

AS/400 Advanced Series IBM

SNA Upline Facility Programming
Version 4

 SC41-5446-00

AS/400 Advanced Series IBM

SNA Upline Facility Programming
Version 4

 SC41-5446-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

August Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400 licensed program, (Program 5769-SS1), Version 4 Release 1
Modification 0, and to all subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
Rico, or Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not
stocked at the address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail
your comments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information viii
Trademarks viii

About SNA Upline Facility Programming,
SC41-5446 . ix

Who Should Use This Book ix
Prerequisite and Related Information ix
Information Available on the World Wide Web ix

Chapter 1. Introduction to SNA Upline
Facility (SNUF) 1-1

SNUF Capabilities 1-1
Communications Line Support 1-1
SNUF Communications Network 1-2

Chapter 2. Configuring SNUF
Communications 2-1

Creating SNUF Descriptions 2-1
Creating a Line Description 2-1
Creating a Controller Description 2-1
Creating a Device Description 2-1

Changing or Deleting a SNUF Description . 2-1
Displaying a SNUF Description 2-2

Chapter 3. Running SNUF
Communications 3-1

Chapter 4. Writing SNUF Application
Programs 4-1

Intersystem Communications Function (ICF)
File . 4-1

Comparing Configuration and Program
Device Entry Command Parameters 4-5

Communications Operations 4-6
Starting a Session 4-6

Open or Acquire Operation 4-7
Starting a Transaction 4-7

Evoke Function 4-7
Sending Data 4-8

Write Operation 4-8
End-of-Group Function 4-8
Function-Management-Header Function . 4-8

Receiving Data 4-9
Read Operation 4-9
Invite Function 4-9
Read-From-Invited-Program-Devices

Operation 4-9
Waiting for a Display File, an ICF File,

and a Data Queue 4-10

Notifying the Remote Program of Problems 4-10
Fail Function 4-10
Cancel Function 4-10
Negative-Response Function 4-11

Using Additional Functions and Operations 4-11
Respond-to-Confirm 4-11
Request-to-Write Function 4-11
Cancel-Invite Function 4-11
Timer Function 4-12
Get-Attributes Operation 4-12

Ending a Transaction 4-12
Detach Function 4-12

Ending a Session 4-12
Release Function 4-13
End-of-Session Function 4-13

Using Response Indicators 4-13
Receive-Cancel 4-13
Receive-Confirm 4-13
Receive-Detach 4-13
Receive-End-of-Group 4-14
Receive-Function-Management Function 4-14
Receive-Negative-Response 4-14
Receive-Turnaround 4-14

Using the Input/Output Feedback Area . . 4-14
Using Return Codes 4-14

Chapter 5. Considerations for SNUF . . . 5-1
General Considerations 5-1

Half-Duplex Communications 5-1
Sending Records in Chains 5-2
Receiving Messages from the Host System 5-3
Session Recovery 5-4

Contention Mode Considerations 5-4
Performance Considerations 5-4
Program Start Requests 5-5

Prestart Jobs Considerations 5-8
Programming for CICS/VS Systems 5-8

Evoke Considerations for a CICS/VS
System 5-8

SNUF Transaction Codes 5-8
Security Considerations 5-8

Programming for IMS/VS Systems 5-9
Evoke Considerations for an IMS/VS

System 5-9
Sending IMS/VS Commands 5-9
IMS/VS Message Headers 5-9
Security Considerations 5-10
Handling Errors 5-10
Sending Transactions without Waiting for

Output 5-10

 Copyright IBM Corp. 1997 iii

Requesting Messages with the
Ready-to-Receive Command 5-11

Operating in Terminal Response Mode 5-11
Using Message Format Services to

Improve Performance 5-13
BIND Considerations for AS/400

Applications Using SNUF 5-13

Appendix A. Language Operations, DDS
Keywords, and System-Supplied Formats A-1

Intersystem Communications Function
Operations A-1

Language Operations Supported A-1
DDS Keywords A-2
System-Supplied Formats A-2

Appendix B. Return Codes, Messages,
and Sense Codes B-1

Return Codes B-1
Major Code 00 B-1
Major Code 02 B-6
Major Code 03 B-11
Major Code 04 B-12
Major Codes 08 and 11 B-13
Major Code 34 B-14
Major Code 80 B-15
Major Code 81 B-18
Major Code 82 B-21
Major Code 83 B-29
Failed Program Start Requests B-36

Appendix C. Considerations for Host
System Programmers C-1

Generating the Host System With
VTAM/NCP C-1

Defining Physical Unit Parameters C-1
Defining Logical Unit Parameters C-2
Sending the VTAM BIND Command . . . C-2
Example VTAM/NCP Generation C-3

Performance Considerations C-5
Programming for CICS/VS Systems C-5

End-of-Transaction Considerations C-6
Program-Start-Request Considerations . . C-7

Programming for IMS/VS Systems C-8
Program Start Request Considerations . C-10

Appendix D. SNA 3270 Program Interface D-1
ICF File Considerations D-1
Writing Application Programs Using SNA

3270 Program Interface D-3
Unformatted Program Interface D-4
Formatted Program Interface D-6

3270 Data Flow D-14
Host System Programming Considerations D-14
General Considerations D-15

SNUF Devices D-15
System/36 Restrictions D-15
Application Identifiers D-15
Language Operations, Keywords, and

System-Supplied Formats D-15
Example Program D-15

ICF File Creation D-16
Sample Program D-17

Appendix E. Program Examples E-1
Example 1: AS/400 System to System/370

System (CICS/VS) E-2
ILE COBOL/400 Program for the AS/400

System (Program A) E-3
CICS/VS Program Used by the Host

System (Program B) E-10
Example 2: AS/400 System to System/370

System (IMS/VS) E-17
ILE RPG/400 Program for the AS/400

System (Program A) E-17
IMS/VS Program Used by the Host

System (Program B) E-21
Example 3: AS/400 System to System/370

System (CICS/VS) E-27
ILE C/400 Program for the AS/400

System (Program A) E-27

Bibliography H-1

Index . X-1

iv SNA Upline Facility Programming V4R1

 Figures

1-1. SNUF Communications Network . . 1-2
4-1. Command Parameters 4-2
4-2. Comparing Configuration Command

Parameters and Program Device
Entry Command Parameters 4-6

5-1. Sending Data in Half-Duplex Mode 5-1
5-2. Sending a Change-Direction

Indication in Half-Duplex Mode . . . 5-1
5-3. Chaining in an Interactive Session –

BATCH(*NO) 5-3
5-4. Chaining in a Batch Session –

BATCH(*YES) 5-3
5-5. Parameters for the Program Start

Request (*TXTX, *TXTC) 5-6
5-6. Parameters for the Program Start

Request (*EXEX, *EXEC) 5-7
5-7. Example Program Start Request

Record Format 5-7
5-8. SNUF Transaction Codes 5-8
5-9. Sending Transactions without

Waiting for IMS Output 5-10
5-10. Sending Transactions without

Waiting for IMSRTR Output . . . 5-10
5-11. Operating in Terminal and

Non-terminal Response Mode . . 5-12
A-1. SNUF Supported ICF Operations . A-1
A-2. High-Level Language I/O Operations A-1
A-3. Valid DDS Keywords for SNUF . . A-2
A-4. Valid System-Supplied Formats for

SNUF A-2
B-1. Actions for Return Code 0000 . . . B-2
C-1. Parameters for the BIND Command C-2
C-2. VTAM Creation on a Nonswitched

SDLC Line C-4
C-3. VTAM Creation on a Switched

SDLC Line C-5
C-4. Sample CICS/VS Table Entries . . C-6
C-5. Program Start Request Using the

Transient Data Put Operation . . . C-7
C-6. Program Start Request Using

Interval Control Start Command . . C-8
C-7. Example of IMS/VS Definition

Parameters C-9
C-8. Example IMS/VS Remote Program

Start Request C-10

D-1. Common Header for Unformatted
Program Interface (20 Bytes) D-4

D-2. AS/400 Program Read (To a Write
Command) D-4

D-3. AS/400 Read (To a Read Request
Command) D-5

D-4. AS/400 Program Write (To a Read
Buffer Command) D-5

D-5. AS/400 Program Write (To a Read
Modified Command) D-5

D-6. AS/400 Program Write (To a Read
Modified Command) D-5

D-7. AS/400 Program Write (To a Read
Modified Command) D-5

D-8. Common Header and Buffer for
Formatted Program
Interface—EMLDEV (*3278
*NOFIELD) D-6

D-9. Common Header and Buffer for
Formatted Program
Interface—EMLDEV (*32xx *FIELD) D-8

D-10. Common Header and Buffer for
Formatted Program
Interface—EMLDEV (*3278
*EXTFIELD) D-11

D-11. BIND Command Byte 14 Values . D-14
D-12. BIND Command Screen Definition D-14

E-1. Item-Inquiry Application E-2
E-2. DDS Source for DISPFILE E-3
E-3. COBOL Program A for the AS/400

System E-4
E-4. CICS/VS Program Used by the

Host System E-10
E-5. DDS Source for File FILEA E-17
E-6. DDS Source for File WSFILE . . E-18
E-7. DDS Source for File RMFILE . . E-18
E-8. ILE RPG/400 Program A for the

AS/400 System E-19
E-9. IMS/VS Program Used by the Host

System E-21
E-10. DDS Source for DISPFILE E-27
E-11. DDS Source for File FILEA E-28
E-12. ILE C/400 Program for the AS/400

System E-29

 Copyright IBM Corp. 1997 v

vi SNA Upline Facility Programming V4R1

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The fur-
nishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY
10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact the software interop-
erability coordinator. Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Address your questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. IBM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

 Copyright IBM Corp. 1997 vii

Programming Interface Information

This publication is intended to help application programmers use the SNA Upline Function of the IBM
OS/400 licensed program. This publication documents General-Use Programming Interface and Associ-
ated Guidance Information.

General-Use programming interfaces allow the customer to write programs that obtain the services of
OS/400 licensed program.

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Cor-
poration.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be
trademarks or service marks of others.

ACF/VTAM
APPN
Application System/400
AS/400
C/400
CICS
COBOL/400
Discover/Education
FORTRAN/400
IBM
IMS

ILE
Operating System/400
OS/400
RPG/400
System/36
System/38
System/370
System/390
VTAM
400

viii SNA Upline Facility Programming V4R1

About SNA Upline Facility Programming, SC41-5446

This book provides the programming information
you need to use Systems Network Architecture
(SNA) upline facility (SNUF) with the IBM AS/400
system. This book also discusses the SNA 3270
program interface for SNUF that allows an AS/400
application to communicate with a host application
by sending and receiving 3270 data streams. This
book should be used with the book, ICF Program-
ming. You should be familiar with the concepts
explained in the ICF Programming book and apply
those concepts to the information presented here
for using SNUF.

For a list of related publications, see the
“Bibliography” on page H-1.

Who Should Use This Book

This book is intended for application programmers
for the AS/400 system, application programmers
for the remote CICS/VS or IMS/VS system, and
programmers for the remote system.

You should be able to program in the language
you intend to use and be familiar with Systems
Network Architecture (SNA) concepts and termi-
nology. You should be familiar with the following
information:

� The concepts of communications configuration
described in the Communications Configura-
tion book.

� The concepts of intersystem communications
function (ICF) support described in the ICF
Programming book.

� Operations and tasks described in System
Operation book.

� AS/400 system programming (mainly work
station) terminology.

� In some cases, terminology of the remote
system.

� If you are using SNA 3270 program interface,
you should be familiar with 3270 device emu-
lation and data stream concepts.

� If you are using 3270 binary synchronous
communications (BSC) device emulation, you
should refer to the IBM System/38 Data Com-
munications Programmer's Guide, SC21-7825,
and the IBM System/38 3270 Emulation Ref-
erence Manual and User's Guide, SC21-7961.

Prerequisite and Related
Information

For information about other AS/400 publications
(except Advanced 36), see either of the following:

� The Publications Reference book, SC41-5003,
in the AS/400 Softcopy Library.

� The AS/400 Information Directory, a unique,
multimedia interface to a searchable database
that contains descriptions of titles available
from IBM or from selected other publishers.
The AS/400 Information Directory is shipped
with the OS/400 operating system at no
charge.

Information Available on the
World Wide Web

More AS/400 information is available on the World
Wide Web. You can access this information from
the AS/400 home page, which is at the following
uniform resource locator (URL) address:

http://www.as4ðð.ibm.com

Select the Information Desk, and you will be able
to access a variety of AS/400 information topics
from that page.

 Copyright IBM Corp. 1997 ix

x SNA Upline Facility Programming V4R1

Chapter 1. Introduction to SNA Upline Facility (SNUF)

The SNA upline facility (SNUF) provides distrib-
uted data processing to AS/400* users who want
to communicate with a remote host system
through Systems Network Architecture (SNA).
The host system can be a System/370* computer,
System/390* computer, 30xx, or 43xx processor
using either Customer Information Control
System for Virtual Storage (CICS/VS) or Infor-
mation Management System for Virtual Storage
(IMS/VS). CICS/VS is a licensed program that
operates on a host system, such as the
System/370, which can be used in a communica-
tions network. IMS/VS is a general purpose
system that enhances the capabilities of OS/VS
for batch processing and telecommunication. It
allows users to access a computer-maintained
database through remote terminals.

SNUF handles the communications support
needed to connect the AS/400 system to a host
system. It allows you to write programs that can
communicate with either CICS/VS or IMS/VS on a
specific host system, without being concerned with
the unique communications requirements of the
host system. SNUF provides both an interactive
and a batch communications interface between
the AS/400 system and the host system.

 SNUF Capabilities

SNUF has the following capabilities:

� AS/400 programs can start system tasks or
user programs on host systems with CICS/VS
or IMS/VS.

� CICS/VS and IMS/VS tasks on a host system
can start programs on the AS/400 system.

� More than one program on an AS/400 system
can communicate at the same time with
CICS/VS or IMS/VS programs on a host
system.

� SNUF can share a communications line with
other SNA-based functions on the AS/400
system. See the Communications Configura-
tion book for a description of the total number
of lines available on the AS/400 system and
for a list of the SNA-based functions available.

� Remote locations are defined for SNUF net-
works as part of the AS/400 configuration
process.

� SNUF can run a single session per device.
There can be more than one device per con-
troller. A maximum of 255 SNUF devices can
be attached to the same controller.

� Data lengths to be sent and received by your
AS/400 system SNUF application program can
be defined to a maximum of 32,767 charac-
ters.

� SNUF application programs can be written
using any of the high-level languages (HLLs),
Integrated Language Environment (ILE)
C/400*, ILE COBOL/400*, ILE
FORTRAN/400*, or ILE RPG/400* program-
ming languages, together with the AS/400
data description specifications (DDS)
keywords or the system-supplied formats.

� The SNUF 3270 support allows the AS/400
system to communicate with a System/370,
System/390, 30xx, or 43xx host application by
sending and receiving 3270 data streams.

� Communications between an AS/400 program
and a host system program occurs in either
half-duplex flip-flop or half-duplex contention
modes.

� SNUF allows retail pass-through support when
a host system is connected to the AS/400
system and the AS/400 system is connected
to various retail controllers. (Retail commu-
nications supports the session between the
retail controller and the AS/400 system.
SNUF communications supports the session
between the AS/400 system and the remote
host system.) See the Retail Communications
Programming book.

Communications Line Support
SNUF uses the following communications lines:

� Synchronous data link control (SDLC) lines

– Point-to-point switched (manual answer,
automatic answer, manual call, or auto-
matic call)

 – Point-to-point nonswitched

 Copyright IBM Corp. 1997 1-1

 – Multipoint nonswitched

 � X.25 lines
 � Token-ring lines
 � Ethernet lines
� Integrated services digital network (ISDN) data

link control (IDLC) lines

Note: When the host system physically
resides on a token-ring local area network
(LAN) it may communicate, using SNUF, to an

AS/400 system physically residing on an
Ethernet LAN if the two LANs are connected
with an 8209 LAN bridge.

SNUF Communications Network

Figure 1-1 illustrates a SNUF network that com-
municates with several remote systems using dif-
ferent communications lines.

SNUF Communications
Support

Your Program

Host
System

X.25 Network

Secondary Secondary

Multipoint Nonswitched

Host
System

Host
System

Host
System

Host
System

Point-to-Point Switched
(also nonswitched)

IBM Token-Ring
Network

SNUF

ICF Data Management

(These can communicate with the remote
host system, but not with the AS/400 system.)

AS/400 System

RSLS159-7

8209 LAN
Bridge

Ethernet

Figure 1-1. SNUF Communications Network

1-2 SNA Upline Facility Programming V4R1

Chapter 2. Configuring SNUF Communications

This chapter discusses how to set up SNA upline
facility (SNUF) by creating line, controller, and
device descriptions.

Creating SNUF Descriptions

Before you can use SNUF for communications,
you must create configuration descriptions for
lines, controllers, and devices that will be used
with SNUF.

AS/400 system support allows you to create more
than one configuration description on the system.
You use commands to configure SNUF support in
two ways:

� Using the command prompt. Enter the
command and press F4 (Prompt). A prompt
menu appears for the command. Answer the
prompts as described in the Communications
Configuration book.

� Using direct entry. Enter the command and
its parameters using the syntax described in
the CL Reference book.

The following briefly introduces the commands you
use to configure SNUF. Create these descriptions
in the order presented. For a complete
description of these and related commands, see
the Communications Configuration book.

Creating a Line Description

The line description defines the communications
line used to communicate with the remote system.
Valid line types for SNUF communications are
synchronous data link control (SDLC), X.25,
token-ring network, Ethernet, and integrated ser-
vices digital network (ISDN) data link control
(IDLC).

The following commands allow you to create a line
description for use with SNUF:

� Create Line Description (SDLC)
(CRTLINSDLC)

� Create Line Description (X.25) (CRTLINX25)
� Create Line Description (Token-Ring)

(CRTLINTRN)

� Create Line Description (Ethernet)
(CRTLINETH)

� Create Line Description (IDLC) (CRTLINIDLC)

If you are using an integrated services digital
network (ISDN), a connection list and network
interface description also need to be created
and defined. The book, ISDN Support con-
tains more information about configuring an
ISDN network.

Creating a Controller Description

Create a controller description after you have
created a line description. The controller
description defines the characteristics of the
remote system.

Use the Create Controller Description (SNA Host)
(CRTCTLHOST) command to configure a con-
troller for use with SNUF.

Creating a Device Description

Create a device description after you have created
a controller description. The device description
defines the characteristics of the device your
application program is going to communicate with.

Use the Create Device Description (SNUF)
(CRTDEVSNUF) command to create a device for
a SNUF application.

Changing or Deleting a SNUF
Description

Use the following commands to change a SNUF
description:

� Change Line Description (SDLC)
(CHGLINSDLC)

� Change Line Description (X.25) (CHGLINX25)
� Change Line Description (Token-Ring)

(CHGLINTRN)
� Change Line Description (Ethernet)

(CHGLINETH)
� Change Line Description (IDLC)

(CHGLINIDLC)
� Change Controller Description (SNA Host)

(CHGCTLHOST)

 Copyright IBM Corp. 1997 2-1

� Change Device Description (SNUF)
(CHGDEVSNUF)

Use the following commands to delete a SNUF
description:

� Delete Line Description (DLTLIND)
� Delete Controller Description (DLTCTLD)
� Delete Device Description (DLTDEVD)

Displaying a SNUF Description

Use the following commands to display a SNUF
description:

� Display Line Description (DSPLIND)
� Display Controller Description (DSPCTLD)
� Display Device Description (DSPDEVD)

2-2 SNA Upline Facility Programming V4R1

Chapter 3. Running SNUF Communications

This chapter contains the information you need to
run your network, including information on the
Vary Configuration (VRYCFG) command. See the
book, Communications Management for additional
information on running communications support.

The Vary Configuration (VRYCFG) command is
used to start and end communications support.

The VRYCFG command with STATUS(*ON) spec-
ified starts or activates the link between two or
more systems, and associates the communica-
tions support with a particular configuration con-

sisting of line, controller, and device descriptions
(if manually created).

The VRYCFG command with STATUS(*OFF)
specified ends the link between two or more
systems and releases the communications
support. No further communication is possible
between the systems until the specified configura-
tions are varied on again.

For additional information on the Vary Configura-
tion command, see the book, Communications
Management.

 Copyright IBM Corp. 1997 3-1

3-2 SNA Upline Facility Programming V4R1

Chapter 4. Writing SNUF Application Programs

This chapter describes how an application
program uses the intersystem communications
function (ICF) file and SNA upline facility (SNUF)
communications support. The program can be
coded using high-level languages (HLLs) that
support an interface that allows the program to do
the following functions:

� Start a session by opening an ICF file and
acquiring a program device.

� Send and/or receive information by writing or
reading to an ICF file.

� End a session by releasing the program
device and closing the ICF file.

The chapter also includes a description of the
read and write operations that specify a record
format containing specific communications func-
tions. Record formats can be defined using data
description specifications (DDS) or you may use
system-supplied formats.

After an operation completes, a return code (and a
HLL file status) is returned to your application.
The return code indicates whether the operation
completed successfully or unsuccessfully. Along
with the return code, exception messages may
also be issued. See Appendix B for more infor-
mation about return codes and the appropriate
language reference books for more information
about the HLL file status.

Note: Before running application programs on
your system, you must define the application envi-
ronment. See the following publications for addi-
tional information:

 � Communications Configuration
 � Communications Management
 � ICF Programming
 � Work Management

 Intersystem Communications
Function (ICF) File

An intersystem communications function (ICF)
file handles all communications between your
program and the program on the remote system.
The ICF file must be created before your applica-

tion can use SNUF. For more information about
the ICF file, see the book, ICF Programming.

The ICF file is a system object of type *FILE with
a specific user interface. This interface is made
up of a set of commands and operations. The
commands allow you to manage the attributes of
the file and the operations allow a program to use
the file. Commands allow you to create, delete,
change, and display the file description.

The following commands are valid for the ICF file.

CRTICFF Create ICF file and file-level
attributes. This command
allows you to create an ICF file.

CHGICFF Change ICF file. This
command allows you to change
the file attributes of the ICF file.

OVRICFF Override ICF file. This
command allows you to tempo-
rarily change the file attributes
of the ICF file at run time.
These changes are only in
effect for the duration of the job
and do not affect other users of
the file.

DLTF Delete file. This command
allows you to delete a file from
the system.

DSPFD Display file description. This
command displays the file
description of any file on the
system. The information may
be printed or displayed.

DSPFFD Display field description. This
command displays the
description of the fields in any
file on the system. This infor-
mation may be printed or dis-
played.

ADDICFDEVE Add ICF device entry. This
command allows you to perma-
nently add a program device
entry that contains a program
device name, remote location
information, and session-level
attributes.

 Copyright IBM Corp. 1997 4-1

CHGICFDEVE Change ICF device entry. This
command allows you to perma-
nently change the program
device attributes previously
added with the ADDICFDEVE
command.

OVRICFDEVE Override ICF device entry.
This command allows you to:

� Temporarily add the
program device entry, the
remote location information,
and the session-level attri-
butes to the ICF file.

� Override a program device
entry with the specified
remote location information
and session-level attributes
for an ICF file.

RMVICFDEVE Remove ICF device entry. This
command allows you to perma-
nently remove the program
device entry previously added
with the ADDICFDEVE
command or changed with the
CHGICFDEVE command.

The commands CRTICFF, CHGICFF, and
OVRICFF have a WAITFILE parameter. Use this
parameter to specify the number of seconds that
the program waits for the file resources to be allo-
cated when the file is opened and a device is
acquired. You must specify the number of
seconds that the program waits for the file
resources to be allocated. A value of 1 through
32 767 can be specified.

The commands ADDICFDEVE, CHGICFDEVE,
and OVRICFDEVE have specific parameters that
are needed for SNUF communications.
Figure 4-1 describes the SNUF parameters for the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE
commands.

For a complete description of all the parameters
for these commands, see the book, ICF Program-
ming. See the CL Reference book for the syntax
of the commands.

The following parameters have a special meaning
for SNUF communications:

FILE
Specifies the name and library of the ICF file
to which you are adding the program device
entry. The FILE parameter is available only
with the ADDICFDEVE and CHGICFDEVE
commands.

filename: A 1- to 10-character value that
specifies the name of the ICF file.

*LIBL : SNUF communications support uses
the library list to locate the ICF file. This is
the default value.

*CURLIB : SNUF communications support
uses the current library for the job to locate
the ICF file. If no current library entry exists in
the library list, SNUF uses QGPL.

Figure 4-1. Command Parameters

Description

ADDICFDEVE,
OVRICFDEVE,
or
CHGICFDEVE
Command
Parameter

File name (ADDICFDEVE and
CHGICFDEVE only)

FILE

Program device name PGMDEV

Remote location name RMTLOCNAME

Communications type CMNTYPE

Device description name DEV

Input record selection method FMTSLT

Host application identifier APPID

Batch or interactive session flag BATCH

Host subsystem type HOST

End session with host ENDSSNHOST

Input function management header
handling method

HDRPROC

Special host application SPCHOSTAPP

Initialize self-selection INZSELF

Message protection flag MSGPTC

Emulated device EMLDEV

Maximum record length RCDLEN

Maximum block length BLKLEN

Override protection flag
(OVRICFDEVE only)

SECURE

4-2 SNA Upline Facility Programming V4R1

library-name: A 1- to 10-character value that
specifies the library where the ICF file is
located.

PGMDEV
Specifies the program device name that is
defined in the ICF file and specified in the
application. The total number of devices that
can be acquired to an ICF file is determined
by the MAXPGMDEV parameter on the
CRTICFF or CHGICFF command.

pgm-device-name: Type the name by which
the user program will refer to this communica-
tions session.

RMTLOCNAME
Specifies the remote location name with which
your program communicates. A remote
location name must be specified on the
ADDICFDEVE command or an OVRICFDEVE
command. If a remote location name is not
specified, return code 82EE is returned to
your program when the program device is
acquired.

*REQUESTER: The name used to refer to
the communications device through which the
program was started.

remote-location-name: Type a 1- to
8-character name for the remote location
name that should be associated with the
program device.

Note: For additional information on how the
remote location name is used for device
selection, see the discussion of the DEV
parameter later in this section.

CMNTYPE
Identifies the communications type for which
you define a program device entry. You
should specify the value *SNUF or *ALL for
this parameter.

*ALL : This default value specifies that all
parameters appear in the prompt.

*SNUF: The prompt for all SNUF supported
parameters.

Note: When you specify *REQUESTER for
the remote location name (RMTLOCNAME),
you are prompted for the attributes of the
emulated device (EMLDEV), format select
(FMTSLT), record length (RCDLEN), block
length (BLKLEN), and secure (SECURE)
parameters.

DEV
Specifies the communications device used in
the remote location. This parameter must be
specified for SNUF support.

*LOC: The device will be determined by the
system.

When *LOC is specified for the DEV param-
eter and the value for the RMTLOCNAME
parameter is not *REQUESTER, then the
device chosen is determined by the system
according to the device selection criteria of
SNUF.

SNUF acquires the first device with the speci-
fied remote location name that is varied on
and not in use.

If no varied-on device is available, SNUF
attempts to acquire a device in the vary-on
pending state. If such a device is not avail-
able, SNUF chooses a device with a less
favorable priority.

SNUF device selection is made, in the fol-
lowing priority, from devices with the specified
remote location name that are not in use and
are otherwise serviceable:

 1. Varied on
 2. Vary-on pending

3. In queried, suspend, or reset states
4. Recovery pending or inoperative pending

state
5. Held immediate state
6. Held controlled state

device-name: Type the 1- to 10-character
name of the device that is associated with the
remote location.

FMTSLT
Specifies the type of record format selection
used for input operations for all devices.

*PGM: The program determines what record
formats are selected. This is the default
value.

*RECID: The RECID keywords specified in
DDS for the file are used to specify record
selection.

APPID
This parameter specifies the VTAM* identifier
of the CICS/VS or IMS/VS host system.

 Chapter 4. Writing SNUF Application Programs 4-3

*DEVD: Specifies that the application identi-
fier specified in the device description is sent
with the logon message. This is the default
value.

*USER: Specifies that the application
program receives the USSMSG message and
sends a logon command to the host system.
This is valid only when using the 3270
program interface.

application-ID: The specified application iden-
tifier is sent with the logon message.

BATCH
Specifies if batch processing is performed for
the session with the CICS/VS or IMS/VS host
system. See “Sending Records in Chains” on
page 5-2 for a complete discussion of batch
and interactive sessions.

*NO: Specifies that the session will be
running in interactive mode. This is the
default value.

*YES: Specifies that the session will be
running in batch mode.

Note: If you specify
RMTLOCNAME(*REQUESTER), this param-
eter is ignored. The program started by the
remote system is always running in batch
mode.

HOST
This parameter specifies the remote or host
system with which this session is communi-
cating.

*DEVD: The host system specified in the
device description is used. This is the default
value.

*CICS: The session communicates with
CICS/VS.

*IMS: The session communicates with
IMS/VS.

*IMSRTR: The session communicates with
IMS/VS using the ready-to-receive option.

ENDSSNHOST
This parameter specifies the end of a session
with the host system.

*RSHUTD: Specifies the Request Shut Down
command to the host system. Most host
applications recognize this command. This is
the default value.

*TERMSELF: This value may be set to issue
a TERM-SELF command to the host system.
This value is used when the host application
does not recognize the default value.

SPCHOSTAPP
Specifies whether SNUF should customize
support for special host applications outside
the CICS or IMS application layer.

*DEVD: The value specified in the device
description is used. This is the default value.

*NONE: No customization for the special host
application is needed.

*FLASH : Customization for the Federal
Reserve communication application, Federal
Link Access for Secondary Half-sessions
(FLASH), is required.

INZSELF
Specifies whether a formatted INIT-SELF is
sent to the host system in place of an unfor-
matted logon.

*NO: Use the unformatted logon provided by
SNUF. This is the default value.

*YES: Use the formatted INIT-SELF provided
by SNUF.

HDRPROC
This parameter specifies, for both CICS/VS
and IMS/VS, if function management headers
are passed to the application program.

*SYS: SNUF removes function management
headers before passing data to the program.
This is the default value.

*USER: Function management headers are
passed to the program.

MSGPTC
This parameter specifies for both CICS/VS
and IMS/VS whether message protection is
used for this session.

*YES: Message protection is used. SNUF
saves messages until they are responded to,
and uses these messages to determine if data
must be sent again when a line, controller, or
device failure occurs. This is the default
value.

Transmission services profile 03 is not sup-
ported if message protection is requested.

4-4 SNA Upline Facility Programming V4R1

Note: *YES is only valid when processing is
not running in batch (BATCH(*NO) is speci-
fied).

*NO: Message protection is not used.

EMLDEV
This parameter specifies whether or not the
application is sending and receiving 3270 data
streams.

*NONE: This default value specifies that the
program device entry is not used to send and
receive 3270 data streams.

32xx : One of these values specifies that the
device is used to send and receive 3270 data
streams.

Note: If a value other than (*NONE) is speci-
fied, you are specifying that this device will
send and receive 3270 data streams.

See “ICF File Considerations” on page D-1 for
a complete description of this parameter and
the SNA 3270 program interface for SNUF.

RCDLEN
This parameter specifies the maximum record
length (in bytes) for the logical record of data
being sent and received from your program.
The specified length should not exceed the
length of the input/output buffer, which is
determined by the value of the MAXRCDLEN
parameter on the CRTICFF command.

*DEVD: The record length specified in the
device description is used. This is the default
value.

record-length: Type the maximum record
length when using this device file. The value
must be at least the size of the largest record
sent and cannot exceed 32 767 bytes.

For SNA 3270 program interface, ensure that
the specified length accommodates the larger
32 byte header, the largest display image pos-
sible with your application program, and pos-
sible field definitions that may follow the
display or printer image.

Note: If a record is longer than the specified
maximum record length, a run-time error
occurs at the time the record is sent or
received.

BLKLEN
This parameter specifies the maximum block
length (in bytes) for data sent.

*DEVD: The block length specified in the
device description is used. This is the default
value.

block-length: Specify the maximum block
length of records sent or received when using
this device file. The value must be greater
than or equal to the value of RCDLEN, but
cannot exceed 32 767 bytes.

SECURE
This parameter is valid only on the
OVRICFDEVE command and does not apply
to either the ADDICFDEVE or the
CHGICFDEVE commands. It is used to
restrict the effects of override processing.

*NO: Specifies no protection from other
program device overrides.

*YES: Specifies this program device is
secure from previously called override com-
mands.

Comparing Configuration and
Program Device Entry Command
Parameters
The parameter values from the configuration com-
mands are used for any SNUF session, unless
those values are changed by the program device
entry commands.

Figure 4-2 on page 4-6 shows the relationship
between the SNUF parameters for the program
device entry commands (ADDICFDEVE,
CHGICFDEVE, and OVRICFDEVE) and the con-
figuration commands. If there is no configuration
parameter corresponding to the program device
entry parameter, it is marked with a dash (–).
Except where noted, you specify all configuration
parameters when you create the device
description (CRTDEVSNUF command).

The ADDICFDEVE and CHGICFDEVE program
device entry commands cause permanent
changes for any SNUF session using the specified
program device. The OVRICFDEVE program
device entry command causes job-level changes
(as long as the OVRICFDEVE command remains
in effect) for any SNUF session using the speci-
fied program device.

 Chapter 4. Writing SNUF Application Programs 4-5

Figure 4-2. Comparing Configuration Command
Parameters and Program Device Entry Command
Parameters

 Communications Operations

This section gives a description of the operations
you can code into a program using SNUF support
to communicate with a host program.

For additional information on these operations and
functions, see the book, ICF Programming. For
coding examples, see the DDS Reference book.

Starting a Session

There are two ways to start a SNUF session:

� The AS/400 program can issue an
open/acquire operation to establish a session
between your program and a program at a
remote location. See “Open or Acquire
Operation” on page 4-7.

� The CICS/VS or IMS/VS program can send a
program start request to the AS/400 system.
See “Program Start Requests” on page 5-5.

Figure 4-2. Comparing Configuration Command
Parameters and Program Device Entry Command
Parameters

Parameter
Description

Configuration
Command
Parameter

Program Device
Entry Command
Parameter

Parameter
Description

Configuration
Command
Parameter

Program Device
Entry Command
Parameter

File – FILE1 Authority AUT –

Program device
name

– PGMDEV Notes:

1 This parameter is valid only on the ADDICFDEVE and
CHGICFDEVE commands.

2 This parameter is valid only on the OVRICFDEVE
command.

3 Specify (*DEVD) and the value is retrieved from the device
description at run time. This is the default for the param-
eter. Specify (*USER) and the application program sends a
logon message to the host system. The application
program is also responsible for receiving and handling
system services control point-logical unit (SSCP-LU) mes-
sages from the host system.

4 These parameters are used by the program device entry to
associate a program device name with the device
description you want to use. See the ICF Programming for
more information on defining program device entries.

5 If you specify RMTLOCNAME(*REQUESTER) on the
command, you are NOT prompted for these parameters:
DEV, APPID, BATCH, HOST, HDRPROC, and MSGPTC.
The program started by the host request will have acquired
the device, so device selection using the RMTLOCNAME
and DEV parameters does not occur. The value
(*REQUESTER) is only valid on the ADDICFDEVE,
CHGICFDEVE, and OVRICFDEVE commands.

Device description DEVD –

Local location
name

LOCADR –

Remote location
name

RMTLOCNAME RMTLOCNAME4,5

Online at IPL ONLINE –

Communications
type

– CMNTYPE

Attached controller CTL –

Device – DEV4

Format select – FMTSLT

Program start
request capable

PGMSTRRQS –

Application identi-
fier

APPID APPID3

Batch activity – BATCH

Host type HOST HOST3

End session with
host system

– ENDSSNHOST

Special host appli-
cation

– SPCHOSTAPP

Initialize self – INZSELF

Header processing – HDRPROC

Message pro-
tection

– MSGPTC

Emulation device – EMLDEV

 Device type – device type

 Data format – data format

Record length RCDLEN RCDLEN3

Block length BLKLEN BLKLEN3

Secure from over-
ride

– SECURE2

Default program DFTPGM –

 library LIBRARY –

Text description TEXT –

4-6 SNA Upline Facility Programming V4R1

Open or Acquire Operation

Your program uses the open or acquire operation
to establish a session between your program and
the host system.

You can start a session implicitly with the open
operation when you specify the ACQPGMDEV
parameter on the CRTICFF command, or you can
start the session explicitly by using the acquire
operation.

The open/acquire operation starts the following
sequence:

� SNUF sends a sign-on to the host system
using the application ID (APPID) parameter
specified when you configured the program
device entry (ADDICFDEVE) or changed the
program device entry (OVRICFDEVE or
CHGICFDEVE).

� SNUF examines the BIND command parame-
ters from the host system.

� SNUF sends your program a normal return
code when the host system is ready to begin
the session.

For a switched connection, the open/acquire oper-
ation starts a similar sequence. Additional steps
occur based on how the connection is configured.
For more information, see the Communications
Configuration book.

Sessions started by the acquire operation are
started with the parameters specified in the
ADDICFDEVE or OVRICFDEVE command. A
parameter specified in the OVRICFDEVE
command overrides any corresponding parameter
specified in the ADDICFDEVE or CHGICFDEVE
command.

Starting a Transaction

A transaction is a logical connection between two
programs. Use the evoke function to start a trans-
action between your system and the host system.
(A program start request from the remote host
system is used to start a transaction between the
host program and your program.)

 Evoke Function

The evoke function starts a transaction and identi-
fies the program on the CICS/VS or IMS/VS
system that is to receive the data. You must
acquire a program device to establish a session
before you can issue an evoke function in your
program. You can issue more than one evoke
function in a SNUF session to send or receive
multiple transactions to one or more remote pro-
grams. However, you cannot issue another evoke
function in your program until the current trans-
action is ended by either issuing a detach function
or receiving a detach indication. The evoke func-
tion is only supported when in half-duplex flip-flop
mode.

The evoke function uses an evoke parameter list
that identifies the remote program and, if security
is being used by IMS/VS, the correct password.
(For CICS/VS, security is handled with a special
sign-on transaction.) This list can optionally
contain user-supplied data for the remote
program. If you use either the EVOKE DDS
keyword or the system-supplied format ($$EVOK),
possible parameters are:

� Remote program name
 � User ID
 � Library name
 � User password
� User data or program parameters

Notes:

1. SNUF ignores the user ID, library name,
and user password when communicating
with CICS/VS, and ignores the user ID
and library name when communicating
with IMS/VS.

2. The optional data you can specify with
each type of evoke function can be user
data or program parameters.

When your program issues an evoke function,
SNUF builds and sends a program start request to
the host system. The host system receives this
transaction start record (host terminology), which
specifies an evoke parameter list containing the
remote program name (as a transaction code),
any password you specify, and any additional data
you supplied. When the remote program starts,
the host system passes the data you supplied to
its program.

 Chapter 4. Writing SNUF Application Programs 4-7

When CICS/VS receives the evoke request, it
starts the program. When IMS/VS receives the
evoke request, it schedules the specified program
for running. IMS/VS specifies the transaction data
when the program starts.

 Sending Data

You can send data during a transaction using the
write operation. Function management headers
can also be sent with the write operation.

 Write Operation

The write operation passes data records from your
program to the remote program. Each write oper-
ation sends only one record from the SNUF appli-
cation. To issue a write operation without sending
data, specify a zero-length output record. (The
zero-length output record tells SNUF there is no
data associated with the write operation.) You
can also use a write operation to send control
information or commands (such as the IMS/SET
command) to the host system. You can issue a
write operation any time you have control of the
session.

You can start a transaction with either a write
operation or evoke function. If you start a trans-
action with a write operation, you are responsible
for setting up the data to be sent.

The manner in which SNUF sends logical records
depends on the BATCH parameter on the
ADDICFDEVE or OVRICFDEVE command. If you
specify BATCH(*NO), SNUF sends each logical
record as a complete chain. SNUF automatically
divides records greater than the size of the
maximum request/response unit (RU) into ele-
ments of a chain. If you specify BATCH(*YES),
SNUF divides logical records as required but does
not chain them.

Variable length records can be sent by specifying
the DDS keyword VARLEN for the record con-
taining the variable length data. To set the length
before a write operation, the length of the data
contained in a field defined by this keyword in
DDS can be accessed as required by your
program. If your program combines the write
operation with an input operation (for example,
write-with-invite), SNUF sends a turnaround indi-
cation and performs the input operation. If your

program issues a write-with-invite, it must issue a
read or read-from-invited-program-devices opera-
tion to receive the data from SNUF. Use the timer
function to limit the waiting time for the read-from-
invited-program-devices operation.

If your program does not combine the write opera-
tion with an input operation (write, write with end-
of-group, or write with detach), SNUF sends one
data record to the remote system for each write
operation.

If an error occurs while sending your data, SNUF
notifies your program with a return code on the
current write operation, and the data is not sent.

 End-of-Group Function
Your program uses the end-of-group function to
indicate that this is the last record in a chain of
records. The end-of-group function does not indi-
cate, however, that your program is ready to
receive data. Use the DDS keyword allow write
(ALWWRT) to indicate that your program has fin-
ished sending data and now wants to retrieve data
from the host system.

 Function-Management-Header
Function
You can send a function management header (FM
header) with a write operation. A function man-
agement header is valid only with the first record
in a chain. SNUF checks whether the function
management header is allowed, but does not
check the function management header format or
content.

The function management header is a special
record or portion of a record that contains control
information for the data that follows. The first byte
of the record defines the length of the header.
The length is specified in hexadecimal and
includes the length byte. The header portion
immediately follows the length byte.

When your program receives a function manage-
ment header, the action SNUF takes depends on
the header processing (HDRPROC) parameter of
the ADDICFDEVE or OVRICFDEVE commands.
If you specified HDRPROC(*SYS), SNUF removes
the function management header and places any
user data in the record area. If you specified
HDRPROC(*USER), SNUF places the function
management header in the record area. The

4-8 SNA Upline Facility Programming V4R1

return code indicates that a function management
header was received. To receive any data that
accompanied the FM header, issue a second input
operation.

When a session started by a program start
request receives a function management header,
SNUF examines the FM header for hex
0542000001, which is the standard IMS/VS func-
tion management header. This function manage-
ment header does not contain function
management information and is not placed in the
record area. If the function management header
is not hex 0542000001, SNUF passes it to the
application program as the first input. To get any
additional data that accompanied the program
start request, issue a second input operation.

 Receiving Data

Two operations can be issued to receive data:
read and read-from-invited-program-devices. Use
the read operation to receive data from a specific
program device, and use the read-from-invited-
program-devices operation to read from any previ-
ously invited program device. Use the invite
function to request data from a specific remote
program.

 Read Operation

Your program uses the read operation to obtain
data from a specific program device. In a commu-
nications session, the operation causes SNUF to
read data from the remote program with which
your program is communicating. Your program
does not receive control until the data is available.

The record that your program receives depends
on the BATCH parameter of the ADDICFDEVE or
OVRICFDEVE commands. If you specify
BATCH(*NO), SNUF assembles each physical
record into a logical record until it reaches the
end-of-group indicator. Your program can perform
record selection at the time a data record is
received, based on the content of a portion of the
record. Use the DDS keyword RECID to specify
this selection value.

To check for an end-of-group indication sent by
the host system, test a response indicator associ-
ated with the DDS keyword RCVENDGRP or test

for one of the return codes listed under “Receive-
End-of-Group” on page 4-14.

To check for a function management header on
the first record of a chain of records, check for
one of the return codes listed under “Receive-
Function-Management Function” on page 4-14 or
test a response indicator associated with the DDS
keyword RCVFMH. If your program has received
a function management header, your program
must issue another read operation to obtain the
data associated with that function management
header.

Your program does not always receive data after
an input request. In certain instances, only a
return code is set to indicate a change in the oper-
ating state of a session. Test for a turnaround
indication sent from the host system by testing a
response indicator associated with the DDS
keyword RCVTRNRND or by checking the return
code.

 Invite Function

Your program uses the invite function to request
input data from a specific remote program. Your
program receives control without waiting for the
input. To obtain the data, your program must
issue a read or read-from-invited-program-devices
operation later in the transaction.

You can issue the invite function alone or in com-
bination with another function.

 Read-From-Invited-Program-Devices
Operation

Your program can use the read-from-invited-
program-devices operation to perform the fol-
lowing functions:

� Obtain data from any remote program that has
responded to an invite function previously
issued in your program. If data becomes
available to your program from more than one
remote program before the read-from-invited-
program-devices operation is issued, your
program receives the data that was first made
available from a remote system.

� Verify that the time interval established by the
timer function has run out, and if it has,
ensure that your program is notified. For a

 Chapter 4. Writing SNUF Application Programs 4-9

description of the timer function, see “Timer
Function” on page 4-12.

All read-from-invited-program-devices operations
should be issued to receive data after an invite
function is issued by itself or in combination with
another operation, or after a timer function is
issued. The operation can receive any of the
same return codes as the read operation.

Waiting for a Display File, an ICF
File, and a Data Queue

Use data queues when a program must wait for a
display file, an ICF file, and a data queue, in any
combination, at the same time. The following
commands are used with the specified DTAQ
parameter:

� Create Display File (CRTDSPF)
� Change Display File (CHGDSPF)
� Override Display File (OVRDSPF)
� Create ICF File (CRTICFF)
� Change ICF File (CHGICFF)
� Override ICF File (OVRICFF)

Use these commands to indicate a data queue
that will have entries placed in it when one of the
following occurs:

� An enabled command key or Enter key is
pressed from an invited display device.

� Data becomes available when the session is
invited for an ICF device.

� A user-defined entry is made to a data queue
by a job running on the system.

For more information, see the CL Programming
book and the ICF Programming book.

Notifying the Remote Program of
Problems

Use the fail, cancel, and negative-response func-
tions to inform the host application program of any
errors in data being sent or received.

 Fail Function

The fail function causes different indications to be
sent to the host system, depending on the current
state of your program.

� If your program is in a send state, SNUF
sends a cancel indication to the remote host
system. Any data not sent in the current
transmission chain is discarded.

� If your program is in a receive state or if fail is
the first function issued after receiving an end-
of-group (chain) indication, SNUF sends a
negative-response indication to the remote
host system.

 Cancel Function

Your program uses the cancel function to cancel
the current chain of data it is sending to the
remote program. The cancel function informs the
remote program that it is abnormally ending the
current data chain. The receiving program should
disregard all records received since the last end-
of-group (chain) indication.

The cancel function is valid only under the fol-
lowing conditions:

� While your program is in a send state.

� In a chain of records. You cannot cancel a
chain after sending the end-of-group indi-
cation.

� In batch sessions. In batch sessions, a chain
may contain several records.

Your program receives an error return code if it
issues a cancel function in a session specified as
BATCH(*NO) on the ADDICFDEVE or
OVRICFDEVE commands. It also receives an
error return code if it issues a cancel function
between chains or in receive state.

The cancel function does not end the session.
The host system can perform error recovery after
receiving the cancel indication. To determine the
recovery action the host system takes, issue an
input operation after your program issues a cancel
function.

The host system can also send a cancel indication
to your program. To check for a cancel sent from
the host system, check for return code 8330 or

4-10 SNA Upline Facility Programming V4R1

8331, or test a response indicator associated with
the DDS keyword RCVCANCEL.

 Negative-Response Function

Your program uses the negative-response function
when it detects an error with the data it received.

Issue the negative-response function when your
program is in the receive state, the data received
is in a chain, or the function is the first function
after the end of a chain.

When your program sends a negative-response
indication to the program that sent the data, it may
include eight characters of sense code, which indi-
cates the reason for the negative response.

The eight characters of sense code are coded as
user data in your program output buffer. The first
four characters in the buffer are the system sense
code; the last four characters are the user sense
code.

The system sense code must be one of the fol-
lowing: 10xx, 08xx, or 0000. SNUF checks the
system sense code and rejects the operation if it
is not one of the specified codes. If the program
does not supply a system sense code, the system
uses the default code of 0811 (break). The sup-
ported SNA sense codes are described in the
Systems Network Architecture Formats book.

Your program can also receive a negative-
response indication from the host system. To
check for a negative response received from the
host system, check for return code 8319 or test a
response indicator associated with the DDS
keyword RCVNEGRSP.

Using Additional Functions and
Operations

Your program can use the get-attributes operation
and the respond-to-confirm, request-to-write,
cancel-invite, and timer functions with SNUF com-
munications.

 Respond-to-Confirm

Use the respond-to-confirm (RSPCONFIRM)
keyword to send a positive response to a received
definite response request. The respond-to-confirm
function can be used only when a definite
response request is outstanding. You can check
the major and minor return codes or use the
RCVCONFIRM indicator to determine when to
issue a respond-to-confirm function. After sending
the response, your program can continue pro-
cessing as indicated by any other information
received.

 Request-to-Write Function

Your program uses the request-to-write function to
indicate that it wants to send data to the remote
program. When the remote program receives the
request-to-write indication, it decides whether to
stop sending data and when to stop.

After issuing this function, your program should
continue to receive data until it receives a return
code indicating the remote program is ready to
begin receiving. (In some cases, the remote
system may decide not to receive data and thus
does not send a turnaround indication.) In
response to the return code, begin sending data,
perform other processing, or end your program.

Issue the request-to-write function only during a
transaction and only when your program is in the
receive state. If your program is neither receiving
nor sending (that is, if it is between transactions),
issuing the function has no effect and an 8327
code is returned to your program.

If the remote program sends a request-to-write
indication, your program receives return code
0010 at the end of a write operation. If your
program receives this return code, stop sending
data and issue an input operation as soon as pos-
sible.

 Cancel-Invite Function

Your program uses the cancel-invite function to
cancel any invite function which has not received
any input from any invited session. The cancel is
handled by SNUF on the AS/400 system; no
command or data is sent to the host system.

 Chapter 4. Writing SNUF Application Programs 4-11

If data or a message is being received from the
remote system when the cancel-invite function is
initiated, the cancel-invite function fails and return
code 0412 is received by your program. Your
program must issue input operations to receive
the data until it receives return code 0300 or 0308.

 Timer Function

Your program can use the timer function before
doing specified functions, such as a read-from-
invited-program-devices operation. The timer
function specifies an interval of time (in hours,
minutes, and seconds) to wait before your
program receives a return code of 0310 (timer run
out).

Use the timer function to set the timer interval.
The timer function is issued on an output opera-
tion to a record that has the record level keyword
TIMER specified.

When a timer is set and your program requests
data from a previously invited device, if data is
available, your program receives the data along
with a return code indicating a successful opera-
tion. If an error occurs, your program receives a
return code describing the error. If the timer runs
out before the data is received, return code 0310
is received by your program and the session
remains invited.

Another way to specify the time interval is with the
WAITRCD parameter on the CRTICFF, CHGICFF,
OVRICFF commands. The WAITRCD parameter
establishes the maximum time interval used for all
read-from-invited-program-devices operations
issued for the ICF file.

When the timer function is in effect, the value
specified for the WAITRCD parameter is ignored.

Only one timer interval can be maintained for a
program. If you set a new timer before an existing
timer has run out, the new timer replaces the old
one.

Note: For ILE RPG/400 programs, a timer func-
tion is not valid unless at least one session is
attached to your program.

 Get-Attributes Operation
Your program uses the get-attributes operation to
determine the status of the current session. You
can issue it at any time during the session. The
operation gets the current status information about
the session in which your program is communi-
cating.

Ending a Transaction

A communications transaction can be ended by
your program or by the program at the remote
system.

Communications with the remote program ends
when your program ends the transaction;
however, the session may still exist:

� If your program acquired the session, either
the AS/400 system or the host system can
start another transaction in this session.

� If the host system acquired the session and
your program ends the transaction, the remote
system can issue another program start
request to the AS/400 system. To begin
another transaction from the AS/400 system,
you must open or acquire a new session.

 Detach Function

A transaction is ended with the detach function.
The detach function informs the other program
that your program is done sending data and has
ended the transaction. The detach function is only
supported in half-duplex flip-flop mode.

You can combine the detach function with either
an evoke function or a write operation.

Ending a Session

A communications session is ended with either the
release operation or the end-of-session function.
You should primarily use the release operation
because the release operation ends the session
only if all processing is complete.

The end-of-session function always ends the
session; therefore, it should be used only when
you want to force the session to end.

4-12 SNA Upline Facility Programming V4R1

 Release Function

Your program uses the release function to end a
session. This operation ends the session unless
an error condition occurs (in which case, the
release operation is not successful). To end the
session unconditionally, use the end-of-session
function.

If your program issues a release operation during
an active transaction, it receives an error return
code. The system performs the release operation
only after all data for the transaction has been
sent or received.

When your program issues a successful release
operation, SNUF ends the session and frees the
resources that were used by your program. The
logical unit is made available to other programs in
the system wanting to acquire the session or for
another program start request from the host
system.

 End-of-Session Function

Your program uses the end-of-session function to
end a session. The end-of-session function ends
the session and always gives a normal completion
return code. If your program uses the keyword
during an active transaction, SNUF abnormally
ends the transaction and the session, and possibly
the remote program as well. However, your
program still receives a normal completion code.
You can use this function when an error occurs on
a previous function and your program cannot
easily recover.

When a program started by a program start
request receives a detach return code, end the
program or issue an end-of-session function. This
leaves the session and remote program available
for other transactions.

Note: A positive response is sent before the
session is ended normally if the previous opera-
tion received an end-of-chain indication and a
response is required. Negative responses are
sent to the chains that are partially received by the
user program, or if the session is ended by the
system.

Using Response Indicators

Response indicators are defined to your program
in the ICF file and are set on each input operation.

However, these indicators are optional, and major
and minor return codes can also be used to indi-
cate the status of input operations.

 Receive-Cancel

Your program uses the receive-cancel response
indicator to determine if the remote program can-
celed the current chain.

Receipt of a cancel request is also indicated by
major return code 83 (session error) and minor
return codes 30 (cancel with change-direction) or
31 (cancel without change-direction).

The cancel notification is always received without
user data.

 Receive-Confirm

Your program uses the receive-confirm response
indicator to determine if the remote program sent
an end-of-chain indication with the definite
response request.

Receipt of a confirm request is also indicated by
major return code 00 (user data received) and
minor return code 03 (end of group received).

 Receive-Detach

Your program uses the receive-detach response
indicator to determine if the remote program has
ended a transaction (the detach request has been
received). The receive-detach function is only
supported in half-duplex flip-flop mode.

The presence of the detach request is also indi-
cated by major return codes 00 (user data
received), 02 (user data received but program is
being canceled), or 03 (no data received), and
minor code 08 (detach received).

 Chapter 4. Writing SNUF Application Programs 4-13

 Receive-End-of-Group

The receive-end-of-group response indicator is
used by your program to determine if your
program has received the last record in a group
(chain).

The presence of the end-of-group function is also
indicated by major return codes 00 (user data
received), 02 (user data received but program is
being canceled), or major return code 03 (no data
received) with minor return codes 03 or 07.

 Receive-Function-Management
Function

Your program uses the receive-function manage-
ment header response indicator to determine that
function management header data was received
from the host program.

The presence of function management header
data is also indicated by major return code 00
(user data received) with minor return codes 04,
05, or 07, or major return code 02 (user data
received but program is being canceled) and
minor return codes 04, 05, or 07.

 Receive-Negative-Response

Your program uses the receive-negative-response
indicator to receive an indication that the other
program encountered an error when it was
receiving data.

Receipt of a negative-response function is also
indicated by a return code of 8319.

 Receive-Turnaround

Your program uses the receive-turnaround
response indicator to receive an indication from
the other program that it is ready to receive data.

Receipt of a turnaround function is also indicated
by return codes 0000 (user data received), 0200
(user data received but program is being can-
celed), or 0300 (no data received).

Using the Input/Output Feedback
Area

The results of input/output (I/O) operations are
communicated to the program using the return
codes, messages, and I/O feedback information.
The area is changed for each I/O operation and
consists of a common I/O area and a file-
dependent I/O area.

Offset 48 in the file-dependant I/O feedback area
applies to SNUF and indicates whether the remote
program has requested permission to send data.
For general information about the I/O feedback
areas, see the book, ICF Programming.

Using Return Codes

After each operation, an ICF return code is
returned to your program. Your program should
check this return code to determine:

� The status of the operation just done
� The operation that should be done next

For example, a major return code of 00 indicates
that data was received. Along with this major
code, you can receive from SNUF, for example,
one of the following minor codes:

� 01: Indicates that your program should con-
tinue receiving data.

� 08: Indicates that the remote program has
ended the transaction. Your program can do
one of the following:

– If your program acquired the session,
issue another evoke function or end the
session.

– If the session was acquired by a program
start from the remote system request, end
the session and continue local processing
or end the job.

Another example would be a major code of 83. In
this case either the local system, remote system,
or remote program has detected an error that may
be recoverable. Different minor codes can be
returned just as for the 00 major code. For
example, if your program receives a minor return
code of E8, your program has used a cancel-invite
function in a session that was not invited. The
cancel-invite function is only valid when it is used

4-14 SNA Upline Facility Programming V4R1

after a valid invite function. For this return code,
your program is responsible for the necessary
error recovery. The session and transaction are
still active, and you can recover from this error by
correcting the error in your program before trying
to communicate with another program.

It is recommended that your program check the
ICF return codes at the completion of every opera-

tion to ensure that the operation completed suc-
cessfully or, if not, that the appropriate recovery
action is taken.

See Appendix B for a description of the return
codes that can be returned to your application
when it is using SNUF.

 Chapter 4. Writing SNUF Application Programs 4-15

4-16 SNA Upline Facility Programming V4R1

Chapter 5. Considerations for SNUF

This chapter discusses programming consider-
ations for application programs that provide com-
munications between the AS/400 system and a
host system. It examines programming topics for
the AS/400 system programmers, and program
start request formats for both the host and AS/400
system. See Appendix C for information needed
by the host programmers to communicate through
SNA upline facility (SNUF).

 General Considerations

The following topics apply to both CICS/VS and
IMS/VS host systems. They describe information
needed by the AS/400 SNUF programmer while
writing programs that communicate with either
CICS/VS or IMS/VS. These topics also apply to

both half-duplex flip-flop and half-duplex con-
tention modes. This section is followed by a dis-
cussion of contention mode (see “Contention
Mode Considerations” on page 5-4).

 Half-Duplex Communications

Communication between an AS/400 program and
a host system program occurs in either half-duplex
flip-flop or contention modes, with one program
sending at a time. When the sender wants to
become the receiver, it sends a turnaround indi-
cation.

While sending, your program can cause a turn-
around by issuing an input operation. SNUF inter-
prets the input operation and sends the
turnaround indication, as shown in Figure 5-1.

Data

No data with
change direction

Data

IMS/VS or
CICS/VSSNUF

Write

Write

Read

AS/400
Application

RV2W531-0

IMS/VS or CICS/VS
Application Program

Figure 5-1. Sending Data in Half-Duplex Mode

To make more efficient use of the communications
line, use write-with-invite to send a turnaround
indication, as shown in Figure 5-2.

IMS/VS or
CICS/VSSNUF

Data

Data

Data with change
direction

Write

Write with Invite

Read

RV2W532-0

AS/400
Application

IMS/VS or CICS/VS
Application Program

Figure 5-2. Sending a Change-Direction Indication in Half-Duplex Mode

If your program is receiving and must send data,
use the request-to-write function. This causes
SNUF to request that the current sender send a
turnaround indication as soon as possible. If your

program is sending data and receives a request-
to-write return code, perform an input operation as
soon as possible.

 Copyright IBM Corp. 1997 5-1

Sending Records in Chains

The request/response unit (RU) size parameter in
the BIND command limits the size of a request
unit that two logical units can send to each other.
In order to send a request that contains more
information than will fit into one RU, logical units
divide the information into a series of separate
requests. This series of related requests is called
a chain. You determine the maximum length of
an RU during host system generation.

How your program processes chains is deter-
mined by the type of session you specify: either
an interactive or a batch session. You choose the
type of session by specifying BATCH(*NO) or
BATCH(*YES) on the ADDICFDEVE or
OVRICFDEVE command.

The RU size parameter is ignored for a program
started by a program start request. The program
is treated as though BATCH(*YES) was specified.

Interactive Sessions: If you specify
BATCH(*NO), each output operation is considered
a logical record and is written as a separate chain.
For input operations, SNUF assembles elements
of a chain into one logical record until it reaches
the end-of-group indication or the maximum record
length. If SNUF reaches the maximum record
length before it reaches the end-of-group indi-
cation, return code 81B9 is passed to your
program and the session ends abnormally.

For output operations, SNUF sends each logical
record as a chain. If the length of the logical
record exceeds the size of the RU, a chain of
request units is used to send the data. If the
length of the logical record does not exceed the
size of the RU, a single RU, with begin- and end-
chain indicators, is sent.

The effect of chaining on the host IMS/VS or
CICS/VS system must also be considered. If the
host is not configured to assemble the chain of

request/response units into a logical record, the
host application programmer will be responsible
for the task.

The following SNUF communications functions are
not valid in interactive sessions:

 � Cancel
� Cancel with invite

Figure 5-3 on page 5-3 shows how SNUF uses
chains when you specify BATCH(*NO) and set the
maximum request unit size to 256.

Batch Sessions: If you specify
BATCH(*YES), SNUF does not attempt to distin-
guish logical records. For input operations, SNUF
passes an RU for each read to the application
program, which must determine the logical
records. Therefore, while operating with
BATCH(*YES), your program should check for an
end-of-group return code.

Normally, when your program issues write oper-
ations and then performs an input operation or
ends the transaction, it sends an end-of-group
indication. In these cases, SNUF automatically
ends the chain. When operating with
BATCH(*YES), your program may want to send
an end-of-group indication without sending a turn-
around indication or without ending the trans-
action. For example, you may want your program
to break data streams into smaller units that can
be recovered. To accomplish this, issue a write-
with-end-of-group function.

If your application uses the timer function, set the
timer to the time:

� It will take the host to send, or
� For the AS/400 to receive all of the elements

of the chain (first in chain, middle in chain,
end of chain).

When the entire chain is received by SNUF, the
chain can be retrieved by the application by using
multiple READ operations.

5-2 SNA Upline Facility Programming V4R1

.

. . .

. . .

. . .

. . .

.

. . .

.

. . .

Start of chain

Start of chain

End of chain

End of chain

256 512

256 512

CICS/VS or
IMS/VS

CICS/VS or IMS/VS
Application ProgramSNUF

Read

Write with Invite
AA A BB B

AS/400
Application Program

RSLS152-7

CC C DD D

AA A BB B

AA A

BB B

CC C DD D

CC C

DD D

Figure 5-3. Chaining in an Interactive Session – BATCH(*NO)

Figure 5-4 shows how SNUF handles chaining
when you specify BATCH(*YES).

. . .

. . .

. . .

.

. . .

. . .

Start of chain

End of chain

Start of chain

End of chain

. . .

. . .

. . .

CICS/VS or
IMS/VS

CICS/VS or IMS/VS
Application ProgramSNUF

AS/400
Application Program

RSLS153-8

AA A

BB B

CC C

XX X

YY Y

XX X

YY Y

Write
AA A

Write
BB B

Write with Invite
CC C

Read

Read

Figure 5-4. Chaining in a Batch Session – BATCH(*YES)

Receiving Messages from the
Host System

SNUF can receive messages from both CICS/VS
and IMS/VS. These messages inform SNUF and
your program of key events occurring in the
session. CICS/VS and IMS/VS send their mes-
sages in the following arrangement:

 � For CICS/VS: DFHccnn text

 � For IMS/VS: DFSccnn text

For CICS/VS, DFH identifies the message, and
ccnn represents the message number as
described in the CICS/VS Messages and Codes.
For IMS/VS, DFS identifies the message, and
ccnn represents the message number as
described in the IMS/VS Messages and Codes
Reference Manual. See the appropriate book for

 Chapter 5. Considerations for SNUF 5-3

additional information about the received
message.

When SNUF receives a host system message, it
waits for your program to receive it on the next
operation. If the next operation is an input opera-
tion, the message is returned to the input buffer of
your program, and a return code is sent to your
program to indicate that there is a message in the
input buffer. If the next operation is not an input
operation, the operation is rejected with a return
code that indicates a message or data is waiting.
In this case, your program must issue an input
operation to get the message text. Until you
receive the message, SNUF rejects any output
operations.

CICS/VS and IMS/VS messages may be greater
than the length of your program input buffer. If
this occurs, SNUF truncates the message on the
right and passes your program a return code indi-
cating the truncation.

 Session Recovery

Protected sessions can be successfully started
again after communications line failures. You
define a protected session by specifying
MSGPTC(*YES) on the ADDICFDEVE or
OVRICFDEVE commands. When SNUF starts
the session again, it exchanges information with
the host system about the last messages sent and
received. SNUF uses this information to deter-
mine whether any data must be sent again.
Therefore, to correctly start a protected session
again, you must also define the host system
session and transaction as protected. For
CICS/VS host systems, specify the
TYPE=OPTGRP parameter on the DFHPCT
macro. For IMS/VS host systems, specify the
INQUIRY parameter on the TRANSACT macro.

With a protected session, when a line error occurs
SNUF tries to start the session again. If the
session does not start again successfully, return
code 8191 is passed to your program. If SNUF
successfully establishes the session again, the
session resumes at the point of failure.

Contention Mode Considerations

Communications between an AS/400 system
program and a host system program can occur in
half-duplex contention mode. The following is pre-
sented to help explain the differences between
half-duplex flip-flop and contention modes.

� When communicating in flip-flop mode, the
session is in contention state after the end-
bracket. When communicating in contention
mode, the session is in contention state after
the end-chain.

� When in contention, SNUF is the contention
winner.

� Since begin-bracket or end-bracket protocol is
not used when communicating in contention
mode, EVOKE, DETACH or RCVDETACH
functions are not supported.

� The first request (RU) after the BIND
command is treated as a program start
request. The program start request formats
described in Figure 5-5 on page 5-6 and
Figure 5-6 on page 5-6 are also applicable in
half-duplex contention mode. The session
should be ended and then restarted to run
another program on the AS/400 system.

 Performance Considerations

The following suggestions can help you get better
performance in sessions using SNUF:

� Combine input operations with output oper-
ations. For example, use evoke-with-invite.

� Specify a nonprotected session with
MSGPTC(*NO) on the ADDICFDEVE or
OVRICFDEVE commands. Nonprotected ses-
sions require less line activity than protected
sessions; however, no session recovery is
provided by SNUF.

� Specify an RU size large enough to contain
the largest record to be sent or received.
Specify the RU size as large as the value
specified for the maximum user record length.
Larger RU sizes may improve performance.
For more information on blocking, see the
book, Communications Management.

� Specify a proper pacing count. If pacing is
needed, seven is the best pacing count, as

5-4 SNA Upline Facility Programming V4R1

values above this might not improve perfor-
mance. For more information on pacing
counts see the book, Communications Man-
agement.

� The host system configuration parameters
MAXDATA, MAXOUT, and PACING, the
BFRS Group Macro parameter, and the
PASSLIM Build Macro parameter can affect
communications performance. For more infor-
mation, see “Performance Considerations” on
page C-5.

Program Start Requests

For a program on a CICS/VS or IMS/VS remote
system to start a program on the AS/400 system,
the remote program must send a program start
request to the AS/400 system after you have
started communications between the two systems.
The program started by the program start request
must run on a device you specify at configuration
time as being program start request capable.

When SNUF receives a program start request, it
determines if the job should be run in the
System/36 environment. If a System/36 proce-
dure cannot be found SNUF starts the job in the
OS/400 environment. For compatibility, the
formats *TXTC, *TXTX, *EXEC, and *EXEX can
be used to start a job in either the System/36 or
the OS/400 environment. The following sections
only consider the OS/400 environment. For
running jobs in the System/36 environment, see
the System/36 Environment Programming.

Communicating programs started by the host
system (by the *EXEC, *EXEX, *TXTC, or *TXTX
program start request) are treated as if BATCH
(*YES) is specified. This means that each input
request from the AS/400 program is satisfied with
one element of a chain instead of requiring the
entire chain. The end-of-chain return code is set
when the last element of the chain is received, if it
is not overridden by the end-of-transaction or
change-of-direction return code.

Note: For general information on writing pro-
grams to be started by a program start request,
see the book, ICF Programming.

Formats of the Program Start Request:
CICS/VS and IMS/VS on a remote system can
send four different program start request formats:

Format Description

*TXTC This format starts a session in which
CICS/VS or IMS/VS can send more
than one record to the same program
on the AS/400 system before the
session is ended.

*TXTX This format starts a session in which
the request statement is the only
source of data for the program or it is
the only source of parameters for the
program.

*EXEC This format functions the same as the
*TXTC format but is used for
System/36 compatibility only.

*EXEX This format functions the same as the
*TXTX format but is used for
System/36 compatibility only.

The *TXTC and *TXTX formats allow you to use
up to a 10-character program name and library
name. The *EXEC and *EXEX formats allow only
an 8-character program name and library name.
The *EXEC and *EXEX formats are the same
formats used on the System/36 and are included
for use by CICS/VS and IMS/VS programs which
formerly communicated with System/36 programs
using SNUF. Use the *EXEC and *EXEX formats
for applications requiring compatibility with
System/36, and use the *TXTC and *TXTX
formats for all other applications.

The program start request identifies which
program is to be started. The request can include
up to 119 bytes of parameters if the format is
*EXEX or *EXEC, and 218 bytes of parameters if
the format is *TXTX or *TXTC to be passed to a
program. In the System/36 environment, these
parameters can be treated as data and received
by the application program using the first read.

A program start request must be on the first
request unit (RU). Once the AS/400 program
receives all the data, issue an end-of-session
function. Otherwise, the session does not end
until the AS/400 program ends.

A session started by IMS/VS with a program start
request can pass data or parameters with the
request but it cannot receive data from the AS/400
system. Similarly, a program on the AS/400
system can receive data from IMS/VS in a
remotely started session but cannot send data.

 Chapter 5. Considerations for SNUF 5-5

Keep the session active until the AS/400 program
receives the data and a detach return code. Then
end the session or end the program. To have the
AS/400 program communicate further with
IMS/VS, include an OVRICFDEVE command and
issue an acquire operation to acquire a new
session with IMS/VS.

The begin-bracket (in half-duplex flip-flop mode)
and first-of-chain indicators must accompany the
program start request. If the program start
request is a detach (*TXTX, *EXEX) request, end-
bracket (in half-duplex flip-flop mode) and end-of-
chain indicators must also accompany the request.

The host system must send a BIND command to
logical units reserved for program start requests
on the AS/400 system. Use the VTAM VARY
command with the LOGON option, the LOGAPPL
parameter in the VTAM definition, or the appro-
priate host system procedure (CICS/VS ACQ
master terminal command or the IMS/VS
/OPNDST command). After a detach return code,
the AS/400 program should issue the end-of-
session function so other program start requests
can be handled.

A program started by a program start request is
always run in batch mode. It is treated as if
BATCH(*YES) is specified on the ADDICFDEVE
command.

Syntax of the Program Start Request State-
ment: The type of program start request (*EXEC,
*EXEX, *TXTX, or *TXTC) must begin in position
1 of the program start request statement. If the
type begins in any other position, SNUF starts the
default program instead of the program named in
the statement.

The syntax of the program start request statement
is shown in the following diagram:

__

\TXxx or \EXxx program name

 ┌ ┐ ┌ ┐

│ parameters │ │ user identifier │

 └ ┘ └ ┘

 ┌ ┐ ┌ ┐

│ library name │ │ user password │

 └ ┘ └ ┘

__

Figure 5-5 describes each parameter for a
program start request type of *TXTX or *TXTC.

Figure 5-5. Parameters for the Program Start Request (*TXTX, *TXTC)

Coding Positions Field Description

1 through 6 *TXTX,
*TXTC

Type of program start request being used to start a program on
the AS/400 system. Position 6 must be a blank.

7 through xx Program
name

The name of the program to be started on the AS/400 system.
The name must be 1 to 10 characters long. One or more blanks
must follow the name.

xx through 226 Parameter Parameter for the program started. This field begins with the first
nonblank character following the program name.

227 through 236 User ID The user ID (name) of the AS/400 user whose program is being
started. If security is active on the AS/400 system, this ID must
be defined on the system.

237 through 246 Library name The name of the AS/400 library that contains the program to be
started.

247 through 256 User pass-
word

The password of the AS/400 user whose program is being
started.

Figure 5-6 on page 5-6 describes each parameter
for a program start request type of *EXEX or
*EXEC.

5-6 SNA Upline Facility Programming V4R1

Figure 5-6. Parameters for the Program Start Request (*EXEX, *EXEC)

Coding Positions Field Description

1 through 6 *EXEX,
*EXEC

Type of program start request being used to start a program on
the AS/400 system. Position 6 must be a blank.

7 through xx Program
name

The name of the program to be started on the AS/400 system.
The name must be 1 to 8 characters long. One or more blanks
must follow the name.

xx through 127 Parameter Parameter for the program started. This field begins with the first
nonblank character following the program name.

128 through 135 User ID The user ID (name) of the AS/400 user whose program is being
started. If security is active on the AS/400 system, this ID must
be defined on the system.

136 through 143 Library name The name of the AS/400 library that contains the program to be
started.

144 through 147 User pass-
word

The password of the AS/400 user whose program is being
started. The password must contain 4 characters. If security is
active on the AS/400 system, this password must be defined on
that system and must be the correct password for the user ID
specified.

Note: The user ID, library name, and user pass-
word fields are positional and must be padded on
the right with blanks if another field follows. If
security is not used on the AS/400 system, the
user ID and password are not required.

The program start request statement can contain
parameters following the program name. Any
parameter that follows the program name through
position 127 if the format is *EXEX or *EXEC, or
position 226 if the format is *TXTX or *TXTC, is
used by the program started on the AS/400
system. If security is used, the remote system
uses the positional parameters specified in posi-
tions 128 through 147 for the formats *EXEX or
*EXEC or positions 227 through 256 for formats
*TXTX or *TXTC to pass security information to
the AS/400 system.

At least one blank must separate the program
name that begins in position 7 from the data or
parameters. If the AS/400 system uses security,

send the program start request as a 147-byte
record if the format is *EXEX or *EXEC, and as a
256-byte record if the format is *TXTX or *TXTC.
Any unused positions should contain blanks.

If the system does not use security and does not
specify a library name, you do not need the three
parameters in positions 128 through 147 for the
formats *EXEX or *EXEC or positions 227 through
256 for formats *TXTX or *TXTC. In this case, the
length of the program start request depends only
on the amount of data and the number of parame-
ters to be passed to the AS/400 program.

If a program was not started successfully, a nega-
tive response with sense data is sent to the
remote system. The sense data contains the
reason code of the failure.

Sample of a Program Start Request:
Figure 5-7 shows a sample of the record format of
a CICS/VS or IMS/VS program start request.

1 7 227 237 247

RSLS167-3

Figure 5-7. Example Program Start Request Record Format

 Chapter 5. Considerations for SNUF 5-7

In Figure 5-7, the program start request starts the
AS/400 program named S3XPROG and sends it
three positional parameter values. The identifier
of the AS/400 user whose program is being
started is CI3X. The user’s password is J7PW.
The S3XPROG program is located in the AS/400
library named ULIBC.

Prestart Jobs Considerations

To minimize the amount of time required to carry
out a program start request, you can use prestart
jobs to start a job on your system before the
remote system sends a program start request.

To use prestart jobs, you need to define both
communications and prestart job entries in the
subsystem description, and make certain program-
ming changes to the prestart job program with
which the host program communicates. For infor-
mation on using prestarted jobs, see the book,
ICF Programming.

Programming for CICS/VS
Systems

The following topics describe information needed
by the AS/400 SNUF programmer while writing
programs that communicate with CICS/VS. This
information describes half-duplex flip-flop commu-
nications.

Evoke Considerations for a
CICS/VS System

When it communicates with CICS/VS, SNUF
ignores the user ID, library name, and user pass-
word parameters in the evoke function and sends
the remote program name and the user data or
program parameter. The first parameter is both
the name of the CICS/VS program to be evoked
and the CICS/VS transaction code. The name of
the CICS/VS program is limited to four characters.
SNUF does not send the user password, library
name, or user ID parameters specified in the
program evoke function.

If the CICS/VS host system is using security, the
first evoke function your program issues must start
a sign-on (CSSN) transaction on the host system.
You must include the required security information

with the evoke function. You also must specify
the transaction code CSSN in the program name
parameter and include the keyword parameters
PS (user password) and NAME (user ID) as the
program parameter. For additional information
about the CSSN and sign-off (CSSF) transactions,
see “SNUF Transaction Codes” and “Security
Considerations.”

SNUF Transaction Codes

There are several transactions that an AS/400
program can send to a CICS/VS system to start a
particular remote program. An AS/400 program
can use an evoke function to specify the CICS/VS
service routine or application program to be
started. The transaction codes in Figure 5-8 can
be specified in the procedure name parameter of
an evoke function.

 Security Considerations

CICS/VS provides security for the work station
operator rather than providing security for the
device used by the operator. The CICS/VS secu-
rity support is handled by two CICS/VS trans-
actions: CSSN (sign-on) and CSSF (sign-off).
The CSSN and CSSF transactions are used only
to start and end a session in which security pro-
tects the transactions that occur in the session.
SNUF can issue an evoke function to start the
security transactions and the user transactions to
be protected. User transactions must be started
(with an evoke function) between the use of CSSN
and CSSF transactions.

For additional security, supply the password to the
AS/400 system from an external source, such as a
work station operator.

Figure 5-8. SNUF Transaction Codes

Transaction
Code Purpose of Transaction

CSSN Starts a CICS/VS program that con-
trols the security of a CICS/VS host
system and allows the user of the
AS/400 program to sign on to the host
system.

CSSF Starts a CICS/VS program that signs
off a user who has finished communi-
cating with the host system.

5-8 SNA Upline Facility Programming V4R1

CSSN Transaction: The CSSN (sign-on)
transaction signs a user on to the CICS/VS host
system. To evoke the CSSN transaction on a
CICS/VS system with active security, the evoke
function must include two security parameters.
The parameters are user password ("PS"=) and
user ID ("NAME"=), which are specified in
keyword form and separated by a comma. The
password can be 1 to 4 characters and the user
ID can be 1 to 20 characters.

The evoke function for the CSSN transaction
always results in a reply from CICS/VS. To
receive the reply message, your program must
issue an input operation after it issues the evoke
function.

If an AS/400 program issues a successful CSSN
evoke function, it must issue a CSSF evoke func-
tion before it issues a release operation in that
session. If the program issues a release opera-
tion without a CSSF evoke, CICS/VS signs the
user off the host system.

CSSF Transaction: The CSSF (sign-off)
transaction ends communications between your
program and CICS/VS. The CSSF transaction
also removes the previously specified password
and name from the CICS/VS sign-on table.

After the evoke function for the CSSF transaction
has been completed, a CICS/VS message is avail-
able to your program. Issue an input operation to
receive the message.

After a successful CSSF evoke function, the
program can issue a CSSN evoke function to the
same session or to another session. The function
can use a different password and name each
time.

For more information about the CSSN and CSSF
CICS/VS transactions, see the CICS/VS Supplied
Transactions book.

Programming for IMS/VS
Systems

The following IMS topics describe information
needed by the AS/400 SNUF programmer while
writing programs that communicate with IMS/VS.
This information describes half-duplex flip-flop
communications.

Evoke Considerations for an
IMS/VS System

When communicating with IMS/VS, SNUF does
not send the user identifier and library name
parameters because they are not used by IMS/VS.
SNUF sends the remote program name, the user
password (if it is specified), and the user data or
program parameters. If IMS/VS uses security, you
must specify the user password in the parameter
list. To send the user password to IMS/VS, you
also must specify *IMS or *IMSRTR on the HOST
parameter of the ADDICFDEVE or OVRICFDEVE
command.

Sending IMS/VS Commands

The AS/400 program can send IMS/VS commands
by using the write operation and placing the
command at the beginning of the logical record
buffer. The system can only send commands
when the session is between transactions. The
program should not send commands that alter the
status of the logical unit (such as the /ASSIGN
command) because the results cannot be pre-
dicted.

IMS/VS Message Headers

If you specify HDRPROC(*USER) on the
ADDICFDEVE or OVRICFDEVE commands,
SNUF passes IMS/VS message headers to the
program in its input buffer. The program also can
send message headers by using the function man-
agement header function (see “Function-
Management-Header Function” on page 4-8).
Message headers can be used to pass message
descriptors, component identification and control
information. Additional information on message
headers can be found in the IMS/VS Advanced
Function for Communications book.

 Chapter 5. Considerations for SNUF 5-9

 Security Considerations

If IMS/VS requires password security from the
AS/400 program, the AS/400 program can supply
the password in the evoke parameter list. SNUF
sends the password in the correct position on
behalf of the user. For additional security, supply
the password to the AS/400 program from an
external source, such as a work station operator.

 Handling Errors

When IMS/VS detects an error on a received
message, it returns an exception response with
sense data. SNUF notifies the AS/400 program
that an error has occurred and that sense data is
available. To receive the sense data and the
status of the session, issue an input operation.

The system sense bytes are either hex 0800 or
hex 0826. The user sense bytes contain the

IMS/VS error message number in hexadecimal
form. For example, if the AS/400 program evokes
an invalid transaction identifier, IMS/VS returns
sense bytes of hex 08000040. This is converted
and placed in the program buffer as the charac-
ters DFS0064.

Sending Transactions without
Waiting for Output

An AS/400 program can use the evoke-with-
detach function to send a complete transaction to
IMS/VS without waiting for output from the IMS/VS
program. This capability allows the AS/400
program to send several transactions before
receiving a reply from IMS/VS.

An order entry application uses this type of pro-
cessing, as shown in Figure 5-9. The evoke-with-
detach function also allows the program to evoke
a transaction in which the program reply is sent to
another session, such as a program start session.

Message
Message

IMS/VSSNUF
AS/400
Application

Evoke with Detach
Evoke with Detach
Read
Read

RV2W533-0

IMS/VS
Application Program

Reply
Reply

Figure 5-9. Sending Transactions without Waiting for IMS Output

The processing may differ slightly if you specified
HOST(*IMSRTR) on the ADDICFDEVE or

OVRICFDEVE command, as shown in
Figure 5-10 on page 5-10.

IMS/VSSNUF
AS/400
Application

Message
Ready to receive

Message
Ready to receive

Evoke with Detach
Read

Evoke with Detach
Read

Read

RV2W534-0

DFS290

Reply

Reply

IMS/VS
Application Program

Figure 5-10. Sending Transactions without Waiting for IMSRTR Output

5-10 SNA Upline Facility Programming V4R1

Requesting Messages with the
Ready-to-Receive Command

The SNA ready-to-receive (RTR) command can
be used to request any messages waiting on the
IMS/VS output queue for this session. Before you
send this command, you must specify
HOST(*IMSRTR) on the ADDICFDEVE or
OVRICFDEVE command. SNUF issues the RTR
command when the AS/400 program issues an
input operation (read) between transactions.

If a message exists on the IMS/VS output queue
when SNUF sends the RTR command, IMS/VS
sends the message. If no messages exist on the
output queue, IMS/VS sends system message
DFS290, which indicates the queue is empty.
SNUF passes the DFS290 message to the
AS/400 program with return code 0028, indicating
a system message with a detach indication was
received. If you expect more data, continue with

other processing and try the input operation again
later.

If you specified HOST(*IMS) on the ADDICFDEVE
or OVRICFDEVE command, the AS/400 program
must wait until output is available before it can
complete the input operation.

Operating in Terminal Response
Mode

Terminal response mode is an operation method
defined for transactions and terminals attached to
IMS/VS. When an IMS/VS logical terminal
(LTERM) operates in terminal response mode,
each transaction evoked must have a reply before
the next transaction can be evoked.

Figure 5-11 on page 5-12 shows how an inquiry
program on the AS/400 system starts an inquiry
program on the IMS/VS system. The figure shows
both terminal response mode and nonterminal
response mode.

 Chapter 5. Considerations for SNUF 5-11

IMS/VS
IMS/VS
Application ProgramSNUF

AS/400
Application Program

RSLS163-5

Allocate session

Send logon

Return code

Send transaction
ID with data

Schedule Read

Post data and end-
of-transaction
return code

Send transaction
ID with data

Schedule Read

Return code

End of transaction
with no data

Data and return
code

Start session

Start program

Send data

Place data on
input queue

Send end of
transaction

IMS/VS starts
program

Sends data

Acquire

Evoke with Invite

Read

Evoke with Invite

Read

Read

Reads data and sends
reply

Reads data and sends
reply

Non-terminal response mode

Terminal response mode

Figure 5-11. Operating in Terminal and Non-terminal Response Mode

You describe the terminal response mode with
one of the following attributes:

Negated Terminal response mode is not
used for any transaction.

Forced Terminal response mode is used
for every transaction.

Transaction Terminal response mode is
defined separately for each trans-
action.

Operating in negated terminal response mode
allows an AS/400 program to evoke several trans-
actions before receiving a reply from any one of
them. The program does, however, require more

processing because it must correlate replies from
IMS/VS to the transactions that created them.

For example, if the program issues an evoke-with-
invite followed by a read operation, the return
code indicates no data and end of transaction, or
it indicates data (a reply) and end of transaction.
In either case, another transaction can be evoked,
but the session should not end until all replies
have been received. After all transactions have
been evoked, issue input operations until the
program receives all replies.

If the program releases the session or ends before
it receives all replies, data remains on the IMS/VS
output queue. Data that cannot be recovered that

5-12 SNA Upline Facility Programming V4R1

is left on the IMS/VS output queue may be lost
when the program ends a session. Data put on
the queue after the program releases the session
becomes the first input record received when
another AS/400 application program acquires the
session.

Operating in forced terminal response mode might
require less processing than operating in negated
or transaction mode. This is because IMS/VS
does not allow input in a session until the system
sends the reply to the previously evoked trans-
action. A program that evokes a transaction in a
session using terminal response mode cannot use
the same session until it receives the reply. If an
error prevents the system from sending a reply,
the session waits for data until the session abnor-
mally ends. Some conditions that might prevent
the system from sending a reply message are:

� LTERM has stopped.
� IMS/VS is unable to schedule the message

processing program.
� A message processing program logic error

prevents a message from being sent.

Using Message Format Services
to Improve Performance

Message format services can give IMS/VS pro-
grams independence from terminal requirements
and can improve online performance. If LTERMS
are to use message format services, the service

must be defined during IMS/VS creation.
Message format services processing begins when
one of the following occurs:

� The AS/400 program requests message
format services by sending a function man-
agement header which contains a message
identifier (midname).

� The AS/400 program sends // midname before
sending a message.

Output messages from IMS/VS that are processed
by message format services are sent with a func-
tion management header. To have the AS/400
program process these headers, specify
HDPROC(*YES) on the ADDICFDEVE or
OVRICFDEVE command.

For a complete description of message format ser-
vices, see the IMS/VS Message Format Service
User’s Guide.

BIND Considerations for AS/400
Applications Using SNUF

Refer to SNA Distribution Services, Appendix D,
for information about using the VM/MVS Bridge.

 Chapter 5. Considerations for SNUF 5-13

5-14 SNA Upline Facility Programming V4R1

Appendix A. Language Operations, DDS Keywords, and
System-Supplied Formats

This appendix contains charts that show the fol-
lowing for SNUF communications:

� All valid communications operations supported
by the intersystem communications function
(ICF) file.

� All valid communications operations supported
and the associated high-level language oper-
ations.

� Data description specifications (DDS) pro-
cessing keywords.

 � System-supplied formats.

 Intersystem Communications
Function Operations
Figure A-1 provides a brief description of the ICF
operations supported by SNUF.

Language Operations Supported

Use high-level language operations and ICF to
communicate with a program at a remote system.
(See the specific high-level language book for
operations other than ICF.) Figure A-2 presents
the ICF file operations used with SNUF commu-
nications and the equivalent high-level language
statement.

Figure A-1. SNUF Supported ICF Operations

Operation Functional Description

Get-attributes Determines the status of the
session.

Read Receives data from the remote
system.

Read-from-invited-
program-devices

Receives data from an invited
program device.

Write Sends data records from the
issuing program to the other
program in the transaction.

Write/Read Allows a write operation fol-
lowed by a read operation.
Valid for ILE C/400 and ILE
RPG/400.

Release Attempts to end a session.
Close Closes the ICF File.

Figure A-1. SNUF Supported ICF Operations

Operation Functional Description

Open Opens the ICF File.
Acquire Establishes a session between

the application and the remote
location.

Figure A-2 (Page 1 of 2). High-Level Language I/O Operations

ICF
Operation

ILE RPG/400
Operation
Code

ILE COBOL/400
Procedure
Statement

ILE C/400
Function 2

ILE FORTRAN/400
Statement

Open OPEN OPEN fopen, _Ropen OPEN

Acquire ACQ ACQUIRE QXXACQUIRE, _Racquire Not supported

Get-attributes POST ACCEPT QXXDEVATR, _Rdevatr Not supported

Read READ READ fread, _Rreadn READ

Read-from- invited- program-
devices

READ1 READ QXXREADINVDEV fol-
lowed by an fread,
_Rreadindv

Not supported

Write WRITE WRITE fwrite, _Rwrite WRITE

Write/Read EXFMT Not supported _Rwriterd Not supported

Release REL DROP QXXRELEASE,
_Rrelease

Not supported

 Copyright IBM Corp. 1997 A-1

Figure A-2 (Page 2 of 2). High-Level Language I/O Operations

ICF
Operation

ILE RPG/400
Operation
Code

ILE COBOL/400
Procedure
Statement

ILE C/400
Function 2

ILE FORTRAN/400
Statement

Close CLOSE CLOSE fclose, _Rclose CLOSE

Note:

1 A read operation can be directed either to a specific program device or to any invited program device. The support provided by
the compiler you are using determines whether to issue an ICF read or read-from-invited-program-devices operation, based on
the format of the read operation. For example, if a read is issued with a specific format or terminal specified, the read operation
is interpreted as an ICF read operation. Refer to the appropriate language reference book for more information.

2 ILE C/400 programming language is case sensitive.

 DDS Keywords

Figure A-3 presents the data description specifica-
tions (DDS) keywords you can use to specify com-
munications functions for SNUF. For a description
of how to combine and use DDS keywords, see
the book, ICF Programming.

 System-Supplied Formats
You can also use system-supplied communica-
tions formats to specify communications functions
in your program. Figure A-4 shows the formats
you can use with SNUF. For a description of how
to use system-supplied formats, see the book, ICF
Programming.

Figure A-3. Valid DDS Keywords for SNUF Figure A-4. Valid System-Supplied Formats for SNUF
DDS Keyword Function System-Supplied

Formats FunctionALWWRT Allow-write
CANCEL Cancel

$$CANL Cancel with invite
CNLINVITE Cancel-invite

$$CANLNI Cancel
DETACH1 Detach

$$CNLINV Cancel-invite
ENDGRP End-of-group

$$EOS End-of-session
EOS End-of-session

$$EVOK1 Evoke with invite
EVOKE1 Evoke

$$EVOKET1 Evoke with detach
FAIL Fail

$$EVOKNI1 Evoke
FMH Function management

header
$$FAIL Fail
$$NRSP Negative-response with

invite
INVITE Invite
NEGRSP Negative-response

$$NRSPNI Negative-response
RCVCANCEL Receive-cancel

$$POSRSP Positive-response
RCVCONFIRM Receive-confirm

$$RCD Request-to-write with
invite

RCVDETACH1 Receive-detach
RCVENDGRP Receive-end-of-group

$$SEND Send with invite
RCVFMH Receive-function man-

agement header
$$SENDE Send with end-of-group
$$SENDET1 Send with detach

RCVNEGRSP Receive-negative-
response

$$SENDFM Send FM Header with
invite

RCVTRNRND Receive-turnaround
$$SENDNF Send FM Header

RECID Record-identification
$$SENDNI Send

RQSWRT Request-to-write
$$TIMER Timer

RSPCONFIRM Respond-to-confirm Note:

1 This format is not supported while running in half-
duplex contention mode.

SECURITY Security
TIMER Timer
VARLEN Variable-length data
Note:

1 This function is not supported while running in half-
duplex contention mode.

A-2 SNA Upline Facility Programming V4R1

Appendix B. Return Codes, Messages, and Sense Codes

 Return Codes
This section describes all the return codes that are valid for SNUF. These return
codes are set in the I/O feedback area of the ICF file; they report the results of
each I/O operation issued by your application program. Your program should
check the return code and act accordingly. Refer to your high-level language book
for more information on how to access these return codes.

Each return code is a four-digit hexadecimal value. The first two digits contain the
major code, and the last two digits contain the minor code.

With some return codes, a message is also sent to the job log or the system oper-
ator message queue (QSYSOPR). You can refer to the message for additional
information.

Notes:

1. In the return code descriptions, your program refers to the local AS/400 appli-
cation program that issues the operation and receives a return code from ICF
communications. The remote program refers to the application program on the
remote system with which your program is communicating through ICF.

2. Several references to input and output operations are made in the descriptions.
These operations can include DDS keywords and system-supplied formats,
which are listed in Appendix A.

Major Code 00

Major Code 00 – Operation completed successfully.

Description: The operation issued by your program completed successfully.
Your program may have sent or received some data, or may have received a
message from the remote system.

Action: Examine the minor return code and continue with the next operation.

Code Description/Action

0000 Description: For input operations issued by your program, 0000 indi-
cates that your program received some data with a turnaround indi-
cation. The remote program is ready to receive data.

For output operations issued by your program, 0000 indicates that the
last output operation completed successfully and that your program can
continue to send data.

Action: If your program received a turnaround on an input operation,
issue an input or output operation. For the actions which can be taken
after 0000 is received, refer to the following table:

 Copyright IBM Corp. 1997 B-1

0001 Description: On a successful input operation, your program received
some data. Your program must continue to receive data until it
receives a turnaround indication (which allows your program to send
data) or a detach indication.

Action: Issue another input operation. If your program detects a turn-
around indication, it can issue an output operation.

0003 Description: On a successful input operation, your program received
some data with an end-of-group indication. Your program may also
have received a definite-response-request with the end-of-group indi-
cation.

Action: Issue an input operation to receive the next group of records.
You may also issue a $$POSRSP format to respond to the definite-
response-request. If you are using DDS keywords, you can use the
RCVCONFIRM and RSPCONFIRM keywords. If your program receives
a definite-response-request and you ignore it, SNUF sends a positive
response to the application when the next input/output operation is per-
formed.

0004 Description: On a successful input operation, your program received
some data with a function-management-header (FMH) and a turn-
around indication. The remote program is ready to receive data.

Action: Issue a second input operation to receive the FMH data, then
issue an output operation.

Figure B-1. Actions for Return Code 0000

Type of
Session Last Operation Issued Actions Your Program Can Take

Started by a
source
program

Acquire or open Issue an evoke or timer function, or a get-
attributes operation.

Evoke with detach or
write with detach

Issue another evoke function, issue a
release operation, continue local pro-
cessing, or end.

Any other output oper-
ation

Issue another output operation (except
evoke), or issue an input operation.

End-of-Session Continue local processing or end.

Started by a
remote
program start
request1

Acquire or open Issue an input or output operation.

Write with detach Continue local processing or end. This
session has ended.

Any other output oper-
ation

Issue another output operation (except
evoke), or issue an input operation.

End-of-Session Continue local processing or end.

1 A target program (started by a program start request) cannot issue an evoke function
in this session; it can issue an evoke function only in a different session that it has first
acquired.

B-2 SNA Upline Facility Programming V4R1

0005 Description: On a successful input operation, your program received
some data with a function-management-header (FMH).

Action: Your program can issue a second input operation to receive
the FMH data, then issue another input operation to continue receiving
data until it receives a turnaround indication or a detach indication.

0007 Description: On a successful input operation, your program received
a function-management-header (FMH) and an end-of-group indication.
Your program should continue to receive data.

Action: Issue a second input operation to receive the FMH data, then
issue another input operation to receive the next group of records.

0008 Description: On a successful input operation, your program received
a detach indication with the last of the data. The communications
transaction with the remote program has ended, but the session with
the remote system is still active.

Action: If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.

000C Description: On a successful input operation, your program received
the last of the data with a function-management-header (FMH) and a
detach indication. The communications transaction with the remote
program has ended, but the session with the remote system is still
active.

Action: Issue a second input operation to receive the data. If your
program started the transaction, issue another evoke function (to start
another program), issue a release operation (to perform local pro-
cessing or to start another session), or end your program. If a program
start request from the remote program started the transaction, issue an
end-of-session function or end your program.

0010 Description: On a successful output operation, your program received
a request-to-turnaround indication. The remote program wants to send
data as soon as possible. You should allow the remote program to
send this data.

Action: Issue an input operation as soon as possible.

0020 Description: On a successful input operation, your program received
a remote system message and a turnaround indication. The message
is in your program's input buffer and describes why the previous opera-
tion was rejected.

Action: Handle the message in the input buffer (for example, display
it). Your program now has control of the session, and can issue an
output operation.

0021 Description: On a successful input operation, your program received
a remote system message which is now in your program's input buffer.
Your program should continue to receive input.

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.

 Appendix B. Return Codes, Messages, and Sense Codes B-3

0023 Description: On a successful input operation, your program received
a remote system message with an end-of-group indication. The system
message is now in your input buffer.

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.

0025 Description: On a successful input operation, your program received
a remote system message with a function-management-header (FMH).

Action: Process the FMH and issue a second input operation to
receive the system message.

0027 Description: On a successful input operation, your program received
a remote system message with a function-management-header (FMH)
and an end-of-group indication.

Action: Process the FMH and issue a second input operation to
receive the system message.

0028 Description: On a successful input operation, your program received
a detach indication with a remote system message. The communica-
tions transaction with the remote program has ended, but the session
with the remote system is still active. The system message is in your
program's input buffer and describes the status of the transaction that
has ended.

Action: Handle the message in the input buffer (for example, display
it). If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.

0030 Description: On a successful input operation, your program received
a truncated remote system message and a turnaround indication. The
message is in your program's input buffer, and was truncated because
it was too long for the buffer. The message describes why the previous
operation was rejected.

Action: Handle the message in the input buffer (for example, display
it). Your program now has control of the session, and can issue an
output operation.

0031 Description: On a successful input operation, your program received
a truncated remote system message. The message is in your pro-
gram's input buffer, and was truncated because it was too long for the
buffer. Your program should continue to receive input.

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.

0033 Description: On a successful input operation, your program received
a truncated system message with an end-of-group indication. The
message is in your input buffer, and was truncated because it was too
long for the buffer.

B-4 SNA Upline Facility Programming V4R1

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.

0035 Description: On a successful input operation, your program received
a truncated system message with a function-management-header
(FMH). The message is in your input buffer, and was truncated
because it was too long for the buffer.

Action: Process the FMH and issue a second input operation to
receive the system message.

0037 Description: On a successful input operation, your program received
a truncated system message with a function-management-header
(FMH) and an end-of-group indication.

Action: Process the FMH and issue a second input operation to
receive the system message.

0038 Description: On a successful input operation, your program received
a detach indication with a truncated remote system message. The
communications transaction with the remote program has ended, but
the session with the remote system is still active. The message is in
your program's input buffer and describes the status of the transaction
that has ended. The message was truncated because it was too long
for the buffer.

Action: Handle the message in the input buffer (for example, display
it). If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.

 Appendix B. Return Codes, Messages, and Sense Codes B-5

Major Code 02

Major Code 02 – Input operation completed successfully, but your job is being
ended (controlled).

Description: The input operation issued by your program completed success-
fully. Your program may have received some data or a message from the
remote system. However, your job is being ended (controlled).

Action: Your program should complete its processing and end as soon as pos-
sible. The system eventually changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for your job.

Code Description/Action

0200 Description: On a successful input operation, your program received
some data with a turnaround indication. Also, your job is being ended
(controlled). The remote program is ready to receive data from your
program.

Action: Your program can issue an input or output operation.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0201 Description: On a successful input operation, your program received
some data. Also, your job is being ended (controlled). Your program
can continue to receive data until it receives a turnaround indication
(which allows your program to send data) or a detach indication.

Action: Your program can issue another input operation. If your
program detects the equivalent of a turnaround indication, it can issue
an output operation. However, the recommended action is to complete
all processing and end your program as soon as possible. The system
eventually changes a job ended (controlled) to a job ended (immediate)
and forces all processing to stop for your job.

0203 Description: On a successful input operation, your program received
some data with an end-of-group indication. Also, your job is being
ended (controlled).

Action: Your program can issue an input operation to receive the next
group of records. However, the recommended action is to complete all
processing and end your program as soon as possible. The system
eventually changes a job ended (controlled) to a job ended (immediate)
and forces all processing to stop for your job.

0204 Description: On a successful input operation, your program received
some data with a function-management-header (FMH) and a turn-
around indication. Also, your job is being ended (controlled). The
remote program is ready to receive data.

Action: Your program can issue a second input operation to receive
the FMH data, then issue an output operation. However, the recom-

B-6 SNA Upline Facility Programming V4R1

mended action is to complete all processing and end your program as
soon as possible. The system eventually changes a job ended (con-
trolled) to a job ended (immediate) and forces all processing to stop for
your job.

0205 Description: On a successful input operation, your program received
some data with a function-management-header (FMH). Also, your job
is being ended (controlled).

Action: Your program can issue a second input operation to receive
the FMH data, then issue another input operation to continue receiving
data until it receives a turnaround indication or a detach indication.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0207 Description: On a successful input operation, your program received
a function-management-header (FMH) and an end-of-group indication.
Also, your job is being ended (controlled).

Action: Your program can issue a second input operation to receive
the FMH data, then issue another input operation to receive the next
group of records. However, the recommended action is to complete all
processing and end your program as soon as possible. The system
eventually changes a job ended (controlled) to a job ended (immediate)
and forces all processing to stop for your job.

0208 Description: On a successful input operation, your program received
a detach indication with the last of the data. The communications
transaction with the remote program has ended, but the session with
the remote system is still active. Also, your job is being ended (con-
trolled).

Action: If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

020C Description: On a successful input operation, your program received
the last of the data with a function-management-header (FMH) and a
detach indication. The communications transaction with the remote
program has ended, but the session with the remote system is still
active. Also, your job is being ended (controlled).

Action: Issue a second input operation to receive the data. If your
program started the transaction, issue another evoke function (to start
another program), issue a release operation (to perform local pro-
cessing or to start another session), or end your program. If a program
start request from the remote program started the transaction, issue an
end-of-session function or end your program. However, the recom-
mended action is to complete all processing and end your program as
soon as possible. The system eventually changes a job ended (con-

 Appendix B. Return Codes, Messages, and Sense Codes B-7

trolled) to a job ended (immediate) and forces all processing to stop for
your job.

0220 Description: On a successful input operation, your program received
a remote system message and a turnaround indication. The message
is in your program's input buffer and describes why the previous opera-
tion was rejected. Also, your job is being ended (controlled).

Action: Handle the message in the input buffer (for example, display
it). Your program now has control of the session, and can issue an
output operation. However, the recommended action is to complete all
processing and end your program as soon as possible. The system
eventually changes a job ended (controlled) to a job ended (immediate)
and forces all processing to stop for your job.

0221 Description: On a successful input operation, your program received
a remote system message which is now in your program's input buffer.
Also, your job is being ended (controlled). Your program should con-
tinue to receive input.

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0223 Description: On a successful input operation, your program received
a remote system message with an end-of-group indication. The system
message is now in your input buffer. Also, your job is being ended
(controlled).

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0225 Description: On a successful input operation, your program received
a remote system message with a function-management-header (FMH).
Also, your job is being ended (controlled).

Action: Process the FMH and issue a second input operation to
receive the system message. However, the recommended action is to
complete all processing and end your program as soon as possible.
The system eventually changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for your job.

0227 Description: On a successful input operation, your program received
a remote system message with a function-management-header (FMH)
and an end-of-group indication. Also, your job is being ended (con-
trolled).

Action: Process the FMH and issue a second input operation to
receive the system message. However, the recommended action is to
complete all processing and end your program as soon as possible.

B-8 SNA Upline Facility Programming V4R1

The system eventually changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for your job.

0228 Description: On a successful input operation, your program received
a detach indication with a remote system message. The communica-
tions transaction with the remote program has ended, but the session
with the remote system is still active. The system message is in your
program's input buffer and describes the status of the transaction that
has ended. Also, your job is being ended (controlled).

Action: Handle the message in the input buffer (for example, display
it). If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0230 Description: On a successful input operation, your program received
a truncated remote system message and a turnaround indication. The
message is in your program's input buffer, and was truncated because
it was too long for the buffer. The message describes why the previous
operation was rejected. Also, your job is being ended (controlled).

Action: Handle the message in the input buffer (for example, display
it). Your program now has control of the session, and can issue an
output operation. However, the recommended action is to complete all
processing and end your program as soon as possible. The system
eventually changes a job ended (controlled) to a job ended (immediate)
and forces all processing to stop for your job.

0231 Description: On a successful input operation, your program received
a truncated remote system message. The message is in your pro-
gram's input buffer, and was truncated because it was too long for the
buffer. Also, your job is being ended (controlled). Your program
should continue to receive input.

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0233 Description: On a successful input operation, your program received
a truncated system message with an end-of-group indication. The
message is in your input buffer, and was truncated because it was too
long for the buffer. Also, your job is being ended (controlled).

Action: Handle the message in the input buffer (for example, display
it), and issue another input operation. If your program detects the
equivalent of a turnaround indication, it can issue an output operation.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually

 Appendix B. Return Codes, Messages, and Sense Codes B-9

changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

0235 Description: On a successful input operation, your program received
a truncated system message with a function-management-header
(FMH). The message is in your input buffer, and was truncated
because it was too long for the buffer. Also, your job is being ended
(controlled).

Action: Process the FMH and issue a second input operation to
receive the system message. However, the recommended action is to
complete all processing and end your program as soon as possible.
The system eventually changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for your job.

0237 Description: On a successful input operation, your program received
a truncated system message with a function-management-header
(FMH) and an end-of-group indication. Also, your job is being ended
(controlled).

Action: Process the FMH and issue a second input operation to
receive the system message. However, the recommended action is to
complete all processing and end your program as soon as possible.
The system eventually changes a job ended (controlled) to a job ended
(immediate) and forces all processing to stop for your job.

0238 Description: On a successful input operation, your program received
a detach indication with a truncated remote system message. The
communications transaction with the remote program has ended, but
the session with the remote system is still active. The message is in
your program's input buffer and describes the status of the transaction
that has ended. The message was truncated because it was too long
for the buffer. Also, your job is being ended (controlled).

Action: Handle the message in the input buffer (for example, display
it). If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.
However, the recommended action is to complete all processing and
end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces
all processing to stop for your job.

B-10 SNA Upline Facility Programming V4R1

Major Code 03

Major Code 03 – Input operation completed successfully, but no data received.

Description: The input operation issued by your program completed success-
fully, but no data was received.

Action: Examine the minor return code and continue with the next operation.

Code Description/Action

0300 Description: On a successful input operation, your program received
a turnaround indication without any data. The session is still active.

Action: Issue an input or output operation.

0301 Description: On a successful input operation, your program received
no data. Your program must continue to receive input until it receives a
turnaround or detach indication.

Action: Issue an input operation.

0303 Description: On a successful input operation, your program received
an end-of-group indication without any data.

Action: Issue another input operation.

0308 Description: On a successful input operation, your program received
a detach indication without any data. The communications transaction
with the remote program has ended, but the session with the remote
system is still active. If you specified the DDS keyword RCVDETACH,
the receive-detach indicator is also set on.

Action: If your program started the session, it can issue another evoke
function (to start another program), issue a release operation (to
perform local processing or to start another session), or end. If a
program start request from the remote program started the transaction,
your program can either issue an end-of-session function or end.

0309 Description: On a read-from-invited-program-devices operation, your
program did not receive any data. Also, your job is being ended (con-
trolled).

Action: Your program can continue processing. However, the recom-
mended action is to complete all processing and end your program as
soon as possible. The system eventually changes a job ended (con-
trolled) to a job ended (immediate) and forces all processing to stop for
your job.

Messages:

 CPF4741 (Notify)

0310 Description: On a read-from-invited-program-devices operation, the
time interval specified by a timer function in your program or by the
WAITRCD value specified for the ICF file expired.

Action: Issue the intended operation after the specified time interval
has ended. For example, if you were using the time interval to control

 Appendix B. Return Codes, Messages, and Sense Codes B-11

the length of time to wait for data, you can issue another read-from-
invited-program-devices operation to receive the data.

Note: Since no specific program device name is associated with the
completion of this operation, the program device name in the
common I/O feedback area is set to *N. Therefore, your
program should not make any checks based on the program
device name after receiving the 0310 return code.

Messages:

 CPF4742 (Status)

 CPF4743 (Status)

Major Code 04

Major Code 04 – Output exception occurred.

Description: An output exception occurred because your program attempted to
send data when it should be receiving data. The data from your output opera-
tion was not sent. You can attempt to send the data later.

Action: Issue an input operation to receive the data.

Code Description/Action

0412 Description: An output exception occurred because your program
attempted to send data when it should be receiving data that was sent
by the remote program. The data from your output operation was not
sent to the remote system. Your program can attempt to send the data
later.

Action: Issue an input operation to receive the data.

Note: If your program issues another output operation before an input
operation, your program receives a return code of 831C.

Messages:

 CPF475ð (Notify)

 CPF5ð76 (Notify)

B-12 SNA Upline Facility Programming V4R1

Major Codes 08 and 11

Major Codes 08 and 11 – Miscellaneous program errors occurred.

Description: The operation just attempted by your program was not suc-
cessful. The operation may have failed because it was issued at the wrong
time.

Action: Refer to the minor code description for the appropriate recovery action.

Code Description/Action

0800 Description: The acquire operation just attempted by your program
was not successful. Your program tried to acquire a program device
that was already acquired and is still active.

Action: If the session associated with the original acquire operation is
the one needed, your program can begin communicating in that session
since it is already available. If you want a different session, issue
another acquire operation for the new session by specifying a different
program device name in the PGMDEV parameter of the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command that precedes the program.

Messages:

 CPD4ð77 (Diagnostic)

 CPF5ð41 (Status)

 CPF5ðAð (Status)

1100 Description: The read-from-invited-program-devices operation just
attempted by your program was not successful because your program
tried this operation when no program devices were invited and no timer
function was in effect.

Action: Issue an invite function (or a combined operation that includes
an invite) followed by a read-from-invited-program-devices operation.

Messages:

 CPF474ð (Notify)

 Appendix B. Return Codes, Messages, and Sense Codes B-13

Major Code 34

Major Code 34 – Input exception occurred.

Description: The input operation attempted by your program was not suc-
cessful. The data received was too long for your program's input buffer or was
not compatible with the record format specified on the input operation.

Action: Refer to the minor code description for the appropriate recovery action.

Code Description/Action

3401 Description: The input operation issued by your program was not suc-
cessful because the length of the data record sent by the remote
system was longer than the length specified for your program's input
buffer. The length of the data record received from the remote system,
if available, is in the actual-record-length field in the I/O feedback area.

Action: Issue another input operation if your program can specify a
record size large enough to receive the data, plus any indicators for a
file without a separate indicator area. Otherwise, you should close the
file, end your program, correct the record size, then run your program
again.

Messages:

 CPF4768 (Notify)

3441 Description: A valid record format name was specified with format
selection type *RECID. However, although the data received matched
one of the record formats in the ICF file, it did not match the format
specified on the read operation.

Action: Correct your program to issue a read operation that does not
specify a record format name, or specify the correct record format
name to process the data based on the format selection option for the
file.

Messages:

 CPF5ð58 (Notify)

3451 Description: Your program specified a file record size that was not
large enough for the indicators to be included with the data sent by the
remote program (for a file defined with a nonseparate indicator area).
Your program did not receive any data. For a file using a nonseparate
indicator area, the actual record length field in the device-dependent I/O
feedback area contains the number of indicators specified by the record
format.

Action: End the session; close the file; correct the file record size;
then open the file again.

Messages:

 CPF4768 (Notify)

B-14 SNA Upline Facility Programming V4R1

Major Code 80

Major Code 80 – Permanent system or file error (irrecoverable).

Description: An irrecoverable file or system error has occurred. The under-
lying communications support may have ended and your session has ended. If
the underlying communications support ended, it must be established again
before communications can resume. Recovery from this error is unlikely until
the problem causing the error is detected and corrected.

Action: You can perform the following general actions for all 80xx return
codes. Specific actions are given in each minor code description.

� Close the file, open the file again, then establish the session. If the opera-
tion is still not successful, your program should end the session.

� Continue local processing.
 � End.

Note: If the session is started again, it starts from the beginning, not at the
point where the session error occurred.

Code Description/Action

8081 Description: The operation attempted by your program was not suc-
cessful because a system error condition was detected.

Action: Your communications configurations may need to be varied off
and then on again. Your program can do one of the following:

� Continue local processing.
� Close the ICF file, open the file again, and establish the session

again.
 � End.

Messages:

 CPF417ð (Escape)

 CPF451ð (Escape)

 CPF5ð89 (Escape)

 CPF5257 (Escape)

 CPF5411 (Escape)

8082 Description: The operation attempted by your program was not suc-
cessful because the device supporting communications between your
program and the remote location is not usable. For example, this may
have occurred because communications were stopped for the device by
a Hold Communications Device (HLDCMNDEV) command. Your
program should not issue any operations to the device.

Action: Communications with the remote program cannot resume until
the device has been reset to a varied on state. If the device has been
held, use the Release Communications Device (RLSCMNDEV)
command to reset the device. If the device is in an error state, vary the
device off and then on again. Your program can attempt to establish
the session again, continue local processing, or end.

 Appendix B. Return Codes, Messages, and Sense Codes B-15

Messages:

 CPF4744 (Escape)

 CPF5269 (Escape)

80B3 Description: The open operation issued by your program was not suc-
cessful because the ICF file is in use by another process.

Action: Wait for the file to become available, then issue another open
operation. Otherwise, your program may continue processing, or it can
end.

Consider increasing the WAITFILE parameter with the Change ICF File
(CHGICFF) or Override ICF File (OVRICFF) command to allow more
time for the file resources to become available.

Messages:

 CPF4128 (Escape)

80EB Description: The open operation attempted by your program was not
successful due to one of the following:

� Your program used an option of update or delete to open the file,
but that option is not supported by the program device.

� Your program requested both blocked data and user buffers on an
open option, but these formats cannot be selected together.

� Your program tried to open a source file, but the file was not
created as a source file.

� There is a mismatch on the INDARA keyword between your
program and the ICF file as to whether or not a separate indicator
area should be used.

� The file was originally opened as a shared file; however, no
program devices were ever acquired for the file before your
program attempted the current open operation.

Action: After performing one of the following actions, your program
can try the open operation again:

� If the update and delete options are not supported for the program
device, use an option of input, output, or both.

� If your program tried selecting user buffers and blocked data
together, it should try selecting one or the other, but not both.

� If your program tried to open a non-source file as a source file,
either change the file name or change the library name.

� If there was a mismatch on the INDARA keyword, either correct the
file or correct your program so that the two match.

� If no program devices were previously acquired for a shared file,
acquire one or more program devices for the file.

Messages:

 CPF4133 (Escape)

 CPF4156 (Escape)

 CPF4238 (Escape)

 CPF425ð (Escape)

 CPF4345 (Escape)

 CPF5522 (Escape)

 CPF5549 (Escape)

B-16 SNA Upline Facility Programming V4R1

80ED Description: The open operation attempted by your program was not
successful because there is a record format level mismatch between
your program and the ICF file.

Action: Close the file. Compile your program again to match the file
level of the ICF file, or change or override the file to LVLCHK(*NO);
then open the file again.

Messages:

 CPF4131 (Escape)

80EF Description: Your program attempted an open operation on a file or
library for which the user is not authorized.

Action: Close the file. Either change the file or library name on the
open operation, or obtain authority for the file or library from your secu-
rity officer. Then issue the open operation again.

Messages:

 CPF41ð4 (Escape)

80F8 Description: The open operation attempted by your program was not
successful because one of the following occurred:

� The file is already open.
� The file is marked in error on a previous return code.

Action:

� If the file is already open, close the file and end your program.
Remove the duplicate open operation from your program, then
issue the open operation again.

� If the file is marked in error, your program can check the job log to
see what errors occurred previously, then take the appropriate
recovery action for those errors.

Messages:

 CPF4132 (Escape)

 CPF5129 (Escape)

 Appendix B. Return Codes, Messages, and Sense Codes B-17

Major Code 81

Major Code 81 – Permanent session error (irrecoverable).

Description: An irrecoverable session error occurred during an I/O operation.
Your session cannot continue and has ended. Before communications can
resume, the session must be established again by using an acquire operation or
another program start request. Recovery from this error is unlikely until the
problem causing the error is detected and corrected. Operations directed to
other sessions associated with the file should work.

Action: You can perform the following general actions for all 81xx return
codes. Specific actions are given in each minor return code description.

If your program initiated the session, you can:

� Correct the problem and establish the session again. If the operation is still
not successful, your program should end the session.

� Continue processing without the session.
 � End.

If your session was initiated by a program start request from the remote
program, you can:

� Continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the
configuration off, make the change to the configuration description, then
vary the configuration on.

� To change a parameter value in the file, use the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value spec-
ified in the configuration (for your program only). Therefore, in some
cases, you may choose to make a change with the ADDICFDEVE or
OVRICFDEVE command rather than in the configuration.

Several other minor codes indicate a line or remote system error and may
require an operator to correct the error.

Note: If the session is started again, it starts from the beginning, not at the
point where the session error occurred.

B-18 SNA Upline Facility Programming V4R1

Code Description/Action

8140 Description: A cancel reply was received from your program or from
the operator in response to a notify message, or was the result of a
system default, causing the session to be ended. The session is no
longer active.

Action: If your program started the session, issue an acquire opera-
tion to start the session again. If your program was started by a
program start request, it can continue local processing or end.

Messages:

 CPF51ð4 (Escape)

8191 Description: A permanent line or controller error occurred on an input
or output operation, and the system operator attempted recovery in
response to the error message. You can learn what type of line error
occurred by checking the system operator's message queue. The
session has ended. Data may have been lost.

Action: If your program started the session, issue an acquire opera-
tion to start the session again. If your program was started by a
program start request from the remote program, it can continue local
processing or end.

Messages:

 CPF4146 (Escape)

 CPF4542 (Escape)

 CPF5128 (Escape)

8196 Description: The remote system sent a Systems Network Architecture
(SNA) UNBIND command to your system, or the session was ended
locally.

Action: To start another session, issue the acquire operation again.
Otherwise, your program can continue local processing or end.

Messages:

 CPF5165 (Escape)

819D Description: On an input or output operation, your program received
some unexpected data from the remote program. The session has
ended.

Action: Your program is expecting the remote program to send a
detach indication with no data.

Messages:

 CPF5ð89 (Escape)

81B9 Description: On an input operation, the remote program sent a data
record whose length was greater than the maximum user record length
specified for your session. The session has ended.

Action: Verify that the value in the user record length (RCDLEN)
parameter on the device description (CRTDEVSNUF) command or on
the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command is large
enough for the longest record to be received.

Messages:

 Appendix B. Return Codes, Messages, and Sense Codes B-19

 CPF53ð5 (Escape)

 CPF5335 (Escape)

 CPF5388 (Escape)

81E9 Description: An input operation was issued and the format selection
option for the ICF file was *RECID, but the data received did not match
any record formats in the file. There was no format in the file defined
without a RECID keyword, so there was no default record format to
use. The session has ended.

Action: Verify that the data sent by the remote program was correct.
If the data was not correct, have the operator on the remote system
change the remote program to send the correct data. If the data was
correct, add a RECID keyword definition to the file that matches the
data, or define a record format in the file without a RECID keyword so
that a default record format can be used on input operations. If your
program started the session, use another acquire operation to start the
session again. If a program start request started your program, con-
tinue local processing or end.

Messages:

 CPF5291 (Escape)

B-20 SNA Upline Facility Programming V4R1

Major Code 82

Major Code 82 – Open or acquire operation failed.

Description: Your attempt to establish a session was not successful. The
error may be recoverable or permanent, and recovery from it is unlikely until the
problem causing the error is detected and corrected.

Action: You can perform the following general actions for all 82xx return
codes. Specific actions are given in each minor code description.

If your program was attempting to start the session, you can:

� Correct the problem and attempt to establish the session again. The next
operation could be successful only if the error occurred because of some
temporary condition such as the communications line being in use at the
time. If the operation is still not successful, your program should end.

� Continue processing without the session.
 � End.

If your session was initiated by a program start request from the remote
program, you can:

� Correct the problem and attempt to connect to the requesting program
device again. If the operation is still not successful, your program should
end.

� Continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the
configuration off, make the change to the configuration description, then
vary the configuration on.

� To change a parameter value in the file, use the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value spec-
ified in the configuration (for your program only). Therefore, in some
cases, you may choose to make a change with the ADDICFDEVE or
OVRICFDEVE command rather than in the configuration.

If no changes are needed in your file or in the configuration (and depending on
what the return code description says):

� If the attempted operation was an acquire, issue the acquire operation
again.

� If the attempted operation was an open, close the file and issue the open
operation again.

 Appendix B. Return Codes, Messages, and Sense Codes B-21

Code Description/Action

8209 Description: The open or acquire operation issued by your program
was not successful because a prestart job is being canceled. One of
the following may have occurred:

� An End Job (ENDJOB), End Prestart Job (ENDPJ), End Subsystem
(ENDSBS), End System (ENDSYS), or Power Down System
(PWRDWNSYS) command was being issued.

� The maximum number of prestart jobs (MAXJOBS parameter) was
reduced by the Change Prestart Job Entry (CHGPJE) command.

� The value for the maximum number of program start requests
allowed (specified in the MAXUSE parameter on the ADDPJE or
CHGPJE command) was exceeded.

� Too many unused prestart jobs exist.
� The prestart job had an initialization error.

Action: Complete all processing and end your program as soon as
possible. Correct the system error before starting this job again.

Messages:

 CPF4292 (Escape)

 CPF5313 (Escape)

8233 Description: A program device name that was not valid was detected.
Either an ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command
was not run, or the program device name in your program does not
match the program device name specified in the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command for the session being
acquired. The session was not started.

Action: If the error was in your program, change your program to
specify the correct program device name. If an incorrect identifier was
specified in the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, specify the correct value in the PGMDEV parameter.

Messages:

 CPF4288 (Escape)

 CPF5ð68 (Escape)

8281 Description: On an unsuccessful open or acquire operation, a system
error condition was detected. For example, the file may previously
have been in error, or the file could not be opened due to a system
error.

Action: Your communications configurations may need to be varied off
and then on again. Your program can do one of the following:

� Continue local processing.
� Close the ICF file, open the file again, and acquire the program

device again. However, if this results in another 8281 return code,
your program should close the file and end.

� Close the file and end.

Messages:

 CPF4121 (Escape)

 CPF4168 (Escape)

 CPF4182 (Escape)

B-22 SNA Upline Facility Programming V4R1

 CPF4369 (Escape)

 CPF437ð (Escape)

 CPF4375 (Escape)

 CPF5257 (Escape)

 CPF5274 (Escape)

 CPF5317 (Escape)

 CPF5318 (Escape)

8282 Description: The open or acquire operation attempted by your
program was not successful because the device supporting commu-
nications between your program and the remote location is not usable.
For example, this may have occurred because communications were
stopped for the device by a Hold Communications Device
(HLDCMNDEV) command. Your program should not issue any oper-
ations to the device. The session was not started.

Action: Communications with the remote program cannot resume until
the device has been reset to a varied on state. If the device has been
held, use the Release Communications Device (RLSCMNDEV)
command to reset the device. If the device is in an error state, vary the
device off, then on again. Your program can attempt to acquire the
program device again, continue local processing, or end.

Messages:

 CPF4298 (Escape)

 CPF5269 (Escape)

8285 Description: On an open or acquire operation, the attempt by your
program to call a remote location automatically using a switched con-
nection was not successful. The number specified on the controller
description was dialed, but the connection was not established. Pos-
sible causes are that the line was busy, that there was no answer, or
that the number dialed was disconnected. The session was not
started.

Action: Verify that the number you are dialing is correct and that the
remote system is ready for the call. Also verify that the line description
you are using is varied on and is included in the switched line list on
the controller description. Your program can issue the open or acquire
operation again, continue local processing, or end.

Messages:

 CPF4179 (Escape)

 CPF526ð (Escape)

8291 Description: A permanent line or controller error occurred on an
unsuccessful open or acquire operation, and the system operator took
a recovery option in response to the error message. The session was
not started.

Action: If your program was attempting to start the session, it can try
the acquire operation again. If your program was started by a program
start request from the remote program, your program can continue local
processing or end.

Messages:

 CPF4146 (Escape)

 Appendix B. Return Codes, Messages, and Sense Codes B-23

 CPF5353 (Escape)

82A1 Description: The acquire operation issued by your program was not
successful because the logon portion of the acquire operation failed.
The host subsystem may have been inactive, or the name of the
remote application program specified in the application ID (APPID)
parameter on the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command may have been incorrect. The session was not started.

Action: Verify that the name of the remote application program is
specified correctly on the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command. If the program name is specified correctly,
contact the remote location and request that the host system be
started, then issue the acquire operation again. Otherwise, your
program can continue local processing, wait to send the acquire opera-
tion again, or end.

Messages:

 CPF418ð (Escape)

 CPF4226 (Escape)

 CPF4758 (Escape)

 CPF5228 (Escape)

 CPF5516 (Escape)

 CPF5518 (Escape)

82A5 Description: On an unsuccessful acquire operation, SNUF detected a
combination of parameter values on the ADDICFDEVE, CHGICFDEVE,
or OVRICFDEVE command that was not valid. The session was not
started.

Action: Change the parameter values on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command, then issue the acquire
operation again.

Messages:

 CPF43ð3 (Escape)

 CPF5511 (Escape)

 CPF5338 (Escape)

82A6 Description: On the open or acquire operation attempted by your
program, a negative-response with sense data was received when the
Systems Network Architecture (SNA) BIND command was sent to the
user to start the session. The session was not started.

Action: Close the file. Check for an error in the format of the incorrect
BIND command, or contact the remote system to determine why the
command failed. After correcting the error, your program can issue the
acquire operation again to start the session.

Messages:

 CPF4227 (Escape)

 CPF4333 (Escape)

 CPF4527 (Escape)

 CPF5517 (Escape)

 CPF5538 (Escape)

B-24 SNA Upline Facility Programming V4R1

82A7 Description: The open or acquire operation attempted by your
program was not successful because the specified program device was
already in use. The session was not started.

Action: Your program can wait for the program device to become
available, then try the open or acquire operation again. Otherwise, it
can continue local processing or end.

Messages:

 CPF41ð6 (Escape)

 CPF55ð7 (Escape)

82A8 Description: The acquire operation attempted by your program was
not successful because the maximum number of program devices
allowed for the ICF file has been reached. The session was not
started.

Action: Your program can recover by releasing a different program
device and issuing the acquire operation again. If more program
devices are needed, close the file and increase the MAXPGMDEV
value for the ICF file.

Messages:

 CPF4745 (Diagnostic)

 CPF5ð41 (Status)

82A9 Description: The acquire operation issued by your program to a
*REQUESTER device was not successful due to one of the following
causes:

� Your program has already acquired the *REQUESTER device.
� The job was started by a program start request with the

*REQUESTER device detached.
� The *REQUESTER device was released because an end-of-

session was requested.
� The job does not have a *REQUESTER device; that is, the job was

not started by a program start request.
� A permanent error occurred on the session.

Action:

� If the *REQUESTER device is already acquired and your program
expects to communicate with the *REQUESTER device, use the
program device that acquired the *REQUESTER.

� If the *REQUESTER device is not available and your program
expects to communicate with the *REQUESTER device, the remote
program must send a program start request without a detach func-
tion.

� If your program released its *REQUESTER device, before trying to
acquire it, correct the error that caused your program

� If this job does not have a *REQUESTER device, correct the error
that caused your program to attempt to acquire a *REQUESTER
device.

� If a permanent error caused the acquire operation to fail, verify that
your program correctly handles the permanent error return codes
(80xx, 81xx) it received on previously issued input and output oper-
ations. Because your program was started by a program start
request, your program cannot attempt error recovery after receiving

 Appendix B. Return Codes, Messages, and Sense Codes B-25

a permanent error return code. It is the responsibility of the remote
program to initiate error recovery.

Messages:

 CPF4366 (Escape)

 CPF538ð (Escape)

 CPF5381 (Escape)

82AA Description: The open or acquire operation attempted by your
program was not successful because the remote location name speci-
fied on the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command
does not match any remote location configured on the system. The
session was not started.

Action: Your program can continue local processing, or close the file
and end. Verify that the name of the remote location is specified cor-
rectly in the RMTLOCNAME parameter on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command.

Messages:

 CPF41ð3 (Escape)

 CPF4363 (Escape)

 CPF4364 (Escape)

 CPF4747 (Escape)

 CPF5378 (Escape)

 CPF5379 (Escape)

82AB Description: The open or acquire operation attempted by your
program was not successful because the device description for the
remote location was not varied on. The session was not started.

Action: Your program can wait until the communications configuration
is varied on and then issue the acquire operation again, it can try the
acquire operation again using a different device description, continue
local processing, or end.

Messages:

 CPF4285 (Escape)

 CPF5333 (Escape)

82B3 Description: The open or acquire operation attempted by your
program was not successful because your program is trying to use a
device description that is already in use by another job. The session
was not started.

Action: Wait for the device description to become available, then issue
the acquire operation again. You can use the Work with Configuration
Status (WRKCFGSTS) command to determine which job is using the
device description. Consider increasing the WAITFILE parameter of
the CHGICFF or OVRICFF command to allow more time for the device
to become available. Otherwise, your program can continue local pro-
cessing or end.

Messages:

 CPF4282 (Escape)

 CPF5332 (Escape)

B-26 SNA Upline Facility Programming V4R1

82B4 Description: The acquire operation issued by your program was not
successful because a System/36 application program in the System/36
environment attempted to acquire an ICF program device for 3270 SNA
program interface tasks.

Action: 3270 SNA program interface does not support System/36
application programs. Use an AS/400 program that is not running in
the System/36 environment.

Messages:

 CPF4233 (Escape)

 CPF5336 (Escape)

82B5 Description: The acquire operation issued by your program was not
successful because a 3270 SNA program interface session cannot use
a SNUF device from an earlier release.

 Action: Delete the SNUF device description, create a new device
description, and issue the acquire operation again.

Messages:

 CPF4136 (Escape)

82BB Description: The acquire operation issued by your program was not
successful because the program device specified by your program was
reserved for a program start request from the host. The session was
not started.

Action: Specify a device which was not created as being capable of a
program start request, or create this device again with the correct attri-
butes.

Messages:

 CPF41ð9 (Escape)

 CPF5355 (Escape)

82EA Description: The open or acquire operation attempted by your
program was not successful. A format selection of *RECID was speci-
fied on the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command,
but cannot be used with the ICF file because the RECID DDS keyword
is not used on any of the record formats in the file. The session was
not started.

Action: Close the ICF file. Change the record format selection
(FMTSLT) parameter to select formats by some means other than
*RECID, or use a file that has a RECID DDS keyword specified for at
least one record format. Open the file again.

Messages:

 CPF4348 (Escape)

 CPF5521 (Escape)

82EE Description: Your program attempted an open or acquire operation to
a device that is not supported. Your program tried to acquire a device
that is not a valid ICF communications type, or it is trying to acquire the
requesting program device in a program that was not started by a
program start request. The session was not started.

 Appendix B. Return Codes, Messages, and Sense Codes B-27

Action: Your program can continue local processing or end. Verify
that the name of the remote location is specified correctly in the
RMTLOCNAME parameter on the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command. If your program was attempting to acquire a
non-ICF device, use the appropriate interface for that communications
type. If your program was attempting to acquire a requesting program
device, verify that your program is running in the correct environment.

Messages:

 CPF41ð5 (Escape)

 CPF4223 (Escape)

 CPF4251 (Escape)

 CPF476ð (Escape)

 CPF5ð38 (Escape)

 CPF555ð (Escape)

82EF Description: Your program attempted an acquire operation, or an
open operation that implicitly acquires a session, to a device that the
user is not authorized to, or that is in service mode. The session was
not started.

Action: If the operation was an acquire, correct the problem and issue
the acquire again. If the operation was an open, close the file, correct
the problem, then issue the open operation again. To correct an
authority error, obtain authority for the device from your security officer
or device owner. If the device is in service mode, wait until machine
service function (MSF) is no longer using the device before issuing the
operation again.

Messages:

 CPF41ð4 (Escape)

 CPF4186 (Escape)

 CPF5278 (Escape)

 CPF5279 (Escape)

82F5 Description: The open or acquire operation was not successful
because your program tried to use a format selection option of
*RMTFMT in the FMTSLT parameter on the ADDICFDEVE or
OVRICFDEVE command. The session was not started.

Action: Change the value in the FMTSLT parameter on the
ADDICFDEVE or OVRICFDEVE command, then issue the open or
acquire operation again.

Messages:

 CPF4347 (Escape)

 CPF5515 (Escape)

B-28 SNA Upline Facility Programming V4R1

Major Code 83

Major Code 83 – Session error occurred (the error is recoverable).

Description: A session error occurred, but the session may still be active.
Recovery within your program might be possible.

Action: You can perform the following general actions for all 83xx return
codes. Specific actions are given in each minor code description.

� Correct the problem and continue processing with the session. If the error
occurred because of a resource failure on the remote system or because
the remote system was not active at the time, a second attempt may be
successful. If the operation is still not successful, your program should end
the session.

� Issue an end-of-session function and continue processing without the
session.

 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the
configuration off, make the change to the configuration description, then
vary the configuration on.

� To change a parameter value in the file, use the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value spec-
ified in the configuration (for your program only). Therefore, in some
cases, you may choose to make a change with the ADDICFDEVE or
OVRICFDEVE command rather than in the configuration.

If no changes are needed in your file or in the configuration, and depending on
what the return code description says, you should notify the remote location that
a change is required at that location to correct the error received.

Code Description/Action

830B Description: Your program attempted an operation that was not valid
because the session was not yet acquired or has ended. The session
may have ended because of a release operation, an end-of-session
function, or a permanent error. Your program may have incorrectly
handled a previous error.

Action: Verify that your program does not attempt any operations
without an active session. Also verify that your program correctly
handles the permanent error or session-not-acquired return codes
(80xx, 81xx, 82xx) it received on previously issued input and output
operations. To recover from an incorrectly handled error condition,
your program may or may not be able to issue another acquire opera-
tion, depending on the return code.

 Appendix B. Return Codes, Messages, and Sense Codes B-29

Messages:

 CPD4ð79 (Diagnostic)

 CPF4739 (Status)

 CPF5ð67 (Escape)

 CPF5ð68 (Escape)

 CPF5ð7ð (Escape)

830C Description: Your program received a function-management-header
(FMH) that was greater than the request unit (RU) size.

Action: Verify that the host system actually sent the function-
management-header. If the host system sent only data and no FMH,
SNUF may have treated a data byte as the FMH length.

Messages:

 CPF477ð (Notify)

830D Description: Your program received a shutdown indication from the
host system. The host system has begun shutdown procedures,
although the session is still usable.

Action: Finish activity for the session and release the session as soon
as possible so the host system can complete shutdown procedures.

Messages:

 CPF4771 (Notify)

8311 Description: Your program attempted an output operation while a
message containing sense data was waiting to be received.

Action: Issue an input operation to receive the sense data.

Messages:

 CPF4772 (Notify)

8319 Description: The remote program sent a negative-response with
sense data.

Action: Issue an input operation to receive the sense data.

Messages:

 CPF4773 (Notify)

831B Description: Your program tried to specify invalid sense data on a
negative-response function, or it tried to send a negative-response that
has already been sent to the current chain. The data was not sent.

Action: Correct your program so that it does not issue the same
negative-response more than once, and that it sends valid sense data
on a negative-response function. Valid sense data must be either 0 or
8 bytes long. To send 8 bytes, the first four bytes must be 0000, 08xx,
or 10xx, and the remaining four bytes must be in the ranges 0-9, A-F,
or a-f. If your program chooses to send a negative-response without
sense data, SNUF automatically sends 08110000 to the remote
program.

Messages:

 CPF4774 (Notify)

B-30 SNA Upline Facility Programming V4R1

831C Description: Your program's previous output operation received a
return code of 0412, indicating that your program must receive informa-
tion sent by the remote program; however, your program did not handle
the return code correctly. The current output operation was not suc-
cessful because your program should have issued an input operation to
receive the information already sent by the remote program.

Action: Issue an input operation to receive the previous information.

Messages:

 CPF4934 (Notify)

 CPF5ð76 (Notify)

831E Description: The operation attempted by your program was not valid,
or a combination of operations that was not valid was specified. The
session is still active. The error may have been caused by one of the
following:

� Your program issued an operation that is not recognizable or not
supported by SNUF.

� Your program requested a combination of operations or keywords
that was not valid, such as a combined write-then-read operation
with the invite function specified.

� Your program issued an input operation, or an output operation
with the invite or allow-write function, for a file that was opened for
output only.

� Your program issued an output operation for a file that was opened
for input only.

� Your program issued a close operation with a temporary close
option.

Action: Your program can try a different operation, issue a release
operation or end-of-session function, or end. Correct the error in your
program before trying to communicate with the remote program.

If the file was opened for input only, do not issue any output operations;
or, if the file was opened for output only, do not issue any input oper-
ations, and do not use the invite or allow-write function on an output
operation. If such an operation is needed, then release the session,
close the ICF file, and open the file again for input and output.

Messages:

 CPF4564 (Escape)

 CPF4764 (Notify)

 CPF4766 (Notify)

 CPF479ð (Notify)

 CPF5132 (Escape)

 CPF5149 (Escape)

831F Description: Your program specified data or a length for the operation
that was not valid; however, the session is still active. One of the fol-
lowing caused the error indication:

� On an output operation, your program tried to send a data record
that was longer than the MAXRCDLEN value specified for the ICF
file.

� The program used a read or write operation that specified a data
length greater than the record format in the ICF file.

 Appendix B. Return Codes, Messages, and Sense Codes B-31

� If this was a timer function, the format of the timer interval was not
HHMMSS.

� If a system-defined format was used to specify the operation, or if
the variable-length-data-record (VARLEN) function was used, then
the length of the user buffer was not valid.

� For an SNA 3270 program interface application, the output buffer
length was less than the length of the required header plus data;
or, for the SSCP-LU record, the length was greater than the
maximum allowed.

Action: If you want your program to recover, try the operation again
with a smaller data length. If you do not need your program to recover
immediately, do one of the following:

� Change the record format length in the ICF file, or change the
record length in your program and compile your program again.

� For an input operation, specify a data length equal to or less than
the record format length, or do not specify a length at all.

� If the timer function was used, verify that the format of the timer
interval is HHMMSS.

� For an output operation that used the variable-length-data-record
(VARLEN) function, verify that the length specified is less than the
record length specified for the ICF file when it was opened.

Messages:

 CPF4762 (Notify)

 CPF4765 (Notify)

 CPF4767 (Notify)

 CPF4786 (Notify)

 CPF4787 (Notify)

 CPF4825 (Notify)

 CPF4827 (Notify)

8322 Description: Your program tried to issue a request-to-turnaround-with-
invite function, a negative-response function, or a release operation.
However, these are not valid while your program is in send state.

Action: Your program can issue an output operation to continue
sending data, issue an input operation to begin receiving data, issue an
end-of-session function to continue local processing, or end. Correct
the error that caused your program to attempt the operation that was
not valid.

Messages:

 CPF4775 (Notify)

8323 Description: Your program attempted to issue a cancel function when
data was received for your program. The cancel function is only valid
in send state.

Action: Your program can issue an input operation to continue
receiving data, issue an end-of-session function, or end. Correct the
error that caused your program to attempt the invalid operation.

B-32 SNA Upline Facility Programming V4R1

Messages:

 CPF4776 (Notify)

8324 Description: On an output operation, your program tried to send a
function-management-header (FMH) with a record that was not the first
record in the chain. An FMH is valid only at the beginning of a chain; it
is not valid within the chain. The session is still active.

Action: Change your program so it sends the FMH with the first
record in a chain.

Messages:

 CPF4778 (Notify)

8326 Description: Your program attempted to issue a cancel function to
cancel a group of records when no records were previously sent to
start a group. The cancel function is only valid within a chain; it is not
valid preceding a chain or between chains. The session is still active.

Action: Correct the error that caused your program to attempt the
invalid operation.

Messages:

 CPF4779 (Notify)

8327 Description: The input or output operation issued by your program
was not successful because there was no active transaction. Either the
transaction has ended, or the transaction was never started.

Action: If your program wants to start a transaction, it can issue an
evoke function. Otherwise, it can issue an end-of-session function or
end. If a coding error in your program caused the error, correct your
program.

Messages:

 CPF5ð98 (Notify)

8329 Description: An evoke function that was not valid was detected in this
session. Your program was started by a program start request and,
therefore, cannot issue any evoke functions in this session.

Action: To recover, your program can try a different operation or func-
tion. To issue an evoke function in a different session, first issue an
acquire operation (using a different program device name), then try the
evoke function. Otherwise, your program can issue an end-of-session
function, continue local processing, or end. If a coding error caused
your program to attempt an evoke that was not valid, correct your
program.

Messages:

 CPF5ð99 (Notify)

832C Description: A release operation following an invite function was
detected. Because your program issued the invite function, it cannot
issue a release operation to end the invited session.

Action: Issue an input operation to satisfy the invite function, or issue
a cancel-invite function to cancel the invite function; then try the release
operation again. Otherwise, issue an end-of-session function to end

 Appendix B. Return Codes, Messages, and Sense Codes B-33

the session. If a coding error caused your program to attempt a
release operation that was not valid, correct your program.

Messages:

 CPF4769 (Notify)

832D Description: Following an invite function, your program issued a
request-to-write indication, a negative-response indication, a cancel
reply, or an additional invite function. This operation failed because the
original invite function must first be satisfied by an input operation.

Action: Issue an input operation to receive the data that was invited.
Otherwise, issue an end-of-session function to end the session. If a
coding error caused your program to attempt a request-to-write indi-
cation or an additional invite function, correct your program.

Messages:

 CPF4924 (Notify)

832F Description: The evoke function or release operation issued by your
program was not successful because your program attempted the oper-
ation while the current transaction was still active. The operation was
not performed, but the session is still active.

Action: Use the detach function to end the current transaction before
issuing an evoke function or release operation. Correct the error that
caused your program to issue an evoke function during an active trans-
action; then run your program again.

Messages:

 CPF478ð (Notify)

 CPF4781 (Notify)

8330 Description: On a successful input operation, your program received
a cancel function with a turnaround indication. The remote program
has canceled the group of records it was sending and is now ready to
receive data from your program. The session is still active.

Action: Normally, your program should discard the canceled data it
received from the remote program, as the data may be in error. Your
program can then issue an output operation.

Messages:

 CPF4782 (Notify)

8331 Description: On a successful input operation, your program received
a cancel function without a turnaround indication. The remote program
has canceled the group of records it was sending, but it is still in send
state, and your program is still in receive state. The session is still
active.

Action: Normally, your program should discard the canceled data it
received from the remote program, as the data may be in error. Your
program should then issue another input operation.

Messages:

 CPF4783 (Notify)

B-34 SNA Upline Facility Programming V4R1

8332 Description: On an input operation, your program received a cancel
function with a detach indication. The remote program sent some data
and then canceled the transaction, possibly because it detected an
error in the data. The session is still active.

Action: Normally, your program should discard the canceled data it
received from the remote program, as the data may be in error. If your
program started the session, it can issue an evoke function to start
another transaction, issue an end-of-session function to continue local
processing, or end. If your program was started by a program start
request from the remote program, it can continue local processing or
end.

Messages:

 CPF4784 (Notify)

83B6 Description: On an output operation, your program received an indi-
cation that the remote program has quiesced the SNA session on
which this transaction is running by issuing the SNA quiesce-at-end-of-
chain (QEC) command. The remote program may release the qui-
esced state at a later time by issuing the SNA release-quiesce
command.

Action: Your program can wait and try the output operation again at a
later time. Otherwise, your program can end the session, continue
local processing, or end.

Messages:

 CPF4785 (Notify)

83B7 Description: On a previous operation, your program received an indi-
cator that the SNA 3270 program interface command code or data flow
indicator in the common header is not valid, or that the data following
the common header is not valid.

Action: Correct the logic in your program that produced the error con-
dition in the common header or the data, then try the operation again.

Messages:

 CPF4788 (Notify)

 CPF4789 (Notify)

 CPF4795 (Notify)

83B8 Description: On a previous operation, your program received a
CLEAR or an UNBIND request with a BIND forthcoming. The host
system has reset the session. Data sent to or received from the
remote system may have been lost. The session is now in contention
state.

Action: Your program can continue with another input or output opera-
tion, or it can release the program device and close the ICF file.

Messages:

 CPF5163 (Notify)

83E0 Description: Your program attempted an operation using a record
format that was not defined for the ICF file.

Action: Verify that the name of the record format in your program is

 Appendix B. Return Codes, Messages, and Sense Codes B-35

correct, then check to see whether the record format is defined in the
file definition.

Messages:

 CPF5ð54 (Notify)

83E8 Description: Your program attempted to issue a cancel-invite function
to a session that was not invited. One of the following may have
occurred:

� The invite function was implicitly canceled earlier in your program
by a valid output operation.

� The invite function was satisfied earlier in your program by a valid
input operation.

� Your program had already canceled the invite function, then tried to
cancel it again.

� Your program never invited the session.

The session is still active.

Action: Your program can issue an input or output operation, issue an
end-of-session function, continue local processing, or end. However,
you should correct the error that caused your program to attempt the
cancel-invite to a session that was not invited.

Messages:

 CPF4763 (Notify)

83F8 Description: Your program attempted to issue an operation to a
program device that is marked in error due to a previous I/O or acquire
operation. Your program may have handled the error incorrectly.

Action: Release the program device, correct the previous error, then
acquire the program device again.

Messages:

 CPF5293 (Escape)

Failed Program Start Requests
Message CPF1269 is sent to the system operator message queue when the local
system rejects an incoming program start request. You can use the message infor-
mation to determine why the program start request was rejected.

The CPF1269 message contains two reason codes. One of the reason codes can
be zero, which can be ignored. If only one nonzero reason code is received, that
reason code represents the reason the program start request was rejected. If the
System/36 environment is installed on your AS/400 system, there can be two
nonzero reason codes. These two reason codes occur when the OS/400 system
cannot determine whether the program start request was to start a job in System/36
environment or in the OS/400 environment. One reason code explains why the
program start request was rejected in the System/36 environment. The other
explains why the program start request was rejected in the OS/400 environment.
Whenever you receive two reason codes, you should determine which environment
the job was to run in and correct the problem for that environment.

The following lists shows reason codes for failed program start requests.

B-36 SNA Upline Facility Programming V4R1

Code Reason Code Description
401 Program start request is received to a device that is not allocated to an

active subsystem.
402 Requested device is currently being held by a Hold Communications

Device (HLDCMNDEV) command.
403 User profile is not accessible.
404 Job description is not accessible.
405 Output queue is not accessible.
406 Maximum number of jobs defined by subsystem description are already

active.
407 Maximum number of jobs defined by communications entry are already

active.
408 Maximum number of jobs defined by routing entry are already active.
409 Library on library list is exclusively in use by another job.
410 Group profile cannot be accessed.
411 Insufficient storage in machine pool to start job.
412 System value not accessible.
501 Job description was not found.
502 Output queue was not found.
503 Class was not found.
504 Library on initial library list was not found.
505 Job description or job description library is damaged.
506 Library on library list is destroyed.
507 Duplicate libraries were found on library list.
508 Storage-pool defined size is zero.
602 Transaction program-name value is reserved but not supported.
604 Matching routing entry was not found.
605 Program was not found.
704 Password is not valid.
705 User is not authorized to device.
706 User is not authorized to subsystem description.
707 User is not authorized to job description.
708 User is not authorized to output queue.
709 User is not authorized to program.
710 User is not authorized to class.
711 User is not authorized to library on library list.
712 User is not authorized to group profile.
713 User ID is not valid.
714 Default user profile is not valid.
715 Neither password nor user ID was provided, and no default user profile

was specified in the communications entry.
718 No user ID.
722 A user ID was received, but a password was not sent.
723 No password was associated with the user ID.
725 User ID does not follow naming convention.
726 User profile is disabled.
801 Program initialization parameters are present but not allowed.
802 Program initialization parameter exceeds 2000 bytes.
803 Subsystem is ending.
804 Prestart job is inactive or is ending.
805 WAIT(NO) was specified on the prestart job entry, and no prestart job was

available.
806 The maximum number of prestart jobs that can be active on a prestart job

entry was exceeded.

 Appendix B. Return Codes, Messages, and Sense Codes B-37

807 Prestart job that ended when a program start request was being received.
901 Program initialization parameters are not valid.
902 Number of parameters for program not valid.
903 Program initialization parameters are required but not present.
1001 System logic error. Notification that an unexpected condition has stopped

the running of a program or an unexpected return code encountered.
1002 System logic error. Notification that an unexpected condition has stopped

the running of a program or an unexpected return code encountered while
receiving program initialization parameters.

1501 Character in procedure name not valid.
1502 Procedure is not found.
1503 System/36 environment library is not found.
1504 Library QSSP is not found.
1505 File QS36PRC is not found in library QSSP.
1506 Procedure or library name is greater than 8 characters.
1507 Current library is not found.
1508 Not authorized to current library.
1509 Not authorized to QS36PRC in current library.
1510 Not authorized to procedure in current library.
1511 Not authorized to System/36 environment library.
1512 Not authorized to file QS36PRC in System/36 environment library.
1513 Not authorized to procedure in System/36 environment library.
1514 Not authorized in library QSSP.
1515 Not authorized to file QS36PRC in QSSP.
1516 Not authorized to procedure in QS36PRC in QSSP.
1517 Unexpected return code from System/36 environment support.
1518 Problem phase program is not found in QSSP.
1519 Not authorized to problem phase program in QSSP.
1520 Maximum number of target programs started (100 per System/36 environ-

ment).
2111 Program name is missing or not valid.
2118 Function-management-header not valid.
2123 End bracket or end chain missing.

B-38 SNA Upline Facility Programming V4R1

Appendix C. Considerations for Host System Programmers

This appendix contains information intended for
CICS/VS or IMS/VS host system application pro-
grammers. It also contains information for
System/370, System/390, 33xx, and 43xx system
programmers. Generally, the AS/400 programmer
does not need the information in this section.
However, when SNA upline facility (SNUF) is con-
figured, the AS/400 programmer needs to know
certain parameter values specified during host
system generation. For SNA 3270 program inter-
face host considerations, see Appendix D.

Generating the Host System With
VTAM/NCP

You must complete host system generation before
you begin communications with the AS/400
system. With VTAM/NCP, you can generate the
host system with CICS/VS, IMS/VS, or both, to
communicate with the AS/400 system in the
network. See the specific creation considerations
for the host systems in “Programming for CICS/VS
Systems” on page C-5 and “Programming for
IMS/VS Systems” on page C-8.

Defining Physical Unit
Parameters

You must define the AS/400 system during Virtual
Communications Access Method/Network Control
Program (VTAM/NCP) generation. Each AS/400
controller description is represented as a physical
unit in VTAM. Therefore, each AS/400 controller
description that SNUF uses requires a physical
unit definition.

Note: The following parameters on the physical
unit definition pertain to a SNUF configuration
created for a synchronous data link control
(SDLC) line description. Slight differences may be
required for token-ring network, Ethernet, and
X.25 line descriptions.

PUTYPE parameter = 2
The physical unit type must be 2.

ADDR parameter = xx
This parameter specifies the station address.
This parameter must be the same as the

station address specified in the line
description (CRTLINSDLC command) or con-
troller description (CRTCTLHOST command).

ISTATUS parameter = ACTIVE / INACTIVE
This parameter specifies if the physical unit
should be turned on when its major node is
turned on.

MAXDATA parameter = 521
This parameter specifies the maximum
amount of data the AS/400 system can
receive, and must match the value specified
for the MAXFRAME parameter on the AS/400
system. The default value shown here (521)
defines a 512-byte buffer plus 9 bytes for the
transmission header and the request/response
header. Other acceptable frame sizes (that
match a valid MAXFRAME value) are: 265,
1033, 1466, 1994, and 2057.

MAXOUT parameter = 7
This parameter specifies the number of
frames that Network Control Program (NCP)
sends to the AS/400 system before waiting for
a response. For best performance, specify 7.

DISCNT parameter = YES / NO
This parameter specifies if VTAM disconnects
the physical unit when the last logical unit
session is ended. DISCNT=NO allows the
AS/400 system to remain active when no ses-
sions are active. VTAM turns off the physical
unit when the last SNUF application on the
line is turned off. DISCNT=YES disconnects
the AS/400 system when the last session
ends. SNUF remains active until a deactivate
operation is performed. DISCNT=YES also
causes VTAM to ignore the deactivate
request. If switched lines and more than one
location are configured, specify DISCNT=YES.

IDBLK parameter = 056 and IDNUM Parameter
= number
These parameters make up the exchange
identifier. Specify these parameters for a
switched line only. For the AS/400 system,
you must specify IDBLK as 056. The IDNUM
must be the same as the EXCHID parameter
specified in the line description (CRTLINSDLC
command).

 Copyright IBM Corp. 1997 C-1

SSCPFM parameter = USSSCS
Specify SSCPFM=USSSCS to indicate that
the AS/400 logical units associated with this
physical unit use character-coded messages
to communicate with VTAM. The AS/400
system requires character-coded messages.

USSTAB parameter = name
This parameter specifies the name of an
unformatted systems services (USS) definition
table. Since SNUF requires the IBM*-supplied
definition table, do not specify this parameter.

Defining Logical Unit Parameters

Each SNUF session corresponds to an Systems
Network Architecture (SNA) logical unit and
requires a logical unit definition in the VTAM cre-
ation. The following parameters on the logical unit
definition apply to SNUF.

LOCADDR parameter = address
This parameter specifies the local address of
the session, which is equivalent to a logical
unit number. You can define up to 255 logical
units.

ENCR parameter = NONE
This parameter specifies the type of
encryption to be used. The AS/400 system
does not support encryption for SNUF, so
specify ENCR=NONE.

ISTATUS parameter = ACTIVE / INACTIVE
This parameter specifies if the logical unit is to
be turned on when the physical unit is turned
on.

PACING parameter = count
This parameter specifies how timing control is
handled between NCP and the logical unit.
Pacing controls the rate of data flow between
the AS/400 program and the host system. It
allows the receiver to control the rate at which
the sender sends requests. If timing control is
necessary, the recommended timing control
value is 7.

Sending the VTAM BIND
Command

VTAM sends the BIND command to SNUF. A
session is not started unless a correctly formatted
BIND is received by the AS/400 system. The
parameters for the BIND command for CICS/VS
and IMS/VS systems are described in Figure C-1.

Figure C-1 (Page 1 of 2). Parameters for the BIND
Command

Byte
(Decimal)

Value
(Hex) Meaning

0 31 SNA BIND request code

1 01 Format (nonnegotiable)

2 03, 04 Function management
profile

31 03, 04 Transmission services
profile

4 90, 91 Multiple request
units—exception
response

A0, A1 Multiple request
units—definite response

B0, B1 Multiple request
units—definite or excep-
tion response

5 90, 91 Multiple request
units—exception
response

A0, A1 Multiple request
units—definite response

B0, B1 Multiple request
units—definite or excep-
tion response

6, 7 2080
3080
6080
7080
00402

40402

Common protocol
Common protocol
Common protocol
Common protocol
Common protocol
Common protocol

8, 93 Transmission services
use

104 85 Maximum
request/response unit
size (sec to pri)

C-2 SNA Upline Facility Programming V4R1

For a complete description of the BIND command,
see the VTAM Programming Guide.

Example VTAM/NCP Generation

Figure C-2 on page C-4 is an example
VTAM/NCP definition of physical and logical units
on a nonswitched SDLC line. Figure C-3 on
page C-5 is an example definition for units on a
switched line. The parameters that correspond to
SNUF configuration on the AS/400 system are
highlighted and listed after each figure.

In Figure C-2 on page C-4:

.1/ This value corresponds to the NRZI param-
eter on the CRTLINSDLC command. The
NRZI setting (Yes or No) must be the same
for both the AS/400 system and the host
system.

.2/ This value corresponds to the STNADR
value on the CRTCTLHOST command.

.3/ An active logical unit corresponds to a
LOCADR specified by the CRTDEVSNUF
command on the AS/400 system.

.4/ This name corresponds to the APPID param-
eter on the CRTDEVSNUF and
OVRICFDEVE commands.

Figure C-1 (Page 2 of 2). Parameters for the BIND
Command

Byte
(Decimal)

Value
(Hex) Meaning

114 85 Maximum
request/response unit
size (pri to sec)

Notes:

1 Transmission services profile 03 is not supported if
message protection is requested.

2 Protocol is not supported if running in half-duplex
contention mode.

3 SNUF does not check these bytes.
4 The value of these two bytes represent a coded

hexadecimal size for request units. Each byte is in
the form ab, where size = (a x 2b). Values can be
00 through FB (inclusive). If the maximum request
unit is not specified, a coded size of 89 (4096 byte)
is assumed.

 Appendix C. Considerations for Host System Programmers C-3

RSLS164-4

Figure C-2. VTAM Creation on a Nonswitched SDLC Line

C-4 SNA Upline Facility Programming V4R1

RSLS165-1

Figure C-3. VTAM Creation on a Switched SDLC Line

In Figure C-3:

.5/ This value corresponds to EXCHID on the
CRTLINSDLC command.

.6/ This value corresponds to SSCPID on the
CRTCTLHOST command. On the AS/400
system, this value is given in hexadecimal
notation, and on the host system, it is given
in decimal notation.

 Performance Considerations
Give attention to the following host configuration
parameters when defining the physical and logical
units:

� The MAXDATA value should equal the
AS/400 system MAXFRAME parameter value.

� The MAXOUT value should be as 7.
� A PACING value of zero (0) may be used. If

this results in extra transmissions due to
errors, then use a value between 1 and 63.
The recommended value is 7.

Give attention to the following host parameters
when defining Group and Build macros:

� The BFRS parameter is specified on the
Group macro.

� The PASSLIM parameter is specified on the
Build macro.

See the Network Control Program: Resource
Definition Reference for additional information.

Programming for CICS/VS
Systems

The CICS/VS system programmer defines SNUF
logical units by coding SESTYPE=USERPROG
and TRMTYPE=3790 in the DFHTCT
TYPE=TERM macro-instruction.

To use function management headers in the appli-
cation programs, specify the appropriate value for
the INBFMH parameter in the program control
table.

You should define the SNUF logical units in the
CICS/VS terminal control table as 3790 full-
function logical units. Figure C-4 on page C-6
shows examples of the table entries created by
the DFHTCT macro for SNUF logical units. The
highlighted parameters are listed and described
after the figure.

 Appendix C. Considerations for Host System Programmers C-5

RSLS168-2

Figure C-4. Sample CICS/VS Table Entries

In Figure C-4:

.1/ SNUF sessions are defined to CICS/VS as
VTAM 3790 devices.

.2/ The APPID value on the CRTDEVSNUF or
OVRICFDEVE commands must match the
INITIAL DFCTCT macro identifier.

.3/ CHNASSY=YES allows the CICS/VS
program to receive records exactly as the
AS/400 program does with BATCH(*NO) on
the ADDICFDEVE or OVRICFDEVE
command. CHNASSY=NO matches
BATCH(*YES) record handling on the
AS/400 system.

.4/ TRMTYPE=3790 and
SESTYPE=USERPROG define the session
protocol to be used.

.5/ For best performance, the RUSIZE and
BUFFER values should be greater than or
equal to the RCDLEN value on the
CRTDEVSNUF or OVRICFDEVE commands.

.6/ There are two methods to send program
start requests to the AS/400 system:

� Define intrapartition destinations in the
CICS/VS Destination Control Table

� Use the interval control START
command, which does not require these
CICS/VS table definitions.

 End-of-Transaction
Considerations

The evoke-with-detach and write-with-detach oper-
ations indicate that the AS/400 program no longer
expects to communicate with the CICS/VS
program that was started. To perform the detach
function, SNUF sends an end-bracket indicator to
the CICS/VS program if it is allowed to send the
end-bracket indicator. If SNUF is not allowed to
send the end-bracket, it sends a turnaround indi-
cator to the CICS/VS program. In return, SNUF
expects an end-bracket indicator without data from

C-6 SNA Upline Facility Programming V4R1

CICS/VS. If SNUF does not receive the end-
bracket indicator or if the indicator is accompanied
by data, it abnormally ends the session. The
CICS/VS program controls the end-bracket indi-
cator by using the LAST parameter on the
EXEC-CICS SEND command or the DFHTCT
TYPE=WRITE macro instruction.

 Program-Start-Request
Considerations

SNUF accepts program start requests only on
sessions reserved for the requests. Logical units
reserved for program start requests must be
started from the host system using the VARY
command, the LOGAPPL parameter in the VTAM

definition, or the CICS/VS ACQ master terminal
command.

Use one of the following methods to send program
start requests to an AS/400 system from CICS/VS:

� Transient data put to a transient data destina-
tion

� Interval control START command

Example CICS/VS Remote Program Start
Request: The following examples show how a
CICS/VS program starts an AS/400 application
program. The example in Figure C-5 uses tran-
sient data put. The example in Figure C-6 on
page C-8 uses the interval control START
command.

SNUF

Start task

CICS/VS
CICS/VS
Application Program

Start program

Send data

Return code

Acquire

Prepare reply

Write end of
transaction

End

AS/400
Application Program

Transient data put
*TXTC or *EXEC
data

End

New task
transient data read

Send *TXTC or
*EXEC data

Receive

End

RSLS169-8

Figure C-5. Program Start Request Using the Transient Data Put Operation

 Appendix C. Considerations for Host System Programmers C-7

SNUF

Start task

CICS/VS
CICS/VS
Application Program

Start program

Send data

Return code

Acquire

Prepare reply

Write end of
transaction

End

AS/400
Application Program

Interval control
start with
terminal ID and
*TXTC or *EXEC
data

End

New task

Interval control
retrieve to read
data

Send *TXTC or
*EXEC data

Receive

End

RSLS170-5

Figure C-6. Program Start Request Using Interval Control Start Command

Programming for IMS/VS
Systems

You must define each session during IMS/VS
system creation using the TERMINAL and NAME
macro instructions.

� The NAME macro defines the logical terminal
(LTERM) name of the session.

� The TERMINAL macro defines session
parameters to IMS/VS. Each session is
defined as an SLUTYPEP terminal.

The following parameters apply to SNUF sessions.

NAME parameter
This parameter specifies the VTAM node
name from VTAM/NCP creation.

MSGDEL parameter
This parameter specifies which message
types IMS/VS should discard for this logical
terminal:

SYSINFO: Specify this attribute to delete all
system messages before they are sent to your
program. This attribute is recommended for
the program start logical units.

NONIOPCB: Specify this attribute to delete
the following messages before they are sent
to your programs:

 � Message switches
� Messages inserted by an IMS/VS program

to an alternative PCB
 � /BROADCAST messages
� DFS059 TERMINAL status messages

This attribute is recommended for all systems
except program start logical units.

NOTERM: Specify this attribute to send only
the following messages to your program:

 � Message switches
� Messages inserted by an IMS/VS program

to an alternative PCB
 � /BROADCAST messages

C-8 SNA Upline Facility Programming V4R1

� DFS059 TERMINAL status messages

NONE: Specify this attribute to send all mes-
sages to your program.

COMPT1, COMPT2, COMPT3, and COMPT4
parameters
These parameters define up to four separate
components for each session. SNUF provides
no explicit support for multiple components
per session. Therefore, define only one com-
ponent per session. Additional options include
component protection and blocking. SNUF
does not provide explicit support for distrib-
uted presentation or SNA character string pro-
cessing. Use these options only if the AS/400
program can handle them.

OPTIONS parameter
This parameter specifies the following addi-
tional parameters:

Response Mode parameter
This parameter specifies the response
mode for this session (see “Operating in
Terminal Response Mode” on page 5-11
for more details).

MFS/NOMFS parameter
This parameter specifies if message
format services are provided for this
session. If you specify message format

services, the AS/400 application must be
prepared to handle the data streams.

ACK/OPTACK parameter
This parameter specifies the type of
response required. You must select
OPTACK for SNUF. If you select ACK,
the session ends when an update or
recoverable transaction is attempted.

BID/NOBID parameter
This parameter specifies if the VTAM BID
command is used.

OPNDST/NOPNDST parameter
This parameter specifies if sessions can
be started with the /OPNDST command.
Select OPNDST for program start ses-
sions because they may have to be
started from the host system.

OUTBUF parameter
This parameter specifies the maximum
request unit size for the BIND command.
SNUF rejects any BIND command with a
maximum request unit greater than 4096
bytes (the default value is 256).

Figure C-7 is a portion of an IMS/VS definition.
The highlighted parameters correspond to param-
eters on the OVRICFDEVE and ADDICFDEVE
commands and are described after the figure.

RSLS171-2

Figure C-7. Example of IMS/VS Definition Parameters

 Appendix C. Considerations for Host System Programmers C-9

In Figure C-7 on page C-9:

.1/ This name corresponds to APPID on the
CRTDEVSNUF and OVRICFDEVE com-
mands.

.2/ For best performance, the buffer size should
be large enough to handle the maximum
user record length sent by the AS/400
system, as defined by RCDLEN on the
CRTDEVSNUF or OVRICFDEVE commands.

.3/ In this example, local addresses 1 and 2
(LU021A1 and LU021A2) are used for
program start sessions. Local address 3
(LU021A3) is used for acquired sessions.

Program Start Request
Considerations

SNUF accepts program start requests only on
sessions reserved for this purpose. Logical units
that send program start requests to the AS/400
system must use the MSGDEL=SYSINFO option
on the TERMINAL macro.

The logical units reserved for program start
requests must be started from the host system by
the VARY command, the LOGAPPL parameter in
the VTAM definition, or the IMS/VS /OPNDST
command.

IMS/VS programs that use the program start
request must have defined a modifiable alternative
program control block in the program specification
block. For example, for the IMS/VS program to
start a program on an AS/400 system using
LTERM=S3XA, it must first perform a Change Call
(CHNG) operation to set the destination of the
alternative program control block to S3XA. The
program then performs an Insert Call (ISRT) oper-
ation to include the name of the process to be
started and any security information or parameters
required. The program can then perform Insert
Call operations to build an output message.

The IMS/VS program cannot receive data through
the alternative program control block. Therefore,
the program started on an AS/400 system cannot
reply to the message it received from IMS/VS
through the same logical unit from which it was
received. However, the program can acquire
another session and start a transaction on that
session to send a reply.

Example IMS/VS Remote Program Start
Request: Figure C-8 is an example of how an
IMS/VS program starts an AS/400 program and
how the AS/400 program attaches to the IMS/VS
application program.

Start program

SNUF

Start program

Return code

Transaction ID

Return code

Acquire

Evoke

AS/400
Application Program

Insert to alternate
I/O PCB or
/BROADCAST

Write *TXTX or
*EXEC data

Ends

IMS/VS

RV2W537-0

IMS/VS
Application Program

Figure C-8. Example IMS/VS Remote Program Start Request

C-10 SNA Upline Facility Programming V4R1

Appendix D. SNA 3270 Program Interface

The SNA 3270 program interface for SNA upline
facility (SNUF) allows an AS/400 application to
communicate with a host application by sending
and receiving 3270 data streams. For additional
information on the 3270 work station, 3270
devices and 3270 data streams, see the IBM 3270
Information Display System 3274 Control Unit
Description and Programmer’s Guide and the IBM
3270 Information Display System, Data Stream
Programmer’s Reference.

Notes:

1. SNUF is not intended to emulate a 3174 or
3274 Control Unit.

2. If you are using 3270 emulation for BSC, see
the IBM System/38 Data Communications
Programmer's Guide and the IBM System/38
3270 Emulation Reference Manual and User's
Guide.

The application programmer constructs the
AS/400 system application using AS/400 system
support of programs, intersystem communications
function (ICF) files and program devices. The pro-
grams can be coded in any high-level language
that supports the ICF. The application program
may be interactive, or it may be started from the
host system through a program start request.

A typical AS/400 system interactive application
might consist of high-level language programs
(possibly with supporting CL programs) that
access database, display, and print files. To com-
municate with a host system through SNA 3270
program interface, the application program must
use an ICF file.

A typical application might open the ICF file,
acquire the program device session, send and
receive data from the host application, send or
receive a DETACH to end the transaction with the
host application, and release the session with the
host system.

For each ICF operation the application program
should monitor for a successful major or minor
return code. The data flow is indicated in a
required 20- or 32-byte common header for both
sent and received data. The SNA 3270 program

interface handles data as a 3274 Type C (remote)
unit.

Note: The 3274 models bearing the letter desig-
nation "C" are: 1C, 21C, 31C, 41C, 51C, and 61C.
These Type C units operate as remote units using
either synchronous data link control (SDLC) or
binary synchronous communications (BSC). The
application program sends and receives data
using Write, Erase/Write, Erase/Write Alternate,
Erase All Unprotected, Read Modified, Read Modi-
fied All, Read Buffer, and Write Structured Field
3270 data stream commands.

ICF File Considerations

The EMLDEV parameter on the ADDICFDEVE,
CHGICFDEVE, and OVRICFDEVE commands
indicates if the device is used to send and receive
3270 data streams and, if so, whether and how
the data stream is formatted.

The EMLDEV parameter specifies both the emu-
lated device type (with a default of no 3270 emu-
lation) and 3270 data streams for the following
supported printers and displays:

� 3278, Models 2, 3, 4, and 5
 � 3284
 � 3286
 � 3287
 � 3288
 � 3289

The second part of the EMLDEV parameter, the
data format, specifies the format of the 3270 data
stream being sent and received by the application
program. In particular, it specifies the form the
3270 data stream takes in the application I/O
buffer. The data stream interface with the user
program can either be formatted or unformatted.

The unformatted interface presents the 3270 data
stream to your program in its raw form exactly as
it is sent from the host system. To use the raw
data, you should know the following:

� The format of the 3270 data stream orders
� The function of the 3270 data stream orders
� The 3270 addressing scheme
� The 3270 attribute bit assignments

 Copyright IBM Corp. 1997 D-1

Using the formatted interface reduces the need to
know the 3270 data stream orders, format, func-
tion, and so on.

The formatted interface translates the 3270 data
stream and builds a 1920, 2560, 3440, or 3564
character image of the display, which is then pre-
sented to your application program. The for-
matted interface allows you to request 3270
display images with or without field definitions.
Field definitions are built following the display
image. For display emulation, each field definition
identifies the location and characteristics of a par-
ticular field in the display image. For printer emu-
lation, a field definition is also used to identify a
printer order.

EMLDEV
The presence of this parameter with values
other than *NONE indicates that the SNA
3270 program interface is using this program
device. The EMLDEV parameter is available
with the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands.

For the SNA 3270 program interface, the
parameter may have two parts. The first part
indicates the intended device for which 3270
data streams will be transmitted between an
AS/400 system user application program and
a host application program.

*NONE: This default value indicates that the
program device entry is not used to send and
receive 3270 data streams.

*3278 Specifies the data stream is for a
3277, 3278, or 3279 Display Station.

*3284 Specifies the data stream is for a
3284 Printer Device.

*3286 Specifies the data stream is for a
3286 Printer Device.

*3287 Specifies the data stream is for a
3287 Printer Device.

*3288 Specifies the data stream is for a
3288 Printer Device.

*3289 Specifies the data stream is for a
3289 Printer Device.

Note: If a value other than *NONE is speci-
fied, the second part of the parameter must be
specified.

The second part of the parameter value indi-
cates whether the 3270 data streams trans-
mitted are formatted or unformatted and if field
definitions are included when using formatted
data. The following values are accepted for
the second part of the parameter value.

*UNFORMAT: This default value specifies
that the application programs send and
receive data in unformatted form with control
information embedded.

*FIELD: Specifies that the AS/400 system
user application program sends and receives
a formatted version of the 3270 data streams,
which are transmitted between the user
program and the host application program.
The 3270 data stream will be formatted for the
application program in Display/Printer Image
form, with control information followed by field
definitions of 8 bytes each that indicate the
location and characteristics of fields or printer
orders.

*NOFIELD: Specifies that the AS/400 system
user application program sends and receives
a formatted version of the 3270 data streams,
which are transmitted between the user
program and a host application program. The
3270 data stream will be formatted for the
application program in Display/Printer Image
form, with control information but without field
definitions that indicate the location and char-
acteristics of fields or printer orders.

*EXTFIELD: Specifies that the AS/400
system user application program sends and
receives a formatted version of the 3270 data
streams, which are transmitted between the
user program and a host application program.
The 3270 data stream will be formatted for the
application program in 3278 display image
form, with control information followed by
extended field definitions of 10 bytes each that
indicate the location and characteristics of
fields, plus the three extended field attribute
bytes.

Note: *EXTFIELD is valid only if *NO is
specified on the *BATCH parameter and if
*3278 is specified on the EMLDEV parameter.

D-2 SNA Upline Facility Programming V4R1

Writing Application Programs
Using SNA 3270 Program
Interface

The AS/400 system application programmer must
know what is happening in the host application
and on the host end of the line. Your application
program must check for, and respond to, ICF
major/minor return codes resulting from
input/output operations with the host program, and
it may monitor for messages. Your program may
access the data flow, SSCP-LU or LU-LU, indi-
cated in the 20-or 32-byte common header in the
buffer. See “3270 Data Flow” on page D-14 for a
complete list of indicators. (In addition to the
normal data LU-to-LU and SSCP-to-LU flows,
there is a special data flow indication to inform the
program when a query response is received as a
reply to a get operation during the LU-to-LU flow.)

As an aid for new applications, it is suggested you
run a communications line trace of the host appli-
cation being run to and from the actual 3270
device. This can be compared against the SNA
3270 program interface running the same host
program. This should aid in later debugging of the
new SNA 3270 program.

When using the unformatted interface emulating a
display rather than a printer EMLDEV(*3278
*UNFORMAT), the AS/400 system application
program must be designed to provide a 20-byte
common header and a 3270 data stream in the
format the host system is expecting to receive.
The 3270 data stream will consist of a write of
user data and necessary control characters asso-
ciated with a 3278 display device.

When using the unformatted interface emulating
either a display or a printer, your program reads
and extracts user data from the 3270 display or
printer data stream.

When using the formatted interface
EMLDEV(*32xx *NOFIELD), EMLDEV(*32xx
*FIELD), or EMLDEV(*3278 *EXTFIELD), your
program reads the data in the common header,
display or printer image, and field definitions on a
formatted read. It changes the necessary fields
before returning the same structures and data on
a formatted write to the host system.

The normal display or printer image you receive
when working with the formatted interface is a
1920-byte image. For non-3278 displays this
value is always 1920. It is possible to receive
larger images from the host application program.
For 3278 displays the value may be 1920, 2560,
3440, or 3564 bytes. This is specified on byte 24
on the BIND command received from the host
system. See Figure D-12 on page D-14 for more
information on the BIND command received from
the host system. Also, any display image
received on the SSCP-LU flow is not more than
1920 bytes. This applies to images received
before or after the BIND command. The block
size in the formatted header informs you of the
image size.

When your program acquires a program device
specified for SNA 3270 program interface
(Display) and sign-on text is sent to the host
system with an application identifier (other than
*USER) for a host application program, SNUF
expects a BIND command from the remote
system. When you specify the application identi-
fier parameter as *USER on the ICF device entry,
SNUF does not send a logon command to the
host system. Instead, the SNA 3270 program
interface receives and handles SSCP-LU
USSMSG messages including sending a negative
response, if appropriate. If your application
program sends a logon command to the host
system after receiving the USSMSG message,
SNUF sends a positive response to the USSMSG
message and then issues the logon command to
the host system. An application identifier of
*USER is only meaningful if you are using the
3270 program interface.

All USSMSG messages sent by the host to a SNA
Upline Facility 3270API program, with the applica-
tion identifier option set to *USER, must be
received by the AS/400. This is done by using a
READ operation instead of a READ FROM
INVITED PROGRAM DEVICE operation.

If the 3270API application sends the host a logon
message, the message was sent using a PUT
operation instead of a PUT-INVITE operation.

When your program acquires a program device
specified for SNA 3270 program interface
(Printer), SNUF expects a BIND command without
sending sign-on text.

 Appendix D. SNA 3270 Program Interface D-3

In general, an AS/400 system application program
must be designed to handle two types of data
streams sent from the host system:

� A data stream from a host write operation
� A data stream that contains a host read

For either, the user program must respond by
doing a Read command to receive the data, the
3270 command, or both.

Unformatted Program Interface

When EMLDEV(*32xx *UNFORMAT) has been
specified on the ADDICFDEVE or CHGICFDEVE
command, the user program will receive and send
a common header followed by the unformatted
3270 data stream. In this case, the only signif-
icant fields in the common header are the 3270
command and the data flow indication. The
common header for the unformatted program
interface is illustrated in Figure D-1.

Command

21

1

RSLS175-2

Data
Flow

Figure D-1. Common Header for Unformatted Program Interface (20 Bytes)

The common header fields have the following
meanings:

� Byte 1: The CMD (Command) has the same
meaning as in the 3270 data stream. Byte 1
is copied from the 3270 data stream received
by the AS/400 system from the host system.
On a write to the host system it may be set or
changed by the user program.

� Byte 19: This field indicates the data flow
that is currently active, either LU-LU or
SSCP-LU. See “3270 Data Flow” on
page D-14.

Figure D-2 is an unformatted 3270 data stream
received from the System/370 host system on a
host write operation (as it would be received in the
user program buffer following the header):

For a description of printer formatting orders (NL,
EM, FF, SI, and CR), buffer control orders (SBA,
SF, IC, PT, RA, EUA), and orders for Structured
Field and Attribute processing (SFE, MF, SA), see
the IBM 3270 Information Display System 3274
Control Unit Description and Programmer’s Guide.

Figure D-3 on page D-5 is a 3270 data stream for
a System/370 host read request operation:

Figure D-2. AS/400 Program Read (To a Write
Command)

Data Stream
Command/Order Bytes

Functional
Description

Write-Type
Command Code

1 Write, Erase/Write,
Erase/Write Alternate,
Write Structured Field

WCC 1 Write control char-
acter

Orders and data N Printout format orders
or buffer control
orders with data

D-4 SNA Upline Facility Programming V4R1

Figure D-4 is a 3270 data stream on a write oper-
ation from an AS/400 system program in response
to a System/370 host Read Buffer command:

Figure D-5 is a 3270 data stream on a write oper-
ation from an AS/400 system program in response
to a System/370 host Read Modified or Read
Modified All command. In this data stream, only
modified data fields are expected by the host
system.

Note: The AID is other than the CURSR SEL
key, a PA key or the CLEAR key.

If the AID is a PA key or the CLEAR key, then the
3270 data stream in Figure D-6 is written from an
AS/400 system program in response to a
System/370 host Read Modified or Read Modified
All command:

The AID is for the CURSR SEL key.

Figure D-3. AS/400 Read (To a Read Request
Command)

Figure D-5. AS/400 Program Write (To a Read Modi-
fied Command)

Data Stream
Command/Order Bytes

Functional
description

Data Stream
Command/Order Bytes

Functional
description

Read-Type
Command Code

1 Read Buffer, Read
Modified, or Read
Modified All

AID 1 No AID generated
(Display), No AID
(Printer), Enter, PF key

Cursor Address 2 Cursor Address

SBA 1 Set Buffer Address

Buffer Address 2 Buffer Address

Data data
length

Data

Figure D-4. AS/400 Program Write (To a Read Buffer
Command) SBA 1 Set Buffer Address

Buffer Address 2 Buffer AddressData Stream
Command/Order Bytes

Functional
description Data data

length
Data

AID 1 No AID generated
(Display), No AID
(Printer), Enter, PF or
PA

Cursor Address 2 Cursor Address

SF 1 Start Field, or Start
Field Extended

Field Attribute
Character

1 Attribute Character
Figure D-6. AS/400 Program Write (To a Read Modi-
fied Command)Data data

length
Data

Data Stream
Command/Order Bytes

Functional
descriptionSF 1 Start Field, or Start

Field Extended AID 1 PA key or CLEAR key

Field Attribute
Character

1 Attribute Character

Data data
length

Data

Figure D-7. AS/400 Program Write (To a Read Modi-
fied Command)

Data Stream
Command/Order Bytes

Functional
description

Cursor Select
AID

1 No AID generated
(Display), No AID
(Printer), Enter, PF key

Cursor Address 2 Cursor Address

SBA 1 Set Buffer Address

Buffer Address 2 Buffer Address

SBA 1 Set Buffer Address

Buffer Address 2 Buffer Address

 Appendix D. SNA 3270 Program Interface D-5

Formatted Program Interface

When EMLDEV (*32xx *NOFIELD), EMLDEV
(*32xx *FIELD), or EMLDEV (*3278 *EXTFIELD)
is specified on the ADDICFDEVE, CHGICFDEVE,
or OVRICFDEVE command, the user program
receives and sends 3270 data stream information
through the formatted program interface.

EMLDEV (*32xx *NOFIELD): When
EMLDEV (*32xx *NOFIELD) is specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, the formatted program interface has
the buffer content shown in Figure D-8.

Command

Display
Station
or
Printer

Cursor
Position

Block Size Line
Return
Code

Display/Printer Image
(maximum 3564 bytes)

1

Common Header
(20 bytes)

Data
Flow Reserved

Write
Control
Character

Attention
Identifier

Error Position

21

3270 Screen Expanded with the
3270 Attributes Imbedded as
Received

RV2W535-0

Figure D-8. Common Header and Buffer for Formatted Program Interface—EMLDEV (*3278 *NOFIELD)

In the common header, certain fields are set by
the AS/400 system when a 3270 data stream is
received from the host system, some are set by
the user program when sending a 3270 data
stream to the host system, and some are set by
both.

If the first operation performed by the user
program is a write, fields in the header that are set
only by the AS/400 system should be binary zero.

The common header fields have the following
meanings:

� Bytes 1–3: The Command (CMD), Write
Control Character (WCC), and Attention Iden-
tifier (AID) have the same meaning as in the
3270 data stream. For a description, see the
IBM 3270 Information Display System 3274
Control Unit Description and Programmer’s
Guide. Bytes 1–3 are copied from the 3270
data stream received by AS/400 system from
the host system. On a write to the host
system, they may be set or changed by the
user program.

� Byte 4: Display Station or Printer is the
device type. If this field is the character 0,
this device is a display. If this field is the
character 1, this device is a printer. The
AS/400 system sets this field when the first
3270 data stream is received from the host
system. The user program should return the
same value on subsequent writes to the host
system.

� Bytes 5–6: Cursor Position is the position
(binary 1 through block size) where the cursor
is located. This value is set by the AS/400
system when a 3270 data stream is received
from the host system (if an insert cursor order,
IC, is not found in the data stream, the cursor
remains at its last location) and set or
changed on a user program write to the host
system.

� Bytes 7–12: These are set only when the
user has specified EMLDEV(*32xx *FIELD or
*EXTFIELD) on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command.

D-6 SNA Upline Facility Programming V4R1

� Bytes 13–14: Block Size is a binary number
indicating the size (in bytes) of the data in the
display or printer image. This value, added to
the header length, indicates the last position in
the input buffer into which data from the host
system is placed.

If the block size is less than 1920, all bytes in
the display image buffer, after the block size,
contain nulls. For displays, the value size
may increase from 1920 bytes to 2560, 3440,
or 3564 bytes if the alternate screen size is
used. For printers, this value can be 0
through 1920.

� Byte 15: Line (LIN) is the size of the char-
acter print line and only applies to printers.
This value indicates how data should be for-
matted if it is printed. Possible line values
are:

1 for 40 characters per line
2 for 64 characters per line
3 for 80 characters per line
4 for unformatted (Line size is determined
by the new line, NL, print order)

� Byte 16: Return Code (RET) contains return
code information about translation. This field
should always be set to binary zero when
issuing read or write operations. Possible
values are:

'00'X No condition.
'01'X Not enough space for all field

entries; some created but more are
possible. This value applies to
Read operations only.

'02'X Incorrect attention identifier key
field; this value applies only to
write operations.

'03'X Incorrect cursor position; this
value applies only to write oper-
ations.

'04'X Attributes changed in the display
image buffer to a value other than
01; this value applies only to write
operations.

'05'X Number of entries is larger than
what was previously returned; this
value applies only to write oper-
ations.

� Bytes 17–18: Error Position (ERR) is a
binary number indicating the error position in
the display image buffer that corresponds to
the return code. For a display device, this
position is that of an attribute. For a printer,
this position may be either the position of an
attribute or the position of a printer order.
This field applies only when the value returned
in the return code position is 1 or 4.

� Byte 19 : This field indicates the data flow
that is currently active, either LU-LU, QUERY
REPLY, or SSCP-LU. See “3270 Data Flow”
on page D-14.

� Byte 20: This is a reserved space and must
contain binary zeros.

Display Image: The display image in Figure D-8
on page D-6 contains 1920, 2560, 3440, or a
maximum of 3564 bytes of attributes and display
or printer data. Each attribute occupies one
location in the buffer. An attribute character
defines the beginning of a field and contains char-
acteristics about the field. The attribute character
has the same meaning as bits 2 - 7 of the attri-
bute character in the 3270 data stream. For a
description of the attribute character bit definitions,
see the IBM 3270 Information Display System
3274 Control Unit Description and Programmer’s
Guide.

When EMLDEV(*32xx *NOFIELD) is specified, the
user program must update the attribute byte and
the field itself when it modifies fields to be sent to
the host system. Bit 7 of the attribute byte must
be set to indicate a modified field.

EMLDEV (*32xx *FIELD): When
EMLDEV(*32xx *FIELD) is specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, the formatted program interface has
the buffer content shown in Figure D-9 on
page D-8.

 Appendix D. SNA 3270 Program Interface D-7

Write
Control
Character

Display
Station
or
Printer

Cursor
Position

Number of
Entries

Number of
Entries Left

Block Size Line Return
Code

Error Position

Display/Printer Image
(maximum 3564 bytes)

Field Definition(s)
(8 bytes each)

1941

21

1

Attention
Identifier

Common Header
(20 bytes)

Number of
Last Attribute
Entry

Field Definitions Received
if EMLDEV(XXXX *FIELD)

Data
Flow

Reserved

1965

1957

1949

Position Field Length I/O MDT ATT Reserved

RV2W538-0

3270 Screen Expanded with the
3270 Attributes Imbedded as
Received

Figure D-9. Common Header and Buffer for Formatted Program Interface—EMLDEV (*32xx *FIELD)

In the common header, certain fields are set by
the AS/400 system when a 3270 data stream is
received from the host system, some are set by
the user program when sending a 3270 data
stream to the host system, and some are set by
both.

If the first operation performed by the user
program is a write, fields in the header that are set
only by the AS/400 system should be binary zero.

The common header fields have the following
meanings:

� Bytes 1–3: The Command (CMD), Write
Control Character (WCC), and Attention Iden-
tifier (AID) have the same meaning as in the
3270 data stream. For a description, see the
IBM 3270 Information Display System 3274
Control Unit Description and Programmer’s

Guide. Bytes 1–3 are copied from the 3270
data stream received by AS/400 system from
the host system. On a write to the host
system, they may be set or changed by the
user program.

� Byte 4: Display Station or Printer is the
device type. If this field is the character 0,
this device is a display. If this field is the
character 1, this device is a printer. The
AS/400 system sets this field when the first
3270 data stream is received from the host
system. The user program should return the
same value on subsequent writes to the host
system.

� Bytes 5–6: Cursor Position is the position
(binary 1 through block size) where the cursor
is located. This value is set by the AS/400
system when a 3270 data stream is received

D-8 SNA Upline Facility Programming V4R1

from the host system (if an insert cursor order,
IC, is not found in the data stream, the cursor
remains at its last location) and set or
changed on a user program write to the host
system.

� Bytes 7–8: Number of Entries is a binary
number indicating the total number of field
definitions including attribute entries and
printer order entries. When data is received
from the host system, the AS/400 system
returns the number of entries created. On a
write to the host system, the user program
sets this value to the number of entries to be
processed.

If this value is zero when transmitting data,
the AS/400 system returns only the attention
identifier, cursor position, and any host set
modified data tag fields to the host system.

If this field is changed to a value greater than
the value returned with a previously received
3270 data stream from the host system, an
error return code is created.

� Bytes 9–10: Number of Entries Left is a
binary number indicating the total number of
field definitions that could not be built in the
user buffer. This number includes both attri-
bute entries and printer order entries.

This value is set only when a return code
result indicates not enough space in the buffer
to build field definitions for all fields and printer
orders.

� Bytes 11–12: Number of Last Attribute Entry
is a binary number indicating the number of
the field definition that identifies the last attri-
bute in the display image buffer. If the display
is not formatted (contains no attributes), this
value is zero.

� Bytes 13–14: Block Size is a binary number
indicating the size (in bytes) of the data in the
display or printer image. This value, added to
the header length, indicates the last position in
the input buffer into which data from the host
system is placed.

If the block size is less than 1920, all bytes in
the display image buffer, after the block size,
contain nulls. For displays, the value size
may increase from 1920 bytes to 2560, 3440,
or 3564 bytes if the alternate screen size is
used. For printers, this value can be 0
through 1920.

� Byte 15: Line (LIN) is the size of the char-
acter print line and only applies to printers.
This value indicates how data should be for-
matted if it is printed. Possible line values
are:

1 for 40 characters per line
2 for 64 characters per line
3 for 80 characters per line
4 for unformatted (Line size is determined
by the new line, NL, print order)

� Byte 16: Return Code (RET) contains return
code information about translation. This field
should always be set to binary zero when
issuing read or write operations. Possible
values are:

'00'X No condition.
'01'X Not enough space for all field

entries; some created but more are
possible. This value applies to
Read operations only.

'02'X Incorrect attention identifier key
field; this value applies only to
write operations.

'03'X Incorrect cursor position; this
value applies only to write oper-
ations.

'04'X Attributes changed in the display
image buffer to a value other than
01; this value applies only to write
operations.

'05'X Number of entries is larger than
what was previously returned; this
value applies only to write oper-
ations.

� Bytes 17–18: Error Position (ERR) is a
binary number indicating the error position in
the display image buffer that corresponds to
the return code. For a display device, this
position is that of an attribute. For a printer,
this position may be either the position of an
attribute or the position of a printer order.
This field applies only when the value returned
in the return code position is 1 or 4.

� Byte 19 : This field indicates the data flow
that is currently active, either LU-LU, QUERY
REPLY, or SSCP-LU. See “3270 Data Flow”
on page D-14.

� Byte 20: This is a reserved space and must
contain binary zeros.

 Appendix D. SNA 3270 Program Interface D-9

Display Image: The display image in Figure D-9
on page D-8 contains 1920, 2560, 3440, or a
maximum of 3564 bytes of attributes and display
or printer data. Each attribute occupies one
location in the buffer. An attribute character
defines the beginning of a field and contains char-
acteristics about the field. The attribute character
has the same meaning as bits 2–7 of the attribute
character in the 3270 data stream. For a
description of the attribute character bit definitions,
see the IBM 3270 Information Display System
3274 Control Unit Description and Programmer’s
Guide.

When EMLDEV(*32xx *FIELD) is specified, the
user program must update the attribute byte, the
field itself, and the field definition when it modifies
fields to be sent to the host system.

The modified data tag byte (MDT) of the field defi-
nition entry must be set to '01'X, or an error (RET
= 4) will occur.

Field Definitions: The field definitions in
Figure D-9 describe the input and output field for
display devices and printer orders for printer
devices. Field definitions apply when
EMLDEV(*32xx *FIELD) has been specified.

A field definition entry is created for each field in
the display image and is also created for printer
orders in a printer data stream, unless the orders
are consecutive. Field definitions are ordered
from position 1 through 1920, 2560, 3440, or 3564
of the display image.

Whenever data is received from the host system,
fields in the display image may be overwritten.
When an attribute for a field is overwritten, the
field definition corresponding to that field is
removed. If the field definition is for an attribute,
its format is as follows:

� Bytes 1–2: Position is a binary number that
defines the relative position from the begin-
ning of the display image to the first character

of the field. The values for position can range
from 1 through 1920, 2560, 3440, or 3564.

� Bytes 3–4: Field Length is a binary number
indicating the length of the field defined by the
attribute. This length does not include the
attribute byte.

� Byte 5: I/O indicates whether the field is an
unprotected field or a protected field. The I/O
entry is the character 0 if the field is unpro-
tected and the character 1 if it is protected.

� Byte 6: MDT (Modified Data Tag) indicates
whether the field is marked as changed. MDT
is '01'X if the field is changed or '00'X if the
field is unchanged.

When receiving data, the MDT value is '01'X if
the host system turned on the MDT bit in the
attribute, or if the MDT was on from a pre-
vious translation and the write control char-
acter (WCC) does not indicate that the MDT
should be reset. Otherwise the MDT value is
'00'X.

When sending data, the value must be
changed from '00'X to '01'X if the unprotected
field was changed. If the MDT value is
changed to a value other than '01'X or is
changed to '01'X for a protected field, the
change is ignored.

� Byte 7: ATT (Attribute) is a copy of the Attri-
bute of this field. For a description of the attri-
bute character bit definitions, see the IBM
3270 Information Display System 3274 Control
Unit Description and Programmer’s Guide.

� Byte 8: This is a reserved space and must
contain binary zeros.

EMLDEV (*3278 *EXTFIELD): When
EMLDEV (*3278 *EXTFIELD) is specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command, the formatted program interface has
the buffer content shown in Figure D-10 on
page D-11.

D-10 SNA Upline Facility Programming V4R1

Command
Write
Control
Character

Display
Station
or
Printer

Cursor
Position

Number of
Entries

Number of
Entries Left

Block Size Line Return
Code

Error Position

1953

33

1

Attention
Identifier

Number of
Last Attribute
Entry

Data
Flow

Reserved

1963

1973

1983

Field Length Reserved

3278 or Display Image
(maximum 3564 bytes)

Common Header
(32 bytes)

3270 Screen Expanded with the
3270 Attributes Imbedded as
Received. Extended Field
Attributes will be in the
Field Definition Records Only.

Position Field Length ATT Color High-
light

Field
Validation

I/O MDT

RV2W536-0

Reserved

Field Definition(s)
(10 bytes each)

Field Definitions
Received
EMLDEV(3278
*EXTFIELD)

Figure D-10. Common Header and Buffer for Formatted Program Interface—EMLDEV (*3278 *EXTFIELD)

In the common header, certain fields are set by
the AS/400 system when a 3270 data stream is
received from the host system, some are set by
the user program when sending a 3270 data
stream to the host system, and some are set by
both.

If the first operation performed by the user
program is a write, fields in the header that are set
only by the AS/400 system should be binary zero.

The common header fields have the following
meanings:

� Bytes 1–3: The Command (CMD), Write
Control Character (WCC), and Attention Iden-

tifier (AID) have the same meaning as in the
3270 data stream. For a description, see the
IBM 3270 Information Display System 3274
Control Unit Description and Programmer’s
Guide. Bytes 1–3 are copied from the 3270
data stream received by AS/400 system from
the host system. On a write to the host
system, they may be set or changed by the
user program.

� Byte 4: Display Station or Printer is the
device type. If this field is the character 0,
this device is a display. If this field is the
character 1, this device is a printer. The
AS/400 system sets this field when the first

 Appendix D. SNA 3270 Program Interface D-11

3270 data stream is received from the host
system. The user program should return the
same value on subsequent writes to the host
system.

� Bytes 5–6: Cursor Position is the position
(binary 1 through block size) where the cursor
is located. This value is set by the AS/400
system when a 3270 data stream is received
from the host system (if an insert cursor order,
IC, is not found in the data stream, the cursor
remains at its last location) and set or
changed on a user program write to the host
system.

� Bytes 7–8: Number of Entries is a binary
number indicating the total number of field
definitions including attribute entries and
printer order entries. When data is received
from the host system, the AS/400 system
returns the number of entries created. On a
write to the host system, the user program
sets this value to the number of entries to be
processed.

If this value is zero when transmitting data,
the AS/400 system returns only the attention
identifier, cursor position, and any host set
modified data tag fields to the host system.

If this field is changed to a value greater than
the value returned with a previously received
3270 data stream from the host system, an
error return code is created.

� Bytes 9–10: Number of Entries Left is a
binary number indicating the total number of
field definitions that could not be built in the
user buffer. This number includes both attri-
bute entries and printer order entries.

This value is set only when a return code
result indicates not enough space in the buffer
to build field definitions for all fields and printer
orders.

� Bytes 11–12: Number of Last Attribute Entry
is a binary number indicating the number of
the field definition that identifies the last attri-
bute in the display image buffer. If the display
is not formatted (contains no attributes), this
value is zero.

� Bytes 13–14: Block Size is a binary number
indicating the size (in bytes) of the data in the
display or printer image. This value, added to
the header length, indicates the last position in

the input buffer into which data from the host
system is placed.

If the block size is less than 1920, all bytes in
the display image buffer, after the block size,
contain nulls. For displays, the value size
may increase from 1920 bytes to 2560, 3440,
or 3564 bytes if the alternate screen size is
used. For printers, this value can be 0
through 1920.

� Byte 15: Line (LIN) is the size of the char-
acter print line and only applies to printers.
This value indicates how data should be for-
matted if it is printed. Possible line values
are:

1 for 40 characters per line
2 for 64 characters per line
3 for 80 characters per line
4 for unformatted (Line size is determined
by the new line (NL) print order)

� Byte 16: Return Code (RET) contains return
code information about translation. This field
should always be set to binary zero when
issuing read or write operations. Possible
values are:

'00'X No condition.
'01'X Not enough space for all field

entries; some created but more are
possible. This value applies to
Read operations only.

'02'X Incorrect attention identifier key
field; this value applies only to
write operations.

'03'X Incorrect cursor position; this
value applies only to write oper-
ations.

'04'X Attributes changed in the display
image buffer to a value other than
01; this value applies only to write
operations.

'05'X Number of entries is larger than
what was previously returned; this
value applies only to write oper-
ations.

� Bytes 17–18: Error Position (ERR) is a
binary number indicating the error position in
the display image buffer that corresponds to
the return code. For a display device, this
position is that of an attribute. For a printer,
this position may be either the position of an
attribute or the position of a printer order.

D-12 SNA Upline Facility Programming V4R1

This field applies only when the value returned
in the return code position is 1 or 4.

� Byte 19 : This field indicates the data flow
that is currently active, either LU-LU, QUERY
REPLY, or SSCP-LU. See “3270 Data Flow”
on page D-14.

� Byte 20: This is a reserved space and must
contain binary zeros.

� Byte 21–22: Field Length is a binary number
indicating the length of each field definition
that follows the image.

� Byte 23–32: This is a reserved space and
must contain binary zeros.

Display Image: The display image in
Figure D-10 on page D-11 contains 1920, 2560,
3440, or a maximum of 3564 bytes of attributes
and display data. Each attribute occupies one
location in the buffer. An attribute character
defines the beginning of a field and contains char-
acteristics about the field. The attribute character
has the same meaning as bits 2–7 of the attribute
character in the 3270 data stream. For a
description of the attribute character bit definitions,
see the IBM 3270 Information Display System
3274 Control Unit Description and Programmer’s
Guide.

When EMLDEV(*3278 *EXTFIELD) is specified,
the user program must update the attribute byte,
the field itself, and the field definition when it mod-
ifies fields to be sent to the host system.

The modified data tag byte (MDT) of the field defi-
nition entry must be set to '01'X, or an error (RET
= 4) will occur.

Field Definitions: The field definitions in
Figure D-10 describe the input and output field for
display devices and printer orders for printer
devices. Field definitions apply when
EMLDEV(*3278 *EXTFIELD) has been specified.

A field definition entry is created for each field in
the display image. Field definitions are ordered
from position 1 through 1920, 2560, 3440, or 3564
of the display image.

Whenever data is received from the host system,
fields in the display image may be overwritten.
When an attribute for a field is overwritten, the
field definition corresponding to that field is

removed. If the field definition is for an attribute,
its format is as follows:

� Bytes 1–2: Position is a binary number that
defines the relative position from the begin-
ning of the display image to the first character
of the field. The values for position can range
from 1 through 1920, 2560, 3440, or 3564.

� Bytes 3–4: Field Length is a binary number
indicating the length of the field defined by the
attribute. This length does not include the
attribute byte.

� Byte 5: I/O indicates whether the field is an
unprotected field or a protected field. The I/O
entry is the character 0 if the field is unpro-
tected and the character 1 if it is protected.

� Byte 6: MDT (Modified Data Tag) indicates
whether the field is marked as changed. MDT
is '01'X if the field is changed or '00'X if the
field is unchanged.

When receiving data, the MDT value is '01'X if
the host system turned on the MDT bit in the
attribute, or if the MDT was on from a pre-
vious translation and the write control char-
acter (WCC) does not indicate that the MDT
should be reset. Otherwise the MDT value is
'00'X.

When sending data, the value must be
changed from '00'X to '01'X if the unprotected
field was changed. If the MDT value is
changed to a value other than '01'X or is
changed to '01'X for a protected field, the
change is ignored.

� Byte 7: ATT (Attribute) is a copy of the Attri-
bute of this field. For a description of the attri-
bute character bit definitions, see the IBM
3270 Information Display System 3274 Control
Unit Description and Programmer’s Guide.

� Byte 8: Extended color (blue, red, pink,
green, turquoise, yellow, and white); attribute
type '42'X. For a description of the extended
attributes, see the IBM 3270 Information
Display System 3274 Control Unit Description
and Programmer's Guide.

� Byte 9: Extended highlighting (blink, reverse
video, and underline); attribute type '41'X. For
a description of the extended attributes, see
the IBM 3270 Information Display System
3274 Control Unit Description and Program-
mer's Guide.

 Appendix D. SNA 3270 Program Interface D-13

� Byte 10: Field validation (mandatory fill, man-
datory entry, and trigger) attribute defines the
validation properties of the field in the display
image. For a description of the field validation
attribute see the IBM 3270 Information Display
System, Data Stream Programmer's Refer-
ence.

3270 Data Flow

Byte 19 of the common header contains a data
flow indication. The hexadecimal codes and their
descriptions are:

'F0'X LU-LU. Data flow.
'F1'X LU-LU. Query reply received. Data

flow.
'F9'X SSCP-LU. Data flow.

The formatted program interface allows an addi-
tional indicator, which is the query reply received
('F1'X) indicator. When a reply is received by the
application program, it must be sent to the host
system with the indicator set to 'F1'X. The reply is
provided by the 3270 translation function in
response to a query received from the host
system.

Host System Programming
Considerations

There are considerations for the SNA BIND
command, depending on the emulated device
entered for the EMLDEV parameter.

Three types of LU-LU sessions are supported.
These are:

Type 1 The device is a printer and the
data stream is the SNA character
string (SCS).

Type 2 The device is a keyboard/display
and the data stream is in the 3270
data stream compatibility (DSC)
mode format.

Type 3 The device is a printer and the
data stream is in the 3270 DSC
mode format.

Depending on the device and formatted or unfor-
matted data specified for the EMLDEV parameter,
the SNA BIND command is verified for these
values listed in Figure D-11.

Also, when you specify a keyboard and display
(*3278) with formatted data for the EMLDEV
parameter, the SNA BIND command specifies the
screen size for the display. The value in byte 24
determines if a default size is used or if a value in
bytes 20 through 24 is checked for screen size.
The sizes in Figure D-12 are supported when a
3278 device is specified. For more information on
the BIND command, see the book, 3270 Device
Emulation Support.

Figure D-11. BIND Command Byte 14 Values

Device Format

Byte
14
LU-LU
Session
Type

3278 *FIELD or *NOFIELD or
*UNFORMAT or *EXTFIELD

'02'X

3284 *FIELD or *NOFIELD or
*UNFORMAT

'03'X

3286 *FIELD or *NOFIELD or
*UNFORMAT

'03'X

3288 *FIELD or *NOFIELD or
*UNFORMAT

'03'X

3287 *FIELD or *NOFIELD or
*UNFORMAT

'03'X

3287 *UNFORMAT '01'X

3289 *FIELD or *NOFIELD or
*UNFORMAT

'03'X

3289 *UNFORMAT '01'X

Figure D-12. BIND Command Screen Definition

Byte
24
(*3278
Only)

Bytes 20–21

Bytes 22–23

'7E'X '18'X '50'X 1
optional value, not
checked

'7F'X
optional value, not
checked '18'X '50'X 1

'02'X
base model 2
default

'00'X base default

Note:

1 Other possible values are: '20'X '50'X, '2B'X
'50'X, '1B'X '84'X

D-14 SNA Upline Facility Programming V4R1

 General Considerations

The following information for SNA 3270 support
includes considerations for SNUF devices,
System/36 restrictions, application identifiers, lan-
guage operations, keywords, and system-supplied
formats.

 SNUF Devices
If SNUF device descriptions are to be used for the
SNA 3270 program interface, they must be
created on a Version 1 Release 2 Modification 0
system or later. If you attempt to use a device
created on an earlier release, an 82B5 return code
is sent to your program.

 System/36 Restrictions
Application programs running in the System/36
environment cannot acquire a SNUF device for
the purpose of running a SNA 3270 application. If
a System/36 program attempts to open an ICF file
to a SNA 3270 program interface device, an 82B4
return code results.

 Application Identifiers

If the host application program is the Federal
Reserve communications application program,
Federal Link Access for Secondary Half-sessions
(FLASH), the application identifier (APPID) param-
eter is checked when the BIND command is
received from the host system. The SNUF appli-
cation program verifies that the BIND command
was sent from the correct application at the host
site. This verification is done by checking the
APPID against the user data field in the BIND
command. If the user data field does not exist or
does not match the APPID, SNUF compares the
APPID against the primary LU name in the BIND
command. An INIT-SELF command is created
using the APPID value as the primary LU name.

Language Operations, Keywords,
and System-Supplied Formats

All data management operations supported by
SNUF can be used with SNA 3270 program inter-
face. The SNUF session runs in half-duplex flip-
flop protocol. The operations listed in Figure A-1
on page A-1 are supported.

An application program that uses SNA 3270
program interface to exchange 3270 data stream
data with a host system program can be coded in
any high-level language that can communicate
with the host system through SNUF. See
Appendix A for supported language operations,
DDS keywords, and system-supplied formats.

 Example Program

The following example ILE COBOL/400 program
communicates with a CICS test program named
ID01 which runs on a host CICS system.

.1/ An ICF file named ICF01 was created for this
example. This example assumes that the user has
created the SRCFILE and SRCMBR attributes.
The program device entry created for this example
is named CICSDEV. .2/

.3/ The ACQUIRE performed for this device entry
causes a LOGON APPLID(CICS) to be sent to the
host system. Here SNUF uses the APPID param-
eter on the device description to build the logon
command. This device entry is also used for any
read. .4/

.5/ When this entry was created using the
ADDICFDEVE command, it specified
EMLDEV(*3278 *UNFORMAT). The
*UNFORMAT parameter value indicates that data
streams will be received in an untranslated format
and our program will be responsible for inter-
preting the 3270 data stream. The 20-byte header
which will be received with the data when we read
from the host program will provide two fields for
us.

.6/ Byte 1 will provide the command which has
been extracted from the 3270 data stream and
copied into the header for us.

.7/ Byte 19 provides us with the data flow. In this
example we only expect a HEX F0 which tells us
this is an LU-to-LU flow. Note the program does
not allow for other flows that might be received.

.8/ Since BATCH(*NO) was the default, only one
Read is necessary to receive the 3270 data
stream from the host system which is program
ID01's main menu. If *YES had been specified
multiple reads might have been necessary
depending on the record length determined by the

 Appendix D. SNA 3270 Program Interface D-15

host system. The type of 3278 is one of the valid
3270 display types which may be used. .9/

.1ð/ In program APICOB1, note that
INPUT-BUFFER redefines OUTPUT-BUFFER and
that both records allow for a 20-byte header to
precede the 1920 byte screen buffer which will be
received and could be sent back to the host
system. In APICOB1 we allow for all the header
fields that are supported although we only expect
two of them to be filled in for us when running in
*UNFORMAT mode and a read is performed.

.11/ OUTPUT-LENGTH must be provided and
filled in when writing back to the host system.
This length value tells the ICF file how long the
combined header and buffer data will be. This
length is necessary when using system-supplied
formats such as $$SEND.

OUTPUT-LENGTH for *UNFORMAT mode
requires a minimum of 20 bytes.
OUTPUT-LENGTH for other formats (*FIELD,
*NOFIELD, *EXTFIELD) requires a minimum
output length equal to the sum of the header plus
the screen size.

APICOB1 will open files ICF01 and SHOW,
acquire the program device CICSDEV, perform a
main routine, close the files and exit the program.
.12/

.13/ The MAIN-ROUTINE handles the receiving of
the 3270 data stream and sending the clear key
and F-11 key. The routine DSP-IN-DATA is used
when receiving data from the host program ID01
to display the first 70 bytes of the data for verifica-
tion purposes. .14/

.15/ When sending to CICS or responding to the
program ID01 note that the CLR-KEY,
ENTER-KEY, and F11-KEY hex value is placed in
the AID-BYTE field of DATA-3270-STRCT.
Cursor position, if required, is placed in CURPOS
field which follows the AID-BYTE. Compare this
to the *FORMATTED mode where these values
would be placed in the header.

.16/ When this is done, the value HEX 00 is
placed in the O-Command or byte 1 of the header.
This is done to be consistent with the handling of
the header when running in *FIELD or *NOFIELD
formatted mode.

.17/ The value for the key entered and the
program request value ID01 is then placed in the
buffer following the header and the $$SEND per-
formed by the SEND-3270 routine. The length
value which is set when building the output data is
set to include the header length plus the length of
the data in the DATA-3270-STRCT that is being
sent to the host program.

ICF File Creation
The commands needed to create the descriptions
for the SNA 3270 SUPPORT example program
are:

CRTLINSDLC LIND(APILIN) RSRCNAME(LINð51) ROLE(\SEC)

CRTCTLHOST CTLD(APICTLR) LINKTYPE(\SDLC) APPN(\NO)

 LINE(APILIN) STNADR(C1)

CRTDEVSNUF DEVD(APIDEV) LOCADR(ð7) RMTLOCNAME(APILOC)

CTL(APICTLR) PGMSTRRQS(\NO) APPID(CICS) .4/
HOST(\CICS) TEXT('SNUF DEVICE FOR APICOB1')

The ICF file ICF01 has been created as a copy of
the default ICF file QICDMF. The example
program uses system supplied formats, however if
we were using a specific format that differed from
the system supplied one then a DDS file
describing the format would be necessary.

The commands needed to create the program
device entry and the ICF file ICF01 would look like
this:

CRTICFF FILE(ICFð1) SRCFILE(QDDSSRC) .1/
SRCMBR(ICFEXAMP) TEXT('ICF FILE FOR APICOB1 EXAMPLE')

ADDICFDEVE FILE(ICFð1) PGMDEV(CICSDEV) RMTLOCNAME(APILOC) .2/
CMNTYPE(\SNUF) DEV(APIDEV) APPID(\DEVD) HOST(\CICS)

MSGPTC(\NO) EMLDEV(3278 \UNFORMAT) .5/ .9/

The DDS for the display named SHOW which dis-
plays input data received from the host program
follows:

 \ \\\

\ DSPF NAME SHOW

 \ \\\

 R DSP1919 LOGOUT

 L1 7ð B 4 5

D-16 SNA Upline Facility Programming V4R1

 Sample Program

 IDENTIFICATION DIVISION.

 PROGRAM-ID. APICOB1.

 \

 \\

\ USE SNUF 327ð SUPPORT TO COMMUNICATE WITH CICS USING ICF \

\ PROGRAM DEVICE ENTRY CICSDEV. \

 \ \

\ THE MAIN ROUTINE WILL PERFORM THE FOLLOWING STEPS. \

\ APICOB1 RECEIVES THE WELCOME TO CICS SCREEN AND SENDS A \

\ CLEAR KEY TO THE HOST IN RESPONSE. \

\ APICOB1 READS IN THE BLANK SCREEN. \

\ APICOB1 SENDS THE PROGRAM ID IDð1 TO CICS. THIS \

\ RESULTS IN THE HOST PROGRAM STARTING AND SENDING A 327ð \

\ DATA STREAM TO APICOB1. \

\ A READ IS PERFORMED FOR THE MAIN MENU WHICH DISPLAYS THE \

\ PF KEYS AND THEIR FUNCTION. \

\ ANOTHER READ IS ISSUED TO RECEIVE THE CHANGE DIRECTION \

\ INDICATOR. AFTER THIS IS RECEIVED, APICOB1 CAN THEN \

\ RESPOND TO THE HOST PROGRAM. \

\ APICOB1 SENDS A PF-11 KEY TO IDð1 WHICH WILL CAUSE \

\ US TO RETURN TO CICS. \

\ APICOB1 THEN READS IN THE BLANK SCREEN AND CLOSES FILES. \

 \\

 \

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS4ðð.

 OBJECT-COMPUTER. IBM-AS4ðð.

 SPECIAL-NAMES. I-O-FEEDBACK IS IO-FBA

OPEN-FEEDBACK IS OPEN-FBA

REQUESTER IS MY-DISPLAY.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 \

 \\\

\ F I L E S P E C I F I C A T I O N S \

 \ \

\ ICFð1 : ICF FILE USED TO SEND/RECEIVE DATA \

\ DSPFILE : USED TO DISPLAY DATA RECEIVED FROM THE HOST\

 \\\

 \

SELECT ICFð1 ASSIGN TO WORKSTATION-ICFð1-SI

ORGANIZATION IS TRANSACTION

CONTROL-AREA IS TR-CTL-AREA

FILE STATUS IS ICF-STATUS MAJ-MIN.

 \

SELECT SHOW ASSIGN TO WORKSTATION-SHOW

ORGANIZATION IS TRANSACTION

CONTROL-AREA IS WS-CTL

FILE STATUS IS STATUS-DSP.

 \

 DATA DIVISION.

 \

 FILE SECTION.

 \

 FD ICFð1

LABEL RECORDS ARE STANDARD.

 \

 ð1 ICF-REC.

 ð5 OUTPUT-BUFFER.

 1ð OUTPUT-LENGTH PIC 9(ð4). .11/
 1ð OUTPUT-HEADER.

 15 O-COMMAND PIC X(ð1). .16/
 15 O-WCC PIC X(ð1).

 15 O-AID PIC X(ð1).

 15 O-DSP PIC X(ð1).

 Appendix D. SNA 3270 Program Interface D-17

 15 O-CURPOS.

 2ð O-CURPOS-1 PIC X(ð1).

 2ð O-CURPOS-2 PIC X(ð1).

 15 O-NUM-ENT PIC X(ð2).

 15 O-NUM-LFT PIC X(ð2).

 15 O-LST-ENT PIC X(ð2).

 15 O-BLK-SIZ PIC X(ð2).

 15 O-LINE PIC X(ð1).

 15 O-RTRN-CODE PIC X(ð1).

 15 O-ERR-POS PIC X(ð2).

 15 O-FLOW PIC X(ð1).

 15 FILLER PIC X(ð1).

 1ð OUTPUT-DATA PIC X(4ð72).

ð5 INPUT-BUFFER REDEFINES OUTPUT-BUFFER. .1ð/
 1ð INPUT-HEADER.

 15 I-COMMAND PIC X(ð1). .6/
 15 I-WCC PIC X(ð1).

 15 I-AID PIC X(ð1).

 15 I-DSP PIC X(ð1).

 15 I-CURPOS.

 2ð I-CURPOS-1 PIC X(ð1).

 2ð I-CURPOS-2 PIC X(ð1).

 15 I-NUM-ENT PIC X(ð2).

 15 I-NUM-LFT PIC X(ð2).

 15 I-LST-ENT PIC X(ð2).

 15 I-BLK-SIZ PIC X(ð2).

 15 I-LINE PIC X(ð1).

 15 I-RTRN-CODE PIC X(ð1).

 15 I-ERR-POS PIC X(ð2).

 15 I-FLOW PIC X(ð1). .7/
 15 FILLER PIC X(ð1).

 1ð INPUT-DATA.

 15 Lð1-IN PIC X(7ð).

 15 REST-OF-327ð PIC X(185ð).

 15 FILLER PIC X(2156).

 \

 FD SHOW

LABEL RECORDS ARE OMITTED.

 \

 ð1 DSP-REC.

 ð5 SHOW-RECORD PIC X(7ð).

ð5 DSP1919 REDEFINES SHOW-RECORD.

1ð L1-SUB PIC X(ð1) OCCURS 7ð TIMES.

 \

 WORKING-STORAGE SECTION.

 \

 77 ICF-STATUS PIC X(ð2).

 77 CONV-INDX PIC 99.

 77 STATUS-DSP PIC X(ð2).

77 HEX-4ð PIC X VALUE ' '.

77 HEX-5B PIC X VALUE '$'.

77 HEX-61 PIC X VALUE '/'.

77 ENTER-KEY PIC X VALUE "'".

77 F1-KEY PIC X VALUE '1'.

77 F2-KEY PIC X VALUE '2'.

77 F3-KEY PIC X VALUE '3'.

77 F4-KEY PIC X VALUE '4'.

77 F5-KEY PIC X VALUE '5'.

77 F6-KEY PIC X VALUE '6'.

77 F7-KEY PIC X VALUE '7'.

77 F8-KEY PIC X VALUE '8'.

77 F9-KEY PIC X VALUE '9'.

77 F1ð-KEY PIC X VALUE ':'.

77 F11-KEY PIC X VALUE '#'.

77 F12-KEY PIC X VALUE '@'.

77 F13-KEY PIC X VALUE 'A'.

77 F14-KEY PIC X VALUE 'B'.

77 F15-KEY PIC X VALUE 'C'.

77 F16-KEY PIC X VALUE 'D'.

77 F17-KEY PIC X VALUE 'E'.

77 F18-KEY PIC X VALUE 'F'.

77 F19-KEY PIC X VALUE 'G'.

D-18 SNA Upline Facility Programming V4R1

77 F2ð-KEY PIC X VALUE 'H'.

77 F21-KEY PIC X VALUE 'I'.

77 F22-KEY PIC X VALUE '¢'.

77 F23-KEY PIC X VALUE '.'.

77 F24-KEY PIC X VALUE '<'.

77 PA1-KEY PIC X VALUE '%'.

77 PA2-KEY PIC X VALUE '>'.

77 PA3-KEY PIC X VALUE ','.

77 CLR-KEY PIC X VALUE '_'.

77 TST-KEY PIC X VALUE 'ð'.

77 NOAID-1 PIC X VALUE '-'.

77 NOAID-2 PIC X VALUE 'Y'.

 \

 ð1 TR-CTL-AREA.

 ð5 TR-FUNCTION-KEYS PIC X(ð2).

 ð5 TR-TERMINAL-ID PIC X(1ð).

 ð5 TR-FORMAT-NAME PIC X(1ð).

 \

 ð1 MAJ-MIN.

 ð5 MAJ PIC X(ð2).

 ð5 MIN PIC X(ð2).

 \

 ð1 WS-CTL.

 ð5 CMD-KEY PIC X(ð2).

 ð5 FILLER PIC X(1ð).

 ð5 RCD-FMT PIC X(1ð).

 \

 ð1 DATA-327ð-STRCT.

 ð5 AID-BYTE PIC X. .15/
 ð5 CURPOS.

 1ð CURPOS-1 PIC X.

 1ð CURPOS-2 PIC X.

 ð5 DATA-327ð PIC X(253).

 \

ð1 HEX-ðð-BINARY PIC 999 COMP-4 VALUE ðð.

ð1 HEX-ðð-R REDEFINES HEX-ðð-BINARY.

 ð5 FILLER PIC X.

 ð5 HEXðð PIC X.

 \

ð1 HEX-11-BINARY PIC 999 COMP-4 VALUE 17.

 ð1 HEX-11-R REDEFINES HEX-11-BINARY.

 ð5 FILLER PIC X.

 ð5 HEX-SBA PIC X.

 \

ð1 HEX-4A-BINARY PIC 999 COMP-4 VALUE 74.

ð1 HEX-4A-R REDEFINES HEX-4A-BINARY.

 ð5 FILLER PIC X.

 ð5 PF22-KEY PIC X.

 \

ð1 HEX-6A-BINARY PIC 999 COMP-4 VALUE 1ð6.

ð1 HEX-6A-R REDEFINES HEX-6A-BINARY.

 ð5 FILLER PIC X.

 ð5 HEX-6A PIC X.

 \

 PROCEDURE DIVISION.

 \

 MAIN-LINE SECTION.

 \

 MAIN-LINE-ROUTINE. .12/
 \

PERFORM OPEN-FILES THRU EXIT-OPEN-FILES.

PERFORM ACQ-DEV THRU EXIT-ACQ-DEV.

PERFORM MAIN-ROUTINE THRU EXIT-MAIN-ROUTINE.

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES.

PERFORM STOP-RUN THRU EXIT-STOP-RUN.

 \

 OPEN-FILES.

 OPEN I-O ICFð1

 I-O SHOW.

 Appendix D. SNA 3270 Program Interface D-19

 EXIT-OPEN-FILES.

 EXIT.

 \

 ACQ-DEV. .3/
ACQUIRE 'CICSDEV' FOR ICFð1.

IF MAJ NOT = 'ðð'

 THEN

PERFORM DSP-ERR-INFO THRU EXIT-DSP-ERR-INFO

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES.

 EXIT-ACQ-DEV.

 EXIT.

 \

 DSP-ERR-INFO.

DISPLAY ' MAJ/MIN ==>' MAJ-MIN.

DISPLAY ' ICF STATUS ==>' ICF-STATUS.

 EXIT-DSP-ERR-INFO.

 EXIT.

 \

 MAIN-ROUTINE. .13/
PERFORM READ-RU THRU EXIT-READ-RU.

PERFORM SEND-CLR THRU EXIT-SEND-CLR.

PERFORM READ-RU THRU EXIT-READ-RU.

PERFORM SEND-IDð1 THRU EXIT-SEND-IDð1.

PERFORM READ-RU THRU EXIT-READ-RU. .8/
PERFORM READ-CHG-DIR THRU EXIT-READ-CHG-DIR.

PERFORM SEND-F11 THRU EXIT-SEND-F11.

PERFORM READ-RU THRU EXIT-READ-RU.

 EXIT-MAIN-ROUTINE.

 EXIT.

 \\\

\ READ 327ð DATA STREAM IN \

 \ \

\ IN THIS EXAMPLE WE CHECK THE MAJOR MINOR RETURN CODE ONLY. \

\ IN A PRODUCTION ENVIRONMENT THE INPUT DATA FLOW CONTROL \

\ FIELD WOULD BE VERIFIED ALSO. WHEN A READ IS PERFORMED IF \

\ ANOTHER DATA FLOW IS ENCOUNTER, SOME OTHER ACTION MAY BE \

\ NECESSARY. IN THIS CASE AN LU TO LU FLOW IS EXPECTED SO A \

\ HEX Fð WILL BE IN THE I-FLOW FIELD IN THE INPUT HEADER. \

 \\\

 \

 READ-RU.

MOVE SPACES TO INPUT-BUFFER.

READ ICFð1 TERMINAL IS 'CICSDEV'.

IF MAJ-MIN NOT < 'ððð4'

 THEN

PERFORM DSP-ERR-INFO THRU EXIT-DSP-ERR-INFO

PERFORM END-SESS THRU EXIT-END-SESS

PERFORM REL-DEV THRU EXIT-REL-DEV

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES

PERFORM STOP-RUN THRU EXIT-STOP-RUN.

PERFORM DSP-IN-DATA THRU EXIT-DSP-IN-DATA.

 EXIT-READ-RU.

 EXIT.

 \

 READ-CHG-DIR.

MOVE SPACES TO INPUT-BUFFER.

READ ICFð1 TERMINAL IS 'CICSDEV'.

IF MAJ-MIN NOT = 'ð3ðð'

 THEN

PERFORM DSP-ERR-INFO THRU EXIT-DSP-ERR-INFO

PERFORM END-SESS THRU EXIT-END-SESS

PERFORM REL-DEV THRU EXIT-REL-DEV

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES

PERFORM STOP-RUN THRU EXIT-STOP-RUN.

PERFORM DSP-IN-DATA THRU EXIT-DSP-IN-DATA.

 EXIT-CHG-DIR.

 EXIT.

 \

D-20 SNA Upline Facility Programming V4R1

 DSP-IN-DATA. .14/
MOVE SPACES TO DSP-REC.

MOVE Lð1-IN TO SHOW-RECORD.

PERFORM CONV-HEX THRU EXIT-CONV-HEX

VARYING CONV-INDX FROM 1 BY 1 UNTIL CONV-INDX = 7ð.

WRITE DSP-REC FORMAT IS 'DSP1919'.

 READ SHOW.

 EXIT-DSP-IN-DATA.

 EXIT.

 \

 CONV-HEX.

IF L1-SUB(CONV-INDX) < ' '

THEN MOVE '?' TO L1-SUB(CONV-INDX).

 EXIT-CONV-HEX.

 EXIT.

 \

 SEND-CLR.

MOVE 21 TO OUTPUT-LENGTH.

MOVE HEXðð TO O-COMMAND.

MOVE 'ð' TO O-FLOW.

MOVE SPACES TO OUTPUT-DATA, DATA-327ð-STRCT.

MOVE CLR-KEY TO AID-BYTE.

MOVE ' ' TO CURPOS.

PERFORM SEND-327ð THRU EXIT-SEND-327ð.

 EXIT-SEND-CLR.

 EXIT.

 \

 SEND-IDð1.

MOVE 27 TO OUTPUT-LENGTH.

MOVE HEXðð TO O-COMMAND.

MOVE 'ð' TO O-FLOW.

MOVE SPACES TO OUTPUT-DATA, DATA-327ð-STRCT

MOVE ENTER-KEY TO AID-BYTE.

MOVE ' D' TO CURPOS.

MOVE 'IDð1' TO DATA-327ð.

PERFORM SEND-327ð THRU EXIT-SEND-327ð.

 EXIT-SEND-IDð1.

 EXIT.

 \

 SEND-F11.

MOVE 23 TO OUTPUT-LENGTH.

MOVE HEXðð TO O-COMMAND.

MOVE 'ð' TO O-FLOW.

MOVE SPACES TO OUTPUT-DATA, DATA-327ð-STRCT.

MOVE F11-KEY TO AID-BYTE.

MOVE SPACES TO CURPOS.

PERFORM SEND-327ð THRU EXIT-SEND-327ð.

 EXIT-SEND-F11.

 EXIT.

 \

 SEND-327ð. .17/
MOVE DATA-327ð-STRCT TO OUTPUT-DATA.

WRITE ICF-REC FORMAT IS '$$SEND'.

IF MAJ-MIN NOT = 'ðððð'

 THEN

PERFORM DSP-ERR-INFO THRU EXIT-DSP-ERR-INFO

PERFORM END-SESS THRU EXIT-END-SESS

PERFORM REL-DEV THRU EXIT-REL-DEV

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES

PERFORM STOP-RUN THRU EXIT-STOP-RUN.

 EXIT-SEND-327ð.

 EXIT.

 \

 Appendix D. SNA 3270 Program Interface D-21

 REL-DEV.

MOVE ZEROS TO OUTPUT-LENGTH.

WRITE ICF-REC FORMAT IS '$$SENDET'.

IF MAJ-MIN NOT = 'ðððð'

 THEN

PERFORM DSP-ERR-INFO THRU EXIT-DSP-ERR-INFO

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES

PERFORM STOP-RUN THRU EXIT-STOP-RUN.

 EXIT-REL-DEV.

 EXIT.

 \

 END-SESS.

WRITE ICF-REC FORMAT IS '$$EOS'.

IF MAJ-MIN NOT = 'ðððð'

 THEN

PERFORM DSP-ERR-INFO THRU EXIT-DSP-ERR-INFO

PERFORM REL-DEV THRU EXIT-REL-DEV

PERFORM CLOSE-FILES THRU EXIT-CLOSE-FILES

PERFORM STOP-RUN THRU EXIT-STOP-RUN.

 EXIT-END-SESS.

 EXIT.

 \

 CLOSE-FILES.

DISPLAY 'CLOSING FILES'.

 CLOSE ICFð1.

 CLOSE SHOW.

 EXIT-CLOSE-FILES.

 EXIT.

 \

 STOP-RUN.

 STOP RUN.

 EXIT-STOP-RUN.

 EXIT.

D-22 SNA Upline Facility Programming V4R1

 Appendix E. Program Examples

This appendix contains two examples of an item-inquiry application. The applica-
tion consists of Program A, which is the AS/400 program, and Program B, which is
the program for the remote host system. For an SNA 3270 program example, see
Appendix D.

“Example 1: AS/400 System to System/370 System (CICS/VS)” on page E-2 illus-
trates communications programming between the AS/400 system and a
System/370 system operating under CICS/VS. Program A is a ILE COBOL/400
program with system-supplied formats; Program B is a System/370 COBOL
CICS/VS program.

“Example 2: AS/400 System to System/370 System (IMS/VS)” on page E-17 illus-
trates communications programming between the AS/400 system and a
System/370 system operating under IMS/VS. Program A is an ILE RPG/400
program with data description specifications (DDS); Program B is a System/370
COBOL IMS/VS program.

“Example 3: AS/400 System to System/370 System (CICS/VS)” on page E-27
illustrates communications programming between the AS/400 system and a
System/370 system operating under CICS/VS. Program A is a ILE C/400 program
with system-supplied formats; Program A is a System/370 COBOL CICS/VS
program.

Before running the program examples, create a line description, a controller
description, and device descriptions on the AS/400 system. Sample commands
follow:

CRTLINSDLC

 LIND(XLINE)

 RSRCNAME(LINð11)

 ROLE(\SEC)

CRTCTLHOST

 CTLD(XCTLR)

 LINKTYPE(\SDLC)

 APPN(\NO)

 LINE(XLINE)

 STNADR(C1)

CRTDEVSNUF

 DEVD(XDEV)

 LOCADR(ð6)

 RMTLOCNAME(CICSLOC)

 CTL(XCTLR)

 PGMSTRRQS(\NO)

 APPID(CICS)

 HOST(\CICS)

CRTDEVSNUF

 DEVD(YDEV)

 LOCADR(ðA)

 RMTLOCNAME(IMSLOC)

 CTL(XCTLR)

 PGMSTRRQS(\NO)

 APPID(XAIMS)

 HOST(\IMS)

 Copyright IBM Corp. 1997 E-1

The item-inquiry application for both “Example 1: AS/400 System to System/370
System (CICS/VS)” and “Example 2: AS/400 System to System/370 System
(IMS/VS)” is shown in Figure E-1.

Application
Program A

Access Method

System/370 System

CICS/VS Task or
IMS/VS Application
Program B

CICS/VS or IMS/VS

SNUF

File A File B

ICF
Data
Management

RSLS173-2

AS/400 System

Figure E-1. Item-Inquiry Application

In Figure E-1:

� Application Program A (in the AS/400 system) shows a prompt asking an oper-
ator to enter an item number requesting information about the item .1/.

� When the operator enters the item number, Program A reads the number and
searches File A (the local file) for the item .3/.

� If the item is found in the local file, Program A shows information about the
item .1/.

� If the item is not found on the local file, Program A uses SNUF to send the item
number to the host system .2/ and .4/.

� Program B (in the host system) uses the item number to search the remote file
for the item .6/.

� If the item is found in the remote file, Program B sends information about the
item to Program A .7/ and .5/. If the item is not found in the remote file,
Program B sends the characters \\\.

� If Program A receives information about the item, it shows that information. If it
receives the characters ***, it shows the message ITEM NUMBER NOT FOUND .1/.

Example 1: AS/400 System to System/370 System (CICS/VS)
The following example consists of an AS/400 COBOL program with system-
supplied formats, talking to a System/370 COBOL CICS/VS program.

Not all programming considerations or techniques are illustrated in this example.
You should review the example before you begin application design and coding.

E-2 SNA Upline Facility Programming V4R1

ILE COBOL/400 Program for the AS/400 System (Program A)
The following program (PROGACOB) is used on the AS/400 system.

When PROGACOB is called, a display is presented. This display contains a single
inquiry line that is 23 bytes long. Type an item number on the inquiry line and
press the Enter key to begin searching. The local database (FILEA) is searched,
and if a matching item is found, up to four item quantities are displayed.

If a matching item number is not in the local file, then a request is built and sent to
the host system. The program, ICII, is started to obtain the matching item number
and quantities from the remote system database; the matching item number and its
associated quantities are returned to PROGACOB, which displays the quantities
that are available.

DDS Source: The DDS source for DISPFILE is illustrated in Figure E-2. The
other files are either program-described (FILEA and PRINTFILE) or default
(QICDMF) and, therefore, require no DDS.

 A\\\

 A\ \

 A\ LOCAL DISPLAY FILE \

 A\ \

 A\\\

 A\

 A CAð1

 A CAð7

 A R WSFILEIN

 A ITMNUM 23 I 2 1ð

A ð1 O 4 1ð'INVALID ITEM NUMBER ENTERED'

A ð2 O 4 1ð'ITEM NUMBER NOT FOUND'

A O 12 1ð'PRESS CMD KEY 7 TO TERMINATE'

 A R WSFILEOT

 A ITMNUM 23 O 2 1ð

A QTY1 6 ðO 4 12

A QTY2 6 ðO 5 12

A QTY3 6 ðO 6 12

A QTY4 6 ðO 7 12

 A MSG 8ð O 8 1ð

A RETCOD 4 O 1ð 1ð

A REASON 3ð O 11 1ð

A FILLER 95 O 12 1ð

A O 14 1ð'PRESS CMD KEY 7 TO TERMINATE OR'

A O 15 1ð'CMD KEY 1 FOR ANOTHER INQUIRY'

Figure E-2. DDS Source for DISPFILE

Program Device Entry Definition: The command needed to define the program
device entry is:

 ADDICFDEVE FILE(\LIBL/QICDMF)

 PGMDEV(SNUFDEVICE)

 RMTLOCNAME(CICSLOC)

 CMNTYPE(\SNUF)

 DEV(XDEV)

 APPID(CICS)

HOST(\DEVD) or (\CICS)

 Appendix E. Program Examples E-3

ILE COBOL/400 Program: Figure E-3 shows the ILE COBOL/400 program
PROGACOB for the AS/400 system.

\\

\ \

\ PROGACOB - ITEM INQUIRY WRITTEN IN COBOL \

\ \

\\

 \

 IDENTIFICATION DIVISION.

 \

 \\

 \ \

\ PROGACOB - ITEM INQUIRY WRITTEN IN COBOL \

 \ \

 \\

 PROGRAM-ID. PROGACOB.

 ENVIRONMENT DIVISION.

 \

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS4ðð.

 OBJECT-COMPUTER. IBM-AS4ðð.

 \

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT QICDMF

ASSIGN TO WORKSTATION-QICDMF-SI

ORGANIZATION IS TRANSACTION

FILE STATUS IS STATUS-IND MAJ-MIN

CONTROL-AREA IS COMM-CONTROL-AREA.

 \

 SELECT DISPFILE

ASSIGN TO WORKSTATION-DISPFILE

ORGANIZATION IS TRANSACTION

FILE STATUS IS WS-FS

CONTROL-AREA IS WS-CONTROL-AREA.

 \

SELECT FILEA ASSIGN TO DISK-FILEA

ORGANIZATION IS INDEXED

ACCESS IS RANDOM

RECORD KEY IS FILEA-NUMBER.

 \

SELECT PRINTFILE ASSIGN TO PRINTER-PRINTFILE.

 \

 DATA DIVISION.

 FILE SECTION.

 FD QICDMF

LABEL RECORDS ARE OMITTED.

 ð1 COMMREC.

 ð5 COMMUNICATION-RECORD PIC X(256).

FD DISPFILE, LABEL RECORDS ARE OMITTED.

 ð1 DISPREC.

 ð3 ITEM-NUMBER PIC X(23).

 ð3 QTY-1 PIC 9(6).

 ð3 QTY-2 PIC 9(6).

 ð3 QTY-3 PIC 9(6).

 ð3 QTY-4 PIC 9(6).

 ð3 MSG PIC X(8ð).

 ð3 RETURN-CODE PIC X(4).

 ð3 REASON-WHY PIC X(3ð).

 ð3 FILL1 PIC X(95).

 \

Figure E-3 (Part 1 of 6). COBOL Program A for the AS/400 System

E-4 SNA Upline Facility Programming V4R1

FD FILEA, LABEL RECORDS ARE STANDARD.

 ð1 FILEAREC.

 ð3 FILEA-RECORD.

 ð5 FILEA-NUMBER PIC X(23).

 ð5 FILLER PIC X(3).

 ð5 FILEA-QTY-1 PIC 9(6).

 ð5 FILEA-QTY-2 PIC 9(6).

 ð5 FILEA-QTY-3 PIC 9(6).

 ð5 FILEA-QTY-4 PIC 9(6).

 \

FD PRINTFILE, LABEL RECORDS ARE OMITTED.

 ð1 PRINT-RECORD PIC X(132).

 \

 WORKING-STORAGE SECTION.

77 ICF-SESSION PIC X(1ð) VALUE "SNUFDEVICE".

 77 SAVE-ITEM-NUMBER PIC X(23).

 77 STATUS-IND PIC X(2).

 77 WS-FS PIC X(2).

 \

 ð1 COMM-CONTROL-AREA.

 ð3 FILLER PIC X(2).

 ð3 PGM-DEV-NAME PIC X(1ð).

 ð3 RCD-FMT-NAME PIC X(1ð).

 \

 ð1 WS-CONTROL-AREA.

 ð3 CMD-KEY PIC X(2).

 88 CMD-KEY-1 VALUE "ð1".

 88 CMD-KEY-7 VALUE "ð7".

 ð3 FILLER PIC X(1ð).

 ð3 RCD-FMT PIC X(1ð).

 \

 ð1 SCREEN-INDICATORS.

ð3 Ið1 PIC 1 VALUE ZERO, INDICATOR ð1.

ð3 Ið2 PIC 1 VALUE ZERO, INDICATOR ð2.

ð3 Ið3 PIC 1 VALUE ZERO, INDICATOR ð3.

 \

 ð1 ACQUIRE-INDICATOR.

ð3 Ið4 PIC 1 VALUE ZERO, INDICATOR ð1.

 \

 ð1 EVOKE-RECORD.

ð3 PROCEDURE-NAME PIC X(8) VALUE "ICII ".

 ð3 PASSWORD PIC X(8).

 ð3 USER-ID PIC X(8).

 ð3 LIBRARY-NAME PIC X(8).

 ð3 FILLER PIC X(2ð).

ð3 DATA-LENGTH PIC X(4) VALUE "ðð23".

 ð3 ICF-ITEM-NUMBER-OUT PIC X(23).

 \

 ð1 ICF-RECORD-IN.

 ð3 ICF-RECORD-CHECK.

 ð5 FIRST-3-CHARACTERS PIC X(3).

 ð5 REST-OF-DATA PIC X(253).

 \

ð3 ICF-RECORD-OK REDEFINES ICF-RECORD-CHECK.

 ð5 FILLER PIC X(32).

 ð5 ICF-ITEM-NUMBER-IN PIC X(23).

 ð5 FILLER PIC X(145).

 ð5 ICF-QTY-1 PIC 9(6).

 ð5 ICF-QTY-2 PIC 9(6).

 ð5 ICF-QTY-3 PIC 9(6).

 ð5 ICF-QTY-4 PIC 9(6).

 ð5 FILLER PIC X(32).

 \

Figure E-3 (Part 2 of 6). COBOL Program A for the AS/400 System

 Appendix E. Program Examples E-5

 ð1 ICF-RECORD-OUT.

 ð3 RECORD-LENGTH PIC 9(4).

 ð3 THE-RECORD PIC X(256).

 \

 ð1 MAJ-MIN.

 ð3 MAJOR-RETURN-CODE PIC X(2).

 ð3 MINOR-RETURN-CODE PIC X(2).

 \

 ð1 PRINT-CODES.

ð3 FILLER PIC X(14) VALUE "RETURN CODE ".

 ð3 PRINT-RETURN-CODE PIC X(4).

ð3 FILLER PIC X(11) VALUE " OPCODE IS ".

 ð3 OPCODE PIC X(6).

ð3 FILLER PIC X(11) VALUE " DATA SENT ".

 ð3 PRINT-ITEM-NUMBER PIC X(23).

 \

 PROCEDURE DIVISION.

 \

 \\

 \ \

 \ INITIALIZATION \

 \ \

 \\

 OPEN-FILES.

OPEN I-O DISPFILE, QICDMF.

OPEN OUTPUT PRINTFILE.

OPEN INPUT FILEA.

MOVE B"ð" TO Ið1, Ið2, Ið3, Ið4.

MOVE SPACES TO DISPREC.

 \

 \\

 \ \

\ DISPLAY SCREEN REQUESTING ITEM NUMBER. IF CMD 7, \

\ GO TO CLOSE FILES. SET UP INDICATORS TO DISPLAY \

\ ERRORS IF ITEM NUMBER IS SPACE OR ZEROS \

 \ \

 \\

 ITEM-INQUIRY.

IF Ið3 = B"1"

MOVE B"ð" TO Ið3

 WRITE DISPREC

FORMAT IS "WSFILEOT"

 READ DISPFILE

INDICATORS ARE SCREEN-INDICATORS

 IF CMD-KEY-7

GO TO CLOSE-FILES.

\ MUST BE CMD-KEY-1

 WRITE DISPREC

FORMAT IS "WSFILEIN"

INDICATORS ARE SCREEN-INDICATORS.

 READ DISPFILE

FORMAT IS "WSFILEIN".

MOVE B"ð" TO Ið1, Ið2, Ið3.

 IF CMD-KEY-7

GO TO CLOSE-FILES.

IF ITEM-NUMBER = SPACES OR ITEM-NUMBER = ZEROS

MOVE B"1" TO Ið1

GO TO ITEM-INQUIRY.

Figure E-3 (Part 3 of 6). COBOL Program A for the AS/400 System

E-6 SNA Upline Facility Programming V4R1

 \

 \\

 \ \

\ READ LOCAL FILE 'FILEA' FOR REQUESTED ITEM NUMBER. \

\ IF ITEM IS FOUND LOCALLY, DISPLAY ITEM INFORMATION. \

\ IF ITEM IS NOT FOUND LOCALLY, INQUIRE OF 'ITEMBCOB' \

 \ USING ICF. \

 \ \

 \\

 READ-FILEA-FILE.

MOVE SPACES TO FILEA-RECORD.

MOVE ITEM-NUMBER TO FILEA-NUMBER.

 READ FILEA,

 INVALID KEY

GO TO ICF.

MOVE FILEA-QTY-1 TO QTY-1.

MOVE FILEA-QTY-2 TO QTY-2.

MOVE FILEA-QTY-3 TO QTY-3.

MOVE FILEA-QTY-4 TO QTY-4.

GO TO ITEM-INQUIRY.

 \

 \\

 \ \

\ ACQUIRE ICF-SESSION (SNUFDEVICE), IF NOT ACQUIRED. \

 \ \

 \\

 ICF.

IF Ið4 = B"ð"

MOVE B"1" TO Ið4

ACQUIRE ICF-SESSION FOR QICDMF

MOVE "ACQ" TO OPCODE

PERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END

IF Ið3 = B"1"

GO TO ITEM-INQUIRY.

 \

 \\

 \ \

\ EVOKE 'ICII' AT HOST. \

 \ \

 \\

MOVE ITEM-NUMBER TO ICF-ITEM-NUMBER-OUT.

WRITE COMMREC FROM EVOKE-RECORD

FORMAT IS "$$EVOK".

MOVE "EVOK" TO OPCODE.

PERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.

IF Ið3 = B"1"

 PERFORM SEND-EOS

GO TO ITEM-INQUIRY.

 \

Figure E-3 (Part 4 of 6). COBOL Program A for the AS/400 System

 Appendix E. Program Examples E-7

 \\

 \ \

\ GET INPUT FROM HOST. \

 \ \

 \\

MOVE SPACES TO ICF-RECORD-IN.

READ QICDMF RECORD INTO ICF-RECORD-IN.

MOVE "GET" TO OPCODE.

PERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.

IF Ið3 = B"1"

 PERFORM SEND-EOS

GO TO ITEM-INQUIRY.

 \

 \\

 \ \

\ SEND END OF TRANSACTION. \

 \ \

 \\

MOVE SPACES TO DISPREC.

MOVE ð TO RECORD-LENGTH.

WRITE COMMREC FROM ICF-RECORD-OUT

FORMAT IS "$$SENDET".

MOVE "SENDET" TO OPCODE.

PERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.

IF Ið3 = B"1"

 PERFORM SEND-EOS

GO TO ITEM-INQUIRY.

 \

 \\

 \ \

\ CHECK FOR ERROR MESSAGE (3 ASTERISKS). \

\ IF ITEM NUMBER IS NOT FOUND, DISPLAY MESSAGE 'ITEM \

\ NUMBER NOT FOUND' TO THE SCREEN. \

\ IF THE ITEM IS FOUND, DISPLAY THE INVENTORY INFOR. \

 \ \

 \\

MOVE B"ð" TO Ið1, Ið2, Ið3.

MOVE ITEM-NUMBER TO SAVE-ITEM-NUMBER.

MOVE SPACES TO DISPREC.

IF FIRST-3-CHARACTERS = "\\\"

MOVE B"1" TO Ið2

 ELSE

MOVE B"1" TO Ið3

MOVE ICF-ITEM-NUMBER-IN TO ITEM-NUMBER

MOVE ICF-QTY-1 TO QTY-1

MOVE ICF-QTY-2 TO QTY-2

MOVE ICF-QTY-3 TO QTY-3

MOVE ICF-QTY-4 TO QTY-4.

GO TO ITEM-INQUIRY.

Figure E-3 (Part 5 of 6). COBOL Program A for the AS/400 System

E-8 SNA Upline Facility Programming V4R1

 \

 \\

 \ \

\ CLOSE FILES AND END JOB. \

 \ \

 \\

 CLOSE-FILES.

CLOSE QICDMF, DISPFILE, FILEA, PRINTFILE.

 STOP RUN.

 \

 SEND-EOS.

MOVE B"ð" TO Ið4.

MOVE SPACES TO DISPREC.

 WRITE COMMREC

FORMAT IS "$$EOS".

MOVE "EOS" TO OPCODE.

MOVE MAJ-MIN TO PRINT-RETURN-CODE.

WRITE PRINT-RECORD FROM PRINT-CODES

AFTER ADVANCING 2 LINES.

 \

 \\

 \ \

\ CHECK RETURN CODE. \

 \ \

 \\

 CHECK-RETURN-CODE.

IF MAJOR-RETURN-CODE < "ð4"

GO TO CHECK-RETURN-CODE-END.

 \

MOVE ITEM-NUMBER TO PRINT-ITEM-NUMBER.

MOVE MAJ-MIN TO PRINT-RETURN-CODE.

WRITE PRINT-RECORD FROM PRINT-CODES

AFTER ADVANCING 2 LINES.

MOVE SPACES TO RETURN-CODE.

IF MAJOR-RETURN-CODE = "ð4"

MOVE MAJ-MIN TO RETURN-CODE

MOVE "OUTPUT EXCEPTION" TO REASON-WHY

READ QICDMF RECORD INTO ICF-RECORD-CHECK

MOVE ICF-RECORD-CHECK TO MSG

MOVE B"1" TO Ið3

 ELSE

IF MAJOR-RETURN-CODE = "82"

MOVE MAJ-MIN TO RETURN-CODE

MOVE "UNABLE TO ACQUIRE" TO REASON-WHY

MOVE B"1" TO Ið3

MOVE B"ð" TO Ið4

 ELSE

IF MAJOR-RETURN-CODE > "ð4"

MOVE MAJ-MIN TO RETURN-CODE

MOVE B"1" TO Ið3.

 CHECK-RETURN-CODE-END.

Figure E-3 (Part 6 of 6). COBOL Program A for the AS/400 System

 Appendix E. Program Examples E-9

CICS/VS Program Used by the Host System (Program B)
The program in Figure E-4 is used by the host system to communicate with the
AS/400 system.

MEMBER NE ICII

 IDENTIFICATION DIVISION.

 SKIP3

 \\

 \ \

 \ ICII INVENTORY INQUIRY \

 \ \

 \\

 SKIP3

 PROGRAM-ID. ICII.

 SKIP1

 SKIP3

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SKIP1

 SOURCE-COMPUTER. IBM-37ð-155.

 OBJECT-COMPUTER. IBM-37ð-155.

 EJECT

 DATA DIVISION.

 SKIP3

 WORKING-STORAGE SECTION.

 SKIP1

 77 FUNCTION PIC X(4).

 77 PSB-NAME PIC X(8) VALUE 'MSCTGðð5'.

 77 NORESP PIC X(1) VALUE LOW-VALUES.

 77 PCBOK PIC X(2) VALUE SPACES.

77 TDI-LENGTH PIC S9(4) COMP VALUE +256.

77 TDO-LENGTH PIC S9(4) COMP VALUE +256.

 77 ABEND-CODE PIC X(4) VALUE SPACES.

 EJECT

 \\\

 \ \

\ TRANSACTION DATA RECEIVED FROM IBM AS/4ðð SYSTEM \

 \ \

 \\\

 SKIP1

 ð1 TRANS-DATA-IN.

 ð5 TDI-PGMID PIC X(4).

 ð5 TDI-FILL1 PIC X(1).

 ð5 TDI-MSINITEM PIC X(23).

 SKIP3

 \\

 \ \

\ TRANSACTION DATA SENT BACK TO IBM AS/4ðð SYSTEM \

 \ \

 \\

 SKIP1

 ð1 TRANS-DATA-OUT.

 ð5 TDO-FILL1 PIC X(2) VALUE SPACES.

 ð5 TDO-FILLX PIC X(3ð) VALUE SPACES.

 ð5 TDO-MSINITEM PIC X(23).

 ð5 TDO-FILL2 PIC X(145) VALUE SPACES.

 ð5 TDO-MSLCHAND1 PIC S9(6).

 ð5 TDO-MSLCHAND2 PIC S9(6).

 ð5 TDO-MSLCHAND3 PIC S9(6).

 ð5 TDO-MSLCHAND4 PIC S9(6).

Figure E-4 (Part 1 of 7). CICS/VS Program Used by the Host System

E-10 SNA Upline Facility Programming V4R1

MEMBER NE ICII

 ð5 TDO-FILL3 PIC X(32) VALUE SPACES.

 SKIP3

ð1 ERROR-MESSAGE REDEFINES TRANS-DATA-OUT.

 ð5 EM-MESSAGE PIC X(51).

 ð5 EM-FILLER PIC X(2ð5).

 EJECT

 \\

 \ \

\ DL/I INVENTORY DATABASE SEGMENT INPUT AREA \

 \ \

 \\

 SKIP1

 ð1 SEGMENT-MSININð1-IN.

 ð5 MSINITEM PIC X(23).

 ð5 MSINBCOD PIC X(2).

 ð5 MSINCOST PIC S9(7) COMP-3.

 ð5 MSINDESC PIC X(1ð).

 SKIP3

 ð1 SEGMENT-MSLCINð1-IN.

 ð5 MSLCLOCD PIC X(2).

 ð5 MSLCHAND PIC S9(9) COMP-3.

 ð5 MSLCALOC PIC S9(9) COMP-3.

 ð5 MSLCCLOC PIC S9(9) COMP-3.

 ð5 MSLCBORD PIC S9(9) COMP-3.

 ð5 MSLCWORK PIC S9(9) COMP-3.

 EJECT

 \\

 \ \

\ DL/I INVTY DATABASE SEGMENT SEARCH ARGUMENTS (SSA'S) \

 \ \

 \\

 SKIP1

 ð1 INVTY-SEGMENT-SSA.

ð5 FILLER PIC X(19) VALUE 'MSININð1(MSINITEM ='.

 ð5 SSA-MSINITEM PIC X(23).

 ð5 FILLER PIC X(1) VALUE ')'.

 SKIP3

 ð1 QTYS-SEGMENT-SSA.

ð5 FILLER PIC X(9) VALUE 'MSLCINð1 '.

 EJECT

 \\

 \ \

\ MISCELLANEOUS WORKING-STORAGE AREAS. \

 \ \

 \\

 SKIP1

 ð1 DLI-FUNCTIONS.

 ð5 GU PIC X(4) VALUE 'GU '.

ð5 GNP PIC X(4) VALUE 'GNP '.

ð5 PCB PIC X(4) VALUE 'PCB '.

 ð5 TERM PIC X(4) VALUE 'TERM'.

 SKIP3

Figure E-4 (Part 2 of 7). CICS/VS Program Used by the Host System

 Appendix E. Program Examples E-11

 ð1 MSG-NOT-FOUND.

 ð5 FILLER PIC X(11) VALUE '\\\ERROR\\\'.

ð5 FILLER PIC X(6) VALUE ' ITEM '.

 ð5 MSG-MSINITEM PIC X(23).

ð5 FILLER PIC X(11) VALUE ' NOT FOUND.'.

 SKIP3

 ð1 DLI-SWITCH PIC 9 VALUE ð.

 88 QTYS-OK VALUE ð.

 88 QTYS-UIB-ERROR VALUE 1.

 EJECT

 LINKAGE SECTION.

 SKIP1

 ð1 BLL-CELLS.

 ð5 FILLER PIC 9(8) COMP.

 ð5 DLI-UIB-PTR PIC 9(8) COMP.

 ð5 DLI-PCB-PTRS PIC 9(8) COMP.

 ð5 PCB1-PTR.

 1ð FILLER PIC 9(8) COMP.

 EJECT

 COPY DLIUIB.

 SKIP3

 ð1 PCB-PTRS.

 ð5 B-PCB1-PTR PIC S9(8) COMP.

 SKIP3

 ð1 PCB1.

 ð5 PCB1-DBD-NAME PIC X(8).

ð5 PCB1-SEG-LEVEL PIC X(2).

 ð5 PCB1-STATUS PIC X(2).

 88 INVENTORY-SEGMENT-FOUND VALUE ' '.

 88 END-OF-CHAIN VALUE 'GE'.

 88 INVENTORY-DOESNT-EXIST VALUE 'GE'.

 88 QUANTITY-SEGMENT-FOUND VALUE ' '.

ð5 PCB1-PROC-OPTN PIC X(1).

 ð5 PCB1-FILL1 PIC S9(5) COMP.

 ð5 PCB1-SEG-NAME PIC X(8).

ð5 PCB1-LENG-KFBA PIC S9(5) COMP.

ð5 PCB1-NUMBOSSEG PIC S9(5) COMP.

 ð5 PCB1-KEY-FBA PIC X(256).

 EJECT

 \\

 \ \

\ MAIN LINE ROUTINE. \

 \ \

 \\

 SKIP1

 PROCEDURE DIVISION.

 SKIP1

 PERFORM GET-PSB.

IF PCB1-DBD-NAME = 'MSDPINð1'

 PERFORM GET-PSB.

MOVE TDI-MSINITEM TO TDO-MSINITEM, SSA-MSINITEM

 PERFORM GET-INVTY

 IF INVENTORY-SEGMENT-FOUND

PERFORM GET-QTYS-ON-HAND THRU GET-QTYS-EXIT

 IF QTYS-OK

 PERFORM SEND-DATA

 ELSE

MOVE 'QTYU' TO ABEND-CODE

 PERFORM CICS-ABEND

Figure E-4 (Part 3 of 7). CICS/VS Program Used by the Host System

E-12 SNA Upline Facility Programming V4R1

 ELSE

 IF INVENTORY-DOESNT-EXIST

 MOVE TDI-MSINITEM TO MSG-MSINITEM

 MOVE SPACES TO EM-FILLER

MOVE MSG-NOT-FOUND TO EM-MESSAGE

 PERFORM SEND-DATA

 ELSE

MOVE 'ITYP' TO ABEND-CODE

 PERFORM CICS-ABEND

 ELSE

MOVE 'INVD' TO ABEND-CODE

 PERFORM CICS-ABEND.

 SKIP3

 PERFORM RELEASE-PSB.

 SKIP1

EXEC CICS RETURN END-EXEC.

 SKIP1

 GOBACK.

 EJECT

 \\

 \ \

 \ CLOSED SUBROUTINES. \

 \ \

 \\

 SKIP1

 GET-PSB.

 SKIP1

MOVE PCB TO FUNCTION.

CALL 'CBLTDLI' USING FUNCTION, PSB-NAME, DLI-UIB-PTR.

IF UIBFCTR = NORESP

 MOVE UIBPCHAL TO DLI-PCB-PTRS

MOVE B-PCB1-PTR TO PCB1-PTR

 ELSE

MOVE 'PSBU' TO ABEND-CODE

 PERFORM CICS-ABEND.

 SKIP2

 READ-TERMINAL.

 SKIP1

 EXEC CICS

 RECEIVE INTO(TRANS-DATA-IN)

 LENGTH(TDI-LENGTH)

 END-EXEC.

 SKIP2

 SEND-DATA.

 SKIP1

 EXEC CICS

 SEND FROM(TRANS-DATA-OUT)

 LENGTH(TDO-LENGTH)

 END-EXEC.

 SKIP3

 RELEASE-PSB.

 SKIP1

MOVE TERM TO FUNCTION.

CALL 'CBLTDLI' USING FUNCTION.

 EJECT

Figure E-4 (Part 4 of 7). CICS/VS Program Used by the Host System

 Appendix E. Program Examples E-13

 READ-TERMINAL.

 SKIP1

 EXEC CICS

 RECEIVE INTO(TRANS-DATA-IN)

 LENGTH(TDI-LENGTH)

 END-EXEC.

 SKIP2

 SEND-DATA.

 SKIP1

 EXEC CICS

 SEND FROM(TRANS-DATA-OUT)

 LENGTH(TDO-LENGTH)

 END-EXEC.

 SKIP3

 RELEASE-PSB.

 SKIP1

MOVE TERM TO FUNCTION.

CALL 'CBLTDLI' USING FUNCTION.

 EJECT

 CICS-ABEND.

 SKIP1

 EXEC CICS

 DUMP

 FROM(BLL-CELLS)

 LENGTH(32)

 DUMPCODE('ABLL')

 END-EXEC.

 SKIP1

 EXEC CICS

 DUMP

 FROM(DLIUIB)

 LENGTH(16)

 DUMPCODE('AUIB')

 END-EXEC.

 SKIP1

 EXEC CICS

 DUMP

 FROM(PCB-PTRS)

 LENGTH(48)

 DUMPCODE('APTR')

 END-EXEC.

 EJECT

 EXEC CICS

 DUMP

 FROM(PCB1)

 LENGTH(256)

 DUMPCODE('APCB')

 END-EXEC.

 SKIP3

 PERFORM RELEASE-PSB.

 SKIP1

 EXEC CICS

 ABEND

 ABCODE(ABEND-CODE)

 END-EXEC.

 EJECT

Figure E-4 (Part 5 of 7). CICS/VS Program Used by the Host System

E-14 SNA Upline Facility Programming V4R1

 \\

 \ \

 \ GET INVENTORY. \

 \ THIS ROUTINE ATTEMPTS TO READ THE INVENTORY ITEM \

 \ FROM THE DL/I DATABASE BASED ON THE ITEM NUMBER \

 \ SENT FROM THE REQUESTING AS/4ðð SYSTEM. IF THE \

 \ ITEM IS NOT FOUND ON THE DATABASE THE ROUTINE \

 \ WHICH CALLS THIS ONE RETURNS AN ERROR MESSAGE TO \

 \ THE AS/4ðð SYSTEM. OTHERWISE THE 'AMOUNTS ON HAND' \

 \ ARE READ FROM THE DATABASE AND RETURNED TO THE \

 \ AS/4ðð SYSTEM. \

 \ \

 \\

 SKIP1

 GET-INVTY.

 SKIP1

MOVE GU TO FUNCTION.

 SKIP1

CALL 'CBLTDLI' USING FUNCTION, PCB1,

 SEGMENT-MSININð1-IN, INVTY-SEGMENT-SSA.

 SKIP1

IF UIBFCTR NOT = NORESP

MOVE 'ITYU' TO ABEND-CODE

 PERFORM CICS-ABEND.

 EJECT

 \\

 \ \

\ GET QUANTITIES ON HAND \

 \ THIS ROUTINE GETS THE QUANTITIES ON HAND FROM UP \

 \ TO 4 REMOTE LOCATIONS AND RETURNS THE QUANTITIES \

 \ TO THE REQUESTING IBM AS/4ðð SYSTEM. IF QUANTITIES \

 \ ARE NOT FOUND FOR SOME LOCATIONS, ZEROS ARE \

 \ RETURNED IN THEIR 'ON HAND' FIELDS. \

 \ \

 \\

 SKIP1

 GET-QTYS-ON-HAND.

 SKIP1

 PERFORM CLEAR-QTYS.

 SKIP1

 MOVE ð TO DLI-SWITCH.

 MOVE PCBOK TO PCB1-STATUS.

MOVE NORESP TO UIBFCTR.

 SKIP3

PERFORM GET-QTYS. NOTE LOCATION 1.

IF UIBFCTR = NORESP

 IF QUANTITY-SEGMENT-FOUND

MOVE MSLCHAND TO TDO-MSLCHAND1

MOVE MSLCLOCD TO TDO-FILL1

 ELSE

 NEXT SENTENCE

 ELSE

MOVE 1 TO DLI-SWITCH

GO TO GET-QTYS-EXIT.

 SKIP3

IF NOT END-OF-CHAIN

 PERFORM GET-QTYS

Figure E-4 (Part 6 of 7). CICS/VS Program Used by the Host System

 Appendix E. Program Examples E-15

IF UIBFCTR = NORESP

 IF QUANTITY-SEGMENT-FOUND

MOVE MSLCHAND TO TDO-MSLCHAND2

 ELSE

 NEXT SENTENCE

 ELSE

MOVE 1 TO DLI-SWITCH

GO TO GET-QTYS-EXIT.

 EJECT

IF NOT END-OF-CHAIN

 PERFORM GET-QTYS

IF UIBFCTR = NORESP

 IF QUANTITY-SEGMENT-FOUND

MOVE MSLCHAND TO TDO-MSLCHAND3

 ELSE

 NEXT SENTENCE

 ELSE

MOVE 1 TO DLI-SWITCH

GO TO GET-QTYS-EXIT.

 SKIP3

IF NOT END-OF-CHAIN

 PERFORM GET-QTYS

IF UIBFCTR = NORESP

 IF QUANTITY-SEGMENT-FOUND

MOVE MSLCHAND TO TDO-MSLCHAND4

 ELSE

 NEXT SENTENCE

 ELSE

MOVE 1 TO DLI-SWITCH

GO TO GET-QTYS-EXIT.

 SKIP3

MEMBER NE ICII

 GET-QTYS-EXIT. EXIT.

 EJECT

 CLEAR-QTYS.

 SKIP1

MOVE ZEROS TO TDO-MSLCHAND1,

 TDO-MSLCHAND2,

 TDO-MSLCHAND3,

 TDO-MSLCHAND4.

 SKIP3

 GET-QTYS.

 SKIP1

MOVE GNP TO FUNCTION.

 SKIP1

CALL 'CBLTDLI' USING FUNCTION, PCB1,

 SEGMENT-MSLCINð1-IN, QTYS-SEGMENT-SSA.

 SKIP3

 MOVE-QUANTITY.

 SKIP1

IF MSLCLOCD = '1ð'

MOVE MSLCHAND TO TDO-MSLCHAND1.

 SKIP1

IF MSLCLOCD = '2ð'

MOVE MSLCHAND TO TDO-MSLCHAND2.

 SKIP1

IF MSLCLOCD = '3ð'

MOVE MSLCHAND TO TDO-MSLCHAND3.

 SKIP1

IF MSLCLOCD = '4ð'

MOVE MSLCHAND TO TDO-MSLCHAND4

 ELSE

 NEXT SENTENCE.

Figure E-4 (Part 7 of 7). CICS/VS Program Used by the Host System

E-16 SNA Upline Facility Programming V4R1

Example 2: AS/400 System to System/370 System (IMS/VS)
This example consists of an AS/400 ILE RPG/400 program with DDS keywords,
talking to a System/370 COBOL IMS/VS program.

Not all programming considerations or techniques are illustrated in this example.
You should review the example before you begin application design and coding.

ILE RPG/400 Program for the AS/400 System (Program A)
The following program (PROGARPG) is used on the AS/400 system.

When PROGARPG is called, a display is presented. This display presents a single
inquiry line which is 23 bytes long. The operator enters the item number on the
inquiry line, and the local database FILEA is searched. If a matching item is found,
up to four quantities are displayed for that item.

If the item number is not in the local database, a request is built and sent to the
host system. Program MSCGT005 is started and searches the host database; the
matching item number and its associated quantities are returned to PROGARPG
and are presented on the inquiry display.

DDS Sources: The DDS sources for FILEA, WSFILE, and RMFILE, are illustrated
in Figure E-5, Figure E-6 on page E-18, and Figure E-7 on page E-18.

 A\\

 A\ \

 A\ DDS SOURCE FOR THE MASTER FILE (FILEA) \

 A\ \

 A\\

 A LIFO

 A R MASTER

 A ITMNUM 23A

 A FILLER 3A

 A QTY1 6 ð

 A QTY2 6 ð

 A QTY3 6 ð

 A QTY4 6 ð

 A K ITMNUM

Figure E-5. DDS Source for File FILEA

 Appendix E. Program Examples E-17

 A\\

 A\ \

 A\ DDS SOURCE FOR THE LOCAL DISPLAY FILE (WSFILE) \

 A\ \

 A\\

 A\

 A CAð1

 A CAð7

 A R WSFILEIN

 A ITMNUM 23 I 2 1ð

A 41 O 4 1ð'INVALID ITEM NUMBER ENTERED'

A 42 O 4 1ð'ITEM NUMBER NOT FOUND'

A O 12 1ð'PRESS CMD KEY 7 TO TERMINATE'

 A R WSFILEOT

 A ITMNUM 23 O 2 1ð

A QTY1 6 ðO 4 12

A QTY2 6 ðO 5 12

A QTY3 6 ðO 6 12

A QTY4 6 ðO 7 12

A O 12 1ð'PRESS CMD KEY 7 TO TERMINATE OR'

A O 13 1ð'CMD KEY 1 FOR ANOTHER INQUIRY'

Figure E-6. DDS Source for File WSFILE

 A\\\

 A\ \

 A\ DDS FOR THE ICF COMMUNICATION FILE (RMFILE) \

 A\ \

 A\\\

 A R RMDTCH

 A 51 DETACH

 A\

 A R RMEOS

 A 52 EOS

 A\

 A R RMDATA

 A ERRFLD 3A

 A FILLR1 29A

 A ITMNUM 23A

 A FILLR2 146A

 A QTY1 6 ð

 A QTY2 6 ð

 A QTY3 6 ð

 A QTY4 6 ð

 A\

 A R RMEVOK

 A SECURITY(2 &PASSWD)

 A 53 EVOKE(&PGMID &ITMNUM)

 A 53 INVITE

 A PGMID 8A P

 A PASSWD 4A P

 A ITMNUM 23A P

Figure E-7. DDS Source for File RMFILE

ICF File Creation and Program Device Entry Definitions: The command needed
to create the ICF file is:

 CRTICFF FILE(RMFILE)

 SRCFILE(QDDSSRC)

 SRCMBR(ICFFILE1)

 ACQPGMDEV(PGMDEV)

E-18 SNA Upline Facility Programming V4R1

The command needed to define the program device entry is:

 ADDICFDEVE FILE(RMFILE)

 PGMDEV(PGMDEV)

 RMTLOCNAME(IMSLOC)

 CMNTYPE(\SNUF)

 DEV(YDEV)

HOST(\IMS) or (\DEVD)

ILE RPG/400 Program: Figure E-8 shows the ILE RPG/400 Program A for the
AS/400 system.

 F\\

 F\ \

 F\ FILE DESCRIPTION SPECIFICATIONS \

 F\ \

 F\\

 FFILEA IF E K DISK

FWSFILE CF E WORKSTN

FRMFILE CF E WORKSTN

 F KNUM 1

 F KID DEV

 C\\

 C\ \

C\ RPG CALCULATION SPECIFICATIONS \

 C\ \

 C\\

 C\

 C\\

 C\ \

C\ PROMPT FOR ITEM NUMBER OR DISPLAY ERROR MESSAGE \

 C\ \

 C\\

 C\

 C ITMINQ TAG

 C EXFMTWSFILEIN 12

 C KG 12 GOTO EOJ

C SETOF 41

 C \BLANK COMP ITMNUM 41

 C N41 \ZERO COMP ITMNUM 41

 C 41 GOTO ITMINQ

 C\

C\ SEARCH LOCAL MASTER FILE FOR ITEM

 C\

C SETOF 134142

 C ITMNUM CHAINMASTER 1315

 C 15 GOTO EOJ

 C\

C\ DISPLAY RESULTS OF INQUIRY

 C\

 C DSPLY TAG

 C N13 EXFMTWSFILEOT

 C N13 KA GOTO ITMINQ

 C N13 KG GOTO EOJ

 C\

Figure E-8 (Part 1 of 2). ILE RPG/400 Program A for the AS/400 System

 Appendix E. Program Examples E-19

C\ ITEM NOT ON LOCAL MASTER - SEND INQUIRY TO HOST

 C\

 C 13 SETOF 13

C SETON 14

 C MOVEL'PGMDEV' DEV

 C MOVE 'MSCGTðð5'PGMID

 C MOVE 'ðð23' PASSWD

C SETON 53

 C WRITERMEVOK EVOKE

C SETOF 53

 C READ RMDATA 5ð

 C '\\\' COMP ERRFLD 42

C SETON 51

 C WRITERMDTCH DETACH

C SETOF 51

 C 42 GOTO ITMINQ

 C GOTO DSPLY

 C\

C\ CMD KEY 7 PRESSED - TERMINATE SESSION

 C\

 C EOJ TAG

 C N14 SETON 52

 C N14 WRITERMEOS EOS

C SETON LR

Figure E-8 (Part 2 of 2). ILE RPG/400 Program A for the AS/400 System

E-20 SNA Upline Facility Programming V4R1

IMS/VS Program Used by the Host System (Program B)
Figure E-9 is the IMS application program used by the host system to communi-
cate with an AS/400 system.

 IDENTIFICATION DIVISION.

 SKIP3

\\

\ \

\ ICII INVENTORY INQUIRY \

\ \MSCGTðð5\ \

\\

 SKIP3

 PROGRAM-ID. MSCGTðð5.

 SKIP1

 SKIP3

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SKIP1

\ SOURCE-COMPUTER. IBM-37ð-168 WITH DEBUGGING MODE.

 SOURCE-COMPUTER. IBM-37ð-168.

 OBJECT-COMPUTER. IBM-37ð-168.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT PRNT-FILE ASSIGN TO UR-S-PRNTFILE.

 EJECT

 DATA DIVISION.

 FILE SECTION.

 SKIP1

 FD PRNT-FILE LABEL RECORDS OMITTED, RECORD CONTAINS 132

 CHARACTERS.

 ð1 PRINTLINE.

 ð2 ITEM1 PIC X(8ð).

 ð2 FILLER PIC X(12).

 ð2 ITEM2 PIC X(4ð).

 SKIP3

 WORKING-STORAGE SECTION.

 SKIP1

 77 I PIC 99.

 SKIP3

\\

\ \

\ TRANSACTION DATA RECEIVED FROM IBM AS/4ðð SYSTEM \

\ \

\\

 SKIP1

 ð1 TRANS-DATA-IN.

 ð5 TDI-FILL1 PIC X(1).

 ð5 TDI-MSINITEM PIC X(23).

 SKIP3

\\

\ \

\ TRANSACTION DATA SENT BACK TO IBM AS/4ðð SYSTEM \

\ \

\\

 SKIP1

Figure E-9 (Part 1 of 6). IMS/VS Program Used by the Host System

 Appendix E. Program Examples E-21

 ð1 TRANS-DATA-OUT.

ð5 LL PIC 999 COMP-4 VALUE 26ð.

ð5 FILLER PIC 999 COMP-4 VALUE ZERO.

\ OUTPUT DATA FOR APPLICATION RESPONSE

 ð5 TDO-FILL1 PIC X(32) VALUE SPACES.

 ð5 TDO-MSINITEM PIC X(23).

 ð5 FILLER PIC X(5) VALUE SPACES.

 ð5 TDO-DESC PIC X(1ð).

 ð5 FILLER PIC X(13ð) VALUE SPACES.

 ð5 TDO-MGLCHAND-VALUE.

1ð TDO-MSLCHAND PIC S9(6) OCCURS 4 TIMES.

 ð5 TDO-FILL3 PIC X(32) VALUE SPACES.

 SKIP1

 O1 ERROR-MESSAGE REDEFINES TRANS-DATA-OUT.

ð5 LL PIC 999 COMP-4.

ð5 FILLER PIC 999 COMP-4.

\ OUTPUT DATA FOR APPLICATION RESPONSE

 ð5 EM-MESSAGE PIC X(51).

 ð5 EM-FILLER PIC X(2ð5).

 SKIP3

\ CONVERSATIONAL INPUT/OUTPUT DATA AREA FOR IO-PCB.

 ð1 SPA-AREAS.

ð2 LL PIC 999 COMP-4, VALUE IS 27ð.

 ð2 FILL PIC X(4).

 ð2 TRAN-CODE PIC X(8).

 ð2 WORK-AREA.

 ð5 WORK-1 PIC X(24).

 ð5 WORK-2 PIC X(232).

 66 SPA-IN RENAMES FILL THROUGH WORK-1.

 66 SPA-OUT RENAMES FILL THRU WORK-2.

 EJECT

\\

\ \

\ DL/I INVENTORY DATABASE SEGMENT INPUT AREA \

\ \

\\

 SKIP1

 ð1 SEGMENT-MSININð1-IN.

 ð5 MSINITEM PIC X(23).

 ð5 MSINBCOD PIC X(2).

 ð5 MSINCOST PIC S9(7) COMP-3.

 ð5 MSINDESC PIC X(1ð).

ð5 FILLER PIC X(6) VALUE SPACES.

 SKIP3

 ð1 SEGMENT-MSLCINð1-IN.

 ð5 MSLCLOCD PIC 9(2).

 ð5 MSLCHAND PIC S9(9) COMP-3.

 ð5 MSLCALOC PIC S9(9) COMP-3.

 ð5 MSLCCLOC PIC S9(9) COMP-3.

 ð5 MSLCBORD PIC S9(9) COMP-3.

 ð5 MSLCWORK PIC S9(9) COMP-3.

ð5 FILLER PIC X(8) VALUE SPACES.

 SKIP3

Figure E-9 (Part 2 of 6). IMS/VS Program Used by the Host System

E-22 SNA Upline Facility Programming V4R1

\\

\ \

\ DL/I INVTY DATABASE SEGMENT SEARCH ARGUMENTS (SSA'S) \

\ \

\\

 SKIP1

 ð1 INVTY-SEGMENT-SSA.

ð5 FILLER PIC X(19) VALUE 'MSININð1(MSINITEM ='.

 ð5 SSA-MSINITEM PIC X(23).

 ð5 FILLER PIC X(1) VALUE ')'.

 SKIP3

 ð1 QTYS-SEGMENT-SSA.

 ð5 FILLER PIC X(9) VALUE 'MSLCINð1'.

 SKIP3

\\

\ \

\ MISCELLANEOUS WORKING-STORAGE AREAS \

\ \

\\

 SKIP1

 ð1 DLI-FUNCTIONS.

 ð5 GU PIC X(4) VALUE 'GU '.

 ð5 GN PIC X(4) VALUE 'GN '.

ð5 GNP PIC X(4) VALUE 'GNP '.

 ð5 ISRT PIC X(4) VALUE 'ISRT'.

 SKIP3

 ð1 MSG-NOT-FOUND.

 ð5 FILLER PIC X(11) VALUE '\\\ERROR\\\'.

ð5 FILLER PIC X(6) VALUE ' ITEM '.

 ð5 MSG-MSINITEM PIC X(23).

ð5 FILLER PIC X(12) VALUE ' NOT FOUND. '.

 SKIP3

 EJECT

 LINKAGE SECTION.

 SKIP1

 ð1 IO-PCB.

 ð5 TERM-NAME PIC X(8).

 ð5 FILLER PIC XX.

 ð5 IO-STATUS PIC XX.

 ð5 IO-PREFIX PIC X(12).

 ð5 FILLER PIC X(8).

 ð1 PCB1.

 ð5 PCB1-DBD-NAME PIC X(8).

ð5 PCB1-SEG-LEVEL PIC X(2).

 ð5 PCB1-STATUS PIC X(2).

 88 SEGMENT-FOUND VALUE ' '.

 88 SEGMENT-END VALUE 'GE'.

ð5 PCB1-PROC-OPTN PIC X(4).

 ð5 PCB1-FILL1 PIC S9(5) COMP.

 ð5 PCB1-SEG-NAME PIC X(8).

ð5 PCB1-LENG-KFBA PIC S9(5) COMP.

ð5 PCB1-NUMBOSSEG PIC S9(5) COMP.

 ð5 PCB1-KEY-FBA PIC X(256).

 EJECT

Figure E-9 (Part 3 of 6). IMS/VS Program Used by the Host System

 Appendix E. Program Examples E-23

\\

\ \

\ MAIN LINE ROUTINE \

\ \

\\

 SKIP1

 PROCEDURE DIVISION.

 SKIP1

 DECLARATIVES.

 DEBUG-IMS SECTION. USE FOR DEBUGGING ON ALL REFERENCES

 PCB1.

 DEBUG-IMS-RTN.

D EXHIBIT NAMED PCB1.

 END DECLARATIVES.

 SKIP3

 BEGIN-IMS SECTION.

 BEGIN-PROCESSING.

ENTRY 'DLITCBL' USING IO-PCB, PCB1.

OPEN OUTPUT PRNT-FILE.

 READY TRACE.

 READ-TERMINAL.

CALL 'CBLTDLI' USING GU, IO-PCB, SPA-IN.

D EXHIBIT NAMED IO-PCB, SPA-IN.

IF IO-STATUS EQUAL TO 'QC' GO TO CLOSING,

ELSE IF IO-STATUS NOT EQUAL SPACES MOVE IO-PCB TO ITEM1,

MOVE 'GU FOR ID-PCB' TO ITEM2, GO TO ABEND.

\ CALL 'CBLTDLI' USING GN, IO-PCB, SPA-IN.

D EXHIBIT NAMED IO-PCB, SPA-IN.

MOVE 'GN FOR IO-PCB, TO ITEM2.

\

IF IO-STATUS EQUAL 'QD' NEXT SENTENCE,

ELSE IF IO-STATUS NOT = SPACES MOVE IO-PCB TO ITEM1,

GO TO ABEND.

MOVE WORK-1 TO TRANS-DATA-IN.

\

MOVE TDI-MSINITEM TO SSA-MSINITEM.

 SKIP3

\\

\ \

\ GET INVENTORY \

\ THIS ROUTINE ATTEMPTS TO READ THE INVENTORY ITEM FROM THE \

\ DL/I DATABASE BASED ON THE ITEM NUMBER SENT FROM THE \

\ REQUESTING AS/4ðð SYSTEM. IF THE ITEM IS NOT FOUND ON THE \

\ DATABASE, THE ROUTINE WHICH CALLS THIS ONE RETURNS AN \

\ ERROR MESSAGE TO AS/4ðð SYSTEM. OTHERWISE THE 'AMOUNTS OF \

\ HAND' ARE READ FROM THE DATABASE AND RETURNED TO \

\ THE AS/4ðð SYSTEM. \

\ \

\\

 SKIP1

 GET-INVTY.

CALL 'CBLTDLI' USING GU, PCB1, SEGMENT-MSININð1-IN,

 INVTY-SEGMENT-SSA.

Figure E-9 (Part 4 of 6). IMS/VS Program Used by the Host System

E-24 SNA Upline Facility Programming V4R1

D EXHIBIT NAMED SEGMENT-MSININð1-IN.

 IF SEGMENT-FOUND

MOVE ZEROS TO TDO-MSLCHAND-VALUE,

MOVE TDI-MSINITEM TO TDO-MSINITEM,

MOVE MSINDESC TO TDO-DESC,

PERFORM GET-QTYS UNTIL SEGMENT-END,

 PERFORM SEND-DATA,

 SKIP2

\\

\ \

\ THIS ROUTINE IS EXECUTED IF THE INQUIRY INVENTORY \

\ ITEM READ IS NOT FOUND IN DATABASE. A MESSAGE \

\ IS BUILT TO BE SENT BACK TO THE ORIGINATING LOCATION. \

\ MESSAGE IS: \

\ \

\ \\\ERROR\\\ ITEM #########X(23)######### NOT FOUND \

\ \

\\

ELSE IF SEGMENT-END

MOVE TDI-MSINITEM TO MSG-MSINITEM,

MOVE SPACES TO EM-FILLER,

MOVE MSG-NOT-FOUND TO EM-MESSAGE,

 PERFORM SEND-DATA,

 SKIP2

\\

\ \

\ FORCE ABEND, ERROR IN PROGRAM, AND DEBUG \

\ \

\\

 SKIP1

ELSE MOVE PCB1 TO ITEM1, MOVE 'GU ON PCB1' TO ITEM2,

GO TO ABEND.

 CLOSING. CLOSE PRNT-FILE.

\ SET TRANSACTION CODE IN SPA TO TERMINATE CONVERSATION

MOVE SPACES TO TRAN-CODE.

CALL 'CBLTDLI' USING ISRT, IO-PCB, SPA-AREAS.

\

 RESET TRACE.

 STOP RUN.

\\

\ \

\ CLOSED SUBROUTINES \

\ \

\\

 SKIP1

 EJECT

\\

\ \

\ GET QUANTITIES ON HAND \

\ THIS ROUTINE GETS THE QUANTITIES ON HAND FROM UP TO 4 \

\ REMOTE LOCATIONS AND RETURNS THE QUANTITIES TO THE \

\ REQUESTING IBM AS/4ðð SYSTEM. IF QUANTITIES ARE NOT \

\ FOUND FOR SOME LOCATIONS, ZEROS ARE RETURNED IN THEIR \

\ 'ON HAND' FIELDS. \

\ \

 SKIP1

Figure E-9 (Part 5 of 6). IMS/VS Program Used by the Host System

 Appendix E. Program Examples E-25

 GET-QTYS.

CALL 'CBLTDLI' USING GNP, PCB1, SEGMENT-MSLCIð1-IN,

 QTYS-SEGMENT-SSA.

D EXHIBIT NAMED SEGMENT-MSLCINð1-IN.

 IF SEGMENT-FOUND PERFORM DETERMINE-LOCATION,

MOVE MSLCHAND TO TDO-MSLCHAND (I),

ELSE IF NOT SEGMENT-END MOVE PCB1 TO ITEM1, MOVE

'GNP ON PCB1' TO ITEM2, GO TO ABEND.

 SKIP3

 DETERMINE-LOCATION.

IF MSLCLOCD - 21 MOVE 1 TO I,

ELSE IF MSLCLOCD = 41 MOVE 2 TO I,

ELSE IF MSLCLOCD = 51 MOVE 3 TO I,

ELSE IF MSLCLOCD = 81 MOVE 4 TO I.

 SKIP3

\\

\ \

\ SEND IMS MESSAGE TO QUEUE FOR ROUTING TO ORIGINATING \

\ AS/4ðð LOCATION \

\ \

\\

 SKIP1

 SEND-DATA.

\ SET TRANSACTION CODE IN SPA TO END CONVERSATION

MOVE SPACES TO TRAN-CODE.

\ CALL 'CBLTDLI' USING ISRT, IO-PCB, SPA-AREAS.

\

\ INSERT DATA MESSAGE FOR TRANSMISSION TO REQUESTER

\

CALL 'CBLTDLI' USING ISRT, IO-PCB, TRANS-DATA-OUT.

D EXHIBIT NAMED TRANS-DATA-OUT.

IF IO-STATUS NOT EQUAL SPACES MOVE TO-PCB TO ITEM1,

MOVE 'ISRT FOR IO-PCB' TO ITEM2, GO TO ABEND.

 SKIP3

 ABEND.

WRITE PRINTLINE AFTER ADVANCING 2 LINES.

MOVE SPACES TO PRINTLINE. MOVE 'ABEND OCCURRED' TO ITEM2.

WRITE PRINTLINE. GO TO CLOSING.

Figure E-9 (Part 6 of 6). IMS/VS Program Used by the Host System

E-26 SNA Upline Facility Programming V4R1

Example 3: AS/400 System to System/370 System (CICS/VS)
The following example consists of an AS/400 ILE C/400 program using system-
supplied ICF formats, communicating to a System/370 COBOL CICS/VS program.
For the program used by the host system to communicate with the AS/400 system,
see “CICS/VS Program Used by the Host System (Program B)” on page E-10.

As discussed in previous examples, not all programming considerations or tech-
niques are illustrated in this example. You should review the example before you
begin to design and code your application.

ILE C/400 Program for the AS/400 System (Program A)
The following program is used on the AS/400 system.

When the PROGAC program is called, a display is presented. This display pre-
sents a single inquiry line which is 23 bytes long. The operator enters the item
number on the inquiry line, and the local database file, FILEA, is searched. If a
matching item is found, up to four quantities are displayed for that item.

If an item number is not in the local database, a request is built and sent to the
host system. The ICII program is started and searches the host system database.
The matching item number and its quantities are returned to the PROGAC program
and are presented on the inquiry display.

DDS Sources: The DDS sources for DISPFILE and FILEA are illustrated in
Figure E-10 and Figure E-11 on page E-28.

 A\\\

 A\ \

 A\ LOCAL DISPLAY FILE \

 A\ \

 A\\\

 A\

 A CAð1

 A CAð7(99)

 A R WSFILEIN

 A ITMNUM 23 I 2 1ð

A ð1 O 4 1ð'INVALID ITEM NUMBER ENTERED'

A ð2 O 4 1ð'ITEM NUMBER NOT FOUND'

A O 12 1ð'PRESS CMD KEY 7 TO TERMINATE'

 A R WSFILEOT

 A ITMNUM 23 O 2 1ð

A QTY1 6 ðO 4 12

A QTY2 6 ðO 5 12

A QTY3 6 ðO 6 12

A QTY4 6 ðO 7 12

 A MSG 8ð O 8 1ð

A RETCOD 4 O 1ð 1ð

A REASON 3ð O 11 1ð

A FILLER 95 O 12 1ð

A O 14 1ð'PRESS CMD KEY 7 TO TERMINATE OR'

A O 15 1ð'CMD KEY 1 FOR ANOTHER INQUIRY'

Figure E-10. DDS Source for DISPFILE

 Appendix E. Program Examples E-27

 A\\

 A\ \

 A\ DDS SOURCE FOR THE MASTER FILE (FILEA) \

 A\ \

 A\\

 A LIFO

 A R MASTER

 A ITMNUM 23A

 A FILLER 3A

 A QTY1 6 ð

 A QTY2 6 ð

 A QTY3 6 ð

 A QTY4 6 ð

 A K ITMNUM

Figure E-11. DDS Source for File FILEA

Program Device Entry Definition: The command needed to define the program
device entry is:

 ADDICFDEVE FILE(\LIBL/QICDMF)

 PGMDEV(SNUFDEVICE)

 RMTLOCNAME(CICSLOC)

 CMNTYPE(\SNUF)

 DEV(XDEV)

 APPID(CICS)

HOST(\DEVD) or (\CICS)

ILE C/400 Program: Figure E-12 on page E-29 shows the ILE C/400 program
PROGAC for the AS/400 system.

E-28 SNA Upline Facility Programming V4R1

/\\/

/\ PROGAC ITEM INQUIRY WRITTEN IN ILE-C \/

/\\/

#pragma mapinc("dspf","icflib/dispfile(\all)","both indicators","p z")

#include "dspf"

#pragma mapinc("fileainc", "icflib/filea(\all)", "input", "p z")

#include "fileainc"

#include <stdio.h> /\ Standard I/O header \/

#include <recio.h> /\ Record I/O header \/

#include <stdlib.h> /\ General utilities \/

#include <stddef.h> /\ Standard definitions \/

#include <string.h> /\ String handling utilities \/

#include <xxfdbk.h> /\ Feedback area structures \/

#define ERROR 1 /\ error occured \/

#define NOERROR ð /\ no error occured \/

#define ION '1' /\ indicator set on \/

#define IOFF 'ð' /\ indicator set off \/

#define SPACE ' ' /\ spaces for memset \/

#define BLNK23 " " /\ 23 blanks \/

#define ZERO23 "ððððððððððððððððððððððð" /\ 23 zeros \/

/\\\/

/\ Global Variables \/

/\\\/

_RFILE \icfptr; /\ ptr to ICF file \/

_RFILE \dspfptr; /\ ptr to display file \/

_RFILE \fileaptr; /\ ptr to file A \/

_RIOFB_T \rio_fbk; /\ ptr to partial I/O feedback \/

_XXIOFB_T \comm_fdbk; /\ ptr to common I/O feedback \/

_XXIOFB_DSP_ICF_T \icf_fdbk; /\ ptr to icf feedback \/

/\\\/

/\ Structure to be used for return code \/

/\\\/

struct {

 char major??(2??);

 char minor??(2??);

 }return_code;

/\\\/

/\ Structure to be used in the evoke processing \/

/\\\/

struct {

 char proc_name??(8??);

 char password??(8??);

 char user_id??(8??);

 char libr_name??(8??);

 char filler??(2ð??);

 char data_length??(4??);

 char evok_data??(23??);

 }evok_record;

struct {

 char data??(32??);

 char number_in??(23??);

 char filler2??(145??);

 char icf_qty1??(6??);

 char icf_qty2??(6??);

 char icf_qty3??(6??);

 char icf_qty4??(6??);

 char filler3??(32??);

 }icf_record;

/\\\/

/\ Structure to be used in the end of transaction processing \/

/\\\/

struct {

 char length??(4??);

 char data??(8ð??);

 }eot_rec;

 char input_buffer??(4ð96??);

Figure E-12 (Part 1 of 6). ILE C/400 Program for the AS/400 System

 Appendix E. Program Examples E-29

/\\\/

/\ Structure to be used to write to display file \/

/\\\/

ICFLIB_DISPFILE_WSFILEIN_o_t wsfilein_o; /\ display file input \/

ICFLIB_DISPFILE_WSFILEIN_i_t wsfilein_i; /\ display file input \/

ICFLIB_DISPFILE_WSFILEOT_o_t wsfileot_o; /\ display file output \/

ICFLIB_DISPFILE_WSFILEOT_i_t wsfileot_i; /\ display file output \/

ICFLIB_FILEA_MASTER_i_t itmfile; /\ data file structure \/

/\\\/

/\ Prototyping of routines \/

/\\\/

int open_files(void);

int read_filea(void);

int icf(void);

int logon_evoke(void);

void send_eos(void);

void close_files(void);

int check_return_code(void);

/\\\/

/\ main procedure begin \/

/\\\/

main()

 {

if (open_files() == ERROR)

 exit(ERROR);

 /\\\/

/\ Display the screen that will request the number. \/

/\ If CMD7(99) then close the files and end. \/

/\ Set up indicators to display errors if item number \/

/\ is zero or spaces. \/

 /\\\/

wsfilein_i.IN99fflð“ = IOFF;

wsfileot_i.IN99fflð“ = IOFF;

while ((wsfilein_i.IN99fflð“ == IOFF) & (wsfileot_i.IN99fflð“ == IOFF))

 {

 _Rformat(dspfptr, "WSFILEIN");

_Rwrite(dspfptr, &wsfilein_o, sizeof(wsfilein_o));

_Rreadn(dspfptr, &wsfilein_i, sizeof(wsfilein_i), __DFT);

if (wsfilein_i.IN99fflð“ == IOFF)

 {

wsfilein_o.INð1fflð“ = IOFF;

wsfilein_o.INð2fflð“ = IOFF;

memset(wsfileot_o.RETCOD, SPACE , 4);

memset(wsfileot_o.REASON, SPACE , 3ð);

if ((strcmp(wsfilein_i.ITMNUM, BLNK23) == ð) ||

(strcmp(wsfilein_i.ITMNUM, ZERO23) == ð))

wsfilein_o.INð1fflð“ = ION;

 else

 {

if (read_filea() == ERROR)

if (icf() == ERROR)

wsfilein_o.INð2fflð“ = ION;

} /\ if not ð or " " \/

if (wsfilein_o.INð2fflð“ == IOFF & wsfilein_o.INð1fflð“ == IOFF)

 {

 _Rformat(dspfptr, "WSFILEOT");

_Rwrite(dspfptr, &wsfileot_o, sizeof(wsfileot_o));

_Rreadn(dspfptr, &wsfileot_i, sizeof(wsfileot_i), __DFT);

} /\ end send data out to display \/

} /\ end if CMD7 was issued in Display file\/

} /\ end while CMD7 not issued \/

 close_files();

 } /\ end main procedure \/

Figure E-12 (Part 2 of 6). ILE C/400 Program for the AS/400 System

E-30 SNA Upline Facility Programming V4R1

/\\\/

/\ open files procedure \/

/\\\/

int

open_files(void)

 {

 /\\\/

/\ open ICF file \/

 /\\\/

if ((icfptr = _Ropen("QICDMF", "ar+ indicators=y riofb=y")) == NULL)

 return(ERROR);

 /\\\/

/\ open file A \/

 /\\\/

if ((fileaptr = _Ropen("FILEA", "rr+ riofb=y")) == NULL)

 {

 _Rclose(icfptr);

 return(ERROR);

 }

 /\\\/

/\ open display file \/

 /\\\/

if ((dspfptr = _Ropen("dispfile", "ar+ riofb=y"))

 == NULL)

 {

 _Rclose(icfptr);

 _Rclose(fileaptr);

 return(ERROR);

 }

 return(NOERROR);

 } /\ end open files procedure \/

/\\\/

/\ read filea procedure \/

/\\\/

int

read_filea(void)

 {

 _Rformat(fileaptr, "ITEM");

rio_fbk = _Rreadk(fileaptr, &itmfile, sizeof(itmfile), __KEY_EQ,

 wsfilein_i.ITMNUM, sizeof(itmfile.ITMNUM));

if (rio_fbk->num_bytes == ð)

 return(ERROR);

strncpy(wsfileot_o.ITMNUM, itmfile.ITMNUM, 23);

strncpy(wsfileot_o.QTY1, itmfile.QTY1, 6);

strncpy(wsfileot_o.QTY2, itmfile.QTY2, 6);

strncpy(wsfileot_o.QTY3, itmfile.QTY3, 6);

strncpy(wsfileot_o.QTY4, itmfile.QTY4, 6);

 return(NOERROR);

 } /\ end of read filea procedure \/

Figure E-12 (Part 3 of 6). ILE C/400 Program for the AS/400 System

 Appendix E. Program Examples E-31

/\\\/

/\ ICF file procedure \/

/\\\/

int

icf(void)

 {

 /\\\/

/\ acquire SNUF session \/

 /\\\/

 _Racquire(icfptr, "SNUFDEVICE");

if (check_return_code() == NOERROR)

 {

 /\\\/

/\ evoke processing evoke ICII at host \/

 /\\\/

if (logon_evoke() == NOERROR)

 {

 /\\\/

/\ read host data and end transaction \/

 /\\\/

_Rreadindv(icfptr, &icf_record, sizeof(icf_record), __DFT);

if (check_return_code() == NOERROR)

 {

 _Rformat(icfptr, "$$SENDET");

strncpy(eot_rec.length, "ðð8ð", 4);

_Rwrite(icfptr, &eot_rec, sizeof(eot_rec));

if (check_return_code() == NOERROR)

 {

 /\\\/

/\ check if host data is valid \/

 /\\\/

if (strncmp(icf_record.data, "\\\", 3) == ð)

 return(ERROR);

 else

 {

strncpy(wsfileot_o.ITMNUM, icf_record.number_in, 23);

strncpy(wsfileot_o.QTY1, icf_record.icf_qty1, 6);

strncpy(wsfileot_o.QTY2, icf_record.icf_qty2, 6);

strncpy(wsfileot_o.QTY3, icf_record.icf_qty3, 6);

strncpy(wsfileot_o.QTY4, icf_record.icf_qty4, 6);

 return(NOERROR);

} /\ if data = \\\ \/

} /\ end if end transaction was ok \/

} /\ read from ICF was good \/

} /\ end logon and evoke ICII \/

 /\\\/

/\ if there was an error in the evoke processing, ICF read \/

/\ processing or the end of transaction processing then the \/

/\ session should be taken down. \/

 /\\\/

 send_eos();

} /\ end if acquire was good \/

 return(NOERROR);

 } /\ end of process ICF \/

Figure E-12 (Part 4 of 6). ILE C/400 Program for the AS/400 System

E-32 SNA Upline Facility Programming V4R1

/\\\/

/\ Logon to CICS procedure \/

/\\\/

int logon_evoke(void)

 {

 /\\/

 /\ set up evoke structure to logon to CICS using CSSN \/

 /\\/

 memset(evok_record.evok_data, SPACE, 24);

 strncpy(evok_record.proc_name, "CSSN ", 8);

 strncpy(evok_record.password,"USER ", 8);

 strncpy(evok_record.user_id, "USID ", 8);

 strncpy(evok_record.data_length, "ðð24", 4);

 strncpy(evok_record.evok_data, "NAME=USER PS=USID ", 24);

 _Rformat(icfptr, "$$EVOK");

 _Rwrite(icfptr, &evok_record, sizeof(evok_record));

 if (check_return_code() == NOERROR)

 {

 /\\/

/\ read logon response from host \/

 /\\/

_Rreadindv(icfptr, &input_buffer, sizeof(input_buffer), __DFT);

if (check_return_code() == NOERROR)

 {

 /\\/

/\ read detach response from host \/

 /\\/

 _Rformat(icfptr, "DFTRCD");

_Rreadn(icfptr, &input_buffer, sizeof(input_buffer), __DFT);

if (check_return_code() == NOERROR)

 {

 /\\/

/\ set up evoke structure to start up ICII program \/

 /\\/

memset(evok_record.evok_data, SPACE, 24);

 strncpy(evok_record.proc_name, "ICII ", 8);

strncpy(evok_record.data_length, "ðð23", 4);

 strncpy(evok_record.user_id, "USER ", 8);

 strncpy(evok_record.password,"USID ", 8);

strncpy(evok_record.evok_data, wsfilein_i.ITMNUM, 23);

 _Rformat(icfptr, "$$EVOK");

_Rwrite(icfptr, &evok_record, sizeof(evok_record));

if (check_return_code() == NOERROR)

 {

 return(NOERROR);

} /\ end if data evoke is good \/

} /\ end if read detach indication \/

} /\ end read LOGON response \/

} /\ end write LOGON to CICS evoke \/

 return(ERROR);

 } /\ end of send end of session \/

/\\\/

/\ send end of session procedure \/

/\\\/

void send_eos(void)

 {

 _Rformat(icfptr, "$$EOS");

_Rwrite(icfptr, &icf_record, sizeof(icf_record));

 } /\ end of send end of session \/

/\\\/

/\ close files procedure \/

/\\\/

void close_files(void)

 {

 _Rclose(icfptr);

 _Rclose(dspfptr);

 _Rclose(fileaptr);

 } /\ end of close files \/

Figure E-12 (Part 5 of 6). ILE C/400 Program for the AS/400 System

 Appendix E. Program Examples E-33

/\\\/

/\ Check return code procedure \/

/\\\/

int

check_return_code(void)

 {

comm_fdbk = _Riofbk(icfptr);

icf_fdbk = (_XXIOFB_DSP_ICF_T \)((char \)comm_fdbk +

 comm_fdbk->file_dep_fb_offset);

if ((strncmp(icf_fdbk->major_ret_code, "ðð", 2) == ð) ||

(strncmp(icf_fdbk->major_ret_code, "ð2", 2) == ð) ||

(strncmp(icf_fdbk->major_ret_code, "ð3", 2) == ð))

 return(NOERROR);

else /\ error case \/

 {

strncpy(return_code.major, icf_fdbk->major_ret_code, 2);

strncpy(return_code.minor, icf_fdbk->minor_ret_code, 2);

memcpy(wsfileot_o.RETCOD, &return_code, 4);

if (strncmp(icf_fdbk->major_ret_code, "ð4", 2) == ð)

(strncpy(wsfileot_o.REASON, "Output Exception ", 3ð));

 else

if (strncmp(icf_fdbk->major_ret_code, "82", 2) == ð)

(strncpy(wsfileot_o.REASON, "Unable to Acquire ", 3ð));

 return(ERROR);

} /\ end if return is not good \/

 } /\ end of return code check \/

Figure E-12 (Part 6 of 6). ILE C/400 Program for the AS/400 System

E-34 SNA Upline Facility Programming V4R1

 Bibliography

The IBM publications listed here contain information you
may need when you use AS/400 SNUF support. The
following books are listed with their full title and order
number.

� ISDN Support, SC41-5403.

Contains information on connecting an AS/400
system to an integrated services digital network
(ISDN) using the AS/400 integrated communications
adapter.

� ICF Programming, SC41-5442.

Supplies the application programmer with informa-
tion needed to write communications programs that
use the intersystem communications function (ICF)
file. It also contains examples of communications
programs and describes return codes.

� Communications Management, SC41-5406.

Contains information on working with communica-
tions status, communications-related work manage-
ment topics, communications errors, performance,
aggregate line speed, and subsystem storage.

� Communications Configuration, SC41-5401.

Contains general configuration information, including
detailed descriptions of network interface, line, con-
troller, device, mode, and class-of-service
descriptions, configuration lists and connection lists.

� Retail Communications Programming, SC41-5448.

Provides information on retail pass-through support.

� 3270 Device Emulation Support, SC41-5408.

Provides information for using the OS/400* binary
synchronous communications (BSC) and 3270
device emulation for System Network Architecture
(SNA).

� DDS Reference, SC41-5712.

Contains information about coding data description
specifications for files.

� Languages: Systems Application Architecture*
AD/Cycle* COBOL/400* User’s Guide, SC09-1383.

Provides the information needed to write, test, and
maintain ILE COBOL/400 programs for the AS/400
system.

� Languages: Systems Application Architecture*
AD/Cycle* RPG/400* User’s Guide, SC09-1348.

provides the information needed to use the ILE
RPG/400 programming language to code programs
for the AS/400 system.

� Languages: Systems Application Architecture*
C/400* User’s Guide, SC09-1347.

Provides the information needed to use the ILE
C/400 programming language to code programs for
the AS/400 system.

� System/36 Environment Programming, SC41-4730.

Identifies the differences in the applications process
in the System/36 environment on the AS/400
system.

� CL Reference, SC41-5722.

Contains the commands, command parameters and
syntax for the commands used in this guide.

� System/38 Environment Programming, SC41-3735.

Describes the differences in the applications
process in the System/38 environment on the
AS/400 system.

� Work Management, SC41-5306.

Provides information on how to create and change
a work management environment.

� Security – Reference, SC41-5302.

Contains information for the AS/400 system security
officer about planning for security and setting up
security on the system.

� System Operation, SC41-4203.

Provides information on how to use the system unit
operator display.

The following guides contain additional information you
may need when you use this guide:

� ACF/VTAM* Programming Guide, SC23-0115.

� CICS/OS/VS Messages and Codes, SC33-0226.

� CICS/OS/VS Version 1 Release 7 CICS-Supplied
Transactions, SC33-0240.

� IBM Systems Network Architecture Format and Pro-
tocol Reference Manual: Architectural Logic,
SC30-3112.

� IBM System/38 Data Communications Program-
mer's Guide, SC21-7825.

� IBM System/38 3270 Emulation Reference Manual
and User’s Guide, SC21-7961.

� IBM 3270 Information Display System, Data Stream
Programmer’s Reference, GA23-0059.

� IBM 3270 Information Display System 3274 Control
Unit Description and Programmer’s Guide,
GA23-0061.

� IBM 3270 SNA Programming Interface User’s
Guide, SC21-9785.

 Copyright IBM Corp. 1997 H-1

� IBM 5250 Information Display System Functions
Reference Manual, SA21-9247.

� IMS/VS Version 1 Message Format Service User’s
Guide, SH20-9053.

� IMS/VS Version 2 Messages and Codes Reference
Manual, SC26-4174.

� IMS/VS Version 2 for Remote SNA Systems Pro-
gramming Guide, SC26-4186.

� Network Control Program System Support Pro-
grams and Emulation Program Resource Definition
Reference, SC30-3448.

� Systems Network Architecture Formats, GA27-3136.

H-2 SNA Upline Facility Programming V4R1

 Index

Special Characters
$$CANL system-supplied format A-2
$$CANLINV system-supplied format A-2
$$CANLNI system-supplied format A-2
$$EOS system-supplied format A-2
$$EVOK system-supplied format A-2
$$EVOKET system-supplied format A-2
$$EVOKNI system-supplied format A-2
$$FAIL system-supplied format A-2
$$NRSP system-supplied format A-2
$$NRSPNI system-supplied format A-2
$$POSRSP system-supplied format A-2
$$RCD system-supplied format A-2
$$SEND system-supplied format A-2
$$SENDE system-supplied format A-2
$$SENDET system-supplied format A-2
$$SENDFM system-supplied format A-2
$$SENDNF system-supplied format A-2
$$SENDNI system-supplied format A-2
$$TIMER system-supplied format A-2
*EXEC program start request 5-5
*EXEX program start request 5-5
*TXTC program start request 5-5
*TXTX program start request 5-5

Numerics
3270 data flow D-14
3270 data stream 1-1

A
acquire operation

description 4-7
active session 1-1
Add Intersystem Communications Function

Program Device Entry (ADDICFDEVE) command
compared to configuration parameters 4-5
completing an input operation 5-11
defining a protected session 5-4
description 4-1
parameters 4-2
passing message headers 5-9
processing

chains 5-2
headers 5-13

sending
APPID parameter 4-2
Ready-to-Receive (RTR) command 5-11
transactions 5-10
user passwords 5-9

specifying
interactive session C-6

Add Intersystem Communications Function
Program Device Entry (ADDICFDEVE) command
(continued)

specifying (continued)
the application identifier (APPID) C-10

ADDICFDEVE (Add Intersystem Communications
Function Program Device Entry) command

compared to configuration parameters 4-5
completing an input operation 5-11
defining a protected session 5-4
description 4-1
parameters 4-2
passing message headers 5-9
processing

chains 5-2
headers 5-13

sending
APPID parameter 4-2
Ready-to-Receive (RTR) command 5-11
transactions 5-10
user passwords 5-9

specifying
interactive session C-6
the application identifier (APPID) C-10

adding
ICF device entry 4-1

alternative program control block C-10
APPID (application identifier) parameter 4-2, 4-3
application identifier (APPID)

CICS/VS example C-6
IMS/VS example C-10
VTAM/NCP example C-3

application identifier (APPID) parameter 4-2, 4-3
application program

examples E-1
using SNA 3270 program interface D-3
writing 4-1

AS/400 system
See also programming considerations
COBOL application example E-1
ILE RPG/400 application (DDS format) E-17

B
BATCH (batch activity) parameter 4-4
batch activity (BATCH) parameter 4-4
batch mode

cancel function 4-10
sending a logical record 4-8
sending chains 5-2
starting with write operation 4-8

 Copyright IBM Corp. 1997 X-1

batch session
chains 5-2

batch session considerations
timer function 5-2

begin bracket indicator 5-6
BIND command

considerations D-14
parameters from host system 4-7
sent to logical units 5-6
VRYCFG command 5-6

BLKLEN (block length) parameter 4-5
block length (BLKLEN) parameter 4-5
bracket indicator

begin 5-6
end 5-6, C-6

Bridge, VM/MVS 5-13

C
cancel function

batch mode 4-10
chains 4-10
description 4-10
when valid 5-2

CANCEL keyword 4-10
cancel-invite function 4-11
$$CANL system-supplied format A-2
$$CANLINV system-supplied format A-2
$$CANLNI system-supplied format A-2
capabilities of SNUF 1-1
chain

batch sessions 5-2
cancel function 4-10
description 5-2
interactive sessions 5-2
negative-response function 4-11
processing 5-2
programming considerations

CICS 5-2
IMS 5-2

sending
batch mode 5-2
interactive mode 5-2
records 5-2

Change Call (CHNG) operation C-10
Change Controller Description (SNA Host)

(CHGCTLHOST) command 2-1
Change Device Description (SNUF) (CHGDEVSNUF)

command 2-2
Change Intersystem Communications Function File

(CHGICFF) command 4-1
Change Intersystem Communications Function

Program Device Entry (CHGICFDEVE)
command 4-2

Change Line Description (Ethernet) (CHGLINETH)
command 2-1

Change Line Description (IDLC) (CHGLINIDLC)
command 2-1

Change Line Description (SDLC) (CHGLINSDLC)
command 2-1

Change Line Description (Token-Ring) (CHGLINTRN)
command 2-1

Change Line Description (X.25) (CHGLINX25)
command 2-1

changing
controller description 2-1
device description 2-2
ICF device entry 4-2
ICF file 4-1
line description

Ethernet 2-1
IDLC 2-1
SDLC 2-1
token-ring 2-1
X.25 2-1

CHGCTLHOST (Change Controller Description (SNA
Host)) command 2-1

CHGDEVSNUF (Change Device Description (SNUF))
command 2-2

CHGICFDEVE (Change Intersystem Communications
Function Program Device Entry) command 4-2

CHGICFF (Change Intersystem Communications
Function File) command 4-1

CHGLINETH (Change Line Description (Ethernet))
command 2-1

CHGLINIDLC (Change Line Description (IDLC))
command 2-1

CHGLINSDLC (Change Line Description (SDLC))
command 2-1

CHGLINTRN (Change Line Description (Token-Ring))
command 2-1

CHGLINX25 (Change Line Description (X.25))
command 2-1

CICS/VS (Customer Information Control System for
Virtual Storage) system

COBOL application E-2
configuration example C-5
definition 1-1
host systems used with 1-1
message arrangement 5-3
program start request

considerations C-7
description 5-5
example C-7

programming considerations
batch sessions 5-2
chains 5-2
configuration example C-5
evoke function parameters 5-8
half-duplex communications 5-1
improving performance 5-4
interactive sessions 5-2
sending a function management header 4-8

X-2 SNA Upline Facility Programming V4R1

CICS/VS (Customer Information Control System for
Virtual Storage) system (continued)

programming considerations (continued)
sending messages to SNUF 5-3
sending transaction codes 5-8
starting sessions again 5-4
VTAM/NCP generation C-1

remote program start request example C-7
security

CSSF transaction code 5-8
CSSN transaction code 5-8

sign-off 5-9
sign-on 5-9
system tasks 1-1
using the evoke function 4-7

CMNTYPE (communications type) parameter 4-3
command parameter

configuration 4-5
command, CL

Add Intersystem Communications Function Program
Device Entry (ADDICFDEVE) 4-1

ADDICFDEVE (Add Intersystem Communications
Function Program Device Entry) 4-1

BIND C-2
Change Controller Description (SNA Host)

(CHGCTLHOST) 2-1
Change Device Description (SNUF)

(CHGDEVSNUF) 2-2
Change Intersystem Communications Function File

(CHGICFF) 4-1
Change Intersystem Communications Function

Program Device Entry (CHGICFDEVE) 4-2
Change Line Description (Ethernet)

(CHGLINETH) 2-1
Change Line Description (IDLC) (CHGLINIDLC) 2-1
Change Line Description (SDLC)

(CHGLINSDLC) 2-1
Change Line Description (Token-Ring)

(CHGLINTRN) 2-1
Change Line Description (X.25) (CHGLINX25) 2-1
CHGCTLHOST (Change Controller Description (SNA

Host)) 2-1
CHGDEVSNUF (Change Device Description

(SNUF)) 2-2
CHGICFDEVE (Change Intersystem Communica-

tions Function Program Device Entry) 4-2
CHGICFF (Change Intersystem Communications

Function File) 4-1
CHGLINETH (Change Line Description

(Ethernet)) 2-1
CHGLINIDLC (Change Line Description (IDLC)) 2-1
CHGLINSDLC (Change Line Description

(SDLC)) 2-1
CHGLINTRN (Change Line Description (Token-

Ring)) 2-1
CHGLINX25 (Change Line Description (X.25)) 2-1

command, CL (continued)
Create Controller Description (SNA Host)

(CRTCTLHOST) 2-1
Create Device Description (SNUF)

(CRTDEVSNUF) 2-1, C-6
Create Intersystem Communications Function File

(CRTICFF) 4-1
Create Line Description (Ethernet)

(CRTLINETH) 2-1
Create Line Description (IDLC) (CRTLINIDLC) 2-1
Create Line Description (SDLC) (CRTLINSDLC) 2-1
Create Line Description (Token-Ring)

(CRTLINTRN) 2-1
Create Line Description (X.25) (CRTLINX25) 2-1
CRTCTLHOST (Create Controller Description (SNA

Host)) 2-1
CRTDEVSNUF (Create Device Description

(SNUF)) 2-1, C-6
CRTICFF (Create Intersystem Communications

Function File) 4-1
CRTLINETH (Create Line Description

(Ethernet)) 2-1
CRTLINIDLC (Create Line Description (IDLC)) 2-1
CRTLINSDLC (Create Line Description (SDLC)) 2-1
CRTLINTRN (Create Line Description

(Token-Ring)) 2-1
CRTLINX25 (Create Line Description (X.25)) 2-1
Delete Controller Description (DLTCTLD) 2-2
Delete Device Description (DLTDEVD) 2-2
Delete File (DLTF) 4-1
Delete Line Description (DLTLIND) 2-2
Display Controller Description (DSPCTLD) 2-2
Display Device Description (DSPDEVD) 2-2
Display File Description (DSPFD) 4-1
Display File Field Description (DSPFFD) 4-1
Display Line Description (DSPLIND) 2-2
DLTCTLHOST (Delete Controller Description) 2-2
DLTDEVD (Delete Device Description) 2-2
DLTF (Delete File) 4-1
DLTLIND (Delete Line Description) 2-2
DSPCTLD (Display Controller Description) 2-2
DSPDEVD (Display Device Description) 2-2
DSPFD (Display File Description) 4-1
DSPFFD (Display File Field Description) 4-1
DSPLIND (Display Line Description) 2-2
Override Intersystem Communications Function

Program Device Entry (OVRICFDEVE) 4-2
Override with Intersystem Communications Function

File (OVRICFF) 4-1
OVRICFDEVE (Override Intersystem Communica-

tions Function Program Device Entry) 4-2
OVRICFF (Override with Intersystem Communica-

tions Function File) 4-1
Remove Intersystem Communications Function

Program Device Entry (RMVICFDEVE) 4-2
RMVICFDEVE (Remove Intersystem Communica-

tions Function Program Device Entry) 4-2

 Index X-3

command, CL (continued)
Vary Configuration (VRYCFG) 3-1
VRYCFG (Vary Configuration) 3-1

command, IMS/VS
BIND 5-6
Ready-to-Receive (RTR) 5-11
RTR (Ready-to-Receive) 5-11

communications
communicating with more than one program 1-1
function

cancel 4-10
cancel-invite 4-11
detach 4-12
end-of-group function 4-8
end-of-session (EOS) 4-13
evoke function 4-7
evoke-with-detach 5-10
fail 4-10
function-management-header 4-8
invite 4-9
negative-response 4-11
release 4-13
request-to-write 4-11
timer 4-12
write-with-detach C-6

half-duplex 5-1
installing support 2-1
line

creating a line description 2-1
synchronous data link control 1-1
valid types for SNUF 1-1, 2-1

operation
description A-1
get-attributes 4-12
invalid operations during interactive session 5-2
read 4-9
read-from-invited-program-devices 4-9

SNUF network example 1-2
communications session

ending 4-12
starting 4-6

communications transaction
ending 4-12
starting 4-7

communications type (CMNTYPE) parameter 4-3
completing

input operation 5-11
configuration

CICS/VS C-5
command parameter 4-5
compared to command parameters 4-5
creating a line description 2-1
creating descriptions 2-1
IMS/VS C-8

configuring
SNUF 2-1

considerations
batch session 5-2
timer function 5-2

contention mode
See half-duplex communications

control block program C-10
controller description

creating 2-1
Create Controller Description (SNA Host)

(CRTCTLHOST) command 2-1
Create Device Description (SNUF) (CRTDEVSNUF)

command 2-1
Create Intersystem Communications Function File

(CRTICFF) command 4-1
Create Line Description (Ethernet) (CRTLINETH)

command 2-1
Create Line Description (IDLC) (CRTLINIDLC)

command 2-1
Create Line Description (SDLC) (CRTLINSDLC)

command 2-1
Create Line Description (Token-Ring) (CRTLINTRN)

command 2-1
Create Line Description (X.25) (CRTLINX25)

command 2-1
creating

controller description 2-1
device description 2-1
ICF file 4-1
line description 2-1

CRTCTLHOST (Create Controller Description (SNA
Host)) command 2-1

CRTDEVSNUF (Create Device Description (SNUF))
command 2-1

CRTICFF (Create Intersystem Communications
Function File) command 4-1

CRTLINETH (Create Line Description (Ethernet))
command 2-1

CRTLINIDLC (Create Line Description (IDLC))
command 2-1

CRTLINSDLC (Create Line Description (SDLC))
command 2-1

CRTLINTRN (Create Line Description (Token-Ring))
command 2-1

CRTLINX25 (Create Line Description (X.25))
command 2-1

CSSF (CICS/VS sign-off) transaction
evoking on a host system 5-9
security 5-8

CSSN (CICS/VS sign-on) transaction
evoke function 5-8
evoking on a host system 5-9
security

considerations (CICS/VS) 5-8
parameters 5-9

Customer Information Control System for Virtual
Storage (CICS/VS) system

X-4 SNA Upline Facility Programming V4R1

Customer Information Control System for Virtual
Storage (CICS/VS) system (continued)

COBOL application E-2
configuration example C-5
definition 1-1
host systems used with 1-1
message arrangement 5-3
program start request

considerations C-7
description 5-5
example C-7

programming considerations
batch sessions 5-2
chains 5-2
configuration example C-5
evoke function parameters 5-8
half-duplex communications 5-1
improving performance 5-4
interactive sessions 5-2
sending a function management header 4-8
sending messages to SNUF 5-3
sending transaction codes 5-8
starting sessions again 5-4
VTAM/NCP generation C-1

remote program start request example C-7
security

CSSF transaction code 5-8
CSSN transaction code 5-8

sign-off 5-9
sign-on 5-9
system tasks 1-1
using the evoke function 4-7

D
data

length 1-1
receiving 4-9
sending 4-8
starting a transaction 4-7

data description specifications (DDS)
example application program E-17
keyword

all-write (ALWWRT) A-2
ALWWRT (allow-write) A-2
CANCEL (cancel) 4-10, A-2
cancel-invite (CNLINVITE) A-2
CNLINVITE (cancel-invite) A-2
DETACH (detach) A-2
end-of-group (ENDGRP) A-2
end-of-session (EOS) 4-13, A-2
ENDGRP (end-of-group) A-2
EOS (end-of-session) 4-13, A-2
EVOKE (evoke) 4-7, A-2
FAIL (fail) A-2
FMH (function management header) A-2
function management header (FMH) A-2

data description specifications (DDS) (continued)
keyword (continued)

INVITE (invite) 4-9, A-2
negative-response (NEGRSP) 4-11, A-2
NEGRSP (negative-response) 4-11, A-2
RCVCANCEL (receive-cancel) 4-11, A-2
RCVCONFIRM (receive-confirm) A-2
RCVDETACH (receive-detach) A-2
RCVENDGRP (receive-end-of-group) A-2
RCVFMH (receive-function management

header) A-2
RCVNEGRSP (receive-negative-response) A-2
RCVTRNRND (receive-turnaround) A-2
receive-cancel (RCVCANCEL) 4-11, A-2
receive-confirm (RCVCONFIRM) A-2
receive-detach (RCVDETACH) A-2
receive-end-of-group (RCVENDGRP) A-2
receive-function management header

(RCVFMH) A-2
receive-negative-response (RCVNEGRSP) A-2
receive-turnaround (RCVTRNRND) A-2
RECID (record-identification) A-2
record-identification (RECID) A-2
request-to-write (RQSWRT) 4-11, A-2
respond-to-confirm (RSPCONFIRM) 4-11, A-2
RQSWRT (request-to-write) 4-11, A-2
RSPCONFIRM (respond-to-confirm) 4-11, A-2
SECURITY (security) A-2
summary table A-2
TIMER (timer) 4-12, A-2
variable-length data (VARLEN) A-2
VARLEN (variable-length data) A-2

DDS (data description specifications)
example application program E-17
keyword

all-write (ALWWRT) A-2
ALWWRT (allow-write) A-2
CANCEL (cancel) 4-10, A-2
cancel-invite (CNLINVITE) A-2
CNLINVITE (cancel-invite) A-2
DETACH (detach) A-2
end-of-group (ENDGRP) A-2
end-of-session (EOS) 4-13, A-2
ENDGRP (end-of-group) A-2
EOS (end-of-session) 4-13, A-2
EVOKE (evoke) 4-7, A-2
FAIL (fail) A-2
FMH (function management header) A-2
function management header (FMH) A-2
INVITE (invite) 4-9, A-2
negative-response (NEGRSP) 4-11, A-2
NEGRSP (negative-response) 4-11, A-2
RCVCANCEL (receive-cancel) 4-11, A-2
RCVCONFIRM (receive-confirm) A-2
RCVDETACH (receive-detach) A-2
RCVENDGRP (receive-end-of-group) A-2
RCVFMH (receive-function management

header) A-2

 Index X-5

DDS (data description specifications) (continued)
keyword (continued)

RCVNEGRSP (receive-negative-response) A-2
RCVTRNRND (receive-turnaround) A-2
receive-cancel (RCVCANCEL) 4-11, A-2
receive-confirm (RCVCONFIRM) A-2
receive-detach (RCVDETACH) A-2
receive-end-of-group (RCVENDGRP) A-2
receive-function management header

(RCVFMH) A-2
receive-negative-response (RCVNEGRSP) A-2
receive-turnaround (RCVTRNRND) A-2
RECID (record-identification) A-2
record-identification (RECID) A-2
request-to-write (RQSWRT) 4-11, A-2
respond-to-confirm (RSPCONFIRM) 4-11, A-2
RQSWRT (request-to-write) 4-11, A-2
RSPCONFIRM (respond-to-confirm) 4-11, A-2
SECURITY (security) A-2
summary table A-2
TIMER (timer) 4-12, A-2
variable-length data (VARLEN) A-2
VARLEN (variable-length data) A-2

defining
protected session 5-4

Delete Controller Description (DLTCTLD)
command 2-2

Delete Device Description (DLTDEVD)
command 2-2

Delete File (DLTF) command 4-1
Delete Line Description (DLTLIND) command 2-2
deleting

controller description 2-2
device description 2-2
file 4-1
line description 2-2

detach function 4-7, 4-12
DEV (device) parameter 4-3
device (DEV) parameter 4-3
device description

creating 2-1
deleting 2-2

Display Controller Description (DSPCTLD)
command 2-2

Display Device Description (DSPDEVD)
command 2-2

Display File Description (DSPFD) command 4-1
Display File Field Description (DSPFFD)

command 4-1
Display Line Description (DSPLIND) command 2-2
displaying

controller description 2-2
device description 2-2
field description 4-1
file description 4-1
line description 2-2

DLTCTLD (Delete Controller Description)
command 2-2

DLTDEVD (Delete Device Description)
command 2-2

DLTF (Delete File) command 4-1
DLTLIND (Delete Line Description) command 2-2
DSPCTLD (Display Controller Description)

command 2-2
DSPDEVD (Display Device Description)

command 2-2
DSPFD (Display File Description) command 4-1
DSPFFD (Display File Field Description)

command 4-1
DSPLIND (Display Line Description) command 2-2

E
EMLDEV (emulation device) parameter 4-5
emulation device (EMLDEV) parameter 4-5
end bracket indicator 5-6
end session with host (ENDSSNHOST)

parameter 4-4
end-of-group function

definition 4-8
end-of-session (EOS) function 4-13
ending

a session 4-12
a transaction 4-12

ENDSSNHOST (end session with host)
parameter 4-4

entry
adding ICF device 4-1

EOS (end-of-session) keyword 4-13
$$EOS system-supplied format A-2
error handling (IMS/VS) 5-10
Ethernet communications line

available for SNUF 1-2
line description 2-1

$$EVOK system-supplied format A-2
evoke (EVOKE) keyword 4-7
evoke function

considerations
CICS/VS 5-8
IMS/VS 5-9

CSSF transaction 5-9
CSSN transaction 5-8
definition 4-7
parameter list 4-7
parameters ignored 5-8, 5-9
programming considerations

CICS and IMS C-6
IMS/VS 5-10

security parameters 4-7
evoke-with-detach function 4-12
$$EVOKET system-supplied format A-2

X-6 SNA Upline Facility Programming V4R1

$$EVOKNI system-supplied format A-2
example

application program E-1
AS/400 system

COBOL application (system-supplied format) E-2
ILE RPG/400 application (DDS format) E-17

CICS/VS
COBOL application E-2
remote program start request C-7

half-duplex communications 5-1
IMS/VS

COBOL application E-17
remote program start request C-10

record format for program start request 5-8
sending transactions to IMS/VS 5-10
SNUF communications network 1-2
VTAM generation C-3

F
fail function 4-10
$$FAIL system-supplied format A-2
field description

displaying 4-1
program start request 5-6

file
deleting 4-1
ICF (intersystem communications function)

command parameters 4-2
commands 4-1
creation 4-1
definition 4-1

file (FILE) parameter 4-2
first-of-chain indicator 5-6
flip-flop mode

See also half-duplex communications
contention mode considerations 5-4
description 5-1
SNUF capabilities 1-1

FMTSLT (format select) parameter 4-3
forced terminal response mode 5-12
format

$$CANL A-2
$$CANLINV A-2
$$CANLNI A-2
$$EOS A-2
$$EVOK A-2
$$EVOKET A-2
$$EVOKNI A-2
$$FAIL A-2
$$NRSP A-2
$$NRSPNI A-2
$$POSRSP A-2
$$RCD A-2
$$SEND A-2
$$SENDE A-2

format (continued)
$$SENDET A-2
$$SENDFM A-2
$$SENDNF A-2
$$SENDNI A-2
$$TIMER A-2
of the program start request 5-5

format identifier 5-5
format select (FMTSLT) parameter 4-3
formatted program interface D-6
function

cancel 4-10
cancel-invite 4-11
detach 4-7
end-of-group 4-8
end-of-session 4-13
evoke 4-7
evoke-with-detach 4-12, 5-10
fail 4-10
function management header 4-8
invite 4-9
negative-response 4-11
release 4-13
request-to-write 4-11
respond-to-confirm keyword 4-11
timer 4-12
write-with-detach C-6

function-management-header function
definition 4-8
receiving 4-8
sending 4-8

G
get-attributes operation 4-12

H
half-duplex communications

See also contention mode
See also flip-flop mode
contention mode considerations 5-4
description 5-1

handling
errors (IMS/VS) 5-10

HDRPROC (header processing) parameter 4-4
header

function management 4-8
message 5-9
processing 5-13

header processing (HDRPROC) parameter 4-4
high-level language (HLL) 1-1, 4-1
HLL (high-level language) 4-1
HOST (host type) parameter 4-4
host message arrangement 5-3

 Index X-7

host system
CICS/VS programming considerations

batch sessions 5-2
chains 5-2
configuration example C-5
interactive sessions 5-2
program start request example C-7
receiving messages 5-3
sending messages to SNUF 5-3
sending transaction codes 5-8
VTAM/NCP generation C-1

determining maximum request/response unit
size 5-2

generation for VTAM/NCP C-1
IMS/VS programming considerations

batch sessions 5-2
chains 5-2
improving performance 5-13
interactive sessions 5-2
message format services 5-13
program start requests C-10
receiving messages 5-3
sending messages to SNUF 5-3
sending records in chains 5-2
VTAM/NCP generation C-1

messages
receiving 5-3

programming considerations
logical unit parameters C-2
physical unit parameters C-1
sending function management headers C-5
start-with-detach function C-6
starting the logical units C-10
using remote program start request 5-5
VTAM BIND command C-2
VTAM/NCP generation C-1
write-with-detach function C-6

security
considerations (CICS/VS) 5-8
parameters 5-8

sending messages to SNUF 5-3
sign-on 4-7
used with CICS/VS 1-1
used with IMS/VS 1-1
valid types with SNUF 1-1

host type (HOST) parameter 4-4

I
I/O feedback area 4-14
ICF (intersystem communications function)

DDS source E-17
file considerations D-1
file creation D-16, E-3

ID, user 4-7

IDLC (integrated services digital network data link
control) line

available for SNUF 1-2
line description 2-1

ILE C/400 programming language 1-1
ILE COBOL/400 programming language

example E-1
SNUF application 1-1

ILE FORTRAN/400 programming language 1-1
ILE RPG/400 programming language

description 1-1
example E-17

improving
performance 5-4

IMS/SET command 4-8
IMS/VS (Information Management System for Virtual

Storage) system
COBOL application example E-17
commands 5-9
configuration considerations C-8
definition 1-1
error handling 5-10
evoke function parameters 5-9
evoke-with-detach function 5-10
format services 5-13
function-management-header function 5-13
half-duplex communications 5-1
handling errors 5-10
host systems used with 1-1
improving performance 5-4
message arrangement 5-3
output messages 5-13
passing message headers 5-9
program start request example C-10
programming considerations

batch sessions 5-2
improving performance 5-13
interactive sessions 5-2
message format services 5-13
program start requests C-10
sending messages to SNUF 5-3
sending records in chains 5-2
using message format services 5-13
VTAM/NCP generation C-1

Ready-to-Receive (RTR) command 5-11
remote program start request example C-10
requesting messages 5-11
security considerations 5-10
sending

commands 5-9
function management header 4-8
transactions to IMS/VS 5-10

sending commands 5-9
sense data 5-10
starting sessions again 5-4
system tasks 1-1

X-8 SNA Upline Facility Programming V4R1

IMS/VS (Information Management System for Virtual
Storage) system (continued)

terminal response mode 5-11
using the evoke function 4-7

indicator
begin-bracket 5-6
end-bracket 5-6, C-6
end-of-chain 5-6
first-of-chain 5-6
receive-cancel response 4-13
receive-confirm response 4-13
receive-detach response 4-13
receive-end-of-group response 4-14
receive-function-management header

response 4-14
receive-negative-response 4-14
receive-turnaround response 4-14

Information Management System for Virtual Storage
(IMS/VS) system

COBOL application example E-17
commands 5-9
configuration considerations C-8
definition 1-1
error handling 5-10
evoke function parameters 5-9
evoke-with-detach function 5-10
format services 5-13
function-management-header function 5-13
half-duplex communications 5-1
handling errors 5-10
host systems used with 1-1
improving performance 5-4
message arrangement 5-3
output messages 5-13
passing message headers 5-9
program start request example C-10
programming considerations

batch sessions 5-2
improving performance 5-13
interactive sessions 5-2
message format services 5-13
program start requests C-10
sending messages to SNUF 5-3
sending records in chains 5-2
using message format services 5-13
VTAM/NCP generation C-1

Ready-to-Receive (RTR) command 5-11
remote program start request example C-10
requesting messages 5-11
security considerations 5-10
sending

commands 5-9
function management header 4-8
transactions to IMS/VS 5-10

sending commands 5-9
sense data 5-10

Information Management System for Virtual Storage
(IMS/VS) system (continued)

starting sessions again 5-4
system tasks 1-1
terminal response mode 5-11
using the evoke function 4-7

INIT-SELF D-15
initialize self-selection (INZSELF) parameter 4-4
input operation 5-11
Insert Call (ISRT) operation C-10
integrated services digital network (ISDN)

communications line support 1-2
interactive mode

cancel function 4-10
invalid communications operations 5-2
not valid communications functions 5-2
sending a logical record 4-8
sending chains 5-2
starting with write operation 4-8

interactive session
chains 4-10, 5-2

interface, program
formatted D-6
unformatted D-4

intersystem communications function (ICF)
DDS source E-17
file considerations D-1
file creation D-16, E-3

invalid operations during interactive sessions 5-2
invite function 4-9
INVITE keyword 4-9
INZSELF (initialize self-selection) parameter 4-4
ISDN (integrated services digital network)

communications line support 1-2
ISRT (Insert Call) operation C-10

J
job-level changes 4-5

K
keyword, DDS

all-write (ALWWRT) A-2
ALWWRT (allow-write) A-2
CANCEL (cancel) 4-10, A-2
cancel-invite (CNLINVITE) A-2
CNLINVITE (cancel-invite) A-2
DETACH (detach) A-2
end-of-group (ENDGRP) A-2
end-of-session (EOS) 4-13, A-2
ENDGRP (end-of-group) A-2
EOS (end-of-session) 4-13, A-2
EVOKE (evoke) 4-7, A-2
FAIL (fail) A-2
FMH (function management header) A-2

 Index X-9

keyword, DDS (continued)
function management header (FMH) A-2
INVITE (invite) 4-9, A-2
negative-response (NEGRSP) 4-11, A-2
NEGRSP (negative-response) 4-11, A-2
RCVCANCEL (receive-cancel) 4-11, A-2
RCVCONFIRM (receive-confirm) A-2
RCVDETACH (receive-detach) A-2
RCVENDGRP (receive-end-of-group) A-2
RCVFMH (receive-function management

header) A-2
RCVNEGRSP (receive-negative-response) A-2
RCVTRNRND (receive-turnaround) A-2
receive-cancel (RCVCANCEL) 4-11, A-2
receive-confirm (RCVCONFIRM) A-2
receive-detach (RCVDETACH) A-2
receive-end-of-group (RCVENDGRP) A-2
receive-function management header

(RCVFMH) A-2
receive-negative-response (RCVNEGRSP) A-2
receive-turnaround (RCVTRNRND) A-2
RECID (record-identification) A-2
record-identification (RECID) A-2
request-to-write (RQSWRT) 4-11, A-2
respond-to-confirm (RSPCONFIRM) 4-11, A-2
RQSWRT (request-to-write) 4-11, A-2
RSPCONFIRM (respond-to-confirm) 4-11, A-2
SECURITY (security) A-2
summary table A-2
TIMER (timer) 4-12, A-2
variable-length data (VARLEN) A-2
VARLEN (variable-length data) A-2

L
language

ILE C/400 1-1
ILE COBOL/400 1-1
ILE FORTRAN/400 1-1
ILE RPG/400 1-1

length restriction
data 1-1

library name 4-7
line

communications
Ethernet 2-1
IDLC (integrated services digital network data link

control) 2-1
SDLC (synchronous data link control) 2-1
token-ring network 2-1
X.25 2-1

creating a description 2-1
valid types for SNUF 2-1

logical record
description 5-2
sending in batch mode 4-8

logical record (continued)
sending in interactive mode 4-8

logical unit (LU)
defining C-2
freed by the release operation 4-13
parameters C-2
starting, using program start request C-10
VTAM creation C-2

LU (logical unit)
defining C-2
freed by the release operation 4-13
parameters C-2
starting, using program start request C-10
VTAM creation C-2

M
maximum file wait time (WAITFILE) parameter 4-2
message

arrangement (IMS/VS) 5-3
format 5-3
format services for IMS/VS 5-13
headers 5-9
output (IMS/VS) 5-13
receiving from host system 5-3
requesting for IMS/VS 5-11
sending to SNUF 5-3
valid return codes B-1

message format services 5-13
message protection (MSGPTC) parameter 4-4
mode

batch 5-2
contention 5-4
forced terminal response 5-12
half-duplex flip-flop 5-1
interactive 5-2
negated terminal response 5-12

MSGPTC (message protection) parameter 4-4

N
negative-response (NEGRSP) keyword 4-11
NEGRSP (negative-response) keyword 4-11
$$NRSP system-supplied format A-2
$$NRSPNI system-supplied format A-2

O
operating in terminal response mode 5-11
operation

acquire 4-7
Change Call (CHNG) C-10
get-attributes 4-12
input using a batch session 5-2
input using an interactive session 5-2
Insert Call (ISRT) C-10

X-10 SNA Upline Facility Programming V4R1

operation (continued)
open 4-7
read 4-9
read-from-invited-program-devices 4-9
write 4-8

output message 5-13
Override Intersystem Communications Function

Program Device Entry (OVRICFDEVE) command
completing an input operation 5-11
defining a protected session 5-4
description 4-2
opening communications 5-5
parameters 4-2
passing message headers 5-9
processing

chains 5-2
headers 5-13

sending
transactions 5-10
user passwords 5-9

sending the Ready-to-Receive command 5-11
specifying

application identifier for CICS/VS example C-6
application identifier for IMS/VS example C-10
application identifier for VTAM/NCP example C-3
chains 5-2
interactive session C-6
record length C-6, C-10

Override with Intersystem Communications Func-
tion File (OVRICFF) command

description 4-1
OVRICFDEVE (Override Intersystem Communica-

tions Function Program Device Entry) command
completing an input operation 5-11
defining a protected session 5-4
description 4-2
opening communications 5-5
parameters 4-2
passing message headers 5-9
processing

chains 5-2
headers 5-13

sending
transactions 5-10
user passwords 5-9

sending the Ready-to-Receive command 5-11
specifying

application identifier for CICS/VS example C-6
application identifier for IMS/VS example C-10
application identifier for VTAM/NCP example C-3
chains 5-2
interactive session C-6
record length C-6, C-10

OVRICFF (Override with Intersystem Communica-
tions Function File) command

description 4-1

P
padding requirements 5-7
parameter

ADDICFDEVE (Add Intersystem Communications
Function Program Device Entry) command 4-2

APPID (application identifier) 4-3
application identifier (APPID) 4-3
BATCH (batch activity) 4-4
batch activity (BATCH) 4-4
BLKLEN (block length) 4-5
block length (BLKLEN) 4-5
CMNTYPE (communications type) 4-3
communications type (CMNTYPE) 4-3
DEV (device) 4-3
device (DEV) 4-3
EMLDEV (emulation device) 4-5
emulation device (EMLDEV) 4-5
end session with host (ENDSSNHOST) 4-4
ENDSSNHOST (end session with host) 4-4
file (FILE) 4-2
FMTSLT (format select) 4-3
format select (FMTSLT) 4-3
HDRPROC (header processing) 4-4
header processing (HDRPROC) 4-4
HOST (host type) 4-4
host type (HOST) 4-4
initialize self-selection (INZSELF) 4-4
INZSELF (initialize self-selection) 4-4
maximum file wait time (WAITFILE) 4-2
message protection (MSGPTC) 4-4
MSGPTC (message protection) 4-4
PGMDEV (program device) 4-3
program device (PGMDEV) 4-3
RCDLEN (record length) 4-5
record length (RCDLEN) 4-5
remote location name (RMTLOCNAME) 4-3
RMTLOCNAME (remote location name) 4-3
SECURE (secure from other overrides) 4-5
secure from other overrides (SECURE) 4-5
SPCHOSTAPP (special host application) 4-4
special host application (SPCHOSTAPP) 4-4
WAITFILE (maximum file wait time) 4-2

parameter list 4-7
passing message headers 5-9
password

evoke function 4-7
sending user 5-9
user 4-7

performance considerations 5-4
permanent change 4-5
PGMDEV (program device) parameter 4-3
physical unit (PU) parameter C-1
positional parameter 5-7
$$POSRSP system-supplied format A-2

 Index X-11

prestart job 5-8
problem notification 4-10
processing

chains 5-2
headers 5-13

processors available 1-1
program

communicating with more than one 1-1
control block C-10
parameters 5-7

program device (PGMDEV) parameter 4-1, 4-3
program interface

formatted D-6
unformatted D-4

program start request
*EXEC format 5-5
*EXEX format 5-5
*TXTC format 5-5
*TXTX format 5-5
begin bracket indicator 5-6
CICS/VS 5-5, C-7
description of statement 5-7
end bracket indicator 5-6
example

CICS application C-7
IMS application C-10
record format 5-8

field descriptions 5-6
first-of-chain indicator 5-6
formats 5-5
IMS/VS 5-5, C-10
padding requirement 5-7
program control block C-10
program parameters 5-7
program start logical units 5-6
receiving

detach return code 4-13
function management header 4-9

record format
example 5-8

security parameters 5-7
sending user data 5-5
starting

logical units C-10
programs 5-5

programming considerations
AS/400 programmer

batch sessions 5-2
CICS/VS 5-8
half-duplex communications 5-1
handling errors (IMS/VS) 5-10
improving performance 5-4, 5-13
IMS/VS 5-10
IMS/VS commands 5-9
interactive sessions 5-2
messages to SNUF 5-3
operating in terminal response mode 5-11

programming considerations (continued)
AS/400 programmer (continued)

passing message headers 5-9
Ready-to-Receive (RTR) command 5-11
records in chains 5-2
requesting messages 5-11
session recovery 5-4
starting sessions again 5-4
transaction codes 5-8
transactions without output 5-10
using message format services 5-13

function-management-header function 4-8
host message arrangement 5-3
host system programmer

chains 5-2
function management headers C-5
IMS/VS session C-8, C-10
logical unit parameters C-2
message format services (IMS/VS) 5-13
physical unit parameters C-1
program start requests (IMS/VS) C-7
SNA BIND command D-14
start-with-detach function C-6
starting the logical units C-10
using remote program start request 5-5
VTAM BIND command C-2
VTAM/NCP generation C-1
write-with-detach function C-6

request-to-write function 4-11
VTAM/NCP generation C-1

programming language
ILE C/400 1-1
ILE COBOL/400 1-1
ILE FORTRAN/400 1-1
ILE RPG/400 1-1

protected session 5-4
PU (physical unit) parameter C-1

R
$$RCD system-supplied format A-2
RCDLEN (record length) parameter 4-5
RCVCANCEL (receive-cancel) keyword 4-11
read operation 4-9
read-from-invited-program-devices operation 4-9
Ready-to-Receive (RTR) command (IMS/VS) 5-11
receive state 4-10
receive-cancel (RCVCANCEL) keyword 4-11
receive-cancel response indicator 4-13
receive-confirm response indicator 4-13
receive-detach response indicator 4-13
receive-end-of-group response indicator 4-14
receive-function management header response indi-

cator 4-14
receive-negative-response response indicator 4-14

X-12 SNA Upline Facility Programming V4R1

receive-turnaround response indicator 4-14
receiving

data 4-9
host system messages 5-3

record
sending in chains 5-2

record format
program start request

example 5-8
using DDS 4-1

record length (OVRICFDEVE command)
specifying for CICS/VS C-6
specifying for IMS/VS C-10

record length (RCDLEN) parameter 4-5
records in chains 5-2
recovery 5-4
release operation

description 4-13
ending a session 4-13
frees the logical unit (LU) 4-13

remote location 1-1
remote location name (RMTLOCNAME)

parameter 4-3
remote program name 4-7
remote program start request

example
CICS/VS C-7
IMS/VS C-10

using 5-5
Remove Intersystem Communications Function

Program Device Entry (RMVICFDEVE)
command 4-2

request-to-write (RQSWRT) keyword 4-11
request-to-write function

description 4-11
programming considerations 5-1
receiving code 0010 4-11

requesting
messages for IMS/VS 5-11

respond-to-confirm (RSPCONFIRM) keyword 4-11
response indicator

general description 4-13
receive-cancel 4-13
receive-confirm 4-13
receive-detach 4-13
receive-end-of-group 4-14
receive-function-management header 4-14
receive-negative-response 4-14
receive-turnaround 4-14

response/request unit (RU)
description 5-2
logical record 5-2
size 5-2

restriction
data length 1-1
maximum number of active sessions 1-1

retail pass-through support 1-1
return code

0010 for request-to-write function 4-11
detailed descriptions B-1
end-of-group 5-2
message-waiting 5-4
receiving-for-cancel function 4-10
timer-run-out 4-12
truncated-message 5-4

RMTLOCNAME (remote location name)
parameter 4-3

RMVICFDEVE (Remove Intersystem Communica-
tions Function Program Device Entry)
command 4-2

RQSWRT (request-to-write) keyword 4-11
RSPCONFIRM (respond-to-confirm) keyword 4-11
RTR (Ready-to-Receive) command (IMS/VS) 5-11
RU (response/request unit)

description 5-2
logical record 5-2
size 5-2

running
SNUF communications 3-1

S
SDLC (synchronous data link control) line

available for SNUF 1-1
line description 2-1

SECURE parameter 4-5
security

CICS/VS host system 5-8
considerations 5-8
transaction codes

CSSF 5-9
CSSN 5-9

using positional parameters 5-7
send state 4-10
$$SEND system-supplied format A-2
$$SENDE system-supplied format A-2
$$SENDET system-supplied format A-2
$$SENDFM system-supplied format A-2
sending

APPID parameter 4-2
commands (IMS/VS) 5-9
data 4-8
function management header 4-8
half-duplex flip-flop mode 5-1
messages to SNUF 5-3
program start request 5-5
Ready-to-Receive (RTR) command 5-11
records in chains 5-2
sign-on to host 4-7
transactions 5-10
user data with program start request 5-5
user passwords 5-9

 Index X-13

sending (continued)
VTAM BIND command C-2

$$SENDNF system-supplied format A-2
$$SENDNI system-supplied format A-2
sense code 4-11
sense data 4-11, 5-10
session

batch
sending chains (CICS/VS) 5-2
sending chains (IMS/VS) 5-2
starting with write operations 4-8

defining protected 5-4
ending 4-12
interactive

sending chains (CICS/VS) 5-2
sending chains (IMS/VS) 5-2
starting with write operations 4-8

maximum number active 1-1
multiple transactions 4-7
protected 5-4
recovering from error 5-4
recovery 5-4
starting 4-7, 5-4
starting from a remote system 5-5

setting
time interval 4-12

sign-off
evoking on a host system 5-9
parameters 5-9
security considerations 5-8

sign-on
evoking on a host system 5-9
parameters 5-9
security considerations 5-8
to host 4-7

SNA (Systems Network Architecture)
3270 program interface definition D-1
BIND command D-14
communicating with a host system 1-1
functions available 1-1
sense codes supported by SNUF 4-11

SNUF (Systems Network Architecture upline facility)
3270 support 1-1
communications network example 1-2
configuration

capabilities 1-1
checking for function-management-header

validity 4-8
communications lines available 1-1
description 1-1
installing support 2-1

definition 1-1
return codes B-1
running communications 3-1
sending messages to 5-3
valid host system 1-1

SPCHOSTAPP (special host application)
parameter 4-4

special host application (SPCHOSTAPP)
parameter 4-4

specifying
APPID (application identifier) for IMS/VS C-10
interactive session

cancel function 4-10
CICS/VS example C-6
read operation 4-9

starting
batch mode 4-8
logical units C-10
programs using program start request 5-5
protected sessions 5-4
session 4-7
transaction 4-7

synchronous data link control (SDLC) line
available for SNUF 1-1
line description 2-1

system
See also CICS/VS (Customer Information Control

System for Virtual Storage) system
See also IMS/VS (Information Management System

for Virtual Storage) system
message

receiving from host 5-3
system-supplied formats A-2
tasks 1-1

system-supplied format
$$CANL A-2
$$CANLINV A-2
$$CANLNI A-2
$$EOS A-2
$$EVOK A-2
$$EVOKET A-2
$$EVOKNI A-2
$$FAIL A-2
$$NRSP A-2
$$NRSPNI A-2
$$POSRSP A-2
$$RCD A-2
$$SEND A-2
$$SENDE A-2
$$SENDET A-2
$$SENDFM A-2
$$SENDNF A-2
$$SENDNI A-2
$$TIMER A-2

system-supplied function 4-11
system-supplied operation 4-11
System/370 1-1
System/390 1-1
Systems Network Architecture (SNA)

3270 program interface definition D-1
BIND command D-14

X-14 SNA Upline Facility Programming V4R1

Systems Network Architecture (SNA) (continued)
communicating with a host system 1-1
functions available 1-1
sense codes supported by SNUF 4-11

Systems Network Architecture upline facility (SNUF)
3270 support 1-1
communications network example 1-2
configuration

capabilities 1-1
checking for function-management-header

validity 4-8
communications lines available 1-1
description 1-1
installing support 2-1

definition 1-1
running communications 3-1
sending messages to 5-3
valid host system 1-1

T
terminal response mode (IMS/VS) 5-11
timer function

considerations 5-2
description 4-12
intervals 4-12

TIMER keyword 4-12
$$TIMER system-supplied format A-2
timer-run-out return code 4-12
token-ring network communications line

available for SNUF 1-2
line description 2-1

transaction
codes 4-7, 5-8
data 4-7
definition 4-7
ending 4-12
sending to IMS/VS

example 5-10
start record 4-7
starting 4-7
terminal response mode 5-12
without waiting for output 5-10

U
unformatted program interface D-4
user data 5-5
user ID 4-7
user password

evoke function 4-7
sending 5-9

using
remote program start request 5-5

V
Variable-length data (VARLEN) keyword 4-8
VARLEN (Variable-length data) keyword 4-8
Vary Configuration (VRYCFG) command

description 3-1
establishing communications 5-5
sending a BIND command 5-6

vary on and vary off support 3-1
Virtual Telecommunications Access Method (VTAM)

generation example C-3
programming considerations

*EXEX program start request 5-5
*TXTC program start request 5-5
*TXTX program start request 5-5
defining logical unit C-2
defining physical unit C-1
example C-3
PU definition parameters C-1

sending the BIND command C-2
VM/MVS Bridge 5-13
VRYCFG (Vary Configuration) command

description 3-1
establishing communications 5-5
sending a BIND command 5-6

VTAM (Virtual Telecommunications Access Method)
generation example C-3
programming considerations

*EXEX program start request 5-5
*TXTC program start request 5-5
*TXTX program start request 5-5
defining logical unit C-2
defining physical unit C-1
example C-3
PU definition parameters C-1

sending the BIND command C-2

W
WAITFILE (maximum file wait time) parameter 4-2
write operation

description 4-8
programming considerations

CICS/VS C-6
IMS/VS C-6

sending IMS/VS commands 5-9
starting

batch mode 4-8
interactive mode 4-8

write-with-detach function C-6
writing

application programs
using SNA 3270 program interface D-3

SNUF application programs 4-1

 Index X-15

X
X.25 communications line

available for SNUF 1-2
line description 2-1

X-16 SNA Upline Facility Programming V4R1

Reader Comments—We'd Like to Hear from You!

AS/400 Advanced Series
SNA Upline Facility Programming
Version 4

Publication No. SC41-5446-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatis-

fied

Very
Dissatis-

fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-5446-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-5446-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5446-ðð

Spine information:

IBM AS/400 Advanced Series SNA Upline Facility Programming Version 4

