_RESTART table contains information that enables the Capture

program to restart from the earliest required log or journal record. This table

replaces the IBMSNAP_WARM_START table from SQL replication Version 7 and

earlier versions. It contains one row, which is updated at every commit point;

therefore, the Capture program can always restart from exactly the right place

without recapturing information that it already processed and inserted into the CD

and UOW tables.

Chapter 24. SQL replication table structures 401

Server: Capture control server

Default schema: ASN

Index: None

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data. If you delete the

row from this table, the Capture program is forced to cold start.

If you have never started the Capture program, then this table is empty and the

Capture program must perform a cold start.

The following two sections show operating system-specific layouts of the

IBMSNAP_RESTART table.

z/OS, Linux, UNIX, Windows

 Table 79. Columns in the IBMSNAP_RESTART table for z/OS, Linux, UNIX, and Windows

Column name Description

MAX_COMMITSEQ Data type: CHAR(10) for bit data; Nullable: No

The maximum logical log sequence number value (IBMSNAP_COMMITSEQ)

that the Capture program has committed to the CD and UOW tables.

MAX_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The timestamp that is associated with the log sequence number in the

MAX_COMMITSEQ column.

MIN_INFLIGHTSEQ Data type: CHAR(10) for bit data; Nullable: No

The logical log sequence number at which the Capture program starts during a

warm restart. This value represents the earliest log sequence number that the

Capture program found for which a commit or abort record has not yet been

found.

CURR_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The local current timestamp when this table was updated by the Capture

program.

CAPTURE_FIRST_SEQ Data type: CHAR(10) for bit data; Nullable: No

The logical log sequence number that is associated with the recovery log that the

Capture program started from during the last cold start that the Capture

program performed. This value is used to detect if a database RESTORE

occurred, which might require the Capture program to perform a cold start

because the database log manager might reuse the log sequence numbers during

certain RESTORE operations.

System i

For System i, the IBMSNAP_RESTART table is used to determine the starting time

of the RCVJRNE (Receive Journal Entry) command. A row is inserted into the

restart table for each journal that is used by a replication source or a group of

replication sources.

Index: JRN_LIB, JRN_NAME

402 SQL Replication Guide and Reference

Table 80. Columns in the IBMSNAP_RESTART table for System i

Column name Description

MAX_COMMITSEQ Data type: CHAR(10) for bit data; Nullable: No

The journal record number of the most current commit from the UOW table.

MAX_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The timestamp that is associated with the journal record number in the

MAX_COMMITSEQ column, or the current timestamp if the Capture program is

caught up with the logs and has no work to perform.

MIN_INFLIGHTSEQ Data type: CHAR(10) for bit data; Nullable: No

The logical log sequence number that the Capture program starts from during a

warm restart.

CURR_COMMIT_TIME Data type: TIMESTAMP; Nullable: No

The current timestamp at the point when this table is updated.

CAPTURE_FIRST_SEQ Data type: CHAR(10) for bit data; Nullable: No

The journal record number that the Capture program starts from after a cold

start.

UID Data type: INTEGER; Nullable: No

A unique number that is used as a prefix for the contents of the

IBMSNAP_UOWID column located in the UOW table.

SEQNBR Data type: BIGINT; Nullable: No

The sequence number of the last journal entry that the Capture program

processed.

JRN_LIB Data type: CHAR(10); Nullable: No

The library name of the journal that the Capture program is processing.

JRN_NAME Data type: CHAR(10); Nullable: No

The name of the journal that the Capture program is processing.

STATUS Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Capture program is processing a particular

journal job:

Y The Capture program is processing the journal job.

N The Capture program is not processing the journal job.

IBMSNAP_SEQTABLE table (Informix)

The IBMSNAP_SEQTABLE table contains a sequence of unique numbers that SQL

replication uses as the equivalent of log sequence numbers for Informix tables.

These unique identifiers are used in the IBMSNAP_REGISTER table in place of

synchpoint values so that the Capture program, Apply program, and Replication

Alert Monitor can communicate the point that they left off during their last cycle.

Server: Capture control server

Default schema: ASN

Unique index: SEQ

Chapter 24. SQL replication table structures 403

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 81 provides a brief description of the column in the IBMSNAP_SEQTABLE

table.

 Table 81. Column in the IBMSNAP_SEQTABLE table

Column name Description

SEQ Data type: INTEGER; Nullable: No

A unique number used as the log or journal identifiers (synchpoints) for

Informix tables.

IBMSNAP_SIGNAL table

The signal table stores signals that prompt the Capture program to perform certain

actions. The signals are entered by either you or the Apply program.

Server: Capture control server

Default schema: ASN

This table contains information that you can update by using SQL.

The IBMSNAP_SIGNAL table is created with the DATA CAPTURE CHANGES

attribute, which means that all insert, update, and delete operations performed on

this table are visible to the Capture program as log records read from the DB2

recovery log. The Capture program ignores all update and delete log records for

the IBMSNAP_SIGNAL table, but it recognizes all validly created and committed

log records of signal inserts as ″signals″ that require its attention. The actions that

the Capture program performs for a log record from a signal insert depends on

what is specified in the IBMSNAP_SIGNAL table for that insert. The values in the

IBMSNAP_SIGNAL table provide the instructions to the Capture program

regarding the desired action.

Records in this table with a SIGNAL_STATE value of C for complete or records

with a timestamp eligible for retention-limit pruning are deleted when the Capture

program prunes.

Table 82 provides a brief description of the columns in the IBMSNAP_SIGNAL

table.

 Table 82. Columns in the IBMSNAP_SIGNAL table

Column name Description

SIGNAL_TIME Data type: TIMESTAMP; Nullable: No, with default; Default: current timestamp.

A timestamp that is used to uniquely identify the row. The Capture program

uses this unique value to find the correct row in the signal table to indicate when

it has completed processing the Capture signal. This timestamp column is

created as NOT NULL WITH DEFAULT, and therefore a Capture signal can

generally be inserted in such a way that DB2 supplies the current timestamp as

the SIGNAL_TIME value.

404 SQL Replication Guide and Reference

Table 82. Columns in the IBMSNAP_SIGNAL table (continued)

Column name Description

SIGNAL_TYPE Data type: VARCHAR(30); Nullable: No

A flag that indicates the type of signal that was posted:

CMD A signal posted by you, the Apply program, or another application,

which is a well known system command or signal. See the

SIGNAL_SUBTYPE column for this table for a list of the available signal

subtypes.

USER A signal posted by you or another user. The Capture program updates

the value in the SIGNAL_LSN column with the LSN from the log of

when the signal was inserted, and it updates the value in the

SIGNAL_STATE column to from P (pending) to R (received).

SIGNAL_SUBTYPE Data type: VARCHAR(30); Nullable: Yes

The action that the Capture program performs when a signal from a system

command (SIGNAL_TYPE = CMD) occurs.

CAPSTART

The Capture program starts capturing changes at the registered source

for a particular subscription-set member, which is identified by the

MAP_ID (from the IBMSNAP_PRUNCNTL table) in the

SIGNAL_INPUT_IN column. For example, the Apply program issues

this signal before it performs a full refresh on all target tables in the set

to let the Capture program know that the set is ready to begin

change-capture replication. The Apply program posts this signal.

STOP The Capture program stops capturing changes and terminates. This

command can only be issued by you, not the Apply program.

CAPSTOP

The Capture program stops capturing changes for a particular registered

source, which is identified by source_owner.source_table in the

SIGNAL_INPUT_IN column. This command can only be issued by you,

not the Apply program.

UPDANY

The Apply program (identified by the Apply qualifier in the

SIGNAL_INPUT_IN column) lets the Capture program know that it is

working with two Capture programs in an update-anywhere

configuration. The Apply program posts this signal.
When the signal type is USER, the signal subtype is not used or recognized by

the Capture program and therefore is not a required field. It can be set to any

value that you want.

Chapter 24. SQL replication table structures 405

Table 82. Columns in the IBMSNAP_SIGNAL table (continued)

Column name Description

SIGNAL_INPUT_IN Data type: VARCHAR(500); Nullable: Yes

If the SIGNAL_TYPE = USER, then this column contains user-defined input. If

the SIGNAL_TYPE = CMD, then the meaning of this value depends on the

SIGNAL_SUBTYPE for this signal:

CMD + CAPSTART

The mapping identifier. Because the Capture triggers and not the

Capture program process non-DB2 relational sources, there is a trigger

called SIGNAL_TRIGGER that fires after the IBMSNAP_SIGNAL table

is updated, which updates the IBMSNAP_PRUNCNTL table with the

next value in the sequence.

CMD + UPDANY

The Apply qualifier that identifies the Apply program in the

update-anywhere configuration.

CMD + CAPSTOP

The name of the source owner and source table that the Capture

program should stop capturing changes for (source_owner.source_table).

SIGNAL_STATE Data type: CHAR(1); Nullable: No

A flag that indicates the status of the signal:

P The signal is pending; the Capture program has not received it yet.

When you post a signal, set the SIGNAL_STATE to P.

R The Capture program has received the signal. The Capture program sets

the SIGNAL_STATE set to R (instead of changing it to C for complete)

when it receives a signal where SIGNAL_TYPE = USER, or one where

SIGNAL_TYPE = CMD and SIGNAL_SUBTYPE = STOP.

C The Capture program has completed processing the signal. The Capture

program sets this value to C when SIGNAL_TYPE = CMD for all

SIGNAL_SUBTYPE values except STOP.

SIGNAL_LSN Data type: CHAR(10) for bit data; Nullable: Yes

The log sequence number of the commit record. This value is set only by the

Capture program.

On System i, a signal table is associated with each journal used

for source tables. These tables are called journal signal tables and have the same

structure as the global IBMSNAP_SIGNAL table. The name of the journal signal

table is schema.IBMSNAP_SIGNAL_xxxx_yyyy, where xxxx is the journal library,

and yyyy is the journal name. This table is created automatically and is journaled

to the source journal on the source server.

IBMSNAP_UOW table

The IBMSNAP_UOW table provides additional information about transactions that

have been committed to a source table. For all target table types other than user

copy and type 9 CCD, the Apply program joins the IBMSNAP_UOW and change

data (CD) tables based on matching IBMSNAP_COMMITSEQ values when it

applies changes to the target tables. If you cold start the Capture program, all of

this entries in this table are deleted.

Server: Capture control server

406 SQL Replication Guide and Reference

Default schema: ASN

Index: IBMSNAP_COMMITSEQ, IBMSNAP_LOGMARKER

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

v Because Capture for System i can start capturing data for a subset of the

replication sources, it does not delete all the rows in the IBMSNAP_UOW table

if you do a partial cold start.

v There are some user programs that do not use commitment control. In such

cases, Capture for System i arbitrarily inserts a new UOW row after a number of

rows are written to the CD table. This artificial commitment boundary helps

reduce the size of the UOW table.

v The UOW table is pruned by retention limits, not information from the

IBMSNAP_PRUNE_SET table.

The Capture program requires that there is one IBMSNAP_UOW table for each

Capture schema. The Capture program inserts one new row into this table for

every log or journal record that is committed at the replication source.

The Capture program also prunes the UOW table based on information that the

Apply program inserts into the IBMSNAP_PRUNE_SET table.

Table 83 provides a brief description of the columns in the IBMSNAP_UOW table.

 Table 83. Columns in the IBMSNAP_UOW table

Column name Description

IBMSNAP_UOWID Data type: CHAR(10) for bit data; Nullable: No

The unit-of-work identifier from the log record header for this unit of work. You

can select that this column be part of a noncomplete CCD target table.

IBMSNAP_COMMITSEQ Data type: CHAR(10) for bit data; Nullable: No

The log record sequence number of the captured commit statement. For all

target table types other than user copy, the Apply program joins the UOW and

CD tables based on the values in this column when it applies changes to the

target tables.

IBMSNAP_LOGMARKER Data type: TIMESTAMP; Nullable: No

The time (at the Capture control server) that the data was committed.

IBMSNAP_AUTHTKN Data type: VARCHAR(30); Nullable: No

The authorization token that is associated with the transaction. This ID is useful

for database auditing. For DB2 for z/OS, this column is the correlation ID. For

DB2 for i5/OS, this column is the job name of the job that caused a transaction.

This column is not automatically copied to other tables; you must select it and

copy it as a user data column. You can select that this column be part of a

noncomplete CCD target table.

Chapter 24. SQL replication table structures 407

Table 83. Columns in the IBMSNAP_UOW table (continued)

Column name Description

IBMSNAP_AUTHID Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The authorization ID that is associated with the transaction. It is useful for

database auditing. For DB2 for z/OS, this column is the primary authorization

ID. For DB2 for i5/OS, this column has the name of the user profile ID under

which the application that caused the transaction ran. This column holds the

ten-character ID padded with blanks. This column is not automatically copied to

other tables; you must select it and copy it as a user data column. You can select

for this column to be part of a noncomplete CCD target table.

IBMSNAP_REJ_CODE Data type: CHAR(1); Nullable: No, with default; Default: 0.

A flag that indicates whether any rows were rejected and rolled back. This value

is set only during update-anywhere replication if conflict detection is specified

as standard or enhanced when you defined your replication source. You can

select that this column be part of a noncomplete CCD target table.

0 No known conflicts occurred in the transaction.

1 A conflict occurred because the same row in the master and replica was

updated. The transaction at the replica was rejected and rolled back.

2 The transaction was rejected and rolled back because it was dependent

on a prior transaction that was rejected. The prior transaction was

rejected because the same row in the master and replica was updated,

and the transaction at the replica was rejected and rolled back.

3 The transaction was rejected and rolled back because it contained at

least one referential-integrity constraint violation. Because this

transaction violates the referential constraints defined on the source

table, the Apply program will mark this subscription set as failed.

Updates cannot be copied until you correct the referential integrity

definitions.

4 The transaction was rejected and rolled back because it was dependent

on a prior transaction that was rejected. The prior transaction was

rejected because it contained at least one referential-integrity constraint

violation.

IBMSNAP_APPLY_QUAL Data type: CHAR(18); Nullable: No, with default; Default: current user name.

The Apply qualifier that identifies which Apply program applied the changes.

You can select that this column be part of a noncomplete CCD target table.

Tables at the Apply control server

The tables stored at the Apply control server contain information about your

subscription definitions. For Linux, UNIX, Windows, and z/OS, you build these

control tables to your specifications using the ASNCLP command-line program or

Replication Center. For System i, these control tables are created automatically for

you when install DataPropagator for System i.

Table 84 describes the control tables at the Apply server.

 Table 84. Control tables at the Apply server

Table name Description

“ASN.IBMSNAP_APPENQ table” on

page 409

Used to ensure that only one Apply program is

running per Apply qualifier.

408 SQL Replication Guide and Reference

Table 84. Control tables at the Apply server (continued)

Table name Description

ASN.IBMSNAP_APPLY_JOB table

(System i)

Used to ensure that there is a unique Apply qualifier

for each instance of the Apply program running at an

Apply control server.

“ASN.IBMSNAP_APPLYTRACE

table” on page 413

Contains important messages from the Apply

program.

“ASN.IBMSNAP_APPLYTRAIL

table” on page 414

Contains audit-trail information about the Apply

program.

“ASN.IBMSNAP_APPPARMS table”

on page 410

Contains parameters that you can modify to control

the operations of the Apply program.

“ASN.IBMSNAP_SUBS_COLS table”

on page 419

Maps columns in the target table or view to the

corresponding columns in the source table or view.

“ASN.IBMSNAP_SUBS_EVENT

table” on page 420

Contains events that you define to control when the

Apply program processes a subscription set.

“ASN.IBMSNAP_SUBS_MEMBR

table” on page 421

Identifies a source and target table pair and specifies

processing information for that pair.

“ASN.IBMSNAP_SUBS_SET table”

on page 425

Contains processing information for each set of

subscription-set members that the Apply program

processes as a group.

“ASN.IBMSNAP_SUBS_STMTS

table” on page 430

Contains SQL statements or stored procedure calls

that you define for a subscription set. They are

invoked before or after the Apply program processes

the set.

ASN.IBMSNAP_APPENQ table

The Apply enqueue table is used to ensure that only one Apply program is

running per Apply qualifier. The Apply program exclusively locks a row in this

table until the Apply program is shut down. This table is not used on System i.

Server: Apply control server

Index: APPLY_QUAL

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 85 provides a brief description of the column in the IBMSNAP_APPENQ

table.

 Table 85. Column in the IBMSNAP_APPENQ table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: Yes

Uniquely identifies a group of subscription sets that are processed by the same

Apply program. This value is case sensitive. You must specify this value when

you define a subscription set.

ASN.IBMSNAP_APPLY_JOB (System i)

The IBMSNAP_APPLY_JOB table, which is System i-specific, is used to guarantee a

unique APPLY_QUAL value for all instances of the Apply program running at the

Chapter 24. SQL replication table structures 409

Apply control server. A row is added to this table every time an instance of the

Apply program is started. If you start a new instance of the Apply program with

an APPLY_QUAL value that already exists, the start command fails.

Server: Apply control server

Index: None

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 86 provides a brief description of the columns in the IBMSNAP_APPLY_JOB

table.

 Table 86. Columns in the IBMSNAP_APPLY_JOB table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

A unique identifier for a group of subscription sets. This value is supplied by the

user when defining a subscription set. Each instance of the Apply program is

started with an APPLY_QUAL value. This value is used during update-anywhere

replication to prevent circular replication of the changes made by the Apply

program.

CONTROL_SERVER Data type: CHAR(18); Nullable: No

The name of the database where the Apply control tables and view are defined.

JOB_NAME Data type: CHAR(10); Nullable: No

The fully qualified name of the job that wrote this trace entry:

Position 1–10

APPLY_QUAL

Position 11-20

The ID of the user who started the Apply program

Position 21-26

The job number

USER_NAME Data type: CHAR(10); Nullable: No

The name of the user who started a new instance of the Apply program.

JOB_NUMBER Data type: CHAR(6); Nullable: No

The job number of the current job for a particular journal. If the journal is not

active, this column contains the job number of the last job that was processed.

ASN.IBMSNAP_APPPARMS table

The IBMSNAP_APPPARMS table contains parameters that you can modify to

control the operations of the Apply program. You can define these parameters to

set values such as the name of the Apply control server on which the subscription

definitions and Apply program control tables reside. If you make changes to the

parameters in this table, the Apply program reads your modifications only during

startup.

Server: Apply control server

Index: APPLY_QUAL

410 SQL Replication Guide and Reference

This table contains information that you can update by using SQL.

Table 87 provides a brief description of the columns in the IBMSNAP_APPPARMS

table.

 Table 87. Columns in the IBMSNAP_APPPARMS table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

The Apply qualifier matches the parameters to the Apply program to which

these parameters apply.

APPLY_PATH Data type: VARCHAR(1040); Nullable: Yes

The location of the work files used by the Apply program. The default is the

directory where the program was started.

COPYONCE Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the Apply program executes one copy cycle for

each subscription set that is eligible at the time the Apply program is invoked.

Y The Apply program executes one copy cycle for each eligible

subscription set.

N The Apply program does not execute one copy cycle for each eligible

subscription set.

DELAY Data type: INT; Nullable: Yes, with default; Default: 6.

The delay time (in seconds) at the end of each Apply cycle when continuous

replication is used. This parameter is ignored if copyonce is specified.

ERRWAIT Data type: INT; Nullable: Yes, with default; Default: 300.

The number of seconds (1 to 300) that the Apply program waits before retrying

after the program encounters an error condition. This parameter is ignored if

copyonce is specified.

INAMSG Data type: CHAR(1); Nullable: Yes, with default; Default: Y.

A flag that indicates whether the Apply program issues a message when it is

inactive.

Y The Apply program issues a message when inactive.

N The Apply program does not issue a message when inactive.

LOADXIT Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the Apply program invokes the IBM-supplied exit

routine (ASNLOAD) that uses the export and load utilities to refresh target

tables.

Y The Apply program invokes ASNLOAD.

N The Apply program does not invoke ASNLOAD.

LOGREUSE Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the Apply program overwrites the Apply log file or

appends to it.

Y The Apply program reuses the log file by first deleting it and then

re-creating it when the Apply program is restarted.

N The Apply program appends new information to the Apply log file.

Chapter 24. SQL replication table structures 411

Table 87. Columns in the IBMSNAP_APPPARMS table (continued)

Column name Description

LOGSTDOUT Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates where the Apply program directs the log file messages:

Y The Apply program directs log file messages to both the standard out

(STDOUT) and the log file.

N The Apply program directs most log file messages to the log file only.

Initialization messages go to both the standard out (STDOUT) and the

log file.

NOTIFY Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the Apply program should invoke the exit routine

(ASNDONE) that returns control to you after the Apply program finishes

copying a subscription set.

Y The Apply program invokes ASNDONE.

N The Apply program does not invoke ASNDONE.

OPT4ONE Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the performance of the Apply program is

optimized if only one subscription set is defined for the Apply program.

Y The performance of the Apply program is optimized for one

subscription set.

N The performance of the Apply program is not optimized for one

subscription set.
This parameter is ignored if copyonce is specified.

SLEEP Data type: CHAR(1); Nullable: Yes, with default; Default: Y.

A flag that indicates how the Apply program is to proceed if no new

subscription sets are eligible for processing:

Y The Apply program goes to sleep.

N The Apply program stops.
This parameter is ignored if copyonce is specified.

SQLERRCONTINUE Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the Apply program continues processing after it

checks the SQLSTATE file for errors.

Y The Apply program checks the SQLSTATE file for any SQL errors

during processing. If an error is found, Apply stops processing.

N The Apply program does not check the SQLSTATE file and continues

processing.

412 SQL Replication Guide and Reference

Table 87. Columns in the IBMSNAP_APPPARMS table (continued)

Column name Description

SPILLFILE Data type: VARCHAR(10); Nullable: Yes, with default.

A flag that indicates where the fetched answer set is stored.

Valid values are:

mem (default)

A memory file.

disk A disk file.

Valid values are:

disk (default)

A disk file.

TERM Data type: CHAR(1); Nullable: Yes, with default; Default: Y.

A flag that indicates whether the Apply program terminates when DB2 is

quiesced or stops.

Y The Apply program terminates when DB2 is quiesced or stops.

N The Apply program stays active and waits for DB2 to be restarted or

unquiesced.
This parameter is ignored if copyonce is specified.

TRLREUSE Data type: CHAR(1); Nullable: Yes, with default; Default: N.

A flag that indicates whether the Apply program invokes the IBM-supplied exit

routine (ASNLOAD) that uses the export and load utilities to refresh target

tables:

Y The Apply program invokes ASNLOAD.

y The Apply program does not invoke ASNLOAD.

ASN.IBMSNAP_APPLYTRACE table

The IBMSNAP_APPLYTRACE table contains messages from the Apply program.

The Apply program does not automatically prune this table, but you can automate

pruning by adding an SQL statement that runs after one of the subscription sets.

Server: Apply control server

Index: APPLY_QUAL, TRACE_TIME

Table 88 provides a brief description of the column in the

IBMSNAP_APPLYTRACE table.

 Table 88. Columns in the IBMSNAP_APPLYTRACE table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program inserted the message.

TRACE_TIME Data type: TIMESTAMP; Nullable: No

The time at the Apply control server when the row was inserted into this table.

Chapter 24. SQL replication table structures 413

Table 88. Columns in the IBMSNAP_APPLYTRACE table (continued)

Column name Description

OPERATION Data type: CHAR(8); Nullable: No

The type of Apply program operation, for example, initialization, apply, or error

condition.

DESCRIPTION Data type: VARCHAR(1024); Nullable: No

The message ID followed by the message text. The message ID is the first seven

characters of the DESCRIPTION column. The message text starts at the ninth

position of the DESCRIPTION column.

ASN.IBMSNAP_APPLYTRAIL table

The IBMSNAP_APPLYTRAIL table contains audit trail information of all

subscription set cycles performed by the Apply program. This table records a

history of updates that are performed against subscriptions. It is a repository of

diagnostic and performance statistics. The Apply trail table is one of the best places

to look if a problem occurs with the Apply program. The Apply program does not

automatically prune this table, but you can easily automate pruning by adding an

after SQL statement to one of the subscription sets.

Server: Apply control server

Index: LASTRUN, APPLY_QUAL

Table 89 provides a brief description of the columns in the

IBMSNAP_APPLYTRAIL table.

 Table 89. Columns in the IBMSNAP_APPLYTRAIL table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program was processing the subscription set.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that the Apply program was processing.

SET_TYPE Data type: CHAR(1); Nullable: No

The value that appeared in the SET_TYPE column of the IBMSNAP_SUBS_SET

table after the most recent Apply cycle.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in

update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master.

In the case of update conflicts between the replica and the master table,

the replica will have its conflicting transactions rejected. F is not used

for read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the

target table is the replica or other copy. In the case of update conflicts

between the master and the replica table, the replica will have its

conflicting transactions rejected. S is used for all read-only

subscriptions.

414 SQL Replication Guide and Reference

Table 89. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

ASNLOAD Data type: CHAR(1); Nullable: Yes

The value used to start the Apply program:

Y Indicates that the Apply program was started with the parameter

loadxit=y causing the ASNLOAD user exit routine to be called to

perform a full refresh on a subscription set.

N Indicates that the ASNLOAD exit routine was not called because either

a full refresh was not needed or the Apply program was not started

with the loadxit parameter.

NULL Indicates that an Apply program error occurred before the Apply

program could determine whether the ASNLOAD exit routine should

be called.

FULL_REFRESH Data type: CHAR(1); Nullable: Yes

A flag that indicates whether a full refresh occurred:

Y Indicates that a full refresh was done for a subscription set.

N Indicates that a full refresh was not done for a subscription set.

NULL Indicates that an error occurred before the Apply program could

determine whether or not a full refresh was needed.

EFFECTIVE_MEMBERS Data type: INT; Nullable: Yes

The number of subscription-set members that are changed during an Apply

cycle, either by a full refresh or by the replication of inserts, updates, and

deletes. This number ranges between zero and the number of defined

subscription-set members.

SET_INSERTED Data type: INT; Nullable: No

The total number of rows inserted into subscription-set members during the

subscription cycle.

SET_DELETED Data type: INT; Nullable: No

The total number of rows deleted from subscription-set members during the

subscription cycle.

SET_UPDATED Data type: INT; Nullable: No

The total number of rows updated in subscription-set members during the

subscription cycle.

SET_REWORKED Data type: INT; Nullable: No

The total number of rows that the Apply program reworked during the last

cycle. The Apply program reworks changes under the following conditions:

v If an insert fails because the row already exists in the target table, the Apply

program converts the insert to an update of the existing row.

v If the update fails because the row does not exist in the target table, the Apply

program converts the update to an insert.

SET_REJECTED_TRXS Data type: INT; Nullable: No

The total number of transactions that were rejected due to an update-anywhere

conflict. This column is used only for update-anywhere subscription sets where

conflict detection is defined as standard or advanced.

Chapter 24. SQL replication table structures 415

Table 89. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

STATUS Data type: SMALLINT; Nullable: No

A value that represents the work status for the Apply program after a given

cycle:

-1 The replication failed. The Apply program backed out the entire set of

rows that it had applied, and no data was committed. If the startup

parameter SQLERRCONTINUE = Y, the SQLSTATE that is returned to

the Apply program during the last cycle is not one of the acceptable

errors you indicated in the input file for SQLERRCONTINUE (apply

qualifier.SQS).

0 The Apply program processed the subscription set successfully. If the

startup parameter SQLERRCONTINUE = Y, the Apply program did not

encounter any SQL errors that you indicated for the

SQLERRCONTINUE startup parameter (in apply_qualifier.SQS) and did

not reject any rows.

2 The Apply program is processing the subscription set in multiple

cycles. It successfully processed a single logical subscription that was

divided according to the MAX_SYNCH_MINUTES control column.

16 The Apply program processed the subscription set successfully and

returned a status of 0; however, it encountered some SQL errors that

you indicated for the SQLERRCONTINUE startup parameter (in

apply_qualifier.SQS) and rejected some of the rows. See the

apply_qualifier.ERR file for details about the rows that failed.

 Example: You set SQLERRCONTINUE = Y and indicate that the

allowable SQL state is 23502 (SQL code -407). A 23502 error occurs, but

no other errors occur. The Apply program finishes processing the

subscription set, and it sets the status to 16. On the next execution, a

23502 error occurs, but then a 07006 (SQL code -301) occurs. Now the

Apply program stops processing the subscription set, backs out the

entire set of rows it had applied, and sets the status to -1 (because no

data was committed).

18 The Apply program is processing the subscription set in multiple cycles

and returned a status of 2, which means that it successfully processed a

single logical subscription that was divided according to the

MAX_SYNCH_MINUTES control column. However, it encountered

some SQL errors that you indicated for the SQLERRCONTINUE startup

parameter (in apply_qualifier.SQS) and rejected some of the rows. See the

apply_qualifier.ERR file for details about the rows that failed.

LASTRUN Data type: TIMESTAMP; Nullable: No

The estimated time that the last subscription began. The Apply program sets the

LASTRUN value each time a subscription set is processed. It is the approximate

time at the Apply control server that the Apply program begins processing the

subscription set.

LASTSUCCESS Data type: TIMESTAMP; Nullable: Yes

The Apply control server timestamp for the beginning of the last successful

processing of a subscription set.

SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has

processed data up to this synchpoint value for the subscription set.

416 SQL Replication Guide and Reference

Table 89. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has

processed data up to this timestamp for the subscription set.

SOURCE_SERVER Data type: CHAR(18); Nullable: No

The DB2 database name where the source tables and views are defined.

SOURCE_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the source server named in the

SOURCE_SERVER column.

SOURCE_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: Yes

The high-level qualifier of the source table or view that the Apply program was

processing. This value is set only when the Apply cycle fails.

SOURCE_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: Yes

The name of the source table or view that the Apply program was processing.

This value is set only when the Apply cycle fails.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: Yes

The value of the source view qualifier for the source table or view that the

Apply program was processing. This value is set only when the Apply cycle

fails.

TARGET_SERVER Data type: CHAR(18); Nullable: No

The database name of the server where target tables or views are stored.

TARGET_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the target server named in the

TARGET_SERVER column.

TARGET_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The high-level qualifier of the target table that the Apply program was

processing. This value is set only when the Apply cycle fails.

TARGET_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The name of the target table that the Apply program was processing. This value

is set only when the Apply cycle fails.

CAPTURE_SCHEMA Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The schema name of the Capture server tables for this subscription set.

TGT_CAPTURE_SCHEMA Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: Yes

If the target table is also the source for another subscription set (such as an

external CCD table in a multi-tier configuration or a replica table in an

update-anywhere configuration), this column contains the Capture schema that

will be used when the table is acting as a source.

Chapter 24. SQL replication table structures 417

Table 89. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

FEDERATED_SRC_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the source for the subscription

set, which applies only to non-DB2 relational sources.

FEDERATED_TGT_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the target for the subscription

set, which applies only to non-DB2 relational target servers.

JRN_LIB Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture

servers, is the library name of the journal that the source table uses.

JRN_NAME Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture

servers, is the name of the journal used by a source table. An asterisk followed

by nine blanks in this column means that the source table is currently not in a

journal, in which case it is not possible to capture data for this source table.

COMMIT_COUNT Data type: SMALLINT; Nullable: Yes

The value of the COMMIT_COUNT from the last Apply cycle, which is recorded

in the IBMSNAP_SUBS_SET table.

OPTION_FLAGS Data type: CHAR(4); Nullable: No

Reserved for future options of SQL replication. Currently this column contains

the default value of NNNN.

EVENT_NAME Data type: CHAR(18); Nullable: Yes

A unique character string used to represent the event that triggered the set to be

processed.

ENDTIME Data type: TIMESTAMP; Nullable: No, with default; Default: current

timestamp.

The timestamp at the Apply control server when the Apply program finished

processing the subscription set. To find out how long a set took to process,

subtract LASTRUN from ENDTIME.

SOURCE_CONN_TIME Data type: TIMESTAMP; Nullable: Yes

The timestamp at the Capture control server when the Apply program first

connects to fetch source data.

SQLSTATE Data type: CHAR(5); Nullable: Yes

The SQL state code for a failed execution. Otherwise, NULL.

SQLCODE Data type: INT; Nullable: Yes

The SQL error code for a failed execution. Otherwise, NULL.

SQLERRP Data type: CHAR(8); Nullable: Yes

The database product identifier of the server where an SQL error occurred that

caused a failed execution. Otherwise, NULL.

SQLERRM Data type: VARCHAR(70); Nullable: Yes

The SQL error information for a failed execution.

418 SQL Replication Guide and Reference

Table 89. Columns in the IBMSNAP_APPLYTRAIL table (continued)

Column name Description

APPERRM Data type: VARCHAR(760); Nullable: Yes

The Apply error message ID and text for a failed execution.

ASN.IBMSNAP_SUBS_COLS table

The IBMSNAP_SUBS_COLS table contains information about the columns of the

subscription-set members that are copied in a subscription set. Rows are

automatically inserted into or deleted from this table when information changes in

one or more columns of a source and target table pair. Use this table if you need

information about specific columns in a subscription-set member.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST, TARGET_OWNER,

TARGET_TABLE, TARGET_NAME

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 90 provides a brief description of the columns in the IBMSNAP_SUBS_COLS

table.

 Table 90. Columns in the IBMSNAP_SUBS_COLS table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription-set member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of a subscription set that this member belongs to.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in

update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master. In

the case of update conflicts between the replica and the master table, the

replica will have its conflicting transactions rejected. F is not used for

read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the

target table is the replica or other copy. In the case of update conflicts

between the master and the replica table, the replica will have its

conflicting transactions rejected. S is used for all read-only subscriptions.

TARGET_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The high-level qualifier for a target table or view.

TARGET_TABLE Data type: VARCHAR(128); VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The table or view to which data is being applied.

Chapter 24. SQL replication table structures 419

Table 90. Columns in the IBMSNAP_SUBS_COLS table (continued)

Column name Description

COL_TYPE Data type: CHAR(1); Nullable: No

A flag that indicates the type of column:

A An after-image column.

B A before-image column.

C A computed column or an SQL expression using scalar functions.

F A computed column using column functions.

L A LOB indicator value.

P A before-image predicate column.

R A relative record number column, provided by the system and used as a

primary key column. Used only by DB2 DataPropagator for System i.

TARGET_NAME Data type: VARCHAR(30); Nullable: No

The name of the target table or view column. It does not need to match the

source column name.

Internal-CCD column names cannot be renamed. They must match the

source-table column names.

IS_KEY Data type: CHAR(1); Nullable: No

A flag that indicates whether the column is part of the target key, which can be

either a unique index or primary key of a condensed target table:

Y The column is all or part of the target key.

N The column is not part of the target key.

COLNO Data type: SMALLINT; Nullable: No

The numeric location of the column in the original source, to be preserved

relative to other user columns in displays and subscriptions.

EXPRESSION Data type: VARCHAR(254); Nullable: No

The source column name or an SQL expression used to create the target column

contents.

ASN.IBMSNAP_SUBS_EVENT table

The IBMSNAP_SUBS_EVENT table contains information about the event triggers

that are associated with a subscription set. It also contains names and timestamps

that are associated with the event names.

Server: Apply control server

Index: EVENT_NAME, EVENT_TIME

This table contains information that you can update using SQL.

You insert a row into this table when you create a new event to start an Apply

program.

Table 91 on page 421 provides a brief description of the columns in the

IBMSNAP_SUBS_EVENT table.

420 SQL Replication Guide and Reference

Table 91. Columns in the IBMSNAP_SUBS_EVENT table

Column name Description

EVENT_NAME Data type: CHAR(18); Nullable: No

The unique identifier of an event. This identifier is used to trigger replication for

a subscription set.

EVENT_TIME Data type: TIMESTAMP; Nullable: No

An Apply control server timestamp of a current or future posting time. User

applications that signal replication events provide the values in this column.

END_SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

A log sequence number that tells the Apply program to apply only data that has

been captured up to this point. You can find the exact END_SYNCHPOINT that

you want to use by referring to the signal table and finding the precise log

sequence number associated with a timestamp. Any transactions that are

committed beyond this point in the log are not replicated until a later event is

posted. If you supply values for END_SYNCHPOINT and END_OF_PERIOD,

the Apply program uses the END_SYNCHPOINT value because it then does not

need to perform any calculations from the control tables to find the maximum

log sequence number to replicate.

END_OF_PERIOD Data type: TIMESTAMP; Nullable: Yes

A timestamp used by the Apply program, which applies only data that has been

logged up to this point. Any transactions that are committed beyond this point

in the log are not replicated until a later event is posted.

ASN.IBMSNAP_SUBS_MEMBR table

The IBMSNAP_SUBS_MEMBR table contains information about the individual

source and target table pairs defined for a subscription set. A single row is

automatically inserted into this table when you add a subscription set member. Use

this table to identify a specific source and target table pair within a subscription

set.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST, SOURCE_OWNER,

SOURCE_TARGET, SOURCE_VIEW_QUAL, TARGET_OWNER, TARGET_TABLE

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 92 provides a brief description of the columns in the

IBMSNAP_SUBS_MEMBR table.

 Table 92. Columns in the IBMSNAP_SUBS_MEMBR table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription-set

member.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that this member belongs to.

Chapter 24. SQL replication table structures 421

Table 92. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in

update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master.

In the case of update conflicts between the replica and the master table,

the replica will have its conflicting transactions rejected. F is not used

for read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the

target table is the replica or other copy. In the case of update conflicts

between the master and the replica table, the replica will have its

conflicting transactions rejected. S is used for all read-only

subscriptions.

SOURCE_OWNER Data type: VARCHAR(30); VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The high-level qualifier for the source table or view for this member.

SOURCE_TABLE Data type: VARCHAR(128); VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The name of the source table or view for this member.

SOURCE_VIEW_QUAL Data type: SMALLINT; Nullable: No

Supports the view of physical tables by matching the similar column in the

IBMSNAP_REGISTER table. This value is set to 0 for physical tables that are

defined as sources and is greater than 0 for views that are defined as sources.

This column is used to support multiple subscriptions for different source views

with identical SOURCE_OWNER and SOURCE_TABLE column values.

TARGET_OWNER Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The high-level qualifier for the target table or view for this member.

TARGET_TABLE Data type: VARCHAR(128), VARCHAR(18) for DB2 UDB for z/OS Version 8

compatibility mode subsystems or earlier; Nullable: No

The name of the target table or view for this member.

TARGET_CONDENSED Data type: CHAR(1); Nullable: No

A flag that indicates:

Y For any given primary key value, the target table shows only one row.

N All changes must remain to retain a complete update history.

A The target table is a base aggregate or change aggregate tables.

TARGET_COMPLETE Data type: CHAR(1); Nullable: No

A flag that indicates:

Y The target table contains a row for every primary key value of interest.

N The target table contains some subset of rows of primary key values.

422 SQL Replication Guide and Reference

Table 92. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

TARGET_STRUCTURE Data type: SMALLINT; Nullable: No

The structure of the target table:

1 User table

3 CCD table

4 Point-in-time table

5 Base aggregate table

6 Change aggregate table

7 Replica

8 User copy

9 CCD table without a join of the IBMSNAP_UOW and CD tables

PREDICATES Data type: VARCHAR(1024); Nullable: Yes

Lists the predicates to be placed in a WHERE clause for the table in the

TARGET_TABLE column. This WHERE clause creates a row subset of the source

table. Predicates are recognized only when WHOS_ON_FIRST is set to S. The

predicate cannot contain an ORDER BY clause because the Apply program

cannot generate an ORDER BY clause. Aggregate tables require a dummy

predicate followed by a GROUP BY clause.

Because the Apply program uses these predicates for both full-refresh and

change-capture replication, this column cannot contain predicates that involve

columns in the CD or UOW table. Predicates that contain CD or UOW table

references are stored in the UOW_CD_PREDICATES column.

MEMBER_STATE Data type: CHAR(1); Nullable: Yes

A flag that indicates what state the member is in:

N (New) The member is new to this subscription set. Also, any members

that were recently enabled will appear in this state.

L (Loaded) The members of this subscription set have been loaded, but

there has not yet been a change capture cycle.

S (Synchronized) The member has been advanced from the new (N) state

to the loaded (L) state, and is now synchronized with all the other

subscription-set members that are in the synchronized state. When all

members of a subscription set are in the synchronized state, change

replication can occur at the subscription set level.

D (Disabled) The member is disabled for this subscription set.

Chapter 24. SQL replication table structures 423

Table 92. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

TARGET_KEY_CHG Data type: CHAR(1); Nullable: No

A flag that indicates how the Apply program handles updates when, at the

source table, you change the source columns for the target key columns of a

target table:

Y The Apply program updates the target table based on the before images

of the target key column, meaning that the Apply program changes the

predicate to the old values instead of the new. Make sure you have

registered each before-image column of the target key so it is present in

the CD table. For the corresponding registration entry in the register

table, make sure the value in the CHG_UPD_TO_DEL_INS column is

set to N.

N The Apply program uses logic while processing updates and deletes

that assume that the columns that make up the target key are never

updated.

UOW_CD_PREDICATES Data type: VARCHAR(1024); Nullable: Yes

Contains predicates that include columns from the CD or UOW table that the

Apply program needs only for change-capture replication, and not for full

refreshes. During change-capture replication, the Apply program processes the

predicates in this column and those in the PREDICATES column. During a full

refresh, the Apply program processes only the predicates in the PREDICATES

column.

JOIN_UOW_CD Data type: CHAR(1); Nullable: Yes

A flag that indicates whether the Apply program does a join of the CD and

UOW tables when processing a user copy target table. This flag is needed when

you define a subscription-set member with predicates that use columns from the

UOW table that are not in the CD table. If the target table type is anything

except user copy, then the Apply program uses a join of the CD and UOW

tables when processing the member, and it ignores this column when processing

the member.

Y The Apply program uses a join of the CD and UOW tables when

processing the member.

N The Apply program does not use a join of the CD and UOW tables

when processing the member; it reads changes only from the CD table.

NULL The Apply program ignores this column when processing the member.

If the target table is a user copy and the value in this column is null,

then the Apply program does not do a join of the CD and UOW tables

when processing the member.

424 SQL Replication Guide and Reference

Table 92. Columns in the IBMSNAP_SUBS_MEMBR table (continued)

Column name Description

LOADX_TYPE Data type: SMALLINT; Nullable: Yes

The type of load for this member. The value in this column is used to override

the defaults.

NULL

The LOAD FROM CURSOR function (available

with the DB2 Utilities Suite) is used for this member.

The ASNLOAD exit determines the most

appropriate utility for this member (option 3, 4, or 5).

1 ASNLOAD is not used for this member. This effectively turns

ASNLOAD option off for a particular subscription-set member even if

you specified LOADX on startup.

2 A user-defined or user-modified ASNLOAD exit code is used.

3 The LOAD FROM CURSOR function is used for this member.

4

EXPORT and LOAD is used for this member.

5

EXPORT and IMPORT is used for this member.

Restriction:

The LOAD utility is not supported for

range-clustered tables. To do a full refresh of a range-clustered table, you can

either use the DB2 IMPORT utility or the Apply program to do a full refresh of

the table through SQL.

LOADX_SRC_N_OWNER Data type: VARCHAR(30); Nullable: Yes

The user-created nickname owner. This value is required when all of the

following conditions exist:

v The LOAD FROM CURSOR function is used for this member (LOADX_TYPE

is 3)

v The target server is Linux, UNIX, or Windows

v The source is not a nickname

LOADX_SRC_N_TABLE Data type: VARCHAR(128); Nullable: Yes

The user-created nickname table. This value is required when all of the

following conditions exist:

v The LOAD FROM CURSOR function is used for this member (LOADX_TYPE

is 3)

v The target server is Linux, UNIX, or Windows

v The source is not a nickname

ASN.IBMSNAP_SUBS_SET table

The IBMSNAP_SUBS_SET table lists all of the subscription sets that are defined at

the Apply control server and documents the replication progress for these sets.

Rows are inserted into this table when you create your subscription set definition.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST

Chapter 24. SQL replication table structures 425

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data.

Table 93 provides a brief description of the columns in the IBMSNAP_SUBS_SET

table.

 Table 93. Columns in the IBMSNAP_SUBS_SET table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes this subscription set.

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set.

SET_TYPE Data type: CHAR(1); Nullable: No

A flag that indicates whether the set is read only or read/write:

R The set is read only.

U The set is an update-anywhere configuration, and therefore is

read/write.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in

update-anywhere replication scenarios.

F (first) The source table is the replica and the target table is the master.

In the case of update conflicts between the replica and the master table,

the replica will have its conflicting transactions rejected. F is not used

for read-only subscriptions; it is used for update anywhere.

S (second) The source table is the master table or other source, and the

target table is the replica or other copy. In the case of update conflicts

between the master and the replica table, the replica will have its

conflicting transactions rejected. S is used for all read-only

subscriptions.

ACTIVATE Data type: SMALLINT; Nullable: No

A flag that indicates whether the Apply program will process the set during its

next cycle:

0 The subscription set is deactivated. The Apply program will not process

the set.

1 The subscription set is active indefinitely. The Apply program will

process the set during each Apply cycle until you deactivate the set or

until the Apply program is unable to process it.

2 The subscription set is active for only one Apply cycle. The Apply

program will process the set once and then deactivate the set.

SOURCE_SERVER Data type: CHAR(18); Nullable: No

The database name of the Capture control server where the source tables and

views are defined.

SOURCE_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the Capture control server that is named in the

SOURCE_SERVER column.

426 SQL Replication Guide and Reference

Table 93. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

TARGET_SERVER Data type: CHAR(18); Nullable: No

The database name of the server where target tables or views are stored.

TARGET_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias corresponding to the target server named in the

TARGET_SERVER column.

STATUS Data type: SMALLINT; Nullable: No

A value that represents the work status for the Apply program after a given

cycle:

-1 The replication failed. The Apply program backed out the entire set of

rows it had applied, and no data was committed. If the startup

parameter SQLERRCONTINUE = Y, the SQLSTATE that is returned to

the Apply program during the last cycle is not one of the acceptable

errors you indicated in the input file for SQLERRCONTINUE (apply

qualifier.SQS).

0 The Apply program processed the subscription set successfully. If the

startup parameter SQLERRCONTINUE = Y, the Apply program did not

encounter any SQL errors that you indicated for the

SQLERRCONTINUE startup parameter (in apply qualifier.SQS) and did

not reject any rows.

2 The Apply program is processing the subscription set in multiple

cycles. It successfully processed a single logical subscription that was

divided according to the MAX_SYNCH_MINUTES control column.

16 The Apply program processed the subscription set successfully and

returned a status of 0; however, it encountered some SQL errors that

you indicated for the SQLERRCONTINUE startup parameter (in

apply_qualifier.SQS) and rejected some of the rows. See the apply

qualifier.ERR file for details about the rows that failed.

 Example: You set SQLERRCONTINUE = Y and indicate that the

allowable SQL state is 23502 (SQL code -407). A 23502 error occurs, but

no other errors occur. The Apply program finishes processing the

subscription set, and it sets the status to 16. On the next execution, a

23502 error occurs, but then a 07006 (SQL code -301) occurs. Now the

Apply program stops processing the subscription set, backs out the

entire set of rows it had applied, and sets the status to -1 (because no

data was committed).

18 The Apply program is processing the subscription set in multiple cycles

and returned a status of 2, meaning that it successfully processed a

single logical subscription that was divided according to the

MAX_SYNCH_MINUTES control column. However, it encountered

some SQL errors that you indicated for the SQLERRCONTINUE startup

parameter (in apply_qualifier.SQS) and rejected some of the rows. See the

apply_qualifier.ERR file for details about the rows that failed.

LASTRUN Data type: TIMESTAMP; Nullable: No

The estimated time that the last subscription set began. The Apply program sets

the LASTRUN value each time a subscription set is processed. It is the

approximate time at the Apply control server when the Apply program begins

processing the subscription set.

Chapter 24. SQL replication table structures 427

Table 93. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

REFRESH_TYPE Data type: CHAR(1); Nullable: No

The type of scheduling that is used to prompt the Apply program to process this

subscription set:

R The Apply program uses time-based scheduling. It uses the value in

SLEEP_MINUTES to determine when to start processing the

subscription set.

E The Apply program uses event-based scheduling. It checks the time

value in the IBMSNAP_SUBS_EVENT table to determine when to start

processing the subscription set. Before any replication (change capture

or full refresh) can begin, an event must occur.

B The Apply program uses both time-based and event-based scheduling.

Therefore, it processes the subscription set based on either the time or

event criteria.

SLEEP_MINUTES Data type: INT; Nullable: Yes

Specifies the time (in minutes) of inactivity between subscription set processing.

The processing time is used only when REFRESH_TYPE is R or B. If the value of

SLEEP_MINUTES is NULL, the Apply program will process the set

continuously. The Apply program will process the set as often as possible, but

will also process all other active subscription sets with the same Apply qualifier.

EVENT_NAME Data type: CHAR(18); Nullable: Yes

A unique character string used to represent the name of an event. Use this

identifier to update the subscription events table when you want to trigger

replication for a subscription set. The event name is used only when

REFRESH_TYPE is E or B.

LASTSUCCESS Data type: TIMESTAMP; Nullable: Yes

The Apply control server timestamp for the beginning of the last successful

processing of a subscription set.

SYNCHPOINT Data type: CHAR(10) for bit data; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has

processed data up to this synchpoint value for the subscription set.

SYNCHTIME Data type: TIMESTAMP; Nullable: Yes

The Apply program uses this column to record its progress, indicating that it has

processed data up to this timestamp for the subscription set.

CAPTURE_SCHEMA Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: No

The schema name of the Capture control tables that process the source for this

subscription set.

TGT_CAPTURE_SCHEMA Data type: VARCHAR(30), VARCHAR(128) for DB2 UDB for z/OS Version 8

new-function mode subsystems; Nullable: Yes

If the target table is also the source for another subscription set (such as an

external CCD table in a multi-tier configuration or a replica table in an

update-anywhere configuration), then this column contains the Capture schema

that is used when the table is acting as a source.

428 SQL Replication Guide and Reference

Table 93. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

FEDERATED_SRC_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the source for the subscription

set, which applies only to non-DB2 relational sources.

FEDERATED_TGT_SRVR Data type: VARCHAR(18); Nullable: Yes

The name of the federated remote server that is the target for the subscription

set, which applies only to non-DB2 relational targets.

JRN_LIB Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture

servers, is the library name of the journal that the source table uses.

JRN_NAME Data type: CHAR(10); Nullable: Yes

This column, which applies only to System i Capture

servers, is the name of the journal used by a source table. An asterisk followed

by nine blanks in this column means that the source table is currently not in a

journal, in which case it is not possible to capture data for this source table.

OPTION_FLAGS Data type: CHAR(4); Nullable: No

Reserved for future options of SQL replication. Currently this column contains

the default value of NNNN.

COMMIT_COUNT Data type: SMALLINT; Nullable: Yes

A flag that indicates the type of processing that the Apply program performs for

a subscription set:

NULL This is the default setting for a read-only subscription set. The Apply

program will process fetched answer sets for the n subscription-set

members one member at a time, until all data has been processed, and

then will issue a single commit at the end of the data processing for the

whole set. The advantage of using this COMMIT_COUNT setting is

that the processing might complete faster.

Integer not NULL

The Apply program processes the subscription set in a transactional

mode. After all answer sets are fetched, the contents of the spill files

will be applied in the order of commit sequence, ordering each

transaction by the IBMSNAP_INTENTSEQ value order. This type of

processing allows all spill files to be open and processed at the same

time. A commit will be issued following the number of transactions

specified in this column. For example, 1 means commit after each

transaction, 2 means commit after each two transactions, and so on. An

integer of 0 means that a single commit will be issued after all fetched

data is applied. The advantage to using transactional mode processing

is that the processing allows for referential integrity constraints at the

target, and interim commits can be issued.

Chapter 24. SQL replication table structures 429

Table 93. Columns in the IBMSNAP_SUBS_SET table (continued)

Column name Description

MAX_SYNCH_MINUTES Data type: SMALLINT; Nullable: Yes

A time-threshold limit to regulate the amount of change data to fetch and apply

during a subscription cycle. The Apply program breaks the subscription set

processing into mini-cycles based on the IBMSNAP_LOGMARKER column in

the UOW or CCD table at the Capture server and issues a COMMIT at the

target server after each successful mini-cycle. The limit is automatically

recalculated if the Apply program encounters a resource constraint that makes

the set limit unfeasible. MAX_SYNCH_MINUTES values that are less than 1 will

be treated the same as a MAX_SYNCH_MINUTES value equal to null.

AUX_STMTS Data type: SMALLINT; Nullable: No

The number of SQL statements that you define in the IBMSNAP_SUBS_STMTS

table that can run before or after the Apply program processes a subscription

set.

ARCH_LEVEL Data type: CHAR(4); Nullable: No

The architectural level of the replication control tables. This column identifies the

rules under which a row was created. This level is defined by IBM.

0801 Version 8 or later SQL replication

0803 Version 8 SQL replication with enhanced support for Oracle sources

0805 Version 8 SQL replication with support for DB2 for z/OS new-function

mode

ASN.IBMSNAP_SUBS_STMTS table

The IBMSNAP_SUBS_STMTS table contains the user-defined SQL statements or

stored procedure calls that will be executed before or after each subscription-set

processing cycle. Execute immediately (EI) statements or stored procedures can be

executed at the source or target server only. This table is populated when you

define a subscription set that uses SQL statements or stored procedure calls.

Server: Apply control server

Index: APPLY_QUAL, SET_NAME, WHOS_ON_FIRST, BEFORE_OR_AFTER,

STMT_NUMBER

Important: Use caution when you update this table using SQL. Altering this table

inappropriately can cause unexpected results and loss of data. The number of

entries for a subscription should be reflected in the AUX_STMTS column of the

IBMSNAP_SUBS_SET table. If AUX_STMTS is zero for a subscription set, the

corresponding entries in the IBMSNAP_SUBS_STMTS table are ignored by the

Apply program.

Table 94 provides a brief description of the columns in the

IBMSNAP_SUBS_STMTS table.

 Table 94. Columns in the IBMSNAP_SUBS_STMTS table

Column name Description

APPLY_QUAL Data type: CHAR(18); Nullable: No

Uniquely identifies which Apply program processes the SQL statement or stored

procedure.

430 SQL Replication Guide and Reference

Table 94. Columns in the IBMSNAP_SUBS_STMTS table (continued)

Column name Description

SET_NAME Data type: CHAR(18); Nullable: No

The name of the subscription set that the SQL statement or stored procedure is

associated with.

WHOS_ON_FIRST Data type: CHAR(1); Nullable: No

The following values are used to control the order of processing in

update-anywhere replication scenarios.

F (first) The target table is the user table or parent replica. The source

table is the dependent replica and, in the case of update conflicts

between the source table and the target table, the source table will have

its conflicting transactions rejected. F is not used for read-only

subscriptions.

S (second) The source table is the user table, parent replica, or other

source. The target table is the dependent replica or other copy and, in

the case of update conflicts between the source table and the target

table, the target table will have its conflicting transactions rejected. S is

used for all read-only subscriptions.

BEFORE_OR_AFTER Data type: CHAR(1); Nullable: No

A value that indicates when and where the statement is issued:

A The statement is executed at the target server after all of the answer-set

rows are applied.

B The statement is executed at the target server before any of the

answer-set rows are applied.

S The statement is executed at the Capture control server before opening

the answer-set cursors.

G Reserved for use by SQL replication.

X Reserved for use by SQL replication.

STMT_NUMBER Data type: SMALLINT; Nullable: No

Defines the relative order of execution within the scope of the

BEFORE_OR_AFTER column value.

EI_OR_CALL Data type: CHAR(1); Nullable: No

A value that indicates:

E The SQL statement should be run as an EXEC SQL EXECUTE

IMMEDIATE.

C The SQL statement contains a stored procedure name to run as an EXEC

SQL CALL.

SQL_STMT Data type: VARCHAR(1024); Nullable: Yes

One of the following values:

Statement

The SQL statement should run as an EXEC SQL EXECUTE IMMEDIATE

statement if EI_OR_CALL is E.

Procedure

The eight-byte name of an SQL stored procedure, without parameters,

or the CALL keyword that runs as an EXEC SQL CALL statement if

EI_OR_CALL is C.

Chapter 24. SQL replication table structures 431

Table 94. Columns in the IBMSNAP_SUBS_STMTS table (continued)

Column name Description

ACCEPT_SQLSTATES Data type: VARCHAR(50); Nullable: Yes

One to ten five-byte SQLSTATE values that you specified when you defined the

subscription set. These non-zero values are accepted by the Apply program as a

successful execution. Any other values will cause a failed execution.

Control tables at the Monitor control server

The control tables at the Monitor control server contain information about when,

how, and whom you want the Replication Alert Monitor to contact when an alert

condition occurs. For Linux, UNIX, Windows, and z/OS, you build these control

tables to your specifications using the Replication Center. Replication on System i

does not have Monitor control tables.

Table 95 describes the control tables at the Monitor control server.

 Table 95. Control tables at the Monitor control server

Table name Description

“IBMSNAP_ALERTS table” on page

433

Contains a record of all the alerts issued by the

Replication Alert Monitor.

“IBMSNAP_CONDITIONS table” on

page 434

Contains the alert conditions for which the

Replication Alert Monitor will contact someone, and

contains the group or individual’s name to contact if

a particular condition occurs.

“IBMSNAP_CONTACTGRP table”

on page 439

Contains the individual contacts that make up the

contact groups.

“IBMSNAP_CONTACTS table” on

page 440

Contains information on how the Replication Alert

Monitor notifies each person or group when an alert

condition that is associated with that contact name

occurs.

“IBMSNAP_GROUPS table” on page

441

Contains the name and description of each contact

group.

“IBMSNAP_MONENQ table” on

page 441

Used to ensure that only one Replication Alert

Monitor program is running per Monitor qualifier.

“IBMSNAP_MONPARMS table” on

page 441

Contains parameters that you can modify to control

the operations of the Monitor program.

“IBMSNAP_MONSERVERS table”

on page 443

Contains the latest time that a server was monitored

by a Replication Alert Monitor program (identified by

a Monitor qualifier).

“IBMSNAP_MONTRACE table” on

page 445

Contains messages from the Monitor program.

“IBMSNAP_MONTRAIL table” on

page 445

Contains information about each monitor cycle.

“IBMSNAP_SUSPENDS table” on

page 447

Contains information about temporary suspensions of

the monitor program

“IBMSNAP_TEMPLATES table” on

page 448

Contains information about how often and how long

the monitor program is suspended.

432 SQL Replication Guide and Reference

IBMSNAP_ALERTS table

The IBMSNAP_ALERTS table contains a record of all the alerts issued by the

Replication Alert Monitor. The table records what alert conditions occur, at which

servers they occur, and when they were detected.

Server: Monitor control server

Non-unique index: MONITOR_QUAL, COMPONENT, SERVER_NAME,

SCHEMA_OR_QUAL, SET_NAME, CONDITION_NAME, ALERT_CODE

Table 96 provides a brief description of the columns in the IBMSNAP_ALERTS

table.

 Table 96. Columns in the IBMSNAP_ALERTS table

Column name Description

MONITOR_QUAL Data type: CHAR(18); Nullable: No.

The Monitor qualifier that identifies which Replication Alert Monitor program

issued the alert.

COMPONENT Data type: CHAR(1); Nullable: No.

The replication component that is being monitored:

C Capture program

A Apply program

S Q Capture program

R Q Apply program

SERVER_NAME Data type: CHAR(18); Nullable: No.

The name of the Capture control server, Apply control server, Q Capture server,

or Q Apply server where the alert condition occurred.

SERVER_ALIAS Data type: CHAR(8); Nullable: Yes.

The DB2 alias of the Capture control server, Apply control server, Q Capture

server, or Q Apply server where the alert condition occurred.

SCHEMA_OR_QUAL Data type: VARCHAR(128); Nullable: No.

The Capture schema, Apply schema, Q Capture schema, or Q Apply schema that

is being monitored.

SET_NAME Data type: CHAR(18); Nullable: No, with default; Default: Current subscription

set.

If you set an alert condition for the Apply program, this column specifies the

name of the subscription set that is being monitored. If you do not specify a set

name, then monitoring is done at the Apply-qualifier level, meaning that every

set within the given Apply qualifier is monitored.

If you set an alert condition for the Q Apply receive queue depth or spill queue

depth, this column specifies the name of the receive queue or spill queue that is

being monitored.

CONDITION_NAME Data type: CHAR(18); Nullable: No.

The condition code that was tested when the alert was triggered.

Chapter 24. SQL replication table structures 433

Table 96. Columns in the IBMSNAP_ALERTS table (continued)

Column name Description

OCCURRED_TIME Data type: TIMESTAMP; Nullable: No.

The time that the alert condition occurred at the Capture control server, Apply

control server, Q Capture server, or Q Apply server.

ALERT_COUNTER Data type: SMALLINT; Nullable: No.

The number of times that this alert has been previously detected in consecutive

monitor cycles.

ALERT_CODE Data type: CHAR(10); Nullable: No.

The message code that was issued when the alert occurred.

RETURN_CODE Data type: INT; Nullable: No.

The integer value returned by a user condition.

NOTIFICATION_SENT Data type: CHAR(1); Nullable: No.

A flag that indicates whether a notification message was sent:

Y A notification message was sent.

E A notification was not sent because the email_server parameter was not

specified.

N A notification was not sent because the number of notifications already

reached the limit set by the max_notifications_per_alert parameter.

ALERT_MESSAGE Data type: VARCHAR(1024); Nullable: No.

The text of the message that was sent, including the message code.

IBMSNAP_CONDITIONS table

The IBMSNAP_CONDITIONS table contains the alert conditions for which the

Replication Alert Monitor will contact someone, and it contains the group or

individual’s name to contact if a particular condition occurs. The Replication Alert

Monitor can monitor a combination of conditions on Capture control servers,

Apply control servers, Q Capture servers, and Q Apply servers.

Server: Monitor control server

Non-unique index: MONITOR_QUAL, COMPONENT, SERVER_NAME,

SCHEMA_OR_QUAL, SET_NAME, CONDITION_NAME

Table 97 provides a brief description of the columns in the

IBMSNAP_CONDITIONS table.

 Table 97. Columns in the IBMSNAP_CONDITIONS table

Column name Description

SERVER_NAME Data type: CHAR(18); Nullable: No.

The name of the Capture control server, Apply control server, Q Capture server,

or Q Apply server where this condition is being monitored.

434 SQL Replication Guide and Reference

Table 97. Columns in the IBMSNAP_CONDITIONS table (continued)

Column name Description

COMPONENT Data type: CHAR(1); Nullable: No.

The replication component that is being monitored:

C Capture program

A Apply program

S Q Capture program

R Q Apply program

SCHEMA_OR_QUAL Data type: VARCHAR(128);Nullable: No.

The Capture schema, Apply schema, Q Capture schema, or Q Apply schema that

is being monitored.

SET_NAME Data type: CHAR(18); Nullable: No; Default: Current subscription set.

If you set an alert condition for the Apply program, this column specifies the

name of the subscription set that is being monitored. If you do not specify a set

name, then monitoring is done at the Apply-qualifier level, meaning that every

set within the given Apply qualifier is monitored.

MONITOR_QUAL Data type: CHAR(18); Nullable: No.

The Monitor qualifier that identifies which Replication Alert Monitor program is

monitoring the Capture control server, Apply control server, Q Capture server, or

Q Apply server for this condition.

SERVER_ALIAS Data type: CHAR(8); Nullable: Yes.

The DB2 alias of the Capture control server, Apply control server, Q Capture

server, or Q Apply server where this condition is being monitored.

ENABLED Data type: CHAR(1); Nullable: No.

A flag that indicates whether the Replication Alert Monitor will process this

condition during the next monitoring cycle:

Y The Replication Alert Monitor will process this definition during the

next cycle.

N The Replication Alert Monitor will ignore this definition during the next

cycle.

Chapter 24. SQL replication table structures 435

Table 97. Columns in the IBMSNAP_CONDITIONS table (continued)

Column name Description

CONDITION_NAME Data type: CHAR(18); Nullable: No.

The name of the condition that the Replication Alert Monitor is monitoring at the

given Capture control server, Apply control server, Q Capture server, or Q Apply

server. Conditions for the Capture program begin with CAPTURE. Conditions

for the Apply program begin with APPLY. Conditions for the Q Capture

program begin with QCAPTURE. Conditions for the Q Apply program begin

with QAPPLY.

CAPTURE_STATUS

The status of the Capture program.

CAPTURE_ERRORS

Whether the Capture program posted any error messages.

CAPTURE_WARNINGS

Whether the Capture program posted any warning messages.

CAPTURE_LASTCOMMIT

The last time the Capture program committed data during the last

monitor cycle.

CAPTURE_CLATENCY

The Capture program’s current latency.

CAPTURE_HLATENCY

Whether the Capture program’s latency is greater than a certain number

of seconds.

CAPTURE_MEMORY

The amount of memory (in megabytes) that the Capture program is

using.

CONDITION_NAME (Continued)

APPLY_STATUS

The status of the Apply program.

APPLY_SUBSFAILING

Whether any subscription sets failed.

APPLY_SUBSINACT

Whether any subscription sets either failed or are inactive.

APPLY_ERRORS

Whether the Apply program posts any error messages.

APPLY_WARNINGS

Whether the Apply program posts any warning messages.

APPLY_FULLREFRESH

Whether a full refresh occurred.

APPLY_REJTRANS (update anywhere)

Whether the Apply program rejects transactions in any subscription set.

APPLY_SUBSDELAY

Whether the Apply program delays more than the time that you

specified in the PARM_INT parameter.

APPLY_REWORKED

Whether the Apply program reworked any rows at the target table.

APPLY_LATENCY

Whether the end-to-end latency of the Apply program exceeds a

threshold.

436 SQL Replication Guide and Reference

Table 97. Columns in the IBMSNAP_CONDITIONS table (continued)

Column name Description

CONDITION_NAME (Continued)

QCAPTURE_STATUS

Whether the Q Capture program is down.

QCAPTURE_ERRORS

Whether the Q Capture program posted any error messages.

QCAPTURE_WARNINGS

Whether the Q Capture program posted any warning messages.

QCAPTURE_LATENCY

Whether the Q Capture latency (the difference between the last insert

into the IBMQREP_CAPMON table and the timestamp of the last

transaction that the Q Capture program read in the DB2 log) exceeds a

threshold.

QCAPTURE_MEMORY

Whether the memory amount that the Q Capture program used exceeds

a threshold.

QCAPTURE_TRANSIZE

Whether a transaction exceeds the MAX_TRANS_SIZE (maximum

transaction size) that is set in the IBMQREP_CAPMON table.

QCAPTURE_SUBSINACT

Whether a Q subscription changed to I (inactive) state.

CONDITION_NAME (Continued)

QAPPLY_STATUS

Whether the Q Apply program is down.

QAPPLY_ERRORS

Whether the Q Apply program posted any error messages.

QAPPLY_WARNINGS

Whether the Q Apply program posted any warning messages.

QAPPLY_LATENCY

Whether the queue latency (the time it takes for a message to go from

the send queue to the receive queue) exceeds a threshold.

QAPPLY_EELATENCY

Whether the end-to-end latency (the time it takes for a transaction to

replicate from the source to the target) exceeds a threshold.

QAPPLY_EXCEPTIONS

Whether the Q Apply inserted a row in the IBMQREP_EXCEPTIONS

table because of a SQL error or conflict.

QAPPLY_MEMORY

Whether the amount of memory that the Q Apply program used to read

messages from a particular receive queue exceeds a threshold.

QAPPLY_RECVQINACT

Whether a receive queue changed to I (inactive) state.

QAPPLY_SPILLQDEPTH

Whether the number of messages on a spill queue exceeds a threshold.

QAPPLY_QDEPTH

Whether the number of messages on a receive queue exceeds a

threshold.

Chapter 24. SQL replication table structures 437

Table 97. Columns in the IBMSNAP_CONDITIONS table (continued)

Column name Description

PARM_INT Data type: INT; Nullable: Yes.

The integer parameter for the condition. The value of this column depends on

the value of the CONDITION_NAME column.

CAPTURE_LASTCOMMIT

Threshold in seconds.

CAPTURE_CLATENCY

Threshold in seconds.

CAPTURE_HLATENCY

Threshold in seconds.

CAPTURE_MEMORY

Threshold in megabytes.

APPLY_SUBSDELAY

Threshold in seconds.

APPLY_REWORKED

Threshold in rows reworked.

APPLY_LATENCY

Threshold in seconds.

QCAPTURE_LATENCY

Threshold in seconds

QCAPTURE_MEMORY

Threshold in megabytes

QCAPTURE_TRANSIZE

Threshold in megabytes

QAPPLY_EELATENCY

Threshold in seconds

QAPPLY_LATENCY

Threshold in seconds

QAPPLY_MEMORY

Threshold in megabytes

QAPPLY_SPILLQDEPTH

Threshold in number of messages.

QAPPLY_QDEPTH

Threshold in number of messages.

438 SQL Replication Guide and Reference

Table 97. Columns in the IBMSNAP_CONDITIONS table (continued)

Column name Description

PARM_CHAR Data type: VARCHAR(128); Nullable: Yes.

The character parameter for the condition. This column holds additional strings

used by the condition.

The CAPTURE_STATUS and APPLY_STATUS conditions use the value of this

column. The value of this column is a string concatenating three parameters

separated by commas:

v Capture server or Apply control server.

This is the DB2 subsystem name.

v Remote DB2 instance name (only when the server is remote).

v Remote hostname.

If the value is NULL or a zero length string, the Monitor program uses the

following defaults:

v The CURRENT SERVER value from the Capture or Apply control server.

v The remote DB2 instance name value:

–

This value is the name of the user ID that was used

when the UNIX server was connected.

–

This value is DB.

v The value of the hostname in the DB2 node directory.

CONTACT_TYPE Data type: CHAR(1); Nullable: No.

A flag that indicates whether to contact an individual or a group if this condition

occurs:

C Individual contact

G Group of contacts

CONTACT Data type: VARCHAR(127); Nullable: No.

The name of the individual contact or the group of contacts to be notified if this

condition occurs.

IBMSNAP_CONTACTGRP table

The IBMSNAP_CONTACTGRP table contains the individual contacts that make up

contact groups. You can specify for the Replication Alert Monitor to contact these

groups of individuals if an alert condition occurs. An individual can belong to

multiple contact groups (the columns are not unique).

Server: Monitor control server

Non-unique index: GROUP_NAME, CONTACT_NAME

Table 98 provides a brief description of the columns in the

IBMSNAP_CONTACTGRP table.

 Table 98. Columns in the IBMSNAP_CONTACTGRP table

Column name Description

GROUP_NAME Data type: VARCHAR(127); Nullable: No.

The name of the contact group.

Chapter 24. SQL replication table structures 439

Table 98. Columns in the IBMSNAP_CONTACTGRP table (continued)

Column name Description

CONTACT_NAME Data type: VARCHAR(127); Nullable: No.

A contact name that is part of the group. These individuals are specified in the

Monitor contacts (IBMSNAP_CONTACTS) table.

IBMSNAP_CONTACTS table

The IBMSNAP_CONTACTS table contains the necessary information for the

Replication Alert Monitor to use to notify individuals when an alert condition that

is associated with the individuals (or their group) occurs. One individual per row

is specified.

Server: Monitor control server

Non-unique index: CONTACT_NAME

Table 99 provides a brief description of the columns in the IBMSNAP_CONTACTS

table.

 Table 99. Columns in the IBMSNAP_CONTACTS table

Column name Description

CONTACT_NAME Data type: VARCHAR(127); Nullable: No.

The name of the contact. Only an individual contact is allowed. Group names are

not supported.

EMAIL_ADDRESS Data type: VARCHAR(128); Nullable: No.

The main e-mail or pager address for this contact.

ADDRESS_TYPE Data type: CHAR(1); Nullable: Yes.

A flag that indicates whether the e-mail address for this contact is an e-mail

account or a pager address:

E The e-mail address is for an e-mail account.

P The e-mail address is for a pager.

DELEGATE Data type: VARCHAR(127); Nullable: Yes.

The contact name to receive the notifications in a delegation period. Only an

individual contact name is allowed. Group names are not supported.

DELEGATE_START Data type: DATE; Nullable: Yes.

The start date of a delegation period when notifications will be sent to the

individual named in the DELEGATE column.

DELEGATE_END Data type: DATE; Nullable: Yes.

The end date of a delegation period.

DESCRIPTION Data type: VARCHAR(1024); Nullable: Yes.

A description of the contact.

440 SQL Replication Guide and Reference

IBMSNAP_GROUPS table

The IBMSNAP_GROUPS table contains the name and description of each contact

group. One group per row is specified.

Server: Monitor control server

Non-unique index: GROUP_NAME

Table 100 provides a brief description of the columns in the IBMSNAP_GROUPS

table.

 Table 100. Columns in the IBMSNAP_GROUPS table

Column name Description

GROUP_NAME Data type: VARCHAR(127); Nullable: Yes.

The name of the contact group.

DESCRIPTION Data type: VARCHAR(1024); Nullable: Yes.

A description of the contact group.

IBMSNAP_MONENQ table

The IBMSNAP_MONENQ table is reserved for future use by replication.

Server: Monitor control server

Non-unique index: MONITOR_QUAL

Table 101 provides a brief description of the column in the IBMSNAP_MONENQ

table.

 Table 101. Columns in the IBMSNAP_MONENQ table

Column name Description

MONITOR_QUAL Data type: CHAR(18); Nullable: No.

Reserved for future use by replication.

IBMSNAP_MONPARMS table

The IBMSNAP_MONPARMS table contains parameters that you can modify to

control the operations of the Replication Alert Monitor.

You can define these parameters to set values such as the number of notification

messages that the Monitor program will send when an alert condition is met. If

you make changes to the parameters in this table, the Monitor program reads your

modifications only during startup.

Server: Monitor control server

Index: MONITOR_QUAL

Default schema: ASN

This table contains information that you can update by using SQL.

Chapter 24. SQL replication table structures 441

Table 102 provides a brief description of the columns in the

IBMSNAP_MONPARMS table.

 Table 102. Columns in the IBMSNAP_MONPARMS table

Column name Description

MONITOR_QUAL Data type: CHAR(18); Nullable: No.

The Monitor qualifier matches the parameters to the Replication Alert Monitor

program to which these parameters apply.

ALERT_PRUNE_LIMIT Data type: INT; Nullable: No, with default; Default: 10080 minutes (7 days).

A flag that indicates how old the data is before it will be pruned from the table.

AUTOPRUNE Data type: CHAR(1); Nullable: No, with default; Default: Y.

A flag that indicates whether the Monitor program automatically prunes rows

that are no longer needed from the IBMSNAP_ALERTS,

IBMSNAP_MONTRACE, and IBMSNAP_MONTRAIL control tables:

Y Autopruning is on.

N Autopruning is off.

EMAIL_SERVER Data type: INT(128); Nullable: Yes.

The address of the e-mail server using the SMTP protocol.

LOGREUSE Data type: CHAR(1); Nullable: No, with default; Default: N.

A flag that indicates whether the Monitor program overwrites the Monitor log

file or appends to it.

Y The Monitor program reuses the log file by first deleting it and then

recreating it when the Monitor program is restarted.

N The Monitor program appends new information to the Monitor log file.

LOGSTDOUT Data type: CHAR(1); Nullable: No, with default; Default: N.

A flag that indicates where the Monitor program directs the log file messages:

Y The Monitor program directs log file messages to both the standard out

(STDOUT) and the log file.

N The Monitor program directs most log file messages to the log file only.

Initialization messages go to both the standard out (STDOUT) and the

log file.

NOTIF_PER_ALERT Data type: INT; Nullable: No, with default; Default: 3.

The number of notification messages that will be sent when an alert condition is

met.

NOTIF_MINUTES Data type: INT; Nullable: No, with default; Default: 60.

The number of minutes that you will receive notification messages when an alert

condition is met.

MONITOR_ERRORS Data type: VARCHAR(128); Nullable: Yes.

Specifies the e-mail address where notification messages are sent whenever an

error occurs that is related to the operation of the Replication Alert Monitor.

MONITOR_INTERVAL Data type: INT; Nullable: No, with default; Default: 300000 (5 minutes).

How often, in milliseconds, the Replication Alert Monitor runs to monitor the

alert conditions that were selected.

442 SQL Replication Guide and Reference

Table 102. Columns in the IBMSNAP_MONPARMS table (continued)

Column name Description

MONITOR_PATH Data type: VARCHAR(1040); Nullable: Yes.

The path where the output from the Monitor program is sent.

RUNONCE Data type: CHAR(1); Nullable: No, with default; Default: N.

A flag that indicates whether the Monitor program will check for the alert

conditions that were selected:

Y The Monitor program checks for any alert conditions.

N The Monitor program does not check for any alert conditions.

If RUNONCE is set to y, then the MONITOR_INTERVAL is ignored.

TERM Data type: CHAR(1); Nullable: No, with default; Default: N.

A flag that indicates whether the Monitor program terminates when DB2 is

placed in quiesce mode:

N The Monitor program stays active when DB2 is quiesced and waits for

DB2 to be unquiesced.

Y The Monitor program terminates when DB2 is quiesced.
Regardless of the value of TERM, a monitor program stops when DB2 shuts

down. When DB2 starts again, you must restart the monitor program.

TRACE_LIMIT Data type: INT; Nullable: No, with default; Default: 10080.

The number of minutes that rows remain in the IBMSNAP_MONTRACE table

before they are eligible for pruning. During the pruning process, the rows in the

Monitor trace table are pruned if the number of minutes (current timestamp - the

time a row was inserted in the IBMSNAP_MONTRACE table) exceeds the value

of TRACE_LIMIT.

ARCH_LEVEL Data type: CHAR(8); Nullable: No, with default; Default: 0901.

The architectural level of the definition contained in the row. This column

identifies the rules under which a row was created. This level is defined by IBM,

and for Version 9.1 the level is 0901.

Important: When updating the IBMSNAP_MONPARMS table, do not change the

value in this column.

IBMSNAP_MONSERVERS table

The IBMSNAP_MONSERVERS table contains information about the last time that

the Replication Alert Monitor monitored a Capture control server, Apply control

server, Q Capture server, or Q Apply server.

Server: Monitor control server

Non-unique index: MONITOR_QUAL, SERVER_NAME

Table 103 on page 444 provides a brief description of the columns in the

IBMSNAP_MONSERVERS table.

Chapter 24. SQL replication table structures 443

Table 103. Columns in the IBMSNAP_MONSERVERS table

Column name Description

MONITOR_QUAL Data type: CHAR(18); Nullable: No.

The Monitor qualifier that identifies which Replication Alert Monitor was

monitoring the Capture control server, Apply control server, Q Capture server, or

Q Apply server.

SERVER_NAME Data type: CHAR(18); Nullable: No.

The name of the Capture control server, Apply control server, Q Capture server,

or Q Apply server that the Replication Alert Monitor was monitoring.

SERVER_ALIAS Data type: CHAR(8); Nullable: Yes.

The DB2 alias of the Capture control server, Apply control server, Q Capture

server, or Q Apply server that the Replication Alert Monitor was monitoring.

LAST_MONITOR_TIME Data type: TIMESTAMP; Nullable: Yes.

The time (at the Capture control server, Apply control server, Q Capture server,

or Q Apply server) that the Replication Alert Monitor program last connected to

this server. This value is used as a lower bound value to fetch messages from the

control tables and is the same value that START_MONITOR_TIME from the last

successful monitor cycle.

START_MONITOR_TIME Data type: TIMESTAMP; Nullable: Yes.

The time (at the Capture control server, Apply control server, Q Capture server,

or Q Apply server) that the Replication Alert Monitor connected to the Capture

control server, Apply control server, Q Capture server, or Q Apply server. This

value is used as a upper bound value to fetch alert messages from the control

tables.

END_MONITOR_TIME Data type: TIMESTAMP; Nullable: Yes.

The time (at the Capture control server, Apply control server, Q Capture server,

or Q Apply server) that the Replication Alert Monitor ended monitoring this

server.

LASTRUN Data type: TIMESTAMP; Nullable: No.

The last time (at the Monitor control server) when the Replication Alert Monitor

started to process the Capture control server, Apply control server, Q Capture

server, or Q Apply server.

LASTSUCCESS Data type: TIMESTAMP; Nullable: Yes.

The value from the LASTRUN column of the last time (at the Monitor control

server) when the Replication Alert Monitor successfully completed processing

the Capture control server, Apply control server, Q Capture server, or Q Apply

server. If the monitoring of this server keeps failing, the value could be the same

(the history of this columns is stored in the IBMSNAP_MONTRAIL table).

STATUS Data type: SMALLINT; Nullable: No.

A flag that indicates the status of the monitoring cycle:

-1 The Replication Alert Monitor failed to process this server successfully.

0 The Replication Alert Monitor processed this server successfully.

1 The Replication Alert Monitor is currently processing this server.

444 SQL Replication Guide and Reference

IBMSNAP_MONTRACE table

The IBMSNAP_MONTRACE table contains audit trail information for the

Replication Alert Monitor. Everything that the Monitor program does is recorded

in this table, which makes it one of the best places for you to look if a problem

with the Monitor program occurs.

Server: Monitor control server

Non-unique index: MONITOR_QUAL, TRACE_TIME

Table 104 provides a brief description of the columns in the

IBMSNAP_MONTRACE table.

 Table 104. Columns in the IBMSNAP_MONTRACE table

Column name Description

MONITOR_QUAL Data type: CHAR(18); Nullable: No.

The Monitor qualifier that identifies which Replication Alert Monitor issued the

message.

TRACE_TIME Data type: TIMESTAMP; Nullable: No.

The timestamp when the message was inserted into this table.

OPERATION Data type: CHAR(8); Nullable: No.

A value used to classify messages:

ERROR

An error message

WARNING

A warning message

INFO An informational message

DESCRIPTION Data type: VARCHAR(1024); Nullable: No.

The message code and text.

IBMSNAP_MONTRAIL table

The IBMSNAP_MONTRAIL table contains information about each monitor cycle.

The Replication Alert Monitor inserts one row for each Capture control server,

Apply control server, Q Capture server, and Q Apply server that it monitors.

Server: Monitor control server

Non-unique index: None

Table 105 provides a brief description of the columns in the

IBMSNAP_MONTRAIL table.

 Table 105. Columns in the IBMSNAP_MONTRAIL table

Column name Description

MONITOR_QUAL Data type: CHAR(18); Nullable: No

The Monitor qualifier that identifies which Replication Alert Monitor was

monitoring the Capture control server, Apply control server, Q Capture server, or

Q Apply server

Chapter 24. SQL replication table structures 445

Table 105. Columns in the IBMSNAP_MONTRAIL table (continued)

Column name Description

SERVER_NAME Data type: CHAR(18); Nullable: No

The name of the Capture control server, Apply control server, Q Capture server,

or Q Apply server that the Replication Alert Monitor was monitoring.

SERVER_ALIAS Data type: CHAR(8); Nullable: Yes

The DB2 alias of the Capture control server, Apply control server, Q Capture

server, or Q Apply server that the Replication Alert Monitor was monitoring.

STATUS Data type: SMALLINT; Nullable: No

A flag that indicates the status of the monitoring cycle:

-1 The Replication Alert Monitor failed to process this server successfully.

0 The Replication Alert Monitor processed this server successfully.

1 The Replication Alert Monitor is currently processing this server.

LASTRUN Data type: TIMESTAMP; Nullable: No

The time (at the Monitor control server) when the Replication Alert Monitor

program last started to process the Capture control server, Apply control server,

Q Capture server, or Q Apply server.

LASTSUCCESS Data type: TIMESTAMP; Nullable: Yes

The last time (at the Monitor control server) when the Replication Alert Monitor

successfully completed processing the Capture control server, Apply control

server, Q Capture server, or Q Apply server.

ENDTIME Data type: TIMESTAMP; Nullable: No, with default

The time when this row was inserted into this table. Default: Current timestamp

LAST_MONITOR_TIME Data type: TIMESTAMP; Nullable: Yes

The time (at the Capture control server, Apply control server, Q Capture server,

or Q Apply server) when the Replication Alert Monitor last connected to the

Capture control server, Apply control server, Q Capture server, or Q Apply

server. This value is used as a lower bound value to fetch messages from the

control tables and is the same value as START_MONITOR_TIME from the

previous successful monitor cycle.

START_MONITOR_TIME Data type: TIMESTAMP; Nullable: Yes

The last time when the Replication Alert Monitor started to monitor the Capture

control server, Apply control server, Q Capture server, or Q Apply server.

END_MONITOR_TIME Data type: TIMESTAMP; Nullable: Yes

The last time when the Replication Alert Monitor finished monitoring the

Capture control server, Apply control server, Q Capture server, or Q Apply

server.

SQLCODE Data type: INT; Nullable: Yes

The SQLCODE of any errors that occurred during this monitor cycle.

SQLSTATE Data type: CHAR(5); Nullable: Yes

The SQLSTATE of any errors that occurred during this monitor cycle.

NUM_ALERTS Data type: INT; Nullable: No

The number of alert conditions that occurred during this monitor cycle.

446 SQL Replication Guide and Reference

Table 105. Columns in the IBMSNAP_MONTRAIL table (continued)

Column name Description

NUM_NOTIFICATIONS Data type: INT; Nullable: No

The number of notifications that were sent during this monitor cycle.

SUSPENSION_NAME Data type: VARCHAR(128); Nullable: Yes

The name of the suspension that is used to stop the operation of the monitor for

defined periods.

IBMSNAP_SUSPENDS table

The IBMSNAP_SUSPENDS table stores information about temporary suspensions

of the monitor program.

Server: Monitor control server

Default schema: ASN

Primary key: SUSPENSION_NAME

Unique index: SERVER_NAME, TEMPLATE_NAME, START

Table 106 provides a brief description of the columns in the IBMSNAP_SUSPENDS

table.

 Table 106. Columns in the IBMSNAP_SUSPENDS table

Column name Description

SUSPENSION_NAME Data type: VARCHAR(128); Nullable: No

The name of the monitor suspension.

SERVER_NAME Data type: CHAR(18); Nullable: No

The name of the Q Capture server, Q Apply server, Capture control server, or

Apply control server where monitoring is suspended.

SERVER_ALIAS Data type: CHAR(18); Nullable: Yes

The alias of the server where monitoring is suspended.

TEMPLATE_NAME Data type: VARCHAR(128); Nullable: Yes

The name of the monitor suspension template. If the value of this column does

not exist in the IBMSNAP_TEMPLATES control table, the monitor suspends one

time from the START timestamp until the STOP timestamp.

START Data type: TIMESTAMP; Nullable: No

The time to start using the template. If no template is specified, this is the start

time of the suspension.

STOP Data type: TIMESTAMP; Nullable: No

The time to stop using the template. If no template is specified, this is the end

time of the suspension.

Chapter 24. SQL replication table structures 447

IBMSNAP_TEMPLATES table

The IBMSNAP_TEMPLATES table stores information about how often and how

long the monitor program is suspended. This information is called a monitor

suspension template.

Server: Monitor control server

Default schema: ASN

Unique index: TEMPLATE_NAME

Table 107 provides a brief description of the columns in the

IBMSNAP_TEMPLATES table.

 Table 107. Columns in the IBMSNAP_TEMPLATES table

Column name Description

TEMPLATE_NAME Data type: VARCHAR(128); Nullable: No

The name of the monitor suspension template.

START_TIME Data type: TIME; Nullable: No

The time of the day to start the suspension. Default: 00:00:00

WDAY Data type: SMALLINT; Nullable: Yes

The day of the week in which the suspension begins, starting with 0 for Sunday

and continuing to 6 for Saturday. A null values means the suspension can begin

on any day.

DURATION Data type: INTEGER; Nullable: No

The duration of the suspension in minutes.

Tables at the target server

Various types of target tables are stored at the target server. If you do not use an

existing table as your target table, the ASNCLP command-line program or

Replication Center build the target table to your specifications based on how you

define the subscription-set member.

Table 108 describes the tables at the target server.

 Table 108. Quick reference for target tables

Table name Description

“Base aggregate table” on page 449 Contains data that has been aggregated from a source

table.

“Change aggregate table” on page

449

Contains data that has been aggregated from a CD

table.

“CCD targets” on page 69 Contains information about changes that occur at the

source and contains additional columns to identify

the sequential ordering of those changes.

“Point-in-time table” on page 450 A copy of the source data, with an additional column

that records the specific time in the source log that

the data was committed.

448 SQL Replication Guide and Reference

Table 108. Quick reference for target tables (continued)

Table name Description

“Replica table” on page 451 A type of target table used for update-anywhere

replication.

“User copy table” on page 451 A copy of the source table.

Base aggregate table

A base aggregate table is a target table that contains the results of aggregate

functions that are performed on data located at the source table.

schema.base_aggregate

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your

updates if a full refresh is performed by the Apply program.

Table 109 provides a brief description of the columns in the base aggregate table.

 Table 109. Columns in the base aggregate table

Column name Description

user columns The aggregate data that was computed from the source table.

IBMSNAP_LLOGMARKER The current timestamp at the source server when the aggregation of the

data in the source table began.

IBMSNAP_HLOGMARKER The current timestamp at the source server when the aggregation of the

data in the source table completed.

Change aggregate table

A change aggregate table is a target table that contains the results of aggregate

functions that are performed on data in the change-data (CD) table. This table is

similar to the base aggregate table, except that the functions being performed at

the CD table are done only for changes that occur during a specific time interval.

schema.change_aggregate

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your

updates if a full refresh is performed by the Apply program.

Table 110 provides a brief description of the columns in the change aggregate table.

 Table 110. Columns in the change aggregate table

Column name Description

user key columns The columns that make up the target key.

user nonkey columns The nonkey data columns from the source table. The column names in this

target table do not need to match the column names in the source table, but

the data types must match.

Chapter 24. SQL replication table structures 449

Table 110. Columns in the change aggregate table (continued)

Column name Description

user computed columns User-defined columns that are derived from SQL expressions. You can use

computed columns with SQL functions to convert source data types to

different target data types.

IBMSNAP_LLOGMARKER The oldest IBMSNAP_LOGMARKER or IBMSNAP_LLOGMARKER value

present in the (CD+UOW) or CCD table rows being aggregated.

IBMSNAP_HLOGMARKER The newest IBMSNAP_LOGMARKER or IBMSNAP_HLOGMARKER value

present in the (CD+UOW) or CCD table rows being aggregated.

CCD targets

You might want to audit the source data or keep a history of how the data is used.

By using a consistent-change-data (CCD) table as your target type, you can track

the history of source changes.

For example, you can track before and after comparisons of the data, when

changes occurred, and which user ID made the update to the source table.

To define a read-only target table that keeps a history of your source table, define

the target CCD table to include the following attributes:

Noncondensed

To keep a record of all of the source changes, define the CCD table to be

noncondensed, so it stores one row for every change that occurs. Because

noncondensed tables contain multiple rows with the same key value, do

not define a unique index. A noncondensed CCD table holds one row per

UPDATE, INSERT, or DELETE operation, thus maintaining a history of the

operations performed on the source table. If you capture UPDATE

operations as INSERT and DELETE operations (for partitioning key

columns), the CCD table will have two rows for each update, a row for the

DELETE and a row for the INSERT.

Complete or noncomplete

You can choose whether you want the CCD table to be complete or

noncomplete. Because noncomplete CCD tables do not contain a complete

set of source rows initially, create a noncomplete CCD table to keep a

history of updates to a source table (the updates since the Apply program

began to populate the CCD table).

Include UOW columns

For improved auditing capability, include the extra columns from the UOW

table. If you need more user-oriented identification, columns for the DB2

for z/OS correlation ID and primary authorization ID or the System i job

name and user profile are available in the UOW table.

Point-in-time table

The point-in-time table contains a copy of the source data, with an additional

system column (IBMSNAP_LOGMARKER) containing the timestamp of

approximately when the particular row was inserted or updated at the source

server.

schema.point_in_time

Server: target server

450 SQL Replication Guide and Reference

Important: If you use SQL to update this table, you run the risk of losing your

updates if a full refresh is performed by the Apply program.

Table 111 provides a brief description of the columns in the point-in-time table.

 Table 111. Columns in the point-in-time table

Column name Description

user key columns The columns that make up the target key.

user nonkey columns The nonkey data columns from the source table or view. The column names in

this target table do not need to match the column names in the source table, but

the data types must match.

user computed columns User-defined columns that are derived from SQL expressions. You can use

computed columns with SQL functions to convert source data types to different

target data types.

IBMSNAP_LOGMARKER The approximate commit time at the Capture control server. This column is null

following a full refresh.

Replica table

The replica table must have the same key columns as the source table. Because of

these similarities, the replica table can be used as a source table for other

subscription sets. Converting a target table into a source table is done

automatically when you define a replica target type and specify the CHANGE

DATA CAPTURE attribute.

schema.replica

Server: target server

This table contains information that you can update by using SQL.

Table 112 provides a brief description of the columns in the replica table.

 Table 112. Columns in the replica table

Column name Description

user key columns The columns that make up the target key, which must be the same primary key

as the master table.

user nonkey columns The nonkey data columns from the source table. The column names in this target

table do not need to match the column names in the source table, but the data

types must match.

User copy table

The user copy table is a target table that contains a copy of the columns in the

source table. This target table can be a row or column subset of the source table,

but it cannot contain any additional columns.

schema.user_copy

Server: target server

Important: If you use SQL to update this table, you run the risk of losing your

updates if a full refresh is performed by the Apply program.

Chapter 24. SQL replication table structures 451

Except for subsetting and data enhancement, a user copy table reflects a valid state

of the source table, but not necessarily the most current state. References to user

copy tables (or any other type of target table) reduce the risk of contention

problems that results from a high volume of direct access to the source tables.

Accessing local user copy tables is much faster than using the network to access

remote source tables for each query.

Table 113 provides a brief description of the columns in the user copy table.

 Table 113. Columns in the user copy table

Column name Description

user key columns The columns that make up the target key.

user nonkey columns The nonkey data columns from the source table or view. The column names in

this target table do not need to match the column names in the source table, but

the data types must match.

user computed columns User-defined columns that are derived from SQL expressions. You can use

computed columns with SQL functions to convert source data types to different

target data types.

452 SQL Replication Guide and Reference

Appendix A. UNICODE and ASCII encoding schemes for SQL

replication (z/OS)

SQL replication for OS/390 and z/OS Version 7 or later supports both UNICODE

and ASCII encoding schemes.

To exploit the UNICODE encoding scheme, you must have at least DB2 for OS/390

and z/OS Version 7 and you must manually create or convert your SQL replication

source, target, and control tables as described in the following sections. However,

your existing replication environment will work with SQL replication for OS/390

and z/OS Version 7 or later even if you do not modify any encoding schemes. If

your system is a UNICODE system, you must add ENCODING(EBCDIC) on the

BIND PLAN and PACKAGE commands for the Capture, Apply, and Replication

Alert Monitor programs.

Rules for choosing an encoding scheme

If your source, CD, and target tables use the same encoding scheme, you can

minimize the need for data conversions in your replication environment.

When you choose encoding schemes for the tables, follow the single CCSID rule:

 The table space data is encoded using ASCII or EBCDIC or UNICODE

CCSIDs. The encoding scheme of all the tables referenced by an SQL

statement must be the same. Also, all tables that you use in views and

joins must use the same encoding scheme.

If you do not follow the single CCSID rule, DB2 will detect the violation and

return SQLCODE -873 during bind or execution.

Which tables should be ASCII or UNICODE depends on your client/server

configuration. Specifically, follow these rules when you choose encoding schemes

for the tables:

v Source or target tables on DB2 for OS/390 can be EBCDIC, ASCII, or UNICODE.

They can be copied from or to tables that have the same or different encoding

scheme in any supported DBMS (DB2 family, or non-DB2 with DataJoiner).

v On a DB2 for OS/390 source server, CD and UOW tables on the same server do

not have to use the same encoding scheme if, when the subscription set-member

is created, the target type is USERCOPY and JOIN_UOW_CD does not equal Y.

Otherwise, the CD and UOW tables must use the same encoding scheme.

v The IBMSNAP_SIGNAL table should be encoded EBCDIC so that the Capture

program does not have to translate signals to EBCDIC when it selects them from

the signal table.

v All the control tables (ASN.IBMSNAP_SUBS_xxxx) on the same control server

must use the same encoding scheme.

v Other control tables can use any encoding scheme.

Setting encoding schemes

To specify the proper encoding scheme for tables, modify the SQL that is used to

generate the tables.

© Copyright IBM Corp. 1994, 2007 453

It is recommended that you stop the Capture and Apply programs before you

change the encoding scheme of existing tables.

Note: The DB2 for z/OS V8 SQL Reference contains more information about CCSID.

To set encoding schemes:

1. Create new source and target tables with the proper encoding scheme. It is

recommended that afterwards that you initialize Capture with a cold start and

restart the Apply program.

2. If you have already created your source and target tables, change the encoding

schemes of the existing target and source tables. Existing tables must have the

same encoding scheme within a table space

a. Use the Reorg Tablespace utility to unload the existing table space.

b. Drop the existing table space.

c. Re-create the table space specifying the new encoding scheme.

d. Use the Load utility to load the old data into the new table space. See the

DB2 for z/OS V8 Utility Guide and Reference for more information on the

Load and Reorg utilities.
3. Use the Replication Center to create new control tables with the proper

encoding scheme.

4. Use the Reorg and Load utilities to modify the encoding scheme for existing

control tables and CD tables.

5. When you create new replication sources or subscription sets using the

ASNCLP or Replication Center, specify the proper encoding scheme.

454 SQL Replication Guide and Reference

Appendix B. Starting the SQL replication programs from

within an application (Linux, UNIX, Windows)

You can start any of the replication programs (Capture program, Apply program,

Replication Alert Monitor) for one replication cycle from within your application

by calling routines.

To use these routines you must specify the AUTOSTOP option for the Capture

program and the COPYONCE option for the Apply program because the API

support only synchronous execution.

Samples of the API and their respective makefiles are in the following directories:

sqllib\samples\repl

sqllib/samples/repl

Those directories contain the following files for starting the Capture program:

capture_api.c

The sample code for starting the Capture program on Windows, Linux, or

UNIX.

capture_api_nt.mak

The makefile for sample code on Windows.

capture_api_unix.mak

The makefile for sample code on UNIX.

Those directories contain the following files for starting the Apply program:

apply_api.c

The sample code for starting the Apply program on Windows, Linux, or

UNIX.

apply_api_nt.mak

The makefile for sample code on Windows.

apply_api_unix.mak

The makefile for sample code on UNIX.

Those directories contain the following files for starting the Replication Alert

Monitor:

monitor_api.c

The sample code for starting the Replication Alert Monitor on Windows,

Linux, or UNIX.

monitor_api_nt.mak

The makefile for sample code on Windows.

monitor_api_unix.mak

The makefile for sample code on UNIX.

© Copyright IBM Corp. 1994, 2007 455

456 SQL Replication Guide and Reference

Appendix C. How the Capture program processes journal

entry types for SQL replication (System i)

The following table describes how the Capture program processes different journal

entry types.

 Table 114. Capture program processing by journal entry

Journal

code1 Entry type Description Processing

C CM Set of record changes committed Insert a record in the UOW

stable.

C RB Rollback No UOW row inserted.

F AY Journaled changes applied to

physical file member

Issue an ASN2004 message and

full refresh of file.

F CE Change end of data for physical

file

Issue an ASN2004 message and

full refresh of file.

F CR Physical file member cleared Issue an ASN2004 message and

full refresh of file.

F EJ Journaling for physical file

member ended

Issue an ASN200A message and

full refresh of the file. A

full-refresh occurs whenever the

Capture program reads an EJ

journal entry, regardless of

whether the user or the system

caused journaling to end. Refer

to the appropriate System i

documentation for information

about implicit end-journal events

for a file.

F IZ Physical file member initialized Issue an ASN2004 message and

full refresh of file.

F MD Member removed from physical

file (DLTLIB, DLTF, or RMVM)

Issue an ASN200A message and

attempt a full refresh.

F MF Storage for physical file member

freed

Issue an ASN200A message and

full refresh of file.

F MM Physical file containing member

moved (Rename Object

(RNMOBJ) of library, Move

Object (MOVOBJ) of file)

Issue an ASN200A message and

attempt a full refresh.

F MN Physical file containing member

renamed (RNMOBJ of file,

Rename Member (RNMM))

Issue an ASN200A message and

attempt a full refresh.

F MR Physical file member restored Issue an ASN2004 message and

full refresh of file.

F RC Journaled changes removed

from physical file member

Issue an ASN2004 message and

full refresh of file.

F RG Physical file member

reorganized

If the RRN of the source table is

being used as the replication

key, issue an ASN2004 message

and full refresh of file.

© Copyright IBM Corp. 1994, 2007 457

Table 114. Capture program processing by journal entry (continued)

Journal

code1 Entry type Description Processing

J NR Identifier for next journal

receivers

Reset the Capture program.

J PR Identifier for previous journal

receivers

Increment the unique sequence

number counter.

R DL Record deleted from physical file

member

Insert a DLT record in the CD

table.

R DR Record deleted for rollback Insert a DLT record in the CD

table.

R PT Record added to physical file

member

Insert an ADD record in the CD

table.

R PX Record added directly to

physical file member

Insert an ADD record in the CD

table.

R UB Before-image of record updated

in physical file member

See note 2.

R UP After-image of record updated

in physical file member

See note 2.

R BR Before-image of record updated

for rollback

See note 3.

R UR After-image of record updated

for rollback

See note 3.

Note:

1. The following values are used for the journal codes:

C Commitment control operation

F Database file operation

J Journal or journal receiver operation

R Operation on specific record

2. The R-UP image and the R-UB image form a single UPD record in the CD table if the

PARTITION_KEYS_CHG column in the register table is N. Otherwise, the R-UB image

inserts a DLT record in the CD table and the R-UP image inserts an ADD record in the

CD table.

3. The R-UR image and the R-BR image form a single UPD record in the CD table if the

PARTITION_KEYS_CHG column in the register table is N. Otherwise, the R-BR image

inserts a DLT record in the CD table and the R-UR image inserts an ADD record in the

CD table.

All other journal entry types are ignored by the Capture program.

458 SQL Replication Guide and Reference

Accessing information about the product

IBM has several methods for you to learn about products and services.

You can find the latest information on the Web:

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html

To access product documentation, go to publib.boulder.ibm.com/infocenter/
db2luw/v9r5/topic/.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

v To order publications by telephone in the United States, call 1-800-879-2755.

To find your local IBM representative, go to the IBM Directory of Worldwide

Contacts at www.ibm.com/planetwide.

Providing comments on the documentation

Please send any comments that you have about this information or other

documentation.

Your feedback helps IBM to provide quality information. You can use any of the

following methods to provide comments:

v Send your comments using the online readers’ comment form at

www.ibm.com/software/awdtools/rcf/.

v Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the information (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

© Copyright IBM Corp. 1994, 2007 459

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/software/awdtools/rcf/

460 SQL Replication Guide and Reference

Accessible documentation

Documentation is provided in XHTML format, which is viewable in most Web

browsers.

XHTML allows you to view documentation according to the display preferences

that you set in your browser. It also allows you to use screen readers and other

assistive technologies.

Syntax diagrams are provided in dotted decimal format. This format is available

only if you are accessing the online documentation using a screen reader.

© Copyright IBM Corp. 1994, 2007 461

462 SQL Replication Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2007 463

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

464 SQL Replication Guide and Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM trademarks and certain non-IBM trademarks are marked at their first

occurrence in this document.

See www.ibm.com/legal/copytrade.shtml for information about IBM trademarks.

The following terms are trademarks or registered trademarks of other companies:

Adobe®, the Adobe logo, PostScript®, the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Cell Broadband Engine™ is a trademark of Sony Computer Entertainment, Inc. in

the United States, other countries, or both and is used under license therefrom.

Intel®, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Microsoft, Windows, Windows NT® and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

ITIL® is a registered trademark and a registered community trademark of the

Office of Government Commerce, and is registered in the U.S. Patent and

Trademark Office.

IT Infrastructure Library® is a registered trademark of the Central Computer and

Telecommunications Agency which is now part of the Office of Government

Commerce.

Other company, product or service names may be trademarks or service marks of

others.

Notices 465

http://www.ibm.com/legal/copytrade.shtml

466 SQL Replication Guide and Reference

Index

Special characters
; delimiter 229

$TA JES2 command 220

*.APP.log file 117

*.CAP.log file 97

*.err file 117

*.sqs file 117

delimiter 229

A
abstract data types 81

accessibility 459, 461

activating subscription sets 57

add_partition parameter
overview 97

ADDDPRREG command 289

ADDDPRSUB command 297

ADDDPRSUBM command 312

ADDJOBSCDE command 220

administration
authorization requirements 13

after-image columns 39

aggregate tables
base aggregate 68, 449

change aggregate 68, 449

alert conditions
ASNMAIL exit routine 199

e-mail notification 196

for Apply program 194

for Capture program 194

for Q Apply program 194

for Q Capture program 194

list 194

overview 194

alert_prune_limit parameter, Replication

Alert Monitor 210

alerts
sending to z/OS console 198

ALWINACT parameter 359

Analyzer
for System i

creating SQL packages 28

invocation parameters 323

Analyzer report
ANZDPR command 322

asnanalyze command 256

ANZDPR command 322

ANZDPRJRN command 32

APPLHEAPSZ configuration

parameter 24

applications
starting replication programs

from 455

Apply control tables
APPPARMS (Apply parameters)

changing 125

IBMSNAP_APPENQ 409

IBMSNAP_APPLY_JOB 410

IBMSNAP_APPLYTRACE 413

Apply control tables (continued)
IBMSNAP_APPLYTRAIL 414

IBMSNAP_APPPARMS 410

using 124

IBMSNAP_SUBS_COLS 419

IBMSNAP_SUBS_EVENT 420

IBMSNAP_SUBS_SET 425

IBMSNAP_SUBS_STMTS 430

SUBS_MEMBR (subscription

members) 421

Apply parameters (APPPARMS) table
changing 125

Apply program
alert conditions 194

authorization requirements 15

changing parameter values 124

commands 239

asnacmd 255

asnapply 249

communicating with
Capture program 231, 232

Capture triggers 231, 233

Replication Alert Monitor 235

Replication Center 231

connectivity 19

data blocking 58

for Linux
binding 26

configuring 26

setting up 24

for System i
ALWINACT parameter 359

APYQUAL parameter 357

checking status 226

COPYONCE parameter 360

creating SQL packages 27

CTLSVR parameter 358

DELAY parameter 359

FULLREFPGM parameter 358

INACTMSG parameter 359

JOBD parameter 357

OPTSNGSET parameter 360

RTYWAIT parameter 359

scheduling 220

setting up 29

starting 115, 355

stopping 125, 331

SUBNFYPGM parameter 359

TRACE parameter 358

TRLREUSE parameter 360

USER parameter 357

for UNIX
apply_path parameter 117

apply_qual parameter 117

binding 26

checking status 221

configuring 26

control_server parameter 117

copyonce parameter 117

default parameters 116

delay parameter 117

Apply program (continued)
for UNIX (continued)

errwait parameter 117

inamsg parameter 117

loadxit parameter 117

logreuse parameter 117

logstdout parameter 117

notify parameter 117

opt4one parameter 117

password file 17

pwdfile parameter 117

setting up 24

sleep parameter 117

spillfile parameter 117

sqlerrcontinue parameter 117

starting 113, 455

stopping 125

term parameter 117

trlreuse parameter 117

for Windows
apply_path parameter 117

apply_qual parameter 117

binding 26

checking status 221

configuring 26

control_server parameter 117

copyonce parameter 117

default parameters 116

delay parameter 117

errwait parameter 117

inamsg parameter 117

loadxit parameter 117

logreuse parameter 117

logstdout parameter 117

notify parameter 117

opt4one parameter 117

password file 17

pwdfile parameter 117

setting up 24

sleep parameter 117

spillfile parameter 117

sqlerrcontinue parameter 117

starting 113, 455

stopping 125

term parameter 117

trlreuse parameter 117

for z/OS
apply_path parameter 117

apply_qual parameter 117

checking status 221

control_server parameter 117

copyonce parameter 117

db2_subsystem parameter 117

default 116

delay parameter 117

errwait parameter 117

inamsg parameter 117

loadxit parameter 117

logreuse parameter 117

logstdout parameter 117

notify parameter 117

© Copyright IBM Corp. 1994, 2007 467

Apply program (continued)
for z/OS (continued)

opt4one parameter 117

parameters 116

pwdfile parameter 117

setting up 28

sleep parameter 117

spillfile parameter 117

starting 113, 136

stopping 125

term parameter 117

trlreuse parameter 117

latency analysis 226

messages 225

printing 225

mini-cycles 58

operating 113

performance data 222

run-time processing statements 90

scheduling 219

setting defaults for parameters 124

table-mode processing 60

throughput analysis 225

transaction-mode processing 60

user ID 15

Apply qualifiers
changing in subscription sets 159

monitoring status 225

naming rules 237

number of associated subscription

sets 54

use when starting the Apply

program 113, 115

apply_path parameter 117

apply_qual parameter 117

APPPARMS (Apply parameters) table
changing 125

APYQUAL parameter 357

ARM (Automatic Restart Manager) 137

arm parameter 137

ASCII tables 453

asnacmd command 255

asnanalyze command 256

asnapply command 249

asncap command 239

asnccmd command 246

ASNDONE exit routine
rejected transactions 46

using 126, 127

asndone.smp file 126

ASNLOAD exit routine
customizing behavior 132

description 128

error handling 128

for System i 133

for UNIX 129

for Windows 129

for z/OS 130

using asnload.ini file 133

using load from cursor function 132

asnload.ini file 133

ASNMAIL exit routine 199

asnmcmd command 264

ASNPLXFY utility 138

asnpwd 266

asnscrt 270

asnsdrop 273

asnslist command 274

asntdiff command 275

asntdiff utility
overview 185

asntrc 278

asntrep command 285

asntrep utility
usage guide 188

asntrepair utililty
usage guide 185

asntrepair utility
overview 185

AT command
Apply program 219, 220

Capture program 219, 220

Replication Alert Monitor 219, 220

AT NetView command
Apply for z/OS 220

Capture for z/OS 220

attributes
changing for registered objects 142

changing for subscription sets 151

auditing
cold start 69, 450

gap in data 69, 450

source data 39

authentication, end-user
for UNIX 17

for Windows 17

authorization
for administration 13

for Apply program 15

for Capture program 14

for Capture triggers 17

for Replication Alert Monitor 200

automatic pruning 178

Automatic Restart Manager (ARM) 137

autoprune parameter
overview 97

autoprune parameter, Replication Alert

Monitor 210

autostop parameter 97

B
backup database command 24

base aggregate tables
definition 66

structure 449

usage 68

batch jobs
memory used by 1

running 135

before-image columns
change-aggregate tables 76

registering 39

restrictions 39

before-image prefix 41

binary large object (BLOB)
replication considerations 82

binding
Apply program

for Linux 26

for UNIX 26

for Windows 26

Capture program
for Linux 25

binding (continued)
Capture program (continued)

for UNIX 25

for Windows 25

Replication Alert Monitor
for Linux 200

for UNIX 200

for Windows 200

BLOB (binary large object)
replication considerations 82

blocking factor 58

C
calculated columns 75

CALL procedures
before and after run-time

processing 90

defining for subscription set 61

CAPCTLLIB parameter 365

CAPPARMS (Capture parameters) table
changing 107

using 104

CAPSTART signals 167

CAPSTOP signals 168

Capture
multiple database partitions 28

using multiple database partitions 23

Capture control server
multiple Capture schemas 23

Capture control tables
CAPPARMS (Capture parameters)

changing 107

using 104

CCD (consistent-change-data) 385

CD (change-data) 386

IBMSNAP_AUTHTKN 383

IBMSNAP_CAPENQ 377

IBMSNAP_CAPMON 377

IBMSNAP_CAPPARMS
structure 379

IBMSNAP_CAPSCHEMAS 382

IBMSNAP_CAPTRACE 384

IBMSNAP_PARTITIONINFO 389

IBMSNAP_PRUNCNTL 390

IBMSNAP_PRUNE_LOCK 392

IBMSNAP_PRUNE_SET 392

IBMSNAP_REG_EXT 393

IBMSNAP_REG_SYNCH 401

IBMSNAP_REGISTER 394

IBMSNAP_RESTART 402

IBMSNAP_SEQTABLE 403

IBMSNAP_SIGNAL 404

IBMSNAP_UOW 406

Capture log file 97

Capture parameters (CAPPARMS) table
changing 107

using 104

Capture program
alert conditions 194

altering behavior while running 106

authorization requirements 14

changing parameter values 104

changing schemas 147

cold start prevention 181

commands 239

asncap 239

468 SQL Replication Guide and Reference

Capture program (continued)
commands (continued)

asnccmd 246

communicating with
Apply program 231, 232

Replication Alert Monitor 235

Replication Center 231

connectivity 19

for Linux
binding 25

setting up 24

for System i
authorization requirements 13

CAPCTLLIB parameter 365

changing attributes 325

checking status 226

CLNUPITV parameter 364

cold start parameters 363

creating SQL packages 27

default parameters 95

FRCFRQ parameter 367

JOBD parameter 363

journal entry types 457

journals and journal receivers,

managing 30

JRN parameter 365

LAG parameter 367

MEMLMT parameter 366

MONITV parameter 366

MONLMT parameter 365

operating 93

overriding attributes of 345

progress of 227

reinitializing 344

RESTART parameter 363

RETAIN parameter 366

scheduling 220

setting up 29

starting 94, 362

stopping 108, 334

TRCLMT parameter 365

WAIT parameter 364

warm start parameters 363

for UNIX
add_partition parameter 97

autoprune parameter 97

autostop parameter 97

binding 25

capture_path parameter 97

capture_schema parameter 97

capture_server parameter 97

checking status 221

cold start parameters 97

commit_interval parameter 97

configuring 24

default parameters 95

lag_limit parameter 97

logreuse parameter 97

logstdout parameter 97

memory_limit parameter 97

monitor_interval parameter 97

monitor_limit parameter 97

operating 93

prune_interval parameter 97

reinitializing 109

resuming 110

retention_limit parameter 97

Capture program (continued)
for UNIX (continued)

setting up 24

sleep_interval parameter 97

starting 93, 455

startmode parameter 97

stopping 108

suspending 109

term parameter 97

trace_limit parameter 97

warm start parameters 97

for Windows
add_partition parameter 97

autoprune parameter 97

autostop parameter 97

binding 25

capture_path parameter 97

capture_schema parameter 97

capture_server parameter 97

checking status 221

cold start parameters 97

commit_interval parameter 97

configuring 24

default parameters 95

lag_limit parameter 97

logreuse parameter 97

logstdout parameter 97

memory_limit parameter 97

monitor_interval parameter 97

monitor_limit parameter 97

operating 93

prune_interval parameter 97

reinitializing 109

resuming 110

retention_limit parameter 97

setting up 24

sleep_interval parameter 97

starting 93, 455

startmode parameter 97

stopping 108

suspending 109

term parameter 97

trace_limit parameter 97

warm start parameters 97

for z/OS
add_partition parameter 97

autoprune parameter 97

autostop parameter 97

capture_path parameter 97

capture_schema parameter 97

capture_server parameter 97

checking status 221

cold start parameters 97

commit_interval parameter 97

default parameters 95

lag_limit parameter 97

logreuse parameter 97

logstdout parameter 97

memory_limit parameter 97

monitor_interval parameter 97

monitor_limit parameter 97

operating 93

prune_interval parameter 97

reinitializing 109

resuming 110

retention_limit parameter 97

setting up 28

Capture program (continued)
for z/OS (continued)

sleep_interval parameter 97

starting 93

startmode parameter 97

stopping 108

suspending 109

term parameter 97

trace_limit parameter 97

warm start parameters 97

ignoring transactions 110

latency analysis 224

memory used by 1

messages 223

printing 223

performance data 222

running more than one 23

scheduling 219

setting defaults for parameters 104

setting environment variables 24

signals 163

throughput analysis 224

user ID 14

where to start it 97

Capture schemas
changing 147

naming rules 237

using multiple 23

Capture signals 163

Capture triggers
authorization requirements 17

communicating with
Apply program 231, 233

Replication Center 231

conflicts with preexisting triggers 8

names of 8

planning 8

capture_path parameter 97

capture_schema parameter 97

capture_server parameter 97

catalog tables, registering 33

CCD (consistent-change-data) tables
adding UOW columns 69, 450

external
multi-tier replication 71

internal
multiple targets 69

locks on 9

non-DB2 relational data sources
using CCD tables 35

nonrelational data sources
maintaining CCD tables 52

using CCD tables 33

replication sources 71

structure
Capture control server 385

usage
history or audit 69, 450

multi-tier replication 71

CD (change-data) tables
for joins 49

for views 49

pruning 179

storage requirements 5

structure 386

summarizing contents 68

CD (change-data) views 49

Index 469

change aggregate tables
definition 66

structure 449

usage 68

change-capture replication
description 37

registration option 37

change-data (CD) tables
pruning 179

storage requirements 5

structure 386

summarizing contents 68

changing Capture parameters
for System i 325

character large object (CLOB)
replication considerations 82

CHGDPRCAPA command 325

CHGJRN command 32

CLNUPITV parameter 364

CLOB (character large object)
replication considerations 82

code pages
compatible 9

DB2CODEPAGE environment

variable 10

translation 9

cold start, Capture program
for System i 363

for UNIX 97

for Windows 97

for z/OS 97

preventing 181

cold startmode 97

column (vertical) subsetting
at the source 37

at the target 75

columns
adding to registered source

tables 142

after-image 39

available for replication 37

before-image 39

calculated 75

computed 91

defining in target table 75

mapping from sources to targets 76

registering in source table 37

relative record numbers on System

i 48

renaming 76, 91

subsetting
at the source 37

at the target 75

commands
asnacmd 255

asnapply 249

asncap 239

asnccmd 246

commit_interval parameter
overview 97

tuning 1

communication amongSQL replication

components 231

compression dictionaries (z/OS) 175

computed columns
CD table 68

creating 91

computed columns (continued)
source table 68

configuration parameters for DB2
APPLHEAPSZ 24

DBHEAP 24

LOGBUFSZ 24

LOGFILSIZ 24

LOGPRIMARY 24

LOGSECOND 24

MAXAPPLS 24

configuring
Apply program

for Linux 26

for UNIX 26

for Windows 26

Capture program
for UNIX 24

for Windows 24

connectivity 19

Replication Alert Monitor
for Linux 200

for UNIX 200

for Windows 200

conflict detection
levels of 46

overview 46

peer-to-peer replication 7

planning 7

requirements 39

update-anywhere replication 7

conflicts
preventing 7

connecting
to System i server 19

connectivity
between DB2 operating systems 19

failure recovery for control

tables 181

consistent-change-data (CCD) tables
adding UOW columns 69, 450

external
multi-tier replication 71

internal
multiple targets 69

locks on 9

non-DB2 relational data sources
using CCD tables 35

nonrelational data sources
maintaining CCD tables 52

using CCD tables 33

replication sources 71

structure
Capture control server 385

usage
history or audit 69, 450

multi-tier replication 71

contact groups 191

contacts
description 191

contacts and contact groups for

monitoring, defining 202

contacts and contact groups,

defining 202

control tables
Apply control server 408

authorization requirements for System

i 29

control tables (continued)
Capture server 375

CCD (consistent-change-data)
Capture control server 385

CD (change-data) 386

connectivity failure recovery 181

creating 21

for non-DB2 relational sources 22

in IASP groups 22

multiple database operating

system 21

multiple database partitions 23

multiple sets 23

on System i 22, 330

dynamic 177

granting authority for System i 13,

336

I/O error recovery 181

IBMSNAP_APPENQ 409

IBMSNAP_APPLY_JOB 410

IBMSNAP_APPLYTRACE 413

IBMSNAP_APPLYTRAIL 414

IBMSNAP_APPPARMS 410

IBMSNAP_AUTHTKN 383

IBMSNAP_CAPENQ 377

IBMSNAP_CAPMON
pruning 182

structure 377

IBMSNAP_CAPPARMS
structure 379

IBMSNAP_CAPSCHEMAS 382

IBMSNAP_CAPTRACE
pruning 182

structure 384

IBMSNAP_PARTITIONINFO 389

IBMSNAP_PRUNCNTL 390

IBMSNAP_PRUNE_LOCK 392

IBMSNAP_PRUNE_SET 392

IBMSNAP_REG_EXT 393

IBMSNAP_REG_SYNCH 401

IBMSNAP_REGISTER 394

IBMSNAP_RESTART 402

IBMSNAP_SEQTABLE 403

IBMSNAP_SIGNAL 404

IBMSNAP_SUBS_COLS 419

IBMSNAP_SUBS_EVENT 420

IBMSNAP_SUBS_SET 425

IBMSNAP_SUBS_STMTS 430

IBMSNAP_UOW 406

maintaining 177

Monitor control server
IBMSNAP_ALERTS 433

IBMSNAP_CONDITIONS 434

IBMSNAP_CONTACTGRP 439

IBMSNAP_CONTACTS 440

IBMSNAP_GROUPS 441

IBMSNAP_MONENQ 441

IBMSNAP_MONPARMS 441

IBMSNAP_MONSERVERS 443

IBMSNAP_MONTRACE 445

IBMSNAP_MONTRAIL 445

IBMSNAP_SUSPENDS 447

IBMSNAP_TEMPLATES 448

list 432

pruning 180

Q Capture server
IBMQREP_IGNTRAN 387

470 SQL Replication Guide and Reference

control tables (continued)
Q Capture server (continued)

IBMQREP_IGNTRANTRC 388

quick reference
Apply control server 408

Capture server 375

target server 448

rebinding, packages and plans 177

reorganizing 178

Replication Alert Monitor,

creating 201

revoking authority for System i 354

RUNSTATS utility 177

static 178

storage requirements 5

SUBS_MEMBR (subscription

members) 421

target server 448

control_server parameter 117

copying replication configurations 170

copyonce parameter 117

COPYONCE parameter 360

correlation ID 49

CRTDPRTBL command 330

CRTJRN command 29

CRTJRNRCV command 29

CTLSVR parameter 358

current receiver size 3, 31

customizing, SQL scripts 229

D
data

advanced subsetting techniques 85

displaying historical 222

manipulating 89

preventing double-deletes 49

retrieving from source tables 182

subsetting
during registration 85

using predicates 87

using views 86

using views to specify

predicates 87

transforming
at registration 89

at subscription 89

creating computed columns 91

renaming columns 76, 91

data blocking 58

data consistency 73

data encryption restrictions 81

data types
mapping between columns 76

replicating
large objects (LOB) 82

data-sharing mode 138

DB2 Extenders
restrictions 82

DB2 for z/OS
planning 11

DB2 replication
authorization requirements 13

DB2 tables
registering 33

DB2 views
registering 51

db2_subsystem parameter 117

DB2CODEPAGE environment

variable 10, 24

DB2DBDFT environment variable 24

DB2INSTANCE environment variable 24

DBADM 13

DBCLOB (double-byte character large

object)
replication considerations 82

DBHEAP configuration parameter 24

deactivating
registered objects 144

subscription sets 57, 161

defaults
for Apply parameters (Linux, UNIX,

Windows, z/OS) 116, 117

for Apply parameters (System i) 116

for Capture parameters (Linux, UNIX,

Windows, z/OS) 95

for Capture parameters (System i) 95

for Capture parameters (UNIX,

Windows, z/OS) 97

delay parameter 117

DELAY parameter 359

delete journal receiver exit program 175

delete journal receiver exit routine
about 32

delimiters, in generated SQL scripts 229

diagnostic files
storage 6, 7

difference table 185

differential refresh replication 37

disk space
requirements 3

distinct data types 81

distributed recovery points 166

documentation
accessible 459, 461

double-byte character large object

(DBCLOB)
replication considerations 82

double-deletes 49

DPR registrations (System i)
adding 289

removing 350

DSPJRN command 227

dynamic control tables 177

E
e-mail notification, replication 196

editing, SQL scripts 229

email_server parameter, Replication Alert

Monitor 210

ENDDPRAPY command 331

ENDDPRCAP command 108, 334

environment variables
Capture program 24

DB2CODEPAGE 10, 24

DB2DBDFT 24

DB2INSTANCE 24

LIBPATH 24

errors
monitor_errors parameter 210

monitoring with alert conditions 191

errors (continued)
replication

alert conditions,

APPLY_ERRORS 194

alert conditions,

CAPTURE_ERRORS 194

alert conditions,

QAPPLY_ERRORS 194

alert conditions,

QCAPTURE_ERRORS 194

SQL 194

errwait parameter 117

event publishing
authorization requirements

Replication Alert Monitor 200

event publishing commands
asnpwd 266

asnscrt 270

asnsdrop 273

asnslist 274

asntdiff 275

asntrc 278

asntrep 285

event-based scheduling 61

events, coordinating 163

existing tables as targets 74

exit routines
ASNDONE

using 126, 127

ASNLOAD
customizing 132

for System i 133

for UNIX 129

for Windows 129

for z/OS 130

using 128

delete journal receiver (System i) 32

external CCD tables
multi-tier replication 71

F
files

*.APP.log 117

*.CAP.log 97

*.err 117

*.sqs 117

asndone.smp 126

asnload.ini 133

fragmentation
horizontal

at the source 37

at the target 76

peer-to-peer replication 7

update-anywhere replication 7

vertical
at the source 37

at the target 75

FRCFRQ parameter 367

full-refresh copying
Apply for System i 48, 358

registration option 37

FULLREFPGM parameter 358

Index 471

G
gap detection 69, 450

generated SQL scripts 229

global record 395

GRTDPRAUT command
granting privileges to SQL

packages 28

syntax 336

GRTOBJAUT command 28

H
heterogeneous replication

registering sources 35

restrictions
aggregate tables 68

CCD tables 39

multi-tier replication 71

update-anywhere 43, 73

history data
CCD tables 69, 450

source data 39

horizontal (row) subsetting
at the source 37

at the target 76

I
I/O error recovery, control tables 181

IASP groups 22

IBMQREP_IGNTRAN control table 110,

387

IBMQREP_IGNTRANTRC control

table 110, 388

IBMSNAP_ALERTS control table 433

IBMSNAP_APPENQ table 409

IBMSNAP_APPLY_JOB table 410

IBMSNAP_APPLYTRACE table
pruning 180

structure 413

IBMSNAP_APPLYTRAIL table
pruning 180

structure 414

IBMSNAP_APPPARMS table 410

using 124

IBMSNAP_AUTHTKN table 383

IBMSNAP_CAPENQ table 377

IBMSNAP_CAPMON table
pruning 182

structure 377

IBMSNAP_CAPPARMS table
structure 379

IBMSNAP_CAPSCHEMAS table 382

IBMSNAP_CAPTRACE table
pruning 182

structure 384

IBMSNAP_CONDITIONS control

table 434

IBMSNAP_CONTACTGRP control

table 439

IBMSNAP_CONTACTS control

table 440

IBMSNAP_GROUPS control table 441

IBMSNAP_MONENQ control table 441

IBMSNAP_MONPARMS control

table 441

IBMSNAP_MONSERVERS control

table 443

IBMSNAP_MONTRACE control

table 445

IBMSNAP_MONTRAIL control

table 445

IBMSNAP_PARTITIONINFO table 389

IBMSNAP_PARTITIONINFOtable 389

IBMSNAP_PRUNCNTL table 390

IBMSNAP_PRUNE_LOCK table 392

IBMSNAP_PRUNE_SET table 392

IBMSNAP_REG_EXT table 393

IBMSNAP_REG_SYNCH table 401

IBMSNAP_REGISTER table 394

IBMSNAP_RESTART table 402

IBMSNAP_SEQTABLE table 403

IBMSNAP_SIGNAL table
structure 404

IBMSNAP_SUBS_COLS table 419

IBMSNAP_SUBS_EVENT table
structure 420

IBMSNAP_SUBS_SET table 425

IBMSNAP_SUBS_STMTS table 430

IBMSNAP_SUSPENDS control table 447

IBMSNAP_TEMPLATES control

table 448

IBMSNAP_UOW table
pruning 406

structure 406

ignoring transactions 110

IMS data sources
maintaining CCD tables 52

registering 33

using CCD tables 33

IMS DataPropagator 33

inactive subscription sets 57

INACTMSG parameter 359

inamsg parameter 117

Independent Auxiliary Storage Pool

(IASP) groups 22

indexes
target tables 77

inner-joins as sources 49

internal CCD tables
multiple targets 69

interval timing 61

invocation parameters
Analyzer

for System i 323

Apply program
for System i 115, 357

for UNIX 117

for Windows 117

for z/OS 117

Capture program
for System i 93, 94, 326, 363

for UNIX 97

for Windows 97

for z/OS 97

Replication Alert Monitor
for UNIX 259

for Windows 259

for z/OS 259

replication commands
for System i 290, 299, 313, 331,

332, 334, 336, 344, 346, 350, 351,

353, 355, 357, 363, 370

INZDPRCAP command 344

J
JCL

starting the Apply program 135

starting the Capture program 135

starting the Replication Alert

Monitor 135

JCL batch mode 135

JOBD parameter 357, 363

JOIN_UOW_CD column 87

joins as sources 49

journal jobs
checking status 226

journal message queues 32

journal receivers
access 175

creating for source tables 29

current, size 3

delete journal receiver exit routine 32

maintaining 174

managing 30

system management 31

threshold 31

user management 32

journal signal tables
CAPSTOP 168

stopping 166

journals
creating 29

creating for source tables 29

default message queue 32

entry types 457

managing 30

QSQJRN journal 29

registering as sources 33

setup 29

starting 29

using 29

using remote journal function 47

JRN parameter 365

L
LAG parameter 367

lag_limit parameter 97

LANG variable
setting 10

large object (LOB)
replication considerations 82

large replication jobs 58

latency
Apply program 226

Capture program 224

legal notices 463

LIBPATH 24

load from cursor function 132

loadxit parameter 117

LOB (large object)
replication considerations 82

update-anywhere restrictions 73

locks
on CCD tables 9

log
planning impact to 8

472 SQL Replication Guide and Reference

log records
archived before captured 3

compression dictionaries (z/OS) 175

maintaining 174

multi database partitions 174

retaining 174

LOGBUFSZ configuration parameter 24

LOGFILSIZ configuration parameter 24

logging requirements
DB2 source servers 3

non-DB2 relational source servers 8

target servers 4

logical partitioning keys
description 42

LOGPRIMARY configuration

parameter 24

logreuse parameter (for Apply) 117

logreuse parameter (for Capture) 97

LOGSECOND configuration

parameter 24

logstdout parameter (for Apply) 117

logstdout parameter (for Capture) 97

long name support
planning 11

LONG VARCHAR data types 81

LONG VARGRAPHIC data types 81

M
manipulating data

at registration 89

at subscription 89

creating computed columns 91

renaming columns 76, 91

mapping
data types between tables 76

source columns to target columns 76

sources to targets 63

master tables (update-anywhere)
overview 73

recapturing changes 43

max_notification_minutes parameter,

Replication Alert Monitor 210

max_notifications_per_alert parameter,

Replication Alert Monitor 210

MAX_SYNCH_MINUTES, data

blocking 58

MAXAPPLS configuration parameter 24

MEMLMT parameter 366

memory
alert conditions

APPLY_MEMORY 194

CAPTURE_MEMORY 194

QAPPLY_MEMORY 194

QCAPTURE_MEMORY 194

Apply program 3

batch jobs 1

Capture program 1

planning 1

reading log records 1

registrations 1

Replication Alert Monitor 200

subscription sets 3

transactions 1

using IBMSNAP_CAPMON table to

tune 1

memory_limit parameter
overview 97

tuning 1

merging
subscription sets 157

triggers 8

message queues, for journals 32

messages 209, 223, 225

Microsoft SQL Server
replication restrictions 39

migration
planning 1

mini-cycles 58

MODIFY command 135

monitor control server
IBMSNAP_SUSPENDS control

table 447

IBMSNAP_TEMPLATES control

table 448

Monitor control server
IBMSNAP_ALERTS control table 433

IBMSNAP_CONDITIONS control

table 434

IBMSNAP_CONTACTGRP control

table 439

IBMSNAP_CONTACTS control

table 440, 441

IBMSNAP_MONENQ control

table 441

IBMSNAP_MONPARMS control

table 441

IBMSNAP_MONSERVERS control

table 443

IBMSNAP_MONTRACE control

table 445

IBMSNAP_MONTRAIL control

table 445

list of control tables 432

Monitor program
messages 209

printing 209

monitor qualifier
replication 191

Monitor qualifiers, naming rules 237

monitor_errors parameter, Replication

Alert Monitor 210

monitor_interval parameter (for

Capture) 97

monitor_limit parameter 97

Replication Alert Monitor 210

monitor_path parameter, Replication

Alert Monitor 210

monitoring
for System i 227

historical trends 222

replication 191

status of programs 226

MONITV parameter 366

MONLMT parameter 365

multi database partition
log records 174

multi-tier replication
defining subscription sets 71

multiple database partitions
Capture 28

multiple target tables 69

MVS console 135, 136

N
names

Apply qualifier rules 237

Capture schema rules 237

for Windows services 237

Monitor qualifier rules 237

of Capture triggers 8

subscription sets 152

national language support (NLS) 10

network connectivity 19

nicknames
for load from cursor function 132

registering 35

restrictions
aggregate tables 68

multi-tier replication 71

update-anywhere 43, 73

with CCD tables 39

NLS (national language support) 10

non-DB2 relational data sources
locks 9

registering 35

restrictions
aggregate tables 68

multi-tier replication 71

update-anywhere 43, 46, 73

source servers 8

using CCD tables 35

non-DB2 relational servers
connecting 20

nonrelational data sources
maintaining CCD tables 52

using CCD tables 33

notify parameter 117

O
objects

changing attributes 142

deactivating 144

reactivating 145

registering 141

stop capturing changes 144

On-demand reporting 221

operating
Replication Alert Monitor 264

opt4one parameter 117

OPTSNGSET parameter 360

overriding attributes (System i)
Capture program 345

OVRDPRCAPA command 345

P
packages, rebinding 177

parameters
Replication Alert Monitor

alert_prune_limit 210

autoprune 210

default values 209

description 210

email_server 210

max_notification_minutes 210

max_notifications_per_alert 210

monitor_errors 210

monitor_limit 210

Index 473

parameters (continued)
Replication Alert Monitor (continued)

monitor_path 210

runonce 210

trace_limit 210

parameters, invocation
Analyzer

for System i 323

Apply program
for System i 115, 357

for UNIX 117

for Windows 117

for z/OS 117

Capture program
for System i 326, 363

for UNIX 97

for Windows 97

for z/OS 97

Replication Alert Monitor
for UNIX 259

for Windows 259

for z/OS 259

replication commands
for System i 290, 299, 313, 331,

332, 334, 336, 344, 346, 350, 351,

353, 355, 357, 363, 370

password file
creating 266, 278

password files
storing 17

peer-to-peer replication
conflict detection 7

performance
tuning 11

planning
coexistence of triggers 8

conflict detection 7, 46

locks on CCD tables 9

log impact 8

memory 1

migration 1

storage requirements 3

transaction throughput rates 8

plans, rebinding 177

point-in-time tables
structure 450

usage 67

predicates
defining for target tables 76

subsetting 87

PREDICATES column 87

prefix, before-image 41

primary keys
logical partitioning 42

relative record numbers for System

i 48

used as target key 77

printing
Apply program

messages 225

Capture program
printing 223

Monitor program
messages 209

promoting
replication configurations 170

prune_interval parameter 97

pruning
CD (change-data) tables 179

control tables 180

IBMSNAP_APPLYTRACE table 180

IBMSNAP_APPLYTRAIL table 180

IBMSNAP_CAPMON table 182

IBMSNAP_CAPTRACE table 182

IBMSNAP_UOW table 406

signal (SIGNAL) table 183

UOW (unit-of-work) table 179

pwdfile parameter 117

Q
Q Apply program

alert conditions 194

Q Capture program
alert conditions 194

Q Capture server
IBMQREP_IGNTRAN control

table 387

IBMQREP_IGNTRANTRC control

table 388

Q replication
authorization requirements

for Replication Alert Monitor 200

control tables
list, Replication Alert Monitor 432

Q replication commands
asnscrt 270

asnsdrop 273

asnslist 274

asnspwd 266

asnstrc 278

asntdiff 275

asntrep 285

R
RCVJRNE command 30

reactivating
objects 145

registrations 145

tables 145

read dependencies 46

rebinding, packages and plans 177

recapturing changes (update-
anywhere) 43

receiver size, current 3

recovery points, distributed 166

referential integrity 73

registering
DB2 tables 33

IMS data sources 33

non-DB2 relational data sources 35

objects 141

options for sources
after-image columns 39

before-image columns 39

before-image prefix 41

change-capture replication 37

column (vertical) subsetting 37

conflict detection 46

full-refresh copying 37

recapturing changes

(update-anywhere) 43

registering (continued)
options for sources (continued)

relative record numbers 48

row (horizontal) subsetting 37

stop Capture on error 41

updates as deletes and inserts 42

using remote journals 47

tables 141

views
overview 49, 51

procedure 141

registrations
adding 289

adding columns 142

attributes, changing 142

deactivating 144

reactivating 145

removing 146, 350

stop capturing changes 144

registry variables
DB2CODEPAGE 10, 24

DB2DBDFT 24

DB2INSTANCE 24

reinitializing 207

reinitializing Capture program
for UNIX 109

for Windows 109

for z/OS 109

relative record numbers
as primary key for System i 48

support for System i 48

used as target key 77

relative timing 61

remote journals as sources 47

remote source tables 47

renaming columns 76, 91

reorganizing
control tables 178

replica tables
defining read-write targets 73

definition 66

recapturing changes 43

structure 451

Replication Alert Monitor 202, 207

alert conditions
e-mail notifications 196

events 191

list 194

overview 194

sending alerts to z/OS

console 198

status 191

thresholds 191

alerts 191

authorization requirements 200

changing alert conditions 205

changing runtime parameters 212

Classic replication 191

communicating with
Apply program 235

Capture 235

Replication Center 234

contact groups 191

contacts 191

control tables
IBMSNAP_ALERTS 433

IBMSNAP_CONDITIONS 434

474 SQL Replication Guide and Reference

Replication Alert Monitor (continued)
control tables (continued)

IBMSNAP_CONTACTGRP 439

IBMSNAP_CONTACTS 440

IBMSNAP_GROUPS 441

IBMSNAP_MONENQ 441

IBMSNAP_MONPARMS 441

IBMSNAP_MONSERVERS 443

IBMSNAP_MONTRACE 445

IBMSNAP_MONTRAIL 445

creating control tables 201

description 191

for Linux
binding 200

for UNIX
binding 200

checking status 221

operating 264

starting 455

for Windows
binding 200

checking status 221

operating 264

starting 455

for z/OS
checking status 221

operating 264

memory 200

monitoring replication, overview 191

operational errors 214

parameters
alert_prune_limit 210

autoprune 210

default values 209

descriptions 210

email_server 210

max_notification_minutes 210

max_notifications_per_alert 210

monitor_errors 210

monitor_interval 210

monitor_limit 210

monitor_path 210

runonce 210

trace_limit 210

pruning control tables 214

scheduling 219, 220

selecting alert conditions 204

setting up 199

specifying notification criteria 213

specifying run frequency 213

stopping 209

Replication Analyzer
for System i

creating SQL packages 28

invocation parameters 323

Replication Center
communicating with

Apply program 231

Capture program 231

Capture triggers 231

Replication Alert Monitor 234

connectivity 19

promote functions 170

replication commands
$TA JES2

Apply for z/OS 220

Capture for z/OS 220

replication commands (continued)
ADDJOBSCDE 220

asnslist 274

asntdiff 275

asntrep 285

AT 219, 220

AT NetView
Apply for z/OS 220

Capture for z/OS 220

backup database 24

CRTJRNRCV 29

DSPJRN 227

for System i
ADDDPRREG 289

ADDDPRSUB 297

ADDDPRSUBM 312

ANZDPR 322

ANZDPRJRN 32

CHGDPRCAPA 325

CHGJRN 32

CRTDPRTBL 330

CRTJRN 29

ENDDPRAPY 331

ENDDPRCAP 108, 334

GRTDPRAUT 28, 336

GRTOBJAUT 28

INZDPRCAP 344

OVRDPRCAPA 345

RCVJRNE 30

RMVDPRREG 350

RMVDPRSUB 351

RMVDPRSUBM 353

RVKDPRAUT 354

SBMJOB 220

STRDPRAPY 116, 355

STRDPRCAP 362

STRJRNPF 29

WRKDPRTRC 369

WRKJOB 226

WRKSBMJOB 226

WRKSBSJOB 226

for UNIX
asnanalyze 256

asnmcmd 264

for Windows
asnanalyze 256

asnmcmd 264

for z/OS
asnmcmd 264

MODIFY 135

update database configuration 24

replication environments
copying 170

replication events coordination 163

replication services
creating 216

description 215

display name 215

dropping 217

listing 274

name 215

starting 216

stopping 217

viewing 217

replication sources
CCD (consistent-change-data)

tables 71

replication sources (continued)
joins 49

maintaining CCD tables 52

mapping to targets 63

registering
columns 37

DB2 tables 33

IMS data sources 33

non-DB2 relational data

sources 35

rows 37

views 51

subscribing to 55

RESTART parameter 363

restrictions
abstract data types 81

ASCII tables 453

CCD tables 73

column names, limits 39

data encryption 81

DB2 Extenders large objects 82

distinct data types 81

existing target tables 74

heterogeneous replication 39, 71, 73

LOB data types 73

LONG columns in Oracle tables 81

LONG VARCHAR data types 81

LONG VARGRAPHIC data types 81

Microsoft SQL Server 39

non-DB2 relational data sources 43,

46

Oracle sources 81

spatial data types 81

stored procedures 90

Sybase 39

Unicode tables 453

user-defined data types 81

views 51

WHERE clause 76

resuming 207

Capture program
for UNIX 110

for Windows 110

for z/OS 110

RETAIN parameter 366

retention_limit parameter 97

RMVDPRREG command 350

RMVDPRSUB command 351

RMVDPRSUBM command 353

roll-forward recovery 24

row (horizontal) subsetting
at the source 37

at the target 76

row-capture rules 37

ROWID 82

rows
available for replication 37

defining in target table 76

registering in source table 37

subsetting
at the source 37

at the target 76

RRN 48

RTYWAIT parameter 359

run-time processing 61, 90

running, SQL scripts 229

Index 475

runonce parameter, Replication Alert

Monitor 210

RUNSTATS utility 177

RVKDPRAUT command 354

S
SBMJOB command 220

scheduling
replication programs 219

subscription sets 61

schemas
changing 147

naming rules 237

SCM (Service Control Manager)
creating replication services 216

description 215

dropping replication services 217

starting replication services 216

stopping replication services 217

viewing replication services 217

screen readers 459, 461

Service Control Manager (SCM)
creating replication services 216

description 215

dropping replication services 217

starting a replication service 216

stopping a replication service 217

viewing replication services 217

setting environment variables
Capture program 24

setting up
Apply programs

for Linux 24

for UNIX 24

for Windows 24

Capture programs
for Linux 24

for UNIX 24

for Windows 24

journals 29

Replication Alert Monitor 200

signal (SIGNAL) table
pruning 183

SIGNAL (signal) table
pruning 183

signals
CAPSTART 167

CAPSTOP 168

setting distributed recovery

points 166

STOP 164, 165, 166

USER 163

sleep parameter 117

sleep_interval parameter 97

source logs, maintaining 174

source servers
DB2

log impact 3

non-DB2 relational
log impact 8

source systems, maintaining 173

source tables
adding columns 142

creating journals for 29

maintaining 173

retrieving lost data 182

sources
CCD (consistent-change-data)

tables 71

maintaining CCD tables 52

mapping to targets 63

registering
DB2 tables 33

IMS data sources 33

non-DB2 relational 35

views 49, 51

registering columns 37

registering rows 37

registration options
after-image columns 39

before-image columns 39

before-image prefix 41

change-capture replication 37

column (vertical) subsetting 37

conflict detection 46

full-refresh copying 37

recapturing changes

(update-anywhere) 43

relative record numbers 48

row (horizontal) subsetting 37

stop Capture on error 41

updates as deletes and inserts 42

using remote journals 47

subscribing to 55

spatial data types 81

special data types
replicating

large objects (LOB) 82

spill files
storage for Apply 6

storage for Capture 6

spillfile parameter 117

splitting
subscription sets 153

SQL files, editing 229

SQL packages
creating for Apply program 27

creating for Capture program 27

creating for Replication Analyzer 28

SQL replication 221

ignoring transactions 110

planning overview 1

SQL replication commands
asnpwd 266

asnscrt 270

asnsdrop 273

asntrc 278

SQL replication

componentcommunication 231

SQL scripts 229

SQL statements
defining for subscription set 61

run-time processing 90

sqlerrcontinue parameter 117

staged replication 71

staging data 71

starting 207

Apply program
for System i 115, 355

for UNIX 113, 455

for Windows 113, 455

for z/OS 113, 136

starting (continued)
Capture program

for System i 94, 362

for UNIX 93, 455

for Windows 93, 455

for z/OS 93

Replication Alert Monitor
for UNIX 455

for Windows 455

startmode parameter 97

static control tables 178

status
Apply program 221, 226

Capture program 221, 226

journal jobs 226

Replication Alert Monitor 221

stop Capture on error option 41

stop capturing changes 144

STOP signals 164, 165, 166

stopping
Apply program

for System i 125, 331

for UNIX 125

for Windows 125

for z/OS 125

Capture program
for System i 108, 334

for UNIX 108

for Windows 108

for z/OS 108

Replication Alert Monitor
for UNIX 264

for Windows 264

for z/OS 264

storage
Apply diagnostic files 6

Apply spill files 6

Capture diagnostic files 6

Capture spill files 6

CD table 5

control tables 5

database log and journal data 3

diagnostic files 7

requirements 3

target tables 5

UOW table 5

stored procedures
defining for subscription set 61

manipulating data 90

STRDPRAPY command 116, 355

STRDPRCAP command 362

STRJRNPF command 29

SUBNFYPGM parameter 359

SUBS_EVENT (subscription events) table
posting events 61

SUBS_MEMBR (subscription members)

table 132, 421

subscribing to sources 55

subscription cycle 58

subscription events (SUBS_EVENT) table
posting events 61

subscription members (SUBS_MEMBR)

table 132, 421

subscription sets
activation level 57

adding 297

adding members 63, 149

476 SQL Replication Guide and Reference

subscription sets (continued)
changing

Apply qualifiers 159

attributes 151

names 152

columns 75

creating 55

creating new 148

data consistency 73

deactivating 161

disabling members 150

enabling members 150

merging 157

mini-cycles 58

multi-tier replication 71

number of Apply qualifiers 54

processing mode 60

referential integrity 73

removing 162, 351

rows 76

run-time processing statements 90

scheduling
event-based 61

time-based 61

splitting 153

SQL statements 61

stored procedures 61

update-anywhere replication 73

subscription-set members
adding 63, 149, 312

applying subset of columns 75

applying subset of rows 76

defining target key 77

disabling 150

enabling 150

mapping between columns 76

mapping data types 76

multi-tier replication 71

number per subscription set 54

removing 353

selecting target types 66

update-anywhere replication 73

subsetting
advanced techniques

during registration 85

using predicates 87

columns at target 75

registered columns 37

registered rows of changes 37

rows of changes at target 76

source data
using views 86

suspending 207

Capture program
for UNIX 109

for Windows 109

for z/OS 109

Sybase
replication restrictions 39

synchronization
asntdiff and asntrepair utilities 185

SYSADM 13

system change journal management 31

system commands
asnacmd 255

asnapply 249

asncap 239

system commands (continued)
asnccmd 246

asnpwd 266

asnscrt 270

asnsdrop 273

asnslist 274

asntdiff 275

asntrc 278

asntrep 285

System i data sources
with remote journaling 47

System i server
connecting to 19

system-started tasks 135

T
table differencing utility 185, 275

table repair utility 188, 285

table-mode processing 4, 60

tables
adding columns 142

AUTHTKN (Apply-qualifier

cross-reference) 383

base aggregate 449

CCD (consistent-change-data)
Capture control server 385

CD (change-data) 386

change aggregate 449

changing attributes 142

conflict detection for 7

control tables
connectivity failure recovery 181

dynamic 177

I/O error recovery 181

maintaining 177

pruning 180

reorganizing 178

RUNSTATS utility 177

static 178

deactivating 144

IBMQREP_IGNTRAN 387

IBMQREP_IGNTRANTRC 388

IBMSNAP_ALERTS 433

IBMSNAP_APPENQ 409

IBMSNAP_APPLY_JOB 410

IBMSNAP_APPLYTRACE 413

IBMSNAP_APPLYTRAIL 414

IBMSNAP_APPPARMS 410

IBMSNAP_CAPENQ 377

IBMSNAP_CAPMON 182, 377

IBMSNAP_CAPPARMS 379

IBMSNAP_CAPSCHEMAS 382

IBMSNAP_CAPTRACE 182, 384

IBMSNAP_CONDITIONS 434

IBMSNAP_CONTACTGRP 439

IBMSNAP_CONTACTS 440

IBMSNAP_GROUPS 441

IBMSNAP_MONENQ 441

IBMSNAP_MONPARMS 441

IBMSNAP_MONSERVERS 443

IBMSNAP_MONTRACE 445

IBMSNAP_MONTRAIL 445

IBMSNAP_PARTITIONINFO 389

IBMSNAP_PRUNCNTL 390

IBMSNAP_PRUNE_LOCK 392

IBMSNAP_PRUNE_SET 392

tables (continued)
IBMSNAP_REG_EXT 393

IBMSNAP_REG_SYNCH 401

IBMSNAP_REGISTER 394

IBMSNAP_RESTART 402

IBMSNAP_SEQTABLE 403

IBMSNAP_SIGNAL 404

IBMSNAP_SUBS_COLS 419

IBMSNAP_SUBS_EVENT 420

IBMSNAP_SUBS_SET 425

IBMSNAP_SUBS_STMTS 430

IBMSNAP_SUSPENDS 447

IBMSNAP_TEMPLATES 448

IBMSNAP_UOW 406

maintaining CCD tables 52

point-in-time 450

reactivating 145

registering
DB2 33

non-DB2 relational 35

procedure 141

removing registrations 146

replica 7, 451

stop capturing changes 144

SUBS_MEMBR (subscription

members) 132, 421

target tables 183

maintaining 183

user copy 451

target indexes 77

target keys 77

target servers
log impact 4

target tables
applying subset of columns 75

applying subset of rows 76

base aggregate
definition 66

structure 449

usage 68

CCD (consistent-change-data)
overview 66

change aggregate
definition 66

structure 449

usage 68

defining columns 75

defining rows 76

defining target key 77

fragmenting 75, 76

maintaining 183

mapping to sources 63

new columns for 91

point-in-time
definition 66

structure 450

usage 67

repairing 188

replica
conflict detection for 7

definition 66

structure 451

usage 73

storage requirements 5

table structures, quick reference 448

user copy
definition 66

Index 477

target tables (continued)
user copy (continued)

structure 451

usage 67

user defined 66, 74

target-key columns
updating 79

term parameter (for Apply) 117

term parameter (for Capture) 97

termination characters, in generated SQL

scripts 229

three-tier replication configuration 71

throughput
Apply program 225

Capture program 224

throughput rates
Capture triggers 8

time-based scheduling 61

tips
checking if Apply processed a set

successfully 117

deleting rows from the Apply trail

table 117

estimating use of space 3

using sleep versus copyonce

parameters 117

using stored procedures for additional

processing of sets 126

using stored procedures with

ASNDONE 127

verifying change capture began 93

trace facility
for System i 369

TRACE parameter 358

trace_limit parameter
overview 97

Replication Alert Monitor 210

use with asnmon command 259

trademarks 465

transaction throughput rates
Capture triggers 8

transaction-mode processing 4, 60

transactions
memory used by 1

transactions, ignoring 110

transforming data
at registration 89

at subscription 89

creating computed columns 91

renaming columns 76, 91

translating data 10

TRCLMT parameter 365

triggers
capturing data 8

merging 8

trlreuse parameter 117

TRLREUSE parameter 360

troubleshooting commands
WRKDPRTRC 369

TSO 135, 136

tuning
commit_interval parameter 1

memory_limit parameter 1

performance 11

U
Unicode tables 453

unit-of-work (UOW) table
columns in CCD tables 69, 450

pruning 179

storage requirements 5

UOW (unit-of-work) table
columns in CCD tables 69, 450

pruning 179

storage requirements 5

UOW_CD_PREDICATES column 87

update database configuration

command 24

update-anywhere replication
conflict detection

overview 46

planning for 7

requirements 39, 46

defining subscription sets 73

fragmentation for 7

recapturing changes 43

updated primary key columns 42

updates
as deletes and inserts 42

conflicts 46

user copy table
definition 66

structure 451

usage 67

user IDs
authorization 14

for Apply program 15

for Capture program 14

for Capture triggers 17

password files 17

USER parameter 357

USER signals 163

user-defined data types 81

user-defined tables 66, 74

utilities
table differencing 275

table repair 285

V
vertical (column) subsetting

at the source 37

at the target 75

views
changing attributes 142

registering
as sources 51

overview 49

procedure 141

restrictions 49, 51

using correlation ID 49

W
WAIT parameter 364

warm start, Capture program
for System i 363

for UNIX 97

for Windows 97

for z/OS 97

warmns startmode 97

warmsi startmode 97

WHERE clause
PREDICATES column restriction 87

row subsets 76

Windows service
creating 270, 273

Windows Service Control Manager (SCM)
asnslist command 274

description 215

listing replication services 274

Windows services names 237

WRKDPRTRC command 369

WRKJOB command 226

WRKSBMJOB command 226

WRKSBSJOB command 226

Z
z/OS console

sending monitor alerts 198

478 SQL Replication Guide and Reference

����

Printed in USA

SC19-1030-01

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

at
io

n
In

te
gr

at
io

n
Ve

rs
io

n
9.

5
SQ

L
Re

pl
ic

at
io

n
Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

	Contents
	Chapter 1. Planning for SQL replication
	Migration planning
	Memory planning
	Memory used by the Capture program
	Memory used by the Apply program

	Storage planning
	Log impact for DB2 source servers
	Log impact for target servers
	Storage requirements of target tables and control tables
	Space requirements for spill files for the Capture program
	Space requirements for spill files for the Apply program
	Space requirements for diagnostic log files (z/OS, Linux, UNIX, Windows)

	Conflict detection planning
	Non-DB2 relational source planning
	Transaction throughput rates for Capture triggers
	Log impact for non-DB2 relational source servers
	Coexistence of existing triggers with Capture triggers
	Locks for Oracle source servers

	Code page conversion planning
	Replication between databases with compatible code pages
	National language support (NLS) for replication

	Replication planning for DB2 for z/OS
	Performance tuning

	Chapter 2. Setting up user IDs and passwords for SQL replication
	Authorization requirements for administration
	Authorization requirements for the Capture program
	Authorization requirements for the Apply program
	Authorization requirements for Capture triggers on non-DB2 relational databases
	Storing user IDs and passwords for SQL replication (Linux, UNIX, Windows)

	Chapter 3. Configuring servers for SQL replication
	Connectivity requirements for SQL replication
	Connecting to System i servers from Windows
	Connecting to non-DB2 relational servers

	Creating control tables for SQL replication
	Creating control tables for SQL replication
	Creating control tables (System i)
	Creating control tables for non-DB2 relational sources
	Creating multiple sets of Capture control tables
	Capture control tables on multiple database partitions

	Setting up the replication programs
	Setting up the replication programs (Linux, UNIX, Windows)
	Setting environment variables for the replication programs (Linux, UNIX, Windows)
	Preparing the DB2 database to run the Capture program (Linux, UNIX, Windows)
	Optional: Binding the Capture program packages (Linux, UNIX, Windows)
	Optional: Binding the Apply program packages (Linux, UNIX, Windows)
	Binding the Apply program packages for Sybase sources

	Creating SQL packages to use with remote systems (System i)
	Creating SQL packages for the Apply program (System i)
	Creating SQL packages for the Replication Analyzer (System i)
	Granting privileges to the SQL packages (System i)

	Setting up the replication programs (z/OS)
	Capture for multiple database partitions
	Setting up journals (System i)
	Setting up journals for source tables (System i)
	Managing journals and journal receivers (System i)

	Chapter 4. Registering tables and views as SQL replication sources
	Registering DB2 tables as sources
	Registering non-DB2 relational tables as sources
	Registration options for source tables
	Registering a subset of columns (vertical subsetting)
	Change-capture replication and full-refresh copying
	After-image columns and before-image columns
	Before-image prefix
	Stop the Capture program on error
	Options for how the Capture program stores updates
	Preventing the recapture of changes (update-anywhere replication)
	Masters with only one replica
	Multiple replicas that are mutually exclusive partitions of the master
	Masters that replicate changes to multiple replicas
	Replicas that replicate changes to other replicas (multi-tier)

	Options for conflict detection (update-anywhere replication)
	Registering tables that use remote journaling (System i)
	Using relative record numbers (RRN) instead of primary keys (System i)

	How views behave as replication sources
	Views over a single table
	Views over a join of two or more tables

	Registering views of tables as sources
	Maintaining CCD tables as sources (IMS)

	Chapter 5. Subscribing to sources for SQL replication
	Planning how to group sources and targets
	Planning the number of subscription-set members
	Planning the number of subscription sets per Apply qualifier

	Creating subscription sets
	Processing options for subscription sets
	Specifying whether the subscription set is active
	Specifying how many minutes worth of data the Apply program retrieves
	Load options for target tables with referential integrity
	Specifying how the Apply program replicates changes for subscription set members
	Defining SQL statements or stored procedures for the subscription set
	Options for scheduling replication of subscription sets
	Scheduling the subscription set
	Creating subscription-set members
	Target table types
	Read-only target tables
	Defining middle tiers in a multi-tier configuration
	Defining read-write targets (update-anywhere)
	Using an existing table as the target table

	Common properties for all target table types
	Replicating a subset of source columns
	Replicating a subset of source rows
	How source columns map to target columns
	Target key
	How the Apply program updates the target key columns with the target-key change option

	Chapter 6. Replicating special data types in SQL replication
	General data restrictions for replication
	Large object data types

	Chapter 7. Subsetting data in an SQL replication environment
	Subsetting data during registration
	Subsetting source data using views
	Defining triggers on CD tables to prevent specific rows from being captured

	Subsetting data during subscription

	Chapter 8. Manipulating data in an SQL replication environment
	Enhancing data using stored procedures or SQL statements
	Mapping source and target columns that have different names
	Creating computed columns

	Chapter 9. Operating the Capture program for SQL replication
	Starting the Capture program (Linux, UNIX, Windows, and z/OS)
	Starting the Capture program (System i)
	Default operating parameters for the Capture program
	Descriptions of Capture operating parameters
	Methods of changing Capture parameters
	Altering the behavior of a running Capture program
	Changing saved operating parameters in the IBMSNAP_CAPPARMS table
	Stopping the Capture program
	Reinitializing Capture
	Suspending the Capture program (Linux, UNIX, Windows, z/OS)
	Resuming Capture (Linux, UNIX, Windows, z/OS)
	Prompting a Capture program to ignore transactions

	Chapter 10. Operating the Apply program for SQL replication
	Starting the Apply program (Linux, UNIX, Windows, z/OS)
	Starting an Apply program (System i)
	Default operating parameters for the Apply program
	Descriptions of Apply operating parameters
	Methods of changing Apply operating parameters
	Changing saved Apply parameters in the IBMSNAP_APPPARMS table (z/OS, Linux, UNIX, Windows)
	Stopping the Apply program
	Modifying the ASNDONE exit routine (z/OS, Linux, UNIX, Windows)
	Modifying the ASNDONE exit routine (System i)
	Refreshing target tables using the ASNLOAD exit routine
	Refreshing target tables with the ASNLOAD exit routine (Linux, UNIX, Windows)
	Refreshing target tables with the ASNLOAD exit routine (z/OS)
	Customizing ASNLOAD exit behavior (z/OS, Linux, UNIX, Windows)
	Using the IBMSNAP_SUBS_MEMBR table to set ASNLOAD options
	Using the configuration file for ASNLOAD (Linux, UNIX, Windows)

	Refreshing target tables with the ASNLOAD exit routine (System i)

	Chapter 11. Operating the replication programs (z/OS)
	Using system-started tasks to operate the replication programs
	Using JCL to operate replication programs
	Starting the Apply program on z/OS with JCL
	Starting the Capture program on z/OS with JCL
	Using Automatic Restart Manager (ARM) to automatically restart replication and publishing (z/OS)
	Migrating your replication environment to data-sharing mode (z/OS)

	Chapter 12. Changing an SQL replication environment
	Registering new objects
	Changing registration attributes for registered objects
	Adding columns to source tables
	Stop capturing changes for registered objects
	Making registrations eligible for reactivation
	Removing registrations
	Changing Capture schemas
	Creating new subscription sets
	Adding new subscription-set members to existing subscription sets
	Disabling subscription-set members from existing subscription sets
	Enabling subscription-set members to existing subscription sets
	Changing properties of subscription sets
	Changing subscription set names
	Splitting a subscription set
	Merging subscription sets
	Changing Apply qualifiers of subscription sets
	Deactivating subscription sets
	Removing subscription sets
	Coordinating replication events with database application events
	Setting an event END_SYNCHPOINT using the USER type signal
	When to use the Capture CMD STOP signal
	Coordinating a source table change with the Capture program
	Setting a distributed recovery point

	Performing a CAPSTART handshake signal outside of the Apply program
	Performing a CAPSTOP signal

	Adjusting for Daylight Savings Time (System i)
	Options for promoting your replication configuration to another system

	Chapter 13. Maintaining a SQL replication environment
	Maintaining source systems
	Access to source tables and views
	Source logs and journal receivers
	Retaining log data (Linux, UNIX, Windows)
	Access to journal receivers (System i)
	Considerations for managing compression dictionaries (z/OS)

	Maintaining control tables
	The RUNSTATS utility for SQL replication (Linux, UNIX, Windows, z/OS)
	Rebinding packages and plans (z/OS, Linux, UNIX, Windows)
	Reorganizing your control tables
	Pruning dynamic control tables maintained by the Capture programs (Linux, UNIX, Windows, z/OS)
	CD and UOW table pruning
	Recommendations for pruning other dynamic control tables
	Preventing replication failures and recovering from errors
	Preventing cold starts of the Capture program
	Recovering from I/O errors and connectivity failures on your control tables
	Retrieving lost source data
	IBMSNAP_CAPMON and IBMSNAP_CAPTRACE table pruning
	IBMSNAP_SIGNAL table pruning

	Maintaining target tables

	Chapter 14. Detecting and repairing differences between source and target tables
	Table difference utility (asntdiff)
	Table repair utility (asntrep)

	Chapter 15. Replication Alert Monitor
	Monitoring replication with the Replication Alert Monitor
	Alert conditions and notifications for the Replication Alert Monitor
	Alert conditions for the Replication Alert Monitor
	E-mail notifications for replication alert conditions
	Sending alerts to the z/OS console
	The ASNMAIL exit routine for sending alerts in replication (Linux, UNIX, Windows)

	Setting up the Replication Alert Monitor
	Memory used by the Replication Alert Monitor
	Authorization requirements for the Replication Alert Monitor
	Optional: Binding the Replication Alert Monitor program packages (Linux, UNIX, Windows)
	Creating control tables for the Replication Alert Monitor
	Defining contact information for the Replication Alert Monitor
	Creating monitors for replication or publishing
	Selecting alert conditions for the Replication Alert Monitor
	Changing alert conditions for the Replication Alert Monitor
	Defining suspension periods for the Alert Monitor

	Operating the Replication Alert Monitor
	Starting monitors
	Reinitializing monitors
	Suspending and resuming a monitor
	Ending a monitor suspension
	Stopping monitors
	Reviewing Monitor program messages

	Parameters of the Replication Alert Monitor
	Default values of Replication Alert Monitor parameters
	Descriptions of the Replication Alert Monitor parameters
	Changing runtime parameters for the Replication Alert Monitor
	Specifying how often the Replication Alert Monitor runs
	Specifying notification criteria for selected alert conditions
	Specifying notification criteria for operational errors
	Specifying prune intervals for data from the Replication Alert Monitor

	Chapter 16. Replication services (Windows)
	Description of Windows services for replication
	Creating a replication service
	Starting a replication service
	Stopping a replication service
	Viewing a list of replication services
	Dropping a replication service

	Chapter 17. Scheduling SQL replication programs on various operating systems
	Scheduling programs on Linux and UNIX operating systems
	Scheduling programs on Windows operating systems
	Scheduling programs on z/OS operating systems
	Scheduling programs on the System i operating system

	Chapter 18. Viewing reports about the SQL replication programs
	Checking the status of replication programs (z/OS, Linux, UNIX, Windows)
	Reviewing historical data for trends
	Reviewing Capture program messages
	Examining Capture program throughput
	Displaying latency of data processed by the Capture program
	Reviewing Apply program messages
	Examining Apply program throughput
	Displaying the average length of time taken to replicate transactions

	Checking the status of the Capture and Apply journal jobs (System i)
	Monitoring the progress of the Capture program (System i)

	Chapter 19. Customizing and running replication SQL scripts for SQL replication
	Chapter 20. How the SQL replication components communicate
	The Replication Center, ASNCLP, the Capture program or triggers, and the Apply program
	The Capture program and the Apply program
	The Capture triggers and the Apply program
	The administration tools and the Replication Alert Monitor
	The Replication Alert Monitor, the Capture program, and the Apply program

	Chapter 21. Naming rules for SQL replication objects
	Chapter 22. System commands for SQL replication (Linux, UNIX, Windows, z/OS)
	asncap: Starting Capture
	asnccmd: Operating Capture
	asnapply: Starting Apply
	asnacmd: Operating Apply
	asnanalyze: Operating the Analyzer
	asnmon: Starting a Replication Alert Monitor
	asnmcmd: Working with a running Replication Alert Monitor
	asnpwd: Creating and maintaining password files
	asnscrt: Creating a replication service
	asnsdrop: Dropping replication services
	asnslist: Listing replication services
	asntdiff: Comparing data in source and target tables
	asntrc: Operating the replication trace facility
	asntrep: Repairing differences between source and target tables

	Chapter 23. System commands for SQL replication (System i)
	ADDDPRREG: Adding a DPR registration (System i)
	ADDDPRSUB: Adding a DPR subscription set (System i)
	ADDDPRSUBM: Adding a DPR subscription-set member (System i)
	ANZDPR: Operating the Analyzer (System i)
	CHGDPRCAPA: Changing DPR Capture attributes (System i)
	CRTDPRTBL: Creating the replication control tables (System i)
	ENDDPRAPY: Stopping Apply (System i)
	ENDDPRCAP: Stopping Capture (System i)
	GRTDPRAUT: Authorizing users (System i)
	INZDPRCAP: Reinitializing DPR Capture (System i)
	OVRDPRCAPA: Overriding DPR Capture attributes (System i)
	RMVDPRREG: Removing a DPR registration (System i)
	RMVDPRSUB: Removing a DPR subscription set (System i)
	RMVDPRSUBM: Removing a DPR subscription-set member (System i)
	RVKDPRAUT: Revoking authority (System i)
	STRDPRAPY: Starting Apply (System i)
	STRDPRCAP: Starting Capture (System i)
	WRKDPRTRC: Using the DPR trace facility (System i)

	Chapter 24. SQL replication table structures
	Tables at the Capture control server
	IBMSNAP_CAPENQ table (z/OS, Linux, UNIX, Windows)
	IBMSNAP_CAPMON table
	IBMSNAP_CAPPARMS table
	IBMSNAP_CAPSCHEMAS table
	IBMSNAP_AUTHTKN table (System i)
	IBMSNAP_CAPTRACE table
	CCD table (non-DB2)
	CD table
	IBMQREP_IGNTRAN table
	IBMQREP_IGNTRANTRC table
	IBMSNAP_PARTITIONINFO table
	IBMSNAP_PRUNCNTL table
	IBMSNAP_PRUNE_LOCK table
	IBMSNAP_PRUNE_SET table
	IBMSNAP_REG_EXT (System i)
	IBMSNAP_REGISTER table
	IBMSNAP_REG_SYNCH table (non-DB2 relational)
	IBMSNAP_RESTART table
	IBMSNAP_SEQTABLE table (Informix)
	IBMSNAP_SIGNAL table
	IBMSNAP_UOW table

	Tables at the Apply control server
	ASN.IBMSNAP_APPENQ table
	ASN.IBMSNAP_APPLY_JOB (System i)
	ASN.IBMSNAP_APPPARMS table
	ASN.IBMSNAP_APPLYTRACE table
	ASN.IBMSNAP_APPLYTRAIL table
	ASN.IBMSNAP_SUBS_COLS table
	ASN.IBMSNAP_SUBS_EVENT table
	ASN.IBMSNAP_SUBS_MEMBR table
	ASN.IBMSNAP_SUBS_SET table
	ASN.IBMSNAP_SUBS_STMTS table

	Control tables at the Monitor control server
	IBMSNAP_ALERTS table
	IBMSNAP_CONDITIONS table
	IBMSNAP_CONTACTGRP table
	IBMSNAP_CONTACTS table
	IBMSNAP_GROUPS table
	IBMSNAP_MONENQ table
	IBMSNAP_MONPARMS table
	IBMSNAP_MONSERVERS table
	IBMSNAP_MONTRACE table
	IBMSNAP_MONTRAIL table
	IBMSNAP_SUSPENDS table
	IBMSNAP_TEMPLATES table

	Tables at the target server
	Base aggregate table
	Change aggregate table
	CCD targets
	Point-in-time table
	Replica table
	User copy table

	Appendix A. UNICODE and ASCII encoding schemes for SQL replication (z/OS)
	Rules for choosing an encoding scheme
	Setting encoding schemes

	Appendix B. Starting the SQL replication programs from within an application (Linux, UNIX, Windows)
	Appendix C. How the Capture program processes journal entry types for SQL replication (System i)
	Accessing information about the product
	Providing comments on the documentation

	Accessible documentation
	Notices
	Trademarks

	Index

