.||I

Application Systent 400

Pr ogr amm nq:
GDDM Pr ogramm ng Qui de

Ver si on 2

SC41-0536-00

.||I

Application Systent 400

Pr ogr amm nq:
GDDM Pr ogramm ng Qui de

Ver si on 2

SC41-0536-00

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition (May 1991)

This edition applies to the licensed program IBM Operating System/400 (Program 5738-SS1), Version 2 Release 1 Modification 0,
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the proper
edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, you may address your
comments to:

Attn Department 245

IBM Corporation

3605 Highway 52 N
Rochester, MN 55901-7899

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1991. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 1991

Notices
Programming Interface

About This Guide
Who Should Use This Guide

Chapter 1. An Introduction to OS/400 Graphics
What Is OS/400 Graphics All About?
What Are Some Uses of OS/400 Graphics?
What Do | Need Before | Can Use OS/400 Graphics?
AS/400 Hardware
AS/400 Software
Required Knowledge

Chapter 2. The Application Program Interface to Graphics
Programming Considerations
Drawing a Simple Picture with GDDM

How the Program Works
Drawing a Simple Chart with Presentation Graphics Routines
How the Program Works
The Syntax of Routines
Parameters that Supply Values to the Program
Parameters that Get Values from the Program
The Names of the Routines, ...
The Parts of a Typical Program
Summary of This Chapter

Chapter 3. Using GDDM
Drawing Pictures
Graphic Primitives and Their Attributes
Setting Color Attributes
Selectinga Color
Mixing Colors
The Current Position
Setting the Current Position
Querying the Current Position
Querying the Cursor Position
How to Draw Lines
Setting Attributes for Lines
Drawing Straight Lines
Drawing Curved Lines
How to Draw Filled Areas
Drawing Area-Fills
Selecting a Pattern for Filled Areas
How to Draw Graphics Symbols
Controlling Symbol Sets
Loading Symbol Sets
Selecting a Character Mode
Selecting the Current Symbol Set
Drawing Graphics Symbols

Attributes for Graphics Symbols o000 3-30
Setting the Graphics Symbol Size 3-30
Setting the Character Angle 3-32
Setting the Character Direction 3-33
Setting the Character Shear 3-34
Drawing Graphics Images, 3-35
Drawing a Graphics Image 3-36
Drawing a Scaled GraphicsImage 3-38
How to Draw Markers 3-38
Loading Marker Symbol Sets L 3-39
Selecting a Marker 3-39
Drawing Markers 3-39
Drawing Scaled Markers 3-39
Drawing Pictures: Summary 3-40
Controlling Graphics 3-41
Program Controls 3-41
Graphics Environment Controls 3-41
Initializing and Terminating the Graphics Environment 3-41
Error Handling Controls 3-41
Specifying an Error Handling Program 3-41
Querying the Last Error 3-42
Display Controls 3-42
Sending the Picture to a Device 3-42
Picture Controls 3-43
The Device 3-43
The Page 3-44
Creatinga Page 3-45
Selectinga Page 3-46
Clearinga Page 3-47
Deletinga Page 3-47
Querying Page Information 3-47
The Graphics Field 3-47
Defininga Field 3-48
Clearing a Field 3-48
The Picture Space 3-48
Defining a Picture Space 3-49
The Viewport 3-50
Defining a Viewport 3-52
The Graphics Window 3-53
Defining a Graphics Window 3-54
Clipping e 3-55
Setting the Clipping State 3-56
The Graphics Segment 3-58
Creating a Graphics Segment 3-58
Closing a Graphics Segment 3-58
Deleting a Graphics Segment L. 3-58
Querying the Number of Graphics Segments 3-59
Retained and Temporary Data 3-63
Device Controls 3-65
Opening and Closing Devices 3-66
Using Devices 3-66
Querying the Device Characteristics 3-67
Sounding the Device Alarm 3-67
Controlling Graphics: Summary 3-67

iV AS/400 GDDM Programming Guide

Using Graphics Data Format Files 3-68

Retrieving Graphics Data, 3-68
Drawing a Picture with a Graphics Data Format File 3-68
Summary of This Chapter 3-72
Chapter 4. Using Presentation Graphics 4-1
Understanding Presentation Graphics Routines 4-1
Chart Types 4-4
Line Charts 4-4
Scatter Plots 4-5
Surface Charts 4-6
Bar Charts 4-7
Histograms 4-9
Pie Charts 4-10
Venn Diagrams 4-11
Using Chartsto Show Data 4-12
Selecting a Chart Type 4-12
Drawing Charts with Presentation Graphics Routines 4-13
The Structure of Presentation Graphics Programs 4-13
Control Operations 4-13
Chart Definition 4-14
Chart Drawing 4-14
What You Can Do in a Program and Where 4-14
More Control Operations 4-15
Designing the Chart Layout 4-15
Setting the Chart Size 4-15
Setting the Character Size 4-16
Setting the Chart Margins 4-17
Enclosing the Chartina Frame 4-18
Setting the Frame Attributes 4-18
Adding Chart Features 4-18
Writing Chart Headings 4-19
Writing the Chart Heading 4-19
Suppressing the Chart Heading 4-19
Setting the Heading Attributes 4-19
Positioning the Chart Heading 4-20
Drawing Chart Axes 4-20
Drawing or Suppressing the Chart Axes 4-21
Setting the Number of Axes 4-22
Setting the Axis Attributes 4-23
Positioning the AXis 4-23
Setting the Axis Range 4-26
Setting the Axis Scale 4-27
Drawing the Axis Tick Marks 4-28
Writing the Axis Text 4-30
Writing Axis Titles 4-30
Setting the Title Attributes 4-30
Writing the Axis Title 4-31
Positioning the Title 4-31
Writing Axis Labels 4-32
Setting Label Attributes 4-33
Setting Individual Axis Label Attributes 4-33
Positioning the Labels 4-33
Blanking the Label Area 4-33

Contents V

Specifying the Type of Label
Numeric Labels Generated by the System
Month Labels Generated by the System
Day Labels Generated by the System
Your Own Labels
Drawing Other Reference Lines
Drawing Grid Lines
Setting Grid Line Attributes
Drawing Grid Lines
Drawing Translated Axis Lines and Datum Lines
Drawing Translated Axis Lines
Drawing Datum Lines
Setting Translated Axis Line or Datum Line Attributes
Drawing Translated Axis Line or Datum Line
Drawing Chart Legends
Drawing or Suppressing the Legend
Positioning the Legend
Blanking the Legend Area
Enclosing the LegendinaBox
Writing the Legend Key Labels
Writing Chart Notes
Setting Attributes for Notes
Blanking the Note Area
Enclosing the NoteinaBox
Writing the Note
Designing the Chart Layout: Summary
Drawing the Chart
Using Component Attributes L.
Drawing Line Charts
Setting the Color Selection Order
Setting the Line Type Selection Order
Setting the Line Width
Setting the Marker Type Selection Order
Suppressing the Markers
Setting the Line Curve
Writing Data Values
Drawing the Chart
Drawing Scatter Plots
Setting the Color Selection Order
Setting the Marker Type Selection Order
Writing Data Values
Drawing the Scatter Plot
Drawing Surface Charts
Setting the Component Color Selection Order
Setting the Line Curve
Writing Data Values
Setting the Shading Attributes
Setting the Type of Shading to be Performed
Setting the Type of Data to be Shown
Drawing the Surface Chart
Drawing a Floating Surface Chart
Drawing Bar Charts
Setting the Component Color Selection Order
Setting the Bar Attributes

AS/400 GDDM Programming Guide

Writing Bar Values 4-63

Setting the Bar Spacing 4-63
Drawing the Bar Chart 4-63
Drawing Multiple-Bar Charts 4-65
Drawing Composite-Bar Charts 4-71
Drawing Floating-Bar Charts 4-75
Drawing Pie Charts 4-77
Setting the Component Color Selection Order 4-77
Setting the Shading Attributes 4-77
Writing Pie Chart Text 4-77
Setting the Type of Datato be Shown 4-79
Controlling Pie Slices 4-79
Drawing the Pie Chart 4-79
Drawing a Multiple-Pie Chart 4-81
Drawing Histograms 4-87
Setting the Color of the Shaded Area 4-87
Setting the Shading Attributes 4-87
Setting the Type of Data to be Shown 4-87
Suppressing the Risers 4-87
Drawing the Histogram 4-87
Drawing Venn Diagrams 4-89
Setting the Color of the Components 4-89
Setting the Shading Attributes 4-90
Drawing the Venn Diagram 4-90
More Control Routines 4-92
Reset the Processing State 4-92
Reinitialize Presentation Graphics 4-92
Terminate Presentation Graphics 4-92
Summary of This Chapter 4-93
Chapter 5. 0S/400 Programming Considerations 5-1
AS/400 Files Used for Graphics 5-1
Display Files 5-1
QDGDDM Display File Considerations 5-2
The ALWGPH DDS Keyword 5-3
Printer Files 5-5
QPGDDM Printer File Considerations 5-5
Database Files 5-7
0S/400 Graphics Symbol Sets 5-7
Image Symbol Sets 5-9
Vector Symbol Sets 5-10
Using Graphics Symbol Sets 5-11
Creating Graphics Symbol Sets 5-11
Graphics Symbol Set (*GSS) Objects 5-12
Performance Considerations 5-14
Error Recovery 5-16
Error-Handling Considerations 5-16
Error Messages 5-17
User-Defined Data Streams 5-19
Chapter 6. Graphics Application Program Examples 6-1
The Envelope Program in Other Languages 6-1
Envelope Program in the RPG/400 Programming Language 6-2
Envelope Program in the COBOL/400 Programming Language 6-5

Contents Vi

viii

Envelope Program in PL/.
Envelope Program in Pascal
The Line Chart Program in Other Languages
Line Chart Program in the RPG/400 Programming Language
Line Chart Program in the COBOL/400 Programming Language
Line Chart Program in PL/l
Line Chart Program in Pascal
Complex Programs
BASIC Program Showing Three ChartsonaPage
BASIC Program that Interacts with Database Files
COBOL/400 Multiple-Pie Chart Program
PL/I Planned Versus Actual Versus Trend Program
PL/| GDDM Color Table Application
PL/I| GDDM Order Form Application
RPG/400 Program with Presentation Graphics and GDDM
Graphics Image Programs in Each Language
Graphics Image Drawn in BASIC
Graphics Image Drawn in the RPG/400 Programming Language
Graphics Image Drawn in the COBOL/400 Programming Language
Graphics Image Drawn in PL/l
Graphics Image Drawn in Pascal

Appendix A. Devices Compatible with the AS/400 System
The IBM Plotters
How to Configure a Plotter

How to Send Pictures to a Plotter
Printers Capable of Graphics
How to Configure a Printer

How to Send Pictures to a Printer
Merging Text and Graphics for Print Files
Non-Graphics Devices

AS/400 GDDM Programming Guide

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM's program or other product may be
used.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

AD/Cycle Application System/400

AS/400 IBM

Operating System/400 0S/400

Personal System/2 RPG/400

SAA Systems Application Architecture
System/370 400

This publication could contain technical inaccuracies or typographical errors.
This guide may refer to products that are announced but are not yet available.

Information that has changed since Version 1 Release 3 Modification O is indicated
by a vertical bar (]) to the left of the change.

This guide contains small programs that are furnished by IBM as simple examples
to provide an illustration. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. All programs contained herein are provided to you "AS
IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Programming Interface

© Copyright IBM Corp. 1991

The GDDM Programming Guide is intended to help the customer create graphic
applications. The guide contains general-use programming interfaces, which allow
the customer to write programs that use the services of the graphic data display
manager (GDDM).

X AS/400 GDDM Programming Guide

| About This Guide

This guide, together with the manual Programming: GDDM Programming
Reference, SC41-0537, describes the application programming interface for the
graphics capabilities of the AS/400 system. This guide describes the graphical data
display manager (GDDM) and presentation graphics routine (PGR) calls that are
available under the AS/400 system. Through the use of sample code and complete
programs, along with their associated output, the techniques of graphics
programming are demonstrated.

| This guide does not describe how to use the IBM AS/400 Business Graphics Utility
| (BGU), nor does it describe an interface for BGU. For this information, refer to
| Business Graphics Utility User’s Guide and Reference, SC09-1408.

| You may need to refer to other IBM manuals for more specific information about a
| particular topic. The Publications Guide, GC41-9678, provides information on all
| the manuals in the AS/400 library.

| For a list of publications related to this guide, see the “Bibliography.”

| Who Should Use This Guide

| This guide is to be used by AS/400 application programmers responsible for
| creating graphics applications.

| To use this guide, you should understand the concepts of the IBM Operation
| System/400 licensed program and the AS/400 system.

| You should know how to write, debug, compile, and run programs in one of the

| following programming languages supported by the AS/400 System: BASIC, the
| COBOL/400 language, Pascal, PL/I, or the RPG/400 language. Also, you should
| know how to use one of the supported display devices. You can find information
| on them in the appropriate PC Support manual.

| Throughout this manual, the term personal computer applies to any IBM personal

| computer that uses work station function (WSF), work station emulation (WSE), or
| 5250 emulation.

© Copyright IBM Corp. 1991 Xi

Xil AS/400 GDDM Programming Guide

Introduction

Chapter 1. An Introduction to OS/400 Graphics

What Is OS/400 Graphics All About?

0S/400* (Operation System/400*) Graphics lets you add color and pictures to
application programs. You can use the visual effect of color and pictures to help
make your programs easier to use and make the results of your high-level
language programs easier to understand.

High-level language programs call OS/400 Graphics subroutines (called routines) to
construct pictures. Each routine is like a small, self-contained program. The
routines are organized in two groups:

GDDM routines
Presentation Graphics routines.

Graphical Data Display Manager (GDDM) routines perform basic graphics tasks,
such as drawing a line from point A to point B. A series of these line-drawing
routines in an application program can produce a more complex picture. Also,
GDDM routines are called in an application program to initialize and end the
graphics environment, define characteristics for functions that other GDDM routines
will perform (such as setting the color and width of a line that another GDDM
routine will draw), send the picture to the work station, and so forth.

Presentation Graphics routines provide you with a fast and efficient way of
converting your numeric data to color business charts in an application program.
One Presentation Graphics routine can specify the type of chart used to present
your data (for example line charts, bar charts, or pie charts). Other routines in your
program can do such things as label the data and specify the chart heading.

Presentation Graphics routines are built with sets of GDDM routines. An
application program can have any mixture of GDDM and Presentation Graphics
routines.

Similar groups of routines are used for graphics on the IBM* System/370* family of
data processing systems. If you have access to those systems, you may be able
to move your PL/I and BASIC graphics application programs from the AS/400*
system.

What Are Some Uses of OS/400 Graphics?

0S/400 Graphics can be used to increase the usability of your existing application
programs. For example, a program that uses data description specifications (DDS)
display files for menus can be enhanced with GDDM routines. Menu titles and
highlighted fields can be shown with larger-than-normal characters in various fonts
and colors. Also, graphics pictures, such as company logos, can be added to
program menus.

Presentation Graphics routines can be used to change the way the output of a

program is presented. A program that produces rows and columns of numbers can
be changed so that the program produces that same data graphically on a chart.

© Copyright IBM Corp. 1991 1-1

Introduction

Other ideas for uses of OS/400 Graphics are presented in this book.

What Do | Need Before | Can Use OS/400 Graphics?

AS/400 Hardware
You can write and run OS/400 Graphics application programs using any model of
the AS/400 System. (It must have the Operation System/400 program installed.)

Although you can write and compile the programs on any work station that has
been described to the system, only the following devices can be used to display
graphics:

* IBM personal computer with work station function (WSF)

e IBM personal computer with work station emulation (WSE)
e 5292 Model 2

e |IBM personal computer with 5250 emulation

Note: In this manual, the term “graphics work station” means one of those
devices.

On the IBM personal computer and IBM Personal System/2* work station, the
graphics configuration of the device is determined by the hardware capability and
the Virtual Device Interface (VDI) driver loaded in the CONFIG.SYS file. The
following table describes the capabilities of each VDI driver:

VDI Driver Resolution Colors Gray
Levels
VDIDY004 320 x 200 4
VDIDY006 640 x 200 2
VDIDY00OD 320 x 200 8 4
VDIDYOOE 640 x 200 8 4
VDIDYOOF 640 x 350 4
VDIDY010 640 x 350 4/8 2/4
VDIDYPGD 640 x 480 8 8
VDIDYA11 640 x 480 2
VDIDYA12 320 x 200 8 8
VDIDY011 640 x 480 2
VDIDY012 640 x 480 8 8
VDIDY013 320 x 200 8 8
VDIDYAF1 1024 x 768 8 8
VDIDYAF2 1024 x 768 8 8

When using an IBM personal computer or IBM Personal System/2 work station with
5250 emulation, the following program should be run from your Disk Operating
System (DOS) session before attempting to use GDDM graphics on the AS/400
system:

> GR5250

If this program is not run until after a GDDM application has been started, a
CPF8619 error may be generated by GDDM.

These plotters can be attached to graphics work stations:

¢ |BM 6180 Plotter
¢ |BM 6182 Plotter

1-2 AS/400 GDDM Programming Guide

Introduction

e |BM 6184 Plotter
e |IBM 6185 Plotter
e |IBM 6186-1 Plotter
e |BM 6186-2 Plotter
e |BM 7371 Plotter
e IBM 7372 Plotter

Graphics can be printed on these Systems Network Architecture (SNA) character
string (SCS) devices:

e IBM 4214 Printer
e IBM 4234-2 Printer
e IBM 5224 Printer
e IBM 5225 Printer

Graphics can also be printed on any intelligent printer data stream (IPDS) device
that supports graphics, including the following:

e IBM 3812 Printer
e IBM 3816 Printer
e IBM 4028 Printer
e IBM 4224 Printer

It is also possible to send a graphics data format (GDF) file (the internal data
GDDM interprets to draw the picture) to other systems. The device receiving the
graphics data must have the software necessary to interpret the data.

AS/400 Software
Besides having the OS/400 program installed, you must have a compiler for one of
the following high-level languages:

BASIC IBM AS/400 BASIC licensed program product, program number
5738-BAl

IBM SAA* AD/Cycle RPG/400*
IBM RPG/400 licensed program product, program number 5738-RG1

IBM SAA AD/Cycle COBOL/400*
IBM AS/400 COBOL licensed program product, program number
5738-CB1

PL/ IBM AS/400 PL/I licensed program product, program number
5738-PL1 (with library QGDDM in your library list)

Pascal IBM AS/400 Pascal licensed program product, program number
5738-PS1 (with library QGDDM in your library list)

Required Knowledge
To write graphics application programs for the AS/400 System, you must know
AS/400 application programming in one of the five high-level languages.

You can learn the concepts and fundamentals of OS/400 Graphics from this
manual. Once you have read this manual, you can find more detailed information
about GDDM and Presentation Graphics routines in the GDDM Programming
Reference manual.

In the next chapter, you will learn more about OS/400 Graphics and will see two

simple programs, one that shows GDDM routines and one that shows Presentation
Graphics routines.

Chapter 1. Introduction 1-3

Introduction

1-4 AS/400 GDDM Programming Guide

Graphics API

Chapter 2. The Application Program Interface to Graphics

This chapter shows you how GDDM and Presentation Graphics routines can be
called by programs to produce graphics (pictures and charts).

In Chapter 1, “An Introduction to OS/400 Graphics,” you learned that OS/400
Graphics has two major components, GDDM routines and Presentation Graphics
routines. You learned that you can draw pictures by calling the appropriate
routines from your high-level language program.

This chapter gives you a brief overview of the steps needed to produce a program,
followed by sample programs that show GDDM and Presentation Graphics routines
in use.

Note: In the text, the term GDDM program means a graphics application program
that uses GDDM routines; likewise, a Presentation Graphics program is a
graphics application program that uses Presentation Graphics routines.

Programming Considerations

To produce an OS/400 Graphics application program on the AS/400 System, you
must write an AS/400 application program in a high-level language. You must:

1. Enter the program (the source code).
2. Compile the program (unless you use the BASIC interpreter).
3. Run the program.

You can enter your OS/400 Graphics programs using the Source Entry Utility
(SEV). SEU provides special display formats for each of the AS/400 high-level
languages to help you enter your programs.

For more information on entering programs with SEU, refer to the SEU User’s
Guide and Reference.

You can compile and run your graphics program in the manner provided by the
high-level language you are using. Refer to the appropriate high-level language
manual for more information on compiling and running programs.

Graphics programs written in COBOL/400, RPG/400, Pascal, and PL/I
programming languages must be compiled before they can be called and run.
BASIC programs can be compiled and run also, but with BASIC you have the
option to use the interpreter to LOAD and RUN source files. You can then
make changes to your program without having to compile it again.

The Command Language (CL) command STRBAS starts the BASIC interpreter.
For more information, refer to the BASIC User's Guide and Reference.

The early program examples in this manual are all written in BASIC.
Chapter 6, “Graphics Application Program Examples,” shows programs written
in all the supported languages.

© Copyright IBM Corp. 1991 2-1

Graphics API

Drawing a Simple Picture with GDDM

Many of the things you do to draw a picture with GDDM are similar to things you do
to draw a picture with pencils and paper.

When you draw a picture with pencils and paper, you perform these steps:

1.
2.

4.
5.

Initialize the graphics environment. You decide to draw a picture.

Set the initial attributes. You select a pencil of the type and color you want to
use for your picture.

. Draw the picture. You place the tip of the pencil at the point on a paper where

the first line should begin. Then you draw the line to another point on the
paper. If you decide the next line should be of a different color, you get the
appropriate colored pencil. You position the pencil on the paper (perhaps on
the end point of the first line), then draw the next line. You continue to draw
lines until the picture is complete.

Display the picture. You look at it or give it to someone else to look at.

End the graphics environment. You decide the picture is complete.

A graphics program on the AS/400 System uses GDDM routines to perform the
same basic steps:

1.

Initialize the graphics environment. The program uses a GDDM routine to
signal to the AS/400 System that it is going to call GDDM or call both GDDM
and the Presentation Graphics routines.

. Set the initial attributes. The attributes (visual characteristics) of the first item to

be drawn are defined by the appropriate GDDM routine. For example, if the
first item to be drawn is a line, the program must use GDDM routines to specify
the color and line width attributes (the color and type of the pencil). Any other
lines that the program draws after the first line will be of the same color and
line width, unless the program sets the attributes to different values for those
lines (a different color or type of pencil).

. Draw the picture. The program uses a GDDM routine to specify a point on the

screen from which the first line will be drawn (placing the pencil on the paper).
Another GDDM routine will then specify the line to draw and the point on the
screen where the line is to end (drawing the line to an end point). More GDDM
routines can specify more lines that begin at the point each previous line
ended, until the picture is complete.

. Display the picture. Once all parts of the picture have been described by the

program, another GDDM routine sends the picture to the work station screen or
hard-copy device.

. End the graphics environment. After the picture has been sent to the device, a

GDDM routine is used to end the graphics environment that was initialized
earlier.

Programs that use GDDM and Presentation Graphics routines can be written in the
BASIC, COBOL/400, Pascal, PL/I, and RPG/400 high-level languages. BASIC,
COBOL/400, and RPG/400 programming languages feature a language extension,
the CALL GDDM statement. CALL GDDM is used to call each GDDM and
Presentation Graphics routine and to convert data types from those used by the
high-level language to those that can be used by GDDM. After the GDDM graphics
routine has been performed, the data types are converted back to those used in the
high-level language program.

2-2 AS/400 GDDM Programming Guide

Graphics API

Pascal and PL/I use a slightly different method to call graphics routines. They use
include statements that can be named in the program. These includes declare the
GDDM and Presentation Graphics routines and perform data-type checking.

The envelope.
The envelope 35MM0536A2
shown here was
drawn by a
BASIC program
using GDDM
routines.

The following BASIC program was used to draw the picture of the envelope:

00010 REM kkkkkkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkkk,%x

00020 REM INITIALIZE

00030 REM #**kkkkkhkkhkhhkkkhhk kXA KA R KA A RK AR RAKIRRKIRR K KRR K I RR I AR KK AR X K* K
00040 CALL GDDM ('FSINIT') ! Initialize the graphics environment
00050 INTEGER ATTYPE, ATTVAL, COUNT I Declare integer variables
00060 REM **x*xkkkkkhkhkhkkhrhkrkhkhkhkkhxhkhhkhkhkkhkhkhkkhxhkhkxkhxh*
00070 REM SET ATTRIBUTES

00080 REM ***kkkkkkkkhkhhkkkhh kXA Ak kKA AR KA KRR K IRRKIRR A I AR K I RR K IR KK H AR K* K
00090 CALL GDDM ('GSLW',2) ! Assign line width (2 = wide)
00100 CALL GDDM ('GScOL',5) ! Assign color (5 = turquoise)
00110 REM **xkxkkkkkhkhrkhhkhrhkkhkhkhkk kX h A F Rk X h I FRhR* IR AR I IR I X ****
00120 REM DRAW ENVELOPE

00130 REM **x*xkkkkkhkhkhhkhrhkrkhkhkhkkhxhkhkkhxhkkkkhkhkkhxhkhkkhxh*
00140 CALL GDDM ('GSMOVE',1.0,75.0) ! Move to upper left corner
00150 CALL GDDM ('GSLINE',80.0,75.0) I Draw across to upper right
00160 CALL GDDM ('GSLINE',80.0,1.0) ! Draw down to Tower right
00170 CALL GDDM ('GSLINE',1.0,1.0) ! Draw across to lower left
00180 CALL GDDM ('GSLINE',1.0,75.0) I Draw up to upper Tleft corner
00190 CALL GDDM ('GSLINE',40.0,100.0) ! Draw up to point of flap
00200 CALL GDDM ('GSLINE',80.0,75.0) ! Draw down, over to upper right
00210 REM ##kkkskrhkhkdhkhkhhkk kR kR A AR AR A IR IR KRR IR AR I IR IR AR I F R IR KRR IR AR I F
00220 REM RESET ATTRIBUTES & DRAW STAMP

00230 REM #**xkxkkkkkhkhrkhhkhrhkkhkhk kX kX h A Fkh R h IR IR AR * I h R IR * I X ****
00240 CALL GDDM ('GSCOL',2) ! Assign color (2 = red)

00250 CALL GDDM ('GSAREA',1) ! Specify filled area w/outline
00260 CALL GDDM ('GSMOVE',67.0,70.0) ! Move to upper left corner
00270 CALL GDDM ('GSLINE',77.0,70.0) I Draw across to upper right

Chapter 2. API to graphics 2-3

Graphics API

00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470

CALL GDDM ('GSLINE',77.0,55.0) ! Draw down to Tower right

I
CALL GDDM ('GSLINE',67.0,55.0) ! Draw across to lower left
CALL GDDM ('GSLINE',67.0,70.0) ! Draw up to upper left

CALL GDDM ('GSENDA') ! Fill the area

REM dhkkkhhkhkhdhhhhhhkhhhhhhdddhhhddrohohhhhhddddhdhhhhhhhhhhdddhdhhhhrxxkx
REM WRITE ADDRESS

REM KRR AR A R AR I AR A A h AR h A hh A hdhhhhdhhdhhdhhhdhhhdhhdhhhdhhddhhdhhhdkxdx
CALL GDDM ('GScCOL',4) ! Assign color (4 = green)

CALL GDDM ('GSCHAR',30.0,45.0, 8,'R G Blue') I Write Tine 1
CALL GDDM ('GSCHAR',30.0,35.0,12,'123 Color Ln') ! Write Tine 2
CALL GDDM ('GSCHAR',30.0,25.0,11,'Vectorville') I Write Tine 3
REM khkkkhkhkhkhkhhhhhhkhhhhhhddddhhdhhhhhhhhdddhdhdhdhhhhhhhhhdddhdhhhdhddxkx
REM DISPLAY THE PICTURE

REM kkhkkkhkkhkkhkkkhhkhkhkkhhkhhkkhhkhhhkhkhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhkhkhkhkkhkhkkhkhkkkkx

CALL GDDM ('ASREAD',ATTYPE,ATTVAL,COUNT) ! Display the picture

REM kkhkkkhkkhkkkhkkhkhkkhhkhhkkhhkhhhkhkhkkhhkhkhkkhhkkhhkhkhkkhhkkhkkhkhkkhkkkhkkhkkkkk

REM END GRAPHICS

REM kkhkkkkhkkhkkkhkkhkhkkhhkkhkkhhkkhkkhkhkkhhkkhkkhhkkhkkkhkkhhkkhkkhkhkkhkkkhkkkkkkkx
CALL GDDM ('FSTERM') ! End graphics

END ! End BASIC program

As you can see from the comment lines, the program performs these steps:

1. Initialize graphics and declare data types for the variables (all integers, in this
instance).

. Set attributes by assigning values directly to the GDDM attribute routines.

2
3. Draw the picture by calling the appropriate GDDM routines.
4

. Display the picture.

5. End graphics.

Note:

The example program is a BASIC program. When BASIC is used for
GDDM programs, it has these conventions:

¢ Integer variables must be declared with an INTEGER statement; integer
values can be passed to GDDM routines as literals (the number itself),
or they can be passed as variables (variable = the number).

¢ Floating-point variables need not be declared. Floating-point values can
be passed to GDDM routines as literals, or they can be passed as
variables. Floating-point values passed as literals must contain a
decimal point and at least one digit after the decimal point.

e Character variables with a length less than 19 need not be declared.
Character strings can be passed to GDDM routines as literals (the
strings must be enclosed in apostrophes) or they can be passed as
variables. A character variable assigned a string of 19 or more
characters must be declared with a dimension statement (for example,
DIM A$*20 sets the dimension of character variable A$ to 20, allowing
A$ to be assigned a character string of up to 20 characters).

e GDDM routine names are specified as character strings (enclosed in
apostrophes), followed by the parameters of the routine. The syntax for
GDDM in COBOL/400, RPG/400, Pascal, and PL/I programming
languages differs from that of BASIC. The examples in Chapter 6,
“Graphics Application Program Examples,” show this same envelope
program in the other languages. For more information, refer to the
GDDM Programming Reference manual.

2-4 AS/400 GDDM Programming Guide

Graphics API

How the Program Works
Initializing the Graphics Environment: The FSINIT routine initializes the
graphics environment.

00040 CALL GDDM ('FSINIT')
00050 INTEGER ATTYPE, ATTVAL, COUNT

FSINIT signals to the application program that calls to GDDM, or Presentation
Graphics routines, or both will occur.

In this program, FSINIT was followed by some data declarations. When you use
variables in your program that will be set to integer values, the data types for those
variables must be declared. Data type declarations can precede or follow FSINIT.

Setting the Initial Attributes: Attributes determine the results of certain GDDM
routines. The attributes that are set in this portion of the sample program define
the color and the line width of the envelope outline.

00090 CALL GDDM ('GSLW',2)
00100 CALL GDDM ('GSCOL',5)

GDDM routines continue to use attribute values until different values are assigned.
Default attributes are assigned if no others are specified (line width = narrow, color
= green). Other types of attributes were assigned by default in the program. They
are discussed in Chapter 3, “Using GDDM.”

One of the attributes assigned by default in the envelope program describes the
coordinate system used for positioning the lines and characters of the picture. For
this program, the attribute values were the default coordinates of x = 0 through 100,
and y = 0 through 100; (x0,y0) is the lower-left position on the picture, and
(x100,y100) is the upper-right position.

Chapter 2. API to graphics 2-5

Graphics API

The coordinate
system. This
illustration shows
the default
coordinate
system used by
GDDM when
you do not
specify one in
your program.

PLO536A3

Drawing the Picture: GDDM routines define the features of the picture.

GDDM line-drawing routines use only end point coordinates, so the starting point of
the line must be specified. The starting point is called the current position. The
current position can be the point at which the last drawing routine ended, or you
can put the current position wherever you want it with the GSMOVE routine. In the
example, GSMOVE places the current position at the upper-left corner of the
envelope, coordinates x = 1, y = 75.

2-6 AS/400 GDDM Programming Guide

Graphics API

35MM0536A4

The next routine (GSLINE) draws a line across the top to the upper-right corner of
the envelope (the upper-right corner now becomes the current position).

35MM0536A5

Chapter 2. API to graphics 2-7

Graphics API

Next, a series of GSLINE routines draw the rectangle part of the envelope outline.

35MM0536A6

Then, two GSLINE routines draw the envelope flap, which finish the outline of the
envelope.

35MMO536A7

2-8 AS/400 GDDM Programming Guide

Graphics API

Before the stamp is drawn, the color attribute is changed to 2 (red); otherwise, the
stamp would be drawn in the current color (turquoise):

00240 CALL GDDM ('GScoL',2)

The current position is moved to the starting point for the stamp. Then, the stamp
is drawn. By specifying GSAREA before the first GSLINE routine for the stamp and
GSENDA after the last GSLINE, the area inside the stamp is filled with a pattern.
This is called area-fill. You can use a GDDM routine to select a specific pattern for
any area-fill, but this area-fill was allowed to default to a solid pattern. The solid
pattern is drawn with the new current color (red).

35MM0536A8

Chapter 2. API to graphics 2-9

Graphics API

The address is written next. Before routines are called to write the character
strings of the address, a new color is assigned (4 — green):

00350 CALL GDDM ('GScOL',4)

The characters of the name and address are specified by the GSCHAR routine.
GSCHAR specifies the beginning position of the string (the two numbers that follow
the routine name), the length of the string, and the string itself (in quotes).

35MM0536A9

Note that the GSCHAR routine uses all three types of data: floating-point, integer,
and character. Floating-point numbers usually specify coordinate values for GDDM
routines; the decimal point and following digit must always be included for
floating-point numbers used as literal values for GDDM routines in a BASIC
program. Integer numbers usually specify a count value or an index value for
GDDM routines. Character strings must always be enclosed in single quotes in
BASIC programs.

Displaying the Picture: The picture is constructed and held by the system until
you ask to see it. Here, the ASREAD routine specifies that the picture should be
sent to the work station. It will be shown there until you press a key on the device
to acknowledge the picture. Later examples show other uses for ASREAD.

00420 CALL GDDM ('ASREAD',ATTYPE,ATTVAL,COUNT)

You may have noticed that three integer variables for the ASREAD routine
parameters were declared at the beginning of the program, but no values were
assigned to those variables in the program.

2-10 AS/400 GDDM Programming Guide

Graphics API

Parameters like these are assigned values by GDDM; you can later use these
program-assigned values for other things in your program. In the case of ASREAD,
the ATTYPE variable is assigned a value that corresponds to the type of keyboard
response that you give to acknowledge the picture. Your keyboard response could,
for example, determine what operations the program performs next: the program
will show picture A next if you press a function key, or picture B if you press the
Enter key.

Other GDDM routines also use variables that are assigned values by the program.
Many GDDM functions have associated query routines that use these
program-assigned values. More information about individual query routines can be
found in the next chapter.

Ending the Graphics Environment: FSINIT was used at the beginning of the
program to initialize the graphics environment. The FSTERM routine is used to end
the environment.

00460 CALL GDDM ('FSTERM')
00470 END

Drawing a Simple Chart with Presentation Graphics Routines

The line chart.
The line chart
shown here was
drawn by a
BASIC program
using GDDM
and Presentation
Graphics
routines.

A Presentation Graphics chart-drawing program is basically a GDDM graphics
program that calls Presentation Graphics routines used for chart definition.
Presentation Graphics routines are IBM-supplied subroutines that contain GDDM
routines. For example, a Presentation Graphics routine that draws a line chart can
contain several GSMOVE and GSLINE routines that you do not see being called
because the Presentation Graphics routine calls the GDDM routines internally.

35MM0536B1

Chapter 2. API to graphics 2-11

Graphics API

The BASIC program to draw the line chart is:

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280

Note:

REM khkkhkhkhkhkhhhhhhkhhhhhdddhdhhhhhhhhhhhddhdhdhdhdhhhhhhhhddddhdhdhhhdxx
REM INITIALIZE

REM hhkkkhkhkkhhkhkhkhkhhdhhkhhhhkhhdhkhhhhkhkhhkhkhdhhkhkdhhkhkdhhkhkdhkhkikdhkhkxx%
CALL GDDM ('FSINIT') ! Initialize graphics
INTEGER ATTYPE, ATTVAL, COUNT I Declare integer variables
OPTION BASE 1 ! Set array subscript base
DIM AX(5) ! Set array dimensions

MAT READ AX ! Read x-array data

DATA 1, 2, 3, 4, 5

DIM AY(10) ! Set array dimensions

MAT READ AY I Read y-array data

DATA 5, 3, 5, 5, 11

DATA 8, 13, 6, 1, 7

REM kkhkkkkkkhkkhkhkkhkkkhkkhhkkhkkhkhkkhhkkhkkhkhkkhkkhkhkkhkhkkhkkkhkkhkkkkkkk**x
REM DRAW CHART

REM khkkkhkkkkhkkhkhkkhkkkhkkhhkkhkkhhkkhhkhkkhkhkkhhkhkhkkhkhkkhkkhkhkkhkkkkkkkx*,*%
CALL GDDM ('CHPLOT',2,5,AX(),AY())

I Format chart with 2 Tines, 5 data points per Tine,

I with data read from arrays AX and AY

REM kkhkhkkhkhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhhkhhkhkhkhkhkhhkhkhkkhhkhkhkkhkhkkhhkhkhkkhkhkkkxkx

REM DISPLAY CHART

REM kkhkkhkkhkhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhhkkhkhkhkhhkhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkkxkx

CALL GDDM ('ASREAD',ATTYPE,ATTVAL,COUNT) ! Send chart to device

REM hhkkkhkkkhkhhkkhhkhhkkhhkhkhhhkhhhkhhhhkhhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkkx

REM END GRAPHICS

REM kkkkkkkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkkxx

CALL GDDM ('FSTERM') ! End graphics
END ! End BASIC program

In addition to the programming conventions shown for the BASIC envelope

program, GDDM or Presentation Graphics programs that use arrays have
these conventions:

e The statement OPTION BASE 1 is used to specify the lowest subscript
for array dimensions.

e If the array is an integer array, it must be declared by an INTEGER
statement.

e The size (number of elements) for each array must be specified with a
DIM statement.

e Several methods exist for assigning data to the array. This program
uses the MAT READ statement followed by DATA statements that hold
the array data to be read.

For information on conventions for BASIC, COBOL/400, Pascal, PL/I, and RPG/400
programs, see the GDDM Programming Reference manual, and the examples in
Chapter 6, “Graphics Application Program Examples,” that show this program in
the other languages.

How the Program Works

Initializing the Graphics Environment: A Presentation Graphics program must
be initialized like a GDDM one. FSINIT initializes the graphics environment. Data
declarations must also occur if integer variables are used by the routines.

2-12 AS/400 GDDM Programming Guide

Graphics API

The Presentation Graphics line graph uses two arrays (the elements in these arrays
are passed as data to the CHPLOT routine):

00050 INTEGER ATTYPE, ATTVAL, COUNT
00060 OPTION BASE 1

00070 DIM AX(5)

00080 MAT READ AX

00090 DATA 1, 2, 3, 4, 5

00100 DIM AY(10)

00110 MAT READ AY

00120 DATA 5, 3, 5, 5, 11

00130 DATA 8, 13, 6, 1, 7

Drawing the Chart: After initialization, the chart is drawn (plotted) by the CHPLOT
routine. CHPLOT uses values that specify the components (the number of lines
being charted that represent data), the count (the number of data points in each
line that represent data), and the data (in this case, the names of the arrays that
contain the data).

00170 CALL GDDM ('CHPLOT',2,5,AX(),AY())

Reference lines are used on a chart so that you can interpret that data shown.

The vertical and horizontal reference lines on a chart are called axes. Usually
the x axis is horizontal and the y axis vertical.

The x axis usually shows the independent variable. The independent variable is
an array of values that are independent of the y axis values. A common
independent variable is time (minutes, days, weeks, months).

The y axis usually shows the dependent variable. The dependent variable is an
array of values that correspond to the independent variable array.

For example:
If the independent variable is hours of the day (1 through 24), the dependent
variable could be a temperature reading taken each hour. So that you could

see that at 10:00 the temperature was 67 degrees F.

In this case, the value of the y variable (temperature) depends on the
corresponding x variable (hour).

Displaying the Chart: The output from the Presentation Graphics program is sent
to the display device with the GDDM routine ASREAD.

00230 CALL GDDM ('ASREAD',ATTYPE,ATTVAL,COUNT)

Terminating the Graphics Environment: FSTERM terminates the graphics
environment as it did in the sample GDDM program.

00270 CALL GDDM ('FSTERM')
00280 END

Chapter 2. API to graphics 2-13

Graphics API

The Syntax of Routines

Parameters that Supply Values to the Program

As you can see from the sample programs, both GDDM and Presentation Graphics
use routines to perform graphics tasks. In many instances, the result of that task
depends on the values of the routine’s parameters. For example, the GDDM
routine GSCOL used the integer number 2 for its parameter to set the current color
red.

The GSCOL routine has a single parameter:
GSCOL(color-code)

Some of the routines have parameter lists. The GSCHAR routine has a parameter
list:

GSCHAR(x,y,length,string)
The parameters in routines are always of a specific data type. Data types can be:
4-byte binary integer
Short floating point
Character string.

Some routines have a mixture of all three data types in their parameter list. In
GSCHAR, for example, x and y are floating-point values, length is an integer
value, and string is a character string.

Note: The manual GDDM Programming Reference shows the data types required
for each parameter value in the descriptions of the routines.

Parameters that Get Values from the Program

Some routines have parameters that receive values from GDDM, rather than
passing values to GDDM. These values are returned by the parameters. You can
use the values in returned parameters to do various things in your program. For
example, you can use the type of keyboard response returned to the ASREAD
routine to control which step of the program is performed next.

Like parameters that pass values to GDDM, parameters that receive values must
be declared as variables of the correct data type.

Many routines that receive values from GDDM are query routines. Query routines
get current values from GDDM. For example, GSQCOL returns the current value
of the color attribute. You can use similar query routines to get the value of an
attribute, or to discover device characteristics or picture dimensions.

The Names of the Routines

GDDM routine names are 4- to 6-character mnemonics whose first two characters
are AS (input/output function), FS (program function), GS (graphic function), or DS
(device function).

The other characters in the name represent the function of the routine (GSENDA,
for example, is a routine that ends an area-fill). When the character Q follows the
first two characters, the routine is a query function (GSQCOL, for example, sets a
named variable to the value of the current color attribute).

2-14 AS/400 GDDM Programming Guide

Graphics API

Presentation Graphics routine names have the same syntax as GDDM names,
except that the first two characters of Presentation Graphics routine names are
always CH (chart), and no query functions are available with Presentation Graphics
routines.

The Parts of a Typical Program
You probably saw similarities between the GDDM envelope program and the
Presentation Graphics chart program shown earlier. Both of these programs
followed the same steps:

1. Initialize graphics (with FSINIT) and declare variables.

2. Set attributes (the Presentation Graphics program did not).

3. Draw the picture (with calls to the appropriate routines).

4. Send the picture to be displayed (with ASREAD, in this case).
5. End graphics (with FSTERM).

The following chapters show you most of the functions of GDDM and Presentation
Graphics routines. You should set up a program with the steps shown so that as
you learn about the routines you can experiment with them by inserting them into
step 3 of the preceding list of steps. (If you use Pascal, PL/I or any of the graphics
symbol sets described later, you will need the QGDDM library in your library list.)

Summary of This Chapter
GDDM and Presentation Graphics programs can be written in BASIC, COBOL/400,
Pascal, PL/l, and RPG/400 programming languages; the sample programs shown
in this chapter were written in BASIC. They were designed to show you some of
the concepts of GDDM and Presentation Graphics programs, their similarities and
differences.

Programs that are much more complex are possible, of course. Here are some
ideas for using GDDM and Presentation Graphics routines:

Programs that use data values from database files. Application programs that
use Presentation Graphics routines can be written to access database files and
produce business charts based on the data in the files. (The simple line chart
you saw earlier could have used data the program read from a database file.)

Programs that prompt for information. GDDM programs can be written that use
DDS display files to allow responses to menus that feature graphics. The
values entered from the display can then be used to update a file or to provide
values for a Presentation Graphics chart.

Programs that show many pictures, one after another. Programs can be
written that use the type of keyboard response to control which picture is
shown next.

Programs that show many pictures at the same time. Presentation Graphics
programs can be written that show more than one chart at a time, and GDDM
has routines that define the divisions of the screen and the amount of display
screen space allocated to the picture. For example, one picture could show
four reduced-size charts using the same or different data. Also, you can design
a company logo with GDDM and add a reduced or enlarged-size version of it to
business charts or other pictures.

Chapter 2. API to graphics 2-15

Graphics API

Programs that use dynamic variables. The variables in a GDDM or
Presentation Graphics program can be defined and their values passed to the
GDDM and Presentation Graphics routines. The values of those variables can
be altered by user responses from the keyboard or by the values of data in
database files. For example, data that indicates profit could be represented on
a chart in green while loss values are shown in red. (Values less than n are
considered loss, so the program would change the color attribute to red.)

You will find more ideas for uses of GDDM and Presentation Graphics application
programs in other chapters of this manual.

Note: Because of the power and the extent of the function available with OS/400
Graphics, complex graphics programs may take longer to run than some of
your other application programs. When you call one of these programs, the
processing time required is evident by the length of time the input inhibited
light on the device remains on. For more powerful models of the AS/400
System, graphics processing takes considerably less time.

In the next chapter, you will learn about the GDDM routines. GDDM routines are
versatile and varied and you will see how the routines can work for you. (It is
possible to skip to Chapter 4, “Using Presentation Graphics,” but to gain a
complete understanding of OS/400 Graphics, you should read the chapters in
sequence.)

2-16 AS/400 GDDM Programming Guide

Using GDDM

Chapter 3. Using GDDM

In Chapter 2, “The Application Program Interface to Graphics,” you learned that
high-level language application programs can call GDDM routines to perform
graphics functions.

You can use GDDM routines in programs (called graphics application programs) to
draw pictures. You can add graphics to existing programs to enhance the usability
of display screens, or you can write new application programs that make use of the
impact and visual appeal of color graphics for such things as management reports
and presentations. This chapter and Chapter 6, “Graphics Application Program
Examples” show you pictures generated by GDDM and may give you some ideas
for uses of graphics application programs.

Some GDDM routines assign attributes that other GDDM routines use when they
are called. Other routines perform some sort of specific action, such as drawing a
line or controlling some aspect of the graphics environment.

The first part of this chapter looks at the basic elements of pictures you can draw,
as well as the routines you use to draw them and the attributes you can assign
them (to make them look the way you want them to look). You can use these
basic elements as parts of a more complex picture. (The basic elements you use
for drawing pictures are called primitives.)

The second part of this chapter deals with GDDM control routines. You can use
these routines to handle things in the graphics environment such as picture
dimensions and the devices you use.

The third part of this chapter describes support for the graphics data format file.
The graphics data format (GDF) file is the output of a graphics program that the
AS/400 System uses to build the data stream it sends to a device. The device
interprets the data stream and generates the picture. GDDM routines enable you
to retrieve the graphics data, which you can then save in a database file or send to
another system.

The last part of this chapter is a summary of the information presented about
GDDM.

The information that follows describes the functions of the GDDM routines.
Routines use integer values, floating-point values, or character values for their
parameters; values that you can assign in your program. For a more detailed
explanation of each routine, refer to the GDDM Programming Reference manual,
which shows the syntax of each routine, and shows the data types that need to be
declared for each routine parameter.

© Copyright IBM Corp. 1991 3-1

Drawing Pictures

Drawing Pictures

In Chapter 2, “The Application Program Interface to Graphics,” you learned that
you can specify the characteristics (such as color) for basic elements (such as lines
and characters) of a picture. Those characteristics were called attributes. The
basic elements of a drawing are called primitives.

Graphic Primitives and Their Attributes
Graphic primitives are the basic items of all 0S/400 Graphics pictures. They can
be:

Lines

Area-fills

Image symbols
Graphics symbols
Markers.

Each type of primitive has specific attributes that can be assigned to it. In most
instances, these attributes determine the way one type of primitive looks, but have
no effect on any other type of primitive. For example, line type and line width
attributes that make lines look the way they do have no effect on characters
(graphics symbols).

When you specify an attribute for a primitive, every similar primitive is shown with
that attribute until you specify a different attribute. This is called the current mode
of the attribute. For example, if heavy line is the current mode for the line width

attribute, every line drawn is heavy until the current mode is changed to light line.

The only attribute that affects all types of primitive is the color attribute, which is
discussed next. (All other types of attribute are discussed with their associated
primitives.)

Setting Color Attributes

There are two types of color attribute you can specify:

Color selection
Color mixing

The color selection attribute determines the color of everything drawn in the
program until another color is selected. The color mixing attribute determines what
happens when primitives of different colors overlap.

Selecting a Color

You may recall that the colors for different parts of the envelope picture in

Chapter 2, “The Application Program Interface to Graphics” were set by calling the
GSCOL routine, which used an integer representing a specific color. This integer is
the code for the color.

3-2 AS/400 GDDM Programming Guide

Drawing Pictures

GSCOL uses the color code to select colors in either of the following ways:

Select color using variable:

INTEGER COLOR
LET COLOR = 2
CALL GDDM ('GSCOL',COLOR)

Select color using literal:
CALL GDDM ('GSCOL',6)

COLOR is the variable name

Color code 2 = red

GSCOL uses COLOR to set color to red;
every graphics primitive will be red
until color is changed

GSCOL uses integer Titeral 6 to set color
to yellow; every graphics primitive will
yellow until color is changed

Each color code corresponds to a GDDM color definition. Color definitions are held
in a color table; the color table holds definitions for eight colors, each identified by a
color code. Valid color codes range from —2 through 32,767.

The following chart shows how the color codes are associated with GDDM default
color definitions, the resulting color on the graphics work station, the recommended

pen number on plotters and the resulting color on printers:

5224/5,

3812,

3816,

4028,
Color GDDM Display 618x 7372 7371 4214,
Attribute Color Default Plotter Plotter Plotter 4234-2 4224
Value Definition Color Pen No. Pen No. Pen No. Printer Printer
-2 White White No pen No pen No pen Background Background
-1 Black Black 7 6 1 Black Black
0 Default Green 8 6 2 Black Black
1 Blue Blue 1 1 1 Black Blue
2 Red Red 2 2 2 Black Red
3 Magenta Pink 3 3 1 Black Magenta
4 Green Green 4 4 2 Black Green
5 Turquoise Turquoise 5 5 1 Black Cyan
6 Yellow Yellow 6 6 2 Black Yellow
7 Neutral White 7 6 1 Black Black
8 Background Background No pen No pen No pen Background Background
9 Dark blue Blue 1 1 1 Black Blue
10 Orange Red 2 2 2 Black Red
11 Purple Pink 3 3 1 Black Magenta
12 Dark green Green 4 4 2 Black Green
13 Dark turquoise Turquoise 5 5 1 Black Cyan
14 Mustard Yellow 6 6 2 Black Yellow
15 Gray White 7 6 1 Black Black
16 Brown Blue 8 6 2 Black Brown
17 - Beginning with 17, the color definitions for values 9 through 16 are repeated up to 32,767.
32,767

Chapter 3. Using GDDM 3-3

Drawing Pictures

As an example, when your program uses GSCOL to select color code 6 from the
default color table, GDDM uses yellow, which shows up as yellow on the display.
The plotter, however, uses whatever color pen is in position 6 on the plotter. With
the plotter, you can load the pens in any order so that color code 6 could produce
any color.

This default color table is easy to use because the colors are the same each time
you initialize graphics. For special applications, however, you can define your own
color tables for the graphics work station. With your own color table, you can
choose eight colors from the total number of colors that are available for your
graphics work station. The colors can be assigned to the color codes in any
sequence.

Each picture constructed by a GDDM program and shown on the graphics work
station can use a maximum of eight colors; one program can produce many
pictures, each using a different set of eight colors, but only eight colors can be
used in each picture.

Seven colors out of the eight can be changed using the color table, but the eighth,
black, cannot be changed.

You can define colors for your color table by assigning values to the three
components of a color: hue, lightness, and saturation (HLS). The default color
table for the display contains these definitions for the GDDM default colors:

Color Code Display Default I(_|Hue) I(_Lightness) (SSaturation)
Color
1 Blue 0.0 0.5 1.0
2 Red 0.33333 0.5 1.0
3 Pink 0.16666 0.5 1.0
4 Green 0.66666 0.5 1.0
5 Turquoise 0.83333 0.5 1.0
6 Yellow 0.5 0.5 1.0
7 Neutral (white) 0.0 1.0 0.0
8 Background (black) 0.0 0.0 0.0

Hue, lightness, and saturation are assigned with a value less than or equal to 1.0
but greater than or equal to 0.0. As you can see from the default color table,
default hue values extend from 0.0 (blue) to 0.83 (turquoise); the value 1.0 also
produces blue. The values of the secondary colors (yellow, turquoise, and pink)
are between those of the primary colors (red, green, and blue); for example, the
average of red and green hues produces yellow.

With lightness, 0.0 indicates no lightness (the color is invisible, or black on the
display) and 1.0 indicates the most lightness (white or the neutral color). Each of
the colors defined for the default color table (except black and white) use the
intermediate lightness value 0.5.

3-4 AS/400 GDDM Programming Guide

Drawing Pictures

With saturation, 0.0 indicates no saturation and 1.0 indicates maximum saturation.
The saturation of a color is a measure of how much the color is diluted by white; a
fully saturated color is at its brightest, while a color with no saturation is near gray.

The combination of the three HLS values defines color. The total number of
possible colors as a result of HLS combinations depends on the type of graphics
work station that you are using.

This table shows the HLS definitions for some other colors that might be useful:

Color H (Hue) L (Lightness) S (Saturation)
Orange 0.4 0.5 1.0
Gray 0.0 0.5 0.0
Brown 0.35 0.2 0.75
Purple 0.16 0.2 1.0
Rose 0.22 0.38 0.7
Dark green 0.66 0.2 1.0
Light green 0.6 0.6 0.8
Dark blue 0.0 0.2 1.0
Light blue 0.9 0.7 1.0
Using color

Color can improve the success and visibility of your output. Use color to
associate and relate, or separate and distinguish groups of information. Used
wisely, it can aid comprehension and attract attention. How you use color
depends on the information you want to communicate.

In pictures and customized menus, a color table that uses subtle shades (ones
with reduced lightness or saturation) can be pleasing and easy to use. A color
table made from variations in saturation and lightness of the same color can
give a pleasing result.

The strongest colors (those in the default color table), you should use only for
highlighting and attracting attention.

For charts, use strong colors to draw attention to the important data. For
example, use red to show losses on a profit and loss chart. Chart text and
reference lines should not distract attention from the data illustrated. Use subtle
shades for them.

Experiment with the color tables to see what colors you prefer. An example
program for defining color tables is shown on page 6-36.

To define the color table and its entries, use the routine:

GSCTD - Set color table definition. GSCTD specifies the color table identifier,
the place in the color table where definitions start (up to seven colors can be
defined), the number of entries being defined, and arrays of the values for the HLS

Chapter 3. Using GDDM 3-5

Drawing Pictures

components. Selecting a color code in your program that has not been defined in a
color table results in the default color value.

Here is an example of a color table definition in which color codes 3, 4 and 5
(usually pink, green, and turquoise) are defined to show brown, purple, and orange.
When the color table is in use, entries 0, 1, 2, and 6, 7, and 8 remain the same as
the default color table:

OPTION BASE 1 I Set array subscript

INTEGER TABLE, STARTCOLOR, COUNT
I Declare integer variables

LET TABLE = 65 ! Color table # 65 (1-64 invalid)
LET STARTCOLOR = 3 I Start with entry 3
LET COUNT = 3 I 3 entries will be defined

DIM HUE(3), LIT(3), SAT(3) ! Set up 3 arrays
MAT READ HUE I Read the data that follows
DATA 0.35, 0.16, 0.4 ! Hue component for each color
MAT READ LIT ! Read data
DATA 0.2, 0.2, 0.5 I Lightness components
MAT READ SAT I Read data

|

DATA 0.75, 1.0, 1.0 I Saturation components

CALL GDDM ('GSCTD',TABLE,STARTCOLOR,COUNT,HUE(),LIT(),SAT())
I Define color table
CALL GDDM ('GSCT',TABLE) ! Select the defined color table

Only the first seven entries of the color table can be defined. The eighth entry is
reserved for the background color (black) which can be used to erase parts of the
picture.

Color tables only apply to graphics work stations. For plotters, the colors are
determined by the position of the pens; the GDDM colors are only produced on the
plot if pens of appropriate colors are loaded into the carousel so that they
correspond to the color definitions of the color table.

You can define as many color tables as you want for the device currently in use.
To define these tables, you can include the necessary program statements in your
program, or you can call from your program another program written specifically for
defining color tables. An example of such a program is shown on page 6-36.

You can assign the color code sequence in the color table in any order. One color
table can be selected per page; a page is one picture or one screen of graphics.
Therefore, you can only show a maximum of seven colors at the same time in one
picture. For more information, see page 3-44.

Because color tables are defined only for the device currently selected, any defined
color tables are lost when you select a different device. For information about
GDDM device control routines, see “Device Controls” on page 3-65.

When a color table has been defined, you must make it the current color table by
selecting it:

3-6 AS/400 GDDM Programming Guide

Drawing Pictures

GSCT - Select a color table. GSCT selects a defined color table for use. After a
color table is selected, the color code values used in the GSCOL routine
correspond to the color entries in the color table.

The following routines are also used for color table functions:

GSQCTD — Query a color table definition. GSQCTD returns the definition of a
color table. The values of each of the HLS components are returned to the named
arrays. You can use this routine, for example, to query the color table definition,
then increment elements of the HLS arrays with a mathematical operation, and use
the incremented values to define a new table.

GSQCT - Query the current color table. GSQCT returns the identifier of the
currently selected color table.

Your program can find out the current color code value at any time by using the
routine:

GSQCOL - Query current color. GSQCOL returns the color code value.

You could use the GSQCOL routine like this:

10 LET COLOR =1 ! Color code 1 = blue
20 CALL GDDM ('GSCOL',COLOR) ! GSCOL uses COLOR to set color

40 IF SOMETHING <= 20, THEN 60 ELSE 90

50 I Test value of SOMETHING, get color
60 CALL GDDM ('GSQCOL',COLOR) ! Query current color
70 LET COLOR = COLOR+1 I Increment code by 1

80 CALL GDDM ('GSCOL',COLOR) ! GSCOL uses COLOR to set color
90 REM

Assume that the default color table is the current color table. Line 20 makes blue
the current color. Line 40 tests the value of the variable SOMETHING; if
SOMETHING is less than 20, line 60 queries the current color (blue — 1), line 70
adds 1 to that value, and line 80 sets the current color to red (1 + 1 = 2, the color
code for red).

Mixing Colors
The color mixing attribute controls the way a primitive’s color is mixed with the color
of another primitive when they intersect.

The following routine is used to set the mode of color mixing:

GSMIX — Set color mixing. GSMIX sets the color mixing mode, using the
following values:

Default (same as 2)

Mix (OR of color codes; not supported on plotters, defaults to 2)
Overpaint

Overpaint (same as 2)

Mix (exclusive OR of color codes; not supported on printers, defaults to 2)

A WNPEFO

By default, the second color drawn overpaints the first. For example, if GSMIX is
not specified or if GSMIX(0 or 2) is specified, the junction of a red line drawn over a
green one is red (the red line overpaints the green).

Chapter 3. Using GDDM 3-7

Drawing Pictures

If GSMIX(1) is specified to set color mixing on and the default color table is in use,
the junction of the red and green line is the mixture of red and green, namely
yellow. The following table shows the results of color mixing with mode 1 for the
default color table:

Color Blue | Red Pink | Green | Turquoise | Yellow | Neutral
Blue (B) B P P T T N N
Red (R) P R P Y N Y N
Pink (P) P P P N N N N
Green (G) T Y N G T Y N
Turquoise (T) T N N T T N N
Yellow (Y) N Y N Y N Y N
Neutral (N) N N N N N N N

The plotter is always in a modified mix mode, where the color is the result of
etching one color over the top of another.

On the graphics work station, a primitive drawn in black will be visible only if color
mixing 2 is in effect, and when drawn over another color. For example, drawing in
black on a colored background produces a reverse-video effect. Used with solid
shading, it can blank out or erase an area (to erase an area, the entire screen is
erased and drawn again).

If GSMIX is specified to set color mixing on and a modified color table is in use, the
junction of the colors defined for color table codes 3 and 4 is drawn in the color
defined for color code 7, rather than being the result of an additive color process.
The result of color mixing for any color table (including the default table) is
determined as follows: the binary equivalent of one color index is ORed or
exclusively ORed with the other. The result of this operation is the color code of
the mixed colors.

This table shows, using color codes, the results of mixing for any color table,
default or modified:

Original Color
3

Mixed
With

N~ o o0~ W N R

N N OO W W ke
N 0O N o W N W N
N N NN W oW ow

N~ o o0 A N O 0 A
N N oo N NG
N~ o N o N o N oo
N NN NN N NN

If GSMIX is specified to set color mixing on with option 4 (exclusive-OR of color
table index values), the result of color mixing for any color table (including the
default table) is determined as follows: the binary equivalent of one color code is
exclusively ORed with the other, which is different from the result of the mix mode
selected by option 1.

3-8 AS/400 GDDM Programming Guide

Drawing Pictures

This table shows, using color codes, the results of option 4 mixing for any color
table, default or modified:

Original Color
3

Mixed
With

~ o 0o A~ W N B
o ~N A N W ® Rk
g A N O P 0w N
AN 01l o N © B N

W N P 0 N O o N
N WP, o NN G
R O W N O N O
0 P N W AN OO N

The following routine returns the current mixing mode:

GSQMIX — Query the current color mixing mode. GSQMIX returns the value
that corresponds to the current mixing mode (O through 4).

Chapter 3. Using GDDM 3-9

Drawing Pictures

Binary logic

All decimal numbers have a binary equivalent. Binary numbers
are made up of 0’'s and 1's. For example, the decimal number 5
in binary is:

O 1 0 1
The positions: 0 1 0 1
Are worth: 8 4 2 1

Add the values: 0+ 4 + 0+ 1 =25

To OR one binary number with another, each place in this first
string is compared with the corresponding place in the second. If
either place contains a 1, or if both places contain a 1, the result is
al. For example:

O 1 0 1 (decimal 5)
or or or or
©o 0 1 1 (decimal 3)

Gives: O 1 1 1 (decimal 7)

For an exclusive OR each place in this first string is compared
with the corresponding place in the second. If either place
contains a 1, the result is a 1. If both places contain a 1, the
result is a 0. For example:

O 1 0 1 (decimal 5)
or or or or
O 0 1 1 (decimal 3)

Gives: © 1 1 0 (decimal 6)

3-10 AS/400 GDDM Programming Guide

Drawing Pictures

The Current Position
Before you start using GDDM routines to draw anything, you have to specify a
starting point, which is called the current position. If you recall the envelope
program in Chapter 2, “The Application Program Interface to Graphics” the first
GDDM routine that used coordinates was the GSMOVE routine, which was used to
specify the starting point for the first line. When a line was drawn from the current
position to new coordinates, the end point of the line became the new current
position. To move the current position without drawing, GSMOVE was used again.
GSMOVE usually has to be the first routine; otherwise the first thing you draw
starts at the lower left-hand corner.

Setting the Current Position
You can use the following routines for setting the current position:

GSMOVE - Set the current position. If no current position has been assigned by
GSMOVE or another routine, the value used will be the smallest values of x and y.

Any of the drawing routines. Routines that draw primitives always leave the
current position at the end point of the primitive.

Querying the Current Position
You can use the following routine for querying the current position:

GSQCP — Query the current position. GSQCP returns the location of the current
position, in X and y coordinates. A retrieved current position value can be passed
to another GDDM routine. The following is an example:

CALL GDDM ('GSQCP',X,Y)
LET X=X+10
CALL GDDM ('GSLINE',X,Y)

GSQCP places the x and y coordinate values into variables X and Y. A value of 10
is added to X, then X and Y are used as values for GSLINE. The result is a
horizontal line (10 X-units long) positioned at Y.

Querying the Cursor Position

GSQCUR — Query the current cursor position. GSQCUR returns the location of
the cursor position (in x and y coordinates) at the time of the most recent ASREAD.

An application program can use the values returned by GSQCUR for correlation of
the position of the cursor with the x and y position of graphic items on the screen,
or for option-selection by cursor position, rather than requiring the user of the
program to key in the option name or number.

Chapter 3. Using GDDM 3-11

Drawing Pictures

How to Draw Lines

Lines are the most used primitive in GDDM. Lines drawn by GDDM can be
separate, they can cross one another, and they can be connected. Lines can be
drawn that are straight or curved. Curved lines can be drawn as arcs, elliptical
arcs, or complete circles.

Lines. Your PL0O536B6
program can use
line primitives to
draw any shape.

Setting Attributes for Lines
Attributes can be set that assign the type of line and the width of the line.

You can use the following routines to set line attributes:
GSLT — Set the current line type. GSLT specifies the type of line to be drawn by

GDDM line-drawing functions. If no line type is specified, a solid line is used.
GSLT sets the line type by using one of eight line-type codes.

3-12 AS/400 GDDM Programming Guide

Line attributes.
Lines can be
drawn in any
type and color in
either of two
widths. The
colors shown
here can be
used for any
primitive.

Line types for
plotter and
printer. The
line types drawn
by the plotter
and the printer
are different
from those
shown on the
display.

Drawing Pictures

35MM0536B7

PLO536B8

Chapter 3. Using GDDM 3-13

Drawing Pictures

The following routines are also used for line primitives:

GSQLT — Query the current line type. GSQLT returns the value corresponding to
the current type of line and sets a variable to that value.

GSLW - Set the current line width. GSLW sets the width of the line to be drawn
by GDDM line-drawing functions. There are two line widths: narrow (1) and wide
(2). If no line width is specified, a narrow line width is used (GSLW(1)). For the
plotter, this routine has no effect; you change the line width by using pens with a
larger tip diameter.

Note: Wide lines are drawn slightly longer than narrow lines, so that junctions of
wide lines form perfect corners rather than notched corners. Therefore,
lines drawn with very little open space between line end points might cause
the lines to appear connected.

The IBM PC only supports line width 1.

GSQLW — Query the current line width. GSQLW returns the current line width
and sets the variable to that value.

GSFLW — Set the fractional line width. GSFLW specifies the width of the line to
be drawn by GDDM line-drawing functions. GSFLW performs the same function as
GSLW, except that GSFLW uses a floating-point parameter instead of an integer
parameter.

A line width multiplier of 1.0 represents the standard line width for the graphics
work station and for the printers. A fractional value of 0.0 through 1.0 draws a
narrow line; a value of greater than 1 through 100 draws a wide line.

GSQFLW — Query the fractional line width. GSQFLW returns the current line
width as a floating-point value.

Drawing Straight Lines

GSLINE — Draw a straight line. GSLINE draws a single straight line from the
current position to the end point specified by x and .

GSPLNE — Draw a series of lines. GSPLNE draws a series of connected straight
lines (a polyline) from the current position. GSPLNE performs many drawing
operations with one routine, and can therefore be more efficient than using a series
of GSLINE routines.

3-14 AS/400 GDDM Programming Guide

Polyline. A
polyline is a
series of
connected lines.

Drawing Pictures

PL0O536B9
OPTION BASE 1 I Set array subscript
DIM AX(5) : MAT READ AX ! Describe and read array
DATA 30,30,70,70,50
DIM AY(5) : MAT READ AY ! Describe and read array

DATA 40,70,70,40,10
CALL GDDM ('GSMOVE',50.0,10.0)

I Move current position

I to starting point 50,10
CALL GDDM ('GSPLNE',5,AX(),AY())

! Draw 5-part polyline

(A polyline is a series of connected lines; polygon is the geometric term for a
polyline that encloses an area.) The end point of each finished line in the polyline
becomes the starting point (current position) for the next line.

Attributes cannot be set for individual lines in the polyline drawing. For example,
each side of a square polyline cannot be drawn with a different color or line type;
for that, you must use a series of GSLINE calls, each preceded by the appropriate
attribute setting routine.

GSVECM - Draw a series of vector lines. GSVECM combines the functions of

GSMOVE and GSLINE by using an array to specify a series of moves and line
drawing functions.

Chapter 3. Using GDDM 3-15

Drawing Pictures

Vector lines.
Vector lines are
like groups of
GSMOVE and
GSLINE
routines.

PLO536C1

OPTION BASE 1 I Set array subscript

DIM VECTOR(24) : MAT READ VECTOR

I Describe and read array
DATA 0,25,20, 1,25,65, 1,65,65, 1,25,20
DATA 0,35,20, 1,75,65, 1,75,20, 1,35,20

1 0 = GSMOVE, 1 = GSLINE
CALL GDDM ('GSVECM',8,VECTOR())

! Draw triangles

A vector array contains a series of integers in groups of three. The first value of
each group specifies a move or a line (0 = move, 1 = line), and the second and
third values specify the x and y coordinates for the move or line end point.

Attributes cannot be set for individual lines in the vector drawing.

3-16 AS/400 GDDM Programming Guide

Circular arcs.
Circular arcs use
the current
position for the
starting point of
the arc. The arc
routine provides
the center point
and degree of
sweep.

Drawing Pictures

Drawing Curved Lines

GSARC — Draw a circular arc. GSARC draws an arc around a center point. The
arc starts at the current position. The distance the arc sweeps is specified by the
angle, and the radius of the arc is determined by the distance between the current
position and the specified center point.

PLO536C2

! Draw counter-clockwise arc with radius = 15 (35 - 20 = 15)
CALL GDDM ('GSMOVE',35.0,35.0) ! Move current position
CALL GDDM ('GSARC', 20.0,35.0,270.0) ! Draw arc

! Draw clockwise arc with radius = 15 (85 - 70 = 15)
CALL GDDM ('GSMOVE',85.0,35.0) ! Move current position
CALL GDDM ('GSARC', 70.0,35.0,-270.0)! Draw arc

An angle of 360 degrees results in a full circle; an angle of 90 degrees results in
one quarter of a circle. A positive angle provides a counterclockwise sweep; a
negative angle provides a clockwise sweep.

If you cannot easily estimate the degree of sweep and radius needed for an arc to
end at a required end point, use GSQCP (Query Current Position) to get the value
of the current position after the arc is drawn. If precise placement of the end point
of the arc is important, use the GSPFLT routine:

GSPFLT — Draw a series of curved lines. GSPFLT draws a curved line or a
series of curved lines.

GSPFLT is similar to the GSPLNE routine, except that GSPFLT uses construction
lines that do not appear on the screen as a guide to draw a series of visible,
connected, curved lines (called a polyfillet).

Chapter 3. Using GDDM 3-17

Drawing Pictures

If only two coordinates are specified by the array, GSPFLT draws two construction
lines: one from the current position to the first coordinate, another from there to the
second coordinate. A curved line is drawn that begins at the current position and
ends at the second coordinate position. The construction lines are tangents to the
curved line. The curved line, together with the construction lines, have the
appearance of a fillet.

A tangent is any straight line that touches a curved line at one point. These are
tangents:

PLO536C3

3-18 AS/400 GDDM Programming Guide

Polyfillets. A
polyfillet is an
arc or a series of
connected arcs
built within
construction
lines.

Drawing Pictures

PL0536C4
OPTION BASE 1 I Set array subscript
DIM AX(2) : MAT READ AX ! Describe and read array
DATA 15,35
DIM AY(2) : MAT READ AY ! Describe and read array
DATA 50,50

CALL GDDM ('GSMOVE',15.0,10.0) ! Move to start point
CALL GDDM ('GSPFLT',2,AX(),AY())
! Draw 2-part polyfillet

DIM XX(5) : MAT READ XX ! Describe and read array
DATA 65,65,85,85,75
DIM YY(5) : MAT READ YY I Describe and read array

DATA 30,50,50,30,10
CALL GDDM ('GSMOVE',75.0,10.0) ! Move to start point
CALL GDDM ('GSPFLT',5,XX(),YY())

I Draw 5-part polyfillet

A compound polyfillet uses more than two construction lines. When a compound
polyfillet is drawn, it starts at the current position and finishes at the end of the last
construction line. On its way round inside the construction lines, the polyfillet
touches the midpoint of each line. The result is a smooth combination of curved
lines with a sharp end point.

You can draw elliptical arcs with this routine:
GSELPS — Draw an elliptic arc. GSELPS draws an elliptic arc from the current

position to a specified end point. You describe the arc by assigning the length of
the major and minor radii and the degree of tilt, as well as the end point of the arc.

Chapter 3. Using GDDM 3-19

Drawing Pictures

Elliptic arc. An
elliptic arc is
drawn when the
degree of arc
and the major
and minor radii
can
accommodate
the starting point
and end point as
points in the arc.

PL0O536C5

CALL GDDM ('GSMOVE',75.0,35.0) ! Move to starting point
CALL GDDM ('GSELPS',25.0,15.0,45.0,30.0,25.0)

I Draw arc with major radius = 25, minor radius =
I tilt angle 45 degrees counterclockwise, and

! end point x = 30, y = 25

15,

An

elliptic arc is drawn with these steps:

. The current position is moved to the starting point of the elliptic arc.

. An imaginary line the length of the major radius is drawn (1) to the left if the

radius value is positive, or (2) to the right if the radius is negative.

. From the end point of that line an imaginary line the length of the minor radius

is drawn (1) up if the radius is positive, or (2) down if the radius is negative.

. The lines are rotated counterclockwise the number of degrees specified by the

positive tilt angle (clockwise by a negative tilt angle).

. The lines are moved to a position where the arc can hold both the starting point

(the current position) and the end point.

. The elliptic arc is drawn.

3-20 AS/400 GDDM Programming Guide

Drawing Pictures

A full ellipse can be drawn with two GSELPS routines. For example, the elliptic arc
in the previous illustration could be drawn as a complete ellipse by these routines:

PLO536C6

CALL GDDM ('GSMOVE',75.0,35.0) ! Move to starting point
CALL GDDM ('GSELPS',25.0,15.0,45.0,30.0,25.0)

I Draw arc with major radius = 25, minor radius = 15,
I tilt angle 45 degrees counterclockwise, and

! end point x = 30, y = 25

CALL GDDM ('GSELPS',25.0,15.0,225.0,75.0,35.0)

! Draw arc with major radius = 25, minor radius = 15,

I tilt angle 225 degrees counterclockwise, and
! end point x = 75, y = 35 (starting point of first arc)

Chapter 3. Using GDDM 3-21

Drawing Pictures

How to Draw Filled Areas

Filled areas as
shown on a
plotter.
Enclosed areas
can be filled with
specific patterns.

Any of the line-drawing routines can be used to draw an enclosed area, such as a
circle or a square. You can use the graphics primitive area-fill to shade or color in
the enclosed area, using a solid fill or a pattern of the current color.

PLO536C7

Drawing Area-Fills

GSAREA - Start a shaded area. GSAREA begins the construction of a shaded
area. A parameter specifies whether the outlines of the shaded area are drawn.

GSENDA — End a shaded area. GSENDA ends the construction of a shaded
area. When GSENDA is specified, all enclosed areas of the picture (defined since
the last GSAREA) are shaded.

Only the following line-drawing or attribute-setting routines can be specified
between the GSAREA and the GSENDA routines:

GSMOVE Set the current position
GSLINE Draw a straight line
GSPLNE Draw a series of lines
GSVECM Draw a series of vector lines

GSLT Set the current line type
GSLW Set the current line width
GSCOL Set the current color

GSMIX Set the current mix

GSARC Draw a circular arc

GSPFLT Draw a series of curved lines
GSCT Set a color table

GSCTD Set the color table definition
GSELPS Draw an elliptic arc.

If you specify a series of lines followed by GSENDA, and the end of the last line is
not the same as the starting point of the first line, GDDM adds the last line to

3-22 AS/400 GDDM Programming Guide

Shading
algorithm. An
area is shaded
when an
imaginary line
drawn from
inside a region
crosses an odd
number of lines.

Drawing Pictures

enclose the area. This last line is called the closure line. The current position then
becomes the starting point of the first line.

If you want to draw a figure with an outline shown in one color and its shading
shown in another, you must:

1. Set the current color (area-fill color).

2. Specify GSAREA with the outline option.
3. Change the current color (outline color).
4. Draw the figure.

5. Specify GSENDA.

An area is shaded if two conditions are met:

1. GSAREA has been specified.
2. An odd number of lines must be crossed to leave the enclosed area.

35MM0536C8

The star was drawn with five straight lines that span from one star point to another,
rather than 10 lines that form the perimeter of the star.

The area inside the star is not shaded because, if you start in that area and move
outside the star, you cross two lines. If you start inside one of the shaded star
points, you cross either one or three lines to reach the outside; therefore, the area
satisfies the odd number of lines requirement and is shaded.

Chapter 3. Using GDDM 3-23

Drawing Pictures

Shading
patterns. A
code number is
associated with
each pattern.
The code is
used in the
GSPAT routine
to select the
pattern.

Selecting a Pattern for Filled Areas

You can select one of 16 patterns for filled areas. All area-fills use the pattern you
select until another pattern is selected. If you want a specific pattern for the
area-fill (other than the default solid), you must assign a pattern before the
GSAREA routine begins the area-fill. You can assign a different pattern after the
GSENDA routine and before the next GSAREA routine.

The following routines are used for shading patterns:

GSPAT - Set the shading pattern. GSPAT specifies the pattern to be used when
shading occurs. If a pattern is not specified, the shading is solid and of the current
color.

35MM0536C9

3-24 AS/400 GDDM Programming Guide

Patterns as
shown on a
plotter. On the
plotter, the lines
used for the
patterns are
drawn closer
together.
Patterns on the
printer are the
same as those
shown here for
the plotter.

Drawing Pictures

PLO536D1

GSQPAT - Query the current shading pattern. GSQPAT returns the value of
the current pattern being used.

Performance hint

Shading patterns are made up of many lines or dots. Each line or dot is
processed separately and this takes some time. While you are debugging your
program, you can comment out the GSAREA and GSENDA statements in your
program to reduce the time it takes to process the picture.

Solid shading patterns on a plotter also take a long time to process. Use one of
the other patterns to speed up the process.

How to Draw Graphics Symbols

Text shown by an OS/400 Graphics application program can be provided by GDDM
or, when a program is written for use on a graphics work station, by the
alphanumeric characters of a data description specification (DDS) display file.
Plotters and printers can use only the characters provided in GDDM symbol sets.

The characters written by a DDS display file are the same characters you see
written to the display screen in any other non-graphics application; they are always

Chapter 3. Using GDDM 3-25

Drawing Pictures

Graphics
symbols.
Graphics
symbols come in
two modes:
Mode-2 and
Mode-3.

Mode-2
characters are
similar to
hardware
characters, while
Mode-3
characters are
drawn by
GDDM.

of the same size and appearance. Here, these characters are called hardware
characters because they are generated by the device.

Graphics text, on the other hand, is generated by GDDM. The characters in
graphics text are called graphics symbols. With your program, you can control the
placement, size, orientation, and type style (font) of the graphics text.

There are two types of graphics symbol you can use:

Mode-2, or image symbols
Mode-3, or vector symbols.

Image symbol characters are patterns of dots, while vector symbol characters are
patterns of lines.

Image symbol characters are quite similar to hardware characters, except that
some graphics characteristics apply. Image symbol characters respond to the
current mode for color mixing, are drawn starting with the current position, and so
forth.

Image symbol characters used on the printer respond to variations in printer file
definition. For example, if a printer file is being used with a characters-per-inch
(cpi) value of 15, rather than the default 10 cpi of printer file QSYS/QPGDDM, the
characters are drawn closer together. See page 5-5 for details of this file.

35MM0536D3

Vector symbol characters are each small pictures drawn by GDDM. Vector
symbols can be drawn with any size or orientation you choose. Text written with
vector symbols can be shown in many different font styles.

3-26 AS/400 GDDM Programming Guide

Vector symbol
font styles.
Vector symbols
can be drawn in
many different
styles.

Drawing Pictures

35MM0536D4

All graphics symbol sets (both image and vector) are stored in OS/400 object type
*GSS. For more information on object management of the *GSS object type, see
“0S/400 Graphics Symbol Sets” on page 5-7.

A graphics symbol set must be loaded from the *GSS object, then selected for use
in your program as the current symbol set (more than one can be loaded). The
mode of the graphics symbol set can be specified also; for mode-3 symbols,
attributes can be assigned that determine the way the symbols are drawn.

Controlling Symbol Sets

Graphics symbol sets that have been loaded apply only to the device your program
is currently using; if the current device is closed by the DSCLS routine or is
initialized again by the DSRNIT routine, the symbol sets must be loaded again for
the new current device. Otherwise, the default symbol set is used. For information
about device controls, see “Device Controls” on page 3-65.

The default symbol set depends on the type of application (GDDM or Presentation

Graphics) and the device you are using. This table shows the symbol set used for
each type of application program and each device type.

Chapter 3. Using GDDM 3-27

Drawing Pictures

Current Device

GDDM

Presentation Graphics

Graphics work
station

ADMMVSS (vector)

ADMMVSS (vector)

Plotters ADMMVSS (vector) ADMMVSS (vector)
3812 Printer Uses printer hardware characters ADMMVSS (vector)
(IPDS)
3816 Printer Uses printer hardware characters ADMMVSS (vector)
(IPDS)
4028 Printer Uses printer hardware characters ADMMVSS (vector)
(IPDS)

4214 Printer
(SCs)

ADMMISSG (image)

ADMMVSS (vector)

4224 Printer
(IPDS)

Uses printer hardware characters

ADMMVSS (vector)

4234-2 Printer ADMMISSG(image) ADMMVSS(vector)
(SCs)
5224 Printer ADMMISSG(image) ADMMVSS(vector)
(IPDS)
5225 Printer ADMMISSG(image) ADMMVSS(vector)
(IPDS)

Notes:

All of the symbol sets shown here contain multinational characters and all have a
similar appearance.

1. Because image symbol set characters are constructed with a pattern of dots,
mode-2 symbol sets explicitly loaded and selected for use on the plotter cause

the plotter pens to strike the drawing surface repeatedly when these characters

are drawn.

2. For IPDS Printers, the default symbol set under GDDM is the printer hardware
character set selected by the CHRID parameter of the print file being used.

For more information, see the CHRID parameter on the CRTPRTF command in

the CL Reference manual.

Loading Symbol Sets

GSLSS - Load graphics symbol set. GSLSS loads a symbol set and makes it
available for selection and use. Symbol sets are always loaded for the current
device (the device being used). When a different device is selected for program

output, the symbol sets you want must be reloaded.

Many symbol sets can be loaded for a particular device, but only one can be used
at a time. Before you load a symbol set, library QGDDM must be in your library

list.

If no symbol set has been loaded, the default symbol set (for the device) is used.

GSRSS - Release graphics symbol set. GSRSS releases a symbol set.

3-28 AS/400 GDDM Programming Guide

Drawing Pictures

GSONSS — Query the number of loaded graphics symbol sets. GSQNSS
returns the number of symbol sets currently loaded for the device. This value can
be used as the symbol-set-to-query parameter in the GSQSS routine.

GSQSS - Query loaded graphics symbol sets. GSQSS returns information
about all symbol sets that have been loaded by GSLSS.

For a list of the names of the available symbol sets, see “OS/400 Graphics Symbol
Sets” on page 5-7.

Selecting a Character Mode

GSCM - Set current character mode. GSCM sets the character mode for
graphics symbols drawn by the program. If no symbol sets have been loaded and
selected, the program uses the default symbol set for the mode specified. If no
mode is specified, the default symbol set for the device is used. For the plotter,
setting the character mode to 2 has no effect unless a mode-2 symbol set has
been loaded and selected.

Selecting the Current Symbol Set

GSCS - Select a symbol set. GSCS selects a symbol set to be used as the
current symbol set. The symbol-set identifier must name a symbol set that has
been loaded from the *GSS object by the GSLSS routine.

If GSCM has not been used to specify a character mode, the default symbol set for
the device is used.

If GSCM specified character-mode 3, and a symbol set is not specified or has not
been loaded or if GSCS(0) is selected, the default ADMMVSS symbol set is used.

GSQCS — Query the current symbol set. GSQCS returns the value of the
current symbol set.

Drawing Graphics Symbols
Graphics symbols can be drawn in the form of character strings.

Graphics symbols are drawn with their lower left corner over the current position.
After a character string has been drawn, the current position is the position after the
last character in the string.

The routines that draw graphics symbols of the current symbol set are:

GSCHAR - Draw a character string at a specified point. GSCHAR draws a
character string at the position specified by x and y (instead of the current position).

GSCHAP — Draw a character string at the current position. GSCHAP draws a
character string at the current position.

This routine is useful for continuing a character string at the point where a previous
character string or primitive ended. GSCHAP is equivalent to a GSQCP followed
by a GSCHAR that uses the values of the current position returned to the GSQCP
routine.

Chapter 3. Using GDDM 3-29

Drawing Pictures

Performance hint

Each mode-3 vector symbol is made up of many straight and curved lines.
Each line is processed separately and the larger and more complex the
character, the longer it takes to process. While you are debugging your
program, you can comment out the GSCS statements in your program to
reduce the time it takes to process the picture. The commented out statements
prevent loaded symbol sets being used; the default ones are used instead.

Complex symbol sets on a plotter also take a long time to process. Use one of
the simpler ones to speed up the process.

Attributes for Graphics Symbols

Graphics symbol attributes determine the symbol set, size, angle, direction, and
shear of graphics symbol characters used in a picture. Because graphics symbols
are drawn as small pictures, graphics symbol attributes have no effect on any
alphanumeric characters (hardware characters) shown by a DDS display file in the
same picture.

The graphics window (the coordinate system you specify) can have an effect on the
attributes you specify for graphics symbols, especially vector symbols. If, for
example, your coordinate system is set so that 2 units in the y-direction equal 1 unit
in the x-direction, a character box (discussed next) set as x=1, y=2 will appear
square, and the other attributes that determine the look of the symbols will also be
affected.

Image symbols (mode-2) are similar in nature and appearance to hardware
characters; graphics symbol attributes have little effect on them, except for spacing
and placement. Graphics symbol attributes have the most effect on vector symbols
(mode-3).

For mode-2 and mode-3 characters in graphics printer files, variations in the cpi
(characters-per-inch) setting of the graphics printer file being used affect the
horizontal spacing of characters in strings. For more information on graphics
printer files, see “QPGDDM Printer File Considerations” on page 5-5.

Note: For both mode-2 and mode-3 characters, you must set the character mode
with GSCM before any of the symbol-set attributes can have an effect on
graphics symbols.

Setting the Graphics Symbol Size

For vector symbols (mode-3), character size is determined by the attributes that
specify the dimensions and coordinate system used by the program to position
primitives on the screen (see “The Graphics Window” on page 3-53). Based on
that system, you can specify the size of mode-3 characters in units of x- and
y-coordinate values.

The hardware cell size is the size of each non-graphics, alphanumeric character
(hardware character) used by the device, and of each image symbol (mode-2).
The characters written by a DDS display file appear in hardware cell size. The
hardware cell size for mode-2 graphics symbols on printers can vary with the

3-30 AS/400 GDDM Programming Guide

Character box.
Hardware
characters aren’t
affected by the
character box
size, while
mode-3 symbols
are enlarged to
fill the box and
mode-2 symbols
are spaced
according to the
box width.

Drawing Pictures

definitions used for the page size or with the overrides that may affect the page
size.

Each symbol is placed into an imaginary character box. For mode-3 vector symbol
characters, the dimensions for each character are determined by the size of this
character box.

If a graphics symbol size is not specified, the hardware cell size is used.

PLO536D6

CALL GDDM ('GSCB',11.5,11.5) ! Set character box

The routines for the graphic symbol size attribute are:

GSCB - Set character box size. GSCB sets the width and the height of the
character box in x- and y-coordinate values.

GSQCB - Query current character box size. GSQCB returns the current values
of the character box in x- and y-coordinate values.

GSQTB - Query text box. GSQTB returns the current values of the text box in x-
and y-coordinate values. The text box is the long parallelogram formed by a string
of character boxes. You set the text box when you use GSCHAR or GSCHAP to
draw a string of graphics symbols.

Chapter 3. Using GDDM 3-31

Drawing Pictures

Character
angle. Here the
string of
adjacent
character boxes
(the text box) is
rotated for
mode-2 and
mode-3
characters.

Note that the
baseline angle
for the individual
mode-2
characters
remains
horizontal.

GSQCEL - Query hardware cell size. GSQCEL returns the size dimension of the
hardware cell in x- and y-coordinate values. These values vary with the coordinate
system in use and the size of the graphics area in use; for example, creating a
graphics page or field one half as wide as the default causes the value returned for
the y dimension to double.

For printers, variations in the forms width and forms length values used in the
printer file currently in use have an effect on the values returned in this routine.

Graphics Symbol Orientation: Character direction can be specified so that
character strings are written on the screen (from the starting point) in any of four
directions. Characters can also be rotated so that each character in a string is
written along a baseline such that the string appears upside down, diagonally, or
any orientation you choose. Characters can also be slanted (similar to a
parallelogram). This attribute is called character shear. Like the size attribute,
character shear depends on the coordinate system described for the entire picture;
shear is specified in terms of x and y values.

Setting the Character Angle

The angle of the baseline can be set so that characters can be rotated in relation to
the rest of the picture. Rotation values can be specified in terms of x- and
y-coordinates, or by trigonometric operations.

PLO536D7

CALL GDDM ('GSCA',3.0,1.0) ! Set character angle

GSCA - Set character angle. GSCA sets the angle of the character baseline. If
GSCA is not specified, a horizontal baseline is used.

3-32 AS/400 GDDM Programming Guide

Drawing Pictures

If the coordinate system of the picture is such that x =y, then these three routines
produce characters that are written on a 45-degree angle baseline:

CALL GDDM ('GSCA',1.0,1.0)
CALL GDDM ('GSCA',5.0,5.0)
CALL GDDM ('GSCA',12345.0,12345.0)

When x =y, a 45-degree baseline results. If you need a baseline of a specific
angle that would be difficult to produce using the coordinate values of x and y, use
the sine and cosine values of the angle radian.

To find the angle in radians to set a character angle use this algorithm:

DEGREE = 37 ICharacter angle 37 degrees
RADIAN = DEGREE = (PI / 180)
DX = COS(RADIAN) 1COS = cosine of angle

DY = SIN(RADIAN) ISIN
CALL GDDM ('GSCA',DX,DY)

sine of angle

Either of the values can be negative. The amount of rotation of the characters
depends on the coordinate system established for the picture; for more information,
see “The Picture Space” on page 3-48 and “The Graphics Window” on page 3-53.

The following routine is used to query the current character angle:

GSQCA - Query current character angle. GSQCA returns the x and y values
used for the current character baseline angle. If sine and cosine were used for
setting the angle, x and y are the radians.

Setting the Character Direction

Graphics symbol direction is the orientation of an entire character string. You can
specify that the character strings are written from left to right (standard reading
direction), top to bottom, right to left, or bottom to top. The character boxes can be
tilted within the string by setting the character angle with the GSCA routine.

If a graphics symbol direction is not specified, character strings are drawn left to
right.

Chapter 3. Using GDDM 3-33

Drawing Pictures

Character
direction. Here
the character
boxes are
stacked for
mode-2 and
mode-3
characters.
Character
direction can
also be set for
bottom-up
stacking and
backwards-reading
strings.

PLO536D9

CALL GDDM ('GSCD',2) I Set downward-reading character direction

The following routines are used for setting and querying the character direction
value:

GSCD - Set character direction. GSCD specifies the direction of the character
string.

GSQCD - Query current character direction. GSQCD returns the current
direction value of the character string.

Setting the Character Shear

Graphics symbol shear gives each character a slanted, or italic, look. You specify
shear with the same type of values used for the baseline angle. Shear values can
be specified in terms of x and y coordinates, or by trigonometric operations.

The degree of shear of the characters depends on the coordinate system
established for the picture; for more information, see “The Picture Space” on
page 3-48 and “The Graphics Window” on page 3-53.

3-34 AS/400 GDDM Programming Guide

Character
shear. Mode-3
characters are
slanted by
character shear,
while mode-2
characters are
only affected by
the shift in
position.

Drawing Pictures

PLO536E1

CALL GDDM ('GSCH',1.0,1.0) I Set positive shear

CALL GDDM ('GSCH',-1.0,1.0) ! Set negative shear

These routines are used for setting and querying character shear values:

GSCH — Set character shear. GSCH sets the angle of character shear. The
characters can slant to the left or the right, depending on the sign of one of the
parameters used (right for positive or left for negative).

GSQCH - Query current character shear. GSQCH returns the values used to
set the current angle of character shear.

Drawing Graphics Images

Another type of graphics primitive you can draw is the graphics image. A graphics
image is a user-defined pattern of dots that can show a picture or symbol. You can
define a graphics image in your program and then use it anywhere in your picture.
The graphics image pattern is defined by a character variable string that represents
a bit pattern of 0's and 1's; each 1 sets the associated pixel on, and each 0 leaves
the associated pixel unchanged. The graphics image size is determined by the
number of 0's and 1's (screen dots) that you include in the bit pattern.

Graphics images are drawn with the current color. You can draw multicolor
graphics images by drawing one part of the graphics image in one color, and the
rest of it in a different color (these separate parts have to be defined and called as
separate graphics images and then overlaid).

Chapter 3. Using GDDM 3-35

Drawing Pictures

Graphics image
and scaled
graphics image.
The graphics
image bit pattern
is converted to
pixels. The
graphics image
can be scaled
up, so that each
display point is
shown by a
square.

Drawing a Graphics Image

GSIMG — Draw a graphics image. GSIMG draws a graphics image of a specified
width and depth at the current position (the upper left corner of the graphics image
is placed over the current position). The bit pattern defining the pixels of the
graphics image is specified by a character string.

The character string that defines the graphics image can be formatted so that it
contains rows and columns of 0's and 1's. The number of bits (0’s or 1's) in the
string must be a multiple of 8.

35MMO536E2

The following program shows how a character variable can be used to define a
graphics image in BASIC. (BASIC requires conversion from binary bit pattern data
to hexadecimal notation.)

3-36 AS/400 GDDM Programming Guide

Drawing Pictures

00010 REM #**x*xkxkkkkkhrkhkkkhrkhkhhkhrhkhhkhkhkkkxhkhkkhx%
00020 REM INITIALIZE

00030 REM **x*xkxkkkkhkhkhkkhxhkhhkhxhkhkhkhkhkkhxhxhdxhxk
00040 CALL GDDM ('FSINIT')

00050 REM **%kkkkkkkkhkhhkhkhhkkhhkkh kR Ak h kX **kk* kAR *h kX * K
00060 REM SPECIFY IMAGE DATA

00070 REM #**%kkkxkkkhrkkhkkkhhkkhhkkhhkkhhkkhhkkkhkkhhkkk*
00080 REM 0000111111110000

00090 REM 0001100000011000

00100 REM 0011000000001100

00110 REM 0110111111000110 The bit pattern

00120 REM 1100110000110011 consists of 0's and
00130 REM 1100110000110011 1's. Each 1 illuminates
00140 REM 1100111111000011 a PEL with the current
00150 REM 1100110001100011 color, while each

00160 REM 1100110000110011 0 leaves the display
00170 REM 0110110000110110 point as it was.

00180 REM 0011000000001100

00190 REM 0001100000011000

00200 REM 0000111111110000

00210 REM Convert the characters to hexadecimal as follows:

00220 REM 0000 1111 1111 0000 = HEX 'O F F 0' where 0000 = HEX '0'

00230 REM 0001 1000 0001 1000 = HEX '1 8 1 8' 0001 = HEX 'I'
00240 REM 0011 0000 0000 1160 = HEX '3 0 0 C' 0010 = HEX '2'
00250 REM 0110 1111 1160 0110 = HEX '6 F C 6' 0011 = HEX '3'
00260 REM 1100 1100 0011 0011 = HEX 'C C 3 3' 01060 = HEX '4'
00270 REM 1100 1100 6011 0011 = HEX 'C C 3 3' 0101 = HEX '5'
00280 REM 1100 1111 1100 0011 = HEX 'C F C 3' 0110 = HEX '6'
00290 REM 1100 1100 0110 0011 = HEX 'C C 6 3' 0111 = HEX '7'
00300 REM 1100 1100 6011 0011 = HEX 'C C 3 3' 1000 = HEX '8'
00310 REM 0110 1100 0011 0110 = HEX '6 C 3 6' 1001 = HEX '9'
00320 REM 0011 0000 0000 1160 = HEX '3 0 0 C' 1010 = HEX 'A'
00330 REM 0001 1000 0001 10060 = HEX '1 8 1 8' 1011 = HEX 'B'
00340 REM 0000 1111 1111 0000 = HEX 'O F F 0' 1100 = HEX 'C'
00350 REM #*#x%xkxkkrskrkhrhhkhrhrrhhkhrhrrkhrhrrrrcxxrxrxxxxx 1101 = HEX 'D'
00360 REM DRAW IMAGE 1110 = HEX 'E
00370 REM #**x*xkxkkxkkhrhkkhkhrhrrkhkhrhkrkhxhrhkkxkhxxxxxx%*x*x 1111 = HEX 'F'
00380 DIM IMG$=*26 ! Image variable 1/2 hex string
00390 DIM X§$*52 I Hex string variable

00400 X$='0OFF01818300C6FC6CC33CC33CFC3CC63CC336C36300C18180FF0"

00410 IMG$=HEXS$ (X$) ! Convert back from hex to bits

00420 CALL GDDM ('GSMOVE',40.0,60.0) ! Move current position
00430 CALL GDDM ('GSIMG',0,16,13,26,IMG$)

00440 I Draw graphics image with 16 PELs across, 13 display
00450 ! points down, 26 bytes of PELs ((16%13)/8 = total)
00460 CALL GDDM ('GSMOVE',50.0,60.0) I Move current position
00470 CALL GDDM ('GSIMGS',0,16,13,26,IMG$,15.0,30.0)

00480 ! Draw scaled graphics image with 16 PELs across,
00490 1 13 PELs down, 26 bytes of PELs
00500 I ((16%13)/8 = total), scaled to 15 X-units for 30 Y-units.

00510 INTEGER ATTYPE,ATMOD,COUNT

00520 CALL GDDM ('ASREAD', ATTYPE,ATMOD,COUNT)
00530 CALL GDDM ('FSTERM')

00540 END

Chapter 3. Using GDDM 3-37

Drawing Pictures

Drawing a Scaled Graphics Image

GSIMGS - Draw a scaled graphics image. GSIMGS performs the same function
as GSIMG, except that you can specify an x and y range to enlarge the scale of
the graphics image (in the current coordinate system); see “The Graphics Window”
on page 3-53.

When the graphics image is scaled up, each PEL defined for the graphics image is
represented on the picture by a square. Graphics images cannot be scaled to a
size smaller than the defined GSIMG graphics image.

For examples of programs that draw graphics images in the other high-level
languages, see Chapter 6, “Graphics Application Program Examples.”

How to Draw Markers

Markers. Ten
marker types are
available.

You can use the graphics primitive marker to highlight points on charts or pictures.

35MMO536E3 REVISED

3-38 AS/400 GDDM Programming Guide

Drawing Pictures

Loading Marker Symbol Sets

GSLSS - Load graphics symbol set. GSLSS loads a marker symbol set and
makes it available for use.

Only one marker set may be loaded at one time for a particular device, and once
loaded, the marker set is automatically selected for use as the current marker set.

If no marker set has been loaded, the default marker set is used.

GSRSS - Release graphics symbol set. GSRSS releases a marker symbol set.

Selecting a Marker

GSMS - Select the marker symbol. GSMS specifies the marker symbol to be
used. If a marker symbol is not specified, an x (cross) is used for the current
marker symbol type.

GSQMS — Query the current marker symbol. GSQMS returns the value of the
current marker symbol.

Drawing Markers

GSMARK - Draw the marker symbol. GSMARK draws the current marker
symbol, placing the center of the marker symbol at the coordinate specified by x
andy.

GSMRKS — Draw a series of marker symbols. GSMRKS draws a series of
current marker symbols at points specified by arrays of x- and y-coordinate values.

Drawing Scaled Markers

GSMSC - Set the marker symbol scale. GSMSC specifies the size of the marker
symbol to be used. The marker symbol size is specified in units of the size used
for the coordinate system in use for the picture. If a marker symbol scale is not
specified, the default marker size is used. Markers cannot be scaled to a size less
than the default marker size.

GSQMSC — Query the current marker symbol scale. GSQMSC returns the
value of the current marker symbol size.

Chapter 3. Using GDDM 3-39

Drawing Pictures

Drawing Pictures: Summary

The part of this chapter you have just finished reading (the first part of Chapter 3,
“Using GDDM") showed you the GDDM primitives and their attributes used for all
pictures (and charts, for Presentation Graphics) created by OS/400 Graphics.

You learned about the GDDM primitives, which are:

Lines

Area-fills
Graphics symbols
Graphics images
Markers

Lines define forms and shapes that, when enclosed, can be filled with patterns of
color by the area-fill. Graphics symbols come in two varieties, mode-2 image
symbols and mode-3 vector symbols. Graphics symbols provide text for pictures.
Graphics images allow you to define your own graphics image symbols, except that
the graphics image you define cannot be used as text in a graphics symbol routine,
and you must process the image each time you use it. Markers can be used to
highlight and pinpoint areas in a picture.

All of these primitives can have attributes assigned to them. All primitives have one
common attribute, color, but most attributes are unique to a primitive. For example,
a wide line-width attribute for line drawing routines has no effect on graphic
symbols. All attributes do, however, have a common characteristic: once an
attribute is specified, it stays current and in use for all applicable routines until it is
changed. For example, when you set the color attribute to red, everything will
show up in red until the color attribute is changed. When you set the line type to
dotted line, every line will be drawn dotted until you change the attribute. This
characteristic of attributes is called the current mode.

The current mode characteristic also applies to the GDDM control routines that are
discussed in the next section, Controlling Graphics, where you will read about the
GDDM routines you can use to control such things as:

Whether the graphics environment is initialized (whether the AS/400 System is
expecting calls to other GDDM or Presentation Graphics routines).

What actions are taken when an error occurs in the graphics program.

Which display device is the current one and when does the picture get sent
there.

Which of the pictures drawn by the program is shown.
How much of the screen is used to show the picture.
How much of the picture is shown.

The controls described next can be used for more versatile, more powerful 0S/400
Graphics programs.

3-40 AS/400 GDDM Programming Guide

Controlling Graphics

Controlling Graphics

In the first part of this chapter, you learned that some GDDM routines specify what
is drawn on the picture and where it is drawn (primitives), and that others specify
how those primitives should look (attributes).

This part of the chapter describes the GDDM routines that specify control functions
for the graphics program and the control of devices. The program and the devices
and their characteristics are all part of the graphics environment.

Program Controls

Program controls initialize and terminate the graphics environment and determine
the action taken when errors are encountered.

Graphics Environment Controls
The graphics environment controls signal to the system whether it can expect calls
to graphics routines.

Initializing and Terminating the Graphics Environment

FSINIT — Initialize the graphics environment. FSINIT initializes the graphics
environment. FSINIT must be the first GDDM routine called in the program.

FSTERM — Terminate the graphics environment. FSTERM terminates the
graphics environment. All storage used by the graphics environment is freed.
FSTERM must be the last GDDM routine called in the program; if any other GDDM
routines follow the FSTERM routine, they are ignored unless they are preceded by
an FSINIT routine.

FSRNIT — Reinitialize the graphics environment. FSRNIT reinitializes the
graphics environment. FSRNIT is equivalent to using the FSTERM routine followed
by the FSINIT routine, except that the graphics environment retains the information
that is available about the current device. For more information about device
control routines, see “Device Controls” on page 3-65.

Error Handling Controls

Routines are available in your graphics program for handling and querying errors.
You can specify the error-handling program you want executed when an error
occurs.

Specifying an Error Handling Program

FSEXIT — Specify an error exit program and threshold. You can use FSEXIT to
specify a program that performs error handling when an error is encountered with a
routine. The severity of the error must equal or exceed the severity threshold (also
specified by FSEXIT). The error-handling program can be written to terminate
graphics, or it can return control to the original program. Control is returned to the
routine that follows the routine that caused the error.

Chapter 3. Using GDDM 3-41

Controlling Graphics

For example, a program that is called after a user enters an invalid value (for a
program that uses subfiles to prompt the user for values that are passed to GDDM
routines) is an error-handling program. The program processes the error by
prompting the user for the correct value, then passes the corrected routine back to
the program, which resumes execution. You do not need to include error-checking
statements in your program, use the error-checking capability of GDDM.

When a severity threshold is specified for FSEXIT but no error recovery program is
specified, an error that equals or exceeds the threshold causes message CPF8619
to be issued. In that situation the MONMSG (Monitor Message) CL command can
be used to control error handling.

Querying the Last Error

FSQERR — Query last error. FSQERR returns information about the last GDDM
error. The information is placed into the named error record. The error record can
be up to 569 bytes long. If no error has occurred in the program, the default
information is returned.

For more information on error handling, see “Error Recovery” on page 5-16.

Display Controls

Display controls send the picture or updates of the picture to the display station or
the plotter. (The destination depends upon the device control routine specified; for
more information, see “Device Controls” on page 3-65 and Appendix A, “Devices
Compatible with the AS/400 System.”)

Sending the Picture to a Device

FSFRCE - Update the picture. FSFRCE sends to the device all changes that the
program has made to the picture since the last ASREAD or FSFRCE routine.
FSFRCE does not require a response from the device (unlike ASREAD).

FSFRCE updates the display and immediately returns to the program. Because
FSFRCE does not require a response, program actions can change the picture
before the operator of the program sees the updated display. FSFRCE is useful in
a program just before an alphanumeric write/read operation where the graphics
picture should be overlaid by alphanumerics.

If the program erases parts of a picture that is being displayed, FSFRCE redraws
the entire picture. If parts are being added, only the new parts are drawn. On
plotters, an FSFRCE or ASREAD causes everything within a graphics segment to
be drawn again. On printers, a page eject occurs after every FSFRCE or ASREAD
and everything within a graphics segment is drawn again).

ASREAD - Device input/output. ASREAD performs an FSFRCE update to the
display, then unlocks the work station keyboard and waits for operator
acknowledgement. The type of acknowledgement to the display is returned to the
program (Enter key, F keys, or Clear key).

3-42 AS/400 GDDM Programming Guide

Controlling Graphics

You can use this returned value to alter the flow of control in your program. For
the plotter and the printer, no user response is returned.

FSREST — Retransmit the picture. FSREST causes the picture to be deleted and
completely redrawn the next time the ASREAD or FSFRCE routine is used.

For a program that sends the picture to the plotter or printer, ASREAD and
FSFRCE provide identical function, but a low-severity error is issued for the
ASREAD routine.

Picture Controls
Every program that uses GDDM primitive and attribute routines to draw a picture
also uses GDDM control routines to select the device used to display the picture,
define the size of the picture, and the coordinate system in use. If the program
contains routines to construct several different pictures, GDDM picture control
routines select which picture to show. If several pictures are shown at the same
time, GDDM picture control routines position them on the screen.

The simple programs in Chapter 2, “The Application Program Interface to Graphics”
that drew the picture of the envelope and the line chart used all of these controls,
but you did not see them in the program; the control routines assumed default
values. Simple graphics programs have the following characteristics, which result
from default control values:

One picture is defined and shown per program.
A coordinate system of 0 through 100 is used for both the x and y ranges.
Both the x and the y ranges span the entire width and depth of the screen.
The entire screen is used to show the picture.
The picture is shown on the device that called the program.
If any of your programs will specify further controls for the picture, then you should
understand the graphics hierarchy.
The graphics hierarchy comprises:

1. The device

. The page

. The graphics field

. The picture space

. The viewport

. The graphics window
. The graphics segment

NOoO O~ WDN

The Device
The device is at the top of the hierarchy; it is the destination to which the output of
the graphics program is sent. Valid destinations for pictures are:

e IBM personal computer with work station function (WSF)

¢ |IBM personal computer with work station emulation (WSE)
e 5292 Model 2

* IBM personal computer with 5250 emulation

e IBM 6180 Plotter

e IBM 6182 Plotter

e IBM 6184 Plotter

Chapter 3. Using GDDM 3-43

Controlling Graphics

e |IBM 6185 Plotter
e |IBM 6186-1 Plotter
e |IBM 6186-2 Plotter
e IBM 7371 Plotter
e IBM 7372 Plotter
e IBM 4214 Printer
e IBM 4234-2 Printer
e IBM 5224 Printer
e IBM 5225 Printer
e IBM 3812 Printer
e |IBM 3816 Printer
e IBM 4028 Printer
e IBM 4224 Printer

Graphics output for a printer can be sent directly from the application program to
the printer or it can be placed onto an output queue as a spooled file. However, a
spooled file created for one type of printer will generally be incompatible with
another type of printer. A program can send its output to any identified device.

Device control routines can be used to select an output device and to identify
characteristics of the device to the program. For a description of device control
routines, see “Device Controls” on page 3-65.

The Page

Some graphics programs are written such that they use GDDM (or Presentation
Graphics) routines to construct a picture, send the picture to a display station or a
plotter, and then end. Other more complex programs construct several different
pictures; each of these pictures can be sent to a device one at a time, or they can
be sent to different devices, one at a time. The method GDDM uses to keep track
of these individual pictures is called the page.

Each picture created by a program is considered to be one page of information.
Each page has a number assigned to it. A program can construct a picture for a
first page and then continue on to construct a completely different picture (a second
page) without having sent the first page to a device. Even though the first picture
has not been displayed, its segments have been processed (constructed) and the
picture is stored in the system, waiting to be selected and sent to a device.
(Segments for a page are discussed later.) Alternatively, a program can send each
page to a device as soon as the picture has been processed.

The number assigned to a page when it is created identifies it in GDDM routines
where a page is selected, cleared, deleted, and queried.

The program sends a page to a device when an ASREAD or FSFRCE routine is
encountered:

If several different pictures (pages) have been constructed by the program, the
ASREAD or FSFRCE sends to the device the current page. The current page
is one that has been selected. To send one of the other pages to the device,
the program selects that page. The newly-selected page is now the current
page, and it is sent to the device as soon as an ASREAD or FSFRCE routine
is encountered.

A page can be selected again and sent to the device, or the program can add
more graphics to it and then send it to the device. When a page is cleared, it

3-44 AS/400 GDDM Programming Guide

Controlling Graphics

still exists in the system, but all the attributes and picture characteristics defined
for it are now the default values.

A page that has been deleted ceases to exist. If the program deletes a page
and then later selects the number of the deleted page, the system creates a
new current page with that identifier (with default attributes and picture
characteristics).

An ASREAD or FSFRCE routine in a page sent to a printer causes a page
eject; that is, after the current page has printed, the printer positions a clean
form for the next print operation.

An ASREAD or FSFRCE routine in a page sent to a plotter with form feed
enabled causes a page eject; after the current page has plotted, the plotter
loads a new sheet of paper for the next plot operation.

If a program that defines several pages is to send some of the pages to a different
device, the program must create pages specifically for that device. For example, a
program that sends PICTUREL to both a work station and a plotter, must create
two pages. Each page contains all the same drawing routines, but each must be
associated with a particular device.

In the program, creating the page and the routines that draw the picture for the
page must follow the device control routines (described later). An ASREAD or
FSFRCE sends the page to the current device. Then, to send the picture to a
different device, the program must select that device as the current one and create
a new page with the same drawing routines, followed by the ASREAD or FSFRCE
to send that page to the device.

Creating a Page

FSPCRT - Create a page. FSPCRT assigns a number to the page. You can use
the number in other routines to select, query, or delete the page later in the
program. The default page number is zero, which is assigned when the program is

initialized by FSINIT or reinitialized by FSRNIT.

A page is specified in terms of the physical rows and columns it uses on the device
(the rows and columns are ignored for the plotter).

Chapter 3. Using GDDM 3-45

Controlling Graphics

Page. The
default page
uses the entire
graphics portion
of the screen.

35MM0536E4

CALL GDDM ('FSPCRT',1,24,80,0)
! Create page 1, 24 rows, 80 columns, type 0

If a page is not explicitly created for the graphics work station by your program, a
default page is created with the dimensions of the physical boundaries of the
screen, 24 rows by 80 columns. You can create a page with less than 24 rows and
80 columns, but no graphics can be shown outside the physical row and column
limits of the page on the screen.

For a program that uses a printer, the default page size is that specified by the
graphics printer file currently in use. For the default printer file, the default page is
90 rows by 132 columns (90 lines by 132 characters wide on the printer page), at
10 characters-per-inch (cpi). If you change the printer file forms width or overflow
value, or define your own printer file, the default page assumes the dimensions of
that printer file. A page cannot be created with row and column values that exceed
the dimensions of the current device or current printer file.

Selecting a Page

FSPSEL — Select a page. FSPSEL selects a page to be the current one. This
page remains current until it is deleted or another page is selected or created. An
ASREAD or FSFRCE sends the contents of the current page to the current device.

3-46 AS/400 GDDM Programming Guide

Controlling Graphics

Clearing a Page

FSPCLR - Clear the current page. FSPCLR clears all graphics fields from the
current page. The page exists as if it were being newly created; no graphics field,
picture space, viewports, or graphics windows exist. (All of these other elements in
the graphics hierarchy are explained later.)

Deleting a Page

FSPDEL — Delete a page. When FSPDEL deletes a page, any graphics segments
associated with the page are also deleted. (Graphics segments are explained
later.)

Querying Page Information

FSPQRY — Query the page. FSPQRY returns information about the specified
page, including default values if the page was created by default.

For the printer, the size of the page is returned. If FSPCRT has not been specified
in the program, the default printer page is defined by the graphics printer file in use;
however, the values returned to the FSPQRY routine may not match those of the
current graphics printer file if a lines-per-inch (Ipi) value other than 9 is specified.
For more information on how the default page dimensions are calculated see
“QPGDDM Printer File Considerations” on page 5-5.

FSQCPG — Query the current page. FSQCPG returns the number of the current
page.

FSQUPG — Query a unique page number. FSQUPG returns the unique number
of an unused page. You can use this routine to avoid using a number that is being
used for an existing page; if you create a page with the number of another page,
an error occurs.

The Graphics Field

You can use the graphics field to define an area of the page where the program’s
picture appears. The graphics field is specified by the position of its top left corner
and its depth and width, using row and column numbers.

Chapter 3. Using GDDM 3-47

Controlling Graphics

Graphics field.
The graphics
field further
defines the area
of the screen for
display of the
picture.

35MMO536E5

CALL GDDM ('GSFLD',2,1,22,60)
I Define field starting with row 2, column 1,
1 22 rows deep, 60 columns wide

Graphics fields can be defined and cleared. If a graphics field is not specified, it
defaults to the size of the page. The graphics field is defined for, and applicable to,
the current page only. If an existing graphics field is redefined, the existing
contents of the page are lost, and all graphics segments in the original field are
deleted. (Graphics segments are explained on page 3-58.)

Defining a Field

GSFLD — Define the graphics field. GSFLD defines the graphics field for the
current page. A graphics field cannot be defined to exceed the dimensions of the
current page.

Clearing a Field

GSCLR - Clear the graphics field. GSCLR clears the graphics field and deletes
all segments.

The Picture Space

The picture space defines the ratio of the width of the picture to its depth, within the
graphics field. The picture space can be used to ensure the ratio of one side of
your picture to the other. For example, because the ratio of the default graphics
field in the default page for the 5292 Model 2 is 1 : 0.529663 (one half as deep as
it is wide), you can set the picture space to ensure the outside dimensions of the
picture are an exact ratio.

3-48 AS/400 GDDM Programming Guide

Wide picture
space. The
depth of this
picture space is
one half the
measure of the
width.

Controlling Graphics

Defining a Picture Space

GSPS - Define the picture space. GSPS specifies the picture space to be used
in the current graphics field, in terms of the ratio of the dimension of one side to the
other. If you do not specify a picture space, the dimensions of the graphics field
are used. Use GSQPS to see what the dimensions are.

The picture space defines the ratio of the width of the picture to the height. For
example, if your program will be drawing a floor plan of a building that measures 25
meters by 50 meters, the ratio of the picture could be specified as:

CALL GDDM ('GSPS',1.0,0.5)

In this case, the width (50 meters) of the picture is twice that of the depth (25
meters); width = 1.0, depth = 0.5. One of the values used in GSPS must be 1, and
the other less than or equal to 1.

The picture space is placed into the graphics field so that its largest dimension is
equal to one of the dimensions of the graphics field. The picture space is centered
in the graphics field.

35MM0536E6

CALL GDDM ('GSPS',1.0,0.5) ! Set the picture space

Chapter 3. Using GDDM 3-49

Controlling Graphics

Square picture
space. The
depth of this
picture space
equals the width.

35MMO536E7

CALL GDDM ('GSPS',1.0,1.0) ! Set the picture space

GSQPS - Query the picture space. GSQPS returns the value of the picture
space definition, in terms of the ratio of one side to the other.

The Viewport

You can use the viewport to show individual pictures in different parts of a single
picture area. The graphics field and the picture space are elements in the
hierarchy that define the location and dimensions on the page of the picture when it
is displayed. Only one graphics field and picture space can be specified per page,
but more than one viewport can be specified.

The picture space defines where on the graphics field the picture originates, as well
as the ratio of the picture’s dimensions. The viewport specifies where on the
picture space the picture is shown. If you do not specify a viewport, the entire
picture space is used.

A viewport does not have to be specified in your program unless you want to show
two pictures at the same time. To do that, your program must:

1. Create a page for the current device.

2. Specify a viewport for the graphics field and picture space (the graphics field
and the picture space can be defined or allowed to default), and then construct
the first picture.

3. Specify a new viewport, and construct the second picture.

4. Send the page to the current device with ASREAD or FSFRCE.

3-50 AS/400 GDDM Programming Guide

Values used to
set the
viewport. The
viewport is
defined with
floating-point
values that
correspond to
the values used
to set the picture
space.

Controlling Graphics

35MMO536E8

Chapter 3. Using GDDM 3-51

Controlling Graphics

Defining a Viewport

GSVIEW - Define a viewport. GSVIEW specifies the location of viewport
boundaries in picture-space units. If you do not specify a viewport, the dimensions
of the picture space are used.

Viewport. Each
viewport is 35MM0536E9
defined with
values that
correspond to
the values of the
picture space.

CALL GDDM ('GSPS',1.0,0.5)
! Picture space right border 1.0, top border 0.5

CALL GDDM ('GSVIEW',0.0, 0.5, 0.0, 0.5)
! Set viewport 1 = Teft, right, bottom, top
I in the same units used for the picture space

CALL GDDM ('GSVIEW',0.5, 1.0, 0.25, 0.5)
! Set viewport 2 = Teft, right, bottom, top

CALL GDDM ('GSVIEW',0.875, 1.0, 0.0, 0.25)
! Set viewport 3 = Teft, right, bottom, top

CALL GDDM ('GSVIEW',0.5, 0.875, 0.0, 0.125)
I Set viewport 4 = left, right, bottom, top

3-52 AS/400 GDDM Programming Guide

Viewports with
pictures. Each
viewport defined
can show an
individual
picture.

Controlling Graphics

35MM0536F1

Note: You cannot use a viewport to position a Presentation Graphics chart; in
Presentation Graphics programs, the counterpart to the GSVIEW routine of
GDDM is CHAREA.

A viewport can be redefined at any point (except within a segment or area-fill) in
the program. If viewports are not specified, a single viewport is used that has the
boundaries of the picture space.

This routine can be used to query the current viewport:

GSQVIE — Query the viewport. GSQVIE returns the values of the current
viewport boundaries in picture-space units.

The Graphics Window

The graphics window specifies the extent and range of the coordinates used by
graphics primitive routines to draw a picture on the viewport. Because the
coordinate system used by graphics primitives can be much smaller than the range
of coordinates defined by the window, this coordinate system is sometimes referred
to as the world coordinate system.

The items in the graphics hierarchy described to this point (the graphics field,
picture space, and viewport) specify where on the graphics page the picture is
drawn (or plotted). The graphics window specifies where in the viewport the picture
is shown, but it can also determine what the picture looks like: its shape, ratio of
one side to the other, size, how much of the picture is shown, and so forth. All
these characteristics are controlled by the current definition of the graphics window.
The graphics window must be defined after the graphics hierarchy routines for the
page and field are specified; if you define a graphics window, and then create a
page or define a field, the default graphics window is used (x and y = 0 through
100).

Chapter 3. Using GDDM 3-53

Controlling Graphics

Reducing the
picture. The
graphics window
used for the
picture can
reduce the size
of the picture.
(The page,
graphics field,
picture space
and viewport
used here are
the defaults.)

Defining a Graphics Window

GSWIN - Define a graphics window. GSWIN specifies coordinates that
correspond to the boundaries of the viewport. If the coordinates specified by the
graphics window have a range less than that used by primitives in the program,
only part of the picture will be shown (for this condition, clipping must be set on;
clipping is described on page 3-55).

The GSWIN routine uses four parameters: two to specify the beginning and end of
the x-range and two to specify the beginning and end of the y-range.

The default graphics window is equivalent to GSWIN,0,100,0,100. However, if all
of the other control routines are allowed to default for the 5292 Model 2 (which
results in a full-screen page, field, picture, space, and viewport, of normally 24 rows
by 80 columns), then the length of 100 units in the x-range is 1.89 times the length
of the y-range. If you use GSARC to draw a complete circle, the circle looks like
an ellipse with a major axis 1.89 times the length of the minor axis. The ratio of
one range to the other is called the aspect ratio. To avoid an aspect ratio that
distorts graphics (as described above) while still using the default picture controls,
you should set the picture space to 1:1 (GSPS,1,1).

35MM0O536F2

CALL GDDM ('GSWIN',-100.0,200.0,-100.0,200.0)

I Set range of graphics window such that picture coordinate range of
1 0 through 100 for x and y are one third the range of

I the viewport

3-54 AS/400 GDDM Programming Guide

Expanding the
picture. The
graphics window
used for the
picture can
expand the size
of the picture.
(The page,
graphics field,
picture space
and viewport
used here are
the defaults.)

Controlling Graphics

35MMO536F3

CALL GDDM ('GSWIN',25.0,100.0,25.0,100.0)

! Set range of graphics window such that picture coordinate range of
1 0 through 100 for x and y are 25% greater than the range of

! the viewport

The graphics window coordinate system can be redefined at any point in the
program, unless an area-fill has not finished (GSENDA) or the current graphics
segment has not been closed. Graphics segments are discussed on page 3-58.

GSQWIN — Query the graphics window. GSQWIN returns the values of the
coordinates for the boundaries of the current graphics window.

Clipping

Graphics clipping allows you to use coordinates for routines that are outside the
graphics window (the coordinate range that corresponds to the viewport boundary).
When clipping is enabled (set on), your program can draw parts of the picture
outside the graphics window; the picture is clipped at the graphics window (the
viewport boundaries). By using clipping with a small graphics window in a program
that uses a large coordinate system, you can enlarge a selected portion of the
picture.

The clipping state (whether clipping is on or off) is valid for the current page; if a
new page is created or another page is selected, clipping will be disabled (set off).

Note: It is not possible to enlarge a graphics image defined by routine GSIMG,
because the graphics image is defined in terms of pixels, not coordinates.

To enlarge a graphics image, you must use the GSIMGS routine described

Chapter 3. Using GDDM 3-55

Controlling Graphics

The office. The
picture is drawn
with aspect ratio
setto 1:1
(GSPS/, 1.0,
1.0), and a
graphics window
that matches the
smallest and
largest
coordinates used
in primitives.
Clipping can be
set on, but
doesn’t have to
be.

in “Drawing Graphics Images” on page 3-35. Also, it is not possible to use
clipping with charts defined by Presentation Graphics routines.

Setting the Clipping State

GSCLP - Enable/disable clipping. GSCLP sets clipping on or off.

GSQCLP - Query the clipping state. GSQCLP returns the status of clipping for
the current page.

For an example of clipping, imagine a program that draws the floor plan of a room.
The program draws the floor plan using a coordinate system of 0 through 1000 in
both the x and y directions. To draw the entire floor plan, the graphics window is
set to match the coordinates used in the routines.

PLO536F4

CALL GDDM ('GSWIN', 0.0, 1000.0, 0.0, 1000.0)

With clipping enabled, the graphics window can be changed so that part of the
picture can be enlarged in the viewport.

3-56 AS/400 GDDM Programming Guide

The office. The
graphics window
can be changed
to enlarge a
portion of the
picture (clipping
must be set on).

Controlling Graphics

PLO536F5

Chapter 3. Using GDDM 3-57

Controlling Graphics

The Graphics Segment
The graphics segment groups logically-related primitives and their attributes.

Like pages, graphics segments are assigned numbers, and can be created and
deleted. Unlike pages, they cannot be changed once they have been created and
closed.

When a graphics segment is created, each attribute for primitives is set to its
default value.

Graphics segments can be useful when you want part of the picture to be erased at
some point after being drawn, or when you want only part of the picture to be
updated. You can put your entire picture into one graphics segment, or you can
put parts of your picture into several of them.

Graphics segments are associated with a specific page. They can be opened,
closed, deleted, or queried.

Creating a Graphics Segment

GSSEG - Create a graphics segment. GSSEG opens a graphics segment with
the specified identifier. Identifier 32767 is reserved and cannot be used.

When a graphics segment is opened, all attributes are given default values;
opening a new graphics segment might be easier than resetting each individual
attribute. The graphics window and viewport cannot be changed while the graphics
segment is current.

Note: You cannot explicitly open a graphics segment when you are drawing a
Presentation Graphics chart in a picture space; Presentation Graphics
manages them implicitly.

Closing a Graphics Segment

GSSCLS - Close a graphics segment. GSSCLS closes the current graphics
segment. The current graphics segment must be closed before a new one is
opened; once closed, it cannot be reopened.

Deleting a Graphics Segment

GSSDEL - Delete a graphics segment. GSSDEL deletes the identified graphics
segment. When the graphics segment is deleted, the parts of the picture that were

drawn in the graphics segment are erased from the picture the next time an
ASREAD or FSFRCE routine sends the picture to a device.

3-58 AS/400 GDDM Programming Guide

Page 1. Three
graphics
segments are
defined.

Controlling Graphics

Querying the Number of Graphics Segments

GSQMAX — Query the number of graphics segments. GSQMAX returns the
values of the number of graphics segments that have been opened or closed for
the current page, and the highest number used for a graphics segment identifier on
the current page. You can use this routine to find the highest number used so far
and then use GSSEG to create another graphics segment with an unused number.

In the next example, assume that a program draws three objects: a square, a
circle, and a triangle. All three are associated with the same page, and each object
is in its own graphics segment.

35MM0536F6

Chapter 3. Using GDDM 3-59

Controlling Graphics

CALL GDDM ('FSPCRT',1,0,0,0)
! Create page 1, using default depth, width, type
CALL GDDM ('GSSEG',1)
! Create graphics segment 1 for the picture of the square

(GDDM sets attributes for and draws first object, the square)

CALL GDDM ('GSSCLS')
! Close the current graphics segment (number 1)
CALL GDDM ('GSSEG',2)
! Create graphics segment 2, (resets all attributes for primitives)

(GDDM sets attributes for and draws second object, circle)

CALL GDDM ('GSSCLS')
! Close the current graphics segment (number 2)
CALL GDDM ('GSSEG',3)
! Create graphics segment 3, (resets all attributes for primitives)

(GDDM sets attributes for and draws third object, triangle)

CALL GDDM ('GSSCLS')
! Close the current graphics segment (number 3)

CALL GDDM ('ASREAD',ATTYPE,ATTMOD,COUNT)
! Sends picture containing square, circle, and triangle
I to the display

3-60 AS/400 GDDM Programming Guide

Page 2. Page 2
is created, and
the picture is
sent to the
display.

Controlling Graphics

After each graphics segment has constructed its part of the picture, ASREAD sends
the picture to the display. ASREAD is followed in the program by a different page
that constructs a different picture and sends it to the display:

35MMO536F7

CALL GDDM ('FSPCRT',2,0,0,0)
I Create page 2, using default depth, width, type

(GDDM draws picture associated with page 2)

CALL GDDM ('ASREAD',ATTYPE,ATTMOD,COUNT)
I Sends page 2 picture to the display

Now, the program again selects the first page that contains the graphics segments
that drew the square, circle, and triangle, but it deletes graphics segment 2.

Chapter 3. Using GDDM 3-61

Controlling Graphics

Page 1. The
program selects
page 1, and
shows only
graphics
segments 1 and
3.

35MM0536F8

CALL GDDM ('FSPSEL',1)
I Select page 1

CALL GDDM ('GSSDEL',2)
I Delete graphics segment 2

CALL GDDM ('ASREAD',ATTYPE,ATTMOD,COUNT)
I Sends page 1 picture to the display

GSSDEL deletes graphics segment 2, so when ASREAD sends the picture to the
display device, only the square and the triangle appear.

If later in the program, page 1 is selected again and sent to the display device, the
circle will still be missing because its graphics segment was deleted and no longer
exists in page 1.

3-62 AS/400 GDDM Programming Guide

Controlling Graphics

Retained and Temporary Data

Graphics data associated with a graphics segment is called retained data, even
though graphics segments cannot be reopened like a page can. When you do not
open a graphics segment in your program, all elements of a picture constructed by
GDDM routines are considered to be temporary data. Temporary data differs from
retained data (data associated with a graphics segment) in that it is lost after an
ASREAD sends that page to the display, or when one of the following routines is
encountered in the program:

FSFRCE
FSREST
FSPCRT
FSPSEL
GSCLR

Also, temporary data cannot be saved with a graphics data format (GDF) file. GDF
files are described on page 3-68.

If the program that drew the office floor plan was written so that all parts of the
picture were associated with a graphics segment except for the labels, the labels
would appear as part of the picture only when the graphics page is the current one
at the time of the ASREAD. The labels were defined outside a graphics segment,
so they are temporary data.

Chapter 3. Using GDDM 3-63

Controlling Graphics

The office. The
labels for the
items in the
picture appear
only because the
page containing
the labels is the
current one.

PLO536F9

3-64 AS/400 GDDM Programming Guide

The office.
When the page
is selected later,
the labels are
missing because
they were
defined outside
a graphics
segment.

Controlling Graphics

PLO536G1

Device Controls

Device controls determine where the picture being constructed in a page is sent.
For a program that produces a picture for a graphics work station, all device control
routines can be allowed to default. For a program that sends output to other
devices, such as a plotter, some device control routines must be specified.

You can also use a dummy device. A dummy device can be a work station that
cannot show graphics, such as a 5251 or a 5292 Model 1, or a dummy device can
be simulated by using blanks in the name-list parameter of the DSOPEN routine
(described later). If you allow all device control routines their default values, you
can run your programs from these types of devices to debug and test the programs
(although you will not see the graphics portion of the resulting picture).

For more information on the devices that can be used with OS/400 Graphics, see
Appendix A, “Devices Compatible with the AS/400 System.”

Chapter 3. Using GDDM 3-65

Controlling Graphics

Opening and Closing Devices
You can use the following routines to identify and define or to eliminate a device:

DSOPEN — Open a device. DSOPEN makes a device known to the program. A
device that is not the default device must be opened by DSOPEN to be identified to
the program as a valid destination for program output. To be used by the program,
a device that has been opened with DSOPEN must be activated by DSUSE. Only
one device can be active (current) at one time. If a device is in use, a DSDROP
routine must be used to deactivate that device before DSUSE activates another
that has been opened with DSOPEN.

The default device is the work station from which the program was called.

DSCLS - Close a device. DSCLS closes the device and releases all resources
defined for it (including storage-displacing items, such as pages, symbol sets, and
color tables).

After a device has been closed, it cannot be used again unless it is reopened with
DSOPEN. If DSUSE is specified with the identifier of the closed device, an error
occurs. To suspend the use of a device temporarily, use the DSDROP routine.

DSQUID - Query a unique device identifier. DSQUID returns the value of the
next available unused device identifier.

DSQUID can be specified to return the value of the next unused device identifier,
and this value can then be passed to the DSOPEN routine to avoid conflicts with
other device identifiers.

DSRNIT — Reinitialize a device. DSRNIT reinitializes a device to the status it had
after it was opened. DSRNIT is equivalent to specifying a DSCLS followed by a
DSOPEN.

Using Devices

To be used by the program, the previously-opened device must be activated by

DSUSE. If a device is in use (except for the default device), a DSDROP routine
must be used to deactivate it before DSUSE activates another. Only one device
can be active at a time.

The following routines control the device usage:

DSUSE — Specify device usage. DSUSE activates the device for usage. The
device must have already been opened by DSOPEN.

DSDROP - Discontinue device usage. DSDROP specifies that the device is no
longer the current device. None of the resources for the device are released
(pages and symbol sets). The device can be restored to use by a DSUSE routine.

DSQUSE — Query device usage. DSQUSE returns the identifier of the current
device. Additional information about the current device can be returned by the
FSQDEYV routine (described in the next section).

3-66 AS/400 GDDM Programming Guide

Controlling Graphics

Querying the Device Characteristics
The following routines can be used in a program to retrieve device information:

DSQDEV - Query specific device characteristics. DSQDEV returns information
about the specified device. The information is the same as that specified when the
device was opened, or is information about the default device.

FSQDEV — Query device characteristics. FSQDEYV returns information about the
current device. The device identifier of the current device can be returned by the
DSQUSE routine.

Sounding the Device Alarm
You can specify that the program sounds the alarm on the current device (it must
be a graphics work station) when the current page is sent to the screen for display.

FSALRM — Sound the device alarm. FSALRM sounds the device alarm when an
ASREAD or FSFRCE routine is encountered. The alarm can be used to alert the
user when the current page is displayed.

Controlling Graphics: Summary
The part of this chapter you have just finished reading (the second section of
Chapter 3, “Using GDDM”) showed you the GDDM routines you can use to control:

The program, including the graphics environment and error-handling
Displaying the picture

The characteristics of the items in the graphics hierarchy

The devices used by the graphics program.

The program must initialize the graphics environment before any graphics routines
can be called. You can add statements in your program to control the handling of
errors that occur in the program. In your program you can control the point at
which the current page is sent to the current device.

You can use the items in the graphics hierarchy to control the placement and look
of the picture when it is sent to the device. The page is the unit of display that is
sent to the device, and its size can be defined. The graphics field further defines
the size of the picture on the page, and the picture space sets the ratio of one side
of the picture to the other in the graphics field. The viewports define which parts of
the picture space are used for pictures, and the graphics window determines (with
clipping) how much of the picture is shown in the viewport. Graphics segments
group together primitives in the program that can be later deleted from the page.

Device control routines can be used to select which device is the current one.
More information about the device control routines can be found in Appendix A,
“Devices Compatible with the AS/400 System.”

The next section, “Using Graphics Data Format Files,” shows you how the graphics
data format file can be used to capture an OS/400 Graphics picture. The captured
picture can be displayed on the AS/400 System or sent to another system for
display, without running the program that generated the picture.

Chapter 3. Using GDDM 3-67

Using GDF Files

Using Graphics Data Format Files

When your application program uses GDDM routines to draw a picture, an internal
graphics data format file is generated. It is this graphics data that the AS/400
System converts to a data stream appropriate for interpretation by the graphics
work station (or an associated device), or by a work station printer capable of
graphics.

GDDM can capture the graphics data format (GDF) file. The GDF can be:

Saved in a database file. The GDF can be retrieved from the database file and
displayed or plotted at any time. This saves the processing time necessary to
generate the picture each time the program is run.

Sent to another system or device for interpretation. The GDDM program
product on the System/370 family of data processing equipment can interpret
GDF, and software is available or can be written for interpreting GDF with other
systems.

Produced on the System/370 or System/36 (from BGU) families, or from the
AS/400 Business Graphics Utility, interpreted by the AS/400 System and the
resulting chart or picture produced on an AS/400 graphics-capable device.

The limitations for using GDF are that the picture held as a GDF cannot be altered
or changed (the program must be changed and executed to generate a new GDF),
and that the transition from program output to GDF to picture can sometimes
change the look of the picture (its aspect ratio, for example), and characters
generated by a display file cannot be included in the GDF; only the graphics portion
of the picture is saved.

Before you retrieve the GDF, you must specify that the output of the program wiill
be sent to a dummy device (for more information about dummy device support, see
“Non-Graphics Devices” on page A-12).

Retrieving Graphics Data

GSGETS - Start retrieving graphics data. GSGETS identifies the graphics
segments of the current page whose graphics data will be captured.

GSGET - Retrieve graphics data. GSGET puts the graphics data into a variable
in your program. The GDF can then be written by the program to a database file.

GSGETE - End retrieving graphics data. GSGETE ends the retrieval operation
started by GSGETS. For a program that retrieves the GDF for one page and then
terminates, GSGETE can be omitted.

Drawing a Picture with a Graphics Data Format File

GSPUT - Draw data from a graphics data format file. GSPUT converts the
GDF back to a picture that can be displayed or plotted.

The GDF routines work together. After the GDDM (or Presentation Graphics)
routines have been processed for a program using dummy device support, the
GSGETS routine identifies the graphics segments of the current page whose
graphics data will be captured. Presentation Graphics manages its own graphics
segments, so GSGETS should specify that they all are to be retrieved.

3-68 AS/400 GDDM Programming Guide

Using GDF Files

GSGET retrieves the graphics data. If the buffer (the program variable) is large
enough to contain the entire GDF, the length value of the GDF is returned in a
parameter of GSGETS. |If the buffer is not large enough, you can use GSGET in a
loop that writes the graphics data from the buffer to a database file and checks the
data length each time through the loop. When the data length is zero, the loop can
end. For example:

00010 CALL GDDM ('FSINIT') ! Initialize GDDM

00020 OPTION BASE 1 I Set subscript base

00030 REM ****k%*x**x* Dummy device routines xxkxxkkkkkkkkkkhkkkkkkk
00040 INTEGER PLST I Declare integer

00050 DIM PLST(1) : PLST(1) =0 ! Dimension, assign value
00060 DIM NLST$(1) : NLST$§(1) = ' * ! Dimension, assign value

00070 CALL GDDM ('DSOPEN',2,1,'5292M2 ',0,PLST(),1,NLST$(1))

00080 ! Open device 2 of family 1 named 5292M2, using no processing

00090 ! options in the PLST and dummy device name ' ' in the NLST$

00100 CALL GDDM ('DSUSE',1,2) ! Use device 2 as current dev

00110 REM #x*x**x*x%** Open file and graphics segment *xkxskkkkkkskkkkkrxk
00120 OPEN #10: "NAME=GDF,LIB=YOURLIB,FORMAT", OUTPUT ! Open file

00130 CALL GDDM('GSSEG',1) ! Open graphics segment (if not PGR)

(Execute graphics program)

00530 CALL GDDM('GSSCLS"') I Close graphics segment
00540 REM #**x***xx**xx* Retrieve graphjcs data **x*xxkxkkkkrhkrhkkrhrk
00550 INTEGER GDFL, BUFLENG I Declare integers

00560 DIM ARRAY(1): INTEGER ARRAY
00570 DIM BUFF$*255

00580 BUFLENG = 255 Set buffer length
00590 ARRAY(1) = 0 Set element 1

00600 CALL GDDM('GSGETS',1,ARRAY()) I Start GDF retrieve
00610 LOOP: CALL GDDM('GSGET',BUFLENG,BUFF$,GDFL)

00620 IF GDFL > O THEN WRITE #10, USING 630: BUFF$ ELSE GOTO 650
00630 FORM C 255

00640 GOTO LOOP

Declare array

|
! Dimension char variable
1
|

00650 CALL GDDM ('FSTERM') ! Terminate GDDM
00660 STOP I Stop execution
00670 END ! End BASIC program

BASIC programs are limited to character variables of a maximum 255 bytes.
Because the input buffer is a character variable, the GDF has a record length of
255. Therefore, the file being used to hold the GDF should have a record length of
255 also.

GSGETE ends the capture of the graphics data. In a program that captures the
graphics data, no ASREAD routine is necessary. There is no GSGETE in this
program as only one page is being retrieved (the default page, graphics segment
1).

GSPUT is used in a different program to draw the graphics data saved earlier:

00010 CALL GDDM ('FSINIT') ! Initialize GDDM

00020 OPTION BASE 1

00030 INTEGER ATTYPE,ATMOD,COUNT,CTL,LENG,VSTRING

00040 DIM BUFF$*255

00050 REM *#x*x%xxxkkkr** Open File #*xkxkkkdkrkhrkhdkrhrhhhhrhrhkrhrhrhhrk
00060 OPEN #10: "NAME=GDF,LIB=yourlib,FORMAT", INPUT

00070 REM *#x*x*x**x* Set picture characteristics #x#xwxxkrsrskrshrrrhrrsx

Chapter 3. Using GDDM 3-69

Using GDF Files

00080
00090
00100
00110
00120
00130
00140
00150

READ #10, USING 100: ORD$,LNGS$,TYPE,XLO,XHI,YLO,YHI
! Read the first record of the GDF
FORM C 1,C 1,B 2,B 2,B 2,B 2,B 2
! Set format to 1-byte character and 2-byte binary
CALL GDDM('GSWIN',XLO,XHI,YLO,YHI)
I Set picture space to picture space used in GDF
XD = ABS(XHI - XLO): YD = ABS(YHI - YLO)
IF XD <= YD THEN CALL GDDM('GSPS',XD/YD,1.0) ELSE CALL GDDM('GS&

&PS',1.0,YD/XD)

00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270

REM **x*x*x*xx*x* Put records from GDF **x*x**x*xk*x**kxkxk**
CTL = 2 : LENG = 255

REREAD #10, USING 210: BUFF$! Read file again
LOOP: CALL GDDM('GSPUT',CTL,LENG,BUFF$) ! Put GDF

READ #10, USING 210: BUFF$ EOF 240 ! until empty

FORM C 255

GOTO LOOP
REM ***x*x Send picture to display and terminate #x#x#xkkxskxkkkx*
CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) ! Display picture
CALL GDDM ('FSTERM') ! Terminate
STOP ! Stop execution
END ! End BASIC program

The program reads the first record of the GDF and uses the graphics window
values found there to set the current graphics window and picture space (the GDF
sets its own graphics window using x and y coordinates that can be as high as

32,767).

GSPUT draws the graphics data and when an ASREAD or FSFRCE routine is
encountered, the picture is sent to the display device.

More information about the GDF routines and the format of GDF files can be found
in the GDDM Programming Reference manual. The following example shows a
400-byte record contained within a small GDF file:

3-70 AS/400 GDDM Programming Guide

oooooo7Foo52‘7o00‘7000‘7000‘7000‘7000‘70000050020000

Using GDF Files

‘o o‘aooooo‘z o‘lo‘wfoocm’gomm‘m‘ ‘44444444444
il

1A0200FF00B4[2241/2221/225002210[2230[0C000140000000 CO[340000B0B0B1[14CDYD|14399D|1 OF ooooooooooo
A B B B B B C D E F GHJ K
000 0[0 0|/ F|j0 052 F Settagorder
1 A0 2|0 O|F F||0 0|B 4

G Patternorder
Highy Value
Lowy Value H Linetypeorder
Highx Value
Lowx Value J Linewidthorder
Type 2 (System /38 or the AS/400 system)
Length10(X0A) ’ K Lineorder

Commentorder

Segmentattribute orders

Segmentstartorder

Colororder

Color mixorder

L Lineorderatcurrentposition
M Segmentclose order
N FF-Endof GDFfile

P 40-Eachremaining byte inthe
GDF isfilled with X 40 (blank)
RV25003-0

Chapter 3. Using GDDM 3-71

Summary

Summary of This Chapter

In Chapter 2, “The Application Program Interface to Graphics,” the simple program
that drew the envelope introduced you to the basic ideas of GDDM: routines are
called from application programs written in high-level languages to build a picture.
When the picture is built, the program sends it to a device.

Chapter 3, “Using GDDM,” showed you more of the capabilities of GDDM routines.
Specifically, the topics presented in this chapter were:

Drawing pictures
The first part of the chapter showed the GDDM routines you can use in application
programs to define pictures. There are two types of GDDM routines:

Primitives — the basic elements of a picture, such as lines and graphic symbols

Attributes — characteristics that can be assigned to primitives, such as line
width or type

Controlling graphics
The second part of the chapter showed the GDDM control routines you can use to
manage the graphics program, picture, and the devices it uses.

Program control routines enable you to initialize and end the graphics environment,
handle errors, set characteristics for and manage the pictures, and send the
program output to a device.

Device control routines allow your program to select devices that receive program
output, and to specify characteristics for those devices.

Using graphics data format files

The last part of the chapter showed the use of GDF (graphic data format) file
routines in saving the output of a GDDM (or Presentation Graphics) program for
later display on the AS/400 System or another system.

At this point you should experiment with GDDM routines in simple programs to gain
a better understanding of them, and to get ideas for application programs that use
them.

Chapter 6, “Graphics Application Program Examples,” shows some examples of
complete programs; you can copy those programs and experiment with them, and
perhaps use them as a basis for your own programs.

Here are some points to remember:

1. The QGDDM library contains the GDDM routines. If you use a graphics symbol
set other than the default set, or if you use the Pascal or PL/I high-level
language to write your programs, QGDDM must be in your library list; QGDDM
contains the entry point tables for Pascal and PL/l. (The other languages,
BASIC, COBOL/400, and RPG/400, use a slightly different type of CALL
interface, and do not require the library. For more information on the
differences between languages with respect to graphics programming, see
Chapter 5, “OS/400 Programming Considerations.”)

2. FSINIT must be specified before any calls to other GDDM routines are
performed by your program.

3-72 AS/400 GDDM Programming Guide

Summary

3. All the items in the graphics hierarchy can be allowed to default; however, you
can specify GSPS(1,1) for a picture space with an aspect ratio of 1:1 to ensure
that dimensions in the x range equal to those in the y range. Otherwise,
squares will look like rectangles and circles will look like ovals, and so forth.

If all items in the graphics hierarchy are allowed to default, the range of the
graphics window is 0 through 100 in both the x and y ranges, and the viewport
is the entire page. Unless clipping is enabled, a routine that positions a
primitive outside this range will produce unpredictable results.

4. Data types must be declared according to the high-level language being used.

For more detailed information about each routine, refer to the GDDM Programming
Reference manual.

Chapter 3. Using GDDM 3-73

Summary

3-74 AS/400 GDDM Programming Guide

Using Presentation Graphics

Chapter 4. Using Presentation Graphics

The Presentation Graphics program that drew the line chart in Chapter 2, “The
Application Program Interface to Graphics,” used many of the same routines and
program statements as the GDDM envelope program. In fact, the Presentation
Graphics program used only one graphics routine that is not described in
Chapter 3, “Using GDDM,” and that routine is CHPLOT, which is a Presentation
Graphics routine used to draw line charts or scatter plots.

Presentation Graphics routines like CHPLOT take data and convert it to a picture.
You can use charts to show large amounts of data in a picture that provides an
equally large amount of information, but take much less time to comprehend.

Presentation Graphics routines enable you to write programs that convert your real,
online data on the AS/400 System into charts. These charts can be used to
present an idea to an audience (in hard-copy form), or to make your data easier to
understand (in work station display form).

Note: A similar product is the IBM AS/400 Business Graphics Utility licensed
program product, program number 5738-DS1. The AS/400 Business
Graphics Utility (BGU) offers a menu-driven, interactive method of defining
business graphics similar to the graphics constructed by Presentation
Graphics routines. For more information, refer to the BGU User’'s Guide
and Reference manual.

The first part of this chapter introduces the types of chart that you can construct,
and shows differences between the types of data and chart format that you can
use.

The second part of this chapter shows you the Presentation Graphics routines you
can use, in the order they might appear in a typical program.

Understanding Presentation Graphics Routines

The chart shown in “Drawing a Simple Chart with Presentation Graphics Routines”
on page 2-11 was a line chart that used two lines to represent data. Each point on
the lines showed the relationship of one value (on one axis) to another (on the
other). When each point was in position, lines were drawn to connect each point to
the next, which resulted in a series of connected lines, considered as one line.
Each line represented an entity called a data group. Each data group showed a
relationship to the other data group, as well as a relationship to each axis. (In
charts, each line, bar, pie, and so forth that represents a data group is called a
chart component.)

© Copyright IBM Corp. 1991 4-1

Using Presentation Graphics

Simple line
chart. The line
chart was drawn
by a BASIC
program that
used defaults for
all Presentation
Graphics chart
features. This
illustration shows
the chart as
produced on the
5292 Model 2.

35MM0536G3

The chart condensed the information from the data groups (the data groups were
the arrays passed to the CHPLOT routine) into a compact and understandable
format. All of the chart formats available through Presentation Graphics can be
used to transform data group values into charts. However, different types of data
require different types of chart.

The first part of this section shows you chart formats that are available with
Presentation Graphics routines, and offers some ideas on the use of each type of
chart.

This chapter shows charts produced on the IBM personal computer with work
station function (WSF) and the IBM 6180 Plotter. A chart looks different depending
on the device it is sent to. For example, when default chart features are used,
Presentation Graphics puts more intervals on the axis scale and changes the
aspect ratio for the chart area if the chart is shown on the plotter.

This illustration shows the simple line chart on the plotter. nameit symbol=artno
text="PL0536G4".

4-2 AS/400 GDDM Programming Guide

Using Presentation Graphics

35MM0536G3

When differences in the chart can result from switching devices, the description of
the routine will explain the effect. Refer to the description of CHCGRD on page
4-16 for information on how to avoid these differences.

Chapter 4. Using Presentation Graphics ~ 4-3

Chart Types

Chart Types

These are the types of chart available:

Line charts; see page 4-4
Scatter plots; see page 4-5
Surface charts; see page 4-6
Bar charts; see page 4-7
Histograms; see page 4-9

Pie charts; see page 4-10
Venn diagrams; see page 4-11

Line Charts
Line charts can be used to show change occurring over time. Line charts can
represent increases, decreases, trends, and general fluctuations of quantity.

]
Line chart. The

chart represents
data as lines.

PLO536G5

Each plotted point is shown by a marker; the plotted points are connected to form a
continuous line. Each line is assigned a different color. Options exist to convert
the sharp corners of the line to a more gentle curve (called line curving), or to
suppress the display of the lines that connect the points. This is called a scatter
plot and is described next.

4-4 AS/400 GDDM Programming Guide

Scatter plot.
The chart
represents data
as markers
(similar to those
in the GDDM
marker table).

Chart Types

Scatter Plots

Scatter plots are similar to line charts, except that the lines that connect the data
points are not drawn. Scatter plots can be used to show concentrations of data, or

the number of occurrences of an event over a period of time.

PLO536G6

Chapter 4. Using Presentation Graphics

4-5

Chart Types

Surface Charts

Like line charts, surface charts can be used to show changes occurring over time.
Surface charts emphasize volume by shading the area between the lines and the x
axis.

Surface chart.
The chart
represents data
as shaded

regions. PLO536G7

4-6 AS/400 GDDM Programming Guide

Bar chart. Bar
charts can be
used to show
changes
occurring over
time, parts of an
entity,
relationships
between
variables, and
comparisons.

Chart Types

Bar Charts

PL0O536G8

Single-bar charts

For showing change over time, single-bar charts can be used when few periods of
time are involved. A single-bar chart might be more effective than a line chart for
showing comparisons of totals for specific years, if only a few years are being
compared.

Multiple-bar charts
Multiple-bar charts use slender bars to show relationships of variables for related
entities.

Composite-bar charts
Composite-bar charts can be used to show how parts comprise the entity, which is
then shown in relation to other entities.

Floating-bar charts

Floating-bar charts are similar to composite-bar charts, except that the first
component is not shown. Floating-bar charts can be useful for showing the lower
limits of each entity, in addition to the relationship of the elements that comprise the
entity.

Chapter 4. Using Presentation Graphics 4-7

Chart Types

Horizontal-bar
chart. A bar
chart in
horizontal form
can be easier to
interpret,
especially if the
bars look tall in
vertical-bar
format.

Horizontal-bar charts

Bar charts usually show the bars rising from the x axis, but you can rotate the chart
axis 90 degrees to produce a horizontal bar-chart. A bar chart shown in the
horizontal format can place more emphasis on the relationships being illustrated.
Any of the four types of bar chart can be shown in horizontal format.

35MM05366G9

4-8 AS/400 GDDM Programming Guide

Histogram. The
chart represents
data with both
the height of the
bar and the
width.

Chart Types

Histograms

Histograms are similar to bar charts, except that the width of the bar is significant.
Each bar represents a variable quantity (relative to the y axis) charted over a range
indicated by the width of the bar (on the x axis). If there is more than one
component, each is stacked on the first.

PLO536H1

Chapter 4. Using Presentation Graphics 4-9

Chart Types

Pie Charts

Pie charts are used to indicate the relative size of the elements of an entity,
particularly when attention should be drawn to one of the elements. Pie charts are
useful for showing percentages.

Pie Chart. Data
is represented
by the size of
the pie sectors
or slices.

PLO536H2

You can move one or more slices of a pie chart out from the center of the pie.
This is called exploding a pie chart.

4-10 AS/400 GDDM Programming Guide

Venn Diagram.
Data is
represented by
the area of each
circle and by the
area of the
overlapping
region.

Chart Types

Venn Diagrams

Venn diagrams are used to show the logical relationship between the overlapping

elements of two entities, or populations.

PLO536H3

Chapter 4. Using Presentation Graphics

4-11

Chart Types

Using Charts to Show Data

The previous section showed you the various chart formats Presentation Graphics
offers you. This section gives you some ideas on which chart format is best for
your data, and how to improve the appearance and usability of the chart.

Selecting a Chart Type

Some groups of data can be shown with two or three different types of chart
format. For example, this table shows information that can be represented by
several types of chart:

Year 1984 1985 1986 Total
Heat 375 410 600 1385
Telephone 280 325 410 1015
Utilities 200 270 360 830

Totals 855 1005 1370 3230

1. If you wanted to construct a chart that shows that overall costs increased, you
could use a line chart.

2. If you wanted to show that heating costs rose more rapidly than telephone or
utility costs, you could use a three-component surface chart.

3. If you wanted to show that heating costs were greater than the other costs, you
could use a composite-bar chart (one bar for heating cost and one each for
telephone and utility costs).

4. If you wanted to show the percentages of heat, telephone, and utilities that
make up the total for each year, you could use three pie charts.

5. If you wanted only to convert all the information from table format to chart
format, you could use a multiple-bar chart, one that shows three bars for each
year.

You can see from this that many different options are available for charting one set
of data.

The most important thing to remember about representing data from tables with
charts is this: you should know what information you want to emphasize before
you select a chart format to use. Try to find a short sentence that describes the
information to be shown on your chart:

Sales are up this quarter
The Western Region increased its productivity by 25%
The trend in housing-starts forecasts a good year for builders.

Consider using the descriptive sentence as the main title for your chart. That way,
those who interpret the chart have little chance of misunderstanding it.

4-12 AS/400 GDDM Programming Guide

Program Structure

Drawing Charts with Presentation Graphics Routines

Presentation Graphics routine names are 4- to 6-character mnemonics whose first
two characters are CH (short for chart). The rest of the characters in the name
represent the function of the routine (CHNOTE, for example, is a routine that writes
a note).

Some Presentation Graphics routines specify attributes for axes. Because two
axes exist (the x axis and the y axis), Presentation Graphics uses the third
character of these routine names to select which of the two axes the attribute
should affect. For example, the Presentation Graphics routine CHXSET specifies
characteristics of the x axis while CHYSET specifies them for the y axis.

Most Presentation Graphics routines have parameters that define the function in
more detail. Parameters can be constants or they can be variables with values
assigned to them. Parameter values can be 4-byte binary integers, short
floating-point numbers, or character strings.

The Structure of Presentation Graphics Programs
Presentation Graphics programs use a sequence of operations to construct charts:
1. Control operations
2. Chart definition

3. Chart drawing
4. More control operations

Control Operations

In Chapter 2, “The Application Program Interface to Graphics,” you learned that for
both the GDDM envelope program and the Presentation Graphics chart, the GDDM
routine FSINIT was used to initialize the graphics environment. All Presentation
Graphics programs must begin with a call to FSINIT.

You can specify other GDDM control routines for your Presentation Graphics
program, or you can take the default values. You could, for example:
Specify an error-handling subroutine with FSEXIT
Define a specific page with FSPCRT
Manage symbol sets for use by the program

Manage tables for colors, line types, markers, and shading patterns for use by
the program

Open, select, and close devices; the device control routines were discussed in
“Device Controls” on page 3-65.

Some GDDM control routines that you cannot use are:

Picture spaces (GSPS)

Graphics segments (GSSEG)

Viewports (GSVIEW; for Presentation Graphics, use CHAREA routine)
Graphics windows (GSWIN).

Presentation Graphics defines these items implicitly in the graphics hierarchy.

If you need to return to the GDDM environment to add GDDM-described features to
the Presentation Graphics described picture, use the CHTERM routine.

Chapter 4. Using Presentation Graphics 4-13

Program Structure

For a list of GDDM routines that can be used in the Presentation Graphics
environment, refer to the GDDM Programming Reference manual.

Chart Definition
Once the initial control routines have been specified, you can use routines that
define the appearance of the chart. You can define:

Chart layout, including:

What size the chart will be and where it will be placed
What size the margins will be

Whether the chart will be framed in a box

What size and spacing the characters will have.

Chart features and their attributes, including:

The heading and what it will look like
The axes and what they will look like
What the components of the chart will look like
What other things will be added to the chart and what they will look like,
such as:
A legend
Chart notes

Chart Drawing

When you have defined your chart in the program with any of the chart layout and
attribute routines, you can specify a single chart-drawing routine that constructs the
chart (it is not displayed until an ASREAD or FSFRCE routine sends it to an output
device).

The chart-drawing routine you use depends on the type of chart you want.

What You Can Do in a Program and Where

After you have specified the chart control routines, you define the chart with
routines that specify the chart layout and attributes. After that, you call a chart
drawing routine to draw the chart.

The two parts of the program (chart definition and chart drawing) are called state-1
and state-2.

State-1 is the mode the program is in before the chart is constructed, and state-2 is
the mode of the program after the chart is constructed.

Once the chart is drawn, you can add more features, such as chart notes and
additional reference lines. However, some things you might try to add will not have
an effect because the chart itself has already been constructed (but you will get a
message). For example, there would be no point in specifying an axis range of 0
through 100 after the already-constructed chart used a range of 0 through 50.

4-14 AS/400 GDDM Programming Guide

Chart Layout

More Control Operations

After the chart has been drawn, you can use routines to terminate the program; or,
if you want to add more features to the chart or define a new chart and add it to the
picture, you can reset the program.

The information that follows describes the functions of the Presentation Graphics
routines. Some routines use integer, floating point, and/or character values for their
parameters, values that you can assign in your program. With other routines you
can choose options for character strings. In the following descriptions, the default
option for each routine is shown in italics, followed by the other options available.

For a more detailed explanation of each routine, refer to the GDDM Programming
Reference manual, which shows the syntax of each and the data types that need to
be declared for the parameters.

Designing the Chart Layout

Chart area. The
line chart is
placed in the
chart area
defined for the
left half of the

page.

The chart layout routines specify the physical arrangement of the areas that frame
the chart. These layout routines apply to all chart types.

Setting the Chart Size
CHAREA — Specify chart area. CHAREA defines the size of the chart, in terms of

picture space units (see “The Picture Space” on page 3-48). By default, all of the
screen is used.

35MM0536H4

Chapter 4. Using Presentation Graphics 4-15

Chart Layout

I Define a chart area for the Teft half of the page

CALL GDDM ('GSQPS', WIDTH, DEPTH)

I Query picture space
LET LEFT = 0.0

I Left boundary = left margin
LET RIGHT = 0.5 * WIDTH

I Right boundary = halfway point
LET BOTTOM = 0.0

I Bottom boundary = lower margin
LET TOP = DEPTH

! Top boundary = upper margin
CALL GDDM ('CHAREA',LEFT,RIGHT,BOTTOM,TOP)

I Sets chart area to left half of screen

(Other Presentation Graphics routines to define
and draw a chart in the defined chart area)

When you use CHAREA to divide the picture space and then draw a chart, you
could reset (CHSTRT) or reinitialize (CHRNIT) Presentation Graphics then use
CHAREA to define the other part of the picture space and draw another chart.
Alternatively, you could use the CHTERM routine to terminate Presentation
Graphics then use GDDM routines to define a viewport and draw a GDDM picture
or text there. Note that a viewport (specified by GSVIEW) does for GDDM what
CHAREA does for Presentation Graphics. Also, if the GDDM routines precede the
Presentation Graphics routines, you must close any opened segments before using
Presentation Graphics routines.

Setting the Character Size

CHCGRD - Set character spacing/size. CHCGRD specifies the basic character
box size for all chart text (headings, labels, and notes), and the chart margins (with
the CHVMAR and CHHMAR routines described next). CHCGRD specifies this size
by giving the number of rows and columns of character boxes needed to fill the
entire chart area.

Each routine used to specify attributes for an element of chart text also specifies a
multiplier value. The basic character size is multiplied by that value to enlarge or
decrease character size. CHCGRD is similar to GDDM routine GSCB, except that
the character-box size for Presentation Graphics also determines the size of the
chart, the spacing of chart features, and so forth. (GSCB is ignored while
Presentation Graphics is initialized.)

By default, the size of the hardware character grid is used. For graphics work
stations, the default character grid is 24 rows by 80 columns. In some instances, a
chart drawn on a plotter or a printer looks different from the same chart shown on
the display, because the default character grid used for the plotter differs from that
used for the graphics work station (the default character grid for the plotter varies
with the orientation of the paper and the paper size; the default character grid for
the printer varies with the row/column dimensions for the printer file being used).
To avoid the difference, set the character grid to 24 rows by 80 columns.

4-16 AS/400 GDDM Programming Guide

Chart margins.
The chart uses
horizontal
margins of 7 and
9 character
boxes and
vertical margins
of 15 and 18
character boxes.
The chart also
uses a framing
box (described
next).

Chart Layout

The GDDM GSFLD routine can also be used to control the size of the default chart
area, or the chart sizes used when two or more charts are defined to fill the entire
charting area.

Setting the Chart Margins

CHHMAR - Set horizontal chart margins
CHVMAR - Set vertical chart margins

CHHMAR and CHVMAR specify the size of the horizontal and vertical chart
margins. The size is specified in terms of character-size units, based on the
character size specified by the CHCGRD routine. When the margin size is
increased, the chart size is reduced proportionally.

By default, the horizontal margins are 5 rows of character grid boxes above and
below the chart area, and the vertical margins are 10 columns of character grid
boxes on either side of the chart area. (The CHCGRD routine overrides the default
size of the character grid box. The default character grid is the size of the
hardware character cells used on the display device.) If the default right margin of
10 columns is not wide enough for a chart legend, use a CHVMAR routine to widen
it.

35MM0536H5

CALL GDDM ('CHHMAR',7,9,)
CALL GDDM ('CHVMAR',15,18,)
CALL GDDM ('CHSET','CBOX')

I Set bottom and top margins
! Set left and right margins
I Use chart frame

Chapter 4. Using Presentation Graphics 4-17

Chart Layout

Enclosing the Chart in a Frame

CHSET - Specify chart options. CHSET (NCBOX|CBOX|CBACK) specifies
whether a framing box is constructed around the chart construction area.

Use the CBOX parameter to draw a framing box around the chart. By default, color
7 is used (white for a graphics work station color table, and the highest pen number
for the plotters). Use the CHBATT routine (described next) to set attributes for the
framing box.

Use the CBACK parameter to have the entire background shaded with a solid
color. By default, the color is the same as that specified for the frame. Use
CHBATT (described next) for a different color. CBACK should not be used for
Venn diagrams because it suppresses drawing the population circles. If you use
CHAREA to set a chart area, the background and the chart frame are sized to fit
the chart area and margins.

By default, the framing box and background shading are not drawn.

Performance hint

Specifying a background for your chart is nearly equivalent to a complete page
of area-fill. This will substantially increase the time it takes to process and plot
your chart.

Setting the Frame Attributes

CHBATT — Set framing box attributes. CHBATT specifies attributes for the
framing box produced by CHSET (CBOX) or attributes for the chart background
produced by CHSET (CBACK). The attributes are color, line-width and line-type of
the frame, and the color of the background.

By default, the frame and background are color 7. The default frame is drawn with
a solid, narrow line.

Adding Chart Features

Other Presentation Graphics routines add features that increase the usability of the
chart. You can use these routines to control:

Chart headings

Reference lines (including axes and axis text)
Chart legends

Chart notes

Routines for these chart features (except chart notes) do not have to be specified in
any particular order in the program, but they should precede the chart-drawing
routine (state-1). Chart notes can be added only in state-2. For information on
state-1 and state-2, see page 4-14.

4-18 AS/400 GDDM Programming Guide

Chart Layout

Writing Chart Headings

The chart heading is usually placed at the top of the chart, but it can be placed at
the bottom. You can left or right-justify the heading, but it is centered by default.
The heading can be more than one line; secondary lines in the heading are also
left- or right-justified or centered.

Writing the Chart Heading

CHHEAD - Heading text. CHHEAD specifies the string of characters that is the
chart heading. Chart headings can be more than one line long, but cannot exceed
132 characters.

If you want a multiple-line heading, use a semicolon (;) as the line break character
in the heading. The second line of the heading is then centered below the first line.
The semicolon must be counted as a character in the heading even though it does
not appear. If you want a semicolon as a character in the heading, use a pair of
them (;;). The two semicolons put the single semicolon into the heading, but they
do not cause a line break. To put more space between the top of the chart area
and the heading, move the heading down by including a semicolon as the first
character in the heading string.

No default heading character strings exist. If you use CHHEAD to specify a
heading, but do not use CHHATT to select attributes or CHSET to position the
heading, the heading is drawn centered at the top of the chart, in standard-size
characters of the default color. The CHSET and CHHATT routines are described
next.

Suppressing the Chart Heading

CHSET - Specify chart options. CHSET (HEADING|NOHEADING) allows or
suppresses the heading specified by CHHEAD.

Setting the Heading Attributes

CHHATT — Heading text attributes. CHHATT specifies the color, character mode,
symbol set (one loaded by the GSLSS routine), and character-size multiplier used
for the heading. If character-mode 2 is specified, the default symbol set is used,
and the character-size multiplier serves only to set the spacing of the characters in
the heading.

If CHHATT is not specified, the heading is shown with the default color and is
written in the default character set with standard-size characters. The default color
is number O (the same as number 4) for the display and the pen in position 1 for
the plotter.

Chapter 4. Using Presentation Graphics 4-19

Chart Layout

Chart heading.
The chart
heading should
be a descriptive
title for the entire
chart, one that
states the
message the
chart
communicates.

Positioning the Chart Heading

CHSET - Specify chart options. CHSET (HTOP|HBOTTOM) positions the
heading at the top or bottom of the chart area.

CHSET (HCENTER|HLEFT|HRIGHT) positions the heading at the center, left, or
right of the chart area.

35MMO536H7

CALL GDDM ('GSLSS',2,'ADMUWTRP',66)

! Load vector symbol set ADMUWTRP as symbol set #66
INTEGER HATT ! Declare integer

DIM HATT(4) : MAT READ HATT ! Read attribute array

DATA 2,3,66,300

1 2 = red, 3 = character mode, 66 = symbol set, 300 = size
CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
CALL GDDM ('CHHEAD',13,'Chart Heading;(centered)')

! Write 13-character heading with 'character string'

Drawing Chart Axes

Most chart types provided by Presentation Graphics use axes (except for pie charts

and Venn diagrams). Axes are drawn at 90 degrees to each other; there are

usually two primary axes, the x axis and the y axis. Usually, the x axis is horizontal

and the y axis is vertical. The axes are the main reference lines for the chart.

Axis lines are lines drawn on the chart to provide a basis for understanding the

graphics lines and patterns that represent data. They can be assigned a specific
range of values, which are shown by tick marks (the scale), or numbers, or names
of weekdays or months (labels).

4-20 AS/400 GDDM Programming Guide

Chart Layout

The x axis most often represents the independent variable, and the y axis
represents the dependent variable. The independent variable represents the
frame-of-reference of the chart. Nothing associated with the chart can change the
progression of the independent variable. For some chart types, the independent
variable is usually time: hours, days, weeks, for example. For other chart types,
the independent variable represents a related group, such as a group of cargo
transporters that has as its elements ships, planes, trucks, and trains.

The dependent variable is the range of data values being used to construct the
chart. The dependent variable is the dynamic element of the chart; each value of
the dependent variable corresponds to some value in the independent variable. In
other words, the dependent variable depends upon the independent variable (such
as a specific day of the week) for it to have any meaning.

Drawing or Suppressing the Chart Axes

CHXSET - x-axis characteristic
CHYSET - y-axis characteristics

CHXSET or CHYSET (AXIS|NOAXIS) specifies whether the axis line is drawn
when the chart is constructed. NOAXIS suppresses only the x- or y-axis line, not
the tick marks, title and labels. You must use CHXSET or CHYSET (PLAIN) to
suppress the tick marks for an axis and CHXSET or CHYSET (NOLAB) to suppress
the labels for an axis. CHXTTL and CHYTTL are used to specify axis titles; their
absence suppresses the axis titles.

To suppress both axes and their associated tick marks and labels, use the CHSET
(NDRAW) parameter (described next). You can use CHDRAX to draw the
suppressed axes tick marks, and labels in state-2.

CHSET - Specify chart options. CHSET (IDRAW|DRAW|NDRAW) specifies
when the axes and their associated tick marks and labels are drawn on the chart.
You can specify that the axes are drawn before the data components are drawn
(the default IDRAW), so that if any part of the component interferes with an axis,
the axis is obscured. If necessary, the axes can be drawn each time a component
is drawn, so that the axes overlay the components (DRAW), or the axes can be
suppressed altogether (NDRAW). If the axes are suppressed, they can be drawn
later (in state-2) by the CHDRAX routine (described next).

Chapter 4. Using Presentation Graphics 4-21

Chart Layout

Duplicate axes.
Duplicate axes
are useful for
charts where the
chart data is
difficult to relate
to one set of
axes. This chart
shows a
duplicate y axis
on the right side.

CHDRAX — Draw axes. CHDRAX draws the axes and the associated tick marks
and axis labels. CHDRAX can only be called in state-2 (after the chart drawing
routine). CHDRAX is useful when another feature of the chart obscures part of the
axis, tick marks, or axis labels.

Setting the Number of Axes

CHSET - Specify chart options. CHSET (XNODUP|XDUP|YNODUP|YDUP)
specifies whether duplicate axes are drawn on the chart. You can specify a
duplicate for either the x or the y axis (or both if you use two CHSET routines, one
for each axis). The duplicate axis appear at the opposite end of the chart from the
primary axis.

35MM0536H8

CALL GDDM ('CHSET','YDUP') ! Specify duplicate y axis

When an axis is duplicated, it is identical to the original. For some charts however,
it is desirable to have a different scale or different attributes for the second axis,
especially in those cases where two different chart types are drawn in the same
area. This type of axis is call a secondary axis.

To draw a secondary axis, use one of the following routines:

CHXSEL - x-axis selection
CHYSEL - y-axis selection

CHXSEL or CHYSEL specifies which is the current axis, either the primary or the
secondary one. The current axis is the one affected when attributes are set and
against which data is plotted when the chart-drawing routine is executed.

4-22 AS/400 GDDM Programming Guide

Chart Layout

Secondary
y-axis. The bar
chart is plotted
first, then the
line chart is
plotted against 35MM0536H9
the secondary
axis. Note the
difference in the
left y-axis scale
used for the bar
chart versus the
right y-axis scale
of the line chart.

I Plot bar chart
CALL GDDM ('CHYSEL',2) ! Select secondary y-axis

I PTot Tine chart

Setting the Axis Attributes

CHAATT — Axis line attributes. CHAATT specifies the attributes for each axis
line. Attributes that can be set are color, line type, and line width.

Like other attribute-setting routines, CHAATT uses an array of numbers that
correspond to attributes. However, the array CHAATT uses can specify attributes
for the primary x-axis, primary y-axis, secondary x-axis, and secondary y-axis at
one time. The first group of three elements specifies attributes for the primary
x-axis, the second group for the primary y-axis, and so forth. Therefore, to set
attributes for a y-axis, (and not an x-axis), you must use an array of six elements,
the first three of which are ignored.

By default, each axis line is a solid narrow line, shown in the default color.

Positioning the Axis
The point at which the x and y axis cross can also be altered. Each axis can
intercept the other at the bottom, middle, or top. The default is at the bottom.

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

Chapter 4. Using Presentation Graphics ~4-23

Chart Layout

Quadrant. The
guadrant results
from axes that
intercept each
other at the
middle of the
range.

CHXSET or CHYSET (LOWAXIS|MIDDLE|HIGHAXIS|INTERCEPT) specifies the
position of the axis in relation to the chart drawing area and/or in relation to the
other axis. You can place the axis at the lower, middle, or upper end of the chart
drawing area, measuring left to right or bottom to top. You can also specify
whether you want the axis to appear as an intersecting axis, by specifying
INTERCEPT and the appropriate CHXINT or CHYINT routine.

Axes are drawn at the left edge and the bottom edge of the chart drawing area by
default.

CHXINT — x-axis intercept
CHYINT - y-axis intercept

CHXINT and CHYINT specify the point at which the other axis intercepts the
named axis. For example, CHXINT gives the position where the y axis crosses the
x axis and with it CHYSET(INTERCEPT) must be specified.

By default, the point of interception is zero; or, if some of the data used for an axis
is negative, the point of interception is less than the lowest data value for that axis.

35MM053611

CALL GDDM ('CHXSET','INTERCEPT')
CALL GDDM ('CHXINT',2.5)
CALL GDDM ('CHYSET','INTERCEPT')
CALL GDDM ('CHYINT',7.5)

AlTow intercept with y axis
y axis intercepts at 2.5
Allow intercept with x axis
x axis intercepts at 7.5

CHSET - Specify chart options. CHSET (YVERTICAL|XVERTICAL) specifies the
orientation of the chart. You can change the normal orientation of the chart (x axis
along the horizontal line) so that bar charts and histograms have horizontal bars,
and multiple Venn diagrams and pie charts are drawn one above the other.

4-24 AS/400 GDDM Programming Guide

Horizontal
orientation.
The chart shows
a floating bar
chart with
vertical
orientation set
by the
YVERTICAL
parameter, and
one with
horizontal
orientation set
by the
XVERTICAL
parameter.

Chart Layout

35MM053612

CALL GDDM ('CHSET','YVERTICAL') ! Orient chart vertically

CALL GDDM ('CHSET','XVERTICAL') ! Orient chart horizontally

An entire chart can also be rotated in relation to the plotting surface on the plotter.
For more information on GDDM device control routines, see Appendix A, “Devices

Compatible with the AS/400 System.”

Chapter 4. Using Presentation Graphics

4-25

Chart Layout

Setting the Axis Range

Range is the upper and lower limit of measure used by each axis scale. By
default, the range of the axis scale includes the upper limit of the data supplied; this
is called auto-ranging. The default lower limit is zero or a negative number,
depending on the data. An option exists to suppress zero as the lower limit, and
instead use the lower limit of the supplied data. A line chart with an upper-limit
value of 1984 on the x-scale and a supplied lower-limit value of 1980 would be
difficult to interpret if the data were charted on a scale that ranged from 0 through
1984.

If you choose, you can override the system-generated range with your own range.

CHXRNG - x-axis explicit range
CHYRNG - y-axis explicit range

CHXRNG and CHYRNG set the range for the specified axis. If neither is specified,
auto-ranging is used.

If you specify a range smaller than the range of your data, the areas of the
components that exceed the range will be clipped.

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (FORCEZERO|NOFORCEZERO) specifies whether
auto-ranging includes zero. (Auto-ranging is the default if CHXRNG or CHYRNG
have not been specified.) By default, zero is included as the lowest range value.

If all data values for the axis are positive, FORCEZERO makes zero the lower limit.
If all data values for the axis are negative, FORCEZERO makes zero the upper
limit. If some of the data values are positive and some are negative, FORCEZERO
is ignored.

You can use CHXSET and CHYSET to write your own labels for the axes, or to

write system-generated day or month labels. For these, FORCEZERO is ignored.
For more information on writing your own labels, see page 4-36.

4-26 AS/400 GDDM Programming Guide

NOFORCEZERO
on an x axis.
When the lower
limit of the
supplied data is
used for the
lower limit of the
range, the
components
begin at the
y-axis reference
line.

Chart Layout

35MM053613

CALL GDDM ('CHXSET','NOFORCEZERO")
! Suppress zero as lower range limit for x axis

Setting the Axis Scale

The scale is the unit of measure applied to each axis, such as hours, meters, or
dollars. Each scale can be linear (the default) or logarithmic. Linear scales are
those where the progression of tick marks and labels is even and constant.
Logarithmic scales use a progression where the tick marks are placed closer to
each other as the scale values grow larger. Logarithmic scales are useful for
charts with data that grows at an exponential rate.

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (LINEAR|LOGARITHMIC) specifies the type of scale for the x
or y axis. If ALPHANUMERIC labels are specified, LOGARITHMIC is ignored.
(ALPHANUMERIC labels are described later on page 4-33.) Logarithmic scales are
not valid for the x axis of bar charts. Data plotted against a logarithmic scale must
be positive, nonzero and the labeling must be numeric.

The labels on a logarithmic axis scale are shown in floating-point notation, where
1E+01 = 10, 1E+02 = 100, 1E+03 = 1000, and so forth.

Chapter 4. Using Presentation Graphics 4-27

Chart Layout

Logarithmic
scale. They
axis shown is a
logarithmic
scale. Tick
marks have
been added with
the CHYTIC
routine (see
page 4-28).

35MM053614

CALL GDDM ('CHXSET','LOGARITHMIC')
CALL GDDM ('CHYTIC',10.0,0.0)

! Use log scale
I Set tick mark interval

Drawing the Axis Tick Marks
Tick marks show intermediate values on the axes. Tick marks along each axis can
make a chart much easier to interpret, by showing more points of reference.

CHXTIC — x-axis tick mark interval
CHYTIC - y-axis tick mark interval

CHXTIC and CHYTIC set the level of incrementing between major tick marks, and
specify the number of minor tick marks to place between each pair of major tick
marks.

If neither is specified, the interval on a linear scale is 1, 2, or 5 multiplied by a
power of 10, according to the auto-ranging values. The interval on a logarithmic
scale is each power of 10: 1, 10, 100, 1000, and so forth.

4-28 AS/400 GDDM Programming Guide

Major and
minor tick
marks. You can
set the interval
of the major tick
marks relative to
the range, and
you can set the
number of tick
marks placed
between major
tick marks.

Chart Layout

With auto-ranging, a scale for a chart drawn on the 5292 Model 2 can be
constructed with a larger interval between major tick marks than the same chart
drawn on the plotter, because of space limitations. In other words, the major tick
marks could be labeled 10, 20, and 30 on the display as opposed being labeled 10,
15, 20, 25, and 30 on the plotter.

35MM053615

CALL GDDM ('CHXTIC',5.0,4.0) I x-axis tick mark interval
CALL GDDM ('CHYTIC',15.0,0.0) I y-axis tick mark interval

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (NTICK|PTICK|XTICK|PLAIN) specifies the type of axis tick
mark, or suppresses the tick marks. The type of tick mark specified for an axis is
the same for major and minor tick marks, but minor tick marks are half the length of
major ones.

Chapter 4. Using Presentation Graphics 4-29

Chart Layout

Tick marks.
Tick marks can
be used to
increase the
usability of axis
reference lines.
These are the
four options
available.

35MM053616

Writing the Axis Text

You can add titles and labels to axes. Both are written with the default graphics
symbol set or with the set loaded by the GDDM routine GSLSS. The size of the
axis text characters is based on the size specified by CHCGRD, but the actual size
is specified by the CHTATT and CHLATT routines.

Writing Axis Titles

Each axis of the chart can be assigned a title. By default, the x-axis title is
centered below the x-axis reference line, and the y-axis title is centered to the left
of the y-axis reference line.

Setting the Title Attributes

CHTATT — Axis title text attributes. CHTATT specifies the attributes for
characters used in axis titles. Attributes that can be set are color, character mode,
character symbol-set selection, and character size.

If you specify character-mode 2 instead of character-mode 3, the characters in the
vertical axis title (usually the y-axis title) are oriented with a horizontal baseline and
read from top to bottom. For either axis title, the character size multiplier for
mode-2 characters serves only to set the spacing of the characters in the title. For
mode-2 titles, the symbol-set specification is ignored.

If CHTATT is not specified, each axis title is shown in standard-size device default
characters in character-mode 3, shown in the default color.

4-30 AS/400 GDDM Programming Guide

AXis titles.
When attributes
for titles are not
set by CHTATT,
axis titles are
mode-3
characters.

Chart Layout

Writing the Axis Title

CHXTTL - x-axis title text specification
CHYTTL - y-axis title text specification

CHXTTL and CHYTTL specify the length of the text string to be used for the title,
as well as the string itself.

Positioning the Title

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET and CHYSET (ATCENTER|ATEND|ATABOVE) control the positioning of
the axis titles.

By default, the titles are centered on the axis.

35MM053617

CALL GDDM ('CHXTTL',12,'X-AXIS TITLE') I Write axis title
CALL GDDM ('CHYTTL',12,'Y-AXIS TITLE') I Write axis title

Chapter 4. Using Presentation Graphics ~ 4-31

Chart Layout

AXis title
placement
options. Axis
titles can be
placed in the
positions shown.
The titles cannot
be moved closer
or further from
the axis line.

For that, you
should suppress
the title and use
the chart notes
instead.

35MM053618

CALL GDDM ('CHXSET','ATEND') I x-axis title at end of axis

Writing Axis Labels

Axis labels are the numbers or characters that correspond to major tick marks
along the x- and y-axis scale. The default labels are the floating-point auto-ranging
numbers determined from your data.

Labels correspond to major tick marks, but you can specify that the labels are
positioned between the major tick marks. For an axis that shows a range of time
values, or for a bar chart or a histogram, this type of label positioning can improve
the chart by making the component values easier to understand.

You can specify your own labels (and position them at the same time), or you can
suppress the labels altogether. A number of attributes can be specified for the
labels. The size of the label characters is based on the size specified by the
Presentation Graphics routine CHCGRD, but the specific size is specified by the
CHLATT routine.

For character-mode-2 labels, the character size multiplier determines the spacing of
the characters in each label, and the symbol set specification is ignored. Mode-3
labels are expanded or reduced by the multiplier.

For multiple-pie charts, you can specify labels to be used as titles for the pies.

4-32 AS/400 GDDM Programming Guide

Chart Layout

Setting Label Attributes

CHLATT — Axis label text attributes. CHLATT specifies the attributes for
characters used in axis labels and titles for individual pies on multiple pie charts.
CHLATT affects both x- and y-axis labels. Attributes that can be set for labels are
color, character mode, character symbol-set selection, character size, rotation, and
height/width multiplier.

If CHLATT is not specified, each label uses unrotated, standard-size device default
characters of the default color.

Use CHXLAT and CHYLAT to specify label text attributes for individual axes.

Setting Individual Axis Label Attributes

CHXLAT - x-axis label attributes
CHYLAT - y-axis label attributes

CHXLAT and CHYLAT specify the attributes for characters used in labels on the
axes. Attributes that can be set are color, character mode, character symbol-set
selection, character size, rotation, and height/width multiplier.

Use CHLATT if you want both sets of axis labels to look the same.
Positioning the Labels

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (LABADJACENT|LABMIDDLE|NOLAB) specifies the position
of the labels for the axes. The labels can be placed next to the tick marks
(LABADJACENT), they can be placed between the tick marks (LABMIDDLE), or
they can be suppressed (NOLAB).

Blanking the Label Area

CHSET - Specify chart options. CHSET (NBLABEL|BLABEL) specifies whether
the areas where axis labels are positioned are blanked.

When the area is blanked, no other display feature can occupy the label text box
(text boxes are explained on page 3-31). When the area is not blanked, the labels
can overpaint the component. Label blanking does not apply to plotters.

By default, the areas are not blanked.
Specifying the Type of Label

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (NUMERIC|DATE|JALPHANUMERIC) specifies the type of
label for the axis. You can request that numeric labels are generated automatically,
that date labels are used as specified by CHXMTH, CHYMTH, CHXDAY, or

Chapter 4. Using Presentation Graphics 4-33

Chart Layout

CHYDAY, or that alphanumeric labels are used (the labels you specify with
CHXLAB or CHYLAB).

Numeric Labels Generated by the System

CHXSCL - x-axis scale factor
CHYSCL - y-axis scale factor

CHXSCL and CHYSCL specify a multiplier for numeric labels. (The default is 1.)
You can use this multiplier to suppress leading or trailing zeros on labels. If you
suppress zeros, you should word the title of the axis to reflect the value of the
labels; for example, SALES (IN THOUSANDS).

CHSET - Specify chart options. CHSET (NPGFS|PGFS) specifies the method of
punctuating numbers greater than 1000. PGFS suppresses the punctuation except
for the decimal point.

NPGFS uses 0S/400 system value QDECFMT to specify the type of punctuation
used by your system for numbers greater than 1000.

Month Labels Generated by the System

CHXMTH - x-axis month labels
CHYMTH — y-axis month labels

CHXMTH and CHYMTH specify the successive months to be used as labels, in
terms of 1,2,3,... (for JAN,FEB,MAR, and so forth). If you specify CHXMTH,2, FEB
is the first label.

You can use CHSET (ABREV|FULL|LETTER) to select the appearance of the
month labels.

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (SKIPMONTH|NOSKIPMONTH) specifies how month labels
will be displayed at the major tick marks.

NOSKIPMONTH specifies that consecutive months are used for each successive
tick mark. This is the default.

4-34 AS/400 GDDM Programming Guide

Chart Layout

PLO536I11

SKIPMONTH specifies that month labels are not used consecutively. Instead, they
are selected to match the major tick interval specified.

PLO53612

When you specify month labels, if the range has more than 12 major tick marks
and NOSKIPMONTH is specified, the month labels are reused as needed.

Chapter 4. Using Presentation Graphics ~ 4-35

Chart Layout

Day Labels Generated by the System

CHXDAY - x-axis day labels
CHYDAY - y-axis day labels

CHXDAY and CHYDAY specify the successive days to be used as labels, in terms
of 1,2,3,... (for MON,TUE,WED and so forth). If you specify CHXDAY,2, TUE is the
first label. Consecutive days follow for each major tick mark.

You can use CHSET (ABREV|FULL|LETTER) to select the appearance of the day
labels.

When you specify day labels, specify CHXTIC or CHYTIC,1 for the labels to
correspond one for one to the major tick marks in the range. If the range has more
than seven major tick marks, the day labels are reused as needed.

CHSET - Specify chart options. CHSET (ABREV|FULL|LETTER) specifies the
form of axis labels supplied by the CHXMTH, CHYMTH, CHXDAY, and CHYDAY
routines. The names can appear in 3-character abbreviations, the full names, or
the first letter of the name.

Your Own Labels

CHXLAB - x-axis label text specification
CHYLAB - y-axis label text specification

CHXLAB and CHYLAB specify the number of labels to be used, the length of the
text string to be used for the label, and the label text itself.

When you specify your own labels, you should make sure that the range (specified
by auto-ranging or by CHXRNG and CHYRNG) for the axis matches the number of
labels you have supplied. For example, if you provide seven labels for a range that
has five major tick marks, the last two of your labels are ignored. If you provide
eight labels for a range that has 10 major tick marks, the first two of your labels are
reused for the ninth and tenth tick marks. Use CHXRNG and CHYRNG to set the
range, and use CHXTIC and CHYTIC to set the interval for the tick marks.

4-36 AS/400 GDDM Programming Guide

AXis labels.
Labels are
associated with
the major tick
marks of the
range.

Chart Layout

35MM053619

CALL GDDM ('CHXLAB',4,7,'LABEL 1LABEL 2LABEL 3LABEL 4')
! Use 4 7-character Tabels as x-axis labels

CALL GDDM ('CHXRNG',1.0,4.0)

! Set Tower x-axis range Timit = 1, upper limit = 4
CALL GDDM ('CHXTIC',1.0,0.0)

! Use 1 major tick mark for every range value

CALL GDDM ('CHYDAY',7)

I Use day labels for the y axis, starting with SUN
CALL GDDM ('CHYRNG',1.0,10.0)

I Set lower y-axis range limit = 1, upper limit = 10
CALL GDDM ('CHYTIC',1.0,0.0)

! Use 1 major tick mark for every range value

Drawing Other Reference Lines

Drawing Grid Lines

Grid lines are extensions of tick marks that are drawn across the
component-plotting area. Grid lines can be drawn from the x axis parallel to the y
axis, or can be drawn from the y axis parallel to the x axis.

Grid lines can be useful for charts where the components cannot be compared
easily to the axis scale, such as scatter plots where no interconnecting lines exist to
help the user judge the relative x- and y-values of the markers. In some charts,
grid lines can reduce the usefulness of the chart by making it look complicated and
busy. For such charts, try using a duplicate axis (CHSET (XDUP or YDUP)) to
increase the usability of the chart.

Chapter 4. Using Presentation Graphics 4-37

Chart Layout

Grid lines. The
grid lines for this
chart could be
supplemented
with minor tick
marks for the y
axis (CHYTIC).

If you must use a grid with a secondary axis (CHXSEL or CHYSEL) that uses a
scale that differs from the primary axis, you should use CHAATT and CHGATT to
change the color or line type of the axis and grid line to differentiate those features
from the primary axis.

Setting Grid Line Attributes

CHGATT - Grid line attributes. CHGATT specifies the attributes for grid lines.
Attributes that can be set are color, line type, and line width.

Like other attribute-setting routines, CHGATT uses an array of numbers that
correspond to attributes. However, the array CHGATT uses can specify attributes
for grids for the primary x axis, primary y axis, secondary x axis, and secondary y
axis at one time. The first group of three elements specifies attributes for the
primary x-axis grid, the second group for the primary y-axis grid, and so forth.
Therefore, to set attributes for a y-axis grid (and not an x-axis grid), you must use
an array of six elements, the first three of which are ignored.

If CHGATT is not specified, each grid line is a solid narrow line, shown in the
default color.

Drawing Grid Lines

CHXSET - x-axis characteristics
CHYSET - y-axis characteristics

CHXSET or CHYSET (NOGRID|GRID) specifies whether grid lines perpendicular to
the axis are drawn.

By default, the grid lines are not drawn.

35MM0536J1

4-38 AS/400 GDDM Programming Guide

Translated axis
line versus
datum line.
Because
CHYDTM is
called in state-1,
it results in a
translated axis
line. In state-2,
the datum line
results. Both
charts use the
same data.

Chart Layout

CALL GDDM ('CHYSET','GRID') ! Use y-axis grid

Drawing Translated Axis Lines and Datum Lines

Drawing Translated Axis Lines

Translated axis lines are drawn before the components that represent data groups
are drawn. Then, when the components for the chart are drawn, (in state-1) they
are based on the translated axis line. In other words, the first component of a
composite-bar chart, surface chart, or histogram has values originating from the
translated axis line rather than the x axis. This lets you show quantities that extend
both up and down from the translated axis line.

Drawing Datum Lines

Datum lines are similar to grid lines, except that you can only have one datum line
from a specified axis value. Datum lines are drawn after the components are
drawn (in state-2). They function as reference lines (much like a single line from a

grid).

The following illustration shows the difference between a translated axis line and a
datum line.

35MM0536J2

Chapter 4. Using Presentation Graphics 4-39

Chart Layout

I State-1

CALL GDDM ('CHYDTM',25.0)

I Draw y-axis translated axis line from y=25 scale value
! ——---(Chart-drawing routine)----

I State-2

I State-1

! ——---(Chart-drawing routine)----

I State-2

CALL GDDM ('CHYDTM',25.0)

! Draw y-axis datum line from y=25 scale value

Setting Translated Axis Line or Datum Line Attributes

CHDATT — Datum line attributes. CHDATT specifies the attributes for translated
axis and datum lines. Attributes that can be set are color, line type, and line width.

If CHDATT is not specified, each line is a solid narrow line, shown in the default
color.

Drawing Translated Axis Line or Datum Line

CHXDTM — x-datum line
CHYDTM — y-datum line

CHXDTM and CHYDTM specify a point from which a translated axis line or datum
line is drawn. For example, CHYDTM(10) draws a line that corresponds to the
value 10. The line is drawn parallel to the x axis.

If CHXDTM or CHYDTM is specified before the chart is drawn (state-1), the
resulting line is a translated axis line. If CHXDTM or CHYDTM is specified after the
chart is drawn (state-2), the resulting line is a datum line.

Drawing Chart Legends

Chart legends provide a means of identifying the components shown on the chart.
The legend matches the legend key label of the component with an identifying
characteristic of the component, such as color, marker, or pattern. This identifying
characteristic is called the key; it is the name or value associated with the
component or the component key.

Legends can be placed anywhere on the chart, and a number of attributes can be
assigned to specify the appearance of the legend.

Drawing or Suppressing the Legend
CHSET - Specify chart options. CHSET (LEGEND|NOLEGEND) specifies that a
legend is to be constructed (LEGEND). CHSET (NOLEGEND) suppresses the

legend.

For a program in which multiple calls to a chart-drawing routine are used to draw
separate chart components, CHSET (NOLEGEND) suppresses the legend for each

4-40 AS/400 GDDM Programming Guide

Chart Layout

of the chart-drawing routines. Then, to draw a legend that includes legend keys
and labels for each of the chart components, specify CHSET (LEGEND) before the
last call to the chart-drawing routine.

CHSET - Specify chart options. For pie charts, CHSET (PIEKEY|SPIDER)
specifies whether a legend should be drawn (PIEKEY) or, if labels are to surround
the pie, whether each is connected to the associated pie slice with a spider tag
(SPIDER).

Positioning the Legend

CHKEYP — Legend position. CHKEYP specifies the orientation of the legend
(vertical or horizontal), and its position in a margin.

The default is a vertical legend centered in the right margin.

CHKOFF — Legend offsets. CHKOFF specifies the final position of a vertical or
horizontal legend. The legend is based on the position specified by the CHKEYP
routine, and moved a positive or negative number of character units to its final
position.

By default, no offsets are applied.

CHKMAX — Maximum legend width/height. CHKMAX specifies the maximum
height of a vertical legend, or the maximum width of a horizontal legend.

By default, the maximum dimensions for either legend orientation is limited by the
dimension of the chart area.

CHSET - Specify chart options. CHSET (KNORMAL|KREVERSED) specifies
the order of items listed in the legend. The normal order (KNORMAL) is for the first
entry to be listed at the bottom of the legend and the last entry at the top.
KREVERSED reverses that order. If the legend is horizontal, KNORMAL lists the
first entry to the left.

Blanking the Legend Area
CHSET - Specify chart options. CHSET (NBKEY|BKEY) specifies whether an
area is blanked or not blanked before the legend is drawn in that area. (On a

plotter, this option has no effect.)

By default, the legend area is not blanked.

Chapter 4. Using Presentation Graphics 4-41

Chart Layout

Legend area
blanking. The
legend area is
blanked so that
the legend is not
obscured by the
patterns of the
components.

35MM0536J3

CALL GDDM ('CHSET','BKEY') ! Blank the legend area

Enclosing the Legend in a Box

CHSET - Specify chart options. CHSET (NKBOX|KBOX) specifies whether the
legend is enclosed in a box.

By default, the legend is not enclosed in a box.

Writing the Legend Key Labels

CHKATT — Legend text attributes. CHKATT specifies the attributes to be used
for legend key labels, pie chart spider key labels, and labels on a Venn diagram
written by CHKEY. The attributes that can be specified are color, character mode,
symbol set, and character size.

If CHKATT is not specified, labels are written in the default character set with the
standard size characters for the device, in the default color.

CHKEY - Legend key labels. CHKEY identifies the labels to be associated with
the legend keys. For a pie chart, the labels specified here appear adjacent to the
pie slices when CHSET (SPIDER) is specified; otherwise, the labels appear in a
legend (the default).

Note: Legends cannot be constructed for Venn diagrams; the legend text
(CHKEY) appears as a label adjacent to each population.

4-42 AS/400 GDDM Programming Guide

Chart Layout

Writing Chart Notes

Chart notes are character strings that are positioned anywhere on a chart to explain
or identify an aspect of the chart. You can write as many notes on your chart as
you want. You can write a note, then select new attributes and write a different
note elsewhere on the chart. Notes are written with the graphics symbol set loaded
by the GDDM routine GSLSS. The size of the label characters is based on the
size specified by the Presentation Graphics routine CHCGRD, but the specific size
is specified by the CHNATT routine.

When you use notes, be careful that they add to, not detract from, the simplicity
and usefulness of the chart.

Chart notes can be written only in state-2. (State-2 is any point after the chart
drawing routine is executed.)

Setting Attributes for Notes

CHNATT - Specify text attributes for notes. CHNATT specifies the attributes to
be used by notes. The attributes that can be specified are color, character mode,
symbol set, character size, rotation, and height/width multiplier.

If CHNATT is not specified, notes are shown in the default color, and are written

unrotated in the default mode-3 character set with the standard size characters for
the device.

Blanking the Note Area
CHSET - Specify chart options. CHSET (NBNOTE|BNOTE) specifies whether

an area is blanked or not blanked before the note is written in that area. (On a
plotter, this option has no effect.)

Enclosing the Note in a Box

CHSET - Specify chart options. CHSET (NONBOX|NBOX) specifies whether the
note is enclosed in a box.

Writing the Note

CHNOFF — Specify offsets for CHNOTE. CHNOFF specifies the position of a
note.

CHNOTE - Write a character string at a designated location. CHNOTE writes a
note at a position specified by CHNOFF.

You can use a semicolon (;) as a line-break character to generate multiple line
notes. To include a semicolon as part of a note, use two semicolons (;;).
The CHNOTE routine has three parameters:

The base position of the note
The number of characters in the note
The note text itself

Chapter 4. Using Presentation Graphics 4-43

Chart Layout

The base position parameter value has an effect on the way the offsets specified
by CHNOFF are interpreted. The base position value is a 2-character value, whose
first character can be:

C The CHNOFF offsets are interpreted as device rows and columns.

H The horizontal offset is in chart axis units, while the vertical offset is in device
columns.

\ The vertical offset is in device columns while the horizontal offset is in device
rows (from the bottom).

Z Both offsets are in chart axis units.

When the offset is in device rows and columns, the origin (0,0 offset) is considered
to be the lower left corner of the chart area.

When the offset is in chart axis units, the origin corresponds to the zero value for
the axis (the y axis for vertical offsets and the x axis for horizontal offsets, except
for XVERTICAL orientation). An offset specified in axis units ensures that the note
will appear in the same position on the chart when the chart is drawn on the plotter
or when a different chart area is used.

The plotter uses different values for the character grid, so a note offset in device
rows and columns can appear in a different location (relative to the chart axes) on
the plotter from that on the display.

A note positioned in chart axis units is always drawn relative to the axes; its
position will not change when the character grid units are changed (CHCGRD),
when the chart area is changed (CHAREA), or when the chart margins change the
chart area (CHHMAR or CHVMAR). The disadvantage in using chart axis offsets is
that you cannot surround the chart with notes; negative offsets can be specified,
but only to the extent of the chart axis units.

The second character of the base position parameter of CHNOTE specifies which
part of the note box is placed at the offset position. The value for this part of the
base position parameter is a number 1 through 9, where the number corresponds
to these positions of the note box:

1-mmmmmm R 3
| |
I |
4 5 6
I |
| |
pZ— JR— 9

If the base position is C7, the note is positioned by row/column offset values with
the lower left corner of the note box at the position specified by the offset.

4-44 AS/400 GDDM Programming Guide

Chart notes.
The chart notes
in red use an
offset of 0,0 (the
left margin is
increased to 15
to preserve the
y-axis scale for
this illustration).
The C1 note
offset in device
units appears
despite having a
base position
that should place
it outside the
chart area.

Chart Layout

35MM0536J4

I For the red chart notes:
CALL GDDM ('CHYRNG',-45.0,30.0)
CALL GDDM ('CHXRNG',0.0,12.0)

INTEGER NATT ! Declare integer
DIM NATT(2) : MAT READ NATT ! Read note array
DATA 2,2

1 2 = red, 2 = character mode

CALL GDDM ('CHNATT',2,NATT()) ! Set note attributes
CALL GDDM ('CHNOFF',0.0,0.0) ! Set note position
CALL GDDM ('CHNOTE','C1',18,'C1 NOTE;OFFSET 0,0')
CALL GDDM ('CHNOTE','H1',18,'H1 NOTE;OFFSET 0,0")
CALL GDDM ('CHNOTE','v1l',18,'V1 NOTE;OFFSET 0,0')
CALL GDDM ('CHNOTE','Z1',18,'Z1 NOTE;OFFSET 0,0")

Designing the Chart Layout: Summary
The part you have just finished reading showed you how to set up the layout for a
chart. In setting up this layout you can specify the following features:

Chart size, which also depends on the size of the chart character grid and chart
margins

Chart frame or background
Chart heading
Chart reference lines (except for pie charts and Venn diagrams), including:

Axes, with tick marks, labels that correspond to tick marks, and the axis
title
Grid lines

Chapter 4. Using Presentation Graphics 4-45

Drawing the Chart

Translated axis or datum lines
Chart legend
Chart notes

You can set the chart size by specifying a chart area, by changing the size of the
character grid on which the chart area is based, and by changing the size of the
chart margins. Reducing the size of the margins increases the size of the chart,
and the converse.

You can add a frame that encloses the chart and you can specify a background
color for the chart.

To increase the usability of the chart, you can add a heading and chart reference
lines. The chart reference lines can be added or changed to clarify the chart data,
or suppressed to reduce clutter and to give the chart a simple appearance.

A legend and chart notes can be added to any type of chart, also to increase chart
usability.

Except for chart size, you can specify attributes for any of the chart features.
These attributes continue to be used until changed or until the Presentation
Graphics environment is terminated or reinitialized (explained later).

The next part explains the routines you use to draw any type of chart and the
routines that are specific to each chart type.

Drawing the Chart

After your chart-drawing program was initialized, you defined the appearance of
your chart. The appearance of the chart was determined by routines you specified
to change the defaults for:

The layout of the chart, including:

Chart area
Chart margins
Chart frame
Character size

The attributes of the chart, including:

Chart headings

Reference lines (including axes and axis text)
Chart legends

Chart notes

Now that you have defined the layout and attributes of the chart, you can call the
routine that draws the chart, using attributes and the available data groups.

The data groups can be coded into the program, so that the chart looks the same
each time you run the program, or the data groups can come from database files,
so the chart reflects up-to-the-minute data.

Each data group must contain the same number of y values as there are x values.
If one or more values is missing from your data, you should supply a dummy value
of 1E35 (1035) for all high-level languages except RPG/400, which requires a value
of 1E20 (1020). These dummy values are called missing values.

4-46 AS/400 GDDM Programming Guide

Drawing the Chart

Note: Missing values are not supported for Venn diagrams.

Using Component Attributes

If your chart represents more than one data group, you need to differentiate the
groups. For example, a line chart that shows three lines, all of the same line type
and color would be very difficult to understand. Therefore, various component
attributes can be assigned to distinguish one data group from another.

When a multiple component chart is drawn, some types of component attribute are
selected from a table. These attributes are:

Color

Line type
Shading pattern
Marker type

Tables contain entries that determine the order the attributes are assigned. For
example, a color attribute table could contain entries in this order: red, yellow,
blue, and the default color. If the chart had three components, the first would be
red, the second yellow, and the third blue. If the chart had five components, the
fourth would be the default color and the fifth would be red (the table entries are
reused in order). Note that the GDDM routines GSCOL, GSLW, GSPAT, and
GSMARK are not used for Presentation Graphics.

The component attributes are discussed with each chart type.

Some of the following charts are pictures as produced on the display and some are
plots as produced on the IBM 6180 Plotter. For those, the accompanying programs
include the device routines necessary to send the picture to the plotter. For more
information on device routines, see Appendix A, “Devices Compatible with the
AS/400 System.”

Drawing Line Charts

Setting the Color Selection Order

CHCOL - Set component color. CHCOL sets the color of the lines, by defining a
table that holds the number of colors and the order of their selection.

If CHCOL is not specified, the sequence of colors in the default color table is used.
The default color table is the GDDM color table which is either the default color
table for the current page or a color table modified for use in the current page.

Setting the Line Type Selection Order

CHLT — Set component line type. CHLT sets the line type of the components by
defining a table that holds the number of line types and the order of their selection.

If CHLT is not used, all components are drawn with the line type defaulted to or
specified for entry 0 of the line type table. The default line type table shown for the
discussion of the GSLT routine in Chapter 3, “Using GDDM” shows the order of
selection. The components are differentiated by their colors and marker types.

Chapter 4. Using Presentation Graphics 4-47

Drawing the Chart

Setting the Line Width

CHLW — Set component line width. CHLW sets the line width of the components
by defining a table that holds the multiplication factor to be applied to the default
line width.

If CHLW is not used, all components are drawn with the standard line width for the
device.

Setting the Marker Type Selection Order

CHMARK - Set component marker. CHMARK sets the type of marker used by
each of the components by defining a table that holds the number of markers and
the order of their selection.

If CHMARK is not specified, the sequence of markers in the default marker table is
used. The default marker table shown for the discussion of the GSMARK routine in
Chapter 3, “Using GDDM” shows the order of selection.

Suppressing the Markers

CHSET - Specify chart options. CHSET (NOMARKERS) suppresses the
markers.

Setting the Line Curve

CHSET - Specify chart options. CHSET(CURVE) draws the components with
line curving; the degree of line curving is specified by the CHFINE routine. If
CHSET(CURVE) is specified, the default value of CHFINE is 10.

A curved line is more attractive than one with straight lines connecting data points,
but the curved line can be misleading on a chart where a high degree of accuracy
is needed. Presentation Graphics passes the curved line through the data points,
but does not interpolate the true values that lie between data points; therefore,
values on the curved line between data points can be inaccurate.

CHFINE — Set line curving smoothness. CHFINE sets the degree of curve
smoothness of the components. The higher the number specified for CHFINE, the
smoother the curve drawn by CHSET(CURVE).

By default, the degree of smoothness is 10. A number higher than 10 might not
add any noticeable degree of smoothness to the curve but it could greatly increase
the time needed by the system to process and draw the chart.

Writing Data Values

CHSET - Specify chart options. CHSET(NOVALUES|VALUES) controls how
values are displayed. CHSET(VALUES) writes the data value represented by each
data point adjacent to the data point. CHSET(NOVALUES) indicates that no data
values are displayed for the data points.

CHSET(BVALUES) blanks the areas where data values are written. When the area
is blanked, no other display feature can occupy the data value text box. When the
area is not blanked (NBVALUES), the values can overpaint the component.

4-48 AS/400 GDDM Programming Guide

Drawing the Chart

CHVCHR — Number of data value characters. CHVCHR sets the number of
characters to be used for showing data values on a line chart. The value text
attributes are controlled by CHVATT.

Up to 15 characters can be used, but some of the 15 characters from one data
value would probably overwrite those for the next data point.

By default, the true value represented by the data point is used, up to 9 character
positions.

CHSET - Specify chart options. CHSET(NPGFS|PGFS) specifies the method of
punctuating numbers greater than 1000 displayed on the chart. PGFS suppresses
the punctuation except for the decimal point. NPGFS uses 0S/400 system value
QDECFMT to specify the type of punctuation used for numbers greater than 1000
by your system.

CHVATT - Value text attributes. CHVATT specifies the attributes for value text.
Value text is used to show individual values for data points on a line chart.
Attributes that can be set are color, and character font, size, and rotation.

If CHVATT is not specified, each data value is shown in standard-size default
characters, in the default color, in the default O rotation.

Drawing the Chart

CHPLOT - Draw a line graph or a scatter plot. CHPLOT draws the line chart.
Parameters in the CHPLOT routine specify the number of components to be drawn,
the number of data points in each component, and the arrays used for the data
groups the components are drawn to represent.

This is a line chart produced on a plotter:

Chapter 4. Using Presentation Graphics 4-49

Drawing the Chart

PL0536J5

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270

I xkkxxhkxrkkrrkdx [OTAL SALES ***xkkkxkhkrkkhhrkkhhkkhhkkhkhx
I kkkxxhkrxrrrrrkrrrxx [NITIALIZE ****kkkrhhkhrhkhhrrkhhrkhhkkhds
CALL GDDM ('FSINIT') ! Initialize graphics.
OPTION BASE 1 I Set array subscript base
I kkkkkkkrrxkxkx Device routines *xxxkxkkkkkkkrkkhdkkkhkkhsr
INTEGER PLST ! Declare integer

DIM PLST(4) : MAT READ PLST ! Dimension, read array
DATA 11,50,16,1

DIM NLST$(1) : NLST$(1) = ' ! Dimension, assign value
CALL GDDM ('DSOPEN',2,1,'6180 ',4,PLST(),0,NLST$())

I Open plotter device 2 of family 1 named 6180,

! using PLST option group 11 value 50 (pen speed 50% of max),
I and using group 16 option 1 (horizontal paper orientation);
I name 1ist has 0 names in array NLST$

CALL GDDM ('DSUSE',1,2)

I Use device 2 as active device (option 1)

! *kkkkkkhkhkhkhhhhkkkkk Symbo] set khkkkkkkhkkhkhkhhhhkhkkkhkkkhkhkhhdhdiik*k
CALL GDDM ('GSLSS',2,'ADMUWTRP',66)

! Load vector symbol set ADMUWTRP as symbol set #66

I %x%xxx*xx%%x%* DEFINE THE CHART LAYOQUT #*****%%k**kkkkkkkkkkx*

! *hkkkkkhkhkhkhhhhhkhkkkk Head‘ing dkkhkkhkhkhkhhhhkhkhkhhhhhhddhhhhhrrrhhhkik
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 2,3,66,200

1 2 = pen 2, 3 = char mode, 66 = symbol set number, 200 = size
CALL GDDM ('CHHATT',4,HATT()) I Set heading attributes
CALL GDDM ('CHHEAD',11,'TOTAL SALES')

4-50 AS/400 GDDM Programming Guide

Drawing the Chart

00280 ! Write 1l1l-character heading with 'character string'

00290 | ***kxkkkkrkkhkrkkhdx AX]S Frxhkhkrkkhkrkkhhkkhhkkhhkkhhkkkhkk kK *
00300 CALL GDDM ('CHXTTL',5,'MONTH') ! Write 5-character x title
00310 CALL GDDM ('CHYTTL',23,'UNITS SOLD IN THOUSANDS') Iy title
00320 CALL GDDM ('CHXMTH',1) ! Month labels begin with JAN
00330 CALL GDDM ('CHXSET','NOFORCEZERO') ! Label JAN starts at y axis
00340 | *kxkxkxkxhkkhkrhxs Legend sxkkrkkkkhrhkhkkhkhkhrhhkhkhrhrk
00350 CALL GDDM ('CHSET','KBOX') ! Put Tegend inside box.

00360 CALL GDDM ('CHKEYP','H','B','C")

00370 ! Legend position horizontal, bottom, centered

00380 CALL GDDM ('CHKEY',2,7,'Group AGroup B')

00390 ! Write two 7-character legend key labels using 'string'

00400 ! **x*xx*x+x Set attributes for Line Chart x#xsxsxxsrsrsrsrx
00410 INTEGER VATT ! Declare value attributes
00420 DIM VATT(6) : MAT READ VATT ! Dimension, read array
00430 DATA 3,3,0,100,100,9000

00440 ! 3 = pen 3, 3 = char mode, 0 = default symbol set

00450 ! 100 = default char size, 100 = default height/width multiplier
00460 ! 9000 = 90 degree rotation

00470 CALL GDDM('CHSET','VALUES') ! Draw value Tabels

00480 CALL GDDM('CHVATT',6,VATT()) ! Set value label attributes
00490 CALL GDDM ('CHSET','CURVE') ! Smooth the plotted Tines
00500 ! *x*x*xxxx Specify data for Line Chart sxxkkskkrxskrkkkrkrx

00510 DIM MONTHS(12) : MAT READ MONTHS I Array for x axis

00520 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12

00530 DIM SALES(24) : MAT READ SALES ! Array for y axis

00540 DATA 5,6,8,11,14,19,13,10,11,9,7,6

00550 DATA 13,12,14,19,20,27,25,17,17,14,13,12

00560 | ****xxxxxxxx*kxx* DRAW LINE CHART #*****kxkkkkkkhkkkhkrkkhhrkhk®
00570 CALL GDDM ('CHPLOT',2,12,MONTHS(),SALES())

00580 ! Draw chart with 2 components (lines), 12 data points per line
00590 | *x*x**kxkxkx*x**x%* SEND TO DEVICE ***%x*k**kxkxhkkkkhxhrrkhkhrh®

00600 CALL GDDM ('FSFRCE') ! Send to device

006010 | H*x*xxkxkxkkxkx*kx*x [ERMINATE ****xkkkkxhrhkkhrxhkkrkkxhrhrrss
00620 CALL GDDM ('FSTERM') ! Terminate graphics
00630 END ! End BASIC program

Drawing Scatter Plots

Setting the Color Selection Order

CHCOL - Set component color. CHCOL sets the color of the markers, by
defining a table that holds the number of colors and the order of their selection.

If CHCOL is not specified, the sequence of colors in the default color table is used.

The default color table is the GDDM color table which is either the default color
table for the current page or a color table modified for use in the current page.

Setting the Marker Type Selection Order
CHMARK — Set component marker. CHMARK sets the type of marker used by

each of the components, by defining a table that holds the number of markers and
the order of their selection.

Chapter 4. Using Presentation Graphics 4-51

Drawing the Chart

If CHMARK is not specified, the sequence of markers in the default marker table is
used. The default marker table shown for the discussion of the GSMRKS routine in
Chapter 3, “Using GDDM" shows the order of selection.

Writing Data Values

CHSET - Specify chart options. CHSET(NOVALUES|VALUES) controls how
values are displayed. CHSET(VALUES) writes the data value represented by each
data point adjacent to the data point. CHSET(NOVALUES) indicates that no data
values are displayed for the data points.

CHSET(BVALUES) blanks the areas where data values are written. When the area
is blanked, no other display feature can occupy the data value text box. When the
area is not blanked (NBVALUES), the values can overpaint the component.

CHVCHR — Number of data value characters. CHVCHR sets the number of
characters to be used for showing data values on a scatter plot. The value text
attributes are controlled by CHVATT.

Up to 15 characters can be used, but some of the 15 characters from one data
value would probably overwrite those for the next data point.

By default, the true value represented by the data point is used, up to 9 character
positions.

CHSET - Specify chart options. CHSET(NPGFS|PGFS) specifies the method of
punctuating numbers greater than 1000 displayed on the chart. PGFS suppresses
the punctuation except for the decimal point. NPGFS uses 0S/400 system value
QDECFMT to specify the type of punctuation used for numbers greater than 1000
by your system.

CHVATT - Value text attributes. CHVATT specifies the attributes for value text.
Value text is used to show individual values for data points on a scatter plot.
Attributes that can be set are color, and character font, size, and rotation.

If CHVATT is not specified, each data value is shown in standard-size device
default characters, in the default color, in the default O rotation.

Drawing the Scatter Plot

CHSET - Specify chart options. CHSET (NOLINES) suppresses the
interconnecting lines between points of a line chart, resulting in scatter plot.

CHPLOT - Draw a line graph or a scatter plot. CHPLOT draws the scatter plot.
Parameters in the CHPLOT routine specify the number of components to be drawn,
the number of data points in each component, and the arrays used for the data
groups the components are drawn to represent.

The next chart is a scatter plot produced on the display. For this chart, a
logarithmic scale is used for the y axis, and the axis is duplicated.

4-52 AS/400 GDDM Programming Guide

Drawing the Chart

35MM0536J6

00010 ! #xxxxskxkxxskxxxxx [RAFFIC FLOW *****xkxkkhkkkhrhrrhrkhrhrrss

00020 | *x*xxxxkxkxkvkxrvrxx [NITIALIZE ****kkkkkkhkhrkhkhhrkkhhkkhkhkkhk®

00030 CALL GDDM ('FSINIT') ! Initialize graphics

00040 OPTION BASE 1 ! Set array subscript base
00050 ! *kxkkkkkkkkkkkkrk Symhol SeL Hkkkkkkkkdkkkdkkkkdkrhkhkhkhkkkhkk
00060 CALL GDDM ('GSLSS',2,'ADMUWDRP',66)

00070 ! Load vector symbol set ADMUWDRP as symbol set #66

00080 ! #*xx*xx*xx%x* DEFINE THE CHART LAYOQUT #*%****%x*k*xkkkkkkkhkkk*
00090 | ***x*xkkkkxkhkrxkhk® Heading B T
00100 INTEGER HATT ! Declare head attribute array
00110 DIM HATT(4) : MAT READ HATT ! Dimension, read array

00120 DATA 6,3,66,225

00130 ! 6 = yellow, 3 = char mode, 66 = symbol set number, 225 = size
00140 CALL GDDM ('CHHATT',4,HATT()) I Set heading attributes

00150 DIM CHAR$*60 ! Dimension char var to 60
00160 CHAR$ = 'AVERAGE DAILY TRAFFIC FLOW;MONTH OF JUNE, BRIDGE MN256S'
00170 CALL GDDM ('CHHEAD',55,CHAR$)

00180 ! Write 55-character heading with 'character string'

00190 | ***kxkkkkkkkkkhhrkx AXOS HF*krdkkhkhkkhkhkkrkhhkkhhkkhkk Xk kkk* Kk
00200 INTEGER TATT I Declare title attribute array
00210 DIM TATT(4) : MAT READ TATT ! Dimension, read array

00220 DATA 7,3,0,100

00230 ! 7 = white, 3 = char mode, 0 = default symbol set, 100 = size

00240 CALL GDDM ('CHTATT',4,TATT()) I Set axis title attributes
00250 CHAR$ = 'TIME OF DAY'

00260 CALL GDDM ('CHXTTL',11,CHARS) I Write 1l-character y-title
00270 CHAR$ = 'NUMBER OF BRIDGE CROSSINGS'

00280 CALL GDDM ('CHYTTL',26,CHARS) I Write 26-character x-title
00290 CALL GDDM ('CHYSET','LOGARITHMIC')! Use log scale for y axis
00300 CALL GDDM ('CHSET','YDUP') ! Draw duplicate y axis

00310 CALL GDDM ('CHYTIC',10.0,1.0) Add major ticks for log axis

!
00320 CALL GDDM ('CHXTIC',2.0,1.0) ! Add minor ticks for x axis
00330 CALL GDDM ('CHSET', 'NDRAW') I Suppress axes until CHDRAX

Chapter 4. Using Presentation Graphics ~4-53

Drawing the Chart

00340 ! *kxkkkkkkkkkkhkx Legend *xkxkkkkkkkkkhkkkkkkkkrhkhkhkhkkkhkk
00350 CALL GDDM ('CHKEYP','H','B','C') ! Position legend

00360 ! 'H' = horizontal, 'B' = bottom, 'C' = centered

00370 CHAR$ = ' TRUCKS AUTOMOBILESMOTORCYCLES BICYCLES
00380 CALL GDDM ('CHKEY',4,11,CHARS$)

00390 ! Write four ll-character legend key labels using 'string'

00400 CALL GDDM ('CHSET','KBOX') ! Enclose legend in box
00410 ! ****x*x*x Specify data for Scatter Plot #*#xsxsxxkrsrsrsrx
00420 DIM TIMES(24) : MAT READ TIMES ! Array for x axis

00430 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12

00440 DATA 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

00450 DIM TRAFFIC(96) : MAT READ TRAFFIC ! Array for y axis
00460 DATA 5, 6, 4, 9, 12, 18, 33, 30, 37, 34, 23, 15

00470 DATA 37, 34, 33, 32, 30, 12, 10, 10, 9, 11, 6, 4

00480 DATA 20, 13, 14, 31, 48,189,240,254,237,184,195,215

00490 DATA 219,184,173,230,266,189,110,140,132, 84, 74, 35

00500 DATA 3, 2, 1, 4, 8, 10, 33, 21, 10, 9, 5, 15

00510 DATA 19, 4, 7, 30, 27, 14, 10, 12, 17, 13, 9, 5

00520 DATA 1, 1, 1, 1, 2, 10, 15, 18, 10, 12, 13, 15

00530 DATA 19, 14, 17, 16, 22, 17, 14, 13, 10, 3, 2, 3

00540 | x***xxx**kxx**x*x* DRAW SCATTER PLOT ****x**k*kkxkkkkkkkkkhkkkkkk
00550 CALL GDDM ('CHSET','NOLINES') I Suppress Tines
00560 CALL GDDM ('CHPLOT',4,24,TIMES(),TRAFFIC())! Draw scatter plot
00570 CALL GDDM ('CHDRAX') ! Draw axes

00580 ! **xkxkxskxkkkxr*x Send to display #xsxskkrkkskkshkkkhrhrhhkhrrs

00590 INTEGER ATTYPE,ATMOD,COUNT

00600 CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display
00610 ! #xxxxskxkxxkxcxxx*x [ERMINATE ***kkkkhkrdhrhhhhrhrrhrhrhrrssr
00620 CALL GDDM ('FSTERM') I Terminate graphics
00630 END ! End BASIC program

Drawing Surface Charts

Setting the Component Color Selection Order

CHCOL - Set component color. CHCOL sets the color of the components, by
defining a table that holds the number of colors and the order of their selection.

If CHCOL is not specified, the sequence of colors in the default color table is used.
The default color table is the GDDM color table which is either the default color
table for the current page or a color table modified for use in the current page.

Setting the Line Curve

CHSET - Specify chart options. CHSET (CURVE) draws the components with
line curving; the degree of line curving is specified by the CHFINE routine. If
CHSET(CURVE) is specified, the default value of CHFINE is 10.

A curved line is more attractive than one with straight lines connecting data points,
but the curved line can be misleading on a chart where a high degree of accuracy
is needed. Presentation Graphics passes the curved line through the data points,
but does not interpolate the true values that lie between data points; therefore,
values on the curved line between data points can be inaccurate.

4-54 AS/400 GDDM Programming Guide

Drawing the Chart

CHFINE — Set line curving smoothness. CHFINE sets the degree of curve
smoothness of the components.

By default, the degree of smoothness is 10. A number higher than 10 might not
add any noticeable degree of smoothness to the curve but will substantially
increase the time needed by the system to process and draw the chart.

Writing Data Values

CHSET - Specify chart options. CHSET(NOVALUES|VALUES) controls how
values are displayed. CHSET(VALUES) writes the data value represented by each
data point adjacent to the data point. CHSET(NOVALUES) indicates that no data
values are displayed for the data points.

CHSET(BVALUES) blanks the areas where data values are written. When the area
is blanked, no other display feature can occupy the data value text box. When the
area is not blanked (NBVALUES), the values can overpaint the component.

CHVCHR — Number of data value characters. CHVCHR sets the number of
characters to be used for showing data values on a surface chart. The value text
attributes are controlled by CHVATT.

Up to 15 characters can be used, but some of the 15 characters from one data
value would probably overwrite those for the next data point.

By default, the true value represented by the data point is used, up to 9 character
positions.

CHSET - Specify chart options. CHSET(NPGFS|PGFS) specifies the method of
punctuating numbers greater than 1000 displayed on the chart. PGFS suppresses
the punctuation except for the decimal point. NPGFS uses 0S/400 system value
QDECFMT to specify the type of punctuation used for numbers greater than 1000
by your system.

CHVATT - Value text attributes. CHVATT specifies the attributes for value text.
Value text is used to show individual values for data points on a surface chart.
Attributes that can be set are color, and character font, size, and rotation.

If CHVATT is not specified, each data value is shown in standard-size device
default characters, in the default color, in the default O rotation.

Setting the Shading Attributes

CHPAT — Set component shading pattern. CHPAT sets the type of pattern used
by shaded components, by defining a table that holds the number of patterns and
the order of their selection.

If CHPAT is not specified, the sequence of patterns in the default pattern table is
used. The default pattern table shown for the discussion of the GSPAT routine in
Chapter 3, “Using GDDM" shows the order of selection.

CHSET - Specify chart options. CHSET (INFILL) suppresses the shading of the
first component, which results in a floating surface chart. Floating surface charts
are described on page 4-60.

Chapter 4. Using Presentation Graphics 4-55

Drawing the Chart

CHSET (NOFILL) suppresses the shading of all the components, which results in a
line chart.

Setting the Type of Shading to be Performed

CHSET - Specify chart options. CHSET(NOMOUNTAIN|JMOUNTAIN) specifies
whether mountain range shading or normal shading is to be performed.
Normal shading (CHSET(NOMOUNTAIN)) is performed in the following manner:

e The first component is shaded from the x-axis (or state 1 y datum line, if any).
This line is called the reference line or the shading reference line.

e Every other component is shaded from the previous component's data line.

In cases in which the components overlap one another, a mixing mode of 'OR' is
used.

Mountain range shading (CHSET(MOUNTAIN)) is performed in the following
manner:
e The last component is shaded from the x-axis (or state 1 y datum line, if any).

» Every other component is shaded, in reverse order, also from the x-axis (or y
datum line, if any), and NOT from the previous component's data line, as in the
case of normal shading.

Mountain range shading always uses the default mix mode of overpaint, except for
hardcopy devices, which use a modified mix mode (color is the result of etching
one color over the top of another).

If relative data is used (CHSET(RELATIVE)), there will be no difference between
mountain range shading and normal shading.

Setting the Type of Data to be Shown

CHSET - Specify chart options. CHSET (ABSOLUTE) shows the data as
absolute data.

CHSET (RELATIVE) shows the data as relative data.
Data for surface charts can be shown as either absolute data or as relative data.

Absolute data (the default) is shown where the upper boundary of the shaded
region shows the true values of the y-data for that component.

Relative data is shown where the upper boundary of a component shows the sum
of its own y-values added to those of the components shown below it. The true
y-value of the component can be seen be comparing the thickness of its shaded
region with the y-axis scale.

4-56 AS/400 GDDM Programming Guide

Absolute
versus relative
data. The
picture shows
two surface
charts whose
data groups are
identical, but the
method of
showing the data
differs. Note the
difference in the
scale range
used for the two
charts.

Drawing the Chart

35MM0536J7

Chapter 4. Using Presentation Graphics

4-57

Drawing the Chart

Drawing the Surface Chart

CHSURF — Drawing a surface chart. CHSURF draws a surface chart.
Parameters in the CHSURF routine specify the number of components to be drawn,
the number of data points in each component, and the arrays used for the data
groups the components are drawn to represent.

This is a surface chart produced on a plotter. It shows relative data, where the
data values are stacked upon one another. The chart also uses month labels for

the x axis.
PL0536J8

00010 ! #xxxxskxkxxkxxxxx*x STORE SALES #***kkxkrkrhhhdhrhrrhrhrhrrss
00020 | *x*xxxxkxxkvkxrvrxx [NITIALIZE ****kkkkkhkhkhrkhkhhrkkhhkkhhkkhk®
00030 CALL GDDM ('FSINIT') ! Initialize graphics.
00040 OPTION BASE 1 ! Set array subscript base
00050 | #*x*xx*xxkx*k*k*x**x DEViCe routines #*xxxxkxkxkkkkxkkkkxhrhkkkx
00060 INTEGER PLST ! Declare integer
00070 DIM PLST(4) : MAT READ PLST ! Dimension, read array
00080 DATA 11,50,16,1
00090 DIM NLST$(1) : NLST$(1) = ' ! Dimension, assign value

00100 CALL GDDM ('DSOPEN',2,1,'6180 ',4,PLST(),0,NLST$())

00110 ! Open plotter device 2 of family 1 named 6180,

00120 ! using PLST option group 11 value 50 (pen speed 50% of max),
00130 ! and using group 16 option 1 (horizontal paper orientation);
00140 ! name 1ist has O names in array NLST$

00150 CALL GDDM ('DSUSE',1,2)

4-58 AS/400 GDDM Programming Guide

00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720

Drawing the Chart

I Use device 2 as active device (option 1)

! kkhkkkkhkhkkkhkhkhkkhkhkikkx*k Symbo] Set khkkkhkhkhkkkhkhkhhkhkhhkhkdhkhkikkhkhkikk*k
CALL GDDM ('GSLSS',2,'ADMUWTIP',66)

I Load vector symbol set ADMUWTIP as symbol set #66

CALL GDDM ('GSLSS',2,'ADMUVCRP',67)

I Load vector symbol set ADMUVCRP as symbol set #67

I x%%xxx***x*x* DEFINE THE CHART LAYOUT #****%xx*k**xkkkkkkkkkkk*

! *kkkkkhkhkhkhkhhhhkhkkkk Heading kkkkhkhkhkhhhhkhkhkkkhkhkhkhkhdhdhhhhrkkkhkik
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 5,3,66,225

' 5 =pen 5, 3 = char mode, 66 = symbol set number, 225 = size

CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes

CALL GDDM ('CHHEAD',20,'GROSS SALES FOR 1983')

I Write 20-character heading with 'character string'

! kkhkkkkhkhkkkhkhkhkkhkhkikkkhkhkk AXES khkkhkkkhkhkhkkdhkhkkdhkhkhhkdhkhkhdhkhkkdhkhkhkkdkx
INTEGER TATT ! Declare axis title attribute
DIM TATT(4) : MAT READ TATT ! Dimension, read array

DATA 2,3,67,100

1 2 = pen 2, 3 = char mode, 67 = symbol set number, 100 = size
CALL GDDM ('CHTATT',4,TATT()) ! Set title attributes

CALL GDDM ('CHXTTL',5,'MONTH') ! Write 5-character x-title
CALL GDDM ('CHYTTL',25,'SALES VOLUME IN THOUSANDS') ! y-title
CALL GDDM ('CHXMTH',1) ! Month Tlabels begin with JAN
CALL GDDM ('CHXSET','NOFORCEZERQO') ! Label JAN starts at y axis
! khkhkkkhkhkkkhhkhkkhkhkikkkhkhkk Legend khhkkkhkhkkhhkhkkhhkhkkhkhkhkdhkhkkkhkhkkkkx

CALL GDDM ('CHSET','KBOX') ! Enclose legend in box

CALL GDDM ('CHKEYP','H','B','C")

I Position legend H = horizontal, B = bottom, C = centered

CALL GDDM ('CHKEY',3,6,'ValleyUptownSuburb')

I Write three 6-character Tegend key Tabels using 'string'

I x#xxxxxx% Set attributes for Surface Chart *#x#xsxxkxsrsr*
INTEGER VATT I Declare value attributes
DIM VATT(6) : MAT READ VATT ! Dimension, read array
DATA 1,3,0,100,100,0

1'1 =pen 1, 3 =char mode, 0 = default symbol set

1 100 = default char size, 100 = default height/width multiplier
1 0 = default rotation (0 degrees)

CALL GDDM('CHSET','VALUES") ! Draw value labels

CALL GDDM('CHVATT',6,VATT()) ! Set value label attributes
CALL GDDM ('CHSET','CURVE") I Smooth the plotted Tines
I *xkxkrkxx Specify data for Surface Chart xxsxsxsxxsrskrsrsk

DIM MONTHS(12) : MAT READ MONTHS

DATA 1,2,3,4,5,6,7,8,9,10,11,12

DIM SALES(36) : MAT READ SALES

DATA 10,12,16,16,15,17,18,23,20,19,24,30

DATA 15,16,18,19,20,20,19,25,26,32,38,42

DATA 17,18,20,20,23,24,32,30,32,34,40,43

CALL GDDM ('CHSET','RELATIVE') ! Show relative data

I xkxkxxkkxxxkxx*x* DRAW SURFACE CHART #****%xkkkxkkhkkkhkrkkhkkxk
CALL GDDM ('CHSURF',3,12,MONTHS(),SALES())

! Draw chart with 3 components (areas), 12 data points per line
I oxkxrkxnrsrsxrxx Send to display *sxsrsrkrrskrsrshrhrhkrsrkrk
CALL GDDM ('FSFRCE') ! Send to display

I kkkxxhkrxrhkrrkkhxx [ERMINATE ****kxkkkrhkhhrkhhrkhhkkhhkkhk®

CALL GDDM ('FSTERM') I Terminate graphics
END ! End BASIC program

Chapter 4. Using Presentation Graphics 4-59

Drawing the Chart

Drawing a Floating Surface Chart
A floating surface chart can be useful for showing ranges of values.

For a floating surface chart, the lower boundary line for the lowest region is defined
with dummy values that define the boundary but do not represent a filled area. In
the program, these dummy values are shown in the data array as the first
component.

To draw a floating surface chart, use the routines for a surface chart plus the
following routines:

CHSET - Specify chart options. CHSET (RELATIVE) shows the data as relative
data. A floating surface chart should be used with relative data specified so that
the widths of the components are significant.

CHSET - Specify chart options. CHSET (INFILL) suppresses the shading of the
first component, which creates a floating surface chart.

The following chart is a floating surface chart that uses CHSET (INFILL) to
suppress the shading of the first component. The data for the first component is
used to set the lower limit of the range represented by component 2 (labeled
PROCESS 1).

The program sets both fill patterns to solid and specifies a scale that uses a major
tick mark every five units for the y axis (which is duplicated) and four minor tick
marks between each major tick mark. Also, no legend is used; instead, chart notes
are used to label the components because, if a legend is used, the first component
is represented in the legend even though its shading is suppressed. A datum line
and similarly-colored note is used to help explain the chart. The chart is produced
on the display:

%x%%x%* 35MMO536J9 *x**

4-60 AS/400 GDDM Programming Guide

00010
00020
00030
00040
00050
00060
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570

Drawing the Chart

I kkkxxkkxrrkxxkkxx*x DEFECT RATE *****kxkkkkkhkkkhkrkkhhrrk

I kkkrrhkrrrkrkrrrxkx [NITIALIZE **kkkskkrhhhrkhhhrkhrrkhhrhrss
CALL GDDM ('FSINIT') ! Initialize graphics
OPTION BASE 1 I Set array subscript base
! kkkkkkhkhkhkhkhkhkhkkkkk Symbo] Set *kkkkkkkhkhkhkhkhkhhhhkkkkkkkkhkhkhkhkk*
CALL GDDM ('GSLSS',2,'ADMUWSRP',66)

I %x%xx*x%%x%* DEFINE THE CHART LAYOQUT #*****%x%k*x**kkk*xkkkkkk**

! *kkkkkhkhkhkhkhkhkhhhkikkkxkk Heading khkhkhkkkkkkhkhkhkhkhkhhhhhhhhkkkhkhkhkhkhk,k*
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 7,3,66,300

1 7 = white, 3 = char mode, 66 = symbol set number, 300 = size

CALL GDDM ('CHHATT',4,HATT()) I Set heading attributes
CALL GDDM ('CHHEAD',20,'Process Defect Rates')

I Write 20-character heading with 'character string'

INTEGER PAT I Declare pattern array

DIM PAT(2) : MAT READ PAT ! Dimension, read array

DATA 16,16

CALL GDDM ('CHPAT',2,PAT()) ! Set pattern attributes
INTEGER COL : DIM COL(3) : MAT READ COL I Colors array

DATA 2,2,3

CALL GDDM ('CHCOL',3,COL()) ! Set color attributes

! *kkkkkhkhkhkhhhhhhkkhkkk Axes *kkkhkhkhkhkhhhkhkhkhkhkhhhhhddhhhhhrrxrhkhkik
INTEGER TATT ! Declare axis title attribute
DIM TATT(4) : MAT READ TATT ! Dimension, read array
DATA 7,3,66,125

! 7 = white, 3 = char mode, 66 = symbol set number, 125 = size
CALL GDDM ('CHTATT',4,TATT()) I Set title attributes
CALL GDDM ('CHXTTL',5, 'Month') ! Write 5-character x-title
DIM CHAR$*50 ! 50 characters maximum
CHAR$ = 'Number of Defects, Minimum to Maximum'

CALL GDDM ('CHYTTL',38,CHARS)
CALL GDDM ('CHXMTH',1)

Write y-title

Month labels begin with JAN
CALL GDDM ('CHXSET','NOFORCEZERQO') ! Label JAN starts at y axis
CALL GDDM ('CHSET','YDUP') Duplicate y axis

CALL GDDM ('CHYTIC',5.0,4.0) ! Add minor tick marks

I xxxxxx%x% Set attributes for Surface Chart x#xsx*xxxkxsrsx

CALL GDDM ('CHSET','INFILL") ! Suppress 1st area

CALL GDDM ('CHSET','CURVE') ! Smooth the plotted Tlines
I x#xxxxx%x% Specify data for Surface Chart xsxsxsxsxxsxsrsx

DIM MONTHS(12) : MAT READ MONTHS I Array for x axis

DATA 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12

DIM DEFECTS(36) : MAT READ DEFECTS ! Array for y axis

DATA 20,18,18,17,18,19,18,20,10, 8, 6, 7

DATA 10,11,12,11,13,12,10,14,12, 9, 7, 6

DATA 14,13,14,15,16,15,13,17,17,10, 8, 5

CALL GDDM ('CHSET','RELATIVE') I Show relative data

I #xkxxskxkxcxxx*x* DRAW SURFACE CHART #***%%*xkkkkkkhrhrhhkhr*h®
CALL GDDM ('CHSURF',3,12,MONTHS(),DEFECTS())

I Draw chart with 3 components (areas), 12 data points per line
CALL GDDM ('CHDRAX') ! Draw axes again

INTEGER DATT I Declare datum 1line attribute
DIM DATT(2) : MAT READ DATT ! Dimension, read array

DATA 1,5

!'1 = Dblue, 5 = dashed I Datum line attributes
I *xkxkdkxdxkxx*x Draw datum 1ine **xskxkkkdkxkxhkkrkkrhxhkrrdrhxk

!
!
!
!

Chapter 4. Using Presentation Graphics 4-61

Drawing the Chart

00580 CALL GDDM ('CHDATT',2,DATT()) ! Set datum attributes
00590 CALL GDDM ('CHXDTM',8.0) ! Draw datum Tine from X
00600 | #*x*xx*xx*x*x*x* Write chart nNOtes ***x*xkxkkkkxkkkkxhkhkkk%x
00610 INTEGER NATT I Declare integer variable
00620 DIM NATT(2) : MAT READ NATT ! Dimension, read array
00630 DATA 1,2

00640 ! 1 = blue, 2 = char mode Note attributes

00650 Set note attributes

00660 Enclose note in box

!
CALL GDDM ('CHNATT',2,NATT()) !
CALL GDDM ('CHSET','NBOX') !

!

00670 CALL GDDM ('CHSET','BNOTE') Blank note area
00680 CALL GDDM ('CHNOFF',4.5,3.5) ! Position note

00690 CHAR$ = 'IMPLEMENTED QUALITY;AWARENESS PROGRAM 8/1'
00700 CALL GDDM ('CHNOTE','Z7',41,CHAR$)! Write note

00710 NATT(1) = 2 ! Note color red
00720 CALL GDDM ('CHNATT',2,NATT()) ! Set note attributes
00730 CALL GDDM ('CHNOFF',2.0,20.0) I Position note
00740 CALL GDDM ('CHNOTE','Z7',9,'PROCESS 1')

00750
00760
00770
00780
00790
00800
00810
00830
00840

NATT(1) = 3 !
CALL GDDM ('CHNATT',2,NATT()) !
CALL GDDM ('CHNOFF',2.0,31.0) ! Position note

CALL GDDM ('CHNOTE','Z7',9,'PROCESS 2') I Write note

I oxkxrkxsrsxrxrxx Send to display *sxsrsxkrrkrsrshrhrrrrsrsrk
INTEGER ATTYPE,ATMOD,COUNT ! Declare integers
CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display
CALL GDDM ('FSTERM') I Terminate graphics
END I End BASIC program

Note color pink
Set note attributes

Drawing Bar Charts

Setting the Component Color Selection Order

CHCOL - Set component color. CHCOL sets the color of the components, by
defining a table that holds the number of colors and the order of their selection.

If CHCOL is not specified, the sequence of colors in the default color table is used.
The default color table is, in this case, the GDDM color table which is either the
default color table for the current page or a color table modified for use in the
current page.

Setting the Bar Attributes

CHPAT — Set component shading pattern. CHPAT sets the type of pattern used
by shaded components, by defining a table that holds the number of patterns and
the order of their selection.

If CHPAT is not specified, the sequence of patterns in the default pattern table is
used. The default pattern table shown for the discussion of the GSPAT routine in
Chapter 3, “Using GDDM" shows the order of selection.

CHSET - Specify chart options. CHSET (NOFILL) suppresses the shading of
bars.

4-62 AS/400 GDDM Programming Guide

Drawing the Chart

Writing Bar Values

CHSET - Specify chart options. CHSET (NOVALUES|VALUES|CVALUES)
controls how values are displayed. CHSET(VALUES) writes the data value
represented by each bar adjacent to the bar. CHSET(NOVALUES) indicates that
no data values are displayed on the bars.

CHSET(CVALUES) controls how values are displayed on the bars. Use it followed
by CHSET(VINSIDE|VONTOP) to display the values inside (VINSIDE) or above
(VONTOP) the bars.

CHSET (BVALUES) blanks the areas where bar values are written. When the area
is blanked, no other display feature can occupy the bar value text box. When the
area is not blanked (NBVALUES), the values can overpaint the component.

CHVCHR — Number of data value characters. CHVCHR sets the number of
characters to be used for showing bar values on a bar chart. The value text
attributes are controlled by CHVATT.

Up to 15 characters can be used, but some of the 15 characters from one bar
value would probably overwrite those for the next bar (for character-mode 2), or
would be too small to read (for character-mode 3).

By default, the true value represented by the bar is used, up to 9 character
positions. The picture of the single-bar chart shown later has bar values 2
characters long.

CHSET - Specify chart options. CHSET (NPGFS|PGFS) specifies the method of
punctuating numbers greater than 1000 displayed on the chart. PGFS suppresses
the punctuation except for the decimal point. NPGFS uses 0S/400 system value
QDECFMT to specify the type of punctuation used for numbers greater than 1000
by your system.

CHVATT - Value text attributes. CHVATT specifies the attributes for value text.
Value text is used to show individual values for bars on a bar chart. Attributes that
can be set are color, and character font, size, and rotation.

If CHVATT is not specified, each bar value is shown in standard-size device default
characters, in the default color, with the default rotation.

Setting the Bar Spacing

CHGAP — Spacing between bars. CHGAP sets the distance between the bars in
a bar chart. By default, the distance is one-half the width of each individual bar. A
negative value gives overlapping bars.

Drawing the Bar Chart

CHBAR — Draw a bar chart. CHBAR draws a bar chart. Parameters in the
CHBAR routine specify the number of components to be drawn, the number of bars

in each component, and the array used for the dependent variables (the heights of
the bars).

Chapter 4. Using Presentation Graphics 4-63

Drawing the Chart

The following chart is an example of a single-bar chart produced on the display.
The chart is oriented horizontally, and it uses an invisible grid to suppress the x
axis (which is vertical) and to overpaint the chart components to increase the
usability of the chart. The tick marks for the axes are suppressed to enhance the
simple appearance of the chart.

kx%%x% 35MMOS36K] *x*x*

00010 | #x*xxkxkxkkxkxkxr* MILEAGE ****kxkkrkrdhrhdkrkhrhrhhrkhrhrrss

00020 | ***xxxkkxkxkrkxkvkx [NITIALIZE ****kkkkkkhhrkhhrkhhkkhhkkhs®
00030 CALL GDDM ('FSINIT') ! Initialize graphics
00040 OPTION BASE 1 ! Set array subscript base

00050 ! *kxkkkkkkkkkkkkrk SymhoT SEt Hkkkkkkkhdkdkhdkdkhkdrhkhkhkkkkhkk

00060 CALL GDDM ('GSLSS',2,'ADMUWCRP',66)

00070 ! Load vector symbol set ADMUWCRP as symbol set #66

00080 CALL GDDM ('GSLSS',2,'ADMUVTIP',67)

00090 ! Load vector symbol set ADMUVTIP as symbol set #67

00100 ! xx**xx*x*x*x* DEFINE THE CHART LAYOUT #*****k**k*kkkkkkkkkkkk*
00110 CALL GDDM ('CHSET','XVERTICAL') ! Horizontal format

00120 INTEGER HATT I Declare heading attribute
00130 DIM HATT(4) : MAT READ HATT ! Dimension, read array

00140 DATA 6,3,66,275

00150 ! 6 = yellow, 3 = char mode, 66 = symbol set number, 275 = size
00160 CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
00170 CALL GDDM ('CHHEAD',16,'MILEAGE PER YEAR')

00180 ! Write 16-character heading with 'character string'

00190 | ***kxkkkkkkhkkkhkrkhh AXQS **krkhkhkrkkhhkkkhkkhhkkhhkkhhkk kK *
00200 CALL GDDM ('CHSET', 'NDRAW') I Suppress axes/grid until CHDRAX
00210 CALL GDDM ('CHXSET','PLAIN') ! Suppress x-axis tick marks
00220 CALL GDDM ('CHYSET','PLAIN') ! Suppress y-axis tick marks
00230 CALL GDDM ('CHYRNG',0.0,22.0) ! Set specific range for y axis
00240 INTEGER TATT ! Declare axis title attribute
00250 DIM TATT(4) : MAT READ TATT ! Dimension, read array

4-64 AS/400 GDDM Programming Guide

Drawing the Chart

00260 DATA 4,3,67,150
00270 ! 4 = green, 3 = char mode, 67 = symbol set number, 150 = size

00280 CALL GDDM ('CHTATT',4,TATT()) I Set title attributes

00290 CALL GDDM ('CHYTTL',18,'THOUSANDS OF MILES') ! y-axis title
00300 INTEGER LATT ! Declare axis label attribute
00310 DIM LATT(2) : MAT READ LATT ! Dimension, read array

00320 DATA 4,2

00330 ! 4 = green, 2 = character mode

00340 CALL GDDM ('CHLATT',2,LATT()) ! Set Tlabel attributes

00350 CALL GDDM ('CHXLAB',4,4,'1980198119821983"')

00360 ! Write 4 4-character x-axis labels with 'character string'
00370 | **kxxkkkkrkhkrrhkx Specify grid EE T
00380 INTEGER GATT ! Declare axis grid attribute
00390 DIM GATT(6) : MAT READ GATT ! Dimension, read array

00400 DATA 0,0,0,8,0,2

00410 ! First three elements are for an x-axis grid (not used here)
00420 ! For y-axis grid, 8 — background, 0 = solid line, 2 = wide line
00430 CALL GDDM ('CHGATT',6,GATT()) ! Set grid attributes

00440 CALL GDDM ('CHYSET','GRID') ! Draw invisible grid from y axis
00450 | #x*xkkxkxkkxkxkx** Bar VaAlUES ***xkkkkxkkhkkhrkhkhkkrkhrhkrkx
00460 INTEGER VATT ! Declare bar value attribute
00470 DIM VATT(2) : MAT READ VATT ! Dimension, read array

00480 DATA 4,2

00490 ! 4 = green, 2 = char mode

00500 CALL GDDM ('CHVATT',2,VATT()) ! Set bar value attributes
00510 CALL GDDM ('CHSET','VALUES') ! Show bar values

00520 ! ****x*x*x**x Specify data, draw chart sxsxsxsxsxrsrsrsrrrx
00530 DIM MILES(4) : MAT READ MILES ! Dimension and read data array
00540 DATA 13,16,20,19

00550 CALL GDDM ('CHBAR',1,4,MILES())

00560 ! Draw chart with 1 data group of 4 bars

00570 CALL GDDM ('CHDRAX') ! Draw axes and grid

00580 ! ****x*kx*kx*x*kx**x** Send to djsp]ay B
00590 INTEGER ATTYPE,ATMOD,COUNT

00600 CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display
00610 ! ***xxkkxkxkkkxkk**x [ERMINATE *****kkkkkkhhrkkhhrkkhhkkhhkkhk®
00620 CALL GDDM ('FSTERM') I Terminate graphics
00630 END I End BASIC program

Drawing Multiple-Bar Charts

CHSET - Specify chart options. CHSET (MBAR) draws a multiple-bar chart
when CHBAR is called.

CHGGAP - Spacing between bar groups. CHGGAP sets the distance between
groups of bars in a multiple-bar chart. By default, the distance is twice the width of
each individual bar in a group of bars.

CHNUM — Set number of chart components. CHNUM sets the number of
individual bars used for each x-axis value. The individual bars are constructed by
each call of the CHBAR routine.

The parameter value passed to Presentation Graphics by CHNUM is the number of

bars Presentation Graphics makes room for on the x axis. For example, for a
program that draws a chart with two groups of three bars each, CHNUM(3) causes

Chapter 4. Using Presentation Graphics 4-65

Drawing the Chart

the bars drawn by the first CHBAR routine to be narrower and placed on the x axis
so that two other bars can also be drawn by other CHBAR routines.

4-66 AS/400 GDDM Programming Guide

Drawing the Chart

These combinations of routines draw the same chart as two groups with three bars
in each:

1. With one call to CHBAR:

a. CALL GDDM ('CHBAR',3,2,ARRAY()) where ARRAY has six elements; the
first two elements are the values for the first bar in each group, the second
two elements are the values for the second bar, and so forth.

2. With two calls to CHBAR:

a. CALL GDDM ('CHNUM',3).

b. CALL GDDM ('CHBAR',2,2,ARRAY1()) where ARRAY1 has four elements;
the first two elements are the values for first bar in each group, and the
second two elements are the values for the second bar.

c. CALL GDDM (‘CHBAR',1,2,ARRAY2()) where ARRAY?2 has two elements,
which are the values for the last bar in each group.

CHBAR — Draw a bar chart. CHBAR draws a bar chart. Parameters in the
CHBAR routine specify the number of components to be drawn, the number of bars
in each component of the multiple-bar chart, and the array used for the dependent
variables (the heights of the bars).

This is an example of a multiple-bar chart produced on a plotter. The chart uses a
translated x-axis line to show negative values. The translated axis line is
positioned at 0 on the y axis, and the range for the y axis is set from —6 through
+6. The gap between the groups of bars is set to 3 (3 times the width of an
individual bar).

PLO536K2

Chapter 4. Using Presentation Graphics 4-67

Drawing the Chart

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580

I %xkxxkxkxx* COMMODITY — MULTIPLE-BAR **%*%x%k***k*xkxk*kkkkk**

I kkkxxhkrxrhhrrkrhrxx [NITIALIZE ***xkkkxhkhkhrkhhrkhhkrkhhkrkhsx
CALL GDDM ('FSINIT') ! Initialize graphics.
OPTION BASE 1 ! Set array subscript base
INTEGER DEVID,FAM,PCT,PLST,NCT,US ! Declare integers
DEVID=2 : FAM=1 : PCT=4 ! Variables for plotter DSOPEN
| Device #2, family type 1, 4 items in device parameter Tist
DIM PLST(4) : MAT READ PLST ! Declare, read parm list

DATA 11,50,16,1

I Option #11 has value = 50 for pen speed 50% maximum

! Option #16 has value = 1 for horizontal paper orientation

NCT = 0 ! Name count = 0

DIM NLST$(1) : NLST$(1)=' ‘' ! Name list is empty

CALL GDDM ('DSOPEN',DEVID,FAM, '6180 ' ,PCT,PLST(),NCT,NLST$())
! Open device #2, family type 1, 6180 Plotter, using 4-element

I parm list, name count 0, family name ' '

Us=1 ! Variable for plotter DSUSE
CALL GDDM ('DSUSE',US,DEVID) I Use device #2 as current device
! khkkhkkkkhkhkkkhhkhkkhkhkikx*k Symbo] set khkkkhkhkhkkkhkhkhhkhkhhkhkdhkhkikkhkhkk*,
CALL GDDM ('GSLSS',2,'ADMUWCIP',66)

! Load vector symbol set ADMUWCIP as symbol set #66

CALL GDDM ('GSLSS',2,'ADMUVTIP',67)

I Load vector symbol set ADMUVTIP as symbol set #67

I x%%xxx%**x*x* DEFINE THE CHART LAYOUT #****%x*x**k*kkkkkkkkkkkk*
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array

DATA 4,3,66,225

! 4 = pen 4, 3 = char mode, 66 = symbol set number, 225 = size
CALL GDDM ('CHHATT',4,HATT()) I Set heading attributes

CALL GDDM ('CHHEAD',28,'COMMODITY VALUE FLUCTUATIONS')

I Write 28-character heading with 'character string'

CALL GDDM ('CHVMAR',10,20)

I Set right vertical margin to 20 to allow room for legend

! *kkkkkhkhkhkhhhhhhrkhkkkk Axes *kkhkkhkhkhkhhhhkhkhkhkhkhhhkhdhdhhhhrrkkkhkik
INTEGER TATT ! Declare axis title attribute
DIM TATT(4) : MAT READ TATT ! Dimension, read array

DATA 4,3,67,125

1 4 = pen 4, 3 = char mode, 67 = symbol set number, 125 = size
CALL GDDM ('CHTATT',4,TATT()) I Set title attributes

CALL GDDM ('CHYTTL',22,'VALUE CHANGE (PERCENT)') I y-axis title
CALL GDDM ('CHXLAB',3,4,'198219831984"')

I Write 3 4-character x-axis labels with 'character string'

CALL GDDM ('CHYRNG',-6.0,6.0) ! Set y-axis range

! *kkkkkhkhkkkhkhkkhkhkkkhx Bar gap kkkkhkkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkx

CALL GDDM ('CHGGAP',3.0) I Set bar gap 3*bar width

| kkkkkxkkkkkhkdxx Bar valueS *x*kkkkkkkkkhkkhkkhkhkkhkhkkhk
CALL GDDM ('CHSET','VALUES") ! Show bar values

! R R R L R R R R R P R Legend KEAKRKREAARKRAA AKX AR IR A A hkdhhhxdhhhdx%%
CALL GDDM ('CHSET','KBOX') ! Enclose legend in box

DIM CHAR$*50 : CHAR$ = 'Commodity 1Commodity 2Commodity 3'
CALL GDDM ('CHKEY',3,11,CHAR$) ! 3 1l-character legend keys

I xkkxxk*kxx** Jranslated axis 1ine ***xxkkxkkkkkkkkkkhkkkhk
INTEGER DATT I Declare Tine attribute
DIM DATT(2) : MAT READ DATT ! Dimension, read array
DATA 4,2

I 4 = pen 4, 2 = short-dashed line

CALL GDDM ('CHDATT',2,DATT()) ! Set axis line attributes

CALL GDDM ('CHYDTM',0.0) ! Use translated axis at 0

4-68 AS/400 GDDM Programming Guide

00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790

Drawing the Chart

I kxkrkkkkhrhr* Specify data ***kxkkkxkkkkkkkkkkhkrkkhkrkkhkxkk

DIM DELTA(12) : MAT READ DELTA ! Dimension and read data array
DATA -1,-3, 4, 2, 3, 5,-3, 5,-4, 2,-4,-4

I kkkxkkkxrkkxx Draw Cchart ***xxxkdkxkkkxkhkrkhhrkhhkkkhkkkkhx
CALL GDDM ('CHBAR',3,4,DELTA())

! Draw chart with 4 data groups of 3 bars each

I kkkxxkkxrhkxx Write NOLES ***kkkkkkhkrkhhhrkkhhkkhhkkhhkkhkh®
INTEGER NATT ! Declare note attribute
DIM NATT(4) : MAT READ NATT ! Dimension, read array

DATA 4,3,66,150

' 4 = pen 4, 3 = mode 3, 66 = symbol set, 150 = size multiplier
CALL GDDM ('CHNATT',4,NATT()) I Set note attributes

CALL GDDM ('CHSET','NBOX') ! Enclose note in box

CALL GDDM ('CHNOFF',1.0,1.0) ! Note position
CHAR$ = 'Change based on previous year average value'

CALL GDDM ('CHNOTE','H1',43,CHARS) I Write note

I *x*xx*x*xx*x*x* Send to disp]ay KhkRKIIRKIKRK K KRR K KRR K HRK*
CALL GDDM ('FSFRCE') ! Send to plotter

I kkkxkkkrxrhkrrkrhxx [ERMINATE ****kxkkhkrkhhrkhhrrkhhkkhhkkhk®
CALL GDDM ('FSTERM') I Terminate graphics

END ! End BASIC program

This multiple-bar chart uses CHNUM to specify that the chart uses three groups of

bars:

xxx%x% 35MMOS36K3 ***x*

Chapter 4. Using Presentation Graphics 4-69

Drawing the Chart

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580

I *x*,xx*xxxx** CPU LOADS — MULTIPLE-BAR *#*%*%x%***k*x*k*xk*kkkkk**

I kkkxxhkrxrhhrrkrhrxx [NITIALIZE ***xkkkxhkhkhrkhhrkhhkrkhhkrkhsx
CALL GDDM ('FSINIT') ! Initialize graphics.
OPTION BASE 1 ! Set array subscript base
I kkxrkxkrkxkxxxrsx SYMDOT Set *wkwkakkkkdhrnkhkhhkhrhkhkhhkk
CALL GDDM ('GSLSS',2,'ADMUWTRP',66)

I Load vector symbol set ADMUWTRP as symbol set #66

I *x%x*x*x%x%* DEFINE THE CHART LAYOQUT #*****%x*k*x**k*x*kxkkkkkk**
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 5,3,66,225

' 5 = turg, 3 = char mode, 66 = symbol set number, 225 = size
CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
CALL GDDM ('CHHEAD',23,'FIRST-SHIFT CPU LOADING')

I Write 23-character heading with 'character string'

! kkhkkkkhkhkkkhkhkhkkhkikhkkkk AXeS khkhkkkkhkhkkhhkhkhkhkhkdhhkhkhkhkhkdhkikhkkdhkhkk*k
INTEGER TATT ! Declare axis title attribute
DIM TATT(2) : MAT READ TATT ! Dimension, read array

DATA 2,2

1 2 = red, 2 = character mode

CALL GDDM ('CHTATT',2,TATT()) Set title attributes

CALL GDDM ('CHXTTL',4,'TIME')
CALL GDDM ('CHYTTL',7,'PERCENT')
INTEGER LATT

DIM LATT(2) : MAT READ LATT

x-axis title

y-axis title

Declare label attribute
Dimension, read array

DATA 4,2

I 4 = green, 2 = character mode

CALL GDDM ('CHLATT',2,LATT()) ! Set Tlabel attributes
CALL GDDM ('CHXLAB',10,2,' 8 9101112 1 2 3 4 5"')

I Write 10 2-character x-axis labels with 'character string'

! kkhkkhkkkhkhkkhhkhkkhkikikx*k Grid khkkkhhkhkkkhkhkhhhkhkkhhkhkkhkhkhhkhkkkhkhkk,kx
INTEGER GATT ! Declare axis grid attribute
DIM GATT(6) : MAT READ GATT ! Dimension, read array

DATA 0,0,0,4,0,0

I First three elements for any specified x-axis grid.

! For y-axis grid, 4 = green, 0 = solid line, 0 = narrow line
CALL GDDM ('CHGATT',6,GATT()) ! Set grid attributes

CALL GDDM ('CHYSET','GRID') ! Draw grid from y axis

! *kkkkkhkhkhkhhhhkkk Components kkkkhkhkhkhhhhkhkhkkhhhkhkhdhdhdhhhhrxkkhkik
INTEGER PATT ! Declare pattern array

DIM PATT(3) : MAT READ PATT ! Dimension, read array
DATA 16,16,16

CALL GDDM ('CHPAT',3,PATT()) ! Set all patterns to solid
! *kkkkkhkhkhkhkhhhkhkkkkx Legend *hkkkkkhkhkhkhhhhkhkhkkkhhkhkhdhdhdhhhhrrkkkhkik
INTEGER KATT ! Declare key attribute array
DIM KATT(2) : MAT READ KATT ! Dimension, read array
DATA 6,2

1 6 = yellow, 2 = character mode

CALL GDDM ('CHKATT',2,KATT()) ! Set key label attributes
CALL GDDM ('CHSET','KBOX') ! Enclose legend in box
CALL GDDM ('CHKEY',3,4,'S/3830813033') ! Three legend keys

I *x%xx*x*x Number of COMPONENtS **kkkkkkkkkkhkkhkrhkkhh k%

CALL GDDM ('CHNUM',3) ! Use three bars per x-value

I kkkkkhkkrkhk Specify S/38 data ***xkkkkkkkrrrrrrhkhkhhhhkhhhkk

DIM NMD(10) : MAT READ NMD ! Dimension and read data array
DATA 15,56,67,76,43,45,56,87,56,34

| kxkxkkxdkxkrxrdx Draw Chart **xsxkdkrdkxhkkrdrhrhkrkhrhrhrrhrhrk

CALL GDDM ('CHBAR',1,10,NMD())

4-70 AS/400 GDDM Programming Guide

Drawing the Chart

00590 ! Draw chart with 10 data groups of 1 bar each

00600 ! *xxxxkrkrx*x Specify 3081, 3033 data **xxkkkkxkkkkxkhhhrrk

00610 DIM NAD(20) : MAT READ NAD ! Dimension and read data array
00620 DATA 25,67,69,65,55,67,69,72,56,34

00630 DATA 35,62,73,64,43,65,66,68,66,45

00640 CALL GDDM ('CHBAR',2,10,NAD())

00650 ! Draw chart with 10 data groups of 2 bars each

00660 ! **xkxkxkxkkkkx*x Send to display #x*xrkrkkkkshrhrhhkhrkhkhrk

00670 INTEGER ATTYPE,ATMOD,COUNT
00680 CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) ! Send to display

00690 | #xxxxkxkxkkxkxxx*x [ERMINATE ***kkkkrkrdhrhhhhrhrrhrkhrhrrss

00700 CALL GDDM ('FSTERM') ! Terminate graphics
00710 END ! End BASIC program

Drawing Composite-Bar Charts
Data for composite or floating-bar charts can be shown as absolute or relative.

Charts that use absolute data (the default) have the upper boundary of the shaded
region showing the true values of the y-data for that component. All the data
groups are plotted from the x axis.

Charts that use relative data have the upper boundary of a component showing the
sum of its own y-values added to those of the components shown below it. The
true y-value of the component can be seen by comparing the thickness of its
shaded region with the y-axis scale. Each data group is plotted from the top of the
previous one.

If each data group is larger than the one before, use absolute data. If some data
groups are smaller than the ones before, they will be hidden if you use absolute
data, use relative instead. For example:

xxx%x% 35MMOS36KE *x%x*

Chapter 4. Using Presentation Graphics 4-71

Drawing the Chart

CHSET - Specify chart options. CHSET (CBAR) draws a composite-bar chart
when CHBAR is called.

CHSET - Specify chart options. CHSET (INFILL) suppresses the shading of the
first component.

CHSET - Specify chart options. CHSET (RELATIVE) shows the data as relative
data.

This is an example of a horizontal composite-bar chart. The axis tick marks have
been suppressed, and the color selection order has been modified:

xx%%x% 35MMO536KH **x%x*

00010 ! #xxxx*xx*,xx*x* FLEET — COMPOSITE-BAR #*%*%***x%kxkkkkkkrkhkkk*
00020 | ***xxxxkxxkvkxrvrxx [NITIALIZE ****kkkkkkhkhrhkhhrkkhhkkhhkkhd®
00030 CALL GDDM ('FSINIT') ! Initialize graphics.
00040 OPTION BASE 1 ! Set array subscript base
00050 ! *kxkkkkkkkkkkkkrk SymhoT Set Hkkkkkdkkkdkkkdkkkkkrhkhkhkhkkkhkk
00060 CALL GDDM ('GSLSS',2,'ADMUWTRP',66)

00070 ! Load vector symbol set ADMUWTRP as symbol set #66

00080 ! #*xx*xx*xx%x* DEFINE THE CHART LAYOQUT #*%*%***x*k*xkkkkkkkhkkk*

00090 CALL GDDM ('CHHMAR',3,0) I Change horizontal margins
00100 CALL GDDM ('CHVMAR',4,18) ! Change vertical margin space
00110 INTEGER HATT I Declare heading attribute
00120 DIM HATT(4) : MAT READ HATT ! Dimension, read array

00130 DATA 2,3,66,250

00140 ! 2 = red, 3 = char mode, 66 = symbol set number, 250 = size
00150 CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
00160 CALL GDDM ('CHHEAD',29,'FLEET USAGE, CHARTER AIRCRAFT')
00170 ! Write 29-character heading with 'character string'

00180 CALL GDDM ('CHSET','XVERTICAL') ! Horizontal orientation
00190 CALL GDDM ('CHYRNG',0.0,1500.0) ! Set y-axis scale range

4-72 AS/400 GDDM Programming Guide

00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770

Drawing the Chart

! *kkkkkhkhkhkhkhhhhkhkkkkkkk AXES kkkkhkhkhkhhhhkhkhkkkhkhkhkhkhkhhhhhhkkkkkhkikx
INTEGER TATT ! Declare axis title attribute
DIM TATT(2) : MAT READ TATT ! Dimension, read array

DATA 6,2

1 6 = yellow, 2 = char mode

CALL GDDM ('CHTATT',2,TATT()) I Set title attributes

CALL GDDM ('CHYTTL',15,'HOURS PER MONTH') ! y-axis title
INTEGER LATT ! Declare axis label attribute
DIM LATT(4) : MAT READ LATT ! Dimension, read array

DATA 4,2,0,200

I 4 = green, 2 = character mode, 0 = symbol set, 200 = size
CALL GDDM ('CHLATT',2,LATT()) I Set Tabel attributes

CALL GDDM ('CHXMTH',1) ! Use month labels

CALL GDDM ('CHXSET','PLAIN') ! Suppress x-axis tick marks
CALL GDDM ('CHYSET','PLAIN') ! Suppress y-axis tick marks
! kkhkkkkhkkkhkhkhkkhkikikx*k Components khhkkkhkhkkkhkhkhdhkhkhdhkhkdhhkhkkdhkhkk*k
INTEGER PATT I Declare pattern array

DIM PATT(5) : MAT READ PATT ! Dimension, read array

DATA 16,16,16,16,16

CALL GDDM ('CHPAT',5,PATT()) ! Set all patterns to solid
INTEGER COL I Declare color array

DIM COL(5) : MAT READ COL ! Dimension, read array

DATA 1,2,4,5,7

CALL GDDM ('CHCOL',5,COL()) ! Set color selection order

! *kkkkkhkhkhkhkhhhhkkkkkk Bar Va]ues *kkkkkkhkkhkhkhhhhkhkkkkkkkkhkhkhkhkik*k
INTEGER VATT ! Declare value text attribute
DIM VATT(2) : MAT READ VATT ! Dimension, read array

DATA 7,2

17 = white, 2 = character mode

CALL GDDM ('CHVATT',2,VATT()) I Set value text attributes
CALL GDDM ('CHSET','VALUES") ! Show bar values

! *kkkkkhkhkhkhkhhhkhkkkkx Legend kkkkkhkhkhkhkhhhhkhkhkkkhhhkhdhdhdhhhhrrkkkhkik
INTEGER KATT ! Declare legend text array
DIM KATT(2) : MAT READ KATT ! Dimension, read array

DATA 7,2

1 7 = white, 2 = character mode

CALL GDDM ('CHKATT',2,KATT()) ! Set Tegend text attributes
CALL GDDM ('CHSET','KBOX') ! Enclose legend in box

DIM CHAR$*50

CHAR$ = 'SINGLES TWINS TURBOPROPSTURBOFANS TURBOJETS '

CALL GDDM ('CHKEY',5,10,CHAR$) ! Five 10-character legend keys
I kkkkkkkhhhhhrrd Specify data *x*xxkkkkkkhkhrkkhkhrhhkhrhhdr

DIM HOURS(60) : MAT READ HOURS ! Dimension and read data array
DATA 210, 340, 530, 750, 818, 600, 659, 815, 723, 643, 420, 200
DATA 315, 416, 410, 418, 318, 390, 419, 375, 422, 323, 410, 310
DATA 100, 120, 200, 118, 98, 120, 149, 135, 122, 223, 135, 105
DATA 45, 38, 56, 74, 43, 23, 65, 49, 72, 45, 55, 43
DATA 33, 23, 43, 24, 38, 20, 34, 32, 22, 23, 34, 43
! JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
! kkhkhkkkkhkhkkkhkhkhkkhkhkikk*k Draw Chart khkkkhkhkkkhkhkhhkhkhhkhkdhkhkikkhkhkx*k

CALL GDDM ('CHSET','CBAR') ! Draw chart as composite-bar
CALL GDDM ('CHSET','RELATIVE') ! Draw bars as relative data
CALL GDDM ('CHBAR',5,12,HOURS())

! Draw chart with 12 bars made of 5 data groups each

CALL GDDM ('CHDRAX') ! Draw axes

I oxkxrkrnrsxkxrxx Send to display *xxsrsxkrrsrsrshkhrrrrsrsk
INTEGER ATTYPE,ATMOD,COUNT

CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display

Chapter 4. Using Presentation Graphics 4-73

Drawing the Chart

00790 CALL GDDM ('FSTERM') I Terminate graphics
00800 END I End BASIC program

4-74 AS/400 GDDM Programming Guide

Drawing the Chart

Drawing Floating-Bar Charts

CHSET - Specify chart options. CHSET (FBAR) draws a floating-bar chart when
CHBAR s called.

Floating composite-bar charts can be used to show the individual ranges of value
within a larger entity, in the same way as floating surface charts. The principles

involved are the same, except that for the bar chart, you define the chart type with
CHSET(FBAR). This an example of a floating-bar chart:

kx%%x% 35MMO536KO **x*x*

00010
00020
00030
00040
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240

I kxkxrskxcxrrxsxx ASSEMBLY TIME ***sxkkkkkhkrkrhrhrrhrhrs

I kkkxrhkrxrrhrrkrrrxx [NITIALIZE ****kkkrkhkhrkhhrrkhhkrkhhkkhds
CALL GDDM ('FSINIT') ! Initialize graphics
OPTION BASE 1 ! Set array subscript base
CALL GDDM ('GSLSS',2,'ADMUWCRP',66)

I Load vector symbol set ADMUWCRP as symbol set #66

I x%x%xxx%*x*x*x* DEFINE THE CHART LAYOUT #****%kx%k*k*kkkkkkkkkkkk*

! kkkkkhkkkkkhkkhkkkikk Heading kkhkkkkkkhkkhkhkkhkkkhkkkhkkhkhkkkkkhkkkk*
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 5,3,66,300

' 5 = turg, 3 = char mode, 66 = symbol set number, 300 = size
CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
CALL GDDM ('CHHEAD',21,'Average Assembly Time')

I Write 21-character heading with 'character string'

INTEGER PAT ! Declare pattern array
DIM PAT(3) : MAT READ PAT ! Dimension, read array
DATA 16,16,16

CALL GDDM ('CHPAT',3,PAT()) I Set pattern attributes

INTEGER COL : DIM COL(3) : MAT READ COL ! Colors array
DATA 2,3,1
CALL GDDM ('CHcOL',3,COL()) ! Set color attributes

! kkhkkkhkkhkkkhkkhkhkkhkkhkkk Axes kkhkhkkhkhkkhhkhkhkkhhkhkhkkhkhkkhhkkhkkhkhkkkkx

Chapter 4. Using Presentation Graphics

4-75

Drawing the Chart

00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720

INTEGER AATT ! Declare axis attribute array
DIM AATT(6) : MAT READ AATT ! Dimension, read array
DATA 1,0,0,1,0,0

1' 1 = blue for both axes (0 = null)

CALL GDDM ('CHAATT',6,AATT()) I Set axis attributes

INTEGER TATT ! Declare axis title attribute
DIM TATT(2) : MAT READ TATT ! Dimension, read array

DATA 7,2

' 7 = white, 2 = character mode

CALL GDDM ('CHTATT',2,TATT()) Set title attributes

CALL GDDM ('CHXTTL',7,'QUARTER')
CALL GDDM ('CHYTTL',7,'MINUTES')
INTEGER LATT

DIM LATT(2) : MAT READ LATT

Write 7-character x-title
Write 7-character y-title
Declare label attribute
Dimension, read array

DATA 5,2

I 5 = turquoise, 2 = character mode

CALL GDDM ('CHLATT',2,LATT()) I Set label attributes

! *kkkkkkkhkhkhkhkhhhkkkkk Legend kkkkkhkhkhkhkhhhkhkkkkkkhkhkhkhkhkhhhhkkkkkkikikx
INTEGER KATT ! Declare key Tabel attribute
DIM KATT(2) : MAT READ KATT ! Dimension, read array

DATA 5,2

! 5 = turquoise, 2 = character mode

CALL GDDM ('CHKATT',2,KATT()) ! Set key label attributes
CALL GDDM ('CHKEYP','H','B','C")

I Legend position Horizontal, Bottom, Centered
CALL GDDM ('CHKEY',4,6," LINE ILINE 2LINE 3')

I Write 4 6-character lTegend key labels using 'string' (Ist null)
! kkhkkkkhkhkkkhkhkhkhkhkhkkkhkhkk Gr"id khkhkkkhkhkhkkdhkhkkdhhkhhkdhkhkhdhkhkkdhkhhkkdkx
INTEGER GATT ! Declare axis attribute array
DIM GATT(4) : GATT(4) =1 I y-axis grid is blue

CALL GDDM ('CHGATT',4,GATT()) I Set grid attributes

CALL GDDM ('CHYTIC',5.0,4.0) ! Add minor tick marks

I *xxxkxxxx Specify data for Surface Chart #xsxsxxkrsrsrssrx

DIM MINUTES(16) : MAT READ MINUTES I Array for Y axis

DATA 20,18,18,16,22,18,19,16,18,20,14,14,12,10,17,10

I *x%xx*x%x**x* Set attributes for Bar Chart **x*xxxx*xx*xkx*

CALL GDDM ('CHSET','FBAR') ! Draw floating-bar chart
CALL GDDM ('CHYSET','GRID') ! Draw grid for y axis
CALL GDDM ('CHSET','RELATIVE') I Show relative data

I sxxxxkxcxxxxxx* DRAW SURFACE CHART #***%%kkxkkkkkkhrhrhhhhrsr®
CALL GDDM ('CHBAR',4,4,MINUTES())

I Draw chart with 4 bars, each with 4 parts (one invisible)

I *xkxx*kxkxx*x*x* Send to djsp]ay khhkkkkhhhhhhhhhhhhhhhhhrr
INTEGER ATTYPE,ATMOD,COUNT ! Declare integers
CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display

I kkkxrkkrrrkrkxrxx [ERMINATE ****kkkkhkrhhkrhkhhrrkhhkrkhhkkhks
CALL GDDM ('FSTERM') ! Terminate graphics
END I End BASIC program

4-76 AS/400 GDDM Programming Guide

Drawing the Chart

Drawing Pie Charts

Setting the Component Color Selection Order

CHCOL - Set component color. CHCOL sets the color of the pie slices by
defining a table that holds the number of colors and the order of their selection.

If CHCOL is not specified, the sequence of colors in the default color table is used.
The default color table is, in this case, the GDDM color table which is either the
default color table for the current page or a color table modified for use in the
current page.

Setting the Shading Attributes

CHPAT — Set component shading pattern. CHPAT sets the type of pattern used
by shaded components by defining a table that holds the number of patterns and
the order of their selection.

If CHPAT is not specified, the sequence of patterns in the default pattern table is
used. The default pattern table shown for the discussion of the GSPAT routine in
Chapter 3, “Using GDDM" shows the order of selection.

CHSET - Specify chart options. CHSET (NOFILL) suppresses the shading of
pies.

Writing Pie Chart Text

Besides using a chart heading and using chart notes to write text for pie charts, you
can use a legend to identify the value and meaning of pie slices or you can write
the legend key values next to the pie slices. For either of these options, you can
also write the percentage values of each pie slice next to it, and connect the two
with a line.

Using a legend

CHSET - Specify chart options. CHSET (PIEKEY) generates a chart legend, as
opposed to writing the legend key labels next to the pie slices with CHSET
(SPIDER). PIEKEY is the default.

When you use a legend, the attributes for the legend key labels are specified by
the CHKATT routine.

Using legend key labels as pie slice labels

CHSET - Specify chart options. CHSET (SPIDER) writes the legend key labels
next to the pie slices.

When you use a legend key labels as pie slice values, the attributes for the legend
key labels are specified by the CHKATT routine.

Using value text as pie slice labels

You can specify that the value of each pie slice is written next to it. The value is
connected to the slice with a line called a spider tag.

Chapter 4. Using Presentation Graphics 4-77

Drawing the Chart

You can use value text in addition to the legend or the legend key labels.
However, the routine used to set attributes for the value text differs with each.

For value text used when a legend is also used, use the CHVATT routine to set the
color, character mode, symbol set used, and character size of the value text. For
the color value to have an effect, SPILABEL must also be specified; otherwise,
(when SPISECTOR is used) the value text is the color of the associated pie slice.

For value text used when legend key labels are used (SPIDER), use the CHKATT
routine to set the color, character mode, symbol set used, and character size of the
value text. For the color value to have an effect on both the value text and the
legend key labels, SPILABEL must also be specified; otherwise, (when
SPISECTOR is used) the value text and the legend key labels are the color of the
associated pie slice.

Setting pie slice data values

CHSET - Specify chart options. CHSET (VALUES) writes the data value
represented by each pie slice adjacent to it.

CHSET (BVALUES) blanks the areas where pie slice values are written. When the
area is blanked, no other display feature can occupy the pie slice value text box.
When the area is not blanked, the values can overpaint another feature.

CHVCHR — Number of value text characters. CHVCHR sets the number of
characters to be used for showing pie slice values on a pie chart. The value text
attributes are controlled by CHVATT. By default, up to 9 character positions can be
used.

CHVATT - Value text attributes. CHVATT specifies the attributes for data value
text. Data value text is used to show individual values for pie slices. Attributes that
can be set are color, character mode, and character font and size. Character
rotation is ignored for pie charts.

If CHVATT is not specified, each value uses standard-size device default
characters of the default color, or of the color of the associated pie slice (if
SPISECTOR is used).

CHSET - Specify chart options. CHSET (SPISECTOR|SPILABEL) specifies the
color of spider tags and value text. If SPISECTOR is specified, the spider tags,
value text, and legend key labels are colored the same as the associated sector. If
SPILABEL is specified, the spider tags are the default color and the value text is
either the color of the legend key labels (CHKATT) or the color specified by
CHVATT for value text attributes.

Note: If spider tags overlap with the legend, you should move the legend (with
CHKEYP) or change the size of the margins (with CHHMAR or CHVMAR).

4-78 AS/400 GDDM Programming Guide

Drawing the Chart

Setting the Type of Data to be Shown

CHSET - Specify chart options. CHSET (PERPIE|ABPIE) shows the slices of
the pie as relative data (PERPIE), or as absolute data (ABPIE). When the data is
shown as relative data, each pie slice is shown with its true value (the value used
in the pie chart data value array) as a percentage. Percentage values are subject
to rounding errors and may not be precise. If the percentage values should be of
decimal precision, you should calculate them in your program and then use them
as pie slice labels. If the sum of all the values is less than 100, an incomplete pie
is drawn. If the sum of the values exceeds 100, an error occurs and the pie is not
drawn.

For absolute data (ABPIE), the data values of the pie chart array are reduced or
increased so that their sum equals 100, which results in a complete pie.

Controlling Pie Slices

CHPCTL - Specify chart appearance. You can make a pie chart more interesting
by moving one or more of the slices out from the rest (exploding the chart). To
specify which slices you want to move, use CHPEXP.

Drawing the Pie Chart

CHPIE — Draw a pie chart. CHPIE draws one or more pie charts. Parameters in
the CHPIE routine specify the number of components (pies) to be drawn, the
number of slices in each pie, and the array used for the dependent variables (the
size of the pie slices).

The following chart is an example of a single-pie chart. The pie chart uses a
background, and the patterns used for the pie slices have been set to solid. Also,
both the horizontal and vertical margins have been reduced to zero to enlarge the

pie:

Chapter 4. Using Presentation Graphics 4-79

Drawing the Chart

kxk%x% 35MMOS36K7 *x%x*

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320

I kxkxrskxskxcxrrrsx POLL RESULTS #****xkkkkrkhrkhrhhkhrhrrhrkkhrk

I kkkxrhkrxrrkrrkrrrxx [NITIALIZE ****xkkkrkhkhrkhhrrkhhkkhhrkhk®
CALL GDDM ('FSINIT') ! Initialize graphics.
OPTION BASE 1 ! Set array subscript base
I kkxrkdkrkxkxxxrsx SYMDOT Set *wkwkakkkkdhrrkhkhkkhrhkhkhkk
CALL GDDM ('GSLSS',2,'ADMUWTRP',66)

! Load vector symbol set ADMUWTRP as symbol set #66

I *x%xx*x%x%* DEFINE THE CHART LAYOQUT #***%*%x%k*x**kkkxk*kkkkk**
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 1,3,66,325

1'1 = Dblue, 3 = char mode, 66 = symbol set number, 325 = size
CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
CALL GDDM ('CHHEAD',12,'Po11 Results')

I Write 12-character heading with 'character string'

CALL GDDM ('CHSET','CBACK') ! Use background

CALL GDDM ('CHHMAR',0,0) ! Reduce margins

CALL GDDM ('CHVMAR',0,0) ! Reduce margins

! *hkkkkkhkhkhkhhhhhkhkkkk P‘|e]abe]s *hkkkkhkhkhkhkhhhhhhhhhhhhhhdhhhi*x
INTEGER KATT I Declare heading attribute
DIM KATT(4) : MAT READ KATT ! Dimension, read array

DATA 2,3,66,200

1 2 = red, 3 = char mode, 66 = symbol set number, 200 = size
CALL GDDM ('CHKATT',4,KATT()) I Set key label attributes

CALL GDDM ('CHSET','VALUES") ! Show pie percentage values
CALL GDDM ('CHSET','SPIDER') I Write legend key Tlabels

CALL GDDM ('CHSET','SPILABEL') ! Legend key labels

I next to pie slices instead of as legend

CALL GDDM ('CHKEY',3,9,'YES NO UNDECIDED') !Legend keys
[Specjfy data *x*xkkkkkkkhkhhkkhhhhhhkhhhrr

DIM POLL(3) : MAT READ POLL ! Dimension and read data array
DATA 45,25,10

4-80 AS/400 GDDM Programming Guide

Drawing the Chart

00330 | #x*xxkxkxkkxkxkx*x Draw Chart *x*xxksxxkxkxhkkrkhrxhrrkrkhrhrrsx
00340 INTEGER PAT ! Declare pattern attribute
00350 DIM PAT(3) : MAT READ PAT ! Dimension, read array
00360 DATA 16,16,16

00370 ! Use solid fill for each pie slice

00380 CALL GDDM ('CHPAT',3,PAT()) ! Set heading attributes

00390 CALL GDDM ('CHSET','ABPIE') ! Draw pie as absolute data
00400 CALL GDDM ('CHPIE',1,3,POLL()) ! Draw 1 pie, 3 slices

00410 ! **x*xkxkxxkx**x** Send to djsp]ay B
00420 INTEGER ATTYPE,ATMOD,COUNT I Declare integers
00430 CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display
00440 | ***xxkkxkxkkkxxx**x [ERMINATE ****k*kkkkkkhkhrkhkhhrkkhhkkhkhkkhk®
00450 CALL GDDM ('FSTERM') I Terminate graphics
00460 END I End BASIC program

Drawing a Multiple-Pie Chart

For other chart types, such as line charts and bar charts, the term chart component
refers to a representation of one data group for the chart, such as a line or a bar.
For pie charts, a chart component is one pie because one CHPIE routine can draw
many pies.

Chapter 4. Using Presentation Graphics 4-81

Drawing the Chart

There are two types of multiple-pie chart:

¢ Charts where each pie shows a variation of an amount. An example of

such a multiple-pie chart is one that uses three pies to show the percentages of
the total operating costs for a business over three years, see the example of a
multiple-pie chart on page 4-83.

For this type of chart, use a single CHPIE routine, but specify the number of
components (pies) to be drawn. When drawing multiple-pie charts this way,
you can specify CHSET(PROPIE) to vary the size of each chart based on the
sum of its chart data values to show the value of each pie relative to the
others.

CHNUM and a corresponding number of CHPIE routines can also be used.

Charts where each pie shows a different group of data. For an example of
such a chart, see the example of a multiple-pie chart on page 4-85.

For this type of chart, use CHNUM to specify the number of pies, then use a
CHPIE routine to draw each pie. The relative size of the pies cannot be varied

with CHSET(PROPIE).
Use these routines to draw multiple-pie charts:
CHNUM - Set number of chart components. CHNUM sets the number of pie

charts to be constructed on a single chart format. One pie chart is constructed by
each call of the CHPIE routine.

CHPIER — Pie chart size reduction. The CHPIER routine specifies a reduction
percentage for reducing the size of each chart.

CHSET - Specify chart options. CHSET(ABPIE|PROPIE) specifies whether the
sum of the chart data determines the relative size (diameter) of each pie. ABPIE

makes all pies the same size (the default), and PROPIE varies the size of the pies
(the smallest-value pie will have the smallest diameter). PROPIE is valid only when

a single CHPIE routine is used to draw multiple pies.

CHXLAB - x-axis label text specification. CHXLAB is used to specify the titles
for the individual pies in multiple-pie charts.

4-82 AS/400 GDDM Programming Guide

Drawing the Chart

The following multiple-pie chart uses a single CHPIE routine to draw three pies that
show variation of the same values over three years. The chart uses proportional
sizes for the pies; the first pie is smaller than the second and third, because the
sum of the data used for the pie is smaller than the data sums of the others. The
vertical margins have been changed to allow room for the legend, which is drawn in
reverse order

PLO536K8

00010 ! #xxxxsxxkxxrkxxxx*x COST ANALYSIS #*kkxkrkrhkkhrhrrhrkhrhrrss
00020 | ***xxxkkxxkvkxrkrxx [NITIALIZE ****kkkkkkhkhrkhkhhrkkhhkkhhkkhk®

00030 CALL GDDM ('FSINIT') ! Initialize graphics.
00040 OPTION BASE 1 ! Set array subscript base
00050 INTEGER PLST I Declare integer

00060 DIM PLST(4) : MAT READ PLST ! Dimension, read array
00070 DATA 11,50,16,1

00080 DIM NLST$(1) : NLST$(1) = ' ! Dimension, assign value

00090 CALL GDDM ('DSOPEN',2,1,'6180 ',4,PLST(),0,NLST$(1))

00100 ! Open plotter device 2 of family 1 named 6180,

00110 ! using PLST option group 11 value 50 (pen speed 50% of max),
00120 ! and using group 16 option 1 (horizontal paper orientation);
00130 ! name Tist has O names in array NLST$

00140 CALL GDDM ('DSUSE',1,2)

00150 ! Use device 2 as active device (option 1)

00160 | ***k*xxkkkrkhkrxkhkx Symbo] SEL **kkkkkkkhkkhhkkhhhkkhkkkhkk*x
00170 CALL GDDM ('GSLSS',2,'ADMUWCIP',66)

00180 ! Load vector symbol set ADMUWCIP as symbol set #66

00190 ! ****xxx%*x* DEFINE THE CHART LAYOUT #*****kx**k*kkkkkkkkkkkk*

00200 CALL GDDM ('CHSET','CBOX') I Use chart frame

00210 CALL GDDM ('CHSET','ABPIE') I Show absolute values

00220 CALL GDDM ('CHSET','PROPIE') ! Pie size relative to sum of sl&
&ices

00230 CALL GDDM ('CHSET','VALUES') I Show pie values

00240 CALL GDDM ('CHHMAR',3,1) ! Bottom margin 3, top margin 1

Chapter 4. Using Presentation Graphics ~ 4-83

Drawing the Chart

00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450

00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570

CALL GDDM ('CHVMAR',0,20) I Left margin 0, right margin 20
INTEGER HATT I Declare heading attribute

DIM HATT(4) : MAT READ HATT ! Dimension, read array

DATA 2,3,66,225

1 2 = pen 2, 3 = char mode, 66 = symbol set number, 225 = size
CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes

CALL GDDM ('CHHEAD',37,'Three-year Operational Cost Breakdown')
I Write 37-character heading with 'character string'

| kxkxkkrkxhrxhdkrdx Pie tit]es *xrkrdkrkkrdkrhrhhrhrkhrhkrrhrhrk
INTEGER LATT I Declare label attribute
DIM LATT(4) : MAT READ LATT ! Dimension, read array
DATA 5,3,66,200

' 5 =pen 5, 3 = character mode, 66 = symbol set, 200 = size
CALL GDDM ('CHLATT',4,LATT()) ! Set Tlabel attributes
CALL GDDM ('CHXLAB',3,4,'198219831984"')

I Write three 4-character Tabels to be used as pie titles

! *hkkkkkhkhkhkhkhhhhkkxkx Legend dhkkkkhkhkhkhhhhhhhhhhhhddhdhhhhrrrhhkhkik

CALL GDDM ('CHSET','KBOX') ! Enclose legend in box

DIM CHAR$*110

CALL GDDM ('CHSET','KREVERSE') ! Write legend reverse order
CHAR$ = 'DepreciationInterest Insurance Fuel Seed &
Chemicals Maintenance Labor Misc '

CALL GDDM ('CHKEY',9,12,CHAR$) ! Write legend keys

I xkxxkxkrskrkxx Specify chart data sxsxsxsxrskrsrskrhrrkrsrss

DIM FARM(27) : MAT READ FARM ! Dimension and read data array
DATA 4,14,2,10,11,17,3,5,5

DATA 3,18,3,12,12,19,4,4,10
DATA 2,18,3,14,15,18,5,4,9

CALL GDDM ('CHPIE',3,9,FARM()) ! Draw 3 pies

I oxdkxrkrnrsrixrrx Send to plotter xsxsrskxskrrsrsrsrhrrnrsrsx
CALL GDDM ('FSFRCE') ! Send to plotter

I kkkrkkkrrrkrkrrrxkx [ERMINATE **%kkkkhkrhhhrkhhrrkhhrkkhhkhrss
CALL GDDM ('FSTERM') ! Terminate graphics

END ! End BASIC program

4-84 AS/400 GDDM Programming Guide

Drawing the Chart

This multiple-pie chart uses CHNUM to specify two pies, and uses two
corresponding CHPIE routines:

PLO536K9

00010 ! **x*x*xkxx*x*x FIXED VERSUS VARIABLE *#***%x*kkkkkkkkkkkkhkkkk

00020 | ***xxxkkxxkrkxrvrxx [NITIALIZE ****kkkkkkkkhrkhkhhrkkhhkkhhkkhk®

00030 CALL GDDM ('FSINIT') ! Initialize graphics.
00040 OPTION BASE 1 ! Set array subscript base
00050 INTEGER PLST I Declare integer

00060 DIM PLST(4) : MAT READ PLST ! Dimension, read array
00070 DATA 11,50,16,1

00080 DIM NLST$(1) : NLST$(1) = * ! Dimension, assign value

00090 CALL GDDM ('DSOPEN',2,1,'6180 ',4,PLST(),0,NLST$(1))

00100 ! Open plotter device 2 of family 1 named 6180,

00110 ! using PLST option group 11 value 50 (pen speed 50% of max),
00120 ! and using group 16 option 1 (horizontal paper orientation);
00130 ! name Tist has O names in array NLST$

00140 CALL GDDM ('DSUSE',1,2)

00150 ! Use device 2 as active device (option 1)

00160 | ***k*xxkkkrkhkrxkhkx Symbo] SEL H*kkkkkkkhkkhhkkhhhkkhhkkhhk*
00170 CALL GDDM ('GSLSS',2,'ADMUWCIP',66)

00180 ! Load vector symbol set ADMUWCIP as symbol set #66

00190 ! ****xxx%*x* DEFINE THE CHART LAYOUT #*****kx**k*kkkkkkkkkkkk*
00200 CALL GDDM ('CHSET','CBOX') I Use chart frame

00210 CALL GDDM ('CHSET','ABPIE') I Show absolute values

00220 CALL GDDM ('CHSET','VALUES") ! Show pie values

00230 CALL GDDM ('CHHMAR',3,1) ! Bottom margin 3, top margin 1
00240 CALL GDDM ('CHVMAR',0,20) I Left margin 0, right margin 20
00250 INTEGER HATT I Declare heading attribute
00260 DIM HATT(4) : MAT READ HATT I Dimension, read array

00270 DATA 2,3,66,225

00280 ! 2 = pen 2, 3 = char mode, 66 = symbol set number, 225 = size
00290 CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes

Chapter 4. Using Presentation Graphics ~ 4-85

Drawing the Chart

00300 DIM CHAR$*110

00310 CHAR$ = 'Three-year Operational Cost Breakdown;Averages for ''82&
& - ''84!

00320 CALL GDDM ('CHHEAD',60,CHARS) I Write heading

00330 CALL GDDM ('CHNUM',2) ! Draw 2 pie charts

00340 | #x*xxkxkxkkxkxxx Pje tit]es **rkxkrrkrhrhkrkhrhrrhrhrhrrssr
00350 INTEGER LATT ! Declare label attribute
00360 DIM LATT(4) : MAT READ LATT ! Dimension, read array

00370 DATA 5,3,66,150

00380 ! 5 = pen 5, 3 = character mode, 66 = symbol set, 150 = size
00390 CALL GDDM ('CHLATT',4,LATT()) ! Set label attributes

00400 CHAR$ = ' Fixed Costs Only Fixed Costs and Variable &
&Costs'

00410 CALL GDDM ('CHXLAB',2,30,CHARS)

00420 ! Write two 30-character labels to be used as pie titles

00430 ! *kxkkkkkkkhkkhnkkhnkrx L@GENd *kkkkkkhkhhhkkhkkhkhhkkhkkkhkk
00440 CALL GDDM ('CHSET','KBOX') ! Enclose legend in box

00450 CALL GDDM ('CHSET','KREVERSE') ! Write Tegend reverse order
00460 INTEGER KATT ! Declare label attribute
00470 DIM KATT(2) : MAT READ KATT ! Dimension, read array

00480 DATA 0,2

00490 ! 0 = pen 1, 2 = character mode

00500 CALL GDDM ('CHKATT',2,KATT()) ! Set legend text attributes
00510 CHAR$ = 'DepreciationInterest Insurance Fuel Seed &
& Chemicals Maintenance Labor Misc

00520 CALL GDDM ('CHKEY',9,12,CHARS) ! Write labels

00530 | #*x*xx*x*x*x**x Draw fixed-cost chart **x*xx*xxkxkkkkxkxkkx*%x
00540 DIM FIX(3) : MAT READ FIX ! Dimension and read data array
00550 DATA 9,56,8

00560 CALL GDDM ('CHPIE',1,3,FIX()) ! Draw 1 pie, 3 slices

00570 | #*xxxx*xxxx**x Draw variable cost chart #*x**x*xkkxxkxkxkkxk*x
00580 DIM VAR(9) : MAT READ VAR ! Dimension and read data array
00590 DATA 9,56,8,60,36,38,12,13,24

00600 CALL GDDM ('CHPIE',1,9,VAR()) ! Draw 1 pie, 9 slices

00610 ! *#xkxkxskxkxkxr*x Send to plotter #xkxrrrsrskskrkrhrkrhskhrk
00620 CALL GDDM ('FSFRCE') ! Send to plotter

00630 | #x*xxkxkxkkxkxkx*x [ERMINATE ***kxkkkkxhrhkkhrhrhkrhrhrrss
00640 CALL GDDM ('FSTERM') ! Terminate graphics

00650 END ! End BASIC program

4-86 AS/400 GDDM Programming Guide

Drawing the Chart

Drawing Histograms

Setting the Color of the Shaded Area

CHCOL - Set component color. CHCOL sets the color of the shaded area. The
histogram uses the first color in the CHCOL color-selection table.

If CHCOL is not specified, the sequence of colors in the default color table is used.
The default color table is, in this case, the GDDM color table which is either the
default color table for the current page or a color table modified for use in the
current page.

Setting the Shading Attributes

CHSET - Specify chart options. CHSET (NOFILL) suppresses the shading of the
area.

CHPAT — Set component shading pattern. CHPAT sets the pattern of the
shaded area. The histogram uses the first pattern in the CHPAT pattern-selection
table.

Setting the Type of Data to be Shown

CHSET - Specify chart options. CHSET (RELATIVE) shows the data as relative
data.

Suppressing the Risers

CHSET - Specify chart options. CHSET (RISERS|NORISERS) specifies whether
lines (risers) are drawn between data groups or not. CHSET (NORISERS) stops
the risers of the histogram being drawn. Histogram risers show the divisions
between the steps of the histogram component levels.

Drawing the Histogram
CHHIST — Draw a histogram. CHHIST draws a histogram. Parameters in the
CHHIST routine specify the number of components to be drawn, the number of

ranges for each component, the arrays used for the ranges of the components, and
the arrays used for the data groups the components are drawn to represent.

Chapter 4. Using Presentation Graphics 4-87

Drawing the Chart

This is an example of a histogram. Chart notes are used in place of x-axis labels
because the default labels are placed at even increments along the axis, while the
components for the histogram use varying ranges along the x axis:

kkxx 35MMO536L1 *****%

00010 ! ****xx**,*xx*x***x* BICYCLE OWNERSHIP ***%%x**k*xkkkkkkkkkkkkkkk*
00020 | #x*xxkxkxkkxkxkx*x INITIALIZE #***xkkkkxkhrhkkhrhrrkhrkhrhrrssx

00030 CALL GDDM ('FSINIT') ! Initialize graphics.
00040 OPTION BASE 1 I Set array subscript base
00050 ! *kxkkkkkkkkkkkkrx Symhol SeT Hkkkkkkkhkkkhhkkhhrhkhkhkhkhkhkk

00060 CALL GDDM ('GSLSS',2,'ADMUWGEP',66)

00070 ! Load vector symbol set ADMUWGEP as symbol set #66

00080 ! x***xx*xx*x* DEFINE THE CHART LAYOUT #*****xkx**k*kkkkkkkkkkkk*
00090 INTEGER HATT I Declare heading attribute
00100 DIM HATT(4) : MAT READ HATT ! Dimension, read array

00110 DATA 2,3,66,300

00120 ! 2 = red, 3 = char mode, 66 = symbol set number, 300 = size
00130 CALL GDDM ('CHHATT',4,HATT()) I Set heading attributes
00140 CALL GDDM ('CHHEAD',17,'Bicycle Ownership')

00150 ! Write 17-character heading with 'character string'

00160 | Hxkxkkxkxkkxkhxhrdd AXQS **hkhkkhrkhkrkkxhkhkkhxhkhkxhkhdxd%x
00170 INTEGER TATT ! Declare axis title attribute
00180 DIM TATT(4) : MAT READ TATT ! Dimension, read array
00190 DATA 2,3,0,150

00200 ! 2 = red, 3 = character mode, 0 = symbol set, 150 = title size

00210 CALL GDDM ('CHTATT',4,TATT()) | Set title attributes

00220 CALL GDDM ('CHYTTL',24,'PERCENTAGE OF POPULATION') ! y-axis title
00230 CALL GDDM ('CHXSET','NOLAB') ! Suppress x-axis labels
00240 CALL GDDM ('CHXSET','PLAIN') I Suppress x-axis ticks

00250 | ***k*xxkkkrkhkrxkhkx Specify data **xkxkkxkrkkrkkrhkrhkrkhrhkrd

00260 DIM XLO(6) : MAT READ XLO I Array for x low range

00270 DATA 0,10,20,35,50,70

00280 DIM XHI(6) : MAT READ XHI ! Array for x high range

4-88 AS/400 GDDM Programming Guide

00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660

Drawing the Chart

DATA 10,20,35,50,70,100

DIM YRNG(6) : MAT READ YRNG ! Array for y range

DATA 80,85,75,35,15,5

! kkhkkkkhkhkkkhkhkhkkhkhkhkkdhkhkx DY‘aW Char“t kkhkhkkkkhkhkkhhkhkhkhkhkdhkhkkdhkhkkik
CALL GDDM ('CHHIST',1,6,XLO(),XHI(),YRNG())

! Draw chart with 1 component of 6 ranges, using 3 arrays
CALL GDDM ('CHDRAX') ! Draw axes

I #xx*x* Draw notes for Tabels and x-axis title *#xxkxxkxxr*
INTEGER NATT I Declare note attributes
DIM NATT(4) : MAT READ NATT ! Dimension, read array
DATA 4,2,0,0

! 4 = green, 2 = character mode, 0,0 = nulls

CALL GDDM ('CHNATT',2,NATT()) I Set note attributes
CALL GDDM ('CHNOFF',5.01,4.5) I Set note position

CALL GDDM ('CHNOTE','H2',4,'0-10")

I Write horizontal note, position H2, 4 characters of 'string'
CALL GDDM ('CHNOFF',15.01,4.5)

CALL GDDM ('CHNOTE','H2',5,'11-20"')
CALL GDDM ('CHNOFF',27.5,4.5)

CALL GDDM ('CHNOTE','H2',5,'21-35") Write note as x-label
CALL GDDM ('CHNOFF',42.5,4.5) Position note

! Write note as x-Tabel

!

!

!
CALL GDDM ('CHNOTE','H2',5,'36-50"') ! Write note as x-label

!

!

!

!

!

Set note position

CALL GDDM ('CHNOFF',60.01,4.5) Position note

CALL GDDM ('CHNOTE','H2',5,'51-70") Write note as x-Tabel
CALL GDDM ('CHNOFF',85.01,4.5) Position note

CALL GDDM ('CHNOTE','H2',3,'71+"') Write note as x-label
CALL GDDM ('CHNOFF',40.01,2.01) Position note for title
NATT(1)=2 : NATT(2)=3 : NATT(4)=150
I Change note attributes, 2 = red, 3

mode 3, 150 = size

CALL GDDM ('CHNATT',4,NATT()) ! Note will match y-title
CALL GDDM ('CHNOTE','C5',9,'AGE BANDS')

I Write horizontal note, position C5, 9 characters of 'string'
| x%xxkkxkxkkkx*x** Send to djsp]ay e
INTEGER ATTYPE,ATMOD,COUNT

CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display

I kkkxrhkrxrrkrrkrdxx [ERMINATE ****kkkkkrkhhrkhhrrkhhkkhhkkhk®
CALL GDDM ('FSTERM') I Terminate graphics
END I End BASIC program

Drawing Venn Diagrams

Setting the Color of the Components

CHCOL

— Set component color. CHCOL sets the color of the components. The

diagram uses the first two colors in the CHCOL color-selection table.

If CHCOL is not specified, the sequence of colors in the default color table is used.
The default color table is, in this case, the GDDM color table (the default color table
for the current page or a color table modified for use in the current page).

Chapter 4. Using Presentation Graphics 4-89

Drawing the Chart

Setting the Shading Attributes

CHSET - Specify chart options. CHSET (NOFILL) suppresses shading of the
population circles and of the overlap area.

CHPAT — Set component shading pattern. CHPAT sets the pattern of the
shaded area. The diagram uses the first two patterns in the CHPAT
pattern-selection table.

If CHPAT is not specified, the sequence of patterns in the default pattern table is
used. The default pattern table shown for the discussion of the GSPAT routine in
Chapter 3, “Using GDDM" shows the order of selection.

Drawing the Venn Diagram
CHVENN - Draw a Venn diagram. CHVENN draws a Venn diagram. Parameters
in the CHVENN routine specify the values of both populations, and the value of the

overlap area.

This is an example of a Venn diagram. It has a chart frame, and uses blanked
notes to indicate the relative values of the populations and their overlap:

kkxx 35MMO536L2 ***x**%

4-90 AS/400 GDDM Programming Guide

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480

Drawing the Chart

I *xkxkkxkxkxk*x* CLUB MEMBERSHIP #*******xkxkkkkkkhxkkhkhkkhxk

I kkkxxhkrxrhhrrkrhrxx [NITIALIZE ***xkkkxhkhkhrkhhrkhhkrkhhkrkhsx
CALL GDDM ('FSINIT') ! Initialize graphics
OPTION BASE 1 ! Set array subscript base
! *kkkkkhkhkhkhhhhhhkkxkx Symbo] set *hkkkkkkhkhkhdhhhhhhdhhhhhhhkhhhd*x
CALL GDDM ('GSLSS',2,'ADMUVTRP',66)

I Load vector symbol set ADMUVTRP as symbol set #66

CALL GDDM ('GSLSS',2,'ADMUWCRP',67)

! Load vector symbol set ADMUWCRP as symbol set #67

I x%x%xxxx*x*x* DEFINE THE CHART LAYOUT #***%k*k**kkkkkkkkkkkk*
CALL GDDM ('CHSET','CBOX') ! Enclose chart in frame
INTEGER HATT I Declare heading attribute
DIM HATT(4) : MAT READ HATT ! Dimension, read array
DATA 2,3,66,300

' 2 = red, 3 = char mode, 66 = symbol set number, 300 = size
CALL GDDM ('CHHATT',4,HATT()) ! Set heading attributes
CALL GDDM ('CHHEAD',15,'CLUB MEMBERSHIP')

I Write 15-character heading with 'character string'

! kkhkhkkkhkhkkkhhkhkkhkhkikk)kk Key khkhkkkhkhkkhkhkhkhkhkhhkhkhhkhkkhkhkikdhkhk*x
INTEGER KATT ! Declare key attribute array
DIM KATT(4) : MAT READ KATT ! Dimension, read array
DATA 6,3,67,175

1 6 = yellow, 3 = char mode, 67 = symbol set number, 175 = size
CALL GDDM ('CHKATT',4,KATT()) I Set key attributes

CALL GDDM ('CHKEY',3,7,'FEMALE MALE MARRIED')

I Write key, 3 elements, 7 characters of 'string'

! *kkkkkhkhkhkhhhkikk Draw Chart *kkkhkhkhkhkhhhkhkhkhkhkhkhhhkhddhdhhhhrrkrkkhkik
CALL GDDM ('CHVENN',75.0,100.0,23.0) ! Draw chart using data
I x*xxxkxxx%x Draw notes to show populations sxsxsxkxxkxskrsx
CALL GDDM ('CHSET','BNOTE') I Blank chart note areas
INTEGER NATT I Declare note attributes
DIM NATT(2) : MAT READ NATT ! Dimension, read array
DATA 7,2

1 7 = white, 2 = character mode

CALL GDDM ('CHNATT',2,NATT()) I Set note attributes
CALL GDDM ('CHNOFF',26.01,14.01) I Set note position

CALL GDDM ('CHNOTE','C7',2,'75") ! Write note for group 1
I Write horizontal note, position C7, 2 characters of 'string'
CALL GDDM ('CHNOFF',37.0,14.01) I Set note position

CALL GDDM ('CHNOTE','C7',2,'23") ! Write note for overlap
CALL GDDM ('CHNOFF',50.01,14.01) I Set note position

CALL GDDM ('CHNOTE','C7',3,'100') ! Write note for group 2

I kkkxsknrrrxkrsr Send to display *xsrsdsrrskrsrshrhrskkhksx

INTEGER ATTYPE,ATMOD,COUNT

CALL GDDM ('ASREAD',ATTYPE,ATMOD,COUNT) I Send to display

I kkkxrkkrrrkrkxrxx [ERMINATE ****kkkkkrhhkhrhkhhrrkhhkkhhkkhkx
CALL GDDM ('FSTERM') ! Terminate graphics
END I End BASIC program

Chapter 4. Using Presentation Graphics 4-91

Drawing the Chart

More Control Routines

“Control Operations” on page 4-13 discussed the control routines you use to
initialize and otherwise control the characteristics of the program and picture before
any chart definition or chart construction routines were called.

The following chart control routines, called after the chart-drawing routine has been
specified, let you either draw another chart or exit the program.

After the chart has been defined and constructed, you can:

1. Reset the processing state so that other state-1 attributes and options can be
set.

When you reset the processing state, you can modify the chart or create a new
chart of the same type quickly and efficiently within the same program.

2. Reinitialize Presentation Graphics and start over, without terminating the
graphics environment.

3. Terminate the Presentation Graphics portion of the program, and then send the
picture to a device (using the device control routines described in “Device
Controls” on page 3-65).

The following routines can be used to perform these three actions:

Reset the Processing State

CHSTRT - Reset the processing state. If CHSTRT is specified after a
chart-drawing routine, it resets the program to the point just prior to the most recent
chart-drawing routine. All chart control and chart definition routines maintain their
values. This routine is useful for a program that draws a number of similar charts.

If CHSTRT is specified before a chart-drawing routine, it reinitializes the program by
resetting all chart definition routines to their default values.

Reinitialize Presentation Graphics

CHRNIT — Reinitialize Presentation Graphics. CHRNIT reinitializes the program
by resetting all chart definition routines to their default values. CHRNIT can be
used if another chart will be shown on the same screen, in the area specified by
CHAREA.

Terminate Presentation Graphics

CHTERM - Terminate Presentation Graphics. CHTERM terminates the
Presentation Graphics environment and releases storage used by Presentation
Graphics to construct the chart. You should issue the CHTERM routine as soon as
you know you are not going to call more Presentation Graphics routines. CHTERM
can be issued before the GDDM routine ASREAD sends the chart to the device for
display, or before other GDDM routines are used to define the picture in more
detail.

4-92 AS/400 GDDM Programming Guide

Drawing the Chart

Summary of This Chapter

In Chapter 2, “The Application Program Interface to Graphics” the program that
drew the line chart introduced you to the basic idea of Presentation Graphics that
routines are called from application programs written in high-level languages to
draw a chart. When the chart is drawn, the program sends it to a display device.

Chapter 4, “Using Presentation Graphics” showed you the concepts and functions
of Presentation Graphics routines. Specifically, the topics presented in this chapter
were:

Understanding Presentation Graphics

The first part of the chapter showed you the various types of chart you can draw
with Presentation Graphics routines. It also showed you some ways to use the
charts.

Drawing charts with Presentation Graphics routines

The second part of the chapter showed the structure of Presentation Graphics
programs, and the typical sequence of Presentation Graphics routines used in a
program to draw a chart. Routines that define the chart were shown, as well as the
routines that perform the chart construction. Explained last were other Presentation
Graphics routines that control the environment.

At this point you should experiment with Presentation Graphics routines in simple
programs to gain a better understanding of them, and to get ideas for application
programs that use them. (Chapter 6, “Graphics Application Program Examples”
offers more ideas for programs, and shows and explains some sample programs.)

Here are some points to remember:

1. FSINIT must be specified before any calls to GDDM or Presentation Graphics
routines are performed by your program.

2. All of the chart definition routines can be allowed to default; however, the chart
can be difficult to understand without chart text (axis titles, labels, and a chart
legend).

3. Some chart definition routines can be used only in state-1 (before the chart
drawing routine is used).

4. Data types must be declared according to the high-level language being used.

For more detailed information about each Presentation Graphics routine, refer to
the GDDM Programming Reference manual.

Chapter 4. Using Presentation Graphics 4-93

Drawing the Chart

4-94 AS/400 GDDM Programming Guide

Programming Considerations

Chapter 5. O

S/400 Programming Considerations

In Chapter 3, “Using GDDM,” and Chapter 4, “Using Presentation Graphics,” you
learned of the variety of GDDM and Presentation Graphics routines that you can
use in application programs to construct graphics pictures and charts. The
concepts and functions of GDDM and Presentation Graphics routines were
discussed, but few ideas about how GDDM and Presentation Graphics routines
work with the AS/400 System were discussed.

This chapter is about the AS/400 System and its interface to OS/400 Graphics.
The topics are:

Files for graphics

Graphics symbol sets

Performance

Error recovery

User-defined data streams

AS/400 Files Used for Graphics

© Copyright IBM Corp. 1991

Three types of file can be used with graphics application programs:

1. Display device files, which can be used with graphics to provide more usable
and attractive display formats for interactive applications.

2. Printer device files, which can be used to format output from a printer graphics
application program for printing on a work station printer capable of graphics.

3. Database files, which can be used to hold the hexadecimal data of a graphics
data format (GDF) file for later interpretation by the AS/400 System or another
system.

Display Files

By using only GDDM and Presentation Graphics routines in your program, you can
write programs that produce pictures and charts. If you want a program that
combines OS/400 Graphics with work station input/output operations, you must use
DDS (data description specification) display device files with your graphics program.
(Ideas for programs that prompt for information, and then perform actions based on
that information are given in Chapter 6, “Graphics Application Program Examples.”)

For an OS/400 Graphics application program to perform input/output operations, the
program must first open a display device file to communicate with a display device.
The program can then do input and output operations (usually coded as READ and
WRITE operations in high-level language programs) to transfer data to and from the
device. For OS/400 Graphics, the preferred display device is the IBM PC with
Workstation Function.

There are two types of display files that you can use for graphics applications on
the AS/400 System:

IBM-supplied: QDGDDM is an IBM-supplied display file in library QSYS which
is used when you call OS/400 Graphics routines for display or plotter devices.
Usually, you are aware of this file only when other display files compete for the
use of the same display device, or when its name appears in error messages.

5-1

Programming Considerations

Externally-described: You can describe your own display file with DDS and
create it using the CRTDSPF (Create Display File) command. An
externally-described display file that uses the ALWGPH DDS keyword allows
you to display alphanumeric data and input fields at the same time graphics are
being displayed. ALWGPH is described in “The ALWGPH DDS Keyword” on
page 5-3.

When your graphics application program sends a picture to the graphics work
station (with or without externally-described display files), or when a record is
displayed that uses the ALWGPH keyword, the screen is set to graphics display
mode.

In graphics display mode:

1. The device is automatically placed in reduced line spacing mode, with less
space between lines. In graphics display mode, the reduced line spacing
cannot be overridden by the work station user.

2. The graphics display mode indicator, the blue uppercase G character, is shown
at the bottom of the screen.

3. The graphics picture is shown as a background to any alphanumeric data
shown by an externally-described display file.

QDGDDM Display File Considerations

GDDM uses the QDGDDM display file for communication with display devices
capable of showing graphics. These special considerations apply to the QDGDDM
display file:

QDGDDM is secured from overrides; GDDM graphics output cannot be
redirected to other devices by use of override commands, such as the
OVRDSPF (Override with Display File) command. If GDDM output is desired
on a specific device, you can specify a device identifier in the DSOPEN routine.
The device must be made known to the system by using a CRTDEVDSP
(Create Device Description (Display)) command.

If a file error occurs (perhaps due to a device failure), GDDM generates a
severity 40 (unrecoverable) error. The application program must recover the
device by doing a DSCLS-DSOPEN sequence to close and reopen the file.

If a process has performed a DSOPEN to the device, but not a DSCLS to
release the device, an attempt by an alternative process (such as System
Request) to use a graphics-capable device will fail.

5-2 AS/400 GDDM Programming Guide

Programming Considerations

QDGDDM competes with user-defined display files for graphics devices as follows:

When This Happens with ASREAD This Happens with FSFRCE
Display file is 1. Display file is suspended. 1. Display file is suspended.
active, and 2. Alphanumeric characters 2. Graphics are written.
allows graphics are cleared. 3. Display file is restored.
(ALWGPH 3. Graphics are written. G . .
) raphics remain on screen, as
has been 4. Keyboard is unlocked.
o . . ; background to the
specified). 5. Operator input is awaited. . .
. ; . alphanumeric data displayed.
Graphics 6. Display file is restored. :
. Alphanumeric characters are
display mode . .
is in effect Graphics remain on screen, as not cleared.
IS In efiect. background to the Display file remains active.
alphanumeric data displayed.
Display file remains active.
Display file is 1. Display file is suspended. 1. Display file is suspended.
active, and does 2. Alphanumeric characters 2. Alphanumeric characters
not allow are cleared. are cleared.
graphics (no 3. Graphics display mode is 3. Graphics display mode is
ALWGPH turned on. turned on.
keyword 4. Graphics are written. 4. Graphics are written.
specified in 5. Keyboard is unlocked. 5. Keyboard is locked.
dlspla)_/ flle)_. 6. Operator input is awaited. Only graphics remain on
Graphics display . .
- . Only graphics remain on screen.
mode is not in . - .
screen. Display file is not active.
effect. . - .
Display file is not active.
No display file is 1. Screen is cleared. 1. Screen is cleared.
active. Graphics 2. Graphics display mode is 2. Graphics display mode is
display mode is turned on. turned on.
not in effect. 3. Graphics are written. 3. Graphics are written.
4. Keyboard is unlocked. 4. Keyboard is locked.
5. Operator input is awaited. Graphics remain on screen.
Graphics remain on screen.

The ALWGPH DDS Keyword

With the ALWGPH keyword in your externally-described display files, you can
display alphanumeric data at the same time you use display file QDGDDM to
display graphics (your program uses internal display file QDGDDM).

You must specify the DDS keyword ALWGPH in at least one record format in DDS
for the externally-described file. Also, at least one record format that has the
ALWGPH keyword must be displayed when graphics are shown.

When a record format that has the ALWGPH keyword is displayed on the graphics
work station, the device is placed in graphics display mode (even if no other record
format being shown has ALWGPH). If you use System Request (while the device
is in graphics display mode) to start another job that uses other display files (with or
without ALWGPH), those display files are also shown in graphics display mode.

For plotters, the ALWGPH keyword has no effect and is ignored (alphanumeric data
displayed on the graphics work station cannot be plotted).

For more information on specifying the ALWGPH keyword, refer to the DDS
Reference manual.

Chapter 5. 0S/400 considerations. 5-3

Programming Considerations

The following example shows how to specify the ALWGPH keyword:

AS/400 DATA DESCRIPTION SPECIFICATIONS sxet9393 coumoso"

3 International Business Machines Corporation PrintedinUS A,
File Keying Graphic Description Page of
Programmer Date Instruction Key
= = -
e 3 I <
S o s 2
3 Condition Name g @ g
sequence = 2 Name Length |2 3 Location Functions
Number £ g 2 > 8
Bl s s 11515 3 S
SRz S |28 |5 8 (23 2 S| ge[s| tne | Pos
SBEl s |12|® |2 7 |52 13 FlESa
ERl5| 5 [5]2 [5] 2 |2k 2 N
gk|z| 2 (2|2 |2 2 |38] 81883
R TN A N N o o B O
il ot ; L ; Ll lALWGPH
A 1 20| ""ENITEIR IACICOUN'T INUM!BER!”
A F.l .EL D1 6lY| 0B +2
In this example, RECORD1 can be displayed with graphics if
option indicator 01 is set on when the record is displayed
(this puts the ALWGPH keyword into effect).
Z: niematonaisusness Machines Corporaton AS/400 DATA DESCRIPTION SPECIFICATIONS sersoo
hi
File Keying Graphic Description Page of
Programmer Date Instruction Key
A condtonng |38
& 8
= 3 = &
o o 2
=3 Condition Name | 8 = s
sequence H 2 Name Length |2 z Location Functions
Number £ ° &l s 2
E £ = 3 S
g8lle e |2 |2 8 2|5 28| tne | pos
26| § 2|8 128 |52 FlEsle
=l 5 (518 |58 Sloz|2
e e ‘K“EC‘OF‘DJ%“ e e
L ; ; ; ; 2] ‘20 ENTER [[ITIEM INUMBE'R"
N Fil IEIL D2 6Y| 0B H2
.

In this example, RECORD?2 allows graphics only when it is
displayed at the same time as a record with the ALWGPH
keyword in effect (otherwise, it causes graphics display
mode to be set off).

RV2S000-0

5-4 AS/400 GDDM Programming Guide

Printer Files

Programming Considerations

GDDM uses printer files to communicate with work station printers capable of
graphics.

The device-token parameter of the DSOPEN routine identifies the program to
GDDM as being one that is to produce printer output. When a DSOPEN routine
has a printer device token, GDDM opens the default printer file QPGDDM.
QSYS/QPGDDM is the default printer file, but you can create your own printer file
(with characteristics similar to QPGDDM) and use it by passing its name to GDDM
via the name-list parameter of the DSOPEN routine. For more information on using
DSOPEN to open printer files, see Appendix A, “Devices Compatible with the
AS/400 System.”

QPGDDM Printer File Considerations
GDDM uses the QPGDDM printer file for communication with work station printers
capable of graphics. When shipped, QPGDDM is defined as follows:

CRTPRTF FILE(QSYS/QPGDDM) +
DEVTYPE (*SCS) +
PAGESIZE(99 132) +
LPI(9) +
CPI(10) +
OVRFLW(90) +
RPLUNPRT (*N0) +
CHRID(101 037) +
SPOOL (YES) +
ouTQ(*JoB) +
FILESEP(0) +
SCHEDULE (*FILEEND) +
LVLCHK(*NO) +
SHARE (#NO) +
TEXT('System printer file for printer graphics')

The size of the graphics page (where graphics are allowed to be displayed on the
printer form) is determined by the PAGESIZE value for form width and the
OVRFLW value in the printer file. QPGDDM specifies a PAGESIZE width of 132
characters (10 cpi) and an OVRFLW value of 90 lines (9 Ipi). This means the
default graphics page is 13.2 inches wide and 10 inches long.

The graphics page is positioned by its upper left corner being placed at the upper
left corner of the printer form and its lower left corner being at the left edge of the
OVRFLW line. If the user specifies a width and overflow covering the entire page,
then the graphics page covers the entire form. The graphics field by default covers
the entire graphics page.

The default coordinate range that is mapped on top of the graphics field is 0
through 100 in both the x and y directions. The origin (0,0) is in the lower left
corner of the graphics field.

For example, if you specified a width of 130 characters (10 cpi) and an overflow
value of 54 lines (9 Ipi), then the graphics field would be 6 inches high by 13 inches
wide, starting in the upper left corner of the printer form. If you did not call GSWIN
in your application, then the coordinate range of this graphics field would be 0
through 100 in the x direction (horizontal) and 0 through 100 in the y direction
(vertical), with the origin being in the lower left corner of the graphics field.

Chapter 5. 0S/400 considerations. 5-5

Programming Considerations

You can override any of the attributes of QPGDDM. The effect of overriding
attributes for graphics using QPGDDM and user-defined print files is shown in this
table:

PAGESIZE
OVRFLW
LPI

CPI

When the PAGESIZE value for form width and the OVERFLW value are changed, graphics
hierarchy default values (such as the default values for page size and graphic field size) are also
changed.

For example, a printer file that specifies a width of 50 columns and an OVRFLW of 25 lines
causes a default graphics page of 25 rows by 50 columns. The default graphics field assumes
the same dimensions, and the aspect ratio also changes.

The lines-per-inch (LPI) value can be overridden, but has little effect other than to cause a
different default page or field size. Any LPI value you use is converted to 9 LPI because
graphics must be printed at 9 LPl. The default page or field size results from the conversion; if
you use a printer file that has values of 6 LPl and OVRFLW 36, the page would eject after 6
inches of printing. When the conversion to 9 LPI is made, the OVRFLW value is converted to
reflect the number of lines that can be printed on 6 inches (at 9 LPI, 54 lines can be printed on 6
inches). With a printer file in use or an override that uses the above values, a query of the
default page or field will result in the converted values. The converted values are used only for
the default page or field. If you define a page or field size less than the converted values, your
values are used instead.

You may want to specify your print file as 6 LPI instead of 9 LPI. For example, if you have
forms which are 8.5 inches long, you cannot describe your form with 9 LPI (correct form size
would be 76.5), but with 6 LPI you can by specifying a form size of 51 lines.

The characters-per-inch (CPI) value for graphics printer files must be 10 or 15. The default
character density is 10 CPI.

For IPDS page printers, you probably want to change the PAGESIZE value for width and the
OVRFLW value to match the size of the page you are printing on. For example, if you are using
8.5 inch by 11 inch paper, you may want to specify 83 for the width on the PAGESIZE value.
This produces output that is 8.3 inches wide when the CPI value is 10. If the page is rotated 90
degrees, you may want to specify 110 for the width on the PAGESIZE value and 72 for the
OVRFLW value. This produces output that is 11 inches wide (10 CPI) and 8 inches long (9 LPI).

PAGRTT

This parameter applies to the IPDS page printers. It specifies the degree of rotation of the
output on the page with respect to the way the form is loaded into the printer.

The default orientation of the page for IPDS page printers is vertical, as opposed to the
landscape orientation of the plotters and SCS printers. A rotation value of 90 degrees produces
a landscape orientation for your output, which is the same as for plotters and SCS printers.

SPOOL
DEVTYPE
ouTQ
ALIGN

The SPOOL parameter works in conjunction with the DEVTYPE parameter. If you specify
SPOOL(*NO) to send the file directly to the printer, DEVTYPE must specify the printer device
name. SPOOL(*YES) causes the file to be spooled to the output queue named in the OUTQ
parameter. ALIGN causes a forms alignment reply message to be send for SPOOL(*NO) files.

Graphics printer files are generally incompatible with devices that do not match the device token
used to produce the file. However, a printer file that is produced using the 522X device token
can be printed on a 4234 printer, but not the converse.

An SCS-type device token has precedence over the DEVTYPE (*IPDS) parameter. An IPDS
device token has precedence over the DEVTYPE (*SCS) parameter.

MAXRCDS
SCHEDULE
COPIES
FORMTYPE
FILESEP
HOLD
SAVE

These parameters apply only if SPOOL(*YES) is specified. The parameters work in the same
manner for graphics printer files as they do for other printer files.

5-6 AS/400 GDDM Programming Guide

Programming Considerations

PRTQLTY This parameter applies to the 3812, 4214, and 4224 printers. It specifies the print quality for text
on applications that merge text from non-graphics print files with graphics ones.

FORMFEED These parameters apply only to the IBM 4214 Printer, which can use cut sheets.

DRAWER

CHRID This parameter applies only to the 3812 and 4224 printers. It specifies the character set to be
used when using the default image symbol set.

SHARE This parameter applies only to application programs that merge text from non-graphics print files

with graphics printer files (SHARE(*YES)), and the open for the non-graphics print file must
occur after the graphics printer file has been opened via the DSOPEN routine. For more detailed
information, see “Merging Text and Graphics for Print Files” on page A-9.

Database Files

Database files on the AS/400 System can be used either to store data used as
input by the graphics application program or to hold the graphics data format (GDF)
file that is created by the program.

For examples of programs that receive input from database files, see Chapter 6,
“Graphics Application Program Examples.” For more information on GDF files, see
“Using Graphics Data Format Files” on page 3-68.

0OS/400 Graphics Symbol Sets

0OS/400 Graphics uses graphics symbol sets (GSS) for text in GDDM and
Presentation Graphics application programs. Each character in a graphics symbol
set is a formatted group of EBCDIC code points.

Two types of graphics symbol sets are available:

Image symbols (mode-2 characters), where each character is built with a set of
PELs

Vector symbols (mode-3 characters), where each character is built with a set of
straight and curved lines

Image symbols are the default for GDDM, and vector symbols are the default for
Presentation Graphics. For GDDM, however, you must explicitly set the character
mode to 2 (with GSCM) before any of the attribute routines can have an effect.

Multinational character sets (the default for both image and vector symbols)
containing the IBM multinational characters are shown in the Programming
Reference Summary manual.

Characters from the multinational sets can be coded in hexadecimal from a
graphics work station keyboard by first pressing the CMD key, then the accent key
between the CMD key and the 1 key on the top row, and then entering the
hexadecimal code. For example, the hexadecimal code for “A” is X'C1'.

Note: The characters in the multinational set might differ from the characters used
in your country; if you need specific characters, use the appropriate national
language symbol set for your country.

For IPDS Printers, the character set used by the default image symbol set (mode-2
characters) is determined by the CHRID parameter at the print file being used. For

Chapter 5. 0S/400 considerations. 5-7

Programming Considerations

more information, see the CHRID parameter on the CRTPRTF command in the CL
Reference manual.

5-8 AS/400 GDDM Programming Guide

Programming Considerations

For IBM-supplied image and vector symbol sets (found in library QGDDM), the
prefix characters for symbol sets are as follows:

ADMM___ Multinational standard characters (the default vector symbols,
and the default for Presentation Graphics on the graphics work
station and for both GDDM and Presentation Graphics on the
plotters)

ADMD___ Standard characters for each national language (vector symbols)

The following naming convention applies to vector symbol sets that have the
specific font styles of Standard Simple, Standard Bold, Open Block, Filled Block,
and Roman Principal:

ADMVM___ Multinational standard characters of a specific font style,
mono-spaced
ADMWM_ Multinational standard characters of a specific font style,

proportionally-spaced
National Language versions of these symbol sets are available. For more
information, contact your IBM representative.
Vector symbol sets contain the following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789
abcdefghijkimnopgrstuvwxyz $&x()-+=!:;"',.7/

The prefix characters for vector symbol sets are:

ADMU Specialty characters
ADMUV___ Specialty characters, mono-spaced
ADMUW____ Specialty characters, proportionally-spaced

Most vector symbol sets come in two versions: mono-spaced and
proportionally-spaced.

Mono-spaced characters in a character string use the same-sized character box (an
“I"is as wide as an “M"), while proportionally-spaced characters take only as much
space as the character itself.

More information on the uses and characteristics of both types of graphics symbols
is available in “How to Draw Graphics Symbols” on page 3-25.

Image Symbol Sets
This table shows the image symbol sets (ISS, or mode-2 characters) available.
They are all multinational standard characters and defaults for GDDM.

ISS name Object text (description)

ADMMISSG For the 4214 Printer

ADMMISSI For the 5224/5 Printers, and the 4234 Printer at 10 cpi
ADMMISSP For the 4234 Printer at 15 cpi

Note: The IPDS printers do not use a default image symbol set. When mode-2
characters are specified or defaulted, the printer hardware characters are
used. The printer hardware character set used is determined by the CHRID
parameter of the print file being used.

Chapter 5. 0S/400 considerations. 5-9

Programming Considerations

Vector Symbol Sets

Most vector symbol sets (VSS, or mode-3 characters) are available in proportional
and nonproportional fonts. Proportional fonts are indicated by a W as the fifth
character of the symbol set name, and nonproportional fonts are indicated by a V in

that position.

Here are examples of the available symbol sets shown in their proportional form:

PLO536L1

There is a set of standard multinational characters (ADMMVSS) that is available
only in nonproportional font. Other multinational symbol sets are available as both
proportional (W) and nonproportional (V) fonts:

ADMVMSS
ADMVMSB
ADMVMOB
ADMVMFB
ADMVMRP

Multinational Standard Simple
Multinational Standard Bold
Multinational Open Block
Multinational Filled Block
Multinational Roman Principal

Finally, there are national language nonproportional symbol sets:

ADMDVSS

ADMDVSSE
ADMDVSSF
ADMDVSSG
ADMDVSSI

ADMDVSSK
ADMDVSSS

5-10 AS/400 GDDM Programming Guide

American English standard characters
U.K. English standard characters
French standard characters

German standard characters

Italian standard characters

Katakana standard characters
Spanish standard characters

Programming Considerations

Using Graphics Symbol Sets

Graphics symbol sets are used to draw the character strings specified on the
GSCHAR and GSCHAP GDDM routines, as well as for all of the text output
produced by Presentation Graphics.

To use a specific mode-3 symbol set for GDDM, you must load the symbol set with
the GSLSS routine and then select it with the GSCS routine. Also, you must set
the character mode using GSCM.

Before you set attributes (except color) for mode-2 symbol set characters for
GDDM, you must explicitly set the character mode with GSCM.

For Presentation Graphics, symbol sets loaded by GSLSS must be selected and
attributes set by the appropriate CH__ATT routine (CHHAAT or CHLATT, for
example).

Graphics symbol sets can also be used to draw the markers specified on the
GSMARK and GSMRKS GDDM routines.

To use an image symbol set or a vector symbol set as a user-defined marker set,
you must first load it as a marker set using the GSLSS routine. As soon as the
marker symbol set is loaded, it is automatically selected for use as the current
marker set.

Creating Graphics Symbol Sets

Symbol sets produced on the System/370 computer by the licensed programs
GDDM Image Symbol Editor (mode-2 image characters) and GDDM-PGF Vector
Symbol Editor (mode-3 vector characters) are fully compatible with the AS/400
System, as are symbol sets supplied with System/370 GDDM.

To use System/370 symbol sets in OS/400 Graphics, you must transport the source
data from the System/370 computer to the AS/400 System, and then run the
CRTGSS (Create Graphics Symbol Set) CL command to convert the symbol set
source data into an AS/400 *GSS object type.

Because System/370 symbol set source data usually has a record length of 400,
some communications links between the AS/400 System and the System/370
computer require that the source data be reformatted into 80-byte records before
being sent to the AS/400 System. Other links allow the source data to remain in
400-byte records. However, the CRTGSS command will accept source data with
record lengths in the range of 80 through 400 bytes. Symbol set source data with
a record length of 400 can be sent back to the System/370 computer for
modifications, if necessary, while 80-byte data needs to be blocked again before
the symbol editors will accept it.

Symbol set source data can be placed into a physical file of either type *DATA or
*SRC. Type *SRC data cannot be edited or viewed, and the record length of the
file must be 12 bytes longer than the source data placed into it, to allow for the
12-byte sequence number fields associated with *SRC files. Therefore, the
allowable record length range is 92 through 412 bytes for type *SRC files.

Chapter 5. 0S/400 considerations. 5-11

Programming Considerations

Once the symbol set source data is contained as a member in an AS/400 database
file, it can be used to create a symbol set object (object type *GSS) in the CRTGSS
command.

The database file source is provided by the System/370 GDDM-PGF Vector
Symbol Editor in the following format (the format of the Image Symbol Editor
database file is the same):

RCDNBR 2 3. L 4 o L. 5 6 7o .. 8 ...8

SYMBLSETADMSYMBL

EEDCDECECCDEEDCD00

58423253144284230002000OOOOOOOOOOOOOO00OOOOOOOOOOOOOOO0OOOOOOOOOOOOOOOOOOOOOOOOO
J

LAII records contain this 20-byte header.

SYMBLSETADMSYMBL
EEDCDECECCDEEDCD000006060608044000506004000103C00104264441C04303F0€1013142433445
284232531442842300020402001301090000E003060A0C1AACA684666E1467A7F012FE7EL81C7610

) \ I L
Length fields. char 1stchar definition 2nd_ c_h_ar
Each mustbe box definition
largerthanthe size o begins
previousfield 3 offsets to definitions
by two. for 3 characters
Last codepointin set

Type: Firstcodepointin set

01 -vector

06 -image
SYMBLSETADMSYMBL

EEDCDECECCDEEDCD0000453606C01611C01434F0C14231110205163645F000000000000000000000
284232531442842300021A74F414949E149676F010187E9EF8FAS4741AF000000000000000000000

— J

3rd char definition

RV2S001-0

Graphics Symbol Set (*GSS) Objects

On the AS/400 System, graphics symbol sets are stored in the graphics symbol set
object. The GSS object is an AS/400 object with an external symbolic type of
*GSS.

Graphics Symbol Set CL Commands: You can use CL commands to tailor
usage of the graphics symbol set objects to your own installation. Graphics symbol
sets are supplied by IBM.

To manage graphics symbol sets use the CL object-management commands:

CRTGSS
DLTGSS
RNMOBJ
MOVOBJ
CRTDUPOBJ
SAVOBJ
SAVCHGOBJ
RSTOBJ
GRTOBJAUT
RVKOBJAUT
DSPOBJAUT
CHGOBJOWN

5-12 AS/400 GDDM Programming Guide

Create Graphics Symbol Set
Delete Graphics Symbol Set
Rename Object

Move Object

Create Duplicate Object
Save Object

Save Changed Object
Restore Object

Grant Object Authority
Revoke Object Authority
Display Object Authority
Change Object Ownership

Programming Considerations

DMPSYSOBJ Dump System Object
DMPOBJ Dump Object
WRKOBJLCK Work with Object Locks

Chapter 5. 0S/400 considerations. 5-13

Programming Considerations

These CL object management commands cannot be used for graphics symbol sets:

ALCOBJ Allocate Object (lock)
DLCOBJ Deallocate Object (unlock).

You can issue the DSPOBJD command to see which symbol sets are available on
your system.

For a complete description of any of these CL commands, refer to the CL
Reference manual.

Performance Considerations

Some of your graphics applications programs could be programs that produce a
simple picture or chart, others could be performing complex input/output operations
and showing various pictures, while others draw highly-detailed charts.

If your program will be a complex one that other users execute, you should try to
ensure that the processing time needed to construct each picture is acceptable.
The more complex the picture, the more time is needed by the system to construct
it.

Here are some ways to improve the performance of OS/400 Graphics application
programs if response time is important;

¢ Avoid the use of curved lines in the pictures or charts.

The system draws curves with many small, straight lines, whose end points
must be defined (just like you define the end points of lines with GDDM). A
circle with a diameter of 2.54 centimeters (one inch) is made up of more than
40 short lines.

If curved lines are required on a chart, use a smaller number for the degree of
smoothness for the CHFINE routine. Higher degrees of smoothness (larger
numbers) might not be noticeable but will substantially increase the time
needed to process the chart.

Line or surface charts that use line curving, and Venn diagrams and pie charts
that use circles are more complex for the system to construct than other types
of chart.

¢ Use image symbols or the default vector symbol set ADMMVSS for graphics
characters until the chart is in its final form, or use the default hardware
characters. (The characters put on the screen by a display file are the fastest,
most efficient way to show text.) Like arcs, each character is drawn with small
lines. Complex fonts (such as Triplex) can multiply the number of lines the
system must draw by factors of 10 through 100, depending on the number of
characters your program uses.

¢ Use outlines instead of area-fills and shading patterns (these are also defined
by the system with individual lines) for previewing pictures; later, you can add
the patterns when the chart is in its final form.

Sparse shading patterns are faster to draw than dense ones, especially on the
plotter.

e Use a solid area-fill instead of a GDDM pattern for areas. When the area-fill
pattern is solid, an area is enclosed by a maximum of 128 lines with boundary
lines drawn, no two lines crossing, and no GSMOVE routines are used within
the area, the graphics work station performs the area-fill, rather than the

5-14 AS/400 GDDM Programming Guide

Programming Considerations

AS/400 System. (The AS/400 system must process the end points of each line
in a pattern.)

Chapter 5. 0S/400 considerations. 5-15

Programming Considerations

e When your graphics program uses DDS display files, use FSFRCE to send the
graphics output to the screen first, then use the display file information. This
reduces the number of screen saves and restores.

* Use the Presentation Graphics routine CHTERM in the program as soon as you
know that no more Presentation Graphics routines will be called. CHTERM
releases the internal storage used by the program to process and construct the
chart.

¢ When many continuous lines have to be drawn, GSPLNE is faster than several
GSLINE calls.

e Structure a program that draws many pictures or charts such that you define all
the pages before you select and display them at the end of the program. While
this technique does not reduce processing time, it gives the illusion of
increased performance by enabling you to display in quick succession a large
number of pages whose processing time has already occurred (the pages are
held in an internal form after they have been processed; they can be quickly
selected and displayed).

e |If your GDDM or Presentation Graphics program only draws a picture and
shows it, (the picture does not have to be changed often), consider using the
GDDM GDF routines to capture the processed graphic data format file. You
can then display or plot the picture without having to execute the drawing
routines each time.

Error Recovery

When GDDM detects an error in an application program, it sends a diagnostic
message describing the error to the program message queue of the application
program and creates an error record that contains the error message data.

Error-Handling Considerations

You can use the GDDM routine FSEXIT to specify an error-handling program that
your GDDM or Presentation Graphics application program will call when an error is
encountered.

If the error severity equals or exceeds the threshold specified in the FSEXIT
routine, your error-handling program is invoked and the error record is passed to it.
If FSEXIT is not specified and the severity of the error exceeds 40, or if FSEXIT is
specified with only a severity threshold (and not the name of an error-handling
program) whose value is equaled or exceeded by the error, the IBM-supplied
default error message CPF8619 is issued.

If a threshold level of zero is specified, the error-handling program is invoked after
each call to a GDDM routine, whether or not an error has occurred. In such cases,
each error record contains only information about the most recent GDDM routine
called.

A default error-handling program is set up on initialization, with a default threshold
of 40 (unrecoverable error). This default error-handling program sends a CPF8619
escape message to the application program, and the application program is
terminated (unless you are using the MONMSG (Monitor Message) command to
perform other actions when the message is encountered).

5-16 AS/400 GDDM Programming Guide

Programming Considerations

If FSEXIT specifies the name of an error-handling program (in addition to the
default), the program can be reset by the following statements:

CALL GDDM ('FSEXIT','*NONE',SEV) ! SEV = severity
or
CALL GDDM ('FSEXIT','*SAME',SEV) ! SEV = severity

An error-handling program specified by FSEXIT is called by GDDM exactly as if it
had been invoked instead of the GDDM routine that produced the error. The
application program can use the error-handling program to call other GDDM
routines, which are valid and current when control is returned to the original
program (the one with the error).

If a file error occurs (perhaps due to a device failure), GDDM generates a severity
40 (unrecoverable) error. The application program must recover the device by
using DSCLS followed by DSOPEN to close and reopen the file. The error
message will show what you need to do.

The error record created by GDDM for the most recent error whose severity is
nonzero can be returned to the application program by a call to FSQERR. The
structure of the error record returned is identical to that passed to an error-handling
program specified by FSEXIT. The error record is set to blanks in character fields
and zeros in numeric fields before each call to FSQERR.

Error Messages

Message ldentifiers: 0S/400 Graphics diagnostic messages have a prefix of
“CPG.” All CPG messages are diagnostic messages; they further define an error
condition or provide explanatory information.

0S/400 Graphics escape messages are CPF8600-series messages. If the
message is unmonitored, termination occurs.

Further information regarding graphics and OS/400 messages is available through
message help text.

Error Record Structure: The GDDM error record is similar to a record resulting
from a RCVMSG (Receive Message) command.

The format of the error record is:

1. Severity. A number shows the AS/400 message severity:

00 No error

10 Warning

20 Error (GDDM or Presentation Graphics routine is ignored)
30 Severe error (unpredictable results may occur)

40 Unrecoverable error.

2. Message identifier. The 7-character message identifier (CPGnnnn), where
nnnn is the message number.

3. Routine name. Eight characters that contain the name of the GDDM routine
that caused the error.

For FSQERR, this field contains blanks if no error has occurred since the last
call to FSQERR, or if there have been no errors since FSINIT.

Chapter 5. 0S/400 considerations. 5-17

Programming Considerations

4. Message text length. A 5-digit decimal number containing the length of the
first-level message text, excluding trailing blanks. The maximum text length is
132.

5-18 AS/400 GDDM Programming Guide

Programming Considerations

5. Message text. A character field containing the first-level text of the error
message associated with the error. 132 bytes are reserved in the error record
structure for the message text, regardless of the length specified for the text.

6. RCP (request control parameter) code. A 4-byte binary integer with the RCP
code of the GDDM routine. For FSQERR, the number is zero if no error has
occurred since the last call to FSQERR or if there have been no errors since
FSINIT.

7. Message reference key. The 4-character AS/400 message reference key of
the message. This key is needed if the error-handling program receives the
diagnostic message for any reason (with the RCVMSG (Receive Message) CL
command).

8. Message type code. A 2-character field containing the AS/400 message type
code for the message. This field usually contains 02 to indicate a diagnostic
message. (The discussion for the RTNTYPE parameter of the RCVMSG
command in the CL Reference manual shows other codes.)

9. Message data length. A 5-digit decimal number containing the length of the
message data, if any. The minimum length is 12 (to accommodate the
message variables listed below); the maximum length is 400.

10. Message data. The message data contains the substitution values (in a single
character string) that were used in the text of the message. The amount of
data returned and its format depend on the message.

All CPG-prefix messages have a format common to the first message variable, as
follows:

1. Routine name. Eight characters that contain the name of the GDDM routine
that caused the error. If the error exit threshold is zero or less, the routine
name is that of the GDDM routine called. For FSQERR, the field contains
blanks if no error has occurred since the last call to FSQERR or if there have
been no errors since FSINIT.

2. Statement number. A 10-byte character string that identifies the statement in
the program that caused the error.

3. The remainder of the message replacement variables.

User-Defined Data Streams
You can use a UDDS (user-defined data stream) with a user-defined keyword
(USRDFN) to access the graphics work station and its attached devices for your
applications, but it is not recommended.

If UDDS is used, the application program must be aware of the unusual nature of
the graphics work station data stream and its pacing protocol for graphics. (Pacing
is a method of communication between the graphics work station and the AS/400
System; pacing for the graphics work station differs from SNA pacing.)

Chapter 5. 0S/400 considerations. 5-19

Programming Considerations

You should be aware of these points before you use a UDDS:

e The graphics data stream must be sent in graphics blocks that must exceed 11
bytes but be less than or equal to 1920 bytes in length. More than one
graphics block may be required to display a complete picture.

» Graphics blocks cannot contain normal alphanumeric data. All normal
alphanumeric operations must be transmitted separately, and normal device
rules apply to them.

e The graphics data stream is encoded such that all characters are in the range
X'40' through X'FF'.

» All graphics input/output must be done as PUTGET operations to handle pacing
for the display device, or pacing must be suppressed. The pacing scheme
works as follows:

1. The system sends a graphics block to the display device. The graphics
block is recognized by the presence of X'FF' character immediately
following the first WTD (write-to-display) order in the data stream. This
causes the device to set graphics mode on and place the keyboard in
graphics lock state, which is identified by a special blue input inhibited
indicator on the screen. During graphics lock state, no keys can be
pressed (including System Request) except for the special display device
local keys.

2. The display device processes the graphics block. Any block received
during processing is interpreted as a normal alphanumeric block.

3. When the display device finishes processing the graphics block (which may
take some time, and can be minutes if the printer or plotter is being used),
it sends back an aid key (F1 through F24) to indicate that it is ready for
more work and that another graphics block may be sent down. The
specific aid key indicates whether the processing completed normally or an
error occurred.

4. The system must wait for this aid key to be sent back before sending any
more data to the display device.

5. At the end of the last graphics block, the system must send an end
graphics mode graphics order to signal to the display device to leave
graphics mode. Otherwise, the keyboard will remain in graphics lock state.
The only option you have is to use of one of the local keys on the display
device to terminate graphics mode manually.

e |If an event causes an interrupt (such as a break message or a system request)
while the display device is in graphics mode (the application is in the process of
transmitting one or more graphics blocks to the device), the application could
be suspended, with an input operation that cannot be completed. This occurs
when the normal graphics work station pacing response to a graphics block
(the special aid key) is discarded by the work station controller because
alphanumeric input/output is attempted while the display station is processing
graphics. For more information on user-defined data streams, refer to the IBM
5250 Information Display Systems Functions Reference Manual.

5-20 AS/400 GDDM Programming Guide

Application Programming Examples

Chapter 6. G

raphics Application Program Examples

This chapter shows examples of programs in all the high-level languages that
support OS/400 Graphics: BASIC, COBOL/400, Pascal, PL/I, and RPG/400
programming languages.

In Chapter 2, “The Application Program Interface to Graphics,” two BASIC
programs showed you the fundamentals of and the similarities and differences
between GDDM and Presentation Graphics programs. The GDDM program drew a
picture of a stamped, addressed envelope, and the Presentation Graphics program
drew a line chart. The first part of this chapter shows the same programs in the
other high-level languages.

The second part of this chapter shows other, more complex programs.

Finally there are examples of handling graphics images in each of the languages.

The Envelope Program in Other Languages

© Copyright IBM Corp. 1991

Each of the following programs provides source code, in one of the supported
high-level languages, that will allow the following picture to be drawn:

%x%x*%* 35MMO536LO ***x**

6-1

Application Programming Examples

Envelope Program in the RPG/400 Programming Language
000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

* The following three character variables read their string values
* from the array input records found at the bottom of this

* Tisting.
E ADDR1T 1 1 9 line 1 of address
E ADDR2 1 112 line 2 of address
E ADDR3 1 111 line 3 of address
IPARAM DS
I B 1 40LINEW
I B 5 8OSTRLEN
I B 9 120COLOR
I B 13 1600UTL
I B 17 200ATTYPE
I B 21 240ATMOD
I B 25 280COUNT
hhkhkkhkhkkhhkhkhkhkhhhhkhkhhhhkhhkhhhhkhhhhkhhdhkhkhhdhkhkhdhkhkhhhkhkhhkhkdhkhkhkdhkhkk,%x
* INITIALIZE
KNk hkhkhkhhkhdhhhkhdhhhhdhkhhhdhhhdhdhkhhdhdhkhhdhdhhhdhdhhhdhdhhhdhkhhhdhkhhhdhkikdhdhhkddkxx
C CALL 'GDDM'
C PARM 'FSINIT 'FSINIT 8
KRk hkhkkhkhhhhkhkkhhhhhkhhhhkhkhhkhhdhhkhhhhkhkhhkhhdhkhkhhhkhkkkhkhkhdhkhkhhkhkddkx*x
* SET ATTRIBUTES
hhkkkhkhkkhhkhkhkhkhhhdhkhhkhhkhhhhkhhdhhkhhdhhkhhdhkhhhdhkhhhdhkhhhdhkhkdhdhkhhkdhkhkhkdhkhkkx,kx
* Assign line width (2 = wide)
C CALL 'GDDM'
C PARM 'GSLW "GSLW 8
C PARM 2 LINEW
* Assign color (5 = turquoise)
C CALL 'GDDM'
C PARM 'GSCOL 'GSCOL 8
C PARM 5 COLOR
kkkkkhkhkhkhhhhkhkkkkkkhkkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhkhkhkhhkkkkkkikkk
* DRAW ENVELOPE
khkkkhkhkhkhhhhhkhkkhkhhhhkhkhdhdhdhdhhhhhhhhhhddddhhhhhhhhhhhddddhdddrrkkrriixd
* Move to upper Teft corner
C CALL 'GDDM'
C PARM 'GSMOVE 'GSMOVE 8
C PARM 1 X 51
C PARM 75 Y 51
* Draw across to upper right
C CALL 'GDDM'
C PARM 'GSLINE 'GSLINE 8
C PARM 80 X
C PARM 75 Y
* Draw down to Tower right
C CALL 'GDDM'
C PARM GSLINE
C PARM 80 X
C PARM 1 Y
* Draw across to lTower Teft
C CALL 'GDDM'
C PARM GSLINE
C PARM 1 X
C PARM 1 Y
* Draw up to upper left corner

6-2 AS/400 GDDM Programming Guide

OO OO0 OO0

NeoNeNe

C
C
C

C
C

o

OO OO0 OO0 OO0 OO0

OO0

o

C

C

Application Programming Examples

CALL 'GDDM'
PARM GSLINE
PARM 1 X
PARM 75 Y

Draw up to point of flap
CALL 'GDDM'
PARM GSLINE
PARM 40 X
PARM 100 Y

Draw down, over to upper right
CALL 'GDDM'
PARM GSLINE
PARM 80 X
PARM 75 Y

KRkKhkRkKhRkKhhkhkhkhkhkkhkhkhkhkkhkhkhhkkhkhkhhkhhkhhkkhkhkhkhkkhkhkhkhkkkhkkkhxkk,x*%

*

RESET ATTRIBUTES & DRAW STAMP

KKK KKKAKRKAKRKRAKRKAKRKRRKRKRAKRKRARKRAXRKRARKRARKRhkhkhkkhkhkhkhkkhkhkkhkhkkkhkkkhkkkx*

*

*

Assign color (2 = red)

CALL 'GDDM'
PARM GSCOL
PARM 2 COLOR
Specify filled area with outline
CALL 'GDDM'
PARM 'GSAREA 'GSAREA 8
PARM 1 OUTL
Move to upper Teft corner
CALL 'GDDM'
PARM 'GSMOVE 'GSMOVE 8
PARM 67 X
PARM 70 Y
Draw across to upper right
CALL 'GDDM'
PARM GSLINE
PARM 77 X
PARM 70 Y
Draw down to Tower right
CALL 'GDDM'
PARM GSLINE
PARM 77 X
PARM 55 Y
Draw across to Tower left
CALL 'GDDM'
PARM GSLINE
PARM 67 X
PARM 55 Y
Draw up to upper Tleft
CALL 'GDDM'
PARM GSLINE
PARM 67 X
PARM 70 Y
Fill the area
CALL 'GDDM'

PARM 'GSENDA 'GSENDA 8

kkkkhkkkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhhhkhkkhkhkhkhkkhkhkhkhkkkhkk

*

WRITE ADDRESS

Khkkkhkkkhkkhkkhkhkkhkhkhhkhhkhhkkhkhkhkhkhkhkhkhhhhkhkhkhkhhkhkhdkhkhkhkhkkhkhkkhixkkxx*x

*

Assign color (4 = green)
CALL 'GDDM'

Chapter 6. Program Examples

6-3

Application Programming Examples

C PARM GSCOL

C PARM 4 COLOR

* Write Tline 1

C CALL 'GDDM'

C PARM 'GSCHAR 'GSCHAR 8

C PARM 30 X

C PARM 45 Y

C PARM 9 STRLEN

C PARM ADDR1

* Write Tline 2

C CALL 'GDDM'

C PARM GSCHAR

C PARM 30 X

C PARM 35 Y

C PARM 12 STRLEN

C PARM ADDR?

* Write line 3

C CALL 'GDDM'

C PARM GSCHAR

C PARM 30 X

C PARM 25 Y

C PARM 11 STRLEN

C PARM ADDR3
khkkkhkhkhkhhhhhkhhhhhhhdddhhdddhhhhhhhdhdhdhdhhhhhhhhhhhdddhdhdhdhdrrrhrrddsd
* DISPLAY THE PICTURE
hhkkkhhkhkkhhkhkhkhkhhhhkhkhhkhhhhkhhhhkhhkhhkhhdhkhkhhhkhkhhdhkhkhhhkhkhhkhkdhkhkhkdhkhkk,%x

C CALL 'GDDM'

C PARM 'ASREAD 'ASREAD 8

C PARM 0 ATTYPE

C PARM ATMOD

C PARM COUNT
kkkkhkhkhkhhhhhkhkkhkhhhhkhkhdhdhdhdhhhhhhhhhhdhdddhhhhhhhhhhhdddddddrrhkrrrid
* TERMINATE
khkkkhkhkhkhhhhhhhhhhhhhddhddhdhhhhhhhhdhddhdhdhhhhhhhhhhddddhdhddrrrkrriid

C CALL 'GDDM'

C PARM 'FSTERM 'FSTERM 8

C SETON LR

C RETRN

*

* Note that SEU signals a syntax error when you enter
* the following array input records; ignore the error.

**

R G Blue

%

123 Color Ln

*%
Vectorville

6-4 AS/400 GDDM Programming Guide

Application Programming Examples

| Envelope Program in the COBOL/400 Programming Language

Y

IDENTIFICATION DIVISION.
PROGRAM-ID. ENVELOPE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-S38.
OBJECT-COMPUTER. IBM-S38.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 COLOR PIC S9(5) COMP-4.
77 X PIC S9(5) COMP-3.
77 Y PIC S9(5) COMP-3.
77 ATTYPE PIC S9(5) COMP-4.
77 ATMOD PIC S9(5) COMP-4.
77 KOUNT PIC S9(5) COMP-4.
77 STRING-LENGTH PIC S9(5) COMP-4.
77 LINEWIDTH PIC S9(5) COMP-4.
77 OUTLINES PIC S9(5) COMP-4 VALUE 0.
01 GDDM-ROUTINES.
05 GSCOL PIC X(8) VALUE "GSCOL".
05 GSLW PIC X(8) VALUE "GSLW".
05 GSMOVE PIC X(8) VALUE "GSMOVE".
05 GSLINE PIC X(8) VALUE "GSLINE".
05 GSAREA PIC X(8) VALUE "GSAREA".
05 GSENDA PIC X(8) VALUE "GSENDA".
05 GSCHAR PIC X(8) VALUE "GSCHAR".
05 FSINIT PIC X(8) VALUE "FSINIT".
05 FSTERM PIC X(8) VALUE "FSTERM".
05 ASREAD PIC X(8) VALUE "ASREAD".
01 ADDRESS-LINES.
05 LINE1 PIC X(12) VALUE "R G Blue .
05 LINEZ2 PIC X(12) VALUE "123 Color Ln".
05 LINE3 PIC X(12) VALUE "Vectorville ".

PROCEDURE DIVISION.
MAIN-ROUTINE.

PERFORM TEST-PARAGRAPH.
TEST-PARAGRAPH.

kkkkhkkkkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkkhkhkkhkhkkhkhkkkhkk

* INITIALIZE

KRkkkkkkhkhhkkhkhkhhkkhkhkhkhkhhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkkhkkkhxkkx*%

CALL "GDDM" USING FSINIT.

KKK KKKEIAKRKRIAKRKRIAKRKRAKRKRRKRKRAKRKRARKRARKARKR Rk KRhkhhkkhkhkhkhkkhkhkkhkhkkkhkkkhkkkx*

% SET ATTRIBUTES
KA AR AR AR I AR I A b AR h A h A A h A h A hhhhhhhhhdhhhdhhdhhdhhdhdhhdhhhdhhdhdkhdhdddkxsd
* Assign line width (2 = wide)
MOVE 2 TO LINEWIDTH.
CALL "GDDM" USING GSLW, LINEWIDTH.
* Assign color (5 = turquoise)
MOVE 5 TO COLOR.
CALL "GDDM" USING GSCOL, COLOR.

kkhkkhkkhkhkkhhkhkhkkhhkhhhkhkhkkhhkhkhkkhhkhkhkhkhhhkhhkkhhkhhkkhkhkhkhhkhkhkkhhkhkhkkhkhkkhkhkkkkx

* DRAW ENVELOPE

kkhkkkhkkkhkkhkhkkhhkhkhkkhhkkhhkhhkkhhkhkhkkhhkkhhkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkhkkkhkkkkk*x

* Move to upper left corner

Chapter 6. Program Examples

6-5

Application Programming Examples

MOVE 1 TO X.

MOVE 75 TO Y.

CALL "GDDM" USING GSMOVE, X, Y.
* Draw across to upper right

MOVE 80 TO X.

CALL "GDDM" USING GSLINE, X, Y.
* Draw down to lower right

MOVE 1 TO Y.

CALL "GDDM" USING GSLINE, X, Y.
* Draw across to Tower Teft

MOVE 1 TO X.

CALL "GDDM" USING GSLINE, X, Y.
* Draw up to upper left corner

MOVE 75 TO Y.

CALL "GDDM" USING GSLINE, X, Y.
* Draw up to point of flap

MOVE 40 TO X.

MOVE 160 TO Y.

CALL "GDDM" USING GSLINE, X, Y.
* Draw down, over to upper right

MOVE 80 TO X.

MOVE 75 TO Y.

CALL "GDDM" USING GSLINE, X, Y.

KKK KKKIAKKAKRKAKRKRAKRKAKRKRAKRKRARKRARKRARKARRAhRkhkhkkhkhkhkhkkhkhkkhkhkkkhkkhkhkkkx*

* RESET ATTRIBUTES & DRAW STAMP
hhkkkhkhkhkkhhkhkkhkhhhhkhkhhkhhhhkhhhhkhhkhhkhhhkhkhhhkhkhhkhhhhkhkhhkhkdhkhkhkdhkhkk,*%x
* Assign color (2 = red)
MOVE 2 TO COLOR.
CALL "GDDM" USING GSCOL, COLOR.
* Specify filled area with outline
MOVE 1 TO OUTLINES.
CALL "GDDM" USING GSAREA, OUTLINES.
* Move to upper Tleft corner
MOVE 67 TO X.
MOVE 70 TO Y.
CALL "GDDM" USING GSMOVE, X, Y.
* Draw across to upper right
MOVE 77 TO X.
CALL "GDDM" USING GSLINE, X, Y.
* Draw down to Tower right
MOVE 55 TO Y.
CALL "GDDM" USING GSLINE, X, Y.
* Draw across to lower left
MOVE 67 TO X.
CALL "GDDM" USING GSLINE, X, Y.
* Draw up to upper left
MOVE 70 TO Y.
CALL "GDDM" USING GSLINE, X, Y.
* Fill the area
CALL "GDDM" USING GSENDA.

KRKKKAKKRKRKIRRRRKR X Rh kR khhkhkhkhkhkhhkhhkhhkkhhkhkhkkhkhkhkhkkkhkkkhxkkx*

* WRITE ADDRESS
khkkkhkhkhhhhhhkhhhhhhhdddhhddhhhhhhhhddhdhdhdhhhhhhhhhddddhdhdhdhddrrrhrridsd
* Assign color (4 = green)

MOVE 4 TO COLOR.

CALL "GDDM" USING GSCOL, COLOR.
* Write line 1

MOVE 12 TO STRING-LENGTH.

6-6 AS/400 GDDM Programming Guide

Application Programming Examples

MOVE 30 TO X.

MOVE 45 TO Y.

CALL "GDDM" USING GSCHAR, X, Y, STRING-LENGTH, LINEL.
* Write line 2

MOVE 35 TO Y.

CALL "GDDM" USING GSCHAR, X, Y, STRING-LENGTH, LINEZ2.
* Write line 3

MOVE 25 TO Y.

CALL "GDDM" USING GSCHAR, X, Y, STRING-LENGTH, LINE3.

KKK KKKIAKRKAKRKIAKRKRAKRKRRRKRARRARKRA Xk khkhhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkkhkkkhkkkx*

* DISPLAY THE PICTURE

AKKKKKKAKRKRAKRKIAKRKRAKRKAKRKAKRKRARKRARKRARKARRARKhhkkkhkhhkkhkhkkhkhkkkhkkhkhkkkx*

CALL "GDDM" USING ASREAD, ATTYPE, ATMOD, KOUNT.

kkhkkhkkhkhkkhhkhkhkkhhkhhhkhkhkkhhkhkhkkhhkhkhkhkhkhhkhhkkhhkhkhkkhkhkkhhkhkhkkhhkhkhkkhkhkkhkhkkkk

* TERMINATE

kkhkkhkkkhkkhkhkkhhkhhkkhhkkhhkhhkkhhkhhkkhhkkhhkhkhkkhhkhkhkkhkhkkhkhkhkhkkhkhkkhkkkhkkkkk*x

CALL "GDDM" USING FSTERM.
STOP RUN.

Chapter 6. Program Examples 6-7

Application Programming Examples

Envelope Program in PL/I

ENVELOPE: PROC;
DCL (ATTYPE,ATTVAL,COUNT) FIXED BIN(31); /* Parameters for ASREAD =*/

/**/

[INITIALIZE */
/**/
CALL FSINIT; /* Initialize the graphics environment */
/**/
/* SET ATTRIBUTES */
/**/
CALL GSLW(2); /* Assign line width (2 = wide) %/
CALL GSCOL(5); /% Assign color (5 = turquoise) */
/**/
/* DRAW ENVELOPE */
/**/
CALL GSMOVE(1,75); /* Move to upper left corner %/
CALL GSLINE(80,75); /* Draw across to upper right */
CALL GSLINE(80,1); /* Draw down to lower Tleft %/
CALL GSLINE(1,1); /* Draw across to Tower left */
CALL GSLINE(1,75); /* Draw up to upper left corner */
CALL GSLINE(40,100); /* Draw up to point of flap */
CALL GSLINE(80,75); /* Draw down, over to upper right */
/**/
/* RESET ATTRIBUTES & DRAW STAMP */
/**/
CALL GSCOL(2); /* Assign color (2 = red) */
CALL GSAREA(1); /* Specify filled area with outline */
CALL GSMOVE(67,70); /* Move to upper left corner %/
CALL GSLINE(77,70); /* Draw across to upper right */
CALL GSLINE(77,55); /* Draw down to lower right %/
CALL GSLINE(67,55); /* Draw across to lower left */
CALL GSLINE(67,70); /* Draw up to upper left */
CALL GSENDA; /* Fill the area */
/**/
/* WRITE ADDRESS */
/**/
CALL GSCOL(4); /* Assign color (4 = green) */
CALL GSCHAR(30,45, 8,'R G Blue'); /* Write line 1 */
CALL GSCHAR(30,35,12,'123 Color Ln'); /% Write line 2 */
CALL GSCHAR(30,25,11, 'Vectorville'); /* Write line 3 */
/**/
/* DISPLAY THE PICTURE */
/**/
CALL ASREAD(ATTYPE,ATTVAL,COUNT); /* Display the picture */
/**/
/% TERMINATE */
/**/
CALL FSTERM; /* Terminate graphics */
%INCLUDE SYSLIB (ADMUPLNB); /* Include routine library =*/
END ENVELOPE; /* End PL/I program */

6-8 AS/400 GDDM Programming Guide

Application Programming Examples

Envelope Program in Pascal
PROGRAM ENVELOPE;

TYPE
%INCLUDE QATTPAS(ADMUSTNO) ; /* IBM-supplied TYPE declarations =x/
VAR
X, Y : SHORTREAL; /* work variables */
CHARSTRING : CHARARR_132; /* string parameter for GSCHAR */
A, B : INTEGER; /* work variables */
ATTYPE, ATTVAL, COUNT : INTEGER; /* parameters for ASREAD */
%INCLUDE QATTPAS (ADMUSLNB) ; /* IBM-supplied PROC declarations =/
BEGIN
/**/
/% INITIALIZE %/
/**/
FSINIT; /* Init the graphics environment =/
/**/
/* SET ATTRIBUTES */
/**/
A :=2;
GSLW(A); /* Assign line width (2 = wide) x/
B :=5;
GSCOL(B); /* Assign color (5 = turquoise) */
/**/
/* DRAW ENVELOPE */

/**/

X :=1.0; Y := 75.0;

GSMOVE(X,Y); /* Move to upper left corner */
X := 80.0;

GSLINE(X,Y); /* Draw across to upper right */
Y :=1.0;

GSLINE(X,Y); /* Draw down to lower right */
X :=1.0;

GSLINE(X,Y); /* Draw across to lower left %/
Y :=75.0;

GSLINE(X,Y); /* Draw up to upper left corner */
X :=40.0; Y := 100.0;

GSLINE(X,Y); /* Draw up to point of flap */
X :=80.0; Y := 75.0;

GSLINE(X,Y); /* Draw down, over to upper right =x/
/**/
/* RESET ATTRIBUTES AND DRAW STAMP */
/**/
A :=2;

GSCOL(A); /* Assign color (2 = red) */
B :=1;

GSAREA(B) ; /* Specify filled area with outlinex/
X :=67.0; Y :=70.0;

GSMOVE(X,Y) ;s /* Move to upper Tleft corner */
X :=77.0;

GSLINE(X,Y); /* Draw across to upper right */
Y := 55.0;

GSLINE(X,Y); /* Draw down to lower right */
X := 67.0;

Chapter 6. Program Examples 6-9

Application Programming Examples

GSLINE(X,Y); /* Draw across to lower left */
Y :=70.0;

GSLINE(X,Y); /* Draw up to upper left x/
GSENDA; /* Fill the area */
/**/
/* WRITE ADDRESS */
/**/
A := 4,

GSCOL(A); /* Assign color (4 = green) */

X :=30.0; Y :=45.0; A := 8;

CHARSTRING := 'R G Blue';

GSCHAR(X,Y,A,CHARSTRING) ; /* Write line 1 */
Y := 35.0; A := 12;

CHARSTRING := '123 Color Ln';

GSCHAR(X,Y,A,CHARSTRING) ; /* Write line 2 */
Y := 25.0; A := 11;

CHARSTRING := 'Vectorville';

GSCHAR(X,Y,A,CHARSTRING) ; /* Write line 3 */
/**/
/* DISPLAY THE PICTURE */
/**/
ASREAD (ATTVAL,ATTYPE,COUNT) ; /* Display the picture x/
/**/
/% END GRAPHICS x/
/**/
FSTERM /* End graphics */
END. /* End Pascal program */

The Line Chart Program in Other Languages

Each of the following programs provides source code, in one of the supported
high-level languages, that will allow the following chart to be drawn:

k*x%xx% 35MMO536L9 **x*%

6-10 AS/400 GDDM Programming Guide

Application Programming Examples

Line Chart Program in the RPG/400 Programming Language

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

E AX 550

E AY 10 50

IPARAM DS

I B 1 A4OLINES
I B 5 80POINTS
I B 9 120ATTYPE
I B 13 160ATMOD
I B 17 200COUNT
C Z-ADD1 AX,1

C Z-ADD2 AX,2

C Z-ADD3 AX,3

C Z-ADD4 AX, 4

C Z-ADD5 AX,5

C Z-ADD5 AY,1

C Z-ADD3 AY,2

C Z-ADD5 AY,3

C Z-ADD5 AY,4

C Z-ADD11 AY,5

C Z-ADD8 AY,6

C Z-ADD13 AY,7

C Z-ADD6 AY,8

C Z-ADD1 AY,9

C Z-ADD7 AY, 10

C MOVEL'FSINIT' FSINIT 8

C MOVEL'CHPLOT' CHPLOT 8

C MOVEL'FSTERM' FSTERM 8

C MOVEL'ASREAD' ASREAD 8

ER R R R R R Rk R R Rk Rk R Rk Rk

% INITIALIZE
B o R b R b b b b L b b P b b
C CALL 'GDDM'
C PARM FSINIT
B R R o b o R b b R o R o R R L R R R L
* DRAW THE CHART
B R b b b b b b b b b e b b b b b b b b b b R b B b L b e P b b
C CALL 'GDDM'
C PARM CHPLOT
C PARM 2 LINES
C PARM 5 POINTS
C PARM AX
C PARM AY
B R o b R b b b b L e b b P b b b
% DISPLAY THE CHART
KA A KR A R A R I AR I A h AR h A hhhhhAhh A hhhhhhhhhdhhhdhhdhhhdhhdhdhhdhhdhdhddhdkhdkx
C CALL 'GDDM'
C PARM ASREAD
C PARM ATTYPE
C PARM ATMOD
C PARM COUNT
R R S o o R R R R R R R R R R R R R R
* END GRAPHICS
B R o b b b b b b b b b b R b L R R T Y
C CALL 'GDDM'
C PARM FSTERM

Chapter 6. Program Examples

6-11

Application Programming Examples

C SETON LR
C RETRN

| Line Chart Program in the COBOL/400 Programming Language

-A++4+B+H+++++++H
IDENTIFICATION DIVISION.

PROGRAM-ID. CHART.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-S38.

OBJECT-COMPUTER. IBM-S38.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 LINENUM PIC S9(5) COMP-4.

77 POINTS PIC S9(5) COMP-4.

77 ATTYPE PIC S9(5) COMP-4.

77 ATMOD PIC S9(5) COMP-4.

77 KOUNT PIC S9(5) COMP-4.

77 FSINIT PIC X(8) VALUE "FSINIT".
77 CHPLOT PIC X(8) VALUE "CHPLOT".
77 FSTERM PIC X(8) VALUE "FSTERM".
77 ASREAD PIC X(8) VALUE "ASREAD".
01 X-ARRAY.

063 AX OCCURS 5 TIMES PIC S9(5)V9 COMP-3.

01 Y-ARRAY.

063 AY OCCURS 10 TIMES PIC S9(5)V9 COMP-3.
PROCEDURE DIVISION.
MAIN-ROUTINE.

PERFORM TEST-PARAGRAPH.
TEST-PARAGRAPH.

MOVE 1 TO AX (1).

MOVE 2 TO AX (2).
MOVE 3 TO AX (3).
MOVE 4 TO AX (4).
MOVE 5 TO AX (5).
MOVE 5 TO AY (1).
MOVE 3 TO AY (2).
MOVE 5 TO AY (3).
MOVE 5 TO AY (4).

MOVE 11 TO AY (5).
MOVE 8 TO AY (6).
MOVE 13 TO AY (7).
MOVE 6 TO AY (8).
MOVE 1 TO AY (9).
MOVE 7 TO AY (10).

ER R R R R R Rk Rk R Rk Rk Rk R

* INITIALIZE

KKK KKKRKKAKXKRKRKRAXRKRARKRAXRRARKRA XK khkhxhkhhhhhkkhkhhrkkhkkkhrkkhxkk%x

CALL "GDDM" USING FSINIT.

AKKKKKAKRKAKRKAKRKRAKRKRAKRKRAXRKRARKRAXRKRARKRAXRhRhhxkkhhhhhkkhhkkhikkhxkkx%

* DRAW THE CHART

kkhkkhkkhkhkkhhkhkhkkhhkhhhkhkhkkhhkhkhkhkhhkhkhhkhkhhkhhkkhhkhkhkkhkhkhkhhkhkhkkhhkkhkkhkkk*k

MOVE 2 TO LINENUM.
MOVE 5 TO POINTS.
CALL "GDDM" USING CHPLOT, LINENUM, POINTS, AX, AY.

6-12 AS/400 GDDM Programming Guide

Application Programming Examples

T ek ek ek ko ko ek ok ok ek ek ko ko ok ek ke ko ko

* DISPLAY THE CHART

S e e e o e o ok ko ek ok ek e koo o o ek ke ek ko
CALL "GDDM" USING ASREAD, ATTYPE, ATMOD, KOUNT.

Sk e e e o ko o o o ko e ok ek o koo o e o ek ek ok ek ek ok

* END GRAPHICS

B T T R L R Lt L L L o
CALL "GDDM" USING FSTERM.
STOP RUN.

Line Chart Program in PL/I

CHARTPLI: PROC;

DCL
(ATTYPE,ATTVAL,COUNT) FIXED BIN(31), /* Parameters for ASREAD */
COMPONENTS FIXED BIN(31) STATIC INIT(2),
POINTS FIXED BIN(31) STATIC INIT(5),
AX(5) FLOAT DEC(6) STATIC INIT(1, 2, 3, 4, 5),
AY(10) FLOAT DEC(6) STATIC INIT(5, 3, 5, 5, 11,

8, 13, 6, 1, 7);
/**/
/* INITIALIZE */
/**/
CALL FSINIT;
/**/
/* DRAW THE CHART */
/**/
CALL CHPLOT(COMPONENTS,POINTS,AX,AY);
/**/
/* DISPLAY THE CHART */
/**/
CALL ASREAD(ATTYPE,ATTVAL,COUNT);
/**/
[END GRAPHICS */
/**/
CALL FSTERM;

%INCLUDE SYSLIB (ADMUPLNO);
END CHARTPLI;

Line Chart Program in Pascal
PROGRAM LINECHRT;

TYPE
%INCLUDE QATTPAS(ADMUSTNO) ; /* IBM-supplied TYPE declarations =*/
VAR
A, B : INTEGER; /* work variables */
AX, AY : REALARR 20; /* parameters for CHPLOT */
ATTVAL, ATTYPE, COUNT : INTEGER; /* parameters for ASREAD */
%INCLUDE QATTPAS(ADMUSLNO) ; /* IBM-supplied PROC declarations =*/
BEGIN

Chapter 6. Program Examples 6-13

Application Programming Examples

/**/

/* INITIALIZE */

/**/

AX(.1.) := 1.0; AY(.1.) :=5.0; AY(.6.) := 8.0; /* Init arrays */

AX(.2.) :=2.0; AY(.2.) := 3.0; AY(.7.) := 13.0;

AX(.3.) :=3.0; AY(.3.) :=5.0; AY(.8.) := 6.0;

AX(.4.) := 4.0; AY(.4.) :=5.0; AY(.9.) := 1.0

AX(.5.) := 5.0; AY(.5.) := 11.0; AY(.10.) := 7.0;

FSINIT; /* Initialize graphics environment */

/**/

/* DRAW THE CHART */

/**/

A :=2;

B :=5;

CHPLOT (A,B,AX,AY); /* Draw the chart */

/**/

/* DISPLAY THE CHART x/

/**/

ASREAD (ATTVAL,ATTYPE,COUNT) ; /* Display the chart */

/**/

/* END GRAPHICS */

/**/

FSTERM /* End graphics environment */
END. /* End Pascal program */

6-14 AS/400 GDDM Programming Guide

Application Programming Examples

Complex Programs

The programs in this section show some of the many variations available for

graphics application programs.

BASIC Program Showing Three Charts on a Page

This example program shows how to use:

Data from a database file for chart data

GDDM and Presentation Graphics in the same program

A secondary axis on a chart

Three separate charts placed in separate chart areas.

k*k%x*x* 35MMO536M3 ***%

The combination of charts is drawn by this program:
00010 SALES: !

00020 !**

00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160

I+ This program displays an income and expense summary for the
I+ XYZ Corporation by charting a condensed statement, a net

I* income chart, and a net sales chart. All three charts are
I+ shown in the same picture.

I %

Ix Declare all arrays and variables used in the program:

*
*
*
*
*
*

!**

OPTION BASE 1

DIM MULBAR(9),NETSAL(3),COST(3),EXPEN(3),NETINC(3),MONTH(3)
DIM UNITS(3),COLTAB(4),PATTAB(4)

INTEGER ATTYPE,ATMOD

DIM HATTS(4),TATTS(4),LATTS(4),KATTS(4),VATTS(4),AATTS(12)
INTEGER LENGTH,POSITIONS,AXIS,COMP

INTEGER HATTS,TATTS,LATTS,KATTS,COUNT, STARTMON,MODE , COLOR

Chapter 6. Program Examples

6-15

Application Programming Examples

00170 INTEGER LMAR,RMAR,BMAR,TMAR,VATTS,AATTS,COLTAB,PATTAB

00180 DECIMAL WIDTH,DEPTH,X,Y,MULBAR,DLINE

00190 DECIMAL NETSAL,COST,EXPEN,NETINC,UNITS,NETSS

00200 !**
00210 !+ Initialize arrays for the heading, axes, axis titles, *
00220 !+ Tabels, and value text. *
00230 !**
00240 HATTS(1)=3 : HATTS(2)=2 : HATTS(3)=0 : HATTS(4)=160

00250 AATTS(1)=-1 : AATTS(2)=-1 : AATTS(3)=-1 : AATTS(4)=-1

00260 AATTS(5)=-1 : AATTS(6)=-1 : AATTS(7)=-1 : AATTS(8)=-1

00270 AATTS(9)=-1 : AATTS(10)=6 : AATTS(11)=0 : AATTS(12)=1

00280 TATTS(1)=4 : TATTS(2)=2 : TATTS(3)=0 : TATTS(4)=150

00290 LATTS(1)=1 : LATTS(2)=2 : LATTS(3)=0 : LATTS(4)=160

00300 KATTS(1)=6 : KATTS(2)=2 : KATTS(3)=0 : KATTS(4)=135

00310 VATTS(1)=5 : VATTS(2)=2 : VATTS(3)=0 : VATTS(4)=160

00320 !**
00330 !+ Open the file that contains the data used to draw the

00340 !+ three charts. The file could have been generated using the
00350 !+ Query utility with the output going to this data base file.
00360 !+ Read the data and calculate the net income, then store the
00370 !+ net sales, cost, and expense figures in an array for later
00380 !+ use in the bar chart.

00390 !**
00400 OPEN #1 :'NAME=DBFILE,LIBRARY=YOURLIB',INPUT

00410 FORI =1T0 3

* % %k X % F

00420 READ #1,USING'FORM ZD 3.1,5%ZD 6.2' :MONTH(I),NETSAL(I),COS&
&T(I),EXPEN(I),UNITS(I),NETSS(I)

00430 NETINC(I) = NETSAL(I) - (COST(I) + EXPEN(I))

00440 MULBAR(I) = NETSAL(I) : MULBAR(I+3) = COST(I)

00450 MULBAR (1+6)=EXPEN(I)

00460 NEXT 1

(01O I e X
00480 !+ Initialize the graphics environment *
00490 !H*xkkkhrhhkkhkrkhkrkhrkkh kAR R AR IR KA R IRFRRIRIRFIRIR I IR IR IR R IR IR R IR IR I ** K

00500 CALL GDDM('FSINIT')

I L I R R R R L T L S T e e
00520 !+ Use subroutines to write the notes and draw the charts. *

00530 !**
00540 GOSUB NOTES

00550 GOSUB CONSTAT

00560 GOSUB NETINCOME

00570 GOSUB NETSSOURCE

00580 !**
00590 !+ Terminate Presentation Graphics, send the picture to the *
00600 !+ display, and terminate GDDM. *
00610 !**
00620 CALL GDDM('CHTERM')

00630 CALL GDDM('ASREAD',ATTYPE,ATMOD,COUNT)

00640 CALL GDDM('FSTERM')

00650 GOTO DONE

00660 NOTES: !

00670 !**
00680 !+ GDDM SUBROUTINE TO WRITE NOTES IN THE UPPER LEFT CORNER
00690 !+ OF THE PICTURE.

00700 !=

00710 !+ Set the color of the characters, set the character mode
00720 !+ to two, set the character box size, then draw the string
00730 !+ at position X,Y.

* % %k X X %

6-16 AS/400 GDDM Programming Guide

00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310

Application Programming Exam

!**

CALL GDDM('GSSEG',0)

COLOR=2

CALL GDDM('GSCOL',COLOR)

X=5 : Y=95 : LENGTH=24

CALL GDDM('GSCHAR',X,Y,LENGTH,'INCOME & EXPENSE SUMMARY')
X=5 : Y=90.0 : LENGTH=15

CALL GDDM('GSCHAR',X,Y,LENGTH,'XYZ CORPORATION')
LENGTH=17

CALL GDDM('GSCHAP',LENGTH,' --- DEC 31, 1984')

!**

I+ Change the color, then draw the boundary Tines for the note. =
!**

COLOR=7

CALL GDDM('GSCOL',COLOR)

X=0.0 : Y=88.0

CALL GDDM('GSMOVE',X,Y)

X=0.0 : Y=100.00

CALL GDDM('GSLINE',X,Y)

X=60.25 : Y=100.00

CALL GDDM('GSLINE',X,Y)

CALL GDDM('GSSCLS"')
RETURN
CONSTAT: !
!**
!+ SUBROUTINE TO DRAW THE CONDENSED STATEMENT CHART. *
| % *
I+ Query the picture space, then set the chart area and *
Ix draw a frame around the chart. *
!**

CALL GDDM('GSQPS',WIDTH,DEPTH)

CALL GDDM('CHAREA',0.0,.6*WIDTH,0.0,.9*DEPTH)

CALL GDDM('CHSET','CBOX")

!**

I Set the attributes for and write the heading. *
!**

POSITIONS=4

CALL GDDM('CHHATT',POSITIONS,HATTS())

LENGTH = 19

CALL GDDM('CHHEAD',LENGTH,'CONDENSED STATEMENT')
!**
I+ Set the attributes for the axis labels and axes, set the *
I+ margins. *
!**

POSITIONS=4

CALL GDDM('CHLATT',POSITIONS,LATTS())

POSITIONS=12

CALL GDDM('CHAATT',POSITIONS,AATTS())

LMAR=14 : RMAR=12

CALL GDDM('CHVMAR',LMAR,RMAR)

BMAR=6 : TMAR=2

CALL GDDM('CHHMAR',BMAR,TMAR)

!**
I+ Position, set the attributes for, and draw the legend. *

!**
CALL GDDM('CHKEYP','H','B','C")
X=0.0 : Y= 1.3
CALL GDDM('CHKOFF',X,Y)

Chapter 6. Program Examples

ples

6-17

Application Programming Examples

01320
01330
01340
01350
01360
01370

&ENSES

01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880

CALL GDDM('CHSET','KBOX")

POSITIONS=4

CALL GDDM('CHKATT',POSITIONS,KATTS())

COUNT=3

LENGTH=13

CALL GDDM('CHKEY',COUNT,LENGTH, 'NET SALES COST OF GOODSEXP&
!*****1**
I+ Set the attributes for and write the axis titles. *
!**

POSITIONS=4

CALL GDDM('CHTATT',POSITIONS,TATTS())

LENGTH = 11

CALL GDDM('CHYTTL',LENGTH, 'THOUSANDS $')

!**
I+ Set the starting month for the x-axis Tabels, and set the *

I+ color table and the pattern table. *
!**
STARTMON=1

CALL GDDM('CHXMTH',STARTMON)

COLTAB(1)=1 : COLTAB(2)=2 : COLTAB(3)=5 : COLTAB(4)=6
CALL GDDM('CHCOL',POSITIONS,COLTAB())

PATTAB(1)=0 : PATTAB(2)=0 : PATTAB(3)=0 : PATTAB(4)=0
CALL GDDM('CHPAT',POSITIONS,PATTAB())

!**

I+ Select and define the secondary axis used for the *
I* 1ine chart that represents sales units. *
!**

AXIS = 2

CALL GDDM('CHYSEL',AXIS)

LENGTH = 10

CALL GDDM('CHYTTL',LENGTH,'UNIT SALES')
X=0.0 : Y=500.00

CALL GDDM('CHYRNG',X,Y)

X=100.00 : Y=0.0

CALL GDDM('CHYTIC',X,Y)

CALL GDDM('CHYSET','PTICK')

!**

I+ Select the primary axis and draw the bar chart. *
!**
AXIS =1

CALL GDDM('CHYSEL',AXIS)
COMP = 3 : COUNT=3
CALL GDDM('CHBAR',COMP,COUNT,MULBAR())

!**

I+ Select the secondary axis, then draw the *

I+ Tine chart component that represents sales units. *

!**
AXIS = 2

CALL GDDM('CHYSEL',AXIS)
COMP = 1 : COUNT=3
CALL GDDM('CHPLOT',COMP,COUNT,MONTH() ,UNITS())

!**

I+ Draw the axes again to overpaint the bar chart components. =
!**

CALL GDDM('CHDRAX')

!**

Ix Reset all chart definition values to default values and *

6-18 AS/400 GDDM Programming Guide

01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460

Application Programming Examples

I* end the subroutine.

*

!**

CALL GDDM('CHRNIT')
RETURN
NETINCOME: !

!**

!* SUBROUTINE TO DRAW THE NET INCOME CHART FOR CORPORATION XYZ.

%
I Query the picture space, then set the chart area and
I* draw a frame around the chart.

*

*

*

*

!**

CALL GDDM('CHAREA',0.6*WIDTH,WIDTH,0.5*DEPTH,DEPTH)
CALL GDDM('CHSET','CBOX')
CALL GDDM('CHVMAR',15,10)

!**

I Set the attributes for and write the heading. The heading

I+ is moved down from the boundary with the line-break ';'.

*

*

!**

HATTS (4)=250

CALL GDDM('CHHATT',POSITIONS,HATTS())
LENGTH = 11

CALL GDDM('CHHEAD',LENGTH,"';NET INCOME')
LATTS(1)=6 : LATTS(4)=250

CALL GDDM('CHLATT',POSITIONS,LATTS())

!**

Ix Suppress the legend, set the starting month for the x-axis
I+ Tabels, specify a datum line for the y axis, set the

I+ attributes for the x- and y-axis labels, and write

I+ the y-axis title.

*

*

*

*

!**

CALL GDDM('CHSET', 'NOLEGEND')

CALL GDDM('CHXMTH',STARTMON)

DLINE=0

CALL GDDM('CHYDTM',DLINE)

TATTS(4)=200

CALL GDDM('CHTATT',POSITIONS,TATTS())
LENGTH = 11

CALL GDDM('CHYTTL',LENGTH, 'THOUSANDS §')

!**

I* Draw the net income bar chart.

*

!**

COMP = 1 : COUNT=3
CALL GDDM('CHBAR',COMP,COUNT,NETINC())

!**

I Draw the axes again to overpaint the bar chart components.

*

!**

CALL GDDM('CHDRAX')

!**

I*x Reset all chart definition values to default values and
I+ end the subroutine.

*

*

!**

CALL GDDM('CHRNIT')
RETURN
NETSSOURCE: !

!**

!+ SUBROUTINE TO DRAW THE NET SALES SOURCE CHART FOR XYZ.

I %

I+ Query the picture space, then set the chart area and

Chapter 6. Program Examples

*
*

*

6-19

Application Programming Examples

02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02920

I+ draw a frame around the chart. *
!**
CALL GDDM('CHAREA',0.6*WIDTH,WIDTH,0.0,0.5*DEPTH)
CALL GDDM('CHSET','CBOX"')

!**

I Set the attributes for and write the heading. *
!**
CALL GDDM('CHHATT',POSITIONS,HATTS())
LENGTH = 17
CALL GDDM('CHHEAD',LENGTH,';NET SALES SOURCE')

!**

I+ Use value text and absolute data for the chart. *
!**
CALL GDDM('CHSET','VALUES"')
CALL GDDM('CHSET','ABPIE')

!**

I+ Set the margins and the color and pattern tables. *
!**
CALL GDDM('CHVMAR',5,2)
CALL GDDM('CHHMAR',3,3)
CALL GDDM('CHCOL',POSITIONS,COLTAB())
CALL GDDM('CHPAT',POSITIONS,PATTAB())

!**

I+ Position and draw the Tegend. *
!**

CALL GDDM('CHKEYP','H','B','C")

X=0.0 : Y=-1.6

CALL GDDM('CHKOFF',X,Y)

KATTS(2)=2 : KATTS(4)=200

CALL GDDM('CHKATT',POSITIONS,KATTS())

LENGTH=6

CALL GDDM('CHKEY',COUNT,LENGTH,"'ZONE 1ZONE 2ZONE 3')

!**

I+ Set the attributes for the labels and value text. *
!**
LATTS(4)=300
CALL GDDM('CHLATT',POSITIONS,LATTS())
VATTS (4)=300
CALL GDDM('CHVATT',POSITIONS,VATTS())

!**

I+ Draw the net sales source pie chart. *
!**
COMP = 1 : COUNT=3
CALL GDDM('CHPIE',COMP,COUNT,NETSS())
RETURN
DONE: END SALES

6-20 AS/400 GDDM Programming Guide

Application Programming Examples

| BASIC Program that Interacts with Database Files
This program is a project scheduling application that uses a two-subfile display file
| to read data from and write data to a database file. The data is used to draw a
horizontal, floating, single-bar chart.

The first subfile produces the following display, which you can use to enter project
numbers for data that already exists in the database file:

kx%%x% 35MMO536M4 *x%x*

Chapter 6. Program Examples 6-21

Application Programming Examples

The second subfile works with the graphics program as shown in the following
picture. The second subfile also accepts data entered for new projects.

k*x*x*x% 35MMOS536M5H ***%

There are two database files used for the project data. This is the accounting file
called PACCT:

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

A UNIQUE

A R ACCT TEXT('Project Accounting File')
A PROJ 6A TEXT('Project Number')

A COST 4 0 TEXT('Project Cost')

A REV 4 0 TEXT('Project Revenue')

A K PROJ

This is the schedule file called PSCHED:

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

A UNIQUE

A R SCHED TEXT('Project Schedule File')
A PROJ 6A TEXT('Project Number')

A CLIENT 15A TEXT('Client Name')

A BEGDAT 5A TEXT('Beginning Date')

A ENDDAT 5A TEXT('Ending Date')

A K PROJ

6-22 AS/400 GDDM Programming Guide

Application Programming Examples

The following is the two-subfile display file called PROJDSP:

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

A

> > rr> > > >>>>>>>

84
85
84
83
86

84
85
84
83
86

R PROJ
PROJ 6A
R PROJCTL

R SFLA
PROJ 6A
CLIENT 15A
BEGDAT 5A
ENDDAT 5A

DSPSIZ (*DS3)

HELP(99 'HELP KEY')
CAO1(98 'EXIT THE APPLIC')
ALWGPH

SFL

1007003

SFLCTL(PROJ)

TEXT('GRAPHICS APPLICATION
")

SFLSIZ(06)

SFLPAG(06)

SFLEND

SFLDSP

SFLDSPCTL

SFLCLR

SFLINZ

1

006001'ENTER PROJECT NUMBERS TO BE'

006029 'REVIEWED OR UPDATED: '
SFL

B017003
B017012
B017032
B017043

COoST 4 0BO17053EDTWRD(" .Y
REV 4 0BO17061EDTWRD(' |

R SFCTL

R OVERL

R CLEAR

SFLCTL(SFLA)
TEXT (' GRAPHICS APPLICATION
")
SFLSIZ(06)
SFLPAG(06)
SFLEND
SFLDSP
SFLDSPCTL
SFLCLR
SFLINZ
016003'PROJ #'
016014'Client'’
016030'Beg. date'
016042'End date'
016053'Cost’
016061 'Rev'

OVERLAY

1

023002'CF1 - Exit ENTER-Update/Redi-

splay'

Chapter 6. Program Examples

6-23

Application Programming Examples

This is the graphics program that uses the two database files and the display file to
show the project schedules based on the database file data:

00010 Ixskrrrrdkh sk rr kA AR AR IR AR I F R IR AR I IR I RIRR IR A RI IR IR ARK IR AR KRR IR AKX F

00020 != PROJECT SCHEDULE PROGRAM *
00030 !« *
00040 !+ This program plots project schedules for up to 6 projects =*
00050 !+ and list information about each project. *
00060 != *
00070 !+ Three files are used in this application: *
00080 != PACCT : project accounting data base file *
00090 != PSCHED : project schedule data base file *
00100 != PROJDSP : display file *
00110 !+ *
00120 !**
00130 OPTION BASE 1 ! Subscript base 1

00140 DIM BDATE$x5, EDATE$*5, INDARA$%99 ! Char variables

00150 DIM COLARRAY(2), AXSARRAY(6) I Arrays
00160 DIM HDGARRAY(2), PATARRAY(1) I Arrays
00170 DIM LBLARRAY(4), TTLARRAY(2), GRDARRAY(6) I Arrays

00190 DIM PROJLIST$(6)*6, XLABEL$*36 ! Project list

!
!
!
!

00180 DIM STARTARRAY(6),ENDARRAY(6), DATAARRAY(12) ! Arrays
!

00200 INDARA$ = RPT$('0',99) ! Indicator area
!
!
|

00210 INTEGER NUM, I ! Integers
00220 INTEGER COLARRAY, AXSARRAY ! Integers
00230 INTEGER PATARRAY, HDGARRAY ! Integers

00240 INTEGER LBLARRAY, TTLARRAY, GRDARRAY ! Integers

(A I X L L

00260 !+ Declare and open the display file and the two data base files
00270 !***
00280 DECLARE FILE #5: "PROJDSP.YOURLIB" EXTDESCR ! Declare file
00290 DECLARE FILE #6: "PSCHED.YOURLIB" EXTDESCR ! Declare file
00300 DECLARE FILE #7: "PACCT.YOURLIB" EXTDESCR ! Declare file
00310 OPEN #5:"WS,NAME=PROJDSP,LIB=YOURLIB,FORMAT" ! Open file

00320 OPEN #6:"FILE,NAME=PSCHED,FORMAT",KEYED, OUTIN ! Open file

00330 OPEN #7:"FILE,NAME=PACCT,FORMAT",KEYED, OUTIN ! Open file

00340 !***

00350 !+ Request the input of up to 6 project numbers.

(LR I 2 2 T

00370 INDARA$(86:86) = "1" ! Subfile initialize on
00380 INDARA$(84:84) = "1" ! Subfile control display off
00390 INDARA$(85:85) = "1" ! Subfile initialize on

00400 WRITE #5, EXTDESCR "PROJCTL", INDIC INDARAS$:

00410 READ #5, EXTDESCR "PROJCTL":

00420 WRITE #5, EXTDESCR "CLEAR", INDIC INDARA$: ! Clear screen
00430 NUM = 0

00440 FORI =1 TO 6

00450 READ #5, EXTDESCR "PROJ",REC=I:

00460 IF PROJS = " " THEN GOTO 490

00470 NUM = NUM + 1

00480 PROJLIST$(NUM) = PROJS

00490 NEXT I

(010 YRR e e L X

00510 !x Set the attributes for the chart.

(O Ry R R e e X

00530 GOSUB SETGRAPH

(R I L L L

00550 !«

6-24 AS/400 GDDM Programming Guide

00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130

Application Programming Examples

!* SUBROUTINE TO INITIALIZE THE DISPLAY FILE
I %
!**
REDISPLAY: ! Loop to redisplay the chart
INDARAS (84:85) = "00" ! Subfile control display off
INDARA$ (86:86) = "1" ! Subfile initialize on
WRITE #5,EXTDESCR "SFCTL", INDIC INDARA$:

!**

I+ Fi1l the subfile with the project information requested.
!**
FOR I =1 TO NUM

PROJ$ = PROJLISTS$(I)

GOSUB ADDSUBF
NEXT I

!**

Ix Set the subfile indicators and display the project data.
!**
INDARA$ (86:86) = "0" ! Subfile initialize off
INDARA$ (84:84) = "1" ! Subfile control display on
INDARA$ (85:85) = "1" ! Subfile display on

GOSUB GENGRAPH ! Draw the chart

WRITE #5,EXTDESCR "SFCTL", INDIC INDARA$:

WRITE #5, EXTDESCR "OVERL", INDIC INDARA$:

READ #5,EXTDESCR "SFCTL", INDIC INDARAS:
!**
I+ Test the input for the next action to be taken:

I

Ix CF1 - Exit the application (indicator 98)

I+ ENTER - Update the data or add the record

1% to the file or to the display

!**

IF INDARA$(98:98) = "1" THEN GOSUB TERM ELSE GOSUB UPDATE
!**
I+ Return to redisplay the subfile with any changed data.
!**
GOTO REDISPLAY
!**
I %
!* SUBROUTINE TO TERMINATE GRAPHICS
I %
!**
TERM: I Terminate graphics
CALL GDDM('FSTERM')
STOP
RETURN
!**
I %
Ix SUBROUTINE TO ADD A RECORD TO THE SUBFILE AND ADD THE
!* THE BEGINNING AND ENDING DATA TO THE PLOT ARRAYS
I %
!**
ADDSUBF: READ #6,KEY=PR0OJ$,EXTDESCR "SCHED": NOKEY 1120
READ #7,KEY=PR0OJ$,EXTDESCR "ACCT": NOKEY 1120
REWRITE #5, EXTDESCR "SFLA", INDIC INDARA$, REC=I:
STARTARRAY (I) = VAL(BEGDAT$(1:2))
ENDARRAY (I) = VAL(ENDDAT$(1:2))
RETURN

!**

Chapter 6. Program Examples

6-25

Application Programming Examples

01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710

1%
!+ SUBROUTINE TO READ THE SUBFILE FOR ANY UPDATES
I* OR ADDITIONS TO THE SCHEDULE AND ACCOUNTING FILES
I %
!**
UPDATE: ! Update changed records
FOR I =1 TO NUM
READ #5, EXTDESCR "SFLA",REC=I:
BDATE$ = BEGDAT$: EDATE$ = ENDDAT$
TCOST = COST: TREV = REV
READ #6, KEY=PROJ$,EXTDESCR "SCHED": NOKEY 1300
BEGDAT$ = BDATE$: ENDDAT$ = EDATE$
REWRITE #6,EXTDESCR "SCHED":
READ #7, KEY=PR0OJ$,EXTDESCR "ACCT": NOKEY 1300
COST = TCOST: REV = TREV
REWRITE #7,EXTDESCR "ACCT":
NEXT I
IF NUM < 6 THEN GOSUB READADD
RETURN

T
1%

!« SUBROUTINE TO READ ANY ADDED PROJECTS IN THE SUBFILE AND

!* ADD THEM TO THE DATABASE FILE IF NOT ALREADY THERE

1%
Phdkokkkdkkhkhhhkhhhkhhhkhhhkhhhkhhrhrhhrrhhhrhhrhrhhrhrhhhrhhrrhhrxk

READADD: ! Add records to files and/or
FOR I = NUM+1 TO 6 ! to the project list
READ #5, EXTDESCR "SFLA",REC=I:
IF PROJS = ' THEN GOTO 1460

WRITE #6,EXTDESCR "SCHED": DUPKEY 1450
WRITE #7,EXTDESCR "ACCT":
GOSUB ADDLIST
NEXT I
RETURN

R L T
I %
1+ SUBROUTINE TO ADD PROJECT NUMBER TO THE PROJECT NUMBER LIST
I %

!**

ADDLIST: ! Add to project 1list
PROJLIST$(I) = PROJS
NUM = NUM + 1 ! Increment project number
RETURN

!**
1%
I+ SUBROUTINE TO GENERATE THE CHART OF PROJECT SCHEDULES
%
!**
GENGRAPH: !

FOR I =1 TO NUM I Fi11 the data array-merge

DATAARRAY (I) = STARTARRAY(I) ! Starting and ending arrays
NEXT I
FOR I = NUM+1 TO 2*NUM
DATAARRAY (I) = ENDARRAY (I-NUM)

NEXT I
I Construct x-axis labels from the project 1ist
XLABEL$="" ! Initialize the labels

FOR' I =1 TO NUM

6-26 AS/400 GDDM Programming Guide

01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270

Application Programming Examples

XLABEL$ = XLABEL$&PROJLISTS(I)
NEXT I
CALL GDDM('CHXLAB',NUM,6,XLABEL$) ! Set the x-axis labels
CALL GDDM('CHBAR',2,NUM,DATAARRAY()) ! Draw the bar chart
CALL GDDM('CHDRAX'") ! Draw the axis, grid lines
CALL GDDM('FSFRCE") ! Force the chart to display
CALL GDDM('GSCLR") ! Clear graphics
CALL GDDM('CHSTRT') ! Reset processing state
RETURN
! khhkhkhkhkkhhkhkhdhdhhhhhhhhhhhhdddhdddrrhhhhhhhddddhdhhhhhhhhhddddhdhhdhrxxkx
I %
1% SUBROUTINE TO SET THE CHART ATTRIBUTES
1%
! Khkhkkhkhkhkkhhkhkhhkhhdhkhkhhdhhkhkhhhhhhkhhhhkhhkdhhkhhdhkhkhkhhkhhhkhkhdhkhkdhhkhkdhkkx*,
SETGRAPH: !
CALL GDDM('FSINIT') ! Initialize graphics
CALL GDDM('GSFLD',1,1,24,80) ! Set the graphics field
XPS=1.0: YPS=0.7 ! Picture space variables
CALL GDDM('GSPS',XPS,YPS) ! Set the picture space ratio
X1=0.0: X2=1.0: Y1=0.3: Y2=0.7 I Chart area values
CALL GDDM('CHAREA',X1,X2,Y1,Y2) ! Set the chart area
AXSARRAY (4)=1 ! Axis attribute array
CALL GDDM('CHAATT',6,AXSARRAY()) ! Set axis attributes
TTLARRAY (1)=1: TTLARRAY(2)=2 | Axis title array
CALL GDDM('CHTATT',2,TTLARRAY()) ! Set chart title attributes
LBLARRAY (1)=4: LBLARRAY(2)=2 ! Axis Tabel array
LBLARRAY (4)=200 ! Axis label array
CALL GDDM('CHLATT',4,LBLARRAY()) ! Set chart label attributes
GRDARRAY (3)=0: GRDARRAY (4)=1 ! Grid attribute array
GRDARRAY (5)=0: GRDARRAY (6)=0 ! Grid attribute array
CALL GDDM('CHGATT',6,GRDARRAY()) ! Set grid attributes
HDGARRAY (1)=2: HDGARRAY(2)=2 ! Heading attribute array
CALL GDDM('CHHATT',2,HDGARRAY()) ! Set heading attributes
CALL GDDM('CHHEAD',?23,'YEARLY PROJECT SCHEDULE')! Chart heading
COLARRAY(1)=8: COLARRAY(Z) 2 ! Component color array
CALL GDDM('CHCOL',2,COLARRAY()) I Set colors for the chart
PATARRAY (1)=16 ! Component pattern array
CALL GDDM('CHPAT',1,PATARRAY()) ! Set pattern for the chart
GAPRATI0=3.0 ! Bar gap ratio value
CALL GDDM('CHGAP',GAPRATIO) ! Set gap-to-bar ratio to 3:1
CALL GDDM('CHSET','XVER") I Use horizontal orientation
CALL GDDM('CHSET','CBAR') ! Use composite bar chart
CALL GDDM('CHVMAR',7,1) ! Set vertical margins
CALL GDDM('CHHMAR',3,3) ! Set horizontal margins
CALL GDDM('CHXTTL',7,"'PROJECT') I x-axis title
CALL GDDM('CHYTTL',5, 'MONTH') I y-axis title
CALL GDDM('CHXSET','PLAIN') ! Suppress x-axis tick marks
CALL GDDM('CHXSET', 'ATABOVE') I Put x-axis title above axis
CALL GDDM('CHYMTH',1) ! Use months for y-axis Tlabels
YRNG1=1.0: YRNG2=12.0 ! y-range values
CALL GDDM('CHYRNG',YRNG1,YRNG2) ! Set y-axis range to 12 months
CALL GDDM('CHSET','LETT') ! Abbreviate month to 1 letter
CALL GDDM('CHYSET','GRID') ! Use grid lines from y axis
CALL GDDM('CHSET', 'NDRAW') ! Wait to draw axes and grid
RETURN
END

6-27

Chapter 6. Program Examples

Application Programming Examples

| COBOL/400 Multiple-Pie Chart Program

kx%%x% 35MMO536MO *x%x*

This COBOL/400 program draws two pie charts. The first pie uses absolute data,
the second relative data (the sum of the chart data value array elements for the
second chart must equal 100 for a complete pie).

S o B B m S
IDENTIFICATION DIVISION.
PROGRAM-ID. CPGFAPP1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-S38.
OBJECT-COMPUTER. IBM-S38.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
WORKING-STORAGE SECTION.

khkkkkkhkkhkhkkhhkkhhkhkhkkhhkhkhkkhhkkhkhkhkhkkhhkkhhkhkhkkhhkkhhkhkhkkhhkkhkkkhkkhkhkkkkkk*

* Parameters used in graphics routines
kkkkhkkhkhkhhhhhkhkkkkhhkhkhkhkhhhhhhhhhhkhkhkhkhdhdhdhhhhhhkhkhhkhkhkhddhdhdhdhhrkkkhrkikhkd*k
77 FKTYPE PIC S9(5) COMP-4.

77 FKNUM PIC S9(5) COMP-4.

77 NUM PIC S9(5) COMP-4.

77 STRING-LENGTH PIC S9(5) COMP-4.

77 X PIC S9(4)V9 COMP-3.

77 Y PIC S9(4)V9 COMP-3.

77 COMPNUMBER PIC S9(5) COMP-4.

77 XINT1 PIC S9(4)V9 COMP-3.

77 XINT2 PIC S9(4)V9 COMP-3.

77 YINT1 PIC S9(4)V9 COMP-3.

77 YINT2 PIC S9(4)V9 COMP-3.

77 ROW1 PIC S9(5) COMP-4.

77 ROW2 PIC S9(5) COMP-4.

77 COL1 PIC S9(5) COMP-4.

6-28 AS/400 GDDM Programming Guide

77
77
77
77
77
77
77
77
77
77
77
77
77
77

*

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

COL2 PIC S9(5) COMP-4.

LMARG PIC S9(5) COMP-4.
RMARG PIC S9(5) COMP-4.
OFFSET1 PIC 99v9 COMP-3.
OFFSET2 PIC 99V9 COMP-3.
SEGNUMBER PIC S9(5) COMP-4.
CHARTNUM PIC S9(5) COMP-4.
COLOR PIC S9(5) COMP-4.

POSCDE PIC X(2).
STRNG PIC X(50).

KEYPL PIC X(1).
KEYP2 PIC X(1).
KEYP3 PIC X(1).
CHSETVALUE PIC X(8).

EE R R R R Rk kR R Rk Rk R R R R Rk Rk R Rk Rk R

Presentation Graphics and GDDM routines used in the program
khkkhkkkkhkkhkhkkhhkkhhkhhkhhkhhkkhhhkhhkkhhhkhhhkhhkhhhkhhkhhkhhkkhhkhhkkhdkxkhkkkdkxxd,xx

FSINIT
GSFLD
GSPS
GSSEG
GSSCLS
GSCOL
GSMOVE
GSCHAP
CHAREA
CHPAT
CHCOL
CHVMAR
CHSET
CHKATT
CHKEY
CHKEYP
CHNATT
CHLATT
CHVATT
CHNOTE
CHNOFF
CHPIE
ASREAD
FSTERM
CHRNIT

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

"FSINIT
"GSFLD
"GSPS
"GSSEG
"GSSCLS
"GSCOL
"GSMOVE
"GSCHAP
"CHAREA
"CHPAT
"CHCOL
"CHVMAR
"CHSET
"CHKATT
"CHKEY
"CHKEYP
"CHNATT
"CHLATT
"CHVATT
"CHNOTE
"CHNOFF
"CHPIE
"ASREAD
"FSTERM
"CHRNIT

Application Programming Examples

hkhkkhkhkkhhkhhkkhhkhhhkhkhkkhhkhkhkkhhhkhhkhkhhkhhkhkhhkhhhkhkhkkhhkhkhkkhhkhkhhkhkhkkhkhkkkkhkkx

Initialize the data arrays for the two pie charts
and the arrays for color and pattern attributes
khkkkhkkkkhkkhkkhkkhhkkhhkkhhkkhhkhhkkhhkkhhkkkhkkhhkkhhkhkhkkhhkkhhkhkhkkhhkkhkkhkhkkhkkkkkkx*
DATA-VARIABLES.
03 ARRY1.
05 PIE1 OCCURS 10 TIMES PIC 9999v9 COMP-3.
03 ARRY2.
05 PIE2 OCCURS 10 TIMES PIC 9999V9 COMP-3.
03 ARRY3.
05 COL4ARRY OCCURS 10 TIMES PIC S9(5) COMP-4.
03 ARRY4.
05 PATARRAY OCCURS 10 TIMES PIC S9(5) COMP-4.
03 ARRY5.
05 KATTS OCCURS 10 TIMES PIC S9(5) COMP-4.
03 ARRY6.

*

*

01

Chapter 6. Program Examples 6-29

Application Programming Examples

05 LATTS OCCURS 10 TIMES PIC S9(5) COMP-4.
03 ARRY6.

05 VATTS OCCURS 10 TIMES PIC S9(5) COMP-4.
03 ARRYS.

05 NATTS OCCURS 10 TIMES PIC S9(5) COMP-4.

PROCEDURE DIVISION.

GRAPHICS.
kkhkkkhkkkkhkkhkhkkhkhkkhkkhkhkkhhkkhkkhkhkkhhkkhkkhkhkkhkhkhkkhkkhkhkkhkhkhkkhkkhkhkkhkkkkkkkx**x
* Initialize graphics
khkkkhkkkkhkkhkhkkhhkhhkhhkkhhkhkhkkhhkkhhkkhkkhhkkhkkhkkhkkhhkkhhkhhkkhkhkkhkkkkkhkkx*,*x

CALL "GDDM" USING FSINIT.

khkkhhkkkhhkkhhhkkhhkhhhhkhhhhhkhdhhhhhdhhdhhdhhdhhkhdhdhhhdrhdhrhhrdxkhdxdx
* Specify data values for the two pies

khkhkhkkkkkkhkhkhkhkhhhhhhkhkhkhkhkhkhkhkhkhhhhhhhkhkhkhkhkhkhkhkhhhhhhkkkkhkhkhkhkkkhhhkxx
MOVE 110.0 TO PIE1(1).
MOVE 90.0 TO PIE1(2).
MOVE 85.0 TO PIE1(3).
MOVE 75.0 TO PIE1(4).
MOVE 40.0 TO PIE2(1).
MOVE 20.0 TO PIE2(2).
MOVE 15.0 TO PIE2(3).
MOVE 25.0 TO PIE2(4).

khhkkkhkkkhkhhkkhhkhhkkhhkhhkkhhhhkhhhhhhkhhhkhhhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkkx

* Specify the color attributes for the 4 pie slices
kkkhkhkhkhkhkhhhhkhkkhkhkhkhkhkhkhkhhdhhhhhhhhkhkhkhdhdhdhdhhhhhhkkhhkhkddddhdhhhhkxkkkixkx
MOVE 2 TO COL4ARRY(1).
MOVE 3 TO COL4ARRY(2).
MOVE 4 TO COL4ARRY(3).
MOVE 5 TO COL4ARRY(4).

khkkhkhkkkhkhkhkkhkhkhkhkkhhkhkhkhkhkhkhkkhhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkkx

* Set the graphics field and the graphics picture space
kkhkkkhkkkhkkhkhkkhkhkkhkkhkhkkhhkhkhkkhkhkkhkhkkhkkhhkkhkhkhkkhkkhkhkkhkhkhkkhkkhkhkkhkkkkkhkk**x

MOVE 1 TO ROW1.

MOVE 1 TO COL1.

MOVE 24 TO ROW2.

MOVE 80 TO COL2.

CALL "GDDM" USING GSFLD, ROW1, COL1, ROW2, COL2.

MOVE 1.0 TO X.

MOVE 0.6 TO Y.

CALL "GDDM" USING GSPS, X, Y.

khkkkhkhkhkhhhhhhkhhhhhhdddhhdhhhhhhhhddhdhdhdhhhhhhhhhhdddhdhdhhdrrrrdhrkrdx
* (Create segment 1 and define the chart headings

Khkhkhkhkkkkkhkhkhkhkhhhhhhkhhkhkhkhkhkhkhkhhhhhhhhkhkhkhkhkhkhkhdhhhhhhkkhkhkhkhkhkhkkkhhhk*xx
MOVE 1 TO SEGNUMBER.
CALL "GDDM" USING GSSEG, SEGNUMBER.
MOVE 6 TO COLOR.
CALL "GDDM" USING GSCOL, COLOR.
MOVE 28 TO X.
MOVE 95 TO Y.
CALL "GDDM" USING GSMOVE, X, Y.
MOVE 27 TO STRING-LENGTH.
MOVE "HOUSEHOLD EXPENSE BREAKDOWN" TO STRNG.
CALL "GDDM" USING GSCHAP, STRING-LENGTH, STRNG.
MOVE 10.0 TO X.
MOVE 85.0 TO Y.
CALL "GDDM" USING GSMOVE, X, Y.
MOVE 15 TO STRING-LENGTH.
MOVE "OVERALL EXPENSE " TO STRNG.

6-30 AS/400 GDDM Programming Guide

Application Programming Examples

CALL "GDDM" USING GSCHAP, STRING-LENGTH, STRNG.
MOVE 60.0 TO X.

MOVE 85.0 TO Y.

CALL "GDDM" USING GSMOVE, X, Y.

MOVE 21 TO STRING-LENGTH.

MOVE "MISCELLANEOUS EXPENSE " TO STRNG.
CALL "GDDM" USING GSCHAP, STRING-LENGTH, STRNG.

kkkkhkkkkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhxkxkx

* Define the chart area for the first pie
khkkkhkkkkhkkhkhkkhhkhhkkhhkkhhkhkkhhkkhhkkhkkhhkkhkkhkkhhkkhkhkkhhkhkhkkhkhkkhkkkkkhkkx*,*x
MOVE 0.0 TO XINTL.
MOVE 0.6 TO XINT2.
MOVE 0.0 TO YINTL.
MOVE 0.6 TO YINT2.
CALL "GDDM" USING CHAREA, XINT1, XINT2, YINT1, YINT2.

kkhkkhkhkkhkkhkhkkhhkhhhkhkhkkhhkhkhkkhhkkhhkkhkkhhkkhhkhkhkhkhhkkhhkhkhkkhhkkhkkkhkkhkkkx

* Define the component patterns and colors for the first pie
kkkkkhkhkhkhhhhkhkkkkkhkhkhkhkhkhkhhhhhhkkkkhkhkhkhkhhhhhhhkhkkkkhkhkhkhkhkhhhhkkkkkkikxkx

MOVE 2 TO PATARRAY(1).

MOVE 4 TO PATARRAY(2).

MOVE 6 TO PATARRAY(3).

MOVE 8 TO PATARRAY(4).

MOVE 4 TO COMPNUMBER.

CALL "GDDM" USING CHPAT, COMPNUMBER, PATARRAY.

CALL "GDDM" USING CHCOL, COMPNUMBER, COL4ARRY.

kkhkkhkkhkhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhhkhkhkhkhkhhkhhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhkhkkhkkx*

* Specify margins, absolute values, and value text
KEhAhkhkIrhkhIhhkhdhhdhdhhdhdhhhdhdhhhdhdhhhdhhhdhdhhhdhdhhhdhdhhhdhkihhdkhiddkhkddkx

MOVE 5 TO RMARG.

MOVE 1 TO LMARG.

CALL "GDDM" USING CHVMAR, LMARG, RMARG.

MOVE "ABPIE " TO CHSETVALUE.

CALL "GDDM" USING CHSET, CHSETVALUE.

MOVE "PIEKEY" TO CHSETVALUE.

CALL "GDDM" USING CHSET, CHSETVALUE.

MOVE 1 TO VATTS(1).

MOVE 2 TO VATTS(2).

MOVE O TO VATTS(3).

MOVE 150 TO VATTS(4).

CALL "GDDM" USING CHVATT, COMPNUMBER, VATTS.

MOVE "VALUES" TO CHSETVALUE.

CALL "GDDM" USING CHSET, CHSETVALUE.

kkhkkhkhkkhhkhhkkhhkhhhkhkhkkhhkhkhkkhhhkhhkhkhhkhhkhkhhkhhhkhkhkkhhkhkhkkhhkhkhkkhkhkkhkhkk*x

* Position the legend, define the key labels for the first pie

kkhkkhkkhkhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhhkhkhkhkhkhhkhhkkhhkhkhkkhhkkhhkhkhkkhhkhkhkkkhkkhkkx*

MOVE "H" TO KEYPL.

MOVE "B" TO KEYP2.

MOVE "C" TO KEYP3.

CALL "GDDM" USING CHKEYP, KEYP1, KEYP2, KEYP3.
MOVE 7 TO KATTS(1).

MOVE 2 TO KATTS(2).

MOVE @ TO KATTS(3).

MOVE 150 TO KATTS(4).

CALL "GDDM" USING CHKATT, COMPNUMBER, KATTS.
MOVE 7 TO STRING-LENGTH.

MOVE "RENT UTILITYTRANPRTMISCELL." TO STRNG.

CALL "GDDM" USING CHKEY, COMPNUMBER, STRING-LENGTH, STRNG.

Chapter 6. Program Examples

6-31

Application Programming Examples

CALL "GDDM" USING GSSCLS.

kkhkkhkkhkhkkhhkhhkkhhkhkhhkhkhkkhhkhkhkkhhkhkhkhkhkhhkhkhkkhhkhkhkkhkhkhkhhkhkhkkhhkhkhkkhkhkkhkkxk

* Draw the first pie chart and re-initialize to define second
kkhkkkhkhkhkhkhhhhkhkkkkkhkkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhkhkhkhkhkkkkkkkxkx
MOVE 1 TO CHARTNUM.
CALL "GDDM" USING CHPIE, CHARTNUM, COMPNUMBER, PIE1.
CALL "GDDM" USING CHRNIT.

kkkkhkkkkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkdxx

* Define the chart area for the second pie
khkkkhkkkkhkkhkhkkhhkhhkhhkkhhkhkhkkhhkkhhkkhkkhhkkhkkhkkhkkhhkkhhkhhkkhkhkkhkkkkkhkkx*,*x

MOVE 0.6 TO XINTL.

MOVE 1.0 TO XINT2.

MOVE 0.0 TO YINTL.

MOVE 0.6 TO YINT2.

CALL "GDDM" USING CHAREA, XINT1, XINT2, YINT1, YINT2.
kkkkhkhkhkhkhkhhhkhkkkkkhkhkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhkhkhkhhkkkkkkkxkx
* Specify margins
kkhkkkkkkhkkkhkkhkhkkhkkhkhkkhhkkhkkhhkkhkhkkhkkhhkkhkhkhkhkkhkhkkhhkhkhkkhkhkkhkkkkkkk**x

MOVE 1 TO RMARG.

MOVE 1 TO LMARG.

CALL "GDDM" USING CHVMAR, LMARG, RMARG.

KRKKRKRKRRRKARKRARRkKRhkkhkhkhhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkk*%

* Define the patterns for the second pie
khkkhhkkkhkkhkhhkkhhkhhhhkhhhhhhdhhhhhdhhdhhdhhdhhhdhkhhhdrhdhhhrdxhdxdx
MOVE 3 TO PATARRAY(1).
MOVE 6 TO PATARRAY(2).
MOVE 9 TO PATARRAY(3).
MOVE 12 TO PATARRAY (4).
CALL "GDDM" USING CHPAT, COMPNUMBER, PATARRAY.

khkkhkhkkkhkhkhkkhkhkhkhkkhhkhkhkhkhkhkhkkhhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkkx

* Specify spider labels and percentage values
kkhkkkhkkkhkkhkhkkhkhkkhkkhkhkkhhkhkhkkhkhkkhkhkkhkkhhkkhkhkhkkhkkhkhkkhkhkhkkhkkhkhkkhkkkkkhkk**x

MOVE 250 TO KATTS(4).

CALL "GDDM" USING CHKATT, COMPNUMBER, KATTS.

MOVE "SPIDER" TO CHSETVALUE.

CALL "GDDM" USING CHSET, CHSETVALUE.

MOVE "PERPIE" TO CHSETVALUE.

CALL "GDDM" USING CHSET, CHSETVALUE.

kkkkhkkkkhkkhkhkkkhkkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkk*x

* Specify Tabels for the second pie
khkkkhkkkkhkkhkhkkhhkkhhkhhkkhhkhkhkkhhhkhhkhkkhhkkhhkhhkhhkkhhkhhkkhhkhkkhdhxkhkx**x
MOVE 9 TO STRING-LENGTH.
MOVE "ENTRTNMNTMEDICAL CLOTHES HOBBIES " TO STRNG.
CALL "GDDM" USING CHKEY, COMPNUMBER, STRING-LENGTH, STRNG.

kkhkkhkkhkhkkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhhkhkhkhkhkhhkhhkkhhkhkhkkhhkkhhkhkhkkhhkhkhkkkhkkhkkx*

* Draw the second pie and write a chart note
kkhkkkkkkhkkhkhkkhkhkkhhkhkhkkhhkhkhkkhkhkkhhkkhkkhhkkhhkhkhkkhkhkkhkhkhkhkkhkhkkhkkkkkhkkkx

CALL "GDDM" USING CHPIE, CHARTNUM, COMPNUMBER, PIE2.

MOVE O TO OFFSETL.

MOVE 5 TO OFFSET2.

MOVE 2 TO NATTS(1).

MOVE 2 TO NATTS(2).

MOVE O TO NATTS(3).

MOVE 250 TO NATTS(4).

CALL "GDDM" USING CHNATT, COMPNUMBER, NATTS.

CALL "GDDM" USING CHNOFF, OFFSET1, OFFSET2.

MOVE "C1" TO POSCDE.

MOVE 33 TO STRING-LENGTH.

6-32 AS/400 GDDM Programming Guide

Application Programming Examples

MOVE "MISC. EXPENSES ARE;21% OF TOTAL" TO STRNG.
CALL "GDDM" USING CHNOTE, POSCDE, STRING-LENGTH, STRNG.

kkkkhkkkkhkkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkx*x

* Send the pies to the screen and terminate graphics
khkkkhkkkkhkkhkhkkhhkhhkhhkkhhkhhkkhhhkhhkhkkhhkkhhkhhkhhkhhkhhkkhhkhkkhdhxkhkxkxx

CALL "GDDM" USING ASREAD, FKTYPE, FKNUM, NUM.
CALL "GDDM" USING FSTERM.
STOP RUN.

END-GRAPHICS.

PL/I Planned Versus Actual Versus Trend Program

This program uses data from arrays within the program to plot three different chart
components. Each time a component is plotted, one part of the legend is
constructed. After each component is drawn, the CHRNIT routine reinitializes
Presentation Graphics and the chart is again defined.

k*kxx* 35MMO536M7 **x%

TRENDS: PROC;

[ko ke k ok ok ok ok ke k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ke ke k ok ok ok ko ko ok
/* PROJECTED ORDERS VERSUS ACTUAL VERSUS TREND */
[ek ek sk ek ek ok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ke ok ok ok ko ke ko
%INCLUDE (ADMUPINA);

%INCLUDE (ADMUPINC); /* INCLUDES */

%INCLUDE (ADMUPINF);

%INCLUDE (ADMUPING);

DCL
YELLOW(1) FIXED BIN(31) STATIC INIT(6);
DCL
AXIS_ATTR(6) FIXED BIN(31) STATIC INIT(1,7,1,1,7,1);
DCL
MARKERS (3) FIXED BIN(31) STATIC INIT(8,7,6);
DCL
(ATTENTION_TYPE,

Chapter 6. Program Examples 6-33

Application Programming Examples

ATTENTION_MOD,
FLD_COUNT) FIXED BIN(31) STATIC INIT(0);

[ek e ek ek o o ko ko ko ok ok ok ko ko ok ok ok ok ko koo ke ok ok o ko ke koo ok ook
/* DATA ARRAYS FOR CHART COMPONENTS */
[ek ke k ok ok ok ok ke ko ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ko ko ok ok k ok ok ok ok ke ke ko ok ok ok ko ko ok
DCL

Y ACTUAL(11) FLOAT DEC(6) STATIC INIT(3,3,2,1,2.5,2,3,4,4.5,7,8);
DCL

Y PROJECTED(19) FLOAT DEC(6

) STATIC INIT(
2,2,2,3,4,4,5,6,6,6,6,6,6,6

E] ,7!7’7,7!8);
DCL
Y TREND(10) FLOAT DEC(6) STATIC
INIT(8,9,9.5,10,10.5,11,11.5,11.7,11.9,12);
DCL
X_ACTUAL(11) FLOAT DEC(6) STATIC INIT(0,1,2,3,4,5,6,7,8,9,10);
DCL
X_PROJECTED(20) FLOAT DEC(6) STATIC INIT
(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19) ;
DCL
X_TREND(10) FLOAT DEC(6) STATIC INIT
(10,11,12,13,14,15,16,17,18,19);

/**/

/* CHART CONSTRUCTION */
/**/
CALL FSINIT; /* Initialize graphics */
CALL CHHATT(1,YELLOW); /* Set heading attributes */
CALL CHHEAD(28,'PROJECTED VS ACTUAL VS TREND'); /x Write heading */
CALL CHMARK(3,MARKERS); /* Use markers from defined tbl =/
/**/
/* Define chart and plot first component (ACTUAL) */
/**/
CALL CHHMAR(8,3); /* Set bot margin 8 rows, top 3 */
CALL CHAATT(6,AXIS _ATTR); /* Set axis attributes */
CALL CHXTTL(4, 'WEEK'); /* Write 4-char x-axis title %/
CALL CHYTTL(14,'ORDERS (100''S)'); /* l4-character y-axis title =/
CALL CHXRNG(0,19); /* Set x-axis range to 0 - 19 %/
CALL CHYRNG(0,12); /* Set y-axis range to 0 - 12 */
CALL CHXTIC(1,5); /* x = 5 minor ticks between maj */
CALL CHYTIC(1,1); /*y =1 minor tick between maj =/
CALL CHCOL(1,2); /* Component color red */
CALL CHLT(1,0); /* Component line type solid */
CALL CHKEYP('H','B','C'); /* Horizontal legend, bot, center=/
CALL CHKOFF(-16.0,2.5); /* Position legend box */
CALL CHSET('KBOX'); /* Enclose Tegend in box */

CALL CHKEY(1,10,'ACTUAL "Y; /* Write first legend key label =*/
CALL CHPLOT(1,11,X_ACTUAL,Y_ACTUAL); /* Plot first component */

/**/

/* Reinitialize Presentation Graphics, */
/* redefine chart and plot second component */
/* (PROJECTED) */
/**/
CALL CHRNIT; /* Reinitialize Presentation G =/
CALL CHAATT(6,AXIS_ATTR); /* Set axis attributes */
CALL CHHMAR(8,3); /* Set bot margin 8 rows, top 3 */
CALL CHXRNG(0,19); /* Set x-axis range to 0 - 19 */
CALL CHYRNG(0,12); /* Set y-axis range to 0 - 12 */

6-34 AS/400 GDDM Programming Guide

Application Programming Exam

CALL CHXSET('NOAXIS'); /* Suppress: X axis */
CALL CHXSET('NOLAB'); /* x-axis labels */
CALL CHXSET('PLAIN'); /* x-axis tick marks */
CALL CHYSET('NOAXIS'); /* y axis */
CALL CHYSET('NOLAB'); /* y-axis Tlabels */
CALL CHYSET('PLAIN'); /* y-axis tick marks =/
CALL CHSET('NOMARKERS'); /* component markers */
CALL CHSET('CURVE'); /* Use curved line for component =*/
CALL CHFINE(15); /* Curve value 15 */
CALL CHKOFF(0,2.5); /* Position legend box */
CALL CHSET('KBOX'); /* Enclose legend in box */
CALL CHKEYP('H','B','C'); /* Horizontal Tegend, bot, centerx/
CALL CHKEY(1,10,'PROJECTED '); /* Write second legend key label =/
CALL CHCOL(1,5); /* Component color turquoise %/
CALL CHLT(1,1); /* Component line type dotted */

CALL CHPLOT(1,19,X PROJECTED,Y PROJECTED); /* Plot second compnt */

/**/

/* Reinitialize Presentation Graphics, */
/* redefine chart and plot third component */
/% (TREND) */
/**/
CALL CHRNIT; /* Reinitialize Presentation G */
CALL CHAATT(6,AXIS_ATTR); /* Set axis attributes */
CALL CHHMAR(8,3); /* Set bot margin 8 rows, top 3 */
CALL CHXRNG(0,19); /* Set x-axis range to 0 - 19 */
CALL CHYRNG(0,12); /* Set y-axis range to 0 - 12 %/
CALL CHXSET('NOAXIS'); /* Suppress: X axis */
CALL CHXSET('NOLAB'); /* x-axis labels */
CALL CHXSET('PLAIN'); /* x-axis tick marks */
CALL CHYSET('NOAXIS'); /* y axis */
CALL CHYSET('NOLAB'); /* y-axis labels %/
CALL CHYSET('PLAIN'); /* y-axis tick marks =/
CALL CHSET('CURVE'); /* Use curved line for component */
CALL CHFINE(15); /* Curve value 15 */
CALL CHKOFF(16.0,2.5); /* Position Tegend box */
CALL CHSET('KBOX'); /* Enclose Tegend in box */
CALL CHKEYP('H','B','C'); /* Horizontal legend, bot, centerx/
CALL CHKEY(1,10,'TREND 'Y; /* Write third Tegend key Tabel =/
CALL CHCOL(1,6); /* Component color yellow */
CALL CHLT(1,2); /* Component line type dashed */
CALL CHPLOT(1,9,X TREND,Y TREND);/* Plot third component */
/**/
/* Write note, send chart to display, */
/* and terminate Presentation Graphics */

R R R R e S R A s s T 2Ty
CALL CHNOTE('BL',26,'PRESS ENTER TO END PROGRAM'); /* Write note */
CALL ASREAD(ATTENTION TYPE,ATTENTION_MOD,FLD COUNT); /* Send */
CALL FSTERM; /* Terminate */

END TRENDS;

Chapter 6. Program Examples

ples

6-35

Application Programming Examples

PL/I GDDM Color Table Application

This program is useful for setting the color table for your program. If you add a
routine to your graphics program that selects color table entry 65 ((GSCT',65), you
can call this program from any of your graphics programs and set the color table
values used to display the picture interactively.

kxx%% 35MMO53O6M8 **%x*

This is the display file (hamed COLORS) used with the graphics program:

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

A DSPSIZ(24 80 =DS3)

A INDARA

A R COLORS

A CFO1(01 'end the program')
A CFO2(02 'return default color -
A values')

A ALWGPH

A OVERLAY

A 1 29'Color Selection Menu'
A COLOR(YLW)

A 3 2'Hue '

A COLOR (RED)

A FLDO65 3Y 2B 3 18EDTWRD('0. ')

A FLDO66 3Y 2B 3 27EDTWRD('0. ')

A FLDO67 3Y 2B 3 36EDTWRD('0. ')

A FLDO68 3Y 2B 3 45EDTWRD('0. ')

A FLDO69 3Y 2B 3 H4EDTWRD('0. ')

A FLDO70 3Y 2B 3 63EDTWRD('0. ')

A FLDO71 3Y 2B 3 72EDTWRD('0. ')

A 4 2'Lightness '

A COLOR (RED)

A FLDO72 3Y 2B 4 18EDTWRD('0. ')

A FLDO73 3Y 2B 4 27EDTWRD('0. ')

6-36 AS/400 GDDM Programming Guide

Application Programming Examples

A FLDO74 3Y 2B 4 36EDTWRD('0. ')
A FLDO75 3Y 2B 4 45EDTWRD('0. ')
A FLDO76 3Y 2B 4 54EDTWRD('0. ')
A FLDO77 3Y 2B 4 63EDTWRD('0. ')
A FLDO78 3Y 2B 4 72EDTWRD('0. ')
A 5 2'Saturation'
A COLOR(RED)
A FLDO79 3Y 2B 5 18EDTWRD('0. ')
A FLDO8O 3Y 2B 5 27EDTWRD('0. ')
A FLDO81 3Y 2B 5 36EDTWRD('0. ')
A FLDO82 3Y 2B 5 45EDTWRD('0. ')
A FLDO83 3Y 2B 5 54EDTWRD('0. ')
A FLDO84 3Y 2B 5 63EDTWRD('0. ')
A FLDO85 3Y 2B 5 72EDTWRD('0. ')
A 18 2'ENTER - Display colors with s-
A elected values'
A COLOR (WHT)
A 19 2'CFO1 - Exit and save color t-
A able value as color table 65'
A COLOR (WHT)
A 20 2'CFO2 - Return default color +
A values'
A COLOR (WHT)
This is the PL/I program you can call from your programs to define the color table
you select:
COLOR: PROC;
/**/
/% x/
/* FUNCTION: Program to interactively generate a color table */
/* */
/* INPUT: None */
/* */
/* OUTPUT: Color table #65 is defined; it must be selected by */
/* the 'calling' program using GDDM routine GSCT. */
/* */
/* ASSUMPTIONS: 1) The current device supports the color table. */
/* 2) Page identifier 99 is not in use. */
/* 3) The current graphics screen contents are */
/* expendable. */
/* 4) The file 'COLORS' exists in a library on the =/
/* Tibrary 1ist. */
/* 5) The page in use when this program is called =*/
/* must be reselected when this program returns x/
/* control to the calling program. */
/* */

/**/

DCL

CFILE FILE RECORD ENV(INTERACTIVE) UPDATE;

/**/

/* General variable declarations
/**/

DCL

COLOR _INDEX FIXED BIN(31),

/*

I FIXED BIN(31), /*
K FIXED BIN(31), /*
J FIXED BIN(31), /*
START X FLOAT DEC(6), /*

Color index

Temporary Toop index
Temporary Toop index
Temporary loop index

*/

*/
*/
*/
*/

Starting x coord for polygons =/

Chapter 6. Program Examples

6-37

Application Programming Examples

END X FLOAT DEC(6), /* Ending x coord for polygons =*/
SEG_ID FIXED BIN(31) STATIC INIT(99),
/* Segment identifier %/

INCR_X FLOAT DEC(6) STATIC INIT(9);
/* x coord increment for polygons*/
DCL 1 DSPREC AUTOMATIC,
%INCLUDE COLORS(COLORS,RECORD); /* DSPF record format */
DCL 1 HLS BASED(RECPTR),
2 D_HUE(7) PIC '9V9R',
2 D_LIGHT(7) PIC '9V9R',
2 D_SATUR(7) PIC '9VIR';
DCL RECPTR PTR ;
DCL CFKEYS CHAR(3); /* Aid key indicators */
%INCLUDE SYSLIB(ADMUPLNB) /* GDDM entry module includes */

/**/

/* Declare the color table variables */
/**/
DCL HUE(7) FLOAT DEC (6)
INIT(0,.33333,.16666,.66666,.83333,.5,0) STATIC,
LIGHT(7) FLOAT DEC (6)
INIT(.5,.5,.5,.5,.5,.5,1) STATIC,
SATUR(7) FLOAT DEC (6)
INIT(1,1,1,1,1,1,0) STATIC;

/**/

/* Declare the default color table values */
/**/
DCL S_HUE(7) FLOAT DEC (6)
INIT(0,.33333,.16666,.66666,.83333,.5,0) STATIC,
S_LIGHT(7) FLOAT DEC (6)
INIT(.5,.5,.5,.5,.5,.5,1) STATIC,
S_SATUR(7) FLOAT DEC (6)

INIT(1,1,1,1,1,1,0) STATIC;
/**/
/* Initialize the display file fields */
/**/
RECPTR = ADDR(DSPREC);

DOI =1T07;
D HUE(I) = HUE(I);
D_LIGHT(I) = LIGHT(I);
D SATUR(I) = SATUR(I);

END;
/**/
/* Draw & fill the polygons with colors %/
/**/
CALL FSINT; /* Initialize GDDM */
CALL FSPCRT(99,24,80,0); /* Create and select page 99 */
CALL GSWIN(1,80,1,24); /* Set the window */
CALL GSSEG(SEG_ID); /* Create a segment */
START_X = 16; /* Initialize starting x coord */
END_X = 24; /* Initialize ending x coord */
DOTI =1T07;

CALL GSCOL(I);
CALL GSAREA(1);
CALL GSMOVE(START_X,9);

6-38 AS/400 GDDM Programming Guide

Application Programming Examples

CALL GSLINE(START X,18);
CALL GSLINE(END X,18);
CALL GSLINE(END X,9);
CALL GSLINE(START X, 9);
CALL GSENDA;

TART_X + INCR X;

START X = S
= END_X + INCR X;

END_X
END;

CALL GSSCLS;
CALL FSFRCE;

/**/

/* Open the display file, then loop through showing color table */
/* changes until CF1 is pressed. */
/**/
OPEN FILE(CFILE) UPDATE TITLE('COLORS');
DO UNTIL(1=2);

WRITE FILE(CFILE) OPTIONS(RECORD('COLORS')) FROM(DSPREC);

READ FILE(CFILE) INTO(DSPREC) OPTIONS(INDICATORS(CFKEYS));

/**/
/* 1f CF1 is pressed, end the program. */
/**/
IF SUBSTR(CFKEYS,1,1)="1' THEN GO TO ENDIT;
ELSE

DO;

/**/

/* If CF2 is pressed, redisplay the default values. */

/**/

IF SUBSTR(CFKEYS,2,1)= '1' THEN

DOI=1T07;
HUE(I) = S_HUE(I);
LIGHT(I) = S_LIGHT(I);
SATUR(I) = S_SATUR(I);
D_HUE(I) = S_HUE(I);

D_LIGHT(I) = S_LIGHT(I);
D_SATUR(I) = S_SATUR(I);
END;

/**/

/* If ENTER is pressed, use the assigned values. */
/**/
ELSE
DOI =1T07;
HUE(I) = D_HUE(I);
LIGHT(I) D_LIGHT(I);
SATUR(I) D_SATUR(I);
END;

/**/
/* Redefine and select the new color table. */

/**/
CALL GSCTD(65,1,7,HUE,LIGHT,SATUR);

CALL GSCT(65);

CALL FSFRCE;

Chapter 6. Program Examples

6-39

Application Programming Examples

END;
END;
ENDIT:
CALL FSPDEL(99);
CLOSE FILE(CFILE);
END;

PL/I GDDM Order Form Application

This is an example of graphics program used to enhance a menu. While this
example does not contain programming for managing database files, a business
application modeled on this program could be used to update files on your system:

*k*k*xx* 35MMO536M9 **x**%

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

A**

A*

Ax TITLE: ORDERF

A*

A* DESCRIPTION: Display file used with the PL/I-GDDM order entry

A= application program 'ORDER'.

A*
A**
A*

A DSPSIZ(24 80 *DS3)

A INDARA

A R REC1
A**
A*

A= NOTE: The file or the record format(s) that are displayed

Ax concurrently with graphics must use the ALWGPH keyword.

Ax

A**

6-40 AS/400 GDDM Programming Guide

Application Programming Examples

A ALWGPH
A**
A*

Ax NOTE: The field names shown below are automatically declared in
Ax the PL/I program by the %INCLUDE function.

A*
A**
A ORDERNUM 9A B 8 14

A REQUESTER 14A B 8 27

A BUYER 5A B 8 45

A DEPTCHRG 5A B 8 54

A TC 2A B 8 63

A CHECK 1A B 8 69

A DATEREQ 7A B 14 13

A USAGECODE 19A B 14 22

A REFNUMBER 11A B 14 43

A JK 1A B 14 56

A RB 1A B 14 59

A BS 1A B 14 62

A DEPTDLVR 5A B 14 65

What follows is the PL/I program you can use to produce the picture. This is an
example program, and so the function key mentioned does not do anything. It is
there to give you an idea of the type of system that you can set up.

ORDER: PROCEDURE;
/***/
/* Declare the external display file used for the input fields */
/* and include the field names in a structure. */
/***/
DCL

ALPHA FILE FILE RECORD ENV(INTERACTIVE) UPDATE;
DCL

1 ALPHA BUFFER AUTOMATIC,

%INCLUDE ORDERF(REC1,RECORD);

/***/

/* Declare the variables used with GSQCTB. */
/***/
DCL

XARRAY (5) FLOAT DEC(6),

YARRAY (5) FLOAT DEC(6);
/***/
/* Declare the variables used with GSQCB. */
/***/
DCL

DEFAULT _CBOXX FLOAT DEC(6),

DEFAULT _CBOXY FLOAT DEC(6),

NEW_CBOXX FLOAT DEC(6),

NEW_CBOXY FLOAT DEC(6);
/***/
/* Declare temporary working variables. */

[ko ke ok ek ok ok ok ko ko ko k ek ko k ok ok ke kkk ok ok ok
DCL

TEMP_FLOAT FLOAT DEC(6),

TEMP_FLOAT2 FLOAT DEC(6),

NEW_LINE CHAR(1), /* Contains hex 15 new line
control character. */
TEMP_TEXT CHAR(60); /* Character string variable. */

Chapter 6. Program Examples 6-41

Application Programming Examples

/***/
/* Initialize GDDM */
/***/
CALL FSINIT;

/* Default field is the entire

screen area. */
/* Default picture space is the
entire screen area. */
/* Default viewport is the entire
screen area. */
/***/
/* Use a window that corresponds to the alphameric display */
/* dimensions of 80 columns by 24 rows, which corresponds to x/
/* external display file dimensions. */

/***/
CALL GSWIN (1,81,1,25);
/***/

/* Create a segment. */
/***/

CALL GSSEG (1);

/***/

/* Enclose the screen in a frame. */
/***/
CALL GSCOL (1) /* 1 = blue. */
CALL GSLW (2); /* 2 = double-width Tine. */

CALL GSMOVE (1,1);
CALL GSLINE (81,1);
CALL GSLINE (81,25);
CALL GSLINE (1,25);
CALL GSLINE (1,1);

/***/

/* Draw the title, centered and underlined. */
/***/
CALL GSCOL (6); /* 6 = yellow. x/

CALL GSCHAR (28.5,23.50,23,'SHOP ORDER ENTRY SCREEN');
CALL GSQTB (23, 'SHOP ORDER ENTRY SCREEN',5,XARRAY,YARRAY);
TEMP_FLOAT = 28.5 + XARRAY (4);

CALL GSLW (1); /* 1 = standard-width Tine. */
CALL GSMOVE (28.5,23.25);

CALL GSLINE (TEMP_FLOAT,23.25); /* Underline. */
/***/
/* Draw the primary box around the input fields. */
/***/
CALL GSCOL (1); /* 1 = blue. */
CALL GSMOVE (8.50,22.50); /* Upper left corner. */
CALL GSLINE (72.25,22.50); /* Draw to upper right. */
CALL GSLINE (72.25,10.00); /* Draw to Tower right. */
CALL GSLINE (8.50,10.00); /* Draw to lower Teft. */
CALL GSLINE (8.50,22.50); /* Draw to upper left. x/
/***/
/* Draw the first Tine of horizontal character text. */
/***/
CALL GSCOL (2); /* RED. */

CALL GSCHAR (14.00,20.00,10,'SHOP ORDER');
CALL GSCHAR (27.00,20.00,9,'REQUESTED');
CALL GSCHAR (45.00,20.00,5,'BUYER');

CALL GSCHAR (54.00,20.00,4,'DEPT');

/***/

6-42 AS/400 GDDM Programming Guide

Application Programming Examples

/* Draw the second line of horizontal character text. */
/***/
CALL GSCHAR (14.00,19.00,6, 'NUMBER");

CALL GSCHAR (30.00,19.00,2,'BY');

CALL GSCHAR (45.00,19.00,4,'CODE");

CALL GSCHAR (53.00,19.00,7,'CHARGED');

CALL GSCHAR (62.50,19.00,3,'T/C');

/***/

/* Draw the third line of horizontal character text. */
/***/
CALL GSCHAR (15.00,14.00,4,'DATE');

CALL GSCHAR (24.00,13.50,11,'USAGE CODES');

CALL GSCHAR (43.00,14.00,9,'REFERENCE');

CALL GSCHAR (56.00,14.10,6,'PREFIX');

CALL GSCHAR (64.50,14.00,7,'DELIVER');

/***/

/* Draw the fourth Tine of horizontal character text. */
/***/
CALL GSCHAR (13.00,13.00,8,'REQUIRED');

CALL GSCHAR (43.00,13.00,6,'NUMBER');

CALL GSCHAR (55.50,13.00,2,'JK');

CALL GSCHAR (58.50,13.00,2,'RB');

CALL GSCHAR (61.50,13.00,2,'BS');

CALL GSCHAR (64.50,13.00,7,'TO DEPT');

/***/

/* Draw the 'notes' section at the bottom of the screen. */
/***/
CALL GSCOL (7); /* 7 = white. */

CALL GSCHAR (14.0,7.0,5,'NOTES:"');

CALL GSCHAR (16.0,5.5,30,'1. Use same number entered on ');

CALL GSQTB (30, 'Use same number entered on ',5,XARRAY,YARRAY);

TEMP_FLOAT = 16.0 + XARRAY (4); /x Compute starting position to
underline the word 'written'. */

CALL GSCHAR (TEMP_FLOAT,5.5,7,'written');

CALL GSQTB (7,'written',5,XARRAY,YARRAY);

TEMP_FLOAT2 = TEMP_FLOAT + XARRAY (4); /* Compute ending position of
underline (also the start of the

remainder of the string). */
CALL GSLW (1); /* 1 = standard=width line. */
CALL GSMOVE (TEMP_FLOAT,5.4); /* Move to start of underline. */
CALL GSLINE (TEMP_FLOAT2,5.4); /* Draw the underline. */
CALL GSCHAR (TEMP_FLOAT2,5.5,9,' request.'); /* Finish sentence. */

CALL GSCHAR (16.0,4.0,37,'2. F13: Table of current references.');

/***/

/* Draw the first horizontal line. */
/***/
CALL GSCOL (1); /* BLUE. */

CALL GSMOVE (12.75,22.25);
CALL GSLINE (72.25,22.25);
/***/
/* Draw the second horizontal line. */
/***/
CALL GSMOVE (12.75,21.25);
CALL GSLINE (67.50,21.25);
/***/
/* Draw the third horizontal line. */

/***/

CALL GSMOVE (12.75,18.75);

Chapter 6. Program Examples 6-43

Application Programming Examples

CALL GSLINE (72.25,18.75);

/***/

/* Draw the fourth and fifth horizontal lines. */
/***/
CALL GSMOVE (12.75,16.50);
CALL GSLINE (72.25,16.50);
CALL GSMOVE (12.75,16.25);
CALL GSLINE (72.25,16.25);

/***/

/* Draw the sixth and seventh horizontal Tines. */
/***/
CALL GSMOVE (12.75,15.25);
CALL GSLINE (72.25,15.25);
CALL GSMOVE (12.75,12.75);
CALL GSLINE (72.25,12.75);

/***/

/* Draw the horizontal Tine under 'PREFIX'. */
/***/
CALL GSMOVE (55.25,14.10);
CALL GSLINE (64.25,14.10);

/***/

/* Draw the left-most interior vertical line. */
/***/
CALL GSMOVE (12.75,22.50);
CALL GSLINE (12.75,10.00);

/***/

/* Draw the remaining vertical lines in the top half of the form. =/
/***/
CALL GSMOVE (25.50,22.25);
CALL GSLINE (25.50,16.50);
CALL GSMOVE (43.50,22.25);
CALL GSLINE (43.50,16.50);
CALL GSMOVE (52.00,22.25);
CALL GSLINE (52.00,16.50);
CALL GSMOVE (62.00,22.25);
CALL GSLINE (62.00,16.50);
CALL GSMOVE (67.50,22.25);
CALL GSLINE (67.50,16.50);

/***/

/* Draw the vertical lines in the lower half of the form. */
/***/
CALL GSMOVE (21.50,16.25);
CALL GSLINE (21.50,10.00);
CALL GSMOVE (42.50,16.25);
CALL GSLINE (42.50,10.00);
CALL GSMOVE (55.25,16.25);
CALL GSLINE (55.25,10.00);
CALL GSMOVE (64.25,16.25);
CALL GSLINE (64.25,10.00);

/***/

/* Draw the two dotted vertical lines that separate 'JK', 'RB' and =/

/* 'BS'. */
/***/
CALL GSLT (1), /* 1 = dotted Tine. */

CALL GSMOVE (58.00,12.75);
CALL GSLINE (58.00,10.00);
CALL GSMOVE (61.00,12.75);
CALL GSLINE (61.00,10.00);

6-44 AS/400 GDDM Programming Guide

Application Programming Examples

/***/

/* Query the character box size to enable proportional character */
/* size reduction. */
/***/
CALL GSQCB (DEFAULT CBOXX,DEFAULT_ CBOXY);

/***/

/* Select character mode 3. */
/***/

CALL GSCM (3);

/***/

/* Draw the small word 'CHECK' at a 90-degree character angle. */
/***/
CALL GSCOL (2); /* 2 = red. x/
NEW _CBOXX = DEFAULT CBOXX * .65; /* New x size is 65% of default. =*/
NEW_CBOXY = DEFAULT_CBOXY; /* y size remains same as default. */
CALL GSCB (NEW_CBOXX,NEW_CBOXY);

CALL GSCA (0.0,1.0); /* Set 90-degree character angle. =/

CALL GSCHAR (70.00,18.85,5,'CHECK");

/***/

/* Draw the vertical characters at the Teft side of the figure. x/
/***/
CALL GSCOL (7); /* 7 = white. */
UNSPEC(NEW_LINE) = '00010101'B; /* Use 'new line' control */
TEMP_TEXT = 'COMPLETE ALL PARTS' ||

NEW_LINE ||

'"BEFORE SUBMITTING';
CALL GSCHAR (10.50,10.50,36,TEMP_TEXT);

/***/

/* Draw the small numbers. */
/***/
CALL GSCA (1.0,0.0); /* Restore normal character angle. */

NEW_CBOXX = DEFAULT CBOXX * .80; /* New x size is 80% of default. =*/
NEW_CBOXY = DEFAULT_CBOXY * .90; /* New y size is 90% of default. =*/
CALL GSCB (NEW_CBOXX,NEW_CBOXY);
CALL GSCOL (1); /* 1 = blue. */
CALL GSCHAR (13.25,21.25,1,'1');
CALL GSCHAR (24.50,21.25,1,'9');
CALL GSCHAR (26.00,21.25,2,'10');
CALL GSCHAR (41.25,21.25,2,'23');
CALL GSCHAR (44.25,21.25,2,'24');
CALL GSCHAR (50.25,21.25,2,'28"');
CALL GSCHAR (52.50,21.25,2,'29');
CALL GSCHAR (60.25,21.25,2,'33');
CALL GSCHAR (62.50,21.25,2,'34');
CALL GSCHAR (65.25,21.25,2,'35');

.

t

CALL GSCHAR (13.25,15.25,2,'36")

CALL GSCHAR (19.75,15.25,2,'42');
CALL GSCHAR (22.00,15.25,2,'43');
CALL GSCHAR (40.75,15.25,2,'61")

CALL GSCHAR (43.00,15.25,2,'62');
CALL GSCHAR (53.50,15.25,2,'72');
CALL GSCHAR (55.75,15.25,2,'73');
CALL GSCHAR (62.50,15.25,2,'75');
CALL GSCHAR (64.75,15.25,2,'76');
CALL GSCHAR (70.50,15.25,2,'80');

/***/

/* Draw the small 'NOTE' numbers. */

/***/

Chapter 6. Program Examples 6-45

Application Programming Examples

CALL GSCOL (7); /* 7 = white. */
CALL GSCHAR (22.50,19.00,1,'1');
CALL GSCHAR (51.50,13.00,1,'2")
CALL FSFRCE;

/***/

t

/* The order form has now been drawn. */
/* Open the ALPHA FILE and perform a read/write operation to */
/* accept the input. */

/***/

OPEN FILE(ALPHA FILE) UPDATE TITLE('ORDERF');

/***/

/* Set the initial values to the record format field names. */
/* NOTE: The field variables were automatically declared by the x/
/* '%INCLUDE' function near the start of the program. */

[ek sk ek ok ok ok ok ek ok ok ok ok ek ok ok ok ek ok ok ok ok ek ok ok ke ko ok ok ke k ok ko ke ke k ok kok ok
ORDERNUM = 'XXXXXXXXX';

REQUESTER = ' XXXXXXXXXXXXXX'};

BUYER = 'XXXXX';

DEPTCHRG = 'XXXXX';

TC = 'XX';

CHECK = 'X';

DATEREQ = '"XXXXXXX';

USAGECODE = 'XXXXXXXXXXXXXXXXXXX'3

REFNUMBER = 'XXXXXXXXXXX';

JK = 'XX';
RB = 'XX';
BS = 'XX';

DEPTDLVR = 'XXXXX';
/***/
/* Perform the read/write operation(s). */
/* NOTE: This can be done many times without redrawing the order formx/
/***/
WRITE FILE(ALPHA_FILE) FROM(ALPHA_BUFFER) OPTIONS (RECORD('REC1'));

READ FILE(ALPHA FILE) INTO(ALPHA BUFFER);

/***/

/* Close the display file and terminate GDDM. */
/***/
CLOSE FILE(ALPHA FILE);

CALL FSTERM;

/***/

/* Include the GDDM entry declarations. */

/***/

%INCLUDE SYSLIB(ADMUPLNB);
END ORDER;

6-46 AS/400 GDDM Programming Guide

Application Programming Examples

RPG/400 Program with Presentation Graphics and GDDM

This is an example of graphics program written in the RPG/400 programming
language that uses both Presentation Graphics and GDDM routines:

%x%x%* 35MMOS3ON] ***x**

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345
H* This RPG program shows GDDM and Presentation Graphics routines

H+* being used in the same RPG program. The first part of the
H* program draws a pie chart and a Tine chart; the second part
H* uses GDDM to draw a picture.

H 1

FPARSUMRYIF E DISK

Ex The following declarations for floating point arrays; those
Ex shown with a blank in column 35 are execution-time arrays.

E AX 12 12 20 X VALUE FOR LINE
E AY 12 10 2 Y VALUE FOR LINE
E TTL 20 10 2 TOTAL BY SLSMN

Ex The following declarations are for 4-byte binary integer arrays,
E* which must be defined as a DS on an input spec.

E HATT 1 4 90 HEADING ATTR
E AATT 1 4 90 AXIS ATTR

E KATT 1 4 90 KEY ATTR

E LATT 1 4 90 LABEL ATTR

Ex The following character array is used for up to 20 pie chart

Ex labels. The array elements are obtained by program calculations.
E PLAB 20 3 LABELS FOR PIE
Ex These single-element character arrays are used for heading text
Ex and axis titles. The character strings are too lTong to be moved
Ex into a field as character literals in factor 2.

E LINHED 1 1 14 HEAD FOR LINE
E YTTL 1 126 Y AXIS TITLE
E PIEHED 1 1 17 HEAD FOR PIE
E TSALE 1 1 30 TEXT FOR GDDM

Chapter 6. Program Examples 6-47

Application Programming Examples

E TYEAR 1 1 30

I* The following integer arrays are defined as binary arrays.
IARRAYS DS

I B 1 160HATT

I B 17 320AATT

I B 33 480KATT

I B 49 640LATT

I* The following declaration statements are for other 4-byte
I* binary integer variables.

IPARMS DS

I B 1 40DTAGRP

I B 5 80COUNT

I B 9 120LENGTH

I B 13 160NUM

I B 17 200INDEX

I B 21 240ATTYPE

I B 25 280ATMOD

I B 29 320CNT

C+ The following section does general housekeeping;

C+ 'C' is a counter used in the program.

C Z-ADDO C 20

C 1 DO 12 C

C Z-ADDO AY,C

C END 1

C Z-ADD1 C

C MOVEA*BLANKS PLAB,C

C Z-ADDO C

C 1 DO 20 C

C Z-ADDO TTL,C

C END 1

C Z-ADDO C

C+ NAMSAV saves names for use in pie labels.

C MOVE *BLANKS NAMSAV 3

C* MONTH is used when accumulating sales figures for each month.
C Z-ADDO MONTH 60

C+ I IS ANOTHER COUNTER

C Z-ADDO I 20

C+ INDEX contains the number of labels used for the pie chart.
C Z-ADDO INDEX

C* NUM is used in many routines where an integer is needed.

C Z-ADDO NUM

C+* The following variables are used to set the viewport and window
Cx for use by the GDDM routines.

C Z-ADDO LEFT 63

C Z-ADDO RIGHT 63

C Z-ADDO LOWER 63

C Z-ADDO UPPER 63

C Z-ADDO WIDTH 63

C Z-ADDO DEPTH 63

Cx The following section reads file PARSUMRY and calculates the
C+ data needed for the line chart and the pie chart.

Cx In factor one in the TAG statement, RED = read and FIL = file.
C Z-ADDO C

C REDFIL TAG

C READ PARSUMRY 99

cC 99 GOTO EOF

C SLSMAN CABEQNAMSAV SUMTOT

C MOVE SLSMAN NAMSAV

6-48 AS/400 GDDM Programming Guide

TEXT FOR GDDM

Application Programming Examples

C ADD 1 C

C MOVE SLSMAN PLAB,C

C SUMTOT TAG

C ADD OTOTAL TTL,C

Cx In file PARSUMRY, 'INVDT' is the invoice date used to
C* accumulate sales by month; its format is MMDDYY.

C* MONTH compares and adds the sales values into
C* the correct array element for the y-values for the line chart.
C 1 DO 12 I

C I MULT 10000 MONTH

C ADD 10000 MONTH

C INVDT CABLTMONTH TOTLIN

C END 1

C GOTO REDFIL

C TOTLIN TAG

C ADD OTOTAL AY,I

C GOTO REDFIL

C EOF TAG

C Z-ADDC INDEX

C Z-ADDO C

C 1 DO 12 C

C MULT .001 AY,C

C END 1

C* R R R R R R R Rk Rk R R Rk R

PRESENTATION GRAPHICS SECTION

C*

C+ THIS SECTION DRAWS THE LINE CHART

C

OO0 OO0 OO0 00N

CALL
PARM
CALL
PARM
PARM
PARM
Z-ADDO

MULT WIDTH
Z-ADDO
Z-ADDDEPTH
CALL 'GDDM'
PARM 'CHAREA
PARM

PARM

PARM

PARM

CALL 'GDDM'
PARM 'CHHEAD
PARM 14

PARM

CALL 'GDDM'
PARM 'CHHATT
PARM 4

PARM

CALL 'GDDM'
PARM 'CHXMTH
PARM 1

CALL 'GDDM'
PARM 'CHXSET
PARM 'NOFO'
CALL 'GDDM'
PARM 'CHSET

'GDDM'
"FSINIT
'GDDM'
'GSQPS

INITIALIZE
'FSINIT 8 GRAPHICS
'GSQPS 8 QUERY PIC
WIDTH SPACE
DEPTH
LEFT
RIGHT
LOWER
UPPER

CHART DRAWN
'CHAREA 8 AT LEFT
LEFT SIDE OF
RIGHT SCREEN
LOWER
UPPER

HEADING FOR
'CHHEAD 8 LINE CHART
LENGTH
LINHED

SET HEADING
'CHHATT 8 ATTRIBUTES
COUNT
HATT

MONTHS STRT
'CHXMTH 8 WITH JAN
NUM

NOFORCEZERO
'CHXSET 8
NOFRCZ 4

USE FIRST
'CHSET 8 LETTER

6-49

Chapter 6. Program Examples

Application Programming Examples

* THIS SECTION DRAWS

NeoNeoNeoNeoNeoNeNeNololNeololNololeololeoNolelNolelNeloleolNoleloleoleleoleleollelNeolleleoleole o leleolle el e e lle el le Mo e e lie B or R e B er B el

6-50 AS/400 GDDM Programming Guide

PARM 'LETTER'
CALL 'GDDM'
PARM 'CHTATT
PARM 4

PARM

CALL 'GDDM'
PARM 'CHYTTL
PARM 26

PARM

CALL 'GDDM'
PARM 'CHLATT
PARM 4

PARM

CALL 'GDDM'
PARM 'CHPLOT
PARM 1

PARM 12

PARM

PARM

THE PIE CHART
CALL 'GDDM'
PARM 'CHSTRT
MULT WIDTH
Z-ADDWIDTH
Z-ADDO

MULT DEPTH
CALL 'GDDM'
PARM

PARM

PARM

PARM

PARM

CALL 'GDDM'
PARM

PARM 17

PARM

CALL 'GDDM'
PARM

PARM 4

PARM

CALL 'GDDM'
PARM

PARM 'NOLAB'
CALL 'GDDM'
PARM 'CHKATT
PARM 4

PARM

CALL 'GDDM'
PARM 'CHSET
PARM 'SPIDER'
CALL 'GDDM'
PARM 'CHKEY
PARM

PARM 3

PARM

CALL 'GDDM'
PARM

PARM 'ABPIE'

LETTER

"CHTATT
COUNT
AATT

"CHYTTL
LENGTH
YTTL

"CHLATT
COUNT
LATT

"CHPLOT
DTAGRP
COUNT
AX
AY

"CHSTRT
LEFT
RIGHT
LOWER
UPPER

CHAREA
LEFT
RIGHT
LOWER
UPPER

CHHEAD
LENGTH
PIEHED

CHHATT
COUNT
HATT

CHXSET
NOLAB

"CHKATT
COUNT
KATT

"CHSET
SPIDER

"CHKEY
INDEX
LENGTH
PLAB

CHSET
ABPIE

SET THE AXIS
TITLE
ATTRIBUTES

Y AXIS TITLE

SET AXIS
LABEL
ATTRIBUTES

DRAW THE LINE
CHART

RESTART GRAPHICS

SET CHART AREA

HEADING FOR

PIE CHART

HEADING ATTR

SUPPRESS LBLS

KEY ATTR

USE SPIDER
LABELS

LABELS FOR
PIE CHART

DRAW COMPLETE
PIE

OOOOOOOO0O OO

Application Programming Examples

CALL 'GDDM'
PARM 'CHPIER
PARM 50

CALL 'GDDM'
PARM 'CHPIE
PARM 1

PARM

PARM

CALL 'GDDM'
PARM 'CHTERM

'"CHPIER 8
NUM 50%

'"CHPIE 8
DTAGRP
INDEX

TTL

DRAW PIE

TERMINATE GRAPHICS

"CHTERM 8

C* khkkkkhhhkhhkkkhhhhhkhhhhhhhhhhhhkhhhhhhhhhhhrhkhhhdhhrhhhdrridhxx

C*

GDDM SECTION

C+ THE VIEWPORT IS SET TO THE RIGHT HALF OF THE SCREEN

C

oNeoNeNeoNeNeoNeleloleololelleoleleololleloleleolelNeleollelelleleleleleole e le e lo e le e e e ol e e Mol

.5

.5

MULT WIDTH
Z-ADDWIDTH
MULT DEPTH
Z-ADDDEPTH
CALL 'GDDM'
PARM 'GSVIEW
PARM

PARM

PARM

PARM

* THE WINDOW IS SET TO X=0-100 AND

Z-ADDO
Z-ADD100
Z-ADDO
Z-ADD100
CALL 'GDDM'
PARM 'GSWIN
PARM

PARM

PARM

PARM

CALL 'GDDM'
PARM 'GSCM
PARM 3

CALL 'GDDM'
PARM 'GSCOL
PARM 7

CALL 'GDDM'
PARM 'GSCHAR
PARM 30
PARM 70
PARM 17
PARM

CALL 'GDDM'
PARM 'GSCB
PARM 5

PARM 5

CALL 'GDDM'
PARM 'GSCA
PARM 0

PARM -1
CALL 'GDDM'
PARM 'GSCHAP
PARM 11
PARM

LEFT

RIGHT
LOWER
UPPER

'"GSVIEW 8
LEFT
RIGHT
LOWER
UPPER
Y=0-100
LEFT
RIGHT
LOWER
UPPER

'GSWIN 8
LEFT
RIGHT
LOWER
UPPER

'GSCM 8
NUM

'GSCOL 8
NUM

'"GSCHAR 8
XVAL 41
YVAL 41
LENGTH
TSALE

'GSCB 8
XVAL
YVAL

'GSCA 8
XVAL
YVAL

"GSCHAP 8

LENGTH
TYEAR

Chapter 6. Program Examples

REDUCE PIE

6-51

Application Programming Examples

NeoNeoNeoNeNeNeNeNololNololNololeololeolNolelNolleolNelolelNoleloleoleleoleleollelNelleleolelle e leleolle el e e lle el e Mo e e lie R eor R e B er B el

6-52 AS/400 GDDM Programming Guide

CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
CALL
PARM
PARM
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
PARM
PARM
CALL
PARM
PARM
PARM
CALL
PARM
PARM
PARM
PARM
CALL
PARM

'GDDM'
'GSCB
2.5

10
'GDDM'

-1

'GDDM'

17

'GDDM'
'GSCB

'GDDM'

'GDDM'

11

'GDDM'
'GSCA

'GDDM'

'GDDM'

33

40

7
"BYT!
'GDDM'
'GSCB

8

16

'GDDM'

3
85
4
'Xyz !
'GDDM'

8

' COMPANY
'GDDM'
"ASREAD

'GDDM'
"FSTERM

'GSCB
XVAL
YVAL

GSCA
XVAL
YVAL

GSCHAP
LENGTH
TSALE

'GSCB
XVAL
YVAL

GSCA
XVAL
YVAL

GSCHAP
LENGTH
TYEAR

'GSCA 8
XVAL
YVAL

GSCoL
NUM

GSCHAR
XVAL

YVAL
LENGTH
MANYR 7

'GSCB 8
XVAL
YVAL

GSCHAR
XVAL

YVAL
LENGTH
HEAD1 4

GSCHAP
LENGTH
'"HEADZ2 8

"ASREAD 8
ATTYPE
ATMOD

CNT

"FSTERM 8

Application Programming Examples

C SETON LR
C RETRN

%

010203040506070809101112
*%
000000005
000000002
000000000
000000200
*%
000000005
000000003
000000000
000000100
*%
000000000
000000002
000000000
000000200
*%
000000004
000000002
000000000
000000200

%

SALES BY MONTH

%

THOUSANDS OF §

*%x

SALES BY SALESMAN

**

SALESMAN

**

OF THE YEAR

Chapter 6. Program Examples 6-53

Application Programming Examples

Graphics Image Programs in Each Language

The programs in this section show how a graphics image and the same graphics

image scaled are drawn by each of the high-level languages.

Graphics images are constructed by programs that convert data given in bit

patterns to corresponding pictures, where each on bit sets a pixel on, and each off

bit leaves the pixel as it was.

Graphics Image Drawn in BASIC

*%x%%x% 35MMOS3ON3 ***x**

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

CALL GDDM ('FSINIT') !
CALL GDDM ('GScoL',2) !

Initialize graphics
Set color

DIM CHAR$*39 : CHAR$ = 'THE FOLLOWING IMAGES WERE DONE IN BASIC'
CALL GDDM ('GSCHAR',30.0,70.0,39,CHARS)
CALL GDDM ('GSCHAR',30.0,65.0,29,'USING HEXADECIMAL CHARACTERS')

CALL GDDM ('GScoOL',1) !
CALL GDDM ('GSMOVE',35.0,50.0) !
DIM IMG$*5 !
DIM X$+10 !
X$="'C3661866C3"

IMG$=HEX$ (X$) !
CALL GDDM ('GSIMG',0,8,5,5,IMGS$)

! Draw image with 8 pixels across,

Set color

Move to image position

Image variable 1/2 hex string
Hex string variable

Convert back from hexadecimal

5 display

! points down, 5 bytes of pixels ((8%5)/8 = total)

CALL GDDM ('GSMOVE',50.0,50.0) !

Move image position

CALL GDDM ('GSIMGS',0,8,5,5,IMG$,10.0,10.0)

! Draw image scaled to 10 x-units,
INTEGER ATTYPE,ATTVAL,COUNT

10 y-units

CALL GDDM ('ASREAD', ATTYPE,ATTVAL,COUNT)

CALL GDDM ('FSTERM')
END

6-54 AS/400 GDDM Programming Guide

Application Programming Examples

Graphics Image Drawn in the RPG/400 Programming Language

kx%%x% 35MMOS3ONE *x%x*

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

E HEADGL 1 1 45

E HEADG2 1 1 45

E IMAG 8 1

Ix Declare the image character string

IIDTA DS

I 1 8 IMAG
Ix Declare the image variables as binary 4
IPARAM DS

I B 1 A40ATTYPE
I B 5 8OATTVAL
I B 9 120COUNT
I B 13 160WIDTH
I B 17 200DEPTH
I B 21 240BYTES
I B 25 280ITYPE
I B 29 320COLOR
C+ Set off the 2nd bit of each element of IDTA,
C* necessary because the image data is initially
Cx set to blanks (X'40'):

C BITOF'1' IMAG, 1

C BITOF'1' IMAG, 2

C BITOF'1' IMAG, 3

C BITOF'1' IMAG,4

C BITOF'1' IMAG,5

C* After the image data is set to zeros,

C+ use BITON to set the image point bits on:
C BITON'0167' IMAG, 1

C BITON'1256" IMAG,2

C BITON'34! IMAG, 3

Chapter 6. Program Examples

6-55

Application Programming Examples

*

NeoNeoNeoNeNeNeNeNololNololNololeololleolNollelNeollelNeloleolNeoleleoleoleleoleleolelNellelelelle e leleolle el e e lle el e Mo e el B or R o I ar B o]

6-56 AS/400 GDDM Programming Guide

BITON'1256"
BITON'0167'

CALL 'GDDM'

PARM 'FSINIT'

Z-ADD2

CALL 'GDDM'
PARM 'GSCOL'
PARM
Z-ADD30
Z-ADD70
Z-ADD45
CALL 'GDDM'

PARM 'GSCHAR'

PARM

PARM

PARM

PARM
Z-ADD30
Z-ADD65
CALL 'GDDM'

PARM 'GSCHAR'

PARM

PARM

PARM

PARM
Z-ADD1
CALL 'GDDM'
PARM 'GSCOL'
PARM
Z-ADD35
Z-ADD50
CALL 'GDDM'

PARM 'GSMOVE'

PARM

PARM
Z-ADDO
Z-ADD8
Z-ADD5
Z-ADD5
Z-ADD10
Z-ADD10
CALL 'GDDM'

PARM 'GSIMG '

PARM

PARM

PARM

PARM

PARM
Z-ADD50
Z-ADD50
CALL 'GDDM'

PARM 'GSMOVE'

PARM
PARM
CALL 'GDDM'

PARM 'GSIMGS'

PARM

IMAG, 4
IMAG, 5

FSINIT
COLOR

GSCoL
COLOR
XMov
YMOV
COUNT

GSCHAR
XMoV
YMOV
COUNT
HEADG1
XMov
YMOV

GSCHAR
XMov
YMOV
COUNT
HEADG2
COLOR

GSCOL
COLOR
XMov
YMOV

GSMOVE
XMoV
YMOV
ITYPE
WIDTH
DEPTH
BYTES
SCALX
SCALY

GSIMG
ITYPE
WIDTH
DEPTH
BYTES
IDTA
XMov
YMOV

GSMOVE
XMoV
YMOV

GSIMGS
ITYPE

The following routines draw the image:

8

31
31

31
31

31
31

31
31

Initialize
Graphics

Set color

Heading

Heading

Set color

Move to
position

Draw image

Move to
position

Draw scaled
image

Application Programming Examples

C PARM WIDTH

C PARM DEPTH

C PARM BYTES

C PARM IDTA

C PARM SCALX

C PARM SCALY

C CALL 'GDDM' Send images
C PARM 'ASREAD' ASREAD 8 to display
C PARM ATTYPE

C PARM ATTVAL

C PARM COUNT

C CALL 'GDDM' Terminate
C PARM 'FSTERM' FSTERM 8 graphics

C SETON LR

C RETRN

**

THE FOLLOWING IMAGES WERE DONE IN RPG

**

USING THE BITON AND BITOF COMMANDS

Chapter 6. Program Examples 6-57

Application Programming Examples

| Graphics Image Drawn in the COBOL/400 Programming Language

%x%%x% 35MMO53OND *x%x*

e L i B e R
IDENTIFICATION DIVISION.
PROGRAM-ID. CIMAGE.

* This COBOL program draws an image and a scaled image.
* A BASIC program is called to convert the string to a
* bit pattern.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-S38.
OBJECT-COMPUTER. IBM-S38.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.

FILE SECTION.
WORKING-STORAGE SECTION.

01 PARM-LIST.

05 IMAGE PIC X(248).
kkkkkhkhkhkhkhhhkhkkkkkkkkhkhkhkhkhhhhhkkkkkhkhkhkhkhkhhhhhkkkkkhkhkhkkhkhkhkhhhkkkkkkkkk k%
* Parameters for GDDM routines.
kkkkhkhkhkhhhhhkhkhkhkhhhkhkhkhdhdhdhdhhhhhhhhkhkhkhdhddhdhhhhhhhhhhdddhdhdddrrkkrrikhdd*k

77 FKTYPE PIC S9(5) COMP-4.

77 FKNUM PIC S9(5) COMP-4.

77 NUM PIC S9(5) COMP-4.

77 STRING-LENGTH PIC S9(5) COMP-4.
77 XMOV PIC S9(4)V9 COMP-3.

77 YMOV PIC S9(4)V9 COMP-3.

77 SCALX PIC S9(4)V99 COMP-3.

77 SCALY PIC S9(4)V99 COMP-3.

77 WIDTH PIC S9(5) COMP-4.

6-58 AS/400 GDDM Programming Guide

Application Programming Examples

77 DEPTH PIC S9(5) COMP-4.
77 BYTES PIC S9(5) COMP-4.
77 ITYPE PIC S9(5) COMP-4.
77 COLOR PIC S9(5) COMP-4.
77 STRNG PIC X(50).

hkkkhkkkhkhhkkhkhhhkhhkhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhdhdhhhhkdhhdhdxdrksxx

* GDDM routines.

LR R R R R Rk Rk Rk R Rk Rk R

77 FSINIT PIC X(8) VALUE "FSINIT ".

77 GSIMG PIC X(8) VALUE "GSIMG ".

77 GSIMGS PIC X(8) VALUE "GSIMGS ".

77 GSCOL PIC X(8) VALUE "GScoL ".

77 GSMOVE PIC X(8) VALUE "GSMOVE ".

77 GSCHAP PIC X(8) VALUE "GSCHAP ".

77 ASREAD PIC X(8) VALUE "ASREAD ".

77 FSTERM PIC X(8) VALUE "FSTERM ".

PROCEDURE DIVISION.

GRAPHICS.
Khkhkhkhkkkkkhkhkhkhkhhhhhhkhkhkhkhkhkhkhkhkhhhhhhhhkhkhkhkhkhkhkhhhhhhkkhkhkhkhkhkhkkkhhkk*xx
* Convert the character string of 1's and 0's that represent
* the image in bits into an actual bit string. BASCNVT is

* a BASIC program that performs the conversion.
kkhkkkkkkhkkhkhkkhkhkkhkkhkhkkhhkhkhkkhkhkkhhkkhkkhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkkkkkhkkkx

MOVE "1100001101100110000110000110011011000011" TO IMAGE.

CALL "BASCNVT" USING IMAGE.
Khhkhkhkkkkkkhkhkhkhkhhhhhhkhkhkhkhkhkhkhkhkhhhhhhhkhkhkhkhkhkhkhkhhhhhhkkkkhkhkhkhkkkhhhkxx
* Initialize graphics.
kkhkkkhkhkhkhkhhhhkhkkkkkhkhkkhkhkhkhhhhhhkkkkhkhkhkhkhkhhhhhhkkkkhkhkhkhkhkhkhkhkhkhkkkkkkkxkx

CALL "GDDM" USING FSINIT.

khkkkhkkkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkkx

* Write the heading characters.
khkkhkhkhkhkhhhhhkhkkhkhhhkhkhdhdhdhdhhhhhhhhhhhdhdddhhhhhhhhhhddddhdhdhhrxxkkrxkx

MOVE 2 TO COLOR.

CALL "GDDM" USING GSCOL, COLOR.

MOVE 30 TO XMOV.

MOVE 70 TO YMOV.

CALL "GDDM" USING GSMOVE, XMOV, YMOV.

MOVE 39 TO STRING-LENGTH.

MOVE "THE FOLLOWING IMAGES WERE DONE IN COBOL" TO STRNG.

CALL "GDDM" USING GSCHAP, STRING-LENGTH, STRNG.

MOVE 30 TO XMOV.

MOVE 65 TO YMOV.

MOVE 43 TO STRING-LENGTH.

MOVE "USING BASIC TO DO THE BIT STRING CONVERSION" TO STRNG.

CALL "GDDM" USING GSMOVE, XMOV, YMOV.
CALL "GDDM" USING GSCHAP, STRING-LENGTH, STRNG.

kkkkkhkhkhkhhhhkhkkkkkhkhkkhkhkhkhhhhhhkkkkkhkhkhkhkhhhhhhkkkkkhkhkhkhkhkhkhkhkkkkkkkkxkx
* Draw the images.
kkkhkhkhkhkhhhhhkhkkkhkhhkhkhkhkhhdhhhhhhhhkhkhkhdhdhdhhhhhhhkhhkhkhddddhdhdhhhkxxkhikxkx

MOVE 1 TO COLOR.

CALL "GDDM" USING GSCOL, COLOR.

MOVE 35.0 TO XMOV.

MOVE 50.0 TO YMOV.

CALL "GDDM" USING GSMOVE, XMOV, YMOV.

MOVE O TO ITYPE.

MOVE 8 TO WIDTH.

MOVE 5 TO DEPTH.

MOVE 5 TO BYTES.

Chapter 6. Program Examples

6-59

Application Programming Examples

CALL "GDDM" USING GSIMG, ITYPE, WIDTH, DEPTH, BYTES, IMAGE.

MOVE 10 TO SCALX.

MOVE 10 TO SCALY.

MOVE 50.0 TO XMOV.

MOVE 50.0 TO YMOV.

CALL "GDDM" USING GSMOVE, XMOV, YMOV.

CALL "GDDM" USING GSIMGS, ITYPE, WIDTH, DEPTH, BYTES, IMAGE,
SCALX, SCALY.

hkhkkkhkhkkhhkhkhkhkhhdhkhkhhhkhhhkhhhhkhhkhhkhhdhhkhhdhhkhhdhkhkhhdhkhkhdhkhkdhdhkhkddkxx
* Display the images and terminate graphics.
kkkkkhkhkhkhhhhkhkkkkkhkkkhkhkhkhhhhhhkkkkhkhkhkhkhkhhhhhhkkkkkhkhkhkhkhkhkhkhkkkkkkkkxkx
CALL "GDDM" USING ASREAD, FKTYPE, FKNUM, NUM.
CALL "GDDM" USING FSTERM.
STOP RUN.
END-GRAPHICS.

6-60 AS/400 GDDM Programming Guide

Application Programming Examples

The following BASIC program converts the bit string to the character string needed
by the GSIMG and GSIMGS routines in the COBOL/400 program:

SUB BASCNVT (BITIMGS)
! This program converts the string of 1's and 0's

! passed by the COBOL program into a character string
DECLARE PROGRAM BASCNVT (C 248)

00100
00110
00120
00140
00150
00160
00170
00180
00185
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540

DIM BITIMG$*2
DIM BITS$+4
DIM HEXS$*1
DIM HEXIMG$*2
GOSUB CNVRT

18

48

BITIMG$=HEX$ (HEXIMGS)

STop
CNVRT: ! CONVERTS A BIT STRING TO HEX
LENG = LEN(BITIMGS)
X= LENG / 4
J=1
K=4
FOR I =1T0X
BITS$ = BITIMG$(J:K)
J = J+4
IF BITS$(1:1) = '1' THEN GOSUB GRTEQ8 ELSE GOSUB LESS8
K = K+4
HEXIMG$ = HEXIMG$RHEXS$
NEXT I
RETURN
GRTEQ8: ! HEX IS GREATER THAN OR EQUAL 8
IF BITS$(1:4) = '1000' THEN HEXS$ = '8'
IF BITS$(1:4) = '1001' THEN HEXS$ = '9'
IF BITS$(1:4) = '1010' THEN HEXS§ = 'A!
IF BITS$(1:4) = '1011' THEN HEXS$ = 'B!
IF BITS$(1:4) = '1100' THEN HEXS$ = 'C'
IF BITS$(1:4) = '1101' THEN HEXS$ = 'D'
IF BITS$(1:4) = '1110' THEN HEXS$ = 'E!
IF BITS$(1:4) = '1111' THEN HEXS$ = 'F!
RETURN
LESS8: ! HEX IS LESS THAN 8
IF BITS$(1:4) = '0000' THEN HEXS$ = '0'
IF BITS$(1:4) = '0001' THEN HEXS$ = '1'
IF BITS$(1:4) = '0010' THEN HEXS$ = '2°
IF BITS$(1:4) = '0011' THEN HEXS$ = '3
IF BITS$(1:4) = '0100' THEN HEXS$ = '4'
IF BITS$(1:4) = '0101' THEN HEXS$ = '5!
IF BITS$(1:4) = '0110' THEN HEXS$ = '6'
IF BITS$(1:4) = '0111' THEN HEXS§ = '7!
RETURN
END SUB

Chapter 6. Program Examples

6-61

Application Programming Examples

Graphics Image Drawn in PL/I

%x%%x% 35MMO5S3ONO **x*x*

IMAGEPLI : PROC;
%INCLUDE SYSLIB (ADMUPLNB);

DCL ATTYPE BIN(31); /* Declare variables */
DCL ATTVAL BIN(31);
DCL COUNT BIN(31);
DCL IMAGE$ CHAR(5);
/* The following bit string represents the image data */
UNSPEC (IMAGE$) = '11000011'B] |

'01100110'B| |

'00011000'B| |

'01100110'B| |

'11000011'B;
CALL FSINIT; /* Initialize graphics */
CALL GSCOL(2); /* Set color */
CALL GSCHAR(30.0,70.0,37,'THE FOLLOWING IMAGES WERE DONE IN PLI');
CALL GSCHAR(30.0,65.0,37,'USING THE UNSPEC FUNCTION ")
CALL GSCOL(1); /* Set color */
CALL GSMOVE(35.0,50.0); /* Move to image position =/
CALL GSIMG(0,8,5,5,IMAGES); /* Draw image */
CALL GSMOVE(50.0,50.0); /* Move to image position =/
CALL GSIMGS(0,8,5,5,IMAGE$,10.0,10.0);/* Draw scaled image */

CALL ASREAD(ATTYPE,ATTVAL,COUNT); /* Send picture to display */

END IMAGEPLI;

6-62 AS/400 GDDM Programming Guide

Application Programming Examples

Graphics Image Drawn in Pascal

kxk%x% 35MMOS3ON7 *x**

PROGRAM IMAGEPAS;

TYPE
%INCLUDE QATTPAS(ADMUSTNO) ; /* IBM-supplied type declarations */

VAR
IMAGE$: CHARARR 2040;
ATTVAL, ATTYPE, COUNT : INTEGER;
A, B, C, D : INTEGER;
X, Y, Z : SHORTREAL;
CHARSTRING : CHARARR_132;

%INCLUDE QATTPAS (ADMUSLNB) ; /* IBM-supplied proc declarations */
BEGIN
IMAGE$:= 'C3661866C3'XC; /* The following hexidecimal
character string represents the
image data */
FSINIT; /* Initialize graphics x/
A :=2;
GSCOL(A); /* Set color */

X :=30.0; Y :=70.0; A := 40;
CHARSTRING := 'THE FOLLOWING IMAGES WERE DONE IN PASCAL';

GSCHAR(X,Y,A,CHARSTRING) ; /* Write first Tine of text */
Y := 65.0;

CHARSTRING := 'USING STRING HEXIDECIMAL CONSTANTS 'y
GSCHAR(X,Y,A,CHARSTRING) ; /* Write second line of text */
A :=1;

GSCOL(a); /* Set color x/
X :=35.0; Y := 50.0;

GSMOVE(X,Y) /* Move to image position */

Chapter 6. Program Examples 6-63

Application Programming Examples

A:=0; B:=8;C:=5;0D

GSIMG(A,B,C,D,IMAGES);

X := 50.0;

GSMOVE (X,Y);

X :=10.0; Y := 10.0;

GSIMGS (A,B,C,D, IMAGES,X,Y);

ASREAD (ATTVAL,ATTYPE,COUNT)
END.

6-64 AS/400 GDDM Programming Guide

:= b3

/*
/*

/*
/*

Draw image
Move to scaled image position

Draw scaled image
Send picture to display

Compatible Devices

Appendix A. Devices Compatible with the AS/400 System

An 0OS/400 graphics program can produce these types of output:
Video color pictures on the following devices:

* |IBM personal computer with work station function (WSF)

e IBM personal computer with work station emulation (WSE)
e 5292 Model 2

¢ |BM personal computer with 5250 emulation

Plotted color pictures on the following devices:

e |IBM 6180 Plotter
e |IBM 6182 Plotter
e |BM 6184 Plotter
e |BM 6185 Plotter
e |IBM 6186-1 Plotter
e IBM 6186-2 Plotter
e |BM 7371 Plotter
e |BM 7372 Plotter

Printed black-and-white pictures on the following devices:

e IBM 3812 Printer
e IBM 3816 Printer
e IBM 4028 Printer
e IBM 4214 Printer
e IBM 4234-2 Printer
e IBM 5224 Printer
e IBM 5225 Printer

Printed color pictures on the IBM 4224 Printer.

Graphics data format (GDF) file, which can be used to save a constructed
picture for later interpretation, on the AS/400 System or on another system
equipped with the software necessary to interpret GDF files.

No output on a non-graphics work station, which can be useful for testing and
debugging programs when a graphics work station is not available.

A plotter can be attached to the graphics work station as an auxiliary device, and
therefore must be named and addressed in the AUXDEV parameter of the
CRTDEVDSP (Create Device Description (Display)) CL command used to describe
the graphics work station to the system.

The 3812, 3816, 4028, 4214, 4224, 4234-2, 5224, and 5225 printers are separate
devices and are configured as normal work station printers.

The same picture produced on a display, a plotter, and a printer may not be
identical. Pictures are associated with a device. When the program encounters a
DSUSE routine for the plotter, the picture constructed differs from the graphics work
station picture:

* Chart features, such as the legend and chart notes, are positioned by character
grid units. The default character grid varies between the display device, printer,
and plotter. On a plotter, paper sizes and paper orientation make a difference.

© Copyright IBM Corp. 1991 A-1

Compatible Devices

To avoid these differences, set the character grid size with Presentation
Graphics routine CHCGRD.

» Charts with default axis scales show more tick marks on a plotted or printed
version of a chart than on one displayed.

* Note, legend, and axis label blanking is not performed for plotted charts unlike
displayed or printed charts.

e Color tables are not supported for the plotter; regardless of the color defined for
the color table entry number 1 for the display, the plotter uses whatever pen is
in position 1 of the plotter carousel.

e Color mixing for plotter pictures is always in overpaint mode, because colors
are etched over the top of previously drawn colors.

* Area-fill patterns are shown in much finer detail on the plotter and printer than
on the display.

e The default character mode for printers is mode-2 (image symbols), while for
plotters and displays the default character mode is mode-3 (vector symbols).

e The plotter and printer do not reproduce alphanumeric display file fields written
over the picture.

For screen copies produced by the 5182 Color Printer, or print files produced for a
graphics work station printer:

Color mixing for printer pictures is always in overpaint mode, because colors
are etched over the top of previously drawn colors.

The printer does not produce the colors defined in modified device color tables.
It uses the color table indexes and prints the colors accordingly.

The printer does not reproduce display file field attributes. For example,
alphanumeric fields entered into input fields displayed with the underline
attribute will be reproduced but not with the underline.

When you call a compiled high-level language graphics program (or a BASIC
source program from the BASIC interpreter), the device enters graphics display
mode:

The display is set to reduced line spacing, which cannot be overridden.

The graphics mode indicator (a blue G character two inches from the left side
of the screen) is shown.

The graphics work station must be described to the system by issuing the
CRTDEVDSP (Create Device Description (Display)) command. After being
described, it must be varied online.

For more information, refer to the CL Reference manual and the Licensed
Programs and New Release Installation Guide.

The graphics work station from which you start the program is always the default
current device. Therefore, if no DSOPEN/DSUSE routines exist in the program to
send the program output elsewhere, the picture will be displayed on the graphics
work station.

A-2 AS/400 GDDM Programming Guide

Compatible Devices

The IBM Plotters

A plotter can be assigned in the program as the current device. The DSOPEN
routine identifies the plotter to the program, and the DSUSE routine makes it the
current device. (An ASREAD or FSFRCE routine will then send the current page of
graphics to the plotter.)

How to Configure a Plotter

A plotter must be described to the system by including it as an auxiliary device to
the associated graphics work station. Name the plotter in the AUXDEV parameter
of the CRTDEVDSP (Create Device Description (Display)) command used to
describe the graphics work station to the system. For more information, refer to the
CL Reference manual and the Licensed Programs and New Release Installation
Guide.

How to Send Pictures to a Plotter
To use a plotter, you must use the DSOPEN routine to identify the device and its
characteristics to the program.

The DSOPEN routine has these parameters:

e Device identifier. A positive integer greater than 1 that identifies the plotter and
is used in the DSUSE routine to make the plotter the current device.

e Family. A positive integer (which must always be 1).

¢ Device token. An 8-byte character string that identifies the device type. The
following are valid device tokens for IBM plotters (each b is one blank space):

— '6180bbbd’
— '6182bbdd’
— '6184bbbd’
— '6185bbbd’
— '6186M1bb’
— '6186M2bb’
— '"7371bbbd’
— '"7372bbbd’

* Processing options list count. A positive integer that specifies the number of
processing options you want to specify explicitly in the processing options list
(described next).

e Processing options list. An integer array that holds option codes and values.
These specify the speed and width of the plotter pens, the size and orientation
of the paper in the plotter, and whether or not form feed is enabled.

The list takes this form:
Option code, Value, Option code, Value, ...
The option group codes and the available options are as follows.

Valid values for each processing option group and plotter are:

Appendix A. Graphics devices A-3

Compatible Devices

Processing Option Group
Plotter 10 11 12 15 16 Notes
6180 NV 0-100 0-10 0-2 0-2 3
6182 0-2 0-100 0-10 NV 0-2 2
6184 NV 0-100 0-10 NV 0-2
6185 NV 0-100 0-10 NV 0-2
6186-1 NV 0-100 0-10 0-5 0-2 3
6186-2 0-2 0-100 0-10 0-5 0-2 1,3
7371 NV 0-100 0-10 NV NV
7372 NV 0-100 0-10 0-2 0-2 3

NV - Processing option group is not valid for this plotter.

Notes:

1. Form feed option enables roll feed.
2. Form feed option enables 8.5 x 11 inch sheet feed.
3. Value shown for option group 15 is paper size code. The dimension type code

value is 0-2.

Option group 10: form feed

Options: An integer of 0 through 2 that specifies whether form feed is enabled
or disabled.

Option 1 specifies that form feed is disabled. This means that if FSFRCE or
ASREAD call is executed, a page eject does not occur, and a new sheet of
paper is not loaded. Option 2 specifies that form feed is enabled. This means
that if FSFRCE or ASREAD call is executed, the sheet of paper currently being
plotted on is ejected, and a new sheet of paper is loaded in the plotter. The
default is 0, which is the same as option 2.

Option group 11: pen speed

Options: Any integer value of 0 through 100; a value of 50 specifies that the
pen will move across the paper 50% as fast as maximum speed. O is the
default, which is the same as maximum speed (100); 1 is the slowest speed
possible.

For paper plots, 50 is a good speed. For transparencies, a slower speed (such
as 30) should be used to prevent lightly-colored lines.

Option group 12: pen width

Options: Any integer value of 0 through 10, where the value specifies the width
(in millimeters) of the pens installed in the plotter.

The pen width you specify determines line spacing of patterns for filled areas.
If you specify 10 (1.0 millimeter width), the plotter leaves extra space between
lines in patterns; if you specify 1 (.10 millimeter width), the plotter uses
finely-spaced lines. The default pen width is 3 (0.3 millimeters).

Option group 15: paper size

Options: Two options can be specified together:

— An integer of 0 through 5 that specifies the paper size code. The default is
0 (same as 1).

A-4 AS/400 GDDM Programming Guide

Compatible Devices

1 specifies 8.5 by 11-inch paper
2 specifies 11 by 17-inch paper
3 specifies 17 by 22-inch paper
4 specifies 22 by 34-inch paper
5 specifies 34 by 44-inch paper

— An integer of 0 through 2 that specifies the dimension type code. The
dimension type code further qualifies the paper size, in terms of a
measurement in millimeters (dimension type code 1) or inches (dimension
type code 2). The default is 0, which is the same as type code 1.

The paper size switches should be adjusted on the plotter to match the paper
size specified; otherwise, undesirable results can occur. (A picture to be
plotted on an 11 by 17 sheet may exceed the boundaries of an 8.5 by 11
sheet.)

Option group 16: paper orientation

Options: An integer of 0 through 2 that specifies whether the picture is plotted
vertically on the paper or horizontally.

A picture plotted horizontally (the default O or option 1) will be plotted such that
the x range is plotted in the longest dimension of the paper (11 for 8.5 by 11
sheets). Option 2 specifies a vertical orientation. The vertical orientation can
change the default aspect ratio of the picture (making it look taller), unless a
picture space is specified explicitly.

e Name list count. A positive integer that specifies the number of names (always
0, 1, or 2) in the name list (described next).

e Name list. A character array that specifies the OS/400 device description name
of the device.

If a name is specified for the plotter, use the name in the CRTDEVDSP
command to describe the associated graphics work station to the system.

If the name list count is 2, the plotter device is selected based on either of the
following entries in the second array element:

nn The plotter (of the type specified by the device token) at
address nn is used. The address assigned to the plotter in
the device description for the associated work station is

represented in this element by two right-justified characters.

'ADMPLOT ' The plotter (of the type specified by the device token) at the
lowest address of an available plotter is used.

The DSOPEN parameter must be followed by a DSUSE routine that uses the
integer device identifier specified by the first parameter of the DSOPEN routine.

DSUSE makes the plotter the current device.

The following is an example of the DSOPEN and DSUSE routines used to activate
the IBM 6180 Plotter:

Appendix A. Graphics devices A-5

Compatible Devices

00040 OPTION BASE 1 I Set array subscript base
00050 | *x**kxx**kxx***x*x DEVIiCe routines #**xxxkkkkkkkhkkkhkkkhkrkkkh®
00060 INTEGER PLST I Declare integer

00070 DIM PLST(4) : MAT READ PLST ! Dimension, read array
00080 DATA 11,50,16,1

00090 DIM NLST$(1) : NLST$(1) = ' ! Dimension, assign value

00100 CALL GDDM ('DSOPEN',2,1,'6180 ',4,PLST(),0,NLSTS$())

00110 ! Open plotter device 2 of family 1 named 6180,

00120 ! using PLST option group 11 value 50 (pen speed 50% of max),
00130 ! and using group 16 option 1 (horizontal paper orientation);
00140 ! name Tist has 0 names in array NLST$

00150 CALL GDDM ('DSUSE',1,2)

00160 ! Use device 2 as active device (option 1)

00170 | *xkkxkkkkkkkkkhkx Symbo] SET H**kkkkkkkhkkkhhkkkhkkhhkkhhk*x
00180 CALL GDDM ('GSLSS',2,'ADMUWCIP',66)

00190 .

00190

00190

00200 (GDDM or Presentation Graphics program follows)

Printers Capable of Graphics
The following AS/400 printers are capable of graphics:

3812 Printer
3816 Printer
4028 Printer
4214 Printer
4224 Printer
4234-2 Printer
5224 Printer
5225 Printer

These printers can print graphics directly from the application program
(SPOOL(*NO) output or output that is not spooled), or they can print previously
spooled graphics files from an output queue. In either case, a graphics printer file
must be opened. For more information on graphics printer files, refer to Chapter 5,
“0S/400 Programming Considerations.” Opening graphics printer files is described
below.

How to Configure a Printer

Printers that are capable of graphics, are configured the same as any other work
station printer. For more information, refer to the Licensed Programs and New
Release Installation Guide.

How to Send Pictures to a Printer

Graphics printer files are opened when the DSOPEN routine is run. The DSOPEN
routine identifies the printer file to be used (that is, whether the output is spooled or
not) with these parameters:

Device identifier. A positive integer greater than 1 that identifies the printer and
is used in the DSUSE routine to make the printer the current device.

Family. A positive integer (which must always be 1).

Device token. An 8-byte character string that identifies the device type. The
following device tokens are associated with these work station printers:

A-6 AS/400 GDDM Programming Guide

Compatible Devices

Token Device

522X 5224 and 5225 printers

4234 4234-2 printer

4214 4214 printer

IPDS 3812, 3816, 4028, and 4224 printers

For example, to open a file to the 4214 Printer, use the string '4214bbbb’ (each
b is one blank space).

Name list count. A positive integer that specifies the number of names (always
0 or 1) on the name list.

Name list. A single-element character array that specifies the graphics printer
file to be used. If no graphics printer file name is entered in the name list while
a graphics printer device token is specified, the default printer fle QPGDDM is
used (with any overrides in effect for it).

This is an example of the DSOPEN and DSUSE routines used to open a 5224 or
5225 Printer:

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190

CALL GDDM ('FSINIT') ! Initialize graphics

INTEGER DEVID,FAM,PCT,PLST,NCT,US ! Declare integers

DEVID=2 : FAM=1 : PCT=0 ! Variables for printer DSOPEN

! Device #2, family type 1, 0 items in device parameter 1list

DIM PLST(0) ! Declare parameter Tist

NCT = 0 I Name list is empty

CALL GDDM ('DSOPEN',DEVID,FAM, '522X ',PCT,PLST(),NCT," ")

I Open device #2, family type 1, 5224 or 5225 printer,

! name count 0, use default printer file (name-Tist ' ')

us=1 I Variable for printer DSUSE

CALL GDDM ('DSUSE',US,DEVID) ! Use device #2 as current device
GDDM or Presentation Graphics program

CALL GDDM ('FSFRCE') I Close printer file

I xxxxkxkrxkxcx** END GRAPHICS ***kkkkkkxkrkhhkhrhkrkhrkhrhhrs

CALL GDDM ('FSTERM') ! End graphics

Here is an example of a program that uses a user-defined file as a graphics printer

file:

First, the file is created:

CRTPRTF FILE(QTEMP/PRINT) PAGESIZE(99 132) LPI(9) CPI(15)

Then, the program opens the user-defined file by including its name on the
name-list parameter of DSOPEN:

Appendix A. Graphics devices

A-7

Compatible Devices

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190

CALL GDDM ('FSINIT') ! Initialize graphics

INTEGER DEVID,FAM,PCT,PLST,NCT,US ! Declare integers

DEVID=2 : FAM=1 : PCT=0 ! Variables for printer DSOPEN
! Device #2, family type 1, 0 items in device parameter 1list

DIM PLST(0) ! Declare parameter Tist

NCT = 1 I Name Tist has one name

CALL GDDM ('DSOPEN',DEVID,FAM, '4214 ' ,PCT,PLST(),NCT, 'PRINT"')

I Open device #2, family type 1, 4214 Printer,

! name count 1, open user-defined printer file PRINT

us=1 I Variable for printer DSUSE

CALL GDDM ('DSUSE',US,DEVID) ! Use device #2 as current device
GDDM or Presentation Graphics program

CALL GDDM ('FSFRCE') I Close printer file

I xxskxkxkrkxkxcx*k* END GRAPHICS ***kkkkkkxhrkhkhkhrhkrkhrkhrhrrs

CALL GDDM ('FSTERM') I End graphics

A-8 AS/400 GDDM Programming Guide

Compatible Devices

Merging Text and Graphics for Print Files

You can merge text and graphics for print files. For the 5224, 5225, 4214, and
4234-2 printers, merging text and graphics is only supported for program-described
print files and the application must be coded in the RPG/400 programming
language.

For IPDS printers, merging text and graphics is supported for both
program-described print files and externally described print files. For program
described print files, the application program must be coded in the RPG/400
programming language. For externally described print files, the application program
can be in BASIC, the COBOL/400 language, Pascal, PL/I, or the RPG/400
programming language.

For both program-described and externally described print files, there are some
rules that must be followed to merge text and graphics:

1. Open the print file with SHARE(*YES). Specify SHARE(*YES) on the
OVRPRTF command. If this is not done, two separate print files (one for text,
and one for graphics) are produced.

The name of the print file specified on the GDDM DSOPEN call statement must
be the same as the name of the print file specified on the RPG OPEN
statement when opening the print file for text. In the example below, both are
called QPGDDM.

2. The print file must be opened for graphics before it can be opened for text.
Specify the GDDM DSOPEN statement first before you open the print file with
an OPEN statement.

3. PUTSs for text may be intermixed with PUTs for graphics. When printing
graphics on a page, use the GDDM FSFRCE statement to print the page. The
GDDM FSFRCE statement will cause any graphics created for the page (and
also text) to be printed. The GDDM FSFRCE statement also causes a page
eject and skips to line one of the next page.

If a page contains text and graphics, you must use the GDDM FSFRCE to eject
the page. Do not skip to a new page with controls specified from the
program-described or externally described file.

If a page contains only text (no graphics), do not use the GDDM FSFRCE
statement. Use print controls for program-described or externally described
print files to skip to a new page.

4. There is no required order for closing the print file. The file is closed for
graphics by using the GDDM FSTERM statement, and for text by using the
CLOSE statement of the language you are using.

Appendix A. Graphics devices A-9

Compatible Devices

This is an example of a two-column page that has text in one column and a
graphics drawing in the other column. The RPG statements that produced the
output are shown following the output.

It is possible to put text on one side of the
page and graphics on the other.

The program that generated this output was
written in the RPG/400 programming language.

Some things to remember when writing such an
RPG/400 program are: Graphics

1) The print file must be opened SHARE(*YES).
Specify SHARE(*YES) on the OVRPRTF command.

2) The print file must be opened FIRST (with
DSOPEN) .

3) Define the print file as having program

control so that it can be explicitly opened
by the program and not opened implicitly by
the RPG/400 programming language.

4) The name of the print file specified on the
DSOPEN must be the same as the file
specified on the RPG OPEN statement.

000000000111111111122222222223333333333444444444455555555556666666666777777
123456789012345678901234567890123456789012345678901234567890123456789012345

FQPGDDM 0 F 132 PRINTER uc
E ARR1 1 4 90

E ARR2 110

E ARR3 1 3380

IDS DS

I B 1 A40LEN
I B 5 80X

I B 9 120Y

I B 13 160Z

I B 17 200V

I B 21 360ARR1
I B 37 400USG
I B 41 440DID
C CALL 'GDDM'

C PARM 'FSINIT' FSINIT 8

C CALL 'GDDM'

C PARM 'DSOPEN' DSOPEN 8

C PARM 2 X

C PARM 1 Y

C PARM '522X 'DEV 8

C PARM 0 yA

C PARM ARR1

C PARM 1 v

C PARM 'QPGDDM' ARRZ,1

C CALL 'GDDM'

C PARM 'DSUSE' DSUSE 8

C PARM 1 UsG

C PARM 2 DID

C CALL 'GDDM'

C PARM 'GSCHAR' GSCHAR 8

A-10 AS/400 GDDM Programming Guide

NeoNeoNeoNeNeNeNeNololNololNololeololeolNolelNolleolNelolelNoleloleoleleoleleollelNelleleolelle e leleolle el e e lle el e Mo e e lie R eor R e B er B el

PARM 80

PARM 85

PARM 8

PARM 'Graphics'
CALL 'GDDM'
PARM 'GSMOVE'
PARM 70

PARM 70

CALL 'GDDM'
PARM 'GSLINE'
PARM 100
PARM 70

CALL 'GDDM'
PARM 'GSLINE'
PARM 100
PARM 100
CALL 'GDDM'
PARM 'GSLINE'
PARM 70

PARM 100
CALL 'GDDM'
PARM 'GSLINE'
PARM 70

PARM 70

OPEN QPGDDM
MOVEAARR3, 1
EXCPT
MOVEAARR3, 2
EXCPT
MOVEAARR3, 3
EXCPT
MOVEAARR3, 4
EXCPT
MOVEAARR3,5
EXCPT
MOVEAARR3, 6
EXCPT
MOVEAARR3,7
EXCPT
MOVEAARR3,8
EXCPT
MOVEAARR3,9
EXCPT
MOVEAARR3,10
EXCPT
MOVEAARR3,11
EXCPT
MOVEAARR3,12
EXCPT
MOVEAARR3,13
EXCPT
MOVEAARR3, 14
EXCPT
MOVEAARR3, 15
EXCPT
MOVEAARR3,16
EXCPT
MOVEAARR3,17

X1

Y1

LEN
STR
GSMOVE
X2

Y2
GSLINE
X2

Y2
GSLINE
X2

Y2
GSLINE
X2

Y2
GSLINE
X2

Y2
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

51
51

51
51

80

Compatible Devices

Appendix A. Graphics devices A-11

Compatible Devices

C EXCPT
C MOVEAARR3,18 DATA
C EXCPT
C MOVEAARR3,19 DATA
C EXCPT
C MOVEAARR3,20 DATA
C EXCPT
C CALL 'GDDM'
C PARM 'FSFRCE' FSFRCE 8
C CALL 'GDDM'
C PARM 'FSTERM' FSTERM 8
C SETON LR
0QPGDDM E 1
0 DATA 100
%
000000000
000000000
000000000
000000000

**

It is possible to put text on one side of
the page and graphics on the other.

The program that generated this output was
written in the RPG/400 programming language.

Some things to remember when writing
such an RPG/400 program are:

1) The print file must be opened SHARE(*YES). Specify
SHARE (*YES) on the OVRPRTF command.

2) The print file must be opened FIRST (with DSOPEN).

3) Define the print file as having program control
so that it can be explicitly opened by the
program and not opened implicitly by the RPG/400
programming language.

4) The name of the print file specified on the DSOPEN must
be the same as the file specified on the RPG OPEN statement.

Non-Graphics Devices

You can use a non-graphics device to call graphics programs (or interpreted BASIC
source files). When you invoke such a program from a non-graphics device, the
program executes normally, but no picture is displayed and no values are returned
to device query routines in the program. Display file fields, however, are sent to
the device screen.

You can use a dummy device to test and debug graphics programs, because
messages about the program execution are sent to the device message queue.

A dummy device must be used when a program is executed to retrieve a graphics
data format (GDF) file. You can simulate a dummy device with a graphics work
station by using a blank name (') in the name list parameter of the DSOPEN
routine.

A-12 AS/400 GDDM Programming Guide

Bibliography

The following AS/400 manuals contain information you
may need. The manuals are listed with their full title
and base order number. When these manuals are
referred to in this manual, the short title is used.

e Application Development Tools: Source Entry Utility
User’'s Guide and Reference, SC09-1338 provides
the application programmer or programmer with
information about using the Application
Development Tools source entry utility (SEU) to
create and edit source members. The manual
explains how to start and end an SEU session and
how to use the many features of this full-screen text
editor. The manual contains examples to help both
new and experienced users accomplish various
editing tasks, from the simplest line commands to
using pre-defined prompts for high-level languages
and data formats.

Short Title: SEU User's Guide and Reference

¢ Business Graphics Utility User’'s Guide and
Reference, SC09-1408 provides the application
programmer, programmer, system administrator, or
business or technical professional with information
about using the AS/400 Business Graphics Utility
(BGU) to create various types of charts. Itis
divided into two sections: the first section includes
several exercises that familiarize the user with the
functions of BGU, and the second section contains
reference material.

Short Title: BGU User’'s Guide and Reference

¢ Data Description Specifications Reference,
SC41-9620, provides the application programmer
with detailed descriptions of the entries and
keywords needed to describe database files (both
logical and physical) and certain device files (for
displays, printers, and ICF) external to the user’s
programs.

Short Title: DDS Reference

e Languages: BASIC User’'s Guide and Reference,
SC09-1157, provides the application programmer
with the information needed to write, test, and
maintain AS/400 BASIC programs in both the
AS/400 environment and the System/38
environment.

Short Title: BASIC User’'s Guide and Reference

e Languages: Pascal User’'s Guide, SC09-1209,
provides the application programmer with
information about how to use the AS/400 Pascal
compiler. The manual explains how to enter,
compile, run, and debug AS/400 Pascal programs.
It also describes how to use input and output (I/O)
function and storage.

© Copyright IBM Corp. 1991

Short Title: Pascal User's Guide

Languages: PL/lI User's Guide and Reference,
SC09-1156, provides the application programmer
with information about using AS/400 PL/I in the
System/38 environment. Differences between the
System/38 environment and the AS/400
environment are identified as well as the
enhancements available in the AS/400 environment.

Short Title: PL/I User's Guide and Reference

Languages: Systems Application Architecture*
AD/Cycle* RPG/400* User’s Guide, SC09-1348,
provides the application programmer with the
information needed to write, test, and maintain
RPG/400 programs on the AS/400 system. The
manual provides information on data organizations,
data formats, file processing, multiple file
processing, automatic report function, RPG
command statements, testing and debugging
functions, application design techniques, problem
analysis, and compiler service information. The
differences between the System/38 RPG llI,
System/38-compatible RPG, and RPG/400 are
identified.

Short Title: RPG/400* User’s Guide

Languages: System/38-Compatible COBOL User’s
Guide and Reference, SC09-1159, provides the
application programmer with information about using
System/38-compatible COBOL on the AS/400
system.

It provides information on how to program in
COBOL on the AS/400 system, like a System/38,
and how to use existing System/38 COBOL
programs.

Short Title: System/38-Compatible COBOL User’s
Guide and Reference

Programming: Control Language Reference,
SC41-0030, provides the application programmer
with a description of the AS/400 control language
(CL) and its commands. Each command
description includes a syntax diagram, parameters,
default values, keywords, and an example. The
information should be used to refer to the control
language commands to request functions of the
Operating System/400 (5728-SS1) licensed program
and of the various languages and utilities.

Short Title: CL Reference

Programming: GDDM Programming Reference,
SC41-0537, provides the application programmer
with information about using OS/400 graphical data
display manager (GDDM) to write graphics
application programs. This manual provides

H-1

detailed descriptions of all graphics routines
available in GDDM. It also provides information
about high-level language interfaces for GDDM.

Short Title: GDDM Programming Reference

Programming: Reference Summary, SX41-0028
provides the system operator or system

H-2 AS/400 GDDM Programming Guide

administrator with quick information about the
organization of the AS/400 commands. This
manual contains an alphabetic list of all AS/400
commands and a list, by command, of error
messages the programmer can monitor for when
writing programs.

Short Title: Programming Reference Summary

Index

Numerics

4214 printer
configuring A-1
device token A-7
symbol set 3-28

5224/5225 printers
configuring A-1
device tokens A-7
example program A-7

A

absolute data
specified for composite bar chart 4-72
specified for pie chart 4-79
specified for surface chart 4-56
activate device 3-66
alarm, sounding device 3-67
algorithm for area-fill 3-23
ALWGPH DDS keyword
example of 5-4
graphics display mode 5-2
angle of character 3-32
application programs
CALL GDDM statement 2-2
compiling 2-1
complex Presentation Graphics program in
BASIC 6-15
complex Presentation Graphics program in BASIC
with DDS subfiles 6-21
complex Presentation Graphics program in
COBOL/400 6-28
complex Presentation Graphics program in
PL/I 6-33
composite-bar chart in BASIC 4-72
declaring arrays in BASIC 2-12
declaring variables 2-5
description of 2-1
entering 2-1
environment 2-5
executing 2-1
floating surface chart in BASIC 4-60
floating-bar chart in BASIC 4-75
GDDM color table program in PL/I 6-36
GDDM order form program in PL/l 6-40
GDF (graphics data format) file 3-69
graphics image in BASIC 3-36, 6-54
graphics image in COBOL/400 6-58
graphics image in Pascal 6-63
graphics image in PL/I 6-62
graphics image in RPG/400 6-55

© Copyright IBM Corp. 1991

Index

application programs (continued)

histogram in BASIC 4-88

ideas for 1-1, 2-15

initializing environment for 2-12

line chart in BASIC 4-49

multiple-bar chart in BASIC 4-67, 4-69

multiple-pie chart in BASIC 4-83, 4-85

pie chart in BASIC 4-79

pie chart program with GDDM in RPG/400 6-47

scatter plot in BASIC 4-53

simple GDDM envelope program in BASIC 2-3

simple GDDM envelope program in
COBOL/400 6-5

simple GDDM envelope program in Pascal 6-9

simple GDDM envelope program in PL/l 6-8

simple GDDM envelope program in RPG/400 6-2

simple Presentation Graphics line chart in
BASIC 2-11

simple Presentation Graphics line chart program in
COBOL/400 6-12

simple Presentation Graphics line chart program in
Pascal 6-13

simple Presentation Graphics line chart program in
PL/l 6-13

simple Presentation Graphics line chart program in
RPG/400 6-11

single-bar chart in BASIC 4-64

surface chart in BASIC 4-58

terminating 2-11, 2-13

Venn diagram in BASIC 4-90

arcs
drawing 3-17
drawing a series of 3-17
elliptic 3-19
polyfillet 3-19

area-fill
definition 2-9
patterns for 3-24
primitive 3-22

routines specified during 3-22
shading algorithm 3-23
area, chart 4-15
arrays used in BASIC programs 2-12
aspect ratio
default 3-54
definition 3-54
query graphics window 3-55
query picture space 3-50
query viewport 3-53
specified by graphics window coordinates 3-54
specified by picture space 3-48
specified by viewport 3-50

X-1

Index

ASREAD (send output to device) 2-10, 3-42
attribute-selection tables 3-3, 4-47
attributes

chart features 4-18

clipping of primitives 3-55

definition 3-2

for GDDM characters 3-27

for GDDM graphics images 3-38

for GDDM markers 3-39

line types for GDDM 3-12

line types for Presentation Graphics charts 4-47

line widths for GDDM 3-14

marker types Presentation Graphics charts 4-47

patterns for GDDM area-fills 3-22

patterns for Presentation Graphics charts 4-47

setting initial 2-2

shading attributes for area-fill 3-24
attributes, for chart features

axis labels 4-33

axis lines 4-23

axis titles 4-30

background 4-18

bar chart components 4-62

composite-bar chart components 4-71

data groups (components) 4-47

data values on bar charts 4-63

data values on pie charts 4-78

datum lines 4-40

floating surface chart components 4-60

floating-bar chart components 4-75

framing box 4-18

grid lines 4-38

heading 4-19

histogram components 4-87

labels for legend keys 4-42

labels for pie chart spider keys 4-42

labels for Venn diagrams 4-42

legend text 4-41

line chart components 4-47

multiple-bar chart components 4-65

multiple-pie chart components 4-81

notes 4-43

pie chart components 4-77

pie chart spider tags and labels 4-78

reference lines 4-23

scatter plot components 4-51

surface chart components 4-54

tick marks 4-29

translated axis lines 4-40

Venn diagram components 4-89
auto-ranging

definition 4-26

with zero value 4-26
auxiliary devices A-1
axes, chart

datum lines 4-39

X-2 AS/400 GDDM Programming Guide

axes, chart (continued)

duplicate 4-22

forcing axes 4-22

grid lines 4-37

independent and dependent variables 4-21
intercept 4-23

labels 4-32

number of axes 4-22
orientation 4-24

position 4-17, 4-23
quadrant 4-24

range 4-26

scale 4-26

secondary 4-23

selecting current 4-22
setting attributes for 4-23
specifying when to draw 4-21
suppressing or drawing 4-21
tick marks 4-28

tittes 4-30

translated axis lines 4-39

user-specified labels 4-36

axis

See axes, chart

axis position in chart-drawing area 4-23
axis reference lines, chart 4-20

B

bar charts

blank the data value area 4-63

complex chart program in BASIC 6-15, 6-21
composite-bar sample program 4-72

data values positioned 4-63

data values represented 4-63

definition 4-7

drawing 4-62

drawing routine 4-63

floating-bar sample program 4-75

multiple-bar sample program 4-67

multiple-bar sample program using CHNUM 4-69
number of bars 4-65

number of bars per chart 4-69

orientation (horizontal/vertical) 4-24

shading, suppressing 4-62

single bar sample program 4-64

types 4-7

uses for 4-7

baseline angle, character 3-32
BASIC

CALL GDDM statement 2-2

complex Presentation Graphics program 6-15

complex Presentation Graphics program with DDS
subfiles 6-21

conversion for COBOL/400 image bit pattern 6-58

declaring arrays in 2-12

BASIC (continued)
GDDM envelope program 2-3
GDF (graphics data format) file program 3-69
graphics image program 3-36, 6-54
plotter routines in program A-5
program conventions 2-4, 2-12
simple line chart program 2-12
syntax for character values 2-4
syntax for floating-point values 2-4
syntax for integer values 2-4
syntax for specifying routines 2-4
using for graphics 1-3
using the interpreter 2-1
BGU (Business Graphics Utility) 4-1
binary logic 3-10
bit patterns 3-35
blanking of area
for axis labels 4-33
for chart notes 4-43
for data value on bar charts 4-63
for data value on pie charts 4-78
for legends 4-41
shown in Venn diagram example 4-90
box
as frame around chart 4-18
as frame around chart note 4-43
as frame around legend 4-42
character 3-31
setting size for character box 4-16
size for GDDM characters 3-30

C

CALL GDDM statement 2-2
CHAATT (set axis line attributes) 4-23
character grid 4-16
character values in BASIC programs 2-4
characters
angle 3-32
attributes for axis labels 4-33
attributes for axis titles 4-30
attributes for GDDM 3-30
axis titles for chart 4-31
baseline angle 3-33
character box 3-30
chart notes 4-43
direction of 3-30, 3-33
drawing 2-10
effect of graphics window on 3-30
fonts 3-25, 5-10
graphics symbol primitives 3-25
hardware cell 3-30
hardware characters 3-26
languages 3-25, 5-7
modes 2 and 3 3-26, 5-7
mono-spaced 5-9

Index

characters (continued)

multinational sets available 5-9

multiplier 4-16

orientation 3-32

proportionally-spaced 5-9

punctuation of large numbers on charts 4-34

rotation 3-33

routines for attributes 3-32

routines for drawing 3-29

routines for GSS 3-27

selecting font 3-29

selecting mode 3-29

selecting size 3-31

setting angle 3-32

shear 3-32, 3-34

size 2-10

size for GDDM 3-30

size for Presentation Graphics chart text 4-16

string 2-10

syntax of symbol set names 5-9

text box 3-30
CHAREA (specify chart area) 4-15
chart definition

chart attributes 4-18

chart headings 4-19

chart layout 4-15

legends 4-40

notes 4-43

routines 4-14, 4-45
chart drawing routines 4-46
charts

definition routines 4-14, 4-45

drawing with Presentation Graphics routines 4-13

framing 4-18

headings 4-19

margin size 4-17

notes 4-43

orientation (horizontal/vertical) 4-24

selecting a type 4-12

types 4-4

using to show data 4-12
CHBAR (plot a bar chart) 4-63
CHBATT (set framing box attributes) 4-18
CHCGRD (set character grid) 4-30
CHCGRD (set character spacing) 4-16
CHCOL (set color table) for bar charts 4-62
CHCOL (set color table) for histograms 4-87
CHCOL (set color table) for line charts 4-47
CHCOL (set color table) for pie charts 4-77
CHCOL (set color table) for scatter plots 4-51
CHCOL (set color table) for surface charts 4-54
CHCOL (set color table) for Venn diagrams 4-89
CHDATT (set datum line attributes) 4-40
CHDRAX (draw axes) 4-22
CHFINE (set curve fitting smoothness) 4-48

Index X-3

Index

CHFINE (set curve-fitting smoothness) 4-55
CHGAP (set spacing between bars) 4-63
CHGATT (set grid line attributes) 4-38
CHGGAP (set gap between bar groups) 4-65
CHHATT (set heading text attributes) 4-19
CHHEAD (specify heading text) 4-19
CHHIST (plot a histogram) 4-87
CHHMAR (set horizontal chart margins) 4-17
CHKATT (set legend text attributes) 4-42
CHKEY (set legend key labels) 4-42
CHKEYP (set legend position) 4-41
CHKMAX (set maximum legend height/width) 4-41
CHKOFF (set legend offset) 4-41
CHLATT (set axis label attributes) 4-33
CHLT (set component line type table) 4-47
CHLW (set component line width table) 4-48
CHMARK (set component marker table) 4-48, 4-51
CHNATT (set note attributes) 4-43
CHNOFF (set note offset) 4-43
CHNOTE (specify notes) 4-43
CHNUM (set number of components) for bar
charts 4-65, 4-69
CHNUM (set number of components) for pie
charts 4-82
CHPAT (set component shading pattern table) for
bar charts 4-62
CHPAT (set component shading pattern table) for
histograms 4-87
CHPAT (set component shading pattern table) for
pie charts 4-77
CHPAT (set component shading pattern table) for
surface charts 4-55
CHPAT (set component shading pattern table) for
Venn diagrams 4-90
CHPIE (plot a pie chart) 4-79
CHPIER (reduce pie chart size) 4-82
CHPLOT (plot a line graph or scatter plot) 2-13,
4-49, 4-52
CHRNIT (reinitialize chart definition options) 4-16,
4-92
CHSET (set chart options)
absolute data versus relative data 4-56
background for chart 4-18
blank axis label area 4-33
blank legend area 4-41
blank note area 4-43
blank values for bar chart components 4-63
blank values for pie chart components 4-78
composite-bar chart 4-72
draw legend or labels for pie chart 4-41, 4-77
duplicating axes 4-22
floating-bar chart 4-75
frame around chart 4-18
frame around chart note 4-43
frame around legend 4-42
labels for pie chart versus legend 4-77

X-4 AS/400 GDDM Programming Guide

CHSET (set chart options) (continued)

multiple-bar chart 4-65

orientation for axes 4-24

percentage or absolute values shown, pie

chart 4-79

position for bar chart values 4-63

position heading 4-20

proportional size for pie chart 4-82

reverse order of legend keys 4-41

specify curved lines 4-48

spider tag and value text color 4-78

suppress heading 4-19

suppress legend 4-40

suppress lines 4-52

suppress markers 4-48

suppress punctuation 4-34

suppress risers for histogram 4-87

suppress shading of histogram 4-87

suppress shading patterns 4-55

type of shading 4-56

values for bar chart components 4-63

values for pie charts 4-78

when to draw axes 4-21
CHSTRT (reset processing state) 4-16, 4-92
CHSUREF (plot a surface chart) 4-58
CHTATT (set axis title attributes) 4-30
CHTERM (terminate Presentation Graphics) 4-16,

4-92
CHVATT (set value text attributes) 4-63, 4-78
CHVCHR (set number of value text
characters) 4-63, 4-78

CHVENN (plot a Venn diagram) 4-90
CHVMAR (set vertical chart margins) 4-17
CHXDAY (set x-axis day labels) 4-36
CHXDTM (set x-axis datum line) 4-40
CHXINT (set x-axis intercept) 4-24
CHXLAB (specify x-axis label text) 4-36, 4-82
CHXLAT (set x-axis label attributes) 4-33
CHXMTH (set x-axis month labels) 4-34
CHXRNG (set x-axis explicit range) 4-26
CHXSCL (set x-axis scale factor) 4-34
CHXSEL (select x axis) 4-22
CHXSET (set x-axis options)

axis label position 4-33

axis label type 4-33

axis title position 4-31

grid lines 4-38

intercept axis 4-23

logarithmic axis scale 4-27

position axis 4-23

position axis labels 4-33

position axis title 4-31

suppress axis 4-21

suppress grid lines 4-38

suppress zero as axis range limit 4-26

tick mark type 4-29

CHXTIC (set x-axis tick mark interval) 4-28
CHXTTL (set x-axis title) 4-31

CHYDAY (set y-axis day labels) 4-36
CHYDTM (set y-axis datum line) 4-40
CHYINT (set y-axis intercept) 4-24
CHYLAB (specify y-axis label text) 4-36
CHYLAT (set y-axis label attributes) 4-33
CHYMTH (set y-axis month labels) 4-34
CHYRNG (set y-axis explicit range) 4-26
CHYSCL (set y-axis scale factor) 4-34
CHYSEL (select y axis) 4-22

CHYSET (set y-axis options)

See CHXSET (set x-axis options)
CHYTIC (set y-axis tick mark interval) 4-28
CHYTTL (set y-axis title) 4-31
circles that look like ovals 3-54
circles, drawing 3-17
CL commands for *GSS object management 5-12
clearing a page 3-47
clearing graphics field 3-48
clipping

definition 3-55

query clipping status 3-56

specific routines 3-56
close a device 3-66
close a graphics segment 3-58
closure line 3-22
COBOL/400

CALL GDDM statement 2-2

GDDM envelope program 6-5

graphics image program 6-58

multiple-pie chart Presentation Graphics

program 6-28
simple Presentation Graphics line chart
program 6-12

using for graphics 1-3
color

codes 3-2

color tables 3-3

colors other than from default table 3-5

mixing 3-7

overpaint 3-7

pie chart spider tag and value text color 4-78

primary 3-7

setting attributes for 3-2
color definition 3-3
color selection 3-2
color table

colors other than default table 3-5

default 3-3

defining 3-3

for display 3-4

for plotter 3-4

mixing 3-7

number of entries per table 3-6

overpaint 3-7

Index

color table (continued)
PL/I program for setting 6-36
primary 3-7
color-selection table for bar charts 4-62
color-selection table for line chart
components 4-47
color-selection table for pie charts 4-77
color-selection table for scatter plots 4-51
color-selection table for surface charts 4-54
coloring in an area 2-9, 3-22
commands (CL) for *GSS object management 5-12
compiling programs 2-1
complex GDDM program in PL/I 6-36, 6-40
complex GDDM/Presentation Graphics program in
RPG/400 6-47
complex Presentation Graphics program in
BASIC 6-15
complex Presentation Graphics program in BASIC,
with DDS subfiles 6-21
complex Presentation Graphics program in
COBOL/400 6-28
complex Presentation Graphics program in
PL/I 6-33
components
attributes 4-47
color-selection table for bar charts 4-62
color-selection table for pie charts 4-77
color-selection table for surface charts 4-54
color-selection table line charts 4-47
color-selection table scatter plots 4-51
curve-fitting attribute 4-48, 4-55
data values on bar charts 4-63
data values on pie charts 4-78
gaps between bars in bar charts 4-63
gaps between groups of bars in bar charts 4-65
line chart 2-13
line-type table for components 4-47
line-width table for components 4-48
marker-selection table for components 4-48, 4-51
pattern-selection table for components 4-55, 4-62,
4-77
composite-bar chart
description 4-7
example 4-72
compound polyfillet 3-19
configuration of display device A-2
configuration of plotter A-3
constant values in GDDM routines 2-14
constant values in Presentation Graphics
routines 4-13
construction lines 3-17, 3-19
controlling pie chart slices 4-79
controls
alter flow of program 3-42
clipping 3-55
color 3-2

Index X-5

Index

controls (continued)
graphics symbol 3-27
in Presentation Graphics programs 4-13
picture 3-43
processing state 4-92
shading 3-22
sounding alarm 3-67
specific device control routines 3-65
specific routines for controlling graphics 3-41
coordinates
default 2-5
effect on characters 3-34
picture of 2-6
query coordinate system 3-55
specifying 3-54
too large for viewport 3-55
creating a graphics segment 3-58
creating a page 3-45
creating graphics field 3-48
CRTGSS (create graphics symbol set)
command 5-11
current marker symbol 3-39
current marker symbol scale 3-39
current mode 3-2, 3-40
current position 2-6, 3-11
current position, moving 3-15
curve-fitting attribute 4-48, 4-55
curved line
connected 3-17
drawing a series of 3-17

D

data groups
attributes 4-47
color-selection table for bar charts 4-62
color-selection table for line charts 4-47
color-selection table for pie charts 4-77
color-selection table for scatter plots 4-51
color-selection table for surface charts 4-54
curve-fitting attribute 4-48, 4-55
data values on bar charts 4-63
data values represented 4-78
definition 4-1
gaps between bars in bar charts 4-63

gaps between groups of bars in bar charts 4-65

line-type table for components 4-47
line-width table for components 4-48

marker-selection table for components 4-48, 4-51
pattern-selection table for components 4-55, 4-62,

4-77
data types
in GDDM routines 2-14
in Presentation Graphics routines 4-13
temporary and retained 3-63

X-6 AS/400 GDDM Programming Guide

data value
area blanked 4-63, 4-78
on bar charts 4-63
on pie charts 4-78
database files used with graphics 6-21
datum lines
attributes for 4-40
description 4-39
day-of-the-week labels 4-36
DDS files
used with GDDM programs 6-36
used with graphics 6-21
used with OS/400 Graphics 5-1
declaring variables 2-5
declaring variables in BASIC 2-12
default symbol set 3-27
defining colors 3-3
defining the color table 3-3
delete symbol set command 5-12
deleting a graphics segment 3-58
deleting a page 3-47
dependent variables 2-13, 4-21
depth/width of picture 3-48, 3-50
device tokens A-3, A-7
devices
attributes for lines 3-13
color mixing for devices 3-8
color table 3-3
configure plotter A-3
controls 3-65
description of IBM plotters A-3
differences in pictures between devices A-1
dummy devices 3-65, A-12
graphics devices compatible with the AS/400
System A-1
hardware character grid 4-16
in graphics hierarchy 3-43
multiple devices 3-65
needed for graphics 1-2
plotter routine parameters A-3
primary device 3-65
query device characteristics 3-67
satellite devices A-1
setting form feed A-4
setting paper size A-4
setting pen speed on plotter A-4
setting pen width on plotter A-4
shading attributes for area-fill 3-25
sounding alarm 3-67
specific control routines 3-65
using a 5251 non-graphics device 3-66
using non-graphics display stations A-12
with ALWGPH keyword 5-3
diagnostic messages 5-16, 5-17
direction of characters 3-33

display controls 3-42
display device
closing device 3-66
color mixing 3-8
color table 3-3
default device 3-66
default size of page 3-46
dummy devices 3-65
hardware cell 3-30, 3-32
hardware character grid 4-16
how to configure A-2
in graphics hierarchy 3-44
interrupt from user 3-42
multiple devices 3-65
opening device 3-66
output from program 3-42
primary device 3-65
satellite devices A-1
sending pictures to A-2
sounding alarm 3-67
specific device control routines 3-65
using a 5251 non-graphics device 3-66
using default characters 3-29
using non-graphics display stations A-12
with ALWGPH keyword 5-3
display files 5-1
display points 3-35
displaying multiple pictures per screen 3-50
displaying the picture 2-10
dividing screen 3-50
DLTGSS (delete graphics symbol set)
command 5-12
drawing graphics symbols 3-29
drawing lines 3-12
drawing pictures with GDDM 3-2
drop a device 3-66
DSCLS (close a device) 3-66
DSDROP (discontinue device usage) 3-66
DSOPEN (open a devise)
description 3-66
example A-5
plotter parameters A-3
DSQDEV (query device characteristics) 3-67
DSQUID (query unique device identifier) 3-66
DSQUSE (query device usage) 3-66
DSRNIT (reinitialize a device) 3-66
DSUSE (specify device usage)
description 3-66
example A-5
dummy devices 3-65, A-12
duplicate axes 4-22

E

elliptic arc 3-17, 3-19

ending a program 2-11
enlarging parts of picture 3-55
entering programs 2-1
envelope program

in BASIC 2-3

in COBOL/400 6-5

in Pascal 6-9

in PL/l 6-8

in RPG/400 6-2
environment, initializing 3-41
environment, initializing for GDDM 2-5
environment, initializing for Presentation

Graphics 2-12
environment, terminating 3-41
environment, terminating for GDDM 2-11
environment, terminating for Presentation
Graphics 2-13

erase parts of the picture 3-58
error handling

controls 3-41

diagnostic messages 5-16

error messages 5-17

error record structure 5-17

escape messages 5-16

in Presentation Graphics programs 4-13

overview 5-16

recovery 5-16

with FSEXIT routine 5-16
escape messages 5-16, 5-17
exclusive-OR operations 3-10
executing programs 2-1
expanding picture sizes 3-55
exploded pie chart slices 4-79
externally-described display files 5-1

F

field, graphics
description 3-47
specific routines 3-48
files
database 5-7
DDS display 5-1
externally-described display 5-1
printer 5-5
QDGDDM display 5-1
user-defined A-7
fill patterns 3-24
floating surface chart, example 4-60
floating-bar chart
description 4-7
example 4-75
floating-point values in BASIC programs 2-4
fonts, character
image symbols 3-26
loading 3-28

Index

Index

X-7

Index

fonts, character (continued)
vector symbol sets 5-10

force zero for axis range 4-26

form feed of plotter, setting A-4

fractional lines 3-14

frame around chart 4-18

free storage, device 3-66

freeing storage, device 3-66

freeing storage, program 3-41

FSALRM (sound the terminal alarm) 3-67

FSEXIT (specify error exit) 3-41, 5-17

FSFRCE (update the display) 3-42

FSINIT (initialize graphics) 3-41, 4-13

FSINIT (initialize graphics) for GDDM 2-5

FSINIT (initialize graphics) for Presentation
Graphics 2-12

FSPCLR (clear the current page) 3-47

FSPCRT (create a page) 3-45

FSPDEL (delete a page) 3-47

FSPQRY (query specified page) 3-47

FSPSEL (select a page) 3-46

FSQCPG (get the current page number) 3-47

FSQDEYV (query current device
characteristics) 3-67

FSQERR (query last error) 3-42, 5-17

FSQUPG (query unique page number) 3-47

FSREST (retransmit data) 3-43

FSRNIT (reinitialize graphics environment) 3-41

FSTERM (terminate graphics) 3-41

FSTERM (terminate graphics) for GDDM 2-11

FSTERM (terminate graphics) for Presentation
Graphics 2-13

G

gaps between groups of bars in bar charts 4-65
gaps between individual bars in bar charts 4-63
GDDM 1-1
GDDM programs
color table program in PL/l 6-36
envelope program in BASIC 2-3
envelope program in COBOL/400 6-5
envelope program in Pascal 6-9
envelope program in PL/I 6-8
envelope program in RPG/400 6-2
GDF (graphics data format) file 3-69
graphics image in BASIC 3-36, 6-54
graphics image in COBOL/400 6-58
graphics image in Pascal 6-63
graphics image in PL/l 6-62
graphics image in RPG/400 6-55
order form program in PL/l 6-40
pie chart program in RPG/400 6-47
GDDM routines
area-fill 2-9
character size 2-10

X-8 AS/400 GDDM Programming Guide

GDDM routines (continued)
character string 2-10
for controls 3-41
in Presentation Graphics programs 4-13
names, syntax of 2-14
query, use for 3-7
sending picture to device 2-10
shading 2-9
symbol sets used 3-27, 5-7
using 1-1
GDF
See graphics data format (GDF) file
Graphical Data Display Manager
See GDDM
graphics clipping 3-55
graphics data format (GDF) file
description 3-68
example of 3-69

graphics devices compatible with the AS/400

System A-1
graphics display mode 5-2
graphics environment
controls 3-41
initialize 3-41, 4-13
initialize for GDDM 2-5
initialize for Presentation Graphics 2-12
terminate 3-41
terminate for GDDM 2-11
terminate for Presentation Graphics 2-13
graphics field 3-47
graphics hierarchy
definition 3-43
device 3-43
graphics field 3-47
graphics window 3-53
page 3-44
picture space 3-48
specific routines 3-45
viewport 3-50
graphics image primitive
enlarging 3-55
pattern 3-36
primitives 3-35
sample program in BASIC 3-36, 6-54
sample program in COBOL/400 with BASIC
conversion 6-58
sample program in Pascal 6-63
sample program in PL/I 6-62
sample program in RPG/400 6-55
scaled 3-36
graphics page size 5-5
graphics segment
default 3-43
default with viewport 3-53
definition 3-43, 3-58
functions 3-58

graphics segment (continued)

set in Presentation Graphics programs 4-13

specific routines 3-58

uses for 3-58
graphics symbol primitives

attributes 3-30, 3-32

controls 3-27

size 3-30
graphics symbol set

See GSS (graphics symbol set) object
graphics text 3-25
graphics window

default 3-54

description 3-53

set in Presentation Graphics programs 4-13

specific routines 3-54
graphics work stations default symbol set 3-27
grid lines 4-37, 4-38
GSARC (draw a curved line) 3-17
GSAREA (start a shaded area) 2-9, 3-22
GSCA (set current character angle) 3-33
GSCB (set character box size) 3-31
GSCD (set character direction) 3-34
GSCH (set character shear) 3-35
GSCHAP (draw a character string at the current

position) 3-29
GSCHAR (draw a character string at a specified
point) 2-10, 3-29

GSCLP (enable/disable clipping) 3-56
GSCLR (clear the graphics field) 3-48
GSCM (set character mode) 3-29, 5-7
GSCS (select a symbol set) 3-29
GSCT (select a defined color table) 3-7
GSCTD (set color table definition) 3-5
GSELPS (draw an elliptic arc) 3-19
GSENDA (end a shaded area) 2-9, 3-22
GSFLD (define the graphics field) 3-48
GSFLW (set fractional line width) 3-14
GSGET (retrieve graphics data) 3-68
GSGETE (end retrieval of graphics data) 3-68
GSGETS (start retrieval of graphics data) 3-68
GSIMG (draw a graphics image) 3-36
GSIMGS (draw a scaled graphics image) 3-38
GSLINE (draw a straight line) 2-6, 3-14
GSLSS (load a graphics symbol set) 3-39
GSLSS (load a symbol set) 3-28, 4-30
GSLT (specify line type) 3-12
GSLW (set line width) 3-14
GSMARK (draw a marker symbol) 3-39
GSMOVE (move without drawing) 2-6, 3-11
GSMRKS (draw a series of marker symbols) 3-39
GSMS (specify a marker symbol) 3-39
GSMSC (set marker symbol size) 3-39
GSPAT (set current shading pattern) 3-24
GSPFLT (draw a series of curved lines) 3-17

Index

GSPLNE (draw a series of lines) 3-14
GSPS (define the picture space) 3-49
GSPUT (restore graphics data) 3-68
GSQCA (query current character angle) 3-33
GSQCB (query current character box size) 3-31
GSQCD (query current character direction) 3-34
GSQCEL (query current hardware cell size) 3-32
GSQCH (query current character shear) 3-35
GSQCLP (query clipping state) 3-56
GSQCOL (query current color) 3-7
GSQCP (query current position) 3-11
GSQCS (query the current symbol set) 3-29
GSQCT (query current color table) 3-7
GSQCTD (query color table definition) 3-7
GSQFLW (query current fractional line width) 3-14
GSQLT (query current line type) 3-14
GSQLW (query current line width) 3-14
GSQMAX (query the number of graphics
segments) 3-59
GSQMIX (query current color mixing mode) 3-9
GSQMS (query current marker symbol) 3-39
GSQMSC (query current marker symbol size) 3-39
GSQNSS (query number of symbol sets
loaded) 3-29

GSQPAT (query current shading pattern) 3-25
GSQPS (query the picture space) 3-50
GSQSS (query names of symbol sets loaded) 3-29
GSQTB (query current text box) 3-31
GSQVIE (query the viewport) 3-53
GSQWIN (query the graphics window) 3-55
GSRSS (release a symbol set) 3-28
GSRSS (release graphics symbol set) 3-39
GSS (graphics symbol set) object

*GSS object 5-12

baseline angle 3-33

control routines 3-27

creating 5-11

loading symbol set from 3-28

modes 2 and 3 5-7

object management 5-12

selecting symbol set from 3-29

symbol sets available 5-9, 5-10
GSSCLS (close a graphics segment) 3-58
GSSDEL (delete a graphics segment) 3-58
GSSEG (create a graphics segment) 3-58
GSVECM (draw a series of vector lines) 3-15
GSVIEW (define the viewport) 3-52
GSWIN (define the graphics window) 3-54

H

handling errors, routines 3-41
hardware cell 3-30

hardware characters 3-26
hardware needed for graphics 1-2

Index X-9

Index

headings, chart
attributes for 4-19
character size 4-16
multiple-line 4-19
positioning 4-20
text for 4-19
height of legend 4-41
hierarchy, graphics 3-43
high-level languages
CALL GDDM extension 2-2
languages that can be used 1-3
histograms
definition 4-9
drawing 4-87
sample program 4-88
shading, suppressing 4-87
suppressing risers 4-87
uses for 4-9
HLS 3-4
horizontal bar chart 4-7
horizontal orientation
of chart 4-24
of legend 4-41
horizontal-bar chart 4-8
hue
default value 3-4
definition 3-4

IBM plotters
See plotters
IBM printers
See printers
image symbol characters 5-7
image symbol sets 3-26, 5-9
independent variables 2-13, 4-21
initial attributes 2-2, 2-6
initializing
a device 3-66
a program 2-5, 2-12, 4-92
the graphics environment 3-41, 4-13
input/output operations 5-1
integer values in BASIC programs 2-4
intelligent printer data stream (IPDS) devices 1-3
intercept point for axes 4-24
interrupt, from user 3-42
interval between tick marks 4-28
IPDS (intelligent printer data stream) devices 1-3

L

labels, charts (see also data values)
attributes 4-33
attributes for legend key labels 4-41
attributes for pie chart spider tags and labels 4-78

X-10 AS/400 GDDM Programming Guide

labels, charts (see also data values) (continued)
blank the text box area 4-33
character size 4-16
character string 4-36
day-of-the-week 4-36
labels for legend keys (elements) 4-42
month name 4-34
position relative to tick marks 4-33
punctuation of large numbers on charts 4-34
type (numeric/date/alpha) 4-33
zero-suppression, numeric labels 4-34
language extension, CALL GDDM 2-2
languages 1-3, 3-25, 5-10
layout of chart 4-15
legends
attributes for legend key labels 4-41
blank legend area 4-41
character size 4-16
draw box around 4-42
draw for pie chart 4-41
identify labels for legend keys (elements) 4-42
offset positioning 4-41
orientation of 4-41
position of 4-41
reverse order of legend keys 4-41
routines for 4-40
size 4-41
specified 4-40
suppressing 4-40
lightness
default values 3-4
definition 3-4
line charts
complex chart program in BASIC 6-15
definition 4-4
drawing routine 4-47, 4-49
line chart in PL/I 6-33
sample program 4-49
simple chart program in COBOL/400 6-12
simple chart program in Pascal 6-13
simple chart program in PL/I 6-13
simple chart program in RPG/400 6-11
simple line chart program in BASIC 2-12
simple program 2-13
suppressing lines 4-52
uses for 4-4
writing data values 4-48
line curving 4-4
line primitives
attributes for 3-12
clipping 3-55
construction 3-17
curved 3-17
drawing 3-14
elliptic 3-19
polyfillet 3-17

line primitives (continued)
routines for attributes 3-12
series of curved lines 3-17
series of moves and lines 3-15
setting fractional line-width 3-14
setting line-type 3-12
setting line-width 3-14
straight 3-14
line-type table for chart components 4-47
line-width table for chart components 4-48
linear axis scale 4-27
lines, drawing 2-6
list of parameters 2-14
literal values 2-13
load graphics symbol set 3-39
loading
marker symbol sets 3-39
symbol sets 3-39
loading character sets 3-28
logarithmic axis scale 4-27
logic, binary 3-10

M

major tick marks 4-29

margins, chart 4-17

marker-selection table for chart components 4-48,
4-51

markers
attributes 3-39
drawing 3-39

selecting 3-39

selecting scale 3-39

types 3-38
merging text and graphics A-9
messages signaled by graphics 5-17
minor tick marks 4-29
missing values 4-46
mixing mode, color 3-7
mode-2 and mode-3 characters 3-26
mode, current 3-2
modes of graphics symbols 3-26, 5-7
mono-spaced characters 5-9
month labels for axes 4-34
mountain range shading 4-56
moving current position 2-6, 3-11
moving pie chart slices 4-79
multiple pictures per screen 3-50
multiple-bar chart

description 4-7

example 4-67

example using CHNUM 4-69
multiple-pie chart, example 4-83, 4-85
multiplier for zero-suppression, numeric axis

labels 4-34

Index

multiplier, character size 4-16

N

names of GDDM routines, syntax of 2-14
names of Presentation Graphics routines, syntax
of 2-15, 4-13

notes for chart, routines

attributes for 4-43

box enclosure 4-43

multiple line notes 4-43

note area blanked 4-43

offsets for positioning 4-43
number of axes 4-22
number of bars per multiple-bar chart 4-65
number of charts per picture 4-69, 4-82

O

object, *GSS 3-27, 5-12

offset 4-41, 4-43

open a device 3-66

open a graphics segment 3-58

OR operations 3-10

order form GDDM program in PL/l 6-40
orientation of chart 4-24

orientation of legend, vertical/horizontal 4-41
orientation of plotter paper A-5
0S/400 considerations 5-1
overlapping bars in bar charts 4-63
overpaint mode, color 3-7
overpainting an axis label area 4-33

P

pacing scheme for UDDS 5-20
page, graphics
create in Presentation Graphics programs 3-45,
4-13
default size 3-46
description 3-44
specific routines 3-45
paper orientation, plotter A-5
paper size, plotter A-4
parameter list 2-14
Pascal
CALL GDDM statement 2-2
GDDM envelope program 6-9
graphics image program 6-63
simple Presentation Graphics line chart
program 6-13
using for graphics 1-3
pattern-selection table for bar chart
components 4-62
pattern-selection table for pie chart
components 4-77

Index X-11

Index

pattern-selection table for surface chart plotters (continued)
components 4-55 hardware character grid 4-16
patterns 3-24 how to configure A-3
pen speed of plotter, setting A-4 in graphics hierarchy 3-44
pen width of plotter, setting A-4 list of supported plotters 1-2, 3-43
percentages for pie chart 4-78, 4-79 pens associated with color table 3-6
performance considerations 5-14 primary device 3-65
picture space sending pictures to A-3
default 3-49 setting form feed A-4
definition 3-48 setting paper size A-4
divided by viewports 3-50 setting pen speed A-4
in graphics field 3-49 setting pen width A-4
set in Presentation Graphics programs 4-13 shading attributes for area-fill 3-25
size of Presentation Graphics chart 4-15 specific device control routines 3-65
specific routines 3-49 with ALWGPH keyword 5-3
specifying 3-49 polyfillet 3-17
pie charts polyline 3-14
absolute/relative data representation 4-79 position of legend 4-41
attributes for pie chart spider tags and labels 4-78 position, current 2-6
attributes for titles 4-33 Presentation Graphics
blank the data value area 4-78 bar chart 4-63
complex chart program in BASIC 6-15 histogram 4-87
definition 4-10 line chart 4-49
draw legend 4-41, 4-42 names, syntax of 2-15, 4-13
drawing 4-77 pie chart 4-79
drawing routine 4-79 routines 4-13
exploded slices 4-79 scatter plot 4-52
moving slices 4-79 surface chart 4-58
multiple-pie chart in COBOL/400 6-28 symbol sets used 3-27, 5-7
number of pies 4-82 using 1-1, 4-1
orientation (horizontal/vertical) 4-24 Venn diagram 4-90
percentage of each sector shown 4-79 Presentation Graphics programs
pie chart program in RPG/400 6-47 complex program in BASIC 6-15
proportioning of multiple pies by value 4-82 complex program in BASIC with DDS subfiles 6-21
sample program 4-79 complex program in COBOL/400 6-28
sample program, multiple-pie 4-83, 4-85 complex program in PL/l 6-33
shading, suppressing 4-77 composite-bar chart in BASIC 4-72
size reduction for pies 4-82 floating surface chart in BASIC 4-60
titles for individual pies 4-36 floating-bar chart in BASIC 4-75
uses for 4-10 histogram in BASIC 4-88
pixels 3-35 line chart in BASIC 4-49
PL/I multiple-bar chart in BASIC 4-67, 4-69
complex GDDM program 6-36, 6-40 multiple-pie chart in BASIC 4-83, 4-85
GDDM envelope program 6-8 pie chart in BASIC 4-79
graphics image program 6-62 pie chart program with GDDM in RPG/400 6-47
line chart Presentation Graphics program 6-33 scatter plot in BASIC 4-53
simple Presentation Graphics line chart simple line chart in BASIC 2-11
program 6-13 simple line chart in COBOL/400 6-12
using for graphics 1-3 simple line chart in Pascal 6-13
plotters simple line chart in PL/I 6-13
as auxiliary device A-1 simple line chart in RPG/400 6-11
attributes for lines 3-13 single-bar chart in BASIC 4-64
color mixing 3-8 surface chart in BASIC 4-58
color table 3-3 Venn diagram in BASIC 4-90
default symbol set 3-27 Presentation Graphics routines, compatibility with
description of IBM plotters A-3 S/370 1-1

X-12 AS/400 GDDM Programming Guide

primary colors 3-7
primary device 3-65
primitive attributes 3-2

primitives
clipping of 3-55
definition 3-2
printers

as satellite device A-1
color table 3-4
configure a work station printer A-6
configuring A-1
files 5-5
graphics-capable A-6
in graphics hierarchy 3-44
line types 3-12
list of supported printers 1-3, 3-44
shading patterns 3-24
symbol sets 3-28
user-defined file A-7
processing options list for DSOPEN A-3
processing states 1 and 2 4-39
program controls 3-41
program structure, Presentation Graphics
programs 4-13
program-assigned values 2-11
project schedule program 6-24
proportionally-spaced characters 5-9
proportioning size of multiple pies by value 4-82
punctuation of large numbers on charts 4-34

QDECFMT system value, specify punctuation of
large numbers 4-34
QDGDDM display file 5-1
QPGDDM printer file 5-5
guadrant, from intercepting axes 4-23, 4-24
guery routines
aspect ratio 3-50, 3-53
baseline angle, character 3-33
character box 3-31
clipping status 3-56
color 3-7
color mixing 3-9
coordinate system 3-55
current cursor position 3-11
current position 3-11
device characteristics, current device 3-67
device characteristics, named device 3-67
device identifier, current device 3-66
device identifier, next unused 3-66
direction, character 3-34
fractional line-width 3-14
graphics window 3-55
hardware cell 3-32
last error 3-42

query routines (continued)
line type 3-14
line width 3-14
marker symbol 3-39
marker symbol scale 3-39
page information 3-47
page number, current page 3-47
page number, unique 3-47
picture space 3-50
receiving parameters 2-14
segments, highest unused identifier 3-59
segments, number for current page 3-59
shading pattern 3-25
shear of characters 3-35
symbol set 3-29
symbol sets loaded 3-29
symbol sets loaded, number 3-29
text box 3-31
use for 3-7
viewport 3-53

R
radian 3-33
range of axis scale 4-26
ratio of width to depth 3-48, 3-50
re-initializing a program 4-92
reducing picture sizes 3-54
reference lines
attributes 4-23
attributes for axis labels 4-33
attributes for axis tittes 4-30
axis position in chart-drawing area 4-23
axis title position 4-31
characteristics 4-20
datum line attributes 4-40
datum lines 4-39, 4-40
grid lines 4-37, 4-38
labels 4-34
orientation 4-24
position of axis scale tick marks 4-29
range of scale 4-26
reference line characteristics 4-20
scale, linear or logarithmic 4-27
specify axis titles 4-31
specify date labels for axis 4-34, 4-36
specify labels for axis 4-36
suppress axis line 4-21
tick mark interval on axis scale 4-28
translated axis lines 4-39
type of axis labels 4-33
zero-suppression, numeric axis labels 4-34
related printed information H-1
relative data
specified for composite bar chart 4-72
specified for pie chart 4-79

Index

Index

X-13

Index

relative data (continued)
specified for surface chart 4-56
release a device 3-66
release graphics symbol set 3-39
release storage, Presentation Graphics
program 4-92
releasing
marker symbol sets 3-39
symbol sets 3-39
releasing loaded character sets 3-28
response, from user 3-42
restarting a program 4-92
retained data 3-63
retrieve graphics data from GDF file 3-68
reverse order of legend keys 4-41
risers, histograms 4-87
rotate chart 4-25
rotating characters 3-32
routine names in BASIC programs 2-4
RPG/400
CALL GDDM statement 2-2
complex GDDM program with Presentation
Graphics 6-47
GDDM envelope program 6-2
graphics image program 6-55
simple Presentation Graphics line chart
program 6-11
text and graphics program A-10
using for graphics 1-3

S

sample programs
complex Presentation Graphics program in
BASIC 6-15

complex Presentation Graphics program in BASIC

with DDS subfiles 6-21
complex Presentation Graphics program in
COBOL/400 6-28
complex Presentation Graphics program in
PL/I 6-33
composite-bar chart program in BASIC 4-72
floating surface chart program in BASIC 4-60
floating-bar chart program in BASIC 4-75
GDDM color table program in PL/I 6-36
GDDM envelope program in BASIC 2-3
GDDM envelope program in COBOL/400 6-5
GDDM envelope program in Pascal 6-9
GDDM envelope program in PL/l 6-8
GDDM envelope program in RPG/400 6-2
GDF (graphics data format) file 3-69
graphics image in BASIC 3-36, 6-54
graphics image in COBOL/400 6-58
graphics image in Pascal 6-63
graphics image in PL/l 6-62
graphics image in RPG/400 6-55

X-14 AS/400 GDDM Programming Guide

sample programs (continued)

histogram program in BASIC 4-88

line chart program in BASIC 4-49

multiple-bar chart program in BASIC 4-67, 4-69

multiple-pie chart program in BASIC 4-83, 4-85

order form program in PL/l 6-40

pie chart program in BASIC 4-79

pie chart program with GDDM in RPG/400 6-47

plotter routines in BASIC A-5

scatter plot program in BASIC 4-53

simple Presentation Graphics line chart in
BASIC 2-11

simple Presentation Graphics line chart program in
COBOL/400 6-12

simple Presentation Graphics line chart program in
Pascal 6-13

simple Presentation Graphics line chart program in
PL/I 6-13

simple Presentation Graphics line chart program in
RPG/400 6-11

single-bar chart program in BASIC 4-64

surface chart program in BASIC 4-58

Venn diagram program in BASIC 4-90

satellite devices A-1
saturation

default values 3-4
definition 3-5

scale

axes 4-26

current marker symbol 3-39

drawing picture to 3-48, 3-50, 3-54

linear or logarithmic 4-27

range of 4-26

zero value for axis scale auto-ranging 4-26

scaled graphics image 3-36, 3-38
scatter plots

definition 4-5

drawing routine 4-51, 4-52
option 4-52

sample program 4-53
uses for 4-5

screen copy device A-2
secondary axis 4-23
segment

See graphics segment

segment, graphics

See graphics segment

selecting a chart type 4-12
selecting a color 3-2

selecting a page 3-46

send output to display 3-42
sending the picture to display 2-10
setting the color attribute 3-2

SEU, using 2-1

shaded background, chart 4-18

shading 2-9
shading attributes 3-22
shading patterns 3-24
shear, character 3-32, 3-34
showing multiple pictures per screen 3-50
showing pictures 2-10
simple GDDM program in BASIC 2-3
simple GDDM program in COBOL/400 6-5
simple GDDM program in Pascal 6-9
simple GDDM program in PL/I 6-8
simple GDDM program in RPG/400 6-2
simple Presentation Graphics line chart program
in BASIC 2-12
in COBOL/400 6-12
in Pascal 6-13
in PL/I 6-13
in RPG/400 6-11
single-bar chart
description 4-7
example 4-64
size of chart 4-15
size of legend 4-41
size reduction for pies 4-82
size, character 3-30
size, default page 3-46
sounding alarm 3-67
spider tags and labels for pie chart 4-41
squares that look like rectangles 3-54
starting a program 2-5, 2-12
states 1 and 2 4-14, 4-39
stopping a program 2-11, 2-13
storage, freeing 3-41
structure of Presentation Graphics programs 4-13
summary of GDDM concepts, functions 3-72
suppressing chart features
axes 4-21
grid lines 4-38
heading 4-19
labels 4-33
legend 4-40
lines 4-52
markers 4-48
risers 4-87
shading 4-55
tick marks 4-29
zero in numeric labels 4-34
zero value on range 4-26
surface charts
absolute/relative data representation 4-56
definition 4-6
drawing 4-54, 4-60
drawing routine 4-58
sample program 4-58, 4-60
shading, suppressing 4-55
shading, type 4-56
uses for 4-6

Index

surface charts (continued)
writing data values 4-55
suspend a device 3-66
symbol sets
available 5-10
creating graphics symbol sets 5-11
loading 3-28
selecting current 3-29
syntax of routines 2-14
syntax of symbol set names 5-9
syntax, BASIC programs 2-4, 2-12
System/370, compatibility with 1-1

T

tables
attribute-selection tables 4-47
color-selection table for bar charts 4-62
color-selection table for line charts 4-47
color-selection table for pie charts 4-77
color-selection table for scatter plots 4-51
color-selection table for surface charts 4-54
colors, default 3-3
line-type table for components 4-47
line-width table for components 4-48
marker-selection table for components 4-48, 4-51
pattern-selection table for components 4-55, 4-62,
4-77
PL/I program for setting color table 6-36
tangent 3-18
temporary data 3-63
terminating a program 2-11, 2-13, 4-92
terminating the graphics environment 3-41
text box 3-30
text, graphics 3-25
tick mark
interval on scale 4-28
position on scale 4-29
suppress 4-29
titles, charts
attributes 4-30
character size 4-16
character string 4-31
position 4-31
token, device A-7
tokens, device A-3
translated axis line 4-39
transparencies on plotter A-4
truncated lines 3-55
type style 3-26
types of data in routines 2-14
typical program, parts of 2-15

Index X-15

Index

U

UDDS (user-defined data streams) 5-19
unique page number, querying 3-47
user-defined data streams (UDDS) 5-19
user-defined files A-7

user-specified axis label text 4-36
using devices 3-66

V

variables
array of 2-13
declaring for BASIC GDDM program 2-5
declaring for BASIC Presentation Graphics
program 2-12
dependent 2-13, 4-21
in GDDM routines 2-14
in Presentation Graphics routines 4-13
independent 2-13, 4-21
literal values 2-13
values assigned by GDDM 2-11, 2-14
vector line 3-15
vector symbol characters 3-26, 5-7
vector symbol sets 5-10
Venn diagrams
definition 4-11
drawing 4-89
drawing routine 4-90
orientation (horizontal/vertical) 4-24
sample program 4-90
uses for 4-11
vertical orientation
of chart 4-24
of legend 4-41
viewport
description 3-50
number per page 3-50
primitives too large for 3-55
set in Presentation Graphics programs 4-13
specific routines 3-52

W

width of legend 4-41
width/depth of picture 3-48, 3-50
window

See graphics window
writing data values

line chart 4-48

surface charts 4-55

X

X axis
attributes for labels 4-33
attributes for titles 4-30

X-16 AS/400 GDDM Programming Guide

X axis (continued)
auto-ranging 4-26
datum lines 4-39, 4-40
duplicate 4-22
grid lines 4-37, 4-38
intercept point with y axis 4-24
label attributes 4-33
label position relative to tick marks 4-33
labels 4-32, 4-34
linear 4-27
orientation 4-20, 4-24
position in chart-drawing area 4-23
position of tick marks 4-29
range 4-26
scale, linear or logarithmic 4-27
specify date labels 4-34, 4-36
specify labels 4-36
specify title 4-31
suppress axis line 4-21
tick marks 4-28
titte 4-30
title position 4-31
translated axis lines 4-39
type of labels 4-33
when drawn 4-21, 4-37
zero value with auto-ranging 4-26
zero-suppression, numeric labels 4-34
x-coordinate 2-6, 3-54

Y

y axis
attributes for labels 4-33
attributes for titles 4-30
auto-ranging 4-26
datum lines 4-39, 4-40
duplicate 4-22
grid lines 4-37, 4-38
intercept point with x axis 4-24
label attributes 4-33
label position relative to tick marks 4-33
labels 4-32, 4-34
logarithmic 4-27
orientation 4-20, 4-24
position in chart-drawing area 4-23
position of tick marks 4-29
range 4-26
scale, linear or logarithmic 4-27
specify date labels 4-34, 4-36
specify labels 4-36
specify title 4-31
suppress axis line 4-21
tick marks 4-28
titte 4-30
title position 4-31
translated axis lines 4-39

y axis (continued)
type of labels 4-33
when drawn 4-21, 4-37
zero value with auto-ranging 4-26
zero-suppression, numeric labels 4-34
y-coordinate 2-6, 3-54

Z

zero value, auto-ranging 4-26
zero-suppression, numeric labels 4-34
zooming in for larger picture 3-55

Index

Index

X-17

Reader Comments—We'd Like to Hear from You!

Application System/400
Programming:

GDDM Programming Guide
Version 2

Publication No. SC41-0536-00

Overall, how would you rate this manual?

Very
Satisfied

Satisfied

Dissatisfied

Very
Dissatisfied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

THANK YOU!

Please tell us how we can improve this manual:

May we contact you to discuss your responses? _ Yes _ No
Phone: () Fax: () Internet:

To return this form:
e Mail it
e Faxit
United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192
e Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Reader Comments—We'd Like to Hear from You!

SC41-0536-00

Fold and Tape

Please do not staple

L
®

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION

3605 HWY 52 N

ROCHESTER MN 55901-9986

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC41-0536-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5738-SS1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Spine information:

Pr ogr anm ng:
Application System 4@DM Pr ogr amm ng CGui de Version 2

