
iSeries™

VisualAge® RPG Language Reference

Version 6.0 for Windows®

SC09-2451-06

���

iSeries™

VisualAge® RPG Language Reference

Version 6.0 for Windows®

SC09-2451-06

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

747.

Seventh Edition (June 2005)

This edition applies to Version 6.0 of IBM WebSphere Development Studio Client for iSeries and to all subsequent

releases and modifications until otherwise indicated in new editions.

This edition replaces SC09-2451-05 .

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or

addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory

Information Development

D1/817/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

You can also send your comments electronically to IBM. See “How to Send Your Comments” on page xii for a

description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book xi

Prerequisite and Related Information xi

The VisualAge RPG Library xi

How to Send Your Comments xii

Accessing Online Information xiii

Using Online Books xiii

Publications in PDF Format xiii

Using Online Help xiii

What’s New in Version 6.0 xv

Part 1. Introduction to the VisualAge

RPG Language 1

Chapter 1. Symbolic Names and

Reserved Words 3

Symbolic Names 3

Words with Special Functions and Reserved Words . 5

Built-in Function Special Words 5

Date and Time Special Words 5

Expressions 5

File Positioning Special Words 5

Implied Literals 5

Indicator Reserved Words 6

Job Date Reserved Words 6

Page Numbering Reserved Words 6

Parameter Passing Special Words 6

Placement of Fields 6

Writing all Fields 6

File Positioning 6

PAGE, PAGE1-PAGE7 Reserved Words 7

User Date Special Words 8

Chapter 2. Compiler Directives 11

/FREE... /END-FREE (Positions 7-11) 11

/COPY or /INCLUDE) 11

Copying Files from an iSeries Server 12

Copying Files from a Workstation 12

Nested /COPY or /INCLUDE 12

Conditional Compilation Directives 13

Defining Conditions 13

Predefined Conditions 14

Conditional Expressions 14

Testing Conditions 14

The /EOF Directive 16

/EOF (Positions 7-10) 16

/EJECT (Positions 7-12) 17

/SPACE (Positions 7-12) 17

/TITLE (Positions 7-12) 17

Chapter 3. Indicators 19

Indicators Defined on the Specifications 19

Record Identifying Indicators 19

Field Indicators 20

Resulting Indicators 21

Last Record Indicator (LR) 22

Using Indicators 22

Field Record Relation Indicators 22

Indicators Conditioning Calculations 23

Indicators Used in Expressions 25

Indicators Conditioning Output 25

Indicators Referred to as Data 26

*IN 26

*INxx 27

Rules for Specifying Indicators Referred to as

Data 28

Summary of Indicators 29

Chapter 4. Working with Components 31

Starting and Stopping Components 31

Initializing Components 31

Terminating Components 32

Normal Termination 32

Abnormal Termination 34

Initializing, Terminating, and Event Handling

Restrictions 35

Chapter 5. Error and Exception

Handling 41

File Exception/Errors 41

File Information Data Structure 41

Program Exception and Errors 51

Program Status Data Structure 51

Program Status Codes 54

Program Exception and Error Subroutine . . . 57

Component Errors/Exceptions 58

Component Status Codes 58

Event Error Handling 59

Exception Handling 61

Chapter 6. Subprocedures and

Prototypes 63

Subprocedure Definition 64

Procedure Interface Definition 65

Return Values 65

Scope of Definitions 66

Subprocedure Calculations 67

NOMAIN Module 69

EXE Module 70

Subprocedures and Subroutines 70

Prototypes and Parameters 71

Prototypes 71

Prototyped Parameters 73

Procedure Interface 75

Chapter 7. SQL Support 77

General Syntax Rules 77

© Copyright IBM Corp. 1994, 2005 iii

Host Variable Declarations 79

Host Variable Rules 80

Data Structures as Host Variables 81

Indicator Variables and Structures 82

Host Structure Rules 82

/EXEC SQL INCLUDE Statement 82

/EXEC SQL INCLUDE SQLCA Statement . . . 83

/EXEC SQL WHENEVER Statement 84

/EXEC SQL BEGIN DECLARE Statement . . . 85

Runtime Error Handling 85

Building an Application 85

Running an Application 86

Connecting to a Database 86

Using the CONNECT TO Statement 86

Using an Implicit Connect 88

Chapter 8. File Considerations 89

Disk Files 89

Local Files 89

OS/400 Files 89

Printer Files 96

Special Files 96

Part 2. Data 101

Chapter 9. Data Types and Data

Formats 103

Internal and External Formats 103

Internal Format 103

External Format 104

Basing Pointer Data Type 105

Setting a Basing Pointer 107

Examples 107

Character Data Type 110

Character Format 110

Indicator Format 111

Graphic Format 112

UCS-2 Format 112

Variable-Length Character, Graphic, and UCS-2

Format 113

Conversion between Character, Graphic and

UCS-2 Data 119

Date Data 119

Separators 121

Formats for MOVE, MOVEL, and TEST

Operations 121

Numeric Data Type 122

Binary Format 122

Float Format 124

Integer Format 126

Packed-Decimal Format 126

Unsigned Format 128

Zoned-Decimal Format 129

Considerations for Using Numeric Formats . . 129

Representation of Numeric Formats 131

Object Data Type 133

Where You Can Specify an Object Field . . . 133

Procedure Pointer Data Type 134

Time Data 135

Separators 137

Timestamp Data 137

Separators 137

Database Null Value Support 137

User Controlled Support for Null-Capable Fields

and Key Fields 138

Input-Only Support for Null-Capable Fields . . 144

No Null Fields Option 144

Converting Database Variable-Length Fields . . . 145

Chapter 10. Literals and Named

Constants 149

Literals 149

Character Literals 149

Hexadecimal Literals 149

Numeric Literals 150

Date Literals 150

Time Literals 151

Timestamp Literals 151

Graphic Literals 152

UCS-2 Literals 152

Named Constants 152

Named Constants 152

Rules for Named Constants 152

Figurative Constants 153

Rules for Figurative Constants 154

Chapter 11. Data Structures 157

Qualifying Data Structure Names 158

Array Data Structures 158

Defining Data Structure Parameters in a Prototype

or Procedure Interface 159

Defining Data Structure Subfields 159

Specifying Subfield Length 160

Aligning Data Structure Subfields 160

Initialization of Nested Data Structures 161

Special Data Structures 162

Data-Area Data Structure 162

File Information Data Structure 162

Program-Status Data Structure 162

Data Structure Examples 162

Chapter 12. Using Arrays and Tables 171

Arrays 171

Array Name and Index 172

Essential Array Specifications 172

Coding a Runtime Array 172

Loading a Runtime Array 172

Coding a Compile-Time Array 174

Loading a Compile-Time Array 174

Coding a Pre-Runtime Array 176

Loading a Pre-Runtime Array 177

Sequence Checking for Character Arrays . . . 177

Initializing Arrays 178

Compile-Time and Pre-Runtime Arrays 178

Defining Related Arrays 178

Searching Arrays 180

Searching an Array without an Index 180

Searching an Array with an Index 181

Using Arrays 183

Specifying an Array in Calculations 183

iv VisualAge RPG Language Reference

Sorting Arrays 184

Sorting using Part of the Array as a Key . . . 184

Array Output 184

Editing Entire Arrays 185

Using Dynamically-Sized Arrays 185

Tables 186

LOOKUP with One Table 187

LOOKUP with Two Tables 188

Specifying the Table Element Found in a

LOOKUP Operation 189

Chapter 13. Editing Numeric Fields 191

Edit Codes 191

Simple Edit Codes 191

Combination Edit Codes 192

Editing Considerations 193

Summary of Edit Codes 194

Edit Words 197

How to Code an Edit Word 197

Parts of an Edit Word 199

Summary of Coding Rules for Edit Words . . . 205

Editing Externally Described Files 205

Chapter 14. Initialization of Data . . . 207

Initialization Subroutine (*INZSR) 207

CLEAR and RESET Operation Codes 207

Data Initialization 207

Part 3. Specifications 209

Chapter 15. About VisualAge RPG

Specifications 211

Subprocedure Specifications 212

Program Data 212

Common Entries 213

Syntax of Keywords 213

Continuation Rules 215

Chapter 16. Control Specifications 223

Control Specification Statement 223

Position 6 (Form Type) 223

Positions 7-80 (Keywords) 223

Syntax of Keywords 224

ALWNULL(*NO | *INPUTONLY | *USRCTL) 224

CACHE(*YES | *NO) 225

CACHEREFRESH(*YES | *NO) 225

CCSID(*GRAPH : parameter | *UCS2 : number

| *MAPCP : 932) 225

COPYNEST(number) 226

COPYRIGHT(’copyright string’) 226

CURSYM(’sym’) 226

CVTOEM(*YES | *NO) 226

CVTOPT(*{NO}VARCHAR

*{NO}VARGRAPHIC) 226

DATEDIT(fmt{separator}) 227

DATFMT(fmt{separator}) 227

DEBUG{(*NO | *YES)} 227

DECEDIT(’value’) 228

DECPREC(30|31) 228

EXE 228

EXPROPTS(*MAXDIGITS | *RESDECPOS) . . 229

EXTBININT{(*NO | *YES)} 229

FLTDIV{(*NO | *YES)} 229

GENLVL(number) 229

INDENT(*NONE | ’character-value’) 230

INTPREC(10 | 20) 230

LIBLIST(’filename1 filename2 ... filenamen’) . . 230

NOMAIN 230

OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL

*{NO}SHOWCPY *{NO}EXPDDS *{NO}EXT

*{NO}SHOWSKP *{NO}INHERITSIGNON) . . 232

SIGNON(*CLEARUSERID *HIDEPWSAVE

*INHERIT) 233

SQLBINDFILE(’filename’) 233

SQLDBBLOCKING(*YES | *NO) 233

SQLDBNAME(’Dbname’) 234

SQLDTFMT(*EUR | *ISO | *USA | *JIS) . . . 234

SQLISOLATIONLVL(*RR | *CS | *UR) 234

SQLPACKAGENAME(’package.txt’) 235

SQLPASSWORD(’password’) 235

SQLUSERID(’userid’) 235

TIMFMT(fmt{separator}) 235

TRUNCNBR(*YES | *NO) 236

Chapter 17. File Description

Specifications 237

File Description Specification Statement 237

File-Description Keyword Continuation Line 237

Position 6 (Form Type) 238

Positions 7-16 (File Name) 238

Position 17 (File Type) 238

Position 18 (File Designation) 240

Position 19 (Reserved) 240

Position 20 (File Addition) 240

Position 21 (Reserved) 241

Position 22 (File Format) 241

Positions 23-27 (Record Length) 241

Position 28 (Reserved) 242

Positions 29-33 (Reserved) 242

Position 34 (Record Address Type) 242

Position 35 (Reserved) 242

Positions 36-42 (Device) 242

Position 43 (Reserved) 243

Positions 44-80 (Keywords) 243

BLOCK(*YES|*NO) 244

COMMIT{(rpg_name)} 245

CVTHEX 245

DATFMT(format{separator}) 245

DEVMODE(name) 246

EOFMARK(*NONE) 246

EXTFILE(filename) 246

EXTMBR(membername) 247

FORMLEN(number) 248

IGNORE(recformat{:recformat...}) 248

INCLUDE(recformat{:recformat...}) 248

INFDS(DSname) 248

INFSR(SUBRname) 248

PLIST(Plist_name) 248

PREFIX(prefix{:nbr_of_char_replaced}) 249

PROCNAME(proc_name) 250

Contents v

PRTCTL(data_struct{:*COMPAT}) 250

PRTFMT(*SYS | *TEXT) 251

RCDLEN(fieldname) 251

RECNO(fieldname) 251

REMOTE 252

RENAME(Ext_format:Int_format) 252

TIMFMT(format{separator}) 252

USROPN 252

File Types and Processing Methods 253

Chapter 18. Definition Specifications 255

Placement of Definitions and Scope 256

Storage of Definitions 258

Definition Specification Statement 259

Definition-Specification Keyword Continuation

Line 259

Definition Specification Continued Name Line 259

Position 6 (Form Type) 259

Positions 7-21 (Name) 260

Position 22 (External Description) 260

Position 23 (Type of Data Structure) 260

Positions 24-25 (Type of Definition) 261

Positions 26-32 (From Position) 262

Positions 33-39 (To Position/Length) 262

Position 40 (Internal Data Type) 263

Positions 41-42 (Decimal Positions) 264

Position 43 (Reserved) 264

Positions 44-80 (Keywords) 264

Definition-Specification Keywords 264

ALIGN 265

ALT(array_name) 265

ASCEND 265

BASED(basing_pointer_name) 266

BUTTON(button1:button2....) 267

CCSID(number | *DFT) 267

CLASS(*JAVA:class_name) 267

CLTPGM(program name) 268

CONST(constant) 268

CTDATA 269

DATFMT(format{separator}) 269

DESCEND 269

DIM(numeric_constant) 269

DLL(name) 270

DTAARA{(*VAR:)data_area_name} 270

EXTFLD(field_name) 271

EXTFMT(code) 271

EXTNAME(file-name{:format-name}{:*ALL|

*INPUT|*OUTPUT|*KEY}) 272

EXTPGM(name) 273

EXTPROC({*JAVA:class-name:}name) 273

FROMFILE(file_name) 276

INZ{(initial value)} 276

LIKE(RPG_name) 277

LIKEDS(data_structure_name) 279

LIKEREC(intrecname{:*ALL|*INPUT|*OUTPUT

|*KEY}) 280

LINKAGE(linkage_type) 281

MSGDATA(msgdata1:msgdata2....) 281

MSGNBR(*MSGnnnn or fieldname) 281

MSGTEXT(’message text’) 282

MSGTITLE(’title text’) 282

NOOPT 282

NOWAIT 282

OCCURS(numeric_constant) 282

OPTIONS(*OMIT *VARSIZE *STRING *TRIM

*RIGHTADJ) 283

OVERLAY(name{:pos | *NEXT}) 291

PACKEVEN 293

PERRCD(numeric_constant) 293

PREFIX(prefix{:nbr_of_char_replaced}) 293

PROCPTR 293

QUALIFIED 293

STATIC 294

STYLE(style_type) 294

TIMFMT(format{separator}) 294

TOFILE(file_name) 295

VALUE 295

VARYING 295

Summary According to Definition Specification

Type 295

Chapter 19. Input Specifications . . . 299

Input Specification Statement 299

Program Described 299

Externally Described 299

Program Described Files 300

Position 6 (Form Type) 300

Record Identification Entries 300

Positions 7-16 (File Name) 300

Positions 16-18 (Logical Relationship) 300

Positions 17-18 (Sequence) 301

Position 19 (Reserved) 301

Position 20 (Option) 301

Positions 21-22 (Record Identifying Indicator) 301

Positions 23-46 (Record Identification Codes) 301

Field Description Entries 303

Position 6 (Form Type) 303

Positions 7-30 (Reserved) 303

Positions 31-34 (Data Attributes) 303

Position 35 (Date/Time Separator) 304

Position 36 (Data Format) 304

Positions 37-46 (Field Location) 305

Positions 47-48 (Decimal Positions) 305

Positions 49-62 (Field Name) 306

Positions 63-64 (Reserved) 306

Positions 65-66 (Reserved) 306

Positions 67-68 (Field Record Relation) 306

Positions 69-74 (Field Indicators) 306

Externally Described Files 307

Position 6 (Form Type) 307

Record Identification Entries 307

Positions 7-16 (Record Name) 307

Positions 17-20 (Reserved) 308

Positions 21-22 (Record Identifying Indicator) 308

Positions 23-80 (Reserved) 308

Field Description Entries 308

Positions 7-20 (Reserved) 308

Positions 21-30 (External Field Name) 308

Positions 31-48 (Reserved) 308

Positions 49-62 (Field Name) 308

Positions 63-64 (Reserved) 309

Positions 65-66 (Reserved) 309

vi VisualAge RPG Language Reference

Positions 67-68 (Reserved) 309

Positions 69-74 (Field Indicators) 309

Positions 75-80 (Reserved) 309

Chapter 20. Calculation Specifications 311

Traditional Syntax 311

Calculation-Specification Extended-Factor 2

Continuation Line 311

Position 6 (Form Type) 312

Positions 7-8 (Control Level) 312

Positions 9-11 (Indicators) 312

Positions 12-25 (Factor 1) 312

Positions 26-35 (Operation and Extender) . . . 313

Positions 36-49 (Factor 2) 314

Positions 50-63 (Result Field) 314

Positions 64-68 (Field Length) 314

Positions 69-70 (Decimal Positions) 316

Positions 71-76 (Resulting Indicators) 316

Extended Factor 2 Syntax 316

Positions 7-8 (Control Level) 316

Positions 9-11 (Indicators) 316

Positions 12-25 (Factor 1) 317

Positions 26-35 (Operation and Extender) . . . 317

Positions 36-80 (Extended-Factor 2) 318

Free-Form Syntax 318

Positions 8-80 (Free-form Operations) 319

Chapter 21. Output Specifications . . 321

Output Specification Statement 321

Program Described 321

Externally Described 322

Program Described Files 322

Position 6 (Form Type) 322

Record Identification and Control Entries 322

Positions 7-16 (File Name) 322

Positions 16-18 (Logical Relationship) 323

Position 17 (Type - Program Described File) . . 323

Positions 18-20 (Record Addition/Deletion) . . 324

Positions 21-29 (File Record ID Indicators) . . . 324

Positions 30-39 (EXCEPT Name) 324

Positions 40-51 (Space and Skip) 325

Positions 40-42 (Space Before) 326

Positions 43-45 (Space After) 326

Positions 46-48 (Skip Before) 326

Positions 49-51 (Skip After) 326

Field Description and Control Entries 326

Positions 21-29 (Output Indicators) 326

Positions 30-43 (Field Name) 326

Position 44 (Edit Codes) 328

Position 45 (Blank After) 328

Positions 47-51 (End Position) 329

Position 52 (Data Format) 330

Positions 53-80 (Constant, Edit Word, Data

Attribute) 331

Externally Described Files 332

Position 6 (Form Type) 332

Record Identification and Control Entries 332

Positions 7-16 (Record Name) 332

Positions 16-18 (External Logical Relationship) 332

Position 17 (Type) 332

Positions 18-20 (Record Addition) 333

Positions 21-29 (Output Indicators) 333

Positions 30-39 (EXCEPT Name) 333

Field Description and Control Entries 333

Positions 21-29 (Output Indicators) 333

Positions 30-43 (Field Name) 333

Position 45 (Blank After) 334

Chapter 22. Procedure Specifications 335

Procedure Specification Statement 336

Procedure Specification Keyword Continuation

Line 336

Procedure Specification Continued Name Line 336

Position 6 (Form Type) 337

Positions 7-21 (Name) 337

Position 24 (Begin/End Procedure) 337

Positions 44-80 (Keywords) 337

Procedure Specification Keywords 338

EXPORT 338

Part 4. Operations, Expressions,

and Functions 339

Chapter 23. Operations 341

Operation Codes 341

Arithmetic Operations 348

Performance Considerations 349

Integer and Unsigned Arithmetic 349

Arithmetic Operations Examples 351

Array Operations 351

Bit Operations 352

Branching Operations 352

Call Operations 353

Prototyped Calls 353

Parsing Program Names on a Call 354

Compare Operations 357

Conversion Operations 358

Data-Area Operations 358

Date Operations 359

Unexpected Results 361

Declarative Operations 362

Error-Handling Operations 362

File Operations 363

Keys for File Operations 365

Indicator-Setting Operations 366

Information Operations 366

Initialization Operations 366

Memory Management Operations 367

Message Operations 368

Move Operations 368

Moving Character, Graphic, UCS-2, and

Numeric Data 369

Moving Date-Time Data 370

Examples of Converting a Character Field to a

Date Field 373

Result Operations 375

Size Operations 375

String Operations 375

Structured Programming Operations 376

Subroutine Operations 378

Contents vii

Test Operations 378

GUI Operations 378

Qualified GUI Part Attribute Access 379

Chapter 24. Expressions 381

General Expression Rules 382

Expression Operands 383

Expression Operators 383

Operation Precedence 385

Data Types 386

Data Types Supported by Expression Operands 386

Format of Numeric Intermediate Results . . . 390

Precision Rules for Numeric Operations 390

Using the Default Precision Rule 391

Precision of Intermediate Results 392

Example of Default Precision Rules 392

Using the ″Result Decimal Position″ Precision

Rules 394

Example of ″Result Decimal Position″ Precision

Rules 396

Short Circuit Evaluation 396

Order of Evaluation 397

Chapter 25. Built-In Functions 399

Built-In Functions (Alphabetically) 405

%ABS (Absolute Value of Expression) 405

%ADDR (Get Address of Variable) 406

%ALLOC (Allocate Storage) 408

%BITAND (Bitwise AND Operation) 409

%BITNOT (Invert Bits) 410

%BITOR (Bitwise OR Operation) 411

%BITXOR (Bitwise Exclusive-OR Operation) . . 412

%CHAR (Convert to Character Data) 416

%CHECK (Check Characters) 418

%CHECKR (Check Reverse) 420

%DATE (Convert to Date) 422

%DAYS (Number of Days) 423

%DEC (Convert to Packed Decimal Format) . . 424

%DECH (Convert to Packed Decimal Format

with Half Adjust) 426

%DECPOS (Get Number of Decimal Positions) 427

%DIFF (Difference Between Two Date, Time, or

Timestamp Values) 428

%DIV (Return Integer Portion of Quotient) . . 431

%EDITC (Edit Value Using an Editcode) . . . 432

%EDITFLT (Convert to Float External

Representation) 435

%EDITW (Edit Value Using an Editword) . . . 436

%ELEM (Get Number of Elements) 437

%EOF (Return End or Beginning of File

Condition) 438

%EQUAL (Return Exact Match Condition) . . 440

%ERROR (Return Error Condition) 441

%FIELDS (Fields to update) 442

%FLOAT (Convert to Floating Format) 443

%FOUND (Return Found Condition) 444

%GETATR (Retrieve Attribute) 446

%GRAPH (Convert to Graphic Value) 447

%HOURS (Number of Hours) 448

%INT (Convert to Integer Format) 449

%KDS (Search Arguments in Data Structure) 451

%LEN (Get or Set Length) 452

%LOOKUPxx (Look Up an Array Element) . . 455

%MINUTES (Number of Minutes) 457

%MONTHS (Number of Months) 458

%MSECONDS (Number of Microseconds) . . . 459

%NULLIND (Query or Set Null Indicator) . . . 460

%OCCUR (Set/Get Occurrence of a Data

Structure) 461

%OPEN (Return File Open Condition) 462

%PADDR (Get Procedure Address) 463

%REALLOC (Reallocate Storage) 464

%REM (Return Integer Remainder) 465

%REPLACE (Replace Character String) 466

%SCAN (Scan for Characters) 468

%SECONDS (Number of Seconds) 470

%SETATR (Set Attribute) 471

%SIZE (Size of Constant or Field) 472

%SQRT (Square Root of Expression) 474

%STATUS (Return File or Program Status) . . . 475

%STR (Get or Store Null-Terminated String) . . 478

%SUBARR (Set/Get Portion of an Array) . . . 480

%SUBDT (Extract a Portion of a Date, Time, or

Timestamp) 483

%SUBST (Get Substring) 484

%THIS (Return Class Instance for Native

Method) 486

%TIME (Convert to Time) 487

%TIMESTAMP (Convert to Timestamp) . . . 488

%TLOOKUPxx (Look Up a Table Element) . . 489

%TRIM (Trim Characters at Edges) 490

%TRIML (Trim Leading Characters) 492

%TRIMR (Trim Trailing Characters) 493

%UCS2 (Convert to UCS-2 Value) 494

%UNS (Convert to Unsigned Format) 495

%XFOOT (Sum Array Expression Elements) . . 497

%XLATE (Translate) 498

%YEARS (Number of Years) 499

Chapter 26. Operation Code Details 501

ADD (Add) 501

ADDDUR (Add Duration) 502

ALLOC (Allocate Storage) 505

ANDxx (And) 506

BEGACT (Begin Action Subroutine) 508

Action Subroutine Names in Traditional Syntax 508

Action Subroutine Names in Free-Form Syntax 509

Single-Link and Multiple-Link Action

Subroutines 510

BEGSR (Begin User Subroutine) 511

BITOFF (Set Bits Off) 512

BITON (Set Bits On) 513

CABxx (Compare and Branch) 515

CALL (Call an AS/400 Program) 517

Calling an OS/400 Program that Uses a

Workstation File 518

Calling Host Programs that Use Display Files 518

Calling CL Commands 520

CALLB (Call a Function) 521

CALLP (Call a Prototyped Procedure or Program) 522

CASxx (Conditionally Invoke Subroutine) 524

viii VisualAge RPG Language Reference

 | |

CAT (Concatenate Two Strings) 526

CHAIN (Random Retrieval from a File) 529

Retrieving Data from a File or Record Format 529

Retrieving a Record from a Subfile Part . . . 532

CHECK (Check Characters) 533

CHECKR (Check Reverse) 536

CLEAR (Clear) 539

Clearing Variables 539

Clearing Record Formats 540

Clearing Entry Fields on a Window 540

Clearing Subfiles 540

CLOSE (Close Files) 542

CLSWIN (Close Window) 543

COMMIT (Commit) 544

COMP (Compare) 545

DEALLOC (Free Storage) 546

DEFINE (Field Definition) 548

Defining a Field Based on Another Field . . . 548

Defining a Field as a Data Area 548

DELETE (Delete Record) 551

DIV (Divide) 553

DO (Do) 554

DOU (Do Until) 556

DOUxx (Do Until) 557

DOW (Do While) 559

DOWxx (Do While) 560

DSPLY (Display Message Window) 562

ELSE (Else) 564

ELSEIF (Else If) 565

ENDyy (End a Structured Group) 566

ENDACT (End of Action Subroutine) 568

ENDSR (End of User Subroutine) 569

EVAL (Evaluate Expression) 571

EVALR (Evaluate expression, right adjust) 573

EXCEPT (Calculation Time Output) 575

EXSR (Invoke User Subroutine) 577

Coding User Subroutines 577

EXTRCT (Extract Date/Time/Timestamp) 579

FEOD (Force End of Data) 580

FOR (For) 581

GETATR (Retrieve Attribute) 584

GOTO (Go To) 585

IF (If) 586

IFxx (If) 587

IN (Retrieve a Data Area) 589

ITER (Iterate) 591

KFLD (Define Parts of a Key) 593

KLIST (Define a Composite Key) 594

LEAVE (Leave a Do/For Group) 596

LEAVESR (Leave a Subroutine) 598

LOOKUP (Look Up a Table or Array Element) . . 599

MONITOR (Begin a Monitor Group) 602

MOVE (Move) 604

MOVE Examples (Part 1) 605

MOVE Examples (Part 2): Variable- and

Fixed-length Fields 611

MOVE Examples (Part 3) 614

MOVE Examples (Part 4) 616

MOVE Examples (Part 5) 618

MOVEA (Move Array) 619

Character, Graphic, and UCS-2 MOVEA

Operations 619

Numeric MOVEA Operations 619

Zoned Decimal MOVEA Operations 620

Specifying Figurative Constants with MOVEA 620

MOVEL (Move Left) 626

Factor 2 is the Same Length as the Result Field 626

Factor 2 is Longer than the Result Field . . . 627

Factor 2 is Shorter than the Result Field . . . 627

Factor 2 is Shorter than the Result Field and P is

Specified 627

MOVEL Examples: Variable-length /

Fixed-length Moves 632

MULT (Multiply) 635

MVR (Move Remainder) 636

OCCUR (Set/Get Occurrence of a Data Structure) 637

ON-ERROR (On Error) 641

OPEN (Open File for Processing) 642

ORxx (Or) 644

OTHER (Otherwise Select) 645

OUT (Write a Data Area) 646

PARM (Identify Parameters) 647

General Rules about Parameters 648

Passing Parameters with CALL, CALLB, and

START 648

PLIST (Identify a Parameter List) 650

POST (Post) 652

READ (Read a Record) 653

Reading from a File 653

Reading from a Window 655

READC (Read Next Changed Record) 656

READE (Read Equal Key) 658

READP (Read Prior Record) 661

READPE (Read Prior Equal) 663

READS (Read Selected) 666

REALLOC (Reallocate Storage with New Length) 666

RESET (Reset) 668

Resetting Entry Fields and Static Text on a

Window 668

Resetting Elements in a Structure and Variables 669

RETURN (Return to Caller) 671

ROLBK (Roll Back) 672

SCAN (Scan String) 673

SELECT (Begin a Select Group) 676

SETATR (Set Attribute) 678

SETGT (Set Greater Than) 679

SETLL (Set Lower Limit) 681

SETOFF (Set Indicator Off) 684

SETON (Set Indicator On) 684

SHOWWIN (Display Window) 685

SORTA (Sort an Array) 686

SQRT (Square Root) 688

START (Start Component or Call Local Program) 689

Starting Components 689

Calling Local Programs 690

STOP (Stop Component) 691

SUB (Subtract) 692

SUBDUR (Subtract Duration) 693

Subtract a duration 693

Calculate a duration 694

Possible error situations 695

Contents ix

SUBDUR Examples 695

SUBST (Substring) 696

TAG (Tag) 699

TEST (Test Date/Time/Timestamp) 700

TESTB (Test Bit) 703

TESTN (Test Numeric) 705

TESTZ (Test Zone) 706

TIME (Time of Day) 707

UNLOCK (Unlock a Data Area or Release a

Record) 709

Unlocking data areas 709

Releasing record locks 709

UPDATE (Modify Existing Record) 711

WHEN (When True Then Select) 713

WHENxx (When True Then Select) 714

WRITE (Create New Records) 717

Writing to a File 717

Writing to a Window 718

Writing to a Subfile 718

XFOOT (Summing the Elements of an Array) . . . 719

XLATE (Translate) 720

Z-ADD (Zero and Add) 722

Z-SUB (Zero and Subtract) 723

Part 5. Appendixes 725

Appendix A. Restrictions 727

Appendix B. Collating Sequences . . 729

EBCDIC Collating Sequence 729

ASCII Collating Sequence 732

Appendix C. Supported CCSID Values 735

Appendix D. Comparing RPG

Compilers 737

RPG Cycle 737

VisualAge RPG Indicators 737

Unsupported Indicators 737

Unsupported Words 738

Compiler Directives 738

Error and Exception Handling 738

Data 738

Data Types and Data Formats 738

Literals and Named Constants 739

Data Areas 740

Arrays and Tables 740

Edit Codes 740

Files 741

Specifications 741

Control Specifications 741

File Description Specifications 742

Definition Specifications 743

Input Specifications 744

Built-in Functions 745

Operation codes 745

Similar Operation Codes 745

Unsupported Operation Codes 745

VisualAge RPG Specific Operation Codes . . . 746

Conversions between CCSIDs 746

Notices 747

Programming Interface Information 748

Trademarks and Service Marks 748

Glossary 751

Bibliography 763

Index 765

x VisualAge RPG Language Reference

About This Book

This book provides information about the RPG IV language as implemented using

the VisualAge RPG compiler with the Windows® operating system.

This book contains:

v Language fundamentals, such as, the character set, symbolic names, reserved

words, compiler directives, and indicators

v Data types and data formats

v Error and exception handling

v Subprocedures

v Specifications

v Built-in functions, expressions, and operation codes.

This book is for programmers who are familiar with the VisualAge RPG

programming language.

This reference provides a detailed description of the VisualAge RPG language. It

does not provide information on how to use the VisualAge RPG compiler or how

to convert ILE RPG programs to VisualAge RPG programs. For more information

on these topics, see Programming with VisualAge RPG, SC09-2449-05.

Before using this book, you should be familiar with the tasks for a VisualAge RPG

application. Refer to Programming with VisualAge RPG and the online help.

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up iSeries and

AS/400e technical information. You can access the Information Center in two ways:

v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

v From CD-ROMs that ship with your OS/400 order:

iSeries Information Center, SK3T-4091-00. This package also includes the PDF

versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,

SK3T-4092-00, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL

commands, system application programming interfaces (APIs), logical partitions,

clustering, Java

™ , TCP/IP, Web serving, and secured networks. It also includes

links to related IBM® Redbooks and Internet links to other IBM Web sites such as

the Technical Studio and the IBM home page.

The VisualAge RPG Library

The VisualAge RPG library contains the following publications:

Programming with VisualAge RPG

This book contains specific information about creating applications with VisualAge

RPG. It describes the steps you have to follow at every stage of the application

© Copyright IBM Corp. 1994, 2005 xi

development cycle, from design to packaging and distribution. Programming

examples are included to clarify the concepts and the process of developing

VisualAge RPG applications.

VisualAge RPG Parts Reference

This book provides information on the VisualAge RPG parts, part attributes, part

events, and event attributes. It is a reference for anyone who is developing

applications using VisualAge RPG.

VisualAge RPG Language Reference

This book provides information about the RPG IV language as implemented using

the VisualAge RPG compiler. It contains:

v Language fundamentals such as the character set, symbolic names and reserved

words, compiler directives, and indicators

v Data types and data formats

v Error and exception handling

v Specifications

v Built-in functions, expressions, and operation codes.

For an overview of the entire product, see Getting Started with WebSphere

Development Studio Client for iSeries.

For a list of related publications, see the Bibliography at the end of this book.

You can also find the most current information about IBM WebSphere

Development Studio Client for iSeries on the following online source:

The Development Studio Client Home Page

ibm.com/software/ad/wdsc/

How to Send Your Comments

Your feedback is important in helping us to provide the highest quality

information possible. IBM welcomes any comments about this book or any other

iSeries documentation.

v If you prefer to send comments by mail, use the following address:

IBM Canada Ltd. Laboratory

Information Development

D1/817/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7
v If you prefer to send comments electronically, use this e-mail address:

toreador@ca.ibm.com

v If you prefer to send comments by fax, use this number:

1-845-491-7727

Be sure to include the following:

v The name of the book

v The publication number of the book

v The page number or topic to which your comment applies.

xii VisualAge RPG Language Reference

Accessing Online Information

VisualAge RPG contains a variety of online books and online help. You can access

the help while you are using the product, and can view the books either while you

are using the product, or independently.

Using Online Books

To view an online book, either:

v Select the name of the book from the Help pull-down menu of the VisualAge

RPG GUI Designer or the editor window.

v Access the books from the Start menu. Select Programs → IBM WebSphere

Development Studio Client for iSeries. Then select Documentation.

Publications in PDF Format

VisualAge RPG publications are available in Portable Document Format (PDF)

from the iSeries Information Center at URL

http://www.ibm.com/eserver/iseries/infocenter .

Note: You need the Adobe Acrobat Reader, Version 3.01 or later for Windows, to

view the PDF format of our publications on the workstation. If your location

does not have the reader, you can download a copy from the Adobe

Systems Web site (http://www.adobe.com).

The following VisualAge RPG publications are available in PDF format:

v Programming with VisualAge RPG

v VisualAge RPG Parts Reference

v VisualAge RPG Language Reference

For information on the product, see Getting Started with WebSphere Development

Studio Client for iSeries, SC09-2625-06.

Using Online Help

Online help is available for all areas of VisualAge RPG. To get help for a particular

window, dialog box, or properties notebook, select the Help push button (when

available).

Note: To view help that is in HTML format, your workstation must have a

frames-capable Web browser, such as Netscape Navigator 4.04 or higher, or

Microsoft® Internet Explorer 4.01 or higher. (Recommended browser is

Netscape Navigator 4.6 or Internet Explorer 5.0)

Using context-sensitive help

To receive context-sensitive help at any time, press F1. The help that appears is

specific to the area of the interface that has input focus. Input focus can be on

menu items, windows, dialog boxes, and properties notebooks, or on specific parts

of these.

For context-sensitive help on dialog boxes, click on the question mark (when

available) in the top right-hand corner of the window. A question mark will appear

beside the mouse arrow. Click on a word or field and help information on that

specific field will be displayed.

About This Book xiii

Using language-sensitive help

To receive language sensitive help, press F1 in an edit window. If the cursor is on

an operation code, you receive help for that operation code; otherwise, you receive

help for the current specification.

xiv VisualAge RPG Language Reference

What’s New in Version 6.0

This publication includes information from previous release Readmes and other

technical corrections. Changes are noted by a vertical bar (|).

Changes include:

v New built-in function %SUBARR (assign to, sort, or return, a subarray).

v Direct conversion of date/time/timestamp to numeric, using %DEC.

v Second parameter for %TRIM, %TRIMR and %TRIML indicating what characters

to trim.

v New prototype option OPTIONS(*TRIM) to pass a trimmed parameter.

v Relaxation of the rules for using a result data structure for I/O to

externally-described files and record formats.

© Copyright IBM Corp. 1994, 2005 xv

xvi VisualAge RPG Language Reference

Part 1. Introduction to the VisualAge RPG Language

This section describes some of the basic elements of the VisualAge® RPG (VARPG)

language such as:

v Character set

v Symbolic names and reserved words

v Compiler directives

v Indicators

v Subprocedures

© Copyright IBM Corp. 1994, 2005 1

2 VisualAge RPG Language Reference

Chapter 1. Symbolic Names and Reserved Words

The valid character set for the VisualAge RPG language consists of the following:

letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 Lowercase letters in symbolic names can be used, however, they

are translated to uppercase during compilation.

numbers 0 1 2 3 4 5 6 7 8 9

characters + − * , . ’ & / $ # : @ _ > < = () %

The blank character

Symbolic Names

A symbolic name uniquely identifies specific data in a program or procedure. Its

purpose is to allow you to access that data. The following rules apply to all

symbolic names:

v The first character of the name must be alphabetic, $, #, or @

v The remaining characters must be alphabetic, numeric, or the underscore (_)

v The name must be left-adjusted in the entry on the specification form except in

fields which allow the name to float (definition specification, keyword fields,

and the extended-factor 2 field)

v A symbolic name cannot be a reserved word

v A symbolic name can be from 1 to 4096 characters. The practical limits are

determined by the size of the entry used for defining the name. A name that is

up to 15 characters can be specified in the Name entry of the definition or

procedure specification. For names longer than 15 characters, use a continuation

specification.

v A symbolic name must be unique within the procedure in which it is defined.

© Copyright IBM Corp. 1994, 2005 3

Table 1 lists symbolic names and any additional restrictions.

 Table 1. Restrictions for Symbolic Names

Arrays An array name in a standalone field cannot begin with the

letters TAB. Array names may begin with TAB if they are either

prototyped parameters or data structures defined with the DIM

keyword.

Conditional compilation

names

Symbolic names used for conditional compilation have no

relationship to other symbolic names. Names for conditional

compilation can be up to 50 characters long.

Data structures A data structure name can only be defined once.

Exception output records The same EXCEPT name can be assigned to more than one

exception output record.

Fields v A field name can be defined more than once if each definition

using that name has the same data type, the same length, and

the same number of decimal positions. All definitions using

the same name refer to a single field (that is, the same area in

storage). However, it can be defined only once on the

definition specification.

v A field can be defined as a data structure subfield only once

unless the data structure is qualified (defined with

QUALIFIED or LIKEDS). In this case, when the subfield is

used, it must be qualified (specified in the form dsname.

subfieldname).

v A subfield name cannot be specified as the result field on an

*ENTRY PLIST parameter.

The VisualAge RPG compiler creates global fields for static text

and entry field parts with the same name as the part. Any

explicit definitions of these field names in your source must

match.

Key field lists There are no additional restrictions to key field list (KLIST)

names.

Labels There are no additional restrictions to label names.

Named constants There are no additional restrictions to named constants.

Parameter lists There are no additional restrictions to parameter list (PLIST)

names.

Prototype names There are no additional restrictions to prototype names.

Record names A record name can exist in only one file in the program.

Subroutines See “BEGACT (Begin Action Subroutine)” on page 508 for a

description of action subroutine names and “BEGSR (Begin User

Subroutine)” on page 511 for a description of user subroutine

names.

Tables A table name can contain from 3 to 10 characters, must begin

with the characters TAB, and cannot be defined in a

subprocedure.

Windows Window names defined in the component’s GUI definition are

reserved as symbolic names in the program, even within

procedures.

4 VisualAge RPG Language Reference

Words with Special Functions and Reserved Words

The following is a summary of words with special functions.

Built-in Function Special Words

The *ALL and *NULL special words are used with built-in functions. For more

information on built-in functions, see “Built-In Functions (Alphabetically)” on page

405.

Date and Time Special Words

The following special words are used with Date, Time, and Timestamp fields:

 *CDMY *CMDY *CYMD

*CYMD0 *DMY *ISO

*LONGJUL *MDY *EUR

*JIS *USA *HMS

*JUL *YMD

For more information on date formats, see “DATFMT(fmt{separator})” on page 227.

Expressions

The NOT special word can be used with expressions. For more information on

expressions, see Chapter 24, “Expressions,” on page 381.

File Positioning Special Words

The *START and *END special words can be used to position in a file. For more

information on file positioning, see “File Positioning” on page 6.

Implied Literals

Figurative constants are implied literals that allow specifications without referring

to length. For more information on figurative constants, see “Figurative Constants”

on page 153.

 *ALLX’x1..’ *DARKGREEN *OFF

*ALLG’K1K2’ *DARKGRAY *ON

*ALL’X..’ *DARKPINK *OK

*ABORT *DARKRED *PALEGRAY

*BLACK *ENTER *PINK

*BLANK *GREEN *RED

*BLANKS *HALT *RETRY

*BLUE *HIVAL *WARN

*BROWN *INFO *WHITE

*CANCEL *IGNORE *YELLOW

*CYAN *LOVAL *YESBUTTON

*DARKBLUE *NOBUTTON *ZERO

*DARKCYAN *NULL *ZEROS

Chapter 1. Symbolic Names and Reserved Words 5

Indicator Reserved Words

The *IN and *INxx reserved words allow indicators to be referred to as data. For

more information, see “Indicators Referred to as Data” on page 26.

Job Date Reserved Words

The following reserved words allow you to access the job date, or a portion of it.

For more information, see “User Date Special Words” on page 8.

 UDATE *DATE

UMONTH *MONTH

UYEAR *YEAR

UDAY *DAY

Page Numbering Reserved Words

The PAGE and PAGE1-PAGE7 reserved words can be used for numbering the

pages of a report or to sequentially number output fields. For more information,

see “PAGE, PAGE1-PAGE7 Reserved Words” on page 7.

Parameter Passing Special Words

The *OMIT, *RIGHTADJ, *STRING, *TRIM, and *VARSIZE special words are used

for parameter passing.

Placement of Fields

*PLACE allows repetitive placement of fields in an output record. For more

information, see “*PLACE” on page 327.

Writing all Fields

*ALL allows all fields that are defined for an externally described file to be written

on output. For a more information on figurative constants, see “Rules for

Figurative Constants” on page 154.

File Positioning

*START and *END change the position of an OS/400™ database file.

If the file is a non-keyed file, *START and *END position to the start and end of

the file, respectively. If the file is a keyed file, *START and *END position to the

start and end of the keyed access path, respectively.

6 VisualAge RPG Language Reference

PAGE, PAGE1-PAGE7 Reserved Words

PAGE is used to number the pages of a report, to serially number the output

records in a file, or to sequentially number output fields. It does not cause a page

eject.

The eight possible PAGE fields (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGE5,

PAGE6, and PAGE7) may be used to number different types of output pages or to

number pages for different printer files.

PAGE fields can be specified in positions 30 through 43 of the output specifications

or in the input or calculation specifications.

The following rules apply to the PAGE fields:

v Page numbering, unless otherwise specified, starts with 1

v For each new page, 1 is automatically added

v PAGE fields can be any length

v PAGE fields must have zero decimal positions

v When a PAGE field is only specified in the output specifications, it is treated as

a four digit, numeric field with zero positions.

You can use the PAGE words in a variety of ways:

v To start at a page number other than 1, set the value of the PAGE field to one

less than the desired starting page.

v To restart page numbering at any point in a job:

– Specify blank after (position 45 of the output specifications)

– Specify the PAGE field as the result field of an operation in the calculation

specifications

– Specify an output indicator in the output field (see Figure 2). When the

output indicator is set on, the PAGE field is reset to 1. Output indicators

cannot be used to control printing of a PAGE field because a PAGE field is

always written.

– Specify the PAGE field as an input field (see Figure 1).

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr....

IINPUT 50 1 CP

I 2 5 0PAGE

Figure 1. Page Record Description

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

OFilename++EF..N01N02N03Excnam++++B++A++Sb+Sa+...........................

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat

O* When indicator 15 is on, the PAGE field is set to zero and 1 is

O* added before the field is printed. When indicator 15 is off, 1

O* is added to the contents of the PAGE field before it is printed.

OPRINT E 99 01

O 15 PAGE 1 75

Figure 2. Resetting the PAGE Fields to Zero

Chapter 1. Symbolic Names and Reserved Words 7

User Date Special Words

A date for a program can be specified at runtime by using a user date special

word. The user date special words are: UDATE, *DATE, UMONTH, *MONTH,

UDAY, *DAY, UYEAR, and *YEAR.

The user date special words access the job date that is specified in the job

description. The user date can be written out as output.

The user date special words are set when the application starts running. They are

not updated when the program runs over midnight or when the job date changes.

Use the TIME operation to obtain the time and date while the program is running.

For more information on the TIME operation, see “TIME (Time of Day)” on page

707.

Use the DATEDIT keyword on the control specification to specify the date formats

of UDATE and *DATE:

 DATEDIT UDATE format *DATE format

*MDY *MDY *USA (mmddyyyy)

*DMY *DMY *EUR (ddmmyyyy)

*YMD *YMD *ISO (yyyymmdd)

If this keyword is not specified, the default is *MDY.

The following restrictions apply to user date fields:

v User date fields are numeric fields, not date type fields.

v User date fields cannot be modified. This means that they cannot be used:

– In the result field of calculations

– As factor 1 of PARM operations

– As factor 2 index of LOOKUP operations

– With blank after in output specifications

– As input fields
v The user date fields UMONTH, *MONTH, UDAY, *DAY, UYEAR, and *YEAR

cannot be edited by the Y edit code in position 44 of the output specifications.

8 VisualAge RPG Language Reference

You can use the user date words in a variety of ways:

 Operation codes using numeric fields The user date special words can be used in factor 1

or factor 2 of the calculation specifications for

operation codes that use numeric fields.

Editing UDATE and *DATE UDATE and *DATE can be edited when they are

written if the & edit code is specified in position 44

of the output specification. The DATEDIT keyword

on the control specification determines the format

and the separator character to be inserted.

Printing 2-position date fields To print a 2-position date field, specify UMONTH,

*MONTH UDAY, *DAY, and UYEAR on the output

specifications.

Printing 4-position date fields To print a 4-position date field, specify UMONTH,

*MONTH UDAY, *DAY, and UYEAR on the output

specifications.

Printing 6-position date fields To print a 6-position date field, specify UDATE on

the output specifications. Three different date

formats can be used: Month/day/year,

Year/month/day, Day/month/year. The DATEDIT

keyword on the control specification determines the

format.

Printing 8-position date fields To print a 8-position date field, specify *DATE on the

output specifications. The year is four digits. Three

different date formats can be used: Month/day/year,

Year/month/day, Day/month/year. The DATEDIT

keyword on the control specification determines the

format.

Printing the day To print only the day, specify UDAY or *DAY on the

output specifications.

Printing the month To print only the month, specify UMONTH or

*MONTH on the output specifications.

Printing the year To print only the year, specify YEAR or *YEAR on

the output specifications.

Chapter 1. Symbolic Names and Reserved Words 9

10 VisualAge RPG Language Reference

Chapter 2. Compiler Directives

The compiler directive statements /FREE... /END-FREE denote a free-form

calculation specification block. The compiler directives /TITLE, /EJECT, /SPACE,

/COPY and /INCLUDE and /INCLUDE allow you to specify heading information

for the compiler listing, to control the spacing of the compiler listing, and to insert

records from other file members during a compile. The conditional compiler

directive statements /DEFINE, /UNDEFINE, /IF, /ELSEIF, /ELSE, and /EOF

allow you to select or omit source records. The compiler directive statements must

precede any compile-time arrays or table records.

/FREE... /END-FREE (Positions 7-11)

Positions Entry

7-11 /FREE or /END-FREE

12-80 Blank

 The /FREE compiler directive specifies the beginning of a free-form calculation

specifications block. /END-FREE specifies the end of the block. Positions 12

through 80 must be blank. The remaining positions may be used for comments.

See “Free-Form Syntax” on page 318 for information on using free-form

statements.

/COPY or /INCLUDE)

The /COPY and /INCLUDE directives have the same purpose and the same

syntax. You can freely choose which directive to use.

The /COPY and /INCLUDE compiler directives cause records from other files to

be inserted, at the point where the directive occurs, within the file being compiled.

This file can exist on your workstation or on an iSeries server. The inserted records

can contain any valid specification, including /COPY and /INCLUDE, up to the

maximum nesting depth specified by the COPYNEST keyword (32 when not

specified).

To facilitate application maintenance, you may want to place the prototypes of

exported procedures in a separate source member. If you do, be sure to place a

/COPY or /INCLUDE directive for that member in both the module containing

the exported procedure and any modules that contain calls to the exported

procedure.

The copy directive is not printed on the compiler listing, but is replaced by the

contents of the specified file. All copied files appear in the COPY member table of

the compiler listing.

/COPY members are considered fixed-form by default, even if the /COPY

directive is coded within a free-form group. If the /COPY member will contain

free-form specifications, these must be delimited with /FREE and /END-FREE

directives.

© Copyright IBM Corp. 1994, 2005 11

Copying Files from an iSeries Server

To copy files from an iSeries server, enter the /COPY statement as follows:

v /COPY or /INCLUDE followed by exactly one space

v *REMOTE followed by exactly one space

v The location of the member to be copied (merged). The format is:

libraryname/filename,membername

– A member name must be specified.

– If a file name is not specified, QRPGLESRC is the default.

– A comma separates filename and membername. The comma must be

included.

– If a library is not specified, the library list is searched for the file. All

occurrences of the specified source file in the library list are searched for the

member until it is located or the search is complete.

– If a library is specified, a file name must also be specified.
v Optionally, at least one space and a comment.

The following are examples of the /COPY statement for copying OS/400 files:

v To copy the member MBR1 in the source file QRPGLESRC, enter the following

statement. Note that the current library list is used to search for file

QRPGLESRC:

C/COPY *REMOTE MBR1

v To copy the member MBR1 in the source file SRCFIL, enter the following

statement. Note that the current library list is used to search for file SRCFIL:

I/COPY *REMOTE SRCFIL,MBR1

v To copy the member MBR1 in the source file SRCFIL in the library SRCLIB,

enter the following statement:

O/COPY *REMOTE SRCLIB/SRCFIL,MBR1

v To copy the member ″mbr1″ in file ″srcfil″ in library ″srclib″, enter the following

statement:

O/COPY *REMOTE "srclib"/"srcfil","mbr1"

Copying Files from a Workstation

To copy files from a local workstation, enter the /COPY statement as follows:

v /COPY or /INCLUDE followed by exactly one space

v The location of the member to be copied. The format is:

Drive:\pathname\member.CPY

Drive and path are optional.

v Optionally, at least one space and a comment.

The following example illustrates the /COPY statement for copying local files:

O/COPY D:\PROJECT1\INCLUDES\TOOLS1.CPY

Nested /COPY or /INCLUDE

Nesting of /COPY and /INCLUDE directives is allowed. A /COPY or /INCLUDE

member may contain one or more /COPY or /INCLUDE directives (which in turn

may contain further /COPY or /INCLUDE directives and so on). The maximum

depth to which nesting can occur can be set using the COPYNEST control

specification keyword. The default maximum depth is 32.

You must ensure that your nested /COPY or /INCLUDE files do not include each

other infinitely. Use conditional compilation directives at the beginning of your

/COPY or /INCLUDE files to prevent the source lines from being used more than

once.

/FREE... /END-FREE (Positions 7-12)

12 VisualAge RPG Language Reference

Conditional Compilation Directives

The conditional compilation directive statements allow you to conditionally include

or exclude sections of source code from the compilation.

v Condition-names can be added or removed from a list of currently-defined

conditions using the defining condition directives /DEFINE and /UNDEFINE.

v Conditional expressions DEFINED(condition-name) and NOT

DEFINED(condition-name) are used within testing condition /IF groups.

v Testing conditional directives, /IF, /ELSEIF, /ELSE, and /ENDIF, control which

source lines are to be read by the compiler.

v The /EOF directive tells the compiler to ignore the rest of the source lines in the

current source member.

Defining Conditions

Condition-names can be added to or removed from a list of currently-defined

conditions using the defining condition directives /DEFINE and /UNDEFINE.

/DEFINE (Positions 7-13)

The /DEFINE compiler directive defines conditions for conditional compilation.

The entries in the condition-name area are free-format (do not have to be left

justified). The following entries are used for /DEFINE:

Positions Entry

7 - 13 /DEFINE

14 Blank

15 - 80 condition-name

81 - 100 Comments

The /DEFINE directive adds a condition-name to the list of currently-defined

conditions. A subsequent /IF DEFINED(condition-name) would be true. A

subsequent /IF NOT DEFINED(condition-name) would be false.

/UNDEFINE (Positions 7-15)

Use the /UNDEFINE directive to indicate that a condition is no longer defined.

The entries in the condition-name area are free-format (do not have to be left

justified).

Positions Entry

7 - 15 /UNDEFINE

16 Blank

17 - 80 condition-name

81 - 100 Comments

The /UNDEFINE directive removes a condition-name from the list of

currently-defined conditions. A subsequent /IF DEFINED(condition-name) would

be false. A subsequent /IF NOT DEFINED(condition-name) would be true.

Note: Any conditions specified on the DEFINE parameter will be considered to be

defined when processing /IF and /ELSEIF directives. These conditions can

be removed using the /UNDEFINE directive.

/FREE... /END-FREE (Positions 7-12)

Chapter 2. Compiler Directives 13

Predefined Conditions

Several conditions are defined for you by the RPG compiler. These conditions

cannot be used with /DEFINE or /UNDEFINE. They can only be used with /IF

and /ELSEIF.

Conditions Relating to the Compiler Target

COMPILE_WINDOWS

This condition is defined if your program is being compiled to

produce a Windows native program. (EXE or DLL object.)

COMPILE_JAVA

This condition is defined if your program is being compiled to run

in Java.

Conditional Expressions

A conditional expression has one of the following forms:

v DEFINED(condition-name)

v NOT DEFINED(condition-name)

The condition expression is free-format but cannot be continued to the next line.

Testing Conditions

Conditions are tested using /IF groups, consisting of an /IF directive, followed by

zero or more /ELSEIF directives, followed optionally by an /ELSE directive,

followed by an /ENDIF directive.

Any source lines except compile-time data, are valid between the directives of an

/IF group. This includes nested /IF groups.

Note: There is no practical limit to the nesting level of /IF groups.

/IF Condition-Expression (Positions 7-9)

The /IF compiler directive is used to test a condition expression for conditional

compilation. The following entries are used for /IF:

Positions Entry

7 - 9 /IF

10 Blank

11 - 80 Condition expression

81 - 100 Comments

If the condition expression is true, source lines following the /IF directive are

selected to be read by the compiler. Otherwise, lines are excluded until the next

/ELSEIF, /ELSE or /ENDIF in the same /IF group.

/ELSEIF Condition-Expression (Positions 7-13)

The /ELSEIF compiler directive is used to test a condition expression within an

/IF or /ELSEIF group. The following entries are used for /ELSEIF:

Positions Entry

7 - 13 /ELSEIF

14 Blank

/FREE... /END-FREE (Positions 7-12)

14 VisualAge RPG Language Reference

15 - 80 Condition expression

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, and the condition expression is

true, then source lines following the /ELSEIF directive are selected to be read.

Otherwise, lines are excluded until the next /ELSEIF, /ELSE or /ENDIF in the

same /IF group is encountered.

/ELSE (Positions 7-11)

The /ELSE compiler directive is used to unconditionally select source lines to be

read following a failed /IF or /ELSEIF test. The following entries are used for

/ELSE:

Positions Entry

7 - 11 /ELSE

12 - 80 Blank

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, source lines are selected until the

next /ENDIF.

If the previous /IF or /ELSEIF was satisfied, source lines are excluded until the

next /ENDIF.

/FREE... /END-FREE (Positions 7-12)

Chapter 2. Compiler Directives 15

/ENDIF (Positions 7-12)

The /ENDIF compiler directive is used to end the most recent /IF, /ELSEIF, or

/ELSE group. The following entries are used for /ENDIF:

Positions Entry

7 - 12 /ENDIF

13 - 80 Blank

81 - 100 Comments

Following the /ENDIF directive, if the matching /IF directive was a selected line,

lines are unconditionally selected. Otherwise, the entire /IF group was not

selected, so lines continue to be not selected.

Rules for Testing Conditions

v /ELSEIF, and /ELSE are not valid outside an /IF group.

v An /IF group can contain at most one /ELSE directive. An /ELSEIF directive

cannot follow an /ELSE directive.

v /ENDIF is not valid outside an /IF, /ELSEIF or /ELSE group.

v Every /IF must be matched by a subsequent /ENDIF.

v All the directives associated with any one /IF group must be in the same source

file. It is not valid to have /IF in one file and the matching /ENDIF in another,

even if the second file is in a nested /COPY. However, a complete /IF group can

be in a nested /COPY.

The /EOF Directive

The /EOF directive tells the compiler to ignore the rest of the source lines in the

current source member.

/EOF (Positions 7-10)

The /EOF compiler directive is used to indicate that the compiler should consider

that end-of-file has been reached for the current source file. The following entries

are used for /EOF:

Positions Entry

7 - 10 /EOF

11 - 80 Blank

81 - 100 Comments

/EOF will end any active /IF group that became active during the reading of the

current source member. If the /EOF was in a /COPY file, then any conditions that

were active when the /COPY directive was read will still be active.

Note: If excluded lines are being printed on the listing, the source lines will

continue to be read and listed after /EOF, but the content of the lines will be

completely ignored by the compiler. No diagnostic messages will ever be

issued after /EOF.

Using the /EOF directive will enhance compile-time performance when an entire

/COPY member is to be used only once, but may be copied in multiple times.

(This is not true if excluded lines are being printed).

/FREE... /END-FREE (Positions 7-12)

16 VisualAge RPG Language Reference

/EJECT (Positions 7-12)

Use the compiler directive /EJECT to begin a new page on the compiler listing.

Note: /EJECT is not printed on the compiler listing, but is replaced by a new

page. If the compiler listing is already at the top of a new page, a new page

is not printed on the compiler listing.

To specify a new page, enter the /EJECT statement as follows:

Positions Entry

7-12 /EJECT

13-49 Blank

50-100 Comments

/SPACE (Positions 7-12)

Use the compiler directive /SPACE to control line spacing within the source

section of the compiler listing.

Note: /SPACE is not printed on the compiler listing, but is replaced by the

specified line spacing. The line spacing caused by /SPACE is in addition to

the two lines that are skipped between specification types.

To specify heading information, enter the /SPACE statement as follows:

Positions Entry

7-12 /SPACE

13 Blank

14-16 A positive integer value from 1 through 112 that defines the

number of lines to space. If a number greater than 112 is specified,

112 is used as the /SPACE value. If the number is greater than the

number of lines remaining on the current page, subsequent

specifications begin at the top of the next page.

17-49 Blank

50-100 Comments

/TITLE (Positions 7-12)

Use the compiler directive /TITLE to specify heading information (such as security

classification or titles). This title information appears at the top of each page of the

compiler listing.

A program can contain more than one /TITLE statement. Each /TITLE statement

provides heading information for the compiler listing until another /TITLE

statement is encountered. A /TITLE statement must be the first specification

encountered in order to print information on the first page of the compiler listing.

The information specified by the /TITLE statement is printed in addition to

compiler heading information.

Note: /TITLE is not printed on the compiler listing, but is replaced by the heading

information. The /TITLE statement causes a skip to the next page before the

title is printed.

/FREE... /END-FREE (Positions 7-12)

Chapter 2. Compiler Directives 17

To specify heading information, enter the /TITLE statement as follows:

Positions Entry

7-12 /TITLE

13 Blank

14-100 Title information

/FREE... /END-FREE (Positions 7-12)

18 VisualAge RPG Language Reference

Chapter 3. Indicators

An indicator is a one byte character field which contains either ’1’ (on) or ’0’ (off).

Indicators are generally used to indicate the result of an operation or to condition

the processing of an operation.

Indicators are defined either by an entry on the specification. The positions on the

specification where an indicator is defined determine how the indicator is used. An

indicator that has been defined can then be used to condition calculation and

output operations.

The indicator format can be specified on the definition specifications to define

indicator variables. For a description of how to define character data in the

indicator format, see “Character Data Type” on page 110 and “Position 40 (Internal

Data Type)” on page 263.

The state of most indicators can be changed by calculation operations. All

indicators can be set on with the SETON operation code and set off with the

SETOFF operation code.

This section describes:

v Indicators defined on the VisualAge RPG specifications (record identifying

indicators, field indicators, resulting indicators)

v The Last Record Indicator (LR)

v Assigning field record relation indicators

v Conditioning calculations

v Using indicators in expressions

v Conditioning output

v Indicators referred to as data.

Indicators Defined on the Specifications

The following indicators can be defined on the specifications:

v Record identifying indicator (positions 21 and 22 of the input specifications)

v Field indicator (positions 69 through 74 of the input specifications)

v Resulting indicator (positions 71 through 76 of the calculation specifications)

v *IN array, *IN(xx) array element or *INxx field.

The defined indicator can then be used to condition operations in the program.

Record Identifying Indicators

A record identifying indicator is defined by an entry in positions 21 and 22 of the

input specifications and is set on when the corresponding record type is selected

for processing. That indicator can then be used to condition certain calculation and

output operations. Record identifying indicators do not have to be assigned in any

particular order.

The record identifying indicators are 01-99 and LR.

For an externally described file, a record identifying indicator is optional. If it is

specified, it follows the same rules as for a program described file.

© Copyright IBM Corp. 1994, 2005 19

When a record type is selected for processing, the corresponding record identifying

indicator is set on. All other record identifying indicators are off except when a file

operation code is used to retrieve records from a file. The record identifying

indicator is set on after the record is selected, but before the input fields are moved

to the input area. Indicators can be set off at any time.

If file operation code is used on the calculation specifications to retrieve a record,

the record identifying indicator is set on as soon as the record is retrieved from the

file. It is possible to have several record identifying indicators for the same file, as

well as record-not-found indicators, set on concurrently if several operations are

issued to the same file.

Rules for Assigning Record Identifying Indicators

The following rules apply when assigning record identifying indicators to records

in a program described file:

v The same indicator can be assigned to two or more different record types if the

same operation is to be processed on all record types. To do this, specify the

record identifying indicator in positions 21 and 22, and specify the record

identification codes for the various record types in an OR relationship.

v A record identifying indicator can be associated with an AND relationship, but it

must appear on the first line of the group. Record identifying indicators cannot

be specified on AND lines.

v An undefined record (a record in a program described file that was not

described by a record identification code in positions 23 through 46) causes the

program to halt.

v A record identifying indicator can be specified as a record identifying indicator

for another record type, as a field indicator, or as a resulting indicator. No

diagnostic message is issued, but this use of indicators may cause erroneous

results.

The following rules apply when assigning record identifying indicators to records

in an externally described file:

v AND/OR relationships cannot be used with record format names; however, the

same record identifying indicator can be assigned to more than one record.

v The record format name, rather than the file name, must be specified in

positions 7 through 16.

Field Indicators

A field indicator is defined by an entry in positions 69 and 70, 71 and 72, or 73 and

74 of the input specifications. The field indicators are the general indicators 01-99.

A field indicator can be used to determine if the specified field or array element is

greater than zero, less than zero, zero, or blank:

v Positions 69 through 72 are valid for numeric fields

v Positions 73 and 74 are valid for numeric or character fields

v An indicator specified in positions 69 and 70 is set on when the numeric input

field is greater than zero

v An indicator specified in positions 71 and 72 is set on when the numeric input

field is less than zero

v An indicator specified in positions 73 and 74 is set on when the numeric input

field is zero or when the character input field is blank.

The field indicator can then be used to condition calculation or output operations.

A field indicator is set on when the data for the field or array element is extracted

from the record and the condition it represents is present in the input record. This

20 VisualAge RPG Language Reference

field indicator remains on until another record of the same type is read and the

condition it represents is not present in the input record, or until the indicator is

set off as the result of a calculation.

Rules for Assigning Field Indicators

The following rules apply when assigning field indicators:

v Indicators for plus, minus, zero, or blank are set off at the beginning of the

program. They are not set on until the condition (plus, minus, zero, or blank) is

satisfied by the field being tested on the record just read.

v Field indicators cannot be used with entire arrays. However,an entry can be

madefor an array element. Field indicators are allowed for null-capable fields

only if the User control or ALWNULL(*USRCTL) option is used. See “Database

Null Value Support” on page 137 for information on null value support.

v A numeric input field can be assigned two or three field indicators. However,

only the indicator that signals the result of the test on that field is set on; the

others are set off.

v If the same field indicator is assigned to fields in different record types, its state

(on or off) is always based on the last record type selected.

v When different field indicators are assigned to fields in different record types, a

field indicator remains on until another record of that type is read. Similarly, a

field indicator assigned to more than one field within a single record type

always reflects the status of the last field defined.

v The same field indicator can be specified as a field indicator on another input

specification, as a resulting indicator, as a record identifying indicator, or as a

field record relation indicator. No diagnostic message is issued, but this use of

indicators could cause erroneous results.

v If the same indicator is specified in all three positions, the indicator is always set

on when the record containing this field is selected.

Resulting Indicators

Resulting indicators are used by calculation specifications in the traditional format

(C specifications). They are not used by free-form calculation specifications. For

most operation codes, in either traditional format or free-form, you can use built-in

functions instead of resulting indicators. For more information, see “Built-In

Functions (Alphabetically)” on page 405.

A resulting indicator is defined by an entry in positions 71 through 76 of the

calculation specifications. The purpose of the resulting indicators depends on the

operation code specified in positions 26 through 35. See the individual operation

code in Chapter 26, “Operation Code Details” for a description of the purpose of

the resulting indicators. For example, resulting indicators can be used to test the

result field after an arithmetic operation, to identify a record-not-found condition,

to indicate an exception/error condition for a file operation, or to indicate an

end-of-file condition.

The resulting indicators are 01-99 and LR.

Resulting indicators can be specified in three places (positions 71-72, 73-74, and

75-76) of the calculation specifications. The positions in which the resulting

indicator is defined determine the condition to be tested.

In most cases, when a calculation is processed, the resulting indicators are set off,

and, if the condition specified by a resulting indicator is satisfied, that indicator is

set on. However, there some exceptions to this rule, such as “LOOKUP (Look Up a

Table or Array Element)” on page 599, “SETOFF (Set Indicator Off)” on page 684,

and “SETON (Set Indicator On)” on page 684. A resulting indicator can be used as

Chapter 3. Indicators 21

a conditioning indicator on the same calculation line or in other calculations or

output operations. When it is used on the same line, the prior setting of the

indicator determines whether or not the calculation is processed. If it is processed,

the result field is tested and the current setting of the indicator is determined (see

Figure 3).

Rules for Assigning Resulting Indicators

The following rules apply when assigning resulting indicators:

v Resulting indicators cannot be used when the result field refers to an entire

array.

v If the same indicator is used to test the result of more than one operation, the

last operation processed determines the setting of the indicator.

v The same indicator can be used to test for more than one condition depending

on the operation specified.

Last Record Indicator (LR)

The LR indicator can be used to end the program. This indicator is tested at the

end of each action subroutine to determine if the program should be ended. For

more information see “ENDACT (End of Action Subroutine)” on page 568.

Using Indicators

Indicators defined as record identifying indicators, field indicators, resulting

indicators, *IN, *IN(xx), or *INxx, can be used to condition files, calculation

operations, or output operations. An indicator must be defined before it can be

used as a conditioning indicator. The status (on or off) of an indicator is not

affected when it is used as a conditioning indicator. The status can be changed

only by defining the indicator to represent a certain condition.

Field Record Relation Indicators

Field record relation indicators are specified in positions 67 and 68 of the input

specifications. The valid field record relation indicators are 01-99.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C*

C* Two resulting indicators are used to test for the different

C* conditions in a subtraction operation. These indicators are

C* used to condition the calculations that must be processed for

C* a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)

C* are greater than 40 and is then used to condition all operations

C* necessary to find overtime pay. If Indicator 20 is not on

C* (the employee worked 40 or more hours), regular pay based on a

C* 40-hour week is calculated.

C*

C HRSWKD SUB 40 OVERTM 3 01020

C*

C N20PAYRAT MULT (H) 40 PAY 6 2

C 10OVERTM MULT (H) OVRRAT OVRPAY 6 2

C 10OVRPAY ADD PAY PAY

C*

C* If indicator 20 is on (employee worked less than 40 hours), pay

C* based on less than a 40-hour week is calculated.

C 20PAYRAT MULT (H) HRSWKD PAY

C*

Figure 3. Resulting Indicators Used to Condition Operations

22 VisualAge RPG Language Reference

Note: Field record relation indicators cannot be specified for externally described

files.

Field record relation indicators associate fields with a particular record type when

that record type is one of several in an OR relationship. The field described on the

specification line is available for input only if the indicator specified in the field

record relation entry is on or if the entry is blank. If the entry is blank, the field is

common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators

Specify a record identifying indicator in positions 67 and 68 to relate a field to a

particular record type. When several record types are specified in an OR

relationship, all fields that do not have a field record relation indicator in positions

67 and 68 are associated with all record types in the OR relationship. To relate a

field to just one record type, you enter the record identifying indicator assigned to

that record type in positions 67 and 68 (see Figure 4).

An indicator (01 through 99) that is not a record identifying indicator can also be

used in positions 67 and 68 to condition movement of the field from the input area

to the input fields.

 The file in Figure 4 contains two different types of records, one identified by a 5 in

position 1 and the other by a 6 in position 1. The FLDC field is related by record

identifying indicator 14 to the record type identified by a 5 in position 1. The

FLDD field is related to the record type having a 6 in position 1 by record

identifying indicator 16. This means that FLDC is found on only one type of record

(that identified by a 5 in position 1) and FLDD is found only on the other type.

FLDA is conditioned by indicator 07, which was previously defined elsewhere in

the program. FLDB is found on both record types because it is not related to any

one type by a record identifying indicator.

Indicators Conditioning Calculations

Calculation specifications in the traditional format (C specifications) can include

conditioning indicators positions 9 through 11. Conditioning indicators are not

used by free-form calculation specifications.

Indicators that specify the conditions under which a calculation is performed are

defined elsewhere in the program.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr....

IREPORT AA 14 1 C5

I OR 16 1 C6

I 20 30 FLDB

I 2 10 FLDA 07

I*

I* Indicator 07 was specified elsewhere in the program.

I*

I 40 50 FLDC 14

I 60 70 FLDD 16

Figure 4. Field Record Relation

Chapter 3. Indicators 23

Positions 7 and 8

Specify blanks, SR, AN or OR in positions 7 and 8 of the calculation specifications.

If positions 7 and 8 are blank, the calculation is processed when specified by the

program logic, by a statement in a subroutine, or by a declarative operation.

Positions 9-11

To specify indicators that control the conditions under which an operation is

processed, specify positions 9 through 11 on the calculation specifications. If N is

specified in position 9, the indicator should be tested for the value of off (’0’). 01-99

or LR can be specified for positions 10 through 11.

Any indicator used in positions 9 through 11 must be previously defined as one of

the following types of indicators:

v Record identifying indicators (input specifications, positions 21 and 22)

v Field indicators (input specifications, positions 69 through 74)

v Resulting indicators (calculation specifications, positions 71 through 76)

v *IN array, *IN(xx) array element, or *INxx field. See “Indicators Referred to as

Data” on page 26 for a description of how an indicator is defined when used

with one of these reserved words.

If the indicator must be off to condition the operation, place an N in position 9.

The indicators in grouped AND/OR lines must all be exactly as specified before

the operation is done.

Figure 5 and Figure 6 show examples of conditioning indicators.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

IFilename++Sq..RiPos1NCCPos2NCCPos3NCC.PFromTo++DField+L1M1FrPlMnZr...*

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr....

I*

I* Field indicators can be used to condition operations. Assume the

I* program is to find weekly earnings including overtime. The over-

I* time field is checked to determine if overtime was entered.

I* If the employee has worked overtime, the field is positive and -

I* indicator 10 is set on. In all cases the weekly regular wage

I* is calculated. However, overtime pay is added only if

I* indicator 10 is on.

I*

ITIME AB 01

I 1 7 EMPLNO

I 8 10 0OVERTM 10

I 15 20 2RATE

I 21 25 2RATEOT

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C*

C* Field indicator 10 was assigned on the input specifications.

C* It is used here to condition calculation operations.

C*

C EVAL (H) PAY = RATE * 40

C 10 EVAL (H) PAY = PAY + (OVERTM * RATEOT)

Figure 5. Conditioning Operations (Field Indicators)

24 VisualAge RPG Language Reference

Indicators Used in Expressions

Indicators can be used as booleans in expressions in the extended-factor 2 field of

the calculation specification. They must be referred to as data (that is, using *IN or

*INxx). Figure 7 demonstrate this.

 See Chapter 24, “Expressions,” on page 381 and “EVAL (Evaluate Expression)” on

page 571 for more information.

Indicators Conditioning Output

Indicators used to specify the conditions under which an output record or an

output field is written must be previously defined in the program. Indicators to

condition output are specified in positions 21 through 29. All indicators are valid

for conditioning output.

The indicators you use to condition output must be previously defined as one of

the following types of indicators:

v Record identifying indicators (input specifications, positions 21 and 22)

v Indicators set by the VisualAge RPG program such as 01-99

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr....

I*

I* A record identifying indicator is used to condition an operation.

I* When a record is read with a T in position 1, the 01 indicator is

I* set on. If this indicator is on, the field named SAVE is added

I* to SUM. When a record without T in position 1 is read, the 02

I* indicator is set on. The subtract operation, conditioned by 02,

I* then performed instead of the add operation.

I*

IFILE AA 01 1 CT

I OR 02 1NCT

I 10 15 2SAVE

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C*

C* Record identifying indicators 01 and 02 are assigned on the input

C* specifications. They are used here to condition calculation

C* operations.

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C 01 ADD SAVE SUM 8 2

C 02 SUB SAVE SUM 8 2

Figure 6. Conditioning Operations (Record Identifying Indicators)

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C* In these examples, the IF structure is performed only if 01 is on.

C* *IN01 is treated as a boolean with a value of on or off.

C* In the first example, the value of the indicator (’0’ or ’1’) is

C* checked.

C IF *IN01

C* In the second example, the logical expression B < A is evaluated.

C* If true, 01 is set on. If false 01 is set off. This is analogous

C* to using COMP with A and B and placing 01 in the appropriate

C* resulting indicator position.

C EVAL *IN01 = B < A

Figure 7. Indicators Used in Expressions

Chapter 3. Indicators 25

v *IN array, *IN(xx) array element, or *INxx field.

If an indicator conditions an entire record, enter the indicator on the line that

specifies the record type. If an indicator conditions when a field is to be written,

enter the indicator on the same line as the field name.

Conditioning indicators are not required on output lines. If conditioning indicators

are not specified, the line is output every time that type of record is checked for

output. If conditioning indicators are specified, one indicator can be entered in

each of the three separate output indicator fields (positions 22 and 23, 25 and 26,

and 28 and 29). If these indicators are on, the output operation is done. An N in

the position preceding each indicator (positions 21, 24, or 27) means that the

output operation is done only if the indicator is not on (a negative indicator). No

output line should be conditioned by all negative indicators; at least one of the

indicators should be positive.

Output indicators can be specified in an AND/OR relationship by specifying

AND/OR in positions 16 through 18. An unlimited number of AND/OR lines can

be used. AND/OR lines can be used to condition output records, but they cannot

be used to condition fields. However, a field can be conditioned with more than

three indicators by using the EVAL operation in calculations. Figure 8 illustrates

this.

Indicators Referred to as Data

Another way of referring to and manipulating indicators is to use the *IN and

*INxx reserved words.

*IN

The array *IN is a predefined array of 99 one-position, character elements

representing the indicators 01 through 99. The elements of the array should contain

only the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN(xx) variable-index array element as a

field in an input record, as a result field, or as factor 1 in a PARM operation

defines indicators 01 through 99 for use in the program.

The operations or references valid for an array of single character elements are

valid with the array *IN except that the array *IN cannot be specified as a subfield

in a data structure, or as a result field of a PARM operation.

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C* Indicator 20 is set on only if indicators 10, 12, 14,16, and 18

C* are set on.

C EVAL *IN20 = *IN10 AND *IN12 AND *IN14

C AND *IN16 AND *IN18

C EXCPT

OFilename++EAddN01N02N03Excnam++++.......................................

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat

O* OUTFIELD is conditioned by indicator 20, which effectively

O* means it is conditioned by all the indicators in the EVAL

O* operation.

OPRINTER E

O 20 OUTFIELD

Figure 8. Using EVAL with indicators

26 VisualAge RPG Language Reference

*INxx

The field *INxx is a predefined one-position character field where xx represents

any one of the indicators.

The specification of the *INxx field or the *IN(n) fixed-index array element (where

n = 1 - 99) as a field in an input record, as a result field, or as factor 1 in a PARM

operation defines the corresponding indicator for use in the program.

Specify *INxx wherever a one-position character field is valid. *INxx cannot be

specified as a subfield in a data structure, as the result field of a PARM operation,

or in a SORTA operation.

Chapter 3. Indicators 27

Rules for Specifying Indicators Referred to as Data

The following rules apply to *IN, the array element *IN(xx) or the field *INxx:

v Moving a character '0' (zero) or *OFF to any of these fields sets the

corresponding indicator off.

v Moving a character '1' (one) or *ON to any of these fields sets the corresponding

indicator on.

v Do not move any value, other than '0' (zero) or '1' (one), to *INxx.

v If you take the address of *IN, *IN01 - *IN99, or *IN(index), indicators *IN01 to

*IN99 will be defined. If you take the address of any other indicator, such as

*INLR, only that indicator will be defined.

See Figure 9 for some examples of indicators referred to as data.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C*

C* When this program is called, a single parameter is passed to

C* control some logic in the program. The parameter sets the value

C* of indicator 50. The parameter must be passed with a character

C* value of 1 or 0.

C*

C *ENTRY PLIST

C *IN50 PARM SWITCH 1

C*

C*

C* Subroutine SUB1 uses indicators 61 through 68. Before the

C* subroutine is processed, the status of these indicators used in

C* the mainline program is saved. (Assume that the indicators are

C* set off in the beginning of the subroutine.) After the subroutine

C* is processed, the indicators are returned to their original state.

C*

C*

C MOVEA *IN(61) SAV8 8

C EXSR SUB1

C MOVEA SAV8 *IN(61)

C*

C* A code field (CODE) contains a numeric value of 1 to 5 and is

C* used to set indicators 71 through 75. The five indicators are set

C* off. Field X is calculated as 70 plus the CODE field. Field X is

C* then used as the index into the array *IN. Different subroutines

C* are then used based on the status of indicators 71 through 75.

C*

C MOVEA ’00000’ *IN(71)

C 70 ADD CODE X 3 0

C MOVE *ON *IN(X)

C 71 EXSR CODE1

C 72 EXSR CODE2

C 73 EXSR CODE3

C 74 EXSR CODE4

C 75 EXSR CODE5

Figure 9. Examples of Indicators Referred to as Data

28 VisualAge RPG Language Reference

Summary of Indicators

 Table 2. When Indicators Are Set On and Off

Type of Indicator Set On Set Off

Record

identifying

Immediately after record is read By the programmer

Field indicator By blank or zero in specified fields,

by plus in specified field, or by

minus in specified field.

Before this field status is to be

tested the next time.

Resulting When the calculation is processed

and the condition that the

indicator represents is met.

The next time a calculation is

processed for which the same

indicator is specified as a resulting

indicator and the specified

condition is not met.

LR By the programmer. By the programmer.

Chapter 3. Indicators 29

30 VisualAge RPG Language Reference

Chapter 4. Working with Components

One of three possible target objects can result from a compilation. The result

depends on the control specification keyword used:

v A component is created when the NOMAIN and EXE keywords are not present.

v A utility, or NOMAIN, DLL is created when the NOMAIN keyword is specified.

This DLL contains only RPG subprocedures.

v An RPG EXE is created when the EXE keyword is specified. This module

contains a main procedure and subprocedures.

This section describes how to start and stop components, as well as how to

initialize and terminate components. For an overview of creating and using

NOMAIN DLLs and EXEs, see Chapter 6, Chapter 6, “Subprocedures and

Prototypes,” on page 63.

Starting and Stopping Components

The START and STOP operation codes allow you to execute multiple components

in an application. The START operation starts a new component in an application.

The STOP operation terminates the execution of a component.

For more information on these operation codes, see “START (Start Component or

Call Local Program)” on page 689 and “STOP (Stop Component)” on page 691.

Initializing Components

A VisualAge RPG application can consist of one or more components. Each

component is started independently. The first (primary) component is started when

the application is run. All subsequent (secondary) components get started by the

user or the program depending on the events that occur and the action subroutines

that handle the events. Secondary components can be started in any order.

The EXE file for the application invokes the primary component. Parameters can

be passed to this component from the command line. Each parameter is converted

from the character string entered to the target data type of the parameters on the

*ENTRY PLIST.

Secondary components are invoked using the START operation code from either

the primary component or from other secondary components. Parameters can be

passed to secondary components using the PARM and PLIST operation codes.

Parameters are not converted for a secondary component.

After a component receives any parameters, the following occurs:

1. The program fields are initialized.

2. Files are opened and data structures, prerun-time arrays and tables are loaded.

3. For any *ENTRY PLIST parameters, the result field is moved to factor 1.

4. If a user initialization subroutine (*INZSR) is specified, it is run. Most operation

dealing with the component’s parts and events will not work at this time

because the component’s run-time environment has not been initialized.

5. For any *ENTRY PLIST parameters, factor 2 is copied to the result field.

6. Data structures and variables to be used by the RESET operation are saved.

7. The component’s run-time environment is initialized.

© Copyright IBM Corp. 1994, 2005 31

8. If action subroutines have been written for them, an initial set of events is

handled for the initial set of windows and their parts. For example, any

window and its parts which have startup attributes specifying ″Open

Immediately″ cause a CREATE event. Any events generated during the

execution of these action subroutines also invoke any action subroutines written

for them at this time.

Once initialization for a component is complete, the component’s parts are

available to the application. The end user can generate events to invoke action

subroutine in any of the currently opened components.

There are cases where certain operation codes, attributes and the default exception

handler are not allowed during initialization of the application. For example, you

cannot obtain an attribute of a part before the part has been created. For more

information, see Table 3 on page 35, Table 4 on page 36, Table 5 on page 37, and

Table 6 on page 39.

Terminating Components

Components are terminated by either ending the primary component or by ending

a component which started one or more components. When multiple components

are terminated, the components are terminated in reverse hierarchical order. Each

component has its *TERMSR called (normal termination) in reverse hierarchical

order. Each component, in turn, goes though its cleanup and termination (for

example, closing files).

When a component ends abnormally in a multiple component application, only

that component ends abnormally. Any other components that also get ended, end

normally.

Normal Termination

A component terminates normally in the following situations:

v If LR is on when ENDACT is reached for the root action subroutine or if

RETURN is executed from the root action subroutine.

The root action subroutine is the subroutine at the bottom (or first) of any nested

action subroutines. Nested action subroutines occur when an event invokes a

new action subroutine while executing another action subroutine.

For example, the action subroutine BUTTON+CLICK+WINDOW1 contains the

SHOWWIN ’window2’ operation. This causes a CREATE event which invokes

the action subroutine WINDOW2+CREATE+WINDOW2. If another event occurs

while the CREATE event is being handled, (for example, ’WINDOWX’ SETATR 1

’FOCUS’), then the action subroutine WINDOW2+CREATE+WINDOW2 is

suspended and action subroutine WINDOWX+FOCUS+WINDOWX is invoked.

The call stack includes the following nested action subroutines:

 1. FIELD1+FOCUS+WINDOWX

 2. WINDOW2+CREATE+WINDOW2

 3. BUTTON+CLICK+WINDOW1 (root action subroutine)

LR is not checked until:

1. The action subroutine WINDOWX+FOCUS+WINDOWX ends

2. The action subroutine WINDOW2+CREATE+WINDOW2 ends

3. The ENDACT or RETURN operation is performed for the

BUTTON+CLICK+WINDOW1 action subroutine.
v If STOP is performed on the component. For more information, see “STOP (Stop

Component)” on page 691.

v If the *PSSR is executed and it ends with one of the following:

32 VisualAge RPG Language Reference

– ENDSR ’*DEFAULT’ or an equivalent field name. The LR indicator is on at

the end of the root action subroutine.

– ENDSR ’*NODEFAULT’ or an equivalent field name. The LR indicator is on

at the end of the root action subroutine.

For more information, see “ENDSR (End of User Subroutine)” on page 569 and

“Component Errors/Exceptions” on page 58.

v If the default exception handler puts up the message information window and

one of the following choices is made:

– Do Default Processing and the LR indicator is on at the end of the root action

subroutine

– Do Not Do Default Processing and the LR indicator is on at the end of the

root action subroutine

For more information, see “Component Errors/Exceptions” on page 58.

Chapter 4. Working with Components 33

The following occurs for normal termination:

v If *TERMSR exists, it is run

v Files, prerun-time arrays and tables, and data area data structures are written

v All files are closed

v All data area are unlocked.

*TERMSR is a user-written subroutine where any final code execution can occur.

When *TERMSR is invoked, no action subroutines are active and the current

component has been marked as being in termination. This means that few

graphical user interface operations are allowed. See Table 3 on page 35, Table 4 on

page 36, Table 5 on page 37, and Table 6 on page 39.

See “Component Status Codes” on page 58 for a list of status values for normal

component termination.

Abnormal Termination

A component terminates abnormally if any of the following situations occurs:

v The *PSSR is executed and it ends with one of the following:

– ENDSR ’*ENDCOMP’, ENDSR ’*CANCL’, or an equivalent field name

– ENDSR ’*ENDAPPL’ or an equivalent field name
v The default exception handler puts up the message information window and

one of the following choices is made:

– Terminate Component

– Terminate Application
v An abnormal condition occurs in the GUI during run time.

The following occurs for abnormal termination:

v All files are closed

v All data areas are unlocked.

Note: *TERMSR is not called for abnormal termination.

34 VisualAge RPG Language Reference

Initializing, Terminating, and Event Handling Restrictions

There are cases where certain operation codes, attributes, and the default exception

handler are not allowed during some stage of an application. The following tables

describes various restrictions during initialization, termination, or normal event

handling.

 Table 3. Operation Code Restrictions during Initialization, Termination, and Event Handling

GUI Operation

Initialization

(*INZSR)

Termination

(*TERMSR) Event Handling

CLSWIN Not allowed Not allowed No restrictions

DSPLY No restrictions Not allowed The information

window that is

displayed interferes

with any events that

have been posted. If

the DSPLY operation

is performed from

the same subroutine

or from a nested

action subroutine

after a CLSWIN or

STOP operation has

been performed (for

example, the Close

Window or Close

Component events

are still pending), the

pending events are

received by the

DSPLY operation but

are not performed.

SHOWWIN Not allowed Not allowed The same operation

code cannot be

performed multiple

times from within the

same action

subroutine or nested

action subroutine.

For example, an

action subroutine

contains:

 SHOWWIN ’WIN1’

 CLSWIN ’WIN1’

 SHOWWIN ’WIN1’

In this case, the

second SHOWWIN

fails.

Chapter 4. Working with Components 35

Table 3. Operation Code Restrictions during Initialization, Termination, and Event

Handling (continued)

GUI Operation

Initialization

(*INZSR)

Termination

(*TERMSR) Event Handling

START No restrictions No restrictions The same operation

code cannot be

performed multiple

times from within the

same action

subroutine or nested

action subroutine.

For example, an

action subroutine

contains:

 START ’COMP2’

 STOP ’COMP2’

 STOP ’COMP2’

In this case, the

second STOP fails.

STOP ’self’ Not allowed Not allowed A component cannot

be ended from a

nested action

subroutine.

STOP ’other’ Cannot end your

parent component

Cannot end your

parent component

A component cannot

be ended from a

nested action

subroutine.

 Table 4. Attribute Restrictions during Initialization, Termination, and Event Handling

Attribute

Initialization

(*INZSR)

Termination

(*TERMSR) Event Handling

Part attributes

(GETATR, SETATR,

%GETATR,

%SETATR)

Not allowed Not allowed No restrictions

Event attributes

(%PART, ...)

Not allowed Not allowed No restrictions

System attributes

(%DSPWIDTH,

%DSPHEIGHT)

Not allowed Not allowed No restrictions

36 VisualAge RPG Language Reference

Table 5. Default Exception Handler Restrictions during Initialization, Termination, and Event

Handling

Attribute

Initialization

(*INZSR)

Termination

(*TERMSR) Event Handling

Message information

window,

Do default processing

No restrictions The component is

terminated and an

asynchronous

information window

is displayed.

The information

window that is

displayed interferes

with any events that

have been posted. If

this operation is

performed from the

same subroutine or a

nested action

subroutine after a

CLSWIN or STOP

operation has been

performed (for

example, the Close

Window or Close

Component events

are still pending), the

pending events are

received by this

operation and are not

performed.

Message information

window,

Do not do default

processing

No restrictions The component is

terminated and an

asynchronous

information window

is displayed.

The information

window that is

displayed interferes

with any events that

have been posted. If

this operation is

performed from the

same subroutine or a

nested action

subroutine after a

CLSWIN or STOP

operation has been

performed (for

example, the Close

Window or Close

Component events

are still pending), the

pending events are

received by this

operation and are not

performed.

Chapter 4. Working with Components 37

Table 5. Default Exception Handler Restrictions during Initialization, Termination, and Event

Handling (continued)

Attribute

Initialization

(*INZSR)

Termination

(*TERMSR) Event Handling

Message information

window,

Terminate component

No restrictions The component is

terminated and an

asynchronous

information window

is displayed.

A component cannot

be ended from a

nested action

subroutine. The

information window

that is displayed

interferes with any

events that have been

posted. If this

operation is

performed from the

same subroutine or a

nested action

subroutine after a

CLSWIN or STOP

operation has been

performed (for

example, the Close

Window or Close

Component events

are still pending), the

pending events are

received by this

operation and are not

performed.

Message information

window,

Terminate application

No restrictions The component is

terminated and an

asynchronous

information window

is displayed.

The information

window that is

displayed interferes

with any events that

have been posted. If

this operation is

performed from the

same subroutine or a

nested action

subroutine after a

CLSWIN or STOP

operation has been

performed (for

example, the Close

Window or Close

Component events

are still pending), the

pending events are

received by this

operation and are not

performed.

38 VisualAge RPG Language Reference

Table 6. Restrictions for Ending Components during Initialization, Termination, and Event

Handling

Ending a

Component

Initialization

(*INZSR)

Termination

(*TERMSR) Event Handling

*PSSR BEGSR..

ENDSR ’*DEFAULT’

No restrictions No restrictions No restrictions

*PSSR BEGSR..

ENDSR

’*NODEFAULT’

No restrictions No restrictions No restrictions

*PSSR BEGSR..

ENDSR

’*ENDCOMP’ or

ENDSR ’*CANCL’

No restrictions No restrictions A component cannot

be ended from a

nested action

subroutine.

*PSSR BEGSR..

ENDSR ’*ENDAPPL’

No restrictions No restrictions A component cannot

be ended from a

nested action

subroutine.

Chapter 4. Working with Components 39

40 VisualAge RPG Language Reference

Chapter 5. Error and Exception Handling

Exception/errors fall into two classes: program and file. Information on file and

program exception/errors is made available to a VARPG program using file

information data structures and program status data structures, respectively. File

and Program exception/error subroutines may be specified to handle these types

of exception/errors. This section describes error and exception handling for files,

programs, and components.

File Exception/Errors

Some examples of file exception/errors are: undefined record type, an error in

trigger program, an I/O operation to a closed file, a device error, and an

array/table load sequence error. They can be handled in one of the following

ways:

v The operation code extender ’E’ can be specified. When specified, before the

operation begins, this extender sets the %ERROR and %STATUS built-in

functions to return zero. If an exception/error occurs during the operation, then

after the operation %ERROR returns ’1’ and %STATUS returns the file status.

The optional file information data structure is updated with the exception/error

information. You can determine the action to be taken by testing %ERROR and

%STATUS.

v An indicator can be specified in positions 73 and 74 of the calculation

specifications for an operation code. This indicator is set on if an exception/error

occurs during the processing of the specified operation. The optional file

information data structure is updated with the exception/error information. You

can determine the action to be taken by testing the indicator.

v ON-ERROR groups can be used to handle errors for statements processed within

a MONITOR block. If an error occurs when a statement is processed, control

passes to the appropriate ON-ERROR group.

v A file exception/error subroutine can be specified. The subroutine is defined by

the INFSR keyword on a file description specification with the name of the

subroutine that is to receive the control. Information regarding the file

exception/error is made available through a file information data structure that

is specified with the INFDS keyword on the file description specification. You

can also use the %STATUS built-in function, which returns the most recent value

set for the program or file status. If a file is specified, %STATUS returns the

value contained in the INFDS *STATUS field for the specified file.

v If the indicator, ’E’ extender, MONITOR block,or the file exception/error

subroutine is not present, any file exception/errors are handled by the

VisualAge RPG default error handler.

File Information Data Structure

The file information data structure provides information for file errors. A file

information data structure (INFDS) can be defined for each file to make file

exception, error, and file feedback information available to the program. This data

structure must be unique for each file. It contains the following feedback

information:

v File Feedback (positions 1 to 80)

v Open Feedback (positions 81 to 240)

v Input/Output Feedback (241 to 366)

v Device-Specific Feedback (position 367)

© Copyright IBM Corp. 1994, 2005 41

Note: The length of the INFDS depends on what fields you have declared in your

INFDS.

File Feedback Information

The file feedback information starts in position 1 and ends in position 80 in the

INFDS. It contains data about the file which is specific to the VisualAge RPG

program, including:

v The name of the file for which the exception or error occurred

v The record being processed when the exception or error occurred or the record

that caused the exception or error

v The last operation being processed when the exception or error occurred

v The status code

v The routine where the exception or error occurred.

Note: Overwriting the file feedback section can cause unexpected results in

subsequent error handling and is not recommended.

The location of some of the more commonly used subfields in the file feedback

section is defined by special keywords. Table 7 summarizes these keywords.

 Table 7. File Feedback Information in the INFDS

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

1 8 Character 8 *FILE The first 8 characters of the file

name

9 9 Character 1 Open indication (1 = open)

10 10 Character 1 End of file (1 = end of file)

11 15 Zoned

decimal

5,0 *STATUS Status code. See “File Status

Codes” on page 49.

42 VisualAge RPG Language Reference

Table 7. File Feedback Information in the INFDS (continued)

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

16 21 Character 6 *OPCODE Operation code. The first five

positions (left-adjusted) specify the

type of operation by using the

character representation of the

calculation operation codes. For

example, if a READE was being

processed, READE is placed in the

leftmost five positions.

Operation codes which have 6

letter names are be shortened to 5

letters.

DELETE

DELET

EXCEPT

EXCPT

READPE

REDPE

UNLOCK

UNLCK

UPDATE

UPDAT

The remaining position contains

one of the following:

F The last operation was

specified for a file name.

R The last operation was

specified for a record.

I The last operation was an

implicit file operation.

22 29 Character 8 *ROUTINE First 8 characters of the procedure

name or zero if the call is by

procedure pointer

30 37 Character 8 Source listing line number

38 42 Zoned

decimal

5,0 User-specified reason for error on

SPECIAL file

38 45 Character 8 *RECORD For a program described file the

record identifying indicator is

placed left-adjusted in the field;

the remaining six positions are

filled with blanks.

For an externally described file,

the first 8 characters of the name

of the record being processed

when the exception or error

occurred.

Chapter 5. Error and Exception Handling 43

Table 7. File Feedback Information in the INFDS (continued)

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

46 52 Character 7 Machine or system message

number

53 66 Character 14 Unused

For a complete description of the contents of the file feedback area, see the DB2®

Universal Database™ section of the Database and File Systems category in the

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

INFDS File Feedback Example: To define an INFDS which contains fields in the

file feedback section, specify the following entries:

v Specify the INFDS keyword on the file description specification with the name

of the file information data structure

v Specify the file information data structure and the subfields you wish to use on

a definition specification

v Specify special keywords left-adjusted, in the FROM field (positions 26-32) on

the definition specification, or specify the positions of the fields in the FROM

field (position 26-32) and the TO field (position 33-39).

Note: The keywords are not labels and cannot be used to access the subfields.

Short entries are padded on the right with blanks.

Open Feedback Information

Positions 81 through 240 in the file information data structure contain open

feedback information. The contents of this area are copied to the open feedback

section whenever the file associated with the INFDS is opened. This includes

members opened as a result of a read operation on a multi-member processed file.

Note: Open feedback information is not provided for printer files, however device

feedback information is provided for printer files. See the DB2 Universal

Database section of the Database and File Systems category in the Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter for

a complete description of the contents of the open feedback area.

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++Comments++++++++++

FMYFILE IF E DISK INFDS(FILEFBK) REMOTE

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++

DFILEFBK DS

D FILE *FILE * File name

D OPEN_IND 9 9 * File open?

D EOF_IND 10 10 * File at eof?

D STATUS *STATUS * Status code

D OPCODE *OPCODE * Last Opcode

D ROUTINE *ROUTINE * RPG Routine

D LIST_NUM 30 37 * Listing line

D SPCL_STAT 38 42S 0 * SPECIAL status

D RECORD *RECORD * Record name

D MSGID 46 52 * Error MSGID

Figure 10. Example of Coding an INFDS with File Feedback Information

44 VisualAge RPG Language Reference

INFDS Open Feedback Example: To define an INFDS which contains fields in

the open feedback section, specify the following entries:

v Specify the INFDS keyword on the file description specification with the name

of the file information data structure

v Specify the file information data structure and the subfields you wish to use on

a definition specification.

v Use information in the DB2 Universal Database section of the Database and File

Systems category in the Information Center to determine which fields you wish

to include in the INFDS. To calculate the From and To positions (positions 26

through 32 and 33 through 39 of the definition specifications) that specify the

subfields of the open feedback section, use the Offset, Data Type, and Length

given in the Information Center and do the following calculations:

 From = 81 + Offset

 To = From - 1 + Character_Length

 Character_Length = Length (in bytes)

Input/Output Feedback Information

Positions 241 through 366 in the file information data structure are used for

input/output feedback information. The contents of the file common input/output

feedback area are copied to the input/output feedback section only after a POST

for the file. For more information see “POST (Post)” on page 652.

A description of the contents of the input/output feedback area can be found in

the DB2 Universal Database section of the Database and File Systems category in the

Information Center.

Note: I/O feedback information is not provided for printer files, however

device-specific feedback information is provided for printer files.

INFDS Input/Output Feedback Example: To define an INFDS which contains

fields in the open feedback section, specify the following entries:

v Specify the INFDS keyword on the file description specification with the name

of the file information data structure

v Specify the file information data structure and the subfields you wish to use on

a definition specification.

v Use information in the DB2 Universal Database section of the Database and File

Systems category in the Information Center to determine which fields you wish

to include in the INFDS. To calculate the From and To positions (positions 26

through 32 and 33 through 39 of the definition specifications) that specify the

subfields of the input/output feedback section, use the Offset, Data Type, and

Length given in Information Center and do the following calculations:

 From = 241 + Offset

 To = From - 1 + Character_Length

 Character_Length = Length (in bytes)

For example, for device class of a file, Information Center gives:

 Offset = 30

 Data Type is character

 Length = 2

Therefore,

 From = 241 + 30 = 271,

 To = 271 - 1 + 2 = 272.

See subfield DEV_CLASS in Figure 11 on page 46.

Chapter 5. Error and Exception Handling 45

Device-Specific Feedback Information

The device-specific feedback information in the file information data structure

starts at position 367 in the INFDS. It contains input/output feedback information

specific to a database or printer device.

The length of the INFDS when device-specific feedback information is required, is

variable and depends on whether the device type of the file is variable and on

whether the file is keyed or not (if it’s a DISK file).

For externally-described DISK files, the INFDS is at least long enough to hold the

longest key in the file beginning at position 401.

The contents of the device-specific input/output feedback area of the file are

copied to the device-specific feedback section of the INFDS only after a POST for

the file. For more information, see “POST (Post)” on page 652.

INFDS Device-Specific Feedback Examples: To define an INFDS which contains

fields in the device feedback section, specify the following entries:

v Specify the INFDS keyword on the file description specification with the name

of the file information data structure

v Specify the file information data structure and the subfields you wish to use on

a definition specification

v Use information in the DB2 Universal Database section of the Database and File

Systems category in the Information Center to determine which fields you wish

to include in the INFDS. To calculate the From and To positions (positions 26

through 32 and 33 through 39 of the definition specifications) that specify the

subfields of the device-specific feedback, use the Offset, Data Type, and Length

given in the Information Center and do the following calculations:

 From = 367 + Offset

 To = From - 1 + Character_Length

 Character_Length = Length (in bytes)

For example, for relative record number of a data base file, the Information

Center uses:

 Offset = 30

 Data Type is binary

 Length = 4

Therefore,

 From = 367 + 30 = 397,

 To = 397 - 1 + 4 = 400.

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++Comments++++++++++++

FMYFILE IF E DISK INFDS(MYIOFBK) REMOTE

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++

DMYIOFBK DS

D * 241-242 not used

D WRITE_CNT 243 246B 0 * Write count

D READ_CNT 247 250B 0 * Read count

D WRTRD_CNT 251 254B 0 * Write/read count

D OTHER_CNT 255 258B 0 * Other I/O count

D OPERATION 260 260 * Current operation

D IO_RCD_FMT 261 270 * Rcd format name

D DEV_CLASS 271 272 * Device class

D IO_PGM_DEV 273 282 * Pgm device name

D IO_RCD_LEN 283 286B 0 * Rcd len of I/O

Figure 11. Coding Input/Output Feedback Information

46 VisualAge RPG Language Reference

See subfield DB_RRN in the DBFBK data structure in Figure 12.

Blocking Considerations: The fields of the input/output specific feedback area

and in most cases the fields of the device-specific feedback information area, are

not updated for each operation to the file in which the records are blocked and

unblocked, except for key and relative record number. The exception to this occurs

when a POST operation is performed. In this case, all of the fields of the

input/output specific and device-specific feedback areas are updated. In a POST

operation, the key and relative record number are updated with information from

the current record, not the last record in the block.

File Exception and Error Subroutine (INFSR)

To identify the subroutine that receives control following any file exceptions or

errors, specify the INFSR keyword on the File Description specification with the

name of the subroutine. The subroutine name can be *PSSR, which indicates that

the program exception/error subroutine is given control for the exception and

errors on this file.

A file exception/error subroutine receives control when an exception or error

occurs on a file operation that does not have an indicator specified in positions 73

and 74, does not have an (E) extender, and is not in the monitor block of a

MONITOR group that can handle the error.. The file exception/error subroutine

can also be run by the EXSR operation code. Any of the operation codes can be

used in the file exception/error subroutine. Factor 1 of the BEGSR operation and

factor 2 of the EXSR operation must contain the name of the subroutine that

receives control (same name as specified with the INFSR keyword on the file

description specifications). The ENDSR operation must be the last specification for

the file exception/error subroutine and must be specified as follows:

Position Entry

6 C

7-11 Blank

12-25 Can contain a label that is used in a GOTO specification within the

subroutine.

26-35 ENDSR

36-49 Optional entry to designate where control is to be returned

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++Comments++++++++++

FMYFILE IF E DISK INFDS(DBFBK) REMOTE

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++

DDBFBK DS

D FDBK_SIZE 367 370B 0 * Size of DB fdbk

D JOIN_BITS 371 374B 0 * JFILE bits

D LOCK_RCDS 377 378B 0 * Nbr locked rcds

D POS_BITS 385 385 * File pos bits

D DLT_BITS 384 384 * Rcd deleted bits

D NUM_KEYS 387 388B 0 * Num keys (bin)

D KEY_LEN 393 394B 0 * Key length

D MBR_NUM 395 395B 0 * Member number

D DB_RRN 397 400B 0 * Relative-rcd-num

D KEY 401 2400 * Key value (max

D * size 2000)

Figure 12. Example of Coding an INFDS with Database Specific Feedback Information

Chapter 5. Error and Exception Handling 47

following processing of the subroutine. The entry must be a

character field, literal, or array element whose value specifies one

of the following return points.

Note: If the return points are specified as literals, they must be

enclosed in apostrophes. If they are specified as named

constants, the constants must be character and must contain

only the return point with no leading blanks. If they are

specified in fields or array elements, the value must be

left-adjusted in the field or array element.

*DEFAULT

Return control from the current action subroutine and

perform the default processing associated with the current

event.

*NODEFAULT

Return control from the current action subroutine. Do not

perform any default processing. If LR is on when

processing reaches this point, the component is terminated,

and the *DEFAULT and *NODEFAULT return points are

ignored.

*CANCL

Terminate the component abnormally.

*ENDAPPL

Terminate all currently active components, ending the

application.

*ENDCOMP

Terminate the component abnormally.

Blanks

Return control to the default error handler. This applies

when factor 2 is a value of blanks and when factor 2 is not

specified. If the subroutine was called by the EXSR

operation and factor 2 is blank, control returns to the next

sequential instruction. Blanks are only valid at run time.

50-76 Blank.

Remember the following when specifying the file exception/error subroutine:

v You can explicitly call the file exception/error subroutine by specifying the name

of the subroutine in factor 2 of the EXSR operation.

v After the ENDSR operation of the file exception/error subroutine is run, the

field or array element in factor 2 is reset to blanks. If you do not place a value in

this field during the processing of the subroutine, the default error handler

receives control following processing of the subroutine unless the subroutine

was called by the EXSR operation. Because factor 2 is set to blanks, you can

specify the return point within the subroutine that is best suited for the

exception or error that occurred. If the subroutine was called by the EXSR

operation, control returns to the next sequential instruction following the EXSR

operation. A file exception/error subroutine can handle errors in more than one

file.

v If a file exception or error occurs during the start or end of a program, control

passes to the default error handler, and not to the user-written file exception

/error or subroutine (INFSR).

48 VisualAge RPG Language Reference

v Because the file exception/error subroutine may receive control whenever a file

exception or error occurs, an exception or error could occur while the subroutine

is running if an I/O operation is processed on the file in error. If an

exception/error occurs on the file already in error while the subroutine is

running, the subroutine is called again; this results in a program loop unless you

code the subroutine to avoid this problem. One way to avoid such a program

loop is to set a first-time switch in the subroutine. If it is not the first time

through the subroutine, set the LR indicator on and issue the RETURN

operation as follows:

Note: It may not be possible to continue processing the file after an I/O error has

occurred. To continue, it may be necessary to issue a CLOSE operation and

then an OPEN operation to the file.

File Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is

considered to be an exception or error. When the status code is greater than 99; the

error indicator — if specified in positions 73 and 74 — is set on, or the %ERROR

built-in function — if the ’E’ extender is specified — is set to return ’1’. Otherwise,

the file exception/error subroutine receives control. Location *STATUS is updated

after every file operation.

You can use the %STATUS built-in function to get information on exception/errors.

It returns the most recent value set for the program or file status. If a file is

specified, %STATUS returns the value contained in the INFDS *STATUS field for

the specified file.

The following tables summarize the codes placed in the subfield location *STATUS

for the file information data structure:

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* If INFSR is already handling the error, exit.

C ERRRTN BEGSR

C SW IFEQ ’1’

C SETON LR

C RETURN

C* Otherwise, flag the error handler.

C ELSE

C MOVE ’1’ SW

C :

C :

C :

C ENDIF

C* End error processing.

C MOVE ’0’ SW

C ENDSR

Chapter 5. Error and Exception Handling 49

Table 8. Normal Codes

Code Device1 RC Condition

00000 No exception/error

00011 D End of file on a read (input)

00012 D No-record-found condition on a CHAIN,

SETLL, and SETGT operations

00014 Output record of local file truncated

00015 Input record of local file truncated

Note:

1“Device” refers to the devices for which the condition applies. The following

abbreviations are used: P = PRINTER; D = DISK; SP = SPECIAL

 Table 9. Exception/Error Codes

Code Device1 RC Condition

01011 D Undefined record type (input record does

not match record identifying indicator)

01021 D Tried to write a record that already exists

(file being used has unique keys and key is

duplicate)

01022 D Referential constraint error detected on file

member

01041 n/a Array/table load sequence error

01042 n/a Array/table load sequence error

01051 n/a Excess entries in array/table file

01211 all I/O operation to a closed file

01215 all OPEN issued to a file already opened

012162 all Error on an implicit OPEN/CLOSE

operation.

012172 all Error on an explicit OPEN/CLOSE

operation.

01218 D Record already locked

01221 D Update operation attempted without a

prior read

01222 D Record cannot be allocated due to

referential constraint error

01231 SP Error on SPECIAL file

01235 P Error in PRTCTL space or skip entries

50 VisualAge RPG Language Reference

Table 9. Exception/Error Codes (continued)

Code Device1 RC Condition

01299 D,P Other I/O error detected. For local files,

this message contains one of the following

ids:

v *LF0001: Could not open file

v *LF0002: Could not close file

v *LF0003: Unexpected I/O result

v *LF0004: File pointer could not be set

v *LF0005: Read failed

v *LF0006: Write failed

v *LF0007: Could not determine size of file

v *LF0008: Could not resize file

v *LF0009: Could not copy file

v *LF0010: Could not delete file

v *LF0011: File designated as local at

compile time is found to be a remote file

at run time.

Note:

1“Device” refers to the devices for which the condition applies. The following

abbreviations are used: P = PRINTER; D = DISK; SP = SPECIAL;

2Any errors that occur

during an open or close operation will result in a *STATUS value of 1216 or 1217.

Program Exception and Errors

Some examples of program exception and errors are: division by zero, SQRT of a

negative number, invalid array index, an error on a CALL, an error return from a

called program, and a start position or length out of range for a string operation.

They can be handled in one of the following ways:

v An indicator can be specified in positions 73 and 74 of the calculation

specifications for certain operation codes. This indicator is set on if an exception

or error occurs during the processing of the specified operation. The optional

program status data structure is updated with the exception/error information.

You can determine the action to be taken by testing the indicator.

v The operation code extender ’E’ can be specified for some operation codes.

When specified, before the operation begins, this extender sets the %ERROR and

%STATUS built-in functions to return zero. If an exception/error occurs during

the operation, then after the operation %ERROR returns ’1’ and %STATUS

returns the program status. The optional program status data structure is

updated with the exception/error information. You can determine the action to

be taken by testing %ERROR and %STATUS.

v ON-ERROR groups can be used to handle errors for statements processed within

a MONITOR block. If an error occurs when a statement is processed, control

passes to the appropriate ON-ERROR group.

v A program exception/error subroutine can be specified by coding *PSSR in

factor 1 of a BEGSR operation. Information regarding the program

exception/error is made available through a program status data structure that

is specified with an S in position 23 of the data structure statement on the

definition specifications.

v If the indicator, ’E’ extender, monitor block, or the program exception/error

subroutine is not present, program exception and errors are handled by the

default error handler.

Program Status Data Structure

A program status data structure can be defined to make program exception and

error information available to a VisualAge RPG program.

Chapter 5. Error and Exception Handling 51

A data structure is defined as a program status data structure by an S in position

23 of the data structure statement. A program status data structure contains

subfields that provide you with information about the program exception or error

that occurred. The location of these subfields is defined by special keywords or by

predefined From and To positions. In order to access the subfields, you assign a

name to each subfield. The keywords must be specified, left-adjusted in positions

26 through 39.

Table 10 provides the layout of the subfields of the data structure and the From

and To positions of its subfields.

 Table 10. Contents of the Program Status Data Structure

From

(Pos.

26-32)

To (Pos.

33-39) Format Length Keyword Information

1 10 Character 10 *PROC Component name

11 15 Zoned

decimal

5,0 *STATUS Status code

16 20 Zoned

decimal

5,0 Previous status code

21 28 Character 8 Source listing line number

29 36 Character 8 *ROUTINE Name of the routine where the exception or

error occurred. This subfield is updated at the

beginning of a routine or after a program call

only when the *STATUS subfield is updated

with a nonzero value. The following names

identify the routines:

*INIT Program initialization

*TERM

Program ending

*ROUTINE

Name of program or procedure called

(first 8 characters).

37 39 Zoned

decimal

3,0 *PARMS Number of parameters passed to this program

from a calling program

40 42 Character 3 Exception type: CPF for an OS/400® system

exception, MCH for a machine exception or *RT

for an error return code from a runtime routine.

For a Windows exception, this field contains

*EX.

43 46 Character 4 Exception number: For a CPF exception, this

field contains a CPF message number. For a

machine exception, it contains a machine

exception number. For a Windows exception,

this field contains the exception number in

binary 9,0 format. The error return code from a

VisualAge RPG runtime routine is also

contained in this field, in binary 9,0 format.

47 90 44 Reserved

91 170 Character 80 Retrieved exception data. OS/400 messages are

placed in this subfield

171 190 20 Reserved

52 VisualAge RPG Language Reference

Table 10. Contents of the Program Status Data Structure (continued)

From

(Pos.

26-32)

To (Pos.

33-39) Format Length Keyword Information

191 198 Character 8 Date (*DATE format) the job entered the

system.The date represented by this value is the

same date represented by positions 270 - 275.

199 200 Zoned

decimal

2,0 First 2 digits of a 4-digit year. The same as the

first 2 digits of *YEAR.This field applies to the

century part of the date in positions 270 to 275.

For example, for the date 1999-06-27, UDATE

would be 990627, and this century field would

be 19. The value in this field in conjunction

with the value in positions 270 - 275 has the

combined information of the value in positions

191 -198.

Note: This century field does not apply to the

dates in positions 276 to 281, or positions 288 to

293.

201 208 Character 8 Name of file on which the last file operation

occurred (updated only when an error occurs)

209 243 Character 35 Status information on the last file used. This

information includes the status code, the

operation code, the VisualAge RPG routine

name, the source listing line number, and

record name. It is updated only when an error

occurs.

Note: The opcode name is in the same form as

*OPCODE in the INFDS.

244 253 10 Reserved

254 263 Character 10 The iSeries host Sign-On userid for a remote

file open operation. This value is updated only

when a different host is accessed with a

different Sign-On userid.

264 269 10 Reserved

270 275 Zoned

decimal

6,0 Date (in UDATE format) the program started

running in the system. (UDATE is derived from

this date.) See “User Date Special Words” on

page 8 for a description of UDATE. This is

commonly known as the ’job date’. The date

represented by this value is the same date

represented by positions 191 - 198.

276 281 Zoned

decimal

6,0 Date of program running (the system date in

UDATE format) If the year part of this value is

between 40 and 99, the date is between 1940

and 1999. Otherwise the date is between 2000

and 2039. The ’century’ value in positions 199 -

200 does not apply to this field.

282 287 Zoned

decimal

6 (zero

decimal

positions)

Time of program running in the format

hhmmss

Chapter 5. Error and Exception Handling 53

Table 10. Contents of the Program Status Data Structure (continued)

From

(Pos.

26-32)

To (Pos.

33-39) Format Length Keyword Information

288 293 Character 6 Date (in UDATE format) the program was

compiled If the year part of this value is

between 40 and 99, the date is between 1940

and 1999. Otherwise the date is between 2000

and 2039. The ’century’ value in positions 199 -

200 does not apply to this field.

294 299 Character 6 Time (in the format hhmmss) the program was

compiled

300 303 Character 4 Level of the compiler

304 313 Character 10 Source file name (first 10 characters)

314 429 116 Reserved

Program Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is

considered to be an exception or error condition. When the status code is greater

than 99; the error indicator — if specified in positions 73 and 74 — is set on, or the

%ERROR built-in function — if the ’E’ extender is specified — is set to return ’1’,

or control passes to the appropriate ON-ERROR group within a MONITOR block;

otherwise, the program exception/error subroutine receives control. *STATUS is

updated when an exception or error occurs.

The %STATUS built-in function returns the most recent value set for the program

or file status.

The following codes are placed in the subfield location *STATUS for the program

status data structure:

54 VisualAge RPG Language Reference

Normal Codes:

Code Condition

00000 No exception/error occurred

00031 Component is terminating; LR indicator on when a RETURN or ENDACT

operation performed

00032 Component is terminating as a result of an explicit termination of the

component (STOP component)

00033 Component is terminating as a result of an implicit termination of the

component (STOP parent or grandparent of component)

00034 Component is terminating as a result of an explicit termination request

from another component (STOP component)

00035 Component is terminating as a result of an implicit termination request

from another component (STOP parent of component)

00050 Conversion resulted in substitution.

Exception/Error Codes:

Code Condition

00100 Value out of range for string operation

00101 Negative square root

00102 Divide by zero

00103 An intermediate result is not large enough to contain the result

00104 Float underflow. An intermediate value is too small to be contained in the

intermediate result field.

00105 Invalid characters in character to numeric conversion functions.

00112 Invalid Date, Time or Timestamp value.

00113 Date overflow or underflow. (For example, when the result of a Date

calculation results in a number greater than *HIVAL or less than *LOVAL)

00114 Date mapping errors, where a Date is mapped from a 4 character year to a

2 character year and the date range is not 1940-2039

00115 Variable-length character or graphic field has a current length that is not

valid.

00120 Table or array out of sequence

00121 Array index not valid

00122 OCCUR outside of range

00123 Reset attempted during initialization step of program

00202 Called program or procedure failed

00211 Error calling program or procedure

00221 Called program tried to use a parameter not passed to it

00222 Pointer or parameter error

00301 Class or method not found for a method call, or error in method call.

Chapter 5. Error and Exception Handling 55

00302 Error while converting a Java array to an RPG parameter on entry to a

Java native method.

00303 Error converting RPG parameter to Java array on exit from an RPG native

method.

00304 Error converting RPG parameter to Java array in preparation for a Java

method call.

00305 Error converting Java array to RPG parameter or return value after a Java

method.

00306 Error converting RPG return value to Java array.

00333 Error on DSPLY operation

00401 Data area specified on IN/OUT not found

00411 Data area type or length does not match

00412 Data area not locked for output

00413 Error on IN/OUT operation

00414 User not authorized to use data area

00415 User not authorized to change data area

00421 Error on UNLOCK operation

00431 Data area previously locked by another program

00432 Data area locked by program in the same process

00451 Conversion between two CCSIDs is not supported.

00501 Failure to retrieve sort sequence

00802 Commitment control not active

00803 Rollback operation failed

00804 Error occurred on COMMIT operation

00805 Error occurred on ROLBK operation

00907 Decimal data error (digit or sign not valid)

00940 Error occurred in host services

00970 The level number of the compiler used to generate the program does not

agree with the level number of the VisualAge RPG runtime subroutines.

01400 Attribute name is not valid

01401 SHOWWIN operation attempted on an opened window

01402 Part name was not found in the application

01403 New attribute value is not within the valid range

01404 Attribute access type not valid for the operation

01405 Data type of event attribute is not compatible with the operation

01406 Invalid message identifier

01407 Data type of attribute is not compatible with the operation

01408 Insufficient resources

01410 START operation failed

56 VisualAge RPG Language Reference

01411 STOP operation failed

01420 Error occurred on subfile operation

01421 The user cancelled the signon dialog

01422 The component containing the part being operated on has not been started.

1601 One or more of the DB2 product’s dynamic link libraries (DLL) could not

be found.

08888 Recursion error

09001 No error indicator or *PSSR

09998 Internal failure in VisualAge RPG compiler or in runtime subroutines

09999 Program exception in system routine.

Program Status Data Structure Example

To specify a program status data structure (PSDS) in your program, code the

program status data structure and the subfields you wish to use on a definition

specification.

Note: The keywords are not labels and cannot be used to access the subfields.

Short entries are padded on the right with blanks.

Program Exception and Error Subroutine

To identify the subroutine that receives control when a program exception or error

occurs, specify *PSSR in factor 1 of the subroutine’s BEGSR operation. If an

indicator is not specified in positions 73 and 74 for an operation code, or if the

operation does not have an (E) extender, or if the statement is not in a MONITOR

block that can handle the error, or if an exception occurs that is not expected for an

operation code (for example an array indexing error during a SCAN operation),

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++

DMYPSDS SDS

D PROC_NAME *PROC * Component name

D PGM_STATUS *STATUS * Status code

D PRV_STATUS 16 20S 0 * Previous status

D LINE_NUM 21 28 * Src list line num

D ROUTINE *ROUTINE * Routine name

D PARMS *PARMS * Num passed parms

D EXCP_TYPE 40 42 * Exception type

D EXCP_NUM 43 46 * Exception number

D*

D EXCP_DATA 91 170 * Exception data

D*

D DATE 191 198 * Date (*DATE fmt)

D YEAR 199 200S 0 * Year (*YEAR fmt)

D LAST_FILE 201 208 * Last file used

D FILE_INFO 209 243 * File error info

D*

D JOB_DATE 270 275S 0 * Date (UDATE fmt)

D RUN_DATE 276 281S 0 * Run date (UDATE)

D RUN_TIME 282 287S 0 * Run time (UDATE)

D CRT_DATE 288 293 * Create date

D CRT_TIME 294 299 * Create time

D CPL_LEVEL 300 303 * Compiler level

D SRC_FILE 304 313 * Source file

D*

Figure 13. Example of Coding a PSDS

Chapter 5. Error and Exception Handling 57

control is transferred to this subroutine when a program exception or error occurs.

In addition, the subroutine can also be called by the EXSR operation. *PSSR can be

specified on the INFSR keyword on the file description specifications and receives

control if a file exception/error occurs.

Any operation codes can be used in the program exception/error subroutine. The

ENDSR operation must be the last specification for the subroutine, and the factor 2

entry on the ENDSR operation specifies the return point following the running of

the subroutine. For more information, see “File Exception and Error Subroutine

(INFSR)” on page 47.

Remember the following when specifying a program exception/error subroutine:

v You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of

the EXSR operation.

v After the ENDSR operation of the *PSSR subroutine is run, the field, subfield,

array element, or array element specified in factor 2 is reset to blanks. This

allows you to specify the return point within the subroutine that is best suited

for the exception or error that occurred. If factor 2 contains blanks at the end of

the subroutine, the default error handler receives control; if the subroutine was

called by an EXSR or CASxx operation, control returns to the next sequential

instruction following the EXSR or ENDCS. If the exception occured in a

subprocedure an no GOTO operation was encountered before the ENDSR

operation, error code 9001 is issued and the application ends. Factor 2 is not

supported on the ENDSR operation of subprocedure *PSSRs.

v Because the program exception/error subroutine may receive control whenever a

non-file exception/error occurs, an exception or error could occur while the

subroutine is running. If an exception/error occurs while the subroutine is

running, the subroutine is called again; this results in a program loop unless you

code the subroutine to avoid this problem.

v A *PSSR can be defined in a subprocedure, and each subprocedure can have its

own *PSSR. Note that the *PSSR in a subprocedure is local to that subprocedure.

If you want the subprocedures to share the same exception routine, then you

should have each *PSSR call a shared procedure.

v If you have a *PSSR that is not defined within a subprocedure, this *PSSR is

never executed in an exception occurs within a subprocedure.

Component Errors/Exceptions

The following sections describe how to handle errors during an event and which

exceptions are trapped by the VisualAge RPG exception handler.

Component Status Codes

The following *STATUS values allow you to query how the component has

terminated for normal termination:

00031 The component terminates because LR is on. LR is checked when the root

ENDACT has been reached. The root action subroutine is the subroutine at

the bottom (or first) of any nested action subroutines.

00032 The component terminates itself directly. For example, The component

’thiscomp’ issues STOP ’thiscomp’. The component ’thiscomp’ is

terminated.

00033 The component terminates itself indirectly. For example, STOP ’myparent’

is issued by the current component to terminate the component which

STARTed the current component. All the children of ’myparent’ are

terminated first including the current component.

58 VisualAge RPG Language Reference

00034 The component is terminated directly by another component. For example,

STOP ’X’ is issued by another component to terminate the current

component, ’X’.

00035 The component is terminated indirectly by another component. For

example, STOP ’myparent’ is issued by another component to terminate

the parent of the current component, ’myparent’, and indirectly, the current

component is also being terminated.

When normal termination occurs, subroutine *TERMSR is called. *TERMSR is a

user written subroutine from which any final code execution can occur. At the time

that *TERMSR is invoked, no action subroutines are active, and the current

component has been marked as being in termination. This means that few

graphical user interface operations are allowed. See the following for more

information:

v Table 3 on page 35

v Table 4 on page 36

v Table 5 on page 37

v Table 6 on page 39

Event Error Handling

If an error occurs during the handling of an event, one of two things happens:

v If a *PSSR or INFSR is not present, the default exception handler is invoked.

v If an error handling routine is present (*PSSR or INFSR), the error handling

routine is invoked.

If your application contains an error handling subroutine, this subroutine continues

to execute until one of the following operation codes is reached:

RETURN Control returns to the same place where ENDACT *DEFAULT

processing occurs. If there are no other nested action subroutines,

LR is checked:

v If LR is on, the component terminates normally. See “Normal

Termination” on page 32.

v If LR is not on, the current action subroutine ends and any

default action for the event is performed.

STOP The component terminates normally. Some restrictions apply. See

Chapter 4, “Working with Components,” on page 31.

ENDSR What you specify in factor 2 affects the flow of execution:

v If factor 2 is not specified, the default exception handler inquiry

message information window is displayed.

v If *DEFAULT is specified in factor 2, control returns to the same

place that ENDACT *DEFAULT processing occurs. If there are

no other nested action subroutines, LR is checked:

– If LR is on, the component terminates normally. See “Normal

Termination” on page 32.

– If LR is not on, the current action subroutine ends and any

default action for the event is performed.
v If *NODEFAULT is specified in factor 2, control returns to the

same place where ENDACT *NODEFAULT processing occurs.

See “ENDSR (End of User Subroutine)” on page 569. If there are

no other nested action subroutines, LR is checked:

– If LR is on, the component terminates normally. See “Normal

Termination” on page 32.

Chapter 5. Error and Exception Handling 59

– If LR is not on, the current action subroutine ends and any

default action for the event is NOT performed.
v If *ENDCOMP or *CANCL is specified in factor 2, the action

subroutine that was running when the error occurred finishes

and the component terminates abnormally. See “ENDSR (End of

User Subroutine)” on page 569.

v If *ENDAPPL is specified in factor 2, the action subroutine that

was running when the error occurred is finished, and all

components in the application are closed in reverse hierarchical

order. See “ENDSR (End of User Subroutine)” on page 569. The

component that was active when the error occurred is

terminated abnormally. All other components terminate

normally. See “Normal Termination” on page 32 and “Abnormal

Termination” on page 34.

When the default exception handler is invoked for an exception that occurs outside

a procedure, a window is displayed from which you can make one of the

following choices:

v Do Default Processing (the information above for ENDSR *DEFAULT applies)

v Do Not Do Default Processing (the same information above for ENDSR

*NODEFAULT applies)

v Retry the Operation: This option only appears for a small set of I/O errors. It

allows you to retry the same operation.

v Terminate the Component (the same information above for ENDSR *ENDCOMP

applies)

v Terminate the Application (the information above for ENDSR *ENDAPPL

applies)

Note: If the exception occurs within a subprocedure and there is no local *PSSR or

error indicator, the application ends.

When control is given to an error handling routine or to the default exception

handler, the current action subroutine that caused the error is still active. You can

still access the same event attributes that were valid at the time of the error. For

example, the %BUTTON event attribute is valid during the processing of the

MouseDown event. If an error occurs during the handling of this event, the

%BUTTON can be referenced in the *PSSR.

Note: If %BUTTON is referenced in the *PSSR for an event where the event

attribute is not valid, then an error occurs. This kind of error can easily

cause the application to go into an endless recursion situation if the *PSSR is

not properly coded to handle this.

For cases where multiple action subroutines are nested, the error handling routine

only affects the top-most action subroutine invocation when ENDSR *DEFAULT,

*NODEFAULT or an equivalent field name is executed. For example, if a

SHOWWIN WINDOW2 is performed from inside the action subroutine

BUTTON+CLICK+WINDOW1, then BUTTON+CLICK+WINDOW1 is suspended

and the action subroutine WINDOW2+CREATE+WINDOW2, is invoked. If an

error occurs during the invocation of this second action subroutine, the *PSSR or

the default exception handler is 0xC0000095invoked. If *DEFAULT is taken, only

WINDOW2+CREATE+WINDOW2 ends, and control returns back to

BUTTON1+CLICK+WINDOW1 at the operation following SHOWWIN WINDOW2.

60 VisualAge RPG Language Reference

Exception Handling

The following exceptions are trapped by the VisualAge RPG exception handler.

These exceptions are placed in the exception number field (43-46) of the PSDS as a

4 byte binary number with *EX placed in the exception type field (40-42) of the

PSDS.

 Access violation 0xC0000005

Integer divide by zero 0xC000009B

Float divide by zero 0xC0000095

Float invalid operation 0xC0000097

Illegal instruction 0xC000001C

Privileged instruction 0xC000009D

Integer overflow 0xC000009C

Float overflow 0xC0000098

Float underflow 0xC000009A

Float denormal operand 0xC0000094

Float inexact result 0xC0000096

Float stack check 0xC0000099

Datatype misalignment 0xC000009E

Invalid lock sequence 0xC000001D

Array bounds exceeded 0xC0000093

For more information on Windows–specific exceptions, consult the operating

system’s documentation.

All other exceptions are handled in one of the following ways:

v If the exception occurs during a CALLB or CALL, the status code is set to 202 or

211.

v If the exception does not occur during a CALLB or CALL, the exceptions are

mapped to a status code as follows:

 Integer divide by zero 102

Float divide by zero 102

Float overflow 103

Access violation 222

Datatype misalignment 222

All other exceptions 9999

Chapter 5. Error and Exception Handling 61

62 VisualAge RPG Language Reference

Chapter 6. Subprocedures and Prototypes

One of three possible target objects can result from a compilation. The result

depends on the control specification keyword used:

v A component is created when the NOMAIN and EXE keywords are not present.

v A utility, or NOMAIN, DLL is created when the NOMAIN keyword is specified.

This DLL contains only RPG subprocedures.

v An RPG EXE is created when the EXE keyword is specified. This module

contains a main procedure and subprocedures.

A VisualAge RPG program consists of one or more modules. A procedure is any

piece of code that can be called with the CALLP operation code. VisualAge RPG

has two kinds of procedures: a main procedure and a subprocedure. A main

procedure is a procedure that can be specified as the program entry procedure and

receives control when it is first called. Note that a main procedure is only

produced when creating an EXE.

A subprocedure is a procedure specified after the main source section. (See

“Placement of Definitions and Scope” on page 256 for the layout of the main

source section for each type of compilation target.) Subprocedures differ from a

main procedure in that:

v Names that are defined within a subprocedure are not accessible outside the

subprocedure.

v The call interface must be prototyped.

v Calls to subprocedures must be bound procedure calls.

v Only P, D, and C specifications can be used.

All subprocedures must have a corresponding prototype in the definition

specifications of the main source section. The prototype is used by the compiler to

call the program or procedure correctly, and to ensure that the caller passes the

correct parameters.

This section discusses the following aspects of subprocedures:

v Subprocedure definition

v NOMAIN and EXE modules

v Comparison with subroutines

© Copyright IBM Corp. 1994, 2005 63

Subprocedure Definition

Subprocedures are defined after the main source section. Figure 14 shows a

subprocedure, highlighting the different parts of it.

1. A Prototype which specifies the name, return value if any, and parameters if

any.

2. A Begin-Procedure specification (B in position 24 of a procedure specification)

3. A Procedure-Interface definition, which specifies the return value and

parameters, if any. The procedure interface must match the corresponding

prototype. The procedure-interface definition is optional if the subprocedure

does not return a value and does not have any parameters that are passed to it.

4. Other definition specifications of variables, constants, and prototypes needed

by the subprocedure. These definitions are local definitions.

5. Any calculation specifications, standard or free-form, needed to perform the

task of the procedure. The calculations may refer to both local and global

definitions. Any subroutines included within the subprocedure are local. They

cannot be used outside of the subprocedure. If the subprocedure returns a

value, then the subprocedure must contain a RETURN operation.

6. An End-Procedure specification (E in position 24 of a procedure specification)

Except for the procedure-interface definition, which may be placed anywhere

within the definition specifications, a subprocedure must be coded in the order

shown above.

You cannot code the following for subprocedures:

v Prerun-time and compile-time arrays and tables

v *DTAARA definitions

 * Prototype for procedure FUNCTION

 *

D FUNCTION PR 10I 0 �1�

D TERM1 5I 0 VALUE

D TERM2 5I 0 VALUE

D TERM3 5I 0 VALUE

 *

P Function B �2�

 *

 *---

 * This procedure performs a function on the 3 numeric values

 * passed to it as value parameters.

 *

 * This illustrates how a procedure interface is specified for a

 * procedure and how values are returned from a procedure.

 *---

 *

D Function PI 10I 0 �3�

D Term1 5I 0 VALUE

D Term2 5I 0 VALUE

D Term3 5I 0 VALUE

D Result S 10I 0 �4�

C EVAL Result = Term1 ** 2 * 17

C + Term2 * 7 �5�

C + Term3

C RETURN Result * 45 + 23

P E �6�

 *

Figure 14. Example of a Subprocedure

64 VisualAge RPG Language Reference

The calculation specifications are processed only once and the procedure returns at

the end of the calculation specifications. See “Subprocedure Calculations” on page

67 for more information.

A subprocedure may be exported, meaning that procedures in other modules in

the program can call it. To indicate that it is to be exported, specify the keyword

EXPORT on the Procedure-Begin specification. If not specified, the subprocedure

can only be called from within the module. Note that procedures can be exported

only from NOMAIN DLLs.

Procedure Interface Definition

If a prototyped procedure has call parameters or a return value, then it must have

a procedure interface definition. A procedure interface definition is a repetition of

the prototype information within the definition of a procedure. It is used to declare

the entry parameters for the procedure and to ensure that the internal definition of

the procedure is consistent with the external definition (the prototype).

You specify a procedure interface by placing PI in the Definition-Type entry

(positions 24-25). Any parameter definitions, indicated by blanks in positions 24-25,

must immediately follow the PI specification. The procedure interface definition

ends with the first definition specification with non-blanks in positions 24-25 or by

a non-definition specification.

For more information on procedure interface definitions, see “Procedure Interface”

on page 75.

Return Values

A procedure that returns a value is essentially a user-defined function, similar to a

built-in function. To define a return value for a subprocedure, you must:

1. Define the return value on both the prototype and procedure-interface

definitions of the subprocedure.

2. Code a RETURN operation with an expression in the extended-factor 2 field

that contains the value to be returned.

You define the length and the type of the return value on the procedure-interface

specification (the definition specification with PI in positions 24-25). The following

keywords are also allowed:

DATFMT(fmt)

The return value has the date format specified by the keyword.

DIM(N)

The return value is an array with N elements.

LIKE(name)

The return value is defined like the item specified by the keyword.

LIKEDS(name)

The return value is a data structure defined like the data structure

specified by the keyword.

LIKEREC(name{,type})

The return value is a data structure defined like the record name specified

by the keyword.

PROCPTR

The return value is a procedure pointer.

Chapter 6. Subprocedures and Prototypes 65

TIMFMT(fmt)

The return value has the time format specified by the keyword.

To return the value to the caller, you must code a RETURN operation with an

expression containing the return value. The expression in the extended-factor 2

field is subject to the same rules as an expression with EVAL. The actual returned

value has the same role as the left-hand side of the EVAL expression, while the

extended factor 2 of the RETURN operation has the same role as the right-hand

side. You must ensure that a RETURN operation is performed if the subprocedure

has a return value defined; otherwise an exception is issued to the caller of the

subprocedure.

Scope of Definitions

Any items defined within a subprocedure are local. If a local item is defined with

the same name as a global data item, then any references to that name inside the

subprocedure use the local definition.

However, keep in mind the following:

v Subroutine names and tag names are known only to the procedure in which

they are defined, even those defined in the main procedure of an EXE.

v All fields specified on input and output specifications are global. When a

subprocedure uses input or output specifications (for example, while processing

a read operation), the global name is used even if there is a local variable of the

same name.

When using a global KLIST or PLIST in a subprocedure some of the fields may

have the same names as local fields. If this occurs, the global field is used. This

may cause problems when setting up a KLIST or PLIST prior to using it.

For example, consider the following source:

 D* Main procedure definitions

 D Fld1 S 1A

 D Fld2 S 1A

 D*

 C* Define a global key field list with 2 fields, Fld1 and Fld2

 C global_kl KLIST

 C KFLD Fld1

 C KFLD Fld2

 C*

 P* Subprocedure Section

 P Subproc B

 D Fld2 S 1A

 D*

 C* local_kl has one global kfld (fld1) and one local (fld2)

 C*

 C local_kl KLIST

 C KFLD Fld1

 C KFLD Fld2

 C*

 C* Even though Fld2 is defined locally in the subprocedure,

 C* the global Fld2 is used by the global_kl, since global KLISTs

 C* always use global fields. As a result, the assignment to the

 C* local Fld2 will NOT affect the CHAIN operation.

 C*

 C EVAL Fld1 = ’A’

 C EVAL Fld2 = ’B’

 C global_kl SETLL file

 C*

 C* Local KLISTs use global fields only when there is no local

 C* field of that name. local_kl uses the local Fld2 and so the

66 VisualAge RPG Language Reference

C* assignment to the local Fld2 WILL affect the CHAIN operation.

 C EVAL Fld1 = ’A’

 C EVAL Fld2 = ’B’

 C local_kl SETLL file

 ...

 P E

For more information on the placement of definitions and their effect on scope, see

“Placement of Definitions and Scope” on page 256.

Subprocedure Calculations

A subprocedure ends when one of the following occurs:

v A RETURN operation is processed.

v The last calculation in the body of the subprocedure is processed.

Figure 15 on page 68 shows the normal processing steps for a subprocedure.

Figure 16 on page 69 shows the exception/error handling sequence.

Chapter 6. Subprocedures and Prototypes 67

�1� Taking the ″No″ branch means that another procedure has already been

called since the program was activated. You should ensure that you do not

make any incorrect assumptions about the state of files, data areas, etc.,

since another procedure may have closed files, or unlocked data areas.

Start

Signal exception to
caller (subprocedure

ends)

Return to caller

Return operation

Set return value for caller
(if the subprocedure
returns a value)

First time
DLL is loaded or

when EXE is called.

First time
subprocedure

has been called?

If subprocedure
returns a value, was a
RETURN operation

done?

Initialize
automatic variables

Perform calculations once

No

No

No

Yes

Yes

Yes

• Run module initialization
• Perform data structure and
subfield initialization

• Retrieve external indicators
(U1 through U8) and user date fields
• Open files
• Load data area data
sructures, arrays, and tables

• If there is no *INZSR, store
data structures and variables
for RESET operations

• Initialize static variables
• Store variables for RESET

operations on local variables

Figure 15. Normal Processing Sequence for a Subprocedure

68 VisualAge RPG Language Reference

Here are some points to consider when coding subprocedures:

v There is no *INZSR associated with subprocedures. Data is initialized (with

either INZ values or default values) when the subprocedure is first called, but

before the calculations begin.

v When a subprocedure returns normally, the return value, if specified on the

prototype of the called program or procedure, is passed to the caller. Nothing

else occurs automatically. All files and data areas must be closed manually. Files

must be written out manually. In the case of an EXE, you can set on indicators

such as LR, but program termination will not occur until the main procedure for

the EXE terminates.

v Exception handling within a subprocedure differs from a main procedure

primarily because there is no default exception handler for subprocedures and

so situations where the default handler would be called for a main procedure

correspond to abnormal end of the subprocedure. For example, Factor 2 of an

ENDSR operation for a *PSSR subroutine within a subprocedure must be blank.

A blank factor 2 normally would result in control being passed to the default

handler, but in a subprocedure, if the ENDSR is reached, then the subprocedure

will end abnormally.

You can avoid abnormal termination either by coding a RETURN operation in

the *PSSR, or by coding a GOTO and label in the subprocedure to continue

processing.

v The *PSSR error subroutine is local to the subprocedure. Conversely, file errors

are global by definition, and so you cannot code an INFSR in a subprocedure,

nor can you use a file for which an INFSR is coded.

NOMAIN Module

You can code one or more subprocedures in a module without coding any action

subroutines. Such a module is called a NOMAIN module, and it requires the

specification of the NOMAIN keyword on the control specification. The concept of

a NOMAIN DLL is similar to that of an OS/400™ service program.

For NOMAIN DLLs, the following should be considered:

v The DLL must consist of procedures only. All subroutines (BEGSR) must be local

to a procedure.

v No GUI operation codes allowed in the source. These include START, STOP,

SETATR, GETATR, %SETATR, %GETATR, SHOWWIN, CLSWIN, and READS.

Percolate exception
(subprocedure ends)

Program error
and subprocedure

has *PSSR?

*PSSR reached
ENDSR?

No

No

Yes

Yes

Program continues
normally after RETURN

or GOTO

Signal exception to
caller (subprocedure

ends)

Execute *PSSR
subroutine

Exception during
calculations

Figure 16. Exception/Error Handling for a Subprocedure

Chapter 6. Subprocedures and Prototypes 69

DSPLY can be used. However, if the procedure containing it is called from a

VisualAge RPG DLL, then the DSPLY operation code does nothing.

v *INZSR and *TERMSR are not permitted.

v *ENTRY parameters are not permitted.

EXE Module

A module is called an EXE module, since it requires the specification of the EXE

keyword on the control specification.

The EXE module consists of a main procedure and subprocedures. All subroutines

(BEGSR) must be local to a procedure. The EXE must contain a procedure whose

name matches the name of the source file. This will be the main entry point for the

EXE, that is, the main procedure.

For EXE modules, the following should be considered:

v No GUI operation codes are allowed in the source. This includes START, STOP,

SETATR, GETATR, %SETATR, %GETATR, SHOWWIN, CLSWIN and READS.

DSPLY can be used.

v *INZSR and *TERMSR are not permitted.

v *ENTRY parms are not permitted.

If there are entry parameters, they are specified on the parameter definition for

the main procedure, and they must be passed in by VALUE (the VALUE

keyword must be specified for each parameter).They cannot be UCS-2

parameters.

v The EXPORT keyword is not allowed on the Begin P specification.

v The return value for the main procedure must be defined as a binary or integer

of precision zero(0).

Subprocedures and Subroutines

A subprocedure is similar to a subroutine, except that a subprocedure offers the

following improvements:

v You can pass parameters to a subprocedure, even passing by value.

This means that the parameters used to communicate with subprocedures do not

have to be modifiable. Parameters that are passed by reference, as they are with

programs, must be modifiable, and so may be less reliable.

v The parameters passed to a subprocedure and those received by it are checked

at compile time for consistency. This helps to reduce run-time errors, which can

be more costly.

v You can use a subprocedure like a built-in function in an expression.

When used in this way, they return a value to the caller. This basically allows

you to custom-define any operators you might need in an expression.

v Names defined in a subprocedure are not visible outside the subprocedure.

This means that there is less chance of the procedure inadvertently changing a

item that is shared by other procedures. Furthermore, the caller of the procedure

does not need to know as much about the items used inside the subprocedure.

v You can call the subprocedure from outside the module, if it is exported.

v You can call subprocedures recursively.

v Procedures are defined on a different specification type, namely, procedure

specifications. This different type helps you to immediately recognize that you

are dealing with a separate unit.

70 VisualAge RPG Language Reference

Nonetheless, if you do not require the improvements offered by subprocedures,

you should use a subroutine. The processing of a subroutine is much faster than a

call to a subprocedure.

Prototypes and Parameters

The recommended way to call programs and procedures is to use prototyped calls,

since prototyped calls allow the compiler to check the call interface at compile

time. If you are coding a subprocedure, you will need to code a

procedure-interface definition to allow the compiler to match the call interface to

the subprocedure.

This section describes how to define each of the following: prototypes, prototyped

parameters, and procedure-interface definitions.

Prototypes

A prototype is a definition of the call interface. It includes the following

information:

v Whether the call is bound (procedure) or dynamic (program)

v How to find the program or procedure (the external name)

v If it is a remote program residing on an iSeries server

v The number and nature of the parameters

v Which parameters must be passed, and which are optionally passed

v The data type of the return value, if any (for a procedure)

A prototype must be included in the definition specifications of the program or

procedure that makes the call. The prototype is used by the compiler to call the

program or procedure correctly, and to ensure that the caller passes the correct

parameters.

The following rules apply to prototype definitions.

v A prototype name must be specified in positions 7-21. If the keyword EXTPGM

or EXTPROC is specified on the prototype definition, then any calls to the

program or procedure use the external name specified for that keyword. If

neither keyword is specified, then the external name is the prototype name, that

is, the name specified in positions 7-21 (in uppercase).

v Specify PR in the Definition-Type entry (positions 24-25). Any parameter

definitions must immediately follow the PR specification. The prototype

definition ends with the first definition specification with non-blanks in positions

24-25 or by a non-definition specification.

v Specify any of the following keywords as they pertain to the call interface:

EXTPROC(name)

The call will be a bound procedure call that uses the external name

specified by the keyword.

EXTPGM(name)

Together with LINKAGE(*SERVER), determines the call will be to a

remote program on an iSeries server using the external program name

specified by the keyword.

CLTPGM(name)

The call will be an external program call that uses the external name

specified by the keyword.

Chapter 6. Subprocedures and Prototypes 71

DLL(name)

The DLL keyword, together with the LINKAGE keyword, is used to

prototype a procedure that calls functions in Windows DLLs, including

Windows APIs.

LINKAGE(name | *SERVER)

The LINKAGE keyword, together with the DLL keyword, specifies the

Linkage convention (interface) to be used when invoking functions in a

DLL.

 LINKAGE(*SERVER), together with the EXTPGM keyword, specify the

prototype is for a remote program on an iSeries server.

STATIC

The STATIC keyword specifies that the data item is to be stored in static

storage, and thereby hold its value across calls to the procedure in which

it is defined.
v A return value, if any, is specified on the PR definition. Specify the length and

data type of the return value. In addition, you may specify the following

keywords for the return value:

DATFMT(fmt)

The return value has the date format specified by the keyword.

DIM(N)

The return value is an array or data structure with N elements.

LIKE(name)

The return value is defined like the item specified by the keyword.

LIKEDS(data_structure_name)

The returned value is a data structure. (You cannot refer to the subfields

of the return value when you call the procedure.)

LIKEREC(name{,type})

The returned value is a data structure defined like the specified record

format name.

Note: You cannot refer to the subfields of the return value when you

call the procedure.

PROCPTR

The return value is a procedure pointer.

TIMFMT(fmt)

The return value has the time format specified by the keyword.

VARYING

A character, graphic, or UCS-2 return value has a variable-length format.

For information on these keywords, see “Definition-Specification Keywords” on

page 264.

Figure 17 on page 73 shows a prototype for a subprocedure CVTCHR that takes a

numeric input parameter and returns a character string. Note that there is no name

associated with the return value. For this reason, you cannot display its contents

when debugging the program.

72 VisualAge RPG Language Reference

If you are writing a prototype for an exported subprocedure or for a main

procedure, put the prototype in a /COPY file and copy the prototype into the

source file for both the callers and the module that defines the procedure. This

coding technique provides maximum parameter-checking benefits for both the

callers and the procedure itself, since they all use the same prototype.

Prototyped Parameters

If the prototyped call interface involves the passing of parameters, then you must

define the parameter immediately following the PR specification. The following

keywords, which apply to defining the type, are allowed on the parameter

definition specifications:

ASCEND

The array is in ascending sequence.

CCSID(number | *DFT)

Sets the CCSID for graphic and UCS-2 definitions.

CLASS(*JAVA:class_name)

For Java only, provides the class of the object for fields that can store

objects.

DATFMT(fmt)

The date parameter has the format fmt.

DIM(N)

The parameter is an array or data structure with N elements.

LIKE(name)

The parameter is defined like the item specified by the keyword.

LIKEREC(name{,type})

The parameter is a data structures whose subfields are the same as the

fields in the specified record format name.

LIKEDS(data_structure_name)

The parameter is a data structure whose subfields are the same as the

subfields identified in the LIKEDS keyword.

PROCPTR

The parameter is a procedure pointer.

TIMFMT(fmt)

The time parameter has the format fmt.

 * The returned value is the character representation of

 * the input parameter NUM, left-justified and padded on

 * the right with blanks.

 *

 D CVTCHR PR 31A

 D NUM 31P 0 VALUE

 *

 * The following expression shows a call to CVTCHR. If

 * variable rrn has the value 431, then after this EVAL,

 * variable msg would have the value

 * ’Record 431 was not found.’

 *

 C EVAL msg = ’Record ’

 C + %TRIMR(CVTCHR(RRN))

 C + ’ was not found ’

Figure 17. Prototype for CVTCHR

Chapter 6. Subprocedures and Prototypes 73

VARYING

A character, graphic, or UCS-2 return value has a variable-length format.

For information on these keywords, see “Definition-Specification Keywords” on

page 264.

The following keywords, which specify how the parameter should be passed, are

also allowed on the parameter definition specifications:

CONST

The parameter is passed by read-only reference. A parameter defined with

CONST must not be modified by the called program or procedure. This

parameter-passing method allows you to pass literals and expressions.

NOOPT

The parameter will not be optimized in the called program or procedure.

OPTIONS(opt1 { : opt2 { : opt3 { : opt4 } } })

Where opt1 ... opt4 can be the following parameter passing options:

*HEX Valid only for remote program calls, this indicates the

parameter should be passed as if it were a hex value,

without the automatic data conversion between the

Windows client and iSeries server.

*OMIT The special value *OMIT may be passed for this reference

parameter.

*VARSIZE The parameter may contain less data than indicated on the

definition. This keyword is valid only for character

parameters, graphic parameters, or arrays passed by

reference. The called program or procedure must have

some way of determining the length of the passed

parameter.

Note: When this keyword is omitted for fixed-length

fields, the parameter may only contain more or the

same amount of data as indicated on the definition;

for variable-length fields, the parameter must have

the same declared maximum length as indicated on

the definition.

*RIGHTADJ For a CONST or VALUE parameter, *RIGHTADJ indicates

that the graphic, UCS-2, or character parameter value is to

be right adjusted.

*STRING Pass a character value as a null-terminated string. This

keyword is valid only for basing pointer parameters passed

by a value or by read-only reference.

*TRIM The parameter is trimmed before it is passed. This option

is valid for character, UCS-2 or graphic parameters passed

by value or by read-only reference. It is also valid for

pointer parameters that have OPTIONS(*STRING) coded.

Note: When a pointer parameter has OPTIONS(*STRING :

*TRIM) specified, the value will be trimmed even if

a pointer is passed directly. The null-terminated

string that the pointer is pointing to will be copied

into a temporary, trimmed of blanks, with a new

74 VisualAge RPG Language Reference

||
|
|
|

|
|
|
|
|

null-terminator added at the end, and the address of

that temporary will be passed.

VALUE

The parameter is passed by value.

For information on the keywords listed above, see “Definition-Specification

Keywords” on page 264.

Procedure Interface

If a prototyped procedure has call parameters or a return value, then a procedure

interface definition must be defined, either in the main source section (for a main

procedure) or in the subprocedure section. A procedure interface definition

repeats the prototype information within the definition of a procedure. It is used to

declare the entry parameters for the procedure and to ensure that the internal

definition of the procedure is consistent with the external definition (the

prototype).

The following rules apply to procedure interface definitions:

v The name of the procedure interface, specified in positions 7-21, is optional. If

specified, it must match the name specified in positions 7-21 on the

corresponding prototype definition.

v Specify PI in the Definition-Type entry (positions 24-25). The procedure-interface

definition can be specified anywhere in the definition specifications. In the main

procedure, the procedure interface must be preceded by the prototype that it

refers to. A procedure interface is required in a subprocedure if the procedure

returns a value, or if it has any parameters; otherwise, it is optional.

v Any parameter definitions, indicated by blanks in positions 24-25, must

immediately follow the PI specification.

v Parameter names must be specified, although they do not have to match the

names specified on the prototype.

v All attributes of the parameters, including data type, length, and dimension,

must match exactly those on the corresponding prototype definition.

v To indicate that a parameter is a data structure, use the LIKEDS keyword to

define the parameter with the same subfields as another data structure.

v The keywords specified on the PI specification and the parameter specifications

must match those specified on the prototype.

If a module contains calls to a procedure, then there must be a prototype definition

for each program and procedure that you want to call. One way of minimizing the

required coding is to store shared prototypes in /COPY files.

If you provide prototyped procedures to other users, be sure to provide them with

the prototypes (in /COPY files) as well.

Chapter 6. Subprocedures and Prototypes 75

|
|

76 VisualAge RPG Language Reference

Chapter 7. SQL Support

If your VisualAge RPG application contains Structured Language (SQL) statements

to access DB2® databases, you must perform the following tasks:

1. Install DB2 and set up access to it. The DB2 manuals DB2 Universal Database

Personal Edition Quick Beginnings, S10J-8150 and DB2 Universal Database for

Windows NT Quick Beginnings, S10J-8149, and the DB2 Universal Database section

of the Database and File Systems category in the Information Center (at this Web

site - http://www.ibm.com/eserver/iseries/infocenter) describe how to install

and setup the DB2 products on workstation and iSeries servers.

2. Code the SQL statements in your source program. “General Syntax Rules”

describes how to code SQL statement in a VisualAge RPG program.

3. Build the application. The online help for the Build Options dialog from the

GUI Designer describes which build options can be selected for VisualAge RPG

programs with SQL statements. For additional information on building,

running, and connecting to databases, see “Building an Application” on page

85, “Running an Application” on page 86, and “Connecting to a Database” on

page 86.

4. Package and install the user application. Programming with VisualAge RPG,

SC09-2449-05 describes how to package and install a VisualAge RPG

application.

The VisualAge RPG embedded SQL support differs from most other

implementations in that there is no separate precompiler for creating the

intermediate file which is then compiled. The embedded SQL statements are

handled during the compile step of the build process.

Your application can be built to use local databases, databases on other

workstation nodes, or databases on other iSeries servers. Any differences in the

level of SQL supported on these other systems are overlooked with the level of

SQL supported on the workstation where the build is performed. Only the syntax

supported by DB2 on the build-time workstation is allowed.

If you port your application to another workstation, the application can only run

on the same or higher level of DB2.

Note: VisualAge RPG supports the level of function defined in DB2/2 V1.2. More

recent releases of DB2/2 can be used if only V1.2 functions are used in the

application.

General Syntax Rules

The following rules describe the syntax for SQL statements which are included in

your VisualAge RPG source program:

1. SQL statements are coded in the calculation specifications. The following

statements are exceptions and can be coded anywhere before any compile-time

data (** in positions 1 to 2): INCLUDE, BEGIN DECLARE, END DECLARE.

2. To specify the beginning of an SQL statement, code /EXEC SQL in positions 7

to 15. Position 16 must be blank. The remainder of the line from positions 17 to

80 can either be an SQL statement or part of an SQL statement.

3. To specify the end of an SQL statement, code /END-EXEC in positions 7 to 15.

4. Only one SQL statement can be coded between /EXEC SQL and /END-EXEC.

© Copyright IBM Corp. 1994, 2005 77

5. An SQL statement can be coded on several lines. The lines between the /EXEC

SQL and the /END-EXEC must contain a plus sign (+) in position 7 and a

blank in position 8.

6. Character literals can span several lines. The literal is coded up to column 80

on one line and continues on column 9 of the next line.

7. To specify a comment line within the SQL statement, code an asterisk (*) in

position 7.

8. To specify a comment on the same line as an SQL statement, use -- within the

SQL statement.

9. Names beginning with SQL should be avoided in the program since they may

conflict with SQL names.

The following example illustrates the general syntax rules:

----+-*--1----+----2----+----3----+----4----+----5----+----6----+

 C/EXEC SQL WHENEVER SQLERROR GO TO ERRLAB

 C/END-EXEC

 C/EXEC SQL -- starts SQL statement

 C+ SELECT *

 * this is a normal RPG style comment

 C+ INTO :hvar1, -- host variable one

 C+ :hvar2 -- host variable two

 C+ FROM TABLEX

 C+ WHERE NAME=’TESTING’

 C/END-EXEC

Figure 18. General Syntax Rules for SQL Statements

78 VisualAge RPG Language Reference

Host Variable Declarations

The SQL statements BEGIN DECLARE and END DECLARE are allowed in

VisualAge RPG programs, however these statements are ignored. All variables that

are declared are considered candidate host variables.

Host variables are identified by a preceding colon in an SQL statement.

The data types supported for host variables are character, variable-length character,

graphic, integer packed decimal, zoned decimal, binary numeric, date, time, and

timestamp. The SQL data types REAL, DOUBLE and VARCHAR are not

supported.

The following table summarizes how VisualAge RPG data types map to SQL data

types.

 Table 11. Host Data Types

VARPG Data Type SQL Data Type Description Notes

4 digit binary SMALLINT 16 bit signed integer No decimal positions

9 digit binary INTEGER 32 bit signed integer No decimal positions

Packed decimal DECIMAL(m,n) Default RPG numeric data

type

Character CHAR(m) Fixed length character Up to 254 chars

Graphic GRAPHIC(m) Fixed length DBCS string Up to 127 chars

Zoned decimal DECIMAL(m,n) Fixed point number Converted to packed decimal by RPG

before or after DB2 operation.

Date DATE Date The following formats are supported by

DB2: *ISO, *USA, *EUR, *JIS. Other RPG

formats are converted by RPG before or

after DB2 operation.

Time TIME Time The following formats are supported by

DB2: *ISO, *USA, *EUR, *JIS. Other RPG

formats are converted by RPG before or

after DB2 operation.

Timestamp TIMESTAMP Timestamp

Chapter 7. SQL Support 79

Host Variable Rules

The following describes the rules for host variables:

1. A host variable may be any scalar character, numeric, date, time, timestamp, or

DBCS field defined in the program. A host variable cannot be any of the

following:

v Multiple occurrence data structures

v Indicator field names (*INxx)

v Tables

v UDATE, UDAY, UMONTH, UYEAR
2. Indexed arrays are not allowed as host variables.

3. All numeric data types in SQL are compatible and the appropriate conversions

occur when the host variable type does not match the column definition. This

includes database columns in scientific notation (FLOAT). You will receive a

message indicating truncation.

4. All character data types in SQL are compatible and the appropriate conversions

occur when the host variable type does not match exactly the column

definition. SQL will perform the appropriate conversions between fixed length

and varying length character. You will receive a message indicating truncation.

5. All DBCS data types in SQL are compatible and the appropriate conversions

occur when the host variable type does not match exactly the column

definition. SQL will perform the appropriate conversions between fixed length

and varying length DBCS data. You will receive a message indicating

truncation.

6. Date, time, and timestamp fields in SQL are compatible with character fields.

For example, when an SQL date column is fetched into a character host

variable, it is formatted using the Date/Time format value specified on the DB2

options page of the Build notebook.

7. Indicator variables must be declared as 4 digit binary numeric.

8. Single occurrence data structures with no subfields are considered character

data type following normal RPG rules (see Chapter 11, “Data Structures,” on

page 157). Data structures with subfields are considered host structures.

80 VisualAge RPG Language Reference

Data Structures as Host Variables

When a data structure is specified as a host variable in a SQL statement, the name

refers to all subfields of the data structure. This is a convenient way to specify a

long list of host variables. Figure 19 illustrates the source code if a data structure is

not used while Figure 20 illustrates the source code if a data structure is used.

 Using data structure:

 Although there is some extra coding for the data structure subfields, the host

variable list in the SQL statement is much smaller. Since there are likely to be

several SQL statements in the program, the overall coding effort can be less.

----+-*--1----+----2----+----3----+----4----+----5----+----6----+

 C/EXEC SQL

 C+ SELECT *

 C+ INTO :F1, :F2, :F3, :F4, :F5, :F6, :F7

 C+ FROM TABLEX

 C+ WHERE NAME=’GASPARE’

 C/END-EXEC

Figure 19. Coding host variables without using a data structure

----+-*--1----+----2----+----3----+----4----+----5----+----6----+

 D ROW DS

 D F1 1 10

 D F2 11 20

 D F3 21 30

 D F4 31 40

 D F5 41 50

 D F6 51 60

 D F7 61 70

 *

 C/EXEC SQL

 C+ SELECT *

 C+ INTO :ROW

 C+ FROM TABLEX

 C+ WHERE NAME=’GASPARE’

 C/END-EXEC

Figure 20. Coding host variables using a data structure

Chapter 7. SQL Support 81

Indicator Variables and Structures

If indicator variables are required (for example, by null columns), then a short

binary numeric array can be specified along with the name of the host structure.

 This is the same as to coding each array element as an indicator variable. For

example, the indicator variable for field F1 is AI(1); for field F2, AI(2); etc.

Host Structure Rules

The following describes the rules for host structures:

v A single SQL statement can contain one or more host structures.

v The data structure must contain subfields in order to be recognized as a host

structure. A data structure without subfields is considered a normal character

field.

v A host structure name can be followed immediately by an indicator array, which

is a binary numeric array with zero decimal positions. Each element of the array

corresponds to a subfield of the data structure.

/EXEC SQL INCLUDE Statement

The /EXEC SQL INCLUDE statement can appear anywhere in the program prior

to the compile time data section (** in positions 1-2). The filename is specified by a

single name. The file extension defaults to VPG.

Note: The filename can only refer to a local file.

----+-*--1----+----2----+----3----+----4----+----5----+----6----+

 D ROW DS

 D F1 1 10

 D F2 11 20

 D F3 21 30

 D F4 31 40

 D F5 41 50

 D F6 51 60

 D F7 61 70

 *

 D STRUCT DS

 D AI 1 14B 0 DIM(7)

 *

 C/EXEC SQL

 C+ SELECT *

 C+ INTO :ROW:AI

 C+ FROM TABLEX

 C+ WHERE NAME=’GASPARE’

 C/END-EXEC

Figure 21. Indicator variables and structures

82 VisualAge RPG Language Reference

/EXEC SQL INCLUDE SQLCA Statement

An SQLCA data structure is automatically included in the VisualAge RPG program

when database processing has been specified on the DB2 options page of the Build

notebook. The data structure is included even if the INCLUDE SQLCA statement is

not specified.

You can use the SQLCA data structure to query the result of each SQL statement

after it has been executed.

If the INCLUDE SQLCA statement is specified, the definition for the data structure

is included at that point in the program. Subsequent instances of the INCLUDE

SQLCA statement are ignored.

Note: The SQLCA data structure can also be included using the /COPY compiler

directive, instead of /EXEC SQL INCLUDE SQLCA.

Figure 22 shows the layout of the SQLCA data structure:

----+-*--1----+----2----+----3----+----4----+----5----+----6----+

SQL D* Start of SQLCA Data Structure

SQL D SQLCA DS

SQL D SQLAID 1 8A

SQL D SQLABC 9 12B 0

SQL D SQLCOD 13 16B 0

SQL D SQLERL 17 18B 0

SQL D SQLERM 19 88A

SQL D SQLERP 19 96A

SQL D SQLERRD 97 120B 0 DIM(6)

SQL D SQLERR 97 120A

SQL D SQLER1 97 100B 0

SQL D SQLER2 101 104B 0

SQL D SQLER3 105 108B 0

SQL D SQLER4 109 112B 0

SQL D SQLER5 113 116B 0

SQL D SQLER6 117 120B 0

SQL D SQLWRN 121 127A

SQL D SQLWN0 121 121A

SQL D SQLWN1 122 122A

SQL D SQLWN2 123 123A

SQL D SQLWN3 124 124A

SQL D SQLWN4 125 125A

SQL D SQLWN5 126 126A

SQL D SQLWN6 127 127A

SQL D SQLWN7 128 128A

SQL D SQLWN8 129 129A

SQL D SQLWN9 130 130A

SQL D SQLWNA 131 131A

SQL D SQLSTT 132 136A

SQL D* End of SQLCA Data Structure

Figure 22. Source expansion for SQLCA data structure

Chapter 7. SQL Support 83

/EXEC SQL WHENEVER Statement

The /EXEC SQL WHENEVER statement determines what error handling is done

following execution of SQL statements. Figure 23 illustrates the syntax of the

/EXEC SQL WHENEVER statement.

Note: <condition> is SQLWARNING, SQLERROR, or NOT FOUND. <action> is

GOTO <tag-name>, GO TO <tag-name>, or CONTINUE.

The /EXEC SQL WHENEVER identifies the action to be performed when an SQL

statement returns with a non-zero return code. It applies to all subsequent SQL

statements in the program up to the next /EXEC SQL WHENEVER statement.

A message is issued whenever the action is inapplicable based on the section of

code that the statement is in. Figure 24 illustrates this.

 In this example, statement 7 is invalid since the WHENEVER action would cause a

branch into another subroutine. The possible values for the condition are:

v SQLWARNING: The action is invoked if the value of the SQL return code is

greater than 0 and less than 100.

v SQLERROR: The action is invoked if the value of the SQL return code is less

than 0.

v NOT FOUND: The action is invoked if the value of the SQL return code is 100.

The possible values for the action are:

v GOTO <tag-name>: If the condition is true, execution resumes at the specified

tag name.

v CONTINUE: If the condition is true, execution resumes at the next executable

statement is the program. This is the default action.

Note: The /EXEC SQL WHENEVER statement must appear in the calculation

specifications.

 C/EXEC SQL WHENEVER <condition> <action>

 C/END-EXEC

Figure 23. Syntax of SQL WHENEVER statement

 ---+-*--1----+----2----+----3----+----4----+----5----+----6----+

 1 C SUBR1 BEGSR

 2 C/EXEC SQL WHENEVER SQLERROR GOTO ERRLAB

 3 C/END-EXEC

 4 C ERRLAB TAG

 5 C ENDSR

 6 C SUBR2 BEGSR

 7 C/EXEC SQL FETCH ...

 8 C/END-EXEC

 9 C ENDSR

Figure 24. Error messages using SQL WHENEVER

84 VisualAge RPG Language Reference

/EXEC SQL BEGIN DECLARE Statement

The /EXEC SQL END DECLARE statement are ignored by the compiler, however

the statements in between are not ignored. Table 12 describes how SQL data types

map to VisualAge RPG data types.

 Table 12. Mapping of SQL types to host variables

SQL Data Type

VARPG Data

Type

Data Format

(pos 43)

Length (Bytes)

(pos 44-51)

Decimal

Positions

(pos 52)

SMALLINT 4 digit binary B 2 0

INTEGER 9 digit binary B 4 0

DECIMAL(m,n) Packed decimal P m/2+1 n

CHAR(m) Character m

DATE Date 10

TIME Time 8

TIMESTAMP Timestamp 26

GRAPHIC(m) Graphic G m*2

Runtime Error Handling

If an SQL statement fails, no messages are issued during run time. You must code

an SQL WHENEVER statement or explicitly check the SQLCOD value in order to

detect these errors.

Building an Application

To build an application that contains embedded SQL, you must specify the

following options on the Build notebook:

v DB2 database name

v Either a Package name or a Bind file name.

For more information, see Programming with VisualAge RPG, SC09-2449-05.

The database name you specify must be cataloged on your workstation. You must

have the proper authority to use the database. When you start building an

application, the DB2 Database Manager is started automatically (the build process

issues the DB2START command). However, if you are building your application

from a client environment, you must start the database manager yourself on the

server. To connect to the database automatically during compilation, you must first

specify a valid userid and password on the DB2connect page of the Build Options

Notebook. For subsequent builds, VARPG will use this information to connect to

the database.

Before your application can be run, a package must be created. A package is an

object stored in the database that includes information to execute the embedded

SQL in your application, or program. If the package is created at build time, this is

called binding enabled. This allows the application to only access the database

used during the build. If the application is built with binding deferred, a bind file

is created and the application can access many databases.

Chapter 7. SQL Support 85

Running an Application

To run an application that contains embedded SQL, the following conditions must

exist:

v The database that your application accesses must be cataloged on your

workstation

v You must have the proper authority to access the database

v The timestamp with which your application was built must match the

timestamp of the database package you are accessing.

When you run your VisualAge RPG application, the DB2 Database Manager is

started automatically (DB2START). If you are running your application from a

client environment, you must start the database manager yourself on the server.

If the application is built with binding deferred, the bind files that are produced

must be bound to the database before the application can run.

When you build your application, a timestamp is embedded in it. This timestamp

is compared to the database package when the application is run. If the

timestamps are not equal, the application will not run. This mismatch can occur if

the application is run against an older package.

If you port your application to another workstation, the timestamps in your

application must match the timestamps in the package that you are accessing on

the new workstation. You can either:

v Rebind your application by issuing the following command from a command

prompt:

 sqlbind applic1.bnd typesx

where sqlbind is the DB2 command, applic1.bnd is the bind file created during the

build, and typesx is the database you wish to access.

v Setup access to the database used by your application. You must catalog the

database that you are trying to access on the new workstation. This is the same

database used during the build. The database can be on another workstation, or

on a remote system.

Connecting to a Database

Before your application can access a database, your application must have a

connection to the database. You can do this by either using the CONNECT TO

statement or by using an implicit connect.

Using the CONNECT TO Statement

You can specify the database name you wish to connect to by using the CONNECT

TO statement in your application. For example,

 C\EXEC SQL CONNECT TO LATONA

 C\END-EXEC

Note: LATONA is the name of the database.

You can use a variable for the database name as shown in the following example:

 D server s 10a

 D userid s 8a

 D password s 10a

 ...

 C eval server = ’LATONA’

86 VisualAge RPG Language Reference

C eval userid = ’USERID’

 C eval password = ’password’

 ...

 C\EXEC SQL

 C+ CONNECT TO :server IN SHARE MODE user :userid using :password

 C\END-EXEC

For more information on the syntax of the CONNECT SQL statement, refer to the

SQL Reference for your DB2 configuration.

Chapter 7. SQL Support 87

Using an Implicit Connect

You can establish an implicit connection to your database by setting the

environment variable SQLDBDFT to point to the database that you want to

implicitly connect to. For example,

SET SQLDBDFT=LATONA

This environment variable can be set either in your CONFIG.SYS file, or set from

the session’s command prompt.

If you are running your application in a Windows environment, you can use the

following to connect to a database:

SET DB2DBDFT=LATONA

SET DB2USERID=USERID

SET DB2PASSWORD=password

These environment variables are set in the AUTOEXEC.BAT file.

Note: Some differences exist in the environment variable names depending on the

configuration of DB2 installed. Refer to the DB2 installation manuals.

88 VisualAge RPG Language Reference

Chapter 8. File Considerations

This section describes how to use files in a VisualAge RPG program. Your program

can use DISK, PRINTER, and SPECIAL files:

v DISK files:

– DISK files can either be remote or local

– Remote DISK files must be externally described

– Local DISK files must be program described
v PRINTER files:

– A maximum of eight PRINTER files are allowed

– PRINTER files must be program described

– PRINTER files must be local
v SPECIAL files:

– SPECIAL files must be program described

– SPECIAL files must be local

For more information on how to specify files, see the following sections:

v Chapter 17, “File Description Specifications,” on page 237

v Chapter 18, “Definition Specifications,” on page 255

v Chapter 19, “Input Specifications,” on page 299

v Chapter 21, “Output Specifications,” on page 321.

Disk Files

Part 3, “Specifications,” on page 209 describes how to define both local and remote

files on the various specifications. This section describes additional considerations

if your VisualAge RPG application uses local files or OS/400 database files.

Local Files

The following is a summary of restrictions for local files:

v Local file cannot be locked.

v Numeric fields in local files are written and read as is, with no conversion.

v If your program performs I/O on a local file does not exist, the file is created.

v If the local file is created by VisualAge RPG, records in this file are terminated

with a carriage return line feed. If you use a local file that does not contain

carriage return line feeds, your VisualAge RPG application will not be able to

perform I/O operations on this file.

v Bit patterns in a local file are read into storage as is. If a bit pattern contains the

binary representation for a carriage return line feed (CRLF), the record that is

read by your VisualAge RPG program will be split into two records.

v If a local file contains binary numbers, the numbers are byte-swapped.

OS/400 Files

VisualAge RPG operation codes can access OS/400 physical, source physical, and

logical database files. For more information on how to setup OS/400 database files,

see the DB2 Universal Database section of the Database and File Systems category in

the Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

© Copyright IBM Corp. 1994, 2005 89

Before your application can access OS/400 database files, you must set up the

server. For more information on how to setup a server, see Getting Started with

WebSphere Development Studio Client for iSeries, SC09-2625-06 and Programming with

VisualAge RPG, SC09-2449-05.

When your VisualAge RPG application accesses an OS/400 database file, a DDM

service job is used to handle the database I/O requests. A single DDM service job

is used on each different iSeries server where files are opened for each VisualAge

RPG application. When the application ends, all the DDM service jobs end.

Sharing the File Open Data Path

Sharing open data paths is not supported. If a VisualAge RPG application contains

an OPNQRYF CL command, then the open data path associated with the

OPNQRYF command cannot be shared by files opened in the VisualAge RPG

application.

If the VisualAge RPG application calls a program which uses the OPNQRYF

command, the open data path can be shared.

Each open performed by the VisualAge RPG application creates a unique open

data path. Multiple opens of the same database file within the same VisualAge

RPG application result in different instances of the file, each with its own open

data path.

You can open the same database file more than once by using different file alias

names in the VisualAge RPG program to refer to the same actual OS/400 database

file. You must define multiple file pages in the Define iSeries Information

notebook.

You can also open the same database file in different components of the VisualAge

RPG application.

Query Files and Single/Blocked Record I/O Operations

When using query files (OPNQRYF command), set both the VisualAge RPG

application and the query file to expect either single or blocked record

input/output operations. If these settings do not match, the application appears to

skip records on input. This mismatch can occur because the OPNQRYF command

first opens the file, then the open data path is shared with the VisualAge RPG

application file open request, ignoring some of its open settings. However, the

single or blocked record setting is fixed in the VisualAge RPG application at

compile time.

For the OPNQRYF and OVRDBF commands, the SEQONLY(*NO/*YES) keyword

determines single or blocked record input or output processing. For VisualAge

RPG applications, single or blocked record processing is based on one of the

following:

v The F specification keyword BLOCK(*NO/*YES) value

v The presence of random record positioning operations (SETLL, for example) on

the file in the program.

Invalid Data Errors on Query Files

A run time error can occur if a query file (OPNQRYF command) is used which has

a key field definition that does not match the compile-time file’s key field

definition. A single-record input operation from the query file will perform

server-to-workstation conversion on the key feedback values returned with the

90 VisualAge RPG Language Reference

operation. This may trigger invalid data errors if the returned key value formats

do not match the expected formats from the compile-time file’s key definition. This

error situation can be avoided if:

v Only blocked record input operations are used, or

v A compile-time file with a key field definition which matches the query file used

at program run time is selected.

Applications with Embedded Database File Overrides

If a VARPG application uses an OVRDBF (Override Database File) command to

specify a different library or file name, the file open will fail if a file by the original

name does not exist on the server.

The VARPG file open request goes through the iSeries DDM support, which

attempts to locate and lock the file before applying the file override information. If

this lock attempt fails on the original library/filename, then the open request fails.

If the file lock succeeds, the request then passes to the iSeries database layer which

applies the file override and performs the open on the redirected file name.

OS/400 File Data Conversions

Data is stored differently on the iSeries server than on the workstation. For this

reason, VisualAge RPG data conversion occurs if your VisualAge RPG application

calls OS/400 programs, accesses OS/400 data areas, or accesses OS/400 database

files. This conversion ensures that data is represented correctly on both the

workstation and on the iSeries server.

If a data structure is passed as a parameter to a call to an OS/400 program, or if

the data structure represents an OS/400 data area, each subfield is converted based

on its data type.

Note: In order for the data conversions to work, all database files and TO/FROM

files must be externally described.

The following conversions are performed on VisualAge RPG data types:

Character Data:

Character data is converted from EBCDIC to ASCII and vice versa. All

character data stored in the database must be tagged with an appropriate

EBCDIC CCSID in order for the conversion to work correctly. Character

data is converted depending on the CCSID of the character field and the

code page of the ASCII workstation. If your application calls an OS/400

program or accesses an OS/400 data area, the CCSID of the job serving the

call or the data area request is used when converting data.

 For more information on tagging character data, see the the DB2 Universal

Database section of the Database and File Systems category in the

Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Graphic data type:

The Graphic data type contains all DBCS characters without the SO and SI

characters. Since this is the format that the system expects, the entire

graphic data type can be used.

Note: If your application issues server I/O requests, you must tag the

OS/400 Graphic fields with an appropriate DBCS CCSID in order

for the VisualAge RPG conversion to work successfully.

Chapter 8. File Considerations 91

Date, Time and Timestamp data types:

The conversion is the same as for character data types. Explicit CCSID

tagging is not required for OS/400 database access.

Zoned Numeric data type:

Zoned numbers are converted so they can be displayed and printed on

both the server and the workstation.

 When negative EBCDIC zoned numbers are converted to ASCII, the sign

portion of the last byte is converted to x’7’. See “Zoned-Decimal Format”

on page 129.

Packed Decimal data type:

When EBCDIC packed numbers are converted to ASCII, the sign portion of

the packed number is converted to x’C’ if the number is positive and x’D’

if the number is negative. See “Packed-Decimal Format” on page 126.

Binary data types:

Binary fields are reordered when this data is sent between the server and

the workstation.

The following conversions are performed on database types:

Float data types:

Binary and Float fields are byte swapped when this data is sent between

the server and the workstation. For example,

v A 2 byte integer field on the server containing ’1 2’ is converted to ’2 1’

on the workstation.

v A 2 byte integer field on the containing ’2 1’ on the workstation is

converted to ’1 2’ on the server .

v A 4 byte integer field on the server containing ’1 2 3 4’ is converted to ’4

3 2 1’ on the workstaiton.

v A 4 byte integer field on the containing ’4 3 2 1’ on the workstation is

converted to ’1 2 3 4’ on the server .

Hex Data Type and Character Data tagged with a CCSID of 65535

Data conversion does not occur if the character field is tagged with a

CCSID of 65535 (implying no conversion should take place).

J, O, or E Data types:

The J (DBCS only), O (Mixed data) and E (Either all single byte or all

double type) data types are treated as character fields in the VisualAge

RPG program.

 J, O, and E data types must be tagged with an appropriate CCSID.

However, since they may contain DBCS characters they are special. On the

server, DBCS characters for these data types are enclosed by the SO (Shift

out) and SI (Shift In) characters. On the workstation, DBCS is not enclosed

with the SO and SI characters.

 When data is retrieved from the server, these characters are stripped and

the character field is padded with two additional trailing blanks.

 When data is sent to the server, you must ensure that there are enough

trailing blanks in the character field so that they can be replaced by the

appropriate number of SO and SI characters which must be added to the

OS/400 DBCS field.

 For example, assume that an O (mixed data) field is created in the

database. On the workstation, this field contains the following before being

written to the database.

92 VisualAge RPG Language Reference

sbDBsbDBblblblbl

 Where sb = Single byte character.

 DB = Double byte character.

 bl = Single byte blank character.

In this example, this field is converted as follows:

 sbSODBSIsbSODBSI

Note: The trailing single byte blanks are treated as insignificant and are

replaced with the SO and SI characters appropriately.

Variable length fields:

For server I/O requests, the Binary portion is reordered when this data is

sent between the server and the workstation. The character portion is

converted based on the field CCSID.

OS/400 Database File Commitment Control

OS/400 commitment control allows you to process a group of database changes as

a unit. This unit can be successfully applied to the database by issuing a commit

operation. Changes associated with the unit can be rolled back if they cannot be

successfully applied as a group.

The information you enter on the Define iSeries Information notebook allows you

to define multiple OS/400 database files for your VisualAge RPG application.

These files can exist on multiple servers. For more information on defining server

information, see the online help and Programming with VisualAge RPG,

SC09-2449-05.

A commitment control environment can only be started for one server. You can still

use the database file on other servers. However those files cannot be opened under

commitment control.

After the commitment control environment has been started for a server, you can

open database files on that server using the COMMIT keyword on the file

specification for the files you want opened under commitment control. Only files

opened under commitment control are affected by subsequent COMMIT and

ROLLBK operations. For more information on the COMMIT keyword, see

“COMMIT{(rpg_name)}” on page 245.

After making the appropriate changes associated with your transaction, you can

commit the changes to the database using the COMMIT operation code or you can

rollback the database changes using the ROLLBK operation code.

Commitment control is ended when your VisualAge RPG application ends. If

changes are pending in the database which have not been explicitly committed or

rolled back, then an implicit rollback operation occurs at application termination.

You can write a program so that the decision to open a file under commitment

control is made at run time. The COMMIT keyword on the file specification has a

parameter which allows you to specify conditional commitment control. For more

information on using the COMMIT keyword to control opening a file for

commitment control at run time, see “COMMIT{(rpg_name)}” on page 245.

Level Checking: The VisualAge RPG supports level checking between a

VisualAge RPG program and the database files being used.

Chapter 8. File Considerations 93

The VisualAge RPG compiler provides the information required by level checking.

Level checking occurs on a record-format basis when the file is opened unless you

specify LVLCHK(*NO) when creating or changing the database file.

Note: If a level check occurs, it is handled as an I/O error.

Floating Point: Floating-point fields are not supported. If you process an

externally-described OS/400 file with floating-point fields, the floating-point fields

cannot be accessed by the VisualAge RPG application. When you create a new

record, the floating-point fields in the record have a value of zero. When you

update existing records, the floating-point fields are unchanged. You cannot use a

floating-point field as a key field.

Locking Files: The OS/400 system allows a lock state (exclusive, exclusive allow

read, shared for update, shared no update, or shared for read) to be placed on a

file used during the execution of a job. Programs within a job are not affected by

file lock states. A file lock state applies only when a program in another job tries to

use the file concurrently. The file lock state can be allocated with the CL command

ALCOBJ (Allocate Object). For more information on allocating resources and lock

states, see the CL and APIs section of the Programming category in the Information

Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

The OS/400 system places the following lock states on database files when it opens

the files:

v Opened for INPUT: Lock state of Shared for read

v Opened for UPDATE: Lock state of Shared for update

v Opened for ADD: Lock state of Shared for update

v Opened for OUTPUT: Lock state of Shared for update.

Locking Records: When a record is read from a file that has been opened for

update, a lock is applied to the record. Other programs on the server and other

open instances in your VisualAge RPG application of the same file cannot read this

record for update until the record lock is released.

You can read a record for input purposes even if the file is an update file by using

the (N) operation code extender in the operation code field following the operation

code name. The following operation codes cause a record to be locked if the

operation code extender (N) is not specified:

v CHAIN

v READ

v READE

v READP

v READPE

The lock remains until one of the following occurs:

v The record is updated

v The record is deleted

v Another record is read from the file (for input or update)

v A SETLL or SETGT operation is performed against the file

v An UNLOCK operation is performed against the file

v An output operation defined by an output specification with no field names

included is performed against the file

Note: An output operation that adds a record to a file does not result in a

record lock being released.

94 VisualAge RPG Language Reference

If your program attempts to read a record for update and the record is already

locked by another file open instance, then the read operation waits until the record

is unlocked. If the wait time exceeds the WAITRCD parameter on the file, an

exception occurs. If your program does not handle this exception (RNQ1218), then

the default error handler gets control. You have the option to retry the operation.

This allows the program to continue as if the record lock timeout had not occurred.

Note: If the file has an INFSR subroutine specified when an I/O operation is

performed on the file before the default error handler is given control,

unexpected results can occur if the input operation that is retried is a

sequential operation. This can occur if the file cursor has been modified.

Chapter 8. File Considerations 95

Printer Files

The following rules apply to printer files:

v The record length for the printer device in a VisualAge RPG application must be

less than or equal to the physical page width.

v An automatic form-feed is inserted when the value of the current line is equal to

the value specified by the FORMLEN(n) keyword, where n is the number of

lines per page, If FORMLEN is not specified, the default page length is 66 lines.

v If printing finishes in the middle of a printer file’s page, a form-feed is added

automatically.

The following restrictions apply to printer files:

v The PRINT feedback area (for number of pages and lines) is updated only after

a POST operation.

v Major/minor return codes, I/O feedback areas, and open feedback areas are not

supported.

v Overflow/fetch is not supported. However, when the line number reaches the

value specified by FORMLEN (or the default of 66), a form feed takes place.

v Since overflow is not supported, the *OFL routine (for file exceptions and errors)

is not supported. This means the *ROUTINE does not get updated with this

value in the file feedback area.

Special Files

A special file allows you to specify an input and/output device that is not directly

supported by the VisualAge RPG operations. The input and output operations for

the file are controlled by a user-written routine. Use the PROCNAME keyword on

the file specifications to define the special file handler.

Note: The user-written routine is a function contained in a Dynamic Link Library

(DLL).

In Figure 25 on page 97, fspecr is a function within a C module which has been

compiled and linked to a VisualAge RPG application. This example demonstrates

how to perform local I/O on a workstation.

Note: In order for your VisualAge RPG program to connect with a DLL, you must

create the DLL containing the C function definition referred to by the

procedure keyword (PROCNAME) in the VisualAge RPG program. When

you build your VisualAge RPG application, you must specify the list of

libraries (LIB) and/or objects (OBJ) which contains all the functions that the

application calls on the Build notebook.

96 VisualAge RPG Language Reference

F* ---

 F* ---------- --- VRPG Special Files --- ----------------------

 F* ---

 F* Special file declaration. Explicit open and close.

 F dino cf f 18 SPECIAL USROPN PLIST(dinoplist)

 F PROCNAME(’fspecr’)

 F INFDS(info)

 D* ---

 D* The INFDS- positions 38 to 42.

 D info DS

 d errinfo 38 42s 0

 D* ---

 D* Used to display set indicators and read values.

 D BoxId M STYLE(*INFO)

 D BUTTON(*OK:*ENTER)

 D BUTTON(*ABORT:*IGNORE)

 D* ---

 D* Input field associated with special file.

 D fieldc S 18 inz (’VRPGisGreat’)

 D* ---

 D* Extra, user-defined parameter for special file I/O operations.

 D mySFparm S 10 inz (’VRPGisGreat’)

 I* ---

 I* Input specification, i.e. fieldc is updated for the VRPG program

 I* after each I/O operation performed on the special file dino.

 I dino NS

 I 1 18 fieldc

 I*

Figure 25. Using Special Files (Part 1 of 2)

 I* ---

 C *INZSR BEGSR

 C* ---

 C dinoplist PLIST

 C PARM mySFparm

 C EVAL fieldc = ’FIRSTINIT’

 C FIELDC DSPLY BoxId Reply 9 0

 C*---

 C OPEN dino 90

 C 90’IND90’ DSPLY BoxId Reply

 C 99’IND99’ DSPLY BoxId Reply

 c*---

 C N90 READ dino 9099

 C*---

 C N90FIELDC DSPLY BoxId Reply

 C 90’IND90’ DSPLY BoxId Reply

 C 99’IND99’ DSPLY BoxId Reply

 c*---

 C CLOSE dino 90

 C*---

 C 90’IND90’ DSPLY BoxId Reply

 C 99’IND99’ DSPLY BoxId Reply

 C ENDSR

Figure 25. Using Special Files (Part 2 of 2)

Chapter 8. File Considerations 97

#include <stdlib.h>

#include <memory.h>

#include <stdio.h>

/* --,

| Special File Function |

’---*/

 *

extern void fspecr (char *option, // VRPG provided

 char *status, // VRPG provided

 char *error, // VRPG provided

 char *area, // VRPG provided

 char *mySFparm) // User provided

{

/* --,

| Local Constants |

’---*/

#define REC_SIZE 18 // Size of record to be read.

#define NORMAL_STATUS ’0’ // Values for ’status’ parameter.

#define ERROR_STATUS ’2’

#define EOF_STATUS ’1’

#define OPEN_ERROR 12345 // Update values for ’error’ also

#define READ_ERROR 88888 // used for the *RECORD field in

#define OPTION_ERROR 99999 // in the INFDS.

 *

 static FILE *fp ;

 *

 int radix = 10 ; // Required for the ’_itoa’ function.

 *

 int a = 0 ;

 char temp[6];

 switch (option[0]) {

 case ’O’ : // Locally open the file.

 if ((fp=fopen("special.dat", "rb+")) == NULL) {

 a = OPEN_ERROR ; // ASCII value of an open error

 _itoa(a, temp, radix) ; // is set here for the INFDS.

 memcpy(error, temp, 5) ;

 status[0] = ERROR_STATUS ; // Return status.

 }

 else {

 status[0] = NORMAL_STATUS ;

 }

 *

 break ;

 *

 case ’C’ : // Local close ...

 fclose(fp) ;

 status[0] = NORMAL_STATUS ;

 break ;

Figure 26. C program for Special Files (Part 1 of 2)

98 VisualAge RPG Language Reference

*

 case ’R’ : // Local file open... read.

 fread(area, 1, REC_SIZE, fp) ;

 if (feof(fp)) {

 status[0] = EOF_STATUS ; // File read and EOF reached.

 }

 else if (ferror(fp)) { // Check for any errors.

 a = READ_ERROR ; // ASCII equivalent of a read error

 _itoa(a, temp, radix) ; // is set here for the INFDS.

 memcpy(error, temp, 5) ;

 status[0] = ERROR_STATUS ; // Return status.

 }

 else {

 status[0] = NORMAL_STATUS ;

 }

 break ;

 *

 default :

 a = OPTION_ERROR ; // Set the ASCII equivalent of an

 _itoa(a, temp, radix) ; // option error for the INFDS.

 memcpy(error, temp, 5) ;

 status[0] = ERROR_STATUS ; // Return status.

 break ;

 *

 }

 *

 return ;

 *

#undef REC_SIZE

#undef NORMAL_STATUS

#undef ERROR_STATUS

#undef EOF_STATUS

#undef OPEN_ERROR

#undef READ_ERROR

#undef OPTION_ERROR

}

Figure 26. C program for Special Files (Part 2 of 2)

Chapter 8. File Considerations 99

The example in Figure 27 illustrates how the OPEN and CLOSE operations are

done implicitly by omitting the USROPN keyword from the File specifications.

 F* ---

 F* ---------- --- VRPG Special Files --- ----------------------

 F* ---

 F* Special file declaration. Implicit open and close.

 F dino cf f 18 SPECIAL PLIST(dinoplist)

 F PROCNAME(’fspecr’)

 F INFDS(info)

 D* ---

 D* The INFDS- positions 38 to 42.

 D info DS

 d errinfo 38 42s 0

 D* ---

 D* Used to display set indicators and field values.

 D BoxId M STYLE(*INFO)

 D BUTTON(*OK:*ENTER)

 D BUTTON(*ABORT:*IGNORE)

 D* ---

 D* Input field associated with special file.

 D fieldc S 18 inz (’VRPGisGreat’)

 D* ---

 D* Extra, user-defined parameter for special file I/O operations.

 D mySFparm S 10 inz (’VRPGisGreat’)

 I* ---

 I* Input specification, i.e. fieldc is updated for the VRPG program

 I* after each I/O operation performed on the special file dino.

 I dino NS

 I 1 18 fieldc

 I* ---

 C *INZSR BEGSR

 C* ---

 C dinoplist PLIST

 C PARM mySFparm

 C EVAL fieldc = ’FIRSTINIT’

 C FIELDC DSPLY BoxId Reply 9 0

 C*---

 C READ dino 9099

 C*---

 C N90FIELDC DSPLY BoxId Reply

 C 90’IND90’ DSPLY BoxId Reply

 C 99’IND99’ DSPLY BoxId Reply

 C*---

 C ENDSR

Figure 27. Opening and Closing Special Files Implicitly

100 VisualAge RPG Language Reference

Part 2. Data

This section provides information on using data in a program:

v Chapter 9, “Data Types and Data Formats,” on page 103 describes data type and

formats

v “Literals” on page 149 describes literals

v Chapter 11, “Data Structures,” on page 157 describes data structures

v Chapter 12, “Using Arrays and Tables,” on page 171 describes Arrays and tables

v Chapter 13, “Editing Numeric Fields,” on page 191 describes how to edit

numeric fields

v Chapter 14, “Initialization of Data,” on page 207 describes data initialization

© Copyright IBM Corp. 1994, 2005 101

102 VisualAge RPG Language Reference

Chapter 9. Data Types and Data Formats

This section describes the data types supported by VisualAge RPG and their

special characteristics. The supported data types are:

v Basing Pointer

v Character

v Date

v Graphic

v Numeric

v Object

v Procedure Pointer

v Time

v Timestamp

v UCS-2

In addition, some of the data types allow different data formats. This section

describes the difference between internal and external data formats, describes each

format, and how to specify them.

Internal and External Formats

Numeric, date, and timestamp fields have an internal format that is independent of

the external format. The internal format is the way the data is stored in the

program. The external format is the way the data is stored in files.

You need to be aware of the internal format when:

v Passing parameters by reference

v Overlaying subfields in data structures

In addition, you may want to consider the internal format of numeric fields, when

the runtime performance of arithmetic operations is important. For more

information, see “Performance Considerations” on page 349.

There is a default internal and external format for numeric and date-time data

types. You can specify an internal format for a specific field on a definition

specification. Similarly, you can specify an external format for a program-described

field on the corresponding input or output specification.

For fields in an externally-described file, the external data format is specified in the

data description specifications in position 35. You cannot change the external

format of externally-described fields, with one exception. If you specify

EXTBININT on a control specification, any binary field with zero decimal positions

will be treated as having an integer external format.

For subfields in externally-described data structures, the data formats specified in

the external description are used as the internal formats of the subfields by the

compiler.

Internal Format

The default internal format for numeric standalone fields is packed-decimal. The

default internal format for numeric data structure subfields is zoned-decimal. To

© Copyright IBM Corp. 1994, 2005 103

specify a different internal format, specify the format desired in position 40 on the

definition specification for the field or subfield.

The default format for date, time, and timestamp fields is *ISO. In general, it is

recommended that you use the default ISO internal format, especially if you have

a mixture of external format types.

For date, time, and timestamp fields, you can use the DATFMT and TIMFMT

keywords on the control specification to change the default internal format, if

desired, for all date-time fields in the program. You can use the DATFMT or

TIMFMT keyword on a definition specification to override the default internal

format of an individual date-time field.

External Format

If you have numeric, character, or date-time fields in program-described files, you

can specify their external format. Valid external numeric formats are: binary,

integer, packed-decimal, zoned-decimal, unsigned or float. The external format

does not affect the way in which a field is processed. However, you may be able to

improve performance of arithmetic operations, depending on the internal format

specified. For more information, see “Performance Considerations” on page 349.

Specifying an External Format for a Numeric Field

The following table shows how to specify the external format of numeric

program-described fields. For more information on each format type, see the

appropriate section in the remainder of this section.

 Table 13. Entries and Locations for Specifying External Formats

Type of Field Specification Using

Input Input Position 36

Output Output Position 52

Array or Table Definition EXTFMT keyword

For any of these fields in Table 13, specify one of the following valid external

numeric formats:

B Binary

F Float

I Integer

L Left sign

P Packed decimal

R Right sign

S Zoned decimal

U Unsigned

The default external format for float numeric data is called the external display

representation. The format for 4-byte float data is:

+n.nnnnnnnE+ee, where + represents the sign (+ or -)

 n represents digits in the mantissa

 e represents digits in the exponent

The format for 8-byte float data is:

+n.nnnnnnnnnnnnnnnE+eee

Note that a 4-byte float value occupies 14 positions and an 8-byte float value

occupies 23 positions.

104 VisualAge RPG Language Reference

For numeric data other than float, the default external format is zoned decimal.

The external format for compile-time arrays and tables must be zoned-decimal,

left-sign or right-sign.

For float compile-time arrays and tables, the compile-time data is specified as

either a numeric literal or a float literal. Each element of a 4-byte float array

requires 14 positions in the source record; each element of an 8-byte float array

requires 23 positions.

Non-float numeric fields defined on input specifications, calculation specifications,

or output specifications with no corresponding definition on a definition

specification are stored internally in packed-decimal format.

Specifying an External Format for a Character, Graphic, or UCS-2

Field

For any of the input and output fields in Table 13 on page 104, specify one of the

following valid external data formats:

A Character (valid for character and indicator data)

N Indicator (valid for character and indicator data)

G Graphic (valid for graphic data)

C UCS-2 (valid for UCS-2 data)

 The EXTFMT keyword can be used to specify the data for an array or table in

UCS-2 format.

Specify the *VAR data attribute in positions 31-34 on an input specification and in

positions 53-80 on an output specification for variable-length character, graphic, or

UCS-2 data.

Specifying an External Format for a Date-Time Field

If you have date, time, and timestamp fields in program-described files, then you

must specify their external format. You can specify a default external format for all

date, time, and timestamp fields in a program-described file by using the DATFMT

and TIMFMT keywords on a File-Description specification. You can specify an

external format for a particular field as well. Specify the desired format in

positions 31-34 on an Input specification. Specify the appropriate keyword and

format in positions 53-80 on an Output specification.

For more information on each format type, see the appropriate section in the

remainder of this chapter.

Basing Pointer Data Type

Basing pointers are used to locate the storage for based variables. The storage is

accessed by defining a field, array, or data structure as based on a particular basing

pointer variable and setting the basing pointer variable to point to the required

storage location.

For example, consider the based variable MY_FIELD, a character field of length 5,

which is based on the pointer PTR1. The based variable does not have a fixed

location in storage. You must use a pointer to indicate the current location of the

storage for the variable.

Suppose that the following is the layout of some area of storage:

Chapter 9. Data Types and Data Formats 105

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |

If we set pointer PTR1 to point to the G,

 PTR1-------------------.

 |

 V

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |

MY_FIELD is now located in storage starting at the ’G’, so its value is ’GHIJK’. If

the pointer is moved to point to the ’J’, the value of MY_FIELD becomes ’JKLMN’:

 PTR1-------------------.

 |

 V

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |

If MY_FIELD is now changed by an EVAL statement to ’HELLO’, the storage

starting at the ’J’ would change:

 PTR1-------------------.

 |

 V

| A | B | C | D | E | F | G | H | I | H | E | L | L | O | O |

Use the BASED keyword on the definition specification (see

“BASED(basing_pointer_name)” on page 266) to define a basing pointer for a field.

Basing pointers have the same scope as the based field.

The length of the basing pointer field must be 4 bytes long and must be aligned on

a 4 byte boundary. This requirement for boundary alignment can cause a pointer

subfield of a data structure not to follow the preceding field directly, and can cause

multiple occurrence data structures to have non-contiguous occurrences. For more

information on the alignment of subfields, see “Aligning Data Structure Subfields”

on page 160.

The default initialization value for basing pointers is *NULL.

Notes:

1. When coding basing pointers, you must be sure that you set the pointer to

storage that is large enough and of the correct type for the based field.

Figure 31 on page 109 shows some examples of how not to code basing

pointers.

2. You can add or subtract an offset from a pointer in an expression, for example

EVAL ptr = ptr + offset. When doing pointer arithmetic be aware that it is your

responsibility to ensure that you are still pointing within the storage of the item

you are pointing to. In most cases no exception will be issued if you point

before or after the item.

When subtracting two pointers to determine the offset between them, the

pointers must be pointing to the same space, or the same type of storage. For

example, you can subtract two pointers in static storage, or two pointers in

automatic storage, or two pointers within the same user space.

106 VisualAge RPG Language Reference

Setting a Basing Pointer

You set or change the location of the based variable by setting or changing the

basing pointer in one of the following ways:

v Initializing with INZ(%ADDR(FLD)) where FLD is a non-based variable

v Assigning the pointer to the result of %ADDR(X) where X is any variable

v Assigning the pointer to the value of another pointer

v Using ALLOC or REALLOC (See “ALLOC (Allocate Storage)” on page 505 and

“REALLOC (Reallocate Storage with New Length)” on page 666 for examples.)

v Moving the pointer forward or backward in storage using pointer arithmetic:

EVAL PTR = PTR + offset

(″offset″ is the distance in bytes that the pointer is moved)

Examples

Figure 28 shows how to define a based data structure.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

 *

 * Define a based data structure, array and field.

 * If PTR1 is not defined, it will be implicitly defined

 * by the compiler.

 *

 * Note that before these based fields or structures can be used,

 * the basing pointer must be set to point to the correct storage

 * location. PTR1 will be set to a valid storage address before the

 * DSbased data structure is used.

 *

D DSbased DS BASED(PTR1)

D Field1 1 16A

D Field2 2

D

D ARRAY S 20A DIM(12) BASED(PTR2)

D

D Temp_fld S * BASED(PTR3)

D

D PTR2 * INZ

D PTR3 * INZ(*NULL)

Figure 28. Defining Based Structures and Fields

Chapter 9. Data Types and Data Formats 107

The following shows how you can add and subtract offsets from pointers and also

determine the difference in offsets between two pointers.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

D P1 s *

D P2 s *

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++

 *

 * Allocate 20 bytes of storage for pointer P1.

C ALLOC 20 P1

 * Initialize the storage to ’abcdefghij’

C EVAL %STR(P1:20) = ’abcdefghij’

 * Set P2 to point to the 9th byte of this storage.

C EVAL P2 = P1 + 8

 * Show that P2 is pointing at ’i’. %STR returns the data that

 * the pointer is pointing to up to but not incuding the first

 * null-terminator x’00’ that it finds, but it only searches for

 * the given length, which is 1 in this case.

C EVAL Result = %STR(P2:1)

C DSPLY Result 1

 * Set P2 to point to the previous byte

C EVAL P2 = P2 - 1

 * Show that P2 is pointing at ’h’

C EVAL Result = %STR(P2:1)

C DSPLY Result

 * Find out how far P1 and P2 are apart. (7 bytes)

C EVAL Diff = P2 - P1

C DSPLY Diff 5 0

 * Free P1’s storage

C DEALLOC P1

C RETURN

Figure 29. Pointer Arithmetic

108 VisualAge RPG Language Reference

Figure 30 shows how to obtain the number of days in Julian format, if the Julian

date is required.

 When coding basing pointers, make sure that the pointer is set to storage that is

large enough and of the correct type for the based field. Figure 31 shows some

examples of how not to code basing pointers.

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+....

HKeywords++

H DATFMT(*JUL)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

D JulDate S D INZ(D’95/177’)

D DATFMT(*JUL)

D JulDS DS BASED(JulPTR)

D Jul_yy 2 0

D Jul_sep 1

D Jul_ddd 3 0

D JulDay S 3 0

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++

 *

 * Set the basing pointer for the structure overlaying the

 * Julian date.

C EVAL JulPTR = %ADDR(JulDate)

 * Extract the day portion of the Julian date

C EVAL JulDay = Jul_ddd

Figure 30. Obtaining a Julian Date

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...

8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

D chr10 S 10a based(ptr1)

D char100 S 100a based(ptr1)

D p1 S 5p 0 based(ptr1)

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++

 *

 *

 * Set ptr1 to the address of p1, a numeric field

 * Set chr10 (which is based on ptr1) to ’abc’

 * The data written to p1 will be unreliable because of the data

 * type incompatibility.

 *

C EVAL ptr1 = %addr(p1)

C EVAL chr10 = ’abc’

 *

 * Set ptr1 to the address of chr10, a 10-byte field.

 * Set chr100, a 100-byte field, all to ’x’

 * 10 bytes are written to chr10, and 90 bytes are written in other

 * storage, the location being unknown.

 *

C EVAL ptr1 = %addr(chr10)

C EVAL chr100 = *all’x’

Figure 31. How Not to Code Basing Pointers

Chapter 9. Data Types and Data Formats 109

Character Data Type

The character data type represents character values and may have one of the

following formats:

A Character

N Indicator

G Graphic

C UCS-2

Character data may contain one or more single-byte or double-byte characters,

depending on the format specified. Character, graphic, and UCS-2 fields can also

have either a fixed or variable-length format. Operation codes which operate on

strings accept character data. The following table summarizes the different

character data-type formats.

 Character Data

Type

Number of Bytes CCSID

Character One or more single-byte characters

that are fixed or variable in length

assumed to be the CCSID of the

workstation

Indicator One single-byte character that is

fixed in length

assumed to be the CCSID of the

workstation

Graphic One or more double-byte

characters that are fixed or variable

in length

CCSID of the workstation or a

valid user-defined double-byte

CCSID

UCS-2 One or more double-byte

characters that are fixed or variable

in length

13488 (UCS-2 version 2.0)

For information on the CCSIDs of character data, see “Conversion between

Character, Graphic and UCS-2 Data” on page 119.

The default initialization value for non-indicator character fields is blanks.

Indicators are a special type of character data. Indicator data consists of the

indicator and the field specified with the COMMIT keyword on the file description

specification. Indicators are all one byte long and can only contain the character

values ’0’ and ’1’. The default value of indicators is ’0’.

Character Format

The fixed-length character format is one or more bytes long with a set length.

For information on the variable-length character format, see “Variable-Length

Character, Graphic, and UCS-2 Format” on page 113.

You define a character field by specifying A in the Data-Type entry of the

appropriate specification. You can also define one using the LIKE keyword on the

definition specification where the parameter is a character field.

The default initialization value is blanks.

110 VisualAge RPG Language Reference

Indicator Format

The indicator format is a special type of character data. Indicators are all one byte

long and can only contain the character values ’0’ (off) and ’1’ (on). They are

generally used to indicate the result of an operation or to condition (control) the

processing of an operation. The default value of indicators is ’0’.

You define an indicator field by specifying N in the Data-Type entry of the

appropriate specification. You can also define an indicator field using the LIKE

keyword on the definition specification where the parameter is an indicator field.

Indicator fields are also defined implicitly with the COMMIT keyword on the file

description specification.

The rules for defining indicator variables are:

v Indicators can be defined as standalone fields, subfields, prototyped parameters,

and procedure return values.

v If an indicator variable is defined as a prerun-time or compile-time array or

table, the initialization data must consist of only ’0’s and ’1’s.

Note: If an indicator contains a value other than ’0’ or ’1’ at runtime, the results

are unpredictable.

v If the keyword INZ is specified, the value must be one of ’0’, *OFF, ’1’, or *ON.

v The keyword VARYING cannot be specified for an indicator field.

The rules for using indicator variables are:

v The default initialization value for indicator fields is ’0’.

v Operation code CLEAR sets an indicator variable to ’0’.

v Blank-after function applied to an indicator variable sets it to ’0’.

v If an array of indicators is specified as the result of a MOVEA(P) operation, the

padding character is ’0’.

v Indicators may be used as search arguments where the external key is a

character of length 1.

Chapter 9. Data Types and Data Formats 111

Graphic Format

The graphic format is a character string where each character is represented by 2

bytes.

The difference between single- byte character and double-byte graphic data is

shown in the following figure:

 The length of a graphic field, in bytes, is two times the number of graphic

characters in the field.

If a record is added, the database file and graphic fields are not specified for

output, double-byte blanks are placed in the fields for output. Blanks are placed in

output fields in the following conditions:

v The fields are not specified for output on the output specification.

v Conditioning indicators are not satisfied for the field.

Graphic data may be fixed or variable length. The fixed-length graphic format is a

character string with a set length where each character is represented by 2 bytes.

For information on the variable-length character format, see “Variable-Length

Character, Graphic, and UCS-2 Format” on page 113.

You define a graphic field by specifying G in the Data-Type entry of the

appropriate specification. You can also define one using the LIKE keyword on the

definition specification where the parameter is a graphic field.

The default initialization value for graphic data is the double byte blank. Its

hexadecimal value depends on the code page installed on your workstation. The

value of *HIVAL is X'FFFF', and the value of *LOVAL is X'0000'.

UCS-2 Format

The Universal Character Set (UCS-2) format is a character string where each

character is represented by 2 bytes. This character set can encode the characters for

many written languages.

The length of a UCS-2 field, in bytes, is two times the number of UCS-2 characters

in the field.

1 byte

1 byte

1 char

1 graphic char 1 graphic char

1 char 1 char 1 char

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

Single-byte
data

Graphic
data

Figure 32. Comparing Single-byte and Graphic Data

112 VisualAge RPG Language Reference

The fixed-length UCS-2 format is a character string with a set length where each

character is represented by 2 bytes.

For information on the variable-length UCS-2 format, see “Variable-Length

Character, Graphic, and UCS-2 Format.”

You define a UCS-2 field by specifying C in the Data-Type entry of the appropriate

specification. You can also define one using the LIKE keyword on the definition

specification where the parameter is a UCS-2 field.

The default initialization value for UCS-2 data is X'0020'. The value of *HIVAL is

X'FFFF', *LOVAL is X'0000', and the value of *BLANKS is X'0020'.

For more information on the UCS-2 format, see the CL and APIs section of the

Programming category in the Information Center at this Web site -

http://www.ibm.com/eserver/iseries/infocenter.

Variable-Length Character, Graphic, and UCS-2 Format

Variable-length character fields have a declared maximum length and a current

length that can vary while a program is running. The length is measured in single

bytes for the character format and in double bytes for the graphic and UCS-2

formats. The storage allocated for variable-length character fields is 2 bytes longer

than the declared maximum length. The leftmost 2 bytes are an unsigned integer

field containing the current length in characters, graphic characters, or UCS-2

characters. The actual character data starts at the third byte of the variable-length

field.

Chapter 9. Data Types and Data Formats 113

Figure 33 shows how variable-length character fields are stored:

 Figure 34 shows how variable-length graphic fields are stored. UCS-2 fields are

stored similarly.

Note: Only the data up to and including the current length is significant.

You define a variable-length character field by specifying A (character), G

(graphic), or C (UCS-2) and the keyword VARYING on a definition specification. It

can also be defined using the LIKE keyword on a definition specification where the

parameter is a variable-length character field.

You can refer to external variable-length fields, on an input or output specification,

with the *VAR data attribute.

The default initialization value is the null string (’’); a value with length zero.

For examples of using variable-length fields, see:

v “Using Variable-Length Fields” on page 117

v “%LEN (Get or Set Length)” on page 452

v “%CHAR (Convert to Character Data)” on page 416

v “%REPLACE (Replace Character String)” on page 466

The variable-length format is also available for graphic data.

current
length character-data

N = declared maximum length

2 + N = total number of bytes

UNS(5) CHAR(N)

Figure 33. Character Fields with Variable-Length Format

current
length graphic-data

N = declared maximum length = number of double bytes

2 + 2(N) = total number of bytes

UNS(5) GRAPHIC(N)

Figure 34. Graphic Fields with Variable-Length Format

114 VisualAge RPG Language Reference

Rules for Variable-Length Character, Graphic, and UCS-2

Formats

The following rules apply when defining variable-length fields:

v The declared length of the field can be from 1 to 65535 single-byte characters

and from 1 to 16383 double-byte graphic or UCS-2 characters.

v The current length may be any value from 0 to the maximum declared length

for the field.

v The field may be initialized using keyword INZ. The initial value is the exact

value specified and the initial length of the field is the length of the initial value.

The field is padded with blanks for initialization, but the blanks are not included

in the length.

v In all cases except subfields defined using positional notation, the length entry

(positions 33-39 on the definition specifications) contains the maximum length of

the field not including the 2-byte length.

v For subfields defined using positional notation, the length includes the 2-byte

length. As a result, a variable-length subfield may be 65537 single bytes long or

16384 double bytes long for an unnamed data structure.

v The keyword VARYING cannot be specified for a data structure.

v For variable-length prerun-time arrays, the initialization data in the file is stored

in variable format, including the 2-byte length prefix.

v Since prerun-time array data is read from a file and files have a maximum

record length of 32766, variable-length prerun-time arrays have a maximum size

of 32764 single-byte characters, or 16382 double-byte graphic or UCS-2

characters.

v A variable-length array or table may be defined with compile-time data. The

trailing blanks in the field of data are not significant. The length of the data is

the position of the last non-blank character in the field. This is different from

prerun-time initialization since the length prefix cannot be stored in

compile-time data.

v For graphic compile time data, single-byte blanks are considered to be

significant data. Compile time data for graphic arrays and tables must be

padded with double-byte blanks. Single-byte blanks are considered non blanks.

v *LIKE DEFINE cannot be used to define a field like a variable-length field.

Chapter 9. Data Types and Data Formats 115

The following is an example of defining variable-length character fields:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++

 * Standalone fields:

D var5 S 5A VARYING

D var10 S 10A VARYING INZ(’0123456789’)

D max_len_a S 32767A VARYING

 * Prerun-time array:

D arr1 S 100A VARYING FROMFILE(dataf)

 * Data structure subfields:

D ds1 DS

 * Subfield defined with length notation:

D sf1_5 5A VARYING

D sf2_10 10A VARYING INZ(’0123456789’)

 * Subfield defined using positional notation: A(5)VAR

D sf4_5 101 107A VARYING

 * Subfields showing internal representation of varying:

D sf7_25 100A VARYING

D sf7_len 5I 0 OVERLAY(sf7_25:1)

D sf7_data 100A OVERLAY(sf7_25:3)

 * Procedure prototype

D Replace PR 32765A VARYING

D String 32765A CONSTANT VARYING OPTIONS(*VARSIZE)

D FromStr 32765A CONSTANT VARYING OPTIONS(*VARSIZE)

D ToStr 32765A CONSTANT VARYING OPTIONS(*VARSIZE)

D StartPos 5U 0 VALUE

D Replaced 5U 0 OPTIONS(*OMIT)

Figure 35. Defining Variable-Length Character and UCS-2 Fields

116 VisualAge RPG Language Reference

The following is an example of defining variable-length graphic and UCS-2 fields:

Using Variable-Length Fields

The length part of a variable-length field represents the current length of the field

measured in characters. For character fields, this length also represents the current

length in bytes. For double-byte fields (graphic and UCS-2), this represents the

length of the field in double bytes. For example, a UCS-2 field with a current

length of 3 is 3 double-byte characters long, and 6 bytes long.

The following sections describe how to best use variable-length fields and how the

current length changes when using different operation codes.

How the Length of the Field is Set: When a variable-length field is initialized

using INZ, the initial length is set to be the length of the initialization value. For

example, if a character field of length 10 is initialized to the value ’ABC’, the initial

length is set to 3.

The EVAL operation changes the length of a variable-length target. For example, if

a character field of length 10 is assigned the value ’XY’, the length is set to 2.

 The CLEAR operation changes the length of a variable-length field to 0.

* .. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+...

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++

 *---

 * Graphic fields

 *---

 * Standalone fields:

D GRA20 S 20G VARYING

D MAX_LEN_G S 16383G VARYING

 * Prerun-time array:

D ARR1 S 100G VARYING FROMFILE(DATAF)

 * Data structure subfields:

D DS1 DS

 * Subfield defined with length notation:

D SF3_20 20G VARYING

 * Subfield defined using positional notation: G(10)VAR

D SF6_10 11 32G VARYING

 *---

 * UCS-2 fields

 *---

D MAX_LEN_C S 16383C VARYING

D FLD1 S 5C INZ(%UCS2(’ABCDE’)) VARYING

D FLD2 S 2C INZ(U’01230123’) VARYING

D FLD3 S 2C INZ(*HIVAL) VARYING

D DS_C DS

D SF3_20_C 20C VARYING

 * Subfield defined using positional notation: C(10)VAR

D SF_110_C 11 32C VARYING

Figure 36. Defining Variable-Length Graphic and UCS-2 Fields

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D fld 10A VARYING

 * It does not matter what length ’fld’ has before the

 * EVAL; after the EVAL, the length will be 2.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C EVAL fld = ’XY’

Chapter 9. Data Types and Data Formats 117

The PARM operation sets the length of the result field to the length of the field in

Factor 2, if specified.

Fixed form operations MOVE, MOVEL, CAT, SUBST and XLATE do not change

the length of variable-length result fields. For example, if the value ’XYZ’ is moved

using MOVE to a variable-length character field of length 10 whose current length

is 2, the length of the field will not change and the data will be truncated.

Note: The recommended use for MOVE and MOVEL, as opposed to EVAL, is for

changing the value of fields that you want to be temporarily fixed in length.

An example is building a report with columns whose size may vary from

day to day, but whose size should be fixed for any given run of the

program.

When a field is read from a file (Input specifications), the length of a

variable-length field is set to the length of the input data.

The ″Blank After″ function of Output specifications sets the length of a

variable-length field to 0.

You can set the length of a variable-length field yourself using the %LEN builtin

function on the left-hand-side of an EVAL operation.

How the Length of the Field is Used: When a variable-length field is used for its

value, its current length is used. For the following example, assume ’result’ is a

fixed length field with a length of 7.

Why You Should Use Variable-Length Fields: Using variable-length fields for

temporary variables can improve the performance of string operations, as well as

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D fld 10A VARYING

 * Assume fld has a length of 2 before the MOVEL.

 * After the first MOVEL, it will have a value of ’XY’

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C MOVEL ’XYZ’ fld

 * After the second MOVEL, it will have the value ’1Y’

C MOVEL ’1’ fld

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D fld 10A VARYING

 * For the following EVAL operation

 * Value of ’fld’ Length of ’fld’ ’result’

 * -------------- --------------- -----------

 * ’ABC’ 3 ’ABCxxx ’

 * ’A’ 1 ’Axxx ’

 * ’’ 0 ’xxx ’

 * ’ABCDEFGHIJ’ 10 ’ABCDEFG’

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C EVAL result = fld + ’xxx’

 * For the following MOVE operation, assume ’result’

 * has the value ’.......’ before the MOVE.

 * Value of ’fld’ Length of ’fld’ ’result’

 * -------------- --------------- -----------

 * ’ABC’ 3 ’....ABC’

 * ’A’ 1 ’......A’

 * ’’ 0 ’.......’

 * ’ABCDEFGHIJ’ 10 ’DEFGHIJ’

C MOVE fld result

118 VisualAge RPG Language Reference

making your code easier to read since you do not have to save the current length

of the field in another variable for %SUBST, or use %TRIM to ignore the extra

blanks.

If a subprocedure is meant to handle string data of different lengths, using

variable-length fields for parameters and return values of prototyped procedures

can enhance both the performance and readability of your calls and your

procedures. You will not need to pass any length parameters within your

subrocedure to get the actual length of the parameter.

Conversion between Character, Graphic and UCS-2 Data

Note: If graphic CCSIDs are ignored (CCSID(*GRAPH:*IGNORE) was specified on

the control specification or CCSID(*GRAPH) was not specified at all),

graphic data is not considered to have a CCSID and conversions are not

supported between graphic data and UCS-2 data.

Character, graphic, and UCS-2 data can have different CCSIDs (Coded Character

Set IDs). Conversion between these data types depends on the CCSID of the data.

CCSIDs of Data

The CCSID of character data is only considered when converting between

character and UCS-2 data.

When converting between character and UCS-2 or graphic data, the CCSID of the

character data is assumed to be the CCSID of the workstation.

The CCSID of UCS-2 data defaults to 13488. This default can be changed using the

CCSID(*UCS2) keyword on the Control specification. The CCSID for

program-described UCS-2 fields can be specified using the CCSID keyword on the

Definition specification. The CCSID for externally-described UCS-2 fields comes

from the external file.

Note: UCS-2 fields are defined in DDS by specifying a data type of G and a

CCSID of 13488.

The CCSID of graphic data defaults to the value specified in the CCSID(*GRAPH)

keyword on the Control specification. The CCSID for program-described graphic

fields can be specified using the CCSID keyword on the Definition specification.

The CCSID for externally-described graphic fields comes from the external file.

Date Data

Date fields have a predetermined size and format. They can be defined on the

definition specification. Leading and trailing zeros are required for all date data.

Date constants or variables used in comparisons or assignments do not have to be

in the same format or use the same separators. Dates used for I/O operations such

as input fields, output fields or key fields are converted (if required) to the

necessary format for the operation.

The default internal format for date variables is *ISO. This default internal format

can be overridden globally by the control specification keyword DATFMT and

individually by the definition specification keyword DATFMT.

Chapter 9. Data Types and Data Formats 119

The hierarchy used when determining the internal date format and separator for a

date field is:

1. From the DATFMT keyword specified on the definition specification

2. From the DATFMT keyword specified on the control specification

3. *ISO

There are three kinds of date data formats, depending on the range of years that

can be represented. This leads to the possibility of a date overflow or underflow

condition occurring when the result of an operation is a date outside the valid

range for the target field. The formats and ranges are as follows:

 Number of Digits in Year Range of Years

2 (*YMD, *DMY, *MDY, *JUL) 1940 to 2039

3 (*CYMD, *CDMY, *CMDY) 1900 to 2899

4 (*ISO, *USA, *EUR, *JIS, *LONGJUL) 0001 to 9999

Table 14 lists the formats for date data and their separators:

For examples on how to code date fields, see the examples in:

v “Date Operations” on page 359

v “Moving Date-Time Data” on page 370

v “ADDDUR (Add Duration)” on page 502

v “MOVE (Move)” on page 604

v “EXTRCT (Extract Date/Time/Timestamp)” on page 579

v “SUBDUR (Subtract Duration)” on page 693

v “TEST (Test Date/Time/Timestamp)” on page 700

 Table 14. RPG-defined date formats and separators for Date data type

Format

Name

Description Format

(Default

Separator)

Valid

Separators

Length Example

2-Digit Year Formats

*MDY Month/Day/Year mm/dd/yy / - . , ’&’ 8 01/15/96

*DMY Day/Month/Year dd/mm/yy / - . , ’&’ 8 15/01/96

*YMD Year/Month/Day yy/mm/dd / - . , ’&’ 8 96/01/15

*JUL Julian yy/ddd / - . , ’&’ 6 96/015

4-Digit Year Formats

*ISO International

Standards

Organization

yyyy-mm-dd - 10 1996-01-15

*USA IBM® USA

Standard

mm/dd/yyyy / 10 01/15/1996

*EUR IBM European

Standard

dd.mm.yyyy . 10 15.01.1996

*JIS Japanese Industrial

Standard Christian

Era

yyyy-mm-dd - 10 1996-01-15

120 VisualAge RPG Language Reference

The following table lists the *LOVAL, *HIVAL, and default values for all the date

formats:

 Table 15. Date Values

Format name Description *LOVAL *HIVAL Default Value

2-Digit Year Formats

*MDY Month/Day/Year 01/01/40 12/31/39 01/01/40

*DMY Day/Month/Year 01/01/40 31/12/39 01/01/40

*YMD Year/Month/Day 40/01/01 39/12/31 40/01/01

*JUL Julian 40/001 39/365 40/001

4-Digit Year Formats

*ISO International Standards

Organization

0001-01-01 9999-12-31 0001-01-01

*USA IBM USA Standard 01/01/0001 12/31/9999 01/01/0001

*EUR IBM European Standard 01.01.0001 31.12.9999 01.01.0001

*JIS Japanese Industrial

Standard Christian Era

0001-01-01 9999-12-31 0001-01-01

Separators

When coding a date format on a MOVE, MOVEL or TEST operation, separators are

optional for character fields. To indicate that there are no separators, specify the

format followed by a zero. For more information on how to code date formats

without separators see “MOVE (Move)” on page 604, “MOVEL (Move Left)” on

page 626 and “TEST (Test Date/Time/Timestamp)” on page 700.

Formats for MOVE, MOVEL, and TEST Operations

Several formats are also supported for fields used by the MOVE, MOVEL, and

TEST operations only. This support is provided for compatibility with externally

defined values that are already in a 3-digit year format and the 4-digit year

*LONGJUL format.

Table 16 lists the valid externally defined date formats that can be used in Factor 1

of a MOVE, MOVEL, and TEST operation.

 Table 16. Externally defined date formats and separators

Format

Name

Description Format

(Default

Separator)

Valid

Separators

Length Example

(April 25,

2001)

3-Digit Year Formats(1.)

*CYMD Century

Year/Month/Day

cyy/mm/dd / - . , ’&’ 9 101/04/25

*CMDY Century

Month/Day/Year

cmm/dd/yy / - . , ’&’ 9 104/25/01

*CDMY Century

Day/Month/Year

cdd/mm/yy / - . , ’&’ 9 125/04/01

4-Digit Year Formats

*LONGJUL Long Julian yyyy/ddd / - . , ’&’ 8 2001/115

Chapter 9. Data Types and Data Formats 121

Table 16. Externally defined date formats and separators (continued)

Format

Name

Description Format

(Default

Separator)

Valid

Separators

Length Example

(April 25,

2001)

Notes:

1. Valid values for the century character ’c’ are:

 ’c’ Years

 0 1900-1999

 1 2000-2099

 . .

 . .

 . .

 9 2800-2899

Separators are optional for character fields in the *CYMD format. To indicate that

there are no separators you can specify *CYMD0.

Numeric Data Type

Numeric data consists of any data defined as having zero or more decimal

positions. Numeric data has one of the following formats:

v “Binary Format”

v “Float Format” on page 124

v “Integer Format” on page 126

v “Packed-Decimal Format” on page 126

v “Unsigned Format” on page 128

v “Zoned-Decimal Format” on page 129

The default initialization value for numeric fields is zeroes.

Binary Format

Binary format means that the sign (positive or negative) is in the leftmost bit of the

field and the integer value is in the remaining bits of the field. Positive numbers

have a zero in the sign bit; negative numbers have a one in the sign bit and are in

twos complement form. In binary format, each field must be either 2 or 4 bytes

long.

A binary field can be from one to nine digits in length and can be defined with

decimal positions. If the length of the field is from one to four digits, the compiler

assumes a binary field length of 2 bytes. If the length of the field is from five to

nine digits, the compiler assumes a binary field length of 4 bytes.

Program-Described File

Every input field read in binary format is assigned a field length (number of

digits) by the compiler. A length of 4 is assigned to a 2-byte binary field; a length

of 9 is assigned to a 4-byte binary field, if the field is not defined elsewhere in the

program. Because of these length restrictions, the highest decimal value that can be

assigned to a 2-byte binary field is 9999 and the highest decimal value that can be

assigned to a 4-byte binary field is 999 999 999. In general, a binary field of n digits

can have a maximum value of n 9s. This discussion assumes zero decimal

positions.

122 VisualAge RPG Language Reference

For program-described files, specify binary input, binary output, and binary array

or table fields with the following entries:

v Binary input field: Specify B in position 36 of the input specifications.

v Binary output field: Specify B in position 52 of the output specifications. This

position must be blank if editing is specified.

The length of a field to be written in binary format cannot exceed nine digits. If

the length of the field is from one to four digits, the compiler assumes a binary

field length of 2 bytes. If the length of the field is from five to nine digits, the

compiler assumes a binary field length of 4 bytes.

Because a 2-byte field in binary format is converted by the compiler to a decimal

field with 1 to 4 digits, the input value may be too large. If it is, the leftmost

digit of the number is dropped. For example, if a four digit binary input field

has a binary value of hexadecimal 6000, the compiler converts this to 24 576 in

decimal. The 2 is dropped and the result is 4576. Similarly, the input value may

be too large for a 4-byte field in binary format. If the binary fields have zero (0)

decimal positions, then you can avoid this conversion problem by defining

integer fields instead of binary fields.

Note: Binary input fields cannot be defined as match or control fields.

v Binary array or table field: Specify B in position 40 of the definition

specifications. The external format for compile-time arrays and tables must not

be binary.

Externally Described File

For an externally-described file, the data format is specified in position 35 of the

data description specifications. The number of digits in the field is exactly the same

as the length in the DDS description. For example, if you define a binary field in

your DDS specification as having 7 digits and 0 decimal positions, the data is

handled as follows:

1. The field is defined as a 4-byte binary field in the input specification

2. A Packed(7,0) field is generated for the field in the VisualAge RPGprogram.

If you want to retain the complete binary field information, redefine the field as a

binary subfield in a data structure or as a binary standalone field. Note that an

externally-described binary field may have a value outside of the range allowed by

VARPG binary fields. If the externally-described binary field has zero (0) decimal

positions then you can avoid this problem. To do so, you define the

externally-described binary field on a definition specification and specify the

EXTBININT keyword on the control specification. This will change the external

format of the externally-described field to that of a signed integer.

Figure 37 on page 124 shows what the decimal number 8191 looks like in various

formats.

Chapter 9. Data Types and Data Formats 123

1If 8191 is read into storage as a zoned-decimal field, it occupies 4 bytes. If it is

converted to packed-decimal format, it occupies 3 bytes. When it is converted back

to zoned-decimal format, it occupies 5 bytes.

2To obtain the numeric value of a positive binary number add the values of the

bits that are on (1), do not include the sign bit. To obtain the numeric value of a

negative binary number, add the values of the bits that are off (0) plus one (the

sign bit is not included).

Float Format

The float format consists of two parts:

v the mantissa

v the exponent

The value of a floating-point field is the result of multiplying the mantissa by 10

raised to the power of the exponent. For example, if 1.2345 is the mantissa and 5 is

the exponent then the value of the floating-point field is:

1.2345 * (10 ** 5) = 123450

You define a floating-point field by specifying F in the data type entry of the

appropriate specification.

The decimal positions must be left blank. However, floating-point fields are

considered to have decimal positions. As a result, float variables may not be used

in any place where a numeric value without decimal places is required, such as an

array index, do loop index, and so on.

The default initialization and CLEAR value for a floating point field is 0E0.

+++++++ ++ +++

0 8 1 9 1

3 bytes

1001 00010011 00010011100000110000 00110011

Zone Zone Zone Zone

5 bytes

0 100 1111 11 1111 1111

2 bytes

=4096 204820482048 1024 512512 256256 128 646464 32 16 8 4 2 1 8191

8 1 9 1

0000 11000001100100011000

Packed Decimal Format

Zoned Decimal Format:1

Binary Format:2

Positive Sign

Positive Sign

Positive Sign

Figure 37. Defining Binary Fields

124 VisualAge RPG Language Reference

The length of a floating point field is defined in terms of the number of bytes. It

must be specified as either 4 or 8 bytes. The range of values allowed for a positive

floating-point field are:

 Field length Minimum Allowed Value Maximum Allowed Value

4 bytes 1.175 494 4 E-38 3.402 823 5 E+38

8 bytes 2.225 073 858 507 201 E-308 1.797 693 134 862 315 E+308

Note: Negative values have the same range, but with a negative sign.

Since float variables are intended to represent ″scientific″ values, a numeric

value stored in a float variable may not represent the exact same value as it

would in a packed variable. Float should not be used when you need to

represent numbers exactly to a specific number of decimal places, such as

monetary amounts.

External Display Representation of a Floating-Point Field

See “Specifying an External Format for a Numeric Field” on page 104 for a general

description of external display representation.

The external display representation of float values applies for the following:

v Output of float data with Data-Format entry blank.

v Input of float data with Data-Format entry blank.

v External format of compile-time and prerun-time arrays and tables (when

keyword EXTFMT is omitted).

v Display and input of float values using operation code DSPLY.

v Result of built-in function %EDITFLT.

Output: When outputting float values, the external representation uses a format

similar to float literals, except that:

v Values are always written with the character E and the signs for both mantissa

and exponent.

v Values are either 14 or 23 characters long (for 4F and 8F respectively).

v Values are normalized. That is, the decimal point immediately follows the most

significant digit.

v The decimal separator character is either period or comma depending on the

parameter for Control-Specification keyword DECEDIT.

Here are some examples of how float values are presented:

 +1.2345678E-23

 -8.2745739E+03

 -5.722748027467392E-123

 +1,2857638E+14 if DECEDIT(’,’) is specified

Input: When inputting float values, the value is specified just like a float literal.

The value does not have to be normalized or adjusted in the field. When float

values are defined as array/table initialization data, they are specified in fields

either 14 or 23 characters long (for 4F and 8F respectively).

Note the following about float fields:

v Alignment of float fields may be desired to improve the performance of

accessing float subfields. You can use the ALIGN keyword to align float

subfields defined on a definition specification. 4-byte float subfields are aligned

on a 4-byte boundary and 8-byte float subfields are aligned along a 8-byte

boundary. For more information on aligning float subfields, see “ALIGN” on

page 265.

Chapter 9. Data Types and Data Formats 125

v Length adjustment is not allowed when the LIKE keyword is used to define a

field like a float field.

Integer Format

The integer format is similar to the binary format with two exceptions:

v The integer format allows the full range of binary values

v The number of decimal positions for an integer field is always zero.

You define an integer field by specifying I in the Data-Type entry of the

appropriate specification. You can also define an integer field using the LIKE

keyword on a definition specification where the parameter is an integer field.

The length of an integer field is defined in terms of number of digits; it can be 3, 5,

10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field takes

up 2 bytes of storage; a 10-digit field takes up 4 bytes; a 20-digit field takes up 8

bytes. The range of values allowed for an integer field depends on its length.

Field length

Range of Allowed Values

3-digit integer

-128 to 127

5-digit integer

-32768 to 32767

10-digit integer

-2147483648 to 2147483647

20-digit integer

-9223372036854775808 to 9223372036854775807

Note the following about integer fields:

v Alignment of integer fields may be desired to improve the performance of

accessing integer subfields. You can use the ALIGN keyword to align integer

subfields defined on a definition specification.

2-byte integer subfields are aligned on a 2-byte boundary and 4-byte integer

subfields are aligned along a 4-byte boundary; 8-byte integer subfields are

aligned along an 8-byte boundary. For more information on aligning integer

subfields, see “ALIGN” on page 265.

v If the LIKE keyword is used to define a field like an integer field, the Length

entry may contain a length adjustment in terms of number of digits. The

adjustment value must be such that the resulting number of digits for the field is

3, 5, 10, or 20.

Packed-Decimal Format

Packed-decimal format means that each byte of storage (except for the low-order

byte) can contain two decimal numbers. The low-order byte contains one digit in

the leftmost portion and the sign (positive or negative) in the rightmost portion.

All packed-decimal numbers use the preferred signs: hexadecimal C for positive

numbers and hexadecimal D for negative numbers. In addition, the following signs

are supported: hexadecimal A, E, F for positive numbers and hexadecimal B for

negative numbers. The packed-decimal format looks like this:

126 VisualAge RPG Language Reference

Figure 37 on page 124 shows what the decimal number 8191 looks like in

packed-decimal format.

For a program-described file:

v Specify P in position 36 of the input specifications for packed-decimal input

Specify P in position 52 of the output specifications for packed-decimal output.

This position must be blank if editing is specified.

Specify P in position 40 of the definition specifications for packed-decimal arrays

and tables. The external format for compile-time arrays and tables cannot be

packed-decimal format.

For an externally described file, the data format is specified in the data description

specifications.

Determining the Digit Length of a Packed-Decimal Field

Use the following formula to find the length in digits of a packed-decimal field:

 Number of digits = 2n − 1,

 ...where n = number of packed input record positions used.

This formula gives you the maximum number of digits you can represent in

packed-decimal format; the upper limit is 31.

Packed fields can be up to 16 bytes long. Table 17 shows the packed equivalents

for zoned-decimal fields up to 31 digits long:

 Table 17. Packed Equivalents for Zoned-Decimal Fields up to 31 Digits Long

Zoned-Decimal Length in Digits

Number of Bytes Used in Packed-Decimal

Field

 1 1

 2, 3 2

 4, 5 3

 . .

 . .

 . .

 .

 .

 .

 28, 29 15

 30 16

 31 16

For example, an input field read in packed-decimal format has a length of five

bytes (as specified on the input or data description specifications). The number of

digits in this field equals 2(5) − 1 or 9. Therefore, when the field is used in the

calculation specifications, the result field must be nine positions long. The

PACKEVEN keyword on the definition specification can be used to indicate which

Digit DigitDigit Sign

0 7 0 7

Byte

Chapter 9. Data Types and Data Formats 127

of the two possible sizes you want when you specify a packed subfield using from

and to positions rather than number of digits.

Unsigned Format

The unsigned integer format is like the integer format except that the range of

values does not include negative numbers. You should use the unsigned format

only when non-negative integer data is expected.

You define an unsigned field by specifying U in the Data-Type entry of the

appropriate specification. You can also define an unsigned field using the LIKE

keyword on the definition specification where the parameter is an unsigned field.

The length of an unsigned field is defined in terms of number of digits; it can be 3,

5, 10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field

takes up 2 bytes of storage; a 10-digit field takes up 4 bytes;a 20-digit field takes

up 8 bytes. The range of values allowed for an unsigned field depends on its

length.

 Field length Range of Allowed Values

3-digit unsigned 0 to 255

5-digit unsigned 0 to 65535

10-digit unsigned 0 to 4294967295

20-digit unsigned 0 to 18446744073709551615

For other considerations regarding the use of unsigned fields, including

information on alignment, see “Integer Format” on page 126.

128 VisualAge RPG Language Reference

Zoned-Decimal Format

Zoned-decimal format means that each byte of storage can contain one digit or one

character. In the zoned-decimal format, each byte of storage is divided into two

portions: a 4-bit zone portion and a 4-bit digit portion. The zoned-decimal format

looks like this:

 The zone portion of the right-most byte indicates the sign (positive or negative) of

the decimal number. All zoned-decimal numbers use the preferred signs:

hexadecimal 3 for positive numbers and hexadecimal 7 for negative numbers. In

addition, the following signs are supported: hexadecimal 0, 1, 2, 8, 9, A, B for

positive numbers and hexadecimal 4, 5, 6, C, D, E, F for negative numbers. In

zoned-decimal format, each digit in a decimal number includes a zone portion;

however, only the right-most zone portion serves as the sign. Figure 37 on page

124 shows what the number 8191 looks like in zoned-decimal format.

You must consider the change in field length when coding the end position in

positions 40 through 43 of the output specifications and the field is to be output in

packed format. To find the length of the field after it has been packed, use the

following formula:

For a program-described file, zoned-decimal format is specified by a blank in

position 36 of the input specifications, in position 52 of the output specifications, or

in position 40 of the definition specifications. For an externally described file, the

data format is specified in position 35 of the data description specifications.

You can specify an alternative sign format for zoned-decimal format. In the

alternative sign format, the numeric field is immediately preceded or followed by a

+ or − sign. A plus sign is a hexadecimal 2B, and a minus sign is a hexadecimal

2D.

When an alternative sign format is specified, the field length (specified on the

input specification) must include an additional position for the sign. For example,

if a field is 5 digits long and the alternative sign format is specified, a field length

of 6 positions must be specified.

Considerations for Using Numeric Formats

Keep in mind the following when defining numeric fields:

Zone DigitZone DigitZone Digit Zone Digit Zone Digit Zone Digit

0 7 0 70 70 70 7

Byte 0111 = Minus sign (hex 7)
0011 = Plus sign (hex 3)

n
Field length = + 1

2

. . . where n = number of digits in the zoned decimal field.

(Any remainder from the division is ignored.)

Chapter 9. Data Types and Data Formats 129

v When coding the end position in positions 47 through 51 of the output

specifications, be sure to use the external format when calculating the number of

bytes to be occupied by the output field. For example, a packed field with 5

digits is stored in 3 bytes, but when output in zoned format, it requires 5 bytes.

When output in integer format, it only requires 2 bytes.

v If you move a character field to a zoned numeric, the sign of the character field

is fixed to zoned positive or zoned negative. The zoned portion of the other

bytes will be forced to ’3’. However, if the digit portion of one of the bytes in

the character field does not contain a valid digit a decimal data error will occur.

v When numeric fields are written out with no editing, the sign is not printed as a

separate character; the last digit of the number will include the sign. This can

produce surprising results; for example, when -625 is written out, the zoned

decimal value is XX'363275' which appears as 62u.

v The default is to perform 4-byte arithmetic. The compiler only performs 8-byte

arithmetic if at least one operand is an 8-byte integer. An overflow runtime error

can occur for those arithmetic operations where two 4-byte integers produce an

8-byte result. To avoid this problem, make sure one operand is 8 bytes.

Guidelines for Choosing the Numeric Format for a Field

You should specify the integer or unsigned format for fields when:

v Performance of arithmetic is important

With certain arithmetic operations, it may be important that the value used be

an integer. Some examples where performance may be improved include array

index computations and arguments for the built-in function %SUBST.

v The default is to perform 4-byte arithmetic. The compiler only performs 8-byte

arithmetic if at least one operand is an 8-byte integer. From a performance

perspective, 8-byte arithmetic is expensive and should be avoided.

v Interacting with routines written in other languages that support an integer data

type, such as ILE C.

v Using fields in file feedback areas that are defined as integer and that may

contain values above 9999 or 999999999.

Packed, zoned, and binary formats should be specified for fields when:

v Using values that have implied decimal positions, such currency values

v Manipulating values having more than 19 digits

v Ensuring a specific number of digits for a field is important

Float format should be specified for fields when:

v The same variable is needed to hold very small and/or very large values that

cannot be represented in packed or zoned values.

However, float format should not be used when more than 16 digits of precision

are needed.

Note: Overflow is more likely to occur with arithmetic operations performed using

the integer or unsigned format, especially when integer arithmetic occurs in

free-form expressions. This is because the intermediate results are kept in

integer or unsigned format rather than a temporary decimal field of

sufficient size.

130 VisualAge RPG Language Reference

|
|

Representation of Numeric Formats

The following figure shows what the decimal number 21544 looks like in various

formats.

Packed Decimal Format:

Zoned Decimal Format:

Positive Sign

Positive Sign

2 1 5 4 4

0010 0001 0101 0010 0010 1100

3 bytes

Zone Zone Zone Zone

12 5 4 4

0011

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0011 0011

0 1 0 1

0011

0 0 1 0

00110010 0001 0101

0 1 0 0

0100

1 0 0 0

0100

5 bytes

Positive
Sign

4 bytes

Binary Format:
16384

+ 4096
+ 1024
+ 32
+ 8

21544

Chapter 9. Data Types and Data Formats 131

Note the following about the representations in the figure.

v To obtain the numeric value of a positive binary or integer number, unsigned

number, add the values of the bits that are on (1), but do not include the sign bit

(if present). For an unsigned number, add the values of the bits that are on,

including the leftmost bit.

v The value 21544 cannot be represented in a 2-byte binary field even though it

only uses bits in the low-order two bytes. A 2-byte binary field can only hold up

to 4 digits, and 21544 has 5 digits.

0 1 0 1

0 1 0 1

0 0 1 0

0 0 1 0

0 1 0 0

0 1 0 0

1 0 0 0

1 0 0 0

Positive
Sign

2 bytes

2 bytes

Integer (Signed) Format:

Unsigned Format:

16384
+ 4096
+ 1024
+ 32
+ 8

21544

16384
+ 4096
+ 1024
+ 32
+ 8

21544

132 VisualAge RPG Language Reference

Figure 38 shows the number -21544 in integer format.

Note: The workstation architecture stores binary, integer, and unsigned formats in

program memory in a byte-reversed order. This storage mechanism will

affect the value of any character subfields used to overlay subfields for these

formats.

Object Data Type

The object data type allows you to define a Java object. You specify the object data

type as follows:

 * Variable MyString is a Java String object.

D MyString S O CLASS(*JAVA

D :’java.lang.String’)

or as follows:

D bdcreate PR O EXTPROC(*JAVA

D :’java.math.BigDecimal’

D :*CONSTRUCTOR)

In position 40, you specify data type O. In the keyword section, you specify the

CLASS keyword to indicate the class of the object. Specify *JAVA for the

environment, and the class name.

If the object is the return type of a Java constructor, the class of the returned object

is the same as the class of the method so you do not specify the CLASS keyword.

Instead, you specify the EXTPROC keyword with environment *JAVA, the class

name, and procedure name *CONSTRUCTOR.

An object cannot be based. It also cannot be a subfield of a data structure.

If an object is an array or table, it must be loaded at runtime. Pre-run and

compile-time arrays and tables of type Object are not allowed.

Every object is initialized to *NULL, which means that the object is not associated

with an instance of its class.

To change the contents of an object, you must use method calls. You cannot

directly access the storage used by the object.

Classes are resolved at runtime. The compiler does not check that a class exists or

that it is compatible with other objects.

Where You Can Specify an Object Field

You can use an object field in the following situations:

1 0 1 0 1 1 0 11 0 1 1 1 0 0 0

Negative Sign

2 bytes

Figure 38. Integer Representation of the Number -21544

Object Data Type

Chapter 9. Data Types and Data Formats 133

Free-Form Evaluation

You can use the EVAL operation to assign one Object item (field or

prototyped procedure) to a field of type Object.

Free-Form Comparison

You can compare one object to another object. You can specify any

comparison, but only the following comparisons are meaningful:

v Equality or inequality with another object. Two objects are equal only if

they represent exactly the same object. Two different objects with the

same value are not equal.

If you want to test for equality of the value of two objects, use the Java

’equals’ method as follows:

 D objectEquals PR N EXTPROC(*JAVA

 D : ’java.lang.Object’

 D : ’equals’)

 C IF objectEquals (obj1 : obj2)

 C ...

 C ENDIF

v Equality or inequality with *NULL. An object is equal to *NULL if it is

not associated with a particular instance of its class.

Free-Form Call Parameter

You can code an object as a parameter in a call operation if the parameter

in the prototype is an object.

Notes:

1. Objects are not valid as input or output fields.

2. Assignment validity is not checked. For example, RPG would allow you to

assign an object of class Number to an object variable defined with class String.

If this was not correct, a Java error would occur when you tried to use the

String variable.

Procedure Pointer Data Type

Procedure pointers are used to point to procedures or functions. A procedure

pointer points to an entry point that is bound into the program. Procedure pointers

are defined on the definition specification.

The length of the procedure pointer field must be 4 bytes long and must be

aligned on a 4 byte boundary. This requirement for boundary alignment can cause

a pointer subfield of a data structure not to follow the preceding field directly, and

D Obj S O CLASS(*JAVA

D :’java.lang.Object’)

D Str S O CLASS(*JAVA

D :’java.lang.String’)

D Num S O CLASS(*JAVA

D :’java.math.BigDecimal’)

 * Since all Java classes are subclasses of class ’java.lang.Object’,

 * any object can be assigned to a variable of this class.

 * The following two assignments are valid.

C EVAL Obj = Str

C EVAL Obj = Num

 * However, it would probably not be valid to assign Str to Num.

Figure 39. Object Data Type Example

Object Data Type

134 VisualAge RPG Language Reference

can cause multiple occurrence data structures to have non-contiguous occurrences.

The default initialization value for procedure pointers is *NULL.

Time Data

Time fields have a predetermined size and format. They can be defined on the

definition specification. Leading and trailing zeros are required for all time data.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D*

D* Define a basing pointer field and initialize to the address of the

D* data structure My_Struct.

D*

D My_struct DS

D My_array 10 DIM(50)

D

D Ptr1 S 4* INZ(%ADDR(My_Struct))

D*

D* Or equivalently, defaults to length 4 if length not defined

D*

D Ptr1 S * INZ(%ADDR(My_Struct))

D*

D* Define a procedure pointer field and initialize to NULL

D*

D Ptr1 S 4* PROCPTR INZ(*NULL)

D*

D* Define a procedure pointer field and initialize to the address

D* of the procedure My_Proc.

D*

D Ptr1 S 4* PROCPTR INZ(%PADDR(My_Proc))

D*

D* Define pointers in a multiple occurrence data structure and map out

D* the storage.

D*

DDataS DS OCCURS(2)

D ptr1 *

D ptr2 *

D Switch 1A

D*

D* Storage map would be:

D*

D* DataS

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ptr1 4 bytes

ptr2 4 bytes

Switch 1 byte

Pad 3 bytes

ptr1

4 bytesptr2

4 bytes

Switch 1 byte

Figure 40. Defining Pointers

Object Data Type

Chapter 9. Data Types and Data Formats 135

Time constants or variables used in comparisons or assignments do not have to be

in the same format or use the same separators. Times are used for I/O operations

where input fields, output fields or key fields are converted (if required) to the

necessary format for the operation.

The default internal format for time variables is *ISO. This default internal format

can be overridden globally by the control specification keyword TIMFMT and

individually by the definition specification keyword TIMFMT.

The hierarchy used when determining the internal time format and separator for a

time field is:

1. From the TIMFMT keyword specified on the definition specification

2. From the TIMFMT keyword specified on the control specification

3. *ISO

For examples on how to code time fields, see the examples in:

v “Date Operations” on page 359

v “Moving Date-Time Data” on page 370

v “ADDDUR (Add Duration)” on page 502

v “MOVE (Move)” on page 604

v “SUBDUR (Subtract Duration)” on page 693

v “TEST (Test Date/Time/Timestamp)” on page 700

The following table lists the formats for time data:

 Table 18. Time Formats and Separators for Time data type

Format

Name

Description Format with

Default

Separator)

Valid

Sepa-

rators

Length Example

*HMS Hours:Minutes:Seconds hh:mm:ss : . , & 8 14:00:00

*ISO International Standards

Organization

hh.mm.ss . 8 14.00.00

*USA IBM USA Standard. AM and PM

can be any mix of upper and

lower case.

hh:mm AM

or hh:mm

PM

: 8 02:00 PM

*EUR IBM European Standard hh.mm.ss . 8 14.00.00

*JIS Japanese Industrial Standard

Christian Era

hh:mm:ss : 8 14:00:00

The following table lists the *LOVAL, *HIVAL, and default values for all the date

formats:

Object Data Type

136 VisualAge RPG Language Reference

Table 19. Time Values

Format

name Description *LOVAL *HIVAL

Default

Value

*HMS Hours:Minutes:Seconds 00:00:00 24:00:00 00:00:00

*ISO International Standards

Organization

00.00.00 24.00.00 00.00.00

*USA IBM USA Standard. AM and PM

can be any mix of upper and lower

case.

00:00 AM 12:00 AM 00:00 AM

*EUR IBM European Standard 00.00.00 24.00.00 00.00.00

*JIS Japanese Industrial Standard

Christian Era

00:00:00 24:00:00 00:00:00

Separators

When coding a time format on a MOVE, MOVEL or TEST operation, separators

are optional for character fields. To indicate that there are no separators, specify the

format followed by a zero. For more information on how to code time formats

without separators see “MOVE (Move)” on page 604.

Timestamp Data

Timestamp fields have a predetermined size and format. They can be defined on

the definition specification. Timestamp data must be in the format

yyyy-mm-dd-hh.mm.ss.mmmmmm (length 26).

Microseconds (.mmmmmm) are optional for timestamp literals and if not provided

will be padded on the right with zeroes. Leading zeros are required for all

timestamp data.

The default initialization value for a timestamp is midnight of January 1, 0001

(0001-01-01-00.00.00.000000). The *HIVAL value for a timestamp is

9999-12-31-24.00.00.000000. Similarly, the *LOVAL value for timestamp is

0001-01-01-00.00.00.00000.

Separators

When coding the timestamp format on a MOVE, MOVEL or TEST operation,

separators are optional for character fields. To indicate that there are no separators,

specify *ISO0. For an example of how *ISO is used without separators see “TEST

(Test Date/Time/Timestamp)” on page 700.

Database Null Value Support

In a VisualAge RPG program, you can select one of three different ways of

handling null-capable fields from an externally-described database file. This

depends on how you specify the Allow null values option or ALWNULL control

specification keyword:

1. User control, ALWNULL(*USRCTL) - read, write, update, and delete records

with null values and retrieve and position-to records with null keys.

2. Input only, ALWNULL(*INPUTONLY) - read records with null values to access

the data in the null fields

3. No, ALWNULL(*NO)- do not process records with null values

Object Data Type

Chapter 9. Data Types and Data Formats 137

Note: For a program-described file, a null value in the record always causes a data

mapping error, regardless of the value specified on the Allow null values

option or ALWNULL keyword

For more information on specifying compiler options, Getting Started with

WebSphere Development Studio Client for iSeries, SC09-2625-06.

User Controlled Support for Null-Capable Fields and Key

Fields

When an externally-described file contains null-capable fields and the User control

or ALWNULL(*USRCTL) option is specified, you can do the following:

v Read, write, update, and delete records with null values from

externally-described database files.

v Retrieve and position-to records with null keys using keyed operations, by

specifying an indicator in factor 2 of the KFLD associated with the field.

v Determine whether a null-capable field is actually null using the %NULLIND

built-in function on the right-hand-side of an expression.

v Set a null-capable field to be null for output or update using the %NULLIND

built-in function on the left-hand-side of an expression.

You are responsible for ensuring that fields containing null values are used

correctly within the program. For example, if you use a null-capable field as factor

2 of a MOVE operation, you should first check if it is null before you do the

MOVE, otherwise you may corrupt your result field value. You should also be

careful when outputting a null-capable field to a file that does not have the field

defined as null-capable, for example a PRINTER or a program-described file.

Note: The value of the null indicator for a null-capable field is only considered for

these operations: input, output and file-positioning. Here are some examples

of operations where the null indicator is not taken into consideration:

v DSPLY of a null-capable field shows the contents of the field even if the

null indicator is on.

v If you move a null-capable field to another null-capable field, and the

factor 2 field has the null indicator on, the result field will get the data

from the factor 2 field. The corresponding null indicator for the result

field will not be set on.

v Comparison operations, including SORTA and LOOKUP, with null

capable fields do not consider the null indicators.

A field is considered null-capable if it is null-capable in any externally-described

database record and is not defined as a constant in the program.

When a field is considered null-capable in a VARPG program, a null indicator is

associated with the field. Note the following:

v If the field is a multiple-occurrence data structure or a table, an array of null

indicators will be associated with the field. Each null indicator corresponds to an

occurrence of the data structure or element of the table.

v If the field is an array element, the entire array will be considered null-capable.

An array of null indicators will be associated with the array, each null indicator

corresponds to an array element.

v If the field is an element of an array subfield of a multiple-occurrence data

structure, an array of null indicators will be associated with the array for each

occurrence of the data structure.

Object Data Type

138 VisualAge RPG Language Reference

Null indicators are initialized to zeros during program initialization and thus

null-capable fields do not contain null values when the program starts execution.

Null-capable fields in externally-described data structures

If the file used for an externally described data structure has null-capable fields

defined, the matching RPG subfields are defined to be null-capable. Similarly, if a

record format has null-capable fields, a data structure defined with LIKEREC will

have null-capable subfields. When a data structure has null-capable subfields,

another data structure defined like that data structure using LIKEDS will also have

null-capable subfields. However, using the LIKE keyword to define one field like

another null-capable field does not cause the new field to be null-capable.

Input of Null-Capable Fields

For a field that is null-capable in the RPG program, the following will apply on

input, for DISK and SPECIAL files:

v When a null-capable field is read from an externally-described file, the null

indicator for the field is set on if the field is null in the record. Otherwise, the

null indicator is set off.

v If field indicators are specified and the null-capable field is null, all the field

indicators will be set off.

v If a field is defined as null-capable in one file, and not null-capable in another,

then the field will be considered null-capable in the RPG program. However,

when you read the second file, the null indicator associated with the field will

always be set off.

v An input operation from a program-described file using a data structure in the

result field does not affect the null indicator associated with the data structure or

any of its subfields.

v Reading null-capable fields using input specifications for program-described files

always sets off the associated null indicators.

v If null-capable fields are not selected to be read due to a field-record-relation

indicator, the associated null indicator will not be changed.

v When a record format or file with null-capable fields is used on an input

operation (READ, READP, READE, READPE, CHAIN) and a data structure is

coded in the result field, the values of %NULLIND for null-capable data

structure subfields will be changed by the operation. The values of %NULLIND

will not be set for the input fields for the file, unless the input fields happen to

be the subfields used in the input operation.

Output of Null-Capable Fields

When a null-capable field is written (output or update) to an externally-described

file, a null value is written out if the null indicator for the field is on at the time of

the operation.

When a null-capable field is output to or updated in an externally-described

database file, then if the field is null, the value placed in the buffer will be ignored

by data management.

Note: Fields that have the null indicator on at the time of output have the data

moved to the buffer. This means that errors such as decimal-data error, or

basing pointer not set, will occur even if the null indicator for the field is on.

During an output operation to an externally-described database file, if the file

contains fields that are considered null-capable in the program but not null-capable

in the file, the null indicators associated with those null-capable fields will not be

used.

Object Data Type

Chapter 9. Data Types and Data Formats 139

|
|
|
|
|
|
|
|

|
|
|
|
|
|

When a record format with null-capable fields is used on a WRITE or UPDATE

operation, and a data structure is coded in the result field, the null attributes of the

data structure subfields will be used to set the null-byte-map for the output or

update record.

When a record format with null-capable fields is used on an UPDATE operation

with %FIELDS, then the null-byte-map information will be taken from the null

attributes of the specified fields.

Figure 41 shows how to read, write and update records with null values when the

User control option or ALWNULL(*USRCTL) keyword is selected.

H*

H* Specify the ALWNULL(*USRCTL) keyword on a control

H* specification or compile the VARPG program with the

H* User control option.

H*

HKeywords++

H* H ALWNULL(*USRCTL)

F*

F* DISKFILE contains a record REC which has 2 fields: FLD1 and FLD2

F* Both FLD1 and FLD2 are null-capable.

F*

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++

F*

FDISKFILE UF A E DISK

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.

C*

C* Read the first record.

C* Update the record with new values for any fields which are not

C* null.

C READ REC 10

C IF NOT %NULLIND(Fld1)

C MOVE ’FLD1’ Fld1

C ENDIF

C IF NOT %NULLIND(Fld2)

C MOVE ’FLD2’ Fld2

C ENDIF

C UPDATE REC

C*

C* Read another record.

C* Update the record so that all fields are null.

C* There is no need to set the values of the fields because they

C* would be ignored.

C READ REC 10

C EVAL %NULLIND(Fld1) = *ON

C EVAL %NULLIND(Fld2) = *ON

C UPDATE REC

C*

C* Write a new record where Fld 1 is null and Fld 2 is not null.

C*

C EVAL %NULLIND(Fld1) = *ON

C EVAL %NULLIND(Fld2) = *OFF

C EVAL Fld2 = ’New value’

C WRITE REC

Figure 41. Input and Output of Null-Capable Fields

Object Data Type

140 VisualAge RPG Language Reference

|
|
|
|

|
|
|

Keyed Operations

If you have a null-capable key field, you can search for records containing null

values by specifying an indicator in factor 2 of the KFLD operation and setting that

indicator on before the keyed input operation. If you do not want a null key to be

selected, you set the indicator off.

When a record format with null-capable key fields is used on a CHAIN, SETLL,

READE, or READPE operation, and a %KDS data structure is used to specify the

keys, then the null-key-byte-map information will be taken from the null attributes

of the subfields in the data structure specified as the argument of %KDS.

When a record format with null-capable key fields is used on a CHAIN, SETLL,

READE, or READPE operation, and a list of keyfields is used, then the

null-key-byte-map information will be taken from the null attributes of the

specified keys.

Figure 42 on page 142 and Figure 43 on page 143 illustrate how keyed operations

are used to position and retrieve records with null keys.

Object Data Type

Chapter 9. Data Types and Data Formats 141

|
|
|
|

|
|
|
|

// Assume File1 below contains a record Rec1 with a composite key

 // made up of three key fields: Key1, Key2, and Key3. Key2 and Key3

 // are null-capable. Key1 is not null-capable.

 // Each key field is two characters long.

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+..

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++

FFile1 IF E DISK REMOTE

 // Define two data structures with the keys for the file

 // Subfields Key2 and Key3 of both data structures will be

 // null-capable.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D Keys DS LIKEREC(Rec1 : *KEY)

D OtherKeys DS LIKEDS(keys)

 // Define a data structure with the input fields of the file

 // Subfields Key2 and Key3 of the data structures will be

 // null-capable.

D File1Flds DS LIKEREC(Rec1 : *INPUT)

 /free

 // The null indicator for Keys.Key2 is ON and the

 // null indicator for Keys.Key3 is OFF, for the

 // SETLL operation below. File1 will be positioned

 // at the next record that has a key that is equal

 // to or greater than ’AA??CC’ (where ?? is used

 // in this example to indicate NULL)

 // Because %NULLIND(Keys.Key2) is ON, the actual content

 // in the search argument Keys.Key2 will be ignored.

 // If a record exists in File1 with ’AA’ in Key1, a null

 // Key2, and ’CC’ in Key3, %EQUAL(File1) will be true.

 Keys.Key1 = ’AA’;

 Keys.Key3 = ’CC’;

 %NULLIND(Keys.Key2) = *ON;

 %NULLIND(Keys.Key3) = *OFF;

 SETLL %KDS(Keys) Rec1;

 // The CHAIN operation below will retrieve a record

 // with ’JJ’ in Key1, ’KK’ in Key2, and a null Key3.

 // Since %NULLIND(OtherKeys.Key3) is ON, the value of

 // ’XX’ in OtherKeys.Key3 will not be used. This means

 // that if File1 actually has a record with a key

 // ’JJKKXX’, that record will not be retrieved.

 OtherKeys.Key3 = ’XX’;

 %NULLIND(Keys.Key3) = *ON;

 CHAIN (’JJ’ : ’KK’ : OtherKeys.Key3) Rec1;

 // The CHAIN operation below uses a partial key as the

 // search argument. It will retrieve a record with ’NN’

 // in Key1, a null key2, and any value including a null

 // value in Key3. The record is retrieved into the

 // File1Flds data structure, which will cause the

 // null flags for File1Flds.Key2 and File1Flds.Key3

 // to be changed by the operation (if the CHAIN

 // finds a record).

 Keys.Key1 = ’NN’;

 %NULLIND(Keys.Key2) = *ON;

 CHAIN %KDS(Keys : 2) Rec1 File1Flds;

Figure 42. Example of handling null-capable key fields

Object Data Type

142 VisualAge RPG Language Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

* Using the same file as the previous example, define two

 * key lists, one containing three keys and one containing

 * two keys.

 *

 CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.

 C*

 C Full_Kl KLIST

 C KFLD Key1

 C KFLD *IN02 Key2

 C KFLD *IN03 Key3

 C*

 C Partial_Kl KLIST

 C KFLD Key1

 C KFLD *IN05 Key2

 C*

 C*

 C* *IN02 is ON and *IN03 is OFF for the SETLL operation below.

 C* File1 will be positioned at the next record that has a key

 C* that is equal to or greater than ’AA??CC’ (where ?? is used

 C* in this example to indicate NULL)

 C*

 C* Because *IN02 is ON, the actual content in the search argument

 C* for Key2 will be ignored.

 C*

 C* If a record exists in File1 with ’AA’ in Key1, a null Key2, and

 C* ’CC’ in Key3, indicator 90 (the Eq indicator) will be set ON.

 C*

 C MOVE ’AA’ Key1

 C MOVE ’CC’ Key3

 C EVAL *IN02 = ’1’

 C EVAL *IN03 = ’0’

 C Full_Kl SETLL Rec1 90

 C*

Figure 43. Example of Keyed Operations Using Null-Capable Key Fields (Part 1 of 2)

Object Data Type

Chapter 9. Data Types and Data Formats 143

Input-Only Support for Null-Capable Fields

When an externally-described input-only file contains null-capable fields and the

Input only option or ALWNULL(*INPUTONLY) keyword is specified, the

following conditions apply:

v When a record is retrieved from a database file and there are some fields

containing null values in the record, database default values for the null-capable

fields will be placed into those fields containing null values. The default value

will be the user defined DDS defaults or system defaults.

v You will not be able to determine whether any given field in the record has a

null value.

v Field indicators are not allowed on an input specification if the input field is a

null-capable field from an externally-described input-only file.

v Keyed operations are not allowed when factor 1 of a keyed input calculation

operation corresponds to a null-capable key field in an externally-described

input-only file.

No Null Fields Option

When an externally-described file contains null-capable fields and the No option or

ALWNULL(*NO) keyword is specified, the following conditions apply:

v A record containing null values retrieved from a file will cause a data mapping

error and an error message will be issued.

v Data in the record is not accessible and none of the fields in the record can be

updated with the values from the input record containing null values.

 C*

 C* The CHAIN operation below will retrieve a record with ’JJ’ in Key1,

 C* ’KK’ in Key2, and a null Key3. Again, because *IN03 is ON, even

 C* if the programmer had moved some value (say ’XX’) into the search

 C* argument for Key3, ’XX’ will not be used. This means if File1

 C* actually has a record with a key ’JJKKXX’, that record will not

 C* be retrieved.

 C*

 C MOVE ’JJ’ Key1

 C MOVE ’KK’ Key2

 C EVAL *IN02 = ’0’

 C EVAL *IN03 = ’1’

 C Full_Kl CHAIN Rec1 80

 C*

 C*

 C* The CHAIN operation below uses a partial key as the search argument.

 C* It will retrieve a record with ’NN’ in Key1, a null key2, and any

 C* value including a null value in Key3.

 C*

 C* In the database, the NULL value occupies the highest position in

 C* the collating sequence. Assume the keys in File1 are in ascending

 C* sequence. If File1 has a record with ’NN??xx’ as key (where ??

 C* means NULL and xx means any value other than NULL), that record

 C* will be retrieved. If such a record does not exist in File1, but

 C* File1 has a record with ’NN????’ as key, the ’NN????’ record will

 C* be retrieved. The null flags for Key2 and Key3 will be set ON

 C* as a result.

 C*

 C MOVE ’NN’ Key1

 C SETON 05

 C Partial_Kl CHAIN Rec1 70

Figure 43. Example of Keyed Operations Using Null-Capable Key Fields (Part 2 of 2)

Object Data Type

144 VisualAge RPG Language Reference

v With this option, you cannot place null values in null-capable fields for updating

or adding a record. If you want to place null values in null-capable fields, use

the User control option.

Converting Database Variable-Length Fields

The VisualAge RPG compiler can internally define variable-length character or

graphic fields from an externally described file or data structure as fixed-length

character fields. Although converting variable-length character and graphic fields

to fixed-length format is not necessary, the CVTOPT compiler option remains in

the language to support programs written before variable-length fields were

supported.

You can convert variable-length fields by specifying *VARCHAR (for

variable-length character fields) or *VARGRAPHIC (for variable-length graphic

fields) on the CVTOPT control specification keyword. When *VARCHAR or

*VARGRAPHIC is not specified, or *NOVARCHAR or *NOVARGRAPHIC is

specified, variable-length fields are not converted to fixed-length character and can

be used in your VisualAge RPG program as variable-length.

The following conditions apply when *VARCHAR or *VARGRAPHIC is specified:

v If a variable-length field is extracted from an externally described file or an

externally described data structure, it is declared as a fixed-length character

field.

v For single-byte character fields, the length of the declared field is the length of

the DDS field plus 2 bytes.

v For DBCS-graphic data fields, the length of the declared field is twice the length

of the DDS field plus 2 bytes.

v The two extra bytes in the field contain a binary number which represents the

current length of the variable-length field. Figure 44 on page 146 shows the field

length of variable-length fields.

v For variable-length graphic fields defined as fixed-length character fields, the

length is double the number of graphic characters.

Object Data Type

Chapter 9. Data Types and Data Formats 145

v Your program can perform any valid character calculation operations on the

declared fixed-length field. However, because of the structure of the field, the

first two bytes of the field must contain valid unsigned integer data when the

field is written to a file. An I/O exception error occurs for an output operation if

the first two bytes of the field contain invalid field length data.

v Field definition conflict errors will occur during a compile when a

variable-length field is imported from an OS/400 file into a GUI object and the

file is also used as an externally-described file in the program with the

*VARCHAR or *VARGRAPHIC option specified. Two bytes for the data length

are added to the definition of the field coming from the file record format, which

conflicts with the field length definition from the GUI object.

To circumvent this conflict, do not specify the *VARCHAR or *VARGRAPHIC

option, or rename the GUI object and write source code to move data between

the two fields as appropriate.

v Field indicators are not allowed on an input specification if the input field is a

variable-length field from an externally described input file.

v Keyed operations are not allowed when factor 1 of a keyed operation

corresponds to a variable-length key field in an externally described file.

v If you choose to selectively output certain fields in a record and the

variable-length field is not specified on the output specification, or if the

variable-length field is ignored in the program, a default value is placed in the

output buffer of the newly-added record. The default is 0 in the first two bytes

and blanks in all of the remaining bytes.

v If you want to change converted variable-length fields, ensure that the current

field length is correct. One way to do this is:

1. Define a data structure with the variable-length field name as a subfield

name.

2. Define a 5-digit unsigned integer subfield overlaying the beginning of the

field, and define an N-byte character subfield overlaying the field starting at

position 3.

3. Update the field.

Single-byte character fields:

Graphic data type fields:

length

length

character-data

graphic-data

N = declared length in DDS

N = declared length in DDS = number of double bytes

2 + N = field length

2 + 2(N) = field length

UNS(5)

UNS(5)

CHAR(N)

CHAR(2(N))

Figure 44. Field Length of Converted Variable Length Fields

Object Data Type

146 VisualAge RPG Language Reference

Alternatively, you can move another variable-length field left-aligned into the field.

An example of how to change a converted variable-length field in a VARPG

program follows.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

A*

A* File MASTER contains a variable-length field

A*

AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions+++++++++++++++++++++

A*

A R REC

A FLDVAR 100 VARLEN

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+.. *

H*

H* Specify the CVTOPT(*VARCHAR) keyword on a control

H* specification or compile the VisualAge RPG program with

H* CVTOPT(*VARCHAR) on the command.

H*

HKeywords++

H*

H CVTOPT(*VARCHAR)

F*

F* Externally described file name is MASTER.

F*

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++

F*

FMASTER UF E DISK

Figure 45. Converting a Variable-Length Field in a Program (Part 1 of 2)

D*

D* FLDVAR is a variable-length field defined in DDS with

D* a DDS length of 100. Notice that the VARPG field length

D* is 102.

D*

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D*

D DS

D FLDVAR 1 102

D FLDLEN 5U 0 OVERLAY(FLDVAR:1)

D FLDCHR 100 OVERLAY(FLDVAR:3)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C*

C* A character value is moved to the variable length field FLDCHR.

C* After the CHECKR operation, FLDLEN has a value of 5.

C READ MASTER LR

C MOVEL ’SALES’ FLDCHR

C ’ ’ CHECKR FLDCHR FLDLEN

C NLR UPDAT REC

Figure 45. Converting a Variable-Length Field in a Program (Part 2 of 2)

Object Data Type

Chapter 9. Data Types and Data Formats 147

If converted variable-length graphic fields are required, you can code a 2-byte

unsigned integer field to hold the length, and a graphic subfield of length N to

hold the data portion of the field.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

D*

D* The variable-length graphic field VGRAPH is declared in the

D* DDS as length 3. This means the maximum length of the field

D* is 3 double bytes, or 6 bytes. The total length of the field,

D* counting the length portion, is 8 bytes.

D*

D* Compile the VARPG program with CVTOPT(*VARGRAPHIC).

D*

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D*

D DS

DVGRAPH 8

D VLEN 4U 0 OVERLAY(VGRAPH:1)

D VDATA 3G OVERLAY(VGRAPH:3)

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..

C*

C* Assume GRPH is a fixed length graphic field of length 2

C* double bytes. Copy GRPH into VGRAPH and set the length of

C* VGRAPH to 2.

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C*

C MOVEL GRPH VDATA

C Z-ADD 2 VLEN

Figure 46. Converting a Variable-Length Graphic Field

Object Data Type

148 VisualAge RPG Language Reference

Chapter 10. Literals and Named Constants

Literals and named constants are types of constants. Constants can be specified in

any of the following places:

v In factor 1

v In factor 2

v In an extended factor 2 on the calculation specifications

v As parameters to keywords on the control specification

v As parameters to built-in functions

v In the Field Name, Constant, or Edit Word fields in the output specifications.

v As array indexes

v With keywords on the definition specification.

Literals

A literal is a self-defining constant that can be referred to in a program. A literal

can belong to any of the VisualAge RPG data types.

Character Literals

The following rules apply when specifying a character literal:

v Any combination of characters can be used in a character literal. This includes

DBCS characters. DBCS characters must be an even number of bytes. Embedded

blanks are valid.

v A character literal with no characters between the apostrophes is allowed.

v Character literals must be enclosed in apostrophes (’).

v An apostrophe required as part of a literal is represented by two apostrophes.

For example, the literal O’CLOCK is coded as ’O″CLOCK’.

v Character literals are compatible only with character data

v Indicator literals are one byte character literals which contain either ’1’ (on) or ’0’

(off).

Hexadecimal Literals

The following rules apply when specifying a hexadecimal literal:

v Hexadecimal literals take the form:

X’x1x2...xn’

where:

X’x1x2...xn’ must contain the characters A-F, a-f, and 0-9.

v The literal coded between the apostrophes must be of even length.

v Each pair of characters defines a single byte.

v Hexadecimal literals are allowed anywhere that character literals are supported

except as factor 2 of ENDSR and as edit words.

v A hexadecimal literal has the same meaning as the corresponding character

literal except when used in the bit operations BITON, BITOFF, and TESTB. For

the bit operations, factor 2 may contain a hexadecimal literal representing 1 byte.

The rules and meaning are the same for hexadecimal literals as for character

fields.

v If the hexadecimal literal contains the hexadecimal value for a single quote, it

does not have to be specified twice, unlike character literals. For example, the

literal A’B is specified as ’A’’B’ but the hexadecimal version is X’412742’ not

X’41272742’.

© Copyright IBM Corp. 1994, 2005 149

v Normally, hexadecimal literals are compatible only with character data.

However, a hexadecimal literal that contains 16 or fewer hexadecimal digits can

be treated as an unsigned numeric value when it is used in a numeric

expression or when a numeric variable is initialized using the INZ keyword.

Numeric Literals

The following rules apply when specifying a numeric literal:

v A numeric literal consists of any combination of the digits 0 through 9. A

decimal point or a sign can be included.

v The sign (+ or −), if present, must be the leftmost character. An unsigned literal

is treated as a positive number.

v Blanks cannot appear in a numeric literal.

v Numeric literals are not enclosed in apostrophes (’).

v Numeric literals are used in the same way as a numeric field, except that values

cannot be assigned to numeric literals.

v The decimal separator may be either a comma or a period

Numeric literals of the float format are specified somewhat differently. Float literals

take the form:

 <mantissa>E<exponent>

Where

 <mantissa> is a literal as described above with 1 to 16 digits

 <exponent> is a literal with no decimal places, with a value

 between -308 and +308

v Float literals do not have to be normalized. That is, the mantissa does not have

to be written with exactly one digit to the left of the decimal point. (The decimal

point does not even have to be specified.)

v Lower case e may be used instead of E.

v Either a period (’.’) or a comma (’,’) may be used as the decimal point.

v Float literals are allowed anywhere that numeric constants are allowed except in

operations that do not allow float data type. For example, float literals are not

allowed in places where a numeric literal with zero decimal positions is

expected, such as an array index.

v Float literals follow the same continuation rules as for regular numeric literals.

The literal may be split at any point within the literal.

v A float literal must have a value within the limits described in 1.6.2, ″Rules for

Defining″ on page 4.

The following lists some examples of valid float literals:

 1E1 = 10

 1.2e-1 = .12

 -1234.9E0 = -1234.9

 12e12 = 12000000000000

 +67,89E+0003 = 67890 (the comma is the decimal point)

The following lists some examples of invalid float literals:

 1.234E <--- no exponent

 1.2e- <--- no exponent

 -1234.9E+309 <--- exponent too big

 12E-2345 <--- exponent too small

 1.797693134862316e308 <--- value too big

 179.7693134862316E306 <--- value too big

 0.0000000001E-308 <--- value too small

Date Literals

Date literals take the form D’xxxxxx’ where:

v D indicates that the literal is of type date

150 VisualAge RPG Language Reference

v xxxxxx is a valid date in the format specified on the control specification

v xxxxxx is enclosed by apostrophes (’).

Time Literals

Time literals take the form T’xxxxxx’ where:

v T indicates that the literal is of type time

v xxxxxx is a valid time in the format specified on the control specification

v xxxxxx is enclosed by apostrophes (’).

Timestamp Literals

Timestamp literals take the form Z’yyyy-mm-dd-hh.mm.ss.mmmmmm’ where:

v Z indicates that the literal is of type timestamp

v yyyy−mm−dd is a valid date (year−month−day)

v hh.mm.ss.mmmmmm is a valid time (hours.minutes.seconds.microseconds)

v yyyy−mm−dd−hh.mm.ss.mmmmmm is enclosed by apostrophes

v Microsecond are optional and if not specified, default to zeros

Chapter 10. Literals and Named Constants 151

Graphic Literals

Graphic literals take the form G’K1K2’ where:

v G indicates that the literal is of type graphic

v K1K2 is an even number of bytes

v K1K2 is enclosed by apostrophes (’).

UCS-2 Literals

UCS-2 literals take the form U’Xxxx...Yyyy’ where:

v U indicates that the literal is of type UCS-2.

v Each UCS-2 literal requires four bytes per UCS-2 character in the literal. Each

four bytes of the literal represents one double-byte UCS-2 character.

v UCS-2 literals are compatible only with UCS-2 data.

UCS-2 literals are assumed to be in the default UCS-2 CCSID of the module.

Named Constants

A named constant is a symbolic name assigned to a literal. Named constants are

defined on definition specifications. The value of a named constant follows the

rules specified for literals.

Named Constants

You can give a name to a constant. This name represents a specific value which

cannot be changed when the program is running.

Rules for Named Constants

v Named constants can be specified in factor 1, factor 2, and extended-factor 2 on

the calculation specifications, as parameters to keywords on the control

specification, as parameters to built-in functions, and in the Field Name,

Constant, or Edit Word fields in the output specifications. They can also be used

as array indexes or with keywords on the definition specification.

v Numeric named constants have no predefined precision. Actual precision is

defined by the context that is specified.

v The named constant can be defined anywhere on the definition specifications.

152 VisualAge RPG Language Reference

Example of Defining a Named Constant

Figurative Constants

The following figurative constants are implied literals that can be specified without

a length, because the implied length and decimal positions of a figurative constant

are the same as those of the associated field. See “Rules for Figurative Constants”

on page 154 for a list of exceptions.

 *ALL’x..’, *ALLG’K1K2’

*ALLU’XxxxYyyy’,

*ALLX’x1..’

*BLANK/*BLANKS *HIVAL

*LOVAL *NULL *ON/*OFF

*ZERO/*ZEROS

Figurative constants can be specified in factor 1 and factor 2 of the calculation

specifications. The following shows the reserved words and implied values for

figurative constants:

 Reserved Words Implied Values

*BLANK/*BLANKS All blanks. Valid only for character, graphic, or UCS-2 fields.

*ZERO/*ZEROS Character/numeric fields: All zeros. For numeric float fields: The

value is ’0 E0’.

*HIVAL Character, graphic, or UCS-2 fields: The highest collating character

for the system (hexadecimal FFs).

Numeric fields: All nines with a positive sign.

For Float fields: *HIVAL for 4-byte float = 3.402 823 5E38

(x’7F7FFFFF’) *HIVAL for 8-byte float = 1.797 693 134 862 315 E308

(x’7FEFFFFFFFFFFFFF’)

Date, time and timestamp fields: See “Date Data” on page 119,

“Time Data” on page 135, and “Timestamp Data” on page 137 for

*HIVAL values for date, time, and timestamp data.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * Define a date field and initialize it to the 3rd of September

 * 1988.

 *

D DateField S D INZ(D’1988-09-03’)

 *

 * Define a binary 9,5 field and initialize it to 0.

 *

D BIN9_5 S 9B 5 INZ

 *

 * Define a named constant whose value is the lower case alphabet.

 *

D Lower C CONST(’abcdefghijklmnop-

D qrstuvwxyz’)

 *

 * Define a named constant without explicit use of the keyword CONST.

 *

D Upper C ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Figure 47. Defining Named Constants

Chapter 10. Literals and Named Constants 153

*LOVAL Character, graphic, or UCS-2 fields: The lowest collating character

for the system (hexadecimal zeros).

Numeric fields: All nines with a negative sign.

For Float fields: *LOVAL for 4-byte float = -3.402 823 5E38

(x’FF7FFFFF’) *LOVAL for 8-byte float = -1.797 693 134 862 315

E308 (x’FFEFFFFFFFFFFFFF’)

Date, time and timestamp fields: See “Date Data” on page 119,

“Time Data” on page 135, and “Timestamp Data” on page 137 for

*LOVAL values for date, time, and timestamp data.

*ALL’x..’ Character/numeric fields: Character string x . . is cyclically

repeated to a length equal to the associated field. If the field is a

numeric field, all characters within the string must be numeric (0

through 9). No sign or decimal point can be specified when

*ALL’x..’ is used as a numeric constant.

Note: You cannot use *ALL’x..’ with numeric fields of float format.

For numeric integer or unsigned fields, the value is never greater

than the maximum value allowed for the corresponding field.

*ALLG’K1K2’ Graphic fields: The graphic string K1K2 is cyclically repeated to a

length equal to the associated field.

*ALLU’XxxxYyyy’ UCS-2 fields: A figurative constant of the form *ALLU’XxxxYyyy’

indicates a literal of the form ’XxxxYyyyXxxxYyyy...’ with a length

determined by the length of the field associated with the

*ALLU’XxxxYyyy’ constant. Each double-byte character in the

constant is represented by four hexadecimal digits. For example,

*ALLU’0041’ represents a string of repeated UCS-2 ’A’s.

*ALLX’x1..’ Character fields: The hexadecimal literal X’x1..’ is cyclically

repeated to a length equal to the associated field.

*NULL A null value valid for basing pointers, procedure pointers, or

objects.

*ON/*OFF *ON ’1’ *OFF is ’0’. Both are only valid for character fields.

The following figurative constants are implied literals that can be used with the

DSPLY operation code:

 *ABORT *CANCEL *ENTER *HALT

*IGNORE *INFO *NOBUTTON *OK

*RETRY *WARN *YESBUTTON

The following figurative constants are implied literals that can be used when

creating an application’s GUI:

 *BLACK *BLUE *BROWN *CYAN

*DARKBLUE *DARKCYAN *DARKGREEN *DARKGRAY

*DARKPINK *DARKRED *GREEN *PALEGRAY

*PINK *RED *YELLOW *WHITE

Rules for Figurative Constants

The following rules apply when using figurative constants:

v Figurative constants that are allowed for fixed-length character fields are also

allowed for variable-length character fields (*BLANK/*BLANKS,

*ZERO/*ZEROS, *HIVAL, *LOVAL, *ALL’x..’, *ALLG’K1K2’, *ALLX’x1..’,

*ON/*OFF).

154 VisualAge RPG Language Reference

v Figurative constants that are allowed for fixed-length graphic fields are also

allowed for variable-length graphic fields (*BLANK/*BLANKS, *HIVAL,

*LOVAL, *ALLG’K1K2’).

v The figurative constant values are the same for both fixed-length and

variable-length character and graphic fields:

*HIVAL = X’FF’

*LOVAL = X’00’

*BLANK = ’ ’ or X’20’ or double-byte blank

*ZERO = ’0’ or X’30’

*OFF = ’0’ or X’30’

*ON = ’1’ or X’31’

v MOVE and MOVEL operations allow moving a character figurative constant to a

numeric field. The figurative constant is first expanded as a zoned numeric with

the size of the numeric field, converted to packed or binary numeric if needed,

and then stored in the target numeric field. The digit portion of each character in

the constant must be valid.

v Figurative constants are considered elementary items. Except for MOVEA,

figurative constants act like a field if used in conjunction with an array. For

example: MOVE *ALL’XYZ’ ARR.

If ARR has 4-byte character elements, then each element contains ’XYZX’.

v MOVEA is considered to be a special case. The constant is generated with a

length equal to the portion of the array specified. For example:

– MOVEA *BLANK ARR(X)

Beginning with element X, the remainder of ARR will contain blanks.

– MOVEA *ALL’XYZ’ ARR(X)

ARR has 4-byte character elements. Element boundaries are ignored, as is

always the case with character MOVEA operations. Beginning with element

X, the remainder of the array will contain ’XYZXYZXYZ...’.
v The SETGT and SETLL operation codes do not support use of the *HIVAL or

*LOVAL value in factor 1.

Note: The results of MOVEA are different from those of the MOVE example:

v After figurative constants are set/reset to their appropriate length, their normal

collating sequence can be altered if an alternate collating sequence is specified.

v The move operations MOVE and MOVEL produce the same result when moving

the figurative constants *ALL’x..’, *ALLG’K1K2’, and *ALLX’x1..’. The string is

cyclically repeated character by character (starting on the left) until the length of

the associated field is the same as the length of the string.

v Figurative constants can be used in compare operations as long as one of the

factors is not a figurative constant.

v The figurative constants, *BLANK/*BLANKS, are moved as zeros to a numeric

field in a MOVE operation.

Chapter 10. Literals and Named Constants 155

156 VisualAge RPG Language Reference

Chapter 11. Data Structures

You can define an area in storage and the layout of the fields (subfields) within the

area. This area in storage is called a data structure. Specify DS in positions 24

through 25 on a definition specification to define a data structure.

You can use a data structure to:

v Define the same internal area multiple times using different data formats

v Operate on an individual subfield using its name

v Operate on all the subfields as a group using the name of the data structure

v Define a data structure and its subfields in the same way a record is defined

v Define multiple occurrences of a set of data

v Group non-contiguous data into contiguous internal storage locations.

There are three special data structures, each with a specific purpose:

v A data-area data structure (identified by a U in position 23 of the definition

specification). See “Position 23 (Type of Data Structure)” on page 260.

v A file information data structure (identified by the keyword INFDS on a file

description specifications). See “INFDS(DSname)” on page 248.

v A program-status data structure (identified by an S in position 23 of the

definition specification). See “Position 23 (Type of Data Structure)” on page 260.

Data structures can be program-described or externally-described. One data

structure can be defined like another using the LIKEDS keyword.

A program-described data structure is identified by a blank in position 22 of the

definition specification. The subfield definitions for a program-described data

structure must immediately follow the data structure definition. See “Position 22

(External Description)” on page 260.

An externally-described data structure, identified by an E in position 22 of the

definition specification, has subfield descriptions contained in an

externally-described file. When the program is compiled, the external name is used

to locate and extract the external description of the data structure subfields. Specify

the name of the external description either in positions 7 through 21, or as a

parameter for the keyword EXTNAME. See “Positions 7-21 (Name)” on page 260

and “EXTNAME(file-name{:format-name}{:*ALL| *INPUT|*OUTPUT|*KEY})” on

page 272.

Note: The data formats specified for the subfields in the external description are

used as the internal formats of the subfields by the compiler. This differs

from the way in which externally described files are treated.

An external subfield name can be renamed in the program using the keyword

EXTFLD. The keyword PREFIX can be used to add a prefix to the external subfield

names that have not been renamed with EXTFLD. Note that the data structure

subfields are not affected by the PREFIX keyword specified on a file-description

specification even if the file name is the same as the parameter specified in the

EXTNAME keyword when defining the data structure using an external file name.

Additional subfields can be added to an externally described data structure by

specifying program-described subfields immediately after the list of external

subfields. See “EXTFLD(field_name)” on page 271 and

“PREFIX(prefix{:nbr_of_char_replaced})” on page 293.

© Copyright IBM Corp. 1994, 2005 157

Qualifying Data Structure Names

The keyword QUALIFIED indicates that subfields of the data structure are

referenced using qualified notation. This permits access by specifying the data

structure name followed by a period and the subfield name, for example DS1.FLD1.

If the QUALIFIED keyword is not used, the subfield name remains unqualified, for

example FLD1. If QUALIFIED is used the subfield name can be specified by one of

the following:

v A ″Simply Qualified Name″ is a name of the form ″A.B″. Simply qualified

names are allowed as arguments to keywords on File and Definition

Specifications; in the Field-Name entries on Input and Output Specifications; and

in the Factor 1, Factor 2, and Result-Field entries on fixed-form calculation

specifications, i.e.dsname.subf. While spaces are permitted between elements of a

fully-qualified name, they are not permitted in simply qualified names.

v A ″Fully Qualified Name″ is a name with qualification and indexing to an

arbitrary number of levels, for example, ″A(X).B.C(Z+17)″. Fully qualified names

are allowed in any free-form calculation specifications, or in any

Extended-Factor-2 entry. This includes operations codes CLEAR and DSPLY

coded in free-form calculations.

In addition, arbitrary levels of indexing and qualification are allowed. For example,

a programmer could code:ds(x).subf1.s2.s3(y+1).s4 as an operand within an

expression. Please see “QUALIFIED” on page 293 for further information on the

use of the QUALIFIED keyword.

Fully qualified names may be specified as the Result-Field operand for opcodes

CLEAR and DSPLY when coded in free-form calc specs. An expression is allowed

for the Factor 1 operand for opcode DSPLY (coded in free-form calculation

specifications), however, if the operand is more complex than a fully qualified

name, the expression must be enclosed in parentheses.

Array Data Structures

An ″Array Data Structure″ is a data structure defined with keyword DIM. An

array data structure is like a multiple-occurrence data structure, except that the

index is explicitly specified, as with arrays.

Notes:

1. Keyword DIM is allowed for data structures defined as QUALIFIED.

2. When keyword DIM is coded for a data structure or LIKEDS subfield, array

keywords CTDATA, FROMFILE, and TOFILE are not allowed. In addition, the

following data structure keywords are not allowed for an array data structure:

v DTAARA

v OCCURS.
3. For a data structure X defined with LIKEDS(Y), if data structure Y is defined

with keyword DIM, data structure X is not defined as an array data structure.

4. If X is a subfield in array data structure DS, then an array index must be

specified when referring to X in a qualified name. In addition, the array index

may not be *. Within a fully qualified name expression, an array index may

only be omitted (or * specified) for the right-most name.

158 VisualAge RPG Language Reference

Defining Data Structure Parameters in a Prototype or Procedure

Interface

To define a prototyped parameter as a data structure, you must first define the

layout of the parameter by defining an ordinary data structure. Then, you can

define a prototyped parameter as a data structure by using the LIKEDS keyword.

To use the subfields of the parameter, specify the subfields qualified with

parameter name: dsparm.subfield. For example

Defining Data Structure Subfields

You define a subfield by specifying blanks in the Definition-Type entry (positions

24 through 25) of a definition specification. The subfield definition(s) must

immediately follow the data structure definition. The subfield definitions end when

a definition specification with a non-blank Definition-Type entry is encountered, or

when a different specification type is encountered.

The name of the subfield is entered in positions 7 through 21. To improve

readability of your source, you may want to indent the subfield names to show

visually that they are subfields.

If the data structure is defined with the QUALIFIED keyword, the subfield names

can be the same as other names within your program. The subfield names will be

qualified by the owning data structure when they are used.

You can also define a subfield like an existing item using the LIKE keyword. When

defined in this way, the subfield receives the length and data type of the item on

 * PartInfo is a data structure describing a part.

 D PartInfo DS QUALIFIED

 D Manufactr 4

 D Drug 6

 D Strength 3

 D Count 3 0

 * Procedure "Proc" has a parameter "Part" that is a data

 * structure whose subfields are the same as the subfields

 * in "PartInfo". When calling this procedure, it is best

 * to pass a parameter that is also defined LIKEDS(PartInfo)

 * (or pass "PartInfo" itself), but the compiler will allow

 * you to pass any character field that has the correct

 * length.

 D Proc PR

 D Part LIKEDS(PartInfo)

 P Proc B

 * The procedure interface also defines the parameter Part

 * with keyword LIKEDS(PartInfo).

 * This means the parameter is a data structure, and the subfields

 * can be used by specifying them qualified with "Part.", for

 * example "Part.Strength"

 D Proc PI

 D Part LIKEDS(PartInfo)

 C IF Part.Strength > getMaxStrength (Part.Drug)

 C CALLP PartError (Part : DRUG_STRENGTH_ERROR)

 C ELSE

 C EVAL Part.Count = Part.Count + 1

 C ENDIF

 P Proc E

Chapter 11. Data Structures 159

which it is based. Similarly, you can use the LIKEDS keyword to define an entire

data structure like an existing item. See Figure 92 on page 279 for an example

using the LIKE keyword.

The keyword LIKEDS is allowed on any subfield definition. When specified, the

subfield is defined to be a data structure, with its own set of subfields. If data

structure DS has subfield S1 which is defined like a data structure with a subfield

S2, a programmer must refer to S2 using the expression DS.S1.S2.

Notes:

1. Keyword LIKEDS is allowed for subfields only within QUALIFIED data

structures.

2. Keywords DIM and LIKEDS are both allowed on the same subfield definition.

You can overlay the storage of a previously defined subfield with that of another

subfield using the OVERLAY keyword. The keyword is specified on the later

subfield definition.

Specifying Subfield Length

The length of a subfield may be specified using absolute (positional) or length

notation, or its length may be implied.

Absolute

Specify a value in both the From-Position (positions 26 through 32) and the

To-Position/Length (positions 33 through 39) entries on the definition

specification.

Length

Specify a value in the To-Position/Length (positions 33 through 39) entry.

The From-Position entry is blank.

Implied Length

If a subfield appears in the first parameter of one or more OVERLAY

keywords, the subfield can be defined without specifying any type or

length information. In this case, the type is character and the length is

determined by the overlaid subfields.

 In addition, some data types, such as Pointers, Dates, Times and

Timestamps have a fixed length. For these types, the length is implied,

although it can be specified.

When using length notation, the subfield is positioned such that its starting

position is greater than the maximum To-Position of all previously-defined

subfields. For examples of each notation, see “Data Structure Examples” on page

162.

Aligning Data Structure Subfields

Alignment of subfields may be necessary. In some cases it is done automatically; in

others, it must be done manually.

For example, when defining subfields of type basing pointer or procedure pointer

using the length notation, the compiler will automatically perform padding if

necessary to ensure that the subfield is aligned properly.

When defining float, integer or unsigned subfields, alignment may be desired to

improve runtime performance. If the subfields are defined using length notation,

160 VisualAge RPG Language Reference

|
|
|
|
|

|
|
|

you can automatically align float, integer or unsigned subfields by specifying the

keyword ALIGN on the data structure definition. However, note the following

exceptions:

v The ALIGN keyword is not allowed for a file information data structure or a

program status data structure.

v Subfields defined using the keyword OVERLAY are not aligned automatically,

even if the keyword ALIGN is specified for the data structure. In this case, you

must align the subfields manually.

Automatic alignment will align the fields on the following boundaries.

v 2 bytes for 5-digit integer or unsigned subfields

v 4 bytes for 10-digit integer or unsigned subfields, or 4-byte float subfields

v 8 bytes for 20-digit integer or unsigned subfields

v 8 bytes for 8-byte float subfields

v 16 bytes for pointer subfields

If you are aligning fields manually, make sure that they are aligned on the same

boundaries. A start-position is on an n-byte boundary if ((position - 1) mod n) =

0. (The value of ″x mod y″ is the remainder after dividing x by y in integer

arithmetic. It is the same as the MVR value after X DIV Y.)

Figure 48 shows a sequence of bytes and identifies the different boundaries used

for alignment.

 Note the following about the preceding byte sequence:

v Position 1 is on a 16-byte boundary, since ((1-1) mod 16) = 0.

v Position 13 is on a 4-byte boundary, since ((13-1) mod 4) = 0.

v Position 7 is not on a 4-byte boundary, since ((7-1) mod 4) = 2.

Initialization of Nested Data Structures

The keyword INZ(*LIKEDS) is allowed on a LIKEDS subfield. The LIKEDS

subfield is initialized exactly the same as the corresponding data structure.

Keyword INZ is allowed on a LIKEDS subfield. All nested subfields of the LIKEDS

subfield are initialized to their default values. This also applies to more deeply

nested LIKEDS subfields, with the exception of nested LIKEDS subfields with

INZ(*LIKEDS) specified.

If keyword INZ is coded on a main data structure definition, keyword INZ is

implied on all subfields of the data structure without explicit initialization. This

includes LIKEDS subfields.

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18

Figure 48. Boundaries for Data Alignment

Chapter 11. Data Structures 161

Special Data Structures

Special data structures include:

v Data area data structures

v File information data structures (INFDS)

v Program-status data structures

For examples, see “Data Structure Examples”

Note that the above data structures cannot be defined in subprocedures.

Data-Area Data Structure

A data-area data structure is specified by a U in position 23 of the definition

specification. This indicates that the same data area that is read and locked at

program initialization should be written out and unlocked at the end of the

program. Data-area data structures, like other data structures, have the type

character. A data area read into a data area data structure must also be character.

The data area and data-area data structure must have the same name unless you

rename the data area in the program by using the *DTAARA DEFINE operation

code or the DTAARA keyword. See “DEFINE (Field Definition)” on page 548 and

“DTAARA{(*VAR:)data_area_name}” on page 270.

You can specify the data area operations (IN, OUT, and UNLOCK) for a data area

that is implicitly read in and written out. Before you use a data area data structure

with these operations, you must specify that data area in the result field of the

*DTAARA DEFINE operation or with the DTAARA keyword. See “DEFINE (Field

Definition)” on page 548 and “DTAARA{(*VAR:)data_area_name}” on page 270.

Note: A data-area data structure cannot be specified in the result field of a PARM

operation in the *ENTRY PLIST.

File Information Data Structure

You can specify a file information data structure for each file in the program. File

information data structures are defined by the keyword INFDS on a file

description specifications. See “INFDS(DSname)” on page 248. This provides you

with status information on the file exception or error that occurred. The file

information data structure name must be unique for each file. A file information

data structure contains subfields that provide information on the file exception or

error that occurred. For more information on file information data structures and

their subfields, see “File Information Data Structure” on page 41.

Program-Status Data Structure

A program-status data structure provides program exception and error information

to the program. It identified by an S in position 23 of the definition specification.

For more information on program-status data structures and their subfields, see

“Program Status Data Structure” on page 51.

Data Structure Examples

The following examples show various uses for data structures and how to define

them.

 Example Description

Figure 49 on page 163 Using a data structure to subdivide a field

162 VisualAge RPG Language Reference

Example Description

Figure 50 on page 164 Using a data structure to group fields

Figure 51 on page 165 Using keywords QUALIFIED, LIKEDS, and DIM with data

structures, and how to code fully-qualified subfields

Figure 52 on page 166 Data structure with absolute and length notation

Figure 53 on page 166 Rename and initialize an externally described data structure

Figure 54 on page 167 Using PREFIX to rename all fields in an external data

structure

Figure 55 on page 167 Defining a multiple occurrence data structure

Figure 56 on page 168 Aligning data structure subfields

Figure 57 on page 169 Using data area data structures

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * Use length notation to define the data structure subfields.

 * You can refer to the entire data structure by using Partno, or by

 * using the individual subfields Manufactr, Drug, Strength or Count.

 *

D Partno DS

D Manufactr 4

D Drug 6

D Strength 3

D Count 3 0

D

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC..................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr......

 *

 * Records in program described file FILEIN contain a field, Partno,

 * which needs to be subdivided for processing in this program.

 * To achieve this, the field Partno is described as a data structure

 * using the above Definition specification

 *

IFILEIN NS 01 1 CA 2 CB

I 3 18 Partno

I 19 29 Name

I 30 40 Patno

Figure 49. Using a Data Structure to Subdivide a Field

Chapter 11. Data Structures 163

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * When you use a data structure to group fields, fields from

 * non-adjacent locations on the input record can be made to occupy

 * adjacent internal locations. The area can then be referred to by

 * the data structure name or individual subfield name.

 *

D Partkey DS

D Location 4

D Partno 8

D Type 4

D

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC..................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr......

 *

 * Fields from program described file TRANSACTN need to be

 * compared to the field retrieved from an Item_Master file

 *

ITRANSACTN NS 01 1 C1 2 C2

I 3 10 Partno

I 11 16 0Quantity

I 17 20 Type

I 21 21 Code

I 22 25 Location

I

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 *

 * Use the data structure name Partkey, to compare to the field

 * Item_Nbr

 *

C :

C Partkey IFEQ Item_Nbr 99

C :

C*

Figure 50. Using a Data Structure to Group Fields

164 VisualAge RPG Language Reference

D CustomerInfo DS QUALIFIED BASED(@)

 D Name 20A

 D Address 50A

 D ProductInfo DS QUALIFIED BASED(@)

 D Number 5A

 D Description 20A

 D Cost 9P 2

 D SalesTransaction...

 D DS QUALIFIED

 D Buyer LIKEDS(CustomerInfo)

 D Seller LIKEDS(CustomerInfo)

 D NumProducts 10I 0

 D Products LIKEDS(ProductInfo)

 D DIM(10)

 /free

 TotalCost = 0;

 for i = 1 to SalesTransation. Numproducts;

 TotalCost = TotalCost + SalesTransaction.Products (i).Cost;

 dsply SalesTransaction.Products (i).Cost;

 endfor;

 dsply (’Total cost is ’ + %char(TotalCost));

 /end-free

Figure 51. Using Keywords QUALIFIED, LIKEDS and DIM with data structures

Chapter 11. Data Structures 165

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * Define a program described data structure called FRED

 * The data structure is composed of 5 fields:

 * 1. An array with element length 10 and dimension 70(Field1)

 * 2. A field of length 30 (Field2)

 * 3/4. Divide Field2 in 2 equal length fields (Field3 and Field4)

 * 5. Define a binary field over the 3rd field

 * Note the indentation to improve readability

 *

 *

 * Absolute notation:

 *

 * The compiler will determine the array element length (Field1)

 * by dividing the total length (700) by the dimension (70)

 *

D FRED DS

D Field1 1 700 DIM(70)

D Field2 701 730

D Field3 701 715

D Field5 701 704B 2

D Field4 716 730

 *

 * Length notation:

 *

 * The OVERLAY keyword is used to subdivide Field2

 *

D FRED DS

D Field1 10 DIM(70)

D Field2 30

D Field3 15 OVERLAY(Field2)

D Field5 4B 2 OVERLAY(Field3)

D Field4 15 OVERLAY(Field2:16)

Figure 52. Data Structure with Absolute and Length Notation

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * Define an externally described data structure with internal name

 * FRED and external name EXTDS and rename field CUST to CUSTNAME

 * Initialize CUSTNAME to ’GEORGE’ and PRICE to 1234.89.

 * Assign to subfield ITMARR (defined in the external description as a

 * 100 byte character field) the DIM keyword

 *

D Fred E DS EXTNAME(EXTDS)

D CUSTNAME E EXTFLD(CUST) INZ(’GEORGE’)

D PRICE E INZ(1234.89)

D ITMARR E DIM(10)

Figure 53. Rename and Initialize an Externally Described Data Structure

166 VisualAge RPG Language Reference

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

D

D extds1 E DS EXTNAME (CUSTDATA)

D PREFIX (CU_)

D Name E INZ (’Joe’s Garage’)

D Custnum E EXTFLD (NUMBER)

D

 *

 * The previous data structure will expand as follows:

 * -- All externally described fields are included in the data

 * structure

 * -- Renamed subfields keep their new names

 * -- Subfields that are not renamed are prefixed with the

 * prefix string

 *

 * Expanded data structure:

 *

D EXTDS1 E DS

D CU_NAME E 20A EXTFLD (NAME)

D INZ (’Joe’s Garage’)

D CU_ADDR E 50A EXTFLD (ADDR)

D CUSTNUM E 9S0 EXTFLD (NUMBER)

D CU_SALESMN E 7P0 EXTFLD (SALESMN)

Figure 54. Using PREFIX to Rename All Fields in an External Data Structure

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * Define a Multiple Occurrence data structure of 20 elements with:

 * -- 3 fields of character 20

 * -- A 4th field of character 10 which overlaps the 2nd

 * field starting at the second position.

 *

 * Named constant ’twenty’ is used to define the occurrence

 *

 * Absolute notation (using begin/end positions)

 *

D twenty C CONST(20)

D

DDataStruct DS OCCURS (twenty)

D field1 1 20

D field2 21 40

D field21 22 31

D field3 41 60

 *

 * Mixture of absolute and length notation

 *

D DataStruct DS OCCURS(twenty)

D field1 20

D field2 20

D field21 22 31

D field3 41 60

Figure 55. Defining a Multiple Occurrence Data Structure

Chapter 11. Data Structures 167

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

 * Data structure with alignment:

D MyDS DS ALIGN

 * Properly aligned subfields

 * Integer subfields using absolute notation.

D Subf1 33 34I 0

D Subf2 37 40I 0

 * Integer subfields using length notation.

 * Note that Subf3 will go directly after Subf2

 * since positions 41-42 are on a 2-byte boundary.

 * However, Subf4 must be placed in positions 45-48

 * which is the next 4-byte boundary after 42.

D Subf3 5I 0

D Subf4 10I 0

 * Integer subfields using OVERLAY.

D Group 101 120A

D Subf6 5I 0 OVERLAY (Group: 3)

D Subf7 10I 0 OVERLAY (Group: 5)

D Subf8 5U 0 OVERLAY (Group: 9)

 * Subfields that are not properly aligned:

 * Integer subfields using absolute notation:

D SubfX1 10 11I 0

D SubfX2 15 18I 0

 * Integer subfields using OVERLAY:

D BadGroup 101 120A

D SubfX3 5I 0 OVERLAY (BadGroup: 2)

D SubfX4 10I 0 OVERLAY (BadGroup: 6)

D SubfX5 10U 0 OVERLAY (BadGroup: 11)

 * Integer subfields using OVERLAY:

D WorseGroup 200 299A

D SubfX6 5I 0 OVERLAY (WorseGroup)

D SubfX7 10I 0 OVERLAY (WorseGroup: 3)

 *

 * The subfields receive warning messages for the following reasons:

 * SubfX1 - end position (11) is not a multiple of 2 for a 2 byte field.

 * SubfX2 - end position (18) is not a multiple of 4 for a 4 byte field.

 * SubfX3 - end position (103) is not a multiple of 2.

 * SubfX4 - end position (109) is not a multiple of 4.

 * SubfX5 - end position (114) is not a multiple of 4.

 * SubfX6 - end position (201) is not a multiple of 2.

 * SubfX7 - end position (205) is not a multiple of 4.

Figure 56. Aligning Data Structure Subfields

168 VisualAge RPG Language Reference

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

 *

 * This program uses a data-area data structure to accumulate

 * a series of totals.

 *

D Totals UDS

D Tot_amount 8 2

D Tot_gross 10 2

D Tot_netto 10 2

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

CSRN01Factor1+++++++Opcode(E)+Factor2++++++++++++++++++++++++++++++++++++++

 *

C :

C EVAL Tot_amount = Tot_amount + amount

C EVAL Tot_gross = Tot_gross + gross

C EVAL Tot_netto = Tot_netto + netto

Figure 57. Using Data-area Data Structures

Chapter 11. Data Structures 169

170 VisualAge RPG Language Reference

Chapter 12. Using Arrays and Tables

Arrays and tables are both collections of data fields (elements) of the same:

v Field length

v Data type

– Character

– Numeric

– Data Structure

– Date

– Time

– Timestamp

– Graphic

– Basing Pointer

– Procedure Pointer

– UCS-2
v Format

v Number of decimal positions (if numeric)

Arrays and tables differ in that:

v You can refer to a specific array element by its position

v You cannot refer to specific table elements by their position

v An array name by itself refers to all elements in the array

v A table name always refers to the element found in the last LOOKUP (Look Up

a Table or Array Element) operation. .

Note: You can define only run-time arrays in a subprocedure. Tables, pre-runtime

arrays, and compile-time arrays are not supported. If you want to use a

pre-run array or compile-time array in a subprocedure, you must define it in

the main source section.

The following sections describe how to use arrays:

v “Arrays”

v “Initializing Arrays” on page 178

v “Defining Related Arrays” on page 178

v “Searching Arrays” on page 180

v “Using Arrays” on page 183

v “Array Output” on page 184

“Tables” on page 186 describes the same information for tables.

“Arrays” describes how to code an array, how to specify the initial values of the

array elements, how to change the values of an array, and the special

considerations for using an array.

Arrays

There are three types of arrays:

v The runtime array is loaded while the program is running.

v The compile-time array is loaded when your program is created. The initial data

becomes a permanent part of your program.

v The pre-runtime array is loaded from an array file when your program begins

running, before any input, calculation, or output operations are processed.

© Copyright IBM Corp. 1994, 2005 171

The essentials of defining and loading an array are described for a runtime array.

For defining and loading compile-time and pre-runtime arrays, use these essentials

and some additional specifications.

Array Name and Index

You refer to an entire array using the array name alone. You refer to the individual

elements of an array using the array name, followed by a left parenthesis, followed

by an index, followed by a right parenthesis. For example:

 AR(IND)

The index indicates the position of the element within the array (starting from 1)

and is either a number or a field containing a number.

The following rules apply when specifying an array name and index:

v The array name must be a unique symbolic name

v The index must be a numeric field or constant greater than zero and with zero

decimal positions

v If the array is specified within an expression in the extended factor 2 field, the

index may be an expression returning a numeric value with zero decimal

positions

v At run time, if the program refers to an array using an index with a value that is

zero, negative, or greater than the number of elements in the array, then the

error/exception routine takes control of the program.

Essential Array Specifications

You define an array on a definition specification:

v Specify the array name in positions 7 through 21

v Specify the number of entries in the array using the DIM keyword

v Specify length, data format, and decimal positions as you would any scalar

fields. You may specify explicit From- and To-position entries (if defining a

subfield), or an explicit Length-entry; or you may define the array attributes

using the LIKE keyword; or the attributes may be specified elsewhere in the

program.

v If you need to specify a sort sequence, use the ASCEND or DESCEND

keywords.

Figure 58 shows an example of the essential array specifications.

Coding a Runtime Array

If you make no further specifications beyond the essential array specifications, you

have defined a runtime array. Note that the keywords ALT, CTDATA, EXTFMT,

FROMFILE, PERRCD, and TOFILE cannot be used for a runtime array.

Loading a Runtime Array

You can assign initial values for a runtime array using the INZ keyword on the

definition specification. You can also assign initial values for a runtime array

through input or calculation specifications. This second method can also be used to

put data into other types of arrays.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

DARC S 3A DIM(12)

Figure 58. The Essential Array Specifications to Define a Runtime Array

172 VisualAge RPG Language Reference

For example, you can use the calculation specifications for the MOVE operation to

put 0 in each element of an array (or in selected elements).

Using the input specifications, you can fill an array with the data from a file. The

following sections provide more details on retrieving this data from the records of

a file.

Note: Date and time runtime data must be in the same format and use the same

separators as the date or time array being loaded.

Loading a Runtime Array in One Source Record

If the array information is contained in one record, the information can occupy

consecutive positions in the record or it can be scattered throughout the record.

If the array elements are consecutive on the input record, the array can be loaded

with a single input specification. Figure 59 shows the specifications for loading an

array of six elements (12 characters each) from a single record.

 If the array elements are scattered throughout the record, they can be defined and

loaded one at a time, with one element described on a specification line.

Figure 60 shows the specifications for loading an array of six elements (12

characters each) from a single record. A blank separates each of the elements from

the others.

Loading a Runtime Array Using Multiple Source Records

If the array information is in more than one record, you can use various methods

to load the array. The method to use depends on the size of the array and whether

or not the array elements are consecutive in the input records. Records are

processed one record at a time. Therefore the entire array is not processed until all

the records containing the array information are read and the information is

moved into the array fields. It may be necessary to suppress calculation and output

operations until the entire array is read into the program.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

DINPARR S 12A DIM(6)

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr....

IARRFILE AA 01

I 1 72 INPARR

Figure 59. Using a Runtime Array with Consecutive Elements

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

DARRX S 12A DIM(6)

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC................................

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr....

IARRFILE AA 01

I 1 12 ARRX(1)

I 14 25 ARRX(2)

I 27 38 ARRX(3)

I 40 51 ARRX(4)

I 53 64 ARRX(5)

I 66 77 ARRX(6)

Figure 60. Defining a Runtime Array with Scattered Elements

Chapter 12. Using Arrays and Tables 173

Sequencing Runtime Arrays

Runtime arrays are not sequence checked. If you process a SORTA (sort an array)

operation, the array is sorted into the sequence specified on the definition

specification (the ASCEND or DESCEND keywords) defining the array. If the

sequence is not specified, the array is sorted into ascending sequence. When the

high (positions 71 and 72 of the calculation specifications) or low (positions 73 and

74 of the calculation specifications) indicators are used in the LOOKUP operation,

the array sequence must be specified.

Coding a Compile-Time Array

A compile-time array is specified using the essential array specifications and the

keyword CTDATA. You can specify the number of array entries in an input record

using the PERRCD keyword on the definition specification. If you do not specify

the PERRCD keyword, the number of entries defaults to 1. See the specifications in

Figure 61 on page 175 for an example.

You can specify the external data format using the EXTFMT(code) keyword. See

“EXTFMT(code)” on page 271 for more information.

Note: The EXTFMT keyword cannot be used if the array data resides on the

workstation. The EXTFMT keyword is not allowed for float compile-time

arrays.

The TOFILE keyword can be used to specify a file to which the array is to be

written when the program ends with LR on.

Loading a Compile-Time Array

For a compile-time array, enter array source data into records in the program

source member. If you use the **CTDATA keyword, the array data may be entered

in anywhere following the source records. If you do not use this keyword, the

array data must follow the source records in the order in which the compile-time

arrays and tables were defined on the definition specifications. This data is loaded

into the array when the program is compiled. Until the program is recompiled

with new data, the array will always initially have the same values each time you

call the program unless the previous call ended with LR off.

Compile-time arrays can be described separately or in alternating format (with the

ALT keyword). Alternating format means that the elements of one array are

intermixed on the input record with elements of another array.

Rules for Array Source Records

The rules for array source records are:

v The first array entry for each record must begin in position 1.

v All elements must be the same length and follow each other with no intervening

spaces

v An entire record need not be filled with entries. If it is not, blanks or comments

can be included after the entries. See Figure 61 on page 175.

v If the number of elements in the array as specified on the definition specification

is greater than the number of entries provided, the remaining elements are filled

with the default values for the data type specified.

174 VisualAge RPG Language Reference

v Each record, except the last, must contain the number of entries specified with

the PERRCD keyword on the definition specifications. In the last record, unused

entries must be blank and comments can be included after the unused entries.

v Each entry must be contained entirely on one record. An entry cannot be split

between two records. The length of a single entry is limited to the maximum

length of 100 characters (size of source record). If arrays are used and are

described in alternating format, corresponding elements must be on the same

record. Together they cannot exceed 100 characters.

v For date and time compile-time arrays the data must be in the same format and

use the same separators as the date or time array being loaded.

v Array data may be specified in one of two ways:

– **CTDATA arrayname: The data for the array may be specified anywhere in

the compile-time data section.

– **b: (b=blank) The data for the arrays must be specified in the same order in

which they are specified in the Definition specifications.
Only one of these techniques may be used in one program.

v Arrays can be in ascending(ASCEND keyword), descending (DESCEND

keyword), or no sequence (no keyword specified).

v Graphic and UCS-2 arrays are sorted by hexadecimal values.

v If L or R is specified on the EXTFMT keyword on the definition specification,

each element must include the sign (+ or −). For example, an array with an

element size of 2 with L specified would require 3 positions in the source data

(+37−38+52−63).

v Float compile-time data are specified in the source records as float or numeric

literals. Arrays defined as 4-byte float require 14 positions for each element;

arrays defined as 8-byte float require 23 positions for each element.

 DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++

 DARC S 3A DIM(12) PERRCD(5) CTDATA

**CTDATA ARC

48K16343J64044HComments can be placed here

12648A47349K346Comments can be placed here

50B125 Comments can be placed here

48K 163 43J 640

This is the compile-time array, ARC.

44H 126 48A 473 49K 346 50B 125

Figure 61. Array Source Record with Comments

Chapter 12. Using Arrays and Tables 175

Coding a Pre-Runtime Array

On the definition specifications, in addition to the essential array specifications,

you can specify the name of the file with the array input data, using the

FROMFILE keyword. You can use the TOFILE keyword to specify the name of a

file to which the array is written at the end of the program. If the file is a

combined file (specified by a C in position 17 of the file description specifications),

the parameter for the FROMFILE and TOFILE keywords must be the same. You

can use the PERRCD keyword to specify the number of elements per input record.

On the EXTFMT keyword, specify:

v B if the data is in binary format

v L to indicate a sign on the left of a data element

v P if the array data is in packed decimal format

v R to indicate a sign on the right of a data element

v S if the array data is in zoned decimal format.

Specify a T in position 18 of the file description specifications for the file with the

array input data.

To compare the coding of two pre-runtime arrays, a compile-time array, and a

runtime array, see Figure 62 on page 177.

The ALT keyword can be used to specify arrays in alternating format. (See

Figure 62 on page 177.)

Note: The integer or unsigned format cannot be specified for arrays defined with

more than ten digits.

176 VisualAge RPG Language Reference

Loading a Pre-Runtime Array

For a pre-runtime array, enter array input data into a sequential program-described

file. When you call a program, but before any input, calculation, or output

operations are processed, the array is loaded with initial values from the file. By

modifying this file, you can alter the array’s initial values on the next call to the

program, without recompiling the program. The file is read in arrival sequence.

The rules for pre-runtime array data are the same as for compile-time array data,

except there are no restrictions on the length of each record. See “Rules for Array

Source Records” on page 174.

Sequence Checking for Character Arrays

When sequence checking for character arrays occurs, VisualAge RPG uses the

default ASCII collating sequence.

....+....1....+....2....+....3....+....4....+....5....+....6....+....

 HKeywords+++

 H DATFMT(*USA) TIMFMT(*HMS)

 DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++

 D* Runtime array. ARI has 10 elements of type date. They are

 D* initialized to September 15, 1994. This is in month, day,

 D* year format using a slash as a separator as defined on the

 D* control specification.

 DARI S D DIM(10) INZ(D’09/15/1994’)

 D* Compile-time arrays in alternating format. Both arrays have

 D* eight elements (three elements per record). ARC is a character

 D* array of length 15, and ARD is a time array with a predefined

 D* length of 8.

 DARC S 15 DIM(8) PERRCD(3)

 D CTDATA

 DARD S T DIM(8) ALT(ARC)

 D*

 D* Pre-runtime array. ARE, which is to be read from file DISKIN,

 D* has 250 character elements (12 elements per record). Each

 D* element is five positions long. The size of each record

 D* is 60 (5*12). The elements are arranged in ascending sequence.

 DARE S 5A DIM(250) PERRCD(12) ASCEND

 D FROMFILE(DISKIN)

 D*

 D*

 D* Pre-runtime array specified as a combined file. ARH is written

 D* back to the same file from which it is read when the program

 D* ends normally with LR on. ARH has 250 character elements

 D* (12 elements per record). Each elements is five positions long.

 D* The elements are arranged in ascending sequence.

 DARH S 5A DIM(250) PERRCD(12) ASCEND

 D FROMFILE(DISKOUT)

 D TOFILE(DISKOUT)

**CTDATA ARC

Toronto 12:15:00Winnipeg 13:23:00Calgary 15:44:00

Sydney 17:24:30Edmonton 21:33:00Saskatoon 08:40:00

Regina 12:33:00Vancouver 13:20:00

Figure 62. Definition Specifications for Different Types of Arrays

Chapter 12. Using Arrays and Tables 177

Initializing Arrays

To initialize each element in a runtime array to the same value, specify the INZ

keyword on the definition specification. If the array is defined as a data structure

subfield, the normal rules for data structure initialization overlap apply (the

initialization is done in the order that the fields are declared within the data

structure).

Compile-Time and Pre-Runtime Arrays

The INZ keyword cannot be specified for a compile-time or pre-runtime array,

because their initial values are assigned to them through other means

(compile-time data or data from an input file). If a compile-time or pre-runtime

array appears in a globally initialized data structure, it is not included in the global

initialization.

Note: Compile-time arrays are initialized in the order in which the data is declared

after the program, and pre-runtime arrays are initialized in the order of

declaration of their initialization files, regardless of the order in which these

arrays are declared in the data structure. Pre-runtime arrays are initialized

after compile-time arrays.

If a subfield initialization overlaps a compile-time or pre-runtime array, the array is

initialized after the subfield, regardless of the order in which fields are declared

within the data structure.

Defining Related Arrays

You can load two compile-time arrays or two pre-runtime arrays in alternating

format by using the ALT keyword on the definition of the alternating array. You

specify the name of the primary array as the parameter for the ALT keyword. The

records for storing the data for such arrays have the first element of the first array

followed by the first element of the second array, the second element of the first

array followed by the second element of the second array, the third element of the

first array followed by the third element of the second array, and so on.

Corresponding elements must appear on the same record. The PERRCD keyword

on the main array definition specifies the number of corresponding pairs per

record, each pair of elements counting as a single entry. You can specify EXTFMT

on both the main and alternating array.

Figure 63 on page 179 shows two arrays in alternating format.

178 VisualAge RPG Language Reference

The records for ARRA and ARRB look like the records in Figure 64 when described

as two separate array files.

This record contains ARRA entries in positions 1 through 60.

 This record contains ARRB entries in positions 1 through 50.

 The records for ARRA and ARRB look like the records below in Figure 66 when

described as one array file in alternating format. The first record contains ARRA

and ARRB entries in alternating format in positions 1 through 55. The second

record contains ARRA and ARRB entries in alternating format in positions 1

through 55.

345126 373

A R R A
(Part Number)

A R R B
(Unit Cost)

39K143 1297

38A437 498

40B125 93

41C023 3998

42D893 87

43K823 349

Arrays ARRA and ARRB can be described
as two separate array files or as one
array file in alternating format.

44H111 697

45P673 898

46C732 47587

Figure 63. Arrays in Alternating and Nonalternating Format

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

1 13 3725 4919 4331 557

Figure 64. Arrays Records for Two Separate Array Files

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

1 11 21 4116 3626 31 466

Figure 65. Arrays Records for One Array File

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRA
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

ARRB
entry

1 13 251611 19 211 7 6

Figure 66. Array Records for One Array File in Alternating Format

Chapter 12. Using Arrays and Tables 179

Searching Arrays

The following can be used to search arrays:

v The LOOKUP operation code

v The %LOOKUP built-in function

v The %LOOKUPLT built-in function

v The %LOOKUPLE built-in function

v The %LOOKUPGT built-in function

v The %LOOKUPGE built-in function

For more information about the LOOKUP operation code, see:

v “Searching an Array with an Index” on page 181

v “Searching an Array without an Index”

v “LOOKUP (Look Up a Table or Array Element)” on page 599

For more information about the %LOOKUPxx built-in functions, see

“%LOOKUPxx (Look Up an Array Element)” on page 455.

Searching an Array without an Index

When searching an array without an index, use the status (on or off) of the

resulting indicators to determine whether a particular element is present in the

array. Searching an array without an index can be used for validity checking of

input data to determine if a field is in a list of array elements. Generally, an equal

LOOKUP is used.

In factor 1 in the calculation specifications, specify the search argument (data for

which you want to find a match in the array named) and place the array name

factor 2.

In factor 2 specify the name of the array to be searched. At least one resulting

indicator must be specified. Entries must not be made in both high and low for the

same LOOKUP operation. The resulting indicators must not be specified in high or

....+....1....+....2....+....3....+....4....+....5....+....6....+....

 DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++

 DARRA S 6A DIM(6) PERRCD(1) CTDATA

 DARRB S 5 0 DIM(6) ALT(ARRA)

 DARRGRAPHIC S 3G DIM(2) PERRCD(2) CTDATA

 DARRC S 3A DIM(2) ALT(ARRGRAPHIC)

 DARRGRAPH1 S 3G DIM(2) PERRCD(2) CTDATA

 DARRGRAPH2 S 3G DIM(2) ALT(ARRGRAPH1)

**CTDATA ARRA

345126 373

38A437 498

39K143 1297

40B125 93

41C023 3998

42D893 87

**CTDATA ARRGRAPHIC

ok1k2k3iabcok4k5k6iabc

**CTDATA ARRGRAPH1

ok1k2k3k4k5k6k1k2k3k4k5k6i

Figure 67. Arrays Records for One Array File in Alternating Format

180 VisualAge RPG Language Reference

low if the array is not in sequence (ASCEND or DESCEND keywords). Control

level and conditioning indicators (specified in positions 7 through 11) can also be

used. The result field cannot be used.

The search starts at the beginning of the array and ends at the end of the array or

when the conditions of the lookup are satisfied. Whenever an array element is

found that satisfies the type of search being made (equal, high, low), the resulting

indicator is set on.

Figure 68 shows an example of a LOOKUP on an array without an index.

 ARRFILE, which contains department numbers, is defined in the file description

specifications as an input file (I in position 17) with an array file designation (T in

position 18). The file is program described (F in position 22), and each record is 5

positions in length (5 in position 27).

In the definition specifications, ARRFILE is defined as containing the array

DPTNOS. The array contains 50 entries (DIM(50)). Each entry is 5 positions in

length (positions 33-39) with zero decimal positions (positions 41-42). One

department number can be contained in each record (PERRCD defaults to 1).

Searching an Array with an Index

To find out which element satisfies a LOOKUP search, start the search at a

particular element in the array. To do this type of search, make the entries in the

calculation specifications as you would for an array without an index. However, in

factor 2, enter the name of the array to be searched, followed by a parenthesized

numeric field (with zero decimal positions) containing the number of the element

at which the search is to start. This numeric constant or field is called the index

because it points to a certain element in the array. The index is updated with the

element number which satisfied the search or is set to 0 if the search failed.

You can use a numeric constant as the index to test for the existence of an element

that satisfies the search starting at an element other than 1.

All other rules that apply to an array without an index apply to an array with an

index.

Figure 69 on page 182 shows a LOOKUP on an array with an index. This example

shows the same array of department numbers, DPTNOS, as Figure 68. However, an

alternating array of department descriptions, DPTDSC, is also defined. Each

element in DPTDSC is 20 positions in length. If there is insufficient data in the file

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

FFilename++IT.A.FRlen+......A.Device+.Keywords++++++++++++++++++++++++++++++++

FARRFILE IT F 5 DISK

F*

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

DDPTNOS S 5S 0 DIM(50) FROMFILE(ARRFILE)

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* The LOOKUP operation is processed and, if an element of DPTNOS equal

C* to the search argument (DPTNUM) is found, indicator 20 is set on.

C DPTNUM LOOKUP DPTNOS 20

Figure 68. LOOKUP Operation for an Array without an Index

Chapter 12. Using Arrays and Tables 181

to initialize the entire array, the remaining elements in DPTNOS are filled with

zeros and the remaining elements in DPTDSC are filled with blanks.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

FFilename++IT.A.FRlen+......A.Device+.Keywords++++++++++++++++++++++++++++++++

FARRFILE IT F 25 DISK

F*

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

DDPTNOS S 5S 0 DIM(50) FROMFILE(ARRFILE)

DDPTDSC S 20A DIM(50) ALT(DPTNOS)

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* The Z-ADD operation begins the LOOKUP at the first element in DPTNOS.

C Z-ADD 1 X 3 0

C* At the end of a successful LOOKUP, when an element has been found

C* that contains an entry equal to the search argument DPTNUM,

C* indicator 20 is set on and the MOVE operation places the department

C* description, corresponding to the department number, into DPTNAM.

C DPTNUM LOOKUP DPTNOS(X) 20

C* If an element is found that is equal to the search argument,

C* element X of DPTDSC is moved to DPTNAM.

C IF *IN20

C MOVE DPTDSC(X) DPTNAM 20

C ENDIF

Figure 69. LOOKUP Operation on an Array with an Index

182 VisualAge RPG Language Reference

Using Arrays

Arrays can be used in input, output, or calculation specifications.

Specifying an Array in Calculations

An entire array or individual elements in an array can be specified in calculation

specifications. Individual elements are processed like fields.

A noncontiguous array defined with the OVERLAY keyword cannot be used with

the MOVEA operation or in the result field of a PARM operation.

To specify an entire array, use only the array name, which can be used as factor 1,

factor 2, or the result field. The following operations can be used with an array

name:

 ADD ADDDUR CHECK CHECKR CLEAR

DEFINE DIV EVAL EXTRCT LOOKUP

MOVE MOVEL MOVEA MULT PARM

RESET SCAN SORTA SQRT SUB

SUBDUR XFOOT Z-ADD Z-SUB

Several other operations can be used with an array element only but not with the

array name alone. These operations include but are not limited to:

 BITON BITOFF CABxx CAT COMP

DO DOU DOUxx DOW DOWxx

IF IFxx MVR SUBST TESTB

TESTN TESTZ WHEN WHENxx

When specified with an array name without an index or with an asterisk as the

index (for example, ARRAY or ARRAY(*)) certain operations are repeated for each

element in the array. These are:

 ADD ADDDUR DIV EVAL EXTRCT

MOVE MOVEL MULT SQRT SUB

Z-ADD Z-SUB

The following rules apply to these operations when an array name without an

index is specified:

v When factor 1, factor 2, and the result field are arrays with the same number of

elements, the operation uses the first element from every array, then the second

element from every array until all elements in the arrays are processed. If the

arrays do not have the same number of entries, the operation ends when the last

element of the array with the fewest elements has been processed. When factor 1

is not specified for the ADD, SUB, MULT, and DIV operations, factor 1 is

assumed to be the same as the result field.

v When one of the factors is a field, a literal, or a figurative constant and the other

factor and the result field are arrays, the operation is done once for every

element in the shorter array. The same field, literal, or figurative constant is used

in all of the operations.

v The result field must always be an array.

Chapter 12. Using Arrays and Tables 183

v If an operation code uses factor 2 only (for example, Z-ADD, Z-SUB, SQRT,

ADD, SUB, MULT, or DIV may not have factor 1 specified) and the result field is

an array, the operation is done once for every element in the array. The same

field or constant is used in all of the operations if factor 2 is not an array.

v Resulting indicators (positions 71 through 76) cannot be used because of the

number of operations being processed.

Note: When used in an EVAL operation, %ADDR(arr) and %ADDR(arr(*)) do not

have the same meaning. See “%ADDR (Get Address of Variable)” on page

406 for more details.

When coding an EVAL or a SORTA operation, built-in function %SUBARR(arr) can

be used to select a portion of the array to be used in the operation. See

“%SUBARR (Set/Get Portion of an Array)” on page 480 for more detail.

Sorting Arrays

You can sort arrays or a section of an array using the SORTA operation code. The

array is sorted into sequence (ascending or descending), depending on the

sequence specified for the array on the definition specification.

Sorting using Part of the Array as a Key

You can use the OVERLAY keyword to overlay one array over another. For

example, you can have a base array which contains names and salaries and two

overlay arrays (one for the names and one for the salaries). You could then sort the

base array by either name or salary by sorting on the appropriate overlay array.

Array Output

Entire arrays can be written out only at the end of the program when the LR

indicator has been set on. To indicate that an entire array is to be written out,

specify the name of the output file with the TOFILE keyword on the definition

specifications. This file must be described as a sequentially organized combined file

in the file description specifications.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D DS

D Emp_Info 50 DIM(500) ASCEND

D Emp_Name 45 OVERLAY(Emp_Info:1)

D Emp_Salary 9P 2 OVERLAY(Emp_Info:46)

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C

C* The following SORTA sorts Emp_Info by employee name.

C* The sequence of Emp_Name is used to determine the order of the

C* elements of Emp_Info.

C SORTA Emp_Name

C* The following SORTA sorts Emp_Info by employee salary

C* The sequence of Emp_Salary is used to determine the order of the

C* elements of Emp_Info.

C SORTA Emp_Salary

Figure 70. SORTA Operation with OVERLAY

184 VisualAge RPG Language Reference

|
|
|

If the file is a combined file and is externally described as a physical file, the

information in the array at the end of the program replaces the information read

into the array at the start of the program. Logical files may give unpredictable

results.

If an entire array is to be written to an output record (using output specifications),

describe the array along with any other fields for the record:

v Positions 30 through 43 of the output specifications must contain the array name

used in the definition specifications.

v Positions 47 through 51 of the output specifications must contain the record

position where the last element of the array is to end. If an edit code is specified,

the end position must include blank positions and any extensions due to the edit

code (see “Editing Entire Arrays” listed next in this section).

Output indicators (positions 21 through 29) can be specified. Zero suppress

(position 44), blank-after (position 45), and data format (position 52) entries pertain

to every element in the array.

Editing Entire Arrays

When editing is specified for an entire array, all elements of the array are edited. If

different editing is required for various elements, refer to them individually.

When an edit code is specified for an entire array (position 44), two blanks are

automatically inserted between elements in the array: there are blanks to the left of

every element in the array except the first. When an edit word is specified, the

blanks are not inserted. The edit word must contain all the blanks to be inserted.

Using Dynamically-Sized Arrays

If you don’t know the number of elements you will need in an array until runtime,

you can define the array with the maximum size, and then use a subset of the

array in your program.

To do this, you use the %SUBARR builtin function to control which elements are

used when you want to work with all the elements of your array in one operation.

You can also use the %LOOKUP builtin function to search part of your array.

Chapter 12. Using Arrays and Tables 185

Tables

The explanation of arrays applies to tables except for the following differences:

 Activity Differences

Defining A table name must be a unique symbolic name that begins

with the letters TAB.

Using and Modifying Table

Elements

Only one element of a table is active at one time. The table

name is used to refer to the active element.

Searching The LOOKUP operation is specified differently for tables.

Different built-in functions are used for searching tables.

Note: You cannot define a table in a subprocedure.

The following can be used to search a table:

 * Define the "names" array as large as you think it could grow

D names S 25A VARYING DIM(2000)

 * Define a variable to keep track of the number of valid elements

D numNames S 10I 0 INZ(0)

 * Define another array

D temp S 50A DIM(20)

D p S 10I 0

 /free

 // set 3 elements in the names array

 names(1) = ’Friendly’;

 names(2) = ’Rusty’;

 names(3) = ’Jerome’;

 names(4) = ’Tom’;

 names(5) = ’Jane’;

 numNames = 5;

 // copy the current names to the temporary array

 // Note: %subarr could also be used for temp, but

 // it would not affect the number of elements

 // copied to temp

 temp = %subarr(names : 1 : numNames);

 // change one of the temporary values, and then copy

 // the changed part of the array back to the "names" array

 temp(3) = ’Jerry’;

 temp(4) = ’Harry’;

 // The number of elements actually assigned will be the

 // minimum of the number of elements in any array or

 // subarray in the expression. In this case, the

 // available sizes are 2 for the "names" sub-array,

 // and 18 for the "temp" subarray, from element 3

 // to the end of the array.

 %subarr(names : 3 : 2) = %subarr(temp : 3);

 // sort the "names" array

 sorta %subarr(names : 1 : numNames);

 // search the "names" array

 // Note: %SUBARR is not used with %LOOKUP. Instead,

 // the start element and number of elements

 // are specified in the third and fourth

 // parameters of %LOOKUP.

 p = %lookup(’Jane’ : names : 1 : numNames);

Figure 71. Example using a dynamically-sized array

186 VisualAge RPG Language Reference

v The LOOKUP operation code

v The %TLOOKUP built-in function

v The %TLOOKUPLT built-in function

v The %TLOOKUPLE built-in function

v The %TLOOKUPGT built-in function

v The %TLOOKUPGE built-in function

For more information about the LOOKUP operation code, see:

v “LOOKUP with One Table”

v “LOOKUP with Two Tables” on page 188

v “LOOKUP (Look Up a Table or Array Element)” on page 599

For more information about the %TLOOKUPxx built-in functions, see

“%TLOOKUPxx (Look Up a Table Element)” on page 489.

LOOKUP with One Table

When a single table is searched, factor 1, factor 2, and at least one resulting

indicator must be specified. Conditioning indicators (specified in positions 7

through 11) can also be used.

Whenever a table element is found that satisfies the type of search being made

(equal, high, low), the table element is made the current element for the table. If

the search is not successful, the previous current element remains the current

element.

Before a first successful LOOKUP, the first element is the current element.

Resulting indicators reflect the result of the search. If the indicator is on, reflecting

a successful search, the element satisfying the search is the current element.

Chapter 12. Using Arrays and Tables 187

LOOKUP with Two Tables

When two tables are used in a search, only one is actually searched. When the

search condition (high, low, equal) is satisfied, the corresponding elements are

made available for use.

Factor 1 must contain the search argument, and factor 2 must contain the name of

the table to be searched. The result field must name the table from which data is

also made available for use. A resulting indicator must also be used. Control level

and conditioning indicators can be specified in positions 7 through 11, if needed.

The two tables used should have the same number of entries. If the table that is

searched contains more elements than the second table, it is possible to satisfy the

search condition. However, there might not be an element in the second table that

corresponds to the element found in the search table. Undesirable results can occur.

Note: If you specify a table name in an operation other than LOOKUP before a

successful LOOKUP occurs, the table is set to its first element.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* The LOOKUP operation searches TABEMP for an entry that is equal to

C* the contents of the field named EMPNUM. If an equal entry is

C* found in TABEMP, indicator 09 is set on, and the TABEMP entry and

C* its related entry in TABPAY are made the current elements.

C EMPNUM LOOKUP TABEMP TABPAY 09

C* If indicator 09 is set on, the contents of the field named

C* HRSWKD are multiplied by the value of the current element of

C* TABPAY.

C IF *IN09

C HRSWKD MULT(H) TABPAY AMT 6 2

C ENDIF

Figure 72. Searching for an Equal Entry

188 VisualAge RPG Language Reference

Specifying the Table Element Found in a LOOKUP Operation

Whenever a table name is used in an operation other than LOOKUP, the table

name actually refers to the data retrieved by the last successful search. Therefore,

when the table name is specified in this fashion, elements from a table can be used

in calculation operations.

If the table is used as factor 1 in a LOOKUP operation, the current element is used

as the search argument. In this way an element from a table can itself become a

search argument.

The table can also be used as the result field in operations other than the LOOKUP

operation. In this case the value of the current element is changed by the

calculation specification. In this way the contents of the table can be modified by

calculation operations. See Figure 73.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C ARGMNT LOOKUP TABLEA 20

C* If element is found multiply by 1.5

C* If the contents of the entire table before the MULT operation

C* were 1323.5, -7.8, and 113.4 and the value of ARGMNT is -7.8,

C* then the second element is the current element.

C* After the MULT operation, the entire table now has the

C* following value: 1323.5, -11.7, and 113.4.

C* Note that only the second element has changed since that was

C* the current element, set by the LOOKUP.

C IF *IN20

C TABLEA MULT 1.5 TABLEA

C ENDIF

Figure 73. Specifying the Table Element Found in LOOKUP Operations

Chapter 12. Using Arrays and Tables 189

190 VisualAge RPG Language Reference

Chapter 13. Editing Numeric Fields

Editing provides a means of punctuating numeric fields, including the printing of

currency symbols, commas, periods, minus signs, and floating minus. It also

provides for field sign movement from the rightmost digit to the end of the field,

blanking zero fields, spacing in arrays, date field editing, and currency symbol or

asterisk protection.

A field can be edited by edit codes or edit words. You can print fields in an edited

format using output specifications, or you can obtain the edited value of the field

in calculation specifications using the built-in functions %EDITC (edit code) and

%EDITW (edit word).

Note: For a description of how to edit Entry field parts and Static text parts, see

Programming with VisualAge RPG, SC09-2449-05.

When you print fields that are not edited, the fields appear exactly as they are

internally represented. The following examples show why you may want to edit

numeric output fields.

Type of Field Field in the Computer

Printing of Unedited

Field

Printing of Edited

Field

Alphanumeric

Numeric

(positive)

Numeric

(negative)

JOHN T SMITH

0047652

004765r

JOHN T SMITH

0047652

004765r

JOHN T SMITH

 47652

 47652-

The unedited alphanumeric field and the unedited positive numeric field are easy

to read when printed, but the unedited negative numeric field is confusing because

it contains a ’r’, which is not numeric. The ’r’ is a combination of the digit 2 and

the negative sign for the field. They are combined so that one of the positions of

the field does not have to be set aside for the sign. The combination is convenient

for storing the field in the computer, but it makes the output hard to read.

Numeric fields must be edited before they are printed.

Edit Codes

Edit codes provide a means of editing numeric fields according to a predefined

pattern. They are divided into two categories: simple (X, Y, Z) and combination (1

through 4, A through D, J through Q). You enter the edit code in position 44 of the

output specifications for the field to be edited. Or, you can specify the edit code as

the second parameter of the %EDITC built-in function in calculation specifications.

Simple Edit Codes

You can use simple edit codes to edit numeric fields without having to specify any

punctuation. These codes and their functions are:

© Copyright IBM Corp. 1994, 2005 191

v The X edit code ensures a hexadecimal 3 sign for positive fields. However,

because the system does this, you normally do not have to specify this code.

Leading zeros are not suppressed. The X edit code does not modify negative

numbers.

v The Y edit code is normally used to edit a 3 to 9 digit date field. It suppresses

the leftmost zeros of date fields, up to but not including the digit preceding the

first separator. Slashes are inserted to separate the day, month, and year. The

DATEDIT(fmt{separator}) and DECEDIT(’value’) keywords on the control

specification can be used to alter edit formats.

v The Y edit code is not valid for *YEAR, *MONTH, and *DAY.

v The Z edit code removes the sign (plus or minus) from and suppresses the

leading zeros of a numeric field. The decimal point is not placed in the field and

is not printed.

Combination Edit Codes

The combination edit codes (1 through 4, A through D, J through Q) punctuate a

numeric field.

The DECEDIT keyword on the control specification determines what character is

used for the decimal separator and whether leading zeroes are suppressed. The

decimal position of the source field determines whether and where a decimal point

is printed. If decimal positions are specified for the source field and the zero

balance is to be suppressed, the decimal separator prints only if the field is not

zero. If a zero balance is not to be printed, a zero field prints as blanks.

When a zero balance is to be printed and the field is equal to zero, either of the

following is printed:

v A decimal separator followed by n zeros, where n is the number of decimal

places in the field

v A zero in the units position of a field if no decimal places are specified.

You can use a floating currency symbol or asterisk protection with any of the 12

combination edit codes. To specify a floating currency symbol, code the currency

symbol in positions 53-55 on the output specification, along with an edit code in

position 44 for the field to be edited. The floating currency symbol appears to the

left of the first significant digit. The floating currency symbol does not print on a

zero balance when an edit code is used that suppresses the zero balance. The

currency symbol does not appear on a zero balance when an edit code is used that

suppresses the zero balance.

A dollar sign ($) is used as the currency symbol unless a currency symbol is

specified with the CURSYM keyword on the control specification.)

An asterisk constant coded in positions 53 through 55 of the output specifications

(’*’), along with an edit code for the field to be edited causes an asterisk to be

printed for each zero suppressed. A complete field of asterisks is printed on a zero

balance source field. To specify asterisk protection using the built-in function

%EDITC, specify *ASTFILL as the third parameter.

Asterisk fill and the floating currency symbol cannot be used with the simple (X, Y,

Z) edit codes.

For the built-in function %EDITC, you specify a floating currency symbol in the

third parameter. To use the currency symbol for the program, specify *CURSYM.

To use another currency symbol, specify a character constant of length 1.

192 VisualAge RPG Language Reference

A currency symbol can appear before the asterisk fill (fixed currency symbol). This

requires two output specifications with the following coding:

1. Place a currency symbol constant in position 53 of the first output specification.

The end position specified in positions 47-51 should be one space before the

beginning of the edited field.

2. In the second output specification, place the edit field in positions 30-43, an edit

code in position 44, end position of the edit field in positions 47-51, and ’*’ in

positions 53-55.

You can do this using the %EDITC built-in function by concatenating the

currency symbol to the %EDITC result as follows

 C EVAL X = ’$’ + %EDITC(N: ’A’ : *ASTFILL)

When an edit code is used to print an entire array, two blanks precede each

element of the array (except the first element).

Note: You cannot edit an array using the %EDITC built-in function.

Table 20 summarizes the functions of the combination edit codes. The codes edit

the field in the format listed on the left. A negative field can be punctuated with

no sign, CR, a minus sign (−), or a floating minus sign as shown on the top of the

figure.

 Table 20. Combination Edit Codes

 Negative Balance Indicator

Prints with

Grouping

Separator

Prints Zero

Balance No Sign CR −

Floating

Minus

Yes Yes 1 A J N

Yes No 2 B K 0

No Yes 3 C L P

No No 4 D M Q

Editing Considerations

When you specify any of the edit codes, do the following:

v Edit fields of a non-printer file with caution. If you do edit fields of a

non-printer file, be aware of the contents of the edited fields and the effects of

any operations you do on them. For example, if you use the file as input, the

fields written out with editing must be considered character fields, not numeric

fields.

v Consideration should be given to data added by the edit operation. The amount

of punctuation added increases the overall length of the output field. If these

added characters are not considered when editing in output specifications, the

output fields may overlap.

v The end position specified for output is the end position of the edited field. For

example, if any of the edit codes J through M are specified, the end position is

the position of the minus sign (or blank if the field is positive).

v The compiler assigns a character position for the sign even for unsigned numeric

fields.

Chapter 13. Editing Numeric Fields 193

Summary of Edit Codes

Table 21 summarizes the edit codes and the options they provide. A simplified

version of this table is printed above positions 45 through 70 on the output

specifications. Table 22 on page 195 shows how fields look after they are edited.

Table 23 on page 196 shows the effect that the different edit codes have on the

same field with a specified end position for output.

 Table 21. Edit Codes

 DECEDIT Keyword Parameter

Edit Code Commas

Decimal

Point

Sign for

Negative

Balance ’.’ ’,’ ’0,’ ’0.’

Zero

Suppress

1 Yes Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

2 Yes Yes No Sign Blanks Blanks Blanks Blanks Yes

3 Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

4 Yes No Sign Blanks Blanks Blanks Blanks Yes

A Yes Yes CR .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

B Yes Yes CR Blanks Blanks Blanks Blanks Yes

C Yes CR .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

D Yes CR Blanks Blanks Blanks Blanks Yes

J Yes Yes − 5 (minus) .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

K Yes Yes − (minus) Blanks Blanks Blanks Blanks Yes

L Yes − (minus) .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

M Yes − (minus) Blanks Blanks Blanks Blanks Yes

N Yes Yes − (floating

minus)

.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

O Yes Yes − (floating

minus)

Blanks Blanks Blanks Blanks Yes

P Yes − (floating

minus)

.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

Q Yes − (floating

minus)

Blanks Blanks Blanks Blanks Yes

X1 Yes

Y2 Yes

Z3 Yes

194 VisualAge RPG Language Reference

Table 21. Edit Codes (continued)

 DECEDIT Keyword Parameter

Edit Code Commas

Decimal

Point

Sign for

Negative

Balance ’.’ ’,’ ’0,’ ’0.’

Zero

Suppress

1The X edit code ensures a hexadecimal 3 sign for positive values. Because the system does this for you, normally

you do not have to specify this code.

2The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first

separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following

pattern:

 nn/n

 nn/nn

 nn/nn/n

 nn/nn/nn

 nnn/nn/nn

 nn/nn/nnnn

 nnn/nn/nnnn

 nnnn/nn/nn

nnnnn/nn/nn

3The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

 Table 22. Examples of Edit Code Usage

Edit

Codes

Positive

Number-

Two

Decimal

Positions

Positive

Number-

No

Decimal

Positions

Negative

Number-

Three

Decimal

Positions

Negative

Number-

No

Decimal

Positions

Zero

Balance-

Two

Decimal

Positions

Zero

Balance-

No

Decimal

Positions

Unedited 1234567 1234567 00012�4 000000 000000

1 12,345.67 1,234,567 .120 120 .00 0

2 12,345.67 1,234,567 .120 120

3 12345.67 1234567 .120 120 .00 0

4 12345.67 1234567 .120 120

A 12,345.67 1,234,567 .120CR 120CR .00 0

B 12.345.67 1,234,567 .120CR 120CR

C 12345.67 1234567 .120CR 120CR .00 0

D 12345.67 1234567 .120CR 120CR

J 12,345.67 1,234,567 .120− 120− .00 0

K 12,345,67 1,234,567 .120− 120−

L 12345.67 1234567 .120− 120− .00 0

M 12345.67 1234567 .120− 120−

N 12,345.67 1,234,567 −.120 −120 .00 0

O 12,345,67 1,234,567 −.120 −120

P 12345.67 1234567 −.120 −120 .00 0

Q 12345.67 1234567 −.120 −120

X1 1234567 1234567 00012�4 000000 000000

Y2 0/01/20 0/01/20 0/00/00 0/00/00

Z3 1234567 1234567 120 120

Chapter 13. Editing Numeric Fields 195

Table 22. Examples of Edit Code Usage (continued)

Edit

Codes

Positive

Number-

Two

Decimal

Positions

Positive

Number-

No

Decimal

Positions

Negative

Number-

Three

Decimal

Positions

Negative

Number-

No

Decimal

Positions

Zero

Balance-

Two

Decimal

Positions

Zero

Balance-

No

Decimal

Positions

1 The X edit code ensures a hex F sign for positive values. Because the system does this for

you, normally you do not have to specify this code.

2 The Y edit code suppresses the leftmost zeros of date fields, up to but not including the

digit preceding the first separator. The Y edit code also inserts slashes (/) between the

month, day, and year according to the following pattern:

 nn/n

 nn/nn

 nn/nn/n

 nn/nn/nn

 nnn/nn/nn

 nn/nn/nnnn Format used with M, D or blank in position 19

 nnn/nn/nnnn Format used with M, D or blank in position 19

 nnnn/nn/nn Format used with Y in position 19

nnnnn/nn/nn Format used with Y in position 19

3 The Z edit code removes the sign (plus or minus) from a numeric field and suppresses

leading zeros of a numeric field.

4 The � represents a blank. This may occur if a negative zero does not correspond to a

printable character.

 Table 23. Effects of Edit Codes on End Position

Negative Number, 2 Decimal Positions. End Position Specified

as 10.

Output Print Positions

Edit Code 3 4 5 6 7 8 9 10

1r represents a negative 2.

Unedited 0 0 4 1 r1

1 4 . 1 2

2 4 . 1 2

3 4 . 1 2

4 4 . 1 2

A 4 . 1 2 C R

B 4 . 1 2 C R

C 4 . 1 2 C R

D 4 . 1 2 C R

J 4 . 1 2 −

r 4 . 1 2 −

L 4 . 1 2 −

M 4 . 1 2 −

N − 4 . 1 2

O − 4 . 1 2

P − 4 . 1 2

196 VisualAge RPG Language Reference

Table 23. Effects of Edit Codes on End Position (continued)

Negative Number, 2 Decimal Positions. End Position Specified

as 10.

Output Print Positions

Edit Code 3 4 5 6 7 8 9 10

Q − 4 . 1 2

X 0 0 4 1 r1

Y 0 / 4 1 / 2

Z 4 1 2

Edit Words

If you have editing requirements that cannot be met by using the edit codes, you

can use an edit word. An edit word is a character literal or a named constant

specified in positions 53 - 80 of the output specification. It describes the editing

pattern for a numeric and allows you to directly specify:

v Blank spaces

v Commas and decimal points, and their position

v Suppression of unwanted zeros

v Leading asterisks

v The currency symbol and its position

v Addition of constant characters

v Output of the negative sign, or CR, as a negative indicator.

The edit word is used as a template that the system applies to the source data to

produce the output.

The edit word can be specified directly on an output specification or can be

specified as a named constant with a named constant name appearing in the edit

word field of the output specification. You can obtain the edited value of the field

in calculation specifications using the built-in function %EDITW (edit word).

Edit words are limited to 115 characters.

How to Code an Edit Word

To use an edit word, code the output specifications as shown below:

Position Entry

21-29 Can contain conditioning indicators.

30-43 Contains the name of the numeric field from which the data that is

to be edited is taken.

44 Edit code: Must be blank, if you are using an edit word to edit the

source data.

45 A “B” in this position indicates that the source data is to be set to

zero or blanks after it has been edited and output. Otherwise, the

source data remains unchanged.

47-51 Identifies the end (rightmost) position of the field in the output

record.

53-80 Edit word: Can be up to 26 characters long and must be enclosed

by apostrophes, unless it is a named constant. Enter the leading

Chapter 13. Editing Numeric Fields 197

apostrophe, or begin the named constant name in column 53. The

edit word, unless a named constant, must begin in column 54.

To edit using an edit word in calculation specifications, use built-in function

%EDITW, specifying the value to be edited as the first parameter, and the edit

word as the second parameter

198 VisualAge RPG Language Reference

Parts of an Edit Word

An edit word (coded into positions 53 to 80 of the output specifications) consists of

three parts: the body, the status, and the expansion. The following shows the three

parts of an edit word:

 The body is the space for the digits transferred from the source data field to the

output record. The body begins at the leftmost position of the edit word. The

number of blanks (plus one zero or an asterisk) in the edit word body must be

equal to or greater than the number of digits of the source data field to be edited.

The body ends with the rightmost character that can be replaced by a digit.

The status defines a space to allow for a negative indicator, either the two letters

CR or a minus sign (−). The negative indicator specified is output only if the

source data is negative. All characters in the edit word between the last replaceable

character (blank, zero suppression character) and the negative indicator are also

output with the negative indicator only if the source data is negative; if the source

data is positive, these status positions are replaced by blanks. Edit words without

the CR or − indicators have no status positions.

The status must be entered after the last blank in the edit word. If more than one

CR follows the last blank, only the first CR is treated as a status; the remaining

CRs are treated as constants. For the minus sign to be considered as a status, it

must be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered after the

status. Ampersands are replaced by blank spaces in the output; constants are

output as is. If status is not specified, the expansion follows the body.

T TOC R

Body Status Expansion

&

E D I T W O R D

& &.,b b b bb b b0.

Chapter 13. Editing Numeric Fields 199

Forming the Body of an Edit Word

The following characters have special meanings when used in the body of an edit

word.

Ampersand: Causes a blank in the edited field. The example below might be used

to edit a telephone number. Note that the zero in the first position is required to

print the constant AREA.

 Edit Word Source Data Appears in Output Record as:

'0AREA&���&NO.&���-����' 4165551212 �AREA�416�NO.�555-1212

Asterisk: The first asterisk in the body of an edit word also ends zero

suppression. Subsequent asterisks put into the edit word are treated as constants

(see Constants below). Any zeros in the edit word following this asterisk are also

treated as constants. There can be only one end-zero-suppression character in an

edit word, and that character is the first asterisk or the first zero in the edit word.

If an asterisk is used as an end-zero-suppression character, all leading zeros that

are suppressed are replaced with asterisks in the output. Otherwise, the asterisk

suppresses leading zeros in the same way as described below for Zeros.

 Edit Word Source Data Appears in Output Record as:

'*������.��' 000000123 *000001.23

'�����*�.��' 000000000 ******0.00

'�����*�.��**' 000056342 ****563.42**

Note that leading zeros appearing after the asterisk position are output as leading

zeros. Only the suppressed leading zeros, including the one in the asterisk

position, are replaced by asterisks.

Blank: Blank is replaced with the character from the corresponding position of

the source data field specified by the field name in positions 30 through 43 of the

output specifications. A blank position is referred to as a digit position.

Constants: All other characters entered into the body of the edit word are treated

as constants. If the source data is such that the output places significant digits or

leading zeros to the left of any constant, then that constant appears in the output.

Otherwise, the constant is suppressed in the output. Commas and the decimal

point follow the same rules as for constants. Notice in the examples below, that the

presence of the end-zero-suppression character as well as the number of significant

digits in the source data, influence the output of constants.

The following edit words could be used to print cheques. Note that the second

asterisk is treated as a constant, and that, in the third example, the constants

preceding the first significant digit are not output.

 Edit Word Source Data Appears in Output Record as:

'$������**DOLLARS&��&CTS' 000012345 $****123*DOLLARS�45�CTS

'$������**DOLLARS&��&CTS' 000000006 $********DOLLARS�06�CTS

'$�������&DOLLARS&��&CTS' 000000006 $�����������������6�CTS

200 VisualAge RPG Language Reference

A date could be printed by using either edit word:

 Edit Word Source Data Appears in Output Record as:

'��/��/��' 010388 �1/03/88

'0��/��/��' 010389 �01/03/89

Note that any zeros or asterisks following the first occurrence of an edit word are

treated as constants. The same is true for − and CR:

 Edit Word Source Data Appears in Output Record as:

'��0.��000' 01234 �12.34000

'��*.��000' 01234 *12.34000

Currency Symbol: A currency symbol followed directly by a first zero in the edit

word (end-zero-suppression character) is said to float. All leading zeros are

suppressed in the output and the currency symbol appears in the output

immediately to the left of the most significant digit.

 Edit Word Source Data Appears in Output Record as:

'��,���,�$0.��' 000000012 ���������$.12

'��,���,�$0.��' 000123456 ����$1,234.56

Chapter 13. Editing Numeric Fields 201

If the currency symbol is put into the first position of the edit word, then it will

always appear in that position in the output. This is called a fixed currency

symbol.

 Edit Word Source Data Appears in Output Record as:

'$�,���,��0.��' 000123456 $����1,234.56

'$��,���,0�0.��' 000000000 $��������00.00

'$�,���,*��.��' 000123456 $****1,234.56

A currency symbol anywhere else in the edit word and not immediately followed

by a zero end-suppression-character is treated as a constant (see Constants above).

Decimals and Commas: Decimals and commas are in the same relative position

in the edited output field as they are in the edit word unless they appear to the left

of the first significant digit in the edit word. In that case, they are blanked out or

replaced by an asterisk.

In the following examples below, all the leading zeros will be suppressed (default)

and the decimal point will not print unless there is a significant digit to its left.

 Edit Word Source Data Appears in Output Record as:

'�������' 0000072 �����72

'�������.��' 000000012 ��������12

'�������.��' 000000123 ������1.23

Zeros: The first zero in the body of the edit word is interpreted as an

end-zero-suppression character. This zero is placed where zero suppression is to

end. Subsequent zeros put into the edit word are treated as constants (see

Constants above).

Any leading zeros in the source data are suppressed up to and including the

position of the end-zero-suppression character. Significant digits that would appear

in the end-zero-suppression character position, or to the left of it, are output.

 Edit Word Source Data Appears in Output Record as:

'���0������' 00000004 ����000004

'���0������' 012345 ����012345

'���0������' 012345678 ��12345678

If the leading zeros include, or extend to the right of, the end-zero-suppression

character position, that position is replaced with a blank. This means that if you

wish the same number of leading zeros to appear in the output as exist in the

source data, the edit word body must be wider than the source data.

 Edit Word Source Data Appears in Output Record as:

'0���' 0156 �156

'0����' 0156 �0156

Constants (including commas and decimal point) that are placed to the right of the

end-zero-suppression character are output, even if there is no source data.

202 VisualAge RPG Language Reference

Constants to the left of the end-zero-suppression character are only output if the

source data has significant digits that would be placed to the left of these

constants.

 Edit Word Source Data Appears in Output Record as:

'������0.��' 000000001 �������.01

'������0.��' 000000000 �������.00

'���,�0�.��' 00000012 ������0.12

'���,�0�.��' 00000123 ������1.23

'�0�,���.��' 00000123 ��0,001.23

Forming the Status of an Edit Word

The following characters have special meanings when used in the status of an edit

word:

Ampersand: Causes a blank in the edited output field. An ampersand cannot be

placed in the edited output field.

CR or minus symbol: If the sign in the edited output is plus (+), these positions

are blanked out. If the sign in the edited output field is minus (−), these positions

remain undisturbed.

The following example adds a negative value indication. The minus sign will print

only when the value in the field is negative. A CR symbol fills the same function

as a minus sign.

 Edit Word Source Data Appears in Output Record as:

'�������.��−' 000000123− ������1.23−

'�������.��−' 000000123 ������1.23�

Constants between the last replaceable character and the − or CR symbol will print

only if the field is negative; otherwise, blanks will print in these positions. Note

the use of ampersands to represent blanks:

 Edit Word Source Data Appears in Output Record as:

'�,���,��0.��&30&DAY&CR' 000000123− ���������1.23�30�DAY�CR

'�,���,��0.��&30&DAY&CR' 000000123 ���������1.23����������

Formatting the Expansion of an Edit Word

The characters in the expansion portion of an edit word are always written. The

expansion cannot contain blanks. If a blank is required in the edited output field,

specify an ampersand in the body of the edit word.

Constants may be added to print on every line:

 Edit Word Source Data Appears in Output Record as:

'�,��0.��&CR&NET' 000123− ����1.23�CR�NET

'�,��0.��&CR&NET' 000123 ����1.23����NET

Chapter 13. Editing Numeric Fields 203

Note that the CR in the middle of a word may be detected as a negative field

value indication. If a word such as SECRET is required, use the coding in the

example below.

 Edit Word Source Data Appears in Output Record as:

'��0.��&SECRET' 12345− 123.45�SECRET

'��0.��&SECRET' 12345 123.45�����ET

'��0.��&CR&&SECRET' 12345 123.45�����SECRET

204 VisualAge RPG Language Reference

Summary of Coding Rules for Edit Words

The following rules apply to edit words:

v Position 44 (edit codes) must be blank.

v Positions 30 through 43 (field name) must contain the name of a numeric field.

v An edit word must be enclosed in apostrophes, unless it is a named constant.

Enter the leading apostrophe or begin a named constant name in position 53.

The edit word itself must begin in position 54.

v The edit word can contain more digit positions (blanks plus the initial zero or

asterisk) than the field to be edited, but must not contain less. If there are more

digit positions in the edit word than there are digits in the field to be edited,

leading zeros are added to the field before editing.

v If leading zeros from the source data are desired, the edit word must contain

one more position than the field to be edited, and a zero must be placed in the

high-order position of the edit word.

v In the body of the edit word only blanks and the zero-suppression stop

characters (zero and asterisk) are counted as digit positions. The floating

currency symbol is not counted as a digit position.

v When the floating currency symbol is used, the sum of the number of blanks

and the zero-suppression stop character (digit positions) contained in the edit

word must be equal to or greater than the number of positions in the field to be

edited.

v Any zeros or asterisks following the leftmost zero or asterisk are treated as

constants; they are not replaceable characters.

v When editing an unsigned integer field, DB and CR are allowed and will always

print as blanks.

Editing Externally Described Files

To edit output for remote disk files, edit codes must be specified in data

description specifications (DDS).

Note: Edit codes cannot be used for special files.

Chapter 13. Editing Numeric Fields 205

206 VisualAge RPG Language Reference

Chapter 14. Initialization of Data

This section describes how data is initialized. Initialization of data consists of three

parts: the initialization subroutine (*INZSR), the CLEAR and RESET operation

codes, and data initialization (INZ keyword). For information on initializing

components, see “Initializing Components” on page 31.

Initialization Subroutine (*INZSR)

The initialization subroutine allows you to process calculation specifications. It is

declared like any other subroutine, but with *INZSR in factor 1. You can enter any

operations in this subroutine except the RESET operation. *INZSR can also be

called explicitly by using an EXSR or CASxx operation code.

CLEAR and RESET Operation Codes

The CLEAR operation code sets variables in a window or a structure to their

default values. If you specify a structure (record format, data structure or array) all

fields in that structure are cleared in the order in which they are declared.

The RESET operation code sets variables in a window or a structure to their initial

values. You can use data structure initialization to assign initial values to subfields,

and then change the values during the running of the program, and use the RESET

operation code to set the field values back to their initial values.

Data Initialization

Data is initialized with the INZ keyword on the definition specification. You can

specify an initial value as a parameter on the INZ keyword, or specify the

keyword without a parameter and use the default initial values. Default initial

values for the various data types are described in Chapter 9, “Data Types and Data

Formats.” See Chapter 12, “Using Arrays and Tables” for information on

initializing arrays.

© Copyright IBM Corp. 1994, 2005 207

208 VisualAge RPG Language Reference

Part 3. Specifications

This section describes the VisualAge RPG specifications:

v Information that is common to several specifications, such as keyword syntax

and continuation rules, is described.

v Each specification is described in the order in which it must be entered in the

program. Each specification description lists all the fields on the specification

and explains all the possible entries.

© Copyright IBM Corp. 1994, 2005 209

210 VisualAge RPG Language Reference

Chapter 15. About VisualAge RPG Specifications

The VisualAge RPG language consists of a mixture of position-dependent and

free-form code. A VisualAge RPG program is coded on a variety of specifications.

Each specification has a specific set of functions.

There are three groups of source records that may be coded in a VisualAge RPG

program: the main source section, the subprocedure section, and the program data

section. The structure of the main source section depends on the resultant

compilation target: component, NOMAIN DLL, or EXE. The main source section

contains all of the global definitions for a module. For a component target, this

section also includes the action and user subroutines. The layout of the main

source section for each compilations target is shown in “Placement of Definitions

and Scope” on page 256.

The subprocedure section contains specifications that define any subprocedures

coded within a module. The program data section contains source records with

data that is supplied at compile time.

The following illustration shows the types of source records that may be entered

into each group and their order.

Note: The VisualAge RPG source program must be entered into the system in the

order shown. Any of the specification types can be absent, but at least one

must be present.

�H� Control (Header) specifications provide information about program

** b

Program Data

Procedure

Calculation

Definition

Procedure

Subprocedure

Compile-Time Array andTable Data

Output

Calculation

Input

Definition

File Description

Control

P

D

F

H

D

P

O

C

I

C

Figure 74. Order of the Types of Specifications in an VisualAge RPG Source Program

© Copyright IBM Corp. 1994, 2005 211

generation and running of the compiled program. Refer to Chapter 16,

“Control Specifications” for a description of the entries on this

specification.

�F� File description specifications define all files in the program. Refer to

Chapter 17, “File Description Specifications” for a description of the entries

on this specification.

�D� Definition specifications define items used in your program. Arrays, tables,

data structures, subfields, constants, standalone fields, event attributes,

prototypes and their parameters, and procedure interfaces and their

parameters are defined on this specification. Refer to Chapter 18,

“Definition Specifications” for a description of the entries on this

specification.

�I� Input specifications describe records, and fields in the input files and

indicate how the records and fields are used by the program. Refer to

Chapter 19, “Input Specifications” for a description of the entries on this

specification.

�C� Calculation specifications describe calculations to be done by the program

and indicate the order in which they are done. Calculation specifications

can control certain input and output operations. For component targets,

this section includes action subroutines and standalone user subroutines.

NOMAIN DLLs and EXEs do not have a calculation specifications section.

Refer to Chapter 20, “Calculation Specifications” for a description of the

entries on this specification. Chapter 23, “Operations” describes the

operation codes that are coded on the Calculation specification.

�O� Output specifications describe the records and fields and indicate when

they are to be written by the program. Refer to Chapter 21, “Output

Specifications” for a description of the entries on this specification.

Subprocedure Specifications

�P� Procedure specifications describe the procedure-interface definition of a

prototyped program or procedure. Refer to Chapter 22, “Procedure

Specifications” for a description of the entries on this specification.

�D� Definition specifications define items used in the prototyped procedure.

Procedure-interface definitions, entry parameters, and other local items are

defined on this specification. Refer to Chapter 18, “Definition

Specifications” for a description of the entries on this specification.

�C� Calculation specifications perform the logic of the prototyped procedure.

Refer to Chapter 20, “Calculation Specifications” for a description of the

entries on this specification.

Program Data

Source records with program data follow all source specifications. The first line of

the data section must start with **. If desired, you can indicate the type of program

data that follows the **, by specifying the CTDATA keyword. By associating the

program data with this keyword, you can place the groups of program data in any

order after the source records.

The first entry for each input record must begin in position 1. The entire record

need not be filled with entries. Array elements with unused entries will be

initialized with the default value.

212 VisualAge RPG Language Reference

For more information on entering compile-time array records, see “Rules for Array

Source Records” on page 174.

The specifications which support keywords (Control, File Description, Definition,

and Procedure) allow free format in the keyword fields. The Calculation

specification allows free format with those operation codes which support

extended-factor 2. Otherwise, entries are position specific. To represent this, each

illustration of VisualAge RPG code is in listing format with a scale drawn across

the top.

This reference contains a detailed description of the individual specifications. Each

field and its possible entries are described. Chapter 23, “Operations,” on page 341

describes the operation codes that are coded on the Calculation specification,

which is described in Chapter 20, “Calculation Specifications,” on page 311.

Common Entries

The following entries are common to all VisualAge RPG specifications:

v Positions 1-5 can be used for comments.

v Position 6 indicates the specification type. You can use the following letter codes:

Entry Specification Type

H Control

F File description

D Definition

I Input

C Calculation

O Output

P Procedure
v Comment Statements

– Position 7 contains an asterisk (*). This denotes the line as a comment line

regardless of any other entry on the specification. In a free-form calculation

specification, you can use // for a comment. Any line on any fixed-form

specification that begins with // is considered a comment by the compiler.

The // can start in any position provided that positions 6 to the // characters

contain blanks.

– Positions 6 - 80 is blank
v Positions 7 - 80 are blank and position 6 contains a valid specification. This is a

valid line, not a comment, and sequence rules are enforced.

Syntax of Keywords

Keywords may have no parameters, optional parameters, or required parameters.

The syntax for keywords is as follows:

 Keyword(parameter1 : parameter2)

where:

v Parameter(s) are enclosed in parentheses ().

Note: Parentheses should not be specified if there are no parameters.

v Colons (:) are used to separate multiple parameters.

Chapter 15. About VisualAge RPG Specifications 213

The following notational conventions are used to show which parameters are

optional and which are required:

v Braces { } indicate optional parameters or optional elements of parameters.

v An ellipsis (...) indicates that the parameter can be repeated.

v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are

enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the

keyword.

v A blank separating keyword parameters indicates that one or more of the

parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and

should not be entered into your source.

 Table 24. Examples of Keyword Notation

Notation Example of Notation

Used

Description Example of

Source Entered

braces {} PRTCTL (data_struct

{:*COMPAT})

Parameter data_struct is required

and parameter *COMPAT is

optional.

PRTCTL

(data_struct1)

braces {} TIME(format

{separator})

Parameter format{separator} is

required, but the {separator} part

of the parameter is optional.

TIME(*HMS&)

colon (:) RENAME(Ext_format

:Int_format)

Parameters Ext_format and

Int_format are required.

RENAME

(nameE: nameI)

ellipsis (...) IGNORE(recformat

{:recformat...})

Parameter recformat is required

and can be specified more than

once.

IGNORE

(recformat1:

recformat2:

recformat3)

vertical bar

(|)

FLTDIV{(*NO |

*YES)}

Specify *NO or *YES, or no

parameter.

FLTDIV

blank OPTIONS(*OMIT

*VARSIZE *STRING

*TRIM *RIGHTADJ)

One of *OMIT, *VARSIZE,

*STRING, *TRIM, or *RIGHTADJ

is required and more than one

parameter can be optionally

specified.

OPTIONS

(*OMIT:

*VARSIZE:

*STRING: *TRIM:

*RIGHTADJ)

214 VisualAge RPG Language Reference

Continuation Rules

The fields which may be continued are:

v The keywords field on the control specification

v The keywords field on the file description specification

v The keywords field on the definition specification

v The Extended-factor 2 field on the calculation specification

v The constant/editword field on the output specification

v The Name field on the definition or the procedure specification

General rules for continuation are as follows:

v The continuation line must be a valid line for the specification being continued

(H, F, D, C, or O in position 6).

v No special characters should be used when continuing specifications across

multiple lines, except when a literal or name must be split. For example, the

following pairs are equivalent. In the first pair, the plus sign (+) is an operator,

even when it appears at the end of a line. In the second pair, the plus sign is a

continuation character.

C eval x = a + b

C eval x = a +

C b

C eval x = ’abc’

C eval x = ’ab+

C c’

v Only blank lines, empty specification lines, or comment lines are allowed

between continued lines.

v The continuation can occur after a complete token. Tokens are:

– Names (for example, keywords, file names, field names)

– Parentheses

– The separator character (:)

– Expression operators

– Built-in functions

– Special words

– Literals
v A continuation can also occur within a literal:

– For character, date, time, and timestamp literals:

- A hyphen (-) indicates continuation is in the first available position in the

continued field

- A plus (+) indicates continuation with the first nonblank character in or

past the first position in the continued field
– For graphic literals :

- Either the hyphen (-) or plus (+) can be used to indicate a continuation.
– For numeric literals:

- No continuation character is used

- A numeric literal continues with a numeric character or decimal point on

the continuation line in the continued field
– For hexadecimal and UCS-2 literals:

- Either a hyphen (-) or a plus (+) can be used to indicate a continuation

- The literal will be continued with the first nonblank character on the next

line
v A continuation can also occur within a name in free-format entries

– In the name entry for Definition and Procedure specifications. For more

information on continuing names in the name entry, see “Definition and

Procedure Specification Name Field” on page 220.

– In the keywords entry for File and Definition specifications.

– In the extended factor 2 entry of Calculation specifications.

Chapter 15. About VisualAge RPG Specifications 215

You can split a qualified name at a period, as shown below:

 C EVAL dataStructureWithALongName.

 C subfieldWithAnotherLongName = 5

If a name is not split at a period, code an ellipsis (...) at the end of the partial

name, with no intervening blanks.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName++

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D Keywords-cont++++++++++++++++++++++++

* Define a 10 character field with a long name.

* The second definition is a pointer initialized to the address

* of the variable with the long name.

D QuiteLongFieldNameThatCannotAlwaysFitInOneLine...

D S 10A

D Ptr S * inz(%addr(QuiteLongFieldName...

D ThatCannotAlways...

D FitInOneLine))

D ShorterName S 5A

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

C Extended-factor2-++++++++++++++++++++++++++++

* Use the long name in an expression

* Note that you can split the name wherever it is convenient.

C EVAL QuiteLongFieldName...

C ThatCannotAlwaysFitInOneLine = ’abc’

* You can split any name this way

C EVAL P...

C tr = %addr(Shorter...

C Name)

Figure 75. Example

216 VisualAge RPG Language Reference

Control Specification Keyword Field

The rule for continuation on the control specification is that the specification

continues on or past position 7 of the next control specification.

File Description Specification Keyword Field

The rules for continuation on the file description specification are:

v The specification continues on or past position 44 of the next file description

specification

v Positions 7-43 of the continuation line must be blank

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

HKeywords++

H DATFMT(

H *MDY&

H)

Figure 76. Continuation on a Control Specification

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

FFilename++IT.A.FRlen+......A.Device+.Keywords++++++++++++++++++++++++++++

F RECNO

F (

F *INU1

F)

Figure 77. File description specification keyword field

Chapter 15. About VisualAge RPG Specifications 217

Definition Specification Keyword Field

The rules for continuation on the definition specification are:

v The specification continues on or past position 44 of the next Definition

specification depending on the continuation character specified

v Positions 7-43 of the continuation line must be blank.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D Keywords-cont++++++++++++++++++++++++

 *

DMARY C CONST(

D ’Mary had a little lamb, its -

D* Only a comment or a completely blank line is allowed in here

D fleece was white as snow.’

D)

D* Numeric literal, continues with the first non blank in/past position 44

D*

DNUMERIC C 12345

D 67

D* Graphic named constant

DGRAF C G’AABBCCDD+

D EEFFGG’

Figure 78. Definition specification keyword field example

218 VisualAge RPG Language Reference

Calculation Specification Extended-Factor 2

The rules for continuation on the calculation specification are:

v The specification continues on or past position 36 of the next calculation

specification

v Positions 7-35 of the continuation line must be blank.

Free-Form Calculation Specification

The rules for continuation on a free-form calculation specification are:

v The free-form line can be continued on the next line. The statement continues

until a semicolon is encountered.

Example

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

C Extended-factor2-++++++++++++++++++++++++++++

 *

C EVAL MARY=’Mary had a little lamb, its +

C* Only a comment or a completely blank line is allowed in here

C fleece was white as snow.’

C*

C* Continuation of arithmetic expression, NOT a continuation

C* character

C

C EVAL A = (B*D)/ C +

C 24

C* The first use of ’+’ in this example is the concatenation

C* operator. The second use is the character literal continuation.

C EVAL ERRMSG = NAME +

C ’ was not found +

C in the file.’

Figure 79. Calculation specification Extended-Factor 2 Example

 /FREE

 time = hours * num_employees

 + overtime_saved;

 /END-FREE

Chapter 15. About VisualAge RPG Specifications 219

Output Specification Constant/Editword Field

The rules for continuation on the Output specification are:

v The specification continues on or past position 53 of the next Output

specification

v Positions 7-52 of the continuation line must be blank.

Definition and Procedure Specification Name Field

The rules for continuation of the name on the definition and procedure

specifications are:

v Continuation rules apply for names longer than 15 characters. Any name (even

one with 15 characters or fewer) can be continued on multiple lines by coding

an ellipsis (...) at the end of the partial name.

v A name definition consists of the following parts:

1. Zero or more continued name lines. Continued name lines are identified as

having an ellipsis as the last non-blank characters in the entry. The name

must begin within positions 7 - 21 and may end anywhere up to position 77

(with an ellipsis ending in position 80). There cannot be blanks between the

start of the name and the ellipsis (...) characters. If any of these conditions is

not true, the line is considered to be a main definition line.

2. One main definition line containing name, definition attributes, and

keywords. If a continued name line is coded, the name entry of the main

definition line may be left blank.

3. Zero or more keyword continuation lines.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 *

O.............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat+++

O Continue Constant/editword+++

O 80 ’Mary had a little lamb, its-

O* Only a comment or a completely blank line is allowed in here

O fleece was white as snow.’

Figure 80. Output specification constant/editword field example

220 VisualAge RPG Language Reference

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName++

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D Keywords-cont++++++++++++++++++++++++

D* Long name without continued name lines:

D RatherLongName S 10A

D* Long name using 1 continued name line:

D NameThatIsEvenLonger...

D C ’This is the constant -

D that the name represents.’

D* Long name using 1 continued name line:

D NameThatIsSoLongItMustBe...

D Continued S 10A

D* Compile-time arrays may have long names:

D CompileTimeArrayContainingDataRepresentingTheNamesOfTheMonthsOf...

D TheYearInGermanLanguage...

D S 20A DIM(12) CTDATA PERRCD(1)

D* Long name using 3 continued name lines:

D ThisNameIsSoMuchLongerThanThe...

D PreviousNamesThatItMustBe...

D ContinuedOnSeveralSpecs...

D PR 10A

D parm_1 10A VALUE

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* Long names defined on calc spec:

C LongTagName TAG

C *LIKE DEFINE RatherLongNameQuiteLongName +5

PName+++++++++++..B...................Keywords+++++++++++++++++++++++++++++

PContinuedName+++

P* Long name specified on Procedure spec:

P ThisNameIsSoMuchLongerThanThe...

P PreviousNamesThatItMustBe...

P ContinuedOnSeveralSpecs...

P B

D ThisNameIsSoMuchLongerThanThe...

D PreviousNamesThatItMustBe...

D ContinuedOnSeveralSpecs...

D PI 10A

D parm_1 10A VALUE

D* Body of the Procedure

D*

P ThisNameIsSoMuchLongerThanThe...

P PreviousNamesThatItMustBe...

P ContinuedOnSeveralSpecs...

P E

Figure 81. Defining long names in RPG

Chapter 15. About VisualAge RPG Specifications 221

222 VisualAge RPG Language Reference

Chapter 16. Control Specifications

The control specification statement, identified by an H in column 6, provides

information about generating and running programs. This information is provided

to the compiler by means of a control specification included in your source. If no

control specification is included, the control specification keywords are assigned

their default values.

See the description of the individual entries for their default values.

The control specification keywords apply at the modular level. This means that if

there is more than one procedure coded in a module, the values specified in the

control specification apply to all procedures.

Control Specification Statement

The control specification consists solely of keywords. The keywords can be placed

anywhere between positions 7 and 80. Positions 81-100 can be used for comments.

 The following is an example of a control specification:

Position 6 (Form Type)

An H must appear in position 6 to identify this line as the control specification.

Positions 7-80 (Keywords)

The control specification keywords are used to determine how the program deals

with devices and how certain types of information are represented.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

HKeywords++Comments++++++++++++

Figure 82. Control Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

HKeywords++

H CURSYM(’$’) DATEDIT(*MDY) DATFMT(*MDY/)

H DECEDIT(’.’) TIMFMT(*ISO)

© Copyright IBM Corp. 1994, 2005 223

Syntax of Keywords

Control-specification keywords may have no parameters, optional parameters, or

required parameters. The syntax for keywords is as follows:

 Keyword(parameter1 : parameter2)

where:

v Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.

v Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are

optional and which are required:

v Braces { } indicate optional parameters or optional elements of parameters.

v An ellipsis (...) indicates that the parameter can be repeated.

v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are

enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the

keyword.

v A blank separating keyword parameters indicates that one or more of the

parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and

should not be entered into your source.

If additional space is required for control-specification keywords, the keyword field

can be continued on subsequent lines. See “Control Specification Statement” on

page 223 and “Control Specification Keyword Field” on page 217.

ALWNULL(*NO | *INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how you will use records containing

null-capable fields from externally described database files.

If ALWNULL(*NO) is specified, then you cannot process records with null-value

fields from externally described files. If you attempt to retrieve a record containing

null values, no data in the record will be accessible and a data-mapping error will

occur.

If ALWNULL(*INPUTONLY) is specified, then you can successfully read records

with null-capable fields containing null values from externally described input-only

database files. When a record containing null values is retrieved, no data-mapping

errors will occur and the database default values are placed into any fields that

contain null values. However, you cannot do any of the following:

v Use null-capable key fields

v Create or update records containing null-capable fields

v Determine whether a null-capable field is actually null while the program is

running

v Set a null-capable field to be null.

If ALWNULL(*USRCTL) is specified, then you can read, write, and update records

with null values from externally described database files. Records with null keys

can be retrieved using keyed operations. You can determine whether a null-capable

224 VisualAge RPG Language Reference

field is actually null, and you can set a null-capable field to be null for output or

update. You are responsible for ensuring that fields containing null values are used

correctly.

If the ALWNULL keyword is not specified, then the value specified on the

command is used.

For more information, see “Database Null Value Support” on page 137

CACHE(*YES | *NO)

The CACHE keyword specifies that the remote file descriptions stored on the

workstation in the cache folder is to be used by the application. The first time that

the CACHE(*YES) option is used, a list of remote file descriptions will be created.

Each subsequent time, the compile process will access this information instead of

accessing the server files.

CACHEREFRESH(*YES | *NO)

The CACHEREFRESH keyword specifies that the remote file descriptions in the

cache folder is to be updated before the compile process. If you specify

CACHE(*NO), the existing remote file descriptions are used.

CCSID(*GRAPH : parameter | *UCS2 : number | *MAPCP : 932)

This keyword sets the default graphic (*GRAPH) and UCS-2 (*UCS2) CCSIDs for

the module. These defaults are used for compile-time data, program-described

input and output fields, and data definitions that do not have the CCSID keyword

coded.

CCSID(*GRAPH : *IGNORE | *SRC | number)

Sets the default graphic CCSID for the module. The possible values are:

*IGNORE

This is the default. No conversions are allowed between graphic and

UCS-2 fields in the module. The %GRAPH built-in function cannot be

used.

*SRC

The graphic CCSID associated with the CCSID of the source file will be

used.

number

A graphic CCSID.

CCSID(*UCS2 : number)

Sets the default UCS-2 CCSID for the module. If this keyword is not

specified, the default UCS-2 CCSID is 13488.

 number must be a UCS-2 CCSID. Valid CCSIDs are 13844 and 17584

(which inlcudes the Euro).

CCSID(*MAPCP : 932)

For remote file opens and program calls, maps the Japanese code page 932

to CCSID 943.

 If CCSID(*GRAPH : *SRC) or CCSID(*GRAPH : number) is specified:

v Graphic and UCS-2 fields in externally-described data structures will use the

CCSID in the external file.

Chapter 16. Control Specifications 225

v Program-described graphic or UCS-2 fields will default to the graphic or UCS-2

CCSID of the module, respectively. This specification can be overridden by using

the CCSID(number) keyword on the definition of the field. (See “CCSID(number

| *DFT)” on page 267.)

v Program-described graphic or UCS-2 input and output fields and keys are

assumed to have the module’s default CCSID.

COPYNEST(number)

The COPYNEST keyword specifies the maximum depth to which nesting can occur

for /COPY directives. The depth must be greater than or equal to 1 and less than

or equal to 2048. The default depth is 32.

COPYRIGHT(’copyright string’)

The COPYRIGHT keyword provides copyright information. The copyright string is

a character literal with a maximum length of 256. The literal may be continued on

a continuation specification. (See “Continuation Rules” on page 215 for rules on

using continuation lines.) If the COPYRIGHT keyword is not specified, copyright

information is not added to the created module or program.

CURSYM(’sym’)

The CURSYM keyword specifies a character used as a currency symbol in editing.

The symbol must be a single character enclosed in quotes. Any character in the

VisualAge RPG character set may be used. (See Chapter 1, “Symbolic Names and

Reserved Words,” on page 3.) The following characters are exceptions:

 0 (zero) * (asterisk) , (comma)

& (ampersand) . (period) − (minus sign)

C (letter C) R (letter R) Blank

If the keyword is not specified, the dollar sign ($) is the default for the currency

symbol.

CVTOEM(*YES | *NO)

The CVTOEM keyword specifies that OEM conversion should be used when I/O

is performed to local files. If you specify CVTOEM(*NO), no OEM conversion is

done.

CVTOPT(*{NO}VARCHAR *{NO}VARGRAPHIC)

The CVTOPT keyword is used to determine how the VARPG compiler handles

variable-length data types that are retrieved from externally described database

files.

You can specify any or all of the data types in any order. However, if a data type is

specified, the *NOxxxx parameter for the same data type cannot be used, and vice

versa. For example, if you specify *VARCHAR you cannot specify *NOVARCHAR,

and vice versa. Separate the parameters with a colon. A parameter cannot be

specified more than once.

Note: If the keyword CVTOPT does not contain a member from a pair, then the

value specified on the command for this particular data type will be used.

For example, if the keyword CVTOPT(*NOVARCHAR) is specified on the

226 VisualAge RPG Language Reference

Control specification, then for the pair (*VARGRAPHIC,

*NOVARGRAPHIC), whatever was specified implicitly or explicitly on the

command will be used.

If *VARCHAR is specified, then variable-length character data types are declared

as fixed-length character fields.

If *NOVARCHAR is specified, then variable-length character data types are not

converted.

If *VARGRAPHIC is specified, then variable-length double-byte character set

(DBCS) graphic data types are declared as fixed-length character fields.

If *NOVARGRAPHIC is specified, then variable-length double-byte character set

(DBCS) graphic data types are not converted.

If the CVTOPT keyword is not specified, then the values specified on the

command are used.

DATEDIT(fmt{separator})

The DATEDIT keyword specifies the format of numeric fields when using the Y

edit code. The separator character is optional. The value (fmt) can be *DMY, *MDY,

or *YMD. The default separator is /. A separator character of & (ampersand) may

be used to specify a blank separator.

DATFMT(fmt{separator})

The DATFMT keyword specifies the internal date format for date literals and the

default format for date fields within the program. You can specify a different

internal date format for a particular field by specifying the format with the

DATFMT keywork on the definition specification for that field.

The default is *ISO format. For more information on internal formats, see “Internal

and External Formats” on page 103

Table 25 describes the various date formats and their separators.

 Table 25. External Date Formats for Date Data Type

RPG name Description Format (Default

Separator)

Valid

Separators

Length Example

*MDY Month/Day/Year mm/dd/yy / - . , ’&’ 8 01/15/91

*DMY Day/Month/Year dd/mm/yy / - . , ’&’ 8 15/01/91

*YMD Year/Month/Day yy/mm/dd / - . , ’&’ 8 91/01/15

*JUL Julian yy/ddd / - . , ’&’ 6 91/015

*ISO International Standards Organization yyyy-mm-dd - 10 1991-01-15

*USA IBM USA Standard mm/dd/yyyy / 10 01/15/1991

*EUR IBM European Standard dd.mm.yyyy . 10 15.01.1991

*JIS Japanese Industrial Standard

Christian Era

yyyy-mm-dd - 10 1991-01-15

DEBUG{(*NO | *YES)}

The DEBUG keyword determines whether debug information is generated.

Chapter 16. Control Specifications 227

If this keyword is not specified or specified with *NO, no debug information is

generated.

DECEDIT(’value’)

This keyword specifies the character used as the decimal point for edited decimal

numbers. Leading zeros are printed when the absolute value of the number is less

than 1. The default value is ’.’ (period).

The possible values are:

’.’ Decimal point is period; leading zero not printed (.123)

’,’ Decimal point is comma; leading zero not printed (,123)

’0.’ Decimal point is period; leading zero printed (0.123)

’0,’ Decimal point is comma; leading zero printed (0,123)

DECPREC(30|31)

Keyword DECPREC is used to specify the decimal precision of decimal (packed,

zoned, or binary) intermediate values in arithmetic operations in expressions.

Decimal intermediate values are always maintained in the proper precision, but

this keyword affects how decimal values are presented when used in certain

operations, such as %EDITC and %EDITW.

DECPREC(30)

The default decimal precicion. It indicates that the maximum precision of

decimal values when used in %EDITC and %EDITW operations is 30

digits. However, if at least one operand in the expression is a 31 digit

decimal variable, the precision of the expression is 31 digits regardless of

the DECPREC value.

DECPREC(31)

This alternate decimal precision indicates that 31 digits are always

presented in %EDITC and %EDITW operations.

EXE

The EXE keyword indicates that this is a module consisting of a main procedure

and subprocedures. All subroutines (BEGSR) must be local to a procedure. The

EXE must contain a procedure whose name matches the name of the source file.

This will be the main entry point for the EXE, that is, the main procedure.

For EXE modules, consider the following:

v No GUI operation codes are allowed in the source. This includes START, STOP,

SETATR, GETATR, %SETATR, %GETATR, SHOWWIN, CLSWIN, and READS.

DSPLY can be used.

v *INZSR and *TERMSR are not permitted.

v *ENTRY parameters are not permitted.

If there are entry parameters, they are specified on the parameter definition for the

main procedure, and they must be passed in by value, that is, the VALUE keyword

must be specified for each parameter.

v The EXPORT keyword is not allowed on the Begin P specification.

v The return value for the main procedure must be defined as a binary or integer

of precision zero(0).

228 VisualAge RPG Language Reference

EXPROPTS(*MAXDIGITS | *RESDECPOS)

The EXPROPTS (expression options) keyword specifies the type of precision rules

to be used for an entire program. If not specified or specified with *MAXDIGITS,

the default precision rules apply. If EXPROPTS is specified, with *RESDECPOS, the

″Result Decimal Position″ precision rules apply and force intermediate results in

expressions to have no fewer decimal positions than the result.

Note: Operation code extenders R and M are the same as

EXPROPTS(*RESDECPOS) and EXPROPTS(*MAXDIGITS) respectively, but

for single free-form expressions.

EXTBININT{(*NO | *YES)}

The EXTBININT keyword is used to process externally described fields with binary

external format and zero decimal positions as if they had an external integer

format. If not specified or specified with *NO, then an externally described binary

field is processed with an external binary format. If EXTBININT is specified,

optionally with *YES, then an externally described field is processed as follows:

 DDS Definition RPG external format

B(n,0) where 1 ≤ n ≤ 4 I(5)

B(n,0) where 5 ≤ n ≤ 9 I(10)

By specifying the EXTBININT keyword, your program can make use of the full

range of DDS binary values available. (The range of DDS binary values is the same

as for signed integers: -32768 to 32767 for a 5-digit field or -2147483648 to

2147483647 for a 10-digit field.)

Note: When the keyword EXTBININT is specified, any externally described

subfields that are binary with zero decimal positions will be defined with an

internal integer format.

FLTDIV{(*NO | *YES)}

The FLTDIV keyword indicates that all divide operations within expressions are

computed in floating point and return a value of type float. If not specified or

specified with *NO, then divide operations are performed in packed-decimal

format (unless one of the two operands is already in float format).

If FLTDIV is specified, optionally with *YES, then all divide operations are

performed in float format (guaranteeing that the result always has 15 digits of

precision).

GENLVL(number)

The GENLVL keyword controls the creation of the object. The object is created if all

errors encountered during compilation have a severity level less than or equal to

the generation severity level specified. The value must be between 0 and 20

inclusive. For errors greater than severity 20, the object will not be created.

If the GENLVL keyword is not specified, then the value specified on the command

is used.

Chapter 16. Control Specifications 229

INDENT(*NONE | ’character-value’)

The INDENT keyword specifies whether structured operations should be indented

in the source listing for enhanced readability. It also specifies the characters that

are used to mark the structured operation clauses.

If *NONE is specified, structured operations will not be indented in the source

listing.

If character-value is specified, the source listing is indented for structured

operation clauses. Alignment of statements and clauses are marked using the

characters you choose. You can choose any character literal up to 2 characters in

length.

Note: The indentation may not appear as expected if there are errors in the source.

If the INDENT keyword is not specified, then the value specified on the command

is used.

INTPREC(10 | 20)

The INTPREC keyword is used to specify the decimal precision of integer and

unsigned intermediate values in binary arithmetic operations in expressions.

Integer and unsigned intermediate values are always maintained in 8-byte format.

This keyword affects only the way integer and unsigned intermediate values are

converted to decimal format when used in binary arithmetic operations (+, -, *, /).

INTPREC(10), the default, indicates a decimal precision of 10 digits for integer and

unsigned operations. However, if at least one operand in the expression is an

8-byte integer or unsigned field, the result of the expression has a decimal

precision of 20 digits regardless of the INTPREC value.

INTPREC(20) indicates that the decimal precision of integer and unsigned

operations is 20 digits.

LIBLIST(’filename1 filename2 ... filenamen’)

The LIBLIST keyword specifies the list of library files to be used when linking the

application. Each file name must be separated by a blank and the list must be

enclosed by single quotation marks. If a file name contains blanks, its name must

be enclosed by double quotation marks.

NOMAIN

The NOMAIN keyword indicates that there are no action or standalone user

subroutines in the module. A NOMAIN module contains only subprocedures. The

resulting compilation target is a DLL that can be used by other applications.

For NOMAIN DLLs, the following should be considered:

v The DLL must consist of procedures only. All subroutines (BEGSR) must be local

to a procedure.

v No GUI operation codes allowed in the source. These include START, STOP,

SETATR, GETATR, %SETATR,%GETATR;, SHOWWIN, CLSWIN, and READS.

DSPLY can be used. However, if the procedure containing it is called from a

VisualAge RPGDLL, then the DSPLY operation code does nothing.

v *INZSR; and *TERMSR; are not permitted.

v *ENTRY; parameters are not permitted.

230 VisualAge RPG Language Reference

See Programming with VisualAge RPG for information on coding and calling

multiple procedures.

Chapter 16. Control Specifications 231

OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL *{NO}SHOWCPY

*{NO}EXPDDS *{NO}EXT *{NO}SHOWSKP

*{NO}INHERITSIGNON)

The OPTION keyword specifies the options to use when the source member is

compiled.

You can specify any or all of the options in any order. However, if a compile

option is specified, the *NOxxxx parameter for the same compile option cannot be

used, and vice versa. For example, if you specify *XREF, you cannot also specify

*NOXREF, and vice versa. Separate the options with a colon. You cannot specify an

option more than once.

Note: If the keyword OPTION does not contain a member from a pair, then the

value specified on the command for this particular option will be used. For

example, if the keyword OPTION(*XREF : *NOGEN : *NOSECLVL :

*SHOWCPY) is specified on the Control specification, then for the pairs,

(*EXT, *NOEXT), (*EXPDDS, *NOEXPDDS) and (*SHOWSKP,

*NOSHOWSKP), whatever was specified implicitly or explicitly on the

command will be used.

If *XREF is specified, a cross-reference listing is produced (when appropriate) for

the source member. *NOXREF indicates that a cross-reference listing is not

produced.

If *GEN is specified, a program object is created if the highest severity level

returned by the compiler does not exceed the severity specified in the GENLVL

option. *NOGEN does not create an object.

If *SECLVL is specified, second-level message text is printed on the line following

the first-level message text in the Message Summary section. *NOSECLVL does not

print second-level message text on the line following the first-level message text.

If *SHOWCPY is specified, the compiler listing shows source records of members

included by the /COPY compiler directive. *NOSHOWCPY does not show source

records of members included by the /COPY compiler directive.

If *EXPDDS is specified, the expansion of externally described files in the listing

and key field information is displayed. *NOEXPDDS does not show the expansion

of externally described files in the listing or key field information.

If *EXT is specified, the external procedures and fields referenced during the

compile are included on the listing. *NOEXT does not show the list of external

procedures and fields referenced during compile on the listing.

If *SHOWSKP is specified, then all statements in the source part of the listing are

displayed, regardless of whether or not the compiler has skipped them.

*NOSHOWSKP does not show skipped statements in the source part of the listing.

The compiler skips statements as a result of /IF, /ELSEIF, or /ELSE directives.

If *INHERITSIGNON is specified, the calling application’s server signon

information is used by the called program. This avoids the user ID/password

prompting when data or programs are accessed on the remote server.

If the OPTION keyword is not specified, then the values specified on the

command are used.

232 VisualAge RPG Language Reference

SIGNON(*CLEARUSERID *HIDEPWSAVE *INHERIT)

The SIGNON keyword specifies options to use when signing on to a remote server

to access files or call programs.

You can specify any or all of the options in any order. Separate the options with a

colon. You cannot specify an option more than once.

If *CLEARUSERID is specified, no initial value will be shown in the user ID field

of the remote server signon prompt dialog box, if the signon prompt is needed.

(This option does not affect the Change Password prompt shown when an expired

password is used to signon.)

The default behaviour is to show the last-used user ID.

If *HIDEPWSAVE is specified, the password save option will not be shown on the

Change Password dialog box which appears when the server indicates a signon

attempt used an expired password.

Note: If a VARPG application has a saved version of the password, and the actual

password has changed, subsequent application signon attempts will report

invalid password errors and prompt for the correct password, until the

saved password entry is corrected or cleared.

If *INHERIT is specified in a VARPG application called by another, the calling

application’s server signon information is used by the called program. This avoids

the user ID and password prompting when data or programs are accessed on the

remote server.

Do not specify both SIGNON(*INHERIT) and OPTION(*INHERITSIGNON), which

mean the same.

SQLBINDFILE(’filename’)

The SQLBINDFILE keyword specifies that an SQL bind file be created. You can

optionally specify a fully qualified bind file name enclosed in single quotation

marks. The name can be up to 8 characters long.

A bind file allows the application to defer binding to a database until a later time

and allows an application to access many databases. This is done using the

SQLBIND command before the application runs.

No package file is generated unless you specify the SQLPACKAGENAME

keyword. Applications can be built with binding enabled, that is, with the

SQLPACKAGENAME keyword specified, or with binding deferred (no package

name). Building with binding enabled generates a package file and stores it in the

database. Building with binding deferred extracts the data needed to create the

package from the source file and stores this information in a bind file.

SQLDBBLOCKING(*YES | *NO)

The SQLDBBLOCKING keyword specifies whether blocking is done on any

cursors. Specify SQLDBBLOCKING(*YES) to perform record blocking on any

cursors.

When you use record blocking and specify SQLISOLATIONLVL(*RR), a read-only

cursor isolation level, Database Manager at the database server returns a block of

Chapter 16. Control Specifications 233

rows to the database client in one network transmission. These rows are retrieved

one at a time from the database client when Database Manager processes a FETCH

request. When all rows in the block have been fetched, Database Manager at the

database client sends another request to the remote database, until all output rows

have been retrieved.

Record blocking can lead to results that are not entirely consistent with the

database when used in combination with the cursor stability,

SQLISOLATIONLVL(*CS), or uncommitted read, SQLISOLATIONLVL(*UR),

isolation levels. With cursor stability and uncommitted read, the row being

retrieved by the application from the block is not locked at the remote database.

Therefore, another application may be updating the row in the database while

your application is reading the row from the block. Specifying the repeatable read

isolation level locks all accessed rows in the database until the unit of work is

complete, but restricts updates by other processes.

Specify SQLDBBLOCKING(*NO) if you do not want blocking done on any cursors.

When a SELECT statement returns multiple rows, the application must declare a

cursor and use the FETCH statement to retrieve the rows one at a time. With a

remote database, this means that each request and each reply travel across the

network. With a large number of rows, this leads to a significant increase in

network traffic.

SQLDBNAME(’Dbname’)

The SQLDBNAME keyword specifies the name of the DB2 database referenced by

imbedded SQL statements in your application. The name must be enclosed by

single quotation marks and can be up to 8 characters long.

SQLDTFMT(*EUR | *ISO | *USA | *JIS)

The SQLDTFMT keyword specifies the date and time format used in your

application. The possible values are:

*EUR IBM European Standard format.

*ISO International Standards Organization format.

*USA IBM USA Standard format.

*JIS Japanese Industrial Standard Christian Era format.

SQLISOLATIONLVL(*RR | *CS | *UR)

The SQLISOLATIONLVL keyword specifies how SQL database records will be read

by your application. The possible values are:

*RR Repeatable read keeps a lock on all rows accessed by the application since

the last commit point. If the application reads the same row again, the

values will not have changed. The effect of the *RR isolation level is that

one application can prevent other applications or users from changing

tables. As a result, overall concurrency may decrease.

 Specify repeatable read only if the application requires row locking;

otherwise, cursor stability, *CS, is preferable.

*CS Cursor stability, *CS, holds a row lock only while the cursor is positioned

on that row. When the cursor moves to another row, the lock is released. If

the data is changed, however, the lock must be held until the data is

committed. Cursor stability applies only to data that is read. All changed

data remains locked until either a COMMIT or ROLLBACK is processed.

234 VisualAge RPG Language Reference

Specify cursor stability if a given row will be accessed only once during

the life of the transaction. In this way, the lock has the least impact on

concurrent applications and users.

*UR Uncommitted read, *UR, views rows without waiting for locks.

Uncommitted read applies to FETCH and SELECT INTO operations. For

other operations, the *UR choice performs the same as *CS, cursor stability.

An application using this level reads and returns all rows, even if they

contain uncommitted changes made by other applications. Because this

isolation level does not wait for concurrency locks, overall performance

may increase.

SQLPACKAGENAME(’package.txt’)

The SQLPACKAGENAME keyword specifies that a package file be created

containing the executable SQL statements. You can optionally specify a fully

qualified package name enclosed in single quotation marks. The name can be up to

8 characters long.

A Database Manager application uses one package file for every built source file

used to build the application. Each package is a separate entity and has no

relationship to any other packages used by the same or other applications.

Packages are created by running the precompiler against a source file with binding

enabled or by running the binder (SQLBIND command) against one or more DB2

names.

SQLPASSWORD(’password’)

The SQLPASSWORD keyword specifies the password of the user ID accessing the

SQL database. The password must be enclosed by single quotation marks

SQLUSERID(’userid’)

The SQLUSERID keyword specifies the user ID connecting to the SQL database.

The user ID must be enclosed by single quotation marks

TIMFMT(fmt{separator})

The TIMFMT keyword specifies the internal format of time literals and the default

format for time fields in the program. You can specify a different internal time

format for a particular field by specifying the format with the TIMFMT keyword

on the definition specification for that field.

The default is *ISO. For more information on the internal formats, see “Internal

and External Formats” on page 103

Chapter 16. Control Specifications 235

Table 26 shows the time formats supported and their separators:

 Table 26. External Time Formats for Time Data Type

RPG

name Description

Format

(Default

Separator)

Valid

Separators Length Example

*HMS Hours:Minutes:Seconds hh:mm:ss : . , & 8 14:00:00

*ISO International Standards

Organization

hh.mm.ss . 8 14.00.00

*USA IBM USA Standard. AM

and PM can be any mix of

upper and lower case.

hh:mm AM

or hh:mm

PM

: 8 02:00 PM

*EUR IBM European Standard hh.mm.ss . 8 14.00.00

*JIS Japanese Industrial

Standard Christian Era

hh:mm:ss : 8 14:00:00

TRUNCNBR(*YES | *NO)

The TRUNCNBR keyword specifies if the truncated value is moved to the result

field or if an error is generated when numeric overflow occurs while running the

object.

Note: The TRUNCNBR option does not apply to calculations performed within

expressions. (Expressions are found in the Extended-Factor 2 field.) If

overflow occurs for these calculations, an error will always occur.

If *YES is specified, numeric overflow is ignored and the truncated value is moved

to the result field.

If *NO is specified, a run-time error is generated when numeric overflow is

detected.

If the TRUNCNBR keyword is not specified, then the value specified on the

command is used.

236 VisualAge RPG Language Reference

Chapter 17. File Description Specifications

File description specifications identify each file used by a program. Each file in a

program must have a corresponding file description specification statement.

A file can be either program-described or externally-described. In

program-described files, record and field descriptions are included within the

program using input and output specifications. Externally-described files have

their record and field descriptions defined externally on an iSeries server using

DDS or SQL/400™ commands.

The following limitations apply for each program:

v There is no limit for the maximum number of files allowed

v DISK files:

– DISK files can be either remote or local

– Remote files must be externally described

– Local files must be program described
v PRINTER files:

– A maximum of eight PRINTER files are allowed

– PRINTER files must be program described
v SPECIAL files:

– SPECIAL files must be program described.

File Description Specification Statement

The general layout for the file description specification is as follows:

v The file description specification type (F) is entered in position 6

v The non-comment part of the specification extends from position 7 to position

80:

– The fixed-format entries extend from positions 7 to 42

– The keyword entries extend from positions 44 to 80
v The comments section of the specification extends from position 81 to position

100.

File-Description Keyword Continuation Line

If additional space is required for keywords, the keywords field can be continued

on subsequent lines as follows:

v position 6 of the continuation line must contain an F

v positions 7 to 43 of the continuation line must be blank

v the specification continues on or past position 44

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 83. File Description Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

F.....................................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 84. File-Description Keyword Continuation Line Layout

© Copyright IBM Corp. 1994, 2005 237

Position 6 (Form Type)

An F must be entered in this position.

Positions 7-16 (File Name)

Entry Explanation

A valid file name Every file used in a program must have a unique

name. The file name can be from 1 to 10 characters

long, and must begin in position 7.

 For an externally-described file, the file must exist at both compilation time and at

run time. For a program-described file, the file needs to exist only at run time.

At run time:

v If you use the EXTFILE keyword, the EXTMBR keyword (remote OS/400 files

only), or both, RPG will open the file named in these keywords.

v Otherwise, RPG will open the file named in position 7. This file (or an

overridden file) must exist when the file is opened.

v For remote OS/400 files, if an OS/400 system override command has been used

for the file that RPG opens, that override will take effect and the actual file

opened will depend on the override. See the “EXTFILE(filename)” on page 246

keyword for more information about how overrides interact with this keyword.

When the files are opened at run time, they are opened in the reverse order to that

specified in the file-description specifications. The device name defines the

operations that can be processed on the associated file.

Program-Described File

For program-described files, the file name entered in positions 7 through 16 must

also be entered on:

v Input specifications

v Output specifications or an output calculation operation line if the file is an

output, update, or combined file, or if file addition is specified for the file

v Definition specifications if the file is a table or array file

v Calculation specifications if the file name is required for the operation code

specified.

Externally-Described File

For externally described files, the file name entered in positions 7 through 16 is the

name used to locate the record descriptions for the file. The following rules apply

to externally described files:

v Input and output specifications for externally described files are optional. They

are required only if you are adding VisualAge RPG functions, such as record

identifying indicators, to the external description retrieved.

v When an external description is retrieved, the record definition can be referred

to by its record format name on the input, output, or calculation specifications.

v A record format name must be a unique symbolic name.

v An externally-described logical file with two record formats of the same name is

not allowed.

Position 17 (File Type)

Entry Explanation

I An Input file can be either a local or remote DISK file

238 VisualAge RPG Language Reference

O An Output file can be either a local or remote DISK file

U An Update file can be either a local or remote DISK file

C A Combined (input/output) file must be a remote DISK file

Input Files

A program reads information from an input file. The input file can contain data

records, arrays, or tables.

Output Files

An output file is a file to which information is written.

Update Files

An update file is an input file whose records can be read and updated. Updating

alters the data in one or more fields of any record contained in the file and writes

that record back to the same file from which it was read. If records are to be

deleted, the file must be specified as an update file.

Combined Files

A combined file is both an input file and an output file. When a combined file is

processed, the output record contains only the data represented by the fields in the

output record. This differs from an update file, where the output record contains

the input record modified by the fields in the output record.

A combined file is valid for a SPECIAL file and a DISK file if position 18 contains

T (an array or table replacement file).

Chapter 17. File Description Specifications 239

Position 18 (File Designation)

Entry Explanation

Blank Output file

T Array or table file

F Full procedural file

Array or Table File

Array and table files specified by a T in position 18 are loaded at program

initialization time. The array or table file can be input or combined. Leave this

entry blank for array or table output files. You cannot specify SPECIAL as the

device for array and table input files. You cannot specify an externally described

file as an array or table file.

If T is specified in position 18, you can specify a file type of combined (C in

position 17) for a DISK file. A file type of combined allows an array or table file to

be read from or written to the same file (an array or table replacement file) or to a

different file. In addition, the file name in positions 7–16 must also be specified as

the parameter to the TOFILE keyword on the definition specification.

Full Procedural File

For a full procedural file, input is controlled by calculation operations. File

operation codes such as CHAIN or READ are used to do input functions.

Position 19 (Reserved)

Entry Explanation

Blank This entry must be blank.

Position 20 (File Addition)

Position 20 indicates whether records are to be added to an input or update file.

For output files, this entry is ignored.

Entry Explanation

Blank No records can be added to an input or update file (I or U in position 17).

A Records are added to an input or update file when positions 18 through 20

of the output record specifications for the file contain ″ADD″, or when the

WRITE operation code is used in the calculation specification.

See Table 27 on page 241 for the relationship between position 17 and position 20

of the file-description specifications and positions 18 through 20 of the output

specifications.

240 VisualAge RPG Language Reference

Table 27. Processing Functions for Files

Function

Specification

File Description Output

Position 17 Position 20 Positions 18-20

Create new file1

or

Add records to existing file

O

O

Blank

A

Blank

ADD

Process file I Blank Blank

Process file and add records to the

existing file

I A ADD

Process file and update the

records (update or delete)

U Blank Blank

Process file and add new records

to an existing file

U A ADD

Process file and delete an existing

record from the file

U Blank DEL

:

1Within RPG, the term create a new file means to add records to a newly created file. Thus,

the first two entries in this table perform the identical function. Both are listed to show that

there are two ways to specify that function.

Position 21 (Reserved)

Entry Explanation

Blank This entry must be blank.

Position 22 (File Format)

Entry Explanation

F Program described file

E Externally described file

 An F in position 22 indicates that the records for the file are described within the

program on input/output specifications (except for array/table files). PRINTER

files and SPECIAL files must be program described. Local DISK files must be

program described.

An E in position 22 indicates that the record descriptions for the file are external to

the VisualAge RPG source program. The compiler obtains these descriptions at

compilation time and includes them in the source program. Remote DISK files

must be externally described.

Positions 23-27 (Record Length)

Use positions 23 through 27 to indicate the length of the logical records contained

in a program described file. The maximum record size that can be specified is

32766; however, record-size constraints of any device may override this value. For

PRINTER files, specify a record length which does not exceed the number of

columns of printer output. This entry must be blank for externally described files.

Chapter 17. File Description Specifications 241

Position 28 (Reserved)

Entry Explanation

Blank This entry must be blank.

Positions 29-33 (Reserved)

Entry Explanation

Blank This entry must be blank.

Position 34 (Record Address Type)

Entry Explanation

Blank Relative record numbers are used to process the file. Records are read

consecutively.

K Key values are used to process the file. This entry is valid only for

externally described files.

Blank = Non-keyed Processing

A blank indicates that the file is processed without the use of keys.

A file processed without keys can be processed consecutively or randomly by

relative-record number.

Input processing by relative-record number is determined by a blank in position 34

and by the use of the CHAIN, SETLL, or SETGT operation code. Output

processing by relative-record number is determined by a blank in position 34 and

by the use of the RECNO keyword on the file description specifications.

Key

A K entry indicates that the externally described file is processed on the

assumption that the access path is built on key values. If the processing is random,

key values are used to identify the records.

If this position is blank for a keyed file, the records are retrieved in arrival

sequence.

Position 35 (Reserved)

Entry Explanation

Blank This entry must be blank.

Positions 36-42 (Device)

Entry Explanation

PRINTER File is a printer file, with control characters that can be sent to a

printer.

DISK File is a disk file. Sequential and random read/write processing is

available for remote files. Sequential and relative record processing

is available for local files.

SPECIAL This is a special file. Input or output is on a device that is accessed

by user-supplied code that is linked in to the VisualAge RPG

application. The name of the user-supplied code module must be

242 VisualAge RPG Language Reference

specified as the parameter for the PROCNAME keyword. A

parameter list is created for use with this program, including an

option code parameter and a status code parameter. The file must

be a fixed unblocked format. See “PLIST(Plist_name)” on page 248

and “PROCNAME(proc_name)” on page 250 for more information.

 Use positions 36 through 42 to specify the device name to be associated with the

file. The device name defines the functions that can be done on the associated file.

Certain functions are valid only for a specific device name.

Position 43 (Reserved)

Position 43 must be blank.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for file description specification keywords.

Keywords are used to provide additional information about the file being defined.

File-description specification keywords may have no parameters, optional

parameters, or required parameters. The syntax for keywords is as follows:

 Keyword(parameter1 : parameter2)

where:

v Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.

v Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are

optional and which are required:

v Braces { } indicate optional parameters or optional elements of parameters.

v An ellipsis (...) indicates that the parameter can be repeated.

v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are

enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the

keyword.

v A blank separating keyword parameters indicates that one or more of the

parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and

should not be entered into your source.

If additional space is required for keywords, the keyword field can be continued

on subsequent lines. See “File-Description Keyword Continuation Line” on page

237 and “File Description Specification Keyword Field” on page 217.

The following table summarizes which keywords apply to externally-described

files and which keywords apply to program-described files.

 Keyword Program-described Externally-described

BLOCK Y

COMMIT{(rpg_name)} Y

CVTHEX Y

Chapter 17. File Description Specifications 243

Keyword Program-described Externally-described

DATFMT(format{separator}) Y Y

DEVMODE(name) Y

EOFMARK(*NONE) Y

EXTFILE(fname) Y

EXTMBR(membername) Y

FORMLEN(number) Y

IGNORE(recformat{:recformat...}) Y

INCLUDE(recformat{:recformat...}) Y

INFDS(DSname) Y Y

INFSR(SUBRname) Y Y

PLIST(Plist_name) Y Y

PREFIX(prefix_name) Y

PROCNAME(proc_name) Y

PRTCTL(data_struct{:*COMPAT}) Y

PRTFMT(*SYS | *TEXT) Y

RCDLEN(fieldname) Y

RECNO(fieldname) Y Y

REMOTE Y

RENAME(Ext_format:Int_format) Y

TIMFMT(format{separator}) Y Y

USROPN Y Y

BLOCK(*YES|*NO)

The BLOCK keyword controls the blocking of records associated with the file. The

keyword is valid only for DISK files.

If this keyword is not specified, the VARPG compiler unblocks input records and

blocks output records to improve runtime performance in DISK files when the

following conditions are met:

1. The file is externally described and has only one record format.

2. The RECNO keyword is not used in the file description specification.

3. One of the following is true:

a. The file is an output file.

b. If the file is a combined file, then it is an array or table file.

c. The file is an input-only file and none of the following operations are used

on the file: READE, READPE, SETGT, SETLL, and CHAIN. (If any READE

or READPE operations are used, no record blocking will occur for the input

file. If any SETGT, SETLL, or CHAIN operations are used, no record

blocking will occur unless the BLOCK(*YES) keyword is specified for the

input file.)

When you specify BLOCK(*YES), record blocking occurs as described above except

that the operations SETGT, SETLL, and CHAIN can be used with an input file and

blocking will still occur (see condition 3c above).

244 VisualAge RPG Language Reference

To prevent the blocking of records, BLOCK(*NO) can be specified. No record

blocking is done by the compiler.

COMMIT{(rpg_name)}

The COMMIT keyword allows the option of processing remote files under

commitment control. An optional parameter, rpg_name, may be specified. The

parameter is implicitly defined as a field of type indicator (that is, a character field

of length one), and is initialized to ’0’.

By specifying the optional parameter, the programmer can control whether

commitment control is enabled at run time. If the parameter contains a ’1’, the file

is opened with COMMIT on, otherwise the file is opened without COMMIT. The

parameter must be set prior to opening the file. If the file is opened at program

initialization, the parameter can be passed in through a parameter. If the file is

opened explicitly, using the OPEN operation in the calculation specifications, it can

be set prior to the OPEN operation.

Use the COMMIT and ROLBK operation codes to group changes to this file and

other files currently under commitment control so that changes all happen

together, or do not happen at all.

Note: If the file is already open with a shared open data path, the value for

commitment control must match the value for the previous OPEN operation.

CVTHEX

The CVTHEX provides support for processing externally-described remote disk

files containing database fields with CCSID 65535.

A CCSID value of 65535 implies that no conversion should be done when

accessing the field data, but the traditional EBCDIC data often in these fields on

the server isn’t understood on the client workstation operating in ANSI.

When CVTHEX is specified for the file, any character fields with a CCSID of 65535

in the file will be converted to the workstation CCSID on input/output operations

for use in the application. (The client-side conversion process uses the server

connection job’s CCSID in place of the field’s 65535 CCSID to perform the

conversion.)

Note: CVTHEX is not supported when compiling to JAVA.

DATFMT(format{separator})

The DATFMT keyword allows the specification of a default external date format

and a default separator (which is optional) for all date fields in the

program-described file. If the file, for which this keyword is specified, is indexed

and the keyfield is a date, then this also provides the default format for the

keyfield. The file can be either remote or local.

You can specify a different external format for individual input or output date

fields in the file by specifying a date format/separator for the field on the

corresponding input specification (positions 31–35) or output specification (position

53–57).

For date Input fields this specifies the default external date format/separator

(Input specification positions 31-35).

Chapter 17. File Description Specifications 245

For date Output fields this specifies the default external date format/separator

(Output specification positions 53-57).

See “DATFMT(fmt{separator})” on page 227 for date formats and separators. For

more information on external formats, see “Internal and External Formats” on page

103.

DEVMODE(name)

The DEVMODE keyword can be used for printer files to provide print settings.

Use the DEVMODE keyword to specify a data structure name containing a

Windows operating system GDI DEVMODE structure to specify printer settings

when the printer file is opened.

EOFMARK(*NONE)

Specify the EOFMARK(*NONE) keyword to omit the end-of-file marker from local

disk files. The *NONE parameter is required.

EXTFILE(filename)

The EXTFILE keyword allows you to specify an actual filename to be opened at

run time rather than supplying the name at compile time. The value can be a

literal or a variable.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

 * This example demonstrates using the DEVMODE keyword and a

 * DEVMODE data structure to set the printer to Landscape orientation

ffilo o f 80 printer DEVMODE(pdevmode)

f prtfmt(*sys)

 * The following initial settings select landscape orientation printing:

 * (For more information, see http://msdn.microsoft.com/ and search for

 * DEVMODE.)

d pdevmode ds 200

 * These next few fields need to be correctly initialized:

 *

d pdevname 1 32 inz(’ ’)

d pspecver 33 34i 0 inz(x’0401’)

d pdrvver 35 36i 0 inz(0)

d pdmsize 37 38i 0 inz(148)

d pdrvextr 39 40i 0 inz(0)

 * This field contains the bit flags which indicate which of the

 * subsequent fields have valid settings to apply:

 * Bit Flag Settings:

 * x’0001’ Orientation

 * x’0100’ Number of Copies

 * Specify only the Orientation setting: (x’00001’ = 1)

d pfields 41 44i 0 inz(1)

 * Orientation: 1 = Portrait, 2 = Landscape

d porient 45 46i 0 inz(2)

 * Number of Copies:

d pcopies 55 56i 0

Figure 85. Setting Landscape Orientation for Printing

246 VisualAge RPG Language Reference

Notes:

1. If a variable name is used, it must be set before the file is opened. For files that

are opened automatically at program initialization, the variable must be set in

one of the following ways:

v Using the INZ keyword on the D specification

v Passing the value in as an entry parameter

Local Files

The file must be a local DISK or PRINTER file. The USROPN keyword must also

be specified with the EXTFILE keyword.

Remote OS/400 Files

You can specify the value in any of the following forms:

filename

libname/filename

*LIBL/filename

Notes:

1. You cannot specify *CURLIB as the library name.

2. If you specify a file name without a library name, *LIBL is used.

3. The name must be in the correct case. For example, if you specify

 EXTFILE(filename) and variable filename has the value ’qtemp/myfile’, the

file will not be found. Instead, it should have the value ’QTEMP/MYFILE’.

4. This keyword is not used to find an externally-described file at compile time.

If you have specified an override for the file that RPG will open, that override will

be in effect. In the following code, for the file named INPUT within the RPG

program, the file that is opened at runtime depends on the value of the filename

field.

 Finput if e disk extfile(filename) remote

If the filename field has the value MYLIB/MYFILE at runtime, RPG will open the

file MYLIB/MYFILE. If the command OVRDBF MYFILE OTHERLIB/OTHERFILE

has been used, the actual file opened will be OTHERLIB/OTHERFILE. Note that

any overrides for the name INPUT will be ignored, since INPUT is only the name

used within the RPG source member.

EXTMBR(membername)

The EXTMBR keyword specifies which member of the file is opened. You can

specify a member name, ’*ALL’, or ’*FIRST’. Note that ’*ALL’ and ’*FIRST’ must

be specified in quotes, since they are member ″names″, not RPG special words. The

value can be a literal or a variable. The default is ’*FIRST’.

The name must be in the correct case. For example, if you specify

 EXTMBR(mbrname) and variable mbrname has the value ’mbr1’, the member will not

be found. Instead, it should have the value ’MBR1’.

If a variable name is used, it must be set before the file is opened. For files that are

opened automatically during program initialization, the variable must be set in one

of the following ways:

v Using the INZ keyword on the D specification

v Passing the value in as an entry parameter

Chapter 17. File Description Specifications 247

FORMLEN(number)

Use the FORMLEN keyword to specify the form length of a PRINTER file. The

form length must be greater than or equal to 1 and less than or equal to 255. The

parameter specifies the exact number of lines available on the form or page to be

used. When the number of lines matches the FORMLEN, an automatic form feed is

inserted.

IGNORE(recformat{:recformat...})

The IGNORE keyword lets you ignore a record format from an externally

described file. The external name of the record format to be ignored is specified as

the parameter recformat. One or more record formats can be specified, separated

by colons (:). The program runs as if the specified record format(s) did not exist.

All other record formats contained in the file will be included.

When the IGNORE keyword is specified for a file, the INCLUDE keyword cannot

be specified.

INCLUDE(recformat{:recformat...})

The INCLUDE keyword specifies those record format names that are to be

included. All other record formats contained in the file will be ignored. Multiple

record formats can be specified, separated by colons (:).

When the INCLUDE keyword is specified for a file, the IGNORE keyword cannot

be specified.

INFDS(DSname)

The INFDS keyword lets you define and name a data structure to contain the

feedback information associated with the file. The data structure name is specified

as the parameter for INFDS. If INFDS is specified for more than one file, each

associated data structure must have a unique name. An INFDS can only be defined

in the main source section.

INFSR(SUBRname)

The file exception/error subroutine specified as the parameter to this keyword may

receive control following file exception/errors. The subroutine name may be *PSSR,

which indicates the user defined program exception/error subroutine is to be

given control for errors on this file.

The INFSR keyword cannot be specified if the file is to be accessed by a

subprocedure

PLIST(Plist_name)

PLIST supplies, as its parameter, the name of the parameter list to be passed to the

program for the SPECIAL file. The procedure is specified using the

PROCNAME(proc_name) keyword. This entry is valid only when the device

specified (positions 36 to 42) in the file-description line is SPECIAL. The

parameters identified by this entry are added to the end of the parameter list

passed by the program.

248 VisualAge RPG Language Reference

PREFIX(prefix{:nbr_of_char_replaced})

The PREFIX keyword is used to partially rename the fields in an

externally-described file. The character string or character literal specified is

prefixed to the names of all fields defined in all records of the file specified in

positions 7–16. In addition, you can optionally specify a numeric value to indicate

the number of characters, if any, in the existing name to be replaced. If the

’nbr_of_char_replaced’ is not specified, then the string is attached to the beginning

of the name.

If the ’nbr_of_char_replaced’ is specified, it must be a numeric constant containing

a value between 0 and 9 with no decimal places. For example, the specification

PREFIX(YE:3) would change the field name ’YTDTOTAL’ to ’YETOTAL’.

Specifying a value of zero is the same as not specifying ’nbr_of_char_replaced’ at

all.

Rules:

v To explicitly rename a field on an Input specification when the PREFIX

keyword has been specified for a file you must choose the correct field name to

specify for the External Field Name (positions 21 - 30) of the Input specification.

The name specified depends on whether the prefixed name has been used prior

to the rename specification.

– If there has been a prior reference made to the prefixed name, the prefixed

name must be specified.

– If there has not been a prior reference made to the prefixed name, the external

name of the input field must be specified.

Once the rename operation has been coded then the new name must be used to

reference the input field. For more information, see External Field Name of the

Input specification.

v The total length of the name after applying the prefix must not exceed the

maximum length of a VisualAge RPG field name.

v The number of characters in the name to be prefixed must not be less than or

equal to the value represented by the ’nbr_of_char_replaced’ parameter. That is,

after applying the prefix, the resulting name must not be the same as the prefix

string.

v If the prefix is a character literal, it can end in a period. In this case, the field

names must all be subfields of the same qualified data structure.

v If the prefix is a character literal, it must be uppercase.

Examples:

The following example uses prefix ’MYDS.’ to associate the fields in MYFILE with

the subfields of qualified data structure MYDS.

 Fmyfile if e disk prefix(’MYDS.’) remote

 D myds e ds qualified extname(myfile)

The next example uses prefix ’MYDS.F2’:3 to associate the fields in MYFILE with

the subfields of qualified data structure MYDS. The subfields themselves are

further prefixed by replacing the first three characters with ’F2’. The fields used by

this file will be MYDS2.F2FLD1 and MYDS2.F2FLD2. (Data structure MYDS2 must

be defined with a similar prefix. However, it is not exactly the same, since it does

not include the data structure name.)

 A R REC

 A ACRFLD1 10A

 A ACRFLD2 5S 0

Chapter 17. File Description Specifications 249

|
|
|
|
|
|
|
|
|

|
|
|

Fmyfile2 if e disk prefix(’MYDS2.F2’:3) remote

 D myds2 e ds qualified extname(myfile)

 D prefix(’F2’:3)

PROCNAME(proc_name)

When SPECIAL is the device entry (positions 36 through 42), the user-supplied

code module specified as the parameter to PROCNAME handles the support for

the special I/O device. See “Positions 36-42 (Device)” on page 242 and

“PLIST(Plist_name)” on page 248 for more information.

PRTCTL(data_struct{:*COMPAT})

The PRTCTL keyword specifies the use of dynamic printer control. The data

structure specified as the parameter data_struct refers to the forms control

information and line count value. The PRTCTL keyword is valid only for a

program described file.

The optional parameter *COMPAT indicates that the data structure layout is

compatible with RPG III. If *COMPAT not specified, the extended length data

structure must be used.

Extended Length PRTCTL Data Structure

A minimum of 15 bytes is required for this data structure. The layout of the

PRTCTL data structure is as follows:

 Data Structure

Positions

Subfield Contents

1-3 A three-position character field that contains the space-before value

(blank or 0-255)

4-6 A three-position character field that contains the space-after value

(blank or 0-255)

7-9 A three-position character field that contains the skip-before value

(valid entries: blank or 1-255)

10-12 A three-position character field that contains the skip-after value (blank

or 1-255)

13-15 A three-digit numeric (zoned decimal) field with zero decimal positions

that contains the current line count value.

*COMPAT PRTCTL Data Structure

 Data Structure

Positions

Subfield Contents

1 A one-position character field that contains the space-before value (blank

or 0-3)

2 A one-position character field that contains the space-after value (valid

entries: blank or 0-3)

3-4 A two-position character field that contains the skip-before value (blank,

1-99, A0-A9 for 100-109, B0-B2 for 110-112)

5-6 A two-position character field that contains the skip-after value (blank,

1-99, A0-A9 for 100-109, B0-B2 for 110-112)

7-9 A three-digit numeric (zoned decimal) field with zero decimal positions

that contains the current line count value.

The values in the first four subfields of the extended length data structure are the

same as those allowed in positions 40 through 51 (space and skip entries) of the

output specifications. If the space and skip entries (positions 40 through 51) of the

output specifications are blank, and if subfields 1 through 4 are also blank, the

250 VisualAge RPG Language Reference

default is to space 1 after. If the PRTCTL option is specified, it is used only for the

output records that have blanks in positions 40 through 51. You can control the

space and skip value (subfields 1 through 4) for the PRINTER file by changing the

values in these subfields while the program is running.

Subfield 5 contains the current line count value. The VisualAge RPG compiler does

not initialize subfield 5 until after the first output line is printed. The VisualAge

RPG compiler then changes subfield 5 after each output operation to the file.

PRTFMT(*SYS | *TEXT)

The PRTFMT keyword with parameter *SYS can be used for printer files to specify

the application should perform output to the printer through a device context and

graphics device interface calls to the operating system, instead of the default raw

text output.

After opening the printer file, the device context handle is copied to positions 81 to

84 of the printer file INFDS, for the application to reference in making it’s own

Windows GDI calls.

The default is *TEXT, where the application’s text data is output directly.

Note: PRTFMT does not apply when compiling to JAVA.

RCDLEN(fieldname)

The RCDLEN keyword can be used for local DISK files. The field name parameter

must be numeric with zero decimal places. For input files, the field name contains

the length of the record that was read. For output files, the field name specifies the

length of the record to be written. The record length specified in positions 23-27

defines the maximum field length. The RCDLEN must be less than or equal to this

record length. The smallest record length that can be written to is zero. If the value

specified with RECLEN is less than zero, it is rounded up to zero.

If the RCDLEN keyword is present, the file is treated as if it contains variable

length records. If the keyword is not present, the file is treated as if it contains

fixed length records.

Note: If the RCDLEN field is set on output, it overrides the length of any data

structure being used.

RECNO(fieldname)

This keyword is optional for DISK files to be processed by relative-record number.

The RECNO keyword must be specified for output files processed by

relative-record number, output files that are referenced by a random WRITE

calculation operation, or output files that are used with ADD on the output

specifications.

Note: If you do not specify the RECNO keyword, records blocking occurs.

The RECNO keyword can be specified for input/update files. The relative-record

number of the record retrieved is placed in the ’fieldname’, for all operations that

reposition the file (such as READ, SETLL, or OPEN). It must be defined as numeric

with zero decimal positions. The field length must be sufficient to contain the

longest record number for the file.

Chapter 17. File Description Specifications 251

When the RECNO keyword is specified for input or update files with file-addition

(’A’ in position 20), the value of the fieldname parameter must refer to a

relative-record number of a deleted record, for the output operation to be

successful.

Note: The RECNO keyword is ignored if you are writing (WRITE) to a local file.

REMOTE

The REMOTE keyword specifies that the disk device resides on an iSeries server.

RENAME(Ext_format:Int_format)

The RENAME keyword allows you to rename record formats in an externally

described file. The external name of the record format that is to be renamed is

entered as the Ext_format parameter. The Int_format parameter is the name of the

record as it is used in the program. The external name is replaced by this name in

the program.

To rename all fields by adding a prefix, use the PREFIX keyword.

TIMFMT(format{separator})

The TIMFMT keyword allows the specification of a default external time format

and a default separator (which is optional) for all time fields in the program

described fields. If the file, on which this keyword is specified, is indexed and the

keyfield is a time, then the time format specified also provides the default format

for the keyfield. The file can either be local or remote.

You can specify a different external format for individual input or output time

fields in the file by specifying a time format/separator for the field on the

corresponding input specification (positions 31-35)or output specification (positions

53–57).

See Table 18 on page 136 for valid format and separators. For more information on

external formats see “Internal and External Formats” on page 103

USROPN

The USROPN keyword causes the file not to be opened at program initialization.

This gives the programmer control of the file’s first open. The file must be

explicitly opened using the OPEN operation in the calculation specifications. This

keyword is not valid for input files designated as table files.

The USROPN keyword is required for programmer control of the first file opening.

For example, if a file is opened and later closed by the CLOSE operation, the file

can be reopened (using the OPEN operation) without having specified the

USROPN keyword on the file description specification.

252 VisualAge RPG Language Reference

File Types and Processing Methods

The following table shows the valid entries for positions 28, 34, and 35 of the

file-description specifications for the various file types and processing methods.

The methods of disk file processing include:

v Relative-record-number processing

v Consecutive processing

v Sequential-by-key processing

v Random-by-key processing

Note: Local DISK files can only be processed sequentially or by relative record.

 Table 28. Processing Methods for DISK Files

Access Method Opcode

Position

28

Position

34

Position

35 Explanation

Random RRN CHAIN Blank Blank Blank Access by

physical order

of records

Sequential Key READ

READE

READP

READPE

Blank K Blank Access by key

sequentially

Sequential RRN READ Blank Blank Blank Access

sequentially

Random Key CHAIN Blank K Blank Access by key

randomly

Chapter 17. File Description Specifications 253

254 VisualAge RPG Language Reference

Chapter 18. Definition Specifications

Definition Specifications can be used to define data structures, data-structure

subfields, prototypes, procedure interfaces, prototyped parameters, standalone

fields, named constants, and message windows.

Depending on where the definition occurs, there are differences both in what can

be defined and also the scope of the definition. Specify the type of definition in

positions 24 through 25, as follows:

Entry Definition Type

Blank A data structure subfield or parameter definition

C Named constant

DS Data structure

PI Procedure interface

PR Prototype

S Standalone field

Definitions of data structures, prototypes, and procedure interfaces end with the

first definition specification with non-blanks in positions 24-25, or with the first

specification that is not a definition specification.

Definition specifications can appear in two places within a module or program: in

the main source section and in a subprocedure. Within the main source section,

you define all global definitions. Within a subprocedure, you define the procedure

interface and its parameters as required by the prototype. You also define any local

data items that are needed by the prototyped procedure when it is processed. Any

definitions within a prototyped procedure are local. They are not known to any

other procedures (including the main procedure). For more information on the

structure of the main source section and how the placement of definitions affects

scope, see “Placement of Definitions and Scope” on page 256.

On the definition specification, arrays and tables can be defined as either a

data-structure subfield or a standalone field. For additional information on

defining and using arrays and tables, see Chapter 12, “Using Arrays and Tables,”

on page 171.

Built-in functions (BIF) can be specified on definition specifications in the keyword

field as a parameter to a keyword. A built-in function is allowed on the definition

specification only if the values of all arguments are known at compile-time. All

arguments for a BIF must be defined earlier in the specifications when specified as

parameters for the definition specification keywords DIM, OCCURS, OVERLAY,

and PERRCD. For further information on using built-in functions, see “Built-In

Functions (Alphabetically)” on page 405.

For further information on data structures, constants, data types, and data formats,

see Chapter 9, “Data Types and Data Formats,” on page 103, Chapter 11, “Data

Structures,” on page 157, and Chapter 10, “Literals and Named Constants,” on

page 149. For more information on prototypes, see “Prototypes and Parameters” on

page 71.

© Copyright IBM Corp. 1994, 2005 255

Placement of Definitions and Scope

Depending on where a definition occurs, it will have different scope. Scope refers

to the range of source lines where a name is known. There are two types of scope:

global and local. Figure 86 shows how the placement of definitions in a module is

related to scope. Figure 87 on page 257 shows the layout of the main source section

for each possible compilation target: component, NOMAIN DLL, or EXE.

Global
Scope

Local
Scope

Local
Scope

Subprocedure 1

Subprocedure 2

Program Data - part of main source section

Main Source Section

*MODULE

Figure 86. Scope of Definitions

256 VisualAge RPG Language Reference

In general, all items that are defined in the main source section are global, and

therefore, known throughout the module. Global definitions are definitions that

can be used by both the statements in the main procedure and any subprocedures

within the module.

Items in a subprocedure, on the other hand, are local. Local definitions are

definitions that are known only inside that subprocedure. If an item is defined

with the same name as a global item, then any references to that name inside the

subprocedure will use the local definition.

However, note the following exceptions:

v Subroutine names and tag names are known only to the procedure in which

they are defined. This includes subroutine or tag names that defined in the main

procedure.

v All fields specified on input and output specifications are global. For example, if

a subprocedure does an operation using a record format, say a WRITE

H
F
D
I
O

P
P
P

COMPONENT - - Omit the NOMAIN and EXE keywords
from the Control Specification

H
F
D
I
C
C
C
O

P
P
P

Action Subroutines
User subroutines

Procedures follow the
action and user
subroutines

NOMAIN DLL - - Specify the NOMAIN keyword
on the Control Specification

Main Source
Section

Global
Definitions

Main Source Section
with

Global Definitions

EXE - - Specify the EXE keyword
on the Control Specification

H
F
D
I
O

P
P
P
P
P

Main Source Section
with

Global Definitions

One of these
is the

Main Procedure

Figure 87. Main Source Section for Each Compilation Target

Chapter 18. Definition Specifications 257

operation, the global fields will be used even if there are local definitions with

the same names as the record format fields. This rule also applies to the READ

and WRITE of windows.

Sometimes you may have a mix of global and local definitions. For example,

KLISTs and PLISTs can be global or local. The fields associated with global KLISTs

and PLISTs contain only global fields. The fields associated with local KLISTs and

PLISTs can contain both global and local fields. For more information on the

behavior of KLISTs and KFLDs inside subprocedures, see “Scope of Definitions” on

page 66.

Storage of Definitions

Local definitions use automatic storage. Automatic storage is storage that exists

only for the duration of the call to the procedure. Variables in automatic storage do

not save their values across calls.

Global definitions, on the other hand, use static storage. Static storage is storage

that has a constant location in memory for all calls of a program or procedure. It

keeps its value across calls.

Specify the STATIC keyword to indicate that a local field definition use static

storage, in which case it will keep its value on each call to the procedure. If the

keyword STATIC is specified, the item will be initialized at module initialization

time.

Using automatic storage reduces the amount of storage that is required at run time

by the program. The storage is reduced largely because automatic storage is only

allocated while the procedure is running. On the other hand, all static storage

associated with the program is allocated when the program starts, even if no

procedure using the static storage is ever called.

258 VisualAge RPG Language Reference

Definition Specification Statement

The general layout for the definition specification is as follows:

v The definition specification type (D) is entered in position 6

v The non-commentary part of the specification extends from position 7 to

position 80

– The fixed-format entries extend from positions 7 to 42

– The keyword entries extend from positions 44 to 80
v The comments section of the specification extends from position 81 to position

100

Definition-Specification Keyword Continuation Line

If additional space is required for keywords, the keywords field can be continued

on subsequent lines as follows:

v Position 6 of the continuation line must contain a D

v Positions 7 to 43 of the continuation line must be blank

v The specification continues on or past position 44

Definition Specification Continued Name Line

A name that is up to 15 characters long can be specified in the Name entry of the

definition specification without requiring continuation. Any name (even one with

15 characters or fewer) can be continued on multiple lines by coding an ellipsis (...)

at the end of the partial name. A name definition consists of the following parts:

1. Zero or more continued name lines. Continued name lines are identified as

having an ellipsis as the last non-blank character in the entry. The name must

begin within positions 7 to 21 and may end anywhere up to position 77 (with

an ellipsis ending in position 80). There cannot be blanks between the start of

the name and the ellipsis character. If any of these conditions is not true, the

line is parsed as a main definition line.

2. One main definition line, containing a name, definition attributes, and

keywords. If a continued name line is coded, the Name entry of the main

definition line may be left blank.

3. Zero or more keyword continuation lines.

Position 6 (Form Type)

A D must be entered in this position for definition specifications.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 88. Definition Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

D.....................................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 89. Definition-Specification Keyword Continuation Line Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

DContinuedName+++Comments++++++++++++

Figure 90. Definition Specification Continued Name Line Layout

Chapter 18. Definition Specifications 259

Positions 7-21 (Name)

Entry Explanation

Name The name of the data structure, data-structure subfield, standalone field,

named constant, local program, and parameters for the local program to be

defined.

Blank Specifies filler fields in data-structure subfield definitions, or an unnamed

data structure in data-structure definitions.

 Use positions 7-21 to specify the name of the data item being defined. The name

can begin in any position in the space provided. Indenting can be used to indicate

the shape of data in data structures.

For continued name lines, a name is specified in positions 7 through 80 of the

continued name lines and positions 7 through 21 of the main definition line. As

with the traditional definition of names, case of the characters is not significant.

For an externally-described subfield, a name specified here replaces the

external-subfield name specified on the EXTFLD keyword.

For a prototype parameter definition, the name entry is optional. If a name is

specified, the name is ignored. (A prototype parameter is a definition specification

with blanks in positions 24-25 that follows a PR specification or another prototype

parameter definition.)

If you are defining a prototype and the name specified in positions 7-21 cannot

serve as the external name of the procedure, use the EXTPROC keyword to specify

the valid external name. For example, the external name may be required to be in

lower case, because you are defining a prototype for a procedure written in C.

Position 22 (External Description)

This position identifies a data structure or data-structure subfield as externally

described. If a data structure or subfield is not defined on this specification, then

this field must be left blank.

Entry Explanation for Data Structures

E Identifies a data structure as externally described: subfield definitions are

defined externally. If the EXTNAME keyword is not specified, positions

7-21 must contain the name of the externally described file containing the

data structure definition.

Blank Program described: subfield definitions for this data structure follow this

specification.

Entry Explanation for Subfields

E Identifies a data-structure subfield as externally described. The

specification of an externally-described subfield is necessary only when

keywords such as EXTFLD and INZ are required.

Blank Program described: the data-structure subfield is defined on this

specification line.

Position 23 (Type of Data Structure)

This entry is used to identify the type of data structure being defined. If a data

structure is not being defined, this entry must be left blank.

260 VisualAge RPG Language Reference

Entry Explanation

Blank The data structure being defined is not a program status or data-area data

structure; or a data structure is not being defined on this specification.

S Program status data structure. Only one data structure may be designated

as the program status data structure.

U Data-area data structure. The data area is retrieved at initialization and is

rewritten at the end of the program:

v If the DTAARA keyword is specified, the parameter to the DTAARA

keyword is used as the name of the external data area. If the name is a

variable, the value must be set before the program begins. This can be

done by:

– Passing the variable as a parameter.

– Explicitly initializing the variable with the INZ keyword.

– Sharing the variable with another module using the IMPORT and

EXPORT |keywords, and ensuring the value is set prior to the call.
v If the DTAARA keyword is not specified, the name in positions 7-21 is

used as the name of the external data area.

Positions 24-25 (Type of Definition)

 Entry Explanation

Blank The specification defines a data structure subfield or a parameter

within a prototype or procedure interface definition.

C (in column 24) The specification defines a constant. Position 25 must be blank.

DS The specification defines a data structure.

M (in column 24) The specification defines a message window for use with the

DSPLY operation code. Position 25 must be blank.

PI The specification defines a procedure interface, and the return

value if any.

PR The specification defines a prototype for a call to a local EXE,

CMD, or BAT file. The PR specification is followed by zero or

more parameter definitions (a blank in positions 24-25), indicating

the number and type of parameters required by the program. A

prototype definition ends with the first definition specification

with non-blanks in positions 24-25, or with the first specification

that is not a definition specification.

S (in column 24) The specification defines a standalone field, array or table.

Standalone fields allow you to define individual work fields,

without requiring the definition of a data structure. The following

is allowed for standalone fields:

v A standalone field has a specifiable internal data type.

v A standalone field may be defined as an array, table or field.

v Only length notation is allowed.

Definitions of data structures, prototypes, and procedure interfaces end with the

first definition specification with non-blanks in positions 24-25, or with the first

specification that is not a definition specification.

Named constant and standalone-field definition specifications may not be included

within definition specifications for a data structure and its subfields.

For a list of valid keywords, grouped according to type of definition, see

“Summary According to Definition Specification Type” on page 295.

Chapter 18. Definition Specifications 261

Positions 26-32 (From Position)

Positions 26-32 may only contain an entry if the location of a subfield within a

data structure is being defined.

Entry Explanation

Blank A blank FROM position indicates that the value in the TO/LENGTH field

specifies the length of the subfield, or that a subfield is not being defined

on this specification line.

nnnnnnn

Absolute starting position of the subfield within a data structure. The value

specified must be from 1 to 65535 for a named data structure (and from 1

to 9999999 for an unnamed data structure), and right-justified in these

positions.

Reserved Words

Reserved words for the program status data structure or for a file

information data structure are allowed (left-justified) in the

FROM-TO/LENGTH fields (positions 26-39). These special reserved words

define the location of the subfields in the data structures. Reserved words

for the program status data structure are *STATUS, *PROC, *PARM, and

*ROUTINE. Reserved words for the file information data structure (INFDS)

are *FILE, *RECORD, *OPCODE, *STATUS, and *ROUTINE.

Positions 33-39 (To Position/Length)

Entry Explanation

Blank If positions 33-39 are blank:

v A named constant is being defined on this specification line, or

v The standalone field or subfield is being defined LIKE another field, or

v The standalone field or subfield is of a type where a length is implied,

or,

v The subfield’s attributes are defined elsewhere, or

v A data structure is being defined. The length of the data structure is the

maximum value of the subfield To-Positions. The data structure may be

defined using the LIKEDS or LIKEREC keyword.

nnnnnnn

Positions 33-39 may contain a (right-justified) numeric value, from 1 to

65535 for a named data structure (and from 1 to 9999999 for an unnamed

data structure), as follows:

v If the From field (position 26-32) contains a numeric value, then a

numeric value in this field specifies the absolute end position of the

subfield within a data structure.

v If the From field is blank, a numeric value in this field specifies :

– The length of the entire data structure, or

– The length of the standalone field, or

– the length of the parameter, or

– The length of the subfield.

Within the data structure, this subfield is positioned such that its

starting position is greater than the maximum to-position of all

previously defined subfields in the data structure. Padding is inserted

if the subfield is defined with type basing pointer or procedure

pointer to ensure that the subfield is aligned properly.

262 VisualAge RPG Language Reference

Note: For graphic or UCS-2 fields, the number specified here is the

number of graphic or UCS-2 characters, NOT the number of bytes

(1 graphic or UCS-2 character = 2 bytes). For numeric fields, the

number specified here is the number of digits (for packed and

zoned numeric fields: 1-31; for binary numeric fields: 1-9; for

integer and unsigned numeric fields: 3, 5, 10, or 20).

+|-nnnnn

This entry is valid for standalone fields or subfields defined using the

LIKE keyword. The length of the standalone field or subfield being defined

on this specification line is determined by adding or subtracting the value

entered in these positions to the length of the field specified as the

parameter to the LIKE keyword.

Note: For graphic or UCS-2 fields, the number specified here is the

number of graphic or UCS-2 characters, NOT the number of bytes (1

graphic or UCS-2 character = 2 bytes). For numeric fields, the

number specified here is the number of digits.

Reserved Words

If positions 26-32 are used to enter special reserved words, this field

becomes an extension of the previous one, creating one large field

(positions 26-39). This allows for reserved words, with names longer than 7

characters in length, to extend into this field. See “Positions 26-32 (From

Position)” on page 262.

Position 40 (Internal Data Type)

This entry allows you to specify how a standalone field or data-structure subfield

is stored internally. This entry pertains strictly to the internal representation of the

data item being defined, regardless of how the data item is stored externally (that

is, if it is stored externally). To define variable-length character, graphic, and UCS-2

formats, you must specify the keyword VARYING; otherwise, the format will be

fixed length.

Entry Explanation

Blank If the LIKE keyword is not specified: the item is being defined as character

if the decimal positions entry is blank. If the decimal positions entry is not

blank, the item is defined as packed numeric if it is a standalone field, or

as zoned numeric if it is a subfield.

Note: The entry must be blank whenever the LIKE, LIKEDS and LIKEREC

keywords are specified.

A Character (Fixed or Variable-length format)

N Character (Indicator format)

C UCS-2 (Fixed or Variable-length format)

G Graphic (Fixed or Variable-length format)

T Time

D Date

Z Timestamp

O Object

P Numeric (Packed decimal format)

Chapter 18. Definition Specifications 263

B Numeric (Binary format)

I Numeric (Integer format)

S Numeric (Zoned format)

U Numeric (Unsigned format)

F Numeric (Float format)

O Object (for Java™ applications only)

* Basing pointer or procedure pointer

Positions 41-42 (Decimal Positions)

Positions 41-42 are used to indicate the number of decimal positions in a numeric

subfield or standalone field. If the field is numeric, there must always be an entry

in these positions; if there are no decimal positions, enter a 0.

Entry Explanation

Blank The value is not numeric or has been defined with the LIKE keyword.

0-31 Decimal positions: the number of positions to the right of the decimal in a

numeric field.

This entry can only be supplied in combination with the TO/Length field. If the

TO/Length field is blank, the value of this entry is defined somewhere else in the

program (for example, through an externally described database file).

Position 43 (Reserved)

Position 43 must be blank.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for definition-specification keywords. Keywords are

used to describe and define data and its attributes. See “Definition-Specification

Keywords” for a description of each keyword.

Use this area to specify any keywords necessary to fully define the field.

Definition-Specification Keywords

Definition-specification keywords can have no parameters, optional parameters, or

required parameters. The syntax for keywords is as follows:

 Keyword(parameter1 : parameter2)

where:

v Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.

v Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are

optional and which are required:

v Braces { } indicate optional parameters or optional elements of parameters.

v An ellipsis (...) indicates that the parameter can be repeated.

v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are

enclosed in braces.

264 VisualAge RPG Language Reference

v A vertical bar (|) indicates that only one parameter may be specified for the

keyword.

v A blank separating keyword parameters indicates that one or more of the

parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and

should not be entered into your source.

If additional space is required for keywords, the keyword field can be continued

on subsequent lines. See “Definition-Specification Keyword Continuation Line” on

page 259 and “Definition Specification Keyword Field” on page 218.

ALIGN

The ALIGN keyword is used to align float, integer, and unsigned subfields. When

ALIGN is specified, 2-byte subfields are aligned on a 2-byte boundary, 4-byte

subfields are aligned on a 4-byte boundary and 8-byte subfields are aligned on an

8-byte boundary. Alignment may be desired to improve performance when

accessing float, integer, or unsigned subfields.

Specify ALIGN on the data structure definition. However, you cannot specify

ALIGN for either the file information data structure (INFDS) or the program status

data structure (PSDS).

Alignment occurs only to data structure subfields defined with length notation and

without the keyword OVERLAY. A diagnostic message is issued if subfields that

are defined either with absolute notation or using the OVERLAY keyword are not

properly aligned.

Pointer subfields are always aligned on a 4-byte boundary whether or not ALIGN

is specified.

See “Aligning Data Structure Subfields” on page 160 for more information.

ALT(array_name)

The ALT keyword indicates that the compile-time array, pre-runtime array, or table

is in alternating format.

The array defined with the ALT keyword is the alternating array and the array

name specified as the parameter is the main array. The alternate array definition

may precede or follow the main array definition.

The keywords on the main array define the loading for both arrays. The

initialization data is in alternating order, beginning with the main array, as follows:

main/alt/main/alt/...

In the alternate array definition, the PERRCD, FROMFILE, TOFILE, and CTDATA

keywords are not valid.

ASCEND

The ASCEND keyword describes the sequence of the data in an array or table

loaded at pre-runtime or compile time. See “DESCEND” on page 269.

Chapter 18. Definition Specifications 265

Ascending sequence means that the array or table entries must start with the

lowest data entry (according to the default ASCII collating) and go to the highest.

Items with equal value are allowed.

A pre-runtime array or table is checked for the specified sequence at the time the

array or table is loaded with data. If the array or table is out of sequence, control

passes to the exception/error handling routine. A run-time array (loaded by input

and/or calculation specifications) is not sequence checked.

A sequence (ascending or descending) must be specified if the LOOKUP operation,

%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table

for an entry to determine whether the entry is high or low compared to the search

argument.

If the SORTA operation code is used with an array, and no sequence is specified,

an ascending sequence is assumed.

BASED(basing_pointer_name)

When the BASED keyword is specified for a data structure or standalone field, a

basing pointer is created using the name specified as the keyword parameter. This

basing pointer holds the address (storage location) of the based data structure or

standalone field being defined. In other words, the name specified in positions 7-21

is used to refer to the data stored at the location contained in the basing pointer.

Note: Before the based data structure or standalone field can be used, the basing

pointer must be assigned a valid address.

If an array is defined as a based standalone field it must be a run-time array.

If a based field is defined within a subprocedure, then both the field and the

basing pointer are local.

266 VisualAge RPG Language Reference

BUTTON(button1:button2....)

The BUTTON keyword defines the buttons on the message window that are

specified in Factor 2 of the DSPLY operation code. You can specify a maximum of

3 button parameters per keyword. The valid button combinations are:

 *OK *OK: *CANCEL *RETRY: *CANCEL

*YESBUTTON: *NOBUTTON *RETRY: *ABORT: *IGNORE *YESBUTTON: *NOBUTTON:

*CANCEL

This keyword cannnot be used if the MSGDATA, MSGNBR, or MSGTEXT

keywords are used.

CCSID(number | *DFT)

This keyword sets the CCSID for graphic and UCS-2 definitions.

number must be an integer between 0 and 65535. It must be a valid graphic or

UCS-2 CCSID value. Valid UCS-2 CCSIDs are 13488 and 17584.

For program-described fields, CCSID(number) overrides the defaults set on the

control specification with the CCSID(*GRAPH: *SRC), CCSID(*GRAPH: number),

or CCSID(*UCS2: number) keyword.

CCSID(*DFT) indicates that the default CCSID for the module is to be used. This is

useful when the LIKE keyword is used since the new field would otherwise inherit

the CCSID of the source field.

If the keyword is not specified, the default graphic or UCS-2 CCSID of the module

is assumed. (This keyword is not allowed for graphic fields when CCSID(*GRAPH

: *IGNORE) is specified or assumed).

If this keyword is not specified and the LIKE keyword is specified, the new field

will have the same CCSID as the LIKE field.

CLASS(*JAVA:class_name)

This keyword indicates the class for an object definition.

To declare fields that can store objects, specify O in column 40 of the

D-specification and use the CLASS keyword to provide the class of the object. The

CLASS keyword requires two parameters:

CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. class_name specifies the class of the

object. The class name must be a character literal and fully qualify the Java class.

The class name is case sensitive.

Fields of type O cannot be defined as subfields of data structures. It is possible to

have arrays of type O fields, but tables of type O are not allowed because tables

have to be preloaded at run time.

The following keywords cannot be used with the CLASS keyword:

Chapter 18. Definition Specifications 267

ALIGN, ALT, ASCEND, BASED, BUTTON, CLTPGM, CONST, CTDATA, DATFMT,

DESCEND, DTAARA, EXTFLD, EXTFMT, EXTNAME, FROMFILE, INZ, LINKAGE,

MSGDATA, MSGNBR, MSGTEXT, MSGTITLE, NOOPT, NOWAIT, OCCURS, OPTIONS,

OVERLAY, PACKEVEN, PERRCD, PREFIX, PROCPTR, STYLE, TIMFMT, TOFILE,

VALUE, VARYING

For more information on calling Java methods and examples, see the Programming

with VisualAge RPG manual.

CLTPGM(program name)

The CLTPGM keyword is used to specify the name of the local program called by

the VisualAge RPG program, using the CALLP operation.

The local program that is called can be an EXE, a PIF, a COM, or a BAT file.

The default extension is EXE.

Note: A definition specification must be coded for each parameter.

CONST(constant)

The CONST keyword is used to specify the value of a named constant. This

keyword is optional (the constant value can be specified with or without the

CONST keyword), and is only valid for named constant definitions (C in position

24).

The parameter must be a literal, figurative constant, or built-in-function. The

constant may be continued on subsequent lines by adhering to the appropriate

continuation rules. See “Continuation Rules” on page 215.

If a named constant is used as a parameter for the keywords DIM, OCCURS,

PERRCD, or OVERLAY, the named constant must be defined prior to its use.

When specifying a read-only reference parameter, you specify the keyword CONST

on the definition specification of the parameter definition on both the prototype

and procedure interface. No parameter to the keyword is allowed.

When the keyword CONST is specified, the compiler may copy the parameter to a

temporary and pass the address of the temporary. Some conditions that would

cause this are: the passed parameter is an expression or the passed parameter has a

different format.

Attention!

Do not use this keyword on a prototype definition unless you are sure that

the parameter will not be changed by the called program or procedure.

If the called program or procedure is compiled using a procedure interface

with the same prototype, you do not have to worry about this, since the

compiler will check this for you.

Although a CONST parameter cannot be changed by statements within the

procedure, the value may be changed as a result of statements outside of the

procedure, or by directly referencing a global variable.

268 VisualAge RPG Language Reference

Passing a parameter by constant value has the same advantages as passing by

value. In particular, it allows you to pass literals and expressions.

CTDATA

The CTDATA keyword indicates that the array or table is loaded using

compile-time data. The data is specified at the end of the program following the **

or **CTDATA(array/table name) specification.

When an array or table is loaded at compilation time, it is compiled along with the

source program and included in the program. Such an array or table does not need

to be loaded separately every time the program is run.

DATFMT(format{separator})

The DATFMT keyword specifies the internal date format for a Date field and

optionally the separator character. This keyword is automatically generated for an

externally described data structure subfield of type Date and determined at

compile time.

This keyword can be used when defining CALLP parameters.

See “DATFMT(fmt{separator})” on page 227.

The hierarchy used when determining the internal format and separator for a date

array or field is:

1. From the DATFMT keyword specified on the definition specification

2. From the DATFMT keyword specified in the control specification

3. *ISO

DESCEND

The DESCEND keyword describes the sequence of the data in an array or table

loaded at pre-runtime or compile time. See “ASCEND” on page 265.

Descending sequence means that the array or table entries must start with the

highest data entry (according to the collating sequence) and go to the lowest. Items

with equal value are allowed.

A pre-runtime array or table is checked for the specified sequence at the time the

array or table is loaded with data. If the array or table is out of sequence, control

passes to the exception/error handling routine. A run-time array (loaded by input

and/or calculation specifications) is not sequence checked.

A sequence (ascending or descending) must be specified if the LOOKUP operation,

%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table

for an entry to determine whether the entry is high or low compared to the search

argument.

If the SORTA operation code is used with an array, and no sequence is specified,

an ascending sequence is assumed.

DIM(numeric_constant)

The DIM keyword defines the number of elements in an array, table, a prototyped

parameter, array data structure, or a return value on a prototype or

procedure-interface definition.

Chapter 18. Definition Specifications 269

The numeric constant must have zero (0) decimal positions. It can be a literal, a

named constant or a built-in function.

The constant value does not need to be known at the time the keyword is

processed, but the value must be known at compile-time.

This keyword can be used when defining CALLP parameters.

When DIM is specified on a data structure definition, the data structure must be a

qualified data structure, and subfields must be referenced as fully qualified names,

i.e. "dsname(x).subf″. Other array keywords, such as CTDATA, FROMFILE,

TOFILE, and PERRCD are not allowed with an array data structure definition.

DLL(name)

The DLL keyword, together with the LINKAGE keyword, is used to prototype a

procedure that calls functions in Windows® DLLs, including Windows APIs.

The following example shows how to code the prototype and call to the Windows

API GetCurrentDirectory:

The A in the external procedure name (GetCurrentDirectoryA) indicates that the

single-byte version of the DLL is being called. To call the unicode version, specify a

W.

DTAARA{(*VAR:)data_area_name}

The DTAARA keyword is used to associate a standalone field, data structure,

data-structure subfield, or data-area data structure with an external data area. The

DTAARA keyword has the same function as the *DTAARA DEFINE operation

code. See “Defining a Field as a Data Area” on page 548.

If data_area_name is not specified then the name specified in positions 7-21 is also

the data area name. If data_area_name is specified, then it must be a data area

name.

If data_area_name is not specified, then the name specified in positions 7-21 is also

the name of the external data area.

If the parameter is not specified, then the data-structure name must be.

If *VAR is not specified, the data_area_name parameter can be either a name or a

literal. If a name is specified, the name of the parameter of DTAARA is used as the

name of the data area. For example, DTAARA(MYDTA) means that the data area

*LIBL/MYDTA will be used at runtime. It must be a valid data area name,

including *LDA (for the local data area) and *PDA (for the program initialization

D GetCurDir PR 10I 0 ExtProc(’GetCurrentDirectoryA’)

D DLL(’KERNEL32.DLL’)

D Linkage(*StdCall)

D 10I 0 Value

D 255A

D CurDir S 255A

D CurDirSiz S 10I 0 Inz(%Size(CurDir))

D RCLong S 10I 0

C Eval RCLong = GetCurDir(CurDirSiz:CurDir)

270 VisualAge RPG Language Reference

parameters data area). If a literal is specified, the value of the literal is used as the

name of the data area. For example, DTAARA(’LIB/DTA’) will use data area DTA

in library LIB, at runtime.

If *VAR is specified, the value of data_area_name is used as the data area name.

This value can be:

v A named constant whose value is the name of the data area.

v A character variable that will hold the name of the data area at runtime.

You can specify the value in any of the following forms:

 dtaaraname

 libname/dtaaraname

 *LIBL/dtaaraname

Notes:

1. You cannot specify *CURLIB as the library name.

2. If you specify a data area name without a library name, *LIBL is used.

3. The name must be in the correct case. For example, if you specify

DTAARA(*VAR:dtaname) and variable dtaname has the value ’qtemp/mydta’,

the data area will not be found. Instead, it should have the value

’QTEMP/MYDTA’.

Attention!

If DTAARA(*VAR) keyword is used with a UDS data area, and the name is a

variable, then this variable must have the value set before the program starts.

This can be done by initializing the variable, or passing the variable as an

entry parameter.

 When the DTAARA keyword is specified, the IN, OUT, and UNLOCK operation

codes can be used on the data area.

EXTFLD(field_name)

The EXTFLD keyword is used to rename a subfield in an externally described data

structure. The field_name parameter is the external name of the subfield. The name

of the program to be used is specified in the Name field (positions 7-21).

The keyword is optional. If not specified, the name extracted from the external

definition is used as the data-structure subfield name.

If the PREFIX keyword is specified for the data structure, the prefix will not be

applied to fields renamed with EXTFLD.

EXTFMT(code)

The EXTFMT keyword specifies the external data type for compile-time and

pre-runtime numeric arrays and tables. The external data type is the format of the

data in the records in the file. This entry has no effect on the format used for

internal processing (internal data type) of the array or table in the program.

The possible values for the parameter are:

S The data for the array or table is in zoned decimal format.

P The data for the array or table is in packed decimal format.

B The data for the array or table is in binary format.

Chapter 18. Definition Specifications 271

C The data for the array or table is in UCS-2 format.

I The data for the array or table is in integer format.

L The data for a numeric array or table element has a preceding (left) plus or

minus sign.

R The data for a numeric array or table element has a following (right) plus

or minus sign.

U The data for the array or table is in unsigned format.

F The data for the array or table is in float numeric format.

Notes:

1. If the EXTFMT keyword is not specified, the external format defaults to ’S’ for

non-float arrays and tables, and to the external display float representation for

float pre-runtime arrays and tables.

2. For compile-time arrays and tables, the only values allowed are S, L, and R,

unless the data type is float, in which case the EXTFMT keyword is not

allowed.

3. EXTFMT(I) or EXTFMT(U) is not allowed for arrays defined with more than 10

digits. Arrays defined as having 1 to 5 digits will occupy 2 bytes. Arrays

defined as having 6 to 10 digits will occupy 4 bytes.

4. When EXTFMT(I) or EXTFMT(U) is used, arrays defined as having 1 to 5 digits

will occupy 2 bytes per element. Arrays defined as having 6 to 10 digits will

occupy 4 bytes per element. Arrays defined as having 11 to 20 digits will

occupy 8 bytes per element.

5. The default external format for UCS-2 arrays is character. The number of

characters allowed for UCS-2 compile-time data is the number of double-byte

characters in the UCS-2 array.

6. The EXTFMT keyword cannot be used if the data for the array or table resides

on the workstation.

EXTNAME(file-name{:format-name}{:*ALL|

*INPUT|*OUTPUT|*KEY})

The EXTNAME keyword specifies the name of the file which contains the field

descriptions used as the subfield description for the data structure being defined.

The file_name parameter is required. Optionally, a format name may be specified

to direct the compiler to a specific format within a file. If format_name parameter

is not specified, the first record format is used.

The last parameter specifies which fields in the external record to extract:

v *ALL extracts all fields.

v *INPUT extracts just input capable fields.

v *OUTPUT extracts just output capable fields.

v *KEY extracts just key fields.

If this parameter has not specified, the compiler extracts the fields of the input

buffer.

Notes:

1. If the format-name is not specified,, the record defaults to the first record in the

file.

2. For *INPUT and *OUTPUT, subfields included in the data structure occupy the

same start positions as in the external record description.

272 VisualAge RPG Language Reference

If the data structure definition contains an E in column 22, and the EXTNAME

keyword is not specified, the name specified in positions 7-21 is used.

The compiler generates the following Definition specification entries for all fields

of the externally described data structure:

v Subfield name: this name is the same as the external name, unless renamed by

keyword EXTFLD or the PREFIX keyword is used to apply a prefix

v Subfield length

v Subfield internal data type: this name is the same as the External type, unless

the CVTOPT control specification keyword is specified for the type. In that case

the data type will be character.

All data structure keywords except LIKEDS and LIKEREC are allowed with the

EXTNAME keyword.

EXTPGM(name)

The EXTPGM keyword indicates the external name of the remote program on an

iSeries server whose prototype is being defined. The name can be a character

constant or a character variable.

If neither EXTPGM or EXTPROC is specified, then the compiler assumes that you

are defining a prototype for a procedure, and assigns it the external name found in

positions 7-21.

Any parameters defined by a prototype with EXTPGM must be passed by

reference. In addition, you cannot define a return value.

EXTPROC({*JAVA:class-name:}name)

The EXTPROC keyword can have one of the following formats:

EXTPROC(*JAVA:class-name:name)

Specifies a method that is written in Java, or an RPG native method to be

called by Java. The first parameter is *JAVA. The second parameter is a

character constant containing the class of the method. The third parameter

is a character constant containing the method name. The special method

name *CONSTRUCTOR means that the method is a constructor; this

method can be used to instantiate a class (create a new class instance).

 For more information about invoking Java procedures, see ILE RPG

Programmer’s Guide.

EXTPROC(name)

Specifies an external procedure.

The EXTPROC keyword indicates the external name of the procedure whose

prototype is being defined. The name can be a character constant or a procedure

pointer. When EXTPROC is specified, then the procedure should be called using

CALLB or CALLP.

If EXTPROC is not specified, then the compiler assumes that you are defining a

procedure, and assigns it the external name found in positions 7-21.

If the name specified for EXTPROC (or the prototype name, if EXTPROC is not

specified) starts with ″CEE″ or an underscore (’_’), the compiler will treat this as a

Chapter 18. Definition Specifications 273

system built-in. If it is not actually a system built-in, then a warning will appear in

the listing; To avoid confusion with system provided APIs, you should not name

your procedures starting with ″CEE″.

If a procedure pointer is specified, it must be assigned a valid address before it is

used in a call. It should point to a procedure whose return value and parameters

are consistent with the prototype definition.

For example, to define the prototype for the procedure SQLAllocEnv, that is in the

program QSQCLI, the following definition specification could be coded:

 D SQLEnv PR EXTPROC(’SQLAllocEnv’)

Figure 91 shows an example of the EXTPROC keyword with a procedure pointer

as its parameter.

 The extended form of the EXTPROC keyword can be used to prototype Java

methods that are called from VARPG Java applications. See “Prototyping Java

Methods.”

Prototyping Java Methods

Java methods must be prototyped so that VARPG Java applications can call them

correctly. The compiler must know the name of the method, the class it belongs to,

the data types of the parameters and the data type of the returned value (if any),

and whether or not the method is a static method.

Use the extended form of the EXTPROC keyword to specify the name of the

method and the class it belongs to. The format of the EXTPROC keyword is:

EXTPROC(*JAVA:class_name:method_name | *JAVARPG:class_name:method_name)

The possible parameter values are:

*JAVA:class_name:method_name

Identifies the method as a Java method that was generated from code

originally written in Java.

D* Assume you are calling a procedure that has a procedure

D* pointer as the EXTPROC. Here is how the prototype would

D* be defined:

D*

D DspMsg PR 10A EXTPROC(DspMsgPPtr)

D Msg 32767A

D Length 4B 0 VALUE

D*

D* Here is how you would define the prototype for a procedure

D* that DspMsgPPtr could be assigned to.

D*

D MyDspMsg PR LIKE(DspMsg)

D Msg 32767A

D Length 4B 0 VALUE

C*

C* Before calling DSPMSG, you would assign DSPMSGPPTR

C* to the actual procedure name of MyDspMsg, that is

C* MYDSPMSG.

C*

C EVAL DspMsgPPtr = %paddr(’MYDSPMSG’)

C EVAL Reply = DspMsg(Msg, %size(Msg))

 ...

P MyDspMsg B

Figure 91. Specifying the External Name of a Prototyped Procedure

274 VisualAge RPG Language Reference

*JAVARPG:class_name:method_name

Identifies a VARPG-generated Java method.

 VARPG-generated methods allow certain data types to be passed by reference

that normally cannot be passed by reference in Java. This allows you to use the

same source code when targeting for Windows applications or when

generating Java source code.

The class and method names must be character literals, and are case sensitive. The

class name must be a fully qualified Java class name. The method name must be

the name of the method to be called.

The data types of the parameters and the returned value of the method are

specified in the same way as they are when prototyping a subprocedure. However,

note that the compiler maps VARPG data types to Java data types as follows:

 Java Data Type VARPG Data Type

boolean indicator (N)

byte[] alpha (A of any length)

byte integer (3I)

int integer (10I)

short integer (5I)

long integer (20I)

float float (4F)

double float (8F)

any object object (O)

When calling VARPG-generated methods (*JAVARPG), you can specify the Packed,

Zoned, Binary, or Unsigned data type as the data type of parameters and returned

values. Methods generated from Java source code cannot use these data types on

the prototype for parameters or return values.

When calling a method, the compiler will accept arrays as parameters if the

parameter is prototyped using the DIM keyword. Otherwise, only scalar fields,

data structures, and tables will be accepted.

You cannot call methods that expect the Java char data type or return this value

type.

If the return value of a method is an object, provide the class of the object by

coding the CLASS keyword on the prototype. The class name specified will be that

of the object being returned.

If the method being called is a static method, specify the STATIC keyword on the

prototype.

Chapter 18. Definition Specifications 275

In Java, the following data types can only be passed by value:

 byte

 int

 short

 long

 float

 double

Specify the VALUE keyword on the prototype for parameters of these types. The

VALUE keyword is not required when calling VARPG-generated methods as these

data types can be passed by reference.

Objects can only be passed by reference. The VALUE keyword cannot be specified

with type ’O’. Since arrays are seen by Java as objects, parameters mapping to

arrays must also be passed by reference. This includes byte arrays.

For more information on calling Java methods and examples, see the Programming

with VisualAge RPG manual.

FROMFILE(file_name)

The FROMFILE keyword specifies the file with input data for the pre-runtime

array or table being defined. The FROMFILE keyword must be specified for every

pre-runtime array or table used in the program.

See “TOFILE(file_name)” on page 295.

INZ{(initial value)}

The INZ keyword initializes the standalone field, data structure or data-structure

subfield to the default value for its data type or, optionally, to the constant

specified in parentheses.

v For a program described data structure, no parameter is allowed for the INZ

keyword.

v For an externally described data structure, only the *EXTDFT parameter is

allowed.

v For a data structure that is defined with the LIKEDS keyword, the value

*LIKEDS specifies that subfields are initialized in the same way as the parent

data structure. This applies only to initialization specified by the INZ keyword

on the parent subfield. It does not apply to initialization specified by the

CTDATA or FROMFILE keywords. If the parent data structure has some

subfields initialized by CTDATA or FROMFILE, the data structure initialized

with INZ(*LIKEDS) will not have the CTDATA or FROMFILE data.

v For an object, only the *NULL parameter is allowed. Every object is initialized to

*NULL, whether or not you specify INZ(*NULL).

The initial value specified must be consistent with the type being initialized. The

initial value can be a literal, named constant, figurative constant, built-in function,

or one of the special values *EXTDFT, *LIKEDS, or *NULL. When initializing Date

or Time data type fields or named constants with Date or Time values, the format

of the literal must be consistent with the default format as derived from the

Control specification, regardless of the actual format of the date or time field.

A numeric field may be initialized with any type of numeric literal. However, a

float literal can only be used with a float field. Any numeric field can be initialized

with a hexadecimal literal of 16 digits or fewer. In this case, the hexadecimal literal

is considered an unsigned numeric value.

276 VisualAge RPG Language Reference

Specifying INZ(*EXTDFT) initializes externally described data-structure subfields

with the default values from the DFT keyword in the DDS. If no DFT or constant

value is specified, the DDS default value for the field type is used. You can

override the value specified in the DDS by coding INZ with or without a

parameter on the subfield specification.

Specifying INZ(*EXTDFT) on the external data structure definition, initializes all

externally described subfields to their DDS default values. If the externally

described data structure has additional program described subfields, these are

initialized to the RPG default values.

When using INZ(*EXTDFT), take note of the following:

v If the DDS value for a date or time field is not in the RPG internal format, the

value will be converted to the internal format in effect for the program.

v External descriptions must be in physical files.

v If *NULL is specified for a null-capable field in the DDS, the compiler will use

the DDS default value for that field as the initial value.

v If DFT(’’) is specified for a varying length field, the field will be initialized with

a string of length 0.

v INZ(*EXTDFT) is not allowed if the CVTOPT option is in effect.

v If no initial value or *NULL is specified for date, time, or timestamp fields, the

initial value for the field is set to *LOVAL.

Please see “Initialization of Nested Data Structures” on page 161 for a complete

description of the use of the INZ keyword in the inititlization of nested data

structures.

A data structure, data-structure subfield, or standalone field defined with the INZ

keyword cannot be specified as a parameter on an *ENTRY PLIST.

Note: When the INZ parameter is not specified:

v Static standalone fields and subfields of initialized data structures are

initialized to their default initial values (for example, blanks for character,

0 for numeric).

v Subfields of static uninitialized data structures (INZ not specified on the

definition specification for the data structure) are initialized to blanks

(regardless of their data type).

v Fields in automatic storage are not initialized.

This keyword is not valid in combination with BASED.

LIKE(RPG_name)

The LIKE keyword is used to define an item like an existing one. When the LIKE

keyword is specified, the item being defined takes on the length and data format

of the item specified as the parameter. Standalone fields prototypes, parameters,

and data-structure subfields may be defined using this keyword. The parameter of

LIKE can be a standalone field, a data structure, a data structure subfield, a

parameter in a procedure interface definition, or a prototype name. The data type

entry (position 40) must be blank.

This keyword is similar to the *LIKE DEFINE operation code (see “Defining a

Field Based on Another Field” on page 548). However, it differs from *LIKE

DEFINE in that the defined data takes on the data format and CCSID as well as

the length.

Chapter 18. Definition Specifications 277

Note: Attributes such as NOOPT, ASCEND, CONST and null capability are not

inherited from the parameter of LIKE by the item defined. Only the data

type, length, decimal positions, and CCSID are inherited.

If the parameter of LIKE is a prototype, then the item being defined will have the

same data type as the return value of the prototype. If there is no return value,

then an error message is issued.

This keyword can be used when defining CALLP parameters. See “Defining a

Field Based on Another Field” on page 548.

LIKE can be used to define character fields, graphic fields, graphic characters,

numeric fields, and arrays. Here are some considerations for using the LIKE

keyword with different data types:

v For character fields, the number specified in the To/Length entry is the number

of additional (or fewer) characters

v For graphic or UCS-2 fields, the number specified in the To/Length entry is the

number of additional (or fewer) graphic or UCS-2 characters (1 graphic or UCS-2

character = 2 bytes).

v For numeric fields, the number specified in the To/Length entry is the number

of additional (or fewer) digits. For integer or unsigned fields, adjustment values

must be such that the resulting number of digits for the field are 3, 5, 10, or 20.

For float fields, length adjustment is not allowed.

v For date, time, timestamp, basing pointer, or procedure pointer fields, the

To/Length entry (positions 33-39) must be blank.

When LIKE is used to define an array, the DIM keyword is still required to define

the array dimensions. However, DIM(%elem(array)) can be used to define an array

exactly like another array.

Use LIKEDS to define a data structure like another data structure, with the same

subfields.

278 VisualAge RPG Language Reference

The following are examples of defining data using the LIKE keyword.

LIKE(object-name)

You can use the LIKE keyword to specify that one object has the same class as a

previously defined object. Only the values on the CLASS keyword are inherited.

Note: You cannot use the *LIKE DEFINE operation to define an object. You must

use the LIKE keyword.

LIKEDS(data_structure_name)

The LIKEDS keyword is used to define a data structure, data structure subfield,

prototyped return value, or prototyped parameter like another data structure. The

subfields of the new item will be identical to the subfields of the other data

structure.

The names of the subfields will be qualified with the new data structure name. An

unqualified subfield named subfield or a qualified subfield named dsname.subfield

will result in a new subfield named newdsname.subfield. An unnamed subfield will

also have no name in the new data structure.

LIKEDS can be coded for subfields of a qualified data structure. When LIKEDS is

coded on a data structure subfield definition, the subfield data structure is

automatically defined as QUALIFIED. Subfields in a LIKEDS subfield data

structure are referenced in fully qualified form: "ds.subf.subfa". Subfields defined

with LIKEDS are themselves data structures, and can be used wherever a data

structure is required.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D.....................................Keywords+++++++++++++++++++++++++++++

D*

D* Define a field like another with a length increase of 5 characters.

D*

D Name S 20

D Long_name S +5 LIKE(Name)

D*

D* Define a data structure subfield array with DIM(20) like another

D* field and initialize each array element with the value *ALL’X’.

D* Also, declare another subfield of type pointer immediately

D* following the first subfield. Pointer is implicitly defined

D* with a length of 4 bytes.

D*

D Struct DS

D Dim20 LIKE(Name) DIM(20) INZ(*ALL’X’)

D Pointer *

Figure 92. Defining fields LIKE other fields

* Variables MyString and OtherString are both Java String objects.

D MyString S O CLASS(*JAVA

D :’java.lang.String’)

D OtherString S LIKE(MyString)

 * Proc is a Java method returning a Java String object

D Proc PR EXTPROC(*JAVA:’MyClass’:’meth’)

D LIKE(MyString)

Figure 93. Defining objects LIKE other objects

Chapter 18. Definition Specifications 279

|
|
|
|
|
|

The value of the ALIGN keyword are inherited by the new data structure. The

values of the OCCURS, DIM, NOOPT, and INZ keywords are not inherited. To

initialize the subfields in the same way as the parent data structure, specify

INZ(*LIKEDS).

LIKEREC(intrecname{:*ALL|*INPUT|*OUTPUT |*KEY})

Keyword LIKEREC is used to define a data structure, data structure subfield,

prototyped return value, or prototyped parameter like a record. The subfields of

the data structure will be identical to the fields in the record. LIKEREC can take an

optional second parameter which indicates which fields of the record to include in

the data structure. These include:

v *ALL All fields in the external record are extracted.

v *INPUT All input-capable fields are extracted. (This is the default.)

v *OUTPUT All output-capable fields are extracted.

v *KEY The key fields are extracted in the order that the keys are defined on the

K specification in the DDS.

The following should be taken into account when using the LIKEREC keyword:

v The first parameter for keyword LIKEREC is a record name in the program. If

the record name has been renamed, it is the internal name for the record.

v The second parameter for LIKEREC must match the definition of the associated

record or file. *INPUT is only allowed for input and update capable records;

*OUTPUT is only allowed for output capable records; *ALL is allowed for any

type of record; and *KEY is only allowed for keyed files. If not specified, the

parameter defaults to *INPUT.

v For *INPUT and *OUTPUT, subfields included in the data structure occupy the

same start positions as in the external record description.

v If a prefix was specified for the file, the specified prefix is applied to the names

of the subfields.

v Even if a field in the record is explicitly renamed on an input specification the

external name (possibly prefixed) is used, not the internal name.

D sysName DS qualified

D lib 10A inz(’*LIBL’)

D obj 10A

D userSpace DS LIKEDS(sysName) INZ(*LIKEDS)

 // The variable "userSpace" was initialized with *LIKEDS, so the

 // first ’lib’ subfield was initialized to ’*LIBL’. The second

 // ’obj’ subfield must be set using a calculation.

C eval userSpace.obj = ’TEMPSPACE’

Figure 94. Using INZ(*LIKEDS)

P createSpace B

D createSpace PI

D name LIKEDS(sysName)

 /free

 if name.lib = *blanks;

 name.lib = ’*LIBL’;

 endif;

 QUSCRTUS (name : *blanks : 4096 : ’ ’ : ’*USE’ : *blanks);

 /end-free

P createSpace E

Figure 95. Using a data structure parameter in a subprocedure

280 VisualAge RPG Language Reference

v A data structure defined with LIKEREC is a QUALIFIED data structure. The

names of the subfields will be qualified with the new data structure name,

DS1.SUBF1.

v LIKEREC can be coded for subfields of a qualified data structure. When

LIKEREC is coded on a data structure subfield definition, the subfield data

structure is automatically defined as QUALIFIED. Subfields in a LIKEREC

subfield data structure are referenced in fully qualified form: "ds.subf.subfa".

Subfields defined with LIKEREC are themselves data structures, and can be used

wherever a data structure is required.

LINKAGE(linkage_type)

When you define a program name to be used with the CALL and START

operations, the LINKAGE keyword specifies the location of the called program.

Use the *SERVER parameter value with this keyword for the CALL operation. The

*SERVER parameter specifies that the program which you are calling exists on an

iSeries server. Use the *CLIENT parameter value with this keyword for the START

operation.

Specify LINKAGE(*SERVER) on a prototype definition for a remote program on an

iSeries server.

The LINKAGE keyword, together with the DLL keyword, specifies the Linkage

convention (interface) to be used when invoking functions in a dynamic-link

library (DLL). The linkage convention specified must match that of the entry point

in the external DLL that is to be accessed. Windows System APIs use the StdCall

linkage convention. So, when prototyping a Windows System API, specify

LINKAGE(*STDCALL).

Do not use the LINKAGE keyword if you use the DLL keyword to prototype a

VARPG subprocedure in a NOMAIN application. The compiler will use the default

__cdecl linkage convention.

When protoyping your own DLLs, create them with the __stdcall or __cdecl

linkage convention. Using other linkage conventions may cause unpredictable

results or runtime errors.

MSGDATA(msgdata1:msgdata2....)

The MSGDATA keyword defines the substitution text, used in Factor 1 of the

DSPLY operation code, in the form of a list of field names that you define in your

program. The VisualAge RPG compiler replaces each substitution variable with the

corresponding field defined. For example, %1 would be replaced by the first field

defined in MSGDATA, %2 by the second field defined in MSGDATA, and so on.

Substitution variables are defined by entering the percent (%) character followed

by a single digit (1 to 9). You can specify a maximum of 3 parameters per

keyword.

The MSGDATA and MSGNBR keywords are used together.

MSGNBR(*MSGnnnn or fieldname)

The MSGNBR keyword defines the message number used in Factor 1 of the DSPLY

operation code. The message number can be a maximum of 4 digits in length. You

must specify one of the following:

v The message identifier (for example, *MSG0001)

v A field containing the message number(for example, *MSG0001)

Chapter 18. Definition Specifications 281

|
|
|
|
|
|
|
|
|

If you have substitution text in your messages, use the MSGNBR and MSGDATA

keywords together.

MSGTEXT(’message text’)

The MSGTEXT keyword defines the message text, which is contained within single

quotes (’). This text is used in Factor 1 of the DSPLY operation code. This keyword

cannot be used if the BUTTON, MSGDATA, MSGNBR, MSGTITLE, or STYLE

keywords are used.

MSGTITLE(’title text’)

The MSGTITLE keyword specifies the title text for the message window (Factor 2

of the DSPLY operation code).You can enter an 8-character message identifier

enclosed in single quotes (’), for example, ’*MSG0001’, or a 4-digit message

number. If you use a message number, the text is retrieved from the message file.

(Use the Define messages option of the GUI designer to specify titles in message

format.)

This keyword cannot be used if the MSGDATA, MSGNBR, or MSGTEXT keywords

are used.

NOOPT

No optimization is to be performed on the standalone field, parameter, or data

structure for which this keyword is specified. This insures that the content of the

data item is the latest assigned value. This may be necessary for those fields whose

values are used in exception handling.

Note: The optimizer may keep some values in registers and restore them only to

storage at predefined points during normal program execution. Exception

handling may break this normal execution sequence, and consequently

program variables contained in registers may not be returned to their

assigned storage locations. As a result, when those variables are used in

exception handling, they may not contain the latest assigned value. The

NOOPT keyword ensures their currency.

If a data item which is to be passed by reference is defined with the NOOPT

keyword, then any prototype or procedure interface parameter definition must also

have the NOOPT keyword specified. This requirement does not apply to

parameters passed by value.

All keywords allowed for standalone field definitions, parameters, or data

structure definitions are allowed with NOOPT.

This keyword can be used when defining CALLP parameters.

NOWAIT

The NOWAIT keyword allows you to call an OS/400 program that uses a

workstation file. See “Calling an OS/400 Program that Uses a Workstation File” on

page 518 for details.

OCCURS(numeric_constant)

The OCCURS keyword specifies the number of occurrences of a multiple

occurrence data structure.

282 VisualAge RPG Language Reference

The numeric_constant parameter must be a value greater than 0 with no decimal

positions. It can be a numeric literal, a built-in function returning a numeric value,

or a numeric constant.

The constant value does not need to be known at the time the keyword is

processed, but the value must be known at compile-time.

This keyword is not valid for a program status data structure, a file information

data structure, or a data area data structure.

If a multiple occurrence data structure contains pointer subfields, the distance

between occurrences must be an exact multiple of 4 because of system storage

restrictions for pointers. This means that the distance between occurrences may be

greater than the length of each occurrence.

The following example shows the storage allocation of a multiple occurrence data

structure with pointer subfields.

OPTIONS(*OMIT *VARSIZE *STRING *TRIM *RIGHTADJ)

The OPTIONS keyword is used to specify:

v Whether the special value *OMIT can be passed for the parameter passed by

reference

v Whether a parameter that is passed by reference can be shorter in length than is

specified in the prototype.

v Whether the called program or procedure is expecting a pointer to a

null-terminated string, allowing you to specify a character expression as the

passed parameter.

v Whether the parameter should be trimmed of blanks before being passed.

v Whether the parameter value should be right-adjusted in the passed parameter.

The OPTIONS keyword cannot be specified without a parameter. More than one

parameter may be specified on one definition specification, but each parameter

must be different.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++++

D DS1 DS OCCURS(2)

D POINTER 4*

D FLD5 5

D DS2 DS OCCURS(2)

D CHAR16 4

D CHR5 5

Allocation of fields in storage. The occurrences of DS1 are 8 bytes apart, while the

occurrences of DS2 are 9 bytes apart.

DS1 OCCURRENCE 1

DS2 OCCURRENCE 1

DS1 OCCURRENCE 2

DS2 OCCURRENCE 2

POINTER

CHAR4

POINTER

CHAR4

FLD5

CHR5

FLD5

CHR5

(fill) (fill)

Figure 96. Storage Allocation of Multiple Occurrence Data Structure with Pointer Subfields

Chapter 18. Definition Specifications 283

|

The value can be *OMIT, *STRING, *VARSIZE, or *RIGHTADJ.

When OPTIONS(*OMIT) is specified, the value *OMIT is allowed for that

parameter. *OMIT is only allowed for CONST parameters and parameters which

are passed by reference.

OPTIONS(*VARSIZE) is valid only for parameters passed by reference that have a

character, graphic, or UCS-2 data type, or that represent an array of any type.

When OPTIONS(*VARSIZE) is specified, the passed parameter may be shorter or

longer in length than is defined in the prototype. It is then up to the called

program or subprocedure to ensure that it accesses only as much data as was

passed. To communicate the amount of data passed, you can either pass an extra

parameter containing the length, or use operational descriptors for the

subprocedure. For variable-length fields, you can use the %LEN built-in function to

determine the current length of the passed parameter.

When OPTIONS(*VARSIZE) is omitted for fixed-length fields, you must pass at

least as much data as is required by the prototype; for variable-length fields, the

parameter must have the same declared maximum length as indicated on the

definition.

Note: For the parameter passing options *OMIT and *VARSIZE, it is up to the

programmer of the procedure to ensure that these options are handled.

When OPTIONS(*STRING) is specified for a basing pointer parameter passed by

value or by constant-reference, you may either pass a pointer or a character

expression. If you pass a character expression, a temporary value will be created

containing the value of the character expression followed by a null-terminator

(x’00’). The address of this temporary value will be passed to the called program

or procedure.

When OPTIONS(*RIGHTADJ) is specified for a CONST or VALUE parameter in a

prototype, the character, graphic, or UCS-2 parameter value is right adjusted. This

keyword is not allowed for a varying length parameter within a procedure

prototype. Varying length values may be passed as parameters on a procedure call

where the corresponding parameter is defined with OPTIONS(*RIGHTADJ).

When OPTIONS(*TRIM) is specified for a CONST or VALUE parameter of type

character, UCS-2 or graphic, the passed parameter is copied without leading and

trailing blanks to a temporary. If the parameter is not a varying length parameter,

the trimmed value is padded with blanks (on the left if OPTIONS(*RIGHTADJ) is

specified, otherwise on the right). Then the temporary is passed instead of the

original parameter. Specifying OPTIONS(*TRIM) causes the parameter to be passed

exactly as though %TRIM were coded on every call to the procedure.

When OPTIONS(*STRING : *TRIM) is specified for a CONST or VALUE parameter

of type pointer, the character parameter or %STR of the pointer parameter is

copied without leading or trailing blanks to a temporary, a null-terminator is

added to the temporary and the address of the temporary is passed.

You can specify more than one option. For example, OPTIONS(*STRING : *TRIM).

284 VisualAge RPG Language Reference

|
|
|
|
|
|
|

|
|
|
|

The following example shows how to code a prototype and procedure using

OPTIONS(*OMIT) to indicate that the special value *OMIT may be passed as a

parameter.

F*

FQSYSPRT O F 10 PRINTER USROPN

D*

D* The following prototype describes a procedure that allows

D* the special value *OMIT to be passed as a parameter.

D* If the parameter is passed, it is set to ’1’ if an error

D* occurred, and ’0’ otherwise.

D OpenFile PR

D Error 1A OPTIONS(*OMIT)

C*

C SETOFF 10

C* The first call to OpenFile assumes that no error will occur,

C* so it does not bother with the error code and passes *OMIT.

C CALLP OpenFile(*OMIT)

C*

C* The second call to OpenFile passes an indicator so that

C* it can check whether an error occurred.

C CALLP OpenFile(*IN10)

C IF *IN10

C ... an error occurred

C ENDIF

C RETURN

P*--

P* OpenFile

P* This procedure must check the number of parameters.

P*--

P OpenFile B

D OpenFile PI

D Error 1A OPTIONS(*OMIT)

D SaveIn01 S 1A

C* Save the current value of indicator 01 in case it is being

C* used elsewhere.

C EVAL SaveIn01 = *IN01

C* Open the file. *IN01 will indicate if an error occurs.

C OPEN QSYSPRT 01

C* If the Error parameter was passed, update it with the indicator

C IF %ADDR(Error) <> *NULL

C EVAL Error = *IN01

C ENDIF

C* Restore *IN01 to its original value.

C EVAL *IN01 = SaveIn01

P OpenFile E

Figure 97. Using OPTIONS(*OMIT)

Chapter 18. Definition Specifications 285

The following example shows how to code a prototype and procedure allowing

variable-length parameters, using OPTIONS(*VARSIZE).

D* The following prototype describes a procedure that allows

D* both a variable-length array and a variable-length character

D* field to be passed. Other parameters indicate the lengths.

D Search PR 5U 0

D SearchIn 50A OPTIONS(*VARSIZE)

D DIM(100) CONST

D ArrayLen 5U 0 VALUE

D ArrayDim 5U 0 VALUE

D SearchFor 50A OPTIONS(*VARSIZE) CONST

D FieldLen 5U 0 VALUE

D*

D Arr1 S 1A DIM(7) CTDATA PERRCD(7)

D Arr2 S 10A DIM(3) CTDATA

D Elem S 5U 0

C* Call Search to search an array of 7 elements of length 1 with

C* a search argument of length 1. Since the ’*’ is in the 5th

C* element of the array, Elem will have the value 5.

C EVAL Elem = Search(Arr1 :

C %SIZE(Arr1) : %ELEM(Arr1) :

C ’*’ : 1)

C* Call Search to search an array of 3 elements of length 10 with

C* a search argument of length 4. Since ’Pink’ is not in the

C* array, Elem will have the value 0.

C EVAL Elem = Search(Arr2 :

C %SIZE(Arr2) : %ELEM(Arr2) :

C ’Pink’ : 4)

C RETURN

Figure 98. Using OPTIONS(*VARSIZE) (Part 1 of 2)

286 VisualAge RPG Language Reference

P*--

P* Search:

P* Searches for SearchFor in the array SearchIn. Returns

P* the element where the value is found, or 0 if not found.

P* The character parameters can be of any length or

P* dimension since OPTIONS(*VARSIZE) is specified for both.

P*--

P Search B

D Search PI 5U 0

D SearchIn 50A OPTIONS(*VARSIZE)

D DIM(100) CONST

D ArrayLen 5U 0 VALUE

D ArrayDim 5U 0 VALUE

D SearchFor 50A OPTIONS(*VARSIZE) CONST

D FieldLen 5U 0 VALUE

D I S 5U 0

C* Check each element of the array to see if it the same

C* as the SearchFor. Use the dimension that was passed as

C* a parameter rather than the declared dimension. Use

C* %SUBST with the length parameter since the parameters may

C* not have the declared length.

C 1 DO ArrayDim I 5 0

C* If this element matches SearchFor, return the index.

C IF %SUBST(SearchIn(I) : 1 : ArrayLen)

C = %SUBST(SearchFor : 1 : FieldLen)

C RETURN I

C ENDIF

C ENDDO

C* No matching element was found.

C RETURN 0

P Search E

Compile-time data section:

 **CTDATA ARR1

 A2$@*jM

 **CTDATA ARR2

 Red

 Blue

 Yellow

Figure 98. Using OPTIONS(*VARSIZE) (Part 2 of 2)

Chapter 18. Definition Specifications 287

The following example shows how to use OPTIONS(*STRING) to code a prototype

and procedure that use a null-terminated string parameter.

D* The following prototype describes a procedure that expects

D* a null-terminated string parameter. It returns the length

D* of the string.

D StringLen PR 5U 0

D Pointer * VALUE OPTIONS(*STRING)

D P S *

D Len S 5U 0

C*

C* Call StringLen with a character literal. The result will be

C* 4 since the literal is 4 bytes long.

C EVAL Len = StringLen(’abcd’)

C*

C* Call StringLen with a pointer to a string. Use ALLOC to get

C* storage for the pointer, and use %STR to initialize the storage

C* to ’My string¬’ where ’¬’ represents the null-termination

C* character x’00’.

C* The result will be 9 which is the length of ’My string’.

C ALLOC 25 P

C EVAL %STR(P:25) = ’My string’

C EVAL Len = StringLen(P)

C* Free the storage.

C DEALLOC P

C RETURN

P*--

P* StringLen:

P* Returns the length of the string that the parameter is

P* pointing to.

P*--

P StringLen B

D StringLen PI 5U 0

D Pointer * VALUE OPTIONS(*STRING)

C RETURN %LEN(%STR(Pointer))

P StringLen E

Figure 99. Using OPTIONS(*STRING)

288 VisualAge RPG Language Reference

* The following prototype describes a procedure that expects

* these parameters:

* 1. trimLeftAdj - a fixed length parameter with the

* non-blank data left-adjusted

* 2. leftAdj - a fixed length parameter with the

* value left-adjusted (possibly with

* leading blanks)

* 3. trimRightAdj - a fixed length parameter with the

* non-blank data right-adjusted

* 4. rightAdj - a fixed length parameter with the

* value right-adjusted (possibly with

* trailing blanks)

* 5. trimVar - a varying parameter with no leading

* or trailing blanks

* 6. var - a varying parameter, possibly with

* leading or trailing blanks

D trimProc PR

D trimLeftAdj 10a const options(*trim)

D leftAdj 10a const

D trimRightAdj 10a value options(*rightadj : *trim)

D rightAdj 10a value options(*rightadj)

D trimVar 10a const varying options(*trim)

D var 10a value varying

* The following prototype describes a procedure that expects

* these parameters:

* 1. trimString - a pointer to a null-terminated string

* with no leading or trailing blanks

* 2. string - a pointer to a null-terminated string,

* possibly with leading or trailing blanks

D trimStringProc PR

D trimString * value options(*string : *trim)

D string * value options(*string)

D ptr s *

 /free

 // trimProc is called with the same value passed

 // for every parameter

 //

 // The called procedure receives the following parameters

 // trimLeftAdj ’abc ’

 // leftAdj ’ abc ’

 // trimRightAdj ’ abc’

 // rightAdj ’ abc ’

 // trimVar ’abc’

 // var ’ abc ’

 callp trimProc (’ abc ’ : ’ abc ’ : ’ abc ’ :

 ’ abc ’ : ’ abc ’ : ’ abc ’);

 // trimStringProc is called with the same value passed

 // for both parameters

 //

 // The called procedure receives the following parameters,

 // where ¬ represents x’00’

 // trimstring pointer to ’abc¬’

 // string pointer to ’ abc ¬’

 callp trimStringProc (’ abc ’ : ’ abc ’);

 // trimStringProc is called with the same pointer passed

 // to both parameters

 //

 // The called procedure receives the following parameters,

 // where ¬ represents x’00’

 // trimstring pointer to ’xyz¬’

 // string

 pointer to ’ xyz ¬’

 ptr = %alloc (6);

 %str(ptr : 6) = ’ xyz ’;

 callp trimStringProc (ptr : ptr);

Figure 100. Using OPTIONS(*TRIM)

Chapter 18. Definition Specifications 289

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

290 VisualAge RPG Language Reference

OVERLAY(name{:pos | *NEXT})

The OVERLAY keyword overlays the storage of one subfield with that of another

subfield, or with that of the data structure itself. This keyword is allowed only for

data structure subfields.

The Name-entry subfield overlays the storage specified by the name parameter at

the position specified by the pos parameter. If pos is not specified, it defaults to 1.

Note: The pos parameter is in units of bytes, regardless of the types of the

subfields.

Specifying OVERLAY(name:*NEXT) positions the subfield at the next available

position within the overlaid field. (This will be the first byte past all other

subfields prior to this subfield that overlay the same subfield.)

The following rules apply to OVERLAY keyword:

v The name parameter must be the name of a subfield defined previously in the

current data structure, or the name of the current data structure.

v If the data structure is qualified, the first parameter to the OVERLAY keyword

must be specified without the qualifying data structure name. In the following

example, subfield MsgInfo.MsgPrefix overlays subfield MsgInfo.MsgId.

D MsgInfo DS QUALIFIED

D MsgId 7

D MsgPrefix 3 OVERLAY(MsgId)

v The pos parameter (if specified) must be a value greater than 0 with no decimal

positions. It can be a numeric literal, a built-in function returning a numeric

value, or a numeric constant. If pos is a named constant, it must be defined

prior to this specification.

v The OVERLAY keyword is not allowed when the From-Position entry is not

blank.

v If the name parameter is a subfield, the subfield being defined must be

contained completely within the subfield specified by the name parameter.

v The subfield being defined must be contained completely within the subfield

specified by the name parameter.

v Alignment of subfields defined using the OVERLAY keyword must be done

manually. If they are not correctly aligned, a warning message is issued.

v If the subfield specified as the first parameter for the OVERLAY keyword is an

array, the OVERLAY keyword applies to each element of the array. That is, the

field being defined is defined as an array with the same number of elements.

The first element of this array overlays the first element of the overlayed array,

the 2nd element of this array overlays the 2nd element of the overlayed array,

etc. No array keywords may be specified for the subfield with the OVERLAY

keyword in this situation. See Figure 101 on page 292 and “SORTA (Sort an

Array)” on page 686.

If the subfield name, specified as the first parameter for the OVERLAY keyword,

is an array and its element length is longer than the length of the subfield being

defined, the array elements of the subfield being defined are not stored

contiguously. Such an array is not allowed as the Result Field of a PARM

operation or in Factor 2 or the Result Field of a MOVEA operation.

v If the ALIGN keyword is specified for the data structure, subfields defined with

OVERLAY(name:*NEXT) are aligned to their preferred alignment. Pointer

subfields are always aligned on a 4-byte boundary.

v If a subfield with overlaying subfields is not otherwise defined, the subfield is

implicitly defined as follows:

– The start position is the first available position in the data structure.

Chapter 18. Definition Specifications 291

– The length is the minimum length that can contain all overlaying subfields. If

the subfield is defined as an array, the length will be increased to ensure

proper alignment of all overlaying subfields.

Examples

 The following example shows two equivalent ways of defining subfield overlay

positions: explicitly with (name:pos) and implicitly with (name:*NEXT).

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++++

D DataStruct DS

D A 10 DIM(5)

D B 5 OVERLAY(A)

D C 5 OVERLAY(A:6)

Allocation of fields in storage:

 A(1) A(2) A(3) A(4) A(5)

B(1) C(1) B(2) C(2) B(3) C(3) B(4) C(4) B(5) C(5)

Figure 101. Storage Allocation of Subfields with Keywords DIM and OVERLAY

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++++

D DataStruct DS

D A 5

D B 1 OVERLAY(A) DIM(4)

Allocation of fields in storage:

 A

B(1) B(2) B(3) B(4)

Figure 102. Storage Allocation of Subfields with Keywords DIM and OVERLAY

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

 * Define subfield overlay positions explicitly

D DataStruct DS

D PartNumber 10A

D Family 3A OVERLAY(PartNumber)

D Sequence 6A OVERLAY(PartNumber:4)

D Language 1A OVERLAY(PartNumber:10)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

 * Define subfield overlay positions with *NEXT

D DataStruct DS

D PartNumber

D Family 3A OVERLAY(PartNumber)

D Sequence 6A OVERLAY(PartNumber:*NEXT)

D Language 1A OVERLAY(PartNumber:*NEXT)

Figure 103. Defining Subfield Overlay Positions with *NEXT

292 VisualAge RPG Language Reference

PACKEVEN

The PACKEVEN keyword indicates that the packed field or array has an even

number of digits. The keyword is only valid for packed program-described

data-structure subfields defined using FROM/TO positions. For a field or array

element of length N, if the PACKEVEN keyword is not specified, the number of

digits is 2N - 1; if the PACKEVEN keyword is specified, the number of digits is

2(N-1).

PERRCD(numeric_constant)

The PERRCD keyword specifies the number of elements per record for a

compile-time or a pre-runtime array or table. If the PERRCD keyword is not

specified, the number of elements per record defaults to one (1).

The numeric_constant parameter must be a value greater than 0 with no decimal

positions. It can be a numeric literal, a built-in function returning a numeric value,

or a numeric constant. If the parameter is a named constant, it does not need to be

defined prior to this specification.

The PERRCD keyword is valid only when the keyword FROMFILE, TOFILE, or

CTDATA is specified.

PREFIX(prefix{:nbr_of_char_replaced})

The PREFIX keyword allows the specification of a character string or character

literal which is to be prefixed to the subfield names of the externally described

data structure being defined. In addition, you can optionally specify a numeric

value to indicate the number of characters, if any, in the existing name to be

replaced. If the parameter ’nbr_of_char_replaced’ is not specified, then the string is

attached to the beginning of the name.

If the ’nbr_of_char_replaced’ is specified, it must represent a numeric value

between 0 and 9 with no decimal places. Specifying a value of zero is the same as

not specifying ’nbr_of_char_replaced’ at all. For example, the specification

PREFIX(YE:3) would change the field name ’YTDTOTAL’ to ’YETOTAL’.

The following rules apply:

v Subfields that are explicitly renamed using the EXTFLD keyword are not

affected by this keyword.

v The total length of a name after applying the prefix must not exceed the

maximum length of an RPG field name.

v If the number of characters in the name to be prefixed is less than or equal to

the value represented by the ’nbr_of_char_replaced’ parameter, then the entire

name is replaced by the prefix_string.

v The prefix cannot end in a period.

v If the prefix is a character literal, it must be uppercase.

PROCPTR

The PROCPTR keyword defines an item as a procedure pointer. The Internal

Data-Type field (position 40) must contain a *.

QUALIFIED

The QUALIFIED keyword specifies that the subfields of a data structure will be

accessed by specifying the data structure name followed by a period and the

subfield name. The data structure must have a name.

Chapter 18. Definition Specifications 293

The subfields can have any valid name, even if the name has been used elsewhere

in the program. This is illustrated in the following example:

 * In this example, FILE1 and FILE2 are the names of files. FILE1 and FILE2 are

 * also subfields of qualified data structure FILESTATUS. This is valid,

 * because the subfields FILE1 and FILE2 must be qualified by the data structure

 * name: FILESTATUS.FILE1 and FILESTATUS.FILE2.

 Ffile1 if e disk remote

 Ffile2 if e disk remote

 D fileStatus ds qualified

 D file1 N

 D file2 N

 C open(e) file1

 C eval fileStatus.file1 = %error

STATIC

The STATIC keyword is used:

v To specify that a local variable is stored in static storage

v To specify that a Java method is defined as a static method.

For a local variable of a subprocedure, the STATIC keyword specifies that the data

item is to be stored in static storage, and thereby hold its value across calls to the

procedure in which it is defined. The keyword can only be used within a

subprocedure. All global fields are static.

The data item is initialized when the subprocedure it is contained in is first

activated. It is not reinitialized again, even if the subprocedure is called again.

If STATIC is not specified, then any locally-defined data item is stored in automatic

storage. Data stored in automatic storage is initialized at the beginning of every

call. When a procedure is called recursively, each invocation gets its own copy of

the storage.

For a Java method, the STATIC keyword specifies that the method is defined as

static. If STATIC is not specified, the method is assumed to be an instance method.

STYLE(style_type)

The STYLE keyword indicates the style type used for the message window (Factor

2 of the DSPLY operation code). The style type can be one of the following

figurative constants:

v *INFO

v *WARN

v *HALT

This keyword cannot be used if the MSGDATA, MSGNBR, or MSGTEXT keywords

are used.

TIMFMT(format{separator})

The TIMFMT keyword specifies an internal time format, and optionally the time

separator, for any of these items of type Time: standalone field; data-structure

subfield; prototyped parameter; or return value on a prototype or

procedure-interface definition. This keyword is automatically generated for an

externally-described data-structure subfield of type Time.

294 VisualAge RPG Language Reference

If TIMFMT is not specified, the Time field will have the time format and separator

as specified by the TIMFMT keyword on the control specification, if present. If

none is specified on the control specification, then it will have *ISO format.

See Table 18 on page 136 for valid formats and separators.

The hierarchy used when determining the internal format and separator for a time

array or field is:

1. From the TIMFMT keyword specified on the definition specification

2. From the TIMFMT keyword specified in the control specification

3. *ISO

TOFILE(file_name)

The TOFILE keyword specifies a target file to which a pre-runtime or compile-time

array or table is to be written.

If an array or table is to be written, specify the file name of the combined file as

the keyword parameter. This file must also be defined in the file description

specifications. An array or table can be written to only one output device.

If an array or table is to be written to the same file from which it was read, the

same file name that was specified as the FROMFILE parameter must be specified

as the TOFILE parameter. This file must be defined as a combined file (C in

position 17 on the file-description specification).

VALUE

The VALUE keyword indicates that the parameter is passed by value rather than

by reference. Parameters can be passed by value when the procedure they are

associated with are called using a procedure call.

When the CLTPGM keyword is used, parameters must be passed by value.

The rules for what can be passed as a value parameter to a called procedure are

the same as the rules for what can be assigned using the EVAL operation. The

parameter received by the procedure corresponds to the left-hand side of the

expression; the passed parameter corresponds to the right-hand side. See “EVAL

(Evaluate Expression)” on page 571 for more information.

VARYING

The VARYING keyword indicates that a character, graphic, or UCS-2 field, defined

on the definition specifications, should have a variable-length format. If this

keyword is not specified for character, graphic or UCS-2 fields, they are defined as

fixed length.

For more information, see “Variable-Length Character, Graphic, and UCS-2

Format” on page 113.

Summary According to Definition Specification Type

Table 29 on page 296 lists the required and allowed entries for each

definition-specification type.

Table 30 on page 296 and Table 31 on page 297 list the keywords allowed for each

definition-specification type.

Chapter 18. Definition Specifications 295

In each of these tables, an R indicates that an entry in these positions is required

and an A indicates that an entry in these positions is allowed.

 Table 29. Required/Allowed Entries for each Definition Specification Type

Type

Pos. 7-21

Name

Pos. 22

External

Pos. 23

DS Type

Pos.

24-25

Defn.

Type

Pos.

26-32

From

Pos.

33-39 To /

Length

Pos. 40

Data-

type

Pos.

41-42

Decimal

Pos.

Pos.

44-80

Key-

words

Data Structure A A A R A A

Data Structure

Subfield

A A A A A A

External

Subfield

A R A

Standalone

Field

R R A A A A

Named

Constant

R R R

Prototype R R A A A A

Prototype

Parameter

A A A A A

Procedure

Interface

A R A A A A

Procedure

Interface

Parameter

R A A A A

 Table 30. Data Structure, Standalone Fields, Named Constants, and Message Window

Keywords

Keyword

Data

Structure

Data

Structure

Subfield

External

Subfield

Standalone

Field

Named

Constant

Message

Window

ALIGN A

ALT A A A

ASCEND A A A

BASED A A

BUTTON A

CCSID A A

CLASS A

CONST (1.) R

CTDATA (2.) A A A

DATFMT A A

DESCEND A A A

DIM A A A A

DTAARA (2.) A A A

EXTFLD A

EXTFMT A A A

EXTNAME (4.) A

296 VisualAge RPG Language Reference

Table 30. Data Structure, Standalone Fields, Named Constants, and Message Window

Keywords (continued)

Keyword

Data

Structure

Data

Structure

Subfield

External

Subfield

Standalone

Field

Named

Constant

Message

Window

FROMFILE (2.) A A A

INZ A A A A

LIKE A A

LIKEDS

5 A A

LIKEREC A A

LINKAGE R R

MSGDATA A

MSGNBR A

MSGTEXT A

MSGTITLE A

NOOPT A A

OCCURS A

OVERLAY A

PACKEVEN A

PERRCD A A A

PREFIX (4.) A

PROCPTR A A

QUALIFIED A

STATIC (3.) A A

STYLE A

TIMFMT A A

TOFILE (2.) A A A

VARYING A A

Note:

1 When defining a named constant, the keyword is optional, but the parameter to

the keyword is required. For example, to assign a named constant the value ’10’,

you could specify either CONST(’10’) or ’10’.

2 This keyword only applies to global definitions.

3 This keyword only applies to local definitions.

4 This keyword only applies to externally-described data structures.

5 This keyword applies only to program-described data structures.

 Table 31. Prototype, Procedure Interface, and Parameter Keywords

Keyword Prototype (PR)

Procedure Interface

(PI) PR or PI Parameter

ASCEND A

CCSID A A A

CLASS A A A

Chapter 18. Definition Specifications 297

Table 31. Prototype, Procedure Interface, and Parameter Keywords (continued)

Keyword Prototype (PR)

Procedure Interface

(PI) PR or PI Parameter

CLTPGM A

CONST A

DATFMT A A A

DESCEND A

DIM A A A

DLL A

EXTPGM A

EXTPROC A

LIKE A A A

LIKEDS A A A

LIKEREC A A A

LINKAGE A

NOOPT A

OPTIONS A

PROCPTR A A A

STATIC A A

TIMFMT A A A

VALUE A

VARYING A A A

298 VisualAge RPG Language Reference

Chapter 19. Input Specifications

For a program described input file, input specifications describe the types of

records within the file, the fields within a record, the data within the field, and

indicators based on the contents of the fields.

For an externally described file, input specifications are optional and can be used

to add functions to the external description.

Detailed information for the input specifications is given in:

v “Program Described Files” on page 300

v “Externally Described Files” on page 307

Input Specification Statement

The general layout for the Input specification is:

v The input specification type (I) is entered in position 6

v The non-commentary part of the specification extends from position 7 to

position 80

v The comments section of the specification extends from position 81 to position

100

Program Described

For program described files, entries on input specifications are divided into the

following categories:

v Record identification entries (positions 7 through 46), which describe the input

record and its relationship to other records in the file.

v Field description entries (positions 31 through 74), which describe the fields in

the records. Each field is described on a separate line, below its corresponding

record identification entry.

Externally Described

For externally described files, entries on input specifications are divided into the

following categories:

v Record identification entries (positions 7 through 16, and 21 through 22), which

identify the record (the externally described record format) to which VARPG

functions are to be added.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

IFilename++Sq..RiPos1+NCCPos2+NCCPos3+NCC..................................Comments++++++++++++

I.........And..RiPos1+NCCPos2+NCCPos3+NCC..................................Comments++++++++++++

Figure 104. Program Described Record Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

I........................Fmt+SPFrom+To+++DcField+++++++++....FrPlMnZr......Comments++++++++++++

Figure 105. Program Described Field Layout

© Copyright IBM Corp. 1994, 2005 299

v Field description entries (positions 21 through 30, 49 through 66, and 69 through

74), which describe the VARPG functions to be added to the fields in the record.

Field description entries are written on the lines following the corresponding

record identification entries.

Program Described Files

Program described files include the following entries on input specifications.

Position 6 (Form Type)

An I must appear in position 6 to identify this line as an input specification

statement.

Record Identification Entries

Record identification entries (positions 7 through 46) for a program described file

describe the input record and its relationship to other records in the file.

Positions 7-16 (File Name)

Entry Explanation

A valid file name

 This is the same name that appears on the file description specifications for

the input file.

 Enter the name for the file to be described in these positions. This name

must be the same as the name defined for the file on the file description

specifications. This file must be an input file, an update file, or a combined

file. The file name must be entered on the first record indentification line

for each file and can be entered on subsequent record indentification lines

for that file. All entries describing one input file must appear together; they

cannot be mixed with entries for other files.

Positions 16-18 (Logical Relationship)

Entry Explanation

AND More than three identification codes are used.

OR Two or more record types have common fields.

 An unlimited number of AND/OR lines can be used. For more information see

“AND Relationship” on page 303 and “OR Relationship” on page 303.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

IRcdname+++....Ri..Comments++++++++++++

Figure 106. Externally Described Record Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

I..............Ext-field+..................Field+++++++++......PlMnZr......Comments++++++++++++

Figure 107. Externally Described Field Layout

300 VisualAge RPG Language Reference

Positions 17-18 (Sequence)

Entry Explanation

Any two alphanumeric characters

No special sequence checking is done.

Position 19 (Reserved)

Entry Explanation

Blank Record types are not checked for a special sequence (positions 17 and 18

have alphanumeric entries).

Position 20 (Option)

Entry Explanation

Blank This entry must be blank when positions 17 and 18 contain an

alphanumeric entry.

Positions 21-22 (Record Identifying Indicator)

Entry Explanation

Blank No indicator is used

01-99 General indicator

LR Control level indicator used for a record identifying indicator

 The indicators specified in these positions are used in conjunction with the record

identification codes (positions 23 through 46).

Indicators

Positions 21 and 22 associate an indicator with the record type defined on this line.

You can enter either 01 to 99 or LR.

When a record is selected for processing and satisfies the conditions indicated by

the record identification codes, the appropriate record identifying indicator is set

on. This indicator can be used to condition calculation and output operations.

Record identifying indicators can be set on or set off by the programmer.

Positions 23-46 (Record Identification Codes)

Entries in positions 23 through 46 identify each record type in the input file. One

to three identification codes can be entered on each specification line. More than

three record identification codes can be specified on additional lines with the

AND/OR relationship. If the file contains only one record type, the identification

codes can be left blank; however, a record identifying indicator entry (positions 21

and 22) and a sequence entry (positions 17 and 18) must be made.

Note: Record identification codes are not applicable for graphic UCS-2 data type

processing: record identification is done on single byte positions only.

Three sets of entries can be made in positions 23 through 46: 23 through 30, 31

through 38, and 39 through 46. Each set is divided into four groups: , , , . position,

not, code part, and character.

Chapter 19. Input Specifications 301

The following table shows which categories use which positions in each set.

 Category 23-30 31-38 39-46

Position 23-27 31-35 39-43

Not 28 36 44

Code Part 29 37 45

Character 30 38 46

Entries in these sets do not need to be in sequence. For example, an entry can be

made in positions 31 through 38 without requiring an entry in positions 23

through 30. Entries for record identification codes are not necessary if input

records within a file are of the same type. An input specification containing no

record identification code defines the last record type for the file, thus allowing the

handling of any record types that are undefined. If no record identification codes

are satisfied, control passes to the VARPG exception/error handling routine.

Positions 23-27, 31-35, and 39-43 (Position)

Entry Explanation

Blank No record identification code is present.

1-32766 This is the position that contains the record identification code in

the record. The position containing the code must be within the

record length specified for the file. This entry must be

right-adjusted, but leading zeros can be omitted.

Positions 28, 36, and 44 (Not)

Entry Explanation

Blank Record identification code must be present.

N An N in this position means that the record identification code must not be

present in the specified record position.

Positions 29, 37, and 45 (Code Part)

This entry specifies what part of the character in the record identification code is to

be tested.

Entry Explanation

C Entire character

D Digit

Character (C): The C entry indicates that the complete structure (zone and digit)

of the character is to be tested.

Digit (D): The D entry indicates that the digit portion of the character is to be

tested. The four right-most bits of the character are compared with the character

specified by the position entry.

Positions 30, 38, and 46 (Character)

An entry in this position indicates the identifying character that is compared with

the character in the position specified in the input record.

The check for record type starts with the first record type specified. If data in a

record satisfies more than one set of record identification codes, the first record

type satisfied determines the record types.

302 VisualAge RPG Language Reference

When more than one record type is specified for a file, the record identification

codes should be coded so that each input record has a unique set of identification

codes.

AND Relationship

The AND relationship is used when more than three record identification codes

identify a record.

To use the AND relationship, enter at least one record identification code on the

first line and enter the remaining record identification codes on the following lines

with AND coded in positions 16 through 18 for each additional line used. Positions

7 through 15, 19 through 20, and 46 through 80 of each line with AND in positions

16 through 18 must be blank. Sequence and record-identifying-indicator entries are

made in the first line of the group and cannot be specified in the additional lines.

An unlimited number of AND/OR lines can be used on the input specifications.

OR Relationship

The OR relationship is used when two or more record types have common fields.

To use the OR relationship, enter OR in positions 16 and 17. Positions 7 through

15, 18 through 20, and 46 through 80 must be blank. A record identifying indicator

can be entered in positions 21 and 22. If the indicator entry is made and the record

identification codes on the OR line are satisfied, the indicator specified in positions

21 and 22 on that line is set on. If no indicator entry is made, the indicator on the

preceding line is set on.

An unlimited number of AND/OR lines can be used on the input specifications.

Field Description Entries

The field description entries (positions 31 through 74) must follow the record

identification entries (positions 7 through 46) for each file.

Position 6 (Form Type)

An I must appear in position 6 to identify this line as an input specification

statement.

Positions 7-30 (Reserved)

Positions 7-30 must be blank.

Positions 31-34 (Data Attributes)

Positions 31-34 specify the external format for a date, time, or variable-length

character, graphic, or UCS-2 field.

If this entry is blank for a date or time field, then the format/separator specified

for the file (with either DATFMT or TIMFMT or both) is used. If there is no

external date or time format specified for the file, then an error message is issued.

See “Date Data” on page 119 and “Time Data” on page 135 for date and time

formats.

The hierarchy used when determining the external date/time format and separator

for date and time fields is:

1. The date format and separator specified in positions 31-35

2. From the DATFMT/TIMFMT keyword specified for the current file

Chapter 19. Input Specifications 303

3. From the DATFMT/TIMFMT keyword specified in the control specification

4. *ISO

Date and time fields are converted from the external date/time format determined

above to the internal format of the date/time field.

For character, graphic, or or UCS-2 data, the *VAR data attribute is used to specify

variable-length input fields. If this entry is blank for character, graphic, or UCS-2

data, then the external format must be fixed length. The internal and external

format must match, if the field is defined elsewhere in the program. For more

information on variable-length fields, see “Variable-Length Character, Graphic, and

UCS-2 Format” on page 113.

For more information on external formats, see “Internal and External Formats” on

page 103.

Position 35 (Date/Time Separator)

Position 35 specifies a separator character to be used for date/time fields. The &

(ampersand) can be used to specify a blank separator. See “Date Data” on page 119

and “Time Data” on page 135 for date and time formats and their default

separators.

For an entry to be made in this field, an entry must also be made in positions

31-34 (date/time external format).

Position 36 (Data Format)

The input field is:

Entry Explanation

Blank Zoned decimal format or character

A Character field (fixed- or variable-length format)

N Character field (Indicator format)

G Graphic field (fixed- or variable-length format)

C UCS-2 field (fixed- or variable-length format)

B Binary format

F Numeric field (float format)

I Numeric format (integer format)

L Numeric field with a preceding (left) plus or minus sign (zoned decimal

format)

P Numeric field (packed decimal format)

R Numeric field with a following (right) plus or minus sign (zoned decimal

format)

S Numeric field (zoned decimal field)

U Numeric field (unsigned format)

D Date field – the date field has the external format specified in positions

31–34 or the default file date format.

T Time field – the time field has the external format specified in positions

31–34 or the default file time format

304 VisualAge RPG Language Reference

Z Timestamp field

 The entry in position 36 specifies the data type , and if numeric, the external data

format of the data in the program described file. This entry has no effect on the

format used for internal processing of the input field in the program.

Positions 37-46 (Field Location)

Entry Explanation

Two 1- to 5-digit numbers

Beginning of a field (from) and end of a field (to).

This entry describes the location and size of each field in the input record.

Positions 37 through 41 specify the location of the field’s beginning position;

positions 42 through 46 specify the location of the field’s end position. To define a

single-position field, enter the same number in positions 37 through 41 and in

positions 42 through 46. Numeric entries must be right-adjusted; leading zeros can

be omitted.

The maximum number of positions in the input record for each type of field is:

 Number of Positions Type of Field

31 Zoned decimal numeric (31 digits)

16 Packed numeric (31 digits)

4 Binary (9 digits)

8 Integer (20 digits)

8 Unsigned (20 digits)

8 Float (8 bytes)

32 Numeric with leading or trailing sign (31 digits)

10 Date

8 Time

26 Timestamp

32766 Character (32766 characters)

32766 Variable-Length Character (32764 characters)

32766 Graphic or UCS-2 (16383 double-byte characters)

32766 Variable-Length Graphic or UCS-2 (16382 double-byte characters)

32766 Data structure

The maximum size of a character or data structure field specified as a program

described input field is 32766 since that is the maximum record length for a file.

When specifying a variable-length character, graphic, or UCS-2 input field, the

length includes the 2 byte length prefix.

For arrays, enter the beginning position of the array in positions 37 through 41 and

the ending position in positions 42 through 46. The array length must be an

integral multiple of the length of an element. The From-To position does not have

to account for all the elements in the array. The placement of data into the array

starts with the first element.

Positions 47-48 (Decimal Positions)

Entry Explanation

Blank Character, graphic, UCS-2, float, date, time, or timestamp field.

Chapter 19. Input Specifications 305

0-31 Number of decimal positions in numeric field.

 This entry, used with the data format entry in position 36, describes the format of

the field. An entry in this field identifies the input field as numeric (except float

numeric); if the field is numeric, an entry must be made. The number of decimal

positions specified for a numeric field cannot exceed the length of the field.

Positions 49-62 (Field Name)

Entry Explanation

Symbolic name

Field name, data structure name, data structure subfield name, array name,

array element, PAGE, PAGE1-PAGE7, *IN, *INxx, or *IN(xx).

 These positions name the fields of an input record that are used in a VARPG

program. This name must follow the rules for symbolic names.

To refer to an entire array on the input specifications, enter the array name in

positions 49 through 62. If an array name is entered in positions 49 through 62,

field indicators (positions 67 through 68) must be blank.

To refer to an element of an array, specify the array name, followed by an index

enclosed within parentheses. The index is either a numeric field with zero decimal

positions or the actual number of the array element to be used. The value of the

index can vary from 1 to n, where n is the number of elements within the array.

Positions 63-64 (Reserved)

Entry Explanation

Blank This entry must be blank.

Positions 65-66 (Reserved)

Entry Explanation

Blank This entry must be blank.

Positions 67-68 (Field Record Relation)

Entry Explanation

Blank The field is common to all record types.

01-99 General indicators.

 Field record relation indicators are used to associate fields within a particular

record type when that record type is one of several in an OR relationship. This

entry reduces the number of lines that must be written.

The field described on a line is extracted from the record only when the indicator

coded in positions 67 and 68 is on or when positions 67 and 68 are blank. When

positions 67 and 68 are blank, the field is common to all record types defined by

the OR relationship.

Positions 69-74 (Field Indicators)

Entry Explanation

306 VisualAge RPG Language Reference

Blank No indicator specified

01-99 General indicators

 Entries in positions 69 through 74 test the status of a field or of an array element

as it is read into the program. Field indicators are specified on the same line as the

field to be tested. Depending on the status of the field (plus, minus, zero, or

blank), the appropriate indicator is set on and can be used to condition later

specifications. The same indicator can be specified in two positions, but it should

not be used for all three positions. Field indicators cannot be used with arrays that

are not indexed.

Positions 69 and 70 (plus) and positions 71 and 72 (minus) are valid for numeric

fields only. Positions 73 and 74 can be used to test a numeric field for zeros or a

character, graphic, UCS-2 field for blanks.

The field indicators are set on if the field or array element meets the condition

specified when the record is read. Each field indicator is related to only one record

type; therefore, the indicators are not reset (on or off) until the related record is

read again or until the indicator is defined in some other specification.

Externally Described Files

Externally described files include the following entries on input specifications.

Position 6 (Form Type)

An I must appear in position 6 to identify this line as an input specifications

statement.

Record Identification Entries

When the description of an externally described file is retrieved, the record

definitions are also retrieved. To refer to the record definitions, specify the record

format name in the input, calculation, and output specifications of the program.

Input specifications for an externally described file are required if:

v Record identifying indicators are to be specified

v A field within a record is to be renamed for the program

v Field indicators are to be used.

The field description specifications must immediately follow the record

identification specification for an externally described file.

A record line for an externally described file defines the beginning of the override

specifications for the record. All specifications following the record line are part of

the record override until another record format name or file name is found in

positions 7 through 16 of the input specifications. All record lines that pertain to an

externally described file must appear together; they cannot be mixed with entries

for other files.

Positions 7-16 (Record Name)

Enter one of the following:

v The external name of the record format. This file name cannot be used for an

externally described file.

Chapter 19. Input Specifications 307

v The name specified by the RENAME keyword on the file description

specifications if the external record format was renamed. A record format name

can appear only once in positions 7 through 16 of the input specifications for a

program.

Positions 17-20 (Reserved)

Positions 17 through 20 must be blank.

Positions 21-22 (Record Identifying Indicator)

The specification of record identifying indicators in these positions is optional but,

if present, follows the rules for . Program Described Files. See “Program Described

Files” on page 300.

Positions 23-80 (Reserved)

Positions 23-80 must be blank.

Field Description Entries

The field description specifications for an externally described file can be used to

rename a field within a record for a program or to specify field indicator functions.

The field definitions (attributes) are retrieved from the externally described file and

cannot be changed by the program. If the attributes of a field are not valid for a

VARPG program the field cannot be used. Diagnostic checking is done on fields

contained in an external record format in the same way as for source statements.

Normally, externally described input fields are only read during input operations if

the field is actually used elsewhere in the program.

Positions 7-20 (Reserved)

Positions 7 through 20 must be blank.

Positions 21-30 (External Field Name)

If a field within a record in an externally described file is to be renamed, enter the

external name of the field in these positions. A field may have to be renamed

because the name is the same as a field name specified in the program and two

different names are required.

Note: If the input field is for a file that has the PREFIX keyword coded, and the

prefixed name has already been specified in the Field Name entry (positions

49 - 62) of a prior Input specification for the same record, then the prefixed

name must be used as the external name. For more information, see

“PREFIX(prefix{:nbr_of_char_replaced})” on page 249.

Positions 31-48 (Reserved)

Positions 31 through 48 must be blank.

Positions 49-62 (Field Name)

The field name entry is made only when it is required for the functions such as

control levels added to the external description. The field name entry contains one

of the following:

v The name of the field as defined in the external record description (if 10

characters or less)

308 VisualAge RPG Language Reference

|
|
|
|
|

v The name specified to be used in the program that replaced the external name

specified in positions 21 through 30.

The field name must follow the rules for using symbolic names.

Indicators cannot be null-capable.

Positions 63-64 (Reserved)

Entry Explanation

Blank This entry must be blank.

Positions 65-66 (Reserved)

Entry Explanation

Blank This entry must be blank.

Positions 67-68 (Reserved)

Positions 67 and 68 must be blank.

Positions 69-74 (Field Indicators)

Entry Explanation

Blank No indicator specified

01-99 General indicators

 Field indicators are allowed for null-capable fields only if the User control option

or ALWNULL(*USRCTL) keyword is specified.

If a null-capable field contains a null value, the indicator is set off.

See “Positions 69-74 (Field Indicators)” on page 306 for program described files.

Positions 75-80 (Reserved)

Positions 75 through 80 must be blank.

Chapter 19. Input Specifications 309

310 VisualAge RPG Language Reference

Chapter 20. Calculation Specifications

Calculation specifications indicate the operations done on the data in a program.

You can specify calculation specifications in three different formats:

v “Traditional Syntax”

v “Extended Factor 2 Syntax” on page 316

v “Free-Form Syntax” on page 318.

See Chapter 26, “Operation Code Details,” on page 501 for details on how the

calculation specification entries must be specified for individual operation codes.

Traditional Syntax

The general layout for the calculation specification is as follows:

v The calculation specification type (C) is entered in position 6

v The non-comment part of the specification extends from position 7 to position

80. These positions are divided into three parts that specify the following:

– When calculations are done: The conditioning indicators specified in positions

7 through 11 determine when and under what conditions the calculations are

to be done.

– What kind of calculations are done: The entries specified in positions 12

through 70 (12 through 80 for operations that use extended-factor 2, see

“Extended Factor 2 Syntax” on page 316 and Chapter 24, “Expressions,” on

page 381) specify the kind of calculations done, the data (such as fields or

files) upon which the operation is done, and the field that contains the results

of the calculation.

– What tests are done on the results of the operation: Indicators specified in

positions 71 through 76 are used to test the results of the calculations and can

condition subsequent calculations or output operations. The resulting

indicator positions have various uses, depending on the operation code.
v The comments section of the specification extends from position 81 to position

100

Calculation-Specification Extended-Factor 2 Continuation Line

The Extended-Factor 2 field can be continued on subsequent lines as follows:

v Position 6 of the continuation line must contain a C

v Positions 7 to 35 of the continuation line must be blank

v The specification continues on or past position 36

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments++++++++++++

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++Comments++++++++++++

Figure 108. Calculation Specification Layout

© Copyright IBM Corp. 1994, 2005 311

Position 6 (Form Type)

A C must appear in position 6 to identify this line as a calculation specification

statement.

Positions 7-8 (Control Level)

Entry Explanation

Blank The calculation operation is done if the indicators in positions 9

through 11 allow it; or the calculation is part of a subroutine. Blank

is also used for declarative operation codes.

SR The calculation operation is part of a subroutine. A blank entry is

also valid for calculations that are part of a subroutine.

AN, OR Indicators on more than one line condition the calculation.

Subroutine Identifier

An SR entry in positions 7 and 8 may optionally be used for operations within

subroutines as a documentation aid. The operation codes BEGACT and ENDACT

serve as delimiters for an action subroutine. The operation codes BEGSR and

ENDSR serve as delimiters for a subroutine.

AND/OR Lines Identifier

Positions 7 and 8 can contain AN or OR to define additional indicators (positions 9

through 11) for a calculation.

The entry in positions 7 and 8 of the line immediately preceding an AND/OR line

or a group of AND/OR lines determines when the calculation is to be processed.

The entry in positions 7 and 8 on the first line of a group applies to all AND/OR

lines in the group.

Positions 9-11 (Indicators)

Positions 10 and 11 contain an indicator that is tested to determine if a particular

calculation is to be processed:

Entry Explanation

Blank The operation is processed on every record

01-99 General indicators

LR Last record indicator

A blank in position 9 designates that the indicator must be on for a calculation to

be done. An N in positions 9 designates that the associated indicator must be off

for a calculation to be done.

Positions 12-25 (Factor 1)

Factor 1 names a field or gives actual data (literals) on which an operation is done,

or contains a VARPG special word (for example, *LOCK) which provides extra

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

C.............................Extended-factor2-continuation++++++++++++++++Comments++++++++++++

Figure 109. Calculation-Specification Extended-Factor 2 Continuation Line

312 VisualAge RPG Language Reference

information on how an operation is to be done. The entry must begin in position

12. The entries for factor 1 depend on the operation code specified in positions 26

through 35. For the specific entries for factor 1 for a particular operation code, see

Chapter 26, “Operation Code Details,” on page 501. With some operation codes,

two operands may be specified separated by a colon.

Positions 26-35 (Operation and Extender)

Positions 26 through 35 specify the kind of operation to be done using factor 1,

factor 2, and the result field entries. The operation code must begin in position 26.

For further information on the operation codes, see Chapter 23, “Operations,” on

page 341 and Chapter 26, “Operation Code Details,” on page 501.

Operation Extender

Entry Explanation

Blank No operation extension supplied

H Half adjust (round) result of numeric operation and set resulting indicators

according to the value of the result field after half-adjusting has been done

N Record is read but not locked for READ, READE, READP, READPE, or

CHAIN operations on an update disk file

 Set pointer to *NULL after successful DEALLOC

P Pad the result field with blanks if the result field is longer than the result

of the operation

 Pass operational descriptors on a bound call

D Date field

T Time field

Z Timestamp field

M Default precision rules

R ″Result Decimal Position″ precision rules

E Error handling

 The operation extenders provide additional attributes to the operations that they

accompany. Operation extenders are specified in positions 26-35 of calculation

specifications. They must begin to the right of the operation code and be contained

within parentheses; blanks can be used for readability. For example, the following

are valid entries: MULT(H), MULT (H), MULT (H).

More than one operation extender can be specified. For example, the EVAL

operation can specify both half-adjust and the default precision rules with

EVAL(HM).

An H indicates whether the contents of the result field are to be half adjusted

(rounded). Resulting indicators are set according to the value of the result field

after half-adjusting has been done.

An N in a READ, READE, READP, READPE, or CHAIN operation on an update

disk file indicates that a record is to be read, but not locked. If no value is

specified, the default action of locking occurs.

Chapter 20. Calculation Specifications 313

An N in a DEALLOC operation indicates that the result field pointer is to be set to

*NULL after a successful deallocation.

A P indicates that the result field is padded after executing the instruction if the

result field is longer than the result of the operation.

The D, T, and Z extenders can be used with the TEST operation code to indicate a

date, time, or timestamp field.

M and R are specified for the precision of single free-form expressions. For more

information, see “Precision Rules for Numeric Operations” on page 390.

M indicates that the default precision rules are used.

R indicates that the precision of a decimal intermediate will be computed such that

the number of decimal places will never be reduced smaller than the number of

decimal positions of the result of the assignment.

E indicates that operation-related errors will be checked with built-in function

%ERROR.

Positions 36-49 (Factor 2)

Factor 2 names a field, record format or file, or gives actual data on which an

operation is to be done, or contains a special word (for example, *ALL) which

gives extra information about the operation to be done. The entry must begin in

position 36. The entries that are valid for factor 2 depend on the operation code

specified in positions 26 through 35. With some operation codes, two operands

may be specified separated by a colon. For the specific entries for factor 2 for a

particular operation code, see Chapter 26, “Operation Code Details,” on page 501.

Positions 50-63 (Result Field)

The result field names the field or record format that contains the result of the

calculation operation specified in positions 26 through 35. The field specified must

be modifiable. For example, it cannot be a user date field. With some operation

codes, two operands may be specified separated by a colon. See Chapter 26,

“Operation Code Details,” on page 501 for the result field rules for individual

operation codes.

Positions 64-68 (Field Length)

Entry Explanation

1-31 Numeric field length.

1-65535 Character field length.

Blank The result field is defined elsewhere or a field cannot be defined

using this operation code

 Positions 64 through 68 specify the length of the result field. This entry is optional,

but can be used to define a numeric or character field not defined elsewhere in the

program. These definitions of the field entries are allowed if the result field

contains a field name. Other data types must be defined on the definition

specification or on the calculation specification using the *LIKE DEFINE operation.

314 VisualAge RPG Language Reference

The entry specifies the number of positions to be reserved for the result field. The

entry must be right-adjusted. The unpacked length (number of digits) must be

specified for numeric fields.

If the result field is defined elsewhere in the program, no entry is required for the

length. However, if the length is specified, and if the result field is defined

elsewhere, the length must be the same as the previously defined length. If the

result field length is different from the previously defined length, the previously

defined value is used.

Chapter 20. Calculation Specifications 315

Positions 69-70 (Decimal Positions)

Entry Explanation

Blank The result field is character data, has been defined elsewhere in the

program, or no field length has been specified.

0-31 Number of decimal positions in a numeric result field:

v If the numeric result field contains no decimal positions, enter a ’0’

(zero).

v The number of decimal positions specified cannot exceed the length of

the field.

 Positions 69-70 indicate the number of positions to the right of the decimal in a

numeric result field.

Positions 71-76 (Resulting Indicators)

These positions can be used to test the value of a result field after the completion

of an operation, or to indicate conditions like end-of-file, error, or record-not-found.

For some operations, you can control the way the operation is performed by

specifying different combinations of the three resulting indicators (for example,

LOOKUP). The resulting indicator positions have different uses, depending on the

operation code specified. See the individual operation codes in Chapter 26,

“Operation Code Details,” on page 501 for a description of the associated resulting

indicators. For arithmetic operations, the result field is tested only after the field is

truncated and half-adjustment is done (if specified). The setting of indicators

depends on the results of the tests specified.

Entry Explanation

Blank No resulting indicator specified

01-99 General indicators

LR Last record indicator

Resulting indicators cannot be used when the result field uses a non-indexed array.

If the same indicator is used as a resulting indicator on more than one calculation

specification, the most recent specification processed determines the status of that

indicator.

Note: When the calculation operation is done, the specified resulting indicators are

set off, and, if a condition specified by a resulting indicator is satisfied, that

indicator is set on.

Extended Factor 2 Syntax

Certain operation codes allow an expression to be used in the extended-factor 2

field.

Positions 7-8 (Control Level)

See “Positions 7-8 (Control Level)” on page 312.

Positions 9-11 (Indicators)

See “Positions 9-11 (Indicators)” on page 312.

316 VisualAge RPG Language Reference

Positions 12-25 (Factor 1)

Factor 1 must be blank.

Positions 26-35 (Operation and Extender)

Positions 26 through 35 specify the kind of operation to be done using the

expression in the extended-factor 2 field. The operation code must begin in

position 26. For further information on the operation codes, see Chapter 23,

“Operations,” on page 341 and Chapter 26, “Operation Code Details,” on page 501.

The program processes the operations in the order specified on the calculation

specifications form.

Operation Extender

Entry Explanation

Blank No operation extension supplied.

H Half adjust (round) result of numeric operation

M Default precision rules

R ″Result Decimal Position″ precision rules

E Error handling

 Half adjust may be specified, using the H extender, on arithmetic EVAL and

RETURN operations.

The type of precision may be specified, using the M or R extender, on DOU, DOW,

EVAL, IF, RETURN, and WHEN operations.

Error handling may be specified, using the ’E’ extender.

Chapter 20. Calculation Specifications 317

Positions 36-80 (Extended-Factor 2)

A free form syntax is used in this field. It consists of combinations of operands and

operators, and may optionally span multiple lines. If specified across multiple

lines, the continuation lines must be blank in positions 7-35

The operations that take an extended factor 2 are:

v “CALLP (Call a Prototyped Procedure or Program)” on page 522

v “DOU (Do Until)” on page 556

v “DOW (Do While)” on page 559

v “EVAL (Evaluate Expression)” on page 571

v “EVALR (Evaluate expression, right adjust)” on page 573

v “FOR (For)” on page 581

v “IF (If)” on page 586

v “ON-ERROR (On Error)” on page 641

v “RETURN (Return to Caller)” on page 671

v “WHEN (When True Then Select)” on page 713

See the specific operation codes for more information. See “Continuation Rules” on

page 215 for more information on coding continuation lines.

Free-Form Syntax

To begin a free-form calculation group, specify /FREE in positions 7 to 11 and leave

positions 12 to 80 blank. The free-form calculation block ends when you specify

/END-FREE.

In a free-form statement, the operation code does not need to begin in any specific

position within columns 8–80. Any extenders must appear immediately after the

operation code on the same line, within parentheses. There must be no embedded

blanks between the operation code and extenders. Following the operation code

and extenders, you specify the Factor 1, Factor 2, and the Result Field operands

separated by blanks. If any of these are not required by the operation, you may

leave them out. You can freely use blanks and continuation lines in the remainder

of the statement. Each statement must end with a semicolon. The remainder of the

record after the semicolon must be blank or contain an end-of-line comment.

For the EVAL or CALLP operation code, you can omit the operation code. For

example, the following two statements are equivalent:

 eval pos = %scan (’,’: name);

 pos = %scan (’,’: name);

For each record within a free-form calculation block, positions 6 and 7 must be

blank.

You can specify compiler directives within a free-format calculation block, with the

following restrictions:

v The compiler directive must be the first item on the line. Code the directive

starting anywhere from column 7 onward. It cannot continue to the next line.

v Compiler directives are not allowed within a statement. The directive must

appear on a new line after one statement ends and before the next statement

begins.

v Any statements that are included by a /COPY or /INCLUDE directive are

considered fixed syntax calculations. Any free-form statements in a /COPY

member must be delimited by the /FREE and /END-FREE directives.

Calculation Specification - Free-Form Syntax

318 VisualAge RPG Language Reference

Free-form operands can be longer than 14 characters. The following are not

supported:

v Continuation of numeric literals

v Defining field names

v Resulting indicators. (In most cases where you need to use operation codes with

resulting indicators, you can use an equivalent built-in function instead.)

 You can combine free-form and traditional calculation specifications in the same

program, as shown below:

Positions 8-80 (Free-form Operations)

Enter an operation that is supported in free-form syntax. Code an operation code

(EVAL and CALLP are optional) followed by the operands or expressions. The

operation may optionally span multiple lines. No new continuation characters are

required; each statement ends with a semicolon (;). However, existing continuation

rules still apply.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /free

 read file; // Get next record

 dow not %eof(file); // Keep looping while we have

 // a record

 if %error;

 dsply ’The read failed’;

 leave;

 else;

 chain(n) name database data;

 time = hours * num_employees

 + overtime_saved;

 pos = %scan (’,’: name);

 name = %xlate(upper:lower:name);

 exsr handle_record;

 read file;

 endif;

 enddo;

 begsr handle_record;

 eval(h) time = time + total_hours_array (empno);

 temp_hours = total_hours - excess_hours;

 record_transaction();

 endsr;

 /end-free

Figure 110. Example of Free-Form Calculation Specification

C testb OPEN_ALL flags 10

 /free

 if *in10;

 openAllFiles();

 endif;

 /end-free

Figure 111. Example that Combines Traditional and Free-Form Calculation Specifications

Calculation Specification - Free-Form Syntax

Chapter 20. Calculation Specifications 319

See “Continuation Rules” on page 215 for more information on coding

continuation lines.

The operation codes that can use free-form syntax are listed below. For operations

that cannot use free-form syntax, check the detailed description in Chapter 26,

“Operation Code Details,” on page 501 to see if there is a suggested replacement.

v “BEGSR (Begin User Subroutine)” on page 511

v “CALLP (Call a Prototyped Procedure or Program)” on page 522

v “CHAIN (Random Retrieval from a File)” on page 529

v “CLEAR (Clear)” on page 539

v “CLOSE (Close Files)” on page 542

v “COMMIT (Commit)” on page 544

v “DEALLOC (Free Storage)” on page 546

v “DELETE (Delete Record)” on page 551

v “DOU (Do Until)” on page 556

v “DOW (Do While)” on page 559

v “DSPLY (Display Message Window)” on page 562

v “ELSE (Else)” on page 564

v “ELSEIF (Else If)” on page 565

v “ENDyy (End a Structured Group)” on page 566

v “ENDSR (End of User Subroutine)” on page 569

v “EVAL (Evaluate Expression)” on page 571

v “EVALR (Evaluate expression, right adjust)” on page 573

v “EXCEPT (Calculation Time Output)” on page 575

v “EXSR (Invoke User Subroutine)” on page 577

v “FEOD (Force End of Data)” on page 580

v “FOR (For)” on page 581

v “IF (If)” on page 586

v “IN (Retrieve a Data Area)” on page 589

v “ITER (Iterate)” on page 591

v “LEAVE (Leave a Do/For Group)” on page 596

v “LEAVESR (Leave a Subroutine)” on page 598

v “MONITOR (Begin a Monitor Group)” on page 602

v “ON-ERROR (On Error)” on page 641

v “OPEN (Open File for Processing)” on page 642

v “OTHER (Otherwise Select)” on page 645

v “OUT (Write a Data Area)” on page 646

v “POST (Post)” on page 652

v “READ (Read a Record)” on page 653

v “READC (Read Next Changed Record)” on page 656

v “READE (Read Equal Key)” on page 658

v “READP (Read Prior Record)” on page 661

v “READPE (Read Prior Equal)” on page 663

v “RESET (Reset)” on page 668

v “RETURN (Return to Caller)” on page 671

v “ROLBK (Roll Back)” on page 672

v “SELECT (Begin a Select Group)” on page 676

v “SETGT (Set Greater Than)” on page 679

v “SETLL (Set Lower Limit)” on page 681

v “SORTA (Sort an Array)” on page 686

v “TEST (Test Date/Time/Timestamp)” on page 700

v “UNLOCK (Unlock a Data Area or Release a Record)” on page 709

v “UPDATE (Modify Existing Record)” on page 711

v “WHEN (When True Then Select)” on page 713

v “WRITE (Create New Records)” on page 717

Calculation Specification - Free-Form Syntax

320 VisualAge RPG Language Reference

Chapter 21. Output Specifications

Output specifications describe the record and the format of fields in a program

described output file and when the record is to be written. Output specifications

are optional for an externally described file. If NOMAIN is coded on a control

specification, only exception output can be done.

Output specifications can be divided into two categories: record identification and

control (positions 7 through 51), and field description and control (positions 21

through 80). These specifications are entered on the Output Specifications.

Detailed information for the output specifications is given in:

v “Program Described Files” on page 322.

v “Externally Described Files” on page 332.

The following rules apply for output files:

v DISK files:

– DISK files can be either remote or local

– Remote files must be externally described

– Local files must be program described
v PRINTER files:

– PRINTER files must be program described
v SPECIAL files:

– SPECIAL files must be program described.

Output Specification Statement

The general layout for the Output specification is:

v The output specification type (O) is entered in position 6

v The non-comment part of the specification extends from position 7 to position 80

v The comments section of the specification extends from position 81 to position

100

Program Described

For program described files, entries on the output specifications can be divided

into two categories:

v Record identification and control (positions 7 through 51)

v Field description and control (positions 21 through 80). Each field is described

on a separate line, below its corresponding record identification entry.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

OFilename++EF..N01N02N03Excnam++++B++A++Sb+Sa+.............................Comment+++++++++++++

OFilename++EAddN01N02N03Excnam++++...Comment+++++++++++++

O.........And..N01N02N03Excnam++++...Comment+++++++++++++

Figure 112. Program Described Record Layout

© Copyright IBM Corp. 1994, 2005 321

Externally Described

For externally described files, entries on output specifications are divided into the

following categories:

v Record identification and control (positions 7 through 39)

v Field description and control (positions 21 through 43, and 45).

Program Described Files

Program described files include the following entries on output specifications.

Position 6 (Form Type)

An O must appear in position 6 to identify this line as an output specifications

statement.

Record Identification and Control Entries

Entries in positions 7 through 51 identify the output records that make up the files,

provide the correct spacing on printed reports, and determine under what

conditions the records are to be written.

Positions 7-16 (File Name)

Entry Explanation

A file name

Specify the file name on the first line that defines an output record for the

file. The file name specified must be the same file name assigned to the

output, update, or combined file on the file description specifications. If

records from files are interspersed on the output specifications, the file

name must be specified each time the file changes.

For files specified as output, update, combined, or input with ADD, at least one

output specification is required unless an explicit file operation code with a data

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++Comment+++++++++++++

O..Constant/editword-ContinutioComment+++++++++++++

Figure 113. Program Described Field Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

ORcdname+++E...N01N02N03Excnam++++...Comment+++++++++++++

ORcdname+++EAddN01N02N03Excnam++++...Comment+++++++++++++

O.........And..N01N02N03Excnam++++...Comment+++++++++++++

Figure 114. Externally Described Record Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

O..............N01N02N03Field+++++++++.B...................................Comment+++++++++++++

Figure 115. Externally Described Field Layout

322 VisualAge RPG Language Reference

structure name specified in the result field is used in the calculations. For example,

a WRITE operation does not require output specifications.

Positions 16-18 (Logical Relationship)

Entry Explanation

AND or OR

AND/OR indicates a relationship between lines of output indicators.

AND/OR lines are valid for output records, but not for fields. To specify

this relationship, enter AND/OR in positions 16 through 18 on each

additional line following the line containing the file name. At least one

indicator must be specified on each AND line. An unlimited number of

AND/OR lines can be specified on the output specifications.

Positions 7 through 15 must be blank when AND/OR is specified.

Position 17 (Type - Program Described File)

Entry Explanation

E Exception records are written during calculation processing. Exception

records can be specified only when the operation code EXCEPT is used.

See Chapter 23, “Operations,” on page 341 for more information on the

EXCEPT operation code.

Chapter 21. Output Specifications 323

Positions 18-20 (Record Addition/Deletion)

Entry Explanation

ADD Add a record to the input file, output file, update file, or subfile. For local

files, all records are added to the end of the file. Updates take place at the

current record.

DEL Delete the last record read from the file. The deleted record cannot be

retrieved; the record is deleted from the system.

Positions 21-29 (File Record ID Indicators)

Entry Explanation

Blank The line or field is output every time the record is checked for output.

01-99 A general indicator that is used as a resulting indicator, field indicator, or

record identifying indicator.

LR Last record indicator.

Conditioning indicators are not required on output lines. If conditioning indicators

are not specified, the line is output every time that record is checked for output.

Up to three indicators can be entered on one specification line to control when a

record or a particular field within a record is written. The indicators that condition

the output are coded in positions 22 and 23, 25 and 26, and 28 and 29. When an N

is entered in positions 21, 24, or 27, the indicator in the associated position must be

off for the line or field to be written. Otherwise, the indicator must be on for the

line or field to be written. See “PAGE, PAGE1-PAGE7” on page 327 for information

on how output indicators affect the PAGE fields.

If more than one indicator is specified on one line, all indicators are considered to

be in an AND relationship.

If the output record must be conditioned by more than three indicators in an AND

relationship, enter the letters AND in positions 16 through 18 of the following line

and specify the additional indicators in positions 21 through 29 on that line.

Positions 40 through 51 (spacing and skipping) must be blank for all AND lines.

If the output record is to be written when any one of two or more sets of

conditions exist (an OR relationship), enter the letters OR in positions 16-18 of the

following specification line, and specify the additional OR indicators on that line.

When an OR line is specified for a printer file, the skip and space entries (positions

40 through 51) can all be blank, in which case the space and skip entries of the

preceding line are used. If they differ from the preceding line, enter space and skip

entries on the OR line.

Positions 30-39 (EXCEPT Name)

When the record type is an exception record (indicated by an E in position 17), a

name can be placed in these positions of the record line. The EXCEPT operation

can specify the name assigned to a group of the records to be output. This name is

called an EXCEPT name. An EXCEPT name must follow the rules for using

symbolic names. A group of any number of output records can use the same

EXCEPT name, and the records do not have to be consecutive records.

324 VisualAge RPG Language Reference

When the EXCEPT operation is specified without an EXCEPT name, only those

exception records without an EXCEPT name are checked and written if the

conditioning indicators are satisfied.

When the EXCEPT operation specifies an EXCEPT name, only the exception

records with that name are checked and written if the conditioning indicators are

satisfied.

The EXCEPT name is specified on the main record line and applies to all AND/OR

lines.

An EXCEPT operation with no fields can be used to release a record lock in a file.

The UNLOCK operation can also be used for this purpose. In the following figure,

the record lock in file RCDA is released by the EXCEPT operation.

Positions 40-51 (Space and Skip)

Use positions 40 through 51 to specify line spacing and skipping for a printer file.

Spacing refers to advancing one line at a time, and skipping refers to jumping from

one print line to another.

If spacing and skipping are specified for the same line, the spacing and skipping

operations are processed in the following sequence:

1. Skip before

2. Space before

3. Print a line

4. Skip after

5. Space after.

If the PRTCTL (printer control option) keyword is not specified on the file

description specifications, an entry must be made in one of the following positions

when the device is PRINTER: 40-42 (space before), 43-45 (space after), 46-48 (skip

before), or 49-51 (skip after). If a space/skip entry is left blank, the particular

function with the blank entry (such as space before or space after) does not occur.

If entries are made in positions 40-42 (space before) or in positions 46-51 (skip

before and skip after) and no entry is made in positions 43 - 45 (space after), no

space occurs after printing. When PRTCTL is specified, it is used only on records

with blanks specified in positions 40 through 51.

If a skip before or a skip after a line on a new page is specified, but the printer is

on that line, the skip does not occur.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C*

C KEY CHAIN RCDA

C EXCEPT RELESE

ORcdname+++D...N01N02N03Excnam++++.......................................

O

O*

ORCDA E RELESE

O* (no fields)

Figure 116. Record Lock in File Released by EXCEPT Operation

Chapter 21. Output Specifications 325

Positions 40-42 (Space Before)

Entry Explanation

0 or Blank No spacing

1-255 Spacing values

Positions 43-45 (Space After)

Entry Explanation

0 or Blank No spacing

1-255 Spacing values

Positions 46-48 (Skip Before)

Entry Explanation

Blank No skipping occurs.

1-255 Skipping values

Positions 49-51 (Skip After)

Entry Explanation

Blank No skipping occurs.

1-255 Skipping values

Field Description and Control Entries

Each field is described on a separate line. These entries determine under what

conditions and in what format fields of a record are to be written. Field description

and control information for a field begins on the line following the record

identification line.

Positions 21-29 (Output Indicators)

Indicators specified on the field description lines determine whether a field is to be

included in the output record, except for PAGE reserved fields. See “PAGE,

PAGE1-PAGE7” on page 327 for information on how output indicators affect the

PAGE fields. The same types of indicators can be used to control fields as are used

to control records, see “Positions 21-29 (File Record ID Indicators)” on page 324.

Indicators used to condition field descriptions lines cannot be specified in an

AND/OR relationship.

Positions 30-43 (Field Name)

In positions 30 through 43, use one of the following entries to specify each field

that is to be written out:

v A field name

v Blanks if a constant is specified in positions 53 through 80

v A table name, array name, or array element

v A named constant

v The reserved words PAGE, PAGE1 through PAGE7, *PLACE, UDATE, *DATE,

UDAY, *DAY, UMONTH, *MONTH, UYEAR, *YEAR, *IN, *INxx, or *IN(xx)

v A data structure name or data structure subfield name.

326 VisualAge RPG Language Reference

Note: A pointer field is not a valid output field, that is, pointer fields cannot be

written.

Field Names, Blanks, Tables, and Arrays

The field names used must be defined in the program. Do not enter a field name if

a constant is used in positions 53-80. If a field name is entered in positions 30

through 43, positions 7 through 20 must be blank.

Fields can be specified in any order because the sequence in which they appear on

the output records is determined by the entry in positions 47 through 51. If fields

overlap, the last field specified is the only field completely written.

When a non-indexed array name is specified, the entire array is written. An array

name with a constant index or variable index causes one element to be written.

When a table name is specified, the element last found in a LOOKUP operation is

written. The first element of a table is written if no successful LOOKUP operation

was done.

The conditions for a record and the field it contains must be satisfied before the

field is written out.

PAGE, PAGE1-PAGE7

To use automatic page numbering, enter PAGE in positions 30 through 43 as the

name of the output field. Indicators specified in positions 21 though 29 condition

the resetting of the PAGE field, not whether it prints. The PAGE field is always

incremented by 1 and printed. If the conditioning indicators are met, it is reset to

zero before being incremented by 1 and printed. If page numbers are needed for

several output files (or for different numbering within one file), the entries PAGE1

through PAGE7 can be used. The PAGE fields are automatically zero-suppressed

by the Z edit code.

For more information on the PAGE reserved words, see “Words with Special

Functions and Reserved Words” on page 5.

*PLACE

*PLACE is used to repeat data in an output record. Fields or constants that have

been specified on previous specification lines can be repeated in the output record

without having the field and end positions named on a new specification line.

When *PLACE is entered in positions 30 through 43, all data between the first

position and the highest end position previously specified for a field in that output

record is repeated until the end position specified in the output record on the

*PLACE specification line is reached. The end position specified on the *PLACE

specification line must be at least twice the highest end position of the group of

fields to be duplicated. *PLACE can be used with any type of output. Blank after

(position 45), editing (positions 44, 53 through 80), data format (position 52), and

relative end positions cannot be used with *PLACE.

User Date Reserved Words

UDATE, *DATE, UDAY, *DAY, UMONTH, *MONTH, UYEAR, and *YEAR allow

you to supply a date for the program at run time. For more information on the

user date words, see “User Date Special Words” on page 8.

Chapter 21. Output Specifications 327

*IN, *INxx, *IN(xx)

*IN, *INxx and *IN(xx) allow you to refer to and manipulate indicators as data.

Position 44 (Edit Codes)

 Entry Explanation

Blank No edit code is used.

1-4, A-D, J-Q, X, Y, Z Numeric fields are zero-suppressed and punctuated according

to a predefined pattern without the use of edit words.

Position 44 is used to specify edit codes that suppress leading zeros in a numeric

field or to punctuate a numeric field without using an edit word. Allowable entries

are 1 through 4, A through D, J through Q, X, Y, Z, and blank.

Position 45 (Blank After)

Entry Explanation

Blank The field is not reset. This position must be blank for look-ahead, user date

reserved words, *PLACE, named constants, and literals.

B The field specified in positions 30 through 43 is reset to blank, zero, or the

default date/time/timestamp value after the output operation is complete.

 Position 45 is used to reset a numeric field to zeros or a character, graphic, or

UCS-2 field to blanks. Date, time, and timestamp fields are reset to their default

values.

If the field is conditioned by indicators in positions 21 through 29, the blank after

is also conditioned.

If blank after (position 45) is specified for a field to be written more than once, the

B should be entered on the last line specifying output for that field, or else the

field named will be printed as the blank-after value for all lines after the one doing

the blank after.

328 VisualAge RPG Language Reference

Positions 47-51 (End Position)

Entry Explanation

1-n End position

 Positions 47 through 51 define the end position of a field or constant on the output

record.

Valid entries for end positions are blanks, +nnnn, −nnnn, and nnnnn. All entries in

these positions must end in position 51. Enter the position of the rightmost

character of the field or constant. The end position must not exceed the record

length for the file.

If an entire array is to be written, enter the end position of the last element in the

array in positions 47 through 51. If the array is to be edited, be careful when

specifying the end position to allow enough positions to write all edited elements.

Each element is edited according to the edit code or edit word.

The +nnnn or −nnnn entry specifies the placement of the field or constant relative

to the end position of the previous field. The number (nnnn) must be right

adjusted, but leading zeros are not required. Enter the sign anywhere to the left of

the number within the entry field. To calculate the end position, use these

formulas:

end position = previous end position +nnnn + field length

end position = previous end position −nnnn + field length

For the first field specification in the record, the previous end position is equal to

zero. The field length is the length of the field after editing, or the length of the

constant specified in this specification. The use of +nnnn is equivalent to placing

nnnn positions between the fields. A -nnnn causes an overlap of the fields by nnnn

positions. For example, if the previous end position is 6, the number of positions to

be placed between the fields (nnnn) is 5, and the field length is 10, the end

position equals 21.

When *PLACE is used, an actual end position must be specified; it cannot be blank

or a displacement.

An entry of blank is treated as an entry of +0000. No positions separate the fields.

Chapter 21. Output Specifications 329

Position 52 (Data Format)

Entry Explanation

Blank This position must be blank if editing is specified.

v For numeric fields the data is written in zoned decimal format.

v For float numeric fields, the data is to be written in the external display

representation.

v For UCS-2 fields, the data is to be written in UCS-2 format.

v For date, time, and timestamp fields the data is written without format

conversion performed.

v For character fields the data is to be written as it is stored.

A Valid for Character fields only. The character field is to be written in either

fixed- or variable-length format depending on the absense or presence of

the *VAR data attribute.

N The character field is to be written in indicator format.

C The UCS-2 field is to be written in either fixed- or variable-length format

depending on the absense or presence of the *VAR data attribute.

G Valid for Graphic fields in program-described files only. The graphic field

will be written in either fixed- or variable-length format depending on the

absense or presence of the *VAR data attribute.

B The numeric field is to be written in binary format.

F The numeric field is to be written in float format

I The numeric field is to be written out in integer format.

L The numeric field is written with a preceding (left) plus or minus sign, in

zoned-decimal format.

P The numeric field is to be written in packed-decimal format.

R The numeric field is written with a following (right) plus or minus sign, in

zoned-decimal format.

S The numeric field is to be written out in zoned decimal format.

U The numeric field is to be written out in unsigned integer format.

D Date field− the date field is converted to the format specified in positions

53-80 or to the default file date format.

T Time field− the time field is converted to the format specified in positions

53-80 or to the default file time format.

Z Valid for Timestamp fields only.

 The entry in position 52 specifies the external format of the data in the records in

the file. This entry has no effect on the format used for internal processing of the

output field in the program.

For numeric fields, the number of bytes required in the output record depends on

this format. For example, a numeric field with 5 digits requires:

v 5 bytes when written in zoned format

v 3 bytes when written in packed format

v 6 bytes when written in either L or R format

v 4 bytes when written in binary format

330 VisualAge RPG Language Reference

v 2 bytes when written in either I or U format. This may cause an error at run

time if the value is larger than the maximum value for a 2–byte integer or

unsigned field. For the case of 5–digit fields, binary format may be better.

Float numeric fields written out with blank Data Format entry occupy either 14

or 23 positions (for 4–byte and 8–byte float fields respectively) in the output

record.

Note: A ’G’ or blank must be specified for a graphic field in a program-described

file.

Positions 53-80 (Constant, Edit Word, Data Attribute)

Positions 53 through 80 are used to specify a constant, an edit word, or a data

attribute.

Constants

Constants consist of character data (literals) that does not change from one

processing of the program to the next. A constant is the actual data used in the

output record rather than a name representing the location of the data.

A constant can be placed in positions 53 through 80. The constant must begin in

position 54 (apostrophe in position 53), and it must end with an apostrophe even if

it contains only numeric characters. Any apostrophe used within the constant must

be entered twice; however, only one apostrophe appears when the constant is

written out. The field name (positions 30 through 43) must be blank. Constants can

be continued. (See “Continuation Rules” on page 215 for continuation rules.)

Instead of entering a constant, you can use a named constant.

Graphic and UCS-2 literals or named constants are not allowed as edit words, but

may be specified as constants.

Edit Word

An edit word specifies the punctuation of numeric fields, including the printing of

dollar signs, commas, periods, and sign status.See “Parts of an Edit Word” on page

199 for details.

Edit words must be character literals or named constants. Graphic, UCS-2 or

hexadecimal literals or named constants are not allowed.

Data Attributes

Data attributes specify the external format for a date, time, or variable-length

character, graphic, or UCS-2 field.

For date and time data, if no date or time format is specified, then the

format/separator specified for the file (with either DATFMT or TIMFMT or both)

is used. If there is no external date or time format specified for the file, then an

error message is issued. See “DATFMT(fmt{separator})” on page 227 and

“TIMFMT(fmt{separator})” on page 235 for date and time formats.

The hierarchy used when determining the external date/time format and separator

for date and time fields is:

1. The date format and separator specified in positions 53-58 (or 53-57).

2. From the DATFMT/TIMFMT keyword specified for the current file

3. From the DATFMT/TIMFMT keyword specified in the control specification

4. *ISO

Chapter 21. Output Specifications 331

Date and time fields are converted from their internal date/time format to the

external format determined above.

For character, graphic, and UCS-2 data, the *VAR data attribute is used to specify

variable-length output fields. If this entry is blank for character, graphic, and

UCS-2 data, then the external format is fixed length. For more information on

variable-length fields, see “Variable-Length Character, Graphic, and UCS-2 Format”

on page 113.

Note: The number of bytes occupied in the output record depends on the format

specified. For example, a date written in *MDY format requires 8 bytes, but

a date written in *ISO format requires 10 bytes.

For more information on external formats, see “Internal and External Formats” on

page 103.

Externally Described Files

Externally described files include the following entries on input specifications.

Position 6 (Form Type)

An O must appear in position 6 to identify this line as an output specifications

statement.

Record Identification and Control Entries

Output specifications for an externally described file are optional. Entries in

positions 7 through 39 of the record identification line identify the record format

and determine under what conditions the records are to be written.

Positions 7-16 (Record Name)

Entry Explanation

A valid record format name A record format name must be specified for an

externally described file.

Positions 16-18 (External Logical Relationship)

Entry Explanation

AND or OR AND/OR indicates a relationship between lines of output

indicators. AND/OR lines are valid for output records, but not for

fields.

 See “Positions 16-18 (Logical Relationship)” on page 323 for more information.

Position 17 (Type)

Entry Explanation

E Exception records.

 Position 17 indicates the type of record to be written.

See “Position 17 (Type - Program Described File)” on page 323 for more

information.

332 VisualAge RPG Language Reference

Positions 18-20 (Record Addition)

Entry Explanation

ADD Add a record to a file

DEL Delete an existing record from the file

Positions 21-29 (Output Indicators)

Output indicators for externally described files are specified in the same way as

those for program described files. For more information on output indicators, see

“Positions 21-29 (File Record ID Indicators)” on page 324.

Positions 30-39 (EXCEPT Name)

An EXCEPT name can be specified in these positions for an exception record line.

See “Positions 30-39 (EXCEPT Name)” on page 324 for more information.

Field Description and Control Entries

For externally described files, the only valid field descriptions are output indicators

(positions 21 through 29), field name (positions 30 through 43), and blank after

(position 45).

Positions 21-29 (Output Indicators)

Indicators specified on the field description lines determine whether a field is to be

included in the output record. The same types of indicators can be used to control

fields as are used to control records. See “Positions 21-29 (File Record ID

Indicators)” on page 324 for more information.

Positions 30-43 (Field Name)

Entry Explanation

Valid field name A field name specified for an externally described

file must be present in the external description

unless the external name was renamed for the

program.

*ALL Specifies the inclusion of all the fields in the

record.

For externally described files, only the fields specified are placed in the output

record. *ALL can be specified to include all the fields in the record. If *ALL is

specified, no other field description lines can be specified for that record. In

particular, you cannot specify a B (blank after) in position 45.

For an update record, only those fields specified in the output field specifications

and meeting the conditions specified by the output indicators are placed in the

output record to be rewritten. The values that were read are used to rewrite all

other fields.

For the creation of a new record (ADD specified in positions 18-20), the fields

specified are placed in the output record. Those fields not specified or not meeting

the conditions specified by the output indicators are written as zeros or blanks,

depending on the data format specified in the external description.

Chapter 21. Output Specifications 333

Position 45 (Blank After)

Entry Explanation

Blank The field is not reset.

B The field specified in positions 30 through 43 is reset to blank, zero, or the

default date/time/timestamp value after the output operation is complete.

Position 45 is used to reset a numeric field to zeros or a character, graphic, or

UCS-2 field to blanks. Date, time, and timestamp fields are reset to their default

values.

If the field is conditioned by indicators in positions 21 through 29, the blank after

is also conditioned. This position must be blank for look-ahead, user date reserved

words, *PLACE, named constants, and literals.

If blank after (position 45) is specified for a field to be written more than once, the

B should be entered on the last line specifying output for that field, or else the

field named is printed as the blank-after value for all lines after the one doing the

blank after.

334 VisualAge RPG Language Reference

Chapter 22. Procedure Specifications

Procedure specifications are used to define prototyped procedures that are

specified after the main source section, otherwise known as subprocedures.

The prototype for the subprocedure must be defined in the main source section of

the module containing the subprocedure definition. A subprocedure includes the

following:

1. A Begin-Procedure specification (B in position 24 of a procedure specification)

2. A Procedure-Interface definition, which specifies the return value and

parameters, if any. The procedure-interface definition is optional if the

subprocedure does not return a value and does not have any parameters that

are passed to it. The procedure interface must match the corresponding

prototype.

3. Other definition specifications of variables, constants and prototypes needed by

the subprocedure. These definitions are local definitions.

4. Any calculation specifications needed to perform the task of the procedure. Any

subroutines included within the subprocedure are local. They cannot be used

outside of the subprocedure. If the subprocedure returns a value, then a

RETURN operation must be coded within the subprocedure. You should ensure

that a RETURN operation is performed before reaching the end of the

procedure.

5. An End-Procedure specification (E in position 24 of a procedure specification)

Except for a procedure-interface definition, which may be placed anywhere within

the definition specifications, a subprocedure must be coded in the order shown

above.

For more information on the structure of the main source section and how the

placement of definitions affects scope, see “Placement of Definitions and Scope” on

page 256. See Chapter 6, “Subprocedures and Prototypes,” on page 63 for

information on subprocedures and prototyping.

© Copyright IBM Corp. 1994, 2005 335

Procedure Specification Statement

The general layout for the procedure specification is as follows:

v The procedure specification type (P) is entered in position 6

v The non-commentary part of the specification extends from position 7 to

position 80:

– The fixed-format entries extend from positions 7 to 24

– The keyword entries extend from positions 44 to 80
v The comments section of the specification extends from position 81 to position

100

Procedure Specification Keyword Continuation Line

If additional space is required for keywords, the keywords field can be continued

on subsequent lines as follows:

v Position 6 of the continuation line must contain a P

v Positions 7 to 43 of the continuation line must be blank

v The specification continues on or past position 44

Procedure Specification Continued Name Line

A name that is up to 15 characters long can be specified in the Name entry of the

Procedure specification without requiring continuation. Any name (even one with

15 characters or fewer) can be continued on multiple lines by coding an ellipsis (...)

at the end of the partial name.

A name definition consists of the following parts:

1. Zero or more continued name lines. Continued name lines are identified as

having an ellipsis as the last non-blank characters in the entry. The name must

begin within positions 7 - 21 and may end anywhere up to position 77 (with an

ellipsis ending in position 80). There cannot be blanks between the start of the

name and the ellipsis (...) characters. If any of these conditions is not true, the

line is parsed as a main definition line.

2. One main definition line containing name, definition attributes, and keywords.

If a continued name line is coded, the name entry of the main definition line

may be left blank.

3. Zero or more keyword continuation lines.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

PName+++++++++++..B...................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 117. Procedure Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

P.....................................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 118. Procedure Specification Keyword Continuation Line Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

DContinuedName+++Comments++++++++++++

Figure 119. Procedure-Specification Continued Name Line

336 VisualAge RPG Language Reference

Position 6 (Form Type)

Enter a P in this position for a procedure specification

Positions 7-21 (Name)

Entry Explanation

Name The name of the subprocedure to be defined.

Use positions 7-21 to specify the name of the subprocedure being defined. If the

name is longer than 15 characters, a name is specified in positions 7 - 80 of the

continued name lines. The name can begin in any position in the space provided.

The name specified must be the same as the name of the prototype describing the

procedure. If position 24 contains an E, then the name is optional.

Position 24 (Begin/End Procedure)

Entry Explanation

B The specification marks the beginning of the subprocedure being defined.

E The specification marks the end of the subprocedure being defined.

 A subprocedure coding consists minimally of a beginning procedure specification

and an ending procedure specification. Any parameters and return value, as well

as other definitions and calculations for the subprocedure are specified between the

procedure specifications.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for procedure-specification keywords. Only a

Begin-Procedure specification (B in position 24) can have a keyword entry.

Chapter 22. Procedure Specifications 337

Procedure Specification Keywords

Procedure specifications currently allow “EXPORT.”

EXPORT

The specification of the EXPORT keyword allows the procedure to be exported

from a NOMAIN DLL. The name in positions 7-21 is exported in uppercase form.

If the EXPORT keyword is not specified, the procedure can only be called from

within the module.

338 VisualAge RPG Language Reference

Part 4. Operations, Expressions, and Functions

This section describes the ways in which you can manipulate data or devices. The

major topics include:

v Chapter 23, “Operations,” on page 341 provides an overview of operation codes

grouped by function.

v Chapter 24, “Expressions,” on page 381 describes expressions and the rules

governing them.

v “Built-In Functions (Alphabetically)” on page 405 describes built-in functions

and their use on definition and calculation specifications.

v Chapter 26, “Operation Code Details,” on page 501 describes each operation

code in detail.

© Copyright IBM Corp. 1994, 2005 339

340 VisualAge RPG Language Reference

Chapter 23. Operations

The VisualAge RPG programming language allows you to do many different types

of operations on your data. To perform an operation, you use either an operation

code or a built-in function.

This chapter summarizes the operation codes and built-in functions that are

available. It also organizes the operation codes and built-in functions into

categories.

For detailed information about a specific operation code or built-in function, see

Chapter 26, “Operation Code Details,” on page 501 or “Built-In Functions

(Alphabetically)” on page 405.

Operation Codes

The following table shows the free-form syntax for each operation code.

v Extenders

(D) Date field

(E) Error handling

(H) Half adjust (round the numeric result)

(M) Default precision rules

(N) Do not lock record

(N) Set pointer to *NULL after successful DEALLOC

(N) Do not force data to non-volatile storage

(P) Pad the result with blanks or zeros

(R) ″Result Decimal Position″ precision rules

(T) Time field

(Z) Timestamp field

 Table 32. Operation Codes in Free-Form Syntax

Code Free-Form Syntax

BEGACT BEGACT action-subroutine-name

BEGSR BEGSR subroutine-name

CALLP {CALLP{(EMR)}} name({parm1{:parm2...}})

CHAIN CHAIN{(ENHMR)} search-arg file-or-record-name {data-structure}

CLEAR CLEAR {*NOKEY} {*ALL} name

CLOSE CLOSE{(E)} file-name

CLSWIN CLSWIN{(E)} window-name

COMMIT COMMIT{(E)}

DEALLOC DEALLOC{(EN)} pointer-name

DELETE DELETE{(EHMR)} {search-arg} file-or-record-name

DOU DOU{(MR)} indicator-expression

DOW DOW{(MR)} indicator-expression

DSPLY DSPLY{(E)} message {message-window-definition-name | *DFT {response}}

ELSE ELSE

ELSEIF ELSEIF{(MR)} indicator-expression

© Copyright IBM Corp. 1994, 2005 341

Table 32. Operation Codes in Free-Form Syntax (continued)

Code Free-Form Syntax

ENDACT ENDACT {return-point}

ENDDO ENDDO

ENDFOR ENDFOR

ENDIF ENDIF

ENDMON ENDMON

ENDSL ENDSL

ENDSR ENDSR {return-point}

EVAL {EVAL{(HMR)}} result = expression

EVALR EVALR{(MR)} result = expression

EXCEPT EXCEPT {except-name}

EXSR EXSR subroutine-name

FEOD FEOD{(EN)} file-name

FOR FOR{(MR)} index {= start} {BY increment} {TO|DOWNTO limit}

IF IF{(MR)} indicator-expression

IN IN{(E)} {*LOCK} data-area-name

ITER ITER

LEAVE LEAVE

LEAVESR LEAVESR

MONITOR MONITOR

ON-ERROR ON-ERROR {exception-id1 {:exception-id2...}}

OPEN OPEN{(E)} file-name

OTHER OTHER

OUT OUT{(E)} {*LOCK} data-area-name

POST POST{(E)} file-name

READ READ{(EN)} name {data-structure}

READC READC{(E)} subfile-name {subfile-index}

READE READE{(ENHMR)} search-arg|*KEY file-or-record-name {data-structure}

READP READP{(EN)} name {data-structure}

READPE READPE{(ENHMR)} search-arg|*KEY file-or-record-name {data-structure}

READS READS{(E)} subfile-name {subfile-index}

RESET RESET{(E)} {*NOKEY} {*ALL} name

RETURN RETURN{(HMR)} expression

ROLBK ROLBK{(E)}

SELECT SELECT

SETGT SETGT{(EHMR)} search-arg file-or-record-name

SETLL SETLL{(EHMR)} search-arg file-or-record-name

SHOWWIN SHOWWIN{(E)} window-name

SORTA SORTA array-name

START START{(E)} name

STOP STOP{(E)} component-name

342 VisualAge RPG Language Reference

Table 32. Operation Codes in Free-Form Syntax (continued)

Code Free-Form Syntax

TEST TEST{(EDTZ)} {dtz-format} field-name

UNLOCK UNLOCK{(E)} name

UPDATE UPDATE{(E)} file-or-record-name {data-structure|%FIELDS(name{:name...})}

WHEN WHEN{(MR)} indicator-expression

WRITE WRITE{(E)} name {data-structure}

The next table is a summary of the specifications for each operation code in

traditional syntax.

v An empty column indicates that the field must be blank

v All underlined fields are required

v An underscored space denotes that there is no resulting indicator in that

position

v Symbols:

+ Plus

− Minus
v Extenders:

(D) Date field

(E) Error handling

(H) Half adjust (round the numeric result)

(M) Default precision rules

(N) Do not lock record

(P) Pad the result with blanks or zeros

(R) ″Result Decimal Position″ precision rules

(T) Time field

(Z) Timestamp field
v Resulting indicator symbols:

BL Blank(s)

BN Blank(s) then numeric

BOF Beginning of the file

EOF End of the file

EQ Equal

ER Error

FD Found

HI Greater than

IN Indicator

LO Less than

LR Last record

NR No record was found

NU Numeric

OF Off

ON On

Z Zero

ZB Zero or Blank

 Table 33. Operation Codes in Traditional Syntax

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

ADD (H) Addend Addend Sum + − Z

ADDDUR (E) Date/Time Duration:Duration Code Date/Time ER

Chapter 23. Operations 343

Table 33. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

ALLOC (E) Length Pointer ER

ANDxx Comparand Comparand

BEGACT Part name Event name Window name

BEGSR subroutine-name

BITOFF Bit numbers Character field

BITON Bit numbers Character field

CABxx Comparand Comparand Label HI LO EQ

CALL (E) Program name Plist name ER

CALLB (E) Procedure name or

Procedure pointer

Plist name ER

CALLP (M/R) name{ (parm1 {:parm2...}) }

CASxx Comparand Comparand Subroutine

name

HI LO EQ

CAT (P) Source string 1 Source string 2:number of

blanks

Target string

CHAIN (E N) search-arg name (file or record

format)

data-structure NR2 ER

CHECK (E) Comparator String Base String:start Left-most

Position(s)

ER FD2

CHECKR (E) Comparator String Base String:start Right-most

Position(s)

ER FD2

CLEAR *NOKEY *ALL name (variable,

record format,

or window)

CLOSE (E) file-name or *ALL ER

CLSWIN (E) window-name ER

COMMIT (E) ER

COMP1 Comparand Comparand HI LO EQ

DEALLOC (E/N) pointer-name ER

DEFINE *LIKE Referenced field Defined field

DEFINE *DTAARA External data area Internal field

DELETE (E) search-arg, or

subfile-index

name (file or record

format)

NR2 ER

DIV (H) Dividend Divisor Quotient + − Z

DO Starting value Limit value Index value

DOU (M/R) indicator-expression

DOUxx Comparand Comparand

DOW (M/R) indicator-expression

DOWxx Comparand Comparand

DSPLY (E) message message-window-
definition name

response ER

ELSE

344 VisualAge RPG Language Reference

Table 33. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

ELSEIF (M/R) indicator-expression

END Increment value

ENDACT Return point

ENDCS

ENDDO Increment value

ENDOR

ENDIF

ENDMON

ENDSL

ENDSR label return-point

EVAL (H M/R) Result = Expression

EVALR (M/R) Result = Expression

EXCEPT except-name

EXSR subroutine-name

EXTRCT (E) Date/Time:Duration Code Target Field ER

FEOD (EN) file-name ER

FOR Index-name = start-value BY increment TO|DOWNTO limit

GETATR (E) Part name Attribute name Field name ER

GOTO Label

IF (M/R) indicator-expression

IFxx Comparand Comparand

IN (E) *LOCK data-area-name ER

ITER

KFLD Key field

KLIST KLIST name

LEAVE

LEAVESR

LOOKUP1 (array) Search argument Array name HI LO EQ5 on

page 348

LOOKUP1 (table) Search argument Table name Table name HI LO EQ5 on

page 348

MONITOR

MOVE (P) Data Attributes Source field Target field + − ZB

MOVEA (P) Source Target + − ZB

MOVEL (P) Data Attributes Source field Target field + − ZB

MULT (H) Multiplicand Multiplier Product + − Z

MVR Remainder + − Z

OCCUR (E) Occurrence value Data structure Occurrence

value

ER

ON-ERROR Status codes

Chapter 23. Operations 345

Table 33. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

OPEN (E) file-name ER

ORxx Comparand Comparand

OTHER

OUT (E) *LOCK data-area-name ER

PARM Target field Source field Parameter

PLIST PLIST name

POST (E)3 file-name INFDS name ER

READ (E N) name (file, record format,

or window)

Data

structure

ER EOF4

on page

348

READC (E) Subfile-name Subfile-index ER EOF4

on page

348

READE (E N) search-argument name (file or record

format)

Data structure ER EOF4

on page

348

READP (E N) name (file or record

format)

Data structure ER BOF4

on page

348

READPE (E N) Search argument name (file or record

format)

Data

structure

ER BOF4

on page

348

READS (E) Subfile-name Subfile-index ER EOF4

on page

348

REALLOC (E) Length Pointer ER

RESET (E) *NOKEY *ALL name (variable,

record format,

or window)

ER

RETURN (H M/R) Expression

ROLBK (E) ER

SCAN (E) Comparator

string:length

Base string:start Left-most

position(s)

ER FD2

SELECT

SETATR (E) Part name Attribute value attribute ER

SETGT (E) search-argument name (file or record

format)

NR2 ER

SETLL (E)5 on page

348

search-argument name (file or record

format)

NR2 ER EQ

SETOFF1 OF OF OF

SETON1 ON ON ON

SHOWWIN (E) window-name ER

SORTA array-name

SQRT (H) Value Root

346 VisualAge RPG Language Reference

Table 33. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

START (E) Component name or Field

name

PLIST name ER

STOP (E) Component name ER

SUB (H) Minuend Subtrahend Difference + − Z

SUBDUR (E)

(duration)

Date/Time/

Timestamp

Date/Time/Timestamp Duration:

Duration Code

ER

SUBDUR (E) (new

date)

Date/Time/

Timestamp

Duration:Duration Code Date/Time/

Timestamp

ER

SUBST (E P) Length to extract Base string:start Target string ER

TAG Label

TEST (E)7 on page

348

Date/Time or

Timestamp

Field

ER

TEST (D E)7 on page

348

Date Format Character or

Numeric field

ER

TEST (E T)7 on page

348

Time Format Character or

Numeric field

ER

TEST (E Z)7 on page

348

Timestamp Format Character or

Numeric field

ER

TESTB1 Bit numbers Character field OF ON EQ

TESTN1 Character field NU BN BL

TESTZ1 Character field + −

TIME Alias name Target field

UNLOCK (E) name (file or data area) ER

UPDATE (E) name (file, record format,

or window)

Data

structure

ER

WHEN (M/R) indicator-expression

WHENxx Comparand Comparand

WRITE (E) name (file, record format,

subfile, or window)

Data

structure

ER EOF4

on page

348

XFOOT (H) Array name Sum + − Z

XLATE (E P) From:To String:start Target String ER

Z-ADD (H) Addend Sum + − Z

Z-SUB (H) Subtrahend Difference + − Z

Chapter 23. Operations 347

Table 33. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

Notes:

1. At least one resulting indicator is required.

2. The %FOUND built-in function can be used as an alternative to specifying an NR or FD resulting indicator.

3. You must specify factor 2 or the result field. You may specify both.

4. The %EOF built-in function can be used as an alternative to specifying an EOF or BOF resulting indicator.

5. The %EQUAL built-in function can be used to test the SETLL and LOOKUP operations.

6. For all operation codes with extender ’E’, either the extender ’E’ or an ER error indicator can be specified, but

not both.

7. You must specify the extender ’E’ or an error indicator for the TEST operation.

Arithmetic Operations

The arithmetic operations are shown in the following table.

 Table 34. Arithmetic Operations

Operation Traditional Syntax Free-Form Syntax

Absolute Value “%ABS (Absolute Value of Expression)” on page 405

Add “ADD (Add)” on page 501 + operator

Divide “DIV (Divide)” on page 553 / operator or “%DIV (Return Integer Portion

of Quotient)” on page 431

Division Remainder “MVR (Move Remainder)” on page 636 “%REM (Return Integer Remainder)” on

page 465

Multiply “MULT (Multiply)” on page 635 * operator

Square Root “SQRT (Square Root)” on page 688 “%SQRT (Square Root of Expression)” on

page 474

Subtract “SUB (Subtract)” on page 692 - operator

Zero and Add “Z-ADD (Zero and Add)” on page 722 (not allowed)

Zero and Subtract “Z-SUB (Zero and Subtract)” on page 723 (not allowed)

For examples of arithmetic operations, see Figure 120 on page 351.

The following rules apply when specifying arithmetic operations:

v Arithmetic operations can be done only on numerics:

– numeric subfields

– numeric arrays

– numeric array elements

– numeric table elements

– numeric named constants

– numeric figurative constants

– numeric literals
v In general, arithmetic operations are performed using the packed-decimal

format. This means that the fields are first converted to packed-decimal format

prior to performing the arithmetic operation, and then converted back to their

specified format (if necessary) prior to placing the result in the result field.

However, note the following exceptions:

– If all operands are unsigned, the operation will use unsigned arithmetic.

348 VisualAge RPG Language Reference

– If all are integer, or integer and unsigned, then the operation will use integer

arithmetic.

– If any operands are float, then the remaining operands are converted to float.

However, the DIV operation uses either the packed-decimal or float format for

its operations. For more information on integer and unsigned arithmetic, see

“Integer and Unsigned Arithmetic”

v Decimal alignment is done for all arithmetic operations. Even though truncation

can occur, the position of the decimal point in the result field is not affected.

v The length of any field specified in an arithmetic operation cannot exceed 31

digits. If the result exceeds 31 digits, digits are dropped from either or both

ends, depending on the location of the decimal point.

v The TRUNCNBR option determines whether truncation on the left occurs with

numeric overflow or a runtime error is generated. This option can be specified

on the Build window. For more information, see Getting Started with WebSphere

Development Studio Client for iSeries .

v An arithmetic operation does not change factor 1 and factor 2 unless they are

the same as the result field.

v The result of an arithmetic operation replaces the data that was in the result

field.

v Half-adjusting is done by adding 5 (-5 if the field is negative) one position to the

right of the last specified decimal position in the result field. The half adjust

entry is allowed only with arithmetic operations, but not with an MVR operation

or with a DIV operation followed by the MVR operation. Half adjust only affects

the result if the number of decimal positions in the calculated result is greater

than the number of decimal positions in the result field. Half adjusting occurs

after the operation but before the result is placed in the result field. Resulting

indicators are set according to the value of the result field after half-adjusting

has been done.

v If you use conditioning indicators with DIV and MVR, it is your responsibility

to ensure that the DIV operation occurs immediately before the MVR operation.

If conditioning indicators on DIV cause the MVR operation to be executed when

the immediately preceeding DIV was not executed, then undesirable results may

occur.

For arithmetic operations in which all three fields are used:

v Factor 1, factor 2, and the result field can be three different fields

v Factor 1, factor 2, and the result field can all be the same field

v Factor 1 and factor 2 can be the same field but different from the result field

v Either factor 1 or factor 2 can be the same as the result field.

For information on using arrays with arithmetic operations, see “Specifying an

Array in Calculations” on page 183.

Performance Considerations

The fastest performance time for arithmetic operations occurs when all operands

are in integer or unsigned format. The next fastest performance time occurs when

all operands are in packed format, since this eliminates conversions to a common

format.

Integer and Unsigned Arithmetic

For all arithmetic operations (not including those in expressions) if factor 1, factor

2, and the result field are defined with unsigned format, then the operation is

performed using unsigned format. Similarly, if factor 1, factor 2, and the result

field are defined as either integer or unsigned format, then the operation is

Chapter 23. Operations 349

performed using integer format. If any field does not have either integer or

unsigned format, then the operation is performed using the default format,

packed-decimal.

The following points apply to integer and unsigned arithmetic operations only:

v If any of the fields are defined as 4-byte fields, then all fields are first converted

to 4 bytes before the operation is performed.

v Integer and unsigned values may be used together in one operation. However, if

either factor 1, factor 2, or the result field is integer, then all unsigned values are

converted to integer. If necessary, a 1-byte, 2-byte, or 4-byte unsigned value is

converted to a larger-sized integer value to lessen the chance of numeric

overflow.

v If a literal has 20 digits or less with zero decimal positions, and falls within the

range allowed for integer and unsigned fields, then it is loaded in integer or

unsigned format, depending on whether it is a negative or positive value

respectively.

Note: Integer or unsigned arithmetic may give better performance. However, the

chances of numeric overflow may be greater when using integer or

unsigned numeric format, than when using packed or zoned decimal

format.

350 VisualAge RPG Language Reference

|
|
|
|
|
|
|
|
|

|
|
|
|

Arithmetic Operations Examples

Array Operations

The array operations are shown in the following table.

 Table 35. Array Operations

Operation Traditional Syntax Free-Form Syntax

Look Up Elements “LOOKUP (Look Up a Table or Array

Element)” on page 599

“%LOOKUPxx (Look Up an Array Element)”

on page 455 or “%TLOOKUPxx (Look Up a

Table Element)” on page 489

Number of Elements “%ELEM (Get Number of Elements)” on page 437

Move an Array “MOVEA (Move Array)” on page 619 (not allowed)

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

C*

C* In the following example, the initial field values are:

C*

D A s 3p 0 inz(1)

D B s 3p 1 inz(10.0)

D C s 2p 0 inz(32)

D D s 2p 0 inz(-10)

D E s 3p 0 inz(6)

D F s 3p 0 inz(10)

D G s 3p 2 inz(2.77)

D H s 3p 0 inz(70)

D J s 3p 1 inz(0.6)

D K s 2p 0 inz(25)

D L s 2p 1 dim(3)

D V s 5p 2

D W s 5p 1

D X s 8p 4

D Y s 6p 2

D Z s 5p 3

 /FREE

 L(1) = 1.0;

 L(2) = 1.7;

 L(3) = -1.1;

 A = A + 1; // A = 002

 V = B + C; // V = 042.00

 V = B + D; // V = 0

 V = C; // V = 032.00

 E = E - 1; // E = 005

 W = C - B; // W = 0022.0

 W = C - D; // W = 0042.0

 W = - C; // W = -0032.0

 F = F * E; // F = 060

 X = B * G; // X = 0027.7000

 X = B * D; // X = -0100.0000

 H = H / B; // H = 007

 Y = C / J; // Y = 0053.33

 eval(r) Z = %sqrt(K); // Z = 05.000

 Z = %xfoot(L); // Z = 01.600

 dump(a);

 *inlr = *on;

 /END-FREE

Figure 120. Summary of Arithmetic Operations

Chapter 23. Operations 351

Table 35. Array Operations (continued)

Operation Traditional Syntax Free-Form Syntax

Sort an Array “SORTA (Sort an Array)” on page 686

Subset an Array “%SUBARR (Set/Get Portion of an Array)” on page 480

Sum the Elements of

an Array

“XFOOT (Summing the Elements of an

Array)” on page 719

“%XFOOT (Sum Array Expression

Elements)” on page 497

While many operations work with arrays, these operations perform specific array

functions. See each operation for an explanation of its function.

Bit Operations

The bit operations are:

v “%BITAND (Bitwise AND Operation)” on page 409

v “%BITNOT (Invert Bits)” on page 410

v “%BITOR (Bitwise OR Operation)” on page 411

v “%BITXOR (Bitwise Exclusive-OR Operation)” on page 412

v “BITOFF (Set Bits Off)” on page 512

v “BITON (Set Bits On)” on page 513

v “TESTB (Test Bit)” on page 703.

 Table 36. Bit Operations

Operation Traditional Syntax Free-Form Syntax

Set bits on BITON %BITOR

Set bits off BITOFF %BITAND with %BITNOT

Test bits TESTB %BITAND (see example of

Figure 138 on page 413)

The bits in a byte are numbered from left to right. The left most bit is bit number

0. In these operations, factor 2 specifies the bit pattern (bit numbers) and the result

field specifies a one-byte character field on which the operation is performed. To

specify the bit numbers in factor 2, a 1-byte hexadecimal literal or a 1-byte

character field is allowed. The bit numbers are indicated by the bits that are turned

on in the literal or the field. Alternatively, a character literal which contains the bit

numbers can also be specified in factor 2.

With the BITAND operation the result bit is ON when all of the corresponding bits

in the arguments are ON, and OFF otherwise.

With the BITNOT operation the result bit is ON when the corresponding bit in the

argument is OFF, and OFF otherwise.

With the BITOR operation the result bit is ON when any of the corresponding bits

in the arguments are ON, and OFF otherwise.

With the BITXOR operation the result bit is ON when just one of the

corresponding bits in the arguments are ON, and OFF otherwise.

Branching Operations

The branching operations are shown in the following table.

352 VisualAge RPG Language Reference

|

Table 37. Branching Operations

Operation Traditional Syntax Free-Form Syntax

Compare and Branch “CABxx (Compare and Branch)” on page 515 (not allowed)

Go To “GOTO (Go To)” on page 585 (not allowed)

Iterate “ITER (Iterate)” on page 591

Leave “LEAVE (Leave a Do/For Group)” on page 596

Leave a subroutine “LEAVESR (Leave a Subroutine)” on page 598

Tag “TAG (Tag)” on page 699 (not allowed)

See each operation for an explanation of its function.

Call Operations

The call operations are shown in the following table.

 Table 38. Call Operations

Operation Traditional Syntax Free-Form Syntax

Call Program or

Procedure

v “CALL (Call an AS/400 Program)” on

page 517

v “CALLB (Call a Function)” on page 521

v “CALLP (Call a Prototyped Procedure or

Program)” on page 522

“CALLP (Call a Prototyped Procedure or

Program)” on page 522

Identify Parameters v “PARM (Identify Parameters)” on page 647

v “PLIST (Identify a Parameter List)” on

page 650

PI or PR definition specification

Return “RETURN (Return to Caller)” on page 671

Start a Component “START (Start Component or Call Local

Program)” on page 689

See each operation for an explanation of its function.

CALLP is one of type of prototyped call. The second type is a call from within an

expression. A prototyped call is a call for which there is a prototype defined for

the call interface.

Call operations allow a VisualAge RPG procedure to transfer control to other

programs or procedures. However, prototyped calls differ from the CALL and

CALLB operations in that they allow free-form syntax.

The RETURN operation transfers control back to the calling program or procedure

and returns a value, if any. The PLIST and PARM operations can be used with the

CALL and CALLB operations to indicate which parameters should be passed on

the call. With a prototyped call, you pass the parameters on the call.

The recommended way to call a program or procedure (written in any language) is

to code a protyped call.

Prototyped Calls

With a prototyped call, you can call (with the same syntax):

v Programs that are on the system at run time

v Exported procedures in other modules that are bound in the same program

Chapter 23. Operations 353

v Subprocedures in the same module

A prototype must be included in the definition specifications of the program or

procedure making the call. It is used by the compiler to call the program or

procedure correctly, and to ensure that the caller passes the correct parameters.

When a program or procedure is prototyped, you do not need to know the names

of the data items used in the program or procedure; only the number and type of

parameters.

Prototypes improve the communication between programs and procedures. Some

advantages of using prototypes calls are:

v The syntax is simplified because no PARM or PLIST operations are required.

v For some parameters, you can pass literals and expressions.

v The compiler helps you pass enough parameters, of the correct type, format and

length, by giving an error at compile time if the call is not correct.

v The compiler helps you pass enough parameters with the correct format and

length for some types of parameters, by doing a conversion at run-time.

Figure 121 shows an example using the prototype ProcName, passing three

parameters. The prototype ProcName could refer to either a program or procedure.

It is not important to know this when making the call; this is only importantwhen

defining the prototype.

 When calling a procedure in an expression, you should use the procedure name in

a manner consistent with the data type of the specified return value. For example,

if a procedure is defined to return a numeric, then the call to the procedure within

an expression must be where a numeric would be expected.

For more information on calling programs and procedures, and passing

parameters, see Programming with VisualAge RPG. For more information on defining

prototypes and parameters, see “Prototypes and Parameters” on page 71.

Parsing Program Names on a Call

Program names are specified in factor 2 of a CALL operation. If you specify the

library name, it must be immediately followed by a slash and then the program

name (for example, ’LIB/PROG’). If a library is not specified, the library list is

used to find the program. *CURLIB is not supported.

Note the following rules:

v The total length of a literal, including the slash, cannot exceed 12 characters.

v The total length of the non-blank data in a field or named constant, including

the slash, cannont exceed 21 characters.

 /FREE

 // The following calls ProcName with the 3

 // parameters CharField, 7, and Field2:

 ProcName (CharField: 7: Field2);

 // If you need to specify operation extenders, you must also

 // specify the CALLP operation code:

 CALLP(e) ProcName (CharField: 7: Field2);

 /END-FREE

Figure 121. Sample of CALLP operation

354 VisualAge RPG Language Reference

v If either the program or the library name exceeds 10 characters, it is truncated to

10 characters.

The program name is used exactly as specified in the literal, field, named constant,

or array element to determine the program to be called. Specifically:

v Any leading or trailing blanks are ignored.

v If the first character in the entry is a slash, the library list is used to find the

program.

v If the last character in the entry is a slash, a compile-time message will be

issued.

v Lowercase characters are not shifted to uppercase.

v A name enclosed in quotation marks, for example, ’″ABC″’, always includes the

quotation marks as part of the name of the program to be called.

Program references are grouped to avoid the overhead of resolving to the target

program. All references to a specific program using a named constant or literal are

grouped so that the program is resolved to only once, and all subsequent

references to that program (by way of named constant or literal only) do not cause

a resolve to recur.

The program references are grouped if both the program and the library name are

identical. All program references by variable name are grouped by the variable

name. When a program reference is made with a variable, its current value is

compared to the value used on the previous program reference operation that used

that variable. If the value did not change, no resolve is done. If it did change, a

resolve is done to the new program specified. Note that this rule applies only to

references using a variable name. References using a named constant or literal are

never resolved again, and they do not affect whether or not a program reference

by variable is resolved again. illustrates the grouping of program references.

Chapter 23. Operations 355

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D Pgm_Ex_A C ’LIB1/PGM1’

D Pgm_Ex_B C ’PGM1’

D PGM_Ex_C C ’LIB/PGM2’

D*

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C CALL Pgm_Ex_A

C*

C* The following two calls will be grouped together because both

C* have the same program name (PGM1) and the same library name

C* (none). Note that these will not be grouped with the call using

C* Pgm_Ex_A above because Pgm_Ex_A has a different library

C* name specified (LIB1).

C*

C CALL ’PGM1’

C CALL Pgm_Ex_B

C*

C* The following two program references will be grouped together

C* because both have the same program name (PGM2) and the same

C* library name (LIB).

C*

C CALL ’LIB/PGM2’

C CALL Pgm_Ex_C

C*

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The first call in the program using CALLV below will result in

C* a resolve being done for the variable CALLV to the program PGM1.

C* This is independent of any calls by a literal or named constant

C* to PGM1 that may have already been done in the program. The

C* second call using CALLV will not result in a resolve to PGM1

C* because the value of CALLV has not changed.

C*

C MOVE ’PGM1’ CALLV 21

C CALL CALLV

C CALL CALLV

Figure 122. Eample of Grouping or Program References

356 VisualAge RPG Language Reference

Compare Operations

The compare operations are shown in the following table.

 Table 39. Compare Operations

Operation Traditional Syntax Free-Form Syntax

And “ANDxx (And)” on page 506 AND operator

Compare “COMP (Compare)” on page 545 =, <, >, <=, >=, or <> operator

Compare and Branch “CABxx (Compare and Branch)” on page 515 (not allowed)

Conditional

Subroutine

“CASxx (Conditionally Invoke Subroutine)”

on page 524

“IF (If)” on page 586 and “EXSR (Invoke

User Subroutine)” on page 577

Do Until “DOU (Do Until)” on page 556 or “DOUxx

(Do Until)” on page 557

“DOU (Do Until)” on page 556

Do While “DOW (Do While)” on page 559 or “DOWxx

(Do While)” on page 560

“DOW (Do While)” on page 559

If “IF (If)” on page 586 or “IFxx (If)” on page

587

“IF (If)” on page 586

Or “ORxx (Or)” on page 644 OR operator

When “WHEN (When True Then Select)” on page

713 or “WHENxx (When True Then Select)”

on page 714

“WHEN (When True Then Select)” on page

713

For the ANDxx, CABxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHENxx

operations, xx can be:

xx Meaning

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.

LE Factor 1 is less than or equal to factor 2.

Blanks Unconditional processing (CASxx or CABxx).

The compare operations test fields for the conditions specified in the operations.

These operations do not change the values of the fields. For COMP, CABXX, and

CASXX, the resulting indicators assigned in positions 71 and 76 are set according

to the results of the operation. All data types may be compared to fields of the

same data type.

Remember the following when using the compare operations:

v If numeric fields are compared, fields of unequal length are aligned at the

implied decimal point. The fields are filled with zeros to the left and/or right of

the decimal point making the field lengths and number of decimal positions

equal for comparison.

v All numeric comparisons are algebraic. A plus (+) value is always greater than a

minus (-) value.

v All graphic and UCS-2 comparisons are done using the hexadecimal

representation of the graphic characters.

Chapter 23. Operations 357

v If character, graphic, or UCS-2 fields are compared, fields of unequal length are

aligned to their leftmost character. The shorter field is filled with blanks to equal

the length of the longer field so that the field lengths are equal for comparison.

v Date fields are converted to a common format when being compared.

v Time fields are converted to a common format when being compared.

v When basing pointer fields are compared for anything except equality or

inequality, the results will be unpredictable unless the pointers point to

addresses within contiguous storage (for example, all point to positions within

the same data structure, array, or standalone field).

v When procedure pointer fields are compared for anything except equality or

inequality, the results are unpredictable.

v An array name cannot be specified in a compare operation, but an array element

may be specified.

v The ANDxx and ORxx operations can be used following DOUxx, DOWxx, IFxx,

and WHENxx.

v When comparing a character, graphic, or UCS-2 literal with zero length to a field

(fixed or varying) containing blanks, the fields will compare equal. If you want

to test that a value is of length 0, use the %LEN built-in function.

Conversion Operations

The following built-in functions perform conversion operations:

v “%CHAR (Convert to Character Data)” on page 416

v “%DEC (Convert to Packed Decimal Format)” on page 424

v “%DECH (Convert to Packed Decimal Format with Half Adjust)” on page 426

v “%EDITC (Edit Value Using an Editcode)” on page 432

v “%EDITFLT (Convert to Float External Representation)” on page 435

v “%EDITW (Edit Value Using an Editword)” on page 436

v “%FLOAT (Convert to Floating Format)” on page 443

v “%GRAPH (Convert to Graphic Value)” on page 447

v “%INT (Convert to Integer Format)” on page 449

v “%INTH (Convert to Integer Format with Half Adjust)” on page 449

v “%UCS2 (Convert to UCS-2 Value)” on page 494

v “%UNS (Convert to Unsigned Format)” on page 495

v “%UNSH (Convert to Unsigned Format with Half Adjust)” on page 495

These built-in functions are available in both the traditional syntax and free-form

syntax.

The traditional MOVE and MOVEL operation codes perform conversions when

factor 2 and the result field have different types. See:

v “MOVE (Move)” on page 604

v “MOVEL (Move Left)” on page 626

Data-Area Operations

The data-area operations are:

v “IN (Retrieve a Data Area)” on page 589

v “OUT (Write a Data Area)” on page 646

v “UNLOCK (Unlock a Data Area or Release a Record)” on page 709.

These operations are available in both the traditional syntax and free-form syntax.

If your application accesses an OS/400 data area, the name of this data area can

either be the name of the OS/400 data area or an override name that you defined

Conversion Operations

358 VisualAge RPG Language Reference

using the Define server information menu item. For more information on using the

GUI Designer to define server information, see Programming with VisualAge RPG.

The following lock states are used:

 IN operation with *LOCK An exclusive allow read lock state is placed on the

data area

OUT operation with *LOCK The data area remains locked after the write

operation

OUT operation with blank The data area is unlocked after it is updated

UNLOCK The data area is unlocked, the record locks are

released, and the data areas and/or the records are

not updated.

When data is moved into and out of a data area, the system locks the data area. If

several users are contending for the same data area, a user may get an error

message indicating that the data area is not available.

The following rules apply to data area operations:

v A data-area operation cannot be done on a data area that is not defined to the

operating system.

v Before a data area operation can be done, the data area must be specified on the

definition specification or on the DEFINE operation code. For more information,

see “DEFINE (Field Definition)” on page 548.

v A locked data area cannot be updated or locked by another program.

v A data-area name cannot be the name of a multiple-occurrence data structure, an

input record field, an array, an array element, or a table.

v A data area cannot be the subfield of a multiple occurrence data structure, a

data-area data structure, a program-status data structure, a file-information data

structure (INFDS), or a data structure that appears on an *DTAARA DEFINE

statement.

v If the name of the data area is determined at runtime, due to the

DTAARA(*VAR) keyword being used, the variable containing the name must be

set before an IN operation. If a data area is locked because of a prior *LOCK IN

operation, any other operations (IN, OUT, UNLOCK) for the data area will use

the previously locked data area, and the variable containing the name will not

be consulted.

v If the library name is not specified by the DTAARA keyword, the library list will

be used to locate the data area.

Date Operations

The date operations are shown in the following table.

 Table 40. Date Operations

Operation Traditional Syntax Free-Form Syntax

Add Duration “ADDDUR (Add Duration)” on page 502 + operator

Extract “EXTRCT (Extract

Date/Time/Timestamp)” on page 579

“%SUBDT (Extract a Portion of a Date,

Time, or Timestamp)” on page 483

Subtract Duration “SUBDUR (Subtract Duration)” on page

693

- operator or “%DIFF (Difference Between

Two Date, Time, or Timestamp Values)” on

page 428

Conversion Operations

Chapter 23. Operations 359

|
|

Table 40. Date Operations (continued)

Operation Traditional Syntax Free-Form Syntax

Convert

date/time/timestamp to

character

“MOVE (Move)” on page 604 or “MOVEL

(Move Left)” on page 626

“%CHAR (Convert to Character Data)” on

page 416

Convert

date/time/timestamp to

numeric

“MOVE (Move)” on page 604 or “MOVEL

(Move Left)” on page 626

“%DEC (Convert to Packed Decimal

Format)” on page 424

Convert character/numeric

to date

“MOVE (Move)” on page 604 or “MOVEL

(Move Left)” on page 626

“%DATE (Convert to Date)” on page 422

Convert character/numeric

to time

“MOVE (Move)” on page 604 or “MOVEL

(Move Left)” on page 626

“%TIME (Convert to Time)” on page 487

Convert

character/numeric/date to

timestamp

“MOVE (Move)” on page 604 or “MOVEL

(Move Left)” on page 626

“%TIMESTAMP (Convert to Timestamp)”

on page 488

Move date/time to

timestamp

“MOVE (Move)” on page 604 or “MOVEL

(Move Left)” on page 626

date + time

Test “TEST (Test Date/Time/Timestamp)” on page 700

Number of Years “%YEARS (Number of Years)” on page 499

Number of Months “%MONTHS (Number of Months)” on page 458

Number of Days “%DAYS (Number of Days)” on page 423

Number of Hours “%HOURS (Number of Hours)” on page 448

Number of Minutes “%MINUTES (Number of Minutes)” on page 457

Number of Seconds “%SECONDS (Number of Seconds)” on page 470

Number of Microseconds “%MSECONDS (Number of Microseconds)” on page 459

Date operations allow you to work with dates, times, and timestamp fields and

character or numeric fields that represent dates, times, and timestamps. You can:

v Add or subtract a duration in years, months, days, hours, minutes, seconds, or

microseconds

v Determine the duration between two dates, times, or timestamps

v Extract a portion of a date, time, or timestamp (for example, the day)

v Test that a value is valid as a date, time, or timestamp.

To add or subtract a duration, you can use the + or - operator in free-form syntax

or the ADDDUR or SUBDUR operation code in traditional syntax. The following

table shows the built-in functions that you use in free-form syntax and the

duration codes that you use in traditional syntax.

 Table 41. Built-In Functions and Duration Codes

Unit Built-In Function Duration Code

Year %YEARS *YEARS or *Y

Month %MONTHS *MONTHS or *M

Day %DAYS *DAYS or *D

Hour %HOURS *HOURS or *H

Minute %MINUTES *MINUTES or *MN

Second %SECONDS *SECONDS or *S

Microsecond %MSECONDS *MSECONDS or *MS

Conversion Operations

360 VisualAge RPG Language Reference

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

For example, you can add 23 days to an existing date in either of the following

ways:

C ADDDUR 23:*D DUEDATE

 /FREE

 newdate = duedate + %DAYS(23)

 /END-FREE

To calculate the duration between two dates, times, or timestamps, you can use the

%DIFF built-in function in free-form syntax or the SUBDUR operation code in

traditional syntax. In either case, you must specify one of the duration codes

shown in Table 41 on page 360.

The duration is given in complete units, with any remainder discarded. A duration

of 59 minutes, expressed in hours, is 0. A duration of 61 minutes, expressed in

hours, is 1.

The following table shows additional examples, using the SUBDUR operation code.

The %DIFF built-in function would give the same results.

 Table 42. Resulting Durations Using SUBDUR

Duration

Unit Factor 1 Factor 2 Result

Months 1999-03-28 1999-02-28 1 month

1999-03-14 1998-03-15 11 months

1999-03-15 1998-03-15 12 months

Years 1999-03-14 1998-03-15 0 years

1999-03-15 1998-03-15 1 year

1999-03-14-12.34.45.123456 1998-03-14-12.34.45.123457 0 years

Hours 1990-03-14-23.00.00.000000 1990-03-14-22.00.00.000001 0 hours

Unexpected Results

A month can contain 28, 29, 30, or 31 days. A year can contain 365 or 366 days.

Because of this inconsistency, the following operations can give unexpected results:

v Adding or subtracting a number of months (or calculating a duration in months)

with a date that is on the 29th, 30th, or 31st of a month

v Adding or subtracting a number of years (or calculating a duration in years)

with a February 29 date.

The following rules are used:

v When months or years are added or subtracted, the day portion remains

unchanged if possible. For example, 2000-03-15 + %MONTHS(1) is 2000-04-15.

v If the addition or subtraction would produce a nonexistent date (for example,

April 31), the last day of the month is used instead.

v Any month or year operation that changes the day portion is not reversible. For

example, 2000-03-31 + %MONTHS(1) is 2000-04-30 changes the day from 31 to

30. You cannot get back the original 2000-03-31 by subtracting one month.

The operation 2000-03-31 + %MONTHS(1) - %MONTHS(1) becomes 2000-03-30.

v The duration between two dates is one month if the later date minus one month

gives the first date. For example, the duration in months (rounded down)

between 2000-03-31 and 2000-04-30 is 0 because 2000-04-30 - %MONTHS(1) is

2000-03-30 (not 2000-03-31).

Conversion Operations

Chapter 23. Operations 361

Declarative Operations

The declarative operations are shown in the following table.

 Table 43. Declarative Operations

Operation Traditional Syntax Free-Form Syntax

Define Field “DEFINE (Field Definition)” on page 548 LIKE or DTAARA keyword on definition

specification

Define Key v “KFLD (Define Parts of a Key)” on page

593

v “KLIST (Define a Composite Key)” on

page 594

(not allowed)

Identify Parameters v “PARM (Identify Parameters)” on page 647

v “PLIST (Identify a Parameter List)” on

page 650

PR definition specification

Tag “TAG (Tag)” on page 699 (not allowed)

The declarative operations are used to declare the properties of fields or to mark

parts of a program. The control level entry (positions 7 and 8) can be blank or can

contain an entry to group the statements within the appropriate section of the

program.

Error-Handling Operations

The exception-handling operation codes are:

v “MONITOR (Begin a Monitor Group)” on page 602

v “ON-ERROR (On Error)” on page 641

v ENDMON, as described in “ENDyy (End a Structured Group)” on page 566

These operation codes are available in both the traditional syntax and free-form

syntax.

MONITOR, ON-ERROR and ENDMON are used to code a monitor group. The

monitor group consists of a monitor block, followed by one or more on-error

blocks, followed by ENDMON.

The monitor block contains the code that you think might generate an error. The

on-error blocks contain the code to handle errors that occur in the monitor block.

A monitor block consists of a MONITOR operation followed by the operations that

will be monitored. An on-error block consists of an ON-ERROR operation, with a

list of status codes, followed by the operations that will be performed if an error in

the monitor block generates any of the listed status codes.

When an error occurs in the monitor block and the operation has an (E) extender

or an error indicator, the error will be handled by the (E) extender or the error

indicator. If no indicator or extender can handle the error, control passes to the

on-error block containing the status code for the error. When the on-error block is

finished, control passes to the ENDMON. If there is no on-error block to handle

the error, control passes to the next level of exception handling (the *PSSR or

INFSR subroutines, or the default error handler).

Conversion Operations

362 VisualAge RPG Language Reference

File Operations

The file operation codes are:

v “CHAIN (Random Retrieval from a File)” on page 529

v “CLOSE (Close Files)” on page 542

v “COMMIT (Commit)” on page 544

v “DELETE (Delete Record)” on page 551

v “EXCEPT (Calculation Time Output)” on page 575

v “FEOD (Force End of Data)” on page 580

v “OPEN (Open File for Processing)” on page 642

v “POST (Post)” on page 652

v “READ (Read a Record)” on page 653

v “READC (Read Next Changed Record)” on page 656

v “READE (Read Equal Key)” on page 658

v “READP (Read Prior Record)” on page 661

v “READPE (Read Prior Equal)” on page 663

v “READS (Read Selected)” on page 666

v “ROLBK (Roll Back)” on page 672

v “SETGT (Set Greater Than)” on page 679

v “SETLL (Set Lower Limit)” on page 681

v “UNLOCK (Unlock a Data Area or Release a Record)” on page 709

v “UPDATE (Modify Existing Record)” on page 711

v “WRITE (Create New Records)” on page 717

The file built-in functions are:

v “%EOF (Return End or Beginning of File Condition)” on page 438

v “%EQUAL (Return Exact Match Condition)” on page 440

v “%FOUND (Return Found Condition)” on page 444

v “%OPEN (Return File Open Condition)” on page 462

/free

 MONITOR; _

 OPEN FILE; |

 DOW getNextRecord (); |

 X = X + 1; +-- This is the monitor block

 nameList(X) = name; |

 ENDDO; |

 CLOSE FILE; _|

 ON-ERROR 1216; _

 DSPMSG |

 (’Error opening file FILE’ |

 : %status); +-- First on-error block

 RETURN; _|

 ON-ERROR 121; _

 DSPMSG |

 (’Array NAME is too small’ +-- Second on-error block

 : %status); |

 RETURN; _|

 ON-ERROR *ALL; _

 DSPMSG |

 (’Unexpected error’ +-- Final catch-all on-error block

 : %status); |

 RETURN; _|

 ENDMON; --- End of MONITOR group

/end-free

Figure 123. Example of MONITOR and ON-ERROR blocks

Error-Handling Operations

Chapter 23. Operations 363

v “%STATUS (Return File or Program Status)” on page 475

These operations are available in both the traditional syntax and free-form syntax.

You can use the file operations to work with either local files, remote files, or with

parts on a window:

Operation OS/400 file Local file Subfile Static text Entry field

Special

files

CHAIN Y Y Y

CLOSE Y Y Y

COMMIT Y

DELETE Y Y Y Y

EXCEPT Y Y

FEOD Y Y

OPEN Y Y Y

POST Y Y

READ Y Y Y Y Y

READC Y

READE Y

READP Y Y

READPE Y

READS Y

SETGT Y

SETLL Y

UNLOCK Y

UPDATE Y Y Y Y

WRITE Y Y Y Y Y Y

When an externally described file is used with certain file operations, a record

format name, rather than a file name, can be specified in factor 2. Thus, the

processing operation code retrieves and/or positions the file at a record format of

the specified type according to the rules of the calculation operation code used.

The CHAIN, READ, READC, READE, READP, and READPE operations may have

a result data structure. For these operations, data is transferred directly between

the file and the data structure, without processing the input specifications for the

file. Thus, no record identifying or field indicators are set on as a result of an input

operation to a data structure. If all input operations to the file have a result data

structure, input specifications are not required.

The WRITE and UPDATE operations that specify a program described file name in

factor 2 must have a data structure name specified in the result field. WRITE and

UPDATE operations to an externally described file or record may have a result data

structure. For these operations, data is transferred directly between data structure

and the file, without processing the output specifications for the file. If all output

operations to the file have a result data structure, output specifications are not

required.

Error-Handling Operations

364 VisualAge RPG Language Reference

|
|
|
|
|
|

|
|
|
|
|
|
|

A data structure name is allowed as the result of an I/O operation to an externally

described file name or record name as follows:

1. When a record name is specified on an I/O operation, the origin of the data

structure must match the record. That is, the data structure must be defined

using LIKEREC(rec) or EXTNAME(file:rec) where rec is the format name

specified on the operation. For input operations, the result data structure (or

base structure for the LIKEDS data structure) must be defined using *INPUT.

For output operations, the result data structure must be defined using

*OUTPUT. For UPDATE to a DISK file, the result data structure may be defined

using either *INPUT or *OUTPUT.

2. A result data structure may be specified for an I/O operation to an externally

described file name, in addition to a record name, for opcodes CHAIN, READ,

READE, READP, and READPE. When the name of an externally described file

is specified, the data structure must contain one subfield data structure for each

record with input-capable fields, where the allowed subfield data structures are

defined as in rule 1. Each subfield data structure must start in position 1.

(Normally the overlaying subfields will be defined using keyword

OVERLAY(ds:1).) In the special case where the file contains only one record,

the result data structure may be defined as in rule 1.

3. The result data structure can also be defined using LIKEDS(ds), where ds is an

data structure following these rules.

If an input operation (CHAIN, READ, READC, READE, READP, READPE) does

not retrieve a record because no record was found, because an error occurred in

the operation, or because the last record was already retrieved (end of file), then no

data is extracted and all fields in the program remain unchanged.

If you specify N as the operation extender of a CHAIN, READ, READE, READP,

or READPE operation for an update disk file, a record is read without locking. If

no operation extender is specified, the record is locked if the file is an update disk

file.

To handle exceptions and errors that occur during file operations, you must specify

an error indicator or a file error subroutine. Otherwise, exceptions and errors are

handled by the default error handler.

Note: Input and output operations in subprocedures involving input and output

specifications always use the global name, even if there is a local variable of

the same name. For example, if the field name TOTALS is defined in the

main source section, as well as in a subprocedure, any input or output

operation in the subprocedure will use the field as defined in the main

source section.
See “Database Null Value Support” on page 137 for information on handling files

with null-capable fields.

Keys for File Operations

With the file operations CHAIN, DELETE, READE, READPE, SETGT and

SETLL,the search argument, search-arg, must be the key or relative record number

used to identify the record. For free-form calculations, a search argument may be:

1. A single field name

2. A klist name

3. A list of values, such as ″(a:b:c+2)″. Each part of the composite key may be any

expression. Data types must match the corresponding key field, but lengths and

data format do not have to match.

4. %KDS(ds{:num})

Error-Handling Operations

Chapter 23. Operations 365

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A composite key is formed from the subfields of the specified data structure in

turn. Data types must match with the corresponding key field, but lengths and

data format do not have to match. Rules for moving data from expression

values to the key build area are the same as for operations code EVAL in that

shorter search arguments are padded on the right with blanks and longer

search arguments are truncated for type character. If num is specified, that is

the number of subfields to use in the composite key.

For non-free-form calculations, only field names and klist names are allowed as

search argument.

Operation extenders H, M, and R are allowed for CHAIN, DELETE, READE,

READPE, SETGT, and SETLL when a list of search arguments or %KDS is

specified. These extenders apply to the moving of the individual search argument

to the search argument build area.

Indicator-Setting Operations

The indicator setting operation codes are:

v “SETOFF (Set Indicator Off)” on page 684

v “SETON (Set Indicator On)” on page 684

These operation codes are available only in the traditional syntax. In free-form

syntax, you can set the value of *INxx to *ON or *OFF using the EVAL operation.

The following indicator-setting built-in function is available in both the traditional

syntax and free-form syntax:

v “%NULLIND (Query or Set Null Indicator)” on page 460

The SETON and SETOFF operations set the indicators specified in positions 71

through 76 on and off, respectively. At least one resulting indicator must be

specified in these positions.

See each operation for an explanation of its function.

Information Operations

The information operations are shown in the following table.

 Table 44. Information Operations

Operation Traditional Syntax Free-Form Syntax

Get Time and Date “TIME (Time of Day)” on page 707 v “%DATE (Convert to Date)” on page 422

v “%TIME (Convert to Time)” on page 487

v “%TIMESTAMP (Convert to Timestamp)”

on page 488

The TIME operation allows the program to access the system time of day and

system date at any time during program running. The date that is retrieved can be

from your local system or from an iSeries server.

Initialization Operations

The initialization operations are:

v “CLEAR (Clear)” on page 539

v “RESET (Reset)” on page 668

Error-Handling Operations

366 VisualAge RPG Language Reference

The initialization operations provide run-time clearing and resetting of all elements

in a window (entry field parts), structure (record format, data structure, array, or

table) or a variable (field, subfield, or indicator).

These operations are available in both the traditional syntax and free-form syntax.

Memory Management Operations

The memory management operations are shown in the following table.

 Table 45. Memory Management Operations

Operation Traditional Syntax Free-Form Syntax

Allocate Storage “ALLOC (Allocate Storage)” on page 505 “%ALLOC (Allocate Storage)” on page 408

Free Storage “DEALLOC (Free Storage)” on page 546

Reallocate Storage “REALLOC (Reallocate Storage with New

Length)” on page 666

“%REALLOC (Reallocate Storage)” on page

464

Get the Address of a

Variable

“%ADDR (Get Address of Variable)” on page 406

Get the Address of a

Procedure

“%PADDR (Get Procedure Address)” on page 463

The ALLOC operation allocates heap storage and sets the result-field pointer to

point to the storage. The storage is uninitialized.

The REALLOC operation changes the length of the heap storage pointed to by the

result-field pointer. New storage is allocated and initialized to the value of the old

storage. The data is truncated if the new size is smaller than the old size. If the

new size is greater than the old size, the storage following the copied data is

uninitialized. The old storage is released. The result-field pointer is set to point to

the new storage.

The DEALLOC operation releases the heap storage that the result-field pointer is

set to. If operational extender (N) is specified, the pointer is set to *NULL after a

successful deallocation.

Storage is implicitly freed when the activation group ends. Setting LR on will not

free any heap storage allocated by the module, but any pointers to heap storage

will be lost

Misuse of heap storage can cause problems. The following example illustrates a

scenario to avoid:

Error-Handling Operations

Chapter 23. Operations 367

Following are more problematic situations:

v A similar error can be made if a pointer is copied before being reallocated or

deallocated. Great care must be taken when copying pointers to allocated

storage, to ensure that they are not used after the storage is deallocated or

reallocated.

v If a pointer to heap storage is copied, the copy can be used to deallocate or

reallocate the storage. In this case, the original pointer should not be used until

it is set to a new value.

v If a pointer to heap storage is passed as a parameter, the callee could deallocate

or reallocate the storage. After the call returns, attempts to access the storage

through pointer could cause problems.

v If a pointer to heap storage is set in the *INZSR, a later RESET of the pointer

could cause the pointer to get set to storage that is no longer allocated.

v Another type of problem can be caused if a pointer to heap storage is lost (by

being cleared, or set to a new pointer by an ALLOC operation, for example).

Once the pointer is lost, the storage it pointed to cannot be freed. This storage is

unavailable storage it pointed to cannot be freed. This storage is unavailable to

be allocated since the system does not know that the storage is no longer

addressable. The storage will not be freed until the activation group ends.

Message Operations

The message operation DSPLY displays a Message window. For more information,

see “DSPLY (Display Message Window)” on page 562.

This operation is available in both the traditional syntax and free-form syntax.

Move Operations

The move operations are shown in the following table.

 Table 46. Move Operations

Operation Traditional Syntax Free-Form Syntax

Move “MOVE (Move)” on page 604 “EVALR (Evaluate expression, right adjust)”

on page 573 or conversion built-in functions

Move an Array “MOVEA (Move Array)” on page 619 (not allowed)

D Fld1 S 25A BASED(Ptr1)

D Fld2 S 5A BASED(Ptr2)

D Ptr1 S *

D Ptr2 S *

C ALLOC 25 Ptr1

C DEALLOC Ptr1

C* After this point, Fld1 should not be accessed since the

C* basing pointer Ptr1 no longer points to allocated storage.

C CALL ’SOMEPGM’

C* During the previous call to ’SOMEPGM’, several storage allocations

C* may have been done. In any case, it is extremely dangerous to

C* make the following assignment, since 25 bytes of storage will

C* be filled with ’a’. It is impossible to know what that storage

C* is currently being used for.

C EVAL Fld1 = *ALL’a’

Error-Handling Operations

368 VisualAge RPG Language Reference

Table 46. Move Operations (continued)

Operation Traditional Syntax Free-Form Syntax

Move Left “MOVEL (Move Left)” on page 626 “EVAL (Evaluate Expression)” on page 571

or conversionbuilt-in functions

Move operations transfer all or part of factor 2 to the result field. Factor 2 remains

unchanged.

For a description of how data is moved, see each operation. For a description of

how date-time data is moved when MOVE and MOVEL are used, see “Moving

Date-Time Data” on page 370.

The source and target of the move operation can be of the same or different types,

but some restrictions apply:

v For pointer moves, source and target must be the same type, either both basing

pointers or both procedure pointers.

v When using MOVEA, both the source and target must be of the same type.

v MOVEA is not allowed for Date, Time or Timestamp fields.

v MOVE and MOVEL are not allowed for float fields or literals.

Resulting indicators can be specified only for character, graphic, UCS-2, and

numeric result fields. For the MOVE and MOVEL operations, resulting indicators

are not allowed if the result field is an unindexed array. For MOVEA, resulting

indicators are not allowed if the result field is an array, regardless of whether or

not it is indexed.

The P operation extender can only be specified if the result field is character,

graphic, UCS-2, or numeric.

Moving Character, Graphic, UCS-2, and Numeric Data

When a character field is moved into a numeric result field, the digit portion of

each character is converted to its corresponding numeric character and then moved

to the result field. Blanks are transferred as zeros. For the MOVE operation, the

zone portion of the rightmost character is converted to its corresponding sign and

moved to the rightmost position of the numeric result field. It becomes the sign of

the field. For the MOVEL operation, the zone portion of the rightmost character of

factor 2 is converted and used as the sign of the result field (unless factor 2 is

shorter than the result field) whether or not the rightmost character is included in

the move operation.

If move operations are specified between numeric fields, the decimal positions

specified for the factor 2 field are ignored. For example, if 1.00 is moved into a

three-position numeric field with one decimal position, the result is 10.0.

Factor 2 may contain the figurative constants *ZEROS for moves to character or

numeric fields. To achieve the same function for graphic fields, the user should

code *ALLG’xx’ (where ’xx’ represents graphic zeros)

When moving data from a character source to graphic fields, if the source is a

character literal, named constant, or *ALLm, it must be an even length and at least

2 bytes. When moving from a hexadecimal literal or *ALLx to a graphic field, the

hexadecimal literal (or pattern) must be an even number of bytes.

Error-Handling Operations

Chapter 23. Operations 369

When a character field is involved in a move from/to a graphic field, the source

field must be an even length and at least 2 bytes.

When move operations are used to convert data from character to UCS-2 or from

UCS-2 to character, the number of characters moved is variable since the character

data may or may not contain graphic characters. For example, five UCS-2

characters can convert to:

v Five single-byte characters

v Five double-byte characters

v A combination of single-byte and double-byte characters

If the resulting data is too long to fit the result field, the data will be truncated. If

the result is single-byte character, it is the responsibility of the user to ensure that

the result contains complete characters.

If you specify operation extender P for a move operation, the result field is padded

from the right for MOVEL and MOVEA, and from the left for MOVE. The pad

characters are:

v Blank for character

v Double-byte blanks for graphic

v UCS-2 blanks for UCS-2

v 0 (zero) for numeric

v ’0’ for indicator

The padding takes place after the operation. If you use MOVE or MOVEL to move

a field to an array, each element of the array will be padded. If you use these

operations to move an array to an array and the result contains more elements

than the factor 2 array, the same padding takes place but the extra elements are not

affected. A MOVEA operation with an array name in the result field will pad the

last element affected by the operation plus all subsequent elements.

When resulting indicators are specified for move operations, the result field

determines which indicator is set on. If the result field is a character, graphic, or

UCS-2 field, only the resulting indicator in positions 75 and 76 can be specified.

This indicator is set on if the result field is all blanks. When the result field is

numeric, all three resulting indicator positions may be used. These indicators are

set on as follows:

High (71-72)

Set on if the result field is greater than 0.

Low (73-74)

Set on if the result field is less than 0.

Equal (75-76)

Set on if the result field is equal to 0.

Moving Date-Time Data

The MOVE and MOVEL operation codes can be used to move Date, Time and

Timestamp data type fields.

The following combinations are allowed for the MOVE and MOVEL operation

codes:

v Date to Date, Date to Timestamp, Date to Character or Numeric

v Time to Time, Time to Character or Numeric, Time to Timestamp

v Timestamp to Timestamp, Timestamp to Date, Timestamp to Time, Timestamp to

Character or Numeric

Error-Handling Operations

370 VisualAge RPG Language Reference

v Character or Numeric to Date, Character or Numeric to Time, Character or

Numeric to Timestamp

Factor 1 must be blank if both the source and the target of the move are Date,

Time, or Timestamp fields. If Factor 1 is blank, the format of the Date, Time, or

Timestamp field is used.

Otherwise, factor 1 contains the date or time format compatible with the character

or numeric field that is the source or target of the operation. Any valid format may

be specified. See “Date Data” on page 119, “Time Data” on page 135, and

“Timestamp Data” on page 137.

Keep in mind the following when specifying factor 1:

v Time format *USA is not allowed for movement between Time and numeric

fields.

v The formats *LONGJUL, *CYMD, *CMDY, and *CDMY are allowed in factor 1.

(For more information see Table 15 on page 121.)

v A zero (0), specified at the end of a format (for example *MDY0), indicates that

the character field does not contain separators.

v A two-digit year format (*MDY, *DMY, *YMD, and *JUL) can only represent

dates in the range 1940 through 2039. A 3-digit year format (*CYMD, *CMDY,

*CDMY) can only represent dates in the range 1900 through 2899. An error will

be issued if conversion to a 2- or 3-digit year format is requested for dates

outside this range.

v When MOVE and MOVEL are used to move character or numeric values to or

from a timestamp, the character or numeric value is assumed to contain a

timestamp.

Factor 2 is required and must be a character, numeric, Date, Time, or Timestamp

value. It contains the field, array, array element, table name, literal, or named

constant to be converted.

The following rules apply to factor 2:

v Separator characters must be valid for the specified format,

v If factor 2 is not a valid representation of a date or time or its format does not

match the format specified in factor 1, an error is generated.

v If factor 2 contains UDATE or *DATE, factor 1 is optional and corresponds to the

header specifications DATEDIT keyword

v If factor 2 contains UDATE and factor 1 entry is coded, it must be a date format

with a two-digit year. If factor 2 contains *DATE and factor 1 is coded, it must

be a date format with a 4-digit year.

The result field must be a Date, Time, Timestamp, numeric, or character variable. It

can be a field, array, array element, or table name. The date or time is placed in the

result field according to its defined format or the format code specified in factor 1.

If the result field is numeric, separator characters will be removed, prior to the

operation. The length is the length after removing the separator characters.

When moving from a Date to a Timestamp field, the time and microsecond portion

of the timestamp are unaffected, however the entire timestamp is checked and an

error message will be generated if it is not valid.

When moving from a Time to a Timestamp field, the microseconds part of the

timestamp will be set to 000000. The date portion remains unaffected, but the

entire timestamp will be checked and an error will be generated when it is not

valid.

Error-Handling Operations

Chapter 23. Operations 371

If character or numeric data is longer than required, only the leftmost data

(rightmost for the MOVE operation) is used. Keep in mind that factor 1 determines

the length of data to be moved. For example, if the format of factor 1 is *MDY for

a MOVE operation from a numeric date, only the rightmost 6 digits of factor 2

would be used.

The P operation extender can only be specified if the result is character or numeric.

Error-Handling Operations

372 VisualAge RPG Language Reference

Examples of Converting a Character Field to a Date Field

Figure 124 on page 374 shows some examples of how to define and move 2- and

4-digit year dates between date fields, or between character and date fields.

Error-Handling Operations

Chapter 23. Operations 373

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * Define two 8-byte character fields.

D CHR_8a s 8a inz(’95/05/21’)

D CHR_8b s 8a inz(’abcdefgh’)

 *

 * Define two 8-byte date fields. To get a 2-digit year instead of

 * the default 4-digit year (for *ISO format), they are defined

 * with a 2-digit year date format, *YMD. For D_8a, a separator (.)

 * is also specified. Note that the format of the date literal

 * specified with the INZ keyword must be the same as the format

 * specified on the * control specification. In this case, none

 * is specified, so it is the default, *ISO.

 *

D D_8a s d datfmt(*ymd.)

D D_8b s d inz(d’1995-07-31’) datfmt(*ymd)

 *

 * Define a 10-byte date field. By default, it has *ISO format.

D D_10 s d inz(d’1994-06-10’)

 *

 * D_10 now has the value 1995-05-21

 *

 * Move the 8-character field to a 10-character date field D_10.

 * It will contain the date that CHR_8a was initialized to, but

 * with a 4-digit year and the format of D_10, namely,

 * 1995-05-21 (*ISO format).

 *

 * Note that a format must be specified with built-in function

 * %DATE to indicate the format of the character field.

 *

 /FREE

 D_10 = %DATE (CHR_8a: *YMD);

 //

 // Move the 10-character date to an 8-character field CHR_8b.

 // It will contain the date that was just moved to D_10, but with

 // a 2-digit year and the default separator indicated by the *YMD

 // format.

 //

 CHR_8b = %CHAR (D_10: *YMD);

 //

 // Move the 10-character date to an 8-character date D_8a.

 // It will contain the date that * was just moved to D_10, but

 // with a 2-digit year and a . separator since D_8a was defined

 // with the (*YMD.) format.

 //

 D_8a = D_10;

 //

 // Move the 8-character date to a 10-character date D_10

 // It will contain the date that * D_8b was initialized to,

 // but with a 4-digit year, 1995-07-31.

 //

 D_10 = D_8b;

 //

 // After the last move, the fields will contain

 // CHR_8b: 95/05/21

 // D_8a: 95.05.21

 // D_10: 1995-07-31

 //

 *INLR = *ON;

 /END-FREE

Figure 124. Moving character and date data

Error-Handling Operations

374 VisualAge RPG Language Reference

Result Operations

The following built-in functions work with the result of the previous operation:

v “%EQUAL (Return Exact Match Condition)” on page 440

v “%FOUND (Return Found Condition)” on page 444

v “%ERROR (Return Error Condition)” on page 441

v “%STATUS (Return File or Program Status)” on page 475

These built-in functions are available in both the traditional syntax and free-form

syntax.

Size Operations

The following built-in functions return information about the size of a varible,

field, constant, array, table, or data structure:

v “%DECPOS (Get Number of Decimal Positions)” on page 427

v “%LEN (Get or Set Length)” on page 452

v “%SIZE (Size of Constant or Field)” on page 472

These built-in functions are available in both the traditional syntax and free-form

syntax.

String Operations

 Table 47. String Operations

Operation Traditional Syntax Free-Form Syntax

Concatenate “CAT (Concatenate Two Strings)” on page

526

+ operator

Check “CHECK (Check Characters)” on page 533 “%CHECK (Check Characters)” on page 418

Check Reverse “CHECKR (Check Reverse)” on page 536 “%CHECKR (Check Reverse)” on page 420

Create “%STR (Get or Store Null-Terminated String)” on page 478

Replace “%REPLACE (Replace Character String)” on page 466

Scan “SCAN (Scan String)” on page 673 “%SCAN (Scan for Characters)” on page 468

Substring “SUBST (Substring)” on page 696 “%SUBST (Get Substring)” on page 484

Translate “XLATE (Translate)” on page 720 “%XLATE (Translate)” on page 498

Trim Blanks “%TRIM (Trim Characters at Edges)” on page 490, “%TRIML (Trim Leading Characters)” on

page 492, or “%TRIMR (Trim Trailing Characters)” on page 493

The string operations include concatenation, scanning, substringing, translation,

and verification. String operations can only be used on character, graphic, or UCS-2

fields.

Note:

v Strings are indexed from position 1.

v Figurative constants cannot be used in the factor 1, factor 2, or result

fields.

v No overlapping in a data structure is allowed for factor 1 and the result

field, or factor 2 and the result field.

Result Operations

Chapter 23. Operations 375

When using string operations on graphic fields, all data in factor 1, factor 2, and

result field must be graphic. When numeric values are specified for length, start

position, and number of blanks for graphic characters, the values represent

double-byte characters.

When using string operations on UCS-2 fields, all data in factor 1, factor 2, and the

result field must be UCS-2. When numeric values are specified for length, start

position, and number of blanks for UCS-2 characters, the values represent

double-byte characters.

When using string operations on the graphic part of mixed-mode character data,

the start position, length, and number of blanks represent single byte characters.

Note: Preserving data integrity is the user’s responsibility.

Structured Programming Operations

The structured programming operations are shown in the following table.

 Table 48. Structured Programming Operations

Operation Traditional Syntax Free-Form Syntax

And “ANDxx (And)” on page 506 AND operator

Do “DO (Do)” on page 554 “FOR (For)” on page 581

Do Until “DOU (Do Until)” on page 556 or “DOUxx

(Do Until)” on page 557

“DOU (Do Until)” on page 556

Do While “DOW (Do While)” on page 559 or “DOWxx

(Do While)” on page 560

“DOW (Do While)” on page 559

Else “ELSE (Else)” on page 564

Else If “ELSEIF (Else If)” on page 565

End “ENDyy (End a Structured Group)” on page 566

For “FOR (For)” on page 581

If “IF (If)” on page 586 or “IFxx (If)” on page

587

“IF (If)” on page 586

Iterate “ITER (Iterate)” on page 591

Leave “LEAVE (Leave a Do/For Group)” on page 596

Or “ORxx (Or)” on page 644 OR operator

Otherwise “OTHER (Otherwise Select)” on page 645

Select “SELECT (Begin a Select Group)” on page 676

When “WHEN (When True Then Select)” on page

713 or “WHENxx (When True Then Select)”

on page 714

“WHEN (When True Then Select)” on page

713

* Restriction: FOR and ENDFOR are unsupported in Java applications.

The rules for making the comparison on the ANDxx, DOUxx, DOWxx, IFxx, ORxx

and WHENxx operation codes are the same as those given under “Compare

Operations” on page 357.

In the ANDxx, DOUxx, DOWxx, IFxx, ORxx, and WHENxx operations, xx can be:

xx Meaning

Size Operations

376 VisualAge RPG Language Reference

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.

LE Factor 1 is less than or equal to factor 2.

In the ENDyy operation, yy can be:

yy Meaning

CS End for CASxx operation.

DO End for DO, DOUxx, and DOWxx operation.

FOR End for FOR operation.

IF End for IFxx operation.

SL End for SELECT operation.

Blanks

End for any structured operation.

Note: The yy in the ENDyy operation is optional.

If a structured group, in this case a do group, contains another complete structured

group, together they form a nested structured group. Structured groups can be

nested to a maximum depth of 100 levels. The following is an example of nested

structured groups, three levels deep:

 Remember the following when specifying structured groups:

v Each nested structured group must be completely contained within the outer

level structured group.

v Each structured group must contain one of a DO, DOUxx, DOWxx, FOR, IFxx,

or SELECT operation and its associated ENDyy operation.

v Branching into a structured group from outside the structured group may cause

undesirable results.

DO
DO
ENDDO
IFxx
SELECT
WHENxx
ENDSL
ELSE
ENDIF
ENDDO

Size Operations

Chapter 23. Operations 377

Subroutine Operations

The subroutine operations are:

v “BEGACT (Begin Action Subroutine)” on page 508

v “ENDACT (End of Action Subroutine)” on page 568

v “BEGSR (Begin User Subroutine)” on page 511

v “ENDSR (End of User Subroutine)” on page 569

v “EXSR (Invoke User Subroutine)” on page 577

v “LEAVESR (Leave a Subroutine)” on page 598

v “CASxx (Conditionally Invoke Subroutine)” on page 524 (traditional syntax

only)

All of these operations except CASxx are available in both the traditional syntax

and free-form syntax.

A subroutine is a group of calculation specifications in a program that can be

processed several times in that program.

Subroutine specifications must follow all other calculation operations that can be

processed for a program; however, the PLIST, PARM, KLIST, KFLD, and DEFINE

operations may be specified between an ENDSR operation (the end of one

subroutine) and a BEGSR operation (the beginning of another subroutine) or after

all subroutines. A subroutine can be called using an EXSR or CASxx operation

anywhere in the calculation specifications. Subroutine lines can be identified by SR

in positions 7 and 8. The only valid entries in positions 7 and 8 of a subroutine line

are SR, AN, OR, or blanks.

For information on how to code a subroutine, see “Coding User Subroutines” on

page 577.

Test Operations

The test operations are:

v “TEST (Test Date/Time/Timestamp)” on page 700

v “TESTB (Test Bit)” on page 703

v “TESTN (Test Numeric)” on page 705

v “TESTZ (Test Zone)” on page 706

The result of these operations is indicated by the resulting indicators.

TEST is available in both the traditional syntax and free-form syntax. The other

operations are available only in the traditional syntax. See Figure 138 on page 413

for an example of how %BITAND can be used to duplicate the function of TESTB.

GUI Operations

The VisualAge RPG operations are:

v “BEGACT (Begin Action Subroutine)” on page 508

v “CLSWIN (Close Window)” on page 543

v “DSPLY (Display Message Window)” on page 562

v “ENDACT (End of Action Subroutine)” on page 568

v “GETATR (Retrieve Attribute)” on page 584

v “READS (Read Selected)” on page 666

v “SETATR (Set Attribute)” on page 678

v “SHOWWIN (Display Window)” on page 685

v “START (Start Component or Call Local Program)” on page 689

Size Operations

378 VisualAge RPG Language Reference

v “STOP (Stop Component)” on page 691

The VisualAge RPG operations work on either the user interface of the application

(for example, SHOWWIN) or they work on components in the operation (for

example, STOP). See each operation for an explanation of its function.

Qualified GUI Part Attribute Access

A qualified naming syntax is supported for accessing GUI part attributes in

expressions or free-form calculations, as an alternative to the %GETATR and

%SETATR builtin functions:

 <window-name>.<part-name>.<attribute-name>

eg.

 C eval caltest.disparrows.checked =

 C caltest.calendar.montharrow

Notes:

1. %WINDOW and %PART are not valid in this format.

2. Attributes for the special part *Component are accessed as

*component.*component.<attribute-name>.

3. To support this qualified access to GUI part atttributes, the window names

defined in the component’s GUI definition are reserved as symbolic names (eg.

field names) in the program, even within procedures.

4. This qualified attribute access does not affect the corresponding program fields

for parts. To ensure that the attribute value and the value in the program field

are the same, assign one to the other as needed.

This applies only to attributes that have program fields mapped to them, such

as the TEXT attribute for an entry field part.

C EVAL ENT0000B = INVENTORY.ENT0000B.TEXT

Or, in the other direction:

 /FREE

 ENT0000B = *BLANKS;

 inventory.ent0000b.text = ENT0000B;

 /END-FREE

Size Operations

Chapter 23. Operations 379

Size Operations

380 VisualAge RPG Language Reference

Chapter 24. Expressions

Expressions are a way to express program logic using free-form syntax. They can

be used to write program statements in a more concise manner than fixed-form

statements.

Expressions are simply groups of operands and operations, such as the following:

 A+B*21

 STRINGA + STRINGB

 D = %ELEM(ARRAYNAME)

 *IN01 OR (BALANCE > LIMIT)

 SUM + TOTAL(ARRAY:%ELEM(ARRAY))

 ’The tax rate is ’ + %editc(tax : ’A’) + ’%.’

Expressions may be coded in the following statements:

v “CALLP (Call a Prototyped Procedure or Program)” on page 522

v “CHAIN (Random Retrieval from a File)” on page 529 (free-form calculations

only)

v “CLEAR (Clear)” on page 539(free-form calculations only)

v “DELETE (Delete Record)” on page 551 (free-form calculations only)

v “DSPLY (Display Message Window)” on page 562(free-form calculations only)

v “DOU (Do Until)” on page 556

v “DOW (Do While)” on page 559

v “EVAL (Evaluate Expression)” on page 571

v “EVALR (Evaluate expression, right adjust)” on page 573

v “FOR (For)” on page 581

v “IF (If)” on page 586

v “RETURN (Return to Caller)” on page 671

v “READE (Read Equal Key)” on page 658 (free-form calculations only)

v “READPE (Read Prior Equal)” on page 663 (free-form calculations only)

v “SETGT (Set Greater Than)” on page 679 (free-form calculations only)

v “SETLL (Set Lower Limit)” on page 681 (free-form calculations only)

v “SORTA (Sort an Array)” on page 686

v “WHEN (When True Then Select)” on page 713

Figure 125 on page 382 shows several examples of how expressions can be used:

© Copyright IBM Corp. 1994, 2005 381

General Expression Rules

The following general rules apply to all expressions:

v Expressions are coded in the Extended-Factor 2 entry on the Calculation

Specification or after the operation code on a free-form calculation.

v An expression can be continued on more than one specification. On a

continuation specification, the only entries allowed are C in column 6 and the

Extended-Factor 2 entry.

No special continuation character is needed unless the expression is split within

a literal or a name.

v Blanks (like parentheses) are required only to resolve ambiguity. However, they

may be used to enhance readability.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * The operations within the DOU group will iterate until the

 * logical expression is true. That is, either COUNTER is less

 * than MAXITEMS or indicator 03 is on.

 /FREE

 dou counter < MAXITEMS or *in03;

 enddo;

 // The operations controlled by the IF operation will occur if

 // DUEDATE (a date variable) is an earlier date than

 // December 31, 1994.

 if DueDate < D’12-31-94’;

 endif;

 // In this numeric expression, COUNTER is assigned the value

 // of COUNTER plus 1.

 Counter = Counter + 1;

 // This numeric expression uses a built-in function to assign the numb

 // of elements in the array ARRAY to the variable ARRAYSIZE.

 ArraySize = %elem (Array);

 // This expression calculates interest and performs half adjusting on

 // the result which is placed in the variable INTEREST.

 eval(h) Interest = Balance * Rate;

 // This character expression builds a sentence from a name and a

 // number using concatentation. You can use built-in function

 // %CHAR, %EDITC, %EDITW or %EDITFLT to convert the numeric value

 // to character data.

 // This statement produces ’Id number for John Smith is 231 364’

 String = ’Id number for ’

 + %trimr (First) + ’ ’ + %trimr (Last)

 + ’ is ’ + %editw (IdNum: ’ & ’);

 // This expression adds a duration of 10 days to a date.

 DueDate = OriginalDate + %days(10);

 // This expression determines the difference in seconds between

 // two time values.

 Seconds = %diff (CompleteTime: t’09:00:00’: *seconds);

 // This expression combines a date value and a time value into a

 // timestamp value.

 TimeStamp = TransactionDate + TransactionTime;

 /END-FREE

Figure 125. Expression Examples

382 VisualAge RPG Language Reference

Note that RPG will read as many characters as possible when parsing each

token of an expression. For example,

– X**DAY is X raised to the power of DAY

– X* *DAY is X multiplied by *DAY
v The TRUNCNBR keyword on a control specification does not apply to

calculations done within expressions. When overflow occurs during an

expression operation, an exception is always issued.

Expression Operands

An operand can be any field name, named constant, literal, or prototyped

procedure returning a value. In addition, the result of any operation can also be

used as an operand to another operation. For example, in the expression A+B*21,

the result of B*21 is an operand to the addition operation.

Expression Operators

Expression operators can be any of the following:

Unary Operations

Unary operations are coded by specifying the operator followed by one

operand. The unary operators are:

+ The unary plus operation maintains the value of the numeric

operand.

− The unary minus operation negates the value of the numeric

operand.

NOT The logical negation operation returns ’1’ if the value of the

indicator operand is ’0’ and ’0’ if the indicator operand is ’1’. Note

that the result of any comparison operation or operation AND or

OR is a value of type indicator.

Binary Operations

Binary operations are coded by specifying the operator between the two

operands. The binary operators are:

+ The meaning of this operation depends on the types of the

operands. It can be used for:

v Adding two numeric values

v Adding a duration to a date, time, or timestamp.

v Concatenating two character, two graphic, or two UCS-2 values

v Adding a numeric offset to a basing pointer

v Combining a date and a time to yield a timestamp

− The meaning of this operation depends on the types of the

operands. It can be used for:

v Subtracting two numeric values

v Subtracting a duration from a date, time, or timestamp.

v Subtracting a numeric offset from a basing pointer

v Subtracting two pointers

* The multiplication operation is used to multiply two numeric

values.

/ The division operation is used to divide two numeric values.

** The exponentiation operation is used to raise a number to the

power of another.

Chapter 24. Expressions 383

= The equality operation returns ’1’ if the two operands are equal,

and ’0’ if not.

<> The inequality operation returns ’0’ if the two operands are equal,

and ’1’ if not.

> The greater than operation returns ’1’ if the first operand is greater

than the second.

>= The greater than or equal operation returns ’1’ if the first operand

is greater or equal to the second.

< The less than operation returns ’1’ if the first operand is less than

the second.

<= (less than or equal

The less than or equal operation returns ’1’ if the first operand is

less or equal to the second.

AND The logical AND operation returns ’1’ if both operands have the

value of indicator ’1’.

OR The logical or operation returns ’1’ if either operand has the value

of indicator ’1’.

Built-in Functions

Built-in functions are discussed in “Built-In Functions (Alphabetically)” on

page 405.

Assignment Operations

 Assignment operations are coded by specifying the target of the

assignment followed by an assignment operator followed by the expression

to be assigned to the target. Assignment operators of the form op= (for

example +=) use the target as one of the operands of the operation. The =

assignment operator is used with the EVAL and EVALR operations. The

op= assignment operators are used with the EVAL operation only. The

assignment operators are:

v = The expression is assigned to the target

v += The expression is added to the target

v -= The expression is subtracted from the target

v *= The target is multiplied by the expression

v /= The target is divided by the expression

v **= The target is assigned the target raised to the power of the

expression

User-Defined Functions

Any prototyped procedure that returns a value can be used within an

expression. The call to the procedure can be placed anywhere that a value

of the same type as the return value of the procedure would be used. For

example, assume that procedure MYFUNC returns a character value. The

following example shows three calls to MYFUNC:

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 if MyFunc (string1) = %trim (MyFunc (string2));

 %subst(X(3))= MyFunc(’abc’);

 endif;

 /END-FREE

Figure 126. Using a Prototyped Procedure in an Expression

384 VisualAge RPG Language Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

For more information on user-defined functions see Chapter 6, “Subprocedures and

Prototypes,” on page 63.

Operation Precedence

The precedence of operations determines the order in which operations are

performed within expressions. High precedence operations are performed before

lower precedence operations.

Since parentheses have the highest precedence, operations within parentheses are

always performed first.

Operations of the same precedence are evaluated in left to right order, except for

**, which is evaluated from right to left.

Note that, although an expression is evaluated from left to right, this does not

mean that the operands are also evaluated from left to right. See “Order of

Evaluation” on page 397 for additional considerations.

This list indicates the precedence of operators from highest to lowest:

1. ()

2. built-in functions

3. unary +, unary −, NOT

4. **

5. *,/

6. binary +, binary −

7. =,>=,>,<=,<,<>

8. AND

9. OR

Figure 127 shows how precedence works.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * The following two operations produce different results although

 * the order of operands and operators is the same. Assume that

 * PRICE = 100, DISCOUNT = 10, and TAXRATE = 0.15.

 * The first EVAL would result in a TAX of 98.5.

 * Since multiplication has a higher precedence than subtraction,

 * DISCOUNT * TAXRATE is the first operation performed. The result

 * of that operation (1.5) is then subtracted from PRICE.

 /FREE

 TAX = PRICE - DISCOUNT * TAXRATE;

 // The second EVAL would result in a TAX of 13.50.

 // Since parentheses have the highest precedence the operation

 // within parenthesis is performed first and the result of that

 // operation (90) is then multiplied by TAXRATE.

 TAX = (PRICE - DISCOUNT) * TAXRATE;

 /END-FREE

Figure 127. Precedence Example

Chapter 24. Expressions 385

Data Types

All data types are allowed within expressions. However, specific operations only

support certain data types as operands. For example, the * operation only allows

numeric values as operands. Note that the relational and logical operations return

a value of type indicator, which is a special type of character data. As a result, any

relational or logical result can be used as an operand to any operation that expects

character operands.

Data Types Supported by Expression Operands

The following tables summarize the data types supported by expression operands.

v Table 49 describes the type of operand allowed for each unary operator and the

type of the result

v Table 50 describes the type of operands allowed for each binary operator and the

type of the result

v Table 51 on page 387 describes the type of operands allowed for each built-in

function and the type of the result. Prototyped procedures support whatever

data types are defined in the prototype definition.

 Table 49. Types Supported for Unary Operations

Operation Operand Type Result Type

− (negation) Numeric Numeric

+ Numeric Numeric

NOT Indicator Indicator

 Table 50. Operands Supported for Binary Operations

Operator Operand 1 Type Operand 2 Type Result Type

+ (addition) Numeric Numeric Numeric

+ (addition) Date Duration Date

+ (addition) Time Duration Time

+ (addition) Timestamp Duration Timestamp

− (subtraction) Numeric Numeric Numeric

- (subtraction) Date Duration Date

- (subtraction) Time Duration Time

- (subtraction) Timestamp Duration Timestamp

* (multiplication) Numeric Numeric Numeric

/ (division) Numeric Numeric Numeric

** (exponentiation) Numeric Numeric Numeric

+ (concatenation) Character Character Character

+ (concatenation) Graphic Graphic Graphic

+ (concatenation) UCS-2 UCS-2 UCS-2

+ (add offset from

pointer)

Basing Pointer Numeric Basing Pointer

- (subtract pointers) Basing Pointer Basing Pointer Numeric

- (subtract offset from

pointer)

Basing Pointer Numeric Basing Pointer

Note: For the following operations the operands may be of any type, but the two operands

must be of the same type.

Data Types

386 VisualAge RPG Language Reference

Table 50. Operands Supported for Binary Operations (continued)

Operator Operand 1 Type Operand 2 Type Result Type

= (equal to) Any Any Indicator

>= (greater than or

equal to)

Any Any Indicator

> (greater than) Any Any Indicator

<= (less than or equal

to)

Any Any Indicator

< (less than) Any Any Indicator

<> (not equal to) Any Any Indicator

AND (logical and) Indicator Indicator Indicator

OR (logical or) Indicator Indicator Indicator

 Table 51. Types Supported for Built-in Functions

Operation Operands Result Type

%ABS Numeric Numeric

%ALLOC Numeric Pointer

%BITAND Character:character{:character...} Character

%BITAND Numeric:numeric{:numeric...} Numeric

%BITNOT Character Character

%BITNOT Numeric Numeric

%BITOR Character:character{:character...} Character

%BITOR Numeric:numeric{:numeric...} Numeric

%BITXOR Character:character Character

%BITXOR Numeric:numeric Numeric

%CHAR Graphic, Numeric, UCS-2, Date, Time or

Timestamp

Character

%CHECK Character, Graphic, or UCS-2 {: Numeric} Numeric

%CHECKR Character, Graphic, or UCS-2 {: Numeric} Numeric

%DATE {Character, Numeric, or Timestamp {: Date

Format}}

Date

%DAYS Numeric Numeric (duration)

%DEC Character : Numeric constant : Numeric

constant

Numeric (packed)

%DEC Numeric> {: Numeric constant : Numeric

constant}

Numeric (packed)

%DEC Date, time or timestamp {: format} Numeric (packed)

%DECH Character : Numeric constant : Numeric

constant

Numeric (packed)

%DECH Numeric : Numeric constant : Numeric

constant

Numeric (packed)

%DECPOS Numeric Numeric (unsigned)

%DIFF Date, Time, or Timestamp : Date, Time, or

Timestamp : Unit

Numeric (duration)

(compatible with both)

%DIV Numeric : Numeric Numeric

Data Types

Chapter 24. Expressions 387

|

Table 51. Types Supported for Built-in Functions (continued)

Operation Operands Result Type

%EDITC Non-float Numeric : Character Constant of

Length 1 {: *CURSYM | *ASTFILL |

character currency symbol}

Character (fixed length)

%EDITFLT Numeric Character (fixed length)

%EDITW Non-float Numeric : Character Constant Character (fixed length)

%EOF {File name} Indicator

%EQUAL {File name} Indicator

%ERROR Indicator

%FLOAT Character Numeric (float)

%FLOAT Numeric Numeric (float)

%FOUND {File name} Indicator

%GETATR Character : Character : Character Any type except Pointer

%GRAPH Character, Graphic, or UCS-2 {: ccsid} Graphic

%HOURS Numeric Numeric (duration)

%INT Character Numeric (integer)

%INT Numeric Numeric (integer)

%INTH Character Numeric (integer)

%INTH Numeric Numeric (integer)

%LEN Any Numeric (unsigned)

%LOOKUPxx Any : Any array {: Numeric {: Numeric}} Numeric

%MINUTES Numeric Numeric (duration)

%MONTHS Numeric Numeric (duration)

%MSECONDS Numeric Numeric (duration)

%OCCUR Multiple Occurrence Data Structure Multiple Occurrence Data

Structure

%OPEN File name Indicator

%REALLOC Pointer : Numeric Pointer

%REM Numeric : Numeric Numeric

%REPLACE Character : Character {: Numeric {:

Numeric}}

Character

%REPLACE Graphic : Graphic {: Numeric {: Numeric}} Graphic

%REPLACE UCS-2 : UCS-2 {: Numeric {: Numeric}} UCS-2

%SCAN Character : Character {: Numeric} Numeric (unsigned)

%SCAN Graphic : Graphic {: Numeric} Numeric (unsigned)

%SCAN UCS-2 : UCS-2 {: Numeric} Numeric (unsigned)

%SECONDS Numeric Numeric (duration)

%SQRT Numeric Numeric

%SETATR Character : Character : Character

%STATUS {File name} Numeric (zoned decimal)

%STR Basing Pointer {: Numeric} Character

Data Types

388 VisualAge RPG Language Reference

Table 51. Types Supported for Built-in Functions (continued)

Operation Operands Result Type

Note: When %STR appears on the left-hand side of an expression, the second operand is

required.

%SUBARR Any: Numeric {:Numeric} Any (same type as first

operand)

%SUBDT Date, Time, or Timestamp : Unit Numeric

%SUBST Character : Numeric {: Numeric} Character

%SUBST Graphic : Numeric {: Numeric} Graphic

%SUBST UCS-2 : Numeric {: Numeric} UCS-2

%THIS Object

%TIME {Character, Numeric, or Timestamp {: Time

Format}}

Time

%TIMESTAMP {Character, Numeric, or Date {: Timestamp

Format}}

Timestamp

%TLOOKUPxx Any table: Any table {: Any} Indicator

%TRIM Character { : Character } Character

%TRIM Graphic { : Graphic} Graphic

%TRIM UCS-2 { : UCS-2 } UCS-2

%TRIML Character { : Character } Character

%TRIML Graphic { : Graphic} Graphic

%TRIML UCS-2 { : UCS-2 } UCS-2

%TRIMR Character { : Character } Character

%TRIMR Graphic { : Graphic} Graphic

%TRIMR UCS-2 { : UCS-2 } UCS-2

%UCS2 Character or Graphic{:ccsid} Varying length UCS-2

value

%UNS Character Numeric (unsigned)

%UNS Numeric Numeric (unsigned)

%UNSH Character Numeric (unsigned)

%UNSH Numeric Numeric (unsigned)

Note: For the following built-in functions, arguments must be literals, named constants or

variables.

%XFOOT Numeric Numeric

%XLATE Character, Graphic, or UCS-2 : Character,

Graphic, or UCS-2 : Character, Graphic, or

UCS-2 {: Numeric}

Character, Graphic, or

UCS-2

%YEARS Numeric Numeric (duration)

%PADDR Character Procedure or prototype

pointer

%SIZE Any {: *ALL} Numeric (unsigned)

Note: For the following built-in functions, arguments must be variables. However, if an

array index is specified, it may be any valid numeric expression.

%ADDR Any Basing pointer

%ELEM Any Numeric (unsigned)

Data Types

Chapter 24. Expressions 389

|||
|

|

|

|

|

|

|

|

|

|

Table 51. Types Supported for Built-in Functions (continued)

Operation Operands Result Type

%NULLIND Any Indicator

Note: The following built-in functions are not true built-in functions in that they do not

return a value. They are used in some free-form file operations.

%FIELDS Any {: Any {: Any ...} Not Applicable

%KDS Data structure {: numeric } Not Applicable

Format of Numeric Intermediate Results

For binary operations involving numeric fields, the format of the intermediate

result depends on the format of the operands.

For the operators +, -, and *:

v If at least one operand has a float format, the result is float format.

v Otherwise, if at least one operand has packed-decimal, zoned-decimal, or binary

format, the result has packed-decimal format.

v Otherwise, if at least one operand has integer format, the result has integer

format.

v Otherwise, the result has unsigned format.

v For numeric literals that are not in float format:

– If the literal is within the range of an unsigned integer, the literal is assumed

to be an unsigned integer.

– Otherwise, if the literal is within the range of an integer, the literal is assumed

to be an integer.

– Otherwise, the literal is assumed to be packed decimal.

For the / operator:

If one operand is float or the FLTDIV keyword is specified on the control

specification, then the result of the / operator is float. Otherwise the result is

packed-decimal.

For the ** operator:

The result is represented in float format.

Performance and 8-byte Arithmetic

By default, the compiler performs 4-byte arithmetic. 8-byte arithmetic only occurs

if at least one operand is an 8-byte integer. From a performance perspective, 8-byte

arithmetic is expensive and should be avoided.

Precision Rules for Numeric Operations

Unlike the fixed-form operation codes where you must always specify the result of

each individual operation, RPG must determine the format and precision of the

result of each operation within an expression.

If an operation has a result of format float, integer, or unsigned the precision is the

maximum size for that format. Integer and unsigned operations produce 4-byte

values and float operations produce 8-byte values.

However, if the operation has a packed-decimal, zoned decimal, or binary format,

the precision of the result depends on the precisions of the operands.

Data Types

390 VisualAge RPG Language Reference

It is important to be aware of the precision rules for decimal operations since even

a relatively simple expression may have a result that may not be what you expect.

For example, if the two operands of a multiplication are large enough, the result of

the multiplication will have zero decimal places. If you are multiplying two 20

digit numbers, ideally you would need a 40 digit result to hold all possible results

of the multiplication. However, since RPG supports numeric values only up to 31

digits, the result is adjusted to 31 digits. In this case, as many as 10 decimal digits

are dropped from the result.

There are two sets of precision rules that you can use to control the sizes of

intermediate values:

1. The default rules give you intermediate results that are as large as possible in

order to minimize the possibility of numeric overflow. Unfortunately, in certain

cases, this may yield results with zero decimal places if the result is very large.

2. The ″Result Decimal Positions″ precision rule works the same as the default

rule except that if the statement involves an assignment to a numeric variable

or a conversion to a specific decimal precision, the number of decimal positions

of any intermediate result is never reduced below the desired result decimal

places.

In practice, you don’t have to worry about the exact precisions if you examine

the compile listing when coding numeric expressions. A diagnostic message

indicates that decimal positions are being dropped in an intermediate result. If

there is an assignment involved in the expression, you can ensure that the

decimal positions are kept by using the ″Result Decimal Positions″ precision

rule for the statement by coding operation code extender (R).

If the ″Result Decimal Position″ precision rule cannot be used (say, in a

relational expression), built-in function %DEC can be used to convert the result

of a sub-expression to a smaller precision which may prevent the decimal

positions from being lost.

Using the Default Precision Rule

Using the default precision rule, the precision of a decimal intermediate in an

expression is computed to minimize the possibility of numeric overflow. However,

if the expression involves several operations on large decimal numbers, the

intermediates may end up with zero decimal positions. (Especially, if the

expression has two or more nested divisions.) This may not be what the

programmer expects, especially in an assignment.

When determining the precision of a decimal intermediate, two steps occur:

1. The desired or ″natural″ precision of the result is computed.

2. If the natural precision is greater than 31 digits, the precision is adjusted to fit

in 31 digits. This normally involves first reducing the number of decimal

positions, and then if necessary, reducing the total number of digits of the

intermediate.

This behavior is the default and can be specified for an entire module (using

control specification keyword EXPROPTS(*MAXDIGITS) or for single free-form

expressions (using operation code extender M).

Data Types

Chapter 24. Expressions 391

Precision of Intermediate Results

Table 52 describes the default precision rules in more detail.

 Table 52. Precision of Intermediate Results

Operation Result Precision

Note: The following operations produce a numeric result. Ln is the length of the operand

in digits where n is either r for result or a numeric representing the operand. Dn is the

number of digits to the right of the decimal point where n is either r for result or a

numeric representing the operand. T is the temporary value.

Note that if any operand has a floating point representation (for example, it is the result of

the exponentiation operator), the result also is a floating point value and the precision rules

no longer apply. A floating point value has the precision available from double precision

floating point representation.

N1+N2 T=min (max (L1-D1, L2-D2)+1, 31)

Dr=min (max (D1,D2), 31-t)

Lr=t+Dr

N1-N2 T=min (max (L1-D1, L2-D2)+1, 31)

Dr=min (max (D1,D2), 31-t)

Lr=t+Dr

N1*N2 Lr=min (L1+L2, 31)

Dr=min (D1+D2, 31-min ((L1-D1)+(L2-D2), 31))

N1/N2 Lr=31

Dr=max (31-((L1-D1)+D2), 0)

N1**N2 Double float

Note: The following operations produce a character result. Ln represents the length of the

operand in number of characters.

C1+C2 Lr=min(L1+L2,65535)

Note: The following operations produce a DBCS result. Ln represents the length of the

operand in number of DBCS characters.

D1+D2 Lr=min(L1+L2,16383)

Note: The following operations produce a result of type character with subtype indicator.

The result is always an indicator value (1 character).

V1=V2 1 (indicator)

V1>=V2 1 (indicator)

V1>V2 1 (indicator)

V1<=V2 1 (indicator)

V1<V2 1 (indicator)

V1<>V2 1 (indicator)

V1 AND V2 1 (indicator)

V1 OR V2 1 (indicator)

Example of Default Precision Rules

This example shows how the default precision rules work.

Data Types

392 VisualAge RPG Language Reference

When the above Calculation specification is processed, the resulting value assigned

to FLD1 will have a precision of zero decimals, not the three decimals expected.

The reason is that when it gets to the last evaluation (�4� in the above example),

the number to which the factor is scaled is negative. To see why, look at how the

expression is evaluated.

�1� Evaluate FLD3/100

 Rules:

Lr = 31

Dr = max(31-((L1-D1)+D2),0)

 = max(31-((5-2)+0),0)

 = max(31-3,0)

 = 28

�2� Evaluate (Result of 1 * FLD4)

 Rules:

Lr = min(L1+L2,31)

 = min(31+9,31)

 = 31

Dr = min(D1+D2,31-min((L1-D1)+(L2-D2),31))

 = min(28+4,31-min((30-28)+(9-4),31))

 = min(32,31-min(4+5,31)

 = min(32,22)

 = 22

�3� Evaluate (Result of 2 + FLD5)

 Rules:

T = min(max(L1-D1,L2-D2)+1,31)

 = min(max(31-22,9-4)+1,31)

 = min(max(9,5)+1,31)

 = min(10,31)

 = 10

Dr = min(max(D1,D2),31-T)

 = min(max(22,4),31-10)

 = min(22,21)

 = 21

Lr = T + Dr

 = 10 + 21 = 31

�4� Evaluate FLD2/Result of 3

 Rules:

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D FLD1 S 15P 4

D FLD2 S 15P 2

D FLD3 S 5P 2

D FLD4 S 9P 4

D FLD5 S 9P 4

CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C EVAL FLD1 = FLD2/(((FLD3/100)*FLD4)+FLD5)

 (�1�)

 (�2�)

 (�3�)

 (�4�)

Figure 128. Precision of Intermediate Results

Data Types

Chapter 24. Expressions 393

Lr = 31

Dr = max(31-((L1-D1)+D2),0)

 = max(31-((15-2)+ 21),0)

 = max(31-(13+21),0)

 = max(-3,0) **** NEGATIVE NUMBER TO WHICH FACTOR IS SCALED ****

 = 0

To avoid this problem, you can change the above expression so that the first

evaluation is a multiplication rather than a division, that is, FLD3 * 0.01 or use the

%DEC built-in function to set the sub-expression FLD3/100: %DEC(FLD3/100 : 15 :

4) or use operation extender (R) to ensure that the number of decimal positions

never falls below 4.

Using the ″Result Decimal Position″ Precision Rules

The ″Result Decimal Position″ precision rule means that the precision of a decimal

intermediate will be computed such that the number of decimal places will never

be reduced smaller than the number of decimal positions of the result of the

assignment. This is specified by:

1. EXPROPTS(*RESDECPOS) on the Control Specification. Use this to specify

this behavior for an entire module.

2. Operation code extender R specified for a free-form operation.

Result Decimal Position rules apply in the following circumstances:

1. Result Decimal Position precision rules apply only to packed decimal

intermediate results. This behavior does not apply to the intermediate results of

operations that have integer, unsigned, or float results.

2. Result Decimal Position precision rules apply only where there is an

assignment (either explicit or implicit) to a decimal target (packed, zoned, or

binary).

This can occur in the following situations:

a. For an EVAL statement, the minimum decimal places is given by the

decimal positions of the target of the assignment and applies to the

expression on the right-hand side of the assignment. If half-adjust also

applies to the statement, one extra digit is added to the minimum decimal

positions (provided that the minimum is less than 31).

b. For a RETURN statement, the minimum decimal places is given by the

decimal positions of the return value defined on the PI specification for the

procedure. If half-adjust also applies to the statement, one extra digit is

added to the minimum decimal positions (provided that the minimum is

less than 31).

c. For a VALUE or CONST parameter, the minimum decimal positions is

given by the decimal positions of the formal parameter (specified on the

procedure prototype) and applies to the expression specified as the passed

parameter.

d. For built-in function %DEC and %DECH with explicit length and decimal

positions specified, the minimum decimal positions is given by the third

parameter of the built-in function and applies to the expression specified as

the first parameter.

The minimum number of decimal positions applies to the entire sub-expression

unless overridden by another of the above operations. If half-adjust is specified

(either as the H operation code extender, or by built-in function %DECH), the

number of decimal positions of the intermediate result is never reduced below

N+1, where N is the number of decimal positions of the result.

Data Types

394 VisualAge RPG Language Reference

3. The Result Decimal Position rules do not normally apply to conditional

expressions since there is no corresponding result. (If the comparisons must be

performed to a particular precision, then %DEC or %DECH must be used on

the two arguments.)

On the other hand, if the conditional expression is embedded within an

expression for which the minimum decimal positions are given (using one of

the above techniques), then the Result Decimal Positions rules do apply.

Data Types

Chapter 24. Expressions 395

Example of ″Result Decimal Position″ Precision Rules

The following examples illustrate the ″Result Decimal Position″ precision rules:

Short Circuit Evaluation

Relational operations AND and OR are evaluated from left to right. However, as

soon as the value is known, evaluation of the expression stops and the value is

returned. As a result, not all operands of the expression need to be evaluated.

For operation AND, if the first operand is false, then the second operand is not

evaluated. Likewise, for operation OR, if the first operand is true, the second

operand is not evaluated.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * This example shows the precision of the intermediate values

 * using the two precision rules.

D p1 s 13p 2

D p2 s 13p 2

D p3 s 13p 2

D p4 s 15p 9

D s1 s 13s 2

D s2 s 13s 2

D i1 s 10i 0

D f1 s 8f

D proc pr 8p 3

D parm1 20p 5 value

 * In the following examples, for each sub-expression,

 * two precisions are shown. First, the natural precision,

 * and then the adjusted precision.

 * Example 1:

 /FREE

 eval p1 = p1 * p2 * p3;

 // p1*p2 -> P(26,4); P(26,4)

 // p1*p2*p3 -> P(39,6); P(31,0) (decimal positions are truncated)

 eval(r) p1 = p1 * p2 * p3;

 // p1*p2 -> P(26,4); P(26,4)

 // p1*p2*p3 -> P(39,6); P(31,2) (decimal positions do not drop

 // below target decimal positions)

 eval(rh)p1 = p1 * p2 * p3;

 // p1*p2 -> P(26,4); P(26,5)

 // p1*p2*p3 -> P(39,6); P(31,3) (decimal positions do not drop

 // below target decimals + 1)

 // Example 2:

 eval p4 = p1 * p2 * proc (s1*s2*p4);

 // p1*p2 -> P(26,4); P(26,4)

 // s1*s2 -> P(26,4); P(26,4)

 // s1*s2*p4 -> P(41,13); P(31,3) (decimal positions are truncated)

 // p1*p2*proc() -> P(34,7); P(31,4) (decimal positions are truncated)

 eval(r) p4 = p1 * p2 * proc (s1*s2*p4);

 // p1*p2 -> P(26,4); P(26,4)

 // s1*s2 -> P(26,4); P(26,4)

 // s1*s2*p4 -> P(41,13); P(31,5)

 // p1*p2*proc() -> P(34,7); P(31,7) (we keep all decimals since we are

 // already below target decimals)

 /END-FREE

Figure 129. Examples of Precision Rules

Data Types

396 VisualAge RPG Language Reference

There are two implications of this behavior. First, an array index can be both tested

and used within the same expression. The expression

 I<=%ELEM(ARRAY) AND I>0 AND ARRAY(I)>10

will never result in an array indexing exception.

The second implication is that if the second operand is a call to a user-defined

function, the function will not be called. This is important if the function changes

the value of a parameter or a global variable.

Order of Evaluation

The order of evaluation of operands within an expression is not guaranteed.

Therefore, if a variable is used twice anywhere within an expression, and there is

the possibility of side effects, then the results may not be the expected ones.

For example, consider the source shown in Figure 130, where A is a variable, and

FN is a procedure that modifies A. There are two occurrences of A in the

expression portion of the second EVAL operation. If the left-hand side (operand 1)

of the addition operation is evaluated first, X is assigned the value 17, (5 + FN(5)

= 5 + 12 = 17). If the right-hand side (operand 2) of the addition operation is

evaluated first, X is assigned the value 18, (6 + FN(5) = 6 + 12 = 18).

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * A is a variable. FN is procedure that modifies A.

 /free

 a = 5;

 x = a + fn(a);

 /end-free

P fn B

D fn PI 5P 0

D parm 5P 0

 /free

 parm = parm + 1;

 return 2 * parm;

 /end-free

P fn E

Figure 130. Sample coding of a call with side effects

Data Types

Chapter 24. Expressions 397

Data Types

398 VisualAge RPG Language Reference

Chapter 25. Built-In Functions

Built-in functions are similar to operation codes because they perform operations

on data you specify. Built-in functions can be used in expressions. Additionally,

constant-valued built-in functions can be used in named constants. These named

constants can be used in any specification.

All built-in functions have the percent symbol (%) as their first character. The

syntax of built-in functions is:

function-name{(argument{:argument...})}

Arguments for the function may be variables, constants, expressions, a prototyped

procedure, or other built-in functions. An expression argument can include a

built-in function. The following example illustrates this.

See the individual built-in function descriptions for details on the arguments that

are allowed.

Unlike operation codes, built-in functions return a value rather than placing a

value in a result field. The following example illustrates this difference.

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C*

C* This example shows a complex expression with multiple

C* nested built-in functions.

C*

C* %TRIM takes as its argument a string. In this example, the

C* argument is the concatenation of string A and the string

C* returned by the %SUBST built-in function. %SUBST will return

C* a substring of string B starting at position 11 and continuing

C* for the length returned by %SIZE minus 20. %SIZE will return

C* the length of string B.

C*

C* If A is the string ’ Toronto,’ and B is the string

C* ’ Ontario, Canada ’ then the argument for %TRIM will

C* be ’ Toronto, Canada ’ and RES will have the value

C* ’Toronto, Canada’.

C*

C EVAL RES = %TRIM(A + %SUBST(B:11:%SIZE(B) - 20))

Figure 131. Built-in Function Arguments Example

© Copyright IBM Corp. 1994, 2005 399

Note that the arguments used in this example (the variable CITY and the

expression C+1) are analogous to the factor values for the SUBST operation. The

return value of the function itself is analogous to the result. In general, the

arguments of the built-in function are similar to the factor 1 and factor 2 fields of

an operation code.

Another useful feature of built-in functions is that they can simplify maintenance

of your code when used on the definition specification. The following example

demonstrates this feature.

 Built-in functions can be used in expressions on the extended-factor 2 calculation

specification and with keywords on the definition specification. When used with

definition specification keywords, the value of the built-in function must be known

at compile time and the argument cannot be an expression.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* In the following example, CITY contains the string

C* ’Toronto, Ontario’. The SCAN operation is used to locate the

C* separating blank, position 9 in this illustration. SUBST

C* places the string ’Ontario’ in field TCNTRE.

C*

C* Next, TCNTRE is compared to the literal ’Ontario’ and

C* 1 is added to CITYCNT.

C*

C ’ ’ SCAN CITY C

C ADD 1 C

C SUBST CITY:C TCNTRE

C ’Ontario’ IFEQ TCNTRE

C ADD 1 CITYCNT

C ENDIF

C*

C* In this example, CITY contains the same value, but the

C* variable TCNTRE is not necessary since the %SUBST built-in

C* function returns the appropriate value. In addition, the

C* intermediary step of adding 1 to C is simplified since

C* %SUBST accepts expressions as arguments.

C*

C ’ ’ SCAN CITY C

C IF %SUBST(CITY:C+1) = ’Ontario’

C EVAL CITYCNT = CITYCNT+1

C ENDIF

Figure 132. Built-in Function Example

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D*

D* In this example, CUSTNAME is a field in the

D* externally described data structure CUSTOMER.

D* If the length of CUSTNAME is changed, the attributes of

D* both TEMPNAME and NAMEARRAY would be changed merely by

D* recompiling. The use of the %SIZE built-in function means

D* no changes to your code would be necessary.

D*

D CUSTOMER E DS

D DS

D TEMPNAME LIKE(CUSTNAME)

D NAMEARRAY 1 OVERLAY(TEMPNAME)

D DIM(%SIZE(TEMPNAME))

Figure 133. Simplified Maintenance with Built-in Functions

400 VisualAge RPG Language Reference

The following table lists the built-in functions, their arguments, and the value they

return.

 Name Arguments Value Returned

%ABS numeric expression absolute value of expression

%ADDR variable name address of variable

%ALLOC number of bytes to allocate pointer to allocated storage

%BITAND character, numeric bit wise ANDing of the bits of all the arguments

%BITNOT character, numeric bit-wise reverse of the bits of the argument

%BITOR character, numeric bit-wise ORing of the bits of all the arguments

%BITXOR character, numeric bit-wise exclusive ORing of the bits of the two

arguments

%CHAR graphic, UCS-2, numeric, date,

time, or timestamp expression {:

date, time, or timestamp format}

value in character format

%CHECK comparator string:string to be

checked{:start position}

first position of a character that is not in the

comparator string, or zero if not found

%CHECKR comparator string:string to be

checked{:start position}

last position of a character that is not in the

comparator string, or zero if not found

%DATE {value {: date format}} the date that corresponds to the specified value, or

the current system date if none is specified

%DAYS number of days number of days as a duration

%DEC numeric expression {:digits:decpos}

character expression: digits:decpos

date, time or timestamp expression {:format}

value in packed numeric format

%DECH numeric or character expression:

digits:decpos

half-adjusted value in packed numeric format

%DECPOS numeric expression number of decimal digits

%DIFF date or time expression: date or

time expression: unit

difference between the two dates, times, or

timestamps in the specified unit

%DIV dividend: divisor the quotient from the division of the two arguments

%EDITC not-float numeric expression:edit

code{:*CURSYM|*ASTFILL|

currency symbol}

string representing edited value

%EDITFLT numeric expression character external display representation of float

%EDITW non-float numeric expression:edit

word

string representing edited value

%ELEM array, table, or multiple occurrence

data structure name

number of elements or occurrences

%EOF {file name} ’1’ if the most recent cycle input, read operation, or

write to a subfile (for a particular file, if specified)

ended in an end-of-file or beginning-of-file condition;

and, when a file is specified, if a more recent OPEN,

CHAIN, SETGT or SETLL to the file was not

successful

’0’ otherwise

Chapter 25. Built-In Functions 401

|

Name Arguments Value Returned

%EQUAL {file name} ’1’ if the most recent SETLL (for a particular file, if

specified) or LOOKUP operation found an exact

match

’0’ otherwise

%ERROR ’1’ if the most recent operation code with extender

’E’ specified resulted in an error

’0’ otherwise

%FIELDS list of fields to be updated not applicable

%FLOAT numeric or character expression value in float form

%FOUND {file name} ’1’ if the most recent relevant operation (for a

particular file, if specified) found a record (CHAIN,

DELETE, SETGT, SETLL), an element (LOOKUP), or

a match (CHECK, CHECKR and SCAN)

’0’ otherwise

%GETATR window name, part name, attribute

name, %PART, %WINDOW

value of attribute

%GRAPH character, graphic, or UCS-2

expression

value in graphic format

%HOURS number of hours number of hours as a duration

%INT numeric or character expression value in integer format

%INTH numeric or character expression half-adjusted value in integer format

%KDS data structure containing keys

{: number of keys}

not applicable

%LEN any expression length in digits or characters

%LOOKUPxx argument: array{:start index

{:number of elements}}

array index of the matching element

%MINUTES number of minutes number of minutes as a duration

%MONTHS number of months number of months as a duration

%MSECONDS number of microseconds number of microseconds as a duration

%NULLIND null-capable fieldname value in indicator format representing the null

indicator setting for the null-capable field

%OCCUR multiple-occurrence data structure

name

current occurrence of the multiple-occurrence data

structure

%OPEN file name ’1’ if the specified file is open

’0’ if the specified file is closed

%PADDR procedure or prototype name address of procedure or prototype

%REALLOC pointer: numeric expression pointer to allocated storage

%REM dividend: divisor the remainder from the division of the two

arguments

%REPLACE replacement string: source

string{:start position {:source length

to replace}}

string produced by inserting replacement string into

source string, starting at start position and replacing

the specified number of characters

%SCAN search argument:string to be

searched{:start position}

first position of search argument in string or zero if

not found

%SECONDS number of seconds number of seconds as a duration

402 VisualAge RPG Language Reference

Name Arguments Value Returned

%SETATR window name, part name, attribute

name, %PART, %WINDOW

none

%SIZE variable, array, or literal{:*ALL} size of variable or literal

%SQRT numeric value square root of the numeric value

%STATUS {file name} 0 if no program or file error occurred since the most

recent operation code with extender ’E’ specified

most recent value set for any program or file status,

if an error occurred

if a file is specified, the value returned is the most

recent status for that file

%STR pointer{:maximum length} characters addressed by pointer argumentup to but

not including the first x’00’

%SUBARR array name:start index{:number of

elements}

array subset

%SUBDT date or time expression: unit an unsigned numeric value that contains the

specified portion of the date or time value

%SUBST string:start{:length} substring

%THIS the class instance for the native method

%TIME {value {: time format}} the time that corresponds to the specified value, or

the current system time if none is specified

%TIMESTAMP {(value {: timestamp format})} the timestamp that corresponds to the specified value,

or the current system timestamp if none is specified

%TLOOKUPxx argument: search table {: alternate

table}

’*ON’ if there is a match

’*OFF’ otherwise

%TRIM string {: characters to trim} string with left and right blanks or specified

characters trimmed

%TRIML string {: characters to trim} string with left blanks or specified characters

trimmed

%TRIMR string {: characters to trim} string with right blanks or specified characters

trimmed

%UCS2 character or graphic expression value in UCS-2 format

%UNS numeric or character expression value in unsigned format

%UNSH numeric or character expression half-adjusted value in unsigned format

%XFOOT array expression sum of the elements

%XLATE from-characters: to-characters:

string {: start position}

the string with from-characters replaced by

to-characters

%YEARS number of years number of years as a duration

For more information on using built-in functions, see:

v Chapter 18, “Definition Specifications,” on page 255

v “Extended Factor 2 Syntax” on page 316

v Chapter 24, “Expressions,” on page 381

v “DOU (Do Until)” on page 556

v “DOW (Do While)” on page 559

v “EVAL (Evaluate Expression)” on page 571

v “IF (If)” on page 586

v “RETURN (Return to Caller)” on page 671

Chapter 25. Built-In Functions 403

||
|
|

v “WHEN (When True Then Select)” on page 713

404 VisualAge RPG Language Reference

Built-In Functions (Alphabetically)

The following sections describe the built-in functions.

%ABS (Absolute Value of Expression)

%ABS

%ABS returns the absolute value of the numeric expression specified as parameter.

If the value of the numeric expression is non-negative, the value is returned

unchanged. If the value is negative, the value returned is the value of the

expression but with the negative sign removed.

%ABS may be used either in expressions or as parameters to keywords. When

used with keywords, the operand must be a numeric literal, a constant name

representing a numeric value, or a built-in function with a numeric value known at

compile-time.

For more information, see “Arithmetic Operations” on page 348 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name +++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D f8 s 8f inz (-1)

D i10 s 10i 0 inz (-123)

D p7 s 7p 3 inz (-1234.567)

 /FREE

 f8 = %abs (f8); // "f8" is now 1.

 i10 = %abs (i10 - 321); // "i10" is now 444.

 p7 = %abs (p7); // "p7" is now 1234.567.

 /END-FREE

Figure 134. %ABS Example

%ABS (Absolute Value of Expression)

Chapter 25. Built-In Functions 405

%ADDR (Get Address of Variable)

%ADDR(variable)

%ADDR(variable(index))

%ADDR(variable(expression))

%ADDR returns a value of type basing pointer. The value is the address of the

specified variable. It may only be compared with and assigned to items of type

basing pointer.

If %ADDR with an array index parameter is specified as a parameter for the

definition specification keywords INZ or CONST, the array index must be known

at compile-time. The index must be either a numeric literal or a numeric constant.

In an EVAL operation where the result of the assignment is an array with no

index, %ADDR on the right hand side of the assignment operator has a different

meaning depending on the argument for the %ADDR. If the argument for %ADDR

is an array name without an index and the result is an array name, each element of

the result array contains the address of the beginning of the argument array. If the

argument for %ADDR is an array name with an index of (*), then each element of

the result array will contain the address of the corresponding element in the

argument array. This is illustrated in Figure 135 on page 407.

If the variable specified as parameter is a table, multiple occurrence data structure,

or subfield of a multiple occurrence data structure, the address is the address of

the current table index or occurrence number.

If the variable is based, %ADDR returns the value of the basing pointer for the

variable. If the variable is a subfield of a based data structure, the value of

%ADDR is the value of the basing pointer plus the offset of the subfield.

If the variable is specified as a PARM of the *ENTRY PLIST, %ADDR returns the

address passed to the program by the caller.

When the argument of %ADDR cannot be modified, %ADDR can only be used in

a comparison operation. An example of an argument that cannot be modified is a

read-only reference parameter (CONST keyword specified on the Procedure

Interface).

%ADDR (Get Address of Variable)

406 VisualAge RPG Language Reference

|
|
|
|

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

 *

 * The following set of definitions is valid since the array

 * index has a compile-time value

 *

D ARRAY S 20A DIM (100)

 * Set the pointer to the address of the seventh element of the array.

D PTR S * INZ (%ADDR(ARRAY(SEVEN)))

D SEVEN C CONST (7)

 *

D DS1 DS OCCURS (100)

D 20A

D SUBF 10A

D 30A

D CHAR10 S 10A BASED (P)

D PARRAY S * DIM(100)

 /FREE

 %OCCUR(DS1) = 23;

 SUBF = *ALL’abcd’;

 P = %ADDR (SUBF);

 IF CHAR10 = SUBF;

 // This condition is true.

 ENDIF;

 IF %ADDR (CHAR10) = %ADDR (SUBF);

 // This condition is also true.

 ENDIF;

 // The following statement also changes the value of SUBF.

 CHAR10 = *ALL’efgh’;

 IF CHAR10 = SUBF;

 // This condition is still true.

 ENDIF;

 //--

 %OCCUR(DS1) = 24;

 IF CHAR10 = SUBF;

 // This condition is no longer true.

 ENDIF;

 //--

 // The address of an array element is taken using an expression

 // as the array index.

 P = %ADDR (ARRAY (X + 10));

 //--

 // Each element of the array PARRAY contains the address of the

 // first element of the array ARRAY.

 PARRAY = %ADDR(ARRAY);

 // Each element of the array PARRAY contains the address of the

 // corresponding element of the array ARRAY.

 PARRAY = %ADDR(ARRAY(*));

 // The first three elements of the array PARRAY

 // contain the addresses of the first three elements

 // of the array ARRAY.

 %SUBARR(PARRAY : 1 : 3) = %ADDR(ARRAY(*));

 /END-FREE

Figure 135. %ADDR Example

%ADDR (Get Address of Variable)

Chapter 25. Built-In Functions 407

%ALLOC (Allocate Storage)

%ALLOC(num)

%ALLOC returns a pointer to newly allocated heap storage of the length specified.

The newly allocated storage is uninitialized.

The parameter must be a non-float numeric value with zero decimal places. The

length specified must be between 1 and 16776704.

For more information, see “Memory Management Operations” on page 367.

If the operation cannot complete successfully, exception 00425 or 00426 is issued.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 // Allocate an area of 200 bytes

 pointer = %ALLOC(200);

 /END-FREE

Figure 136. %ALLOC Example

%ADDR (Get Address of Variable)

408 VisualAge RPG Language Reference

%BITAND (Bitwise AND Operation)

%BITAND(expr:expr{:expr...})

%BITAND returns the bit-wise ANDing of the bits of all the arguments. That is,

the result bit is ON when all of the corresponding bits in the arguments are ON,

and OFF otherwise.

The arguments to this built-in function can be either character or numeric. For

numeric arguments, if they are not integer or unsigned, they are first converted to

integer. If the value does not fit in an 8-byte integer, a numeric overflow exception

is issued.

%BITAND can have two or more arguments. All arguments must be the same

type, either character or numeric. The result type is the same as the types of the

arguments. For numeric arguments, the result is unsigned if all arguments are

unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different

lengths, they are padded on the left with bit zeros for numeric arguments. Shorter

character arguments are padded on the right with bit ones.

%BITAND can be coded in any expression. It can also be coded as the argument to

a File or Definition Specification keyword if all arguments are known at

compile-time. If all arguments of this built-in function are hex literals, the compiler

produces a constant-folded result that is a hex literal.

Please see Figure 137 on page 413, Figure 138 on page 413, and Figure 139 on page

414 for examples demonstrating the use of %BITAND.

For more information, see “Bit Operations” on page 352 or Chapter 25, “Built-In

Functions,” on page 399.

%BITAND (Bitwise AND Operation)

Chapter 25. Built-In Functions 409

%BITNOT (Invert Bits)

%BITNOT(expr)

%BITNOT returns the bit-wise inverse of the bits of the argument. That is, the

result bit is ON when the corresponding bit in the argument is OFF, and OFF

otherwise.

The argument to this built-in function can be either character or numeric. For

numeric arguments, if they are not integer or unsigned, they are first converted to

integer. If the value does not fit in an 8-byte integer, a numeric overflow exception

is issued.

%BITNOT takes just one argument. The result type is the same as the types of the

arguments. For numeric arguments, the result is unsigned if all arguments are

unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different

lengths, they are padded on the left with bit zeros for numeric arguments.

%BITNOT can be coded in any expression. It can also be coded as the argument to

a File or Definition Specification keyword if all arguments are known at

compile-time. If all arguments of this built-in function are hex literals, the compiler

produces a constant-folded result that is a hex literal.

Please see Figure 137 on page 413 for an example demonstrating the use of

%BITNOT.

For more information, see “Bit Operations” on page 352 or Chapter 25, “Built-In

Functions,” on page 399.

%BITNOT (Invert Bits)

410 VisualAge RPG Language Reference

%BITOR (Bitwise OR Operation)

%BITOR(expr:expr{:expr...})

%BITOR returns the bit-wise ORing of the bits of all the arguments. That is, the

result bit is ON when any of the corresponding bits in the arguments are ON, and

OFF otherwise.

The arguments to this built-in function can be either character or numeric. For

numeric arguments, if they are not integer or unsigned, they are first converted to

integer. If the value does not fit in an 8-byte integer, a numeric overflow exception

is issued.

%BITOR can have two or more arguments. All arguments must be the same type,

either character or numeric. However, when coded as keyword parameters, these

two BIFs can have only two arguments. The result type is the same as the types of

the arguments. For numeric arguments, the result is unsigned if all arguments are

unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different

lengths, they are padded on the left with bit zeros for numeric arguments. Shorter

character arguments are padded on the right with bit zeros.

%BITOR can be coded in any expression. It can also be coded as the argument to a

File or Definition Specification keyword if all arguments are known at

compile-time. If all arguments of this built-in function are hex literals, the compiler

produces a constant-folded result that is a hex literal.

Please see Figure 137 on page 413 for an example demonstrating the use of

%BITOR.

For more information, see “Bit Operations” on page 352 or Chapter 25, “Built-In

Functions,” on page 399.

%BITOR (Bitwise OR Operation)

Chapter 25. Built-In Functions 411

%BITXOR (Bitwise Exclusive-OR Operation)

%BITXOR(expr:expr)

%BITXOR returns the bit-wise exclusive ORing of the bits of the two arguments.

That is, the result bit is ON when just one of the corresponding bits in the

arguments are ON, and OFF otherwise.

The argument to this built-in function can be either character or numeric. For

numeric arguments, if they are not integer or unsigned, they are first converted to

integer. If the value does not fit in an 8-byte integer, a numeric overflow exception

is issued.

%BITXOR takes exactly two arguments. The result type is the same as the types of

the arguments. For numeric arguments, the result is unsigned if all arguments are

unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different

lengths, they are padded on the left with bit zeros for numeric arguments. Shorter

character arguments are padded on the right with bit zeros .

%BITXOR can be coded in any expression. It can also be coded as the argument to

a File or Definition Specification keyword if all arguments are known at

compile-time. If all arguments of this built-in function are hex literals, the compiler

produces a constant-folded result that is a hex literal.

For more information, see “Bit Operations” on page 352 or Chapter 25, “Built-In

Functions,” on page 399.

%BITXOR (Bitwise Exclusive-OR Operation)

412 VisualAge RPG Language Reference

Examples of Bit Operations

D const c x’0007’

D ch1 s 4a inz(%BITNOT(const))

 * ch1 is initialized to x’FFF82020’

D num1 s 5i 0 inz(%BITXOR(const:x’000F’))

 * num is initialized to x’0008’, or 8

D char2a s 2a

D char2b s 2a

D uA s 5u 0

D uB s 3u 0

D uC s 5u 0

D uD s 5u 0

C eval char2a = x’FE51’

C eval char2b = %BITAND(char10a : x’0F0F’)

 * operand1 = b’1111 1110 0101 0001’

 * operand2 = b’0000 1111 0000 1111’

 * bitwise AND: 0000 1110 0000 0001

 * char2b = x’0E01’

C eval uA = x’0123’

C eval uB = x’AB’

C eval uc = x’8816’

C eval uD = %BITOR(uA : uB : uC)

 * operand1 = b’0000 0001 0010 0011’

 * operand2 = b’0000 0000 1010 1011’ (fill with x’00’)

 * operand3 = b’1000 1000 0001 0110’

 * bitwise OR: 1000 1001 1011 1111

 * uD = x’89BF’

Figure 137. Using Bit Operations

 * This example shows how to duplicate the function of TESTB using %BITAND

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D fld1 s 1a

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

C testb x’F1’ fld1 010203

 * Testing bits 1111 0001

 * If FLD1 = x’00’ (0000 0000), the indicators have the values ’1’ ’0’ ’0’

 * (all tested bits are off)

 * If FLD1 = x’15’ (0001 0101), the indicators have the values ’0’ ’1’ ’0’

 * (some tested bits are off and some are on)

 * If FLD1 = x’F1’ (1111 0001), the indicators have the values ’0’ ’0’ ’1’

 * (all tested bits are on)

 /free

 // this code performs the equivalent of the TESTB operation above

 // test if all the "1" bits in x’F1’ are off in FLD1

 *in01 = %bitand(fld1 : x’F1’) = x’00’;

 // test if some of the "1" bits in x’F1’ are on

 // and some are off in FLD1

 *in02 = %bitand(fld1 : x’F1’) <> x’00’

 and %bitand(fld1 : x’F1’) <> x’F1’;

 // test if all the "1" bits in x’F1’ are on in FLD1

 *in03 = %bitand(fld1 : x’F1’) = x’F1’;

 /end-free

Figure 138. Deriving TESTB Functionality from %BITAND

%BITXOR (Bitwise Exclusive-OR Operation)

Chapter 25. Built-In Functions 413

* This example shows how to duplicate the function of

 * BITON and BITOFF using %BITAND, %BITNOT, and %BITOR

 DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

 D fld1 s 1a inz(x’01’)

 D fld2 s 1a inz(x’FF’)

 CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

 C biton x’F4’ fld1

 * fld1 has an initial value of x’01’ (0000 0001)

 * The 1 bits in x’F4’ (1111 0100) are set on

 * fld1 has a final value of x’F5’ (1111 0101)

 C bitoff x’F1’ fld2

 * fld2 has an initial value of x’FF’ (1111 1111)

 * The 1 bits in x’F1’ (1111 0001) are set off

 * fld2 has a final value of x’0E’ (0000 1110)

 /free

 // this code performs the equivalent of the

 // BITON and BITOFF operations above

 // Set on the "1" bits of x’F4’ in FLD1

 fld1 = %bitor(fld1 : x’F4’);

 // Set off the "1" bits of x’F1’ in FLD2

 fld2 = %bitand(fld2 : %bitnot(x’F1’));

 /end-free

Figure 139. BITON/BITOFF Functionality Using Built In Functions

%BITXOR (Bitwise Exclusive-OR Operation)

414 VisualAge RPG Language Reference

D c1 s 2a inz(x’ABCD’)

D c2hh s 2a inz(x’EF12’)

D c2hl s 2a inz(x’EF12’)

D c2lh s 2a inz(x’EF12’)

D c2ll s 2a inz(x’EF12’)

 /free

 // mhhzo c1 c2hh

 // c2hh becomes x’AF12’

 %subst(c2hh:1:1)

 = %bitor(%bitand(x’0F’

 : %subst(c2hh:1:1))

 : %bitand(x’F0’

 : %subst(c1:1:1)));

 // c2hl becomes x’EFA2’

 // mhlzo c1 c2hl

 %subst(c2hl:%len(c2hl):1)

 = %bitor(%bitand(x’0F’

 : %subst(c2hl:%len(c2hl):1))

 : %bitand(x’F0’

 : %subst(c1:1:1)));

 // mlhzo c1 c2lh

 // c2lh becomes x’CF12’

 %subst(c2lh:1:1)

 = %bitor(%bitand(x’0F’

 : %subst(c2lh:1:1))

 : %bitand(x’F0’

 : %subst(c1:%len(c1):1)));

 // mhllo c1 c2ll

 // c2ll becomes x’EFC2’

 %subst(c2ll:%len(c2hl):1)

 = %bitor(%bitand(x’0F’

 : %subst(c2ll:%len(c2ll):1))

 : %bitand(x’F0’

 : %subst(c1:%len(c1):1)));

Figure 140. Deriving MxxZO functionality from %BITOR and %BITAND

%BITXOR (Bitwise Exclusive-OR Operation)

Chapter 25. Built-In Functions 415

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

%CHAR (Convert to Character Data)

%CHAR(expression{:format})

%CHAR converts the value of the expression from graphic, UCS-2, numeric, date,

time or timestamp data to type character. The converted value remains unchanged,

but is returned in a format that is compatible with character data.

If the parameter is a constant, the conversion will be done at compile time.

If a UCS-2 conversion results in substitution characters, a warning message will be

given in the compiler listing if the parameter is a constant. Otherwise, status 00050

will be set at run time but no error message will be given.

For graphic data, the value returned is two bytes for each graphic field. For

example, if a 5 character graphic field is converted, the returned value is 10

characters (10 bytes of graphic data). If the value of the expression has a variable

length, the value returned is in varying format.

For date, time, or timestamp data, the second parameter contains the date, time, or

timestamp format to which the returned character data is converted. The value

returned will include separator characters unless the format specified is followed

by a zero.

For numeric data, if the value of the expression is float, the result will be in float

format (for example ’+1.125000000000000E+020’). Otherwise, the result will be in

decimal format with a leading negative sign if the value is negative, and without

leading zeros. The character used for any decimal point will be the character

indicated by the control specification DECEDIT keyword (default is ’.’). For

example, %CHAR of a packed(7,3) expression might return the value ’-1.234’.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

%CHAR (Convert to Character Data)

416 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D Name S 20G VARYING INZ(G’XXYYZZ’)

D date S D INZ(D’1997/02/03’)

D time S T INZ(T’12:23:34’)

D result S 100A VARYING

D points S 10i 0 INZ(234)

 *---

 * To format the time and date with the default formats, use this:

 *---

 /FREE

 result = ’It is ’ + %CHAR(time) + ’ on ’ + %CHAR(date);

 // If the default formats are both *USA,

 // result = ’It is 12:23 PM on 02/03/1997’

 //--

 // To format the time and date with specific formats, use this:

 //--

 result = ’It is ’ + %CHAR(time : *hms:)

 + ’ on ’ + %CHAR(date : *iso);

 // result = ’It is 12:23:34 on 1997-02-03’

 //

 //---

 // You can use %subst with the %char result if you only want

 // part of the result

 //---

 result = ’The time is now ’ + %SUBST (%CHAR(time):1:5) + ’.’;

 // result = ’The time is now 12:23.’

 //---

 // Use %CHAR to convert a graphic value to character so it

 // can be concatenated with a character value.

 //---

 result = ’The customer’’s name is ’ + %CHAR(Name) + ’.’;

 // result = ’The customer’s name is XXYYZZ.’

 //--

 // Use %CHAR to convert a number to character format:

 //--

 result = ’You have ’ + %char(points) + ’ points.’;

 // result = ’You have 234 points.’

 //

 /END-FREE

Figure 141. %CHAR Examples

%CHAR (Convert to Character Data)

Chapter 25. Built-In Functions 417

%CHECK (Check Characters)

%CHECK(comparator : base {: start})

%CHECK returns the first position of the string base that contains a character that

does not appear in string comparator. If all of the characters in base also appear in

comparator, the function returns 0.

The check begins at the starting position and continues to the right until a

character that is not contained in the comparator string is found. The starting

position defaults to 1.

The first parameter must be of type character, graphic, or UCS-2, fixed or varying

length. The second parameter must be the same type as the first parameter. The

third parameter, if specified, must be a non-float numeric with zero decimal

positions.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

%CHECK (Check Characters)

418 VisualAge RPG Language Reference

See also Figure 144 on page 421.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 *--

 * A string contains a series of numbers separated

 * by blanks and/or commas.

 * Use %CHECK to extract the numbers

 *--

D string s 50a varying

D inz(’12, 233 17, 1, 234’)

D delimiters C ’ ,’

D digits C ’0123456789’

D num S 50a varying

D pos S 10i 0

D len S 10i 0

D token s 50a varying

 /free

 // make sure the string ends with a delimiter

 string = string + delimiters;

 dou string = ’’;

 // Find the beginning of the group of digits

 pos = %check (delimiters : string);

 if (pos = 0);

 leave;

 endif;

 // skip past the delimiters

 string = %subst(string : pos);

 // Find the length of the group of digits

 len = %check (digits : string) - 1;

 // Extract the group of digits

 token = %subst(string : 1 : len);

 dsply ’ ’ ’ ’ token;

 // Skip past the digits

 if (len < %len(string));

 string = %subst (string : len + 1);

 endif;

 enddo;

 /end-free

Figure 142. %CHECK Example

%CHECK (Check Characters)

Chapter 25. Built-In Functions 419

%CHECKR (Check Reverse)

%CHECKR(comparator : base {: start})

%CHECKR returns the last position of the string base that contains a character that

does not appear in string comparator. If all of the characters in base also appear in

comparator, the function returns 0.

The check begins at the starting position and continues to the left until a character

that is not contained in the comparator string is found. The starting position

defaults to the end of the string.

The first parameter must be of type character, graphic, or UCS-2, fixed or varying

length. The second parameter must be the same type as the first parameter. The

third parameter, if specified, must be a non-float numeric with zero decimal

positions.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 *---

 * If a string is padded at the end with some

 * character other than blanks, the characters

 * cannot be removed using %TRIM.

 * %CHECKR can be used for this by searching

 * for the last character in the string that

 * is not in the list of "pad characters".

 *---

D string1 s 50a varying

D inz(’My *dog* Spot.* @ * @ *’)

D string2 s 50a varying

D inz(’someone@somewhere.com’)

D padChars C ’ *@’

 /free

 %len(string1) = %checkr(padChars:string1);

 // %len(string1) is set to 14 (the position of the last character

 // that is not in "padChars").

 // string1 = ’My *dog* Spot.’

 %len(string2) = %checkr(padChars:string2);

 // %len(string2) is set to 21 (the position of the last character

 // that is not in "padChars").

 // string2 = ’someone@somewhere.com’ (the string is not changed)

 /end-free

Figure 143. %CHECKR Example

%CHECKR (Check Reverse)

420 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 *--

 * A string contains a numeric value, but it might

 * be surrounded by blanks and asterisks and might be

 * preceded by a currency symbol.

 *--

D string s 50a varying inz(’$****12.345*** ’)

 /free

 // Find the position of the first character that is not one of ’ $*’

 numStart = %CHECK (’ $*’ : string);

 // = 6

 // Find the position of the last character that is not one of ’ *’

 numEnd = %CHECKR (’ *’ : string);

 // = 11

 // Extract the numeric string

 string = %SUBST(string : numStart : numEnd - numStart + 1);

 // = ’12.345’

 /end-free

Figure 144. %CHECK and %CHECKR Example

%CHECKR (Check Reverse)

Chapter 25. Built-In Functions 421

%DATE (Convert to Date)

%DATE{(expression{:date-format})}

%DATE converts the value of the expression from character, numeric, or timestamp

data to type date. The converted value remains unchanged, but is returned as a

date.

The first parameter is the value to be converted. If you do not specify a value,

%DATE returns the current system date.

The second parameter is the date format for character or numeric input. Regardless

of the input format, the output is returned in *ISO format.

For information on the input formats that can be used, see “Date Data” on page

119. If the date format is not specified for character or numeric input, the default

value is either the format specified on the DATFMT control-specification keyword

or *ISO. For more information, see “DATFMT(fmt{separator})” on page 227.

If the first parameter is a timestamp, *DATE, or UDATE, do not specify the second

parameter. The system knows the format of the input in these cases.

For more information, see “Information Operations” on page 366 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 string = ’040596’;

 date = %date(string:*MDY0);

 // date now contains d’1996-04-05’

 /END-FREE

Figure 145. %DATE Example

%DATE (Convert to Date)

422 VisualAge RPG Language Reference

%DAYS (Number of Days)

%DAYS(number)

%DAYS converts a number into a duration that can be added to a date or

timestamp value.

%DAYS can only be the right-hand value in an addition or subtraction operation.

The left-hand value must be a date or timestamp. The result is a date or timestamp

value with the appropriate number of days added or subtracted. For a date, the

resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 173 on page 458.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%DAYS (Number of Days)

Chapter 25. Built-In Functions 423

%DEC (Convert to Packed Decimal Format)

%DEC(numeric or character expression{:precision:decimal places})

%DEC(date time or timestamp expression {:format})

%DEC converts the value of the first parameter to decimal (packed) format.

Numeric or character expression

When the first parameter is a numeric or character expression, the result has

precision digits and decimal places decimal positions. The precision and decimal

places must be numeric literals, named constants that represent numeric literals, or

built-in functions with a numeric value known at compile-time.

Note: %LEN and %DECPOS cannot be used directly for the second and third

parameters of %DEC or %DECH, even if the values of %LEN and

%DECPOS are constant. See Figure 170 on page 453 for an example using

the length and decimal positions of a variable to control %DEC and

%DECH.

Parameters precision and decimal places may be omitted if the type of expression is

neither float nor character. If these parameters are omitted, the precision and

decimal places are taken from the attributes of the numeric expression.

If the parameter is a character expression, the following rules apply:

v The sign is optional. It can be ’+’ or ’-’. It can precede or follow the numeric

data.

v The decimal point is optional. It can be either a period or a comma.

v Blanks are allowed anywhere in the data. For example, ’ + 3 ’ is a valid

parameter.

v The second and third parameters are required.

v Floating point data, for example ’1.2E6’, is not allowed.

v If invalid numeric data is found, an exception occurs with status code 105.

See %DECHfor examples using %DEC.

 Date, time or timestamp expression

When the first parameter is a date time or timestamp expression, the optional

format parameter specifies the format of the value returned. The converted decimal

value will have the number of digits that a value of that format can have, and zero

decimal positions. For example, if the first parameter is a date, and the format is

*YMD, the decimal value will have six digits.

If the format parameter is omitted, the format of the first parameter is used. See

“DATFMT(fmt{separator})” on page 227 and “TIMFMT(fmt{separator})” on page

235.

Format *USA is not allowed with a time expression. If the first parameter is a time

value with a time-format of *USA, the second format parameter for %DEC must be

specified.

 Figure 147 on page 426 shows an example of the %DEC built-in function.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

%DEC (Convert to Packed Decimal Format)

424 VisualAge RPG Language Reference

|

D yyddd S 5S 0

D yyyymmdd S 8P 0

D hhmmss S 6P 0

D numeric S 20S 0

D date S D inz(D’2003-06-27’) DATFMT(*USA)

D time S T inz(T’09.25.59’)

D timestamp S Z inz(Z’2003-06-27-09.25.59.123456’

 /free

 // Using the format of the first parameter

 numeric = %dec(date); // numeric = 06272003

 numeric = %dec(time); // numeric = 092559

 numeric = %dec(timestamp); // numeric = 20030627092559123456

 // Using the second parameter to specify the result format

 yyddd = %dec(date : *jul); // yyddd = 03178

 yyyymmdd = %dec(date : *iso); // yyyymmdd = 20030627

Figure 146. Using %DEC to convert dates, times and timestamps to numeric

%DEC (Convert to Packed Decimal Format)

Chapter 25. Built-In Functions 425

%DECH (Convert to Packed Decimal Format with Half Adjust)

%DECH(numeric or character expression :precision:decimal places)

%DECH is the same as %DEC except that if the expression is a decimal or float

value, half adjust is applied to the value of the expression when converting to the

desired precision. No message is issued if half adjust cannot be performed..

Unlike, %DEC, all three parameters are required.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

%DECH Examples

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D p7 s 7p 3 inz (1234.567)

D s9 s 9s 5 inz (73.73442)

D f8 s 8f inz (123.456789)

D c15a s 15a inz (’ 123.456789 -’)

D c15b s 15a inz (’ + 9 , 8 7 6 ’)

D result1 s 15p 5

D result2 s 15p 5

D result3 s 15p 5

 /FREE

// using numeric parameters

 result1 = %dec (p7) + 0.011; // "result1" is now 1234.57800

 result2 = %dec (s9 : 5: 0); // "result2" is now 73.00000

 result3 = %dech (f8: 5: 2); // "result3" is now 123.46000

// using character parameters

 result1 = %dec (c15a: 5: 2); // "result1" is now -123.45

 result2 = %dech(c15b: 5: 2); // "result2" is now 9.88000

 /END-FREE

Figure 147. Using Numeric and Character Parameters

*---

* If the character data is known to contain non-numeric characters

* such as thousands separators (like 1,234,567) or leading

* asterisks and currency symbols (like $***1,234,567.89), some

* preprocessing is necessary to remove these characters from the

* data.

*---

D data s 20a inz(’$1,234,567.89’)

D num s 21p 9

 /free

 // Use the %XLATE builtin function to replace any currency

 // symbol, asterisks or thousands separators with blanks

 num = %dech(%xlate(’$*,’ : ’ ’ : data)

 : 21 : 9);

 // If the currency symbol or thousands separator might

 // vary at runtime, use variables to hold these values.

 num = %dech(%xlate(cursym + ’*’ + thousandsSep : ’ ’ : data)

 : 21 : 9);

Figure 148. Handling Currency Symbols and Thousands Separators

%DECH (Convert to Packed Decimal Format with Half Adjust)

426 VisualAge RPG Language Reference

%DECPOS (Get Number of Decimal Positions)

%DECPOS(numeric expression)

%DECPOS returns the number of decimal positions of the numeric variable or

expression. The value returned is a constant, and so may participate in constant

folding.

The numeric expression must not be a float variable or expression.

 See Figure 170 on page 453 for an example of %DECPOS with %LEN.

For more information, see “Size Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D p7 s 7p 3 inz (8236.567)

D s9 s 9s 5 inz (23.73442)

D result1 s 5i 0

D result2 s 5i 0

D result3 s 5i 0

 /FREE

 result1 = %decpos (p7); // "result1" is now 3.

 result2 = %decpos (s9); // "result2" is now 5.

 result3 = %decpos (p7 * s9);// "result3" is now 8.

 /END-FREE

Figure 149. %DECPOS Example

%DECPOS (Get Number of Decimal Positions)

Chapter 25. Built-In Functions 427

%DIFF (Difference Between Two Date, Time, or Timestamp

Values)

%DIFF(op1:op2:*MSECONDS|*SECONDS|*MINUTES|*HOURS|*DAYS|*MONTHS|*YEARS)

%DIFF(op1:op2:*MS|*S|*MN|*H|*D|*M|*Y)

%DIFF produces the difference (duration) between two date or time values. The

first and second parameters must have the same, or compatible types. The

following combinations are possible:

v Date and date

v Time and time

v Timestamp and timestamp

v Date and timestamp (only the date portion of the timestamp is considered)

v Time and timestamp (only the time portion of the timestamp is considered).

The third parameter specifies the unit. The following units are valid:

v For two dates or a date and a timestamp: *DAYS, *MONTHS, and *YEARS

v For two times or a time and a timestamp: *SECONDS, *MINUTES, and *HOURS

v For two timestamps: *MSECONDS, *SECONDS, *MINUTES, *HOURS, *DAYS,

*MONTHS, and *YEARS

The result is rounded down, with any remainder discarded. For example, 61

minutes is equal to 1 hour, and 59 minutes is equal to 0 hours.

The value returned by the function is compatible with both type numeric and type

duration. You can add the result to a number (type numeric) or a date, time, or

timestamp (type duration).

If you ask for the difference in microseconds between two timestamps that are

more than 32 years 9 months apart, you will exceed the 15-digit limit for duration

values. This will result in an error or truncation.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%DIFF (Difference Between Two Date, Time, or Timestamp Values)

428 VisualAge RPG Language Reference

D due_date S D INZ(D’2005-06-01’)

D today S D INZ(D’2004-09-23’)

D num_days S 15P 0

D start_time S Z

D time_taken S 15P 0

 /FREE

 // Determine the number of days between two dates.

 // If due_date has the value 2005-06-01 and

 // today has the value 2004-09-23, then

 // num_days will have the value 251.

 num_days = %DIFF (due_date: today: *DAYS);

 // If the arguments are coded in the reverse order,

 // num_days will have the value -251.

 num_days = %DIFF (today: due_date: *DAYS);

 // Determine the number of seconds required to do a task:

 // 1. Get the starting timestamp

 // 2. Do the task

 // 3. Calculate the difference between the current

 // timestamp and the starting timestamp

 start_time = %timestamp();

 process();

 time_taken = %DIFF (%timestamp() : start_time : *SECONDS);

 /END-FREE

Figure 150. Using the result of %DIFF as a numeric value

%DIFF (Difference Between Two Date, Time, or Timestamp Values)

Chapter 25. Built-In Functions 429

D estimated_end...

D S D

D prev_start S D INZ(D’2003-06-21’)

D prev_end S D INZ(D’2003-06-24’)

 /FREE

 // Add the number of days between two dates

 // to a third date

 // prev_start is the date a previous task began

 // prev_end is the date a previous task ended.

 // The following calculation will estimate the

 // date a similar task will end, if it begins

 // today.

 // If the current date, returned by %date(), is

 // 2003-08-15, then estimated_end will be

 // 2003-08-18.

 estimated_end = %date() + %DIFF(prev_end : prev_start : *days);

 /END-FREE

Figure 151. Using the result of %DIFF as a duration

%DIFF (Difference Between Two Date, Time, or Timestamp Values)

430 VisualAge RPG Language Reference

%DIV (Return Integer Portion of Quotient)

%DIV(n:m)

%DIV returns the integer portion of the quotient that results from dividing

operands n by m. The two operands must be numeric values with zero decimal

positions. If either operand is a packed, zoned, or binary numeric value, the result

is packed numeric. If either operand is an integer numeric value, the result is

integer. Otherwise, the result is unsigned numeric. Float numeric operands are not

allowed. (See also “%REM (Return Integer Remainder)” on page 465.)

If the operands are constants that can fit in 8-byte integer or unsigned fields,

constant folding is applied to the built-in function. In this case, the %DIV built-in

function can be coded in the definition specifications.

For more information, see “Arithmetic Operations” on page 348 or Chapter 25,

“Built-In Functions,” on page 399.

This function is illustrated in Figure 179 on page 465.

%DIV (Return Integer Portion of Quotient)

Chapter 25. Built-In Functions 431

%EDITC (Edit Value Using an Editcode)

%EDITC(numeric : editcode {: *ASTFILL | *CURSYM | currency-symbol})

This function returns a character result representing the numeric value edited

according to the edit code. In general, the rules for the numeric value and edit

code are identical to those for editing numeric values in output specifications. The

third parameter is optional, and if specified, must be one of:

*ASTFILL

Indicates that asterisk protection is to be used. This means that leading

zeroes are replaced with asterisks in the returned value. For example,

%EDITC(-0012.5 : ’K’ : *ASTFILL) returns ’**12.5–’.

*CURSYM

Indicates that a floating currency symbol is to be used. The actual symbol

will be the one specified on the control specification in the CURSYM

keyword, the the default ’$’. When *CURSYM is specified, the currency

symbol is placed in the result just before the first significant digit. For

example, %EDITC(0012.5 : ’K’ : *CURSYM) returns ’ $12.5 ’.

currency–symbol

Indicates that floating currency is to be used with the provided currency

symbol. It must be a 1–byte character constant (literal, named constant, or

expression that can be evaluated at compile time).For example,

%EDITC(0012.5 : ’K’ : ’X’) returns ’ X12.5 ’.

The result of %EDITC is always the same length, and may contain leading and

trailing blanks. For example, %EDITC(NUM : ’A’ : ’$’) might return ’$1,234.56CR’

for one value of NUM and ’ $4.56 ’ for another value.

Float expressions are not allowed in the first parameter (you can use %DEC to

convert a float to an editable format). The edit code is specified as a character

constant; supported edit codes are: ’A’ – ’D’, ’J’ – ’Q’, ’X’ – ’Z’ , ’1’ – ’9’. The

constant can be a literal, named constant or an expression whose value can be

determined at compile time.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

%EDITC (Edit Value Using an Editcode)

432 VisualAge RPG Language Reference

A common requirement is to edit a field as follows:

v Leading zeros are suppressed

v Parentheses are placed around the value if it is negative

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D msg S 100A

D salary S 9P 2 INZ(1000)

 * If the value of salary is 1000, then the value of salary * 12

 * is 12000.00. The edited version of salary * 12 using the A edit

 * code with floating currency is ’ $12,000.00 ’.

 * The value of msg is ’The annual salary is $12,000.00’

CL0N01Factor1+++++++Opcode&ExtExtended-factor2+++++++++++++++++++++++++++

C EVAL msg = ’The annual salary is ’

C + %trim(%editc(salary * 12

C :’A’: *CURSYM))

 * In the next example, the value of msg is ’The annual salary is &12,000.00’

C EVAL msg = ’The annual salary is ’

C + %trim(%editc(salary * 12

C :’A’: ’&’))

 * In the next example, the value of msg is ’Salary is $*****12,000.00’

 * Note that the ’$’ comes from the text, not from the edit code.

C EVAL msg = ’Salary is $’

C + %trim(%editc(salary * 12

C :’B’: *ASTFILL))

 * In the next example, the value of msg is ’The date is 1/14/1999’

C EVAL msg = ’The date is ’

C + %trim(%editc(*date : ’Y’))

Figure 152. %EDITC Example 1

%EDITC (Edit Value Using an Editcode)

Chapter 25. Built-In Functions 433

The following accomplishes this using an %EDITC in a subprocedure:

 D neg S 5P 2 inz(-12.3)

 D pos S 5P 2 inz(54.32)

 D editparens PR 50A

 D val 30P 2 value

 D editedVal S 10A

 C EVAL editedVal = editparens(neg)

 C* Now editedVal has the value ’(12.30) ’

 C EVAL editedVal = editparens(pos)

 C* Now editedVal has the value ’ 54.32 ’

 *---

 * Subprocedure EDITPARENS

 *---

 P editparens B

 D editparens PI 50A

 D val 30P 2 value

 D lparen S 1A inz(’ ’)

 D rparen S 1A inz(’ ’)

 D res S 50A

 C* Use parentheses if the value is negative

 C IF val < 0

 C EVAL lparen = ’(’

 C EVAL rparen = ’)’

 C ENDIF

 C* Return the edited value

 C* Note that the ’1’ edit code does not include a sign so we

 C* don’t have to calculate the absolute value.

 C RETURN lparen +

 C %editc(val : ’1’) +

 C rparen

 P editparens E

Figure 153. %EDITC Example 2

%EDITC (Edit Value Using an Editcode)

434 VisualAge RPG Language Reference

%EDITFLT (Convert to Float External Representation)

%EDITFLT(numeric expression)

%EDITFLT converts the value of the numeric expression to the character external

display representation of float. The result is either 14 or 23 characters. If the

argument is a 4-byte float field, the result is 14 characters. Otherwise, it is 23

characters.

If specified as a parameter to a definition specification keyword, the parameter

must be a numeric literal, float literal, or numeric valued constant name or built-in

function. When specified in an expression, constant folding is applied if the

numeric expression has a constant value.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D f8 s 8f inz (50000)

D string s 40a varying

 /FREE

 string = ’Float value is ’ + %editflt (f8 - 4E4) + ’.’;

 // Value of "string" is ’Float value is +1.000000000000000E+004. ’

 /END-FREE

Figure 154. %EDITFLT Example

%EDITFLT (Convert to Float External Representation)

Chapter 25. Built-In Functions 435

%EDITW (Edit Value Using an Editword)

%EDITW(numeric : editword)

This function returns a character result representing the numeric value edited

according to the edit word. The rules for the numeric value and edit word are

identical to those for editing numeric values in output specifications.

Float expressions are not allowed in the first parameter. Use %DEC to convert a

float to an editable format.

The edit word must be a character constant.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D amount S 30A

D salary S 9P 2

D editwd C ’$, , **Dollars& &Cents’

 * If the value of salary is 2451.53, then the edited version of

 * (salary * 12) is ’$***29,418*Dollars 36 Cents’. The value of

 * amount is ’The annual salary is $***29,418*Dollars 36 Cents’.

 /FREE

 amount = ’The annual salary is ’

 + %editw(salary * 12 : editwd);

 /END-FREE

Figure 155. %EDITW Example

%EDITW (Edit Value Using an Editword)

436 VisualAge RPG Language Reference

%ELEM (Get Number of Elements)

%ELEM(table_name)

%ELEM(array_name)

%ELEM(multiple_occurrence_data_structure_name)

%ELEM returns the number of elements in the specified array, table, or

multiple-occurrence data structure. It may be specified anywhere a numeric

constant is allowed in the definition specification or in an expression in the

extended factor 2 field.

The parameter must be the name of an array, table, or multiple occurrence data

structure.

For more information, see “Array Operations” on page 351 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D arr1d S 20 DIM(10)

D table S 10 DIM(20) ctdata

D mds DS 20 occurs(30)

D num S 5p 0

 * like_array will be defined with a dimension of 10.

 * array_dims will be defined with a value of 10.

D like_array S like(arr1d) dim(%elem(arr1d))

D array_dims C const (%elem (arr1d))

 /FREE

 num = %elem (arr1d); // num is now 10

 num = %elem (table); // num is now 20

 num = %elem (mds); // num is now 30

 /END-FREE

Figure 156. %ELEM Example

%ELEM (Get Number of Elements)

Chapter 25. Built-In Functions 437

%EOF (Return End or Beginning of File Condition)

%EOF{(file_name)}

%EOF returns ’1’ if the most recent read operation or write to a subfile ended in an

end of file or beginning of file condition; otherwise, it returns ’0’.

The operations that set %EOF are:

v “READ (Read a Record)” on page 653

v “READC (Read Next Changed Record)” on page 656

v “READE (Read Equal Key)” on page 658

v “READP (Read Prior Record)” on page 661

v “READPE (Read Prior Equal)” on page 663

v “WRITE (Create New Records)” on page 717 (subfile only).

The following operations, if successful, set %EOF(filename) off. If the operation is

not successful, %EOF(filename) is not changed. %EOF with no parameter is not

changed by these operations.

v “CHAIN (Random Retrieval from a File)” on page 529

v “OPEN (Open File for Processing)” on page 642

v “SETGT (Set Greater Than)” on page 679

v “SETLL (Set Lower Limit)” on page 681

When a full-procedural file is specified, this function returns ’1’ if the previous

operation in the list above, for the specified file, resulted in an end of file or

beginning of file condition. For primary and secondary files, %EOF is available

only if the file name is specified. It is set to ’1’ if the most recent input operation

during *GETIN processing resulted in an end of file or beginning of file condition.

Otherwise, it returns ’0’.

This function is allowed for input, update, and record-address files; and for display

files allowing WRITE to subfile records.

For more information, see “File Operations” on page 363 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++

 * File INFILE has record format INREC

FINFILE IF E DISK remote

 /FREE

 READ INREC; // read a record

 IF %EOF;

 // handle end of file

 ENDIF;

 /END-FREE

Figure 157. %EOF without a Filename Parameter

%EOF (Return End or Beginning of File Condition)

438 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * This program is comparing two files

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++

FFILE1 IF E DISK remote

FFILE2 IF E DISK remote

 * Loop until either FILE1 or FILE2 has reached end-of-file

 /FREE

 DOU %EOF(FILE1) OR %EOF(FILE2);

 // Read a record from each file and compare the records

 READ REC1;

 READ REC2;

 IF %EOF(FILE1) AND %EOF(FILE2);

 // Both files have reached end-of-file

 EXSR EndCompare;

 ELSEIF %EOF(FILE1);

 // FILE1 is shorter than FILE2

 EXSR F1Short;

 ELSEIF %EOF(FILE2);

 // FILE2 is shorter than FILE1

 EXSR F2Short;

 ELSE;

 // Both files still have records to be compared

 EXSR CompareRecs;

 ENDIF;

 ENDDO;

 // ...

 /END-FREE

Figure 158. %EOF with a Filename Parameter

%EOF (Return End or Beginning of File Condition)

Chapter 25. Built-In Functions 439

%EQUAL (Return Exact Match Condition)

%EQUAL{(file_name)}

%EQUAL returns ’1’ if the most recent relevant operation found an exact match;

otherwise, it returns ’0’.

The operations that set %EQUAL are:

v “SETLL (Set Lower Limit)” on page 681

v “LOOKUP (Look Up a Table or Array Element)” on page 599

If %EQUAL is used without the optional file_name parameter, then it returns the

value set for the most recent relevant operation.

For the SETLL operation, this function returns ’1’ if a record is present whose key

or relative record number is equal to the search argument.

For the LOOKUP operation with the EQ indicator specified, this function returns

’1’ if an element is found that exactly matches the search argument.

If a file name is specified, this function applies to the most recent SETLL operation

for the specified file. This function is allowed only for files that allow the SETLL

operation code.

For more information, see “File Operations” on page 363, “Result Operations” on

page 375, or Chapter 25, “Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++

 * File CUSTS has record format CUSTREC

FCUSTSIF E K DISK remote

 /FREE

 // Check if the file contains a record with a key matching Cust

 setll Cust CustRec;

 if %equal;

 // an exact match was found in the file

 endif;

 /END-FREE

Figure 159. %EQUAL with SETLL Example

%EQUAL (Return Exact Match Condition)

440 VisualAge RPG Language Reference

%ERROR (Return Error Condition)

%ERROR returns ’1’ if the most recent operation with extender ’E’ specified

resulted in an error condition. This is the same as the error indicator being set on

for the operation. Before an operation with extender ’E’ specified begins, %ERROR

is set to return ’0’ and remains unchanged following the operation if no error

occurs. All operations that allow an error indicator can also set the %ERROR

built-in function.

For examples of the %ERROR built-in function, see Figure 185 on page 476 and

Figure 186 on page 477.

For more information, see “Result Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

 D TabNames S 10A DIM(5) CTDATA ASCEND

 D SearchName S 10A

 * Position the table at or near SearchName

 * Here are the results of this program for different values

 * of SearchName:

 * SearchName | DSPLY

 * -------------+-------------------------------

 * ’Catherine ’ | ’Next greater Martha’

 * ’Andrea ’ | ’Exact Andrea’

 * ’Thomas ’ | ’Not found Thomas’

 C..N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 C SearchName LOOKUP TabNames 10 10

 C SELECT

 C WHEN %EQUAL

 * An exact match was found

 C WHEN %FOUND

 * A name was found greater than SearchName

 C OTHER

 * Not found. SearchName is greater than all the names in the table

 C ENDSL

 C RETURN

**CTDATA TabNames

Alexander

Andrea

Bohdan

Martha

Samuel

Figure 160. %EQUAL and %FOUND with LOOKUP Example

%ERROR (Return Error Condition)

Chapter 25. Built-In Functions 441

%FIELDS (Fields to update)

%FIELDS(name{:name...})

A list of fields can be specified as the final argument to Input/Output operation

UPDATE coded in a free-form group. Only the fields specified are updated into the

Input/Output buffer.

Notes:

1. Each name must be the name of a field in the input buffer for the record. If the

field is renamed, the internal name is used.

%FIELDS specifies a list of fields to update. For example:

 /free

 chain empno record;

 salary = salary + 2000;

 status = STATEXEMPT;

 update record %fields(salary:status);

 /end-free

Figure 161. Updating Fields

%Fields (Fields to update)

442 VisualAge RPG Language Reference

%FLOAT (Convert to Floating Format)

%FLOAT(numeric or character expression)

%FLOAT converts the value of the expression to float format. This built-in function

may only be used in expressions.

If the parameter is a character expression, the following rules apply:

v The sign is optional. It can be ’+’ or ’-’. It must precede the numeric data.

v The decimal point is optional. It can be either a period or a comma.

v The exponent is optional. It can be either ’E’ or ’e’. The sign for the exponent is

optional. It must precede the numeric part of the exponent.

v Blanks are allowed anywhere in the data. For example, ’ + 3 , 5 E 9’ is a valid

parameter.

v If invalid numeric data is found, an exception occurs with status code 105.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D p1 s 15p 0 inz (1)

D p2 s 25p13 inz (3)

D c15a s 15a inz(’-5.2e-1’)

D c15b s 15a inz(’ + 5 . 2 ’)

D result1 s 15p 5

D result2 s 15p 5

D result3 s 15p 5

D result4 s 8f

 /FREE

 // using numeric parameters

 result1 = p1 / p2; // "result1" is now 0.33000.

 result2 = %float (p1) / p2; // "result2" is now 0.33333.

 result3 = %float (p1 / p2); // "result3" is now 0.33333.

 result4 = %float (12345); // "result4" is now 1.2345E4

 // using character parameters

 result1 = %float (c15a); // "result1" is now -0.52000.

 result2 = %float (c15b); // "result2" is now 5.20000.

 result4 = %float (c15b); // "result4" is now 5.2E0

 /END-FREE

Figure 162. %FLOAT Example

%FLOAT (Convert to Floating Format)

Chapter 25. Built-In Functions 443

%FOUND (Return Found Condition)

%FOUND{(file_name)}

%FOUND returns ’1’ if the most recent relevant file operation found a record, a

string operation found a match, or a search operation found an element.

Otherwise, this function returns ’0’.

If %FOUND is used without the optional file_name parameter, then it returns the

value set for the most recent relevant operation. When a file_name is specified,

then it applies to the most recent relevant operation on that file.

For file operations, %FOUND is opposite in function to the ″no record found NR″

indicator.

For string operations, %FOUND is the same in function as the ″found FD″

indicator.

For the LOOKUP operation, %FOUND returns ’1’ if the operation found an

element satisfying the search conditions.

For more information, see “File Operations” on page 363, “Result Operations” on

page 375, or Chapter 25, “Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++

 * File CUSTS has record format CUSTREC

FCUSTS IF E K DISK remote

 /FREE

 // Check if the customer is in the file

 chain Cust CustRec;

 if %found;

 exsr HandleCustomer;

 endif;

 /END-FREE

Figure 163. %FOUND used to Test a File Operation without a Parameter

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++

 * File MASTER has all the customers

 * File GOLD has only the "privileged" customers

FMASTER IF E K DISK remote

FGOLD IF E K DISK remote

 /FREE

 // Check if the customer exists, but is not a privileged customer

 chain Cust MastRec;

 chain Cust GoldRec;

 // Note that the file name is used for %FOUND, not the record name

 if %found (Master) and not %found (Gold);

 //

 endif;

 /END-FREE

Figure 164. %FOUND used to Test a File Operation with a Parameter

%FOUND (Return Found Condition)

444 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D Numbers C ’0123456789’

D Position S 5I 0

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 * If the actual position of the name is not required, just use

 * %FOUND to test the results of the SCAN operation.

 * If Name has the value ’Barbara’ and Line has the value

 * ’in the city of Toronto. ’, then %FOUND will return ’0’.

 * If Line has the value ’the city of Toronto where Barbara lives, ’

 * then %FOUND will return ’1’.

C Name SCAN Line

C IF %FOUND

C EXSR PutLine

C ENDIF

 * If Value contains the value ’12345.67’, Position would be set

 * to 6 and %FOUND would return the value ’1’.

 * If Value contains the value ’10203040’, Position would be set

 * to 0 and %FOUND would return the value ’0’.

C Numbers CHECK Value Position

C IF %FOUND

C EXSR HandleNonNum

C ENDIF

Figure 165. %FOUND used to Test a String Operation

%FOUND (Return Found Condition)

Chapter 25. Built-In Functions 445

%GETATR (Retrieve Attribute)

%GETATR(window_name:part_name:attribute_name)

%GETATR returns the attribute value of a part on a window. Both the first and

second parameters can be %WINDOW or %PART.

For an alternative form of accessing part attributes, see “Qualified GUI Part

Attribute Access” on page 379.

Notes:

1. The %GETATR built-in function does not affect the corresponding program

fields for parts. If you want the corresponding program field for the part to

contain the current value of an entry field, make it the target of the %GETATR

built-in, for example:

2. The %GETATR built-in function does not support 1-byte and 8-byte signed and

unsigned integer values, and unicode values.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments++++++

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++Comments++++++

C EVAL ENT0000B = %GETATR(’INVENTORY’:’ENT0000B’:’TEXT’)

Figure 166. %GETATR Example

%GETATR (Retrieve Attribute)

446 VisualAge RPG Language Reference

%GRAPH (Convert to Graphic Value)

%GRAPH(char-expr | graph-expr | UCS-2-expr { : ccsid })

%GRAPH converts the value of the expression from character, graphic, or UCS-2

and returns a graphic value. The result is varying length if the parameter is

varying length.

The second parameter, ccsid, is optional and indicates the CCSID of the resulting

expression. The CCSID defaults to the graphic CCSID related to the workstation

CCSID. If CCSID(*GRAPH : *IGNORE) is specified on the control specification or

assumed for the module, the %GRAPH built-in is not allowed.

If the parameter is a constant, the conversion will be done at compile time. In this

case, the CCSID is the graphic CCSID related to the CCSID of the source file.

If the conversion results in substitution characters, a warning message is issued at

compile time. At run time, status 00050 is set and no error message is issued.

Note: Conversions between 2 unicode CCSIDs are not supported. For a list of

supported CCSID values see Appendix C, “Supported CCSID Values,” on

page 735

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

H*Keywords+++

H ccsid (*graph: 942)

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++

D char S 6A inz(’XXYYZZ’)

 * The %GRAPH built-in function is used to initialize a graphic field

D graph S 10G inz (%graph (’AABBCCDDEE’))

D ufield S 2C inz (%ucs2 (’FFGG’))

D graph2 S 2G ccsid (951) inz (*hival)

D isEqual S 1N

D proc PR

D gparm 2G ccsid (951) value

 /FREE

 graph = %graph (char) + %graph (ufield);

 // graph now has the value XXYYZZFFGG.

 isEqual = graph = %graph (graph2 : 942);

 // The result of the %GRAPH built-in function is the value of

 // graph2, converted from CCSID 951 to CCSID 942.

 graph2 = graph;

 // The value of graph is converted from CCSID 942 to CCSID 951

 // and stored in graph2.

 // This conversion is performed implicitly by the compiler.

 proc (graph);

 // The value of graph is converted from CCSID 942 to CCSID 951

 // implicitly, as part of passing the parameter by value.

 /END-FREE

Figure 167. %GRAPH Examples

%GRAPH (Convert to Graphic Value)

Chapter 25. Built-In Functions 447

%HOURS (Number of Hours)

%HOURS(number)

%HOURS converts a number into a duration that can be added to a time or

timestamp value.

%HOURS can only be the right-hand value in an addition or subtraction operation.

The left-hand value must be a time or timestamp. The result is a time or

timestamp value with the appropriate number of hours added or subtracted. For a

time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 173 on page 458.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%HOURS (Number of Hours)

448 VisualAge RPG Language Reference

%INT (Convert to Integer Format)

%INT(numeric or character expression)

%INT converts the value of the expression to integer. Any decimal digits are

truncated. This built-in function may only be used in expressions. %INT can be

used to truncate the decimal positions from a float or decimal value allowing it to

be used as an array index.

If the parameter is a character expression, the following rules apply:

v The sign is optional. It can be ’+’ or ’-’. It can precede or follow the numeric

data.

v The decimal point is optional. It can be either a period or a comma.

v Blanks are allowed anywhere in the data. For example, ’ + 3 ’ is a valid

parameter.

v Floating point data is not allowed. That is, where the numeric value is followed

by E and an exponent, for example ’1.2E6’.

v If invalid numeric data is found, an exception occurs with status code 105

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

Figure 168 on page 450 shows an example of the %INT built-in function.

%INTH (Convert to Integer Format with Half Adjust)

%INTH(numeric or character expression)

%INTH is the same as %INT except that if the expression is a decimal, float or

character value, half adjust is applied to the value of the expression when

converting to integer type. No message is issued if half adjust cannot be

performed.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

%INT (Convert to Integer Format)

Chapter 25. Built-In Functions 449

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D p7 s 7p 3 inz (1234.567)

D s9 s 9s 5 inz (73.73442)

D f8 s 8f inz (123.789)

D c15a s 15a inz (’ 12345.6789 -’)

D c15b s 15a inz (’ + 9 8 7 . 6 5 4 ’)

D result1 s 15p 5

D result2 s 15p 5

D result3 s 15p 5

D array s 1a dim (200)

D a s 1a

 /FREE

 // using numeric parameters

 result1 = %int (p7) + 0.011; // "result1" is now 1234.01100.

 result2 = %int (s9); // "result2" is now 73.00000

 result3 = %inth (f8); // "result3" is now 124.00000.

 // using character parameters

 result1 = %int (c15a); // "result1" is now -12345.00000

 result2 = %inth (c15b); // "result2" is now 988.00000

 // %INT and %INTH can be used as array indexes

 a = array (%inth (f8));

 /END-FREE

Figure 168. %INT and %INTH Example

%INTH (Convert to Integer Format with Half Adjust)

450 VisualAge RPG Language Reference

%KDS (Search Arguments in Data Structure)

%KDS(data-structure-name{:num-keys})

%KDS is allowed as the search argument for any keyed Input/Output operation

(CHAIN, DELETE, READE, READPE, SETGT, SETLL) coded in a free-form group.

The search argument is specified by the subfields of the data structure name coded

as the first argument of the built-in function. The key data structure may be (but is

not limited to), an externally described data structure with keyword

EXTNAME(...:*KEY) or LIKEREC(...:*KEY)..

Notes:

1. The first argument must be the name of a data structure. This includes any

subfield defined with keyword LIKEDS or LIKEREC.

2. The second argument specifies how many of the subfields to use as the search

argument.

3. The individual key values in the compound key are taken from the top level

subfields of the data structure. Subfields defined with LIKEDS are considered

character data.

4. Subfields used to form the compound key must not be arrays.

5. The types of all subfields (up to the number specified by ″num-keys″) must

match the types of the actual keys. Where lengths and formats differ, the value

is converted to the proper length and format.

6. If the data structure is defined as an array data structure (using keyword DIM),

an index must be supplied for the data structure.

7. Opcode extenders H, M, or R specified on the keyed Input/Output operations

code affect the moving of the search argument to the corresponding position in

the key build area.

Example:

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

A R CUSTR

A NAME 100A

A ZIP 10A

A ADDR 100A

A K NAME

A K ZIP

FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++

Fcustfile if e k disk rename(CUSTR:custRec)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D custRecKeys ds likerec(custRec : *key)

 ...

 /free

 // custRecKeys is a qualified data structure

 custRecKeys.name = customer;

 custRecKeys.zip = zipcode;

 // the *KEY data structure is used as the search argument for CHAIN

 chain %kds(custRecKeys) custRec;

 /end-free

Figure 169. Example of Search on Keyed Input/Output Operations

%KDS (Search Arguments in Data Structure)

Chapter 25. Built-In Functions 451

%LEN (Get or Set Length)

%LEN(expression)

%LEN can be used to get the length of a variable expression or to set the current

length of a variable-length field.

The parameter must not be a figurative constant.

For more information, see “Size Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

%LEN Used for its Value

When used on the right-hand side of an expression, this function returns the

number of digits or characters of the variable expression.

For numeric expressions, the value returned represents the precision of the

expression and not necessarily the actual number of significant digits. For a float

variable or expression, the value returned is either 4 or 8. When the parameter is a

numeric literal, the length returned is the number of digits of the literal.

For character, graphic, or UCS-2 expressions the value returned is the number of

characters in the value of the expression. For variable-length values, such as the

value returned from a built-in function or a variable-length field, the value

returned by %LEN is the current length of the character, graphic, or UCS-2 value.

Note that if the parameter is a built-in function or expression that has a value

computable at compile-time, the length returned is the actual number of digits of

the constant value rather than the maximum possible value that could be returned

by the expression.

For all other data types, the value returned is the number of bytes of the value.

%LEN (Get or Set Length)

452 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D num1 S 7P 2

D NUM1_LEN C %len(num1)

D NUM1_DECPOS C %decpos(num1)

D num2 S 5S 1

D num3 S 5I 0 inz(2)

D chr1 S 10A inz(’Toronto ’)

D chr2 S 10A inz(’Munich ’)

D ptr S *

 * Numeric expressions:

 /FREE

 num1 = %len(num1); // 7

 num1 = %decpos(num2); // 1

 num1 = %len(num1*num2); // 12

 num1 = %decpos(num1*num2); // 3

 // Character expressions:

 num1 = %len(chr1); // 10

 num1 = %len(chr1+chr2); // 20

 num1 = %len(%trim(chr1)); // 7

 num1 = %len(%subst(chr1:1:num3) + ’ ’ + %trim(chr2));// 9

 // %len and %decpos can be useful with other built-in functions:

 // Although this division is performed in float, the result is

 // converted to the same precision as the result of the eval:

 // Note: %LEN and %DECPOS cannot be used directly with %DEC

 // and %DECH, but they can be used as named constants

 num1 = 27 + %dec (%float(num1)/num3 : NUM1_LEN : NUM1_DECPOS);

 // Allocate sufficient space to hold the result of the catenation

 // (plus an extra byte for a trailing null character):

 num3 = %len (chr1 + chr2) + 1;

 ptr = %alloc (num3);

 %str (ptr: num3) = chr1 + chr2;

 /END-FREE

Figure 170. %DECPOS and %LEN Example

%LEN (Get or Set Length)

Chapter 25. Built-In Functions 453

%LEN Used to Set the Length of Variable-Length Fields

When used on the left-hand side of an expression, this function sets the current

length of a variable-length field. If the set length is greater than the current length,

the characters in the field between the old length and the new length are set to

blanks.

Note: %LEN can only be used on the left-hand-side of an expression when the

parameter is variable length.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

 *

D city S 40A varying inz(’North York’)

D n1 S 5i 0

 * %LEN used to get the current length of a variable-length field:

 /FREE

 n1 = %len(city);

 // Current length, n1 = 10

 // %LEN used to set the current length of a variable-length field:

 %len (city) = 5;

 // city = ’North’ (length is 5)

 %len (city) = 15;

 // city = ’North ’ (length is 15)

 /END-FREE

Figure 171. %LEN with Variable-Length Field Example

%LEN (Get or Set Length)

454 VisualAge RPG Language Reference

%LOOKUPxx (Look Up an Array Element)

%LOOKUP(arg : array {: startindex {: numelems}})

%LOOKUPLT(arg : array {: startindex {: numelems}})

%LOOKUPGE(arg : array {: startindex {: numelems}})

%LOOKUPGT(arg : array {: startindex {: numelems}})

%LOOKUPLE(arg : array {: startindex {: numelems}})

The following functions return the array index of the item in array that matches arg

as follows:

%LOOKUP An exact match.

%LOOKUPLT The value that is closest to arg but less than arg.

%LOOKUPLE An exact match, or the value that is closest to arg but less than arg.

%LOOKUPGT

The value that is closest to arg but greater than arg.

%LOOKUPGE

An exact match, or the value that is closest to arg but greater than

arg.

If no value matches the specified condition, zero is returned.

The search starts at index startindex and continues for numelems elements. By

default, the entire array is searched.

The first two parameters can have any type but must have the same type. They do

not need to have the same length or number of decimal positions. The third and

fourth parameters must be non-float numeric values with zero decimal positions.

For %LOOKUPLT, %LOOKUPLE, %LOOKUPGT, and %LOOKUPGE, the array

must be defined with keyword ASCEND or DESCEND.

Built-in functions %FOUND and %EQUAL are not set following a %LOOKUP

operation.

The %LOOKUPxx builtin functions use a binary search for sequenced arrays

(arrays that have the ASCEND or DESCEND keyword specified).

Note: Unlike the LOOKUP operation code, %LOOKUP applies only to arrays. To

look up a value in a table, use the %TLOOKUP built-in function.

For more information, see “Array Operations” on page 351 or Chapter 25, “Built-In

Functions,” on page 399.

%LOOKUPxx (Look Up an Array Element)

Chapter 25. Built-In Functions 455

|
|

Sequenced arrays that are not in the correct sequence

When the data is not in the correct sequence for a sequenced array, the

%LOOKUPxx builtin functions and the LOOKUP operation code may find

different values. The %LOOKUPxx builtin functions may not find a data value

even if it is present in the array.

Since a binary search is used by the %LOOKUPxx builtin functions for a

sequenced array, and the correct function of a binary search depends on the data

being in order, the search may only look at a few elements of the array. When the

array is out of order, the result of a binary search is unpredictable.

Note: When the LOOKUP operation code is used to find an exact match in a

sequenced array, the search starts from the specified element and continues

one element at a time until either the value is found or the last element of

the array is reached.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 arr(1) = ’Cornwall’;

 arr(2) = ’Kingston’;

 arr(3) = ’London’;

 arr(4) = ’Paris’;

 arr(5) = ’Scarborough’;

 arr(6) = ’York’;

 n = %LOOKUP(’Paris’:arr);

 // n = 4

 n = %LOOKUP(’Thunder Bay’:arr);

 // n = 0 (not found)

 n = %LOOKUP(’Kingston’:arr:3);

 // n = 0 (not found after start index)

 n = %LOOKUPLE(’Paris’:arr);

 // n = 4

 n = %LOOKUPLE(’Milton’:arr);

 // n = 3

 n = %LOOKGT(’Sudbury’:arr);

 // n = 6

 n = %LOOKGT(’Yorks’:arr:2:4);

 // n = 0 (not found between elements 2 and 5)

 /END-FREE

Figure 172. %LOOKUPxx Example

%LOOKUPxx (Look Up an Array Element)

456 VisualAge RPG Language Reference

|
|
|
|
|

|
|
|
|

|
|
|
|

%MINUTES (Number of Minutes)

%MINUTES(number)

%MINUTES converts a number into a duration that can be added to a time or

timestamp value.

%MINUTES can only be the right-hand value in an addition or subtraction

operation. The left-hand value must be a time or timestamp. The result is a time or

timestamp value with the appropriate number of minutes added or subtracted. For

a time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 173 on page 458.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%MINUTES (Number of Minutes)

Chapter 25. Built-In Functions 457

%MONTHS (Number of Months)

%MONTHS(number)

%MONTHS converts a number into a duration that can be added to a date or

timestamp value.

%MONTHS can only be the right-hand value in an addition or subtraction

operation. The left-hand value must be a date or timestamp. The result is a date or

timestamp value with the appropriate number of months added or subtracted. For

a date, the resulting value is in *ISO format.

In most cases, the result of adding or subtracting a given number of months is

obvious. For example, 2000-03-15 + %MONTHS(1) is 2000-04-15. If the addition or

subtraction would produce a nonexistent date (for example, February 30), the last

day of the month is used instead.

Adding or subtracting a number of months to the 29th, 30th, or 31st day of a

month may not be reversible. For example, 2000-03-31 + %MONTHS(1) -

%MONTHS(1) is 2000-03-30.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 // Determine the date in 3 years

 newdate = date + %YEARS(3);

 // Determine the date in 6 months prior

 loandate = duedate - %MONTHS(6);

 // Construct a timestamp from a date and time

 duestamp = duedate + t’12.00.00’;

 /END-FREE

Figure 173. %MONTHS and %YEARS Example

%MONTHS (Number of Months)

458 VisualAge RPG Language Reference

%MSECONDS (Number of Microseconds)

%MSECONDS(number)

%MSECONDS converts a number into a duration that can be added to a time or

timestamp value.

%MSECONDS can only be the right-hand value in an addition or subtraction

operation. The left-hand value must be a time or timestamp. The result is a time or

timestamp value with the appropriate number of microseconds added or

subtracted. For a time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 173 on page 458.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%MSECONDS (Number of Microseconds)

Chapter 25. Built-In Functions 459

%NULLIND (Query or Set Null Indicator)

%NULLIND(fieldname)

The %NULLIND built-in function can be used to query or set the null indicator for

null-capable fields. This built-in function can only be used if the User control

compile option or ALWNULL(*USRCTL) keyword is specified. The fieldname can

be a null-capable array element, data structure, stand-alone field, subfield, or

multiple occurrence data structure.

%NULLIND can only be used in expressions in extended factor 2.

When used on the right-hand side of an expression, this function returns the

setting of the null indicator for the null-capable field. The setting can be *ON or

*OFF.

When used on the left-hand side of an expression, this function can be used to set

the null indicator for null-capable fields to *ON or *OFF. The content of a

null-capable field remains unchanged.

See “Database Null Value Support” on page 137 for more information on handling

records with null-capable fields and keys.

For more information, see “Indicator-Setting Operations” on page 366 or

Chapter 25, “Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * Test the null indicator for a null-capable field.

 /FREE

 if %nullind (fieldname1);

 // field is null

 endif;

 // Set the null indicator for a null-capable field.

 %nullind(fieldname1) = *ON;

 %nullind (fieldname2) = *OFF;

 /END-FREE

Figure 174. %NULLIND Example

%NULLIND (Query or Set Null Indicator)

460 VisualAge RPG Language Reference

%OCCUR (Set/Get Occurrence of a Data Structure)

%OCCUR(dsn-name)

%OCCUR gets or sets the current position of a multiple-occurrence data structure.

When this function is evaluated for its value, it returns the current occurrence

number of the specified data structure. This is an unsigned numeric value.

When this function is specified on the left-hand side of an EVAL statement, the

specified number becomes the current occurrence number. This must be a non-float

numeric value with zero decimal places. Exception 00122 is issued if the value is

less than 1 or greater than the total number of occurrences.

For more information about multiple-occurrence data structures and the OCCUR

operation code, see “OCCUR (Set/Get Occurrence of a Data Structure)” on page

637.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D mds DS OCCURS(10)

 /FREE

 n = %OCCUR(mds);

 // n = 1

 %OCCUR(mds) = 7;

 n = %OCCUR(mds);

 // n = 7

 /END-FREE

Figure 175. %OCCUR Example

%OCCUR (Set/Get Occurrence of a Data Structure)

Chapter 25. Built-In Functions 461

%OPEN (Return File Open Condition)

%OPEN(file_name)

%OPEN returns ’1’ if the specified file is open. A file is considered ″open″ if it has

been opened by the RPG program during initialization or by an OPEN operation,

and has not subsequently been closed. If the file is conditioned by an external

indicator and the external indicator was off at program initialization, the file is

considered closed, and %OPEN returns ’0’.

For more information, see “File Operations” on page 363 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++

 * The printer file is opened in the calculation specifications

FQSYSPRT O F 132 PRINTER USROPN

 /FREE

 // Open the file if it is not already open

 if not %open (QSYSPRT);

 open QSYSPRT;

 endif;

 /END-FREE

Figure 176. %OPEN Example

%OPEN (Return File Open Condition)

462 VisualAge RPG Language Reference

%PADDR (Get Procedure Address)

%PADDR(string)

%PADDR returns a value of type procedure pointer. The value is the address of the

entry point identified by the argument.

%PADDR may be compared with and assigned to only items of type procedure

pointer.

The parameter to %PADDR must be a character or hexadecimal literal or a

constant name that represents a character or hexadecimal literal. The entry point

name specified by the character string must be found at program bind time and

must be in the correct case.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D

D PROC S * PROCPTR

D INZ (%PADDR (’FIRSTPROG’))

D PROC1 S * PROCPTR

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C*

C* The following statement calls procedure ’FIRSTPROG’.

C*

C CALLB PROC

 *---

C* The following statements call procedure ’NextProg’.

C* This a C procedure and is in mixed case. Note that

C* the procedure name is case sensitive.

C*

C EVAL PROC1 = %PADDR (’NextProg’)

C CALLB PROC1

Figure 177. %PADDR Example

%PADDR (Get Procedure Address)

Chapter 25. Built-In Functions 463

%REALLOC (Reallocate Storage)

%REALLOC(ptr:num)

%REALLOC changes the heap storage pointed to by the first parameter to be the

length specified in the second parameter. The newly allocated storage is

uninitialized.

The first parameter must be a basing pointer value. The second parameter must be

a non-float numeric value with zero decimal places. The length specified must be

between 1 and 16776704.

The function returns a pointer to the allocated storage. This may be the same as ptr

or different.

For more information, see “Memory Management Operations” on page 367.

If the operation cannot complete successfully, exception 00425 or 00426 is issued.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 // Allocate an area of 200 bytes

 pointer = %ALLOC(200);

 // Change the size of the area to 500 bytes

 pointer = %REALLOC(pointer:500);

 /END-FREE

Figure 178. %REALLOC Example

%REALLOC (Reallocate Storage)

464 VisualAge RPG Language Reference

%REM (Return Integer Remainder)

%REM(n:m)

%REM returns the remainder that results from dividing operands n by m. The two

operands must be numeric values with zero decimal positions. If either operand is

a packed, zoned, or binary numeric value, the result is packed numeric. If either

operand is an integer numeric value, the result is integer. Otherwise, the result is

unsigned numeric. Float numeric operands are not allowed. The result has the

same sign as the dividend. (See also “%DIV (Return Integer Portion of Quotient)”

on page 431.)

%REM and %DIV have the following relationship:

%REM(A:B) = A - (%DIV(A:B) * B)

If the operands are constants that can fit in 8-byte integer or unsigned fields,

constant folding is applied to the built-in function. In this case, the %REM built-in

function can be coded in the definition specifications.

For more information, see “Arithmetic Operations” on page 348 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D A S 10I 0 INZ(123)

D B S 10I 0 INZ(27)

D DIV S 10I 0

D REM S 10I 0

D E S 10I 0

 /FREE

 DIV = %DIV(A:B); // DIV is now 4

 REM = %REM(A:B); // REM is now 15

 E = DIV*B + REM; // E is now 123

 /END-FREE

Figure 179. %DIV and %REM Example

%REM (Return Integer Remainder)

Chapter 25. Built-In Functions 465

%REPLACE (Replace Character String)

%REPLACE(replacement string: source string{:start position :source

length to replace})

%REPLACE returns the character string produced by inserting a replacement string

into the source string, starting at the start position and replacing the specified

number of characters.

The first and second parameter must be of type character, graphic, or UCS-2 and

can be in either fixed- or variable-length format. The second parameter must be the

same type as the first.

The third parameter represents the starting position, measured in characters, for

the replacement string. If it is not specified, the starting position is at the beginning

of the source string. The value may range from one to the current length of the

source string plus one.

The fourth parameter represents the number of characters in the source string to be

replaced. If zero is specified, then the replacement string is inserted before the

specified starting position. If the parameter is not specified, the number of

characters replaced is the same as the length of the replacement string. The value

must be greater than or equal to zero, and less than or equal to the current length

of the source string.

The starting position and length may be any numeric value or numeric expression

with no decimal positions.

The returned value is varying length if the source string or replacement string are

varying length, or if the start position or source length to replace are variables.

Otherwise, the result is fixed length.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

%REPLACE (Replace Character String)

466 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D var1 S 30A INZ(’Windsor’) VARYING

D var2 S 30A INZ(’Ontario’) VARYING

D var3 S 30A INZ(’Canada’) VARYING

D fixed1 S 15A INZ(’California’)

D date S D INZ(D’1997-02-03’)

D result S 100A VARYING

 /FREE

 result = var1 + ’, ’ + ’ON’;

 // result = ’Windsor, ON’

 // %REPLACE with 2 parameters to replace text at begining of string:

 result = %replace (’Toronto’: result);

 // result = ’Toronto, ON’

 // %REPLACE with 3 parameters to replace text at specified position:

 result = %replace (var3: result: %scan(’,’: result) + 2);

 // result = ’Toronto, Canada’

 // %REPLACE with 4 parameters to insert text:

 result = %replace (’, ’ + var2: result: %scan (’,’: result): 0);

 // result = ’Toronto, Ontario, Canada’

 // %REPLACE with 4 parameters to replace strings with different length

 result = %replace (’Scarborough’: result:

 1: %scan (’,’: result) - 1);

 // result = ’Scarborough, Ontario, Canada’

 // %REPLACE with 4 parameters to delete text:

 result = %replace (’’: result: 1: %scan (’,’: result) + 1);

 // result = ’Ontario, Canada’

 // %REPLACE with 4 parameters to add text to the end of the string:

 result = %replace (’, ’ + %char(date): result:

 %len (result) + 1: 0);

 // result = ’Ontario, Canada, 1997-02-03’

 // %REPLACE with 3 parameters to replace fixed-length text at

 // specified position: (fixed1 has fixed-length of 15 chars)

 result = %replace (fixed1: result: %scan (’,’: result) + 2);

 // result = ’Ontario, California -03’

 // %REPLACE with 4 parameters to prefix text at beginning:

 result = %replace (’Somewhere else: ’: result: 1: 0);

 // result = ’Somewhere else: Ontario, California -03’

 /END-FREE

Figure 180. %REPLACE Example

%REPLACE (Replace Character String)

Chapter 25. Built-In Functions 467

%SCAN (Scan for Characters)

%SCAN(search argument : source string {: start})

%SCAN returns the first position of the search argument in the source string, or 0

if it was not found. If the start position is specified, the search begins at the

starting position. The result is always the position in the source string even if the

starting position is specified. The starting position defaults to 1.

The first parameter must be of type character, graphic, or UCS-2. The second

parameter must be the same type as the first parameter. The third parameter, if

specified, must be numeric with zero decimal positions.

When any parameter is variable in length, the values of the other parameters are

checked against the current length, not the maximum length.

The type of the return value is unsigned integer. This built-in function can be used

anywhere that an unsigned integer expression is valid.

If the search argument contains trailing blanks, the scan will include those trailing

blanks. For example if ’b’ represents a blank, %SCAN(’12b’:’12312b’) would return

4. If trailing blanks should not be considered in the scan, use %TRIMR on the

search argument. For example %SCAN(%TRIMR(’12b’):’12312b’) would return 1.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

Note: Unlike the SCAN operation code, %SCAN cannot return an array containing

all occurrences of the search string and its results cannot be tested using the

%FOUND built-in function.

%SCAN (Scan for Characters)

468 VisualAge RPG Language Reference

|
|
|
|

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D source S 15A inz (’Dr. Doolittle’)

D pos S 5U 0

D posTrim S 5U 0

D posVar S 5U 0

D srchFld S 10A

D srchFldVar S 10A varying

 /FREE

 pos = %scan (’oo’ : source);

 // After the EVAL, pos = 6 because ’oo’ begins at position 6 in

 // ’Dr. Doolittle’.

 pos = %scan (’D’ : source : 2);

 // After the EVAL, pos = 5 because the first ’D’ found starting from

 // position 2 is in position 5.

 pos = %scan (’abc’ : source);

 // After the EVAL, pos = 0 because ’abc’ is not found in

 // ’Dr. Doolittle’.

 pos = %scan (’Dr.’ : source : 2);

 // After the EVAL, pos = 0 because ’Dr.’ is not found in

 // ’Dr. Doolittle’, if the search starts at position 2.

 srchFld = ’Dr.’;

 srchFldVar = ’Dr.’;

 pos = %scan (srchFld : source);

 posTrim = %scan (%trimr(srchFld) : source);

 posVar = %scan (srchFldVar : source);

 // After the EVAL, pos = 0 because srchFld is a 10-byte field, so

 // the search argument is ’Dr.’ followed by seven blanks. However,

 // posTrim and posVar are both 1, since the %TRIMR and srchFldVar

 // scans both use a 3-byte search argument ’Dr.’, no trailing blanks.

 /END-FREE

Figure 181. %SCAN Example

%SCAN (Scan for Characters)

Chapter 25. Built-In Functions 469

%SECONDS (Number of Seconds)

%SECONDS(number)

%SECONDS converts a number into a duration that can be added to a time or

timestamp value.

%SECONDS can only be the right-hand value in an addition or subtraction

operation. The left-hand value must be a time or timestamp. The result is a time or

timestamp value with the appropriate number of seconds added or subtracted. For

a time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 173 on page 458.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%SECONDS (Number of Seconds)

470 VisualAge RPG Language Reference

%SETATR (Set Attribute)

%SETATR(window_name:part_name:attribute_name)

%SETATR sets the attribute value of a part on a window. Both the first and second

parameters can be %WINDOW or %PART.

For an alternative form of accessing part attributes, see “Qualified GUI Part

Attribute Access” on page 379.

Notes:

1. The %SETATR built-in function does not affect the corresponding program

fields for parts. To ensure that the attribute value and the value in the program

field are the same, use the program field when setting the attribute value. This

applies to attributes that have program fields mapped to them, such as entry

fields with the TEXT attribute.

2. The %SETATR built-in function does not support 1-byte and 8-byte signed and

unsigned integer values, and unicode values.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 ENT0000B = *BLANKS;

 %setatr(’inventory’:’ent0000b’:’text’) = ENT0000B;

 /END-FREE

Figure 182. %SETATR Example

%SETATR (Set Attribute)

Chapter 25. Built-In Functions 471

%SIZE (Size of Constant or Field)

%SIZE(variable)

%SIZE(literal)

%SIZE(array{:*ALL})

%SIZE(table{:*ALL})

%SIZE(multiple occurrence data structure{:*ALL})

%SIZE returns the number of bytes occupied by the constant or field. The

argument may be a literal, a named constant, a data structure, a data structure

subfield, a field, an array or a table name. It cannot contain an expression, but

some constant-valued built-in functions and constant expressions may be accepted.

The value returned is in unsigned integer format (type U).

For a graphic literal, the size is the number of bytes occupied by the graphic

characters. For a hexadecimal or UCS-2 literal, the size returned is half the number

of hexadecimal digits in the literal.

For variable-length fields, %SIZE returns the total number of bytes occupied by the

field (two bytes longer than the declared maximum length).

If the argument is an array name, table name, or multiple occurrence data structure

name, the value returned is the size of one element or occurrence. If *ALL is

specified as the second parameter for %SIZE, the value returned is the storage

taken up by all elements or occurrences. For a multiple occurrence data structure

containing pointer subfields, the size may be greater than the size of one

occurrence times the number of occurrences. This is possible because the system

requires that pointers be placed in storage at addresses evenly divisible by 16. This

means that the length of each occurrence may have to be increased enough to

make the length an exact multiple of 16 so that the pointer subfields will be

positioned correctly in storage for every occurrence.

%SIZE may be specified anywhere that a numeric constant is allowed on the

definition specification and in an expression in the extended-factor 2 field of the

calculation specification.

For more information, see “Size Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

%SIZE (Get Size in Bytes)

472 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D arr1 S 10 DIM(4)

D table1 S 5 DIM(20)

D field1 S 10

D field2 S 9B 0

D field3 S 5P 2

D num S 5P 0

D mds DS 20 occurs(10)

D mds_size C const (%size (mds: *all))

D mds_ptr DS 20 OCCURS(10)

D pointer *

D vCity S 40A VARYING INZ(’North York’)

D fCity S 40A INZ(’North York’)

 /FREE

 num = %SIZE(field1); // 10

 num = %SIZE(’HH’); // 2

 num = %SIZE(123.4); // 4

 num = %SIZE(-03.00); // 4

 num = %SIZE(arr1); // 10

 num = %SIZE(arr1:*ALL); // 40

 num = %SIZE(table1); // 5

 num = %SIZE(table1:*ALL); // 100

 num = %SIZE(mds); // 20

 num = %SIZE(mds:*ALL); // 200

 num = %SIZE(mds_ptr); // 20

 num = %SIZE(mds_ptr:*ALL); // 320

 num = %SIZE(field2); // 4

 num = %SIZE(field3); // 3

 n1 = %SIZE(vCity); // 42

 n2 = %SIZE(fCity); // 40

 /END-FREE

Figure 183. %SIZE Example

%SIZE (Get Size in Bytes)

Chapter 25. Built-In Functions 473

%SQRT (Square Root of Expression)

%SQRT(numeric expression)

%SQRT returns the square root of the specified numeric expression. If the operand

is of type float, the result is of type float; otherwise, the result is packed decimal

numeric. If the parameter has a value less than zero, exception 00101 is issued.

For more information, see “Arithmetic Operations” on page 348 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D n S 10I 0

D p S 9P 2

D f S 4F

 /FREE

 n = %SQRT(239874);

 // n = 489

 p = %SQRT(239874);

 // p = 489.76

 f = %SQRT(239874);

 // f = 489.7693

 /END-FREE

Figure 184. %SQRT Example

%SQRT (Square Root of Expression)

474 VisualAge RPG Language Reference

%STATUS (Return File or Program Status)

%STATUS{(file_name)}

%STATUS returns the most recent value set for the program or file status.

%STATUS is set whenever the program status or any file status changes, usually

when an error occurs.

If %STATUS is used without the optional file_name parameter, then it returns the

program or file status most recently changed. If a file is specified, the value

contained in the INFDS *STATUS field for the specified file is returned. The INFDS

does not have to be specified for the file.

%STATUS starts with a return value of 00000 and is reset to 00000 before any

operation with an ’E’ extender specified begins.

%STATUS is best checked immediately after an operation with the ’E’ extender or

an error indicator specified, or at the beginning of an INFSR or the *PSSR

subroutine.

For more information, see “File Operations” on page 363, “Result Operations” on

page 375, or Chapter 25, “Built-In Functions,” on page 399.

%STATUS (Return File or Program Status)

Chapter 25. Built-In Functions 475

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * The ’E’ extender indicates that if an error occurs, the error

 * is to be handled as though an error indicator were coded.

 * The success of the operation can then be checked using the

 * %ERROR built-in function. The status associated with the error

 * can be checked using the %STATUS built-in function.

 /FREE

 read(e) InFile;

 if %error;

 exsr CheckError;

 endif;

 //---

 // CheckError: Subroutine to process a file I/O error

 //---

 begsr CheckError;

 select;

 when %status < 01000;

 // No error occurred

 when %status = 01211;

 // Attempted to read a file that was not open

 exsr InternalError;

 when %status = 01331;

 // The wait time was exceeded for a READ operation

 exsr TimeOut;

 when %status = 01251;

 // Permanent I/O error

 exsr PermError;

 other;

 // Some other error occurred

 exsr FileError;

 endsl;

 endsr;

 /END-FREE

Figure 185. %STATUS and %ERROR with ’E’ Extender

%STATUS (Return File or Program Status)

476 VisualAge RPG Language Reference

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++

D Zero S 5P 0 INZ(0)

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 * %STATUS starts with a value of 0

 *

 * The following SCAN operation will cause a branch to the *PSSR

 * because the start position has a value of 0.

C ’A’ SCAN ’ABC’:Zero Pos

C BAD_SCAN TAG

 * The following EXFMT operation has an ’E’ extender, so %STATUS will

 * be set to 0 before the operation begins. Therefore, it is

 * valid to check %STATUS after the operation.

 * Since the ’E’ extender was coded, %ERROR can also be used to

 * check if an error occurred.

C READ(E) REC1

C IF %ERROR

C SELECT

C WHEN %STATUS = 01211

C ...

C WHEN %STATUS = 01299

C ...

 * The following scan operation has an error indicator. %STATUS will

 * not be set to 0 before the operation begins, but %STATUS can be

 * reasonably checked if the error indicator is on.

C ’A’ SCAN ’ABC’:Zero Pos 10

C IF *IN10 AND %STATUS = 00100

C ...

 * The following scan operation does not produce an error.

 * Since there is no ’E’ extender %STATUS will not be set to 0,

 * so it would return a value of 00100 from the previous error.

 * Therefore, it is unwise to use %STATUS after an operation that

 * does not have an error indicator or the ’E’ extender coded since

 * you cannot be sure that the value pertains to the previous

 * operation.

C ’A’ SCAN ’ABC’ Pos

C ...

C *PSSR BEGSR

 * %STATUS can be used in the *PSSR since an error must have occurred.

C IF %STATUS = 00100

C GOTO BAD_SCAN

C ...

Figure 186. %STATUS and %ERROR with ’E’ Extender, Error Indicator and *PSSR

%STATUS (Return File or Program Status)

Chapter 25. Built-In Functions 477

%STR (Get or Store Null-Terminated String)

%STR(basing pointer{: max-length})(right-hand-side)

%STR(basing pointer : max-length)(left-hand-side)

%STR is used to create or use null-terminated character` strings, which are very

commonly used in C and C++ applications.

The first parameter must be a basing-pointer value. (Any basing pointer expression

is valid, such as ″%ADDR(DATA)″ or ″P+1″.) The second parameter, if specified,

must be a numeric value with zero decimal positions. If not specified, it defaults to

65535.

The first parameter must point to storage that is at least as long as the length given

by the second parameter.

Error conditions:

1. If the length parameter is not between 1 and 65535, an error will occur with

status 00100.

2. If the pointer is not set, an error will occur with status code 00222.

3. If the storage addressed by the pointer is shorter than indicated by the length

parameter, either

a. An error will occur with status code 00222

b. Data corruption will occur

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

%STR Used to Get Null-Terminated String

When used on the right-hand side of an expression, this function returns the data

pointed to by the first parameter up to but not including the first null character

(x’00’) found within the length specified. This built-in function can be used

anywhere that a character expression is valid. No error will be given at run time if

the null terminator is not found within the length specified. In this case, the length

of the resulting value is the same as the length specified.

 The following is an example of %STR with the second parameter specified.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D String1 S *

D Fld1 S 10A

 /FREE

 Fld1 = ’<’ + %str(String1) + ’>’;

 // Assuming that String1 points to ’123¬’ where ’¬’ represents the

 // null character, after the EVAL, Fld1 = ’<123> ’.

 /END-FREE

Figure 187. %STR (right-hand-side) Example 1

%STR (Get or Store Null-Terminated String)

478 VisualAge RPG Language Reference

In this example, the null-terminator is found within the specified maximum length.

%STR Used to Store Null-Terminated String

When used on the left-hand side of an expression, %STR(ptr:length) assigns the

value of the right-hand side of the expression to the storage pointed at by the

pointer, adding a null-terminating byte at the end. The maximum length that can

be specified is 65535. This means that at most 65534 bytes of the right-hand side

can be used, since 1 byte must be reserved for the null-terminator at the end.

The length indicates the amount of storage that the pointer points to. This length

should be greater than the maximum length the right-hand side will have. The

pointer must be set to point to storage at least as long as the length parameter. If

the length of the right-hand side of the expression is longer than the specified

length, the right-hand side value is truncated.

Note: Data corruption will occur if both of the following are true:

1. The length parameter is greater than the actual length of data addressed

by the pointer.

2. The length of the right-hand side is greater than or equal to the actual

length of data addressed by the pointer.

If you are dynamically allocating storage for use by %STR, you must keep

track of the length that you have allocated.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D String1 S *

D Fld1 S 10A

 /FREE

 Fld1 = ’<’ + %str(String1 : 2) + ’>’;

 // Assuming that String1 points to ’123¬’ where ’¬’ represents the

 // null character, after the EVAL, Fld1 = ’<12> ’.

 // Since the maximum length read by the operation was 2, the ’3’ and

 // the ’¬’ were not considered.

 /END-FREE

Figure 188. %STR (right-hand-side) Example 2

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D String1 S *

D Fld1 S 10A

 /FREE

 Fld1 = ’<’ + %str(String1 : 5) + ’>’;

 // Assuming that String1 points to ’123¬’ where ’¬’ represents the

 // null character, after the EVAL, Fld1 = ’<123> ’.

 // Since the maximum length read by the operation was 5, the

 // null-terminator in position 4 was found so all the data up to

 // the null-terminator was used.

 /END-FREE

Figure 189. %STR (right-hand-side) Example 3

%STR Used to Get Null-Terminated String

Chapter 25. Built-In Functions 479

%SUBARR (Set/Get Portion of an Array)

%SUBARR(array:start-index{:number-of-elements})

Built-in function %SUBARR returns a section of the specified array starting at

start-index. The number of elements returned is specified by the optional

number-of-elements parameter. If not specified, the number-of-elements defaults to the

remainder of the array.

The first parameter of %SUBARR must be an array. That is, a standalone field, data

structure, or subfield defined as an array. The first parameter must not be a table

name or procedure call.

The start-index parameter must be a numeric value with zero decimal positions. A

float numeric value is not allowed. The value must be greater than or equal to 1

and less than or equal to the number of elements of the array.

The optional number-of-elements parameter must be a numeric value with zero

decimal positions. A float numeric value is not allowed. The value must be greater

than or equal to 1 and less than or equal to the number of elements remaining in

the array after applying the start-index value.

Generally, %SUBARR is valid in any expression where an unindexed array is

allowed. However, %SUBARR cannot be used in the following places:

v as the array argument of built-in function %LOOKUPxx

v as a parameter passed by reference

%SUBARR may be used in the following ways:

v On the left-hand side of an assignment using EVAL or EVALR. This changes the

specified elements in the specified array.

v Within the expression on the right-hand side of an assignment using EVAL or

EVALR where the target of the assignment is an array. This uses the values of

the specified elements of the array. The array elements are used directly; a

temporary copy of the sub-array is not made.

v In Extended Factor 2 of the SORTA operation.

v In Extended Factor 2 of the RETURN operation.

v Passed by VALUE or by read-only reference (CONST keyword) when the

corresponding parameter is defined as an array.

v As the parameter of the %XFOOT builtin function.

For more information, see “Array Operations” on page 351 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D String1 S *

D Fld1 S 10A

 /FREE

 %str(String1: 25)= ’abcdef’;

 // The storage pointed at by String1 now contains ’abcdef¬’

 // Bytes 8-25 following the null-terminator are unchanged.

 %str (String1: 4) = ’abcdef’;

 // The storage pointed at by String1 now contains ’abc¬’

 /END-FREE

Figure 190. %STR (left-hand-side) Examples

%SUBARR (Set/Get Portion of an Array)

480 VisualAge RPG Language Reference

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

D a s 10i 0 dim(5)

D b s 10i 0 dim(15)

D resultArr s 10i 0 dim(20)

D sum s 20i 0

 /free

 a(1)=9;

 a(2)=5;

 a(3)=16;

 a(4)=13;

 a(5)=3;

 // Copy part of an array to another array:

 resultArr = %subarr(a:4:n);

 // this is equivalent to:

 // resultArr(1) = a(4)

 // resultArr(2) = a(5)

 // ...

 // resultArr(n) = a(4 + n - 1)

 // Copy part of an array to part of another array:

 %subarr(b:3:n) = %subarr(a:m:n);

 // Specifying the array from the start element to the end of the array

 // B has 15 elements and A has 5 elements. Starting from element 2

 // in array A means that only 4 elements will be copied to array B.

 // The remaining elements in B will not be changed.

 b = %subarr(a : 2);

 // Sort a subset of an array:

 sorta %subarr(a:1:4);

 // Now, A=(5 9 13 16 3);

 // Since only 4 elements were sorted, the fifth element

 // is out of order.

 // Using %SUBARR in an implicit array indexing assignment

 resultArr = b + %subarr(a:2:3)

 // this is equivalent to:

 // resultArr(1) = b(1) + a(2)

 // resultArr(2) = b(2) + a(3)

 // resultArr(3) = b(3) + a(4)

 // Using %SUBARR nested within an expression

 resultArr = %trim(%subst(%subarr(stringArr:i):j));

 // this is equivalent to:

 // resultArr(1) = %trim(%subst(stringArr(i+0):j))

 // resultArr(2) = %trim(%subst(stringArr(i+1):j))

 // resultArr(3) = %trim(%subst(stringArr(i+2):j))

 // Sum a subset of an array

 sum = %xfoot (%subarr(a:2:3));

 // Now sum = 9 + 13 + 16 = 38

Figure 191. Using %SUBARR

%SUBARR (Set/Get Portion of an Array)

Chapter 25. Built-In Functions 481

|

CAUTION:

It is valid to use %SUBARR to assign part of an array to another part of the

same array. However, if the source part of the array overlaps the target part of

the array, unpredictable results can occur.

For more information, see Chapter 25, “Built-In Functions,” on page 399.

// Using %SUBARR with dynamically allocated arrays

D dynArrInfo ds qualified

D numAlloc 10i 0 inz(0)

D current 10i 0 inz(0)

D p *

D dynArr s 5a dim(32767) based(dynArrInfo.p)

D otherArray s 3a dim(10) inz(’xy’)

 /free

 // Start the array with an allocation of five elements,

 // and with two current elements

 dynArrInfo.numAlloc = 5;

 dynArrInfo.p = %alloc(%size(dynArr) *

 dynarrInfo.numAlloc);

 dynArrInfo.current = 2;

 // Initialize to blanks

 %subarr(dynArr : 1 : dynarrInfo.current) = *blank;

 // Set the two elements to some values

 dynArr(1) = ’Dog’; dynArr(2) = ’Cat’;

 // Sort the two elements

 sorta %subarr(dynArr : 1 : dynarrInfo.current);

 // dynArr(1) = ’Cat’

 // dynArr(2) = ’Dog’

 // Assign another array to the two elements

 otherArray(1) = ’ab’;

 otherArray(2) = ’cd’;

 otherArray(3) = ’ef’;

 %subarr(dynArr : 1 : dynarrInfo.current) = otherArray;

 // dynArr(1) = ’ab’

 // dynArr(2) = ’cd’

 // Changing the size of the array

 oldElems = dynArrInfo.current;

 dynArrInfo.current = 7;

 if (dynArrInfo.current > dynArrInfo.alloc);

 dynArrInfo.p = %realloc (dynArrInfo.p : dynArrInfo.current);

 dynArrInfo.numAlloc = dynArrInfo.current;

 endif;

 if (oldElems < dynArrInfo.current);

 // Initialize new elements to blanks

 %subarr(dynArr : oldElems + 1 : dynArrInfo.current - oldElems);

 endif;

Figure 192. Using %SUBARR with dynamically allocated arrays

%SUBARR (Set/Get Portion of an Array)

482 VisualAge RPG Language Reference

|
|
|
|

|

%SUBDT (Extract a Portion of a Date, Time, or Timestamp)

%SUBDT(value:*MSECONDS|*SECONDS|*MINUTES|*HOURS|*DAYS|*MONTHS|*YEARS)

%SUBDT(value:*MS|*S|*MN|*H|*D|*M|*Y)

%SUBDT extracts a portion of the information in a date, time, or timestamp value.

It returns an unsigned numeric value.

The first parameter is the date, time, or timestamp value.

The second parameter is the portion that you want to extract. The following values

are valid:

v For a date: *DAYS, *MONTHS, and *YEARS

v For a time: *SECONDS, *MINUTES, and *HOURS

v For a timestamp: *MSECONDS, *SECONDS, *MINUTES, *HOURS, *DAYS,

*MONTHS, and *YEARS

For this function, *DAYS always refers to the day of the month not the day of the

year (even if you are using a Julian date format). For example, the day portion of

February 10 is 10 not 41.

This function always returns a 4-digit year, even if the date format has a 2-digit

year.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 date = d’1999-02-17’;

 time = t’01.23.45’;

 num = %subdt(date:*YEARS);

 // num = 1999

 num = %subdt(time:*MN);

 // num = 23

 /END-FREE

Figure 193. %SUBDT Example

%SUBDT (Extract a Portion of a Date, Time, or Timestamp)

Chapter 25. Built-In Functions 483

%SUBST (Get Substring)

%SUBST(string:start{:length})

%SUBST returns a portion of argument string. It may also be used as the result of

an assignment with the EVAL operation code.

The start parameter represents the starting position of the substring.

The length parameter represents the length of the substring. If it is not specified,

the length is the length of the string parameter less the start value plus one.

The string must be character, graphic, or UCS-2 data. Starting position and length

may be any numeric value or numeric expression with zero decimal positions. The

starting position must be greater than zero. The length may be greater than or

equal to zero.

When the string parameter is varying length, the values of the other parameters

are checked against the current length, not the maximum length.

When specified as a parameter for a definition specification keyword, the

parameters must be literals or named constants representing literals. When

specified on a free-form calculation specification, the parameters may be any

expression.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

%SUBST Used for its Value

%SUBST returns a substring from the contents of the specified string. The string

may be any character, graphic, or UCS-2 field or expression. Unindexed arrays are

allowed for string, start, and length. The substring begins at the specified starting

position in the string and continues for the length specified. If length is not

specified then the substring continues to the end of the string. For example:

The value of %subst(’Hello World’: 5+2) is ’World’

The value of %subst(’Hello World’:5+2:10-7) is ’Wor’

The value of %subst(’abcd’ + ’efgh’:4:3) is ’def’

For graphic or UCS-2 characters the start position and length is consistent with the

2-byte character length (position 3 is the third 2-byte character and length 3

represents 3 2-byte characters to be operated on).

%SUBST Used as the Result of an Assignment

When used as the result of an assignment this built-in function refers to certain

positions of the argument string. Unindexed arrays are not allowed for start and

length.

The result begins at the specified starting position in the variable and continues for

the length specified. If length is not specified or it refers to characters beyond the

end of the string then the string is referenced to its end.

When %SUBST is used as the result of an assignment, the first parameter must

refer to a storage location. That is, the first parameter of the %SUBST operation

must be one of the following.

v Field

v Data Structure

v Data Structure Subfield

%SUBST (Get Substring)

484 VisualAge RPG Language Reference

v Array Name

v Array Element

v Table Element

Any valid expressions are permitted for the the second and third parameters of

%SUBST when it appears as the result of an assignment with an EVAL operation.

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++

C*

C* In this example, CITY contains ’Toronto, Ontario’

C* %SUBST returns the value ’Ontario’.

C*

C ’ ’ SCAN CITY C

C IF %SUBST(CITY:C+1) = ’Ontario’

C EVAL CITYCNT = CITYCNT+1

C ENDIF

C*

C* Before the EVAL, A has the value ’abcdefghijklmno’.

C* After the EVAL A has the value ’ab****ghijklmno’

C*

C EVAL %SUBST(A:3:4) = ’****’

Figure 194. %SUBST Example

%SUBST Used as the Result of an Assignment

Chapter 25. Built-In Functions 485

%THIS (Return Class Instance for Native Method)

%THIS

%THIS returns an Object value that contains a reference to the class instance on

whose behalf the native method is being called. %THIS is valid only in non-static

native methods. This built-in gives non-static native methods access to the class

instance.

A non-static native method works on a specific instance of its class. This object is

actually passed as a parameter to the native method by Java, but it does not

appear in the prototype or procedure interface for the native method. In a Java

method, the object instance is referred to by the Java reserved word this. In an

RPG native method, the object instance is referred to by the %THIS builtin

function.

 * Method "vacationDays" is a method in the class ’Employee’

D vacationDays PR 10I 0 EXTPROC(*JAVA

D : ’Employee’

D : ’vacationDays’)

 * Method "getId" is another method in the class ’Employee’

D getId PR 10I 0 EXTPROC(*JAVA

D : ’Employee’

D : ’getId’)

...

 * "vacationDays" is an RPG native method. Since the STATIC keyword

 * is not used, it is an instance method.

P vacationDays B

D vacationDays PI 10I 0

D id_num S 10I 0

 * Another Employee method must be called to get the Employee’s

 * id-number. This method requires an Object of class Employee.

 * We use %THIS as the Object parameter, to get the id-number for

 * the object that our native method "vacationDays" is working on.

C eval id_num = getId(%THIS)

C id_num chain EMPFILE

C if %found

C return VACDAYS

C else

C return -1

C endif

P vacationDays E

Figure 195. %THIS Example

%THIS (Return Class Instance for Native Method)

486 VisualAge RPG Language Reference

%TIME (Convert to Time)

%TIME{(expression{:time-format})}

%TIME converts the value of the expression from character, numeric, or timestamp

data to type time. The converted value remains unchanged, but is returned as a

time.

The first parameter is the value to be converted. If you do not specify a value,

%TIME returns the current system time.

The second parameter is the time format for numeric or character input. Regardless

of the input format, the output is returned in *ISO format.

For information on the input formats that can be used, see “Time Data” on page

135. If the time format is not specified for numeric or character input, the default

value is either the format specified on the TIMFMT control-specification keyword

or *ISO. For more information, see “TIMFMT(fmt{separator})” on page 235.

If the first parameter is a timestamp, do not specify the second parameter. The

system knows the format of the input in this case.

For more information, see “Information Operations” on page 366 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 string = ’12:34 PM’;

 time = %time(string:*USA);

 // time = t’12.34.00’

 /END-FREE

Figure 196. %TIME Example

%TIME (Convert to Time)

Chapter 25. Built-In Functions 487

%TIMESTAMP (Convert to Timestamp)

%TIMESTAMP{(expression{:*ISO|*ISO0})}

%TIMESTAMP converts the value of the expression from character, numeric, or

date data to type timestamp. The converted value is returned as a timestamp.

The first parameter is the value to be converted. If you do not specify a value,

%TIMESTAMP returns the current system timestamp.

The second parameter is the timestamp format for character input. Regardless of

the input format, the output is returned in *ISO format. You can specify either *ISO

(the default) or *ISO0. For more information, see “Timestamp Data” on page 137.

If the first parameter is numeric, you do not need to specify the second parameter.

The only allowed value is *ISO (the default).

If the first parameter is a date, do not specify the second parameter. The system

converts the date from its current format to *ISO format and adds 00.00.00.0000.

For more information, see “Information Operations” on page 366 or Chapter 25,

“Built-In Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 string = ’1960-09-29-12.34.56.000000’;

 timest = %timestamp(string);

 // timest now contains t’1960-09-29-12.34.56.000000’

 /END-FREE

Figure 197. %TIMESTAMP Example

%TIMESTAMP (Convert to Timestamp)

488 VisualAge RPG Language Reference

%TLOOKUPxx (Look Up a Table Element)

%TLOOKUP(arg : search-table {: alt-table})

%TLOOKUPLT(arg : search-table {: alt-table})

%TLOOKUPGE(arg : search-table {: alt-table})

%TLOOKUPGT(arg : search-table {: alt-table})

%TLOOKUPLE(arg : search-table {: alt-table})

The following functions search search-table for a value that matches arg as follows:

%TLOOKUP An exact match.

%TLOOKUPLT

The value that is closest to arg but less than arg.

%TLOOKUPLE

An exact match, or the value that is closest to arg but less than arg.

%TLOOKUPGT

The value that is closest to arg but greater than arg.

%TLOOKUPGE

An exact match, or the value that is closest to arg but greater than

arg.

If a value meets the specified condition, the current table element for the search

table is set to the element that satisfies the condition, the current table element for

the alternate table is set to the same element, and the function returns the value

*ON.

If no value matches the specified condition, *OFF is returned.

The first two parameters can have any type but must have the same type. They do

not need to have the same length or number of decimal positions.

Built-in functions %FOUND and %EQUAL are not set following a %LOOKUP

operation.

Note: Unlike the LOOKUP operation code, %TLOOKUP applies only to tables. To

look up a value in an array, use the %LOOKUP built-in function.

The %TLOOKUPxx builtin functions use a binary search for sequenced tables

(tables that have the ASCEND or DESCEND keyword specified). See “Sequenced

arrays that are not in the correct sequence” on page 456.

For more information, see “Array Operations” on page 351 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 *IN01 = %TLOOKUP(’Paris’:tab1);

 IF %TLOOKUP(’Thunder Bay’:tab1:tab2);

 // code to handle Thunder Bay

 ENDIF;

 /END-FREE

Figure 198. %TLOOKUPxx Example

%TLOOKUPxx (Look Up a Table Element)

Chapter 25. Built-In Functions 489

|
|
|

%TRIM (Trim Characters at Edges)

%TRIM(string {: characters to trim})

%TRIM with only one parameter returns the given string with any leading and

trailing blanks removed.

%TRIM with two parameters returns the given string with any leading and trailing

characters that are in the characters to trim parameter removed.

The string can be character, graphic, or UCS-2 data.

If the characters to trim parameter is specified, it must be the same type as the string

parameter.

When specified as a parameter for a definition specification keyword, the string

parameter must be a constant.

Note: Specifying %TRIM with two parameters is not supported for parameters of

Definition keywords.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D Location S 16A

D FirstName S 10A inz (’ Chris ’)

D LastName S 10A inz (’ Smith ’)

D Name S 20A

 * LOCATION will have the value ’Toronto, Ontario’.

 /FREE

 Location = %trim (’ Toronto, Ontario ’);

 // Name will have the value ’Chris Smith! ’.

 Name = %trim (FirstName) + ’ ’ + %trim (LastName) + ’!’;

 /END-FREE

Figure 199. %TRIM Example

%TRIM (Trim Characters at Edges)

490 VisualAge RPG Language Reference

|

|
|

|
|

|
|

D edited S 20A INZ(’$******5.27*** ’)

D trimmed S 20A varying

D numeric S 15P 3

 /FREE

 // Trim ’$’ and ’*’ from the edited numeric value

 // Note: blanks will not be trimmed, since a blank

 // is not specified in the ’characters to trim’ parameter

 trimmed = %trim(edited : ’$*’);

 // trimmed is now ’5.27*** ’

 // Trim ’$’ and ’*’ and blank from the edited numeric value

 trimmed = %trim(edited : ’$* ’);

 // trimmed is now ’5.27’

 // Get the numeric value from the edited value

 numeric = %dec(%trim(edited : ’$* ’) : 31 : 9);

 // numeric is now 5.27

Figure 200. Trimming characters other than blank

%TRIM (Trim Characters at Edges)

Chapter 25. Built-In Functions 491

%TRIML (Trim Leading Characters)

%TRIML(string {: characters to trim})

%TRIML with only one parameter returns the given string with any leading blanks

removed.

%TRIML with two parameters returns the given string with any leading characters

that are in the characters to trim parameter removed.

The string can be character, graphic, or UCS-2 data.

If the characters to trim parameter is specified, it must be the same type as the string

parameter.

When specified as a parameter for a definition specification keyword, the string

parameter must be a constant.

Note: Specifying %TRIML with two parameters is not supported for parameters of

Definition keywords.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * LOCATION will have the value ’Toronto, Ontario ’.

 /FREE

 // Trimming blanks

 Location = %triml(’ Toronto, Ontario ’);

 // LOCATION now has the value ’Toronto, Ontario ’.

 // Trimming other characters

 trimmed = %triml(’$******5.27*** ’ : ’$* ’);

 // trimmed is now ’5.27*** ’

Figure 201. %TRIML Example

%TRIML (Trim Leading Characters)

492 VisualAge RPG Language Reference

|

|
|

|
|

|
|

%TRIMR (Trim Trailing Characters)

%TRIMR(string {: characters to trim})

%TRIMR with only one parameter returns the given string with any trailing blanks

removed.

%TRIMR with two parameters returns the given string with any trailing characters

that are in the characters to trim parameter removed.

The string can be character, graphic, or UCS-2 data.

If the characters to trim parameter is specified, it must be the same type as the string

parameter.

When specified as a parameter for a definition specification keyword, the string

parameter must be a constant.

Note: Specifying %TRIMR with two parameters is not supported for parameters of

Definition keywords.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D Location S 16A varying

D FirstName S 10A inz (’Chris’)

D LastName S 10A inz (’Smith’)

D Name S 20A varying

 * LOCATION will have the value ’ Toronto, Ontario’.

 /FREE

 Location = %trim (’ Toronto, Ontario ’);

 // Name will have the value ’Chris Smith:’.

 Name = %trimr (FirstName) + ’ ’ + %trimr (LastName) + ’:’;

 /END-FREE

Figure 202. %TRIMR Example

 string = ’(’ + %trimr(’$******5.27*** ’ : ’$*’) + ’)’;

 // string is now ’($******5.27***)’

 //

 // Nothing has been trimmed from the right-hand side because

 // the right-most character is a blank, and a blank does not

 // appear in the ’characters to trim’ parameter

 string = ’(’ + %trimr(’$******5.27*** ’ : ’$ *’) + ’)’;

 // string is now ’($******5.27)’

Figure 203. Trimming characters other than blanks

%TRIMR (Trim Trailing Characters)

Chapter 25. Built-In Functions 493

|

|
|

|
|

|
|

%UCS2 (Convert to UCS-2 Value)

%UCS2(char-expr | graph-expr)

%UCS2 converts the value of the expression from character or graphic and returns

a UCS-2 value. The result is varying length if the parameter is varying length, or if

the parameter is single-byte character.

The second parameter, ccsid, is optional and indicates the CCSID of the resulting

expression. The CCSID defaults to 13488.

If the parameter is a constant, the conversion will be done at compile time.

If the conversion results in substitution characters, a warning message is issued at

compile time. At run time, status 00050 is set and no error message is issued.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

HKeywords++

H CCSID(*UCS2 : 13488)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D char S 5A INZ(’abcde’)

D graph S 2G INZ(G’oAABBi’)

 * The %UCS2 built-in function is used to initialize a UCS-2 field.

D ufield S 10C INZ(%UCS2(’abcdefghij’))

D ufield2 S 1C CCSID(61952) INZ(*LOVAL)

D isLess 1N

D proc PR

D uparm 2G CCSID(13488) CONST

CSRN01Factor1+++++++Opcode&ExtExtended-factor2+++++++++++++++++++++++++

C EVAL ufield = %UCS2(char) + %UCS2(graph)

 * ufield now has 7 UCS-2 characters representing

 * ’a.b.c.d.e.AABB’ where ’x.’ represents the UCS-2 form of ’x’

C EVAL isLess = ufield < %UCS2(ufield2:13488)

 * The result of the %UCS2 built-in function is the value of

 * ufield2, converted from CCSID 61952 to CCSID 13488

 * for the comparison.

C EVAL ufield = ufield2

 * The value of ufield2 is converted from CCSID 61952 to

 * CCSID 13488 and stored in ufield.

 * This conversion is handled implicitly by the compiler.

C CALLP proc(ufield2)

 * The value of ufield2 is converted to CCSID 13488

 * implicitly, as part of passing the parameter by constant reference.

Figure 204. %UCS2 Examples

%UCS2 (Convert to UCS-2 Value)

494 VisualAge RPG Language Reference

%UNS (Convert to Unsigned Format)

%UNS(numeric or character expression)

%UNS converts the value of the expression to unsigned format. Any decimal digits

are truncated. %UNS can be used to truncate the decimal positions from a float or

decimal value allowing it to be used as an array index.

If the parameter is a character expression, the following rules apply:

v The sign is optional. It can only be ’+’ . It can precede or follow the numeric

data.

v The decimal point is optional. It can be either a period or a comma.

v Blanks are allowed anywhere in the data. For example, ’ + 3 ’ is a valid

parameter.

v Floating point data is not allowed. That is, where the numeric value is followed

by E and an exponent, for example ’1.2E6’.

v If invalid numeric data is found, an exception occurs with status code 105

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

Figure 205 on page 496 shows an example of the %UNS built-in function.

%UNSH (Convert to Unsigned Format with Half Adjust)

%UNSH(numeric or character expression)

%UNSH is the same as %UNS except that if the expression is a decimal, float or

character value, half adjust is applied to the value of the expression when

converting to integer type. No message is issued if half adjust cannot be

performed.

For more information, see “Conversion Operations” on page 358 or Chapter 25,

“Built-In Functions,” on page 399.

%UNS (Convert to Unsigned Format)

Chapter 25. Built-In Functions 495

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D p7 s 7p 3 inz (8236.567)

D s9 s 9s 5 inz (23.73442)

D f8 s 8f inz (173.789)

D c15a s 15a inz (’ 12345.6789 +’)

D c15b s 15a inz (’ + 5 , 6 7 ’)

D result1 s 15p 5

D result2 s 15p 5

D result3 s 15p 5

D array s 1a dim (200)

D a s 1a

 /FREE

 // using numeric parameters

 result1 = %uns (p7) + 0.1234; // "result1" is now 8236.12340

 result2 = %uns (s9); // "result2" is now 23.00000

 result3 = %unsh (f8); // "result3" is now 174.00000

 // using character parameters

 result1 = %uns (c15a); // "result1" is now 12345.0000

 result2 = %unsh (c15b); // "result2" is now 6.00000

 // %UNS and %UNSH can be used as array indexes

 a = array (%unsh (f8));

 /END-FREE

Figure 205. %UNS and %UNSH Example

%UNSH (Convert to Unsigned Format with Half Adjust)

496 VisualAge RPG Language Reference

%XFOOT (Sum Array Expression Elements)

%XFOOT(array-expression)

%XFOOT results in the sum of all elements of the specified numeric array

expression.

The precision of the result is the minimum that can hold the result of adding

together all array elements, up to a maximum of 31 digits. The number of decimal

places in the result is always the same as the decimal places of the array

expression.

For example, if ARR is an array of 500 elements of precision (17,4), the result of

%XFOOT(ARR) is (20,4).

For %XFOOT(X) where X has precision (m,n), the following table shows the

precision of the result based on the number of elements of X:

Elements of X Precision of %XFOOT(X)

1 (m,n)

2-10 (m+1,n)

11-100 (m+2,n)

101-1000 (m+3,n)

1001-10000 (m+4,n)

10001-32767 (m+5,n)

Normal rules for array expressions apply. For example, if ARR1 has 10 elements

and ARR2 has 20 elements, %XFOOT(ARR1+ARR2) results in the sum of the first

10 elements of ARR1+ARR2.

This built-in function is similar to the XFOOT operation, except that float arrays

are summed like all other types, beginning from index 1 on up.

For more information, see “Array Operations” on page 351 or Chapter 25, “Built-In

Functions,” on page 399.

%XFOOT (Sum Array Expression Elements)

Chapter 25. Built-In Functions 497

%XLATE (Translate)

%XLATE(from:to:string{:startpos})

%XLATE translates string according to the values of from, to, and startpos.

The first parameter contains a list of characters that should be replaced, and the

second parameter contains their replacements. For example, if the string contains

the third character in from, every occurrence of that character is replaced with the

third character in to.

The third parameter is the string to be translated. The fourth parameter is the

starting position for translation. By default, translation starts at position 1.

The first three parameters can be of type character, graphic, or UCS-2. All three

must have the same type. The value returned has the same type and length as

string.

The fourth parameter is a non-float numeric with zero decimal positions.

For more information, see “String Operations” on page 375 or Chapter 25, “Built-In

Functions,” on page 399.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D up C ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

D lo C ’abcdefghijklmnopqrstuvwxyz’

D string S 10A inz(’rpg dept’)

 /FREE

 string = %XLATE(lo:up:’rpg dept’);

 // string now contains ’RPG DEPT’

 string = %XLATE(up:lo:’rpg dept’:6);

 // string now contains ’RPG Dept’

 /END-FREE

Figure 206. %XLATE Example

%XLATE (Translate)

498 VisualAge RPG Language Reference

%YEARS (Number of Years)

%YEARS(number)

%YEARS converts a number into a duration that can be added to a date or

timestamp value.

%YEARS can only be the right-hand value in an addition or subtraction operation.

The left-hand value must be a date or timestamp. The result is a date or timestamp

value with the appropriate number of years added or subtracted. For a date, the

resulting value is in *ISO format.

If the left-hand value is February 29 and the resulting year is not a leap year,

February 28 is used instead. Adding or subtracting a number of years to a

February 29 date may not be reversible. For example, 2000-02-29 + %YEARS(1) -

%YEARS(1) is 2000-02-28.

For an example of the %YEARS built-in function, see Figure 173 on page 458.

For more information, see “Date Operations” on page 359 or Chapter 25, “Built-In

Functions,” on page 399.

%YEARS (Number of Years)

Chapter 25. Built-In Functions 499

%YEARS (Number of Years)

500 VisualAge RPG Language Reference

Chapter 26. Operation Code Details

The following sections describe each operation code in detail.

ADD (Add)

 Free-Form Syntax (not allowed - use the + or += operator)

 Code Factor 1 Factor 2 Result Field Indicators

ADD (H) Addend Addend Sum + − Z

If factor 1 is specified, the ADD operation adds it to factor 2 and places the sum in

the result field. If factor 1 is not specified, the contents of factor 2 are added to the

result field and the sum is placed in the result field.

Factor 1 and factor 2 must be numeric and can contain one of: an array, array

element, constant, field name, literal, subfield, or table name.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The value 1 is added to RECNO.

C ADD 1 RECNO

C* The contents of EHWRK are added to CURHRS.

C ADD EHWRK CURHRS

C* The contents of OVRTM and REGHRS are added together and

C* placed in TOTPAY.

C OVRTM ADD REGHRS TOTPAY

Figure 207. ADD Operation

© Copyright IBM Corp. 1994, 2005 501

ADDDUR (Add Duration)

 Free-Form Syntax (not allowed - use the + or += operators with duration functions such as %YEARS

and %MONTHS)

 Code Factor 1 Factor 2 Result Field Indicators

ADDDUR (E) Date/Time Duration:Duration Code Date/Time _ ER _

The ADDDUR operation adds the duration specified in factor 2 to a date or time

and places the resulting Date, Time or Timestamp in the result field.

If factor 1 is specified, it must contain a Date, Time or Timestamp field, subfield,

array, array element, literal, or constant.

If factor 1 contains a field name, array or array element then its data type must be

the same data type as the field specified in the result field. If factor 1 is not

specified, the duration is added to the field specified in the result field.

Factor 2 must contain two subfactors. The first is a duration and must be a

numeric field, array element, or constant with zero decimal positions. If the

duration is negative, then it is subtracted from the date. The second subfactor must

be a valid duration code indicating the type of duration. The duration code must

be consistent with the result field data type. A year, month, or day can be added to

a date field. A minute duration cannot be added to a date field. “Date Operations”

on page 359 describes the duration codes.

The result field must be a date, time or timestamp data type field, array, or array

element. If Factor 1 is blank, the duration is added to the value in the result field.

If the result field is an array, the value in factor 2 is added to each element of the

array. If the result field is a time field, the result will always be a valid time. For

example, adding 59 minutes to 23:59:59 would give 24:58:59. Since this time is not

valid, the compiler adjusts it to 00:59:59.

When adding a duration in months to a date, the general rule is that the month

portion is increased by the number of months in the duration, and the day portion

is unchanged. The exception to this is when the resulting day portion would

exceed the actual number of days in the resulting month. In this case, the resulting

day portion is adjusted to the actual month end date. The following examples

(which assume a *YMD format) illustrate this point.

 ’98/05/30’ ADDDUR 1:*MONTH results in ’98/06/30’

The resulting month portion has been increased by 1; the day portion is

unchanged.

 ’98/05/31’ ADDDUR 1:*MONTH results in ’98/06/30’

The resulting month portion has been increased by 1; the resulting day portion has

been adjusted because June has only 30 days.

Similar results occur when adding a year duration. For example, adding one year

to ’92/02/29’ results in ’93/02/28’, an adjusted value since the resulting year is not

a leap year.

For more information, see “Memory Management Operations” on page 367.

ADDDUR (Add Duration)

502 VisualAge RPG Language Reference

An error situation arises when one of the following occurs:

v The value of the Date, Time, or Timestamp field in factor 1 is invalid

v Factor 1 is blank and the value of the result field before the operation is invalid

v Overflow or underflow occurred (that is, the resulting value is greater than

*HIVAL or less than *LOVAL).

In an error situation,

v An error (status code 112 or 113) is signalled.

v The error indicator (columns 73-74) — if specified — is set on, or the %ERROR

built-in function — if the ’E’ extender is specified — is set to return ’1’.

v The value of the result field remains unchanged.

To handle exceptions with program status codes 112 or 113, either the operation

code extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

The system places a 15 digit limit on durations. Adding a duration with more than

15 significant digits causes errors or truncation. This can be avoided by limiting the

first subfactor in Factor 2 to 15 digits.

For more information, see “Date Operations” on page 359.

ADDDUR (Add Duration)

Chapter 26. Operation Code Details 503

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

HKeywords+++

H TIMFMT(*USA) DATFMT(*MDY&)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D*

DDateconst C CONST(D’12 31 92’)

D*

D* Define a Date field and initialize

D*

DLoandate S D DATFMT(*EUR) INZ(D’12 31 92’)

DDuedate S D DATFMT(*ISO)

Dtimestamp S Z

Danswer S T

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* Determine a DUEDATE which is xx years, yy months, zz days later

C* than LOANDATE.

C LOANDATE ADDDUR XX:*YEARS DUEDATE

C ADDDUR YY:*MONTHS DUEDATE

C ADDDUR ZZ:*DAYS DUEDATE

C* Determine the date 23 days later

C*

C ADDDUR 23:*D DUEDATE

C* Add a 1234 microseconds to a timestamp

C*

C ADDDUR 1234:*MS timestamp

C* Add 12 HRS and 16 minutes to midnight

C*

C T’00:00 am’ ADDDUR 12:*Hours answer

C ADDDUR 16:*Minutes answer

C* Subtract 30 days from a loan due date

C*

C ADDDUR -30:*D LOANDUE

Figure 208. ADDDUR Operation

ADDDUR (Add Duration)

504 VisualAge RPG Language Reference

ALLOC (Allocate Storage)

 Free-Form Syntax (not allowed - use the %ALLOC built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

ALLOC (E) Length Pointer _ ER _

The ALLOC operation allocates storage in the default heap of the length specified

in factor 2. The result field pointer is set to point to the new heap storage. The

storage is uninitialized.

Factor 2 must be a numeric with zero decimal positions. It can be a literal,

constant, standalone field, subfield, table name or array element. The value must

be between 1 and 16776704. If the value is out of range at runtime, an error will

occur with status 00425. If the storage could not be allocated, an error will occur

with status 426. If these errors occur, the result field pointer remains unchanged.

The result field must be a basing pointer scalar variable (a standalone field, data

structure subfield, table name, or array element).

To handle exceptions with program status codes 425 or 426, either the operation

code extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

For more information, see “Memory Management Operations” on page 367.

 D Ptr1 S *

 D Ptr2 S *

 C ALLOC 7 Ptr1

 * Now Ptr1 points to 7 bytes of storage

 C ALLOC (E) 12345678 Ptr2

 * This is a large amount of storage, and sometimes it may

 * be unavailable. If the storage could not be allocated,

 * %ERROR will return ’1’, the status is set to 00426, and

 * %STATUS will return 00426.

Figure 209. ALLOC Operation

ALLOC (Allocate Storage)

Chapter 26. Operation Code Details 505

ANDxx (And)

 Free-Form Syntax (not allowed - use the AND operator)

 Code Factor 1 Factor 2 Result Field Indicators

ANDxx Comparand Comparand

The ANDxx operation must immediately follow one of the following operations:

v ANDxx

v DOUxx

v DOWxx

v IFxx

v ORxx

v WHENxx

With ANDxx, you can specify a complex condition for the DOUxx, DOWxx, IFxx,

and WHENxx operations. The ANDxx operation has higher precedence than the

ORxx operation. See Figure 211 on page 507 for an example.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative

constant, a table name, an array element, a data structure name, or a field name.

Factor 1 and factor 2 must be of the same type. For example, a character field

cannot be compared with a numeric. The comparison of factor 1 and factor 2

follows the same rules as those given for the compare operations.

“Compare Operations” on page 357 and “Structured Programming Operations” on

page 376 describes the rules for specifying the ANDxx operation.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* If ACODE is equal to A and indicator 50 is on, the MOVE

C* and WRITE operations are processed.

C ACODE IFEQ ’A’

C *IN50 ANDEQ *ON

C MOVE ’A’ ACREC

C WRITE RCRSN

C* If the previous conditions were not met but ACODE is equal

C* to A, indicator 50 is off, and ACREC is equal to D, the

C* following MOVE operation is processed.

C ELSE

C ACODE IFEQ ’A’

C *IN50 ANDEQ *OFF

C ACREC ANDEQ ’D’

C MOVE ’A’ ACREC

C ENDIF

C ENDIF

Figure 210. ANDxx Operation

ANDxx (And)

506 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* In the following example, indicator 25 will be set on only if the

C* first two conditions are true or the third condition is true.

C*

C* As an expression, this would be written:

C* EVAL *IN25 = ((FIELDA > FIELDB) AND (FIELDA >= FIELDC)) OR (FIELDA < FIELDD)

C*

C*

C FIELDA IFGT FIELDB

C FIELDA ANDGE FIELDC

C FIELDA ORLT FIELDD

C SETON 25

C ELSE

C SETOFF 25

C ENDIF

Figure 211. Example of AND/OR Precedence

ANDxx (And)

Chapter 26. Operation Code Details 507

BEGACT (Begin Action Subroutine)

 Free-Form Syntax BEGACT action-subroutine-name

 Code Factor 1 Factor 2 Result Field Indicators

BEGACT Part name Event name Window name

The BEGACT operation defines the start of an action subroutine. When an event

for a part occurs, the action subroutine is called.

In the GUI Designer, you can link an event for a part to an existing action

subroutine, or create a new action subroutine for the event when one is not

defined. In the latter case, a skeleton action subroutine is inserted in the source

code, with a name derived from the associated window, part, and event names.

The skeleton action subroutine will be added to the program source code in a

free-form style when the location where the subroutine is added falls within a

free-form section: ie. when a ’/END-FREE’ directive follows the end of the

Calculation specifications, but before any Output or Procedure or compile-time

data specifications.

Action Subroutine Names in Traditional Syntax

When the GUI Designer inserts a new action subroutine in a traditional syntax

calculation section, it specifies the part name in Factor1, event name in Factor 2,

and the window name (containing the part) in the Result field of the BEGACT

operation. The action subroutine name is derived from these values, and linked to

a part event.

The action subroutine name is built using factor 1, factor 2, and the result field.

Each entry is separated by a plus (+) character. The following table shows

examples of links created using the GUI Designer:

 Table 53. Single-link and Multiple-link Action Subroutines

Window Part Event Action subroutine

INVENTORY PSB0001 PRESS PSB0001+PRESS+INVENTORY

INVENTORY PSB0004 PRESS SETCOLORS

INVENTORY PSB0005 PRESS PSB0005+PRESS+INVENTORY

ADDPART PSB0008 PRESS SETCOLORS

INVENTORY PSB0002 PRESS PSB0002++INVENTORY

INVENTORY PSB0002 MOUSEMOVE PSB0002++INVENTORY

ADDPART PSB0009 MOUSEMOVE PSB0009+MOUSEMOVE

The following examples illustrate how an action subroutine name is built, using

the information described in Table 53.

Action Subroutine Names using Factor 1 and Factor 2

If factor 1 contains PSB0009, factor 2 contains MOUSEMOVE, and the result field

does not contain an entry, the action subroutine name is PSB0009+MOUSEMOVE.

BEGACT (Begin Action Subroutine)

508 VisualAge RPG Language Reference

Action Subroutine Names using Factor 1 and the Result Field

If factor 1 contains PSB0002, factor 2 does not contain an entry, and the result field

contains INVENTORY, the action subroutine name is PSB0002++INVENTORY.

Action Subroutine Names using Factor 1, Factor 2 and Result

Field

If factor 1 contains PSB0001, factor 2 contains PRESS, and the result field contains

INVENTORY, the action subroutine name is PSB0001+PRESS+INVENTORY.

Action Subroutine Names using Factor 1

If factor 1 contains SETCOLORS, and both factor 2 and the result field do not

contain entries, the action subroutine name is SETCOLORS. This name is used to

retrieve the information about the window(s), part(s), and event(s) linked to the

action subroutine SETCOLORS.

Action Subroutine Names in Free-Form Syntax

The name for an action subroutine inserted in a free-form section is one value

generated by joining the window, part, and event names together, separated by

underscores.

Sample Action Subroutine in Free-Form Syntax:

 /free

 //**

 //

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

C PSB0009 BEGACT MOUSEMOVE

Figure 212. Action Subroutine Name - Factor 1 and Factor 2

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

C PSB0002 BEGACT INVENTORY

Figure 213. Action Subroutine Name - Factor 1 and Result field

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

C PSB0001 BEGACT PRESS INVENTORY

C PSB0005 BEGACT PRESS INVENTORY

Figure 214. Action Subroutine Name - Factor 1, Factor 2, and Result Field

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

C SETCOLORS BEGACT

Figure 215. Action Subroutine Name - Factor 1

BEGACT (Begin Action Subroutine)

Chapter 26. Operation Code Details 509

// Window . . : DATEDIALOG

 // Part . . . : PSBOK

 // Event . . : CREATE

 //

 // Description:

 //

 //**

 BEGACT DATEDIALOG_PSBOK_CREATE;

 ENDACT;

 /end-free

 *****END OF SOURCE***

Single-Link and Multiple-Link Action Subroutines

Action subroutines that are linked to only one window/part/event combination

are called single-link action subroutines.

Action subroutines that are linked to more than one window/part/event

combination are called multiple-link action subroutines.

Note: All user subroutines are considered to be multiple-link action subroutines.

At runtime, the default window or event for user subroutines is the default

window or event of the action subroutine which calls the user subroutine,

either directly or through other user subroutines.

Table 53 on page 508 illustrates single-link and multiple-link action subroutines.

For example, items 1, 3, and 7 are single-link action subroutines. Items 2 and 4,

and items 5 and 6 are multiple-link action subroutines.

Use the following guidelines when working with action subroutines:

v Duplicate action subroutine names are not allowed. Your program cannot

contain duplicate action subroutine names. If factor 1 is the only entry for the

BEGACT operation, it cannot be the same as any field name, user subroutine

name, or the name of any other construct in your program.

v Action subroutines with no events associated are never executed. This can occur

if you remove the action link using the GUI Designer.

You use the GUI Designer to create action subroutines and to link each action

subroutine to at least one window/part/event combination. When an action

subroutine is compiled, the compiler refers to the links that you created using the

GUI Designer. You can either use the action subroutine names created by the GUI

Designer or you can replace these with your own names. For more information on

using the GUI Designer to create and link action subroutines, see Getting Started

with WebSphere Development Studio Client for iSeries.

BEGACT (Begin Action Subroutine)

510 VisualAge RPG Language Reference

BEGSR (Begin User Subroutine)

 Free-Form Syntax BEGSR subroutine-name

 Code Factor 1 Factor 2 Result Field Indicators

BEGSR subroutine-name

The BEGSR operation identifies the beginning of a user subroutine.

Subroutine-name must specify a unique symbolic name or one of the following

keywords: *TERMSR, *PSSR or *INZSR. If you specify a name, you must specify

the same name in the EXSR operation referring to the subroutine or in the result

field of the CASxx operation referring to the subroutine.

If you specify a keyword, only one subroutine can be defined by these keywords:

v *TERMSR specifies a subroutine to be run during normal termination.

v *PSSR specifies that this is a program exception/error subroutine to handle

program-detected exception/errors.

v *INZSR specifies a subroutine to be run during initialization.

“EXSR (Invoke User Subroutine)” on page 577 describes how to invoke

subroutines.

Note: When referencing parts in a subroutine, consider the following: All user

subroutines are considered to be multiple-link action subroutines. At

runtime, the default window or event for user subroutines is the default

window or event of the action subroutine which calls the user subroutine,

either directly or through other user subroutines.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C *TERMSR BEGSR

C .

C .

C .

C ENDSR

Figure 216. Begin User Subroutine Operation

BEGSR (Begin User Subroutine)

Chapter 26. Operation Code Details 511

BITOFF (Set Bits Off)

 Free-Form Syntax (not allowed - use the%BITAND and %BITNOT built-in functions. See Figure 139 on

page 414.)

 Code Factor 1 Factor 2 Result Field Indicators

BITOFF Bit numbers Character field

The BITOFF operation causes bits identified in factor 2 to be set off (set to 0) in the

result field. Bits not identified in factor 2 remain unchanged. When BITOFF is used

to format a character, you should use both BITON and BITOFF: BITON specifies

the bits to be set on (set to 1), and BITOFF specifies the bits to be set off (set to 0).

Unless you explicitly set on or set off all the bits in the character, you might not

get the character you want.

Factor 2 can contain:

v Bit numbers 0-7: From 1 to 8 bits can be set off per operation. They are identified

by the numbers 0 through 7. (0 is the leftmost bit.) Enclose the bit numbers in

apostrophes. For example, to set off bits 0, 2, and 5, enter ‘025’ in factor 2.

v Field name: Specify the name of a one-position character field, table element, or

array element in factor 2. The bits that are on in the field, table element, or array

element are set off in the result field; bits that are off do not affect the result.

v Hexadecimal literal or named constant: Specify a 1 byte hexadecimal literal or

hexadecimal named constant. Bits that are on in factor 2 are set off in the result

field; bits that are off are not affected.

v Named constant: Specify a character named constant up to eight positions long

containing the bit numbers to be set off.

In the result field, specify a one-position character field. It can be an array element

if each element in the array is a one-position character field.

For more information, see “Bit Operations” on page 352.

See Figure 217 on page 514 for an example of the BITOFF and BITON operations.

If you want to assign a particular bit pattern to a character field, use the MOVE

operation with a hexadecimal literal in factor 2.

BITOFF (Set Bits Off)

512 VisualAge RPG Language Reference

BITON (Set Bits On)

 Free-Form Syntax (not allowed - use the %BITOR built-in function. See Figure 139 on page 414.)

 Code Factor 1 Factor 2 Result Field Indicators

BITON Bit numbers Character field

The BITON operation causes bits identified in factor 2 to be set on (set to 1) in the

result field. Bits not identified in factor 2 remain unchanged. When BITON is used

to format a character, you should use both BITON and BITOFF: BITON to specify

the bits to be set on (set to 1) and BITOFF to specify the bits to be set off (set to 0).

Unless you explicitly set on or off all the bits in the character, you might not get

the character you want.

Factor 2 can contain:

v Bit numbers 0-7: From 1 to 8 bits can be set on per operation. They are identified

by the numbers 0 through 7. (0 is the leftmost bit.) Enclose the bit numbers in

apostrophes. For example, to set bits 0, 2, and 5 on, enter ‘025’ in factor 2.

v Field name: You can specify the name of a one-position character field, table

element, or array element in factor 2. The bits that are on in the field, table

element, or array element are set on in the result field; bits that are off are not

affected.

v Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal literal.

Bits that are on in factor 2 are set on in the result field; bits that are off do not

affect the result.

v Named constant: You can specify a character named constant up to eight positions

long containing the bit numbers to be set on.

In the result field, specify a one-position character field. It can be an array element

if each element in the array is a one-position character field.

For more information, see “Bit Operations” on page 352.

See Figure 217 on page 514 for an example of the BITOFF and BITON operations.

BITON (Set Bits On)

Chapter 26. Operation Code Details 513

If you want to assign a particular bit pattern to a character field, use the MOVE

operation with a hexadecimal literal in factor 2.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D BITNC C ’01234567’

D HEXNC C X’0F’

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The bit settings are:

C* Before the operations: After the operations:

C* FieldA = 00000000 FieldA = 10001111

C* FieldB = 00000000 FieldB = 00010000

C* FieldC = 11111111 FieldC = 11111111

C* FieldD = 11000000 FieldD = 11010000

C* FieldE = 11000000 FieldE = 11000001

C* FieldG = 11111111 FieldG = 01111111

C* FieldH = 00000000 FieldH = 00001110

C* FieldI = 11001010 FieldI = 00001111

C*

C BITON ’04567’ FieldA

C BITON ’3’ FieldB

C BITON ’3’ FieldC

C BITON ’3’ FieldD

C BITON ’01’ FieldH

C BITOFF ’0’ FieldG

C BITOFF BITNC FieldI

C BITON HEXNC FieldI

Figure 217. BITON and BITOFF Operations

BITON (Set Bits On)

514 VisualAge RPG Language Reference

CABxx (Compare and Branch)

 Free-Form Syntax (not allowed - use other operation codes, such as LEAVE, ITER, and RETURN)

 Code Factor 1 Factor 2 Result Field Indicators

CABxx Comparand Comparand Label HI LO EQ

The CABxx operation compares factor 1 with factor 2. If the condition specified by

xx is true, the program branches to the TAG or ENDSR operation associated with

the label specified in the result field. Otherwise, the program continues with the

next operation in the sequence. If the result field is not specified, the resulting

indicators are set accordingly, and the program continues with the next operation

in the sequence.

“Compare Operations” on page 357 describes the different values for xx.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative

constant, a table name, an array element, a data structure name, or a field name.

Factor 1 and factor 2 must be of the same type.

A CABxx operation in the main procedure can specify a branch to a previous or a

succeeding specification line. A CABxx operation in a subprocedure can specify a

branch:

v From a line in the body of the subprocedure to another line in the body of the

subprocedure

v From a line in a subroutine to another line in the same subroutine

v From a line in a subroutine to a line in the body of the subprocedure

The CABxx operation cannot specify a branch from outside a subroutine to a TAG

or ENDSR operation within that subroutine. The label specified in the result field

must be associated with a unique TAG operation and must be a unique symbolic

name.

Resulting indicators are optional. When specified, they are set to reflect the results

of the compare operation. For example:

v HI is set when factor 1 is greater than factor 2

v LO is set when factor 1 is less than factor 2

v EQ is set when factor 1 and factor 2 are equal.

For more information, see “Branching Operations” on page 352.

CABxx (Compare and Branch)

Chapter 26. Operation Code Details 515

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The field values are:

C* FieldA = 100.00

C* FieldB = 105.00

C* FieldC = ABC

C* FieldD = ABCDE

C*

C* Branch to TAGX.

C FieldA CABLT FieldB TAGX

C*

C* Branch to TAGX.

C FieldA CABLE FieldB TAGX

C*

C* Branch to TAGX; indicator 16 is off.

C FieldA CABLE FieldB TAGX 16

C*

C* Branch to TAGX; indicator 17 is off, indicator 18 is on.

C FieldA CAB FieldB TAGX 1718

C*

C* Branch to TAGX; indicator 19 is on.

C FieldA CAB FieldA TAGX 19

C*

C* No branch occurs.

C FieldA CABEQ FieldB TAGX

C*

C* No branch occurs; indicator 20 is on.

C FieldA CABEQ FieldB TAGX 20

C*

C* No branch occurs; indicator 21 is off.

C FieldC CABEQ FieldD TAGX 21

C :

C TAGX TAG

Figure 218. CABxx Operations

CABxx (Compare and Branch)

516 VisualAge RPG Language Reference

CALL (Call an AS/400 Program)

 Free-Form Syntax (not allowed - use the CALLP operation code)

 Code Factor 1 Factor 2 Result Field Indicators

CALL (E) Program name Plist name _ ER _

The CALL operation passes control to an AS/400 program represented by the

program name specified in factor 2.

Factor 2 must be the name of a definition specification which defines the name of

the program to be called. The program name can either be the OS/400 name

(optionally library qualified) or an override name you defined using the Define

server information menu item. For more information on using the GUI Designer to

define server information, see Programming with VisualAge RPG and the online

help.

If the result field is specified, it must contain the name of a PLIST to communicate

values between the calling program and the called program. The result field can be

blank if the called program does not access parameters, or if the PARM statements

directly follow the CALL operation.

The parameters associated with a CALL to an OS/400 program have the following

restrictions:

v Parameters cannot contain a pointer. If a parameter does contain a pointer, the

compiler generates an error message at compile time.

v A data structure cannot have overlapping non-character fields. Any overlapping

fields must both be character.

v Passing the value *HIVAL (X’FF’) as a character or graphic parameter may cause

unpredictable results.

v Programs with remote calls that pass in a character field which cannot be

converted to EBCDIC, cause translation to stop. Typically, this can occur when a

numeric field overlays a character field.

v You can specify a maximum of 25 parameters.

v The total number of bytes allocated for the parameters cannot exceed 32K.

If a resulting indicator is specified in positions 73 and 74, it is set on when an error

occurs during the CALL operation.

To handle CALL exceptions (program status codes 202, 211, or 231), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

CALL (Call an AS/400 Program)

Chapter 26. Operation Code Details 517

Calling an OS/400 Program that Uses a Workstation File

Do the following to use a VisualAge RPG program that calls an OS/400 program

that uses a workstation file:

v Specify the NOWAIT keyword in the Definition specification

v When you create the OS/400 workstation file on the server, specify the following

for the CRTDSPF command:

– Display Device value: the name of the session where the diplay file is to be

displayed.

– Maximum Number of Devices: any value greater than 1.
v In the remote AS/400 program, do not use the ACQ operation to acquire a

display device. Doing this will cause a conflict that will result in an error.

Note: When using this method, you can pass parameters to the remote program.

However, no parameters can be returned from the remote program.

Calling Host Programs that Use Display Files

When the VARPG compiler calls an OS/400 host program that uses display files,

determination of a valid session device that can be used is necessary. To determine

a valid session device that can be used by the host program, you can use a CL

program on the host to locate a valid session.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++

D Functions-cont++++++++++++++++++++

D

D*Named Constant

D Remote1 C CONST(’PROG1’)

D LINKAGE(*SERVER) NOWAIT

D*

D*Stand alone field

D Remote2 S 13A INZ(’MYLIB/REMPROG’)

D LINKAGE(*SERVER)

D parm1 S 8P 2

D parm2 DS

D name 1 20A

D first 1 8A

D last 9 20A

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

C* CALL to a remote program

C*

C CALL Remote1 90

C PARM parm1

C PARM parm2

C*

C* Remote call

C*

C CALL Remote2 PLIST1 90

C*

C*

C*

C PLIST1 PLIST

C PARM Fld1 10 2

C PARM Charfld 50

Figure 219. CALL Operation

CALL (Call an AS/400 Program)

518 VisualAge RPG Language Reference

The following example illustrates such a CL program. It assumes that you are

using the SNA protocol with 5250 or Graphical Access emulation running on Client

Access.

PGM PARM(&SESS)

/*---*/

/* */

/* DECLARE WORKING VARIABLES */

/* */

/*---*/

 DCL VAR(&JOBN) TYPE(*CHAR) LEN(10)

 DCL VAR(&SESS) TYPE(*CHAR) LEN(10)

 DCL VAR(&SUB) TYPE(*CHAR) LEN(2)

 DCL VAR(&STS) TYPE(*DEC) LEN(5 0)

 DCL &ITLEN TYPE(*DEC) VALUE(2)

 DCL &ITPTR TYPE(*DEC) LEN(5 0)

 DCL VAR(&SUBFIX) TYPE(*CHAR) LEN(40) +

 VALUE(’A B C D E F G H I J G0G1G2G3G4G5G6G7G8G9’)

 RTVJOBA JOB(&JOBN)

/*---*/

/* LOOP THROUGH THE POSSIBLE DEVICE NAME AND */

/* CHECK IF THERE IS ONE WITH SIGNON DISPLAY ON. */

/*---*/

 CHGVAR &ITPTR 1

LOOP1:

 IF (&ITPTR *GT 40) THEN(DO)

 CHGVAR &SESS VALUE(’INVALID ’)

 GOTO END

 ENDDO

 CHGVAR VAR(&SUB) VALUE(%SST(&SUBFIX &ITPTR &ITLEN))

 CHGVAR VAR(&SESS) VALUE(&JOBN *TCAT &SUB)

 RTVCFGSTS CFGD(&SESS) CFGTYPE(*DEV) STSCDE(&STS)

 MONMSG MSGID(CPF9801)

 IF (&STS = 50) THEN(GOTO END)

 CHGVAR &ITPTR (&ITPTR + &ITLEN)

 GOTO LOOP1

END: ENDPGM

CALL (Call an AS/400 Program)

Chapter 26. Operation Code Details 519

Calling CL Commands

If the VisualAge RPG program calls CL commands:,

v Specify a CALL to QCMDDDM if the CL command issues commands for

OS/400 files

v Specify a CALL to QCMDEXC if the CL command issues commands to OS/400

programs and/or data areas.

CALL (Call an AS/400 Program)

520 VisualAge RPG Language Reference

CALLB (Call a Function)

 Free-Form Syntax (not allowed - use the CALLP operation code)

 Code Factor 1 Factor 2 Result Field Indicators

CALLB (D E) Procedure name or

procedure pointer

Plist name _ ER _

Use CALLB to call a Windows function. Functions are exported names from

dynamic link libraries (DLLs) which are linked to the VisualAge RPG application

when the application is compiled. For information on how to compile an

application that calls a Windows C function, see Getting Started with WebSphere

Development Studio Client for iSeries.

Factor 2 must contain a procedure name or a procedure pointer containing the

address of the function to be called.

The procedure name is case sensitive. This means that the name entered in factor 2

must match the case of the function being called. The procedure name must be 255

characters or less. If the name is longer than 255, it is truncated to 255.

If factor 2 contains a procedure pointer, the *ROUTINE in the PSDS is cleared and

filled with blanks. If factor 2 contains a literal or named constant, *ROUTINE in

the PSDS contains the first eight characters of the procedure name.

If the result field is specified, it must contain a PLIST name.

If a resulting indicator is specified in positions 73 and 74, it is set on when an error

occurs during the CALLB operation.

To handle CALLB exceptions (program status codes 202, 211, or 231), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

The linkage convention, __cdecl,must be used in the called function.

Note: The VisualAge RPG compiler uses this linkage convention for VARPG

subprocedures.

See Programming with VisualAge RPG for examples of how to use the CALLB

operation.

CALLB (Call a Function)

Chapter 26. Operation Code Details 521

CALLP (Call a Prototyped Procedure or Program)

 Free-Form Syntax {CALLP{(EMR)}} name({parm1{:parm2...}})

 Code Factor 1 Factor 2

CALLP (M/R) name{ (Parm1 {:Parm2...}) }

The CALLP operation is used to call prototyped procedures, local workstation

programs (.EXE, .BAT, or .COM’s), or remote programs on an iSeries server. This is

the recommended way of calling programs.

UCS-2 parameters are not allowed.

Unlike the other call operations, CALLP uses a free-form syntax. You use the name

operand to specify the name of the prototype of the called program or procedure,

as well as any parameters to be passed. (This is similar to calling a built-in

function.) A maximum of 255 parameters are allowed for a program call, and a

maximum of 399 for a procedure call.

On a free-form calculation specification, the operation code name may be omitted

if no extenders are needed.

A prototype for the program or procedure being called must be included in the

definition specifications preceding the CALLP. The compiler uses the prototype

name to obtain an external name, if required, for the call.

If CALLP is used to call a procedure which returns a value, that value will not be

available to the caller. If the value is required, call the prototyped procedure from

within an expression.

To perform a dynamic external call to a local workstation program, specify

keyword CLTPGM on the prototype. With this type of call, there can be no return

value and parameters must be passed by value.

To perform a remote call to an iSeries program, specify EXTPGM(program-name)

and LINKAGE(*SERVER) on the prototype.

For information on how to define a local program and for the rules for passing

parameters, see Chapter 18, “Definition Specifications,” on page 255. For

information on procedures, subprocedures, and prototyping, see Chapter 6,

“Subprocedures and Prototypes,” on page 63. See Programming with VisualAge RPG

for information on calling programs and using multiple procedures.

For more information on call operations, see “Call Operations” on page 353. For

more information on defining prototypes, see “Prototypes and Parameters” on

page 71. For information on how operation extenders M and R are used, see

“Precision Rules for Numeric Operations” on page 390.

Note: Programs that are called using CALLP complete execution before any

statements after CALLP are executed.

CALLP (Call a Prototyped Procedure or Program)

522 VisualAge RPG Language Reference

In the following example, the parameter fld1 is passed to program pgm1.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++

D Functions-cont++++++++++++++++++++

D pgm1 PR CLTPGM(’testprog’)

D fld1 20A VALUE

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

C*

C CALLP pgm1(fld1) 90

Figure 220. CALLP Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++

 * Remote program call requires LINKAGE(*SERVER) and EXTPGM()

d target1 pr linkage(*server)

d extpgm(’TARGET1’)

d 20

d 9s 2

 /free

 target1(p1: p2);

Figure 221. Remote prototyped call to server program

 * The prototype for the procedure has an array parameter.

D proc pr

D parm 10a dim(5)

* An array to pass to the procedure

D array s 10a dim(5)

* Call the procedure, passing the array

C callp proc (array)

Figure 222. Passing an array parameter using CALLP

CALLP (Call a Prototyped Procedure or Program)

Chapter 26. Operation Code Details 523

|
|
|
|
|
|
|
|
|
||
|
|

CASxx (Conditionally Invoke Subroutine)

 Free-Form Syntax (not allowed - use the IF and EXSR operation codes)

 Code Factor 1 Factor 2 Result Field Indicators

CASxx Comparand Comparand Subroutine

name

HI LO EQ

The CASxx operation is used to conditionally select a subroutine for processing.

The selection is based on the relationship between factor 1 and factor 2, as

specified by xx. If the relationship denoted by xx exists between factor 1 and factor

2, the subroutine specified in the result field is processed. If the relationship

denoted by xx does not exist, the program continues with the next CASxx

operation in the CAS group. For a list of xx values, see “Compare Operations” on

page 357.

A CAS group can contain only CASxx operations. An ENDCS operation must

follow the last CASxx operation. After the subroutine is processed, the program

continues with the next operation following the ENDCS operation, unless the

subroutine passes control to a different operation.

If factor 1 and factor 2 are specified, they can contain a literal, a named constant, a

figurative constant, a field name, a table name, an array element, a data structure

name, or blanks. Both factor 1 and factor 2 must be of the same data type. Blanks

are valid only if xx is blank and no resulting indicators are specified.

The result field must contain the name of a user subroutine or one of the following

the keywords: *TERMSR, *PSSR or *INZSR:

v *TERMSR specifies a subroutine to be run during normal termination.

v *PSSR specifies that this is a program exception/error subroutine to handle

program-detected exception/errors.

v *INZSR specifies a subroutine to be run during initialization.

Conditioning indicators can be specified for the CASxx operation, however,

conditioning indicators cannot be specified on the ENDCS operation for a CAS

group.

In a CASbb operation, factor 1 and factor 2 are required only if resulting indicators

are specified in positions 71 through 76. The CASbb operation with no resulting

indicators specified in positions 71 through 76 is functionally identical to an EXSR

operation, because it causes the unconditional running of the subroutine named in

the result field of the CASbb operation. Any CASxx operations that follow an

unconditional CASbb operation in the same CAS group are never tested. Therefore,

the normal placement of the unconditional CASbb operation is after all other

CASxx operations in the CAS group.

If resulting indicators are specified, they are set on as follows:

v High: (71-72) Factor 1 is greater than factor 2.

v Low: (73-74) Factor 1 is less than factor 2.

v Equal: (75-76) Factor 1 equals factor 2.

See “Compare Operations” on page 357 or “Subroutine Operations” on page 378

for further rules for the CASxx operation.

CASxx (Conditionally Invoke Subroutine)

524 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The CASGE operation compares FieldA with FieldB. If FieldA is

C* greater than or equal to FieldB, Subr01 is processed and the

C* program continues with the operation after the ENDCS operation.

C*

C FieldA CASGE FieldB Subr01

C*

C* If FieldA is not greater than or equal to FieldB, the program

C* next compares FieldA with FieldC. If FieldA is equal to FieldC,

C* SUBR02 is processed and the program continues with the operation

C* after the ENDCS operation.

C*

C FieldA CASEQ FieldC Subr02

C*

C* If FieldA is not equal to FieldC, the CAS operation causes Subr03

C* to be processed before the program continues with the operation

C* after the ENDCS operation.

C* The CAS statement is used to provide a subroutine if none of

C* the previous CASxx operations have been met.

C*

C CAS Subr03

C*

C* The ENDCS operation denotes the end of the CAS group.

C*

C ENDCS

Figure 223. CASxx Operations

CASxx (Conditionally Invoke Subroutine)

Chapter 26. Operation Code Details 525

CAT (Concatenate Two Strings)

 Free-Form Syntax (not allowed - use the + operator)

 Code Factor 1 Factor 2 Result Field Indicators

CAT (P) Source string 1 Source string 2: number of

blanks

Target string

The CAT operation concatenates the string specified in factor 2 to the end of the

string specified in factor 1 and places it in the result field. The source and target

strings must all be of the same type, either all character, all graphic, or all UCS-2.

If factor 1 is specified, it must contain a string which can be a field name, array

element, named constant, data structure name, table name, or literal. If no factor 1

is specified, factor 2 is concatenated to the end of the result field string.

Note: In the following description of the CAT operation, references to factor 1

apply to the result field if factor 1 is not specified.

Factor 2 must contain a string, and may contain the number of blanks to be

inserted between the concatenated strings. Its format is the string, followed by a

colon, followed by the number of blanks. The blanks are in the format of the data.

For example, for character data a blank is x’20’, while for UCS-2 data a blank is

x’0020’. If graphic strings are being concatenated, the blanks are double-byte

blanks. The string portion can contain a field name, array element, named

constant, data structure name, table name, literal, or data structure subfield name.

The number of blanks must be numeric with zero decimal positions, and can

contain a named constant, array element, literal, table name, or field name.

If a colon is specified, the number of blanks must be specified. If no colon is

specified, concatenation occurs with the trailing blanks, if any, in factor 1, or the

result field if factor 1 is not specified.

If the number of blanks (N) is specified, factor 1 is copied to the result field

left-justified. If factor 1 is not specified the result field string is used. N blanks are

then added following the last nonblank character. Factor 2 is then appended to this

result. Leading blanks in factor 2 are not counted when N blanks are added to the

result; they are just considered to be part of factor 2. If the number of blanks is not

specified, the trailing and leading blanks of factor 1 and factor 2 are included in

the result.

The result field must be a string and can contain a field name, array element, data

structure name, or table name. Its length should be the length of factor 1 and factor

2 combined plus any intervening blanks; if it is not, truncation occurs from the

right.

A P operation extender indicates that the result field should be padded on the

right with blanks after the concatenation occurs if the result field is longer than the

result of the operation. If padding is not specified, only the leftmost part of the

field is affected.

At run time, if the number of blanks is fewer than zero, the compiler defaults the

number of blanks to zero.

CAT (Concatenate Two Strings)

526 VisualAge RPG Language Reference

Figurative constants cannot be used in the factor 1, factor 2, or result fields. No

overlapping is allowed in a data structure for factor 1 and the result field, or for

factor 2 and the result field.

“String Operations” on page 375 describes the general rules for specifying string

operations.

For more information, see “String Operations” on page 375.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* CAT concatenates LAST to NAME and inserts one blank as specified

C* in factor 2. TEMP contains ’Mr.bSmith’.

C MOVE ’Mr. ’ NAME 6

C MOVE ’Smith ’ LAST 6

C NAME CAT LAST:1 TEMP 9

C*

C* CAT concatenates ’OS’ to STRING and places ’OSXX’ in TEMP.

C MOVE ’XX’ STRING 2

C ’OS’ CAT STRING TEMP 4

C*

C* The following example is the same as the previous example except

C* that TEMP is defined as a 10 byte field. P operation extender

C* specifies that blanks will be used in the rightmost positions

C* of the result field that the concatenation result, ’OSXX’,

C* does not fill. As a result, TEMP contains ’OSXXbbbbbb’

C* after concatenation.

C MOVE *ALL’*’ TEMP 10

C MOVE ’XX’ STRING 2

C ’OS’ CAT(P) STRING TEMP

C*

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following example shows leading blanks in factor 2. After

C* the CAT the RESULT contains ’MR.bSMITH’.

C*

C MOVE ’MR.’ NAME 3

C MOVE ’ SMITH’ FIRST 6

C NAME CAT FIRST RESULT 9

C*

C* The following example shows the use of CAT without factor 1.

C* FLD2 is a 9 character string. Prior to the concatenation, it

C* contains ’ABCbbbbbb.’ FLD1 contains ’XYZ’. After the

C* concatenation FLD2 contains ’ABCbbXYZb’.

C*

C MOVEL(P) ’ABC’ FLD2 9

C MOVE ’XYZ’ FLD1 3

C CAT FLD1:2 FLD2

Figure 224. CAT Operations

CAT (Concatenate Two Strings)

Chapter 26. Operation Code Details 527

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 *

 * The following example shows the use of graphic strings

 *

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++

 * Value of Graffld is ’AACCBBGG’.

 * Value of Graffld2 after CAT ’aa AACCBBGG ’

 * Value of Graffld3 after CAT ’AABBCCDDEEFFGGHHAACC’

 *

D Graffld 4G INZ(G’AACCBBGG’)

D Graffld2 10G INZ

D Graffld3 10G INZ(G’AABBCCDDEEFFGGHH’)

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.

 * The value 2 represents 2 graphic blanks as separators

C G’aa’ cat Graffld:2 Graffld2

C cat Graffld Graffld3

Figure 225. CAT Operation with Graphic Data

CAT (Concatenate Two Strings)

528 VisualAge RPG Language Reference

CHAIN (Random Retrieval from a File)

 Free-Form Syntax CHAIN{(ENHMR)} search-arg name {data-structure}

 Code Factor 1 Factor 2 Result Field Indicators

CHAIN (E N) search-arg name (file or record format) data-structure NR ER _

The CHAIN operation retrieves a record from a full procedural file (F in position

18 of the file description specifications) or a subfile, sets a record identifying

indicator on (if specified on the input specifications), and places the data from the

record into the input fields.

Retrieving Data from a File or Record Format

The file must be specified on the file description specifications. It can be a remote

server file or a local file.

The search argument, search-arg, must be the key or relative record number used to

retrieve the record. If access is by key, search-arg can be a a single key in the form

of a field name, a named constant, a figurative constant, or a literal.

The search argument, search-arg, must be the key, relative record number, or KLIST

name used to retrieve the record:

v If access is by key, the name operand must be a remote OS/400 file. The search

argument can be a single key in the form of a field name, a named constant, a

figurative constant, or a literal.

If the file is an externally-described file, search-arg can also be a composite key in

the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key

fields must have the same CCSID as the key in the file. For an example of

%KDS, see the example at the end of “%KDS (Search Arguments in Data

Structure)” on page 451.

v If access is by relative record number, the search argument must specify an

integer literal or a numeric field with zero decimal positions.

The name operand specifies the file or record format name that is to be read:

v If name is a file name, the first record that matches the search argument is

retrieved.

v If name is an OS/400 file name and *MBR ALL is specified, only the current

open file member is processed.

v If name is a local disk file, it must be program described.

v If name is a record format name, the file can be externally described.

v If name is a record format name and access is by key, the first record of the

specified record type whose key matches the search argument is retrieved.

Note: Record locking is supported for OS/400 remote files. Record locking is not

supported for local files.

If the data-structure operand is specified, the record is read directly into the data

structure. If name refers to a program-described file (identified by an F in position

22 of the file description specification), the data structure can be any data structure

of the same length as the file’s declared record length. If name refers to an

externally-described file or a record format from an externally described file, the

data structure must be a data structure defined with EXTNAME(...:*INPUT) or

CHAIN (Random Retrieval from a File)

Chapter 26. Operation Code Details 529

LIKEREC(...:*INPUT). See “File Operations” on page 363 for information on how to

define the data structure and how data is transferred between the file and the data

structure.

If the file specified in name is an OS/400 input DISK file, no operation extender is

allowed. All records are read without locks.

If the file specified in name is an OS/400 UPDATE file, and if the operation

extender N is not specified the CHAIN operation locks a record. The record

remains locked until:

v The record is updated

v The record is deleted

v Another record is read from the file for input or update

v A SETLL or SETGT is performed on the file

v An UNLOCK operation is performed on the file

v An output operation defined by an output specification with no field names is

performed on the file.

An output operation that adds a record to a file does not cause a record lock to be

released.

You can specify an indicator in positions 71-72 that is set on if no record in the file

matches the search argument. This information can also be obtained from the

%FOUND built-in function, which returns ’0’ if no record is found, and ’1’ if a

record is found.

To handle CHAIN exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

Positions 75 and 76 must be blank.

When the CHAIN operation is successful, the file is positioned so that a

subsequent read operation retrieves the record logically following or preceding the

retrieved record. When the CHAIN operation does not complete successfully, the

fields in the program remain unchanged and the file must be repositioned before a

subsequent read operation can be done on the file.

If the file is updated immediately after a successful CHAIN operation, the last

record retrieved is updated.

If a record is not found, if an error occurs during the CHAIN operation, or if the

last record has already been retrieved (end of file), no data is retrieved and all

fields remain unchanged.

For more information, see “File Operations” on page 363.

Note: Operation code extenders H, M, and R are allowed only when the search

argument is a list or is %KDS().

CHAIN (Random Retrieval from a File)

530 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 *

 * The CHAIN operation retrieves the first record from the file,

 * FILEX, that has a key field with the same value as the search

 * argument KEY (factor 1).

 /FREE

 CHAIN KEY FILEX;

 // If a record with a key value equal to the search argument is

 // not found, %FOUND returns ’0’ and the EXSR operation is

 // processed. If a record is found with a key value equal

 // to the search argument, the program continues with

 // the calculations after the EXSR operation.

 IF NOT %FOUND;

 EXSR Not_Found;

 ENDIF;

 /END-FREE

Figure 226. CHAIN Operation with a File Name

FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++

FCUSTFILE IF E K DISK REMOTE

 /free

 // Specify the search keys directly in a list

 chain (’abc’ : ’AB’) custrec;

 // Expressions can be used in the list of keys

 chain (%xlate(custname : LO : UP) : companyCode + partCode)

 custrec;

 return;

Figure 227. CHAIN Operation Using a List of Key Fields

FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++

FCUSTFILE IF E K DISK REMOTE

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D custRecDs ds likerec(custRec)

 /free

 // Read the record directly into the data structure

 chain (’abc’ : ’AB’) custRec custRecDs;

 // Use the data structure fields

 if (custRecDs.code = *BLANKS);

 custRecDs.code = getCompanyCode (custRecDs);

 update custRec custRecDs;

 endif;

Figure 228. CHAIN Operation Using a Data Structure with an Externally-Described File

CHAIN (Random Retrieval from a File)

Chapter 26. Operation Code Details 531

Retrieving a Record from a Subfile Part

If name is a subfile part, the search argument must be an index. The CHAIN

operation reads a record from a subfile using the index.

Before a record in a subfile part can be updated or deleted, the subfile must be

positioned to the record. *START and *END cannot be used with a subfile part.

The field values from the subfile part are assigned to the corresponding program

values for the subfile fields. These values can be modified by the program.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The CHAIN operation uses the value contained in the search

C* argument KEY to retrieve a record of the record type REC1 from

C* an externally described file. If no record is found of the

C* specified type that has a key field equal to the search

C* argument, indicator 72 is set on. A complex key with a KLIST is

C* used to retrieve records from files that have a composite key.

C* If a record of the specified type is found that has a key field

C* equal to the search argument, indicator 72 is set off and therefore

C* the UPDATE operation is processed.

C*

C KEY CHAIN REC1 72

C KEY KLIST

C KFLD Field1

C KFLD Field2

C IF NOT *IN72

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The UPDATE operation modifies all the fields in the REC1 record.

C*

C UPDATE REC1

C ENDIF

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following example shows a CHAIN with no lock.

C*

C MOVE 3 Rec_No

C Rec_No CHAIN (N) INPUT 99

Figure 229. CHAIN Operation with a Record Format Name and with No Lock

CHAIN (Random Retrieval from a File)

532 VisualAge RPG Language Reference

CHECK (Check Characters)

 Free-Form Syntax (not allowed - use the %CHECK built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

CHECK (E) Comparator string Base string:start Left-position _ ER FD

The CHECK operation verifies that each character in the base string (factor 2) is

among the characters indicated in the comparator string (factor 1). The base string

and comparator string must be of the same type, either both character, both

graphic, or both UCS-2. (Graphic and UCS-2 types must have the same CCSID

value.) Verifying begins at the leftmost character of factor 2 and continues

character by character, from left to right. Each character of the base string is

compared with the characters of factor 1. If a match for a character in factor 2

exists in factor 1, the next base string character is verified. If a match is not found,

an integer value is placed in the result field to indicate the position of the incorrect

character.

The operation stops checking when it finds the first incorrect character or when the

end of the base string is encountered. If no incorrect characters are found, the

result field is set to zero.

Factor 1 must be a string, and can contain a field name, array element, named

constant, data structure name, data structure subfield, literal, or table name.

Factor 2 must contain either the base string or the base string, followed by a colon,

followed by the start position. The base string must contain a field name, array

element, named constant, data-structure name, literal, or table name. The start

position must be numeric with no decimal positions, and can be a named constant,

array element, field name, literal, or table name. If no start position is specified, a

value of 1 is used. If the start position is greater than 1, the value in the result field

is relative to the leftmost position in the base string, regardless of the start

position.

If a result field is specified, it can be a numeric variable, numeric array element,

numeric table name, or numeric array. If the result field is not specified, you must

specify the found indicator in position 75-76.

Do not use decimal positions in the result field.

If the result field is an array, the operation continues checking after the first

incorrect character is found for as many occurrences as there are elements in the

array. If there are more array elements than incorrect characters, all of the

remaining elements are set to zeros. If graphic or UCS-2 data is used, the result

field will contain graphic character positions (that is, position 3, the 3rd graphic

character, will be character position 5).

To handle CHECK exceptions (program status code 100), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

You can specify an indicator in positions 75-76 that is set on if any incorrect

characters are found. This information can also be obtained from the %FOUND

built-in function, which returns ’1’ if any incorrect characters are found.

CHECK (Check Characters)

Chapter 26. Operation Code Details 533

Figurative constants cannot be used in the factor 1, factor 2, or result fields. No

overlapping is allowed in a data structure for factor 1 and the result field or for

factor 2 and the result field.

“String Operations” on page 375 describes the general rules for specifying string

operations.

For more information, see “String Operations” on page 375.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D* After the following example, N=6 and the found indicator 90

D* is on. Because the start position is 2, the first nonnumeric

D* character found is the ’.’.

D*

D

D Digits C ’0123456789’

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C

C MOVE ’$2000.’ Salary

C Digits CHECK Salary:2 N 90

C*

C

C MOVE ’$2000.’ Salary

C Digits CHECK Salary:2 N

C IF %FOUND

C EXSR NonNumeric

C ENDIF

C*

C*

C* Because factor 1 is a blank, CHECK indicates the position

C* of the first nonblank character. If STRING contains ’bbbthe’,

C* NUM will contain the value 4.

C*

C

C ’ ’ CHECK String Num 2 0

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

.

.

.

Figure 230. CHECK Operation (Part 1 of 2)

CHECK (Check Characters)

534 VisualAge RPG Language Reference

.

.

.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D* The following example checks that FIELD contains only the letters

D* A to J. As a result, ARRAY=(136000) after the CHECK operation.

D* Indicator 90 turns on.

D*

D

D Letter C ’ABCDEFGHIJ’

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C

C MOVE ’1A=BC*’ Field 6

C Letter CHECK Field Array 90

C

C*

C* In the following example, because FIELD contains only the

C* letters A to J, ARRAY=(000000). Indicator 90 turns off.

C*

C

C MOVE ’FGFGFG’ Field 6

C Letter CHECK Field Array 90

C

C

Figure 230. CHECK Operation (Part 2 of 2)

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D

 * The following example checks a DBCS field for valid graphic

 * characters starting at graphic position 2 in the field.

D

 * Value of Graffld is ’DDBBCCDD’.

 * The value of num after the CHECK is 4, since this is the

 * first character ’DD’ which is not contained in the string.

D

D Graffld 4G INZ(G’DDBBCCDD’)

D Num 5 0

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.

C

C

C G’AABBCC’ check Graffld:2 Num

Figure 231. CHECK Operation with Graphic Data

CHECK (Check Characters)

Chapter 26. Operation Code Details 535

CHECKR (Check Reverse)

 Free-Form Syntax (not allowed - use the %CHECKR built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

CHECKR (E) Comparator string Base string:start Right-position _ ER FD

The CHECKR operation verifies that each character in the base string is among the

characters indicated in the comparator string. The base string and comparator

string must be of the same type, either both character, both graphic, or both UCS-2.

(Graphic and UCS-2 types must have the same CCSID value.). Verifying begins at

the rightmost character of factor 2 and continues character by character, from right

to left. Each character of the base string is compared with the characters of factor 1.

If a match for a character in factor 2 exists in factor 1, the next source character is

verified. If a match is not found, an integer value is placed in the result field to

indicate the position of the incorrect character. Although checking is done from the

right, the position placed in the result field will be relative to the left.

Factor 1 must be a string and can contain a field name, array element, named

constant, data structure name, data structure subfield, literal, or table name.

Factor 2 must contain either the base string or the base string, followed by a colon,

followed by the start position. The base string must contain a field name, array

element, named constant, data structure name, data structure subfield name, literal,

or table name. The start position must be numeric with no decimal positions, and

can be a named constant, array element, field name, literal, or table name. If no

start position is specified, the length of the string is used.

If a result field is specified, it can be a numeric variable, numeric array element,

numeric table name, or numeric array. If the result field is not specified, you must

specify the found indicator in position 75-76. The value in the result field is relative

to the leftmost position in the source string, regardless of the start position.

Do not use decimal positions in the result field.

If the result field is an array, the operation continues checking after the first

incorrect character is found for as many occurrences as there are elements in the

array. If there are more array elements than incorrect characters, all of the

remaining elements are set to zeros. If the result field is not an array, the operation

stops checking when it finds the first incorrect character or when the end of the

base string is encountered. If no incorrect characters are found, the result field is

set to zero.

If graphic or UCS-2 data is used, the result field will contain graphic character

positions (that is, position 3, the 3rd graphic character, will be character position 5).

To handle CHECKR exceptions (program status code 100), either the operation

code extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

You can specify an indicator in positions 75-76 that is set on if any incorrect

characters are found. This information can also be obtained from the %FOUND

built-in function, which returns ’1’ if any incorrect characters are found.

CHECKR (Check Reverse)

536 VisualAge RPG Language Reference

Figurative constants cannot be used in the factor 1, factor 2, or result fields. No

overlapping is allowed in a data structure for factor 1 and the result field, or for

factor 2 and the result field.

For more information, see “String Operations” on page 375.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* Because factor 1 is a blank character, CHECKR indicates the

C* position of the first nonblank character. This use of CHECKR

C* allows you to determine the length of a string. If STRING

C* contains ’ABCDEF ’, NUM will contain the value 6.

C* If an error occurs, %ERROR is set to return ’1’ and

C* %STATUS is set to return status code 00100.

C*

C

C ’ ’ CHECKR(E) String Num

C

C SELECT

C WHEN %ERROR

C ... an error occurred

C WHEN %FOUND

C ... NUM is less than the full length of the string

C ENDIF

C*

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D*

D* After the following example, N=1 and the found indicator 90

D* is on. Because the start position is 5, the operation begins

D* with the rightmost 0 and the first nonnumeric found is the ’$’.

D*

D Digits C ’0123456789’

D

D*

Figure 232. CHECKR Operation (Part 1 of 2)

CHECKR (Check Reverse)

Chapter 26. Operation Code Details 537

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C

C MOVE ’$2000.’ Salary 6

C Digits CHECKR Salary:5 N 90

C

.

.

.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*

D* The following example checks that FIELD contains only the letters

D* A to J. As a result, ARRAY=(876310) after the CHECKR operation.

D* Indicator 90 turns on.

D

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D Array S 1 DIM(6)

D Letter C ’ABCDEFGHIJ’

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C

C MOVE ’1A=BC***’ Field 8

C Letter CHECKR Field Array 90

C

Figure 232. CHECKR Operation (Part 2 of 2)

CHECKR (Check Reverse)

538 VisualAge RPG Language Reference

CLEAR (Clear)

 Free-Form Syntax CLEAR {*NOKEY} {*ALL} name

 Code Factor 1 Factor 2 Result Field Indicators

CLEAR *NOKEY *ALL name (variable

or record

format)

CLEAR name (window

or subfile)

The CLEAR operation sets the following to their default initialization value

depending on field type (numeric, character, graphic, UCS-2, indicator, pointer, or

date/time/timestamp):

v Elements in a structure (record formats, data structures, arrays, tables)

v Variables (fields, subfields, array elements, indicators)

v Entry field parts on a window

v Subfiles.

For the default initialization value for a data type, see Chapter 9, “Data Types and

Data Formats,” on page 103.

Fully qualified names may be specified as the Result-Field operand for CLEAR

when coded in free-form calculation specifications. If the structure or variable

being cleared is variable-length, its length changes to 0. The CLEAR operation

allows you to clear structures on a global basis, as well as element by element,

during run time.

*ALL, *NOKEY cannot be specified for windows or subfiles.

See “Initialization Operations” on page 366.

Clearing Variables

You cannot specify *NOKEY.

*ALL is optional. If *ALL is specified and the name operand is a multiple

occurrence data structure or a table name, all occurrences or table elements are

cleared and the occurrence level or table index is set to 1.

The name operand specifies the variable to be cleared. The particular entry in the

name operand determines the clear action as follows:

Single occurrence data structure

All fields are cleared in the order in which they are declared within the

structure.

Multiple-occurrence data structure

If *ALL is not specified, all fields in the current occurrence are cleared. If

*ALL is specified, all fields in all occurrences are cleared.

Table name

If *ALL is not specified, the current table element is cleared. If *ALL is

specified, all table elements are cleared.

CLEAR (Clear)

Chapter 26. Operation Code Details 539

Array name

Entire array is cleared

Array element (including indicators)

Only the element specified is cleared.

Clearing Record Formats

If the name operand specifies a DISK record format name, *NOKEY can be

specified to clear all fields except key fields.

*ALL is optional. If *ALL is specified and *NOKEY is not, all fields in the record

format are cleared. If *ALL is not specified, only those fields that are output in that

record format are affected. If *NOKEY is specified, then key fields are not cleared,

even if *ALL is specified.

The name operand is the record format to be cleared. Fields are cleared in the order

they are defined within the record format.

Fields in DISK, or PRINTER file record formats are affected only if the record

format is output in the program. Input-only fields are not affected by the RESET

operation, except when *ALL is specified.

For more information, see “Initialization Operations” on page 366.

Note: Input-only fields in logical files will appear in the output specifications,

although they are not actually written to the file. When a CLEAR or RESET

without *NOKEY being specified is done to a record containing these fields,

then these fields will be cleared or reset because they appear in the output

specifications.

Clearing Entry Fields on a Window

If the name operand specifies a window, the window must contain entry fields.

All entry fields on the window are cleared to their default values:

v Numeric fields are cleared with zeros

v Character fields are cleared with blanks.

The corresponding program fields are also set to zero or blank, depending on their

type. For example, if window INVENTORY contains the character entry field

ENT0000B and the numeric entry field ENT0000C, the CLEAR operation performs

the equivalent to the following:

Clearing Subfiles

If the name operand specifies a subfile, all entries in the subfile are cleared and its

Count attribute is set to zero.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++

 EVAL ENT0000B = *BLANKS

 EVAL ENT0000C = *ZERO

 EVAL %setatr(’inventory’:’ent0000b’:’text’) = ENT0000B

 EVAL %setatr(’inventory’:’ent0000c’:’text’) = ent0000c

Figure 233. Clearing windows

CLEAR (Clear)

540 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D DS1 DS

D Num 2 5 0

D Char 20 30A

D

D MODS DS OCCURS(2)

D Fld1 1 5

D Fld2 6 10 0

 * In the following example, CLEAR sets all subfields in the data

 * structure DS1 to their defaults, CHAR to blank, NUM to zero.

 /FREE

 CLEAR DS1;

 // In the following example, CLEAR sets all occurrences for the

 // multiple occurrence data structure MODS to their default values

 // Fld1 to blank, Fld2 to zero.

 CLEAR *ALL MODS;

 /END-FREE

Figure 234. CLEAR Operation

CLEAR (Clear)

Chapter 26. Operation Code Details 541

CLOSE (Close Files)

 Free-Form Syntax CLOSE{(E)} file-name|*ALL

 Code Factor 1 Factor 2 Result Field Indicators

CLOSE (E) file-name or *ALL _ ER _

The CLOSE operation closes one or more files. The file cannot be used again unless

you specify an OPEN operation for that file. The file can either be a local file or a

remote file.

A CLOSE operation to an already closed file does not produce an error.

file-name names the file to be closed. You can specify the keyword *ALL to close all

the files at once. You cannot specify an array or table file (identified by a T in

position 18 of the file description specifications).

To handle CLOSE exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

Positions 71, 72, 75, and 76 must be blank.

For more information, see “File Operations” on page 363.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * The explicit CLOSE operation closes FILEB.

 /FREE

 CLOSE FILEB;

 // The CLOSE *ALL operation closes all files in the

 // program. You must specify an explicit OPEN for any file that

 // you wish to use again. If the CLOSE operation is not

 // completed successfully, %ERROR returns ’1’.

 CLOSE(E) *ALL;

 /END-FREE

Figure 235. CLOSE Operation

CLOSE (Close Files)

542 VisualAge RPG Language Reference

CLSWIN (Close Window)

 Free-Form Syntax CLSWIN{(E)} window-name

 Code Factor 1 Factor 2 Result Field Indicators

CLSWIN (E) Window name _ ER _

The CLSWIN operation closes a window and removes it from the display. A

Destroy event is generated for the window. The window must be defined in the

application.

Factor 2 contains the name of the window to be closed.

To handle CHECKR exceptions, either the operation code extender ’E’ or an error

indicator ER can be specified, but not both. For more information on error

handling, see “Program Exception and Errors” on page 51.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C* A window named UPDCUST is closed.

C CLSWIN ’UPDCUST’

Figure 236. CLSWIN Operation

CLSWIN (Close Window)

Chapter 26. Operation Code Details 543

COMMIT (Commit)

 Free-Form Syntax COMMIT{(E)}

 Code Factor 1 Factor 2 Result Field Indicators

COMMIT (E) _ ER _

The COMMIT operation processes a group of database changes as a unit. Changes

associated with the unit can be rolled back using the ROLBK operation.

The COMMIT operation can only be used with OS/400 files. It cannot be used

with local files.

To open an OS/400 database file for commitment control, specify COMMIT on the

file description specification. Only files opened under commitment control are

affected by the COMMIT operation, regardless of the component that issued the

COMMIT.

The COMMIT operation does not change the file position. All record locks are

released for files under commitment control.

A commitment control environment can only be started for one server. You can use

these files on other servers, however these files cannot be operated on under

commitment control.

Commitment control ends when the application ends. If changes are pending in

the OS/400 database which have not been explicitly committed or rolled back, the

changes are rolled back when the application ends. Prior to running an application

under a commitment control environment, you must use the GUI Designer to

define the commitment level. For more information on using the GUI Designer to

define server information, see Programming with VisualAge RPG .

To handle COMMIT exceptions (program status codes 802 to 805), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For example, an error occurs if commitment control is not active. For more

information on error handling, see “Program Exception and Errors” on page 51.

For more information, see “File Operations” on page 363.

COMMIT (Commit)

544 VisualAge RPG Language Reference

COMP (Compare)

 Free-Form Syntax (not allowed - use the use the =, <, <=, >, >=, or <> operators)

 Code Factor 1 Factor 2 Result Field Indicators

COMP Comparand Comparand HI LO EQ

The COMP operation compares factor 1 with factor 2.

Factor 1 and factor 2 must contain a literal, a named constant, a field name, a table

name, an array element, a data structure, or a figurative constant. Factor 1 and

factor 2 must have the same data type. Do not specify the same indicator for all

three conditions. When specified, the resulting indicators are set on or off to reflect

the results of the compare.

As a result of the comparison, indicators are set on as follows:

v High: (71-72) Factor 1 is greater than factor 2.

v Low: (73-74) Factor 1 is less than factor 2.

v Equal: (75-76) Factor 1 equals factor 2.

“Compare Operations” on page 357 describes the general rules for specifying

compare operations.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* Initial field values are:

C* FLDA = 100.00

C* FLDB = 105.00

C* FLDC = 100.00

C* FLDD = ABC

C* FLDE = ABCDE

C*

C* Indicator 12 is set on; indicators 11 and 13 are set off.

C FLDA COMP FLDB 111213

C*

C* Indicator 15 is set on; indicator 14 is set off.

C FLDA COMP FLDB 141515

C*

C* Indicator 18 is set on; indicator 17 is set off.

C FLDA COMP FLDC 171718

C*

C* Indicator 21 is set on; indicators 20 and 22 are set off

C FLDD COMP FLDE 202122

Figure 237. COMP Operation

COMP (Compare)

Chapter 26. Operation Code Details 545

DEALLOC (Free Storage)

 Free-Form Syntax DEALLOC{(EN)} pointer-name

 Code Factor 1 Factor 2 Result Field Indicators

DEALLOC

(E/N)

pointer-name _ ER _

The DEALLOC operation frees one previous allocation of heap storage.

pointer-name is a pointer that must be the value previously set by a heap-storage

allocation operation (either an ALLOC operation in RPG, or some other

heap-storage allocation mechanism). It is not sufficient to simply point to heap

storage; the pointer must be set to the beginning of an allocation.

The storage pointed to by the pointer is freed for subsequent allocation by this

program or any other in the activation group.

If operational extender N is specified, the pointer is set to *NULL after a successful

deallocation.

To handle DEALLOC exceptions (program status code 426), either the operation

code extender ’E’ or an error indicator ER can be specified, but not both. The

pointer-name operand will not be changed if an error occurs, even if ’N’ is specified.

For more information on error handling, see “Program Exception and Errors” on

page 51.

pointer-name must be a basing pointer scalar variable (a standalone field, data

structure subfield, table name or array element).

No error is given at runtime if the pointer is already *NULL.

For more information, see “Memory Management Operations” on page 367.

DEALLOC (Free Storage)

546 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

 *

D Ptr1 S *

D Fld1 S 1A

D BasedFld S 7A BASED(Ptr1)

 /FREE

 // 7 bytes of storage are allocated from the heap and

 // Ptr1 is set to point to it

 Ptr1 = %alloc (7);

 // The DEALLOC frees the storage. This storage is now available

 // for allocation by this program or any other program in the

 // activation group. (Note that the next allocation may or

 // may not get the same storage back).

 dealloc Ptr1;

 // Ptr1 still points at the deallocated storage, but this pointer

 // should not be used with its current value. Any attempt to

 // access BasedFld which is based on Ptr1 is invalid.

 Ptr1 = %addr (Fld1);

 // The DEALLOC is not valid because the pointer is set to the

 // address of program storage. %ERROR is set to return ’1’,

 // the program status is set to 00426 (%STATUS returns 00426),

 // and the pointer is not changed.

 dealloc(e) Ptr1;

 // Allocate and deallocate storage again. Since operational

 // extender N is specified, Ptr1 has the value *NULL after the

 // DEALLOC.

 Ptr1 = %alloc (7);

 dealloc(n) Ptr1;

 /END-FREE

Figure 238. DEALLOC operation

DEALLOC (Free Storage)

Chapter 26. Operation Code Details 547

DEFINE (Field Definition)

 Free-Form Syntax (not allowed - use the LIKE or DTAARA keyword on the Definition specification)

 Code Factor 1 Factor 2 Result Field Indicators

DEFINE *LIKE Referenced field Defined field

DEFINE *DTAARA External data area Internal field

Use the DEFINE operation to either define a field based on the attributes (length

and decimal positions) of another field or define a field with an OS/400 data area.

Conditioning indicators (positions 9 through 11) are not permitted.

Defining a Field Based on Another Field

Factor 1 must contain *LIKE.

Factor 2 must contain the name of the field being referenced. This field can be

program described or externally described. The attributes of the field in factor 2

are used for the field being defined in the result field. This field can be program

described or externally described. Factor 2 cannot be a literal or a named constant,

a float numeric field, or an object. If factor 2 is an array, an array element, or a

table name, the attributes of an element of the array or table are used to define the

field.

The result field contains the name of the field being defined. It cannot be an array,

an array element, a data structure, or a table name.

You can use positions 64 through 68 (field length) to make the result field entry

longer or shorter than the factor 2 entry. Position 64 can contain either a plus sign

(+) to indicate an increase in the field length, or a minus sign (−) to indicate a

decrease in the field length. Positions 65 through 68 can contain the increase or

decrease in length (right-adjusted) or can be blank. The field length entry is

allowed only for graphic, UCS-2, numeric, and character fields. For graphic or

UCS-2 fields, the field length difference is calculated in double byte characters.

If positions 64 through 68 are blank, the result field entry is defined with the same

length as the factor 2 entry.

Note: You cannot change the number of decimal positions for the field being

defined.

If factor 2 is a graphic or UCS-2 field, the result field will be defined as the same

type, that is, as graphic or UCS-2. The new field will have the default graphic or

UCS-2 CCSID. If you want the new field to have the same CCSID as the field in

factor 2, use the LIKE keyword on a definition specification. The length adjustment

is expressed in double bytes.

See Figure 239 on page 550 for examples of *LIKE DEFINE.

Defining a Field as a Data Area

Factor 1 must contain *DTAARA.

DEFINE (Field Definition)

548 VisualAge RPG Language Reference

If factor 2 is specified, it must contain the OS/400 data area being referenced. If

factor 2 is not specified, the result field is used as the data area name.

The data area name can either be the OS/400 data area name or an override name

you defined using the Define server information menu item. For more information

on using the GUI Designer to define server information, see Programming with

VisualAge RPG.

The result field must contain a field, a data structure, a data structure subfield, or a

data area data structure. This is the same name that is used with the IN and OUT

operations to retrieve data from and write data to the data area specified in factor

2. When a data area data structure is specified in the result field, the VisualAge

RPG application retrieves data from the data area at the program start time and

writes data to the data area when the program ends.

The result field cannot contain the following:

v The name of a program status data structure or the name of a subfield of a

program status data structure

v A file information data structure or the name of a subfield of a file information

data structure

v The name of a subfield of a data area data structure

v A multiple-occurrence data structure or the name of a subfield of a

multiple-occurrence data structure

v A data structure that appears in another *DTAARA DEFINE statement

v The data area name on the DTAARA keyword on the definition specification

v An input record field

v An array

v An array element

v A table

Note: If the result field is a data area data structure that contains a packed decimal

subfield, the OS/400 data area must contain a valid packed decimal value

that has been initialized.

For numeric data areas, the maximum length is 24 digits with 9 decimal places.

Note that there is a maximum of 15 digits to the left of the decimal place, even if

the number of decimals is less than 9.

You can use positions 64 though 70 to define the length and number of decimal

positions for the result field. This must match the external description of the data

area specified in factor 2.

See Figure 239 on page 550 for examples of *DTAARA DEFINE.

DEFINE (Field Definition)

Chapter 26. Operation Code Details 549

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

*

C* FLDA is a 7-position character field.

C* FLDB is a 5-digit field with 2 decimal positions.

C*

C*

C* FLDP is a 7-position character field.

C *LIKE DEFINE FLDA FLDP

C*

C* FLDQ is a 9-position character field.

C *LIKE DEFINE FLDA FLDQ +2

C*

C* FLDR is a 6-position character field.

C *LIKE DEFINE FLDA FLDR - 1

C*

C* FLDS is a 5-position numeric field with 2 decimal positions.

C *LIKE DEFINE FLDB FLDS

C*

C* FLDT is a 6-position numeric field with 2 decimal positions.

C *LIKE DEFINE FLDB FLDT + 1

C*

C* FLDU is a 3-position numeric field with 2 decimal positions.

C *LIKE DEFINE FLDB FLDU - 2

C*

C* FLDX is a 3-position numeric field with 2 decimal positions.

C *LIKE DEFINE FLDU FLDX

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The attributes (length and decimal positions) of

C* the data area (TOTGRS) must be the same as those for the

C* external data area.

C

C *DTAARA DEFINE TOTGRS 10 2

C

C*

C* The result field entry (TOTNET) is the name of the data area to

C* be used within the VRPG program. The factor 2 entry (TOTAL)

C* is the name of the data area as defined to the system.

C

C *DTAARA DEFINE TOTAL TOTNET

C

Figure 239. DEFINE Operation

DEFINE (Field Definition)

550 VisualAge RPG Language Reference

DELETE (Delete Record)

 Free-Form Syntax DELETE{(EHMR)} {search-arg} name

 Code Factor 1 Factor 2 Result Field Indicators

DELETE (E) search-arg name (file, record format,

or subfile)

NR ER _

The DELETE operation deletes a record. Once the record has been deleted, it can

never be retrieved.

If a search argument (search-arg) is not specified, the DELETE operation deletes the

current record. The current record is the last record retrieved. The record must be

locked by a previous input operation such as CHAIN or READ.

If a search argument (search-arg) is specified, it must contain a key, relative record

number, or a subfile index number that identifies the record to be deleted:

v If access is by key, the name operand must be a remote file. If duplicate records

exist for the key, only the first of the duplicate records is deleted from the file.

The search-arg can be a single key in the form of a field name, a named constant,

a figurative constant, or a literal.

If the file is an externally-described file, search-arg can also be a composite key in

the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key

fields must have the same CCSID as the key in the file. For an example of

%KDS, see the example at the end of “%KDS (Search Arguments in Data

Structure)” on page 451. For an example of using a list of values to search for

the record to be deleted, see Figure 227 on page 531.

v If access is by relative record number or subfile index number, the search

argument must be a numeric constant or variable with zero decimal positions.

v Graphic and UCS-2 key fields must have the same CCSID as the key in the file.

The name operand must be the name of the file or the name of a record format in

the file from which a record is to be deleted:

v The file can either be an OS/400 file or a local file.

v A record format name can only be used with an externally described OS/400

file. If a search argument is not specified, the record format name must be the

name of the last record read from the file; otherwise, an error occurs.

If the search argument is specified, positions 71 and 72 can contain an indicator

that is set on if the record to be deleted is not found in the file. If the search

argument is not specified, leave these positions blank. This information can also be

obtained from the %FOUND built-in function, which returns ’0’ if no record is

found, and ’1’ if a record is found.

To handle DELETE exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

Note the following when deleting records:

v Deleting a record from a subfile part causes a shift in the subfile record index

numbers among the remaining records in the subfile.

v If a sequential read operation is done on the file after a successful DELETE

operation to that file, the next record after the deleted record is obtained.

DELETE (Delete Record)

Chapter 26. Operation Code Details 551

For more information, see “File Operations” on page 363.

Notes:

1. Operation code extenders H, M, and R are allowed only when the search

argument is a list or is %KDS().

2. Leave positions 75 and 76 blank.

DELETE (Delete Record)

552 VisualAge RPG Language Reference

DIV (Divide)

 Free-Form Syntax (not allowed - use the / or /= operator, or the%DIV built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

DIV (H) Dividend Divisor Quotient + − Z

If factor 1 is specified, the DIV operation divides factor 1 by factor 2; otherwise it

divides the result field by factor 2. The quotient is placed in the result field. If

factor 1 is 0, the result of the operation is 0. Factor 2 cannot be zero. If it is, the

VARPG exception/error handling routine receives control. Factor 1 and factor 2

must be numeric; each can contain one of: an array, array element, field, figurative

constant, literal, named constant, subfield, or table name.

Factor 2 cannot be 0. If it is, the VRPG Client exception/error handling routine

receives control. Factor 2 must be numeric and can contain an array, array element,

field, figurative constant, literal, named constant, subfield, or table name.

Any remainder resulting from the divide operation is lost unless the move

remainder (MVR) operation is specified as the next operation. If you use

conditioning indicators, the DIV operation must be specified immediately before

the MVR operation.

The result of the divide operation cannot be half-adjusted (rounded) if the MVR

operation is specified after the DIV operation.

Note: The MVR operation cannot follow a DIV operation if any operand of the

DIV operation is of float format. A float variable can, however, be specified

as the result of operation code MVR.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the DIV operation.

DIV (Divide)

Chapter 26. Operation Code Details 553

DO (Do)

 Free-Form Syntax (not allowed - use the FOR operation code)

 Code Factor 1 Factor 2 Result Field Indicators

DO Starting value Limit value Index value

The DO operation begins a group of operations and indicates the number of times

the group will be processed. To indicate the number of times the group of

operations is to be processed, specify an index field, a starting value, and a limit

value. An associated ENDDO statement marks the end of the group. For more

information on DO groups, see “Structured Programming Operations” on page

376.

If factor 1 is specified, it must contain a numeric literal, named constant, or field

name. If factor 1 is not specified, the starting value is 1.

If factor 2 is specified, it must contain a numeric field name, literal, or named

constant. Factor 2 must be specified with zero decimal positions, If factor 2 is not

specified, the limit value is 1.

If the result field is specified, it must be a numeric field name that is large enough

to contain the limit value plus the increment. Any value in the result field is

replaced by factor 1 when the DO operation begins.

Factor 2 of the associated ENDDO operation specifies the value to be added to the

index field (the result field of the DO operation). It must be a numeric literal or a

numeric field with no decimal positions. If it is not specified, 1 is added to the

index field.

In addition to the DO operation itself, the conditioning indicators on the DO and

ENDDO statements control the DO group. The conditioning indicators on the DO

statement control whether or not the DO operation begins. These indicators are

checked only once, at the beginning of the DO loop. The conditioning indicators on

the associated ENDDO statement control whether or not the DO group is repeated

another time. These indicators are checked at the end of each loop.

The DO operation follows these 7 steps:

1. If the conditioning indicators on the DO statement line are satisfied, the DO

operation is processed (step 2). If the indicators are not satisfied, control passes

to the next operation to be processed following the associated ENDDO

statement (step 7).

2. The starting value (factor 1) is moved to the index field (result field) when the

DO operation begins.

3. If the index value is greater than the limit value, control passes to the

calculation operation following the associated ENDDO statement (step 7).

Otherwise, control passes to the first operation after the DO statement (step 4).

4. Each of the operations in the DO group is processed.

5. If the conditioning indicators on the ENDDO statement are not satisfied,

control passes to the calculation operation following the associated ENDDO

statement (step 7). Otherwise, the ENDDO operation is processed (step 6).

DO (Do)

554 VisualAge RPG Language Reference

6. The ENDDO operation is processed by adding the increment to the index field.

Control passes to step 3. (Note that the conditioning indicators on the DO

statement are not tested again (step 1) when control passes to step 3.)

7. The statement after the ENDDO statement is processed when the conditioning

indicators on the DO or ENDDO statements are not satisfied (step 1 or 5), or

when the index value is greater than the limit value (step 3).

Note: The index, increment, limit value, and indicators can be modified within the

loop to affect the ending of the DO group.

See “LEAVE (Leave a Do/For Group)” on page 596 and “ITER (Iterate)” on page

591 for a description of how those operations affect a DO operation.

See “FOR (For)” on page 581 for information on performing iterative loops with

free-form expressions for the initial, increment, and limit values.

For more information, see “Structured Programming Operations” on page 376.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The DO group is processed 10 times when indicator 17 is on;

C* it stops running when the index value in field X, the result

C* field, is greater than the limit value (10) in factor 2. When

C* the DO group stops running, control passes to the operation

C* immediately following the ENDDO operation. Because factor 1

C* in the DO operation is not specified, the starting value is 1.

C* Because factor 2 of the ENDDO operation is not specified, the

C* incrementing value is 1.

C

C 17 DO 10 X 3 0

C :

C ENDDO

C*

C* The DO group can be processed 10 times. The DO group stops

C* running when the index value in field X is greater than

C* the limit value (20) in factor 2, or if indicator 50 is not on

C* when the ENDDO operation is encountered. When indicator 50

C* is not on, the ENDDO operation is not processed; therefore,

C* control passes to the operation following the ENDDO operation.

C* The starting value of 2 is specified in factor 1 of the DO

C* operation, and the incrementing value of 2 is specified in

C* factor 2 of the ENDDO operation.

C*

C 2 DO 20 X 3 0

C :

C :

C :

C 50 ENDDO 2

Figure 240. DO Operation

DO (Do)

Chapter 26. Operation Code Details 555

DOU (Do Until)

 Free-Form Syntax DOU{(MR)} indicator-expression

 Code Factor 1 Extended Factor 2

DOU (M/R) indicator-expression

The DOU operation is similar to the DOUxx operation. The DOU operation code

precedes a group of operations which you want to execute at least once and

possibly more than once. An associated ENDDO statement marks the end of the

group. It differs in that the logical condition is expressed by an indicator valued

expression (indicator-expression).

The operations controlled by the DOU operation are performed until the

expression in (indicator-expression) is true. For information on how operation

extenders M and R are used, see “Precision Rules for Numeric Operations” on

page 390.

For fixed-format syntax, level and conditioning indicators are valid. Factor 1 must

be blank. Extended factor 2 contains the expression to be evaluated.

Chapter 24, “Expressions,” on page 381 describes how to specify expressions.

“Compare Operations” on page 357 describes the rules for specifying the compare

operations.

For more information, see “Compare Operations” on page 357 or “Structured

Programming Operations” on page 376.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /FREE

 // In this example, the do loop will be repeated until the F3

 // is pressed.

 dou *inkc;

 do_something();

 enddo;

 // The following do loop will be repeated until *In01 is on

 // or until FIELD2 is greater than FIELD3

 dou *in01 or (Field2 > Field3);

 do_something_else ();

 enddo;

 // The following loop will be repeated until X is greater than

 // the number of elements in Array

 dou X > %elem (Array);

 Total = Total + Array(x);

 X = X + 1;

 enddo;

 /END-FREE

Figure 241. DOU Operation

DOU (Do Until)

556 VisualAge RPG Language Reference

DOUxx (Do Until)

 Free-Form Syntax (not allowed - use the DOU operation code)

 Code Factor 1 Factor 2 Result Field Indicators

DOUxx Comparand Comparand

The DOUxx operation code precedes a group of operations which you want to

execute at least once and possibly more than once. An associated ENDDO

statement marks the end of the group. For more information on DO groups and

the meaning of xx, see “Structured Programming Operations” on page 376.

Factor 1 and factor 2 must contain a literal, a named constant, a field name, a table

name, an array element, a figurative constant, or a data structure name. Factor 1

and factor 2 must be the same data type.

On the DOUxx statement, you indicate a relationship xx. To specify a more

complex condition, immediately follow the DOUxx statement with ANDxx or

ORxx statements. The operations in the DO group are processed once, and then the

group is repeated while the relationship exists between factor 1 and factor 2 or the

condition specified by a combined DOUxx, ANDxx, or ORxx operation exists. The

group is always processed at least once even if the condition is not true at the start

of the group.

In addition to the DOUxx operation itself, the conditioning indicators on the

DOUxx and ENDDO statements control the DO group. The conditioning indicators

on the DOUxx statement control whether or not the DOUxx operation begins. The

conditioning indicators on the associated ENDDO statement can cause a DO loop

to end prematurely.

The DOUxx operation follows these steps:

1. If the conditioning indicators on the DOUxx statement line are satisfied, the

DOUxx operation is processed (step 2). If the indicators are not satisfied,

control passes to the next operation that can be processed following the

associated ENDDO statement (step 6).

2. The DOUxx operation is processed by passing control to the next operation that

can be processed (step 3). The DOUxx operation does not compare factor 1 and

factor 2 or test the specified condition at this point.

3. Each of the operations in the DO group is processed.

4. If the conditioning indicators on the ENDDO statement are not satisfied,

control passes to the next calculation operation following the associated

ENDDO statement (step 6). Otherwise, the ENDDO operation is processed (step

5).

5. The ENDDO operation is processed by comparing factor 1 and factor 2 of the

DOUxx operation or testing the condition specified by a combined operation. If

the relationship xx exists between factor 1 and factor 2 or the specified

condition exists, the DO group is finished and control passes to the next

calculation operation after the ENDDO statement (step 6). If the relationship xx

does not exist between factor 1 and factor 2 or the specified condition does not

exist, the operations in the DO group are repeated (step 3).

DOUxx (Do Until)

Chapter 26. Operation Code Details 557

6. The statement after the ENDDO statement is processed when the conditioning

indicators on the DOUxx or ENDDO statements are not satisfied (steps 1 or 4),

or when the relationship xx between factor 1 and factor 2 or the specified

condition exists at step 5.

See “LEAVE (Leave a Do/For Group)” on page 596 and “ITER (Iterate)” on page

591 for information on how those operations affect a DOUxx operation.

For more information, see “Compare Operations” on page 357 or “Structured

Programming Operations” on page 376.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The DOUEQ operation runs the operation within the DO group at

C* least once.

C

C FLDA DOUEQ FLDB

C

C*

C* At the ENDDO operation, a test is performed to determine whether

C* FLDA is equal to FLDB. If FLDA does not equal FLDB, the

C* preceding operations are processed again. This loop continues

C* processing until FLDA is equal to FLDB. When FLDA is equal to

C* FLDB, the program branches to the operation immediately

C* following the ENDDO operation.

C

C SUB 1 FLDA

C ENDDO

C

C*

C* The combined DOUEQ ANDEQ OREQ operation processes the operation

C* within the DO group at least once.

C

C FLDA DOUEQ FLDB

C FLDC ANDEQ FLDD

C FLDE OREQ 100

C

C*

C* At the ENDDO operation, a test is processed to determine whether

C* the specified condition, FLDA equal to FLDB and FLDC equal to

C* FLDD, exists. If the condition exists, the program branches to

C* the operation immediately following the ENDDO operation. There

C* is no need to test the OREQ condition, FLDE equal to 100, if the

C* DOUEQ and ANDEQ conditions are met. If the specified condition

C* does not exist, the OREQ condition is tested. If the OREQ

C* condition is met, the program branches to the operation

C* immediately following the ENDDO. Otherwise, the operations

C* following the OREQ operation are processed and then the program

C* processes the conditional tests starting at the second DOUEQ

C* operation. If neither the DOUEQ and ANDEQ condition nor the

C* OREQ condition is met, the operations following the OREQ

C* operation are processed again.

C

C SUB 1 FLDA

C ADD 1 FLDC

C ADD 5 FLDE

C ENDDO

Figure 242. DOUxx Operations

DOUxx (Do Until)

558 VisualAge RPG Language Reference

DOW (Do While)

 Free-Form Syntax DOW{(MR)} indicator-expression

 Code Factor 1 Extended Factor 2

DOW (M/R) indicator-expression

The DOW operation code precedes a group of operations which you want to

process when a given condition exists. An associated ENDDO statement marks the

end of the group. Its function is similar to that of the DOWxx operation code. It

differs in that the logical condition is expressed by an indicator valued expression

(indicator-expression). The operations controlled by the DOW operation are

performed while the expression in indicator-expression is true. For information on

how operation extenders M and R are used, see “Precision Rules for Numeric

Operations” on page 390.

For fixed-format syntax, level and conditioning indicators are valid. Factor 1 must

be blank. Factor 2 contains the expression to be evaluated.

“Compare Operations” on page 357 describes the rules for specifying the compare

operations.

For more information, see “Compare Operations” on page 357 or “Structured

Programming Operations” on page 376.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * In this example, the do loop will be repeated until the condition

 * is false. That is when A > 5 or B+C are not equal to zero.

 /FREE

 dow (a <= 5) and (b + c = 0);

 do_something (a:b:c);

 enddo;

 /END-FREE

Figure 243. DOW Operation

DOW (Do While)

Chapter 26. Operation Code Details 559

DOWxx (Do While)

 Free-Form Syntax (not allowed - use the DOW operation code)

 Code Factor 1 Factor 2 Result Field Indicators

DOWxx Comparand Comparand

The DOWxx operation code precedes a group of operations which you want to

process when a given condition exists. To specify a more complex condition,

immediately follow the DOWxx statement with ANDxx or ORxx statements. An

associated ENDDO statement marks the end of the group. For further information

on DO groups and the meaning of xx, see “Structured Programming Operations”

on page 376.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative

constant, a field name, a table name, an array element, or a data structure name.

Factor 1 and factor 2 must be of the same data type. The comparison of factor 1

and factor 2 follows the same rules as those given for the compare operations. See

“Compare Operations” on page 357.

In addition to the DOWxx operation itself, the conditioning indicators on the

DOWxx and ENDDO statements control the DO group. The conditioning

indicators on the DOWxx statement control whether or not the DOWxx operation

is begun. The conditioning indicators on the associated ENDDO statement control

whether the DOW group is repeated another time.

The DOWxx operation follows these steps:

1. If the conditioning indicators on the DOWxx statement line are satisfied, the

DOWxx operation is processed (step 2). If the indicators are not satisfied,

control passes to the next operation to be processed following the associated

ENDDO statement (step 6).

2. The DOWxx operation is processed by comparing factor 1 and factor 2 or

testing the condition specified by a combined DOWxx, ANDxx, or ORxx

operation. If the relationship xx between factor 1 and factor 2 or the condition

specified by a combined operation does not exist, the DO group is finished and

control passes to the next calculation operation after the ENDDO statement

(step 6). If the relationship xx between factor 1 and factor 2 or the condition

specified by a combined operation exists, the operations in the DO group are

repeated (step 3).

3. Each of the operations in the DO group is processed.

4. If the conditioning indicators on the ENDDO statement are not satisfied,

control passes to the next operation to run following the associated ENDDO

statement (step 6). Otherwise, the ENDDO operation is processed (step 5).

5. The ENDDO operation is processed by passing control to the DOWxx operation

(step 2). (Note that the conditioning indicators on the DOWxx statement are not

tested again at step 1.)

6. The statement after the ENDDO statement is processed when the conditioning

indicators on the DOWxx or ENDDO statements are not satisfied (steps 1 or 4),

or when the relationship xx between factor 1 and factor 2 of the specified

condition does not exist at step 2.

See “LEAVE (Leave a Do/For Group)” on page 596 and “ITER (Iterate)” on page

591 for information on how those operations affect a DOWxx operation.

DOWxx (Do While)

560 VisualAge RPG Language Reference

For more information, see “Compare Operations” on page 357 or “Structured

Programming Operations” on page 376.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The DOWLT operation allows the operation within the DO group

C* to be processed only if FLDA is less than FLDB. If FLDA is

C* not less than FLDB, the program branches to the operation

C* immediately following the ENDDO operation. If FLDA is less

C* than FLDB, the operation within the DO group is processed.

C

C FLDA DOWLT FLDB

C

C*

C* The ENDDO operation causes the program to branch to the first

C* DOWLT operation where a test is made to determine whether FLDA

C* is less than FLDB. This loop continues processing until FLDA

C* is equal to or greater than FLDB; then the program branches

C* to the operation immediately following the ENDDO operation.

C

C MULT 2.08 FLDA

C ENDDO

C

C* In this example, multiple conditions are tested. The combined

C* DOWLT ORLT operation allows the operation within the DO group

C* to be processed only while FLDA is less than FLDB or FLDC. If

C* neither specified condition exists, the program branches to

C* the operation immediately following the ENDDO operation. If

C* either of the specified conditions exists, the operation after

C* the ORLT operation is processed.

C

C FLDA DOWLT FLDB

C FLDA ORLT FLDC

C

C* The ENDDO operation causes the program to branch to the second

C* DOWLT operation where a test determines whether specified

C* conditions exist. This loop continues until FLDA is equal to

C* or greater than FLDB and FLDC; then the program branches to the

C* operation immediately following the ENDDO operation.

C

C MULT 2.08 FLDA

C ENDDO

Figure 244. DOWxx Operations

DOWxx (Do While)

Chapter 26. Operation Code Details 561

DSPLY (Display Message Window)

 Free-Form Syntax DSPLY{(E)} message {message-window-definition-name | *DFT {response}}

 Code Factor 1 Factor 2 Result Field Indicators

DSPLY (E) message message-window-
definition-name

response _ ER _

The DSPLY operation displays a Message window. The program halts, displays the

message window, and waits for a response.

The message operand must be one of the following:

v A field name

v A field name defined on the MSGNBR keyword

v Character literal, numeric literal, hexadecimal literal, DBCS literal, date literal,

time literal, or timestamp literal

v A Definition specification name

v Event attributes

v Message identifier

The message operand can be an event attribute provided the DSPLY operation is in

an action subroutine for an appropriate event (that is, the event has the specified

event attribute) or the DSPLY operation is a user subroutine executed by an action

subroutine for an event. Within free-form calculations, the message operand can be

an expression, provided the expression is enclosed by parentheses. If the EXE or

NOMAIN keyword is specified on a control specification, you cannot use a

Message Box description or message identifier as a field name.

Pointer fields are not allowed. Except for message numbers, all data in message is

converted to character before being displayed.

If the message-window-definition-name is specified, it must contain the Definition

specification name that defines the style. message-window-definition-name is optional

when:

v message is a message identifier (*MSGnnnn)

v message is a Definition specification name and the referenced Definition

specification contains the MSGNBR keyword. The MSGNBR can be either the

message number or a field containing the message number.

message-window-definition-name is ignored if the EXE or NOMAIN keyword is

specified on a control specification.

In free-form syntax, *DFT can be specified as a placeholder for no

message-window-definition-name operand in order to specify the response operand.

If specified, the response operand receives a value representing the button in the

Message window that the user pressed. The value corresponds to one of the

figurative constants that are used to define which buttons appear in a Message Box

(for example, *RETRY). These constants should be used to check which button the

user pressed. The response operand must be a numeric field with a length of 9 and

no decimal positions.

DSPLY (Display Message Window)

562 VisualAge RPG Language Reference

If the EXE or NOMAIN keyword is specified, the response operand can be numeric

with precision 9,0 or character. Reply fields in Message windows behave differently

for numeric and character fields. Numeric reply fields behave as follows:

v Pressing Enter or Return in the field returns the value 0.

v The field accepts only 9 digits; if more than 9 are entered, they are ignored.

v Entering a character including the decimal point causes a runtime error and

ends the program.

Character fields behave as follows:

v Pressing Enter or Return fills the field with blanks.

v Extra characters typed in the field are ignored. The field can accept one or more

words.

When the NOMAIN keyword is used, procedures called from Windows GUI

applications behave as follows:

v For character or DBCS fields, no message is displayed and the reply field is

filled with blanks.

v Numeric fields are filled the value 0.

To handle DSPLY exceptions, either the operation code extender ’E’ or an error

indicator ER can be specified, but not both. The exception is handled by the

specified method if an error occurs on the operation. For more information on

error handling, see “Program Exception and Errors” on page 51.

Various keywords in the Definition specification are used to define the Message

window. The BUTTON, MSGTITLE, and STYLE keywords define the window

style. The MSGDATA, MSGNBR, and MSGTEXT keywords define the message text

that appears in the window. Refer to “Definition-Specification Keywords” on page

264.

For more information, see “Message Operations” on page 368.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D Box1 M STYLE(*WARN) BUTTON(*RETRY:*ABORT:*IGNORE)

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C *MSG9999 DSPLY BOX1 REPLY 9 0

C IF reply = *RETRY

 * Retry button was pressed

C

C ELSE

C IF reply = *ABORT

 * Abort button was pressed

C

C ELSE

 * Ignore button was pressed

C

C ENDIF

C ENDIF

Figure 245. DSPLY Operation

DSPLY (Display Message Window)

Chapter 26. Operation Code Details 563

ELSE (Else)

 Free-Form Syntax ELSE

 Code Factor 1 Factor 2 Result Field Indicators

ELSE

The ELSE operation is an optional part of the IFxx and IF operations. If the IFxx

comparison is met, the calculations before ELSE are processed; otherwise, the

calculations after ELSE are processed.

Conditioning indicator entries (positions 9 through 11) are not permitted.

To close the IFxx/ELSE group use an ENDIF operation.

Figure 258 on page 588 shows an example of an ELSE operation with an IFxx

operation.

For more information, see “Structured Programming Operations” on page 376.

ELSE (Else)

564 VisualAge RPG Language Reference

ELSEIF (Else If)

 Free-Form Syntax ELSEIF{(MR)} indicator-expression

 Code Factor 1 Extended Factor 2

ELSEIF (M/R) Blank indicator-expression

The ELSEIF operation is the combination of an ELSE operation and an IF

operation. It avoids the need for an additional level of nesting.

The IF operation code allows a series of operation codes to be processed if a

condition is met. Its function is similar to that of the IFxx operation code. It differs

in that the logical condition is expressed by an indicator valued expression

(indicator-expression). The operations controlled by the ELSEIF operation are

performed when the expression in the indicator-expression operand is true (and the

expression for the previous IF or ELSEIF statement was false).

For information on how operation extenders M and R are used, see “Precision

Rules for Numeric Operations” on page 390.

For more information, see “Structured Programming Operations” on page 376.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /free

 IF state = 0;

 dosomething();

 ELSEIF state = 1;

 return;

 ELSEIF state = 2;

 report(state);

 ELSE;

 signalError (’Bad state’);

 ENDIF;

 /end-free

Figure 246. ELSEIF Operation

ELSEIF (Else If)

Chapter 26. Operation Code Details 565

ENDyy (End a Structured Group)

 Free-Form Syntax ENDDO

ENDFOR

ENDIF

ENDMON

ENDSL

(END and ENDCS not allowed)

 Code Factor 1 Factor 2 Result Field Indicators

END increment-value

ENDCS

ENDDO increment-value

ENDFOR

ENDIF

ENDMON

ENDSL

The ENDyy operation ends a CASxx, DO, DOU, DOW, DOUxx, DOWxx, FOR, IF,

IFxx, MONITOR,or SELECT group of operations.

The ENDyy operation ends a CASxx, DO, DOU, DOW, DOUxx, DOWxx, FOR, IF,

IFxx, or SELECT group of operations.

The ENDyy operations are listed below:

END End a CASxx, DO, DOU, DOUxx, DOW, DOWxx, FOR, IF, IFxx, or

SELECT group

ENDCS End a CASxx group

ENDDO End a DO, DOU, DOUxx, DOW, or DOWxx group

ENDFOR End a FOR group

* Restriction: ENDFOR is unsupported in Java applications.

ENDIF End an IF or IFxx group

ENDMON End a MONITOR group

ENDSL End a SELECT group

The increment-value operand is allowed only on an ENDyy operation that delimits

a DO group. It contains the incrementing value of the DO group. It can be positive

or negative, must have zero decimal positions, and can be an array element, table

name, data structure, field, named constant, or numeric literal. If increment-value is

not specified, the increment defaults to 1. If increment-value is negative, the DO

group never ends.

Conditioning indicators can be specified for an ENDDO or ENDFOR operation.

They are not allowed for ENDCS, ENDIF, ENDMON, and ENDSL.

Resulting indicators are not allowed. No operands are allowed for ENDCS, ENDIF,

ENDMON, ENDSL.

ENDyy (End a Structured Group)

566 VisualAge RPG Language Reference

If one ENDyy form is used with a different operation group (for example, ENDIF

with a structured group), an error results at compilation time.

For more information, see the following for examples that use the ENDyy

operation:

v “CASxx (Conditionally Invoke Subroutine)” on page 524

v “DO (Do)” on page 554

v “DOUxx (Do Until)” on page 557

v “DOWxx (Do While)” on page 560

v “IFxx (If)” on page 587

v “DOU (Do Until)” on page 556

v “DOW (Do While)” on page 559

v “FOR (For)” on page 581

v “IF (If)” on page 586

v “MONITOR (Begin a Monitor Group)” on page 602

v “SELECT (Begin a Select Group)” on page 676

For more information, see “Error-Handling Operations” on page 362 or “Structured

Programming Operations” on page 376.

ENDyy (End a Structured Group)

Chapter 26. Operation Code Details 567

ENDACT (End of Action Subroutine)

 Free-Form Syntax ENDACT {return-point}

 Code Factor 1 Factor 2 Result Field Indicators

ENDACT Return point

The ENDACT operation defines the end of an action subroutine. ENDACT must be

the last operation in an action subroutine.

If factor 2 is specified, it must contain one of the following:

*DEFAULT

The current action subroutine ends and the default processing for the

current event is performed.

*NODEFAULT

The current action subroutine ends and the default processing for the

current event is NOT performed.

a field name

The field name must be 12 characters and can contain *DEFAULT or

*NODEFAULT If the field contains an invalid value, the default error

handler receives control.

If factor 2 is not specified, the current action subroutine ends and the default

processing for the current event is performed.

When processing reaches the ENDACT operation, and if LR is on, the component

is terminated. *DEFAULT and *NODEFAULT are ignored. If action subroutines are

nested, LR is not checked, and *DEFAULT and *NODEFAULT are ignored.

Conditioning indicator entries are not allowed.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C ENDACT ’*DEFAULT’

Figure 247. ENDACT Operation

ENDACT (End of Action Subroutine)

568 VisualAge RPG Language Reference

ENDSR (End of User Subroutine)

 Free-Form Syntax ENDSR {return-point}

 Code Factor 1 Factor 2 Result Field Indicators

ENDSR label return-point

The ENDSR operation defines the end of a user subroutine. It causes a return to

the statement following the EXSR operation. ENDSR must be the last operation in

the subroutine.

In fixed-format syntax, the label operand can be specified as a point to which a

GOTO operation within the subroutine can branch. (You cannot specify a label in

free-form syntax.)

The (return-point) operand can only be specified at the end of a *PSSR or *INFSR

subroutine. It must contain one of the following:

*CANCL

The action subroutine that was running when the error occurs finishes and

the component ends abnormally.

*ENDCOMP

The action subroutine that was running when the error occurs finishes and

the component ends abnormally.

*DEFAULT

Control returns from the current action subroutine and the default

processing for the current event is performed. If LR is on, the component

terminates normally. If LR is not on, the action subroutine ends and any

default action for the event is performed.

*NODEFAULT

Control returns from the current action subroutine and the default

processing for the current event is not performed. If LR is on, the

component terminates normally. If LR is NOT on, the action subroutine

ends and any default action for the event is NOT performed.

*ENDAPPL

The action subroutine that was running when the error occurs finishes and

all currently active components end in reverse hierarchical order. The

component that was active when the error occurred terminates normally

and all other components terminate normally.

a field name

A field name can contain *CANCL, *ENDCOMP, *DEFAULT,

*NODEFAULT, or *ENDAPPL. If the field contains an invalid value, the

default error handler receives control.

Conditioning indicators are not allowed.

For more information, see “Subroutine Operations” on page 378.

ENDSR (End of User Subroutine)

Chapter 26. Operation Code Details 569

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C Label BEGSR

C .

C .

C .

C ENDSR ’*ENDCOMP’

Figure 248. ENDSR Operation

ENDSR (End of User Subroutine)

570 VisualAge RPG Language Reference

EVAL (Evaluate Expression)

 Free-Form Syntax {EVAL{(HMR)}} result = expression

{EVAL{(HMR)}} result += expression

{EVAL{(HMR)}} result -= expression

{EVAL{(HMR)}} result *= expression

{EVAL{(HMR)}} result /= expression

{EVAL{(HMR)}} result **= expression

 Code Factor 1 Extended Factor 2

EVAL (H/M/R) Assignment Statement

The EVAL operation code evaluates an assignment statement of the form

rev=″v5r2″>"result = expression" or "result op = expression". The expression

is evaluated and the result placed in result. Therefore, result cannot be a literal or

constant but must be a field name, array name, array element, data structure, data

structure subfield, or a string using the %SUBST built-in function.

The expression may yield any of the RPG data types. The type of the expression

must be the same as the type of the result. A character, graphic, or UCS-2 result

will be left justified and padded with blanks on the right or truncated as required.

If result is a variable-length field, its length will be set to the length of the result of

the expression.

If the result represents an unindexed array or an array specified as array(*), the

value of the expression is assigned to each element of the result, according to the

rules described in “Specifying an Array in Calculations” on page 183. Otherwise,

the expression is evaluated once and the value is placed into each element of the

array or sub-array. For numeric expressions, the half-adjust operation code

extender is allowed. The rules for half adjusting are equivalent to those for the

arithmetic operations.

On a free-form calculation specification, the operation code name may be omitted

if no extenders are needed.

For the assignment operators +=, -=, *=, /=, and **=, the appropriate operation is

applied to the result and the expression, and the result is assigned to the result.

For example, statement X+=Y is roughly equivalent to X=X+Y. The difference

between the two statements is that for these assignment operators, the result

operand is evaluated only once. This difference is significant when the evaluation

of the result operation involves a call to a subprocedure which has side-effects, for

example:

 warnings(getNextCustId(OVERDRAWN)) += 1;

See Chapter 24, “Expressions,” on page 381 for general information on expressions.

See “Precision Rules for Numeric Operations” on page 390 for information on

precision rules for numeric expressions. This is especially important if the

expression contains any divide operations, or if the EVAL uses any of the operation

extenders.

EVAL (Evaluate Expression)

Chapter 26. Operation Code Details 571

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 * Assume FIELD1 = 10

 * FIELD2 = 9

 * FIELD3 = 8

 * FIELD4 = 7

 * ARR is defined with DIM(10)

 * *IN01 = *ON

 * A = ’abcdefghijklmno’ (define as 15 long)

 * CHARFIELD1 = ’There’ (define as 5 long)

 /FREE

 // The content of RESULT after the operation is 20

 eval RESULT=FIELD1 + FIELD2+(FIELD3-FIELD4);

 // The indicator *IN03 will be set to *ON

 *IN03 = *IN01 OR (FIELD2 > FIELD3);

 // Each element of array ARR will be assigned the value 72

 ARR(*) = FIELD2 * FIELD3;

 // After the operation, the content of A = ’Hello There ’

 A = ’Hello ’ + CHARFIELD1;

 // After the operation the content of A = ’HelloThere ’

 A = %TRIMR(’Hello ’) + %TRIML(CHARFIELD1);

 // Date in assignment

 ISODATE = DMYDATE;

 // Relational expression

 // After the operation the value of *IN03 = *ON

 *IN03 = FIELD3 < FIELD2;

 // Date in Relational expression

 // After the operation, *IN05 will be set to *ON if Date1 represents

 // a date that is later that the date in Date2

 *IN05 = Date1 > Date2;

 // After the EVAL the original value of A contains ’ab****ghijklmno’

 %SUBST(A(3:4))= ’****’;

 // After the EVAL PTR has the address of variable CHARFIELD1

 PTR = %ADDR(CHARFIELD1);

 // An example to show that the result of a logical expression is

 // compatible with the character data type.

 // The following EVAL statement consisting of 3 logical expressions

 // whose results are concatenated using the ’+’ operator

 // The resulting value of the character field RES is ’010’

 RES = (FIELD1<10) + *in01 + (field2 >= 17);

 // An example of calling a user-defined function using EVAL.

 // The procedure FormatDate converts a date field into a character

 // string, and returns that string. In this EVAL statement, the

 // field DateStrng1 is assigned the output of formatdate.

 DateStrng1 = FormatDate(Date1);

 // Subtract value in complex data structure.

 cust(custno).account(accnum).balance -= purchase_amount;

 // Add days and months to a date

 DATE += %DAYS(12) + %MONTHS(3);

 // Append characters to varying length character variable

 line += ’
’;

 /END-FREE

Figure 249. EVAL Operations

EVAL (Evaluate Expression)

572 VisualAge RPG Language Reference

EVALR (Evaluate expression, right adjust)

 Free-Form Syntax EVALR{(MR)} result = expression

 Code Factor 1 Extended Factor 2

EVALR (M/R) Assignment Statement

The EVALR operation code evaluates an assignment statement of the form

result=expression. The expression is evaluated and the result is placed

right-adjusted in the result. Therefore, the result cannot be a literal or constant, but

must be a fixed-length character, graphic, or UCS-2 field name, array name, array

element, data structure, data structure subfield, or a string using the %SUBST

built-in function. The type of the expression must be the same as the type of the

result. The result will be right justified and padded with blanks on the left, or

truncated on the left as required.

Notes:

1. Unlike the EVAL operation, the result of EVALR can only be of type character,

graphic, or UCS-2. In addition, only fixed length result fields are allowed,

although %SUBST can contain a variable length field if this built-in function

forms the lefthand part of the expression.

2. EVALR used with the %SETATR or %GETATR built-in behaves like the EVAL

operation. There is no right justification of the attribute value when set or

retrieved.

If the result represents an unindexed array or an array specified as array(*), the

value of the expression is assigned to each element of the result, according to the

rules described in “Specifying an Array in Calculations” on page 183. Otherwise,

the expression is evaluated once and the value is placed into each element of the

array or sub-array.

See Chapter 24, “Expressions,” on page 381 for general information on expressions.

See “Precision Rules for Numeric Operations” on page 390 for information on

precision rules for numeric expressions. This is especially important if the

expression contains any divide operations, or if the EVALR uses any of the

operation extenders.

 *..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

D Name S 20A

 /FREE

 eval Name = ’Kurt Weill’;

 // Name is now ’Kurt Weill ’

 evalr Name = ’Johann Strauss’;

 // Name is now ’ Johann Strauss’

 evalr %SUBST(Name:1:12) = ’Richard’;

 // Name is now ’ Richard Strauss’

 eval Name = ’Wolfgang Amadeus Mozart’;

 // Name is now ’Wolfgang Amadeus Moz’

 evalr Name = ’Wolfgang Amadeus Mozart’;

 // Name is now ’fgang Amadeus Mozart’

 /END-FREE

Figure 250. EVALR Operations

EVALR (Evaluate expression, right adjust)

Chapter 26. Operation Code Details 573

EVALR (Evaluate expression, right adjust)

574 VisualAge RPG Language Reference

EXCEPT (Calculation Time Output)

 Free-Form Syntax EXCEPT {except-name}

 Code Factor 1 Factor 2 Result Field Indicators

EXCEPT except-name

The EXCEPT operation allows one or more exception records to be written during

calculation time. The file the records are written to can either be a local file or an

OS/400 file.

The exception records that are to be written during calculation time are indicated

by an E in (position 17) on the output specifications. The except-name operand must

be the same name as the EXCEPT name on the output specifications (positions

30-39) of the exception records.

If a except-name operand is specified, only those exception records with the same

EXCEPT name are checked and written if the conditioning indicators are satisfied.

When no except-name is specified, only those exception records on the output

specifications (positions 30-39) are checked and written if the conditioning

indicators are satisfied.

If an exception output is specified to a format that contains no fields, the following

occurs:

v If an output file is specified, a record is written with default values.

v If a record is locked, the system treats the operation as a request to unlock the

record. This is the alternative form of requesting an unlock. The preferred

method is with the UNLOCK operation.

For more information, see “File Operations” on page 363.

EXCEPT (Calculation Time Output)

Chapter 26. Operation Code Details 575

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* When the EXCEPT operation with HDG specified in factor 2 is

C* processed, all exception records with the EXCEPT name HDG are

C* written. In this example, UDATE and PAGE would be printed

C* and then the printer would space 2 lines.

C* The second HDG record would print a line of dots and then the

C* printer would space 3 lines.

C EXCEPT HDG

C*

C* When the EXCEPT operation with no entry in factor 2 is

C* processed, all exception records that do not have an EXCEPT

C* name specified in positions 30 through 39 are written if the

C* conditioning indicators are satisfied. Any exception records

C* without conditioning indicators and without an EXCEPT name

C* are always written by an EXCEPT operation with no entry in

C* factor 2. In this example, if indicator 10 is on, TITLE and

C* AUTH would be printed and then the printer would space 1 line.

C EXCEPT

O*

OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................

O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++

O E 10 1

O TITLE

O AUTH

O E HDG 2

O UDATE

O PAGE

O E HDG 3

O ’...............’

O ’...............’

O E DETAIL 1

O AUTH

O VERSNO

Figure 251. EXCEPT Operations

EXCEPT (Calculation Time Output)

576 VisualAge RPG Language Reference

EXSR (Invoke User Subroutine)

 Free-Form Syntax EXSR subroutine-name

 Code Factor 1 Extended Factor 2

EXSR subroutine-name

The EXSR operation causes the user subroutine named in the subroutine-name

operand to be processed. The user subroutine name must be a unique symbolic

name and must appear as the subroutine-name operand of a BEGSR operation. The

EXSR operation can appear anywhere in the calculation specifications. When the

user subroutine is an exception/error subroutine with a return-point operand on it’s

ENDSR operation, the statement following EXSR is not processed.

The subroutine-name operand must be a unique symbolic name or the keyword

*TERMSR, *PSSR, or *INZSR:

v *TERMSR specifies that the normal termination subroutine is to be processed

v *PSSR specifies that the program exception/error subroutine is to be processed

v *INZSR specifies the initialization subroutine is to be processed.

You cannot use the EXSR operation to process an action subroutine.

Coding User Subroutines

A user subroutine can be processed from any point in the calculation operations.

All operations can be processed within a user subroutine, and in the fixed-format

syntax, these operations can be conditioned by any valid indicators in positions 9

through 11. SR or blanks can appear in positions 7 and 8. AND/OR lines within

the user subroutine can be indicated in positions 7 and 8.

Fields used in a user subroutine can be defined either in the user subroutine or in

another part of the program. In either instance, the fields can be used by both the

main program and the user subroutine.

A user subroutine cannot contain another user subroutine. One user subroutine can

call another user subroutine; that is, a subroutine can contain an EXSR or CASxx

operation. However, an EXSR or CASxx operation within a user subroutine cannot

directly call itself. Indirect calls to itself through another subroutine should not be

performed because unpredictable results occur. Use the GOTO and TAG operation

codes if you want to branch to another point within the same subroutine.

Subroutines do not have to be specified in the order they are used. Each

subroutine must have a unique symbolic name and must contain a BEGSR and an

ENDSR operation.

The use of the GOTO operation is allowed within a subroutine. GOTO can specify

the label on the ENDSR operation associated with that subroutine; it cannot specify

the name of a BEGSR operation. A GOTO cannot be issued to a TAG or ENDSR

within a subroutine unless the GOTO is in the same subroutine as the TAG or

ENDSR. You can use the LEAVESR operation to exit a subroutine from any point

within the subroutine. Control passes to the ENDSR operation for the subroutine.

Use LEAVESR only from within a subroutine.

EXSR (Invoke User Subroutine)

Chapter 26. Operation Code Details 577

See “Coding User Subroutines” on page 577, “Subroutine Operations” on page 378,

or “Compare Operations” on page 357 for more information.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C*

C :

C :

C EXSR SUBRTB

C :

C :

C EXSR SUBRTA

C :

C :

C SUBRTA BEGSR

C :

C :

C*

C* One subroutine can call another subroutine.

C*

C EXSR SUBRTC

C :

C :

C ENDSR

C SUBRTB BEGSR

C :

C :

C*

Figure 252. Example of Coding User Subroutines - using BEGSR and EXSR

EXSR (Invoke User Subroutine)

578 VisualAge RPG Language Reference

EXTRCT (Extract Date/Time/Timestamp)

 Free-Form Syntax (not allowed - use the %SUBDT built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

EXTRCT (E) Date/Time: Duration Code Target _ ER _

The EXTRCT operation returns one of the following to the result field:

v The year, month or day part of a date or timestamp field

v The hours, minutes or seconds part of a time or timestamp field

v The microseconds part of the timestamp field

Factor 2 must be a field, subfield, table element, or array element. The Date, Time,

or Timestamp followed by the duration code must be specified. For a list of

duration codes, see “Date Operations” on page 359.

Factor 1 must be blank.

The result field must be a numeric or character field, a subfield, a table element, or

an array element. Character data is left adjusted in the result field.

When using the EXTRCT operation with a Julian Date (format *JUL), specifying a

duration code of *D will return the day of the month, specifying *M will return the

month of the year. If you require the day and month to be in the 3-digit format,

you can use a basing pointer to obtain it.

If a resulting indicator is specified in positions 73 and 74, it is set on when an error

occurs during the EXTRCT operation.

To handle EXTRCT exceptions (program status code 112), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

For more information, see “Date Operations” on page 359.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* Extract the month from a timestamp field to a 2-digit field

C* that is used as an index into a character array containing

C* the names of the months. Then extract the day from the

C* timestamp to a 2-byte character field which can be used in

C* an EVAL concatenation expression to form a string containing

C* for example "March 13"

C

C EXTRCT LOGONTIME:*M LOGMONTH 2 0

C EXTRCT LOGONTIME:*D LOGDAY 2

C EVAL DATE_STR = %TRIMR(MONTHS(LOGMONTH)

C + ’ ’ + LOGDAY

Figure 253. EXTRCT Operations

EXTRCT (Extract Date/Time/Timestamp)

Chapter 26. Operation Code Details 579

FEOD (Force End of Data)

 Free-Form Syntax FEOD{(EN)} file-name

 Code Factor 1 Factor 2 Result Field Indicators

FEOD (EN) file-name _ ER _

The FEOD operation signals the logical end of data for an OS/400 file. The file can

be used again for subsequent file operations without specifying the OPEN

operation. The file is still connected to the program. This is different than the

CLOSE operation where the file is disconnected from the program and you must

specify an OPEN if you wish to use the file again. For more information, see

“CLOSE (Close Files)” on page 542.

The FEOD operation can only be used with OS/400 files.

The file-name operand names the file to which FEOD is specified.

Operation extender N may be specified for an FEOD to an output-capable DISK

file that uses blocking. (see “Blocking Considerations” on page 47) If operation

extender N is specified, any unwritten records in the block will be written out to

the database, but they will not necessarily be written to non-volatile storage. Using

the N extender can improve performance.

To handle FEOD exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

To process any further sequential operations after the FEOD operation (for

example, using READ or READP), you must reposition the file.

The FEOD operation flushes any buffered data for output files. The data is written

to DISK or PRINTER.

For more information, see “File Operations” on page 363.

FEOD (Force End of Data)

580 VisualAge RPG Language Reference

FOR (For)

 Free-Form Syntax FOR{(MR)} index-name {= start-value} {BY increment} {TO|DOWNTO limit}

 Code Factor 1 Extended Factor 2

FOR index-name = start-value BY increment TO | DOWNTO limit

* Restriction: The FOR operation is unsupported in Java applications.

The FOR operation begins a group of operations and controls the number of times

the group will be processed. To indicate the number of times the group of

operations is to be processed, specify an index name, a starting value, an increment

value, and a limit value. The optional starting, increment, and limit values can be a

free-form expressions. An associated END or ENDFOR statement marks the end of

the group. For further information on FOR groups, see “Structured Programming

Operations” on page 376.

The syntax of the FOR operation is as follows:

 FOR index-name { = starting-value }

 { BY increment-value }

 { TO | DOWNTO limit-value }

 { loop body }

 ENDFOR | END

The starting-value, increment-value, and limit-value can be numeric values or

expressions with zero decimal positions. The increment value, if specified, cannot

be zero.

The BY and TO (or DOWNTO) clauses can be specified in either order. Both ″BY 2

TO 10″ and ″TO 10 BY 2″ are allowed.

In addition to the FOR operation itself, the conditioning indicators on the FOR and

ENDFOR (or END) statements control the FOR group. The conditioning indicators

on the FOR statement control whether or not the FOR operation begins. These

indicators are checked only once, at the beginning of the for loop. The conditioning

indicators on the associated END or ENDFOR statement control whether or not the

FOR group is repeated another time. These indicators are checked at the end of

each loop.

The FOR operation is performed as follows:

1. If the conditioning indicators on the FOR statement line are satisfied, the FOR

operation is processed (step 2). If the indicators are not satisfied, control passes

to the next operation to be processed following the associated END or

ENDFOR statement (step 8).

2. If specified, the initial value is assigned to the index name. Otherwise, the

index name retains the same value it had before the start of the loop.

3. If specified, the limit value is evaluated and compared to the index name. If no

limit value is specified, the loop repeats indefinitely until it encounters a

statement that exits the loop (such as a LEAVE or GOTO) or that ends the

program or procedure (such as a RETURN).

If the TO clause is specified and the index name value is greater than the limit

value, control passes to the first statement following the ENDFOR statement. If

DOWNTO is specified and the index name is less than the limit value, control

passes to the first statement after the ENDFOR.

FOR (For)

Chapter 26. Operation Code Details 581

4. The operations in the FOR group are processed.

5. If the conditioning indicators on the END or ENDFOR statement are not

satisfied, control passes to the statement after the associated END or ENDFOR

and the loop ends.

6. If the increment value is specified, it is evaluated. Otherwise, it defaults to 1.

7. The increment value is either added to (for TO) or subtracted from (for

DOWNTO) the index name. Control passes to step 3. (Note that the

conditioning indicators on the FOR statement are not tested again (step 1)

when control passes to step 3.)

8. The statement after the END or ENDFOR statement is processed when the

conditioning indicators on the FOR, END, or ENDFOR statements are not

satisfied (step 1 or 5), or when the index value is greater than (for TO) or less

than (for DOWNTO) the limit value (step 3), or when the index value

overflows.

Note: If the FOR loop is performed n times, the limit value is evaluated n+1 times

and the increment value is evaluated n times. This can be important if the

limit value or increment value is complex and time-consuming to evaluate,

or if the limit value or increment value contains calls to subprocedures with

side-effects. If multiple evaluation of the limit or increment is not desired,

calculate the values in temporaries before the FOR loop and use the

temporaries in the FOR loop.

Remember the following when specifying the FOR operation:

v The index name cannot be declared on the FOR operation. Variables should be

declared in the Definition specifications.

v The index-name can be any fully-qualified name, including an indexed array

element.

See “LEAVE (Leave a Do/For Group)” on page 596 and “ITER (Iterate)” on page

591 for information on how those operations affect a FOR operation.

For more information, see “Structured Programming Operations” on page 376.

FOR (For)

582 VisualAge RPG Language Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

 /free

 // Example 1

 // Compute n!

 factorial = 1;

 for i = 1 to n;

 factorial = factorial * i;

 endfor;

 // Example 2

 // Search for the last nonblank character in a field.

 // If the field is all blanks, "i" will be zero.

 // Otherwise, "i" will be the position of nonblank.

 for i = %len (field) downto 1;

 if %subst(field: i: 1) <> ’ ’;

 leave;

 endif;

 endfor;

 // Example 3

 // Extract all blank-delimited words from a sentence.

 WordCnt = 0;

 for i = 1 by WordIncr to %len (Sentence);

 // Is there a blank?

 if %subst(Sentence: i: 1) = ’ ’;

 WordIncr = 1;

 iter;

 endif;

 // We’ve found a word - determine its length:

 for j = i+1 to %len(Sentence);

 if %subst (Sentence: j: 1) = ’ ’;

 leave;

 endif;

 endfor;

 // Store the word:

 WordIncr = j - i;

 WordCnt = WordCnt + 1;

 Word (WordCnt) = %subst (Sentence: i: WordIncr);

 endfor;

 /end-free

Figure 254. Examples of the FOR Operation

FOR (For)

Chapter 26. Operation Code Details 583

GETATR (Retrieve Attribute)

 Free-Form Syntax (not allowed - use the %GETATR built-in function or “Qualified GUI Part Attribute

Access” on page 379)

 Code Factor 1 Factor 2 Result Field Indicators

GETATR (E) part name attribute field name _ ER _

The GETATR operation retrieves the value of a part’s attribute. The parent window

name is the default window name. A part’s attribute can be retrieved only if that

part has been created.

Notes:

1. The GETATR operations can be used for multiple link action subroutines. For a

description of multiple link action subroutines, see “BEGACT (Begin Action

Subroutine)” on page 508. To retrieve an attribute for a part on a window other

than the parent window, use the %GETATR built-in function. For a description

of the %GETATR built-in function, see “%GETATR (Retrieve Attribute)” on

page 446.

2. The GETATR operation does not support 1-byte and 8-byte signed and

unsigned integer values, and unicode values.

Factor 1 must contain the name of a part (which must be a character literal) or a

field name that contains the name of a part (which must be characters).

Factor 2 must contain the name of the attribute being retrieved (which must be a

character literal) or a field name that contains the name of an attribute (which

must be characters).

Factor 1 and factor 2 cannot contain graphic characters.

The result field must contain the name of the field which contains the retrieved

value of the attribute. The type of the result field must be the same as the attribute

type.

To handle GETATR exceptions, either the operation code extender ’E’ or an error

indicator ER can be specified, but not both. For more information on error

handling, see “Program Exception and Errors” on page 51.

Note: The GETATR operation does not affect the corresponding program fields for

parts. If you want the corresponding program field for the part to contain

the current value of an entry field, make it the target of the operation.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C* Retrieve the part type on a part called MLE01.

C*

C ’MLE01’ GETATR ’PartType’ Mle

Figure 255. GETATR Operation

GETATR (Retrieve Attribute)

584 VisualAge RPG Language Reference

GOTO (Go To)

 Free-Form Syntax (not allowed - use other operation codes, such as LEAVE, LEAVESR, ITER, and

RETURN)

 Code Factor 1 Factor 2 Result Field Indicators

GOTO Label

The GOTO operation allows calculation operations to be skipped by instructing the

program to go to (or branch to) a specified label in the program. A TAG operation

names the destination of a GOTO operation. The TAG can either precede or follow

the GOTO.

A GOTO within a subroutine in the main procedure can be issued to a TAG within

the same subroutine. A GOTO within a subroutine in a subprocedure can be issued

to a TAG within the same subroutine, or within the body of the subprocedure.

Factor 2 must contain the label to which the program is to branch. This label is

entered in factor 1 of a TAG or ENDSR operation. The label must be a unique

symbolic name.

For a description of the TAG operation, see “TAG (Tag)” on page 699.

For more information, see “Branching Operations” on page 352.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* If indicator 10, 15, or 20 is on, the program branches to

C* the TAG label specified in the GOTO operations.

C*

C 10 GOTO RTN1

C*

C*

C 15 GOTO RTN2

C*

C RTN1 TAG

C*

C :

C :

C 20 GOTO END

C*

C :

C :

C END TAG

Figure 256. GOTO and TAG Operations

GOTO (Go To)

Chapter 26. Operation Code Details 585

IF (If)

 Free-Form Syntax IF{(MR)} indicator-expression

 Code Factor 1 Extended Factor 2

IF (M/R) Blank indicator-expression

The IF operation allows a series of operation codes to be processed if a condition is

met. Its function is similar to that of the IFxx operation code. It differs in that the

logical condition is expressed by an indicator valued expression

(indicator-expression). The operations controlled by the IF operation are performed

when the expression in the indicator-expression is true.

For information on how operation extenders M and R are used, see “Precision

Rules for Numeric Operations” on page 390. “Compare Operations” on page 357

describes the rules for specifying the compare operations.

For more information, see “Structured Programming Operations” on page 376.

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++..

C Extended-factor2-continuation+++++++++++++++

C* The operations controlled by the IF operation are performed

C* when the expression is true. That is A is greater than 10 and

C* indicator 20 is on.

C

C IF A>10 AND *IN(20)

C :

C ENDIF

C*

C* The operations controlled by the IF operation are performed

C* when Date1 represents a later date then Date2

C

C IF Date1 > Date2

C :

C ENDIF

C*

Figure 257. IF Operations

IF (If)

586 VisualAge RPG Language Reference

IFxx (If)

 Free-Form Syntax (not allowed - use the IF operation code)

 Code Factor 1 Factor 2 Result Field Indicators

IFxx Comparand Comparand

The IFxx operation allows a group of calculations to be processed if a certain

relationship, specified by xx, exists between factor 1 and factor 2. When ANDxx

and ORxx operations are used with IFxx, the group of calculations is performed if

the condition specified by the combined operations exists. (For the meaning of xx,

see “Structured Programming Operations” on page 376.)

Factor 1 and factor 2 must contain a literal, a named constant, a figurative

constant, a table name, an array element, a data structure name, or a field name.

Both the factor 1 and factor 2 entries must be of the same data type.

If the relationship specified by the IFxx and any associated ANDxx or ORxx

operations does not exist, control passes to the calculation operation immediately

following the associated ENDIF operation. If an ELSE operation is specified as

well, control passes to the first calculation operation that can be processed

following the ELSE operation.

Conditioning indicator entries on the ENDIF operation associated with IFxx must

be blank.

An ENDIF statement must be used to close an IFxx group. If an IFxx statement is

followed by an ELSE statement, an ENDIF statement is required after the ELSE

statement but not after the IFxx statement.

You have the option of indenting DO statements, IF-ELSE clauses, and

SELECT-WHENxx-OTHER clauses in the compiler listing for readability. See the

online help for the Project>Build Options dialog in the GUI Designer for a

description of the compiler options.

“Compare Operations” on page 357 describes the rules for specifying the compare

operations.

For more information, see “Compare Operations” on page 357 or “Structured

Programming Operations” on page 376.

IFxx (If)

Chapter 26. Operation Code Details 587

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* If FLDA equals FLDB, the calculation after the IFEQ operation

C* is processed. If FLDA does not equal FLDB, the program

C* branches to the operation immediately following the ENDIF.

C

C FLDA IFEQ FLDB

C :

C :

C ENDIF

C

C* If FLDA equals FLDB, the calculation after the IFEQ operation

C* is processed and control passes to the operation immediately

C* following the ENDIF statement. If FLDA does not equal FLDB,

C* control passes to the ELSE statement and the calculation

C* immediately following is processed.

C

C FLDA IFEQ FLDB

C :

C :

C ELSE

C :

C :

C ENDIF

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* If FLDA is equal to FLDB and greater than FLDC, or, if FLDD

C* is equal to FLDE and greater than FLDF, the calculation

C* after the ANDGT operation is processed. If neither of the

C* specified conditions exists, the program branches to the

C* operation immediately following the ENDIF statement.

C

C FLDA IFEQ FLDB

C FLDA ANDGT FLDC

C FLDD OREQ FLDE

C FLDD ANDGT FLDF

C :

C :

C ENDIF

Figure 258. IFxx/ENDIF and IFxx/ELSE/ENDIF Operations

IFxx (If)

588 VisualAge RPG Language Reference

IN (Retrieve a Data Area)

 Free-Form Syntax IN{(E)} {*LOCK} data-area-name

 Code Factor 1 Factor 2 Result Field Indicators

IN (E) *LOCK data-area-name _ ER _

The IN operation retrieves a data area.

The reserved word *LOCK can be specified in Factor 1 to indicate that the data

area cannot be updated or locked by another program until (1) an UNLOCK

operation is processed, (2) an OUT operation with no data-area-name operand

specified, or (3) the program implicitly unlocks the data area when the program

ends

If a data area is locked, it can be read but not updated by other programs.

data-area-name must be the name of a definition defined with the DTAARA

keyword, the result field of a *DTAARA DEFINE operation, or the reserved word

*DTAARA. When *DTAARA is specified, all data areas defined in the program are

retrieved.

If name of the data area is determined at runtime because DTAARA(*VAR) was

specified on the definition of the field, then the variable containing the name of the

data area must be set before the IN operation. However, if the data area is already

locked due to a prior *LOCK IN operation, the variable containing the name will

not be consulted; instead, the previously locked data area will be used.

To handle IN exceptions (program status codes 401-421, 431, or 432), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

On a fixed-form calculation, positions 71-72 and 75-76 must be blank.

For a description of general rules, see “Data-Area Operations” on page 358.

IN (Retrieve a Data Area)

Chapter 26. Operation Code Details 589

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* TOTAMT, TOTGRS, and TOTNET are defined as data areas. The IN

C* operation retrieves all the data areas defined in the program

C* and locks them. The program processes calculations, and then

C* writes and unlocks all the data areas.

C* The data areas can then be used by other programs.

C*

C *LOCK IN *DTAARA

C ADD AMOUNT TOTAMT

C ADD GROSS TOTGRS

C ADD NET TOTNET

C

C OUT *DTAARA

C

C*

C* Define Data areas

C*

C *DTAARA DEFINE TOTAMT 8 2

C *DTAARA DEFINE TOTGRS 10 2

C *DTAARA DEFINE TOTNET 10 2

Figure 259. IN and OUT Operations

IN (Retrieve a Data Area)

590 VisualAge RPG Language Reference

ITER (Iterate)

 Free-Form Syntax ITER

 Code Factor 1 Factor 2 Result Field Indicators

ITER

The ITER operation transfers control from within a DO or FOR group to the

ENDDO or ENDFOR statement of the do group. It can be used in DO, DOU,

DOUxx, DOW, DOWxx, and FOR loops to transfer control immediately to a loop’s

ENDDO or ENDFOR statement. It causes the next iteration of the loop to be

executed immediately. ITER affects the innermost loop.

If conditioning indicators are specified on the ENDDO or ENDFOR statement to

which control is passed, and the condition is not satisfied, processing continues

with the statement following the ENDDO or ENDFOR operation.

The LEAVE operation is similar to the ITER operation; however, LEAVE transfers

control to the statement following the ENDDO or ENDFOR operation.

For more information, see “Branching Operations” on page 352 or “Structured

Programming Operations” on page 376.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following example uses a DOU loop containing a DOW loop.

C* The IF statement checks indicator 01. If indicator 01 is ON,

C* the LEAVE operation is executed, transferring control out of

C* the innermost DOW loop to the Z-ADD instruction. If indicator

C* 01 is not ON, subroutine PROC1 is processed. Then indicator

C* 12 is checked. If it is OFF, ITER transfers control to the

C* innermost ENDDO and the condition on the DOW is evaluated

C* again. If indicator 12 is ON, subroutine PROC2 is processed.

C

C DOU FLDA = FLDB

C :

C NUM DOWLT 10

C IF *IN01

C LEAVE

C ENDIF

C EXSR PROC1

C *IN12 IFEQ *OFF

C ITER

C ENDIF

C EXSR PROC2

C ENDDO

C Z-ADD 20 RSLT 2 0

C :

C ENDDO

C :

Figure 260. ITER Operation (Part 1 of 2)

ITER (Iterate)

Chapter 26. Operation Code Details 591

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following example uses a DOU loop containing a DOW loop.

C* The IF statement checks indicator 1. If indicator 01 is ON, the

C* MOVE operation is executed, followed by the LEAVE operation,

C* transferring control from the innermost DOW loop to the Z-ADD

C* instruction. If indicator 01 is not ON, ITER transfers control

C* to the innermost ENDDO and the condition on the DOW is

C* evaluated again.

C :

C FLDA DOUEQ FLDB

C :

C NUM DOWLT 10

C *IN01 IFEQ *ON

C MOVE ’UPDATE’ FIELD 20

C LEAVE

C ELSE

C ITER

C ENDIF

C ENDDO

C Z-ADD 20 RSLT 2 0

C :

C ENDDO

C :

Figure 260. ITER Operation (Part 2 of 2)

ITER (Iterate)

592 VisualAge RPG Language Reference

KFLD (Define Parts of a Key)

 Free-Form Syntax (not allowed - use %KDS)

 Code Factor 1 Factor 2 Result Field Indicators

KFLD Key field

The KFLD operation indicates that a field is part of a search argument identified

by a KLIST name.

The KFLD operation can be specified anywhere within calculations, but must

follow a KLIST or KFLD operation. Conditioning indicator entries (positions 9

through 11) are not permitted.

KFLDs can be global or local. A KLIST in a main procedure can have only global

KFLDs associated with it. A KLIST in a subprocedure can have local and global

KFLDs.

Factor 2 can contain an indicator for a null-capable key field if the User control

option or ALWNULL(*USRCTL) keyword is specified.

If the indicator is on, the key fields with null values are selected. If the indicator is

off or not specified, the key fields with null values are not selected. See “Keyed

Operations” on page 141 for information on how to access null-capable keys.

The result field must contain the name of a field that is to be part of the search

argument. The result field cannot contain an array name. Each KFLD field must

agree in length, data type, and decimal position with the corresponding field in the

composite key of the record or file. However, if the record has a variable-length

KFLD field, the corresponding field in the composite key must be varying but does

not need to be the same length. Each KFLD field need not have the same name as

the corresponding field in the composite key. The order the KFLD fields are

specified in the KLIST determines which KFLD is associated with a particular field

in the composite key. For example, the first KFLD field following a KLIST

operation is associated with the leftmost (high-order) field of the composite key.

Graphic and UCS-2 key fields must have the same CCSID as the key in the file.

Figure 261 on page 595 shows an example of the KLIST operation with KFLD

operations.

For more information, see “Declarative Operations” on page 362.

KFLD (Define Parts of a Key)

Chapter 26. Operation Code Details 593

KLIST (Define a Composite Key)

 Free-Form Syntax (not allowed - use %KDS)

 Code Factor 1 Factor 2 Result Field Indicators

KLIST KLIST name

The KLIST operation gives a name to a list of KFLDs. This list is used as a search

argument to retrieve records from externally described files that have a composite

key. A composite key is a key that contains a list of key fields. It is built from left

to right. The first KFLD specified is the leftmost (high-order) field of a composite

key.

A KLIST must be followed immediately by at least one KFLD. A KLIST is ended

when a non-KFLD operation is encountered. If a search argument is composed of

more than one field (a composite key), you must specify a KLIST with multiple

KFLDs. The same KLIST name can be used as the search argument for multiple

files, or it can be used multiple times as the search argument for the same file.

Factor 1 must contain a unique name. This name can appear in factor 1 of a

CHAIN, DELETE, READE, READPE, SETGT, or SETLL operation.

Conditioning indicator entries (positions 9 through 11) are not permitted.

A KLIST in a main procedure can have only local KFLDs associated with it. A

KLIST in a subprocedure can have local and global KFLDs.

For more information, see “Declarative Operations” on page 362.

KLIST (Define a Composite Key)

594 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

A* DDS source

A R RECORD

A FLDA 4

A SHIFT 1 0

A FLDB 10

A CLOCK# 5 0

A FLDC 10

A DEPT 4

A FLDD 8

A K DEPT

A K SHIFT

A K CLOCK#

A*

A* End of DDS source

A*

A***

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The KLIST operation indicates the name, FILEKY, by which the

C* search argument can be specified.

C FILEKY KLIST

C KFLD DEPT

C KFLD SHIFT

C KFLD CLOCK#

Figure 261. KLIST and KFLD Operations

KLIST (Define a Composite Key)

Chapter 26. Operation Code Details 595

LEAVE (Leave a Do/For Group)

 Free-Form Syntax LEAVE

 Code Factor 1 Factor 2 Result Field Indicators

LEAVE

The LEAVE operation transfers control from within a DO or FOR group to the

statement following the ENDDO or ENDFOR operation.

You can use LEAVE within a DO, DOU, DOUxx, DOW, DOWxx, or FOR loop to

transfer control immediately from the innermost loop to the statement following

the innermost loop’s ENDDO or ENDFOR operation. Using LEAVE to leave a DO

or FOR group does not increment the index.

In nested loops, LEAVE causes control to transfer outwards by one level only.

LEAVE is not allowed outside a DO or FOR group.

The ITER operation is similar to the LEAVE operation; however, ITER transfers

control to the ENDDO or ENDFOR statement.

For more information, see “Branching Operations” on page 352 or “Structured

Programming Operations” on page 376.

LEAVE (Leave a Do/For Group)

596 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following example uses an infinite loop. When the user

C* types ’q’, control transfers to the LEAVE operation, which in

C* turn transfers control out of the loop to the Z-ADD operation.

C*

C 2 DOWNE 1

C :

C IF ANSWER = ’q’

C LEAVE

C ENDIF

C :

C ENDDO

C Z-ADD A B

C*

C* The following example uses a DOUxx loop containing a DOWxx.

C* The IF statement checks indicator 1. If it is ON, indicator

C* 99 is turned ON, control passes to the LEAVE operation and

C* out of the inner DOWxx loop.

C*

C* A second LEAVE instruction is then executed because indicator 99

C* is ON, which in turn transfers control out of the DOUxx loop.

C*

C :

C FLDA DOUEQ FLDB

C NUM DOWLT 10

C *IN01 IFEQ *ON

C SETON 99

C LEAVE

C :

C ENDIF

C ENDDO

C 99 LEAVE

C :

C ENDDO

C :

Figure 262. LEAVE Operation

LEAVE (Leave a Do/For Group)

Chapter 26. Operation Code Details 597

LEAVESR (Leave a Subroutine)

 Free-Form Syntax LEAVESR

 Code Factor 1 Factor 2 Result Field Indicators

LEAVESR

The LEAVESR operation exits a subroutine from any point within the subroutine.

Control passes to the ENDSR operation for the subroutine. LEAVESR is allowed

only from within a subroutine.

The control level entry (positions 7 and 8) can be SR or blank. Conditioning

indicator entries (positions 9 to 11) can be specified.

For more information, see “Subroutine Operations” on page 378.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

 *

C CheckCustName BEGSR

C Name CHAIN CustFile

 *

 * Check if the name identifies a valid customer

 *

C IF not %found(CustFile)

C EVAL Result = CustNotFound

C LEAVESR

C ENDIF

 *

 * Check if the customer qualifies for discount program

C IF Qualified = *OFF

C EVAL Result = CustNotQualified

C LEAVESR

C ENDIF

 *

 * If we get here, customer can use the discount program

C EVAL Result = CustOK

C ENDSR

Figure 263. LEAVESR Operations

LEAVESR (Leave a Subroutine)

598 VisualAge RPG Language Reference

LOOKUP (Look Up a Table or Array Element)

 Free-Form Syntax (not allowed - use the %LOOKUP or %TLOOKUP built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

LOOKUP

(array) Search argument Array name HI LO EQ

(table) Search argument Table name Table name HI LO EQ

The LOOKUP operation searches an array or table for an element. The search

argument and the table or array must have the same type and length (except Time

and Date fields which can have a different length). If the array or table is

fixed-length character, graphic, or UCS-2, the search argument must also be

fixed-length. For variable length, the length of the search argument can have a

different length from the array or table. A sequence for the table or array must be

specified on the definition specification using the ASCEND or DESCEND

keywords.

Factor 1 must be a literal, a field name, an array element, a table name, a named

constant, or a figurative constant. The nature of the comparison depends on the

data type:

Graphic and UCS-2 data

The comparison is hexadecimal.

Numeric data

Decimal alignment is not processed.

Other data types

The considerations for comparison described in “Compare Operations” on

page 357 apply to other types.

For a table LOOKUP, the search argument is the element of the table last selected

in a LOOKUP operation. If the last LOOKUP operation has not been processed, the

first element of the table is used as the search argument. If the result field is

specified for a table LOOKUP, it must contain the name of a second table. The

position of the elements in the second table correspond to the position of the

elements in the first table. The LOOKUP operation retrieves the element from the

second table.

For an array LOOKUP, an index can be used. The LOOKUP begins with the

element specified by the index. The index value is set to the position number of

the element located. If the index is equal to zero or is higher than the number of

elements in the array when the search begins, an error occurs. The index is set to 1

if the search is unsuccessful. If the index is a named constant, the index value does

not change.

Resulting indicators must be specified to determine the search to be done and then

to reflect the result of the search. A sequence for the table or array must also be

specified on the definition specification using the ASCEND or DESCEND

keywords. Any specified indicator is set on only if the search is successful. No

more than two indicators can be used. Resulting indicators can be assigned to

equal and high or to equal and low. The program searches for an entry that

LOOKUP (Look Up a Table or Array Element)

Chapter 26. Operation Code Details 599

satisfies either condition with equal given precedence; that is, if no equal entry is

found, the nearest lower or nearest higher entry is selected.

If an indicator is specified in positions 75-76, the %EQUAL built-in function returns

’1’ if an element is found that exactly matches the search argument. The %FOUND

built-in function returns ’1’ if any specified search is successful.

Resulting indicators can be assigned to equal and low, or equal and high. High

and low cannot be specified on the same LOOKUP operation. The compiler

assumes a sorted, sequenced array or table when a high or low indicator is

specified for the LOOKUP operation. The LOOKUP operation searches for an entry

that satisfies the low/equal or high/equal condition with equal given priority.

v High (71-72): Instructs the program to find the entry that is nearest to, yet higher

in sequence than, the search argument. The first higher entry found sets the

indicator assigned to high on.

v Low (73-74): Instructs the program to find the entry that is nearest to, yet lower

in sequence than, the search argument. The first such entry found sets the

indicator assigned to low on.

v Equal (75-76): Instructs the program to find the entry equal to the search

argument. The first equal entry found sets the indicator assigned to equal on.

If the equal indicator is the only indicator specified, the entire array or table is

searched. If the table or array is in ascending sequence, and you want an equal

comparison, specify the High indicator. An entire search of the table or array does

not occur.

For more information, see “Array Operations” on page 351.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* In this example, the programmer wants to know which element in

C* ARY the LOOKUP operation locates. The Z-ADD operation sets the

C* field X to 1. The LOOKUP starts at the element ARY that is

C* indicated by field X and continues running until it finds the

C* first element equal to SRCHWD. The index value, X, is set to

C* the position number of the element located.

C

C Z-ADD 1 X 3 0

C SRCHWD LOOKUP ARY(X) 26

C

C* In this example, the programmer wants to know if an element

C* is found that is equal to SRCHWD. LOOKUP searches ARY until it

C* finds the first element equal to SRCHWD. When this occurs,

C* indicator 26 is set on and %EQUAL is set to return ’1’.

C

C SRCHWD LOOKUP ARY 26

C

C* The LOOKUP starts at a variable index number specified by

C* field X. Field X does not have to be set to 1 before the

C* LOOKUP operation. When LOOKUP locates the first element in

C* ARY equal to SRCHWD, indicator 26 is set on and %EQUAL is set

C* to return ’1’. The index value, X, is set to the position

C* number of the element located.

C*

C

C SRCHWD LOOKUP ARY(X) 26

Figure 264. LOOKUP Operation with Arrays

LOOKUP (Look Up a Table or Array Element)

600 VisualAge RPG Language Reference

* In this example, an array of customer information actually consists

 * of several subarrays. You can search either the main array or the

 * subarrays overlaying the main array.

 D custInfo DS

 D cust DIM(100)

 D name 30A OVERLAY(cust : *NEXT)

 D id_number 10I 0 OVERLAY(cust : *NEXT)

 D amount 15P 3 OVERLAY(cust : *NEXT)

 * You can search for a particular set of customer information

 * by doing a search on the "cust" array

 C custData LOOKUP cust(i) 10

 * You can search on a particular field of the customer information

 * by doing a search on one of the overlay arrays

 C custName LOOKUP name(i) 11

 * After the search, the array index can be used with any of the

 * overlaying arrays. If the search on name(i) is successful,

 * the id_number and amount for that customer are available

 * in id_number(i) and amount(i).

Figure 265. LOOKUP Operation with Subarrays

LOOKUP (Look Up a Table or Array Element)

Chapter 26. Operation Code Details 601

MONITOR (Begin a Monitor Group)

 Free-Form Syntax MONITOR

 Code Factor 1 Factor 2 Result Field Indicators

MONITOR

The monitor group performs conditional error handling based on the status code.

It consists of:

v A MONITOR statement

v One or more ON-ERROR groups

v An ENDMON statement.

After the MONITOR statement, control passes to the next statement. The monitor

block consists of all the statements from the MONITOR statement to the first

ON-ERROR statement. If an error occurs when the monitor block is processed,

control is passed to the appropriate ON-ERROR group.

If all the statements in the MONITOR block are processed without errors, control

passes to the statement following the ENDMON statement.

The monitor group can be specified anywhere in calculations. It can be nested

within IF, DO, SELECT, or other monitor groups. The IF, DO, and SELECT groups

can be nested within monitor groups.

If a monitor group is nested within another monitor group, the innermost group is

considered first when an error occurs. If that monitor group does not handle the

error condition, the next group is considered.

Conditioning indicators can be used on the MONITOR statement. If they are not

satisfied, control passes immediately to the statement following the ENDMON

statement of the monitor group. Conditioning indicators cannot be used on

ON-ERROR operations individually.

If a monitor block contains a call to a subprocedure, and the subprocedure has an

error, the subprocedure’s error handling will take precedence. For example, if the

subprocedure has a *PSSR subroutine, it will get called. The MONITOR group

containing the call will only be considered if the subprocedure fails to handle the

error and the call fails with the error-in-call status of 00202.

The monitor group does handle errors that occur in a subroutine. If the subroutine

contains its own monitor groups, they are considered first.

Branching operations are not allowed within a monitor block, but are allowed

within an ON-ERROR block.

A LEAVE or ITER operation within a monitor block applies to any active DO

group that contains the monitor block. A LEAVESR or RETURN operation within a

monitor block applies to any subroutine, subprocedure, or procedure that contains

the monitor block.

For more information, see “Error-Handling Operations” on page 362.

MONITOR (Begin a Monitor Group)

602 VisualAge RPG Language Reference

* The MONITOR block consists of the READ statement and the IF

 * group.

 * - The first ON-ERROR block handles status 1211 which

 * is issued for the READ operation if the file is not open.

 * - The second ON-ERROR block handles all other file errors.

 * - The third ON-ERROR block handles the string-operation status

 * code 00100 and array index status code 00121.

 * - The fourth ON-ERROR block (which could have had a factor 2

 * of *ALL) handles errors not handled by the specific ON-ERROR

 * operations.

 *

 * If no error occurs in the MONITOR block, control passes from the

 * ENDIF to the ENDMON.

C MONITOR

C READ FILE1

C IF NOT %EOF

C EVAL Line = %SUBST(Line(i) :

C %SCAN(’***’: Line(i)) + 1)

C ENDIF

C ON-ERROR 1211

C ... handle file-not-open

C ON-ERROR *FILE

C ... handle other file errors

C ON-ERROR 00100 : 00121

C ... handle string error and array-index error

C ON-ERROR

C ... handle all other errors

C ENDMON

Figure 266. MONITOR Operation

MONITOR (Begin a Monitor Group)

Chapter 26. Operation Code Details 603

MOVE (Move)

 Free-Form Syntax (not allowed - use the EVAL or EVALR operations, or built-in functions such as

%CHAR, %DATE, %DEC , %DECH, %GRAPH, %INT, %INTH, %TIME,

%TIMESTAMP , %UCS2, %UNS, or %UNSH)

 Code Factor 1 Factor 2 Result Field Indicators

MOVE (P) Data Attributes Source field Target field + − ZB

The MOVE operation transfers characters from factor 2 to the result field. Moving

starts with the rightmost character of factor 2.

When moving Date, Time, or Timestamp fields, factor 1 must be blank unless

either the source or the target is a character or numeric field.

Otherwise, factor 1 contains the date or time format compatible with the character

or numeric field that is the source of the operation. For information on the formats

that can be used see “Date Data” on page 119, “Time Data” on page 135, and

“Timestamp Data” on page 137.

If the source or target is a character field, you may optionally indicate the

separator following the format in factor 1. Only separators that are valid for that

format are allowed.

If factor 2 is *DATE or UDATE and the result is a Date field, factor 1 is not

required. If factor 1 contains a date format it must be compatible with the format

of *DATE or UDATE as specified by the DATEDIT keyword on the control

specification.

When moving character, graphic, UCS-2, or numeric date, if factor 2 is longer

than the result field, the excess leftmost characters or digits of factor 2 are not

moved. If the result field is longer than factor 2, the excess leftmost characters or

digits in the result field are unchanged, unless padding is specified.

You cannot specify resulting indicators if the result field is an array; you can

specify them if it is an array element, or a non-array field.

If factor 2 is shorter than the length of the result field, a P specified in the

operation extender position causes the result field to be padded on the left after

the move occurs.

Float numeric fields and literals are not allowed as Factor 2 or Result-Field entries.

If CCSID(*GRAPH : IGNORE) is specified or assumed for the module, MOVE

operations between UCS-2 and graphic data are not allowed.

When moving variable-length character, graphic, or UCS-2 data, the

variable-length field works in exactly the same way as a fixed-length field with the

same current length. For examples, see Figures 273 to 278.

The tables which appear following the examples (see “MOVE Examples (Part 1)”

on page 605), show how data is moved from factor 2 to the result field. For further

information on the MOVE operation, see “Move Operations” on page 368 or

“Conversion Operations” on page 358.

MOVE (Move)

604 VisualAge RPG Language Reference

MOVE Examples (Part 1)

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Shorter Than Result Field

Factor 2 Result Field

Before MOVE

Before MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Longer than Result Field

Factor 2 Result Field

Character
to

Character

Character
to

Numeric

1 3 4 H 4 S N2 P

1 3 4 8 4 2 42 7

1 1 2 8 4 2 52 7

1 3 4 6 7 8 92 5

P H 4 S NA C F G

6 7 8 45

8 4 2 47

8 4 27 5

G X 4 B t

G X 4 B t

+

a. Character
to

Character

b.

c.

d.

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

+

_

A C

P H 4 S NA C E G

G X 4 B tA C E G

P H 4 S NA C E G

G X 4 B tA C E G

6 7 4 85

a.

b.

c.

d.

Numeric
to

Numeric

Numeric
to

Character

SP H 4 N

SP H 4 N

P H 4 S N

P H 4 S N

1 3 4 6 7 8 42 5

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

6 7 8 45

8 4 2 57

1 3 4 6 7 8 42 51 3 4 6 7 8 42 5

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

Figure 267. MOVE Operation (Part 1 of 2)

MOVE (Move)

Chapter 26. Operation Code Details 605

a.

b.

c.

d.

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Shorter Than Result Field
With P in Operation Extender Field

Factor 2 Result Field

Before MOVE

Before MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

Factor 2 and Result Field Same Length

Factor 2 Result Field

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

4 = letter t , and 5 = letter u.Note:

0 0 0 8 4 2 40 7

0 1 2 8 4 2 50 7

1 3 4 6 7 8 92 5

P H 4 S NA C F G

8 4 2 57

6 7 8 45

8 4 2 47

8 4 27 u

A L T 5 F

A L T 5 F

H S NNP 4

P H 4 S N

G X 4 B t

a. Character
to

Character

b.

c.

d.

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

+

_

P H 4 S N

1 3 4 6 7 8 42 5

1 3 4 6 7 8 42 5

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

1 2 8 4 2 57

8 4 2 57

8 4 2 57

6 7 8 45

8 4 2 57

G X 4 B t

SP H 4 N

SP H 4 N

G X 4 B t

G X 4 B t

P H 4 S N

8 4 2 57

Figure 267. MOVE Operation (Part 2 of 2)

MOVE (Move)

606 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

H* Control specification date format

H*

H DATFMT(*ISO)

H

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++++

D*

D DATE_ISO S D

D DATE_YMD S D DATFMT(*YMD)

D INZ(D’1992-03-24’)

D DATE_EUR S D DATFMT(*EUR)

D INZ(D’2197-08-26’)

D DATE_JIS S D DATFMT(*JIS)

D NUM_DATE1 S 6P 0 INZ(210991)

D NUM_DATE2 S 7P 0

D CHAR_DATE S 8 INZ(’02/01/53’)

D CHAR_LONGJUL S 8A INZ(’2039/166’)

D DATE_USA S D DATFMT(*USA)

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+H1LoEq..

C*

C* Move between Date fields. DATE_EUR will contain 24.03.1992

C*

C MOVE DATE_YMD DATE_EUR

C*

C* Convert numeric value in ddmmyy format into a *ISO Date.

C* DATE_ISO will contain 1991-09-21 after each of the 2 moves.

C*

C *DMY MOVE 210991 DATE_ISO

C *DMY MOVE NUM_DATE DATE_ISO

C*

C* Move a character value representing a *MDY date to a *JIS Date.

C* DATE_JIS will contain 1953-02-01 after each of the 2 moves.

C*

C *MDY/ MOVE ’02/01/53’ DATE_JIS

C *MDY/ MOVE CHAR_DATE DATE_JIS

Figure 268. Move Operation with Date

MOVE (Move)

Chapter 26. Operation Code Details 607

C*

C* DATE_USA will contain 12-31-9999

C*

C MOVE *HIVAL DATE_USA

C*

C* Execution error, resulting in error code 114. Year is not in

C* 1940-2039 date range. DATE_YMD will be unchanged.

C*

C MOVE DATE_USA DATE_YMD

C*

C* Move a character value representing a *CYMD date to a *USA

C* Date. DATE_USA will contain 08/07/1961 after the move.

C* 0 in *CYMD indicates that the character value does not

C* contain separators

C* *CYMD0 MOVE CHAR_NO_SEP DATE_USA

C*

C* Move a *EUR date field to a numeric field that will

C* represent a *CMDY date. NUM_DATE2 will contain 2082697

C* after the move.

C *CMDY MOVE DATE_EUR NUM_DATE2

C*

C* Move a character value representing a *LONGJUL date to

C* a *YMD date. DATE_YMD will be 39/06/15 after the move.

C *LONGJUL MOVE CHAR_LONGJUL DATE_YMD

Figure 269. Move Operation with Date (continued)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

H* Specify default format for date fields

H DATEFMT(*ISO)

H*

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D date_USA S D DATFMT(*USA)

D datefield S D

D timefield S T INZ(T’14.23.10’)

D chr_dateA S 6 INZ(’041596’)

D chr_dateB S 7 INZ(’0610807’)

D chr_time S 6

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* Move a character value representing a *MDY date to a D(Date) value.

C* *MDY0 indicates that the character date in Factor 2 does not

C* contain separators.

C* datefld will contain 1996-04-15 after the move.

C *MDY MOVE chr_dateA datefld

C* Move a field containing a T(Time) value to a character value in the

C* *EUR format. *EUR0 indicates that the result field should not

C* contain separators.

C* chr_time will contain ’142310’ after the move.

C *EUR0 MOVE timefld chr_time

C*

C* Move a character value representing a *CYMD date to a *USA

C* Date. Date_USA will contain 08/07/1961 after the move.

C* 0 in *CYMD indicates that the character value does not

C* contain separators.

C*

C *CYMD0 MOVE chr_dateB date_USA

Figure 270. MOVE Operation with Date and Time, without Separators

MOVE (Move)

608 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

H* Control specification DATEDIT format

H*

H DATEDIT(*MDY)

H*

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++

D Jobstart S Z

D Datestart S D

D Timestart S T

D Timebegin S T inz(T’05.02.23’)

D Datebegin S D inz(D’1991-09-24’)

D TmStamp S Z inz

D*

C* Set the timestamp Jobstart with the job start Date and Time

C *

C * Factor 1 of the MOVE *DATE (*USA = MMDDYYYY) is consistent

C * with the value specified for the DATEDIT keyword on the

C * control specification, since DATEDIT(*MDY) indicates that

C * *DATE is formatted as MMDDYYYY.

C *

C* Note: It is not necessary to specify factor 1 with *DATE or

C* UDATE.

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C *USA MOVE *DATE Datestart

C TIME StrTime 6 0

C *HMS MOVE StrTime Timestart

C MOVE Datestart Jobstart

C MOVE Timestart Jobstart

C*

C* After the following C specifications are performed, the field

C* stampchar will contain ’1991-10-24-05.17.23.000000’.

C*

C* First assign a timestamp the value of a given time+15 minutes and

C* given date + 30 days. Move tmstamp to a character field.

C* stampchar will contain ’1991-10-24-05.17.23.000000’.

C*

C ADDDUR 15:*minutes Timebegin

C ADDDUR 30:*days Datebegin

C MOVE Timebegin TmStamp

C MOVE Datebegin TmStamp

C MOVE TmStamp stampchar 26

C* Move the timestamp to a character field without separators. After

C* the move, STAMPCHAR will contain ’ 19911024051723000000’.

C *ISO0 MOVE(P) TMSTAMP STAMPCHAR0

Figure 271. MOVE Operation with Timestamp

MOVE (Move)

Chapter 26. Operation Code Details 609

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE between graphic and character fields

D*

D char_fld1 S 8A inz(’K1K2K3 ’)

D dbcs_fld1 S 4G

D char_fld2 S 8A inz(*ALL’Z’)

D dbcs_fld2 S 3G inz(G’K1K2K3’)

D*

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C* Value of dbcs_fld1 after MOVE operation is ’K1K2K3 ’

C* Value of char_fld2 after MOVE operation is ’ZZK1K2K3’

C*

C MOVE char_fld1 dbcs_fld1

C MOVE dbcs_fld2 char_fld2

Figure 272. MOVE Between Character and Graphic Fields

MOVE (Move)

610 VisualAge RPG Language Reference

MOVE Examples (Part 2): Variable- and Fixed-length Fields

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE from variable to variable length

D* for character fields

D*

D var5a S 5A INZ(’ABCDE’) VARYING

D var5b S 5A INZ(’ABCDE’) VARYING

D var5c S 5A INZ(’ABCDE’) VARYING

D var10a S 10A INZ(’0123456789’) VARYING

D var10b S 10A INZ(’ZXCVBNM’) VARYING

D var15a S 15A INZ(’FGH’) VARYING

D var15b S 15A INZ(’FGH’) VARYING

D var15c S 15A INZ(’QWERTYUIOPAS’) VARYING

C*

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVE var15a var5a

C* var5a = ’ABFGH’ (length=5)

C MOVE var10a var5b

C* var5b = ’56789’ (length=5)

C MOVE var5c var15a

C* var15a = ’CDE’ (length=3)

C MOVE var10b var15b

C* var15b = ’BNM’ (length=3)

C MOVE var15c var10b

C* var10b = ’YUIOPAS’ (length=7)

Figure 273. MOVE from a Variable-length Field to Variable-length Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE from variable to fixed length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15 S 15A INZ(’FGH’) VARYING

D fix5a S 5A INZ(’MNOPQ’)

D fix5b S 5A INZ(’MNOPQ’)

D fix5c S 5A INZ(’MNOPQ’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVE var5 fix5a

C* fix5a = ’ABCDE’

C MOVE var10 fix5b

C* fix5b = ’56789’

C MOVE var15 fix5c

C* fix5c = ’MNFGH’

Figure 274. MOVE from a Variable-length Field to a Fixed-length Field

MOVE (Move)

Chapter 26. Operation Code Details 611

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE from fixed to variable length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15 S 15A INZ(’FGHIJKL’) VARYING

D fix5 S 5A INZ(’.....’)

D fix10 S 10A INZ(’PQRSTUVWXY’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVE fix10 var5

C* var5 = ’UVWXY’ (length=5)

C MOVE fix5 var10

C* var10 = ’01234.....’ (length=10)

C MOVE fix10 var15

C* var15 = ’STUVWXY’ (length=7)

Figure 275. MOVE from a Fixed-length Field to a Variable-length Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE(P) from variable to variable length

D* for character fields

D*

D var5a S 5A INZ(’ABCDE’) VARYING

D var5b S 5A INZ(’ABCDE’) VARYING

D var5c S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15a S 15A INZ(’FGH’) VARYING

D var15b S 15A INZ(’FGH’) VARYING

D var15c S 15A INZ(’FGH’) VARYING

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVE(P) var15a var5a

C* var5a = ’ FGH’ (length=5)

C MOVE(P) var10 var5b

C* var5b = ’56789’ (length=5)

C MOVE(P) var5c var15b

C* var15b = ’CDE’ (length=3)

C MOVE(P) var10 var15c

C* var15c = ’789’ (length=3)

Figure 276. MOVE(P) from a Variable-length Field to a Variable-length Field

MOVE (Move)

612 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE(P) from variable to fixed length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15 S 15A INZ(’FGH’) VARYING

D fix5a S 5A INZ(’MNOPQ’)

D fix5b S 5A INZ(’MNOPQ’)

D fix5c S 5A INZ(’MNOPQ’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVE(P) var5 fix5a

C* fix5a = ’ABCDE’

C MOVE(P) var10 fix5b

C* fix5b = ’56789’

C MOVE(P) var15 fix5c

C* fix5c = ’ FGH’

Figure 277. MOVE(P) from a Variable-length Field to a Fixed-length Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVE(P) from fixed to variable length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15a S 15A INZ(’FGHIJKLMNOPQR’) VARYING

D var15b S 15A INZ(’FGHIJ’) VARYING

D fix5 S 5A INZ(’’)

D fix10 S 10A INZ(’PQRSTUVWXY’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVE(P) fix10 var5

C* var5 = ’UVWXY’ (length=5 before and after)

C MOVE(P) fix10 var10

C* var10 = ’PQRSTUVWXY’ (length=10 before and after)

C MOVE(P) fix10 var15a

C* var15a = ’ PQRSTUVWXY’ (length=13 before and after)

C MOVE(P) fix10 var15b

C* var15b = ’UVWXY’ (length=5 before and after)

Figure 278. MOVE(P) from a Fixed-length Field to a Variable-length Field

MOVE (Move)

Chapter 26. Operation Code Details 613

MOVE Examples (Part 3)

 Table 54. Moving a Character Field to a Date-Time Field. Factor 1 specifies the format of

the Factor 2 entry.

Result Field

Factor 1 Factor 2 (Character) Value DTZ Type

*MDY 11-19-75 75/323 D(*JUL)

*JUL 92/114 23/04/92 D(*DMY)

YMD 14/01/28 01/28/2014 D(USA)

*YMD0 140128 01/28/2014 D(*USA)

*USA 12/31/9999 31.12.9999 D(*EUR)

*ISO 2036-05-21 21/05/36 D(*DMY)

*JUL 45/333 11/29/1945 D(*USA)

*MDY/ 03/05/33 03.05.33 D(*MDY.)

*CYMD& 121 07 08 08.07.2021 D(*EUR)

*CYMD0 1210708 07,08,21 D(*MDY,)

*CMDY. 107.08.21 21-07-08 D(*YMD-)

*CDMY0 1080721 07/08/2021 D(*USA)

*LONGJUL- 2021-189 08/07/2021 D(*EUR)

*HMS& 23 12 56 23.12.56 T(*ISO)

*USA 1:00 PM 13:00.00 T(*EUR)

*EUR 11.10.07 11:10:07 T(*JIS)

*JIS 14:16:18 14.16.18 T(*HMS.)

*ISO 24:00.00 12:00 AM *T(*USA)

Blank 1991-09-14-13.12.56.123456 1991-09-14-
13.12.56.123456

Z(*ISO)

*ISO 1991-09-14-13.12.56.123456 1991-09-14-
13.12.56.123456

Z(*ISO)

 Table 55. Moving a Numeric Field to a Date-Time Field. Factor 1 specifies the format of the

Factor 2 entry.

Result Field

Factor 1 Factor 2 (Numeric) Value DTZ Type

*MDY 111975 75/323 D(*JUL)

*JUL 92114 23/04/92 D(*DMY)

*YMD 140128 01/28/2014 D(*USA)

*USA (See

note 1.)

12319999 31.12.9999 D(*EUR)

*ISO 20360521 21/05/36 D(*DMY

*JUL 45333 11/29/1945 D(*USA)

*MDY 030533 03.05.33 D(*MDY.)

*CYMD 1210708 08.07.2021 D(*EUR)

*CMDY 1070821 21-07-08 D(*YMD-)

*CDMY 1080721 07/08/2021 D(*USA)

MOVE (Move)

614 VisualAge RPG Language Reference

Table 55. Moving a Numeric Field to a Date-Time Field. Factor 1 specifies the format of the

Factor 2 entry. (continued)

*LONGJUL 2021189 08/07/2021 D(*EUR)

*USA *DATE (092195) (See note 3.) 1995-09-21 D(*JIS)

Blank *DATE (092195) (See note 3.) 1995-09-21 D(*JIS)

*MDY UDATE (092195) (See note

3.)

21.09.1995 D(*EUR)

*HMS 231256 23.12.56 T(*ISO)

*EUR 111007 11:10:07 T(*JIS)

*JIS 141618 14.16.18 T(*HMS.)

*ISO 240000 12:00 AM T(*USA)

Blank (See

note 4.)

19910914131256123456 1991-09-14-13.12.56.123456 Z(*ISO)

Notes::

1 Time format *USA is not allowed for movement between time and numeric

classes.

2 A separator of zero (0) is not allowed in factor 1 for movement between date, time

or timestamp fields and numeric classes.

3 For *DATE and UDATE, assume that the job date in the job description is of

*MDY format and contains 092195. Factor 1 is optional and will default to the

correct format. If factor 2 is *DATE, and factor 1 is coded, it must be a 4-digit year

date format. If factor 2 is UDATE, and factor 1 is coded, it must be a 2-digit year

date format.

4 For moves of timestamp fields, factor 1 is optional. If it is coded it must be *ISO

or *ISO0.

MOVE (Move)

Chapter 26. Operation Code Details 615

MOVE Examples (Part 4)

 Table 56. Moving a Date-Time Field to a Character Field

Factor 2

Factor 1 Entry Value DTZ Type Result Field (Character)

*JUL 11-19-75 D(*MDY-) 75/323

*DMY- 92/114 D(*JUL) 23-04-92

*USA 14/01/28 D(*YMD) 01/28/2014

*EUR 12/31/9999 D(*USA) 31.12.9999

*DMY, 2036-05-21 D(*ISO) 20,05,36

*USA 45/333 D(*JUL) 11/29/1945

*USA0 45/333 D(*JUL) 11291945

*MDY& 03/05/33 D(*MDY) 03 05 33

*CYMD, 03 07 08 D(*DMY) 1080721

*CMDY 21-07-08 D(*YMD-) 107/08/21

*CDMY- 07/08/2021 D(*USA) 108-07-21

*LONGJUL& 08/07/2021 D(*EUR) 2021 189

*ISO 23 12 56 T(*HMS&) 23.12.56

*EUR 11:00 AM T(*USA) 11.00.00

*JIS 11.10.07 T(*EUR) 11:10:07

*HMS, 14:16:18 T(*JIS) 14,16,18

*USA 24.00.00 T(*ISO) 12:00 AM

Blank 2045-10-27-23.34.59.123456 Z(*ISO) 2045-10-27-23.34.59.123456

 Table 57. Moving a Date-Time Field to a Numeric Field

Factor 2

Factor 1 Entry Value DTZ Type Result Field (Numeric)

*JUL 11-19-75 D(*MDY-) 75323

*DMY- 92/114 D(*JUL) 230492

*USA 14/01/28 D(*YMD) 01282014

*EUR 12/31/9999 D(*USA) 31129999

*DMY 2036-05-21 D(*ISO) 210536

*USA 45/333 D(*JUL) 11291945

*MDY& 03/05/33 D(*MDY) 030533

*CYMD, 03 07 08 D(*MDY&) 1080307

*CMDY 21-07-08 D(*YMD-) 1070821

*CDMY- 07/08/2021 D(*USA) 1080721

*LONGJUL& 08/07/2021 D(*EUR) 2021189

*ISO 231256 T(*HMS&) 231256

*EUR 11:00 AM T(*USA) 110000

*JIS 11.10.07 T(*EUR) 111007

*HMS, 14:16:18 T(*JIS) 141618

MOVE (Move)

616 VisualAge RPG Language Reference

Table 57. Moving a Date-Time Field to a Numeric Field (continued)

*ISO 2045-10-27-23.34.59.123456 Z(*ISO) 20451027233459123456

The following table shows examples of moving a date-time fields to date-time

fields. Assume that the initial value of the timestamp is: 1985-12-03-14.23.34.123456.

 Table 58. Moving Date-Time Fields to Date-Time Fields

Factor 2 Result Field

Factor 1 Value DTZ Type Value DTZ Type

N/A 1986-06-24 D(*ISO) 86/06/24 D(*YMD)

N/A 23 07 12 D(*DMY&) 23.07.2012 D(*EUR)

N/A 11:53 PM T(USA) 23.53.00 T(*EUR)

N/A 19.59.59 T(*HMS) 19:59:59 T(*JIS)

N/A 1985-12-03-
14.23.34.123456

Z(*ISO.) 1985-12-03-
14.23.34.123456

Z(*ISO)

N/A 75.06.30 D(*YMD) 1975-06-30-
14.23.34.123456

Z(*ISO)

N/A 09/23/2234 D(*USA) 2234-09-23-
14.23.34.123456

Z(*ISO)

N/A 18,45,59 T(*HMS,) 1985-12-03-
18.45.59.000000

Z(*ISO)

N/A 2:00 PM T(*USA) 1985-12-03-
14.00.00.000000

Z(*ISO)

N/A 1985-12-03-
14.23.34.123456

Z(*ISO.) 12/03/85 D(*MDY)

N/A 1985-12-03-
14.23.34.123456

Z(*ISO.) 12/03/1985 D(*USA)

N/A 1985-12-03-
14.23.34.123456

Z(*ISO.) 14:23:34 T(*HMS)

N/A 1985-12-03-
14.23.34.123456

Z(*ISO) 02:23 PM T(*USA)

MOVE (Move)

Chapter 26. Operation Code Details 617

MOVE Examples (Part 5)

The following table shows examples of moving a date field to a character field.

The result field is larger than factor 2. Assume that factor 1 contains *ISO and that

the result field is defined as:

D Result_Fld 20S INZ(’ABCDEFGHIJabcdefghij’)

 Table 59. Moving a Date Field to a Character Field

Factor 2 Value of Result Field after move operation

Operation

Code

Value DTZ Type

MOVE 11 19 75 D(*MDY&) ’ABCDEFGHIJ1975-11-19’

MOVE(P) 11 19 75 D(*MDY&) ’ 1975-11-19’

MOVEL 11 19 75 D(*MDY&) ’1975-11-19abcdefghij’

MOVEL(P) 11 19 75 D(MDY&) ’1975-11-19 ’

The following table shows examples of moving a time field to a numeric field. The

result field is larger than factor 2. Assume that Factor 1 contains *ISO and that the

result field is defined as:

D Result_Fld 20S INZ(11111111111111111111)

 Table 60. Moving a Time Field to a Numeric Field

Factor 2

Operation

Code

Value DTZ Type Value of Result Field after move operation

MOVE 9:42 PM T(*USA) 11111111111111214200

MOVE(P) 9:42 PM T(*USA) 00000000000000214200

MOVEL 9:42 PM T(*USA) 21420011111111111111

MOVEL(P) 9:42 PM T(*USA) 21420000000000000000

 Table 61. Moving a Numeric field to a Time Field. Factor 2 is larger than the result field. The

highlighted portion shows the part of the factor 2 field that is moved.

Result Field

Operation

Code

Factor 2 DTZ Type Value

MOVE 11:12:13:14 T(*EUR) 12.13.14

MOVEL 11:12:13:14 T(*EUR) 11.12.13

 Table 62. Moving a Numeric field to a Timestamp Field. Factor 2 is larger than the result

field. The highlighted portion shows the part of the factor 2 field that is moved.

Result Field

Operation

Code

Factor 2 DTZ Type Value

MOVE 12340618230323123420123456 Z(*ISO) 1823-03-23-12.34.21.123456

MOVEL 12340618230323123420123456 Z(*ISO) 1234-06-18-23-.03.23.123420

MOVE (Move)

618 VisualAge RPG Language Reference

MOVEA (Move Array)

 Free-Form Syntax (not allowed — use %SUBARR or one or more String Operations)

 Code Factor 1 Factor 2 Result Field Indicators

MOVEA (P) Source Target + − ZB

The MOVEA operation transfers character, graphic, UCS-2, or numeric values from

factor 2 to result field. (Certain restrictions apply when moving numeric values.)

You can use the MOVEA operation to:

v Move several contiguous array elements to a single field

v Move a single field to several contiguous array elements

v Move contiguous array elements to contiguous elements of another array.

Movement of data starts with the first element of an array if the array is not

indexed or with the element specified if the array is indexed. The movement of

data ends when the last array element is moved or filled. When the result field

contains the indicator array, the cross-reference listing contains all the indicators

affected by the MOVEA operation.

Factor 2 or the result field must contain an array. The array can be packed, binary,

zoned, graphic or a character array. Factor 2 and the result field cannot specify the

same array even if the array is indexed.

Note: For character, graphic, UCS-2, and numeric MOVEA operations, you can

specify the P operation extender to pad the result from the right.

For more information, see “Array Operations” on page 351, “Move Operations” on

page 368, or “Date Operations” on page 359.

Character, Graphic, and UCS-2 MOVEA Operations

Both factor 2 and the result field must be defined as character, graphic, or UCS-2.

Graphic or UCS-2 CCSIDs must be the same, unless, in the case of graphic fields,

CCSID(*GRAPH: *IGNORE) was specified on the control specification. Movement

of data ends when the number of characters moved equals the shorter length of

the fields specified by factor 2 and the result field.

The MOVEA operation could end in the middle of an array element.

Variable-length arrays are not allowed.

Numeric MOVEA Operations

The data that is moved between fields and array elements must have the same

length. Factor 2 and the result field must contain numeric fields, numeric array

elements, or numeric arrays. At least one must be an array or array element. The

numeric types can be binary, packed decimal, or zoned decimal. The numeric types

do not need to be the same between factor 2 and the result field.

Factor 2 can contain a numeric literal if the result field contains a numeric array or

numeric array-element:

v The numeric literal cannot contain a decimal point.

MOVEA (Move Array)

Chapter 26. Operation Code Details 619

v The length of the numeric literal cannot be greater than the element length of

the array element specified in the result field.

Decimal positions are ignored during the move. Numeric values are not converted

to account for the differences in the defined number of decimal positions.

If the result field contains a numeric array, factor 2 cannot contain the figurative

constants *BLANK, *ALL, *ON, and *OFF.

Zoned Decimal MOVEA Operations

To move a zoned decimal format array:

v Define the numeric array as a subfield of a data structure

v Redefine the numeric array in the data structure as as a character array.

You can then use MOVEA the same way as you would for character array moves.

Specifying Figurative Constants with MOVEA

To move a figurative constant, the length of the constant must be equal to the

portion of the array that is specified. For figurative constants in numeric arrays,

the element boundaries are ignored except for the sign that is put in each element

array. For example:

v MOVEA *BLANK ARR(X)

Beginning with element X, the remainder of ARR contains blanks.

v MOVEA *ALL’XYZ’ARRR(X)

ARR has 4-byte character elements. Element boundaries are ignored. Beginning

with element X, the remainder of the array contains ’XYZXYZXYZYXZ...’.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA ARRX ARRY

C* Array-to-array move. No indexing; different length array,

C* same element length.

1

1 1

A A2

2 2

B B3

3 3

CC4

4 4

5

5 5

D D6

6 6

7

7 7 F F

E E8

8 8

9

9 9

F F0

0 0

.

. .

ARRX ARRY

One Element One Element

Before
MOVEA

After
MOVEA

Figure 279. Array to Array - Different Array Length, Same Element Length

MOVEA (Move Array)

620 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA ARRX ARRY(3)

C* Array-to-array move with index result field.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A B B CC D D E E

A A B B

1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 1 2 3 4 5 6

Figure 280. Array to Array - Indexed Result Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA ARRX ARRY

C* Array-to-array move, no indexing and different length array

C* elements.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A A B BB C C C D D D1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 1 2 3 4 5 6 7 D D8 9 0.

Figure 281. Array to Array - Different Length Array Elements

MOVEA (Move Array)

Chapter 26. Operation Code Details 621

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA ARRX(4) ARRY

C* Array-to-array move, index factor 2 with different length array

C* elements.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A

B B C CC D D D

A A B B B C CC D D D1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 7 8 9 0.

Figure 282. Array to Array - Indexed Factor 2

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA FIELDA ARRY

C* Field-to-array move, no indexing on array.

FIELDA
Before
MOVEA

After
MOVEA

ARRY

One Element

A

A

B

B C

C

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1

1

12

2

3

3

4

4

5

5

6

6

7

89

0

0

.

.

Figure 283. Array to Array - No Indexing

MOVEA (Move Array)

622 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* In the following example, N=3. Array-to-field move with variable

C* indexing.

C MOVEA ARRX(N) FIELD

C*

FIELD
Before
MOVEA

After
MOVEA

ARRY

One Element

A A

A

B

BB

C

C

1 1

1

2

22

3

3

0 0

0

0

00

0

0

0

0

0

00

0 0

0

. .

.

.

..

.

.

.

.

.

..

. .

.

Figure 284. Array to field - Variable indexing

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA ARRB ARRZ

C*

C* An array-to-array move showing numeric elements.

One Element One Element

Before MOVEA

After MOVEA1.0 1.0

2.0 3.0 4.0 5.0 6.0

6.0

1.0

1.0 1.0

1.0

1.1 1.1

1.1

1.2 1.2

1.2

. .

.

.

.

. .

.

Figure 285. Array to array - Numeric Elements

MOVEA (Move Array)

Chapter 26. Operation Code Details 623

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA(P) ARRX ARRY

C* Array-to-array move with padding. No indexing; different length

C* array with same element length.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A B B CC D D E E F F1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 1 2 3 4 5 6 7 8 9 0.

Figure 286. Array to array - With Padding

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA(P) ARRB ARRZ

C*

C* An array-to-array move showing numeric elements with padding.

One Element One Element

Before MOVEA

After MOVEA

1.1

1.1 1.1

2.0.3.0 4.0 5.0 6.0

1.3

1.2

1.2 1.2 0.0

1.0

1.0 1.0

1.0

1.0

.

. .

.

. . .

Figure 287. Array to array - Numeric Elements with Padding

MOVEA (Move Array)

624 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C MOVEA(P) ARRX(3) ARRY

C* Array-to-array move with padding. No indexing; different length

C* array with different element length.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A B B CC D D E E F FP

P

P

P

P

P

Q

Q

Q

Q

Q

Q

R

R R

R

R R

R

R R

Figure 288. Array to array - With Padding, No Indexing

MOVEA (Move Array)

Chapter 26. Operation Code Details 625

MOVEL (Move Left)

 Free-Form Syntax not allowed - use EVAL, or built-in functions such as %CHAR, %DATE, %DEC ,

%DECH, %GRAPH, %INT, %INTH, %TIME, %TIMESTAMP , %UCS2, %UNS, or

%UNSH

 Code Factor 1 Factor 2 Result Field Indicators

MOVEL (P) Data Attributes Source field Target field + − ZB

The MOVEL operation transfers characters from factor 2 to the result field. Moving

begins with the leftmost character in factor 2.

If factor 1 is specified, it must contain a date or time format. This specifies the

format of the character or numeric field that is the source or target of the

operation.

You cannot specify resulting indicators if the result field is an array. You can

specify them if the result field is an array element, or a nonarray field.

If the source or target is a character field, you may optionally indicate the

separator following the format in factor 1. Only separators that are valid for that

format are allowed.

If factor 2 is *DATE or UDATE and the result is a Date field, factor 1 is not

required. If factor 1 contains a date format it must be compatible with the format

*DATE or UDATE in factor 2 as specified by the DATEDIT keyword on the control

specification.

If factor 2 is longer than the result field, the excess rightmost characters of factor 2

are not moved. If the result field is longer than factor 2, the excees rightmost

characters in the result field are unchanged, unless padding is specified.

Float numeric fields and literals are not allowed as Factor 2.

If factor 2 is UCS-2 and the result field is character, or if factor 2 is character and

the result field is UCS-2, the number of characters moved is variable. For example,

five UCS-2 characters can convert to:

v Five single-byte characters

v Five double-byte characters

v A combination of single-byte and double-byte characters

Note: When data is moved to a numeric field, the sign (+ or −) of the result field

is retained except when factor 2 is as long as or longer than the result field.

In this case, the sign of factor 2 is used as the sign of the result field.

The following sections summarize the rules for the MOVEL operation based on the

length of factor 2 and the result field.

Factor 2 is the Same Length as the Result Field

Factor 2 and the result field are the same length:

MOVEL (Move Left)

626 VisualAge RPG Language Reference

v If factor 2 and the result field are both numeric, the sign is moved into the

rightmost position.

v If factor 2 and the result field are both character, all characters are moved.

v If factor 2 is numeric and the result field is character, the sign is moved into the

rightmost position.

v If factor 2 is character and the result field is numeric, a minus zone is moved

into the rightmost position of the result field if the zone from the rightmost

position of factor 2 is a minus zone. However, if the zone from the rightmost

position of factor 2 is not a minus zone, a positive zone is moved into the

rightmost position of the result field. Digit portions are converted to their

corresponding numeric characters. If the digit portions are not valid digits, a

data exception error occurs.

v If factor 2 and the result field are both graphic or UCS-2, all graphic or UCS-2

characters are moved.

v If factor 2 is graphic and the result field is character, all graphic characters are

moved.

v If factor 2 is character and the result field is graphic, all characters are moved.

Factor 2 is Longer than the Result Field

Factor 2 is longer than the result field:

v If factor 2 and the result field are both numeric, the sign from the rightmost

position of factor 2 is moved into the rightmost position of the result field.

v If factor 2 is numeric and the result field is character, the result field contains

only numeric characters. Only the number of characters needed to fill the result

field are moved.

v If factor 2 is character and the result field is numeric, a minus zone is moved

into the rightmost position of the result field if the zone from the rightmost

position of factor 2 is a minus zone. However, if the zone from the rightmost

position of factor 2 is not a minus zone, a positive zone is moved into the

rightmost position of the result field. Other result field positions contain only

numeric characters.

v If factor 2 and the result field are both graphic or UCS-2, only the number of

graphic or UCS-2 characters needed to fill the result field are moved.

v If factor 2 is graphic and the result field is character, the graphic data is

truncated.

v If factor 2 is character and the result is graphic, the character data is truncated.

Note: The excess rightmost characters of factor 2 are not moved. If the result field

is longer than factor 2, the excess rightmost characters in the result field are

unchanged, unless padding is specified.

Factor 2 is Shorter than the Result Field

Factor 2 is shorter than the result field:

v If factor 2 is either numeric or character and the result field is numeric, the digit

portion of factor 2 replaces the contents of the leftmost positions of the result

field. The sign in the rightmost position of the result field is not changed.

v If factor 2 is either numeric or character and the result field is character data, the

characters in factor 2 replace the equivalent number of leftmost positions in the

result field. No change is made in the zone of the rightmost position of the

result field.

Factor 2 is Shorter than the Result Field and P is Specified

If factor 2 is shorter than the result field, and P is specified in the operation

extender field:

MOVEL (Move Left)

Chapter 26. Operation Code Details 627

v The move is performed as described in “Factor 2 is Shorter than the Result

Field” on page 627

v The result field is padded from the right.

When moving variable-length character, graphic, or UCS-2 data, the

variable-length field works in exactly the same way as a fixed-length field with the

same current length. For examples, see Figures 293 to 298.

For further information on the MOVEL operation, see “Move Operations” on page

368, “Date Operations” on page 359, or “Conversion Operations” on page 358.

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 and Resut Field Same Length

Factor 2 Result Field

28 4 5
a. Numeric

to
Numeric

b.

c.

d.

Character
to

Numeric

Character
to

Character

Numeric
to

Character

8 4

G X t

4 N

_

48

2
_

2
_

4

7

27 5

B4

P H S

_

24 27

7 8 4 47

BG X t

P H 4 S N

85 6 7 4

27 8 4 5

85 6 7 4

A K T 4 D

_

T D4A K

28 4 t27 4

P H 4 S N

28 4 427 4

+

+

++

_

Figure 289. Factor 2 and the Result Field are the Same Length

MOVEL (Move Left)

628 VisualAge RPG Language Reference

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Longer Than Result Field

Factor 2 Result Field

a.

Character
to

Character

b.

c.

d.

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

85 6 7 4

20 0 0 5

85 6 7 4

A K T 4 D

_

T D4A K

0 719 3

B R W C X

2 832 7

+

+

++

B W C H 4 S tR X

0 2 8 4 2 50 5

9 3 1 8 4 2 50 7

0

0 2 8 4 2 50 50

0 2 8 4 2 50 50

9 3 1 8 4 2 50 7

B W C H 4 S tR X

B W C H 4 S NR X

B W C H 4 S NR X

_

_

_

_

Figure 290. Factor 2 is Longer than the Result Field

MOVEL (Move Left)

Chapter 26. Operation Code Details 629

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Shorter Than Result Field

Factor 2 Result Field

0 9 3 2 14

7 4 2 3 2 1 08 5

3 4 5 3 2 1 00 5

7 4 2 H 4 S A8 t

B W C H 4 S AR X

T 5 H 4 S AN

27 8 4 5

C P T 5 E

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

+

C P

27 8 4 5

C P T 5 E

27 8 4 4

27 8 4 4

_

_

C P T 5 N

C P T 5 N

0 9 3 2 140 9 3 2 149 3 2 1 041 9 3 2 13 4

1 0 9 3 2 1 03 4

B W C H 4 S AR X

B W C H 4 S AR X

+

+

A. _

B. _

Note: In the above example, 4 = letter t; arrow is decimal point.

+

-

-

_

Figure 291. Factor 2 is Shorter than the Result Field

MOVEL (Move Left)

630 VisualAge RPG Language Reference

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Shorter Than Result Field
With P in Operation Extender Field

Factor 2 Result Field

0 9 3 2 1 04

7 4 2 0 0 0 08 5

3 4 5 0 0 0 00 5

7 4 28 t

B W C S AR X

T 5 N

27 8 4 5

C P T 5 E

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

+

C P

27 8 4 5

C P T 5 E

27 8 4 4

27 8 4 4

_

_

C P T 5 N

C P T 5 N

0 9 3 2 1 040 9 3 2 1 040 9 2 1 041 0 9 2 1 03 4

1 0 9 3 2 1 03 4

B W C H 4 S AR X

B W C H 4 S AR X

+

A. _

B. _

Note: In the above example, 4 = letter t; arrow is decimal point.

_

_ +

+

_

Figure 292. Factor 2 is Shorter than the Result with P Specified

MOVEL (Move Left)

Chapter 26. Operation Code Details 631

MOVEL Examples: Variable-length / Fixed-length Moves

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVEL from variable to variable length

D* for character fields

D*

D var5a S 5A INZ(’ABCDE’) VARYING

D var5b S 5A INZ(’ABCDE’) VARYING

D var5c S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15a S 15A INZ(’FGH’) VARYING

D var15b S 15A INZ(’FGH’) VARYING

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVEL var15a var5a

C* var5a = ’FGHDE’ (length=5)

C MOVEL var10 var5b

C* var5b = ’01234’ (length=5)

C MOVEL var5c var15a

C* var15a = ’ABC’ (length=3)

C MOVEL var10 var15b

C* var15b = ’012’ (length=3)

Figure 293. MOVEL: Variable-length Field to Variable-length Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVEL from variable to fixed length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15 S 15A INZ(’FGH’) VARYING

D fix5a S 5A INZ(’MNOPQ’)

D fix5b S 5A INZ(’MNOPQ’)

D fix5c S 5A INZ(’MNOPQ’)

D fix10 S 10A INZ(’’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVEL var5 fix5a

C* fix5a = ’ABCDE’

C MOVEL var10 fix5b

C* fix5b = ’01234’

C MOVEL var15 fix5c

C* fix5c = ’FGHPQ’

Figure 294. MOVEL: Variable-length Field to Fixed-length Field

MOVEL (Move Left)

632 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVEL from fixed to variable length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15a S 15A INZ(’FGHIJKLMNOPQR’) VARYING

D var15b S 15A INZ(’WXYZ’) VARYING

D fix10 S 10A INZ(’PQRSTUVWXY’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVEL fix10 var5

C* var5 = ’PQRST’ (length=5)

C MOVEL fix10 var10

C* var10 = ’PQRSTUVWXY’ (length=10)

C MOVEL fix10 var15a

C* var15a = ’PQRSTUVWXYPQR’ (length=13)

C MOVEL fix10 var15b

C* var15b = ’PQRS’ (length=4)

Figure 295. MOVEL: Fixed-length Field to Variable-length Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVEL(P) from variable to variable length

D* for character fields

D*

D var5a S 5A INZ(’ABCDE’) VARYING

D var5b S 5A INZ(’ABCDE’) VARYING

D var5c S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15a S 15A INZ(’FGH’) VARYING

D var15b S 15A INZ(’FGH’) VARYING

D var15c S 15A INZ(’FGHIJKLMN’) VARYING

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVEL(P) var15a var5a

C* var5a = ’FGH ’ (length=5)

C MOVEL(P) var10 var5b

C* var5b = ’01234’ (length=5)

C MOVEL(P) var5c var15b

C* var15b = ’ABC’ (length=3)

C MOVEL(P) var15a var15c

C* var15c = ’FGH ’ (length=9)

Figure 296. MOVEL(P): Variable-length Field to Variable-length Field

MOVEL (Move Left)

Chapter 26. Operation Code Details 633

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVEL(P) from variable to fixed length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15 S 15A INZ(’FGH’) VARYING

D fix5a S 5A INZ(’MNOPQ’)

D fix5b S 5A INZ(’MNOPQ’)

D fix5c S 5A INZ(’MNOPQ’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVEL(P) var5 fix5a

C* fix5a = ’ABCDE’

C MOVEL(P) var10 fix5b

C* fix5b = ’01234’

C MOVEL(P) var15 fix5c

C* fix5c = ’FGH ’

Figure 297. MOVEL(P): Variable-length Field to a Fixed-length Field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++

D*

D* Example of MOVEL(P) from fixed to variable length

D* for character fields

D*

D var5 S 5A INZ(’ABCDE’) VARYING

D var10 S 10A INZ(’0123456789’) VARYING

D var15a S 15A INZ(’FGHIJKLMNOPQR’) VARYING

D var15b S 15A INZ(’FGH’) VARYING

D fix5 S 10A INZ(’.....’)

D fix10 S 10A INZ(’PQRSTUVWXY’)

D*

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL

C*

C MOVEL(P) fix10 var5

C* var5 = ’PQRST’ (length=5)

C MOVEL(P) fix5 var10

C* var10 = ’..... ’ (length=10)

C MOVEL(P) fix10 var15a

 * var15a = ’PQRSTUVWXY ’ (length=13)

C MOVEL(P) fix10 var15b

C* var15b = ’PQR’ (length=3)

Figure 298. MOVEL(P): Fixed-length field to Variable-length Field

MOVEL (Move Left)

634 VisualAge RPG Language Reference

MULT (Multiply)

 Free-Form Syntax (not allowed - use the * or *= operator)

 Code Factor 1 Factor 2 Result Field Indicators

MULT (H) Multiplicand Multiplier Product + − Z

If factor 1 is specified, factor 1 is multiplied by factor 2 and the product is placed

in the result field. If factor 1 is not specified, factor 2 is multiplied by the result

field and the product is placed in the result field.

Factor 1 and factor 2 must be numeric, and each can contain an array, array

element, field, figurative constant, literal, named constant, subfield, or table name.

The result field must be large enough to hold the product. Use the following rule

to determine the maximum result field length: result field length equals the length

of factor 1 plus the length of factor 2. The result field must be numeric, but cannot

be a named constant or literal. You can specify half adjust to have the result

rounded.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the MULT operation.

MULT (Multiply)

Chapter 26. Operation Code Details 635

MVR (Move Remainder)

 Free-Form Syntax (not allowed - use the %REM built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

MVR Remainder + − Z

The MVR operation moves the remainder from the previous DIV operation to a

separate field named in the result field. The MVR operation must immediately

follow the DIV operation. If you use conditioning indicators, the MVR operation

must be specified immediately after the DIV operation. The result field must be

numeric and can contain an array, array element, subfield, or table name.

Leave sufficient room in the result field if the DIV operation uses factors with

decimal positions. The number of significant decimal positions is the greater of:

v The number of decimal positions in factor 1 of the previous divide operation

v The sum of the decimal positions in factor 2 and the result field of the previous

divide operation.

The maximum number of whole number positions in the remainder is equal to the

whole number of positions in factor 2 of the previous divide operation.

The sign (+ or -) of the remainder is the same as the dividend (factor 1).

You cannot specify half adjust on a DIV operation that is immediately followed by

an MVR operation. The MVR operation cannot be used if the previous divide

operation has an array specified in the result field. Also, the MVR operation cannot

be used if the previous DIV operation has at least one float operand.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the MVR operation.

MVR (Move Remainder)

636 VisualAge RPG Language Reference

OCCUR (Set/Get Occurrence of a Data Structure)

 Free-Form Syntax (not allowed - use the %OCCUR built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

OCCUR (E) Occurrence value Data structure Occurrence

value

_ ER _

The OCCUR operation specifies the occurrence of the data structure that is to be

used next within a program.

If a data structure with multiple occurrences or a subfield of that data structure is

specified in an operation, the first occurrence of the data structure is used until an

OCCUR operation is specified. After an OCCUR operation is specified, the

occurrence of the data structure that was established by the OCCUR operation is

used.

If factor 1 is specified, it must contain a numeric, zero decimal position literal, field

name, named constant, or a data structure name. Factor 1 sets the occurrence of the

data structure specified in factor 2. If factor 1 is not specified, the value of the

current occurrence of the data structure in factor 2 is placed in the result field

during the OCCUR operation.

If factor 1 is a data structure name, it must be a multiple occurrence data structure.

The current occurrence of the data structure in factor 1 is used to set the

occurrence of the data structure in factor 2.

Factor 2 must be the name of a multiple occurrence data structure.

If the result field is specified, it must be a numeric field name with no decimal

positions. The value of the current occurrence of the data structure specified in

factor 2, after being set by any value or data structure that is optionally specified

in factor 1, is placed in the result field.

Note: At least one of factor 1 or the result field must be specified.

If the occurrence is outside the valid range set for the data structure, an error

occurs, and the occurrence of the data structure in factor 2 remains the same as

before the OCCUR operation was processed.

To handle OCCUR exceptions (program status code 122), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

OCCUR (Set/Get Occurrence of a Data Structure)

Chapter 26. Operation Code Details 637

FLDA FLDB FLDC FLDD

FLDA FLDB FLDC FLDD

FLDA FLDB

50th
Occurrence

49th
Occurrence FLDC FLDD

FLDA FLDB FLDC FLDD

FLDA

DS1 DS2

FLDCFLDB FLDD

3rd
Occurrence

2nd
Occurrence

1st
Occurrence

Figure 299. OCCUR Operation Example

OCCUR (Set/Get Occurrence of a Data Structure)

638 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D*

D* DS1 and DS2 are multiple occurrence data structures.

D* Each data structure has 50 occurrences.

D DS1 DS OCCURS(50)

D FLDA 1 5

D FLDB 6 80

D*

D DS2 DS OCCURS(50)

D FLDC 1 6

D FLDD 7 11

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* DS1 is set to the third occurrence. The subfields FLDA

C* and FLDB of the third occurrence can now be used. The MOVE

C* and Z-ADD operations change the contents of FLDA and FLDB,

C* respectively, in the third occurrence of DS1.

C

C 3 OCCUR DS1

C MOVE ’ABCDE’ FLDA

C Z-ADD 22 FLDB

C*

C* DS1 is set to the fourth occurrence. Using the values in

C* FLDA and FLDB of the fourth occurrence of DS1, the MOVE

C* operation places the contents of FLDA in the result field,

C* FLDX, and the Z-ADD operation places the contents of FLDB

C* in the result field, FLDY.

C

C 4 OCCUR DS1

C MOVE FLDA FLDX

C Z-ADD FLDB FLDY

C*

C* DS1 is set to the occurrence specified in field X.

C* For example, if X = 10, DS1 is set to the tenth occurrence.

C X OCCUR DS1

C*

C* DS1 is set to the current occurrence of DS2. For example, if

C* the current occurrence of DS2 is the twelfth occurrence, DSI

C* is set to the twelfth occurrence.

C DS2 OCCUR DS1

Figure 300. OCCUR Operation Example

OCCUR (Set/Get Occurrence of a Data Structure)

Chapter 26. Operation Code Details 639

C*

C* The value of the current occurrence of DS1 is placed in the

C* result field, Z. Field Z must be numeric with zero decimal

C* positions. For example, if the current occurrence of DS1

C* is 15, field Z contains the value 15.

C OCCUR DS1 Z

C

C* DS1 is set to the current occurrence of DS2. The value of the

C* current occurrence of DS1 is then moved to the result field,

C* Z. For example, if the current occurrence of DS2 is the fifth

C* occurrence, DS1 is set to the fifth occurrence. The result

C* field, Z, contains the value 5.

C

C DS2 OCCUR DS1 Z

C*

C* DS1 is set to the current occurrence of X. For example, if

C* X = 15, DS1 is set to the fifteenth occurrence.

C* If X is less than 1 or greater than 50,

C* an error occurs and %ERROR is set to return ’1’.

C* If %ERROR returns ’1’, the LR indicator is set on.

C

C X OCCUR (E) DS1

C IF %ERROR

C SETON LR

C ENDIF

Figure 301. OCCUR Operation Example

OCCUR (Set/Get Occurrence of a Data Structure)

640 VisualAge RPG Language Reference

ON-ERROR (On Error)

 Free-Form Syntax ON-ERROR {exception-id1 {:exception-id2...}}

 Code Factor 1 Extended Factor 2

ON-ERROR List of exception IDs

You specify which error conditions the on-error block handles in the list of

exception IDs (exception-id1:exception-id2...). You can specify any combination of the

following, separated by colons:

nnnnn A status code

*PROGRAM Handles all program-error status codes, from 00100 to 00999

*FILE Handles all file-error status codes, from 01000 to 09999

*ALL Handles both program-error and file-error codes, from 00100 to

09999. This is the default.

Status codes outside the range of 00100 to 09999, for example codes from 0 to 99,

are not monitored for. You cannot specify these values for an on-error group. You

also cannot specify any status codes that are not valid for the particular version of

the compiler being used.

If the same status code is covered by more than one on-error group, only the first

one is used. For this reason, you should specify special values such as *ALL after

the specific status codes.

Any errors that occur within an on-error group are not handled by the monitor

group. To handle errors, you can specify a monitor group within an on-error

group.

When all the statements in an on-error block have been processed, control passes

to the statement following the ENDMON statement.

For an example of the ON-ERROR statement, see “MONITOR (Begin a Monitor

Group)” on page 602.

For more information, see “Error-Handling Operations” on page 362.

ON-ERROR (On Error)

Chapter 26. Operation Code Details 641

OPEN (Open File for Processing)

 Free-Form Syntax OPEN{(E)} file-name

 Code Factor 1 Factor 2 Result Field Indicators

OPEN (E) file-name _ ER _

The explicit OPEN operation opens the file named in the file-name operand. The

file can either be a local file or an OS/400 file. If the file is defined as a local file

and if it does not exist when the OPEN operation occurs, the local file is created.

Remote files must exist when the OPEN operation occurs, otherwise it is not

created.

The file cannot be a table file. To allow your program to control when the file

should be opened, specify the USROPN keyword on the file description

specifications. See Chapter 17, “File Description Specifications,” on page 237 for

more information on the USROPN keyword.

If a file is opened and then closed by the CLOSE operation, the file can be

reopened with the OPEN operation. The USROPN keyword on the file description

specification is not required. If the USROPN keyword is not specified on the file

description specification, the file is opened at program initialization. If an OPEN

operation is specified for a file that is already open, an error occurs.

Multiple OPEN operations in a program to the same file are valid as long as the

file has been closed prior to the OPEN operation.

If a resulting indicator is specified in positions 73 and 74 on a fixed-format syntax

calculation, it is set on when an error occurs during the OPEN operation.

To handle OPEN exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

For more information, see “File Operations” on page 363.

OPEN (Open File for Processing)

642 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++

FEXCEPTN O E DISK REMOTE USROPN

FFILEX IF E DISK REMOTE

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The explicit OPEN operation opens the EXCEPTN file for

C* processing if indicator 97 is on and indicator 98 is off.

C* Note that the EXCEPTN file on the file description

C* specifications has the USROPN keyword specified.

C* %ERROR is set to return ’1’ if the OPEN operation fails.

C*

C IF *in97 and not *in98

C OPEN(E) EXCEPTN

C IF not %ERROR

C WRITE ERREC

C ENDIF

C ENDIF

C*

C* FILEX is opened at program initialization. The explicit

C* CLOSE operation closes FILEX before control is passed to RTNX. Upon

C* return, the OPEN operation reopens the file. Because the USROPN

C* keyword is not specified for FILEX, the file is opened at

C* program initialization

C*

C CLOSE FILEX

C CALL ’RTNX’

C OPEN FILEX

Figure 302. OPEN Operation with CLOSE Operation

OPEN (Open File for Processing)

Chapter 26. Operation Code Details 643

ORxx (Or)

 Free-Form Syntax (not allowed - use the OR operator)

 Code Factor 1 Factor 2 Result Field Indicators

ORxx Comparand Comparand

The ORxx operation is optional with the DOUxx, DOWxx, IFxx, WHENxx, and

ANDxx operations. ORxx is specified immediately following a DOUxx, DOWxx,

IFxx, WHENxx, ANDxx or ORxx statement. Use ORxx to specify a more complex

condition for the DOUxx, DOWxx, IFxx, and WHENxx operations. Conditioning

indicator entries (positions 9 through 11) are not allowed.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative

constant, a table name, an array element, a data structure name, or a field name.

Factor 1 and factor 2 must be of the same type. The comparison of factor 1 and

factor 2 follows the same rules as those given for the compare operations.

“Compare Operations” on page 357 describes the general rules for specifying

compare operations.

Figure 242 on page 558 shows examples of ORxx and ANDxx operations with a

DOUxx operation.

For more information, see “Structured Programming Operations” on page 376.

ORxx (Or)

644 VisualAge RPG Language Reference

OTHER (Otherwise Select)

 Free-Form Syntax OTHER

 Code Factor 1 Factor 2 Result Field Indicators

OTHER

The OTHER operation begins the sequence of operations to be processed if no

WHENxx or WHEN condition is satisfied in a SELECT group. The sequence ends

with the ENDSL or END operation.

Rules to remember when using the OTHER operation:

v The OTHER operation is optional in a SELECT group.

v Only one OTHER operation can be specified in a SELECT group.

v No WHENxx or WHEN operation can be specified after an OTHER operation in

the same SELECT group.

v The sequence of calculation operations in the OTHER group can be empty; the

effect is the same as not specifying an OTHER statement.

v Conditioning indicator entries (positions 9 through 11) are not allowed.

For more information on select groups, see “SELECT (Begin a Select Group)” on

page 676 and “WHENxx (When True Then Select)” on page 714.

For more information, see “Structured Programming Operations” on page 376.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* Example of a SELECT group with WHENxx and OTHER. If X equals 1,

C* do the operations in sequence 1; if X does not equal 1 and Y

C* equals 2, do the operations in sequence 2. If neither

C* condition is true, do the operations in sequence 3.

C*

C SELECT

C X WHENEQ 1

C*

C* Sequence 1

C*

C :

C :

C Y WHENEQ 2

C*

C* Sequence 2

C*

C :

C :

C OTHER

C*

C* Sequence 3

C*

C :

C :

C ENDSL

Figure 303. OTHER Operation

OTHER (Otherwise Select)

Chapter 26. Operation Code Details 645

OUT (Write a Data Area)

 Free-Form Syntax OUT{(E)} {*LOCK} data-area-name

 Code Factor 1 Factor 2 Result Field Indicators

OUT (E) *LOCK data-area-name _ ER _

The OUT operation updates the data area specified in the data-area-name operand.

To specify a data area as the data-area-name operand of an OUT operation, you

must ensure two things:

v The data area must also be specified in the result field of a *DTAARA DEFINE

statement, or defined using the DTAARA keyword on the Definition

specification.

v The data area must have been locked previously by a *LOCK IN statement or it

must have been specified as a data area data structure by a U in position 23 of

the definition specifications. (RPG implicitly retrieves and locks data area data

structures at program initialization.)

You can specify the optional reserved word *LOCK. When *LOCK is specified, the

data area remains locked after it is updated. When *LOCK is not specified, the

data area is unlocked after it is updated.

If a data area is locked, it can be read but not updated by other programs.

The data-area-name operand must be either the name of the data area or the

reserved word *DTAARA. When *DTAARA is specified, all data areas defined in

the program are updated. If an error occurs when one or more data areas are

updated (for example, if you specify an OUT operation to a data area that has not

been locked by the program), an error occurs on the OUT operation and the RPG

exception/error handling routine receives control. If a message is issued, it will

identify the data area in error.

If a resulting indicator is specified in positions 73 and 74, it is set on when an error

occurs during the OUT operation.

To handle OUT exceptions (program status codes 401-421, 431, or 432), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

Positions 71-72 and 75-76 must be blank.

For a description of general rules, see “Data-Area Operations” on page 358. See

Figure 259 on page 590 for an example of the OUT operation.

OUT (Write a Data Area)

646 VisualAge RPG Language Reference

PARM (Identify Parameters)

 Free-Form Syntax (not allowed - use “Prototypes and Parameters” on page 71 and CALLP)

 Code Factor 1 Factor 2 Result Field Indicators

PARM Target field Source field Parameter

The PARM operation defines the parameters that compose a parameter list (PLIST).

PARM operations must immediately follow the PLIST, CALL, CALLB, or START

operation they refer to. PARM statements must be in the order expected by the

called program or function. The maximum number of parameters that can be

specified is:

v For a CALL operation, up to 255 parameters can be specified

v For a CALLB, START (start component), PLIST operation, up to 399 parameters

can be specified.

Figure 304 on page 651 illustrates the PARM operation.

Note: If you are using CALLP to call a local program, parameters are defined by

specifying the prototype on the definition specification. “Positions 24-25

(Type of Definition)” on page 261 and “OPTIONS(*OMIT *VARSIZE

*STRING *TRIM *RIGHTADJ)” on page 283 describe how to specify

parameters for CALLP operations.

If factor 1 is specified, it must be the same type as the result field. If the target

field is variable-length, its length will be set to the length of the value of the source

field. It cannot be a literal or a named constant. It can be blank if the result field

contains the name of a multiple-occurrence data structure.

If factor 2 is specified, it must be the same type as the result field. It can be blank

if the result field contains the name of a multiple-occurrence data structure.

If parameter type-checking is important for the application, you should define a

prototype and procedure interface definition of the call interface, rather than use

the PLIST and PARM operations.

The result field must contain the name of a field, a data structure, or an array:

v If an array is specified, the area defined for the array is passed to the called

program or procedure

v If a data structure with multiple occurrences is passed to the called program, all

occurrences of the data structure are passed as a single field. However, if a

subfield of a multiple occurrence data structure is specified in the result field,

only the current occurrence of the subfield is passed to the called program or

procedure.

The result field cannot contain a UCS-2 parameter unless a host program is being

called.

For non-*ENTRY PLIST PARM operations, the result field can contain the name of

an array element or *OMIT (for the CALLB only). If *OMIT is specified, factor 1

and factor 2 must be blank.

For *ENTRY PLIST PARM operations, the result field cannot contain the following:

PARM (Identify Parameters)

Chapter 26. Operation Code Details 647

v *IN, *INxx, *IN(xx), *OMIT

v A label, literal, or a named constant

v A data-area name or a data-area data structure name

v A globally initialized data structure, a data structure with initialized subfields, or

a data structure with a compile time array as a subfield

v A table name

v Fields or data structures defined with the keyword BASED

v An array element

v A data-structure subfield name

v The name of a compile-time array

v The name of a program status or file information data structure (INFDS)

v UCS-2 parameters are not allowed.

Note: A field name can be specified only once in an *ENTRY PLIST.

Conditioning indicator entries (positions 9 through 11) are not allowed.

For more information, see “Call Operations” on page 353 or “Declarative

Operations” on page 362.

General Rules about Parameters

The storage location for each parameter field is in the calling program or

procedure. The address of the storage location of the result field on a PARM

operation is passed to the called program. If the called program or procedure

changes the value of a parameter, it changes the data at that storage location.

When control returns to the calling program or procedure, the parameter in the

calling program or procedure (that is, the result field) has changed. Even if the

called program or procedure ends in error after it changes the value of a

parameter, the changed value exists in the calling program or procedure. To

preserve the information passed to the called program or procedure for later use,

specify in factor 2 the name of the field that contains the information you want to

pass to the called program or procedure. Factor 2 is copied into the result field,

and the storage address of the result field is passed to the called program or

procedure.

Because the parameter fields are accessed by address, not field name, the calling

and called parameters do not have to use the same field names for fields that are

passed. The attributes of the corresponding parameter fields in the calling and

called programs or procedures should be the same. If they are not, undesirable

results may occur.

Passing Parameters with CALL, CALLB, and START

When a CALL, CALLB, or START (starting a component) operation runs, the

following occurs:

1. In the calling program, the contents of factor 2 of a PARM operation are copied

into the result field of the same PARM operation. If the result field of CALLB is

*OMIT, a null address is passed to the called procedure.

2. After the called program receives control and after any normal program

initialization, the contents of the result field of a PARM operation are copied

into the factor 1 field of the same PARM operation.

3. When control is returned to the calling program, the contents of factor 2 of a

PARM operation are copied into the result field of the same PARM operation.

This move does not occur if the called program ends abnormally.

4. For the START operation, control is returned to the calling program as soon as

the target component is initialized (after *INZSR processing has completed). For

PARM (Identify Parameters)

648 VisualAge RPG Language Reference

the remainder of the target component’s life, the parameter is accessible and

can be modified by both the source and target components.

5. Upon return to the calling program, the contents of the result field of a PARM

operation are copied into the factor 1 field of the same PARM operation. This

move does not occur if the called program ends abnormally or if an error

occurs on the call operation.

PARM (Identify Parameters)

Chapter 26. Operation Code Details 649

PLIST (Identify a Parameter List)

 Free-Form Syntax (not allowed - use “Prototypes and Parameters” on page 71 and CALLP)

 Code Factor 1 Factor 2 Result Field Indicators

PLIST PLIST name

The PLIST operation defines a unique symbolic name for a parameter list to be

specified in a CALL, CALLB, CALLP, or START operation. The PLIST operation

must be immediately followed by at least one PARM operation.

Factor 1 must contain the name of the parameter list. If the parameter list is the

entry parameter list, factor 1 must contain *ENTRY. Only one *ENTRY parameter

list can be specified in a program or called function. A parameter list is ended

when an operation other than PARM is encountered.

If parameter type checking is important for the application, you should deine a

prototype and procedure interface definition for the call interface, rather than use

the PLIST and PARM operations.

Conditioning indicator entries (positions 9 through 11) are not allowed.

For more information, see “Call Operations” on page 353 or “Declarative

Operations” on page 362.

PLIST (Identify a Parameter List)

650 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* In the calling program, the CALL operation calls PROG1 and

C* allows PROG1 to access the data in the parameter list fields.

C CALL ’PROG1’ PLIST1

C*

C* In the second PARM statement, when CALL is processed, the

C* contents of factor 2, *IN27, are placed in the result field,

C* BYTE. When PROG1 returns control, the contents of the result

C* field, BYTE, are placed in the factor 1 field, *IN30. Note

C* that factor 1 and factor 2 entries on a PARM are optional.

C*

C PLIST1 PLIST

C PARM Amount 5 2

C *IN30 PARM *IN27 Byte 1

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C CALLB ’PROG2’

.

.

.

C* In this example, the PARM operations immediately follow a

C* CALLB operation instead of a PLIST operation.

C PARM Amount 5 2

C *IN30 PARM *IN27 Byte 1

.

.

.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* In the called function, PROG2, *ENTRY in factor 1 of the

C* PLIST statement identifies it as the entry parameter list.

C* When control transfers to PROG2, the contents of the result

C* fields (FieldC and FieldG) of the parameter list are placed in

C* the factor 1 fields (FieldA and FieldD). When the called function

C* returns, the contents of the factor 2 fields of the parameter

C* list (FieldB and FieldE) are placed in the result fields (FieldC

C* and FieldG). All of the fields are defined elsewhere in called

C* function.

C *ENTRY PLIST

C FieldA PARM FieldB FieldC

C FieldD PARM FieldE FieldG

Figure 304. PLIST/PARM Operations

PLIST (Identify a Parameter List)

Chapter 26. Operation Code Details 651

POST (Post)

 Free-Form Syntax POST{(E)} file-name

 Code Factor 1 Factor 2 Result Field Indicators

POST (E) file-name INFDS name _ ER _

The POST operation puts information in a file information data structure (INFDS).

For remote files, this structure contains the following information:

v File Feedback Information

v Open Feedback Information

v Input/Output Feedback Information and Device Dependent Feedback

Information

For local files, this structure contains the File Feedback Information.

Specify the name of a file in the file-name operand. Information for this file is

posted in the INFDS associated with this file.

In free-form syntax, you must specify a file-name and cannot specify an INFDS

name. In traditional syntax, you can specify a file-name, an INFDS name, or both.

v If you do not specify an INFDS name, the INFDS associated with this file using

the INFDS keyword in the file specification will be used.

v If you do not specify an INFDS name in traditional syntax, you must specify the

data structure name that has been used in the INFDS keyword for the file

specification in the result field; information from the associated file in the file

specification will be posted.

If the file-name operand is specified, it can either be a local file or an OS/400 file.

This file must be opened prior to a POST operation. Information for this file is

posted in its associated INFDS.

If a file is opened for multiple member processing, the Open Feedback Information

is updated when an input operation such as READ, READP, READE, or READPE

causes a new member to be opened.

If the input records are blocked and there is no POST operation in the application,

the current key and relative record number are copied in the Input/Output

Feedback Information. If the input records are blocked and there is a POST

operation in the application, then the Input/Output Feedback Information is

updated with the key and relative record number of the current record in the

block.

If a resulting indicator is specified in positions 73 and 74, it is set on when an error

occurs during the POST operation.

To handle POST exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

For more information, see “File Operations” on page 363.

POST (Post)

652 VisualAge RPG Language Reference

READ (Read a Record)

 Free-Form Syntax READ{(EN)} name {data-structure}

 Code Factor 1 Factor 2 Result Field Indicators

READ (E N) name (file or record format) data-structure _ ER EOF

READ (E) Window name _ ER _

The READ operation reads data from a file, a record format, or from a window.

The file can be a remote OS/400 file or a local file.

Reading from a File

The name operand is required and must be the name of a full procedural file or

record format.

A record format name is allowed only with an externally described file (E in

position 22 of the file description specifications). It may be the case that a

READ-by-format-name operation will receive a different format from the one you

specified in the name operand. If so, your READ operation ends in error.

If the data-structure operand is specified, the record is read directly into the data

structure. If name refers to a program-described file (identified by an F in position

22 of the file description specification), the data structure can be any data structure

of the same length as the file’s declared record length. If name refers to an

externally-described file or a record format from an externally described file, the

data structure must be a data structure defined with EXTNAME(...:*INPUT) or

LIKEREC(...:*INPUT). See “File Operations” on page 363 for information on how to

define the data structure and how data is transferred between the file and the data

structure.

If a READ operation is successful, the file is positioned at the next record that

satisfies the read. If there is an error or an end of file condition, you must

reposition the file (using a CHAIN, SETLL, or SETGT operation).

If the file is an update disk file, the operation extender N can be specified to

indicate that no lock should be placed on the record when it is read.

Note: Locking is not supported for local files.

To handle READ exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 to signal whether an end of file

occurred on the READ operation. The indicator is either set on (an EOF condition)

or off every time the READ operation is performed. This information can also be

obtained from the %EOF built-in function, which returns ’1’ if an EOF condition

occurs and ’0’ otherwise. The file must be repositioned after an EOF condition, in

order to process any further successful sequential operations (for example, READ

or READP) to the file.

See “Database Null Value Support” on page 137 for information on reading records

with null-capable fields.

READ (Read a Record)

Chapter 26. Operation Code Details 653

For more information, see “File Operations” on page 363.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* READ retrieves the next record from the file FILEA, which must

C* be a full procedural file.

C*

C* %EOF is set to return ’1’ if an end of file occurs on READ,

C* or if an end of file has occurred previously and the file

C* has not been repositioned. When %EOF returns ’1’,

C* the program will leave the loop.

C*

C DOW ’1’

C READ FILEA

C IF %EOF

C LEAVE

C ENDIF

C*

C* READ retrieves the next record of the type REC1 (factor 2)

C* from an externally described file. (REC1 is a record format

C* name.) Indicator 64 is set on if end of file occurs on READ,

C* or if it has occurred previously and the file has not been

C* repositioned. When indicator 64 is set on, the program

C* will leave the loop. The N operation code extender

C* indicates that the record is not locked.

C*

C READ(N) REC1 64

C 64 LEAVE

C ENDDO

Figure 305. READ Operation for Files

READ (Read a Record)

654 VisualAge RPG Language Reference

Reading from a Window

Windows are handled as externally described files. The window name is treated as

a record format name.

If a window name is specified by the name operand, the READ operation gets the

attributes of the combination box, check box, entry field, radio button, and static

text parts on the window. The attribute for entry parts is TEXT. The attribute for

static text parts is LABEL.

When a window is read, get attribute operations are performed on all the static

text and entry field parts. The values are stored in corresponding fields. After the

READ operation, the values stored in the fields match the values on the display. If

there are many static text and entry fields, use the READ operation rather than

multiple GETATRs. For example, if window INVENTORY contains the entry field

parts ENT0000B and ENT0000C a READ of the window performs the equivalent to

the following:

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments++++++

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++Comments++++++

C EVAL ENT0000B = %GETATR(’INVENTORY’:’ENT0000B’:’TEXT’)

C EVAL ENT0000C = %GETATR(’INVENTORY’:’ENT0000C’:’TEXT’)

Figure 306. READ Operation for Windows

READ (Read a Record)

Chapter 26. Operation Code Details 655

READC (Read Next Changed Record)

 Free-Form Syntax READC{(E)} subfile-name {subfile-index}

 Code Factor 1 Factor 2 Result Field Indicators

READC (E) subfile-name subfile-index _ ER EOF

The READC operation obtains the next changed record in the subfile part.

The subfile-name operand must be the name of a subfile part.

If the subfile-index operand is specified, it must be a numeric field name with no

decimal positions. The relative record number of the retrieved record is placed in

the subfile-index operand.

To handle READC exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 that will be set on when there are

no more changed records in the subfile. This information can also be obtained from

the %EOF built-in function, which returns ’1’ if there are no more changed records

in the subfile and ’0’ otherwise.

If an end of file indicator (EOF) is specified, it is set on when there are no more

changed records in the subfile. If the operation was not successful, the fields in the

program remain unchanged.

READC (Read Next Changed Record)

656 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++

F* SUBCUST is a subfile part which displays a list of records from

F* the CUSINFO file.

F*

FCUSINFO UF E DISK REMOTE

F

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* The subfile SUBCUST has been loaded with the records from the

C* CUSINFO file. If there are any changes in any one of the records

C* displayed in the subfile, the READC operation will read the changed

C* records one by one in the do while loop.

C* The corresponding record in the CUSINFO file will be located

C* with the CHAIN operation and will be updated with the changed

C* field.

C* SCUSNO, SCUSNAM, SCUSADR, and SCUSTEL are fields defined in the

C* subfile. CUSNAM, CUSADR, and CUSTEL are fields defined in a

C* record, CUSREC, which is defined in the file CUSINFO.

C*

C READC SUBCUST

C DOW %EOF = *OFF

C SCUSNO CHAIN (E) CUSINFO

C* Update the record only if the record is found in the file.

C :

C IF NOT %ERROR

C EVAL CUSNAM = SCUSNAM

C EVAL CUSADR = SCUSADR

C EVAL CUSTEL = SCUSTEL

C UPDATE CUSREC

C ENDIF

C READC (E) SUBCUST

C ENDDO

Figure 307. READC Example

READC (Read Next Changed Record)

Chapter 26. Operation Code Details 657

READE (Read Equal Key)

 Free-Form Syntax READE{(ENHMR)} search-arg|*KEY name {data-structure}

 Code Factor 1 Factor 2 Result Field Indicators

READE (E N) search-arg name (file or record format) data-structure _ ER EOF

The READE operation retrieves the next sequential record from a full procedural

file (identified by an F in position 18 of the file description specifications) if the key

of the record matches the search argument. If the key of the record does not match

the search argument, an EOF condition occurs, and the record is not returned to

the program. An EOF condition also applies when end of file occurs.

The READE operation can only be used with OS/400 files.

The search argument, search-arg, identifies the record to be retrieved. The search-arg

operand is optional in traditional syntax but is required in free-form syntax.

search-arg can be:

v A field name, a literal, a named constant, or a figurative constant.

v A KLIST name for an externally described file.

v A list of key values enclosed in parentheses. See Figure 227 on page 531 for an

example of searching using a list of key values.

v %KDS to indicate that the search arguments are the subfields of a data structure.

See the example at the end of “%KDS (Search Arguments in Data Structure)” on

page 451 for an illustration of search arguments in a data structure.

v *KEY or (in traditional syntax only) no value. If the full key of the next record is

equal to that of the current record, the next record in the file is retrieved. The

full key is defined by the record format or file specified in name.

Graphic and UCS-2 keys must have the same CCSID.

If the file being read is defined as update, a temporary lock on the next record is

requested and the search argument is compared to the key of that record. If the

record is already locked, the program must wait until the record is available before

obtaining the temporary lock and making the comparison. If the comparison is

unequal, an EOF condition occurs, and the temporary record lock is removed. If no

lock (’N’ operation extender) is specified, a temporary lock is not requested.

The name operand must be the name of the file or record format to be retrieved. A

record format name is allowed only with an externally described file (identified by

an E in position 22 of the file description specifications.)

If the data-structure operand is specified, the record is read directly into the data

structure. If name refers to a program-described file (identified by an F in position

22 of the file description specification), the data structure can be any data structure

of the same length as the file’s declared record length. If name refers to an

externally-described file or a record format from an externally described file, the

data structure must be a data structure defined with EXTNAME(...:*INPUT) or

LIKEREC(...:*INPUT). See “File Operations” on page 363 for information on how to

define the data structure and how data is transferred between the file and the data

structure.

READE (Read Equal Key)

658 VisualAge RPG Language Reference

To handle READE exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 that will be set on if an EOF

condition occurs: that is, if a record is not found with a key equal to the search

argument or if an end of file is encountered. This information can also be obtained

from the %EOF built-in function, which returns ’1’ if an EOF condition occurs and

’0’ otherwise.

If the READE operation is not successful, the fields in the program remain

unchanged and the file must be repositioned (for example, using CHAIN, SETLL

or SETGT). *START and *END can be used to position the file. For more

information on file positioning, see “File Positioning” on page 6.

A READE with search-arg specified that immediately follows an OPEN operation or

an EOF condition, retrieves the first record in the file if the key of the record

matches the search argument. A READE with no search-arg specified that

immediately follows an OPEN operation or an EOF condition, results in an error.

The error indicator in positions 73 and 74, if specified, is set on or the ’E’ extender,

checked with %ERROR, if specified, is set on. No further I/O operations can be

issued against the file until it is successfully closed and reopened.

See “Database Null Value Support” on page 137 for information on reading records

with null capable fields.

For more information, see “File Operations” on page 363.

Note: Operation code extenders H, M, and R are allowed only when the search

argument is a list or is %KDS().

READE (Read Equal Key)

Chapter 26. Operation Code Details 659

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* With Factor 1 Specified...

C*

C* The READE operation retrieves the next record from the file

C* FILEA and compares its key to the search argument, KEYFLD.

C* The %EOF built-in function is set to return ’1’ if KEYFLD is

C* not equal to the key of the record read or if end of file

C* is encountered.

C*

C KEYFLD READE FILEA

C*

C* The READE operation retrieves the next record of the type REC1

C* from an externally described file and compares the key of the

C* record read to the search argument, KEYFLD. (REC1 is a record

C* format name.) Indicator 56 is set on if KEYFLD is not equal to

C* the key of the record read or if end of file is encountered.

C*

C KEYFLD READE REC1 56

C*

C* With No Factor 1 Specified...

C*

C* The READE operation retrieves the next record in the access

C* path from the file FILEA if the key value is equal to

C* the key value of the record at the current cursor position.

C* If the key values are not equal, %EOF is set to return ’1’.

C READE FILEA

C*

C* The READE operation retrieves the next record in the access

C* path from the file FILEA if the key value equals the key value

C* of the record at the current position. REC1 is a record format

C* name. Indicator 56 is set on if the key values are unequal.

C* N indicates that the record is not locked.

C READE(N) REC1 56

Figure 308. READE Operation

READE (Read Equal Key)

660 VisualAge RPG Language Reference

READP (Read Prior Record)

 Free-Form Syntax READP{(EN)} name {data-structure}

 Code Factor 1 Factor 2 Result Field Indicators

READP (E N) name (file or record format) data-structure _ ER BOF

The READP operation reads the prior record from a full procedural file (identified

by an F in position 18 of the file description specifications).

The name operand must be the name of a file or record format to be read. A record

format name is allowed only with an externally described file. If a record format

name is specified, the record retrieved is the first prior record of the specified type.

Intervening records are bypassed.

If the data-structure operand is specified, the record is read directly into the data

structure. If name refers to a program-described file (identified by an F in position

22 of the file description specification), the data structure can be any data structure

of the same length as the file’s declared record length. If name refers to an

externally-described file or a record format from an externally described file, the

data structure must be a data structure defined with EXTNAME(...:*INPUT) or

LIKEREC(...:*INPUT). See “File Operations” on page 363 for information on how to

define the data structure and how data is transferred between the file and the data

structure.

If the READP operation is successful, the file is positioned at the previous record

that satisfies the read.

If the file being read is an update disk file, the operation extender N can be

specified to indicate that no lock should be placed on the record when it is read.

To handle READP exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 that will be set on when no prior

records exist in the file (beginning of file condition). This information can also be

obtained from the %EOF built-in function, which returns ’1’ if a BOF condition

occurs and ’0’ otherwise.

You must reposition the file (for example, using a CHAIN, SETLL or SETGT

operation) after an error or BOF condition to process any further successful

sequential operations (for example, READ or READP). *START and *END can be

used to position the file. For more information on file positioning, see “File

Positioning” on page 6

See “Database Null Value Support” on page 137 for information on reading records

with null-capable fields.

For more information, see “File Operations” on page 363.

READP (Read Prior Record)

Chapter 26. Operation Code Details 661

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The READP operation reads the prior record from FILEA.

C* The %EOF built-in function is set to return ’1’ if beginning

C* of file is encountered. When %EOF returns ’1’, the program

C* branches to the label BOF specified in the GOTO operation.

C*

C READP FILEA

C IF %EOF

C GOTO BOF

C ENDIF

C*

C* The READP operation reads the next prior record of the type

C* REC1 from an externally described file. (REC1 is a record

C* format name.) Indicator 72 is set on if beginning of file is

C* encountered during processing of the READP operation. When

C* indicator 72 is set on, the program branches to the label BOF

C* specified in the GOTO operation.

C READP PREC1 72

C 72 GOTO BOF

C*

C BOF TAG

Figure 309. READP Operation

READP (Read Prior Record)

662 VisualAge RPG Language Reference

READPE (Read Prior Equal)

 Free-Form Syntax READPE{(ENHMR)} search-arg|*KEY name {data-structure}

 Code Factor 1 Factor 2 Result Field Indicators

READPE (E N) search-arg name (file or record format) data-structure _ ER BOF

The READPE operation retrieves the next prior sequential record from a full

procedural file (identified by an F in position 18 of the file description

specifications) if the key of the record matches the search argument. If the key of

the record does not match the search argument, a BOF condition occurs, and the

record is not returned to the program. A BOF condition also applies when

beginning of file occurs.

The READPE operation can only be used with OS/400 files.

The search argument, search-arg, identifies the record to be retrieved. The search-arg

operand is optional in traditional syntax but required in free-form syntax. search-arg

can be:

v A field name, a literal, a named constant, or a figurative constant.

v A KLIST name for an externally described file.

v A list of key values enclosed in parentheses. See Figure 227 on page 531 for an

example of searching using a list of key values.

v %KDS to indicate that the search arguments are the subfields of a data structure.

See the example at the end of “%KDS (Search Arguments in Data Structure)” on

page 451 for an illustration of search arguments in a data structure.

v *KEY or (in traditional syntax only) no value. If the full key of the next prior

record is equal to that of the current record, the next prior record in the file is

retrieved. The full key is defined by the record format or file used in factor 2.

Graphic and UCS-2 keys must have the same CCSID.

The name operand must be the name of the file or record format to be retrieved. A

record format name is allowed only with an externally described file (identified by

an E in position 22 of the file description specifications).

If the data-structure operand is specified, the record is read directly into the data

structure. If name refers to a program-described file (identified by an F in position

22 of the file description specification), the data structure can be any data structure

of the same length as the file’s declared record length. If name refers to an

externally-described file or a record format from an externally described file, the

data structure must be a data structure defined with EXTNAME(...:*INPUT) or

LIKEREC(...:*INPUT). See “File Operations” on page 363 for information on how to

define the data structure and how data is transferred between the file and the data

structure.

If the file being read is an update disk file, you can specify the operation extender

N to indicate that no lock should be placed on the record when it is read.

To handle READPE exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

READPE (Read Prior Equal)

Chapter 26. Operation Code Details 663

You can specify an indicator in positions 75-76 that will be set on if a BOF

(begining of file) condition occurs: that is, if a record is not found with a key equal

to the search argument or if a beginning of file is encountered. This information

can also be obtained from the %EOF built-in function, which returns ’1’ if a BOF

condition occurs and ’0’ otherwise.

If a READPE operation is not successful, you must reposition the file: for example,

using a CHAIN, SETGT, or SETLL operation.

Note: If the file being read is defined as update, a temporary lock on the prior

record is requested and the search argument is compared to the key of that

record. If the record is already locked, the program must wait until the

record is available before obtaining the temporary lock and making the

comparison. If the comparison is unequal, a BOF condition occurs, and the

temporary record lock is removed. If no lock (’N’ operation extender) is

specified, a temporary lock is not requested.

A READPE with the search-arg operand specified that immediately follows an

OPEN operation or a BOF condition returns BOF. A READPE with no search-arg

specified that immediately follows an OPEN operation or a BOF condition results

in an error condition. The error indicator in positions 73 and 74, if specified, is set

on or the ’E’ extender, checked with %ERROR, if specified, is set on. The file must

be repositioned using a CHAIN, SETLL, READ, READE or READP with search-arg

specified, prior to issuing a READPE operation with factor 1 blank. A SETGT

operation code should not be used to position the file prior to issuing a READPE

(with no search-arg specified) as this results in a record-not-found condition

(because the record previous to the current record never has the same key as the

current record after a SETGT is issued). If search-arg is specified with the same key

for both operation codes, then this error condition will not occur.

For more information, see “File Operations” on page 363.

Note: Operation code extenders H, M, and R are allowed only when the search

argument is a list or is %KDS().

READPE (Read Prior Equal)

664 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* With Factor 1 Specified...

C*

C* The previous record is read and the key compared to FieldA.

C* Indicator 99 is set on if the record’s key does not match

C* FieldA.

C FieldA READPE FileA 99

C*

C* The previous record from record format RecA is read, and

C* the key compared to FieldC. Indicator 88 is set on if the

C* operation is not completed successfully, and 99 is set on if

C* the record key does not match FieldC.

C FieldC READPE RecA 8899

C*

C* With No Factor 1 Specified...

C*

C* The previous record in the access path is retrieved if its

C* key value equals the key value of the current record.

C* Indicator 99 is set on if the key values are not equal.

C READPE FileA 99

C*

C* The previous record from record format RecA is retrieved if

C* its key value matches the key value of the current record in

C* the access path. Indicator 88 is set on if the operation is

C* not successful; 99 is set on if the key values are unequal.

C READPE RecA 8899

Figure 310. READPE Operation

READPE (Read Prior Equal)

Chapter 26. Operation Code Details 665

READS (Read Selected)

 Free-Form Syntax READS{(E)} subfile-name {subfile-index}

 Code Factor 1 Factor 2 Result Field Indicators

READS (E) subfile-name subfile-index _ ER EOF

The READS operation retrieves records selected from a subfile part. The first

record selected from the subfile part is read.

If the subfile’s selection style is extended or multiple, the record is deselected. If

the subfile’s selection style is single, the record remains selected. A subsequent

READS reads the same record again.

The subfile-name operand specifies the name of the subfile part.

If the subfile-index operand is specified, it must be a numeric field with no decimal

positions. The subfile index number of the record retrieved is placed in the

subfile-index operand.

To handle READS exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 that will be set on if an EOF

condition occurs: that is, when there are no selected records in the subfile. This

information can also be obtained from the %EOF built-in function, which returns

’1’ if an EOF condition occurs and ’0’ otherwise.

REALLOC (Reallocate Storage with New Length)

 Free-Form Syntax (not allowed - use the %REALLOC built-in function)

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* SUBCUST is a subfile part which displays a list of records.

C* The READS operation reads the records selected in the displayed

C* subfile one by one in the do while loop. SCUSNO and SCUSNAM

C* are fields defined in the subfile.

C*

C READS SUBCUST 27

C DOW *IN27 = *OFF

C*

C* Fields SCUSNO, SCUSNAM can be used here to process the selected

C* record which has been read.

C*

C READS SUBCUST 27

C ENDDO

C*

Figure 311. READS Operation

READS (Read Selected)

666 VisualAge RPG Language Reference

Code Factor 1 Factor 2 Result Field Indicators

REALLOC (E) Length Pointer _ ER _

The REALLOC operation changes the length of the heap storage pointed to by the

result-field pointer to the length specified in factor 2. The result field of REALLOC

contains a basing pointer variable. The result field pointer must contain the value

previously set by a heap-storage allocation operation (either an ALLOC or

REALLOC operation in RPG, or some other heap-storage function). It is not

sufficient to simply point to heap storage; the pointer must be set to the beginning

of an allocation.

New storage is allocated of the specified size and the value of the old storage is

copied to the new storage. Then the old storage is deallocated. If the new length is

shorter, the value is truncated on the right. If the new length is longer, the new

storage to the right of the copied data is uninitialized.

The result field pointer is set to point to the new storage.

If the operation does not succeed, an error condition occurs, but the result field

pointer will not be changed. If the original pointer was valid and the operation

failed because there was insufficient new storage available(status 425), the original

storage is not deallocated, so the result field pointer is still valid with its original

value.

If the pointer is valid but it does not point to storage that can be deallocated, then

status 00426 (error in storage management operation) will be set.

To handle exceptions with program status codes 425 or 426, either the operation

code extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

Factor 2 contains a numeric variable or constant that indicates the new size of the

storage (in bytes) to be allocated. Factor 2 must be numeric with zero decimal

positions. The value must be between 1 and 16776704.

For more information, see “Memory Management Operations” on page 367.

 D Ptr1 S *

 D Fld S 32767A BASED(Ptr1)

 D*

 C* The ALLOC operation allocates 7 bytes to the pointer Ptr1.

 C* After the ALLOC operation, only the first 7 bytes of variable

 ** Fld can be used.

 C ALLOC 7 Ptr1

 C EVAL %SUBST(Fld : 1 : 7) = ’1234567’

 C*

 C REALLOC 10 Ptr1

 C* Now 10 bytes of Fld can be used.

 C EVAL %SUBST(Fld : 1 : 10) = ’123456789A’

Figure 312. REALLOC Operation

REALLOC (Reallocate Storage with New Length)

Chapter 26. Operation Code Details 667

RESET (Reset)

 Free-Form Syntax RESET{(E)} {*NOKEY} {*ALL} name

 Code Factor 1 Factor 2 Result Field Indicators

RESET (E) *ALL Variable _ ER _

RESET (E) *NOKEY *ALL Structure _ ER _

RESET (E) Window or

Subfile

_ ER _

The RESET operation sets the following to their initial value:

v Elements in a structure (record format, data structure, array, table)

v Variables (field, subfield, indicator)

v Static text and entry field parts on a window

To handle RESET exceptions (program status code 123), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

The RESET operation increases the amount of storage required by the program

since any variable, structure or window that is reset the storage is doubled. For

multiple occurrence data structures, tables and arrays, the initial value of every

occurrence or element is saved.

Do not use the RESET during the initialization routine. If an operation (such as

GOTO) is used to leave the initialization subroutine prior to where the initial

values are saved, an error occurs for all RESET operations that are attempted in the

program.

For more information, see “Initialization Operations” on page 366.

Resetting Entry Fields and Static Text on a Window

If the result field is a window name, factor 1 and factor 2 must be blank.

When a window is reset, entry field parts and static text parts on the window are

reset to their initial values. The parts are reset to the initial values of the

corresponding program fields; they are not reset to the initial values provided

while using the GUI designer. The initial values of the corresponding fields is the

value they had at the end of the program initialization. This value is set using the

GUI designer, on the definition specification, or using the initialization subroutine.

Values provided in the initialization subroutine (*INZSR) override those provided

on a definition specification, and those on a definition specification override those

provided to the GUI designer.

For example, the following table shows how values for various entry field parts

provided in the GUI designer, and values for fields on the definition specification

and in the initialization subroutine (*INZSR) affect the RESET operation:

GUI designer

Definition

specification *INZSR Value after RESET

ENT0000B=22.5 ENT0000B=30.5 ENT0000B=30.5

ENT0000A=abc ENT0000A=xyz ENT0000A=pqr ENT0000A=pqr

RESET (Reset)

668 VisualAge RPG Language Reference

GUI designer

Definition

specification *INZSR Value after RESET

ENT0000C=Name ENT0000C=Name

If ENT0000D is

character, RESET

resets to blanks. If

ENT0000D is

numeric, RESET

resets to zero.

Note: After the RESET operation, the values stored in the program fields match

the values seen on the display.

Resetting Elements in a Structure and Variables

The initial values for a variable or structure is the value they had at the end of the

program initialization. This value can be set using the INZ keyword on the

definition specification or using the initialization subroutine to assign an initial

value. This initial value is used by the RESET operation. Values provided in the

initialization subroutine (*INZSR) override those provided on a definition

specification.

The result field must contain a record format name, data structure name, array

name, table name, field name, subfield, array element, or indicator name:

v If a record format or a single occurrence data structure is being reset, all fields

are reset in the order they are declared within the structure.

If factor 1 is specified, it must contain *NOKEY which indicates that the key

fields are not reset to their initial values.

If factor 2 is specified, it must contain *ALL which indicates that all fields for the

record format are reset. If factor 2 is not specified, only output fields in the

record format are affected. All field conditioning indicators of the record format

are affected. Input-only fields are not affected by RESET.

v If a multiple occurrence data structure is being reset, all fields in the current

occurrence are reset.

v If an array is being reset, the entire array is reset.

v If a table is being reset, the current table element is reset.

v If an array element (including indicators) is being reset, only the element

specified is reset.

Note: RESET is not allowed for based variables.

RESET (Reset)

Chapter 26. Operation Code Details 669

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

FEXTFILE O E DISK REMOTE

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D

D* The file EXTFILE contains one record format RECFMT containing

D* the character fields CHAR1 and CHAR2 and the numeric fields

D* NUM1 and NUM2.

D

D DS1 DS

D DAY1 1 8 INZ(’MONDAY’)

D DAY2 9 16 INZ(’THURSDAY’)

D JDATE 17 22

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following operation sets DAY1, DAY2, and JDATE to blanks.

C

C CLEAR DS1

C

C* The following operation will set DAY1, DAY2, and JDATE to their

C* initial values of ’MONDAY’, ’THURSDAY’, and UDATE respectively.

C* The initial value of UDATE for JDATE is set in the *INZSR.

C

C RESET DS1

C

C* The following operation will set CHAR1 and CHAR2 to blanks and

C* NUM1 and NUM2 to zero.

C CLEAR RECFMT

C* The following operation will set CHAR1, CHAR2, NUM1, and

C* NUM2 to their initial values of ’NAME’, ’ADDRESS’, 1, and 2

C* respectively. These initial values are set in the *INZSR.

C*

C RESET RECFMT

C

C *INZSR BEGSR

C MOVEL UDATE JDATE

C MOVEL ’NAME ’ CHAR1

C MOVEL ’ADDRESS ’ CHAR2

C Z-ADD 1 NUM1

C Z-ADD 2 NUM2

C ENDSR

C* The following operation sets all fields in the record format

C* to blanks, except the key fields.

C*

C *NOKEY RESET *ALL DBRECFMT

Figure 313. RESET Operation

RESET (Reset)

670 VisualAge RPG Language Reference

RETURN (Return to Caller)

 Free-Form Syntax RETURN{(HMR)} expression

 Code Factor 1 Extended Factor 2

RETURN (H

M/R)

expression

The RETURN operation causes a return to the caller:

v If LR is on, the program ends normally and the component is terminated.

*TERMSR is performed. Any locked data area structures, arrays, and tables are

written. External indicators are reset. If more than on subroutine has been

invoked, RETURN causes a return to the previous action subroutine invocation.

v If LR is not on, default processing associated with the current event is

performed, unless the RETURN is in a nested subroutine, or initialization or

termination is being performed.

Note: LR has no effect until the last action subroutine invocation returns.

When a subprocedure returns, the return value, if specified on the prototype of the

called program or procedure, is passed to the caller. Nothing else occurs

automatically. All files and data areas must be closed manually. You can set on

indicators but this will not cause program termination to occur. For information on

how operation extenders H, M, and R are used, see “Precision Rules for Numeric

Operations” on page 390.

In a subprocedure that returns a value, a RETURN operation must be coded within

the subprocedure. The actual returned value has the same role as the left-hand side

of the EVAL expression, while the expression operand of the RETURN operation has

the same role as the right-hand side. An array may be returned only if the

prototype has defined the return value as an array.

In a subprocedure that returns a value, you should ensure that a RETURN

operation is performed before reaching the end of the procedure. If the

subprocedure ends without encountering a RETURN operation, an exception is

signalled to the caller.

For more information, see “Call Operations” on page 353.

RETURN (Return to Caller)

Chapter 26. Operation Code Details 671

ROLBK (Roll Back)

 Free-Form Syntax ROLBK{(E)}

 Code Factor 1 Factor 2 Result Field Indicators

ROLBK (E) _ ER _

The ROLBK operation eliminates all changes to any OS/400 database files that

have been opened for commitment control since the previous commit or rollback

operations or since the beginning of operations under commitment control if there

has been no previous COMMIT or ROLBK.

The ROLBK operation can only be used with OS/400 files. It cannot be used with

local files.

All record locks for files under commitment control for a particular server are

released regardless of which component issued the ROLBK.

Note: The component issuing the ROLBK does not need to have any file under

commitment control.

To handle ROLBK exceptions (program status codes 802 to 805), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

For more information, see “File Operations” on page 363.

ROLBK (Roll Back)

672 VisualAge RPG Language Reference

SCAN (Scan String)

 Free-Form Syntax (not allowed - use the %SCAN built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

SCAN (E) Compare string:length Base string:start Left-most

position

_ ER FD

The SCAN operation scans a base string for a compare string. The SCAN begins at

the leftmost character of the base string in factor 2 (as specified by the start

location) and continues character by character, from left to right, comparing the

characters in factor 2 to those in factor 1. The strings are indexed from position 1.

Notes:

1. The compare string and base string must both be of the same type, either

character, graphic, or UCS-2.

2. Leading, trailing, or embedded blanks specified in the compare string are

included in the SCAN operation.

3. The SCAN operation is case-sensitive. A compare string specified in lowercase

will not be found in a base string specified in uppercase.

4. Figurative constants cannot be used in the factor 1, factor 2, or result fields.

5. No overlapping within data structures is allowed for factor 1 and the result

field or factor 2 and the result field.

Factor 1 must contain either the compare string or the compare string, followed by

a colon, followed by the length. The compare string must contain a field name,

array element, named constant, data structure name, literal, or table name. The

length must be numeric with no decimal positions must contain a named constant,

array element, field name, literal, or table name. If no length is specified, the

compare string is used.

Factor 2 must contain either the base string or the base string, followed by a colon,

followed by the start location. The base string must contain a field name, array

element, named constant, data structure name, literal, or table name. The start

location must be numeric with no decimal positions and must be a named

constant, array element, field name, literal, or table name. If no start location is

specified, the default value is 1.

Note: The start cannot be greater than the length.

If graphic or UCS-2 strings are used, the start position and length are measured in

double bytes.

If the start position is greater than 1, the result field contains the position of the

compare string relative to the beginning of the source string, not relative to the

start position.

The result field contains the value of the leftmost position of the compare string in

the base string, if found. It must be numeric with no decimal positions and must

contain a field name, array element, array name, or table name. If no result field is

specified, a resulting indicator in positions 75 and 76 must be specified. The result

field is set to 0 if the string is not found.

SCAN (Scan String)

Chapter 26. Operation Code Details 673

If the result field contains an array, each occurrence of the compare string is placed

in the array with the leftmost occurrence in element 1. The array elements

following the element containing the rightmost occurrence are all zero. The result

array should be as large as the field length of the base string specified in factor 2.

If the result field is a numeric array, as many occurrences as there are elements in

the array are noted. If no occurrences are found, the result field is set to zero

To handle SCAN exceptions (program status code 100), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. An error

occurs if the start position is greater than the length of factor 2 or if the value of

factor 1 is too large. For more information on error handling, see “Program

Exception and Errors” on page 51.

You can specify an indicator in positions 75-76 that is set on if the string being

scanned for is found. This information can also be obtained from the %FOUND

built-in function, which returns ’1’ if a match is found.

For more information, see “String Operations” on page 375.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The SCAN operation finds the substring ’ABC’ starting in

C* position 3 in factor 2; 3 is placed in the result field.

C* Indicator 90 is set on because the string is found. Because

C* no starting position is specified, the default of 1 is used.

C ’ABC’ SCAN ’XCABCD’ RESULT 90

C*

C* This SCAN operation scans the string in factor 2 for an

C* occurrence of the string in factor 1 starting at position 3.

C* The ’Y’ in position 1 of the base string is ignored because

C* the scan operation starts from position 3.

C* The operation places the values 5 and 6 in the first and

C* second elements of the array. Indicator 90 is set on.

C

C MOVE ’YARRYY’ FIELD1 6

C MOVE ’Y’ FIELD2 1

C FIELD2 SCAN FIELD1:3 ARRAY 90

C

C* This SCAN operation scans the string in factor 2, starting

C* at position 2, for an occurrence of the string in factor 1

C* for a length of 4. Because ’TOOL’ is not found in FIELD1,

C* INT is set to zero and indicator 90 is set off.

C

C MOVE ’TESTING’ FIELD1 7

C Z-ADD 2 X 1 0

C MOVEL ’TOOL’ FIELD2 5

C FIELD2:4 SCAN FIELD1:X INT90 20 90

C

C*

C* This SCAN operation is searching for a name. When the name

C* is found, %FOUND returns ’1’ so HandleLine is called.

C*

C SrchName SCAN Line

C IF %FOUND

C EXSR HandleLine

C ENDIF

Figure 314. SCAN Operation

SCAN (Scan String)

674 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++

D*

D* A Graphic SCAN example

D*

D* Value of Graffld is graphic ’AACCBBGG’.

D* Value of Number after the scan is 3 as the 3rd graphic

D* character matches the value in factor 1

D

D Graffld 4G inz(G’AACCBBGG’)

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* The SCAN operation scans the graphic string in factor 2 for

C* an occurrence of the graphic literal in factor 1. As this is a

C* graphic operation, the SCAN will operate on 2 bytes at a time

C

C G’BB’ SCAN Graffld:2 Number 5 0 90

C

Figure 315. SCAN Operation using graphic

SCAN (Scan String)

Chapter 26. Operation Code Details 675

SELECT (Begin a Select Group)

 Free-Form Syntax SELECT

 Code Factor 1 Factor 2 Result Field Indicators

SELECT

The select group conditionally processes one of several alternative sequences of

operations. It consists of:

v A SELECT statement

v Zero or more WHENxx or WHEN groups

v An optional OTHER

v ENDSL or END statement.

After the SELECT operation, control passes to the statement following the first

WHENxx condition that is satisfied. All statements are then executed until the next

WHENxx operation. Control passes to the ENDSL statement (only one WHENxx is

executed). If no WHENxx condition is satisfied and an OTHER operation is

specified, control passes to the statement following the OTHER operation. If no

WHENxx condition is satisfied and no OTHER operation is specified, control

transfers to the statement following the ENDSL operation of the select group.

Conditioning indicators can be used on the SELECT operation. If they are not

satisfied, control passes immediately to the statement following the ENDSL

operation of the select group. Conditioning indicators cannot be used on WHENxx,

WHEN, OTHER and ENDSL operation individually.

The select group can be nested within IF, DO, or other select groups. The IF and

DO groups can be nested within select groups.

If a SELECT operation is specified inside a select group, the WHENxx and OTHER

operations apply to the new select group until an ENDSL is specified.

For more information, see “Structured Programming Operations” on page 376.

SELECT (Begin a Select Group)

676 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* In the following example, if X equals 1, do the operations in

C* sequence 1 (note that no END operation is needed before the

C* next WHENxx); if X does NOT equal 1, and if Y=2 and X<10, do the

C* operations in sequence 2. If neither condition is true, do

C* the operations in sequence 3.

C*

C SELECT

C WHEN X = 1

C Z-ADD A B

C MOVE C D

C* Sequence 1

C :

C WHEN ((Y = 2) AND (X < 10))

C* Sequence 2

C :

C OTHER

C* Sequence 3

C :

C ENDSL

C*

C* The following example shows a select group with conditioning

C* indicators. After the CHAIN operation, if indicator 10 is on,

C* then control passes to the ADD operation. If indicator 10 is

C* off, then the select group is processed.

C*

C KEY CHAIN FILE 10

C N10 SELECT

C WHEN X = 1

C* Sequence 1

C :

C WHEN Y = 2

C* Sequence 2

C :

C ENDSL

C ADD 1 N

Figure 316. SELECT Operation

SELECT (Begin a Select Group)

Chapter 26. Operation Code Details 677

SETATR (Set Attribute)

 Free-Form Syntax (not allowed - use the %SETATR built-in function or “Qualified GUI Part Attribute

Access” on page 379)

 Code Factor 1 Factor 2 Result Field Indicators

SETATR (E) part name attribute value attribute _ ER _

The SETATR operation sets the attribute of a part. A part’s attribute can be set only

if that part has been created.

Notes:

1. The SETATR operations can be used for multiple link action subroutines. For a

description of multiple link action subroutines, see “BEGACT (Begin Action

Subroutine)” on page 508. To set an attribute for a part on a window other than

the parent window, use the %SETATR built-in function. For a description of the

%SETATR built-in function, see “%SETATR (Set Attribute)” on page 471.

2. The SETATR operation does not support 1-byte and 8-byte signed and unsigned

integer values, and unicode values.

If factor 1 is specified, it must contain the name of the part or a field containing

the name of a part whose attribute is being set.

Factor 2 must contain the new value for the attribute. It must be a literal, named

constant, figurative constant, or a field containing the new value for the attribute.

The result field must contain the attribute name or a field containing the name of

the attribute.

To handle SETATR exceptions (program status codes1400, 1402-1404, either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

If a resulting indicator is specified, it is set on when the SETATR operation does

not complete successfully.

Note: The %SETATR built-in function does not affect the corresponding program

fields for parts. To ensure that the attribute value and the value in the

program field are the same, use the program field when setting the attribute

value. This applies to attributes that have program fields mapped to them,

such as entry fields with the TEXT attribute.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C* Change the label on a button called BUTTON1.

C*

C ’BUTTON1’ SETATR Cancel ’LABEL’

Figure 317. SETATR Operation

SETATR (Set Attribute)

678 VisualAge RPG Language Reference

SETGT (Set Greater Than)

 Free-Form Syntax SETGT{(EHMR)} search-arg name

 Code Factor 1 Factor 2 Result Field Indicators

SETGT (E) search-arg name (file or record format) NR ER _

The SETGT operation positions a file at the next record with a key or relative

record number that is greater than the search argument. The file must be a full

procedural file (identified by an F in position 18 of the file description

specifications).

The SETGT operation can only be used with OS/400 files.

The search argument, search-arg, must be the key or relative record number used to

retrieve the record. If access is by key, search-arg can be a a single key in the form

of a field name, a named constant, a figurative constant, or a literal. See Figure 227

on page 531 for an example of searching key fields.

If the file is an externally-described file, search-arg can also be a composite key in

the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key fields

must have the same CCSID as the key in the file. See the example at the end of

“%KDS (Search Arguments in Data Structure)” on page 451 for an illustration of

search arguments in a data structure. If access is by relative record number,

search-arg must be an integer literal or a numeric field with zero decimal positions.

The name operand is required and must be either a file name or a record format

name. A record format name is allowed only with an externally described file. If

MBR(*ALL) is specified, SETGT only processes the first open file member.

You can specify an indicator in positions 71-72 that is set on if no record is found

with a key or relative record number that is greater than the search argument

specified (search-arg). This information can also be obtained from the %FOUND

built-in function, which returns ’0’ if no record is found, and ’1’ if a record is

found.

To handle SETGT exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

If the SETGT operation is not successful (no-record-found condition), the file is

positioned to the end of the file.

Once the SETGT operation is performed, the file is positioned so that it is

immediately before the first record whose key or relative record number is greater

than the search argument specified (search-arg). This record can be retrieved

reading the file. You can use *START and *END for file positioning. If you specify

either *START or *END for search-arg, note the following:

v name must be a file name.

v You cannot use *HIVAL or *LOVAL as the search-arg.

v You cannot specify the NR indicator.

For more information, see “File Positioning” on page 6.

SETGT (Set Greater Than)

Chapter 26. Operation Code Details 679

See “Database Null Value Support” on page 137 for information on reading records

with null-capable fields.

For more information, see “File Operations” on page 363.

Note: Operation code extenders H, M, and R are allowed only when the search

argument is a list or is %KDS().

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* This example shows how to position the file so READ will read

C* the next record. The search argument, KEY, specified for the

C* SETGT operation has a value of 98; therefore, SETGT positions

C* the file before the first record of file format FILEA that

C* has a key field value greater than 98. The file is positioned

C* before the first record with a key value of 100. The READ

C* operation reads the record that has a value of 100 in its key

C* field.

C

C KEY SETGT FILEA

C READ FILEA 64

C*

C* This example shows how to read the last record of a group of

C* records with the same key value and format from a program

C* described file. The search argument, KEY, specified for the

C* SETGT operation positions the file before the first record of

C* file FILEB that has a key field value greater than 70.

C* The file is positioned before the first record with a key

C* value of 80. The READP operation reads the last record that

C* has a value of 70 in its key field.

C

C KEY SETGT FILEB

C READP FILEB 64

Figure 318. SETGT Operation

Key Field
Values

Key Field
Values

97 50

97 70

97 60

97 70

98 80

100 80

100 80

100 90

101 90

101 91

(SETGT)

(SETGT)FILEA FILEB

(READ)

(READ)

Figure 319. Positioning files using SETGT

SETGT (Set Greater Than)

680 VisualAge RPG Language Reference

SETLL (Set Lower Limit)

 Free-Form Syntax SETLL{(EHMR)} search-arg name

 Code Factor 1 Factor 2 Result Field Indicators

SETLL (E) search-arg name (file or record format) NR ER EQ

The SETLL operation positions a file at the next record that has a key or relative

record number that is greater than or equal to the search argument. The file must

be a full procedural file (identified by an F in position 18 of the file description

specifications).

The SETLL operation can only be used with OS/400 files. It cannot be used with

local files.

The search argument, search-arg, must be the key or relative record number used to

retrieve the record. If access is by key, search-arg can be a a single key in the form

of a field name, a named constant, a figurative constant, or a literal. See Figure 227

on page 531 for an example of searching key fields.

If the file is an externally-described file, search-arg can also be a composite key in

the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key fields

must have the same CCSID as the key in the file. See the example at the end of

“%KDS (Search Arguments in Data Structure)” on page 451 for an illustration of

search arguments in a data structure. If access is by relative record number,

search-arg must be an integer literal or a numeric field with zero decimal positions.

The name operand is required and can contain either a file name or a record format

name. A record format name is allowed only with an externally described file. If

MBR(*ALL) is specified, SETLL only processes the first open file member.

The resulting indicators reflect the status of the operation. You can specify an

indicator in positions 71-72 that is set on when the search argument is greater than

the highest key or relative record number in the file. This information can also be

obtained from the %FOUND built-in function, which returns ’0’ if no record is

found, and ’1’ if a record is found.

To handle SETLL exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 that is set on when a record is

present whose key or relative record number is equal to the search argument. This

information can also be obtained from the %EQUAL built-in function, which

returns ’1’ if an exact match is found.

If name is a file name for which the lower limit is to be set, the file is positioned at

the first record with a key or relative record number equal to or greater than the

search argument.

If name is a record format name for which the lower limit is to be set, the file is

positioned at the first record of the specified type that has a key equal to or greater

than the search argument.

SETLL (Set Lower Limit)

Chapter 26. Operation Code Details 681

When end of file is reached on a file being processed by SETLL, another SETLL

can be issued to reposition the file. After a SETLL operation successfully positions

the file at a record, the record can be retrieved by reading it. You can use *START

and *END for file positioning. If you specify either *START or *END for search-arg,

note the following:

v name must be a file name.

v You cannot use *HIVAL or *LOVAL for search-arg.

v You cannot specify the NR or EQ indicator.

v Either an error indicator (positions 73-74) or the ’E’ extender may be specified.

For more information on using *START and *END, see “File Positioning” on page

6.

Before your application reads this file, another application may delete records from

the file. You may not retrieve the record that you expect. Even if the %EQUAL

built-in function is also set on or the resulting indicator in positions 75 and 76 is

set on to indicate that a matching record has been found, you may not get that

record.

SETLL does not access data records. To verify that a key exists, use SETLL with an

equal indicator (positions 75-76) or the %EQUAL built-in function rather than the

CHAIN operation. In cases where the file is a multiple format logical file with

sparse keys, CHAIN can be a faster solution than SETLL.

See “Database Null Value Support” on page 137 for information on reading records

with null-capable fields.

For more information, see “File Operations” on page 363.

Note: Operation code extenders H, M, and R are allowed only when the search

argument is a list or is %KDS().

In the following example, the file ORDFIL contains order records. The key field is

the order number (ORDER) field. There are multiple records for each order.

ORDFIL looks like this in the calculation specifications:

SETLL (Set Lower Limit)

682 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* All the 101 records in ORDFIL are to be printed. The value 101

C* has previously been placed in ORDER. The SETLL operation

C* positions the file at the first record with the key value 101

C* %EQUAL will return ’1’.

C

C ORDER SETLL ORDFIL

C

C* The following DO loop processes all the records that have the

C* same key value.

C*

C IF %EQUAL

C DOU %EOF

C ORDER READE ORDFIL

C IF NOT %EOF

C EXCEPT DETAIL

C ENDIF

C ENDDO

C ENDIF

C

C*

C* The READE operation reads the second, third, and fourth 101

C* records in the same manner as the first 101 record was read.

C* After the fourth 101 record is read, the READE operation is

C* attempted. Because the 102 record is not of the same group,

C* %EOF will return ’1’, the EXCEPT operation is bypassed, and

C* the DOU loop ends.

Figure 320. SETLL Operation

100

100

100

101

101

101

101

102

ORDER

(SETLL)

Other Fields

ORDFIL

1st record of 100

2nd record of 100

3rd record of 100

1st record of 101

2nd record of 101

3rd record of 101

4th record of 101

1st record of 102

Figure 321. Positioning files using SETLL

SETLL (Set Lower Limit)

Chapter 26. Operation Code Details 683

SETOFF (Set Indicator Off)

 Free-Form Syntax (not allowed - use EVAL *INxx = *OFF)

 Code Factor 1 Factor 2 Result Field Indicators

SETOFF OF OF OF

The SETOFF operation sets off any indicators specified in positions 71 through 76.

You must specify at least one resulting indicator in positions 71 through 76.

Figure 322 illustrates the SETOFF operation.

For more information, see “Indicator-Setting Operations” on page 366.

SETON (Set Indicator On)

 Free-Form Syntax (not allowed - use EVAL *INxx = *ON)

 Code Factor 1 Factor 2 Result Field Indicators

SETON ON ON ON

The SETON operation sets on any indicators specified in positions 71 through 76.

You must specify at least one resulting indicator in positions 71 through 76.

For more information, see “Indicator-Setting Operations” on page 366.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The SETON and SETOFF operations set from one to three indicators

C* specified in positions 71 through 76 on and off.

C* The SETON operation sets indicator 17 on.

C

C SETON 17

C

C* The SETON operation sets indicators 17 and 18 on.

C

C SETON 1718

C

C* The SETOFF operation sets indicator 21 off.

C

C SETOFF 21

Figure 322. SETON and SETOFF Operations

SETOFF (Set Indicator Off)

684 VisualAge RPG Language Reference

SHOWWIN (Display Window)

 Free-Form Syntax SHOWWIN{(E)} window-name}

 Code Factor 1 Factor 2 Result Field Indicators

SHOWWIN (E) Window name _ ER _

The SHOWWIN operation loads a window into memory. The Visible attribute

controls whether the window is displayed.

Note: The attributes for a window cannot be set or referenced before a SHOWWIN

operation. Parts on a window cannot be referenced before a SHOWWIN

operation for the window.

Factor 2 contains the name of the window to be displayed.

To handle SHOWWIN exceptions (program status codes 1400 to 1420), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

Do not use SHOWWIN and the Open Immediately attribute. If you do, the

resulting indicator is set on. This means that the window is already loaded. If this

indicator is set on, the Visible attribute for the window can be set.

Use the SHOWWIN operation to display windows that are not displayed

frequently rather than setting the window to Open Immediately. For primary

windows (the first window an application displays), use the Open Immediately

setting for the window rather than SHOWWIN.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C* A window named UPDCUST is displayed.

C SHOWWIN ’UPDCUST’

Figure 323. SHOWWIN Operation

SHOWWIN (Display Window)

Chapter 26. Operation Code Details 685

SORTA (Sort an Array)

 Free-Form Syntax SORTA array-name

SORTA %SUBARR(array-name : start-element { : number-of-elements })

 Code Factor 1 Extended Factor 2

SORTA Array

SORTA %SUBARR(Array : start-element {:number-of-elements})

The SORTA operation sorts the array specified by array-name into either an

ascending or descending sequence. This sequence is specified on the definition

specification. If no sequence is specified, the array is sorted into ascending

sequence.

The array-name operand is the name of an array to be sorted. *IN cannot be

specified. If the array is defined as a compile-time or pre-runtime array with data

in alternating form, the alternate array is not sorted.

If the array is defined with the OVERLAY(name{:pos}) keyword, the base array

will be sorted in the sequence defined by the OVERLAY array.

Graphic arrays are sorted by the hexadecimal values of the array elements, in the

order specified on the definition specification.

To sort a portion of an array, use the %SUBARR built-in function.

Sorting an array does not preserve any previous order. For example, if you sort an

array twice, using different overlay arrays, the final sequence is that of the last

sort. Elements that are equal in the sort sequence but have different hexadecimal

values (for example, due to the use of an overlay array to determine sequence),

may not be in the same order after sorting as they were before.

When sorting arrays of basing pointers, you must ensure that all values in the

arrays are addresses within the same space. Otherwise, inconsistent results may

occur. See “Compare Operations” on page 357 for more information.

If a null-capable array is sorted, the sorting will not take the settings of the null

flags into consideration.

Sorting a dynamically allocated array without all defined elements allocated may

cause errors to occur.

For more information, see “Array Operations” on page 351.

SORTA (Sort an Array)

686 VisualAge RPG Language Reference

|

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

DARRY S 1A DIM(8) ASCEND

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The SORTA operation sorts ARRY into ascending sequence because

C* the ASCEND keyword is specified.

C* If the unsorted ARRY contents were GT1BA2L0, the sorted ARRY

C* contents would be 012ABGLT.

C* Note that the ASCII sorting sequence is used.

C

C SORTA ARRY

Figure 324. SORTA Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++

D* In this example, the base array has the values aa44 bb33 cc22 dd11

D* so the overlaid array ARRO has the values 44 33 22 11.

D DS

D ARR 4 DIM(4) ASCEND

D ARRO 2 OVERLAY(ARR:3)

D

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C

C* After the SORTA operation, the base array has the values

C* 11dd 22cc 33bb 44aa

C

C SORTA ARRO

Figure 325. SORTA Operation with OVERLAY

SORTA (Sort an Array)

Chapter 26. Operation Code Details 687

SQRT (Square Root)

 Free-Form Syntax (not allowed - use the %SQRT built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

SQRT (H) Value Root

The SQRT operation derives the square root of the field named in factor 2. The

square root of factor 2 is placed in the result field.

Factor 2 must be numeric and can contain an array, array element, field, figurative

constant, literal, named constant, subfield, or table name. If the value of the factor

2 field is zero, the result field value is also zero. If the value of the factor 2 field is

negative, the VRPG Client exception/error handling routine receives control.

The result field must be numeric and can contain an array, array element, subfield,

or table element.

An entire array can be used in a SQRT operation if factor 2 and the result field

contain array names. The number of decimal positions in the result field can be

either less than or greater than the number of decimal positions in factor 2.

However, the result field should not have fewer than half the number of decimal

positions in factor 2.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the SQRT operation.

SQRT (Square Root)

688 VisualAge RPG Language Reference

START (Start Component or Call Local Program)

 Free-Form Syntax START{(E)} name}

 Code Factor 1 Factor 2 Result Field Indicators

START (E) Component name or field

name

PLIST name _ ER _

The START operation can be used to either start a new component in the

application or to call a local program. For every START operation that starts a new

component, there can be a STOP operation.

To handle START exceptions (program status code 1410), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

Starting Components

Since START is an asynchronous operation, both the called (target) and calling

(source) components as well as any other active components in the application can

receive events for parts currently enabled by all the application’s components.

If factor 2 is specified, it must contain a character literal which is the name of the

component or a variable containing the component name.

If the result field is specified, it must contain a PLIST name. If the result field is

not specified, the START operation can be followed by a PARM operation.

Parameters are passed by address. This means that the source and target

components can access parameter fields. Up to 20 parameters can be specified. If

the started component is expecting a varying length field, then a varying length

field must be used as the parameter.

START initializes a component, executes its *INZSR, then returns to the source

component. In the source component, factor 2 of the PARM operation is copied to

the result field of the PARM operation. When control returns to the source

component, the result field is copied to factor 1. In the target component, the result

field is copied to factor 1. When control returns to the source component, factor 2

is copied to the result field if the *INZSR is successful.

Once the START operation has finished initializing the target component, the

action subroutine in the source component continues to execute and the target

component remains active with its action subroutines enabled to receive events.

START (Start Component or Call Local Program)

Chapter 26. Operation Code Details 689

Calling Local Programs

If START is used to call a local program, the calling program makes the call to the

local program, then continues. The called program runs independently of the

calling program.

If factor 2 is specified, it must contain a definition specification name for a constant

or a field definition. LINKAGE(*CLIENT) must be on the definition specification.

For more information, see “LINKAGE(linkage_type)” on page 281.

If the result field is specified, it must contain a PLIST name. If the result field is

not specified, the START operation can be followed by a PARM operation.

Parameters are passed by reference. See “PARM (Identify Parameters)” on page 647

and “PLIST (Identify a Parameter List)” on page 650. for more information on

passing parameters.

Note: Pointers and procedure pointers are not allowed as parameters.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Dtest2 C ’testprog’ LINKAGE (*CLIENT)

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C START test2

Figure 326. START Operation

START (Start Component or Call Local Program)

690 VisualAge RPG Language Reference

STOP (Stop Component)

 Free-Form Syntax STOP{(E)} component-name}

 Code Factor 1 Factor 2 Result Field Indicators

STOP (E) Component name ER

The STOP operation stops one or more components in an application. Any child

components that may have been started by the component being terminated are

terminated first.

When a component terminates:

1. Components that have been started by the terminating component or the

component’s descendants are terminated in reverse hierarchical order.

2. The *TERMSR subroutine is called for each component being terminated that

has a *TERMSR defined.

3. *STATUS codes are placed in the PSDS.

If factor 2 is specified, it must contain a character literal which is the component

name or a variable containing the component name. If factor 2 is not specified or if

factor 2 contains the same component name as the component currently running

(the component that contains the STOP operation), then that component

terminates.

When a STOP is performed which affects a currently running component,

operations following the STOP are not executed. For example, COMPA starts

COMPB. If COMPB is the component that is currently executing and if COMPB

issues a STOP for COMPA, COMPB terminates first, then COMPA terminates. No

operations following the STOP are performed.

To handle STOP exceptions, either the operation code extender ’E’ or an error

indicator ER can be specified, but not both. For more information on error

handling, see “Program Exception and Errors” on page 51.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...

C Extended-factor2++++++++++++++++++++++++++++

C*

C STOP ’COMPX’

Figure 327. STOP Operation

STOP (Stop Component)

Chapter 26. Operation Code Details 691

SUB (Subtract)

 Free-Form Syntax (not allowed - use the - or -= operators)

 Code Factor 1 Factor 2 Result Field Indicators

SUB (H) Minuend Subtrahend Difference + − Z

If factor 1 is specified, factor 2 is subtracted from factor 1 and the difference is

placed in the result field. If factor 1 is not specified, factor 2 is subtracted from the

result field.

Factor 1 and factor 2 must be numeric, and each can an array, array element, field,

figurative constant, literal, named constant, subfield, or table name.

The result field must be numeric, and can contain an array, array element, subfield,

or table name.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the SUB operation.

SUB (Subtract)

692 VisualAge RPG Language Reference

SUBDUR (Subtract Duration)

 Free-Form Syntax not allowed - use the - or -= operators with duration functions such as %YEARS and

%MONTHS, or the %DIFF built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

SUBDUR (E)

(duration)

Date/Time/ Timestamp Date/Time/ Timestamp Duration:

Duration Code

_ ER _

SUBDUR (E)

(new date)

Date/Time/ Timestamp Duration:Duration Code Date/Time/

Timestamp

_ ER _

The SUBDUR operation has been provided to:

v Subtract a duration to establish a new Date, Time or Timestamp

v Calculate a duration

Figure 328 on page 695 illustrates the SUBDUR operation.

Subtract a duration

You can use the SUBDUR operation to subtract a duration specified in factor 2

from a field or constant specified in factor 1 and place the resulting resulting Date,

Time, or Timestamp in the field specified in the result field.

Factor 1 is optional and may contain a Date, Time or Timestamp field, array, array

element, literal or constant. If factor 1 contains a field name, array or array

element, then its data type must be the same type as the field specified in the

result field. If factor 1 is not specified, the duration is subtracted from the field

specified in the result field.

Factor 2 is required and contains two subfactors. The first is a duration which must

be a numeric field, array or constant with zero decimal positions. The duration

must be 15 digits or less. If the duration field is negative, then duration is added to

the field.

The second subfactor must be a valid duration code indicating the type of

duration. The duration code must be consistent with the result field data type. For

example, you can subtract a year, month, or day duration but not a minute

duration from a date field. For list of duration codes and their short forms, see

“Date Operations” on page 359.

The result field must be a Date, Time or Timestamp data type field, array or array

element. If factor 1 is left blank, the duration is subtracted from the value in the

result field. If the result field is an array, the value in factor 2 is subtracted from

each element in the array. If the result is a time field, the result will always be be a

valid Time. For example, subtracting 59 minutes from 00:58:59 would give

-00:00:01. Since this time is not valid, the compiler adjusts it to 23:59:59.

When subtracting a duration in months from a date, the general rule is that the

month portion is decreased by the number of months in the duration, and the day

portion is unchanged. The exception to this is when the resulting day portion

would exceed the actual number of days in the resulting month. In this case, the

resulting day portion is adjusted to the actual month end date. The following

examples, which assume a *YMD format, illustrate this point.

 ’95/05/30’ SUBDUR 1:*MONTH results in ’95/04/30’

SUBDUR (Subtract Duration)

Chapter 26. Operation Code Details 693

The resulting month portion has been decreased by 1; the day portion is

unchanged.

 ’95/05/31’ SUBDUR 1:*MONTH results in ’95/04/30’

 The resulting month portion has been decreased by 1; the resulting day portion

has been adjusted because April has only 30 days.

Similar results occur when subtracting a year duration. For example, subtracting

one year from ’92/02/29’ results in ’91/02/28’, an adjusted value since the

resulting year is not a leap year.

To handle exceptions with program status codes 103, 112 or 113, either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “Program Exception and Errors” on

page 51.

Calculate a duration

The SUBDUR operation can be used to calculate a duration between:

v Two dates

v A date and a timestamp

v Two times

v A time and a timestamp

v Two timestamps

Factor 1 is required and must contain a Date, Time or Timestamp field, subfield,

array, array element, constant or literal.

Factor 2 is required and must also contain a Date, Time or Timestamp field, array,

array element, literal or constant.

The following duration codes are valid:

v For two dates or a date and a timestamp: *DAYS (*D), *MONTHS (*M), and

*YEARS (*Y)

v For two times or a time and a timestamp: *SECONDS (*S), *MINUTES (*MN),

and *HOURS (*H)

v For two timestamps: *MSECONDS (*MS), *SECONDS (*S), *MINUTES (*MN),

*HOURS (*H), *DAYS (*D), *MONTHS (*M), and *YEARS (*Y).

The result is a number of whole units, with any remainder discarded. For example,

61 minutes is equal to 1 hour and 59 minutes is equal to 0 hours.

The result field consists of two subfactors. The first is the name of a zero decimal

numeric field, array or array element in which the result of the operation will be

placed. The second subfactor contains a duration code denoting the type of

duration. The result field will be negative if the date in factor 1 is earlier than the

date in factor 2.

For more information on working with date-time fields see “Date Operations” on

page 359.

Note: Calculating a micro-second Duration (*mseconds) can exceed the 15 digit

system limit for Durations and cause errors or truncation. This situation will

occur when there is more than a 32 year and 9 month difference between

the factor 1 and factor 2 entries.

SUBDUR (Subtract Duration)

694 VisualAge RPG Language Reference

Possible error situations

1. For subtracting durations:

v If the value of the Date, Time or Timestamp field in factor 1 is invalid

v If factor 1 is blank and the value of the result field before the operation is

invalid

v or if the result of the operation is greater than *HIVAL or less than *LOVAL.
2. For calculating durations:

v If the value of the Date, Time or Timestamp field in factor 1 or factor 2 is

invalid

v or if the result field is not large enough to hold the resulting duration.

In each of these cases an error will be signalled.

If an error is detected, an error will be generated with one of the following

program status codes:

v 00103: Result field not large enough to hold result

v 00112: Date, Time or Timestamp value not valid

v 00113: A Date overflow or underflow occurred (that is, the resulting Date is

greater than *HIVAL or less than *LOVAL).

The value of the result field remains unchanged. To handle exceptions with

program status codes 103, 112 or 113, either the operation code extender ’E’ or an

error indicator ER can be specified, but not both. For more information on error

handling, see “Program Exception and Errors” on page 51.

SUBDUR Examples

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

 *

C* Determine a LOANDATE which is xx years, yy months, zz days prior to

C* the DUEDATE.

 *

C DUEDATE SUBDUR XX:*YEARS LOANDATE

C SUBDUR YY:*MONTHS LOANDATE

C SUBDUR ZZ:*DAYS LOANDATE

 *

C* Add 30 days to a loan due date

C*

C SUBDUR -30:*D LOANDUE

 *

C* Calculate the number or days between a LOANDATE and a DUEDATE.

 *

C LOANDATE SUBDUR DUEDATE NUM_DAYS:*D 5 0

 *

C* Determine the number of seconds between LOANDATE and DUEDATE.

 *

C LOANDATE SUBDUR DUEDATE NUM_SECS:*S 5 0

Figure 328. SUBDUR Operations

SUBDUR (Subtract Duration)

Chapter 26. Operation Code Details 695

SUBST (Substring)

 Free-Form Syntax (not allowed - use %SUBST)

 Code Factor 1 Factor 2 Result Field Indicators

SUBST (E P) Length to extract Base string:start Target string _ ER _

The SUBST operation returns a substring, starting at the location specified in factor

2 for the length specified in factor 1. This substring is placed in the result field. If

factor 1 is not specified, the length of the string from the start position is used. For

graphic or UCS-2 strings, the start position is measured in double bytes. The base

string and the target string must both be of the same type, either both character,

both graphic, or both UCS-2.

If factor 1 is specified, it must contain the length of the string to be extracted. It

must be numeric with no decimal positions and can contain a field name, array

element, table name, literal, or named constant. If the length is not specified, the

rest of the base string (starting from the start location) is returned.

Factor 2 must contain either the base string, or the base string followed by a colon,

followed by the start position. The base string must contain a field name, array

element, named constant, data structure name, table name, or literal. The start

position must be numeric with zero decimal positions, and can contain a field

name, array element, table name, literal or named constant. If the start position is

not specified, SUBST starts in position 1 of the base string. For graphic or UCS-2

strings, the start position is measured in double bytes.

Note:

v The start position and the length of the substring to be extracted must be

positive integers

v The start position must not be greater than the length

v The length must not be greater than the length of the base string from the

start location.

The result field must be character, graphic, or UCS-2 and can contain a field name,

array element, data structure, or table name. The result is left-justified. The result

field’s length should be at least as large as the length specified in factor 1. If the

substring is longer than the field specified in the result field, the substring is

truncated from the right. If the result field is variable-length, its length does not

change. If you specify P as the operation extender, the result field is padded from

the right with blanks after the operation.

Note:

v You cannot use figurative constants in factor 1, factor 2, or the result field

v Overlapping is allowed for factor 1 and the result field

v Overlapping is allowed for factor 2 and the result field.

To handle SUBST exceptions program status code 100), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

For more information, see “String Operations” on page 375.

SUBST (Substring)

696 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The SUBST operation extracts the substring from factor 2 starting

C* at position 3 for a length of 2. The value ’CD’ is placed in the

C* result field TARGET. Indicator 90 is not set on because no error

C* occurred.

C

C Z-ADD 3 T 2 0

C MOVEL ’ABCDEF’ String 10

C 2 SUBST String:T Target 90

C*

C* In this SUBST operation, the length is greater than the length

C* of the string minus the start position plus 1. As a result,

C* indicator 90 is set on and the result field is not changed.

C

C MOVE ’ABCDEF’ String 6

C Z-ADD 4 T 1 0

C 5 SUBST String:T Result 90

C

C* In this SUBST operation, 3 characters are substringed starting

C* at the fifth position of the base string. Because P is not

C* specified, only the first 3 characters of TARGET are

C* changed. TARGET contains ’123XXXXX’.

C

C Z-ADD 3 Length 2 0

C Z-ADD 5 T 2 0

C MOVE ’TEST123’ String 8

C MOVE *ALL’X’ Target

C Length SUBST String:T Target 8

Figure 329. SUBST Operation

SUBST (Substring)

Chapter 26. Operation Code Details 697

C*

C* This example is the same as the previous one except P

C* specified, and the result is padded with blanks.

C* TARGET equals ’123bbbbb’.

C

C Z-ADD 3 Length 2 0

C Z-ADD5 T 2 0

C MOVE ’TEST123’ String 8

C MOVE *ALL’X’ Target

C Length SUBST(P) String:T Target 8

C

C

C*

C* In the following example, CITY contains the string

C* ’Toronto, Ontario’. The SCAN operation is used to locate the

C* separating blank, position 9 in this illustration. SUBST

C* without factor 1 places the string starting at position 10 and

C* continuing for the length of the string in field TCNTRE.

C* TCNTRE contains ’Ontario’.

C ’ ’ SCAN City C

C ADD 1 C

C SUBST City:C TCntre

C*

C* Before the operations STRING=’bbbJohnbbbbbb’.

C* RESULT is a 10 character field which contains ’ABCDEFGHIJ’.

C* The CHECK operation locates the first nonblank character

C* and sets on indicator 10 if such a character exists. If *IN10

C* is on, the SUBST operation substrings STRING starting from the

C* first non-blank to the end of STRING. Padding is used to ensure

C* that nothing is left from the previous contents of the result

C* field. If STRING contains the value ’ HELLO ’ then RESULT

C* will contain the value ’HELLO ’ after the SUBST(P) operation.

C* After the operations RESULT=’Johnbbbbbb’.

C

C ’ ’ CHECK STRING ST 10

C 10 SUBST(P) STRING:ST RESULT

Figure 330. SUBST Operation with the operation extender P

SUBST (Substring)

698 VisualAge RPG Language Reference

TAG (Tag)

 Free-Form Syntax (not allowed - use other operation codes, such as LEAVE, ITER, and RETURN)

 Code Factor 1 Factor 2 Result Field Indicators

TAG Label

The declarative TAG operation names the label that identifies the destination of a

GOTO or CABXX operation. It can be specified anywhere within calculations.

A GOTO within a subroutine in the main procedure can be issued to a TAG within

the same subroutine. A GOTO within a subroutine in a subprocedure can be issued

to a TAG within the same subroutine, or within the body of the subprocedure.

Factor 1 must contain the name of the destination of a GOTO or CABxx operation.

This name must be a unique symbolic name, which is specified in factor 2 of a

GOTO operation or in the result field of a CABxx operation. The name can be used

as a common point for multiple GOTO or CABxx operations.

Conditioning indicator entries (positions 9 through 11) are not allowed.

Branching to the TAG from a different part of the VRPG application may result in

an endless loop.

See Figure 256 on page 585 for examples of the TAG operation.

For more information, see “Branching Operations” on page 352 or “Declarative

Operations” on page 362.

TAG (Tag)

Chapter 26. Operation Code Details 699

TEST (Test Date/Time/Timestamp)

 Free-Form Syntax TEST{(EDTZ)} {dtz-format} field-name

Code

Factor 1

(dtz-format) Factor 2

Result Field

(field-name) Indicators

TEST (E) Date/Time or

Timestamp

Field

_ ER _

TEST (D E) Date Format Character or

Numeric field

_ ER _

TEST (E T) Time Format Character or

Numeric field

_ ER _

TEST (E Z) Timestamp Format Character or

Numeric field

_ ER _

The TEST operation allows you to test the validity of date, time, or timestamp

fields prior to using them.

The dtz-format operand cannot be specified if the field-name operand is a date, time,

or timestamp field. For information on the formats that you can use, see “Date

Data” on page 119, “Time Data” on page 135, and “Timestamp Data” on page 137.

If field-name is a field declared as Date, Time, or Timestamp, dtz-format operand

cannot be specified and the operation code extenders ’D’, ’T’, and ’Z’ are not

allowed.

If field-name is a field declared as character or numeric, then one of the operation

code extenders ’D’, ’T’, or ’Z’ must be specified.

Note: If field-name is a character field with no separators, the dtz-format operand

must specify the date, time, or timestamp format followed by a zero.

v If the operation code extender includes ’D’ (test Date):

– dtz-format is optional and may be any of the Date formats. See “Date Data” on

page 119.

– If dtz-format is not specified, the format specified on the control specification

with the DATFMT keyword is assumed. If this keyword is not specified, *ISO

is assumed.
v If the operation code extender includes ’T’ (test Time):

– dtz-format is optional and may contain any of the valid Time formats. See

“Time Data” on page 135.

– If dtz-format is not specified, the format specified on the control specification

with the TIMFMT keyword is the default. If this keyword is not specified,

*ISO is assumed.

Note: The *USA date format is not allowed with the operation code extender

(T). The *USA date format has an AM/PM restriction that cannot be

converted to numeric when a numeric result field is used.
v If the operation code extender includes ’Z’ (test Timestamp), dtz-format is

optional and may contain *ISO or *ISO0. See “Timestamp Data” on page 137.

TEST (Test Date/Time/Timestamp)

700 VisualAge RPG Language Reference

Numeric fields are tested for valid digit portion of a Date, Time or Timestamp

value. Character fields are tested for both valid digits and separators.

If the character or numeric field specified as the field-name operand is longer than

required by the format being tested, extra data is ignored. For character data, only

the leftmost data is used; for numeric data, only the rightmost data is used. For

example, if the dtz-format operand is *MDY for a test of a numeric date, only the

rightmost 6 digits of the field-name operand are examined.

For the test operation, either the operation code extender ’E’ or an error indicator

ER must be specified, but not both. If the content of the field-name operand is not

valid, program status code 112 is signaled. Then, the error indicator is set on or the

%ERROR built-in function is set to return ’1’ depending on the error handling

method specified. For more information on error handling, see “Program Exception

and Errors” on page 51.

For more information, see “Date Operations” on page 359 or “Test Operations” on

page 378.

TEST (Test Date/Time/Timestamp)

Chapter 26. Operation Code Details 701

|
|
|
|
|

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D*

D Datefield S D DATFMT(*JIS)

D Num_Date S 6P 0 INZ(910921)

D Char_Time S 8 INZ(’13:05 PM’)

D Char_Date S 6 INZ(’041596’)

D Char_Tstmp S 20 INZ(’19960723140856834000’)

D Char_Date2 S 9A INZ(’402/10/66’)

D Char_Date3 S 8A INZ(’2120/115’)

D*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* Indicator 18 will not be set on since the character field is a

C* valid *ISO timestamp field, without separators.

C*

C *ISO0 TEST (Z) Char_Tstmp 18

C*

C* Indicator 19 will not be set on since the character field is a

C* valid *MDY date, without separators.

C*

C *MDY0 TEST (D) Char_Date 19

C*

C* %ERROR will return ’1’, since Num_Date is not *DMY.

C*

C *DMY TEST (DE) Num_Date

C*

C* No Factor 1 since result is a D data type field

C* %ERROR will return ’0’, since the field

C* contains a valid date

C*

C TEST (E) Datefield

C*

C* In the following test, %ERROR will return ’1’ since the

C* Timefield does not contain a valid USA time

C*

C *USA TEST (ET) Char_Time

C*

C* In the following test, indicator 20 will be set on since the

C* character field is a valid *CMDY, but there are separators.

C*

C *CMDY0 TEST (D) char_date2 20

C*

C* In the following test, %ERROR will return ’0’ since

C* the character field is a valid *LONGJUL date.

C*

C *LONGJUL TEST (DE) char_date3

Figure 331. TEST (D/T/Z) Example

TEST (Test Date/Time/Timestamp)

702 VisualAge RPG Language Reference

TESTB (Test Bit)

 Free-Form Syntax (not allowed - use the %BITAND built-in function. See Figure 138 on page 413.)

 Code Factor 1 Factor 2 Result Field Indicators

TESTB Bit numbers Character field OF ON EQ

The TESTB operation compares the bits identified in factor 2 with the

corresponding bits in the field named as the result field. The result field must be a

one-position character field. Resulting indicators in positions 71 through 76 reflect

the status of the result field bits. Factor 2 is always a source of bits for the result

field.

Factor 2 can contain:

v Bit numbers 0-7: From 1 to 8 bits can be tested per operation. The bits to be

tested are identified by the numbers 0 through 7. (0 is the leftmost bit.) The bit

numbers must be enclosed in apostrophes. For example, to test bits 0, 2, and 5,

enter ‘025’ in factor 2.

v Field name: You can specify the name of a one-position character field, table

name, or array element in factor 2. The bits that are on in the field, table name,

or array element are compared with the corresponding bits in the result field;

bits that are off are not considered. The field specified in the result field can be

an array element if each element of the array is a one-position character field.

v Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal

literal or hexadecimal named constant. Bits that are on in factor 2 are compared

with the corresponding bits in the result field; bits that are off are not

considered.

Figure 332 on page 704 illustrates uses of the TESTB operation.

Indicators assigned in positions 71 through 76 reflect the status of the result field

bits. At least one indicator must be assigned, and as many as three can be assigned

for one operation. For TESTB operations, the resulting indicators are set on as

follows:

v Positions 71 and 72: An indicator in these positions is set on if the bit numbers

specified in factor 2 or each bit that is on in the factor 2 field is off in the result

field. All of the specified bits are equal to off.

v Positions 73 and 74: An indicator in these positions is set on if the bit numbers

specified in factor 2 or the bits that are on in the factor 2 field are of mixed

status (some on, some off) in the result field. At least one the specified bits is on.

Note: If only one bit is to be tested, these positions must be blank. If a field

name is specified in factor 2 and it has only one bit on, an indicator in

positions 73 and 74 is not set on.

v Positions 75 and 76: An indicator in these positions is set on if the bit numbers

specified in the factor 2 or each bit that is on in factor 2 field is on in the result

field. All of the specified bits are equal to on.

Note: If the field in factor 2 has no bits on, then no indicators are set on.

For more information, see “Bit Operations” on page 352 or “Test Operations” on

page 378.

TESTB (Test Bit)

Chapter 26. Operation Code Details 703

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The field bit settings are FieldF = 00000001, and FieldG = 11110001.

C*

C* Indicator 16 is set on because bit 3 is off (0) in FieldF.

C* Indicator 17 is set off.

C TESTB ’3’ FieldF 16 17

C*

C* Indicator 16 is set on because both bits 3 and 6 are off (0) in

C* FieldF. Indicators 17 and 18 are set off.

C TESTB ’36’ FieldF 161718

C*

C* Indicator 17 is set on because bit 3 is off (0) and bit 7 is on

C* (1) in FieldF. Indicators 16 and 18 are set off.

C TESTB ’37’ FieldF 161718

C*

C* Indicator 17 is set on because bit 7 is on (1) in FieldF.

C* Indicator 16 is set off.

C TESTB ’7’ FieldF 16 17

C*

C* Indicator 17 is set on because bits 0,1,2, and 3 are off (0) and

C* bit 7 is on (1). Indicators 16 and 18 are set off.

C TESTB FieldG FieldF 161718

C*

C* The hexadecimal literal X’88’ (10001000) is used in factor 2.

C* Indicator 17 is set on because at least one bit (bit 0) is on

C* Indicators 16 and 18 are set off.

C TESTB X’88’ FieldG 161718

Figure 332. TESTB Operation

TESTB (Test Bit)

704 VisualAge RPG Language Reference

TESTN (Test Numeric)

 Free-Form Syntax (not allowed - rather than testing the variable before using it, code the usage of the

variable in a MONITOR group and handle any errors with ON-ERROR. See

Error-Handling Operations.)

 Code Factor 1 Factor 2 Result Field Indicators

TESTN Character field NU BN BL

The TESTN operation tests a character result field for the presence of zoned

decimal digits and blanks.

The result field must be a character field. To be considered numeric, each character

in the field, except the right-most character, must contain a hexadecimal 3 zone

and a digit (0 through 9). The right-most character is numeric if it contains a

hexadecimal 0 through 9, or an A to F zone, and a digit (0 through 9). As a result

of the test, resulting indicators are set on as follows:

v Positions 71 and 72: The result field contains numeric characters.

v Positions 73 and 74: The result field contains both numeric characters and at

least one leading blank. For example, the values b123 or bb123 set this indicator

on. However, the value b1b23 is not a valid numeric field because of the

embedded blanks, so this value does not set this indicator on.

Note: An indicator cannot be specified in positions 73 and 74 when a field of

length one is tested because the character field must contain at least one

numeric character and one leading blank.

v Positions 75 and 76: The result field contains all blanks.

The same indicator can be used for more than one condition. If any of the

conditions exist, the indicator is set on.

The TESTN operation may be used to validate fields before they are used in

operations where their use may cause undesirable results or exceptions (for

example, arithmetic operations).

For more information, see “Test Operations” on page 378.

TESTN (Test Numeric)

Chapter 26. Operation Code Details 705

TESTZ (Test Zone)

 Free-Form Syntax (not allowed - use the %BITAND builtin function with X’F0’ to isolate the zone part

of the character)

 Code Factor 1 Factor 2 Result Field Indicators

TESTZ Character field + −

The TESTZ operation tests the zone of the leftmost character in the result field. The

result field must be a character field.

Resulting indicators are set on according to the results of the test. You must specify

at least one resulting indicator positions 71 through 74. Any character with a

positive zone (hexadecimal 0, 1, 2, 3, 8, 9, A, B) sets on the indicator in positions 71

and 72. Any character with a minus zone (hexadecimal 4, 5, 6, 7, C, D, E, F) sets on

the indicator in positions 73 and 74.

Note: The positive/negative zone depends on the value of the second bit. The

values 3 and 7 are the preferred values for the sign, however, the other

values that are listed can be used.

For more information, see “Test Operations” on page 378.

TESTZ (Test Zone)

706 VisualAge RPG Language Reference

TIME (Time of Day)

 Free-Form Syntax (not allowed – use the %DATE, %TIME, and %TIMESTAMP built-in functions)

 Code Factor 1 Factor 2 Result Field Indicators

TIME Alias name Target field

The TIME operation accesses the system time and, if specified, the system date at

any time during program processing. The system time and date can be retrieved

from either an iSeries server or from the workstation. The system time is based on

the 24-hour clock.

If factor 1 is specified, it must contain a literal which is the alias name of a server.

If factor 1 is not specified, the time from the workstation is retrieved.

The result field must specify the name of a 6-, 12-, or 14-digit numeric field (no

decimal positions). The time of day or the time of day and the system date are

written into the result field.

 Result Field Value Returned Format

6-digit Numeric Time hhmmss

12-digit Numeric Time and Date hhmmssDDDDDD

14-digit Numeric Time and Date hhmmssDDDDDDDD

Time Time Format of Result

Date Date Format of Result

Timestamp Timestamp *ISO

Note: If the result field is a numeric field and the system date is included, it is placed in

positions 7 through 12 of the result field. The date format is *YMD.

To access the time of day only, specify the result field as a 6-digit numeric field. To

access both the time of day and the system date, specify the result field as a 12-

(2-digit year portion) or 14-digit (4-digit year portion) numeric field. The time of

day is always placed in the first six positions of the result field in the following

format:

 hhmmss (hh=hours, mm=minutes, and ss=seconds)

The date format depends on the date format job attribute DATFMT and can be

mmddyy, ddmmyy, yymmdd, or Julian. The Julian format for 2-digit year portion

contains the year in positions 7 and 8, the day (1 through 366, right-adjusted, with

zeros in the unused high-order positions) in positions 9 through 11, and 0 in

position 12. For 4-digit year portion, it contains the year in positions 7 through 10,

the day (1 through 366, right-adjusted, with zeros in the unused high-order

positions) in positions 11 through 13, and 0 in position 14.

If the Result field is a Timestamp field, the last 3 digits in the microseconds part is

always 000.

The special fields UDATE and *DATE contain the job date. These values are not

updated when midnight is passed, or when the job date is changed during the

running of the program.

TIME (Time of Day)

Chapter 26. Operation Code Details 707

For more information, see “Information Operations” on page 366.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* When the TIME operation is processed (with a 6-digit numeric

C* field), the current time (in the form hhmmss) is placed in the

C* result field CLOCK. The TIME operation is based on the 24-hour

C* clock, for example, 132710. (In the 12-hour time system, 132710

C* is 1:27:10 p.m.) CLOCK can then be specified in the output

C* specifications.

C TIME Clock 6 0

C* When the TIME operation is processed (with a 12-digit numeric

C* field), the current time and day is placed in the result field

C* TIMSTP. The first 6 digits are the time, and the last 6 digits

C* are the date; for example, 093315121579 is 9:33:15 a.m. on

C* December 15, 1979. TIMSTP can then be specified in the output

C* specifications.

C TIME TimStp 12 0

C MOVEL TimStp Time 6 0

C MOVE TimStp SysDat 6 0

C* This example duplicates the 12-digit example above but uses a

C* 14-digit field. The first 6 digits are the time, and the last

C* 8 digits are the date; for example, 13120001101992

C* is 1:12:00 p.m. on January 10, 1992.

C* TIMSTP can then be specified in the output specifications.

C TIME TimStp 14 0

C MOVEL TimStp Time 6 0

C MOVE TimStp SysDat 8 0

Figure 333. TIME Operation

TIME (Time of Day)

708 VisualAge RPG Language Reference

UNLOCK (Unlock a Data Area or Release a Record)

 Free-Form Syntax UNLOCK{(E)} name

 Code Factor 1 Factor 2 Result Field Indicators

UNLOCK (E) name (file or data area) _ ER _

The UNLOCK operation unlocks data areas and releases record locks.

To handle UNLOCK exceptions (program status codes 401-421, 431, and 432),

either the operation code extender ’E’ or an error indicator ER can be specified, but

not both. For more information on error handling, see “Program Exception and

Errors” on page 51.

Positions 71,72,75 and 76 must be blank.

For further rules for the UNLOCK operation, see “Data-Area Operations” on page

358.

Unlocking data areas

The name operand must be the name of the data area to be unlocked or the

reserved word *DTAARA.

When *DTAARA is specified, all data areas in the program that are locked are

unlocked.

The data area must already be specified in the result field of an *DTAARA DEFINE

statement or with the DTAARA keyword on the definition specification. If the

UNLOCK operation is specified to an already unlocked data area, an error does

not occur.

For more information, see “File Operations” on page 363.

Releasing record locks

The UNLOCK operation unlocks the most recently locked record in an update disk

file.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* TOTAMT, TOTGRS, and TOTNET are defined as data areas in the

C* system. The IN operation retrieves all the data areas defined in

C* the program. The program processes calculations, and

C* then unlocks the data areas. The data areas can then be used

C* by other programs.

C*

C *LOCK IN *DTAARA

C :

C :

C UNLOCK *DTAARA

C *DTAARA DEFINE TOTAMT 8 2

C *DTAARA DEFINE TOTGRS 10 2

C *DTAARA DEFINE TOTNET 10 2

Figure 334. Data area unlock operation

UNLOCK (Unlock a Data Area or Release a Record)

Chapter 26. Operation Code Details 709

The name operand must be the name of the UPDATE disk file.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

FFilename++IT.A.FRlen+......A.Device+.Keywords+++++++++++++++++++++++++++++

F*

FUPDATA UF E DISK REMOTE

F*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* Assume that the file UPDATA contains record format VENDOR.

C* A record is read from UPDATA. Since the file is an update

C* file, the record is locked. *IN50 is set somewhere else in

C* the program to control whether an UPDATE should take place.

C* Otherwise the record is unlocked using the UNLOCK operation.

C* Note that factor 2 of the UNLOCK operation is the file name,

C* UPDATA, not the record format, VENDOR.

C*

C READ VENDOR 12

C :

C *IN50 IFEQ *ON

C UPDATE VENDOR

C ELSE

C UNLOCK UPDATA 99

C ENDIF

Figure 335. Record unlock operation

UNLOCK (Unlock a Data Area or Release a Record)

710 VisualAge RPG Language Reference

UPDATE (Modify Existing Record)

 Free-Form Syntax UPDATE{(E)} name {data-structure | %FIELDS(name{:name...})}

 Code Factor 1 Factor 2 Result Field Indicators

UPDATE (E) name (file, record format,

or subfile)

data-structure _ ER _

The UPDATE operation modifies the last locked record retrieved for processing

from an update disk file or subfile. No other operation should be performed on the

file between the input operation that retrieved and locked the record, and the

UPDATE operation.

Operations such as READ, READC, READE, READP, READPE, and CHAIN

retrieve and lock a record. If these input operations are not successful, the record is

not locked and UPDATE cannot be issued. The record must be read again with the

default of a blank operation extender to specify a lock request.

After a successful UPDATE operation, the next sequential input operation retrieves

the record following the updated record.

Consecutive UPDATE operations to the same file or record are not valid.

Intervening successful read operations must be issued to position to and lock the

record to be updated.

The name operand must be the name of a file, subfile, or record format to be

updated. If a file name is specified, the file must be program described. If a record

format name is specified, the file must be externally described. The record format

name must be the name of the last record read from the file; otherwise an error

occurs.

If the data-structure operand is specified, the record is updated directly from the

data structure. The data structure must conform to the rules below:

1. If the data-structure operand is specified, the record is updated directly from the

data structure.

2. If name refers to a program-described file (identified by an F in Position 22 of

the file description specification), the data structure can be any data structure of

the same length as the file’s declared record length.

3. If name refers to an externally-described file or a record format from an

externally described file, the data structure must be a data structure defined

with EXTNAME(...:*INPUT) or LIKEREC(...:*INPUT).

4. See “File Operations” on page 363 for information on how to define the data

structure and how data is transferred between the data structure and the file.

A list of the fields to update can be specified using %FIELDS. The parameter to

%FIELDS is a list of the field names to update. See the example at the end of

“%FIELDS (Fields to update)” on page 442 for an illustration of updating fields.

To handle UPDATE exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

For more information on error handling, see “File Exception/Errors” on page 41.

UPDATE (Modify Existing Record)

Chapter 26. Operation Code Details 711

|
|
|
|
|
|
|
|
|
|
|
|

Note: If some but not all fields in a record are to be updated, either use the output

specifications without an UPDATE operation or use %FIELDS to identify

which fields to update.

See “Database Null Value Support” on page 137 for information on reading records

with null-capable fields.

For more information, see “File Operations” on page 363.

UPDATE (Modify Existing Record)

712 VisualAge RPG Language Reference

WHEN (When True Then Select)

 Free-Form Syntax WHEN{(MR)} indicator-expression

 Code Factor 1 Extended Factor 2

WHEN (M/R) indicator-expression

TheWHEN operation code is similar to the WHENxx operation code in that it

controls the processing of lines in a SELECT operation. It differs in that the

condition is specified by a logical expression in the indicator-expression operand.

The operations controlled by the WHEN operation are performed when the

indicator-expression is true. See Chapter 24, “Expressions,” on page 381 for details on

expressions. For information on how operation extenders M and R are used, see

“Precision Rules for Numeric Operations” on page 390

For more information, see “Compare Operations” on page 357 or “Structured

Programming Operations” on page 376.

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++..

C*

C SELECT

C WHEN *INKA

C :

C :

C :

C WHEN NOT(*IN01) AND (DAY = ’FRIDAY’)

C :

C :

C :

C WHEN %SUBST(A:(X+4):3) = ’ABC’

C :

C :

C :

C OTHER

C :

C :

C :

C ENDSL

Figure 336. WHEN Operation

WHEN (When True Then Select)

Chapter 26. Operation Code Details 713

WHENxx (When True Then Select)

 Free-Form Syntax (not allowed - use the WHENoperation code)

 Code Factor 1 Factor 2 Result Field Indicators

WHENxx Comparand Comparand

The WHENxx operations of a select group determine where control passes after

the SELECT operation is processed.

The WHENxx conditional operation is true if factor 1 and factor 2 have the

relationship specified by xx. If the condition is true, the operations following the

WHENxx are processed until the next WHENxx, OTHER, ENDSL, or END

operation.

When performing the WHENxx operation remember:

v After the operation group is processed, control passes to the statement following

the ENDSL operation.

v You can code complex WHENxx conditions using ANDxx and ORxx.

Calculations are processed when the condition specified by the combined

WHENxx, ANDxx, and ORxx operations is true.

v The WHENxx group can be empty.

Refer to “Compare Operations” on page 357 for xx values.

For more information, see “Structured Programming Operations” on page 376.

WHENxx (When True Then Select)

714 VisualAge RPG Language Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following example shows nested SELECT groups. The employee

C* type can be one of ’C’ for casual, ’T’ for retired, ’R’ for

C* regular, and ’S’ for student. Depending on the employee type

C* (EmpTyp), the number of days off per year (Days) will vary.

C*

C SELECT

C EmpTyp WHENEQ ’C’

C EmpTyp OREQ ’T’

C Z-ADD 0 Days

C EmpTyp WHENEQ ’R’

C*

C* When the employee type is ’R’, the days off depend also on the

C* number of years of employment. The base number of days is 14.

C* For less than 2 years, no extra days are added. Between 2 and

C* 5 years, 5 extra days are added. Between 6 and 10 years, 10

C* extra days are added, and over 10 years, 20 extra days are added.

C*

C Z-ADD 14 Days

C*

C* Nested select group.

C SELECT

C Years WHENLT 2

C Years WHENLE 5

C ADD 5 Days

C Years WHENLE 10

C ADD 10 Days

C OTHER

C ADD 20 Days

C ENDSL

C* End of nested select group.

C*

C EmpTyp WHENEQ ’S’

C Z-ADD 5 Days

C ENDSL

Figure 337. WHENxx Operation

WHENxx (When True Then Select)

Chapter 26. Operation Code Details 715

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C* Example of a SELECT group with complex WHENxx expressions. Assume

C* that a record and an action code have been entered by a user.

C* Select one of the following:

C* * When F3 has been pressed, do subroutine QUIT.

C* * When action code(Acode) A (add) was entered and the record

C* does not exist (*IN50=1), write the record.

C* * When action code A is entered, the record exists, and the

C* active record code for the record is D (deleted); update

C* the record with active rec code=A. When action code D is

C* entered, the record exists, and the action code in the

C* record (AcRec) code is A; mark the record as deleted.

C* * When action code is C (change), the record exists, and the

C* action code in the record (AcRec) code is A; update the record.

C* * Otherwise, do error processing.

C*

C RSCDE CHAIN FILE 50

C SELECT

C *INKC WHENEQ *ON

C EXSR QUIT

C Acode WHENEQ ’A’

C *IN50 ANDEQ *ON

C WRITE REC

C Acode WHENEQ ’A’

C *IN50 ANDEQ *OFF

C AcRec ANDEQ ’D’

C Acode OREQ ’D’

C *IN50 ANDEQ *OFF

C AcRec ANDEQ ’A’

C MOVE Acode AcRec

C UPDATE REC

C Acode WHENEQ ’C’

C *IN50 ANDEQ *OFF

C AcRec ANDEQ ’A’

C UPDATE REC

C OTHER

C EXSR ERROR

C ENDSL

Figure 338. WHENxx Operation

WHENxx (When True Then Select)

716 VisualAge RPG Language Reference

WRITE (Create New Records)

 Free-Form Syntax WRITE{(E)} name {data-structure}

 Code Factor 1 Factor 2 Result Field Indicators

WRITE (E) name (file, record format,

subfile, or window)

data-structure _ ER EOF

The WRITE operation writes data to a file or window.

Writing to a File

The WRITE operation writes a new record to a file.

The name operand must be the name of a full-procedural file or record format. A

record format name is allowed only with an externally described file. A file name

is required with a program described file.

If the data-structure operand is specified, the record is written directly from the

data structure to the file. If name refers to a program described file (identified by

an F in position 22 of the file description specification), the data structure is

required and can be any data structure of the same length as the file’s declared

record length. If name refers to an externally-described file or a record format from

an externally described file, the data structure must be a data structure defined

with EXTNAME(...:*OUTPUT) or LIKEREC(...:*OUTPUT). See “File Operations” on

page 363 for information on how to define the data structure and how data is

transferred between the file and the data structure.

When records that use relative record numbers are written to a file, the field name

specified on the RECNO File specification keyword (relative record number) must

be updated so it contains the relative record number of the record to be written.

For local files, records are written to the end of the file. The RECNO keyword is

ignored.

To add records to a remote DISK file using the WRITE operation, an A must be

specified in position 20 of the file description specifications. For local files, records

are added to the end of the file. See “Position 20 (File Addition)” on page 240 for

more information.

To handle WRITE exceptions (file status codes greater than 1000), either the

operation code extender ’E’ or an error indicator ER can be specified, but not both.

An error occurs if overflow is reached to an externally described print file and no

overflow indicator has been specified on the File description specification. For

more information on error handling, see “File Exception/Errors” on page 41.

You can specify an indicator in positions 75-76 to signal whether an end of file

occurred (subfile is filled) on the WRITE operation. The indicator is set on (an EOF

condition), or off, every time the WRITE operation is performed. This information

can also be obtained from the %EOF built-in function, which returns ’1’ if an EOF

condition occurs and ’0’ otherwise.

See “Database Null Value Support” on page 137 for information on adding records

with null-capable fields containing null values.

WRITE (Create New Records)

Chapter 26. Operation Code Details 717

|
|
|

For more information, see “File Operations” on page 363.

Writing to a Window

If the name operand is a window name, the WRITE operation sets the attributes of

static text and field parts on the window. The attribute for entry parts is TEXT. The

attribute for static text parts is LABEL.

The data-structure operand and the operation extender cannot be specified.

When a window is written, the values stored in corresponding fields are used are

used to set the attributes of the entry field parts and the static text parts. After the

WRITE operation, the values stored in the fields match the values on the display. If

there are many static text and entry fields, use the WRITE operation rather than

multiple SETATRs. For example, if window INVENTORY contains the entry field

parts ENT0000B and ENT0000C a WRITE of the window performs the equivalent

to the following:

Writing to a Subfile

If the name operand is a subfile part name, the WRITE operation adds a new

record to the subfile. Records written to a subfile part are added to the end of the

subfile.

The data-structure operand cannot be specified.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The WRITE operation writes the fields in the data structure

C* DS1 to the file, FILE1.

C*

C WRITE FILE1 DS1

Figure 339. WRITE Operation for Files

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments++++++

CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++Comments++++++

C EVAL %setatr(’inventory’:’ent0000B’:’text’) = ENT0000B

C EVAL %setatr(’inventory’:’ent0000C’:’text’) = ENTd000C

Figure 340. WRITE Operation for Windows

WRITE (Create New Records)

718 VisualAge RPG Language Reference

XFOOT (Summing the Elements of an Array)

 Free-Form Syntax (not allowed - use the %XFOOT built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

XFOOT (H) Array name Sum + − Z

XFOOT adds the elements of an array together and places the sum into the field

specified as the result field. Factor 2 contains the name of the array.

If half-adjust is specified, the rounding occurs after all elements are summed and

before the results are moved into the result field. If the result field is an element of

the array specified in factor 2, the value of the element before the XFOOT

operation is used to calculate the total of the array.

If the array is float, XFOOT will be performed as follows: when the array is in

descending sequence, the elements will be added together in reverse order.

Otherwise, the elements will be added together starting with the first elements of

the array.

For further rules for the XFOOT operation, see “Arithmetic Operations” on page

348 or “Array Operations” on page 351.

Figure 120 on page 351 contains an example of the XFOOT operation.

XFOOT (Summing the Elements of an Array)

Chapter 26. Operation Code Details 719

XLATE (Translate)

 Free-Form Syntax (not allowed - use the %XLATE built-in function)

 Code Factor 1 Factor 2 Result Field Indicators

XLATE (E P) From:To Source String:start Target String _ ER _

The XLATE operation translates characters in the source string (factor 2) that match

the From string to the corresponding characters in the To string. XLATE starts

translating the source at the position specified in factor 2 and continues character

by character, from left to right. If a character in the source string exists in the From

string, the corresponding character in the To string is placed in the result field. Any

characters in the source field before the starting position are placed unchanged in

the result field.

Note:

v The From, To, Source, and Target strings must all be of the same type,

either all character, all graphic, or all UCS-2. As well, their CCSIDs must

be the same, unless, in the case of graphic fields, CCSID(*GRAPH :

*IGNORE) was specified on the Control Specification.

v Figurative constants cannot be used in factor 1, factor 2, or result fields.

No overlapping in a data structure is allowed for factor 1 and the result

field, or factor 2 and the result field.

Factor 1 must contain the From string, followed by a colon, followed by the To

string. The From and To strings can contain a field name, array element, named

constant, data structure name, literal, or table name. If a character in the From

string is duplicated, the first occurrence (leftmost) is used.

Factor 2 must contain either the source string or the source string followed by a

colon and the start position. The source string portion of factor 2 can contain a

field name, array element, named constant, data structure name, data structure

subfield, literal, or table name. If the operation uses graphic or UCS-2 data, the

start position refers to double-byte characters. The start position position of factor 2

must be numeric with no decimal positions and can be a named constant, array

element, field name, literal, or table name. If no start position is specified, the

default is 1.

The result field can be a field, an array element, a data structure, or a table. The

length of the result field should be as large as the source string specified in factor

2. If the result field is larger than the source string, the result is left adjusted. If the

result field is larger than the source string and the operation extender P is

specified, the result is padded on the right with blanks after the translation. If the

result field is shorter than the source string, the result field contains the leftmost

part of the translated source.

Note: If the result field is graphic and the operation extender P is specified, then

graphic blanks are be used. If the result field is UCS-2 and P is specified,

UCS-2 blanks will be used.

To handle XLATE exceptions (program status code 100), either the operation code

extender ’E’ or an error indicator ER can be specified, but not both. For more

information on error handling, see “Program Exception and Errors” on page 51.

XLATE (Translate)

720 VisualAge RPG Language Reference

For more information, see “String Operations” on page 375.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

C*

C* The following translates the blank in NUMBER to ’-’. The result

C* in RESULT will be ’999-9999’.

C*

C MOVE ’999 9999’ Number 8

C ’ ’:’-’ XLATE Number Result 8

Figure 341. XLATE Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

D*

D* In the following example, all values in STRING are translated to

D* uppercase. As a result, RESULT=’RPG DEP’.

D*

D Up C ’ABCDEFGHIJKLMNOPQRS-

D ’TUVWXYZ’

D Lo C ’abcdefghijklmnopqrs-

D ’tuvwxyz’

C*

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C

C MOVE ’rpg dep’ String 7

C Lo:Up XLATE String Result 90

C*

C* In the following example all values in the string are translated

C* to lowercase. As a result, RESULT=’rpg dep’.

C*

C MOVE ’RPG DEP’ String 7

C Up:Lo XLATE String Result 90

Figure 342. XLATE Operation With Named Constants

XLATE (Translate)

Chapter 26. Operation Code Details 721

Z-ADD (Zero and Add)

 Free-Form Syntax (not allowed - use the EVAL operation code)

 Code Factor 1 Factor 2 Result Field Indicators

Z-ADD (H) Addend Sum + − Z

Factor 2 is added to a field of zeros. The sum is placed in the result field. Factor 2

must be numeric and can contain an array, array element, field, figurative constant,

literal, named constant, subfield, or table name.

The result field must be numeric and can contain an array, array element, subfield,

or table name.

Half-adjust can be specified.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the Z-ADD operation.

Z-ADD (Zero and Add)

722 VisualAge RPG Language Reference

Z-SUB (Zero and Subtract)

 Free-Form Syntax (not allowed - use the EVAL operation code)

 Code Factor 1 Factor 2 Result Field Indicators

Z-SUB (H) Subtrahend Difference + − Z

Factor 2 is subtracted from a field of zeros. The difference, which is the negative of

factor 2, is placed in the result field.

Factor 2 must be numeric and can contain an array, array element, field, figurative

constant, literal, named constant, subfield, or table name.

The result field must be numeric and can contain an array, array element, subfield,

or table name.

Half-adjust can be specified.

“Arithmetic Operations” on page 348 describes the general rules for specifying

arithmetic operations.

Figure 120 on page 351 shows examples of the Z-SUB operation.

Z-SUB (Zero and Subtract)

Chapter 26. Operation Code Details 723

Z-SUB (Zero and Subtract)

724 VisualAge RPG Language Reference

Part 5. Appendixes

© Copyright IBM Corp. 1994, 2005 725

726 VisualAge RPG Language Reference

Appendix A. Restrictions

 Function Restriction

Array/table input record length for compile

time

Maximum length is 100

Character field length Maximum length is 65535 bytes

Graphic or UCS-2 field length Maximum length is 32766 bytes

Data structure (named) length Maximum of 65535

Data structure (unnamed) length Maximum of 9999999

Data structure occurrences (number of) Maximum of 32767 per data structure

Edit Word Maximum length of 115

Elements in an array/table (DIM keyword

on the definition specifications)

Maximum of 32767 per array/table

Levels of nesting in structured groups Maximum of 100

Named Constant or Literal Maximum length of 1024 bytes for a

character, hexadecimal, graphic, or UCS-2

literal and 31 digits with 31 decimal

positions for a numeric literal.

Parameters passed to remote OS/400

programs (CALL)

Maximum of 25

Total size of all parameters passed to remote

OS/400 programs (CALL)

Maximum of 32767 bytes

Parameters passed to called functions

(CALLB)

Maximum of 399

Parameters passed to local EXEs, CMDs,

COMS, and BATs (CALLP)

Maximum of 20 or a total of 1024 bytes.

Printer files Maximum of 8 per program

Printing lines per page Minimum of 2; maximum of 255

Program status data structure Only 1 allowed per program

Record length Maximum length is 99999.1

Note:

1Any device record size restraints override this value.

© Copyright IBM Corp. 1994, 2005 727

728 VisualAge RPG Language Reference

Appendix B. Collating Sequences

The following tables list both the EBCDIC and ASCII collating sequences.

EBCDIC Collating Sequence

 Table 63. EBCDIC Collating Sequence

 Ordinal

Number Symbol Meaning

Decimal

Represen-

tation

Hex

Represen-

tation

 65 � Space 64 40

 . . .

 75 ¢ Cent sign 74 4A

 76 . Period, decimal point 75 4B

 77 < Less than sign 76 4C

 78 (Left parenthesis 77 4D

 79 + Plus sign 78 4E

 80 ∨ Vertical bar, Logical OR 79 4F

 81 & Ampersand 80 50

 . . .

 91 ! Exclamation point 90 5A

 92 $ Dollar sign 91 5B

 93 * Asterisk 92 5C

 94) Right parenthesis 93 5D

 95 ; Semicolon 94 5E

 96 ¬ Logical NOT 95 5F

 97 − Minus, hyphen 96 60

 98 / Slash 97 61

 . . .

 107 ¦ Split vertical bar 106 6A

 108 , Comma 107 6B

 109 % Percent sign 108 6C

 110 _ Underscore 109 6D

 111 > Greater than sign 110 6E

 112 ? Question mark 111 6F

 . . .

 122 ` Accent grave 121 79

 123 : Colon 122 7A

 124 # Number sign, pound sign 123 7B

 125 @ At sign 124 7C

 126 ’ Apostrophe, prime sign 125 7D

© Copyright IBM Corp. 1994, 2005 729

Table 63. EBCDIC Collating Sequence (continued)

 Ordinal

Number Symbol Meaning

Decimal

Represen-

tation

Hex

Represen-

tation

 127 = Equal sign 126 7E

 128 " Quotation marks 127 7F

 . . .

 130 a 129 81

 131 b 130 82

 132 c 131 83

 133 d 132 84

 134 e 133 85

 135 f 134 86

 136 g 135 87

 137 h 136 88

 138 i 137 89

 . . .

 146 j 145 91

 147 k 146 92

 148 l 147 93

 149 m 148 94

 150 n 149 95

 151 o 150 96

 152 p 151 97

 153 q 152 98

 154 r 153 99

 . . .

 162 ~ Tilde 161 A1

 163 s 162 A2

 164 t 163 A3

 165 u 164 A4

 166 v 165 A5

 167 w 166 A6

 168 x 167 A7

 169 y 168 A8

 170 z 169 A9

 . . .

 193 { Left brace 192 C0

 194 A 193 C1

 195 B 194 C2

 196 C 195 C3

 197 D 196 C4

730 VisualAge RPG Language Reference

Table 63. EBCDIC Collating Sequence (continued)

 Ordinal

Number Symbol Meaning

Decimal

Represen-

tation

Hex

Represen-

tation

 198 E 197 C5

 199 F 198 C6

 200 G 199 C7

 201 H 200 C8

 202 I 201 C9

 . . .

 209 } Right brace 208 D0

 210 J 209 D1

 211 K 210 D2

 212 L 211 D3

 213 M 212 D4

 214 N 213 D5

 215 O 214 D6

 216 P 215 D7

 217 Q 216 D8

 218 R 217 D9

 . . .

 225 \ Left slash 224 E0

 . . .

 227 S 226 E2

 228 T 227 E3

 229 U 228 E4

 230 V 229 E5

 231 W 230 E6

 232 X 231 E7

 233 Y 232 E8

 234 Z 233 E9

 . . .

 241 0 240 F0

 242 1 241 F1

 243 2 242 F2

 244 3 243 F3

 245 4 244 F4

 246 5 245 F5

 247 6 246 F6

 248 7 247 F7

 249 8 248 F8

 250 9 249 F9

Appendix B. Collating Sequences 731

ASCII Collating Sequence

 Table 64. ASCII Collating Sequence

 Ordinal

Number Symbol Meaning

Decimal

Represen- tation

Hex Represen-

tation

 1 Null 0 0

 . . .

 33 � Space 32 20

 34 ! Exclamation

point

33 21

 35 " Quotation mark 34 22

 36 # Number sign 35 23

 37 $ Dollar sign 36 24

 38 % Percent sign 37 25

 39 & Ampersand 38 26

 40 ’ Apostrophe,

prime sign

39 27

 41 (Opening

parenthesis

40 28

 42) Closing

parenthesis

41 29

 43 * Asterisk 42 2A

 44 + Plus sign 43 2B

 45 , Comma 44 2C

 46 − Hyphen, minus 45 2D

 47 . Period, decimal

point

46 2E

 48 / Slant 47 2F

 49 0 48 30

 50 1 49 31

 51 2 50 32

 52 3 51 33

 53 4 52 34

 54 5 53 35

 55 6 54 36

 56 7 55 37

 57 8 56 38

 58 9 57 39

 59 : Colon 58 3A

 60 ; Semicolon 59 3B

 61 < Less than sign 60 3C

 62 = Equal sign 61 3D

 63 > Greater than

sign

62 3E

732 VisualAge RPG Language Reference

Table 64. ASCII Collating Sequence (continued)

 Ordinal

Number Symbol Meaning

Decimal

Represen- tation

Hex Represen-

tation

 64 ? Question mark 63 3F

 65 @ Commercial At

sign

64 40

 66 A 65 41

 67 B 66 42

 68 C 67 43

 69 D 68 44

 70 E 69 45

 71 F 70 46

 72 G 71 47

 73 H 72 48

 74 I 73 49

 75 J 74 4A

 76 K 75 4B

 77 L 76 4C

 78 M 77 4D

 79 N 78 4E

 80 O 79 4F

 81 P 80 50

 82 Q 81 51

 83 R 82 52

 84 S 83 53

 85 T 84 54

 86 U 85 55

 87 V 86 56

 88 W 87 57

 89 X 88 58

 90 Y 89 59

 91 Z 90 5A

 92 [Opening bracket 91 5B

 93 \ Reverse slant 92 5C

 94] Closing bracket 93 5D

 95 ^ Caret 94 5E

 96 _ Underscore 95 5F

 97 ` Grave Accent 96 60

 98 a 97 61

 99 b 98 62

 100 c 99 63

 101 d 100 64

Appendix B. Collating Sequences 733

Table 64. ASCII Collating Sequence (continued)

 Ordinal

Number Symbol Meaning

Decimal

Represen- tation

Hex Represen-

tation

 102 e 101 65

 103 f 102 66

 104 g 103 67

 105 h 104 68

 106 i 105 69

 107 j 106 6A

 108 k 107 6B

 109 l 108 6C

 110 m 109 6D

 111 n 110 6E

 112 o 111 6F

 113 p 112 70

 114 q 113 71

 115 r 114 72

 116 s 115 73

 117 t 116 74

 118 u 117 75

 119 v 118 76

 120 w 119 77

 121 x 120 78

 122 y 121 79

 123 z 122 7A

 124 { Opening brace 123 7B

 125 ¦ Split vertical bar 124 7C

 126 } Closing brace 125 7D

 127 ~ Tilde 126 7E

734 VisualAge RPG Language Reference

Appendix C. Supported CCSID Values

The following list contains the supported CCSID values for conversions to and

from UCS-2 values. Conversion between unicode CCSIDs is not supported.

Note: The CCSIDs 932, 936, and 949 are converted as follows:

CCSID Maps to

932 943

936 1386

949 1363

 037

 256

 259

 273

 274

 277

 278

 280

 282

 284

 285

 287

 290

 293

 297

 300

 301

 361

 363

 367

 382

 383

 385

 386

 387

 388

 389

 391

 392

 393

 394

 395

 420

 423

 424

 437

 500

 813

 819

 829

 833

 834

 835

 836

 837

 838

 850

 851

 852

 855

 856

 857

 858

 860

 861

 862

 863

 864

 865

 866

 868

 869

 870

 871

 874

 875

 880

 891

 895

 896

 897

 903

 904

 905

 907

 909

 910

 912

 913

 914

 915

 916

 918

 919

 920

 921

 922

 923

 924

 927

 930

 935

 937

 939

 941

 942

 943

 946

 947

 948

 950

 951

 971

 952

 955

 960

 961

 963

 964

 933

 949

 970

 1004

 1006

 1008

 1009

 1010

 1011

 1012

 1013

 1014

 1015

 1016

 1017

 1018

 1019

 1025

 1026

 1027

 1028

 1038

 1040

 1041

 1042

 1043

 1046

 1047

 1050

 1051

 1088

 1089

 1092

 1097

 1098

 1112

 1114

 1115

 1116

 1117

 1118

 1119

 1122

 1123

 1124

 1140

 1141

 1142

 1143

 1144

 1145

 1146

 1147

 1148

 1149

 1250

 1251

 1252

 1253

 1254

 1255

 1256

 1257

 1275

 1276

 1277

 1350

 1351

 1363

 1364

 1380

 1381

 1382

 1383

 1386

 1388

 4948

 4951

 4952

 4960

 5037

 5039

 5048

 5049

 5067

 5142

 5346

 5347

 5348

 5349

 5350

 5351

 5352

 5353

 5354

 5478

 8612

 9030

 9056

 9066

 9145

 28709

 33722

© Copyright IBM Corp. 1994, 2005 735

736 VisualAge RPG Language Reference

Appendix D. Comparing RPG Compilers

The VisualAge RPG language is based on the RPG IV language. It has been

enhanced so that you can develop and run applications with a graphical user

interface in a client/server environment.

There are cases where certain features are not supported for VisualAge RPG. For

example, there is no RPG cycle for VisualAge RPG. Because the RPG cycle is not

supported, any features associated with this, such as, control breaks and matching

fields, are also not supported.

In order to take advantage of the workstation application development

environment, features have been added to VisualAge RPG (for example, operation

codes such as SHOWWIN are used to display an application’s windows) or

existing ILE RPG for AS/400 features have been modified (for example, with the

/COPY compiler directive, you copy either OS/400 files or workstation files).

This appendix summarizes the differences between ILE RPG and VisualAge RPG.

RPG Cycle

Since the RPG cycle is not supported for VisualAge RPG, indicators associated

with the cycle are not supported. Entries on the specifications associated with the

RPG cycle are also not supported.

VisualAge RPG Indicators

The following indicators are supported for VisualAge RPG. For a list of indicators

not supported by VisualAge RPG, see “Unsupported Indicators.”

Record identifying indicators

01 - 99, LR

Field indicators

01 - 99

Resulting indicators

01 - 99, LR

Unsupported Indicators

The following usage for indicators is not supported:

Overflow indicators

*INOA - *INOG, *INOV, *IN01 - *IN99, 1P

Record identifying indicators

H1 - H9, L1 - L9, U1 - U8, RT

Control level indicators

L1 - L9

Field indicators

H1 - H9, U1 - U8, RT

Resulting indicators

H1 - H9, OA - OG, OV, L1 - L9, U1 - U8,KA - KN, KP - KY, RT

© Copyright IBM Corp. 1994, 2005 737

File conditioning

The EXTIND keyword is not supported on the VisualAge RPG file

description specifications. This means that you cannot use indicators for

file conditioning.

Unsupported Words

The following describes words with special functions and reserved words that are

not supported for VisualAge RPG.

v *ALTSEQ, *EQUATE, *FILE,

v User date: VisualAge RPG programs cannot be run in batch. Therefore, any of

the rules for user date and batch programs do not apply to VisualAge RPG

programs.

For a description of VisualAge RPG words, see Chapter 1, “Symbolic Names and

Reserved Words,” on page 3.

Compiler Directives

The /COPY compiler directive includes records from another file. This file can

exist on your workstation or on an iSeries server. The records are inserted where

the /COPY statement occurs and are compiled with the program For more

information, see “/COPY or /INCLUDE)” on page 11.

Error and Exception Handling

Error and exception handling for VisualAge RPG applications includes support for

handling components and the application’s graphical user interface. For more

information, see Chapter 4, “Working with Components,” on page 31 and “Event

Error Handling” on page 59.

Data

Data Types and Data Formats

The following summarizes the differences between the ILE RPG for AS/400 and

VisualAge RPG data types and formats. For a description of the data types and

formats supported for VisualAge RPG see Chapter 9, “Data Types and Data

Formats,” on page 103.

Binary format

Binary data is reordered when data is used between the server and the

client.

Basing pointer data type

The length of an ILE RPG for AS/400 basing pointer field is 16 bytes long

and must be aligned on a 16 byte boundary. The length of a VisualAge

RPG basing pointer field is 4 bytes long and must be aligned on a 4 byte

boundary.

Packed decimal format

ILE RPG for AS/400 uses hexadecimal F for positive numbers and

hexadecimal D for negative numbers. VisualAge RPG uses hexadecimal C

for positive numbers and hexadecimal D for negative numbers. VisualAge

RPG also supports hexadecimal A, E, and F for positive numbers and

hexadecimal B for negative numbers.

738 VisualAge RPG Language Reference

Procedure pointer data type

The length of an ILE RPG for AS/400 procedure pointer field is 16 bytes

long and must be aligned on a 16 byte boundary. The length of a

VisualAge RPG procedure pointer field is 4 bytes long and must be aligned

on a 4 byte boundary.

Zoned-Decimal Format

ILE RPG for AS/400 uses hexadecimal F for positive numbers and

hexadecimal D for negative numbers. VisualAge RPG uses hexadecimal 3

for positive numbers and hexadecimal 7 for negative numbers. VisualAge

RPG also supports hexadecimal 0, 1, 2, 8, 9, A, and B for positive numbers

and hexadecimal 4, 5, 6, C, D, E, and F for negative numbers.

Literals and Named Constants

The following describes the differences between the ILE RPG for AS/400 and

VisualAge RPG literals and named constants. For a description of the data types

and formats supported for VisualAge RPG, see Chapter 10, “Literals and Named

Constants,” on page 149.

Appendix D. Comparing RPG Compilers 739

Graphic literals

An ILE RPG for AS/400 graphic character has the form G’oK1K2i’ where o

and i are the shift-out and shift-in characters. The shift-out and shift-in

characters are not used with VisualAge RPG graphic characters. The form

is G’K1K2’.

Figurative constants

ILE RPG for AS/400 figurative constants can use the shift-out and shift-in

characters, for example, ALLG’oK1K2i’. The shift-out and shift-in

characters are not used for VisualAge RPG figurative constants.

The following are VisualAge RPG-specific figurative constants. For more

information, see “Figurative Constants” on page 153.

 *ABORT *BLACK *BLUE *BROWN

*CANCEL *CYAN *DARKBLUE *DARKCYAN

*DARKGREEN *DARKGRAY *DARKPINK *DARKRED

*END *GREEN *HALT *IGNORE

*INFO *NOBUTTON *PALEGRAY *PINK

*RED *RETRY *START *YELLOW

*YESBUTTON *WARN *WHITE

Data Areas

The local data area and the Program Initialization Parameters data area are not

supported. You cannot use:

v The *DTAARA DEFINE operation, with *LDA or *PDA in factor 2 and a name in

the result field

v DTAARA(*LDA) or DTAARA(*PDA) on a definition specification.

For more information on data area support for VisualAge RPG, see Chapter 11,

“Data Structures,” on page 157.

Arrays and Tables

VisualAge RPG does not support the following operation codes for arrays and

tables: MLLZO, MHHZO, MLHZO, MHLZO

The AS/400 system is an EBCDIC system while the OS/2 system is an ASCII

system. VisualAge RPG uses the ASCII collating sequence. For more information,

see Chapter 12, “Using Arrays and Tables,” on page 171.

Note: Graphic data and the ALTSEQ keyword are not supported for arrays.

For more information on VisualAge RPG arrays and tables, see Chapter 12, “Using

Arrays and Tables,” on page 171.

Edit Codes

User-defined edit codes are not supported. For a description of the VisualAge RPG

supported edit codes and words, see Chapter 13, “Editing Numeric Fields,” on

page 191. For information on editing GUI parts, see Programming with VisualAge

RPG, SC09-2449-05.

740 VisualAge RPG Language Reference

Files

In VisualAge RPG, the contents of the device-specific input/output feedback area

of the file are copied to the device-specific feedback section of the INFDS only after

a POST for the file. For more information, see “POST (Post)” on page 652.

Specifications

The following records are not supported by VisualAge RPG:

v File translation records

v Alternate collating sequence records

Control Specifications

For detailed information on the VisualAge RPG Control Specifications, see

Chapter 16, “Control Specifications,” on page 223.

Data Areas

If you do not provide information about generating and running your application

in the control specifications, ILE RPG searches for a data area named

RPGLEHSPEC in the library list (*LIBL). If it is not found, ILE RPG then searches

for a data area named DFTLEHSPEC in QRPGLE. VisualAge RPG does not search

*LIBL or QRPGLE for any data areas.

Keywords

The following keywords are not supported on the VisualAge RPG control

specification:

v ACTGRP

v ALTSEQ

v BNDDIR

v DFTACTGRP

v DFTNAME

v ENBPFRCOL

v FIXNBR

v FORMSALIGN

v FTRANS

v LANGID

v OPENOPT

v OPTIMIZE

v PRFDTA

v SRTSEQ

v TEXT

v THREAD

v USRPRF

The *{NO}SRCSTMT and *{NO}DEBUGIO values on the OPTION keyword are not

supported.

The parameter to the CCSID keyword must be a workstation CCSID.

The following are VisualAge RPG specific keywords for the control specifications:

v CACHE

v CACHEREFRESH

v CVTOEM

v LIBLIST

v SQLBINDFILE

Appendix D. Comparing RPG Compilers 741

v SQLDBBLOCKING

v SQLDBNAME

v SQLDTFMT

v SQLISOLATIONLVL

v SQLPACKAGENAME

v SQLPASSWORD

v SQLUSERID

For a description of the keyword support for VisualAge RPG Control

Specifications, see “Positions 7-80 (Keywords)” on page 223.

File Description Specifications

For detailed information on the VisualAge RPG File Description Specifications, see

Chapter 17, “File Description Specifications,” on page 237.

File Support

VisualAge RPG does not support a number of files that are supported by ILE RPG.

The following lists which files are not supported by VisualAge RPG, as well as

which positions on the file description specification are affected.

primary files, secondary files, record address files

ILE RPG supports a file designation (position 18) for primary files,

secondary files, and record address files. VisualAge RPG does not support

these files.

record address files and indexed files

v VisualAge RPG only supports an entry of blank for the length of key or

record address (positions 29-33).

v The record address type (position 34) for a VisualAge RPG program

cannot contain A (character keys), P (packed keys), G (graphic keys), D

(date keys), T (time keys) or Z (timestamp keys).

v The file organization entry (position 35) for a VisualAge RPG program

cannot contain an entry of I (indexed files) or T (record address files).

WORKSTN files

v ILE RPG supports a file type (position 17) of Combined which is valid

for SPECIAL and WORKSTN files. Since VisualAge RPG does not

support WORKSTN files, specifying a file type of combined only applies

to SPECIAL files.

Disk file processing methods

Sequential access within limits is not supported by VisualAge RPG.

RPG Cycle Related Entries

Since the RPG cycle is not supported by VisualAge RPG, the following entries are

not supported:

v End of file (E)

v Sequence (A and D)

v Limits processing (L)

v Overflow processing (OA-OG, OV, or 01-99)

Keywords

The following keywords are not supported for the File description specifications

for a VisualAge RPG program:

 DEVID EXTIND FORMOFL INDDS

KEYLOC MAXDEV OFLIND PASS

742 VisualAge RPG Language Reference

PGMNAME RAFDATA SAVEDS SAVEIND

SFILE SLN

The following are VisualAge RPG specific File Description Specification keywords:

EXTFILE(fname)

The EXTFILE keyword allows you to specify an actual local filename at

run time rather than supplying the name at compile time.

PROCNAME (procname)

If you enter SPECIAL for the device entry (position 42), the module you

specify as procname handles the support for the device.

RCDLEN(fieldname)

The RCDLEN keyword can be used for local DISK files.

REMOTE

If you enter DISK (position 36-42), the REMOTE keyword specifies that the

disk device is on an AS/400 server.

For a description of the keyword support for VisualAge RPG File Description

Specifications, see “Positions 44-80 (Keywords)” on page 243.

Definition Specifications

VisualAge RPG supports message windows. Message windows are specified on the

definition specification by entering M in position 24 and a blank in position 25. For

more information on message windows, see Chapter 18, “Definition Specifications,”

on page 255.

Keywords

The following describes any differences for the definition specification keywords

between ILE RPG and VARPG.

ASCEND and DESCEND

ILE RPG uses the EBCDIC collating sequence. VisualAge RPG uses the

ASCII collating sequence.

 Since VisualAge RPG does not support ALTSEQ, your VisualAge RPG

application cannot use an alternate sequence to check the sequence of

compile-time arrays or tables.

DTAARA

VisualAge RPG does not support local data areas (*LDA) with the

DTAARA keyword.

The following keywords are not supported for the definition specifications for a

VisualAge RPG program:

v EXPORT

v EXTPGM

v IMPORT

v OPDESC

v OPTIONS(*NOPASS)

The following are VisualAge RPG specific keywords for the definition

specifications:

BUTTON(button1:button2...)

Use the BUTTON keyword to define the buttons on a message window.

Appendix D. Comparing RPG Compilers 743

You can specify the following parameters (a maximum of three are

allowed): *OK, *CANCEL, *RETRY, *ABORT, *IGNORE, *ENTER,

*NOBUTTON, *YESBUTTON.

CLTPGM(program name)

The CLTPGM keyword specifies the name of the local program called by

the VARPG program, using the CALLP operation.

DLL(name)

The DLL keyword, together with the LINKAGE keyword, is used to

prototype a procedure that calls functions in Windows DLLs, including

Windows APIs.

LINKAGE(linkage_type)

Use the LINKAGE keyword with the parameter *SERVER to specify that

the program name used with the CALL operation code is located on an

AS/400 server. The LINKAGE and DLL keywords can be used together to

prototype a procedure that calls functions in Windows DLLs, including

Windows APIs.

MSGDATA(msgdata1:msgdata2...)

Use the MSGDATA keyword to define substitution text. The parameters

(msgdata1:msgdata2...) are fieldnames. VisualAge RPG converts all data to

character format before displaying the message.

MSGNBR(*MSGnnnn or fieldname)

The MSGNBR keyword defines the message number. The message number

can be a maximum of 4 digits in length.

MSGTEXT(’message text’)

The MSGTEXT keyword defines the message text. The message text is

contained in single quotation mark (’).

MSGTITLE(’title text’)

The MSGTITLE keyword specifies the title text for the message window.

You can enter a string or message number enclosed in single quotation

marks(’).

NOWAIT

The NOWAIT keyword is used to call remote AS/400 programs that use

display files.

STYLE(style_type)

The STYLE keyword is used for message window to define the icon that

appears on the message window. You can specify one of the following

parameters with the STYLE keyword: *INFO, *WARN, or *HALT.

For a description of the keyword support for VisualAge RPG Definition

Specifications, see “Definition-Specification Keywords” on page 264.

Input Specifications

For detailed information on the VisualAge RPG File Description Specifications, see

Chapter 17, “File Description Specifications,” on page 237.

The following entries are not supported:

v For sequence (positions 17-18), you cannot enter a two digit number. ILE RPG

supports this option which can be used to check the sequence of the input

records. This support is not available for VisualAge RPG.

744 VisualAge RPG Language Reference

v For number (position 19), you cannot enter 1 (which indicates that only one

record of this type can be present in the sequenced group) or N (which indicates

that one or more records of this type can be present in the sequenced group).

v For option (position 20), you cannot enter O (which indicates that the record

type is optional if sequence checking is specified).

v For code part (positions 29, 37, 45), you cannot enter Z (which indicates the zone

portion of a character).

Built-in Functions

%GETATR and %SETATR are VARPG-specific built-in functions. For more

information, see “%GETATR (Retrieve Attribute)” on page 446 and “%SETATR (Set

Attribute)” on page 471.

Note: VARPG-specific built-in functions do not support 1-byte, 8-byte, and unicode

values.

Operation codes

This section compares ILE RPG operation codes to VisualAge RPG operation codes.

For a complete description of the VisualAge RPG operation codes, see Chapter 26,

“Operation Code Details,” on page 501.

Similar Operation Codes

The following operation codes exist for both ILE RPG and VisualAge RPG.

However, there are differences in the way you code these operation codes or there

are different results when running applications containing these operation codes.

For a description of how the operation code works in for VisualAge RPG, refer to

the headings listed with the operation code.

v BEGSR (“BEGSR (Begin User Subroutine)” on page 511)

v CALL (“CALL (Call an AS/400 Program)” on page 517)

v CALLB (“CALLB (Call a Function)” on page 521)

v CALLP (“CALLP (Call a Prototyped Procedure or Program)” on page 522)

v CHAIN (“CHAIN (Random Retrieval from a File)” on page 529)

v CLEAR (“CLEAR (Clear)” on page 539)

v CLOSE (“CLOSE (Close Files)” on page 542)

v COMMIT (“COMMIT (Commit)” on page 544)

v DEFINE (“DEFINE (Field Definition)” on page 548)

v DELETE (“DELETE (Delete Record)” on page 551)

v DSPLY (“DSPLY (Display Message Window)” on page 562)

v FEOD (“FEOD (Force End of Data)” on page 580)

v READ (“READ (Read a Record)” on page 653)

v WRITE (“WRITE (Create New Records)” on page 717)

Unsupported Operation Codes

The following operation codes are not supported for VisualAge RPG:

v ACQ

v DUMP

v EXFMT

v FORCE

v MHHZO

v MHLZO

v MLHZO

v MLLZO

v NEXT

Appendix D. Comparing RPG Compilers 745

v REL

v SHTDN

VisualAge RPG Specific Operation Codes

The following operation codes are unique for the VisualAge RPG language:

v BEGACT/ENDACT (Begin Action Subroutine, End Action Subroutine)

v CLSWIN (Close Window)

v DSPLY (Display Message Window)

v GETATR/SETATR (Retrieve Attribute, Set Attribute)

v READS (Read Selected)

v SHOWWIN (Load a Window)

v START/STOP (Start a Component, Stop a Component)

For a detailed description of these operation codes, see Chapter 26, “Operation

Code Details,” on page 501.

Note: Except for DSPLY, VARPG-specific operation codes do not support 1-byte

and 8-byte signed and unsigned integer values, and unicode values.

Conversions between CCSIDs

The VARPG compiler does not support conversions between single-byte character

and graphic data. Conversions are supported only between the following:

v Graphic to UCS-2 or UCS-2 to Graphic

v Character to UCS-2 or UCS-2 to Character

v Graphic to Graphic (when their CCSIDs are different)

746 VisualAge RPG Language Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

B3/KB7/8200/MKM

© Copyright IBM Corp. 1994, 2005 747

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming Interface Information

This publication documents General-Use Programming Interface and Associated

Guidance Information provided by IBM WebSphere Development Studio Client for

iSeries.

This publication is intended to help you to create VisualAge RPG applications

using RPG IV source. This publication documents General-Use Programming

Interface and Associated Guidance Information provided by the VisualAge RPG

compiler.

General-Use programming interfaces allow the customer to write programs that

obtain the services of the VisualAge RPG compiler.

Trademarks and Service Marks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States or other countries or both:

 Application System/400 AS/400 Common User Access

CUA DATABASE 2 DB2

DB2/400 DB2/6000 IBM

Integrated Language

Environment

ISeries OS/400

PROFS SQL/DS SQL/400

VisualAge WebSphere 400

Java and all Java-based trademarks are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and/or other countries.

ActiveX, Microsoft, Windows, and Windows NT are trademarks or registered

trademarks of Microsoft Corporation in the United States, or other countries, or

both.

748 VisualAge RPG Language Reference

Other company, product, and service names may be trademarks or service marks

of others.

Notices 749

750 VisualAge RPG Language Reference

Glossary

This glossary includes terms and definitions from:

v The American National Dictionary for Information Systems ANSI X3.172-1990,

copyright 1990 by the American National Standards Institute (ANSI). Copies

may be purchased from the American National Standards Institute, 1430

Broadway, New York, New York, 10018. Definitions are defined by the symbol

(A) after the definition.

v The Information Technology Vocabulary developed by Subcommittee 1, Joint

Technical Committee 1, of the International Organization for Standardization and

the International Electrotechnical Committee (ISO/IEC JTC1/SC1). Definitions of

published parts of this vocabulary are identified by the symbol (|) after the

definition; definitions taken from draft international standards, committee drafts,

and working papers being developed by ISO/IEC JTC1/SC1 are identified by

the symbol (T) after the definition indicating that the final agreement has not yet

been reached among participating National Bodies of SC1.

v IBM Dictionary of Computing , New York: McGraw-Hill, 1994.

v Object-Oriented Interface Design IBM Common User Interface Guidelines,

SC34-4399-00, Carmel, IN: Que Corporation, 1992.

A

action. (1) Synonym for action subroutine. (2) An executable program or command file used to manipulate a project’s

parts or participate in a build.

action subroutine. Logic that you write to respond to a specific event.

active window. The window with which a user is currently interacting. This is the window that receives keyboard

input.

activeX part. A part that adds ActiveX control objects to the project. VARPG applications can then access their

attributes and monitor for events.

anchor. Any part that you use as a reference point for aligning, sizing, and spacing other parts.

animation control part. A part that allows the playback of video files, with the AVI extension, in Windows, or the

playback of animated GIF sequences in Java applications.

API. Application programming interface.

applet. A program that is written in Java and runs inside of a Java-compatible browser or AppletViewer.

application. A collection of software components used to perform specific user tasks on a computer.

application programming interface (API). A functional interface supplied by the operating system or a separately

orderable licensed program that allows an application program written in a high-level language to use specific data

or functions of the operating system or the licensed program.

ASCII (American National Standard Code for Information Interchange). The standard code, using a coded

character set consisting of 7-bit coded characters (8 bits including parity check), that is used for information

interchange among data processing systems, data communication systems, and associated equipment. The ASCII set

consists of control characters and graphic characters. (A)

B

BMP. The file extension of a bitmap file.

© Copyright IBM Corp. 1994, 2005 751

build. The process by which the various pieces of source code that make up components of a VARPG application

are compiled and linked to produce an executable version of the application.

button. (1) A mechanism on a pointing device, such as a mouse, used to request or start an action. (2) A graphical

mechanism in a window that, when selected, results in an action. An example of a button is an OK push button that,

when selected, initiates an action.

C

calendar part. A part that adds a calendar that can be modified by the user to include text, color and other

attributes.

canvas part. A part onto which you can point and click various other parts, position them, and organize them to

produce a graphical user interface. A canvas part occupies the client area of either a window part or a notebook page

part. See also notebook page with canvas part and window with canvas part.

check box part. A square box with associated text that represents a choice. When a user selects a choice, an

indicator appears in the check box to indicate that the choice is selected. The user can clear the check box by

selecting the choice again. In VisualAge RPG, you point and click on a check box part in the parts palette or parts

catalog and click it onto a design window.

click. To press and release a mouse button without moving the pointer off of the choice or object. See also

double-click.

client. (1) A system that is dependent on a server to provide it with data. (2) The PWS on which the VARPG

applications run. See also DDE client.

client area. The portion of the window that is the user’s workspace, where a user types information and selects

choices from selection fields. In primary windows, the area where an application programmer presents the objects

that a user works on.

client/server. The model of interaction in distributed data processing in which a program at one site sends a request

to a program at another site and awaits a response. The requesting program is called a client; the answering program

is called a server. See also client, server, DDE client, DDE server.

clipboard. An area of storage provided by the system to hold data temporarily. Data in the clipboard is available to

other applications.

cold-link conversation. In DDE, an explicit request made from a client program to a server program. The server

program responds to the request. Contrast with hot-link conversation.

color palette. A set of colors that can be used to change the color of any part in your application’s GUI.

combination box. A control that combines the functions of an entry field and a list box. A combination box contains

a list of objects that a user can scroll through and select from to complete the entry field. Alternatively, a user can

type text directly into the entry field. In VisualAge RPG, you can point and click on a combination box part in the

parts palette or parts catalog and click it onto a design window.

Common User Access architecture (CUA architecture). Guidelines for the dialog between a human and a

workstation or terminal.

compile. To translate a source program into an executable program (an object program).

component. A functional grouping of related files within a project. A component is created when the NOMAIN and

EXE keywords are not present on the control specifications.

component reference part. A part that enables one component to communicate with another component in a

VARPG application.

*component part. A part that is the “part representation” of the component. One *component part is created for

each component automatically, and it is invisible.

CONFIG.SYS. The configuration file, located in the root directory of the boot drive, for the DOS, OS/2, or Windows

operating systems. It contains information required to install and run hardware and software.

752 VisualAge RPG Language Reference

configuration. The manner in which the hardware and software of an information processing system are organized

and interconnected (T).

container part. A part that stores related records and displays them in a details, icon, or tree view.

CUA architecture. Common User Access architecture.

cursor. The visible indication of the position where user interaction with the keyboard will appear.

D

database. (1) A collection of data with a given structure for accepting, storing, and providing, on demand, data for

multiple users. (T) (2) All the data files stored in the system.

data object. An object that conveys information, such as text, graphics, audio, or video.

DBCS. Double-byte character set.

DDE. Dynamic data exchange.

DDE client. An application that initiates a DDE conversation. Contrast with DDE server. See also DDE client part,

DDE conversation.

DDE client part. A part used to exchange data with other applications, such as spreadsheet applications, that

support the dynamic data exchange (DDE) protocol.

DDE conversation. The exchange of data between a DDE client and a DDE server. See also cold-link conversation and

hot-link conversation.

DDE server. An application that provides data to another DDE-enabled application. Contrast with DDE client. See

also DDE conversation.

default. A value that is automatically supplied or assumed by the system or program when no value is specified by

the user. The default value can be assigned to a push button or graphic push button.

default action. An action that will be performed when some action is taken, such a pressing the Enter key.

dereferencing. The action of removing the association between a part and an AS/400 database field.

design window. The window in the GUI designer on which parts are placed to create a user interface.

details view. A standard contents view in which a small icon is combined with text to provide descriptive

information about an object.

dimmed. Pertaining to the reduced contrast indicating that a part can not be selected or directly manipulated by the

user.

direct editing. The use of techniques that allow a user to work with an object by dragging it with a mouse or

interacting with its pop-up menu.

DLL. Dynamic link library.

double-byte character set (DBCS). A set of characters in which each character is represented by 2 bytes. Languages

such as Japanese, Chinese, and Korean, which contain more symbols than can be represented by 256 code points,

require double-byte character sets. Because each character requires 2 bytes, the typing, displaying, and printing of

DBCS characters requires hardware and programs that support DBCS. Four double-byte character sets are supported

by the system: Japanese, Korean, Simplified Chinese, and Traditional Chinese. Contrast with single-byte character set

(SBCS).

double-click. To quickly press a mouse button twice.

drag. To use a mouse to move or to copy an object. For example, a user can drag a window border to make it larger

by holding a button while moving the mouse. See also drag and drop.

drag and drop. To directly manipulate an object by moving it and placing it somewhere else using a mouse.

Glossary 753

drop-down combination box. A variation of a combination box in which a list box is hidden until a user takes

explicit acts to make it visible.

drop-down list. A single selection field in which only the current choice is visible. Other choices are hidden until

the user explicitly acts to display the list box that contains the other choices.

dynamic data exchange (DDE). The exchange of data between programs or between a program and a datafile

object. Any change made to information in one program or session is applied to the identical data created by the

other program. See also DDE conversation, DDE client, DDE server.

Dynamic link library (DLL). A file containing executable code and data bound to a program at load time or run

time, rather than during linking. The code and data in a dynamic link library can be shared by several applications

simultaneously.

E

EBCDIC. Extended binary-coded decimal interchange code. A coded character set of 256 8-bit characters.

emphasis. Highlighting, color change, or other visible indication of conditions relative to an object or choice that

affects a user’s ability to interact with that object or choice. Emphasis can also give a user additional information

about the state of a choice or an object.

entry field part. An area on a display where a user can enter information, unless the field is read-only. The

boundaries of an entry field are usually indicated. In VisualAge RPG, you point and click on an entry field part in

the parts palette or parts catalog and click it onto a design window.

error logging. Keeps track of errors in an error log. The editor takes you to the place in the source where the error

occurred.

event. A signal generated as a result of a change to the state of a part. For example, pressing a button generates a

Press event.

exception. (1) In programming languages, an abnormal situation that may arise during execution, that may cause a

deviation from the normal execution sequence, and for which facilities exist in a programming language to define,

raise, recognize, ignore, and handle it. (I) (2) In VisualAge RPG, an event or situation that prevents, or could prevent,

an action requested by a user from being completed in a manner that the user would expect. Exceptions occur when

a product is unable to interpret a user’s input.

EXE. The extension of an executable file.

EXE module. An EXE module consists of a main procedure and subprocedures. It is created when the EXE keyword

is present on the control specification. All subroutines (BEGSR) must be local to a procedure. The EXE must contain a

procedure whose name matches the name of the source file. This will be the main entry point for the EXE, that is, the

main procedure.

export. A function that converts an internal file to some standard file format for use outside of an application.

Contrast with import.

F

field. (1) An identifiable area in a window, such as an entry field where a user types text. (2) A group of related

bytes, such as a name or amount, that is treated as a unit in a record.

file. A collection of related data that is stored and retrieved by an assigned name. A file can include information

that starts a program (program-file object), contains text or graphics (data-file object), or processes a series of

commands (batch file).

focus. Synonym for input focus.

font palette. A set of fonts that can be used to change the font of a part in your application’s GUI.

754 VisualAge RPG Language Reference

G

graph part. A part that allows the user to add a graph to the GUI. The graph styles available are line, bar, line and

bar, or pie chart.

graphical user interface (GUI). A type of user interface that takes advantage of high-resolution graphics. A

graphical user interface includes a combination of graphics, the object-action paradigm, the use of pointing devices,

menu bars and other menus, overlapping windows, and icons.

graphic push button part. A push button, labeled with a graphic, that represents an action that will be initiated

when a user selects it. Contrast with push button part.

group box part. A rectangular frame around a group of controls to indicate that they are related and to provide an

optional label for the group. In VisualAge RPG, you point and click on a group box part in the parts palette or parts

catalog and click it onto a design window.

group marker. A mark that identifies a part as being the first one in a group. When a user moves the cursor

through a group of parts and reaches the last part, the cursor returns to the first part in the group.

GUI designer. A suite of tools used to create interfaces by dragging and dropping parts from the parts palette to the

design window.

H

hide button. A button on a title bar that a user clicks on to remove a window from the workplace without closing

the window. When the window is hidden, the state of the window, as represented in the window list, changes.

Contrast with maximize button and minimize button.

horizontal scroll bar part. A part that adds a horizontal scroll bar to a window. This part allows users to scroll

through a pane of information, from left-to-right or right-to-left.

hot-link conversation. In DDE, an automatic update of a client program by a server program when data changes on

the server. Contrast with cold-link conversation.

I

ICO. The file extension of an icon file.

icon. A graphical representation of an object, consisting of an image, image background, and a label.

icon view. A standard contents view in which each object contained in a container is displayed as an icon.

image part. A part used to display a picture, from a BMP or ICO file, on a window.

import. A function that converts AS/400 display file objects to the appropriate VARPG part. Contrast with export.

inactive window. A window that can not receive keyboard input at a given moment.

index. The identifier of an entry in VARPG parts such as list boxes or combination boxes.

information area. A part of a window in which information about the object or choice that the cursor is on is

displayed. The information area can also contain a message about the normal completion of a process. See also status

bar.

Information Presentation Facility (IPF). A tool used to create online help on a programmable workstation.

Information Presentation Facility (IPF) file. A file in which the application’s help source is stored.

INI. The file extension for a file in the OS/2 or Windows operating system containing application-specific

information that needs to be preserved from one call of an application to another.

input focus. The area of a window where user interaction is possible from either the keyboard or the mouse.

Glossary 755

input/output (I/O). Data provided to the computer or data resulting from computer processing.

IPF. Information Presentation Facility

item. In dynamic data exchange, a unit of data. For example, the top left cell position in a spreadsheet is row 1,

column 1. This cell position may be referred to as item R1C1.

J

JAR files (.jar). In Java, abbreviation for Java ARchive. A file format that is used for aggregating many files into

one.

Java. An object-oriented programming language for portable interpretive code that supports interaction among

remote objects. Java was developed and specified by Sun Microsystems, Incorporated.

java bean part. A part that allows VARPG applications to access Sun Microsystem’s JavaBeans.

JavaBeans. In Java, a portable, platform-independent reusable component model.

Java Database Connectivity (JDBC). An industry standard for database-independent connectivity between Java and

a wide range of databases. The JDBC provides a call-level application programming interface (API) for SQL-based

database access.

Java 2 Software Development Kit (J2SDK). Software that Sun Microsystems distributes for Java developers. This

software includes the Java interpreter, Java classes, and Java development tools. The development tools include a

compiler, debugger, dissassembler, AppletViewer, stub file generator, and documentation generator.

Java Native Interface (JNI). A programming interface that allows Java code that runs inside of a Java Virtual

Machine (JVM) to interoperate with functions that are written in other programming languages.

Java Runtime Environment (JRE). A subset of the Java Developer Kit for end users and developers who want to

redistribute the JRE. The JRE consists of the Java Virtual Machine, the Java Core Classes, and supporting files.

Java Virtual Machine (JVM). The part of the Java Runtime Environment (JRE) that is responsible for interpreting

Java bytecodes.

L

link event. An event that a target part receives whenever the state of a source part changes.

list box part. A control that contains scrollable choices that a user can select. In VisualAge RPG, you can point and

click on a list box part in the parts palette or parts catalog and click it onto a design window.

M

main procedure. A main procedure is a subprocedure that can be specified as the program entry procedure and

receives control when it is first called. A main procedure is only produced when creating an EXE. See EXE module

main source section. In a VARPG program, the main source section contains all the global dedfinitions for a

module. For a component, this section also includes the action and user subroutines.

main window. See primary window.

manipulation button. See mouse button 2.

maximize button. A button on the rightmost part of a title bar that a user clicks on to enlarge the window to its

largest possible size. Contrast with minimize button, hide button.

media panel part. A part used to give the user control over other parts. For example, a media panel part can be

used to control the volume of a media part.

media part. A part that gives a program the ability to process sound files and video files.

756 VisualAge RPG Language Reference

menu. A list of choices that can be applied to an object. A menu can contain choices that are not available for

selection in certain contexts. Those choices are dimmed.

menu bar part. The area near the top of a window, below the title bar and above the rest of the window, that

contains choices that provide access to other menus. In VisualAge RPG, you can point and click on a menu bar part

in the parts palette or parts catalog and click it onto a design window.

menu item part. A part that is a graphical or textual item on a menu. A user selects a menu item to work with an

object in some way.

message. (1) Information not requested by a user but displayed by a product in response to an unexpected event or

when something undesirable could occur. (2) A communication sent from a person or program to another person or

program.

message file. A file containing application messages. The file is created from the message source file during the

build process. See also build.

message subfile part. A part that can display predefined messages or text supplied in program logic.

migrate. (1) To move to a changed operating environment, usually to a new release or version of a system. (2) To

move data from one hierarchy of storage to another.

MID. The file extension of a MIDI file.

MIDI file. Musical Instrument Digital Interface file.

minimize button. A button, located next to the rightmost button in a title bar, that reduces the window to its

smallest possible size. Contrast with maximize button and hide button.

mnemonic. A single character, within the text of a choice, identified by an underscore beneath the character. See also

mnemonic selection.

mnemonic selection. A selection technique whereby a user selects a choice by typing the mnemonic for that choice.

mouse. A device with one or more push buttons used to position a pointer on the display without using the

keyboard. Used to select a choice or function to be performed or to perform operations on the display, such as

dragging or drawing lines from one position to another.

mouse button. A mechanism on a mouse used to select choices, initiate actions, or manipulate objects with the

pointer. See also mouse button 1 and mouse button 2.

mouse button 1. By default, the left button on a mouse used for selection.

mouse button 2. By default, the right button on a mouse used for manipulation.

mouse pointer. Synonym for cursor.

multiline edit (MLE) part. A part representing an entry field that allows the user to enter multiple lines of text.

N

navigation panel. A group of buttons that can be used to control the visible selection of records in a subfile.

NOMAIN module. A module that contains only subprocedures. There are no action or standalone user subroutines

in it. A NOMAIN module is created when the NOMAIN keyword is present on the control specification.

notebook part. A graphical representation of a notebook. You can add notebook pages to the notebook part and

then group the pages into sections separated by tabbed dividers. In Windows, a notebook is sometimes referred to as

a Windows tab control. See also notebook page part, notebook page with canvas part.

notebook page part. A part used to add pages to a notebook part. See also notebook.

notebook page with canvas part. A combination of a notebook page part and a canvas page part. See also notebook,

canvas part.

Glossary 757

O

object. (1) A named storage space that consists of a set of characteristics that describe itself and, in some situations,

data. An object is anything that exists in and occupies space in storage and on which operations can be performed.

Some examples of objects are programs, files, libraries, and folders. (2) A visual component of a user interface that a

user can work with to perform a task. An object can appear as text or an icon.

object-action paradigm. A pattern for interaction in which a user selects an object and then selects an action to

apply to that object.

object-oriented programming. A method for structuring programs as hierarchically organized classes describing the

data and operations of objects that may interact with other objects. (T)

object program. A target program suitable for execution. An object program may or may not require linking. (T)

odbc/jdbc part. A part that allows VAPRG applications to access and process database files that support the

Windows ODBC API or Sun Microsystem’s JDBC API.

operating system. A collection of system programs that control the overall operation of a computer system.

outline box part. A part that is a rectangular box positioned around a group of parts to indicate that all the parts

are related.

P

package. A function used to collect all the parts of a VARPG application together for distribution.

parts. Objects that make up the GUI of a VARPG application.

parts catalog. A storage space for all of the parts used to create graphical user interfaces for VARPG applications.

parts palette. A collection of parts that are most appropriate for building the current graphical user interface for an

application. When you finish one GUI, you can wipe the palette clean and add parts from the parts catalog that you

require for the next application.

plugin. A function created by the user or an outside vendor that can be used in VARPG programs.

point and click. (1) A selection method which is used to copy a part from the parts palette or catalog to the GUI

design window, the icon view, or the tree view. (2) To place a part in any of the desired views, point to and click on

the part, then move the cursor to the chosen window and point the cursor and click where you want the part to

appear. In the icon and tree views, the part will be placed on the parent part, and you will then have to move it

where you would like it to appear in the design window.

pop-up menu. A menu that, when requested, appears next to the object with which it is associated. It contains

choices appropriate for the object in its current context.

pop-up menu part. A part that, when added to an object on your interface, appears next to the object with which it

is associated when requested. You can point and click on a pop-up menu part in the parts palette or parts catalog

and click it onto a design window.

pop-up window. A movable window, fixed in size, in which a user provides information required by an application

so that it can continue to process a user request. Synonymous with secondary window.

primary window. The window in which the main interaction between the user and the application takes place.

Synonymous with main window.

procedure. A procedure is any piece of code that can be called with the CALLP operation code.

procedure interface definition. A procedure interface definition is a repetition of the prototype information within

the definition of a procedure. It is used to declare the entry parameters for the procedure and to ensure that the

internal definition of the procedure is consistent with the external definition (the prototype)

758 VisualAge RPG Language Reference

programmable workstation (PWS). A workstation that has some degree of processing capability and that allows a

user to change its functions.

progress bar part. A part that can be used to indicate graphically the progress of a process, such as copying files,

loading a database, and so on.

progress indicator. One or more controls used to inform a user about the progress of a process.

project. The complete set of data and actions needed to build a single target, such as dynamic link library (DLL) or

an executable file (EXE).

prompt. (1) A visual or audible message sent by a program to request the user’s response. (T) (2) A displayed

symbol or message that requests input from the user or gives operational information. The user must respond to the

prompt in order to proceed.

properties notebook. A graphical representation that resembles a bound notebook containing pages separated into

sections by tabbed divider pages. Select the tabs of a notebook to move from one section to another.

prototype. A prototype is a definition of the call interface. It includes information such as: whether the call is bound

(procedure) or dynamic (program); the external name; the number and nature of the parameters; which parameters

must be passed; the data type of any return value (for a procedure)

pull-down menu. A menu that extends from a selected choice on a menu bar or from a system-menu symbol. The

choices in a pull-down menu are related to one another in some manner.

push button part. A button labeled with text that represents an action that starts when a user selects the push

button. You can point and click on a push button part in the parts palette or parts catalog and click it onto a design

window. See also graphic push button part.

PWS. Programmable workstation.

R

radio button part. A circle with text beside it. Radio buttons are combined to show a user a fixed set of choices from

which only one can be selected. The circle is partially filled when a choice is selected. You can point and click on a

radio button part in the parts palette or parts catalog and click it onto a design window.

reference field. An AS/400 database field from which an entry field part can inherit its characteristics.

restore button. A button that appears in the rightmost corner of the title bar after a window has been maximized.

When the restore button is selected, the window returns to the size and position it was in before it was maximized.

See also maximize button.

S

SBCS. Single-byte character set.

scroll bar. A part that shows a user that more information is available in a particular direction and can be moved

into view by using a mouse or the page keys.

secondary window. A window that contains information that is dependent on information in a primary window,

and is used to supplement the interaction in the primary window. See also primary window. Synonym for pop-up

window.

secure sockets layer (SSL). A popular security scheme that was developed by Netscape Communications Corp. and

RSA Data Security, Inc. SSL allows the client to authenticate the server and all data and requests to be encrypted. The

URL of a secure server that is protected by SSL begins with https rather than http.

selection border. The visual border that appears around a VARPG part or a custom-made part, allowing the part to

be moved with the mouse or keyboard.

selection button. See mouse button 1.

Glossary 759

server. A system in a network that handles the requests of another system, called a client.

server alias. A name you define that can be used instead of the server name.

shared component. A component that can be accessed by more than one project.

single-byte character set (SBCS). A character set in which each character is represented by a one-byte code.

Contrast with double-byte character set (DBCS).

sizing border. The border or frame around a part (or set of parts) that you select to resize the part (or set of parts)

using the mouse or the keyboard.

slider part. A visual component of a user interface that represents a quantity and its relationship to the range of

possible values for that quantity. A user can also change the value of the quantity. You can point and click on a slider

part in the parts palette or parts catalog and click it onto a design window.

slider arm. The visual indicator in the slider that a user can move to change the numerical value.

source directory. The directory in which all source files for a VARPG application are stored.

source part. A part that can notify target parts whenever the state of the source part changes. A source part can

have multiple targets.

spin button part. A type of entry field that shows a ring of related but mutually exclusive choices through which a

user can scroll and select one choice. A user can also type a valid choice in the entry field. You can point and click on

a spin button part in the parts palette or parts catalog and click it onto a design window.

SSL. Secure sockets layer.

static text part. A part used as a label for other parts, such as a prompt for an entry field part.

status bar. A part of a window that displays information indicating the state of the current view or object. See also

information area.

status bar part. A part on a window that can display additional information about a process or action for the

window.

subfile field. A field used to define fields in a subfile part. See also subfile part.

subfile part. A part used to display a list of records, each consisting of a number of fields. This part is similar to an

AS/400 subfile. See also subfile field.

submenu. A menu that appears from, and contains choices related to, a cascading choice in another menu.

Submenus are used to reduce the length of a pull-down menu or a pop-up menu. See also submenu part.

submenu part. A part used to start a submenu from a menu item or existing menu, or to start a pull-down menu

from a menu item on a menu bar. See also submenu and menu item part.

subprocedure. A subprocedure is a procedure specified after the main source section. It must have a corresponding

prototype in the definition specifications of the main source section

syntax checking. Verifies that the syntax of each line is correct while you are editing the source. By doing so, it can

avoid compile errors. You can set this option on or off. You can view only certain specification types, such as C specs,

or a line with a specific string.

T

tab stop. An attribute used to set a tab stop for a part so that users can focus on it when they use the Tab key to

move through the interface.

target part. A part that receives a link event from a source part whenever the state of the source part changes.

target directory. The directory in which the compiled VARPG application is stored after a build. Contrast with target

folder.

760 VisualAge RPG Language Reference

target folder. The object in which the icon representing a VARPG application is placed.

target program. The object to be built by the project, such as a dynamic link library (DLL).

thread. The smallest unit of operation to be performed within a process.

timer part. A part used to track the interval of time between two events and trigger the second event when the

interval has passed.

title bar. The area at the top of each window that contains the system-menu symbol.

token highlighting. Enhances the readability of the code. You can configure highlighting of different language

constructs with different colors or fonts to identify the program structures. You can turn token highlighting on or off.

tool bar. A menu that contains one or more graphical choices representing actions a user can perform using a

mouse.

topic. In dynamic data exchange (DDE), the set of data that is the subject of a DDE conversation.

tree view. A way of displaying the contents of an object in a hierarchical fashion.

U

user-defined part. A part, consisting of one or more parts you have customized, that you save to the parts palette or

parts catalog for reuse. When in the palette or catalog, you can point and click this part onto the design window as

you would any other VARPG part.

utility DLL. See NOMAIN module

V

vertical scroll bar part. A part that adds a vertical scroll bar to a window. This part allows users to scroll through a

pane of information vertically.

W

WAV. The file extension of a wave file.

wave file. A file used for audio sounds on a waveform device.

window part. An area with visible boundaries that represents a view of an object or with which a user conducts a

dialog with a computer system. You can point and click on a window part from the parts palette or parts catalog and

click it onto the project window.

window with canvas part. A combination of the window part and the canvas part. See also window part and canvas

part.

work area. An area used to organize objects according to a user’s tasks. When a user closes a work area, all

windows opened from objects contained in the work area are removed from the workplace.

workplace. An area that fills the entire display and holds all of the objects that make up the user interface.

workstation. A device that allows a user to do work. See also programmable workstation.

Glossary 761

762 VisualAge RPG Language Reference

Bibliography

For additional information about topics related to WebSphere Development Studio

Client, refer to the following IBM publications:

WebSphere Development Studio Client manuals:

v Getting Started with WebSphere Development Studio Client for iSeries, SC09-2625-06,

provides information about WebSphere Development Studio Client for iSeries,

giving an overview of the various components, how they work together, and the

business advantages of using them.

VisualAge RPG manuals:

v Programming with VisualAge RPG, SC09-2449-05, contains specific information

about creating applications with VisualAge RPG. It describes the steps you have

to follow at every stage of the application development cycle, from design to

packaging and distribution. Programming examples are included to clarify the

concepts and the process of developing VARPG applications.

v VisualAge RPG Parts Reference, SC09-2450-05, provides a description of each

VARPG part, part attribute, part event, part attribute, and event attribute. It is a

reference for anyone who is developing applications using VisualAge RPG.

v VisualAge RPG Language Reference, SC09-2451-04, provides reference information

about the VARPG language and compiler.

v Java for RPG Programmers introduces you to the Java language (and RPG IV) by

comparing it to the RPG language. It is a good first step in your Java journey. It

also includes an interactive CD tutorial on Java and VisualAge for Java, by

MINDQ.

v Experience RPG IV Tutorial is an interactive CD tutorial that teaches you RPG IV

and ILE, in a fun and step-by-step approach. The book is a handbook with

questions and exercises to help you get hands-on experience with this exciting

new version of RPG.

v Another non-IBM book of interest to VisualAge RPG users is VisualAge for RPG

by Example.

If you have internet access, you can obtain current iSeries and AS/400e

information and publications from the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

For the PDF version of iSeries publications, refer to the CD ROM iSeries Information

Center: Supplemental Manuals, SK3T-4092-00.

Application Development Manager manuals:

v ADTS/400: Application Development Manager Introduction and Planning Guide,

GC09-1807-00, describes the basic concepts and the planning needed to make

effective use of the Application Development Manager feature.

v ADTS: Application Development Manager User’s Guide, SC09-2133-02, describes

how to create and manage projects defined to the Application Development

Manager feature.

v ADTS/400: Application Development Manager Self-Study Guide, SC09-2138-00,

provides practical hands-on experience using the Application Development

Manager feature. The guide illustrates how to use the Application Development

Manager feature by leading you through a series of step-by-step exercises.

© Copyright IBM Corp. 1994, 2005 763

v ADTS/400: Application Development Manager API Reference, SC09-2180-00,

describes how application programmers can write their own interface to the

Application Development Manager feature.

Information Presentation Facility manual:

v Information Presentation Facility Programming Guide G25H-7110, describes the

elements that make up the Information Presentation Facility (IPF). IPF is a tool

that supports the design and development of online documents and online help

facilities.

SQL manuals:

v IBM SQL Reference Version 2 SC26-8416, Volume 2, compares the facilities of

– DB2

– SQL/DS™

– DB2/400™

– DB2/6000™

– IBM SQL

– ISO-ANSI (SQL92E)

– X/Open™ (XPG4-SQL).
v DB2 Universal Database Administration Guide S10J-8157, provides information

necessary to use and administer the DB2 product.

v DB2 Universal Database Embedded SQL Programming Guide S10J-8158, describes

how to design and code application programs that access DB2 Client/Server

family servers (such as DB2 or DB2/400). It presents detailed information on the

use of Structured Query Language (SQL), and API calls in applications.

764 VisualAge RPG Language Reference

Index

Special characters
 43, 44

/ EXEC SQL BEGIN DECLARE 85

/ EXEC SQL INCLUDE SQLCA 83

/ EXEC SQL WHENEVER 84

/COPY statement 11

/DEFINE 13

/EJECT 17

/ELSE 15

/ELSEIF condition-expression 14

/END-FREE 11

/ENDIF 16

/EOF 16

/EOF tips
/EOF directive 16

/FREE 11

/IF condition-expression 14

/INCLUDE statement 11

/SPACE 17

/TITLE 17

/UNDEFINE 13

*ABORT 153, 740

*ALL 333

*ALL’x..’ 153

*ALLG’K1K2’ 153

*ALLU’XxxxYyyy’ 153

*ALLX’x1..’ 153

*BLACK 153, 740

*BLANK/*BLANKS 153

*BLUE 153, 740

*BROWN 153, 740

*CANCEL 153, 740

*CANCL 48, 59

*CYAN 153, 740

*CYMD format 121

*DARKBLUE 153, 740

*DARKCYAN 153, 740

*DARKGRAY 153, 740

*DARKGREEN 153, 740

*DARKPINK 153, 740

*DARKRED 153, 740

*DATE 326, 327

*DAY 326, 327

*DEFAULT 48, 59

*DTAARA DEFINE 740

*END 740

*ENDAPPL 48, 59

*ENDCOMP 48, 59

*ENTER 153, 740

*GREEN 153, 740

*HALT 153, 740

*HIVAL 153

*IGNORE 153, 740

*IN 26, 326, 328

*IN(xx) 326, 328

*INFO 153, 740

*INIT 52

*INxx 27, 326, 328

*INZSR 31, 207

*LONGJUL format 121

*LOVAL 153

*MONTH 326, 327

*NOBUTTON 153, 740

*NODEFAULT 48, 59

*NOKEY (with CLEAR operation) 540

*NULL 153

*OK 153

*ON/*OFF 153

*PALEGRAY 153, 740

*PARMS 52

*PINK 153, 740

*PLACE 326, 327, 334

*PROC 52

*PSSR 34, 57, 59

*RED 153, 740

*RETRY 153, 740

*ROUTINE 52

*START 740

*STATUS 52

*TERM 52

*TERMSR 34

*WARN 153, 740

*WHITE 153, 740

*YEAR 326, 327

*YELLOW 153, 740

*YESBUTTON 153, 740

*ZERO/*ZEROS 153

%ABS 405

%ADDR 406

%ALLOC (Allocate Storage) 408

%BITAND (Bitwise AND Operation) 409

%BITNOT (Invert Bits) 410

%BITOR (Bitwise OR Operation) 411

%BITXOR (Bitwise Exclusive-OR

Operation) 412

%CHAR 416

%CHECK (Check Characters) 418

%CHECKR (Check Reverse) 420

%DATE (Convert to Date) 422

%DAYS (Number of Days) 423

%DEC (Convert to Packed Decimal

Format) 424

%DECH (Convert to Packed Decimal

Format with Half Adjust) 426

%DECPOS 427

%DIFF (Difference Between Two Date or

Time Values) 428

%DIV 431

%EDITC 432

%EDITFLT 435

%EDITW 436

%ELEM 437

%EOF 438

%EQUAL 440

%ERROR 441

%FIELDS (Fields to update) 442

%FLOAT (Convert to Floating

Format) 443

%FOUND 444

%GETATR 446

%GRAPH 447

%HOURS (Number of Hours) 448

%INT (Convert to Integer Format) 449

%INTH (Convert to Integer Format with

Half Adjust) 449

%KDS (Search Arguments in Data

Structure) 451

%LEN 452

%LOOKUPxx (Look Up an Array

Element) 455

%MINUTES (Number of Minutes) 457

%MONTHS (Number of Months) 458

%MSECONDS (Number of

Microseconds) 459

%OCCUR (Set/Get Occurrence of a Data

Structure) 461

%OPEN 462

%PADDR 463

%REALLOC (Reallocate Storage) 464

%REPLACE 465, 466

%SCAN 468

%SECONDS (Number of Seconds) 470

%SETATR 471

%SIZE 472

%SQRT (Square Root of Expression) 474

%STATUS 475

%STR 478

%SUBARR (Set/Get Portion of an

Array) 351, 480

%SUBDT (Subset of Date or Time) 483

%SUBST 484

%THIS (Return Class Instance for Native

Method) 486

%TIME (Convert to Time) 487

%TIMESTAMP (Convert to

Timestamp) 488

%TLOOKUPxx (Look Up a Table

Element) 489

%TRIM 490

%TRIML 492

%TRIMR 493

%UCS2 494

%UNS (Convert to Unsigned

Format) 495

%UNSH (Convert to Unsigned Format

with Half Adjust) 495

%XFOOT 497

%XLATE (Translate) 498

%YEARS (Number of Years) 499

A
abnormal termination 34

ACQ, unsupported for VARPG 745

ACTGRP keyword, unsupported for

VARPG 741

action subroutines
BEGACT (Begin Action

Subroutine) 508

ADD operation code 348, 501

ADDDUR operation code 359, 502

adding date-time durations 359

© Copyright IBM Corp. 1994, 2005 765

adding factors
ADD (ADD) 501

ADDDUR (Add Duration) 502

adding records 240, 324, 333

ALIGN 265

ALIGN keyword
aligning subfields 160

alignment
unsigned fields 128

alignment, float fields 125

alignment, integer fields 126

ALLOC (allocate storage) operation

code 367

ALLOC operation code 505

allocating storage 408, 505

allocation built-in functions
%ALLOC (Allocate Storage) 408

%REALLOC (Reallocate Storage) 464

ALT 265

alternate collating sequence 741

ALTSEQ 743

ALTSEQ keyword, unsupported for

VARPG 741

ALTSEQ word, unsupported for

VisualAge RPG 738

ALWNULL 224

ampersand
in body of edit word 203

AN 312

AND 323

AND relationship
input specifications 303

AND/OR
input specifications 303

ANDxx operation code 357, 376, 506

arithmetic built-in functions
%SQRT (Square Root of

Expression) 474

arithmetic operations
See also calculation

ADD (Add) 348

ADD (ADD) 501

alignment 348

DIV (Divide) 348, 553

general information 348

half-adjusting 348

MULT (Multiply) 348, 635

MVR (Move Remainder) 348, 636

SQRT (Square Root) 348, 688

SUB (Subtract) 348, 692

truncation 348

XFOOT (Summing the Elements of an

Array) 348, 719

Z-ADD (zero and add) 348, 722

Z-SUB (zero and subtract) 723

Z-SUB (Zero and Subtract) 348

arithmetic operations, performance

considerations 349

array
ASCII collating sequence 177

calculation specifications 183

coding compile-time arrays 174

coding pre-runtime arrays 176

coding runtime arrays 172

comparing ILE RPG arrays to

VARPG 740

comparing to tables 171

array (continued)
consecutive records 173

defining related arrays 178

definition specification 172

dynamically-allocated arrays 185

editing 185

end position 329

file designation 240

formatting for output 327

general description 171

getting the number of elements 437

index 172

initializing compile-time arrays 178

initializing pre-runtime arrays 178

initializing runtime arrays 178

loading compile-time arrays 174

loading pre-runtime arrays 177

loading runtime arrays 172

lookup 455

names 172

output 184

run-time
Using dynamically-sized

arrays 185

runtime array 172

scattered elements 173

searching with an index 181

searching without an index 180

sequence checking 177

sequencing runtime arrays 174

SORTA (Sort an Array) 686

sorting 184

source records 174

SQRT (Square Root) 688

summing array elements using

XFOOT 719

Using dynamically-sized arrays 185

Using partial arrays 480

XFOOT (Summing the Elements of an

Array) 719

array operations
%SUBARR (Set/Get Portion of an

Array) 351, 480

general information 351

LOOKUP (Look Up a Table or Array

Element) 599

LOOKUP (Lookup a Table or Array

Element) 351

MOVEA (Move Array) 351, 619

SORTA (Sort an Array) 351

XFOOT (Summing the Elements of an

Array) 351, 719

arrays 327

ASCEND 265, 743

ascending sequence 265

ASCII 732

using arrays 740

using tables 740

ASCII to EBCDIC conversions 91

Assignment 384

Assignment operators 384

EVALR (Evaluate, right adjust) 573

Move operations 368

Z-ADD (zero and add) 722

Z-ADD (zero and subtract) 723

attributes
%GETATR 446

attributes (continued)
%SETATR 471

retrieving attributes 446

setting attributes 471

automatic storage 258

B
BASED 266

basing pointer data type 738

basing pointers 105

alignment of subfields 160

batch, unsupported for VARPG 738

BEGACT 746

BEGACT operation code 378, 508

begin action subroutine (BEGACT) 508

begin user subroutine (BEGSR) 511

begin/end entry in procedure

specification 337

BEGSR operation code 378, 511

bibliography 763

binary data type 92, 738

binary format 122, 305

input field 305

bit operations
%BITAND 409

%BITNOT 410

%BITOR 411

%BITXOR 412

BITOFF (Set Bits Off) 352, 512

BITON (Set Bits On) 352, 513

general information 352

TESTB (Test Bit) 352, 703

bit testing 352, 703

BITOFF operation code 352, 512

BITON operation code 352, 513

blanks, removing from a string 284

BLOCK keyword 244

BNDDIR keyword, unsupported for

VARPG 741

branching operations
CABxx (compare and branch) 515

CABxx (Compare and Branch) 352

ENDSR (End of User

Subroutine) 569

GOTO (go to) 585

GOTO (Go To) 352

ITER (Iterate) 352, 591

LEAVE (Leave a Structured

Group) 352, 596

TAG (Tag) 352, 699

built-in functions
%ABS 405

%ADDR 406

%CHAR 416

%DECPOS 427

%DIV 431

%EDITC 432

%EDITW 436

%ELEM 437

%EOF 438

%EQUAL 440

%ERROR 441

%FIELDS (Fields to update) 442

%FOUND 444

%GETATR 446

%GRAPH 447

766 VisualAge RPG Language Reference

built-in functions (continued)
%KDS (Search Arguments in Data

Structure) 451

%LEN 452

%OPEN 462

%PADDR 463

%REPLACE 465, 466

%SCAN 468

%SETATR 471

%SIZE 472

%STATUS 475

%STR 478

%SUBARR(Set/Get Portion of an

Array) 480

%SUBST 484

%TRIM 490

%TRIML 492

%TRIMR 493

%UCS2 494

%XFOOT 497

allocation
%ALLOC (Allocate Storage) 408

%REALLOC (Reallocate

Storage) 464

arithmetic
%SQRT (Square Root of

Expression) 474

data conversion
%DATE (Convert to Date) 422

%DEC (Convert to Packed Decimal

Format) 424

%DECH (Convert to Packed

Decimal Format with Half

Adjust) 426

%FLOAT (Convert to Floating

Format) 443

%INT (Convert to Integer

Format) 449

%INTH (Convert to Integer Format

with Half Adjust) 449

%TIME (Convert to Time) 487

%TIMESTAMP (Convert to

Timestamp) 488

%UNS (Convert to Unsigned

Format) 495

%UNSH (Convert to Unsigned

Format with Half Adjust) 495

%XLATE (Translate) 498

data information
%OCCUR (Set/Get Occurrence of

a Data Structure) 461

date and time
%DAYS (Number of Days) 423

%DEC (Date, time or

timestamp) 424

%DIFF (Difference Between Two

Date or Time Values) 428

%HOURS (Number of

Hours) 448

%MINUTES (Number of

Minutes) 457

%MONTHS (Number of

Months) 458

%MSECONDS (Number of

Microseconds) 459

%SECONDS (Number of

Seconds) 470

built-in functions (continued)
date and time (continued)

%SUBDT (Subset of Date or

Time) 483

%YEARS (Number of Years) 499

EDITFLT 435

feedback
%LOOKUPxx (Look Up an Array

Element) 455

%TLOOKUPxx (Look Up a Table

Element) 489

string
%CHECK (Check Characters) 418

%CHECKR (Check Reverse) 420

C
CABxx operation code 352, 357, 515

CACHE 225

CACHEREFRESH 225

calculating a duration 693

calculating date durations 359

calculation
operation codes

summary of 341

specifications
summary of operation codes 341

calculation specifications
AND/OR 312

continuation line 311

continuation rules 219

control level 312

decimal positions 316

extended factor-2 311

factor 1 312

factor 2 314

field length 314

form type 312

free-form 219, 318

general description 311

general information 212

indicators 312

operation and extender 313

operation extender 313

result field 314

resulting indicators 316

SR 312

calculation-time output (EXCEPT) 575

CALL operation code 353, 517

call operations
CALL (Call a Program) 353, 517

CALLB (Call a Bound DLL) 521

CALLB (Call a Function) 353

CALLP (Call a Prototyped Procedure

or Program) 522

general description 353

PARM (Identify parameters) 647

PARM (Identify Parameters) 353

PLIST (identify a parameter list) 650

PLIST (Identify a Parameter List) 353

RETURN (Return to Caller) 353, 671

START (start a component) 689

START (Start Component) 353

CALLB operation code 353, 521

CALLP operation code 353, 522

CASxx operation code 357, 378, 524

CAT operation code 375, 526

CCSID 91, 225, 267

CCSID values, supported 735

century format 121

CHAIN operation code 363, 529

character data 91

character data type 92, 110

character set
literals 149

valid characters 3

CHECK operation code 375, 533

CHECKR operation code 375, 536

CLASS 267

class instance, native method 486

CLASS keyword, definition

specification 267

CLEAR operation code 207, 366, 539

CLOSE operation code 363, 542

CLSWIN 746

CLSWIN operation code 378, 543

CLTPGM 268

coding user subroutines 577

collating sequence 729, 732

combined file 239

comments
* in common entries 213

COMMIT keyword 245

COMMIT operation code 363, 544

common entries to all specifications 213

COMP (compare) operation code 545

COMP operation code 357

compare and branch (CABxx) 515

compare bits
TESTB (Test Bit) 703

compare operation codes 357

COMP (Compare) 545

compare operations
ANDxx (And) 357, 506

CABxx (compare and branch) 515

CABxx (Compare and Branch) 357

CASxx (Conditionally Invoke

Subroutine) 524

CASxx (Conditionally Invoke User

Subroutine) 357

COMP (Compare) 357

DOU (do until) 556

DOU (Do Until) 357

DOUxx (Do Until) 357, 557

DOW (do While) 559

DOW (Do While) 357

DOWxx (Do While) 357, 560

general information 357

IF (If) 357, 586

IFxx ((f/Then) 357

IFxx (if/then) 587

ORxx (Or) 357, 644

WHEN (When True Then Select) 357

WHEN (When) 713

WHENxx (When True Then

Select) 357, 714

comparing factors 545

compiler directives
/COPY 11, 738

/EJECT 17

/FREE... /END-FREE 11

/INCLUDE 11

/SPACE 17

/TITLE 17

Index 767

compiler directives (continued)
comparing ILE RPG compiler

directives to VARPG 738

compiler listing 11

compiler listing headings 17

compiler listing spacing 17

components
*INZSR 31

*TERMSR 32

abnormal termination 34

initializing 31

normal termination 32

starting and stopping 31

terminating 32

composite key operation codes
KLIST (define a composite key) 594

composite keys 594

concatenate two strings (CAT) 526

conditional expressions 14

conditional-compilation directive
/ELSE 15

/ELSEIF condition-expression 14

/ENDIF 16

/EOF 16

/IF condition-expression 14

/UNDEFINE 13

predefined conditions 14

conditionally invoke subroutine

(CASxx) 524

conditioning indicators
conditioning calculations 23

conditioning output 324

using indicators 25

consecutive processing 253

CONST 268

constants
general description 149

named 152

named constant rules 152

rules for use on output

specification 331

continuation line
calculation specification 311

calculation specification

keywords 219

control specification keywords 217

definition specification 259

definition specification keywords 218

extended-factor 2 318

file description 237

file description specification

keywords 217

output specification keywords 220

rules 215

control level
calculation specification 312

control level indicators 737

control specification keywords
DECPREC 228

control specifications
ALWNULL 224

CACHE 225

CACHEREFRESH 225

CCSID 225

continuation rules 217

COPYNEST 226

COPYRIGHT 226

control specifications (continued)
CURSYM 226

CVTOEM 226

CVTOPT 226

DATEDIT 227

DATFMT 227

DEBUG 227

DECEDIT 228

EXE 228

EXPROPTS 229

EXTBININT 229

FLTDIV 229

form type 223

general information 211

generating programs 223

GENLVL 229

INDENT 230

INTPREC 230

LIBLIST 230

NOMAIN 230

OPTION 232

running programs 223

SIGNON 233

SQLBINDFILE 233

SQLDBBLOCKING 233

SQLDBNAME 234

SQLDTFMT 234

SQLISOLATIONLVL 234

SQLPACKAGENAME 235

SQLPASSWORD 235

SQLUSERID 235

TIMFMT 235

TRUNCNBR 236

controlling input and output 212

conversion operations
general information 358

convert to character data, built-in 416

converting a character to a date

field 373

COPYNEST 226

COPYRIGHT 226

CTDATA 269

currency symbol 226, 227

in body of edit word 201

use in edit word 201

CURSYM 192, 226

CVTHEX keyword 245

CVTOEM 226

CVTOPT 226

D
data area data structure

DTAAREA DEFINE 162

DTAAREA keyword 162

using IN 162

using OUT 162

using UNLOCK 162

data area operation codes 358

DEFINE (Field Definition) 548

UNLOCK (Unlock a Data Area) 709

data area operations
general information 358

IN (Retrieve a Data Area) 358, 589

OUT (Write a Data Area) 358, 646

UNLOCK (Unlock a Data Area) 358

data areas 740

data areas (continued)
DEFINE (Field Definition) 548

general description 157

retrieval
implicit 162

unlocking
implicit 162

writing
implicit 162

data conversion built-in functions
%DATE (Convert to Date) 422

%DEC (Convert to Packed Decimal

Format) 424

%DECH (Convert to Packed Decimal

Format with Half Adjust) 426

%FLOAT (Convert to Floating

Format) 443

%INT (Convert to Integer

Format) 449

%INTH (Convert to Integer Format

with Half Adjust) 449

%TIME (Convert to Time) 487

%TIMESTAMP (Convert to

Timestamp) 488

%UNS (Convert to Unsigned

Format) 495

%UNSH (Convert to Unsigned Format

with Half Adjust) 495

%XLATE (Translate) 498

data conversions 91

data formats 103

internal 103

specifying external character

format 105

specifying external date or time

format 105

specifying external numeric

format 104

data information built-in functions
%OCCUR (Set/Get Occurrence of a

Data Structure) 461

data initialization 207

data structures
alignment of 160

array data structure 158

data area 157, 162

defining 159

DTAARA keyword 162

DTAAREA DEFINE 162

file information 157, 162

general description 157

INFDS 162

LIKEDS keyword 279

nested 161

overlaying storage 160

program-status 157, 162

qualified name 293

qualifyied name 158

rules 162

special 162

using for I/O 363

using IN 162

using OUT 162

using UNLOCK 162

data structures as host variables for

SQL 81

768 VisualAge RPG Language Reference

data subfile
alignment of 160

defining 159

overlaying storage 160

data type
supported in expressions 386

data types, comparing ILE RPG to

VARPG 738

database file overrides 91

date data 119

date data format
converting to 422

date data type 92

date literal 150

date literals 227

date operations
ADDDUR (Add Duration) 502

EXTRCT (Extract

Date/Time/Timestamp) 579

general information 359

SUBDUR (Subtract Duration) 693

date operations, unexpected results 361

date special words 8

date-time built-in functions
%DAYS (Number of Days) 423

%DEC(Date, time or timestamp) 424

%DIFF (Difference Between Two Date

or Time Values) 428

%HOURS (Number of Hours) 448

%MINUTES (Number of

Minutes) 457

%MONTHS (Number of

Months) 458

%MSECONDS (Number of

Microseconds) 459

%SECONDS (Number of

Seconds) 470

%SUBDT (Subset of Date or

Time) 483

%YEARS (Number of Years) 499

DATEDIT 227

DATFMT 227, 269

DATFMT keyword 245

DEALLOC (free storage) operation

code 367

DEALLOC operation code 546

DEBUG 227

DEBUG keyword, unsupported for

VARPG 741

DECEDIT 192, 228

decimal positions
arithmetic operation codes 348

declarative operations
DEFINE (field definition) 548

DEFINE (Field Definition) 362

general information 362

KFLD (define parts of a key) 593

KFLD (Define Parts of a Key) 362,

593

KLIST (Define a Composite

Key) 362, 594

PARM (Identify parameters) 647

PARM (Identify Parameters) 362

PLIST (Identify a Parameter List) 362

PLIST (Identify a Parameter

List)) 650

TAG (Tag) 362, 699

DECPREC keyword 228

default precision rule 391

default values 207

define a composite key (KLIST) operation

code 594

DEFINE operation code 362, 548

define parts of a key 593

define parts of a key (KFLD) operation

code 593

defining a field as a data area 548

defining a field based on attributes 548

defining a file 212

defining data 212

defining indicators 19

defining input 212

defining output 212

defining using LIKE keyword
subfields 159

definition specification keywords
EXTPGM 273

LIKEDS 279

LIKEREC 280

QUALIFIED 158, 293

definition specifications 255

ALIGN 265

ALT 265

ASCEND 265

BASED 266

CCSID 267

CLASS 267

CLTPGM 268

CONST 268

continuation rules 218

CTDATA 269

DATFMT 269

decimal positions 264

DESCEND 269

DIM 269

DLL 270

DTAARA 270

external description 260

EXTFLD 271

EXTFMT 271

EXTNAME 272

EXTPROC 273

form type 259

from position 262

FROMFILE 276

general description 255

general information 212

internal data type 263

INZ 276

keywords 264

LIKE 277

LINKAGE 281

MSGDATA 281

MSGNBR 281

MSGTEXT 282

MSGTITLE 282

name 260

NOOPT 282

NOWAIT 282

OCCURS 282

OPTIONS 283

OVERLAY 291

PACKEVEN 293

PERRCD 293

definition specifications (continued)
position 43 (reserved) 264

PREFIX 293

PROCPTR 293

STATIC 294

STYLE 294

TIMFMT 294

to position/length 262

TOFILE 295

type of data structure 260

type of definition 261

VALUE 295

VARYING 295

DELETE operation code 363, 551

deleting records 324

DESCEND 269, 743

describing arrays 212

describing tables 212

device specific feedback information
blocking 47

example 46

general description 46

DEVID keyword, unsupported for

VARPG 742

DEVMODE keyword 246

DFTACTGRP keyword, unsupported for

VARPG 741

DFTNAME keyword, unsupported for

VARPG 741

DIM 269

DIM keyword 158

disk file
COMMIT keyword 93

commitment control 93

data conversions 91

exception records 323

file description specifications 242

floating point 94

general description 89

level checking 93

lock states 94

locking files 94

locking records 94

program described 322

sharing the open data path 90

specifying logical relationship 323

specifying output file name 322

DISK files 237

display message window 562

DIV operation code 348, 553

dividing factors 553

DLL 270

DO operation code 376, 554

DOU operation code 357, 376, 556

DOUxx operation code 357, 376, 557

DOW operation code 357, 376, 559

DOWxx operation code 357, 376, 560

DSPLY 746

DSPLY operation code 368, 378, 562

DTAARA 270, 743

DUMP, unsupported for VARPG 745

dynamic array
%SUBARR (Set/Get Portion of an

Array) 480

Using dynamically-sized arrays 185

Index 769

E
EBCDIC 729

edit codes 740

edit words 197

editc example 433

editing decimal numbers 228

editing externally described files 205

editing numeric fields 191

editing output 328

EDITW
example 436

ejecting pages 17

else if (ELSEIF) operation code 565

ELSE operation code 376, 564

ELSEIF (else if) operation code 565

ELSEIF operation code 376

ENBPFRCOL keyword, unsupported for

VARPG 741

end a group (ENDyy) operation

code 566

end position 329

in output record 329

end-zero-suppression character
in body of edit word 201

ENDACT 55, 746

ENDACT operation code 378, 568

ENDMON (end a monitor group)

operation code 362, 566

ENDSR operation code 378, 569

ENDyy (end a group) operation

code 566

ENDyy operation code 376

EOFMARK keyword 246

EQUATE word, unsupported for

VARPG 738

error handling
device-specific feedback

information 46

during an event 59

file exception/error subroutine 47, 59

file exceptions 41

file feedback information 42

input/output feedback

information 45

open feedback information 44

program errors 51

error handling subroutine
ENDACT operation code 59

ENDSR operation code 59

RETURN operation code 59

STOP operation code 59

error handling, SQL 85

EVAL (Evaluate) 571

EVAL operation code 376

EVALR (Evaluate, right adjust) 573

evaluation, order of 396

EXCEPT name 324, 333

EXCEPT operation code 363, 575

exception handling
device-specific feedback

information 46

during an event 59

file exception/error subroutine 47, 59

file feedback information 42

input/output feedback

information 45

open feedback information 44

exception handling (continued)
program exceptions 51

Windows 61

exception records 323

exception-handling operations
ENDMON (end a monitor group)

operation code 362, 566

MONITOR (begin a monitor

group) 362, 602

ON-ERROR (on-error) 362, 641

EXE 228

EXE module 70

EXFMT, unsupported for VARPG 745

EXPORT keyword
procedure specification 338

EXPORT, unsupported for VARPG 743

exporting a procedure 338

exporting a program 338

expression operands 383

expression rules 382

expressions
data type of operands 386

intermediate results 390

operands 383

operators 383

precedence rules 385

expressions using operation codes
EVAL (Evaluate) 571

EVALR (Evaluate, right adjust) 573

expressions, order of evaluation 397

EXPROPTS 229

EXSR operation code 378, 577

EXTBININT 229

external procedure name 273

external program name 273

external representation, float field 125

externally described file
definition 104

editing 205

EXCEPT name 333

external field name 308

field indicators 309

field name 333

file format 241

form type 307

key values 242

output indicators 333

output specifications for 332

positions 17-20 308

positions 23-80 308

positions 31-48 308

positions 63-64 309

positions 65-66 309

positions 67-68 309

positions 7-20 308

positions 75-80 309

record addition 333

record identifying indicator 308

record length 241

record name 307

resetting fields 334

type 332

EXTFILE keyword 246

EXTFLD 271

EXTFMT 271

EXTIND keyword, unsupported for

VARPG 742

EXTMBR keyword 247

EXTNAME 272

EXTPGM keyword 273

EXTPGM, unsupported for VARPG 743

EXTPROC keyword 273

EXTRCT (Extract

Date/Time/Timestamp) 579

EXTRCT operation code 359

F
factor 1

arithmetic operation codes 348

factor 2
arithmetic operation codes 348

feedback built-in functions
%LOOKUPxx (Look Up an Array

Element) 455

%TLOOKUPxx (Look Up a Table

Element) 489

FEOD operation code 363, 580

field identifying indicators 737

field indicators 737

assigning on input specifications 20

input specifications 306

rules for assigning 21

field length
absolute (positional) notation 160

arithmetic operation codes 348

length notation 160

field location entry (input

specifications) 305

for program described file 305

field record relation indicators
general description 22

rules for 23

fields, null-capable 137

figurative constants 740

*ABORT 740

*ALL’x..’ ., *ALLX’x1..’ 153

*BLACK 740

*BLANK/*BLANKS 153

*BLUE 740

*BROWN 740

*CANCEL 740

*CYAN 740

*DARKBLUE 740

*DARKCYAN 740

*DARKGRAY 740

*DARKGREEN 740

*DARKPINK 740

*DARKRED 740

*END 740

*ENTER 740

*GREEN 740

*HALT 740

*HIVAL/*LOVAL 153

*IGNORE 740

*INFO 740

*NOBUTTON 740

*ON/*OFF 153

*PALEGRAY 740

*PINK 740

*RED 740

*RETRY 740

*START 740

*WARN 740

770 VisualAge RPG Language Reference

figurative constants (continued)
*WHITE 740

*YELLOW 740

*YESBUTTON 740

*ZERO/*ZEROS 153

rules 154

file
array 240

combined 239

designation 240

DISK file 242

format 241

full procedural 240

input 239

lock states 94

locking OS/400 files 94

output 239

PRINTER file 242

SPECIAL file 242

table 240

file conditioning indicators 737

file description specifications
continuation rules 217

device 242

DISK file 242

file addition 240

file description 238

file designation 240

file format 241

file name 238

file type 239

form type 238

general description 237

general information 212

position 19 (reserved) 240

position 21 (Reserved) 241

position 28 (Reserved) 242

position 35 (reserved) 242

position 43 (reserved) 243

positions 29-33 (Reserved) 242

PRINTER file 242

record address type 242

record length 241

SPECIAL file 242

file exception/error subroutine 47, 59

file feedback information
*FILE 42

*OPCODE 42

*RECORD 42

*ROUTINE 42

*STATUS 42

example 44

general description 42

keywords 42

using DELETE 43

using EXCEPT 43

using READPE 43

using UNLOCK 43

using UPDATE 43

file information data structure
device-specific feedback 41

device-specific feedback

information 46

file feedback 41

file feedback information 42

general description 41

INFDS 162

file information data structure (continued)
input/output feedback 41

input/output feedback

information 45

open feedback 41

open feedback information 44

subfields
specifications 162

file operations
CHAIN (Random Retrieval from a

File) 363, 529

CLOSE (Close Files) 363

CLOSE (close files) operation

code 542

COMMIT (Commit) 363, 544

DELETE (Delete Record) 363, 551

DELETE (delete record) operation

code 551

EXCEPT (Calculation Time

Output) 363, 575

FEOD (Force End of Data) 363, 580

general description 363

OPEN (Open File for Processing) 363

OPEN (Open File For

Processing) 642

POST (Post) 363, 652

READ (Read a Record) 363, 653

READC (Read Next Modified

Record) 363, 656

READE (Read Equal Key) 363, 658

READP (Read Prior Record) 363, 661

READPE (Read Prior Equal) 363, 663

READS (Read Selected) 363, 666

ROLBK (Roll Back) 363, 672

ROLBK (roll back) operation

code 672

SETGT (Set Greater Than) 363, 679

SETLL (Set Lower Limits) 363

SETLL (set lower limits) operation

code 681

UNLOCK (Unlock a Data Area) 363,

709

UPDATE (Modify Existing

Record) 363, 711

WRITE (Create New Records) 363,

717

file overrides, database 91

file positioning 6

file status codes 49

FILE word, unsupported for

VARPG 738

FIXNBR keyword, unsupported for

VARPG 741

float data type 92

float fields 124

float format
converting to 443

floating point representation 390

FLTDIV 229

FOR operation code 376, 581

force end of data (FEOD) 580

FORCE, unsupported for VARPG 745

form type
calculation specifications 312

control specification 223

externally described file 307

input specifications 303

form type (continued)
output specifications 322

program described file 300

specifying on output

specifications 322

formatting edit words 203

formatting fields 327

formatting fields for output 326, 327

FORMLEN keyword 248

FORMOFL keyword, unsupported for

VARPG 742

FORMSALIGN keyword, unsupported

for VARPG 741

free-form syntax 318

freeing storage 546

FROMFILE 276

FTRANS keyword, unsupported for

VARPG 741

full procedural file
description of 240

file designation 240

search argument keys 365

G
general indicators 324

generating a program 211

generating programs 223

GENLVL 229

get address of a variable 405

get occurrence of data structure 637

GETATR 746

GETATR operation code 378, 584

getting attributes 584

getting procedure address 463

getting the address of a variable 406

getting the number of elements in an

array 437

getting the number of elements in an

table 437

getting the size of a constant or

field 472

global variables 66, 256

glossary 751

GOTO operation code 352, 585

graphic data type 91, 112

graphic literals 152, 740

GUI operations
BEGACT (Begin Action

Subroutine) 508

CLSWIN (Close Window) 543

ENDACT (End of Action

Subroutine) 568

general information 378

GETATR (Retrieve Attribute) 584

SETATR (Set Attribute) 678

SHOWWIN (display window) 685

STOP (stop component) 691

H
hex data type 92

hexadecimal literal
general description 149

host structures for SQL 82

host variables using SQL 79, 80

Index 771

I
IF operation code 357, 376, 586

if/then (IF) operation code 587

IFxx (if/then) operation code 587

IFxx operation code 357, 376

IGNORE keyword 248

implied literals 153

IMPORT, unsupported for VARPG 743

IN (retrieve a data area) operation

code 358

IN operation code 589

INCLUDE keyword 248

including fields 333

INDDS keyword, unsupported for

VARPG 742

INDENT 230

index files 742

indicator variables for SQL 82

indicator-setting operations
general information 366

SETOFF (Set Off) 366, 684

SETON (Set On) 366, 684

indicators 19

*IN, *INxx, *IN(xx) 328

control level 737

field 737

field identifying 737

file conditioning 737

for printer files 326

on the output specifications 323, 324

output indicators 333

overflow 737

record identifying 737

recordidentifying 737

relationship on the output

specifications 323

resulting 737

RPG cycle 737

indicators, output 323

INFDS keyword 248

information operations
general information 366

TIME (time of day) 707

TIME (Time of Day) 366

INFSR 47, 59

INFSR keyword 248

initial values 207

inside subprocedures 67

initialization operations 366

CLEAR (clear) 539

CLEAR operation code 366

general information 366

RESET (reset) 668

RESET operation code 366

initialization subroutine (*INZSR)
and subprocedures 67

for data 207

processing calculations 207

with RESET operation code 668

initializing components 31

initializing data 207

input
file 239

input from a file into a data

structure 363

input field
location 305

input specifications
character 302

code part 302

data format 304

date/time external format) 303

date/time separator 304

decimal positions 305

digit 302

field indicator 20

field indicators 306

field location 305

field name 306

field record relation 306

field record relation indicator 22

file name 300

general description 299

general information 212

indicators 301

logical relationship 300

not 302

number 301

option 301

position 302

positions 17-20 308

positions 23-80 308

positions 31-48 308

positions 63-64 306

positions 65-66 306

positions 67-68 309

positions 7-20 308

positions 75-80 309

record identification codes 301

record identifying indicator 19, 308

record name 307

sequence 301

input specifications for externally

described file
external field name 308

field indicators 309

positions 17-20 308

positions 23-80 308

positions 31-48 308

positions 63-64 309

positions 65-66 309

positions 67-68 309

positions 7-20 308

positions 75-80 309

record identifying indicator 308

record name 307

input specifications for program

described file
character 302

code part 302

data format 304

date/time external format) 303

date/time separator 304

decimal positions 305

digit 302

field indicators 306

field location 305

field name 306

field record relation 306

file name 300

indicators 301

logical relationship 300

not 302

number 301

input specifications for program

described file (continued)
option 301

position 302

positions 63-64 306

positions 65-66 306

record identification codes 301

record identifying indicator 301

sequence 301

input, null-capable fields 139

input/output feedback information
blocking 47

example 45

general description 45

inserting records during a

compilation 11

integer arithmetic 349

integer format 126

alignment of fields 160

converting to 449

intermediate results and precision 392

intermediate results in expressions 390

internal data format
default formats 103

definition 103

INTPREC 230

invoke user subroutine (EXSR) 577

INZ 276

ITER operation code 352, 376, 591

J
Java

%THIS 486

CLASS keyword 267

EXTPROC keyword 273

Object data type 133

K
key 242

for record address type 242

keyed, null-capable fields 141

KEYLOC keyword, unsupported for

VARPG 742

keywords, file description

specification 243

keywords, VARPG unsupported
control sepcifications 741

definition sepcifications 743

file description sepcifications 742

KFLD (define parts of a key) operation

code 593

KFLD operation code 362, 593

KLIST (define a composite key) operation

code 594

KLIST operation code 362, 594

L
LANGID keyword, unsupported for

VARPG 741

last record 324

last record (LR) indicator
as record identifying indicator 301

as resulting indicator 21

772 VisualAge RPG Language Reference

last record (LR) indicator (continued)
during event errors 59

general description 22

leading blanks, removing 284

LEAVE operation code 352, 376, 596

LEAVESR (leave subroutine) operation

code 598

length notation 160

LIBLIST 230

LIKE 277

LIKE keyword 159

LIKEDS keyword 279

LIKEREC keyword 280

LINKAGE 281

literals
character 149

date 150

general description 149

graphic 152

hexadecimal 149

numeric 150

time 151

timestamp 151

UCS-2 152

local variable
scope 66, 256

LOOKUP operation code 351, 599

LR 324

M
main procedure

and procedure interface 75

MAXDEV keyword, unsupported for

VARPG 742

message operations
DSPLY (Display Message

Window) 368, 562

general information 368

MHHZO operation code, unsupported

for VARPG 740

MHHZO, unsupported for VARPG 745

MHLZO operation code, unsupported for

VARPG 740

MHLZO, unsupported for VARPG 745

MLHZO, unsupported for VARPG 745

MLLZO operation code, unsupported for

VARPG 740

MLLZO, unsupported for VARPG 745

modify an existing record 711

module
EXE 70

NOMAIN 69

MONITOR (begin a monitor group)

operation code 362, 602

MOVE operation code 368, 604

move operations 368

general information 368

MOVE 368, 604

MOVEA (Move Array) 368

MOVEL (move left) 626

MOVEL (Move Left) 368

MOVEA operation code 351, 368, 619

MOVEL operation code 368, 626

moving character, graphic, and numeric

data 369

moving the remainder 636

moving the remainder (continued)
MVR (Move Remainder) 636

MSGDATA 281

MSGNBR 281

MSGTEXT 282

MSGTITLE 282

MULT operation code 348, 635

multiplying factors 635

MULT (Multiply) 635

MVR operation code 348, 636

N
name(s)

rules for 3

symbolic 3

named constants 152

rules 152

native method 486

nesting /COPY or /INCLUDE

directives 12

NEXT, unsupported for VARPG 745

NOMAIN 230

nonkeyed processing 242

NOOPT 282

NOWAIT 282

null value support 137

keyed operations 141

user controlled 138

null-capable fields, input 139

null-capable fields, output 139

null-capable support
input-only 144

no option 144

numeric fields
editing 191

format 103

numeric format considerations 129

numeric literals
considerations for use 150

O
object data type

class 267

description 133

OCCUR operation code 637

OCCURS 282

OFLIND keyword, unsupported for

VARPG 742

ON-ERROR (on error) operation

code 362, 641

OPDESC, unsupported for VARPG 743

open feedback information
example 45

general description 44

OPEN operation code 363, 642

OPENOPT keyword, unsupported for

VARPG 741

operands 383

operation extender 313

operators 383

OPNQRYF 90

OPTIMIZE keyword, unsupported for

VARPG 741

OPTION 232

OPTIONS keyword 283

OR 312, 323

OR lines identifier
on input specifications 303

order of evaluation of operands 396

ORxx operation code 357, 376, 644

OTHER operation code 376, 645

OUT (write a data area) operation

code 358

OUT operation code 646

output
conditioning indicators 25

file 239

output from a data structure to a

file 363

output indicators 323, 333

output specifications
*IN, *INxx, *IN(xx) 328

*PLACE 327

blank after 328

constant 331

control entries 322

data format 330

date/time 331

edit codes 328

edit word 331

end position 329

EXCEPT name 324

exception records 323

externally described files 332

field name 326

file name 322

form type 322

formatting arrays 327

formatting fields 327

formatting tables 327

general information 212

output indicators 326

page numbering 327

record addition 333

record addition/deletion 324

record identification 322

record identifying indicator 324

record name 332

skip before 326

space after 326

space and skip 325

space before 326

type 323

user date reserved words 327

output, null-capable fields 139

overflow indicators 737

OVERLAY 291

OVERLAY keyword 160

overlaying storage in data

structures 160

overrides, overrides 91

P
packed decimal format 738

converting to 424

packed decimal type 92

PACKEVEN 293

PAGE 7, 326, 327

page numbering 327

page special words 7

Index 773

PAGE1 - PAGE7 326

PAGE1-PAGE7 7, 327

PARM operation code 353, 362, 647

partial arrays 480

%SUBARR (Set/Get Portion of an

Array) 480

PASS keyword, unsupported for

VARPG 742

PERRCD 293

PGMNAME keyword, unsupported for

VARPG 742

PLIST keyword 248

PLIST operation code 353, 362, 650

POST operation code 363, 652

precedence of operators in

expressions 383, 385

precision rules 390

predefined conditions 14

PREFIX 293

PREFIX keyword 249

PRFDTA keyword, unsupported for

VARPG 741

primary components 31

primary file processing 742

printer file
exception records 323

file description specifications 242

output indicators 326

program described 322

restrictions 96

rules 96

space and skip 325

specifying logical relationship 323

specifying output file name 322

PRINTER files 237

procedure
procedure specification 335

procedure interface definition
and main procedure 75

defining 65, 75, 335

procedure pointer 134

procedure pointer data type 738

procedure specification
begin/end entry 337

form type 337

general 335

keywords 337

name 337

procedure specification keyword
EXPORT 338

PROCNAME 743

PROCNAME keyword 250

PROCPTR 293

program described file
*IN, *INxx, *IN(xx) 328

*PLACE 327

blank after 328

character 302

code part 302

constant 331

data format 304

date-time data format 105

date/time 331

date/time external format) 303

date/time separator 304

decimal positions 305

digit 302

program described file (continued)
edit codes 328

edit word 331

end position 329

EXCEPT name 324

exception records 323

field indicators 306

field location 305

field name 306

field record relation 306

file format 241

file name 300

form type 300

indicators 301

length of logical record 241

logical relationship 300

not 302

number 301

numeric data format 104

option 301

output indicators 326

output specifications 322

page numbering 327

position 302

positions 63-64 306

positions 65-66 306

record addition/deletion 324

record identification 322

record identification codes 301

record identifying indicator 301

record length 241

resetting fields 334

sequence 301

space and skip 325

specifying on output

specifications 322

user date reserved words 327

program exception/error subroutine 57

program exception/error subroutine and

subprocedures
and subprocedures 67

program exception/errors 51

program status codes 54

program status data structure 51

general description 162

prototype
and main procedure 75

and subprocedures 63

defining 71

prototyped call
defining 71

prototyped parameters
defining 73

prototyped program or procedure
procedure specification 335

specifying external program

name 273

PRTCTL 325

PRTCTL keyword 250

PRTFMT keyword 251

publications, list of 763

Q
QUALIFIED keyword 158, 293

query file processing 90

R
RAFDATA keyword, unsupported for

VARPG 742

random-by-key processing 253

RCDLEN keyword 251

READ operation code 363, 653

READC operation code 363, 656

READE operation code 363, 658

READP operation code 363, 661

READPE operation code 363, 663

READS 746

READS operation code 363, 378, 666

REALLOC (reallocate storage with new

length) operation code 367

REALLOC operation code 666

reallocating storage 464, 666

RECNO keyword 251

record
adding 240

length 241

record address file processing 742

record address files 742

record I/O, sinlge/blocked 90

record identifying indicators 324, 737

for program described files 301

general description 19

on the output specifications 323, 324

record identifying indicator 324

with file operations 20

recordidentifying indicators 737

REL, unsupported for VARPG 745

relative-record-number processing 253

REMOTE keyword 252

REMOTE keyword, new for VisualAge

RPG 743

RENAME keyword 252

representation, numeric format 131

reserved words 153

*ABORT 153

*ALL’x..’ .*BLACK 153

*BLANK/*BLANKS 153

*BLUE 153

*BROWN 153

*CANCEL 153

*CYAN 153

*DARKBLUE 153

*DARKCYAN 153

*DARKGRAY 153

*DARKGREEN 153

*DARKPINK 153

*DARKRED 153

*ENTER 153

*GREEN 153

*HALT 153

*HIVAL/*LOVAL 153

*IGNORE 153

*IN 26

*INFO 153

*INxx 27

*NOBUTTON 153

*NOKEY 540

*NULL 153

*OK 153

*ON/*OFF 153

*PALEGRAY 153

*PINK 153

*RED 153

774 VisualAge RPG Language Reference

reserved words (continued)
*RETRY 153

*WARN 153

*WHITE 153

*YELLOW 153

*YESBUTTON 153

*ZERO/*ZEROS 153

built-in functions 5

date and time 5

externally described files 6

figurative constants 5

job date 6

parameter passing 6

RESET operation code 207, 366, 668

resetting output fields 328

restrictions 727

result decimal position rules 394

result operations
general information 375

resulting indicators 737

general description 21

rules for assigning 22

retrieving attributes 446, 584

retrieving data areas 589

RETURN 55

RETURN operation code 353, 671

return result
as resulting indicator 21

return value
defining 65

returning a string 484

ROLBK operation code 363, 672

RPG cycle, not supported for VisualAge

RPG 737

run-time array
%SUBARR (Set/Get Portion of an

Array) 480

Using dynamically-sized arrays 185

running programs 223

S
SAVEDS keyword, unsupported for

VARPG 742

SAVEIND keyword, unsupported for

VARPG 742

SCAN operation code 375, 673

scanning strings 673

scope
*PSSR subroutine 69

of definitions 66, 256

searching a table 599

searching an array 599

secondary components 31

secondary file processing 742

SELECT operation code 376, 676

sequential-by-key processing 253

set bits off (BITOFF) 512

set bits on (BITON) 513

set occurrence of data structure 637

SETATR 746

SETATR operation code 378, 678

SETGT operation code 363, 679

SETLL operation code 363, 681

SETOFF operation code 366, 684

SETON operation code 366, 684

setting attributes 471, 678

setting default values 207

setting field length 117

setting indicators 366

setting initial values 207

SFILE keyword, unsupported for

VARPG 742

SHOWWIN 746

SHOWWIN operation code 378, 685

SHTDN, unsupported for VARPG 745

SIGNON 233

simple edit codes 191

single/blocked record I/O 90

size operations
general information 375

skipping for a printer file 325

SLN keyword, unsupported for

VARPG 742

SORTA operation code 351, 686

sorting arrays 686

spacing for a printer file 325

special file
examples 96

exception records 323

file description specifications 242

general description 96

program described 322

specifying logical relationship 323

specifying output file name 322

using the Build notebook 96

SPECIAL files 237

special functions
See also reserved words

built-in functions 5

date and time 5

externally described files 6

figurative constants 5

job date 6

parameter passing 6

special words 8

specifications
calculation specifications 212

continuation rules 215

control 741

control specification 211

definition 743

definition specifications 212

file description 742

file description specification 212

general information 211, 212

input 744

input specifications 212

order 211

output specifications 212

types 211

specifying input 299

SQL
/ EXEC BEGIN DECLARE 85

/ EXEC SQL INCLUDE SQLCA 83

/ EXEC SQL WHENEVER 84

data structures as host variables 81

error handling 85

host structures 82

host variable declarations 79, 80

indicator variables 82

structures 82

syntax rules 77

SQLBINDFILE 233

SQLDBBLOCKING 233

SQLDBNAME 234

SQLDTFMT 234

SQLISOLATIONLVL 234

SQLPACKAGENAME 235

SQLPASSWORD 235

SQLUSERID 235

SQRT operation code 348, 688

SR 312

SRTSEQ keyword, unsupported for

VARPG 741

START 746

START operation code 31, 353, 378, 689

starting components 31

STATIC 294

STATIC keyword 258

static storage 258

status codes, component 58

status codes, file 49

status codes, program 54

STOP 55, 746

STOP operation code 31, 378, 691

stopping components 31

string
checking 418

string built-in functions
%CHECK (Check Characters) 418

%CHECKR (Check Reverse) 420

string operations 375

CAT (Concatenate Two Character

Strings) 375

CAT (Concatenate Two Strings) 526

CHECK (Check) 375, 533

CHECKR (check reverse) 536

CHECKR (Check Reverse) 375

general information 375

SCAN (Scan String) 375, 673

SUBST (Substring) 375, 696

XLATE (Translate) 375, 720

string, returning 484

string, returning with leading

blanks 492

string, returning with leading/trailing

blanks 490

string, returning with trailing

blanks 493

structured programming operations
ANDxx (And) 376, 506

CASxx (Conditionally Invoke

Subroutine) 524

DO (Do) 376, 554

DOU (do until) 556

DOU (Do Until) 376

DOUxx (Do Until) 376, 557

DOW (Do While) 376, 559

DOWxx (Do While) 376, 560

ELSE (else do) 564, 565

ELSE (Else Do) 376

ELSEIF (else if) 565

ELSEIF (Else If) 376

ENDyy (end a group) 566

ENDyy (End a Group) 376

EVAL (Evaluate) 376

FOR (for) 581

FOR (For) 376

general information 376

IF (If/then) 376

Index 775

structured programming operations

(continued)
IF (If) 586

IFxx (if/then) 587

IFxx (If/then) 376

ITER (Iterate) 376, 591

LEAVE (Leave a Structured

Group) 376, 596

ORxx (Or) 376, 644

OTHER (Otherwise Select) 376, 645

SELECT (Begin a Select Group) 376,

676

WHEN (When True Then Select) 376

WHEN (When) 713

WHENnxx (When True Then

Select) 714

WHENxx (When True Then

Select) 376

structures for SQL 82

STYLE 294

SUB operation code 348, 692

SUBDUR (subtract duration) operation

code
possible error situations 695

SUBDUR operation code 359, 693

subprocedures
calculations coding 67

comparison with subroutines 70

definition 64

exception/error handling 69

NOMAIN module 69

normal processing sequence 67

procedure interface 65, 75

procedure specification 335

return values 65

scope of parameters 66, 256

specifications for 212

subroutine operations
BEGACT (Begin Action

Subroutine) 508

BEGSR (Begin user Subroutine) 511

CASxx (Conditionally Invoke

Subroutine) 524

ENDACT (End of Action

Subroutine) 568

ENDSR (End of User

Subroutine) 569

EXSR (Invoke User Subroutine) 577

LEAVESR (leave subroutine) 598

START (start a component) 689

subroutines
BEGACT (Begin Action

Subroutine) 378

BEGSR (Beginning of

Subroutine) 378

CASxx (Conditionally Invoke

Subroutine) 378

comparison with subprocedures 70

ENDACT (End of Action

Subroutine) 378

ENDSR (End of Subroutine) 378

example 577

EXSR (Invoke Subroutine) 378

general information 378

LEAVESR (Leave a Subroutine) 378

maximum allowed per program 577

use within a subprocedure 64

SUBST operation code 375, 696

subtracting a duration 693

subtracting date-time durations 359

subtracting factors 692

summary tables
operation codes 341

summing array elements 719

symbolic names 3

syntax of keywords 213

T
table

See also array

comparing ILE RPG tables to

VARPG 740

comparing to arrays 171

differences between arrays and

tables 186

file 240

file designation 240

formatting for output 327

general description 171

getting the number of elements 437

lookup 489

lookup two tables 188

lookup with one table 187

tables 327

TAG operation code 352, 362, 699

terminating components 31, 32

termination
*TERMSR 32

abnormal 34

component 32

components 34

normal 32

TEST operation code 359, 378, 700

test operations 378

general information 378

TEST (Test

Date/Time/Timestamp) 378

TEST (Test Date/Time/Timestamp)

operation code 700

TESTB (Test Bit) 378, 703

TESTN (Test Numeric) 378, 705

TESTZ (Test Zone) 378, 706

TESTB operation code 352, 378, 703

testing bits 352, 703

TESTN operation code 378, 705

TESTZ operation code 378, 706

TEXT keyword, unsupported for

VARPG 741

THREAD keyword, unsupported for

VARPG 741

time and date built-in functions
%DAYS (Number of Days) 423

%DIFF (Difference Between Two Date

or Time Values) 428

%HOURS (Number of Hours) 448

%MINUTES (Number of

Minutes) 457

%MONTHS (Number of

Months) 458

%MSECONDS (Number of

Microseconds) 459

%SECONDS (Number of

Seconds) 470

time and date built-in functions

(continued)
%SUBDT (Subset of Date or

Time) 483

%YEARS (Number of Years) 499

time data field 135

general information 135

time data format
converting to 487

time data type 92

time literals 151, 235

time of day 707

TIME operation code 366, 707

timestamp data field 137

timestamp data format
converting to 488

timestamp data type 92

TIMFMT 235, 294

TIMFMT keyword 252

TOFILE 295

trailing blanks, removing 284

TRUNCNBR 236

U
UCS-2 format 112

UDATE 326, 327

UDAY 326, 327

UMONTH 326, 327

UNLOCK (unlock a data area) operation

code 358

unlock a data area or record 709

UNLOCK operation code 363, 709

unsigned arithmetic 349

unsigned format 128

unsigned integer format
converting to 495

update 239

file 239

update 239

update a file from a data

structure 363

UPDATE (modify existing record)

operation code
specify fields to update 442

update file 239

UPDATE operation code 363, 711

updating data area 646

user date special words 8

Using dynamically-sized arrays 185

USROPN keyword 252

USRPRF keyword, unsupported for

VARPG 741

UYEAR 326, 327

V
VALUE 295

variable
clearing 539

scope 66

variable length fields 93

variable-length fields 145

variable-length fields, using 117

VARPG operation codes 378

VARYING keyword 295

776 VisualAge RPG Language Reference

W
WHEN operation code 357, 376, 713

WHENxx operation code 357, 376, 714

WORKSTN files 742

WRITE (create new records) 717

WRITE operation code 363

writing records during calculation

time 575

X
XFOOT operation code 348, 351, 719

XLATE operation code 375, 720

Z
Z-ADD (zero and add) operation

code 722

Z-ADD operation code 348

Z-SUB (zero and subtract) operation

code 723

Z-SUB operation code 348

zoned numeric data type 92

zoned-decimal format 129, 739

Index 777

778 VisualAge RPG Language Reference

���

Printed in U.S.A.

SC09-2451-06

	Contents
	About This Book
	Prerequisite and Related Information
	The VisualAge RPG Library
	How to Send Your Comments
	Accessing Online Information
	Using Online Books
	Publications in PDF Format
	Using Online Help
	Using context-sensitive help
	Using language-sensitive help

	What's New in Version 6.0
	Part 1. Introduction to the VisualAge RPG Language
	Chapter 1. Symbolic Names and Reserved Words
	Symbolic Names
	Words with Special Functions and Reserved Words
	Built-in Function Special Words
	Date and Time Special Words
	Expressions
	File Positioning Special Words
	Implied Literals
	Indicator Reserved Words
	Job Date Reserved Words
	Page Numbering Reserved Words
	Parameter Passing Special Words
	Placement of Fields
	Writing all Fields

	File Positioning
	PAGE, PAGE1-PAGE7 Reserved Words
	User Date Special Words

	Chapter 2. Compiler Directives
	/FREE... /END-FREE (Positions 7-11)
	/COPY or /INCLUDE)
	Copying Files from an iSeries Server
	Copying Files from a Workstation
	Nested /COPY or /INCLUDE

	Conditional Compilation Directives
	Defining Conditions
	/DEFINE (Positions 7-13)
	/UNDEFINE (Positions 7-15)

	Predefined Conditions
	Conditions Relating to the Compiler Target

	Conditional Expressions
	Testing Conditions
	/IF Condition-Expression (Positions 7-9)
	/ELSEIF Condition-Expression (Positions 7-13)
	/ELSE (Positions 7-11)
	/ENDIF (Positions 7-12)
	Rules for Testing Conditions

	The /EOF Directive
	/EOF (Positions 7-10)

	/EJECT (Positions 7-12)
	/SPACE (Positions 7-12)
	/TITLE (Positions 7-12)

	Chapter 3. Indicators
	Indicators Defined on the Specifications
	Record Identifying Indicators
	Rules for Assigning Record Identifying Indicators

	Field Indicators
	Rules for Assigning Field Indicators

	Resulting Indicators
	Rules for Assigning Resulting Indicators

	Last Record Indicator (LR)

	Using Indicators
	Field Record Relation Indicators
	Assigning Field Record Relation Indicators

	Indicators Conditioning Calculations
	Positions 7 and 8
	Positions 9-11

	Indicators Used in Expressions
	Indicators Conditioning Output

	Indicators Referred to as Data
	*IN
	*INxx
	Rules for Specifying Indicators Referred to as Data

	Summary of Indicators

	Chapter 4. Working with Components
	Starting and Stopping Components
	Initializing Components
	Terminating Components
	Normal Termination
	Abnormal Termination

	Initializing, Terminating, and Event Handling Restrictions

	Chapter 5. Error and Exception Handling
	File Exception/Errors
	File Information Data Structure
	File Feedback Information
	Open Feedback Information
	Input/Output Feedback Information
	Device-Specific Feedback Information
	File Exception and Error Subroutine (INFSR)
	File Status Codes

	Program Exception and Errors
	Program Status Data Structure
	Program Status Codes
	Program Status Data Structure Example

	Program Exception and Error Subroutine

	Component Errors/Exceptions
	Component Status Codes
	Event Error Handling
	Exception Handling

	Chapter 6. Subprocedures and Prototypes
	Subprocedure Definition
	Procedure Interface Definition
	Return Values
	Scope of Definitions
	Subprocedure Calculations

	NOMAIN Module
	EXE Module
	Subprocedures and Subroutines
	Prototypes and Parameters
	Prototypes
	Prototyped Parameters
	Procedure Interface

	Chapter 7. SQL Support
	General Syntax Rules
	Host Variable Declarations
	Host Variable Rules
	Data Structures as Host Variables
	Indicator Variables and Structures
	Host Structure Rules
	/EXEC SQL INCLUDE Statement
	/EXEC SQL INCLUDE SQLCA Statement
	/EXEC SQL WHENEVER Statement
	/EXEC SQL BEGIN DECLARE Statement
	Runtime Error Handling

	Building an Application
	Running an Application
	Connecting to a Database
	Using the CONNECT TO Statement
	Using an Implicit Connect

	Chapter 8. File Considerations
	Disk Files
	Local Files
	OS/400 Files
	Sharing the File Open Data Path
	Query Files and Single/Blocked Record I/O Operations
	Invalid Data Errors on Query Files
	Applications with Embedded Database File Overrides
	OS/400 File Data Conversions
	OS/400 Database File Commitment Control

	Printer Files
	Special Files

	Part 2. Data
	Chapter 9. Data Types and Data Formats
	Internal and External Formats
	Internal Format
	External Format
	Specifying an External Format for a Numeric Field
	Specifying an External Format for a Character, Graphic, or UCS-2 Field
	Specifying an External Format for a Date-Time Field

	Basing Pointer Data Type
	Setting a Basing Pointer
	Examples
	Character Data Type
	Character Format
	Indicator Format
	Graphic Format
	UCS-2 Format
	Variable-Length Character, Graphic, and UCS-2 Format
	Rules for Variable-Length Character, Graphic, and UCS-2 Formats
	Using Variable-Length Fields

	Conversion between Character, Graphic and UCS-2 Data
	CCSIDs of Data

	Date Data
	Separators
	Formats for MOVE, MOVEL, and TEST Operations

	Numeric Data Type
	Binary Format
	Program-Described File
	Externally Described File

	Float Format
	External Display Representation of a Floating-Point Field

	Integer Format
	Packed-Decimal Format
	Determining the Digit Length of a Packed-Decimal Field

	Unsigned Format
	Zoned-Decimal Format
	Considerations for Using Numeric Formats
	Guidelines for Choosing the Numeric Format for a Field

	Representation of Numeric Formats

	Object Data Type
	Where You Can Specify an Object Field

	Procedure Pointer Data Type
	Time Data
	Separators

	Timestamp Data
	Separators

	Database Null Value Support
	User Controlled Support for Null-Capable Fields and Key Fields
	Null-capable fields in externally-described data structures
	Input of Null-Capable Fields
	Output of Null-Capable Fields
	Keyed Operations

	Input-Only Support for Null-Capable Fields
	No Null Fields Option

	Converting Database Variable-Length Fields

	Chapter 10. Literals and Named Constants
	Literals
	Character Literals
	Hexadecimal Literals
	Numeric Literals
	Date Literals
	Time Literals
	Timestamp Literals
	Graphic Literals
	UCS-2 Literals
	Named Constants

	Named Constants
	Rules for Named Constants
	Example of Defining a Named Constant

	Figurative Constants
	Rules for Figurative Constants

	Chapter 11. Data Structures
	Qualifying Data Structure Names
	Array Data Structures
	Defining Data Structure Parameters in a Prototype or Procedure Interface
	Defining Data Structure Subfields
	Specifying Subfield Length
	Aligning Data Structure Subfields
	Initialization of Nested Data Structures

	Special Data Structures
	Data-Area Data Structure
	File Information Data Structure
	Program-Status Data Structure

	Data Structure Examples

	Chapter 12. Using Arrays and Tables
	Arrays
	Array Name and Index
	Essential Array Specifications
	Coding a Runtime Array
	Loading a Runtime Array
	Loading a Runtime Array in One Source Record
	Loading a Runtime Array Using Multiple Source Records
	Sequencing Runtime Arrays

	Coding a Compile-Time Array
	Loading a Compile-Time Array
	Rules for Array Source Records

	Coding a Pre-Runtime Array
	Loading a Pre-Runtime Array
	Sequence Checking for Character Arrays

	Initializing Arrays
	Compile-Time and Pre-Runtime Arrays

	Defining Related Arrays
	Searching Arrays
	Searching an Array without an Index
	Searching an Array with an Index

	Using Arrays
	Specifying an Array in Calculations

	Sorting Arrays
	Sorting using Part of the Array as a Key

	Array Output
	Editing Entire Arrays

	Using Dynamically-Sized Arrays
	Tables
	LOOKUP with One Table
	LOOKUP with Two Tables
	Specifying the Table Element Found in a LOOKUP Operation

	Chapter 13. Editing Numeric Fields
	Edit Codes
	Simple Edit Codes
	Combination Edit Codes
	Editing Considerations
	Summary of Edit Codes

	Edit Words
	How to Code an Edit Word
	Parts of an Edit Word
	Forming the Body of an Edit Word
	Forming the Status of an Edit Word
	Formatting the Expansion of an Edit Word

	Summary of Coding Rules for Edit Words

	Editing Externally Described Files

	Chapter 14. Initialization of Data
	Initialization Subroutine (*INZSR)
	CLEAR and RESET Operation Codes
	Data Initialization

	Part 3. Specifications
	Chapter 15. About VisualAge RPG Specifications
	Subprocedure Specifications
	Program Data
	Common Entries
	Syntax of Keywords
	Continuation Rules
	Control Specification Keyword Field
	File Description Specification Keyword Field
	Definition Specification Keyword Field
	Calculation Specification Extended-Factor 2
	Free-Form Calculation Specification
	Output Specification Constant/Editword Field
	Definition and Procedure Specification Name Field

	Chapter 16. Control Specifications
	Control Specification Statement
	Position 6 (Form Type)
	Positions 7-80 (Keywords)
	Syntax of Keywords
	ALWNULL(*NO | *INPUTONLY | *USRCTL)
	CACHE(*YES | *NO)
	CACHEREFRESH(*YES | *NO)
	CCSID(*GRAPH : parameter | *UCS2 : number | *MAPCP : 932)
	COPYNEST(number)
	COPYRIGHT('copyright string')
	CURSYM('sym')
	CVTOEM(*YES | *NO)
	CVTOPT(*{NO}VARCHAR *{NO}VARGRAPHIC)
	DATEDIT(fmt{separator})
	DATFMT(fmt{separator})
	DEBUG{(*NO | *YES)}
	DECEDIT('value')
	DECPREC(30|31)
	EXE
	EXPROPTS(*MAXDIGITS | *RESDECPOS)
	EXTBININT{(*NO | *YES)}
	FLTDIV{(*NO | *YES)}
	GENLVL(number)
	INDENT(*NONE | 'character-value')
	INTPREC(10 | 20)
	LIBLIST('filename1 filename2 ... filenamen')
	NOMAIN
	OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL *{NO}SHOWCPY *{NO}EXPDDS *{NO}EXT *{NO}SHOWSKP *{NO}INHERITSIGNON)
	SIGNON(*CLEARUSERID *HIDEPWSAVE *INHERIT)
	SQLBINDFILE('filename')
	SQLDBBLOCKING(*YES | *NO)
	SQLDBNAME('Dbname')
	SQLDTFMT(*EUR | *ISO | *USA | *JIS)
	SQLISOLATIONLVL(*RR | *CS | *UR)
	SQLPACKAGENAME('package.txt')
	SQLPASSWORD('password')
	SQLUSERID('userid')
	TIMFMT(fmt{separator})
	TRUNCNBR(*YES | *NO)

	Chapter 17. File Description Specifications
	File Description Specification Statement
	File-Description Keyword Continuation Line
	Position 6 (Form Type)
	Positions 7-16 (File Name)
	Program-Described File
	Externally-Described File

	Position 17 (File Type)
	Input Files
	Output Files
	Update Files
	Combined Files

	Position 18 (File Designation)
	Array or Table File
	Full Procedural File

	Position 19 (Reserved)
	Position 20 (File Addition)
	Position 21 (Reserved)
	Position 22 (File Format)
	Positions 23-27 (Record Length)
	Position 28 (Reserved)
	Positions 29-33 (Reserved)
	Position 34 (Record Address Type)
	Blank = Non-keyed Processing
	Key

	Position 35 (Reserved)
	Positions 36-42 (Device)
	Position 43 (Reserved)

	Positions 44-80 (Keywords)
	BLOCK(*YES|*NO)
	COMMIT{(rpg_name)}
	CVTHEX
	DATFMT(format{separator})
	DEVMODE(name)
	EOFMARK(*NONE)
	EXTFILE(filename)
	Local Files
	Remote OS/400 Files

	EXTMBR(membername)
	FORMLEN(number)
	IGNORE(recformat{:recformat...})
	INCLUDE(recformat{:recformat...})
	INFDS(DSname)
	INFSR(SUBRname)
	PLIST(Plist_name)
	PREFIX(prefix{:nbr_of_char_replaced})
	PROCNAME(proc_name)
	PRTCTL(data_struct{:*COMPAT})
	Extended Length PRTCTL Data Structure
	*COMPAT PRTCTL Data Structure

	PRTFMT(*SYS | *TEXT)
	RCDLEN(fieldname)
	RECNO(fieldname)
	REMOTE
	RENAME(Ext_format:Int_format)
	TIMFMT(format{separator})
	USROPN

	File Types and Processing Methods

	Chapter 18. Definition Specifications
	Placement of Definitions and Scope
	Storage of Definitions

	Definition Specification Statement
	Definition-Specification Keyword Continuation Line
	Definition Specification Continued Name Line
	Position 6 (Form Type)
	Positions 7-21 (Name)
	Position 22 (External Description)
	Position 23 (Type of Data Structure)
	Positions 24-25 (Type of Definition)
	Positions 26-32 (From Position)
	Positions 33-39 (To Position/Length)
	Position 40 (Internal Data Type)
	Positions 41-42 (Decimal Positions)
	Position 43 (Reserved)
	Positions 44-80 (Keywords)

	Definition-Specification Keywords
	ALIGN
	ALT(array_name)
	ASCEND
	BASED(basing_pointer_name)
	BUTTON(button1:button2....)
	CCSID(number | *DFT)
	CLASS(*JAVA:class_name)
	CLTPGM(program name)
	CONST(constant)
	CTDATA
	DATFMT(format{separator})
	DESCEND
	DIM(numeric_constant)
	DLL(name)
	DTAARA{(*VAR:)data_area_name}
	EXTFLD(field_name)
	EXTFMT(code)
	EXTNAME(file-name{:format-name}{:*ALL| *INPUT|*OUTPUT|*KEY})
	EXTPGM(name)
	EXTPROC({*JAVA:class-name:}name)
	Prototyping Java Methods

	FROMFILE(file_name)
	INZ{(initial value)}
	LIKE(RPG_name)
	LIKE(object-name)

	LIKEDS(data_structure_name)
	LIKEREC(intrecname{:*ALL|*INPUT|*OUTPUT |*KEY})
	LINKAGE(linkage_type)
	MSGDATA(msgdata1:msgdata2....)
	MSGNBR(*MSGnnnn or fieldname)
	MSGTEXT('message text')
	MSGTITLE('title text')
	NOOPT
	NOWAIT
	OCCURS(numeric_constant)
	OPTIONS(*OMIT *VARSIZE *STRING *TRIM *RIGHTADJ)
	OVERLAY(name{:pos | *NEXT})
	PACKEVEN
	PERRCD(numeric_constant)
	PREFIX(prefix{:nbr_of_char_replaced})
	PROCPTR
	QUALIFIED
	STATIC
	STYLE(style_type)
	TIMFMT(format{separator})
	TOFILE(file_name)
	VALUE
	VARYING

	Summary According to Definition Specification Type

	Chapter 19. Input Specifications
	Input Specification Statement
	Program Described
	Externally Described

	Program Described Files
	Position 6 (Form Type)

	Record Identification Entries
	Positions 7-16 (File Name)
	Positions 16-18 (Logical Relationship)
	Positions 17-18 (Sequence)
	Position 19 (Reserved)
	Position 20 (Option)
	Positions 21-22 (Record Identifying Indicator)
	Indicators

	Positions 23-46 (Record Identification Codes)
	Positions 23-27, 31-35, and 39-43 (Position)
	Positions 28, 36, and 44 (Not)
	Positions 29, 37, and 45 (Code Part)
	Positions 30, 38, and 46 (Character)
	AND Relationship
	OR Relationship

	Field Description Entries
	Position 6 (Form Type)
	Positions 7-30 (Reserved)
	Positions 31-34 (Data Attributes)
	Position 35 (Date/Time Separator)
	Position 36 (Data Format)
	Positions 37-46 (Field Location)
	Positions 47-48 (Decimal Positions)
	Positions 49-62 (Field Name)
	Positions 63-64 (Reserved)
	Positions 65-66 (Reserved)
	Positions 67-68 (Field Record Relation)
	Positions 69-74 (Field Indicators)

	Externally Described Files
	Position 6 (Form Type)

	Record Identification Entries
	Positions 7-16 (Record Name)
	Positions 17-20 (Reserved)
	Positions 21-22 (Record Identifying Indicator)
	Positions 23-80 (Reserved)

	Field Description Entries
	Positions 7-20 (Reserved)
	Positions 21-30 (External Field Name)
	Positions 31-48 (Reserved)
	Positions 49-62 (Field Name)
	Positions 63-64 (Reserved)
	Positions 65-66 (Reserved)
	Positions 67-68 (Reserved)
	Positions 69-74 (Field Indicators)
	Positions 75-80 (Reserved)

	Chapter 20. Calculation Specifications
	Traditional Syntax
	Calculation-Specification Extended-Factor 2 Continuation Line
	Position 6 (Form Type)
	Positions 7-8 (Control Level)
	Subroutine Identifier
	AND/OR Lines Identifier

	Positions 9-11 (Indicators)
	Positions 12-25 (Factor 1)
	Positions 26-35 (Operation and Extender)
	Operation Extender

	Positions 36-49 (Factor 2)
	Positions 50-63 (Result Field)
	Positions 64-68 (Field Length)
	Positions 69-70 (Decimal Positions)
	Positions 71-76 (Resulting Indicators)

	Extended Factor 2 Syntax
	Positions 7-8 (Control Level)
	Positions 9-11 (Indicators)
	Positions 12-25 (Factor 1)
	Positions 26-35 (Operation and Extender)
	Operation Extender

	Positions 36-80 (Extended-Factor 2)

	Free-Form Syntax
	Positions 8-80 (Free-form Operations)

	Chapter 21. Output Specifications
	Output Specification Statement
	Program Described
	Externally Described

	Program Described Files
	Position 6 (Form Type)

	Record Identification and Control Entries
	Positions 7-16 (File Name)
	Positions 16-18 (Logical Relationship)
	Position 17 (Type - Program Described File)
	Positions 18-20 (Record Addition/Deletion)
	Positions 21-29 (File Record ID Indicators)
	Positions 30-39 (EXCEPT Name)
	Positions 40-51 (Space and Skip)
	Positions 40-42 (Space Before)
	Positions 43-45 (Space After)
	Positions 46-48 (Skip Before)
	Positions 49-51 (Skip After)

	Field Description and Control Entries
	Positions 21-29 (Output Indicators)
	Positions 30-43 (Field Name)
	Field Names, Blanks, Tables, and Arrays
	PAGE, PAGE1-PAGE7
	*PLACE
	User Date Reserved Words
	*IN, *INxx, *IN(xx)

	Position 44 (Edit Codes)
	Position 45 (Blank After)
	Positions 47-51 (End Position)
	Position 52 (Data Format)
	Positions 53-80 (Constant, Edit Word, Data Attribute)
	Constants
	Edit Word
	Data Attributes

	Externally Described Files
	Position 6 (Form Type)

	Record Identification and Control Entries
	Positions 7-16 (Record Name)
	Positions 16-18 (External Logical Relationship)
	Position 17 (Type)
	Positions 18-20 (Record Addition)
	Positions 21-29 (Output Indicators)
	Positions 30-39 (EXCEPT Name)

	Field Description and Control Entries
	Positions 21-29 (Output Indicators)
	Positions 30-43 (Field Name)
	Position 45 (Blank After)

	Chapter 22. Procedure Specifications
	Procedure Specification Statement
	Procedure Specification Keyword Continuation Line
	Procedure Specification Continued Name Line
	Position 6 (Form Type)
	Positions 7-21 (Name)
	Position 24 (Begin/End Procedure)
	Positions 44-80 (Keywords)

	Procedure Specification Keywords
	EXPORT

	Part 4. Operations, Expressions, and Functions
	Chapter 23. Operations
	Operation Codes
	Arithmetic Operations
	Performance Considerations
	Integer and Unsigned Arithmetic
	Arithmetic Operations Examples

	Array Operations
	Bit Operations
	Branching Operations
	Call Operations
	Prototyped Calls
	Parsing Program Names on a Call

	Compare Operations
	Conversion Operations
	Data-Area Operations
	Date Operations
	Unexpected Results

	Declarative Operations
	Error-Handling Operations
	File Operations
	Keys for File Operations

	Indicator-Setting Operations
	Information Operations
	Initialization Operations
	Memory Management Operations
	Message Operations
	Move Operations
	Moving Character, Graphic, UCS-2, and Numeric Data
	Moving Date-Time Data
	Examples of Converting a Character Field to a Date Field

	Result Operations
	Size Operations
	String Operations
	Structured Programming Operations
	Subroutine Operations
	Test Operations
	GUI Operations
	Qualified GUI Part Attribute Access

	Chapter 24. Expressions
	General Expression Rules
	Expression Operands
	Expression Operators
	Operation Precedence
	Data Types
	Data Types Supported by Expression Operands
	Format of Numeric Intermediate Results
	For the operators +, -, and *:
	For the / operator:
	For the ** operator:
	Performance and 8-byte Arithmetic

	Precision Rules for Numeric Operations
	Using the Default Precision Rule
	Precision of Intermediate Results
	Example of Default Precision Rules
	Using the "Result Decimal Position" Precision Rules
	Example of "Result Decimal Position" Precision Rules

	Short Circuit Evaluation
	Order of Evaluation

	Chapter 25. Built-In Functions
	Built-In Functions (Alphabetically)
	%ABS (Absolute Value of Expression)
	%ADDR (Get Address of Variable)
	%ALLOC (Allocate Storage)
	%BITAND (Bitwise AND Operation)
	%BITNOT (Invert Bits)
	%BITOR (Bitwise OR Operation)
	%BITXOR (Bitwise Exclusive-OR Operation)
	Examples of Bit Operations

	%CHAR (Convert to Character Data)
	%CHECK (Check Characters)
	%CHECKR (Check Reverse)
	%DATE (Convert to Date)
	%DAYS (Number of Days)
	%DEC (Convert to Packed Decimal Format)
	Numeric or character expression
	Date, time or timestamp expression

	%DECH (Convert to Packed Decimal Format with Half Adjust)
	%DECH Examples

	%DECPOS (Get Number of Decimal Positions)
	%DIFF (Difference Between Two Date, Time, or Timestamp Values)
	%DIV (Return Integer Portion of Quotient)
	%EDITC (Edit Value Using an Editcode)
	%EDITFLT (Convert to Float External Representation)
	%EDITW (Edit Value Using an Editword)
	%ELEM (Get Number of Elements)
	%EOF (Return End or Beginning of File Condition)
	%EQUAL (Return Exact Match Condition)
	%ERROR (Return Error Condition)
	%FIELDS (Fields to update)
	%FLOAT (Convert to Floating Format)
	%FOUND (Return Found Condition)
	%GETATR (Retrieve Attribute)
	%GRAPH (Convert to Graphic Value)
	%HOURS (Number of Hours)
	%INT (Convert to Integer Format)
	%INTH (Convert to Integer Format with Half Adjust)

	%KDS (Search Arguments in Data Structure)
	%LEN (Get or Set Length)
	%LEN Used for its Value
	%LEN Used to Set the Length of Variable-Length Fields

	%LOOKUPxx (Look Up an Array Element)
	Sequenced arrays that are not in the correct sequence

	%MINUTES (Number of Minutes)
	%MONTHS (Number of Months)
	%MSECONDS (Number of Microseconds)
	%NULLIND (Query or Set Null Indicator)
	%OCCUR (Set/Get Occurrence of a Data Structure)
	%OPEN (Return File Open Condition)
	%PADDR (Get Procedure Address)
	%REALLOC (Reallocate Storage)
	%REM (Return Integer Remainder)
	%REPLACE (Replace Character String)
	%SCAN (Scan for Characters)
	%SECONDS (Number of Seconds)
	%SETATR (Set Attribute)
	%SIZE (Size of Constant or Field)
	%SQRT (Square Root of Expression)
	%STATUS (Return File or Program Status)
	%STR (Get or Store Null-Terminated String)
	%STR Used to Get Null-Terminated String
	%STR Used to Store Null-Terminated String

	%SUBARR (Set/Get Portion of an Array)
	%SUBDT (Extract a Portion of a Date, Time, or Timestamp)
	%SUBST (Get Substring)
	%SUBST Used for its Value
	%SUBST Used as the Result of an Assignment

	%THIS (Return Class Instance for Native Method)
	%TIME (Convert to Time)
	%TIMESTAMP (Convert to Timestamp)
	%TLOOKUPxx (Look Up a Table Element)
	%TRIM (Trim Characters at Edges)
	%TRIML (Trim Leading Characters)
	%TRIMR (Trim Trailing Characters)
	%UCS2 (Convert to UCS-2 Value)
	%UNS (Convert to Unsigned Format)
	%UNSH (Convert to Unsigned Format with Half Adjust)

	%XFOOT (Sum Array Expression Elements)
	%XLATE (Translate)
	%YEARS (Number of Years)

	Chapter 26. Operation Code Details
	ADD (Add)
	ADDDUR (Add Duration)
	ALLOC (Allocate Storage)
	ANDxx (And)
	BEGACT (Begin Action Subroutine)
	Action Subroutine Names in Traditional Syntax
	Action Subroutine Names using Factor 1 and Factor 2
	Action Subroutine Names using Factor 1 and the Result Field
	Action Subroutine Names using Factor 1, Factor 2 and Result Field
	Action Subroutine Names using Factor 1

	Action Subroutine Names in Free-Form Syntax
	Single-Link and Multiple-Link Action Subroutines

	BEGSR (Begin User Subroutine)
	BITOFF (Set Bits Off)
	BITON (Set Bits On)
	CABxx (Compare and Branch)
	CALL (Call an AS/400 Program)
	Calling an OS/400 Program that Uses a Workstation File
	Calling Host Programs that Use Display Files
	Calling CL Commands

	CALLB (Call a Function)
	CALLP (Call a Prototyped Procedure or Program)
	CASxx (Conditionally Invoke Subroutine)
	CAT (Concatenate Two Strings)
	CHAIN (Random Retrieval from a File)
	Retrieving Data from a File or Record Format
	Retrieving a Record from a Subfile Part

	CHECK (Check Characters)
	CHECKR (Check Reverse)
	CLEAR (Clear)
	Clearing Variables
	Clearing Record Formats
	Clearing Entry Fields on a Window
	Clearing Subfiles

	CLOSE (Close Files)
	CLSWIN (Close Window)
	COMMIT (Commit)
	COMP (Compare)
	DEALLOC (Free Storage)
	DEFINE (Field Definition)
	Defining a Field Based on Another Field
	Defining a Field as a Data Area

	DELETE (Delete Record)
	DIV (Divide)
	DO (Do)
	DOU (Do Until)
	DOUxx (Do Until)
	DOW (Do While)
	DOWxx (Do While)
	DSPLY (Display Message Window)
	ELSE (Else)
	ELSEIF (Else If)
	ENDyy (End a Structured Group)
	ENDACT (End of Action Subroutine)
	ENDSR (End of User Subroutine)
	EVAL (Evaluate Expression)
	EVALR (Evaluate expression, right adjust)
	EXCEPT (Calculation Time Output)
	EXSR (Invoke User Subroutine)
	Coding User Subroutines

	EXTRCT (Extract Date/Time/Timestamp)
	FEOD (Force End of Data)
	FOR (For)
	GETATR (Retrieve Attribute)
	GOTO (Go To)
	IF (If)
	IFxx (If)
	IN (Retrieve a Data Area)
	ITER (Iterate)
	KFLD (Define Parts of a Key)
	KLIST (Define a Composite Key)
	LEAVE (Leave a Do/For Group)
	LEAVESR (Leave a Subroutine)
	LOOKUP (Look Up a Table or Array Element)
	MONITOR (Begin a Monitor Group)
	MOVE (Move)
	MOVE Examples (Part 1)
	MOVE Examples (Part 2): Variable- and Fixed-length Fields
	MOVE Examples (Part 3)
	MOVE Examples (Part 4)
	MOVE Examples (Part 5)

	MOVEA (Move Array)
	Character, Graphic, and UCS-2 MOVEA Operations
	Numeric MOVEA Operations
	Zoned Decimal MOVEA Operations
	Specifying Figurative Constants with MOVEA

	MOVEL (Move Left)
	Factor 2 is the Same Length as the Result Field
	Factor 2 is Longer than the Result Field
	Factor 2 is Shorter than the Result Field
	Factor 2 is Shorter than the Result Field and P is Specified
	MOVEL Examples: Variable-length / Fixed-length Moves

	MULT (Multiply)
	MVR (Move Remainder)
	OCCUR (Set/Get Occurrence of a Data Structure)
	ON-ERROR (On Error)
	OPEN (Open File for Processing)
	ORxx (Or)
	OTHER (Otherwise Select)
	OUT (Write a Data Area)
	PARM (Identify Parameters)
	General Rules about Parameters
	Passing Parameters with CALL, CALLB, and START

	PLIST (Identify a Parameter List)
	POST (Post)
	READ (Read a Record)
	Reading from a File
	Reading from a Window

	READC (Read Next Changed Record)
	READE (Read Equal Key)
	READP (Read Prior Record)
	READPE (Read Prior Equal)
	READS (Read Selected)
	REALLOC (Reallocate Storage with New Length)
	RESET (Reset)
	Resetting Entry Fields and Static Text on a Window
	Resetting Elements in a Structure and Variables

	RETURN (Return to Caller)
	ROLBK (Roll Back)
	SCAN (Scan String)
	SELECT (Begin a Select Group)
	SETATR (Set Attribute)
	SETGT (Set Greater Than)
	SETLL (Set Lower Limit)
	SETOFF (Set Indicator Off)
	SETON (Set Indicator On)
	SHOWWIN (Display Window)
	SORTA (Sort an Array)
	SQRT (Square Root)
	START (Start Component or Call Local Program)
	Starting Components
	Calling Local Programs

	STOP (Stop Component)
	SUB (Subtract)
	SUBDUR (Subtract Duration)
	Subtract a duration
	Calculate a duration
	Possible error situations
	SUBDUR Examples

	SUBST (Substring)
	TAG (Tag)
	TEST (Test Date/Time/Timestamp)
	TESTB (Test Bit)
	TESTN (Test Numeric)
	TESTZ (Test Zone)
	TIME (Time of Day)
	UNLOCK (Unlock a Data Area or Release a Record)
	Unlocking data areas
	Releasing record locks

	UPDATE (Modify Existing Record)
	WHEN (When True Then Select)
	WHENxx (When True Then Select)
	WRITE (Create New Records)
	Writing to a File
	Writing to a Window
	Writing to a Subfile

	XFOOT (Summing the Elements of an Array)
	XLATE (Translate)
	Z-ADD (Zero and Add)
	Z-SUB (Zero and Subtract)

	Part 5. Appendixes
	Appendix A. Restrictions
	Appendix B. Collating Sequences
	EBCDIC Collating Sequence
	ASCII Collating Sequence

	Appendix C. Supported CCSID Values
	Appendix D. Comparing RPG Compilers
	RPG Cycle
	VisualAge RPG Indicators
	Unsupported Indicators

	Unsupported Words
	Compiler Directives
	Error and Exception Handling
	Data
	Data Types and Data Formats
	Literals and Named Constants
	Data Areas
	Arrays and Tables
	Edit Codes

	Files
	Specifications
	Control Specifications
	Data Areas
	Keywords

	File Description Specifications
	File Support
	RPG Cycle Related Entries
	Keywords

	Definition Specifications
	Keywords

	Input Specifications

	Built-in Functions
	Operation codes
	Similar Operation Codes
	Unsupported Operation Codes
	VisualAge RPG Specific Operation Codes
	Conversions between CCSIDs

	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Glossary
	Bibliography
	Index

