<|lI!

1Series

Visua]Age® RPG Language Reterence

Version 60 for Windows®

SC09-2451-06

<|lI!

1Series

Visua]Age® RPG Language Reterence

Version 60 for Windows®

SC09-2451-06

Note!

Before using this information and the product it supports, be sure to read the general information under

Seventh Edition (June 2005)

This edition applies to Version 6.0 of IBM WebSphere Development Studio Client for iSeries and to all subsequent
releases and modifications until otherwise indicated in new editions.

This edition replaces SC09-2451-05 .

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or
addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development
D1/817/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

You can also send your comments electronically to IBM. See [“How to Send Your Comments” on page xii| for a
description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About ThisBook. Xi

Prerequisite and Related Informationxi
The VisualAge RPG Libraryxi
How to Send Your Commentsxi
Accessing Online Information xii
Using Online Booksxii
Publications in PDF Format. xiii
Using Online Help.xii

What’s New in Version6.0 Xxv

Part 1. Introduction to the VisualAge
RPGlLanguage1

Chapter 1. Symbolic Names and

Reserved Words . . 3
Symbolic Names . .3
Words with Special Functlons and Reserved Words .5
Built-in Function Special Words . .5
Date and Time Special Words. .5
Expressions. . .5
File Positioning Spec1al Words .5
Implied Literals . .5
Indicator Reserved Words . .6
Job Date Reserved Words . . 6
Page Numbering Reserved Words .6
Parameter Passing Special Words . 6
Placement of Fields . .6
Writing all Fields . .6
File Positioning . . 6
PAGE, PAGE1-PAGE? Reserved Words .7
User Date Special Words .8
Chapter 2. Compiler Directives .1
/FREE... /END-FREE (Positions 7-11). .11
/COPY or /INCLUDE) . .11
Copying Files from an iSeries Server . 12
Copying Files from a Workstation . 12
Nested /COPY or /INCLUDE . 12
Conditional Compilation Directives .13
Defining Conditions .13
Predefined Conditions. .14
Conditional Expressions . .14
Testing Conditions . .14
The /EOF Directive 16
/EOF (Positions 7-10) . 16
/EJECT (Positions 7-12) 17
/SPACE (Positions 7-12) . 17
/TITLE (Positions 7-12) 17

Chapter 3. Indicators.19
Indicators Defined on the Specifications19
Record Identifying Indicators19

© Copyright IBM Corp. 1994, 2005

Field Indicators .

Resulting Indicators

Last Record Indicator (LR)
Using Indicators.

Field Record Relation Indlcators

Indicators Conditioning Calculations .

Indicators Used in Expressions .

Indicators Conditioning Output
Indicators Referred to as Data .

*IN

>*INXX

Rules for Specrfymg Ind1cators Referred to as

Data. .
Summary of Indlcators

Chapter 4. Working with Components

Starting and Stopping Components
Initializing Components . .
Terminating Components .

Normal Termination

Abnormal Termination
Initializing, Terminating, and Event Handhng
Restrictions

Chapter 5. Error and Exception
Handling .
File Exception/Errors . .
File Information Data Structure
Program Exception and Errors .
Program Status Data Structure .
Program Status Codes . .
Program Exception and Error Subroutme
Component Errors/Exceptions .
Component Status Codes .
Event Error Handling .
Exception Handling

Chapter 6. Subprocedures and

Prototypes .

Subprocedure Definition . .
Procedure Interface Definition .
Return Values
Scope of Definitions
Subprocedure Calculations

NOMAIN Module .

EXE Module .

Subprocedures and Subroutmes

Prototypes and Parameters .
Prototypes.

Prototyped Parameters
Procedure Interface.

Chapter 7. SQL Support

General Syntax Rules .

. 20
.21
.22
.22
.22
.23
. 25
. 25
. 26
. 26
.27

. 28
. 29

31

.31
.31
. 32
.32
. 34

. 35

.4
.41
.41
. 51
. 51
. 54
. 57
. 58
. 58
. 59
. 61

. 63
. 64
. 65
. 65
. 66
. 67
. 69
.70
.70
.71
.71
.73
.75

.77
.77

iii

Host Variable Declarations79

Host Variable Rules.80
Data Structures as Host Varlables F < 1 |
Indicator Variables and Structures. 82
Host Structure Rules82
/EXEC SQL INCLUDE Statement L. . .82
/EXEC SQL INCLUDE SQLCA Statement . . . 83
/EXEC SQL WHENEVER Statement 84
/EXEC SQL BEGIN DECLARE Statement . . . 85
Runtime Error Handling85
Building an Application85
Running an Application86
Connecting to a Database.86
Using the CONNECT TO Statement86
Using an Implicit Connect88

Chapter 8. File Considerations 89

Disk Files89
Local Files.89
OS/400 Files89

Printer Files96

Special Files9

Part2.Data 101

Chapter 9. Data Types and Data
Formats. 103

Internal and External Formats. 103
Internal Format.103
External Format104

Basing Pointer Data Type105

Setting a Basing Pointer 107

Examples. . . . (/4

Character Data Type e N ()
Character Format110
Indicator Format11
Graphic Format. 112
UCS-2 Format 112
Variable-Length Character Graphlc, and UCS 2
Format 113
Conversion between Character Graphlc and
ucs2Data119

Date Data119
Separators . . A A |
Formats for MOVE MOVEL and TEST
Operations121

Numeric Data Type122
Binary Format122
Float Format124
Integer Format126
Packed-Decimal Format.126
Unsigned Format128
Zoned-Decimal Format 129
Considerations for Using Numeric Formats .. 129
Representation of Numeric Formats 131

Object Data Type 133
Where You Can Specrfy an Ob]ect Fleld .. . 133

Procedure Pointer Data Type 134

TimeData13
Separators137

iv VisualAge RPG Language Reference

Timestamp Data137
Separators . . N (s 4
Database Null Value Support . . 137
User Controlled Support for Null- Capable Flelds
and Key Fields. 138
Input-Only Support for Null Capable Frelds .. 144
No Null Fields Option . . S
Converting Database Variable- Length Flelds .. . 145

Chapter 10. Literals and Named
Constants.149

Literals . . P O 1O
Character L1terals P 1)
Hexadecimal Literals.149
Numeric Literals150
Date Literals.150
Time Literals151
Timestamp Literals151
Graphic Literals152
ucCs-2 Literals152
Named Constants152

Named Constants1k2
Rules for Named Constants 152

Figurative Constants153
Rules for Figurative Constants15

Chapter 11. Data Structures 157

Qualifying Data Structure Names. 158
Array Data Structures . . . 158
Defining Data Structure Parameters ina Prototype
or Procedure Interface . . . oo 159
Defining Data Structure Subflelds B 1)
Specifying Subfield Length. 160
Aligning Data Structure Subfields 160
Initialization of Nested Data Structures. . . . 161
Special Data Structures162
Data-Area Data Structure162
File Information Data Structure 162
Program-Status Data Structure. 162
Data Structure Examples162

Chapter 12. Using Arrays and Tables 171

Arrays. . . . o171
Array Name and Index B V)
Essential Array Specifications 172
Coding a Runtime Array172
Loading a Runtime Array172
Coding a Compile-Time Array. 174
Loading a Compile-Time Array 174
Coding a Pre-Runtime Array176
Loading a Pre-Runtime Arrayo 177
Sequence Checking for Character Arrays A V4

Initializing Arrays. 178
Compile-Time and Pre- Runtlme Arrays .. . 178

Defining Related Arrays.178

Searching Arrays 180
Searching an Array w1thout an Index 180
Searching an Array with an Index 181

Using Arrays 183
Specifying an Array in Calculatlons 183

Sorting Arrays .

. 184

Sorting using Part of the Array asa Key . 184
Array Output .o . . 184
Editing Entire Arrays . . 185
Using Dynamically-Sized Arrays . 185
Tables 186
LOOKUP with One Table . 187
LOOKUP with Two Tables 188
Specifying the Table Element Found in a
LOOKUP Operation . . 189
Chapter 13. Edltlng Numeric Fields 191
Edit Codes . . 191
Simple Edit Codes . 191
Combination Edit Codes. . 192
Editing Considerations . . 193
Summary of Edit Codes . . 194
Edit Words . . 197
How to Code an Edlt Word . 197
Parts of an Edit Word . . . 199
Summary of Coding Rules for Edlt Words. . 205
Editing Externally Described Files . 205
Chapter 14. Initialization of Data . 207
Initialization Subroutine (*INZSR) . 207
CLEAR and RESET Operation Codes . 207
Data Initialization . e . 207
Part 3. Specifications . . 209
Chapter 15. About VisualAge RPG
Specifications . .21
Subprocedure Specifications . 212
Program Data . . 212
Common Entries . . 213
Syntax of Keywords . . 213
Continuation Rules . 215
Chapter 16. Control Specifications 223
Control Specification Statement . 223
Position 6 (Form Type) . . 223
Positions 7-80 (Keywords) . . 223
Syntax of Keywords . . . 224
ALWNULL(*NO | *INPUTONLY | *USRCTL) 224
CACHE(*YES | *NO)225
CACHEREFRESH(*YES | *NO) . . 225
CCSID(*GRAPH : parameter | *UCS2 : number
| *MAPCP : 932)225
COPYNEST(number) . . 226
COPYRIGHT('copyright strmg) . 226
CURSYM(’sym”) . . 226
CVTOEM(*YES | *NO) . . 226
CVTOPT(*{NO}VARCHAR
*{NO}VARGRAPHIC). . 226
DATEDIT (fmt{separator}) . 227
DATEMT (fmt{separator}) . 227
DEBUG{(*NO | *YES)} . . 227
DECEDIT('value’) . . 228
DECPREC(30131) . . 228

EXPROPTS(*MAXDIGITS | *RESDECPOS)
EXTBININT{(*NO | *YES)}.

FLTDIV{(*NO | *YES)} .
GENLVL(number) .

INDENT(*NONE | character—value)
INTPREC(10 | 20). .
LIBLIST(filenamel filename?2 ..
NOMAIN

OPTION(*{NO}XREF *{NO}GEN {NO}SECLVL

*INOJSHOWCPY *{NOJEXPDDS *{NO}EXT
*INOJSHOWSKP *{NOHNHERITSIGNON)
SIGNON(*CLEARUSERID *HIDEPWSAVE
*INHERIT) . . e
SQLBINDFILE(’ frlename)
SQLDBBLOCKING(*YES | *NO)
SQLDBNAME('Dbname’)
SQLDTFMT(*EUR | *ISO | *USA | *]IS)
SQLISOLATIONLVL(*RR | *CS | *UR).
SQLPACKAGENAME('package.txt’) .
SQLPASSWORD(’password’) . .
SQLUSERID("userid”).
TIMFMT(fmt{separator}). .
TRUNCNBR(*YES | *NO) .

Chapter 17. File Description
Specifications . .
File Description Specification Statement
File-Description Keyword Continuation Line
Position 6 (Form Type) . .
Positions 7-16 (File Name) .
Position 17 (File Type)
Position 18 (File De51gnat10n)
Position 19 (Reserved)
Position 20 (File Addition) .
Position 21 (Reserved)
Position 22 (File Format) .
Positions 23-27 (Record Length)
Position 28 (Reserved) .
Positions 29-33 (Reserved) .
Position 34 (Record Address Type)
Position 35 (Reserved) .o
Positions 36-42 (Device) .
Position 43 (Reserved)

Positions 44-80 (Keywords).
BLOCK(*YES | *NO)
COMMIT{(rpg_name)}

CVTHEX .

DATFMT(format{separator})
DEVMODE(name).

EOFMARK(*NONE) .
EXTFILE(filename)
EXTMBR(membername) .
FORMLEN(number) . .o
IGNORE(recformat{:recformat...}) .
INCLUDE(recformat{:recformat...})
INFDS(DSname) e
INFSR(SUBRname)

PLIST(Plist_name). . .
PREFIX(prefix{:nbr_of_ char replaced}) .
PROCNAME(proc_name) .o

Contents

filenamen’) .

. 228
. 229
. 229
. 229
. 229
. 230
. 230
. 230
. 230

. 232

. 233
. 233
. 233
. 234
. 234
. 234
. 235
. 235
. 235
. 235
. 236

. 237
. 237

237

. 238
. 238
. 238
. 240
. 240
. 240
. 241
. 241
. 241
. 242
. 242
. 242
. 242
. 242
. 243
. 243
. 244
. 245
. 245
. 245
. 246
. 246
. 246
. 247
. 248
. 248
. 248
. 248
. 248
. 248
. 249
. 250

A\

PRTCTL(data_struct{:*COMPAT}).
PRTFEMT(*SYS | *TEXT).
RCDLEN(fieldname) .
RECNO(fieldname)
REMOTE. .
RENAME(Ext_format: Int format).
TIMFMT (format{separator})
USROPN . .
File Types and Process1ng Methods .

Chapter 18. Definition Specifications
Placement of Definitions and Scope .
Storage of Definitions
Definition Specification Statement .
Definition-Specification Keyword Contlnuatlon
Line
Definition Spec1f1cat10n Contlnued Name Llne
Position 6 (Form Type) .
Positions 7-21 (Name)
Position 22 (External Descrlpt1on)
Position 23 (Type of Data Structure) .
Positions 24-25 (Type of Definition) .
Positions 26-32 (From Position)
Positions 33-39 (To Position/Length)
Position 40 (Internal Data Type) .
Positions 41-42 (Decimal Positions) .
Position 43 (Reserved) .
Positions 44-80 (Keywords).
Definition-Specification Keywords
ALIGN .
ALT(array_name) .
ASCEND. .
BASED(basing_; pomter name)
BUTTON(button1:button2....) .
CCSID(number | *DFT) .
CLASS(*JAVA:class_name) .
CLTPGM(program name)
CONST(constant) .
CTDATA . .
DATFMT (format{ separator})
DESCEND .o
DIM(numeric_ Constant) .
DLL(name) . .
DTAARA{(*VAR:)data area narne}
EXTFLD(field_name) .
EXTFMT(code) . . .o
EXTNAME(file-namef: format—name}{ *ALLI
*INPUT [*OUTPUT | *KEY}).
EXTPGM(name)
EXTPROC({*JAVA: class—narne }name)
FROMFILE(file_name)
INZ{(initial value)}
LIKE(RPG_name) . .o
LIKEDS(data_structure_name) .
LIKEREC(mtrecname{ *ALL | *INPUT | *OUTPUT
I*KEY}) . .
LINKAGE(linkage_ type)
MSGDATA(msgdatal:msgdata2...)
MSGNBR(*MSGnnnn or fieldname) .
MSGTEXT('message text’) .
MSGTITLE(title text’)

vi VisualAge RPG Language Reference

. 250
. 251
. 251
. 251
. 252
. 252
. 252
. 252
. 253

255
. 256
. 258
. 259

. 259

259

. 259
. 260
. 260
. 260
. 261
. 262
. 262
. 263
. 264
. 264
. 264
. 264
. 265
. 265
. 265
. 266
. 267
. 267
. 267
. 268
. 268
. 269
. 269
. 269
. 269
. 270
. 270
. 271
. 271

. 272
. 273
. 273
. 276
. 276
. 277

. 279

. 280
. 281
. 281
. 281
. 282
. 282

NOOPT .

NOWAIT.

OCCURS(numeric_ constant)
OPTIONS(*OMIT *VARSIZE *STRING *TRIM
*RIGHTADJ). .

OVERLAY (name{:pos | *NEXT})
PACKEVEN . . .
PERRCD(numeric_ constant)
PREFIX(prefix{:nbr_of_char replaced})
PROCPTR o .
QUALIFIED.

STATIC

STYLE(style_ type)

TIMFMT (format{separator})
TOFILE(file_name) .

VALUE .

VARYING

Summary According to Def1n1t10n Spec1f1cat10n

Type

Chapter 19. Input Specifications
Input Specification Statement .
Program Described
Externally Described .
Program Described Files.
Position 6 (Form Type) .
Record Identification Entries
Positions 7-16 (File Name) . .
Positions 16-18 (Logical Relatlonshlp)
Positions 17-18 (Sequence) . .
Position 19 (Reserved)
Position 20 (Option) .

Positions 21-22 (Record Identlfylng Indlcator)

Positions 23-46 (Record Identification Codes)
Field Description Entries
Position 6 (Form Type) .
Positions 7-30 (Reserved) .
Positions 31-34 (Data Attributes) .
Position 35 (Date/Time Separator)
Position 36 (Data Format)
Positions 37-46 (Field Location)
Positions 47-48 (Decimal Positions) .
Positions 49-62 (Field Name)
Positions 63-64 (Reserved) .
Positions 65-66 (Reserved) . -
Positions 67-68 (Field Record Relatlon)
Positions 69-74 (Field Indicators) .
Externally Described Files .
Position 6 (Form Type) .
Record Identification Entries
Positions 7-16 (Record Name) .
Positions 17-20 (Reserved) .

Positions 21-22 (Record Identlfylng Indlcator)

Positions 23-80 (Reserved) .

Field Description Entries
Positions 7-20 (Reserved) .
Positions 21-30 (External Field Narne)
Positions 31-48 (Reserved) .
Positions 49-62 (Field Name)
Positions 63-64 (Reserved) .
Positions 65-66 (Reserved) .

. 282
. 282
. 282

. 283
. 291
. 293
. 293
. 293
. 293
. 293
. 294
. 294
. 294
. 295
. 295
. 295

. 295

. 299
. 299
. 299
. 299
. 300
. 300
. 300
. 300
. 300
. 301
. 301
. 301

301
301

. 303
. 303
. 303
. 303
. 304
. 304
. 305
. 305
. 306
. 306
. 306
. 306
. 306
. 307
. 307
. 307
. 307
. 308

308

. 308
. 308
. 308
. 308
. 308
. 308
. 309
. 309

Positions 67-68 (Reserved) .
Positions 69-74 (Field Indrcators)
Positions 75-80 (Reserved) .

. 309
. 309
. 309

Chapter 20. Calculation Specifications 311

Traditional Syntax .
Calculation-Specification Extended Factor 2
Continuation Line .
Position 6 (Form Type)
Positions 7-8 (Control Level)
Positions 9-11 (Indicators)
Positions 12-25 (Factor 1) . .
Positions 26-35 (Operation and Extender)
Positions 36-49 (Factor 2)
Positions 50-63 (Result Field) .
Positions 64-68 (Field Length) .
Positions 69-70 (Decimal Positions) .
Positions 71-76 (Resulting Indicators)
Extended Factor 2 Syntax .o
Positions 7-8 (Control Level)
Positions 9-11 (Indicators)
Positions 12-25 (Factor 1)
Positions 26-35 (Operation and Extender)
Positions 36-80 (Extended-Factor 2) .
Free-Form Syntax .
Positions 8-80 (Free- form Operatrons)

Chapter 21. Output Specmcatlons

Output Specification Statement
Program Described
Externally Described .

Program Described Files.

Position 6 (Form Type) . .

Record Identification and Control Entrres .
Positions 7-16 (File Name) .

Positions 16-18 (Logical Relatronshrp) .
Position 17 (Type - Program Described File) .
Positions 18-20 (Record Addition/Deletion)
Positions 21-29 (File Record ID Indicators).
Positions 30-39 (EXCEPT Name) .

Positions 40-51 (Space and Skip) .

Positions 40-42 (Space Before) .

Positions 43-45 (Space After)

Positions 46-48 (Skip Before)

Positions 49-51 (Skip After).

Field Description and Control Entries
Positions 21-29 (Output Indicators) .
Positions 30-43 (Field Name)

Position 44 (Edit Codes) .

Position 45 (Blank After)

Positions 47-51 (End Position) .

Position 52 (Data Format)

Positions 53-80 (Constant, Edit Word Data
Attribute). e

Externally Described Elles .

Position 6 (Form Type) . .

Record Identification and Control Entrres .
Positions 7-16 (Record Name) . .
Positions 16-18 (External Logical Relatlonshlp)
Position 17 (Type) . e

. 311

. 311
. 312
. 312
. 312
. 312
. 313
. 314
. 314
. 314
. 316
. 316
. 316
. 316
. 316
. 317
. 317
. 318
. 318
. 319

. 321
. 321
. 321
. 322
. 322
. 322
. 322
. 322
. 323
. 323
. 324
. 324
. 324
. 325
. 326
. 326
. 326
. 326
. 326
. 326
. 326
. 328
. 328
. 329
. 330

. 331
. 332
. 332
. 332
. 332

332

. 332

Positions 18-20 (Record Addition) 333
Positions 21-29 (Output Indicators) 333
Positions 30-39 (EXCEPT Name)333
Field Description and Control Entries 333
Positions 21-29 (Output Indicators) 333
Positions 30-43 (Field Name)333
Position 45 (Blank After)334

Chapter 22. Procedure Specifications 335

Procedure Specification Statement 336
Procedure Specification Keyword Contlnuatlon
Line 336
Procedure Specrflcatlon Contlnued Name L1ne 336
Position 6 (Form Type)337
Positions 7-21 (Name) 337
Position 24 (Begin/End Procedure) 337
Positions 44-80 (Keywords).337

Procedure Specification Keywords 338
EXPORT338

Part 4. Operations, Expressions,

and Functions 339

Chapter 23. Operatlons. N I Y

Operation Codes . . . B 3
Arithmetic Operations348
Performance Considerations 349
Integer and Unsigned Arithmetic. 349
Arithmetic Operations Examples 351
Array Operations351
Bit Operations352
Branching Operations352
Call Operations.353
Prototyped Calls353
Parsing Program Names on a Call34
Compare Operations357
Conversion Operations358
Data-Area Operations358
Date Operations35
Unexpected Results36l
Declarative Operations362
Error-Handling Operations.362
File Operations.363
Keys for File Operatrons G (e
Indicator-Setting Operations 366
Information Operations366
Initialization Operations. 366
Memory Management Operatlons N 4
Message Operations368
Move Operations 368
Moving Character, Graphlc, UCS 2 and
Numeric Data 369
Moving Date-Time Data . . 370
Examples of Converting a Character Freld to a
Date Field373
Result Operations375
Size Operations.375
String Operations37
Structured Programming Operatlons37
Subroutine Operations378

Contents Vil

Test Operations.
GUI Operations
Qualified GUI Part Attr1bute Access

Chapter 24. Expressions
General Expression Rules
Expression Operands .
Expression Operators.
Operation Precedence

Data Types .

Data Types Supported by Express1on Operands
Format of Numeric Intermediate Results
Precision Rules for Numeric Operations

Using the Default Precision Rule .
Precision of Intermediate Results .

Example of Default Precision Rules .
Using the "Result Decimal Position” Precision

Rules .

Example of ”Result Dec1ma1 Posmon Precision

Rules . .
Short Circuit Evaluatlon
Order of Evaluation .

Chapter 25. Built-In Functions .

Built-In Functions (Alphabetically)

%ABS (Absolute Value of Expression) .

%ADDR (Get Address of Variable)
%ALLOC (Allocate Storage)

%BITAND (Bitwise AND Operatlon)

%BITNOT (Invert Bits)
%BITOR (Bitwise OR Operation) .

%BITXOR (Bitwise Exclusive-OR Operatlon)
%CHAR (Convert to Character Data)

%CHECK (Check Characters) .
%CHECKR (Check Reverse)
%DATE (Convert to Date) .
%DAYS (Number of Days) .

%DEC (Convert to Packed Decimal Format)
%DECH (Convert to Packed Decimal Format

with Half Adjust) .

%DECPOS (Get Number of Decrmal Posrtrons)
%DIFF (Difference Between Two Date, Time, or

Timestamp Values)

%DIV (Return Integer Portlon of Quotlent)
%EDITC (Edit Value Using an Editcode)
%EDITFLT (Convert to Float External

Representation).

%EDITW (Edit Value Usmg an Edrtword)
%ELEM (Get Number of Elements) .
%EOF (Return End or Beginning of File

Condition)

%EQUAL (Return Exact Match Condrtron)

%ERROR (Return Error Condition) .
%FIELDS (Fields to update)

%FLOAT (Convert to Floating Format)
%FOUND (Return Found Condition)

%GETATR (Retrieve Attribute)

%GRAPH (Convert to Graphic Value) .

%HOURS (Number of Hours) .
%INT (Convert to Integer Format)

viii

VisualAge RPG Language Reference

. 378
. 378
. 379

. 381
. 382
. 383
. 383
. 385

. 386
386

. 390
. 390
. 391
. 392
. 392

. 394

. 396
. 396
. 397

. 399
. 405
. 405
. 406
. 408
. 409
. 410
. 411
. 412
. 416
. 418
. 420
. 422
. 423
. 424

. 426
427

. 428
. 431
. 432

. 435
. 436
. 437

. 438
. 440
. 441
. 442
. 443
. 444
. 446
. 447
. 448
. 449

%KDS (Search Arguments in Data Structure)
%LEN (Get or Set Length) . .
%LOOKUPxx (Look Up an Array Element)
%MINUTES (Number of Minutes)
%MONTHS (Number of Months).
%MSECONDS (Number of Mrcroseconds)
%NULLIND (Query or Set Null Indicator).
%OCCUR (Set/Get Occurrence of a Data
Structure).

%OPEN (Return Flle Open Condltron)
%PADDR (Get Procedure Address) .
%REALLOC (Reallocate Storage) .

%REM (Return Integer Remainder) .
%REPLACE (Replace Character String) .
%SCAN (Scan for Characters) . .
%SECONDS (Number of Seconds)

%SETATR (Set Attribute) .

%SIZE (Size of Constant or Field)

%SQRT (Square Root of Expression). .
%STATUS (Return File or Program Status).
%STR (Get or Store Null-Terminated String) .
%SUBARR (Set/Get Portion of an Array) .
%SUBDT (Extract a Portion of a Date, Time, or
Timestamp) .

%SUBST (Get Substrlng) . .
%THIS (Return Class Instance for Nat1ve
Method) . . e
%TIME (Convert to Tlme) . .
%TIMESTAMP (Convert to Tlmestamp)
%TLOOKUPxx (Look Up a Table Element)
%TRIM (Trim Characters at Edges) .
%TRIML (Trim Leading Characters) .
%TRIMR (Trim Trailing Characters) .

%UCS2 (Convert to UCS-2 Value)

%UNS (Convert to Unsigned Format) .
%XFOOT (Sum Array Expression Elements) .
%XLATE (Translate) . e
%YEARS (Number of Years)

Chapter 26. Operatlon Code Details

ADD (Add) .

ADDDUR (Add Duratlon)

ALLOC (Allocate Storage) .

ANDxx (And) . .

BEGACT (Begin Action Subroutme)
Action Subroutine Names in Traditional Syntax
Action Subroutine Names in Free-Form Syntax
Single-Link and Multiple—Link Action
Subroutines . .

BEGSR (Begin User Subroutme)

BITOFF (Set Bits Off) .

BITON (Set Bits On) . .

CABxx (Compare and Branch)

CALL (Call an AS/400 Program) . .
Calling an OS/400 Program that Uses a
Workstation File
Calling Host Programs that Use Dlsplay Flles
Calling CL Commands . . .

CALLB (Call a Function)

CALLP (Call a Prototyped Procedure or Program)

CASxx (Conditionally Invoke Subroutine) .

451

. 452
. 455
. 457
. 458
. 459
. 460

. 461
. 462
. 463
. 464
. 465
. 466
. 468
. 470
. 471
. 472
. 474
. 475
. 478
. 480

. 483
. 484

. 486
. 487
. 488
. 489
. 490
. 492
. 493
. 494
. 495
. 497
. 498
. 499

501
. 501
. 502
. 505
. 506
. 508

508
509

. 510
. 511
. 512
. 513
. 515
. 517

. 518

518

. 520
. 521

522

. 524

CAT (Concatenate Two Strings)

CHAIN (Random Retrieval from a Frle)
Retrieving Data from a File or Record Format
Retrieving a Record from a Subfile Part

CHECK (Check Characters)

CHECKR (Check Reverse) .

CLEAR (Clear) .

Clearing Variables .

Clearing Record Formats

Clearing Entry Fields on a Wmdow

Clearing Subfiles .

CLOSE (Close Files) .

CLSWIN (Close Window)

COMMIT (Commit) .

COMP (Compare) .

DEALLOC (Free Storage)

DEFINE (Field Definition) .

Defining a Field Based on Another Freld

Defining a Field as a Data Area
DELETE (Delete Record)

DIV (Divide) .

DO (Do) .

DOU (Do Until)

DOUxx (Do Until).

DOW (Do While) .

DOWxx (Do While)

DSPLY (Display Message Wlndow)

ELSE (Else) .

ELSEIF (Else If).

ENDyy (End a Structured Group)

ENDACT (End of Action Subroutine)

ENDSR (End of User Subroutine).

EVAL (Evaluate Expression) . .

EVALR (Evaluate expression, right ad]ust).

EXCEPT (Calculation Time Output) .

EXSR (Invoke User Subroutine)

Coding User Subroutines .
EXTRCT (Extract Date/Time/ Trmestamp) .
FEOD (Force End of Data)
FOR (For) .

GETATR (Retrieve Attrlbute)

GOTO (Go To) .

IF (If) .

TFxx (If) .

IN (Retrieve a Data Area)

ITER (Iterate) .

KFLD (Define Parts of a Key)

KLIST (Define a Composite Key) .

LEAVE (Leave a Do/For Group) .

LEAVESR (Leave a Subroutine)

LOOKUP (Look Up a Table or Array Element)

MONITOR (Begin a Monitor Group)

MOVE (Move) . .

MOVE Examples (Part 1) .o

MOVE Examples (Part 2): Variable- and

Fixed-length Fields R

MOVE Examples (Part 3)

MOVE Examples (Part 4)

MOVE Examples (Part 5)

MOVEA (Move Array)

. 526
. 529

529

. 532
. 533
. 536
. 539
. 539
. 540
. 540
. 540
. 542
. 543
. 544
. 545
. 546
. 548
. 548
. 548
. 551
. 553
. 554
. 556
. 557
. 559
. 560
. 562
. 564
. 565
. 566
. 568
. 569
. 571
. 573
. 575
. 577
. 577
. 579
. 580
. 581
. 584
. 585
. 586
. 587
. 589
. 591
. 593
. 594
. 596
. 598
. 599
. 602
. 604
. 605

. 611
. 614
. 616
. 618
. 619

MULT (Multiply) .

MVR (Move Remainder)

OCCUR (Set/Get Occurrence of a Data Structure)
ON-ERROR (On Error) . e
OPEN (Open File for Processmg)

ORxx (Or) . -

OTHER (Otherwise Select)

OUT (Write a Data Area)

PARM (Identify Parameters)

PLIST (Identify a Parameter Llst)
POST (Post) . Lo
READ (Read a Record) .

READC (Read Next Changed Record)

READE (Read Equal Key) .

READP (Read Prior Record)

READPE (Read Prior Equal)

READS (Read Selected) . .

REALLOC (Reallocate Storage with New Length)
RESET (Reset) .

RETURN (Return to Caller)
ROLBK (Roll Back)

SCAN (Scan String)

SELECT (Begin a Select Group)
SETATR (Set Attribute) .

SETGT (Set Greater Than) .
SETLL (Set Lower Limit)
SETOFF (Set Indicator Off) .
SETON (Set Indicator On) . .
SHOWWIN (Display Window)
SORTA (Sort an Array) .
SORT (Square Root) . .
START (Start Component or Call Local Program)

STOP (Stop Component).
SUB (Subtract) . . .
SUBDUR (Subtract Duratlon)

Character, Graphic, and UCS-2 MOVEA
Operations o
Numeric MOVEA Operatlons . .

Zoned Decimal MOVEA Operations.
Specifying Figurative Constants with MOVEA

MOVEL (Move Left) .

Factor 2 is the Same Length as the Result Fleld
Factor 2 is Longer than the Result Field

Factor 2 is Shorter than the Result Field

Factor 2 is Shorter than the Result Field and P is
Specified . .

MOVEL Examples: Varlable length /
Fixed-length Moves

General Rules about Parameters .
Passing Parameters with CALL, CALLB, and
START L.

Reading from a File .
Reading from a Window

Resetting Entry Flelds and Statlc Text on a
Window .
Resetting Elements in a Structure and Varlables

Starting Components .
Calling Local Programs .

Subtract a duration
Calculate a duration .
Possible error situations .

Contents

. 619
. 619
. 620

620
. 626
626

. 627
. 627

. 627

. 632
. 635

. 636
637

. 641
. 642
. 644
. 645
. 646
. 647
. 648

. 648
. 650
. 652
. 653
. 653
. 655
. 656
. 658
. 661
. 663

. 666
666

. 668

. 668

669

. 671
. 672
. 673
. 676
. 678
. 679
. 681
. 684
. 684
. 685
. 686
. 688

689

. 689
. 690
. 691
. 692
. 693
. 693
. 694
. 695

ix

SUBDUR Examples . 695
SUBST (Substring). . 696
TAG (Tag) . 699
TEST (Test Date/ Tlme / Tlmestamp) . 700
TESTB (Test Bit) .o . . 703
TESTN (Test Numeric) . 705
TESTZ (Test Zone). . 706
TIME (Time of Day) . . . 707
UNLOCK (Unlock a Data Area or Release a
Record) . Ce e . 709

Unlocking data areas . . 709

Releasing record locks . 709
UPDATE (Modify Existing Record) . 711
WHEN (When True Then Select) . . 713
WHENXxx (When True Then Select) . . 714
WRITE (Create New Records) . . 717

Writing to a File . 717

Writing to a Window . . 718

Writing to a Subfile . . 718
XFOOT (Summing the Elements of an Array). . 719
XLATE (Translate) 720
Z-ADD (Zero and Add) . . 722
Z-SUB (Zero and Subtract) . . 723
Part 5. Appendixes . . 725
Appendix A. Restrictions . 727
Appendix B. Collating Sequences . 729
EBCDIC Collating Sequence . 729
ASCII Collating Sequence . 732

Appendix C. Supported CCSID Values 735

Appendix D. Comparlng RPG
Compilers .

X VisualAge RPG Language Reference

. 737

RPG Cycle .
VisualAge RPG Indlcators .
Unsupported Indicators .

Unsupported Words .

Compiler Directives . .

Error and Exception Handhng

Data
Data Types and Data Formats
Literals and Named Constants.
Data Areas .

Arrays and Tables .
Edit Codes .

Files

Specifications .

Control Spec1f1cat10ns .
File Description Specifications .
Definition Specifications .
Input Specifications

Built-in Functions .

Operation codes .

Similar Operation Codes
Unsupported Operation Codes

VisualAge RPG Specific Operation Codes .

Conversions between CCSIDs .

Notices .
Programming Interface Informatlon
Trademarks and Service Marks

Glossary
Bibliography.

Index .

. 737
. 737
. 737
. 738
. 738
. 738
. 738
. 738
. 739
. 740
. 740
. 740
. 741
. 741
. 741
. 742
. 743
. 744
. 745
. 745
. 745
. 745
. 746
. 746

. 747
. 748
. 748
. 751
. 763

. 765

About This Book

This book provides information about the RPG IV language as implemented using
the VisualAge RPG compiler with the Windows® operating system.

This book contains:

* Language fundamentals, such as, the character set, symbolic names, reserved
words, compiler directives, and indicators

* Data types and data formats

* Error and exception handling

¢ Subprocedures

* Specifications

* Built-in functions, expressions, and operation codes.

This book is for programmers who are familiar with the VisualAge RPG
programming language.

This reference provides a detailed description of the VisualAge RPG language. It
does not provide information on how to use the VisualAge RPG compiler or how
to convert ILE RPG programs to VisualAge RPG programs. For more information
on these topics, see Programming with VisualAge RPG, SC09-2449-05.

Before using this book, you should be familiar with the tasks for a VisualAge RPG
application. Refer to Programming with VisualAge RPG and the online help.

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up iSeries and
AS/400e technical information. You can access the Information Center in two ways:
¢ From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter
¢ From CD-ROMs that ship with your OS/400 order:

iSeries Information Center, SK3T-4091-00. This package also includes the PDF
versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,
SK3T-4092-00, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java ™ TCP/IP, Web serving, and secured networks. It also includes
links to related IBM® Redbooks and Internet links to other IBM Web sites such as
the Technical Studio and the IBM home page.

The VisualAge RPG Library

The VisualAge RPG library contains the following publications:
Programming with VisualAge RPG

This book contains specific information about creating applications with VisualAge
RPG. It describes the steps you have to follow at every stage of the application

© Copyright IBM Corp. 1994, 2005 xi

development cycle, from design to packaging and distribution. Programming
examples are included to clarify the concepts and the process of developing
VisualAge RPG applications.

VisualAge RPG Parts Reference

This book provides information on the VisualAge RPG parts, part attributes, part
events, and event attributes. It is a reference for anyone who is developing
applications using VisualAge RPG.

VisualAge RPG Language Reference

This book provides information about the RPG IV language as implemented using

the VisualAge RPG compiler. It contains:

* Language fundamentals such as the character set, symbolic names and reserved
words, compiler directives, and indicators

* Data types and data formats

* Error and exception handling

* Specifications

* Built-in functions, expressions, and operation codes.

For an overview of the entire product, see Getting Started with WebSphere
Development Studio Client for iSeries.

For a list of related publications, see the [Bibliography|at the end of this book.

You can also find the most current information about IBM WebSphere
Development Studio Client for iSeries on the following online source:

The Development Studio Client Home Page
ibm.com/software/ad/wdsc/

How to Send Your Comments

Your feedback is important in helping us to provide the highest quality
information possible. IBM welcomes any comments about this book or any other
iSeries documentation.

 If you prefer to send comments by mail, use the following address:

IBM Canada Ltd. Laboratory
Information Development
D1/817/8200/MKM

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

* If you prefer to send comments electronically, use this e-mail address:
toreador@ca.ibm.com

 If you prefer to send comments by fax, use this number:
1-845-491-7727

Be sure to include the following:

¢ The name of the book

* The publication number of the book

¢ The page number or topic to which your comment applies.

xii VisualAge RPG Language Reference

Accessing Online Information

VisualAge RPG contains a variety of online books and online help. You can access
the help while you are using the product, and can view the books either while you
are using the product, or independently.

Using Online Books

To view an online book, either:

* Select the name of the book from the Help pull-down menu of the VisualAge
RPG GUI Designer or the editor window.

* Access the books from the Start menu. Select Programs » IBM WebSphere
Development Studio Client for iSeries. Then select Documentation.

Publications in PDF Format

VisualAge RPG publications are available in Portable Document Format (PDF)
from the iSeries Information Center at URL
http://www.ibm.com/eserver/iseries/infocenter .

Note: You need the Adobe Acrobat Reader, Version 3.01 or later for Windows, to
view the PDF format of our publications on the workstation. If your location
does not have the reader, you can download a copy from the Adobe
Systems Web site (http://www.adobe.com).

The following VisualAge RPG publications are available in PDF format:
* Programming with VisualAge RPG

* VisualAge RPG Parts Reference

 VisualAge RPG Language Reference

For information on the product, see Getting Started with WebSphere Development
Studio Client for iSeries, SC09-2625-06.

Using Online Help

Online help is available for all areas of VisualAge RPG. To get help for a particular
window, dialog box, or properties notebook, select the Help push button (when
available).

Note: To view help that is in HTML format, your workstation must have a
frames-capable Web browser, such as Netscape Navigator 4.04 or higher, or
Microsoft® Internet Explorer 4.01 or higher. (Recommended browser is
Netscape Navigator 4.6 or Internet Explorer 5.0)

Using context-sensitive help

To receive context-sensitive help at any time, press F1. The help that appears is
specific to the area of the interface that has input focus. Input focus can be on
menu items, windows, dialog boxes, and properties notebooks, or on specific parts
of these.

For context-sensitive help on dialog boxes, click on the question mark (when
available) in the top right-hand corner of the window. A question mark will appear
beside the mouse arrow. Click on a word or field and help information on that
specific field will be displayed.

About This Book Xiii

Using language-sensitive help
To receive language sensitive help, press F1 in an edit window. If the cursor is on
an operation code, you receive help for that operation code; otherwise, you receive

help for the current specification.

xiv VisualAge RPG Language Reference

What’s New in Version 6.0

This publication includes information from previous release Readmes and other
technical corrections. Changes are noted by a vertical bar ().

Changes include:

New built-in function %SUBARR (assign to, sort, or return, a subarray).

Direct conversion of date/time/timestamp to numeric, using %DEC.

Second parameter for %TRIM, %TRIMR and %TRIML indicating what characters
to trim.

New prototype option OPTIONS(*TRIM) to pass a trimmed parameter.
Relaxation of the rules for using a result data structure for I/O to
externally-described files and record formats.

© Copyright IBM Corp. 1994, 2005 XV

xvi VisualAge RPG Language Reference

Part 1. Introduction to the VisualAge RPG Language

This section describes some of the basic elements of the VisualAge® RPG (VARPG)
language such as:

* Character set

* Symbolic names and reserved words

e Compiler directives

* Indicators

* Subprocedures

© Copyright IBM Corp. 1994, 2005 1

2 VisualAge RPG Language Reference

Chapter 1. Symbolic Names and Reserved Words

The valid character set for the VisualAge RPG language consists of the following:
letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

Lowercase letters in symbolic names can be used, however, they
are translated to uppercase during compilation.

numbers 0123456789
characters +-*, &/ $#H:@_><=()%
The blank character

Symbolic Names

A symbolic name uniquely identifies specific data in a program or procedure. Its
purpose is to allow you to access that data. The following rules apply to all
symbolic names:

© Copyright IBM Corp. 1994, 2005

The first character of the name must be alphabetic, $, #, or @

The remaining characters must be alphabetic, numeric, or the underscore (_)
The name must be left-adjusted in the entry on the specification form except in
fields which allow the name to float (definition specification, keyword fields,
and the extended-factor 2 field)

A symbolic name cannot be a reserved word

A symbolic name can be from 1 to 4096 characters. The practical limits are
determined by the size of the entry used for defining the name. A name that is
up to 15 characters can be specified in the Name entry of the definition or
procedure specification. For names longer than 15 characters, use a continuation
specification.

A symbolic name must be unique within the procedure in which it is defined.

lists symbolic names and any additional restrictions.

Table 1. Restrictions for Symbolic Names

Arrays An array name in a standalone field cannot begin with the
letters TAB. Array names may begin with TAB if they are either
prototyped parameters or data structures defined with the DIM
keyword.

Conditional compilation | Symbolic names used for conditional compilation have no
names relationship to other symbolic names. Names for conditional
compilation can be up to 50 characters long.

Data structures A data structure name can only be defined once.

Exception output records | The same EXCEPT name can be assigned to more than one
exception output record.

Fields ¢ A field name can be defined more than once if each definition
using that name has the same data type, the same length, and
the same number of decimal positions. All definitions using
the same name refer to a single field (that is, the same area in
storage). However, it can be defined only once on the
definition specification.

A field can be defined as a data structure subfield only once
unless the data structure is qualified (defined with
QUALIFIED or LIKEDS). In this case, when the subfield is
used, it must be qualified (specified in the form dsname.
subfieldname).

* A subfield name cannot be specified as the result field on an
*ENTRY PLIST parameter.

The VisualAge RPG compiler creates global fields for static text
and entry field parts with the same name as the part. Any
explicit definitions of these field names in your source must

match.
Key field lists There are no additional restrictions to key field list (KLIST)
names.
Labels There are no additional restrictions to label names.
Named constants There are no additional restrictions to named constants.
Parameter lists There are no additional restrictions to parameter list (PLIST)
names.
Prototype names There are no additional restrictions to prototype names.
Record names A record name can exist in only one file in the program.
Subroutines See ['BEGACT (Begin Action Subroutine)” on page 508| for a

description of action subroutine names and [“BEGSR (Begin User|
[Subroutine)” on page 511 for a description of user subroutine

names.

Tables A table name can contain from 3 to 10 characters, must begin
with the characters TAB, and cannot be defined in a
subprocedure.

Windows Window names defined in the component’s GUI definition are
reserved as symbolic names in the program, even within
procedures.

4 VisualAge RPG Language Reference

Words with Special Functions and Reserved Words

The following is a summary of words with special functions.

Built-in Function Special Words

The *ALL and *NULL special words are used with built-in functions. For more
information on built-in functions, see [“Built-In Functions (Alphabetically)” on page]

Date and Time Special Words

The following special words are used with Date, Time, and Timestamp fields:

*CDMY *CMDY *CYMD
*CYMDO *DMY *ISO
*LONGJUL *MDY *EUR
*JIS *USA *HMS
*JUL *YMD

For more information on date formats, see ['DATEMT (fmt{separator})” on page 227

Expressions

The NOT special word can be used with expressions. For more information on

expressions, see [Chapter 24, “Expressions,” on page 381

File Positioning Special Words

The *START and *END special words can be used to position in a file. For more
information on file positioning, see [“File Positioning” on page 6|

Implied Literals

Figurative constants are implied literals that allow specifications without referring
to lenith. For more information on figurative constants, see [“Figurative Constants”]

*ALLX'x1.. *DARKGREEN *OFF
*ALLG’K1K?2’ *DARKGRAY *ON
*ALL’X.. *DARKPINK *OK
*ABORT *DARKRED *PALEGRAY
*BLACK *ENTER *PINK
*BLANK *GREEN *RED
*BLANKS *HALT *RETRY
*BLUE *HIVAL *WARN
*BROWN *INFO *WHITE
*CANCEL *IGNORE *YELLOW
*CYAN *LOVAL *YESBUTTON
*DARKBLUE *NOBUTTON *ZERO
*DARKCYAN *NULL *ZEROS

Chapter 1. Symbolic Names and Reserved Words 5

Indicator Reserved Words

The *IN and *INxx reserved words allow indicators to be referred to as data. For
more information, see [“Indicators Referred to as Data” on page 26|

Job Date Reserved Words

The following reserved words allow you to access the job date, or a portion of it.
For more information, see [“User Date Special Words” on page 8

UDATE *DATE
UMONTH *MONTH
UYEAR *YEAR
UDAY *DAY

Page Numbering Reserved Words

The PAGE and PAGE1-PAGE? reserved words can be used for numbering the
pages of a report or to sequentially number output fields. For more information,
see ['PAGE, PAGE1-PAGE7 Reserved Words” on page 7|

Parameter Passing Special Words

The *OMIT, *RIGHTAD]J, *STRING, *TRIM, and *VARSIZE special words are used
for parameter passing.

Placement of Fields

*PLACE allows repetitive placement of fields in an output record. For more
information, see ["*PLACE” on page 327

Writing all Fields

*ALL allows all fields that are defined for an externally described file to be written
on output. For a more information on figurative constants, see
[Figurative Constants” on page 154

File Positioning
*START and *END change the position of an OS/400" database file.
If the file is a non-keyed file, *START and *END position to the start and end of

the file, respectively. If the file is a keyed file, *START and *END position to the
start and end of the keyed access path, respectively.

6 VisualAge RPG Language Reference

PAGE, PAGE1-PAGE7 Reserved Words

PAGE is used to number the pages of a report, to serially number the output
records in a file, or to sequentially number output fields. It does not cause a page
eject.

The eight possible PAGE fields (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGES5,
PAGES6, and PAGE?7) may be used to number different types of output pages or to
number pages for different printer files.

PAGE fields can be specified in positions 30 through 43 of the output specifications
or in the input or calculation specifications.

The following rules apply to the PAGE fields:

* Page numbering, unless otherwise specified, starts with 1

* For each new page, 1 is automatically added

* PAGE fields can be any length

* PAGE fields must have zero decimal positions

* When a PAGE field is only specified in the output specifications, it is treated as
a four digit, numeric field with zero positions.

You can use the PAGE words in a variety of ways:
* To start at a page number other than 1, set the value of the PAGE field to one
less than the desired starting page.
* To restart page numbering at any point in a job:
— Specify blank after (position 45 of the output specifications)
— Specify the PAGE field as the result field of an operation in the calculation
specifications
— Specify an output indicator in the output field (see [Figure 2). When the
output indicator is set on, the PAGE field is reset to 1. Output indicators
cannot be used to control printing of a PAGE field because a PAGE field is
always written.

— Specify the PAGE field as an input field (see [Figure 1.

IFiTename++Sq. .RiPOS1+NCCPOS2+NCCPOS3+NCC. ot vv v v in it iieiieieeaennnnnns

PP Fmt+SPFrom+To+++DcField+++++++++. .. . FrPIMnZr. ...
TINPUT 50 1 CP
I 2 5 OPAGE

Figure 1. Page Record Description

OFilename++EF. .NOINO2NO3EXxcnam++++B++A++Sh+Sa+. . ..o v i i i i i i enenen..
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0* When indicator 15 is on, the PAGE field is set to zero and 1 is

0* added before the field is printed. When indicator 15 is off, 1

0* 1is added to the contents of the PAGE field before it is printed.
OPRINT E 99 01

0 15 PAGE 1 75

Figure 2. Resetting the PAGE Fields to Zero

Chapter 1. Symbolic Names and Reserved Words 7

User Date Special Words

A date for a program can be specified at runtime by using a user date special
word. The user date special words are: UDATE, *DATE, UMONTH, *MONTH,
UDAY, *DAY, UYEAR, and *YEAR.

The user date special words access the job date that is specified in the job

description. The user date can be written out as output.

The user date special words are set when the application starts running. They are
not updated when the program runs over midnight or when the job date changes.

Use the TIME operation to obtain the time and date while the program is runnin
For more information on the TIME operation, see [“TIME (Time of Day)” on page|

707.

2.

Use the DATEDIT| keyword on the control specification to specify the date formats

of UDATE and *DATE:

DATEDIT UDATE format *DATE format

*MDY *MDY *USA (mmddyyyy)
*DMY *DMY *EUR (ddmmyyyy)
*YMD *YMD *ISO (yyyymmdd)

If this keyword is not specified, the default is *MDY.

The following restrictions apply to user date fields:

* User date fields are numeric fields, not date type fields.
* User date fields cannot be modified. This means that they cannot be used:
— In the result field of calculations

- As input fields

As factor 1 of PARM operations
— As factor 2 index of LOOKUP operations
With blank after in output specifications

¢ The user date fields UMONTH, *MONTH, UDAY, *DAY, UYEAR, and *YEAR

cannot be edited by the Y edit code in position 44 of the output specifications.

8 VisualAge RPG Language Reference

You can use the user date words in a variety of ways:

Operation codes using numeric fields

The user date special words can be used in factor 1
or factor 2 of the calculation specifications for
operation codes that use numeric fields.

Editing UDATE and *DATE

UDATE and *DATE can be edited when they are
written if the & edit code is specified in position 44
of the output specification. The DATEDIT keyword
on the control specification determines the format
and the separator character to be inserted.

Printing 2-position date fields

To print a 2-position date field, specify UMONTH,
*MONTH UDAY, *DAY, and UYEAR on the output
specifications.

Printing 4-position date fields

To print a 4-position date field, specify UMONTH,
*MONTH UDAY, *DAY, and UYEAR on the output
specifications.

Printing 6-position date fields

To print a 6-position date field, specify UDATE on
the output specifications. Three different date
formats can be used: Month/day/year,
Year/month/day, Day/month/year. The DATEDIT
keyword on the control specification determines the
format.

Printing 8-position date fields

To print a 8-position date field, specify *DATE on the
output specifications. The year is four digits. Three
different date formats can be used: Month/day/year,
Year/month/day, Day/month/year. The DATEDIT
keyword on the control specification determines the
format.

Printing the day

To print only the day, specify UDAY or *DAY on the
output specifications.

Printing the month

To print only the month, specify UMONTH or
*MONTH on the output specifications.

Printing the year

To print only the year, specify YEAR or *YEAR on
the output specifications.

Chapter 1. Symbolic Names and Reserved Words 9

10 VisualAge RPG Language Reference

Chapter 2. Compiler Directives

The compiler directive statements|/FREE... /END-FREE| denote a free-form
calculation specification block. The compiler directives |/ TITLE} [/EJECT} [/SPACE]
|/COPY|and [/INCLUDE| and |[/INCLUDE| allow you to specify heading information
for the compiler listing, to control the spacing of the compiler listing, and to insert
records from other file members during a compile. The conditional compiler
directive statements [/ DEFINE} |/ UNDEFINE} [/ELSEIH |/ELSE} and [/EOH
allow you to select or omit source records. The compiler directive statements must
precede any compile-time arrays or table records.

/FREE... /END-FREE (Positions 7-11)

Positions Entry
7-11 /FREE or /END-FREE
12-80 Blank

The /FREE compiler directive specifies the beginning of a free-form calculation
specifications block. /END-FREE specifies the end of the block. Positions 12
through 80 must be blank. The remaining positions may be used for comments.
See |“Free-Form Syntax” on page 318| for information on using free-form
statements.

ICOPY or /INCLUDE)

The /COPY and /INCLUDE directives have the same purpose and the same
syntax. You can freely choose which directive to use.

The /COPY and /INCLUDE compiler directives cause records from other files to
be inserted, at the point where the directive occurs, within the file being compiled.
This file can exist on your workstation or on an iSeries server. The inserted records
can contain any valid specification, including /COPY and /INCLUDE, up to the
maximum nesting depth specified by the COPYNEST keyword (32 when not
specified).

To facilitate application maintenance, you may want to place the prototypes of
exported procedures in a separate source member. If you do, be sure to place a
/COPY or /INCLUDE directive for that member in both the module containing
the exported procedure and any modules that contain calls to the exported
procedure.

The copy directive is not printed on the compiler listing, but is replaced by the
contents of the specified file. All copied files appear in the COPY member table of
the compiler listing.

/COPY members are considered fixed-form by default, even if the /COPY
directive is coded within a free-form group. If the /COPY member will contain
free-form specifications, these must be delimited with /FREE and /END-FREE
directives.

© Copyright IBM Corp. 1994, 2005 11

/FREE... /[END-FREE (Positions 7-12)

Copying Files from an iSeries Server

To copy files from an iSeries server, enter the /COPY statement as follows:

/COPY or /INCLUDE followed by exactly one space

*REMOTE followed by exactly one space

The location of the member to be copied (merged). The format is:

libraryname/filename, membername

— A member name must be specified.

— If a file name is not specified, QRPGLESRC is the default.

— A comma separates filename and membername. The comma must be
included.

— If a library is not specified, the library list is searched for the file. All
occurrences of the specified source file in the library list are searched for the
member until it is located or the search is complete.

— If a library is specified, a file name must also be specified.

Optionally, at least one space and a comment.

The following are examples of the /COPY statement for copying OS/400 files:

To copy the member MBRI1 in the source file QRPGLESRC, enter the following
statement. Note that the current library list is used to search for file
QRPGLESRC:

C/COPY *REMOTE MBR1

To copy the member MBRI1 in the source file SRCFIL, enter the following
statement. Note that the current library list is used to search for file SRCFIL:
I/COPY *REMOTE SRCFIL,MBR1

To copy the member MBRI in the source file SRCFIL in the library SRCLIB,
enter the following statement:

0/COPY *REMOTE SRCLIB/SRCFIL,MBR1

To copy the member "mbrl” in file "srcfil” in library "srclib”, enter the following
statement:

0/COPY *REMOTE "srclib"/"srcfil","mbrl"

Copying Files from a Workstation

To copy files from a local workstation, enter the /COPY statement as follows:

/COPY or /INCLUDE followed by exactly one space
The location of the member to be copied. The format is:
Drive:\pathname\member.CPY

Drive and path are optional.

Optionally, at least one space and a comment.

The following example illustrates the /COPY statement for copying local files:
0/COPY D:\PROJECTI\INCLUDES\TOOLS1.CPY

Nested /COPY or /INCLUDE

Nesting of /COPY and /INCLUDE directives is allowed. A /COPY or /INCLUDE
member may contain one or more /COPY or /INCLUDE directives (which in turn
may contain further /COPY or /INCLUDE directives and so on). The maximum
depth to which nesting can occur can be set using the COPYNEST control
specification keyword. The default maximum depth is 32.

You must ensure that your nested /COPY or /INCLUDE files do not include each
other infinitely. Use conditional compilation directives at the beginning of your
/COPY or /INCLUDE files to prevent the source lines from being used more than
once.

12 VisualAge RPG Language Reference

/FREE... /[END-FREE (Positions 7-12)

Conditional Compilation Directives

The conditional compilation directive statements allow you to conditionally include

or exclude sections of source code from the compilation.

* Condition-names can be added or removed from a list of currently-defined
conditions using the defining condition directives /DEFINE and /UNDEFINE.

* Conditional expressions DEFINED(condition-name) and NOT
DEFINED(condition-name) are used within testing condition /IF groups.

¢ Testing conditional directives, /IF, /ELSEIF, /ELSE, and /ENDIF, control which
source lines are to be read by the compiler.

* The /EOF directive tells the compiler to ignore the rest of the source lines in the
current source member.

Defining Conditions

Condition-names can be added to or removed from a list of currently-defined
conditions using the defining condition directives /DEFINE and /UNDEFINE.

/IDEFINE (Positions 7-13)

The /DEFINE compiler directive defines conditions for conditional compilation.
The entries in the condition-name area are free-format (do not have to be left
justified). The following entries are used for /DEFINE:

Positions Entry

7-13 /DEFINE

14 Blank

15 - 80 condition-name
81 - 100 Comments

The /DEFINE directive adds a condition-name to the list of currently-defined
conditions. A subsequent /IF DEFINED(condition-name) would be true. A
subsequent /IF NOT DEFINED(condition-name) would be false.

/UNDEFINE (Positions 7-15)
Use the /UNDEFINE directive to indicate that a condition is no longer defined.
The entries in the condition-name area are free-format (do not have to be left

justified).

Positions Entry

7-15 /UNDEFINE
16 Blank

17 - 80 condition-name
81 - 100 Comments

The /UNDEFINE directive removes a condition-name from the list of
currently-defined conditions. A subsequent /IF DEFINED(condition-name) would
be false. A subsequent /IF NOT DEFINED(condition-name) would be true.

Note: Any conditions specified on the DEFINE parameter will be considered to be

defined when processing /IF and /ELSEIF directives. These conditions can
be removed using the /UNDEFINE directive.

Chapter 2. Compiler Directives 13

/FREE... /[END-FREE (Positions 7-12)

Predefined Conditions

Several conditions are defined for you by the RPG compiler. These conditions
cannot be used with /DEFINE or /UNDEFINE. They can only be used with /IF
and /ELSEIFE.

Conditions Relating to the Compiler Target

COMPILE_WINDOWS
This condition is defined if your program is being compiled to
produce a Windows native program. (EXE or DLL object.)

COMPILE_JAVA
This condition is defined if your program is being compiled to run
in Java.

Conditional Expressions

A conditional expression has one of the following forms:
* DEFINED(condition-name)
* NOT DEFINED(condition-name)

The condition expression is free-format but cannot be continued to the next line.

Testing Conditions

Conditions are tested using /IF groups, consisting of an /IF directive, followed by
zero or more /ELSEIF directives, followed optionally by an /ELSE directive,
followed by an /ENDIF directive.

Any source lines except compile-time data, are valid between the directives of an
/IF group. This includes nested /IF groups.

Note: There is no practical limit to the nesting level of /IF groups.

/IF Condition-Expression (Positions 7-9)
The /IF compiler directive is used to test a condition expression for conditional
compilation. The following entries are used for /IF:

Positions Entry

7-9 /IF

10 Blank

11 - 80 Condition expression
81 - 100 Comments

If the condition expression is true, source lines following the /IF directive are
selected to be read by the compiler. Otherwise, lines are excluded until the next
/ELSEIF, /ELSE or /ENDIF in the same /IF group.

[ELSEIF Condition-Expression (Positions 7-13)
The /ELSEIF compiler directive is used to test a condition expression within an
/IF or /ELSEIF group. The following entries are used for /ELSEIF:

Positions Entry
7-13 /ELSEIF
14 Blank

14 VisualAge RPG Language Reference

/[FREE... /[END-FREE (Positions 7-12)

15 - 80 Condition expression

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, and the condition expression is
true, then source lines following the /ELSEIF directive are selected to be read.
Otherwise, lines are excluded until the next /ELSEIF, /ELSE or /ENDIF in the
same /IF group is encountered.

[ELSE (Positions 7-11)

The /ELSE compiler directive is used to unconditionally select source lines to be
read following a failed /IF or /ELSEIF test. The following entries are used for
/ELSE:

Positions Entry
7-11 /ELSE

12 - 80 Blank

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, source lines are selected until the
next /ENDIF.

If the previous /IF or /ELSEIF was satisfied, source lines are excluded until the
next /ENDIF.

Chapter 2. Compiler Directives 15

/FREE... /[END-FREE (Positions 7-12)

/ENDIF (Positions 7-12)
The /ENDIF compiler directive is used to end the most recent /IF, /ELSEIF, or
/ELSE group. The following entries are used for /ENDIF:

Positions Entry
7-12 /ENDIF
13 - 80 Blank

81 - 100 Comments

Following the /ENDIF directive, if the matching /IF directive was a selected line,
lines are unconditionally selected. Otherwise, the entire /IF group was not
selected, so lines continue to be not selected.

Rules for Testing Conditions
» /ELSEIF, and /ELSE are not valid outside an /IF group.

* An /IF group can contain at most one /ELSE directive. An /ELSEIF directive
cannot follow an /ELSE directive.

» /ENDIF is not valid outside an /IF, /ELSEIF or /ELSE group.

e Every /IF must be matched by a subsequent /ENDIE.

* All the directives associated with any one /IF group must be in the same source
file. It is not valid to have /IF in one file and the matching /ENDIF in another,
even if the second file is in a nested /COPY. However, a complete /IF group can
be in a nested /COPY.

The /EOF Directive

The [/ EOF| directive tells the compiler to ignore the rest of the source lines in the
current source member.

/EOF (Positions 7-10)

The /EOF compiler directive is used to indicate that the compiler should consider
that end-of-file has been reached for the current source file. The following entries
are used for /EOF:

Positions Entry
7-10 /EOF
11 - 80 Blank
81 - 100 Comments

/EOF will end any active /IF group that became active during the reading of the
current source member. If the /EOF was in a /COPY file, then any conditions that
were active when the /COPY directive was read will still be active.

Note: If excluded lines are being printed on the listing, the source lines will
continue to be read and listed after /EOF, but the content of the lines will be
completely ignored by the compiler. No diagnostic messages will ever be
issued after /EOF.

Using the /EOF directive will enhance compile-time performance when an entire

/COPY member is to be used only once, but may be copied in multiple times.
(This is not true if excluded lines are being printed).

16 VisualAge RPG Language Reference

/FREE... /[END-FREE (Positions 7-12)

/EJECT (Positions 7-12)

Use the compiler directive /EJECT to begin a new page on the compiler listing.
Note: /EJECT is not printed on the compiler listing, but is replaced by a new
page. If the compiler listing is already at the top of a new page, a new page

is not printed on the compiler listing.

To specify a new page, enter the /EJECT statement as follows:

Positions Entry

7-12 /EJECT
13-49 Blank
50-100 Comments

/SPACE (Positions 7-12)

Use the compiler directive /SPACE to control line spacing within the source
section of the compiler listing.

Note: /SPACE is not printed on the compiler listing, but is replaced by the
specified line spacing. The line spacing caused by /SPACE is in addition to
the two lines that are skipped between specification types.

To specify heading information, enter the /SPACE statement as follows:

Positions Entry

7-12 /SPACE

13 Blank

14-16 A positive integer value from 1 through 112 that defines the

number of lines to space. If a number greater than 112 is specified,
112 is used as the /SPACE value. If the number is greater than the
number of lines remaining on the current page, subsequent
specifications begin at the top of the next page.

17-49 Blank
50-100 Comments

[TITLE (Positions 7-12)

Use the compiler directive /TITLE to specify heading information (such as security
classification or titles). This title information appears at the top of each page of the
compiler listing.

A program can contain more than one /TITLE statement. Each /TITLE statement
provides heading information for the compiler listing until another /TITLE
statement is encountered. A /TITLE statement must be the first specification
encountered in order to print information on the first page of the compiler listing.
The information specified by the /TITLE statement is printed in addition to
compiler heading information.

Note: /TITLE is not printed on the compiler listing, but is replaced by the heading
information. The /TITLE statement causes a skip to the next page before the
title is printed.

Chapter 2. Compiler Directives 17

/FREE... /[END-FREE (Positions 7-12)

To specify heading information, enter the /TITLE statement as follows:

Positions Entry

7-12 /TITLE

13 Blank

14-100 Title information

18 VisualAge RPG Language Reference

Chapter 3. Indicators

An indicator is a one byte character field which contains either '1” (on) or ‘0" (off).
Indicators are generally used to indicate the result of an operation or to condition
the processing of an operation.

Indicators are defined either by an entry on the specification. The positions on the
specification where an indicator is defined determine how the indicator is used. An
indicator that has been defined can then be used to condition calculation and
output operations.

The indicator format can be specified on the definition specifications to define
indicator variables. For a description of how to define character data in the
indicator format, see [“Character Data Type” on page 110/ and [“Position 40 (Internal|
[Data Type)” on page 263

The state of most indicators can be changed by calculation operations. All
indicators can be set on with the SETON operation code and set off with the
SETOFF operation code.

This section describes:

* Indicators defined on the VisualAge RPG specifications (record identifying
indicators, field indicators, resulting indicators)

* The Last Record Indicator (LR)

* Assigning field record relation indicators

* Conditioning calculations

* Using indicators in expressions

* Conditioning output

* Indicators referred to as data.

Indicators Defined on the Specifications

The following indicators can be defined on the specifications:

* Record identifying indicator (positions 21 and 22 of the input specifications)
* Field indicator (positions 69 through 74 of the input specifications)

* Resulting indicator (positions 71 through 76 of the calculation specifications)
* *IN array, *IN(xx) array element or *INxx field.

The defined indicator can then be used to condition operations in the program.

Record Identifying Indicators

A record identifying indicator is defined by an entry in positions 21 and 22 of the
input specifications and is set on when the corresponding record type is selected
for processing. That indicator can then be used to condition certain calculation and
output operations. Record identifying indicators do not have to be assigned in any
particular order.

The record identifying indicators are 01-99 and LR.

For an externally described file, a record identifying indicator is optional. If it is
specified, it follows the same rules as for a program described file.

© Copyright IBM Corp. 1994, 2005 19

When a record type is selected for processing, the corresponding record identifying
indicator is set on. All other record identifying indicators are off except when a file
operation code is used to retrieve records from a file. The record identifying
indicator is set on after the record is selected, but before the input fields are moved
to the input area. Indicators can be set off at any time.

If file operation code is used on the calculation specifications to retrieve a record,
the record identifying indicator is set on as soon as the record is retrieved from the
file. It is possible to have several record identifying indicators for the same file, as
well as record-not-found indicators, set on concurrently if several operations are
issued to the same file.

Rules for Assigning Record ldentifying Indicators

The following rules apply when assigning record identifying indicators to records

in a program described file:

* The same indicator can be assigned to two or more different record types if the
same operation is to be processed on all record types. To do this, specify the
record identifying indicator in positions 21 and 22, and specify the record
identification codes for the various record types in an OR relationship.

* A record identifying indicator can be associated with an AND relationship, but it
must appear on the first line of the group. Record identifying indicators cannot
be specified on AND lines.

* An undefined record (a record in a program described file that was not
described by a record identification code in positions 23 through 46) causes the
program to halt.

* A record identifying indicator can be specified as a record identifying indicator
for another record type, as a field indicator, or as a resulting indicator. No
diagnostic message is issued, but this use of indicators may cause erroneous
results.

The following rules apply when assigning record identifying indicators to records

in an externally described file:

* AND/OR relationships cannot be used with record format names; however, the
same record identifying indicator can be assigned to more than one record.

* The record format name, rather than the file name, must be specified in
positions 7 through 16.

Field Indicators

A field indicator is defined by an entry in positions 69 and 70, 71 and 72, or 73 and
74 of the input specifications. The field indicators are the general indicators 01-99.

A field indicator can be used to determine if the specified field or array element is

greater than zero, less than zero, zero, or blank:

* Positions 69 through 72 are valid for numeric fields

* Positions 73 and 74 are valid for numeric or character fields

* An indicator specified in positions 69 and 70 is set on when the numeric input
field is greater than zero

* An indicator specified in positions 71 and 72 is set on when the numeric input
field is less than zero

* An indicator specified in positions 73 and 74 is set on when the numeric input
field is zero or when the character input field is blank.

The field indicator can then be used to condition calculation or output operations.

A field indicator is set on when the data for the field or array element is extracted
from the record and the condition it represents is present in the input record. This

20 VisualAge RPG Language Reference

field indicator remains on until another record of the same type is read and the
condition it represents is not present in the input record, or until the indicator is
set off as the result of a calculation.

Rules for Assigning Field Indicators

The following rules apply when assigning field indicators:

¢ Indicators for plus, minus, zero, or blank are set off at the beginning of the
program. They are not set on until the condition (plus, minus, zero, or blank) is
satisfied by the field being tested on the record just read.

* Field indicators cannot be used with entire arrays. However,an entry can be
madefor an array element. Field indicators are allowed for null-capable fields
only if the User control or ALWNULL(*USRCTL) option is used. See
[Null Value Support” on page 137] for information on null value support.

* A numeric input field can be assigned two or three field indicators. However,
only the indicator that signals the result of the test on that field is set on; the
others are set off.

* If the same field indicator is assigned to fields in different record types, its state
(on or off) is always based on the last record type selected.

* When different field indicators are assigned to fields in different record types, a
field indicator remains on until another record of that type is read. Similarly, a
field indicator assigned to more than one field within a single record type
always reflects the status of the last field defined.

* The same field indicator can be specified as a field indicator on another input
specification, as a resulting indicator, as a record identifying indicator, or as a
field record relation indicator. No diagnostic message is issued, but this use of
indicators could cause erroneous results.

¢ If the same indicator is specified in all three positions, the indicator is always set
on when the record containing this field is selected.

Resulting Indicators

Resulting indicators are used by calculation specifications in the traditional format
(C specifications). They are not used by free-form calculation specifications. For
most operation codes, in either traditional format or free-form, you can use built-in
functions instead of resulting indicators. For more information, see
[Functions (Alphabetically)” on page 405

A resulting indicator is defined by an entry in positions 71 through 76 of the
calculation specifications. The purpose of the resulting indicators depends on the
operation code specified in positions 26 through 35. See the individual operation
code in |Chapter 26, “Operation Code Details”| for a description of the purpose of
the resulting indicators. For example, resulting indicators can be used to test the
result field after an arithmetic operation, to identify a record-not-found condition,
to indicate an exception/error condition for a file operation, or to indicate an
end-of-file condition.

The resulting indicators are 01-99 and LR.

Resulting indicators can be specified in three places (positions 71-72, 73-74, and
75-76) of the calculation specifications. The positions in which the resulting
indicator is defined determine the condition to be tested.

In most cases, when a calculation is processed, the resulting indicators are set off,
and, if the condition specified by a resulting indicator is satisfied, that indicator is
set on. However, there some exceptions to this rule, such as[“LOOKUP (Look Up a
[Table or Array Element)” on page 599)“SETOFF (Set Indicator Off)” on page 684
and |“SETON (Set Indicator On)” on page 684 A resulting indicator can be used as

Chapter 3. Indicators 21

a conditioning indicator on the same calculation line or in other calculations or
output operations. When it is used on the same line, the prior setting of the
indicator determines whether or not the calculation is processed. If it is processed,
the result field is tested and the current setting of the indicator is determined (see

[Figure 3.

Rules for Assigning Resulting Indicators

The following rules apply when assigning resulting indicators:

* Resulting indicators cannot be used when the result field refers to an entire
array.

¢ If the same indicator is used to test the result of more than one operation, the
last operation processed determines the setting of the indicator.

* The same indicator can be used to test for more than one condition depending
on the operation specified.

CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C* Two resulting indicators are used to test for the different

C+ conditions in a subtraction operation. These indicators are

C+ used to condition the calculations that must be processed for

Cx a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)
C+ are greater than 40 and is then used to condition all operations

C* necessary to find overtime pay. If Indicator 20 is not on

Cx (the employee worked 40 or more hours), regular pay based on a

C* 40-hour week is calculated.

C*

C HRSWKD SuB 40 OVERTM 3 01020
C*

C N20OPAYRAT MULT (H) 40 PAY 62

C 100VERTM MULT (H) OVRRAT OVRPAY 6 2

C 100VRPAY ADD PAY PAY

C*

Cx If indicator 20 is on (employee worked less than 40 hours), pay
C* based on Tess than a 40-hour week is calculated.

C 20PAYRAT MULT (H) HRSWKD PAY

C*

Figure 3. Resulting Indicators Used to Condition Operations

Last Record Indicator (LR)

The LR indicator can be used to end the program. This indicator is tested at the
end of each action subroutine to determine if the program should be ended. For
more information see ["ENDACT (End of Action Subroutine)” on page 568 |

Using Indicators

Indicators defined as record identifying indicators, field indicators, resulting
indicators, *IN, *IN(xx), or *INxx, can be used to condition files, calculation
operations, or output operations. An indicator must be defined before it can be
used as a conditioning indicator. The status (on or off) of an indicator is not
affected when it is used as a conditioning indicator. The status can be changed
only by defining the indicator to represent a certain condition.

Field Record Relation Indicators

Field record relation indicators are specified in positions 67 and 68 of the input
specifications. The valid field record relation indicators are 01-99.

22 VisualAge RPG Language Reference

Note: Field record relation indicators cannot be specified for externally described
files.

Field record relation indicators associate fields with a particular record type when
that record type is one of several in an OR relationship. The field described on the
specification line is available for input only if the indicator specified in the field
record relation entry is on or if the entry is blank. If the entry is blank, the field is
common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators

Specify a record identifying indicator in positions 67 and 68 to relate a field to a
particular record type. When several record types are specified in an OR
relationship, all fields that do not have a field record relation indicator in positions
67 and 68 are associated with all record types in the OR relationship. To relate a
field to just one record type, you enter the record identifying indicator assigned to

that record type in positions 67 and 68 (see [Figure 4).

An indicator (01 through 99) that is not a record identifying indicator can also be
used in positions 67 and 68 to condition movement of the field from the input area
to the input fields.

IFilename++Sq. .RiP0oS1+NCCPOS2+NCCPOS3+NCC. o v v v eriiiin it ennnnn

Fmt+SPFrom+To+++DcField+++++++++. .. .FrPIMnZr. ...
IREPORT AA 14 1C5

I OR 16 1C6

I 20 30 FLDB

I 2 10 FLDA 07

I*

I* Indicator 07 was specified elsewhere in the program.

I*

I 40 50 FLDC 14

I 60 70 FLDD 16

Figure 4. Field Record Relation

The file in contains two different types of records, one identified by a 5 in
position 1 and the other by a 6 in position 1. The FLDC field is related by record
identifying indicator 14 to the record type identified by a 5 in position 1. The
FLDD field is related to the record type having a 6 in position 1 by record
identifying indicator 16. This means that FLDC is found on only one type of record
(that identified by a 5 in position 1) and FLDD is found only on the other type.
FLDA is conditioned by indicator 07, which was previously defined elsewhere in
the program. FLDB is found on both record types because it is not related to any
one type by a record identifying indicator.

Indicators Conditioning Calculations

Calculation specifications in the traditional format (C specifications) can include
conditioning indicators positions 9 through 11. Conditioning indicators are not
used by free-form calculation specifications.

Indicators that specify the conditions under which a calculation is performed are
defined elsewhere in the program.

Chapter 3. Indicators 23

Positions 7 and 8

Specify blanks, SR, AN or OR in positions 7 and 8 of the calculation specifications.
If positions 7 and 8 are blank, the calculation is processed when specified by the
program logic, by a statement in a subroutine, or by a declarative operation.

Positions 9-11

To specify indicators that control the conditions under which an operation is
processed, specify positions 9 through 11 on the calculation specifications. If N is
specified in position 9, the indicator should be tested for the value of off ('0"). 01-99
or LR can be specified for positions 10 through 11.

Any indicator used in positions 9 through 11 must be previously defined as one of

the following types of indicators:

* Record identifying indicators (input specifications, positions 21 and 22)

* Field indicators (input specifications, positions 69 through 74)

* Resulting indicators (calculation specifications, positions 71 through 76)

* *IN array, *IN(xx) array element, or *INxx field. See [“Indicators Referred to as|
[Data” on page 26| for a description of how an indicator is defined when used
with one of these reserved words.

If the indicator must be off to condition the operation, place an N in position 9.
The indicators in grouped AND/OR lines must all be exactly as specified before
the operation is done.

[Figure 5| and [Figure 6| show examples of conditioning indicators.

IFiTename++Sq..RiPosINCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPIMnZr. . .*
P Fmt+SPFrom+To+++DcField+++++++++. .. .FrPIMnZr. ...

I Field indicators can be used to condition operations. Assume the
I* program is to find weekly earnings including overtime. The over-
I time field is checked to determine if overtime was entered.

Ix If the employee has worked overtime, the field is positive and -
I* indicator 10 is set on. 1In all cases the weekly regular wage

I* is calculated. However, overtime pay is added only if

I* indicator 10 is on.

I*

ITIME AB 01

I 1 7 EMPLNO

I 8 10 OOVERTM 10

I 15 20 2RATE

I 21 25 2RATEOT
CSRNOlFact0r1+++++++0pcode(E)+Extended-factor2+++++++++++++++++++++++++++
C*

C+ Field indicator 10 was assigned on the input specifications.
C+ It is used here to condition calculation operations.

C*
C EVAL (H) PAY = RATE = 40
C 10 EVAL (H) PAY = PAY + (OVERTM * RATEOT)

Figure 5. Conditioning Operations (Field Indicators)

24 VisualAge RPG Language Reference

IFiTename++Sq. .RiPOSI+NCCPOS2+NCCPOS3+NCC. o v v v v in it iieiieiieiaeennn
PP Fmt+SPFrom+To+++DcField+++++++++. .. . FrPIMnZr....

I* A record identifying indicator is used to condition an operation.
I* When a record is read with a T in position 1, the 01 indicator is
I set on. If this indicator is on, the field named SAVE is added
I* to SUM. When a record without T in position 1 is read, the 02

I* indicator is set on. The subtract operation, conditioned by 02,
I* then performed instead of the add operation.

I*

IFILE AA 01 1CT

I OR 02 INCT

I 10 15 2SAVE
CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C* Record identifying indicators 01 and 02 are assigned on the input
C+ specifications. They are used here to condition calculation
C+ operations.

C*

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
c o1 ADD SAVE SUM 8 2

C 02 SUB SAVE SUM 8 2

Figure 6. Conditioning Operations (Record Identifying Indicators)

Indicators Used in Expressions

Indicators can be used as booleans in expressions in the extended-factor 2 field of
the calculation specification. They must be referred to as data (that is, using *IN or
*INxx). demonstrate this.

CSRNO1Factorl+++++++Opcode (E) +Extended-factor2+++++++ttttttttttttttttttt
C+ In these examples, the IF structure is performed only if 01 is on.
C+x *INO1 is treated as a boolean with a value of on or off.

Cx In the first example, the value of the indicator ('0' or '1') is
C+ checked.

C IF *INO1

C* In the second example, the Togical expression B < A is evaluated.
Cx If true, 01 is set on. If false 01 is set off. This is analogous
C* to using COMP with A and B and placing 01 in the appropriate

C* resulting indicator position.

C EVAL *INO1 = B < A

Figure 7. Indicators Used in Expressions

See [Chapter 24, “Expressions,” on page 381|and [“EVAL (Evaluate Expression)” on|
hgage 571| for more information.

Indicators Conditioning Output

Indicators used to specify the conditions under which an output record or an
output field is written must be previously defined in the program. Indicators to
condition output are specified in positions 21 through 29. All indicators are valid
for conditioning output.

The indicators you use to condition output must be previously defined as one of
the following types of indicators:

* Record identifying indicators (input specifications, positions 21 and 22)

* Indicators set by the VisualAge RPG program such as 01-99

Chapter 3. Indicators 25

* *IN array, *IN(xx) array element, or *INxx field.

If an indicator conditions an entire record, enter the indicator on the line that
specifies the record type. If an indicator conditions when a field is to be written,
enter the indicator on the same line as the field name.

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that type of record is checked for
output. If conditioning indicators are specified, one indicator can be entered in
each of the three separate output indicator fields (positions 22 and 23, 25 and 26,
and 28 and 29). If these indicators are on, the output operation is done. An N in
the position preceding each indicator (positions 21, 24, or 27) means that the
output operation is done only if the indicator is not on (a negative indicator). No
output line should be conditioned by all negative indicators; at least one of the
indicators should be positive.

Output indicators can be specified in an AND/OR relationship by specifying
AND/OR in positions 16 through 18. An unlimited number of AND/OR lines can
be used. AND/OR lines can be used to condition output records, but they cannot
be used to condition fields. However, a field can be conditioned with more than
three indicators by using the EVAL operation in calculations. illustrates
this.

CSRNO1Factorl+++++++0pcode (E) +Extended-factor2+++++++ttttttttttttttttttt
C* Indicator 20 is set on only if indicators 10, 12, 14,16, and 18
C* are set on.

C EVAL *IN20 = *IN10 AND *IN12 AND *IN14

C AND *IN16 AND *IN18

C EXCPT

OFilename++EAdANOINOZNO3EXCNAMt+++. o it e et e it ieeneernennnnenonanenns
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

0* QUTFIELD is conditioned by indicator 20, which effectively
0* means it is conditioned by all the indicators in the EVAL
0* operation.

OPRINTER E

0 20 OUTFIELD

Figure 8. Using EVAL with indicators

Indicators Referred to as Data

Another way of referring to and manipulating indicators is to use the *IN and
*INxx reserved words.

*IN
The array *IN is a predefined array of 99 one-position, character elements

representing the indicators 01 through 99. The elements of the array should contain
only the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN(xx) variable-index array element as a
field in an input record, as a result field, or as factor 1 in a PARM operation
defines indicators 01 through 99 for use in the program.

The operations or references valid for an array of single character elements are

valid with the array *IN except that the array *IN cannot be specified as a subfield
in a data structure, or as a result field of a PARM operation.

26 VisualAge RPG Language Reference

*INXxx

The field *INxx is a predefined one-position character field where xx represents
any one of the indicators.

The specification of the *INxx field or the *IN(n) fixed-index array element (where
n=1-99) as a field in an input record, as a result field, or as factor 1 in a PARM
operation defines the corresponding indicator for use in the program.

Specify *INxx wherever a one-position character field is valid. *INxx cannot be

specified as a subfield in a data structure, as the result field of a PARM operation,
or in a SORTA operation.

Chapter 3. Indicators 27

Rules for Specifying Indicators Referred to as Data

The following rules apply to *IN, the array element *IN(xx) or the field *INxx:

* Moving a character '0' (zero) or *OFF to any of these fields sets the
corresponding indicator off.

* Moving a character '1' (one) or *ON to any of these fields sets the corresponding
indicator on.

* Do not move any value, other than '0' (zero) or '1' (one), to *INxx.

* If you take the address of *IN, *INO1 - *IN99, or *IN(index), indicators *INO1 to
*IN99 will be defined. If you take the address of any other indicator, such as
*INLR, only that indicator will be defined.

See for some examples of indicators referred to as data.

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C* When this program is called, a single parameter is passed to

C+ control some logic in the program. The parameter sets the value

C+ of indicator 50. The parameter must be passed with a character

C+ value of 1 or 0.

C*

C *ENTRY PLIST

C *IN50 PARM SWITCH 1
C*

C*

C* Subroutine SUB1 uses indicators 61 through 68. Before the

C* subroutine is processed, the status of these indicators used in
Cx the mainline program is saved. (Assume that the indicators are
Cx set off in the beginning of the subroutine.) After the subroutine
C* 1is processed, the indicators are returned to their original state.

C*

C*

C MOVEA *IN(61) SAV8 8
C EXSR SUB1

C MOVEA SAV8 *IN(61)

C*

C*+ A code field (CODE) contains a numeric value of 1 to 5 and is
C* wused to set indicators 71 through 75. The five indicators are set
C+ off. Field X is calculated as 70 plus the CODE field. Field X is
C* then used as the index into the array *IN. Different subroutines
C* are then used based on the status of indicators 71 through 75.

C*

C MOVEA '00000' *IN(71)

c 70 ADD CODE X 30
C MOVE *0ON *IN(X)

c 71 EXSR CODE1

c 72 EXSR CODE2

c 73 EXSR CODE3

c 74 EXSR CODE4

C 75 EXSR CODE5

Figure 9. Examples of Indicators Referred to as Data

28 VisualAge RPG Language Reference

Summary of Indicators

Table 2. When Indicators Are Set On and Off

Type of Indicator

Set On

Set Off

Record
identifying

Immediately after record is read

By the programmer

Field indicator

By blank or zero in specified fields,
by plus in specified field, or by
minus in specified field.

Before this field status is to be
tested the next time.

Resulting

When the calculation is processed
and the condition that the
indicator represents is met.

The next time a calculation is
processed for which the same
indicator is specified as a resulting
indicator and the specified
condition is not met.

LR

By the programmer.

By the programmer.

Chapter 3. Indicators 29

30 VisualAge RPG Language Reference

Chapter 4. Working with Components

One of three possible target objects can result from a compilation. The result

depends on the control specification keyword used:

* A component is created when the NOMAIN and EXE keywords are not present.

* A utility, or NOMAIN, DLL is created when the NOMAIN keyword is specified.
This DLL contains only RPG subprocedures.

¢ An RPG EXE is created when the EXE keyword is specified. This module
contains a main procedure and subprocedures.

This section describes how to start and stop components, as well as how to
initialize and terminate components. For an overview of creating and using
NOMAIN DLLs and EXEs, see Chapter 6, [Chapter 6, “Subprocedures and|

[Prototypes,” on page 63

Starting and Stopping Components

The START and STOP operation codes allow you to execute multiple components
in an application. The START operation starts a new component in an application.
The STOP operation terminates the execution of a component.

For more information on these operation codes, see [“START (Start Component o1
[Call Local Program)” on page 689 and [“STOP (Stop Component)” on page 691

Initializing Components

A VisualAge RPG application can consist of one or more components. Each
component is started independently. The first (primary) component is started when
the application is run. All subsequent (secondary) components get started by the
user or the program depending on the events that occur and the action subroutines
that handle the events. Secondary components can be started in any order.

The EXE file for the application invokes the primary component. Parameters can
be passed to this component from the command line. Each parameter is converted
from the character string entered to the target data type of the parameters on the
*ENTRY PLIST.

Secondary components are invoked using the START operation code from either
the primary component or from other secondary components. Parameters can be
passed to secondary components using the PARM and PLIST operation codes.
Parameters are not converted for a secondary component.

After a component receives any parameters, the following occurs:

1. The program fields are initialized.

2. Files are opened and data structures, prerun-time arrays and tables are loaded.
3. For any *ENTRY PLIST parameters, the result field is moved to factor 1.

4. If a user initialization subroutine (*INZSR) is specified, it is run. Most operation
dealing with the component’s parts and events will not work at this time
because the component’s run-time environment has not been initialized.

For any *ENTRY PLIST parameters, factor 2 is copied to the result field.

Data structures and variables to be used by the RESET operation are saved.
The component’s run-time environment is initialized.

No o

© Copyright IBM Corp. 1994, 2005 31

8. If action subroutines have been written for them, an initial set of events is
handled for the initial set of windows and their parts. For example, any
window and its parts which have startup attributes specifying "Open
Immediately” cause a CREATE event. Any events generated during the
execution of these action subroutines also invoke any action subroutines written
for them at this time.

Once initialization for a component is complete, the component’s parts are
available to the application. The end user can generate events to invoke action
subroutine in any of the currently opened components.

There are cases where certain operation codes, attributes and the default exception
handler are not allowed during initialization of the application. For example, you
cannot obtain an attribute of a part before the part has been created. For more
information, see [Table 3 on page 35| [Table 4 on page 36} [Table 5 on page 37} and
[Table 6 on page 39|

Terminating Components

Components are terminated by either ending the primary component or by ending
a component which started one or more components. When multiple components
are terminated, the components are terminated in reverse hierarchical order. Each
component has its *TERMSR called (normal termination) in reverse hierarchical
order. Each component, in turn, goes though its cleanup and termination (for
example, closing files).

When a component ends abnormally in a multiple component application, only
that component ends abnormally. Any other components that also get ended, end
normally.

Normal Termination

A component terminates normally in the following situations:
e If LR is on when ENDACT is reached for the root action subroutine or if
RETURN is executed from the root action subroutine.

The root action subroutine is the subroutine at the bottom (or first) of any nested
action subroutines. Nested action subroutines occur when an event invokes a
new action subroutine while executing another action subroutine.

For example, the action subroutine BUTTON+CLICK+WINDOWT1 contains the
SHOWWIN "window?2’ operation. This causes a CREATE event which invokes
the action subroutine WINDOW2+CREATE+WINDOW?2. If another event occurs
while the CREATE event is being handled, (for example, " WINDOWX” SETATR 1
"FOCUS’), then the action subroutine WINDOW2+CREATE+WINDOW?2 is
suspended and action subroutine WINDOWX+FOCUS+WINDOWX is invoked.
The call stack includes the following nested action subroutines:
1. FIELD1+FOCUS+WINDOWX
2. WINDOW2+CREATE+WINDOW2
3. BUTTON+CLICK+WINDOW1 (root action subroutine)
LR is not checked until:
1. The action subroutine WINDOWX+FOCUS+WINDOWX ends
2. The action subroutine WINDOW2+CREATE+WINDOW?2 ends
3. The ENDACT or RETURN operation is performed for the
BUTTON+CLICK+WINDOWT1 action subroutine.
* If STOP is performed on the component. For more information, see
[Component)” on page 691
* If the *PSSR is executed and it ends with one of the following:

32 VisualAge RPG Language Reference

— ENDSR *DEFAULT’ or an equivalent field name. The LR indicator is on at
the end of the root action subroutine.

— ENDSR "*NODEFAULT’ or an equivalent field name. The LR indicator is on
at the end of the root action subroutine.

For more information, see ["ENDSR (End of User Subroutine)” on page 569 and
[‘Component Errors/Exceptions” on page 58
¢ If the default exception handler puts up the message information window and

one of the following choices is made:

— Do Default Processing and the LR indicator is on at the end of the root action
subroutine

— Do Not Do Default Processing and the LR indicator is on at the end of the
root action subroutine

For more information, see [“Component Errors/Exceptions” on page 58|

Chapter 4. Working with Components 33

The following occurs for normal termination:

o If *TERMSR exists, it is run

¢ Files, prerun-time arrays and tables, and data area data structures are written
e All files are closed

* All data area are unlocked.

*TERMSR is a user-written subroutine where any final code execution can occur.
When *TERMSR is invoked, no action subroutines are active and the current
component has been marked as being in termination. This means that few
graphical user interface operations are allowed. See [Table 3 on page 35| [Table 4 on|
[page 36} [Table 5 on page 37, and [Table 6 on page 39

See [“Component Status Codes” on page 58| for a list of status values for normal
component termination.

Abnormal Termination

A component terminates abnormally if any of the following situations occurs:
* The *PSSR is executed and it ends with one of the following:
— ENDSR *ENDCOMP’, ENDSR "*CANCL’, or an equivalent field name
— ENDSR "*ENDAPPL’ or an equivalent field name
¢ The default exception handler puts up the message information window and
one of the following choices is made:
— Terminate Component
— Terminate Application
* An abnormal condition occurs in the GUI during run time.

The following occurs for abnormal termination:
* All files are closed

e All data areas are unlocked.

Note: *TERMSR is not called for abnormal termination.

34 VisualAge RPG Language Reference

Initializing, Terminating, and Event Handling Restrictions

There are cases where certain operation codes, attributes, and the default exception
handler are not allowed during some stage of an application. The following tables
describes various restrictions during initialization, termination, or normal event

handling.

Table 3. Operation Code Restrictions during Initialization, Termination, and Event Handling

GUI Operation

Initialization
(*INZSR)

Termination
(*TERMSR)

Event Handling

CLSWIN

Not allowed

Not allowed

No restrictions

DSPLY

No restrictions

Not allowed

The information
window that is
displayed interferes
with any events that
have been posted. If
the DSPLY operation
is performed from
the same subroutine
or from a nested
action subroutine
after a CLSWIN or
STOP operation has
been performed (for
example, the Close
Window or Close
Component events
are still pending), the
pending events are
received by the
DSPLY operation but
are not performed.

SHOWWIN

Not allowed

Not allowed

The same operation
code cannot be
performed multiple
times from within the
same action
subroutine or nested
action subroutine.
For example, an
action subroutine
contains:

SHOWWIN 'WIN1'

CLSWIN 'WINL'
SHOWWIN 'WIN1'

In this case, the
second SHOWWIN
fails.

Chapter 4. Working with Components 35

Table 3. Operation Code Restrictions during Initialization, Termination, and Event
Handling (continued)

Initialization Termination
GUI Operation (*INZSR) (*TERMSR) Event Handling

START No restrictions No restrictions The same operation
code cannot be
performed multiple
times from within the
same action
subroutine or nested
action subroutine.
For example, an
action subroutine
contains:

START 'COMP2'

STOP 'COMP2'
STOP 'COMP2'

In this case, the
second STOP fails.

STOP “self’ Not allowed Not allowed A component cannot
be ended from a
nested action
subroutine.

STOP “other’ Cannot end your Cannot end your A component cannot
parent component parent component be ended from a
nested action
subroutine.

Table 4. Attribute Restrictions during Initialization, Termination, and Event Handling

Initialization Termination
Attribute (*INZSR) (*TERMSR) Event Handling
Part attributes Not allowed Not allowed No restrictions
(GETATR, SETATR,
%GETATR,
%SETATR)
Event attributes Not allowed Not allowed No restrictions
(%PART, ...)
System attributes Not allowed Not allowed No restrictions
(%DSPWIDTH,
%DSPHEIGHT)

36 VisualAge RPG Language Reference

Table 5. Default Exception Handler Restrictions during Initialization, Termination, and Event

Handling

Attribute

Initialization
(*INZSR)

Termination
(*TERMSR)

Event Handling

Message information No restrictions

window,

Do default processing

The component is
terminated and an
asynchronous
information window

is displayed.

The information
window that is
displayed interferes
with any events that
have been posted. If
this operation is
performed from the
same subroutine or a
nested action
subroutine after a
CLSWIN or STOP
operation has been
performed (for
example, the Close
Window or Close
Component events
are still pending), the
pending events are
received by this
operation and are not
performed.

Message information No restrictions

window,

Do not do default
processing

The component is
terminated and an
asynchronous
information window
is displayed.

The information
window that is
displayed interferes
with any events that
have been posted. If
this operation is
performed from the
same subroutine or a
nested action
subroutine after a
CLSWIN or STOP
operation has been
performed (for
example, the Close
Window or Close
Component events
are still pending), the
pending events are
received by this
operation and are not
performed.

Chapter 4. Working with Components 37

Table 5. Default Exception Handler Restrictions during Initialization, Termination, and Event
Handling (continued)

Initialization Termination
Attribute (*INZSR) (*TERMSR) Event Handling

Message information No restrictions The component is A component cannot
window, terminated and an be ended from a
asynchronous nested action
Terminate component information window subroutine. The
is displayed. information window

that is displayed
interferes with any
events that have been
posted. If this
operation is
performed from the
same subroutine or a
nested action
subroutine after a
CLSWIN or STOP
operation has been
performed (for
example, the Close
Window or Close
Component events
are still pending), the
pending events are
received by this
operation and are not
performed.

Message information No restrictions The component is The information
window, terminated and an window that is
asynchronous displayed interferes
Terminate application information window with any events that
is displayed. have been posted. If

this operation is
performed from the
same subroutine or a
nested action
subroutine after a
CLSWIN or STOP
operation has been
performed (for
example, the Close
Window or Close
Component events
are still pending), the
pending events are
received by this
operation and are not
performed.

38 VisualAge RPG Language Reference

Table 6. Restrictions for Ending Components during Initialization, Termination, and Event

Handling
Ending a Initialization Termination
Component (*INZSR) (*TERMSR) Event Handling

*PSSR BEGSR..

ENDSR "*DEFAULT’

No restrictions

No restrictions

No restrictions

*PSSR BEGSR..

ENDSR
"*NODEFAULT’

No restrictions

No restrictions

No restrictions

*PSSR BEGSR..

ENDSR
"*ENDCOMP”’ or

ENDSR "*CANCL’

No restrictions

No restrictions

A component cannot
be ended from a
nested action
subroutine.

*PSSR BEGSR..

ENDSR "*ENDAPPL’

No restrictions

No restrictions

A component cannot
be ended from a
nested action
subroutine.

Chapter 4. Working with Components 39

40 VisualAge RPG Language Reference

Chapter 5. Error and Exception Handling

Exception/errors fall into two classes: program and file. Information on file and
program exception/errors is made available to a VARPG program using file
information data structures and program status data structures, respectively. File
and Program exception/error subroutines may be specified to handle these types
of exception/errors. This section describes error and exception handling for files,
programs, and components.

File Exception/Errors

Some examples of file exception/errors are: undefined record type, an error in
trigger program, an I/O operation to a closed file, a device error, and an
array/table load sequence error. They can be handled in one of the following
ways:

* The operation code extender "E’ can be specified. When specified, before the
operation begins, this extender sets the %ERROR and %STATUS built-in
functions to return zero. If an exception/error occurs during the operation, then
after the operation %ERROR returns 1" and %STATUS returns the file status.
The optional file information data structure is updated with the exception/error
information. You can determine the action to be taken by testing %ERROR and
%STATUS.

* An indicator can be specified in positions 73 and 74 of the calculation
specifications for an operation code. This indicator is set on if an exception/error
occurs during the processing of the specified operation. The optional
information data structure]is updated with the exception/error information. You
can determine the action to be taken by testing the indicator.

* ON-ERROR groups can be used to handle errors for statements processed within
a MONITOR block. If an error occurs when a statement is processed, control
passes to the appropriate ON-ERROR group.

+ Alfile exception/error subroutine| can be specified. The subroutine is defined by
the INFSR keyword on a file description specification with the name of the
subroutine that is to receive the control. Information regarding the file
exception/error is made available through a file information data structure that
is specified with the INFDS keyword on the file description specification. You
can also use the %STATUS built-in function, which returns the most recent value
set for the program or file status. If a file is specified, %STATUS returns the
value contained in the INFDS *STATUS field for the specified file.

¢ If the indicator, 'E” extender, MONITOR block,or the file exception/error
subroutine is not present, any file exception/errors are handled by the
VisualAge RPG default error handler.

File Information Data Structure

The file information data structure provides information for file errors. A file
information data structure (INFDS) can be defined for each file to make file
exception, error, and file feedback information available to the program. This data
structure must be unique for each file. It contains the following feedback
information:

* File Feedback (positions 1 to 80)

* Open Feedback (positions 81 to 240)

* Input/Output Feedback (241 to 366)

* Device-Specific Feedback (position 367)

© Copyright IBM Corp. 1994, 2005 41

Note: The length of the INFDS depends on what fields you have declared in your

INFDS.

File Feedback Information
The file feedback information starts in position 1 and ends in position 80 in the
INFDS. It contains data about the file which is specific to the VisualAge RPG
program, including:
* The name of the file for which the exception or error occurred
* The record being processed when the exception or error occurred or the record
that caused the exception or error
* The last operation being processed when the exception or error occurred
* The status code
* The routine where the exception or error occurred.

Note: Overwriting the file feedback section can cause unexpected results in

subsequent error handling and is not recommended.

The location of some of the more commonly used subfields in the file feedback
section is defined by special keywords. summarizes these keywords.

Table 7. File Feedback Information in the INFDS

From |To

(Pos. | (Pos.

26-32) |33-39) |Format Length | Keyword Information

1 8 Character 8 *FILE The first 8 characters of the file

name

9 9 Character 1 Open indication (1 = open)

10 10 Character 1 End of file (1 = end of file)

11 15 Zoned 5,0 *STATUS Status code. See |”File Statusl
decimal [Codes” on page 49

42 VisualAge RPG Language Reference

Table 7. File Feedback Information in the INFDS (continued)

From |To
(Pos. | (Pos.
26-32) |33-39) |Format Length | Keyword Information

16 21 Character 6 *OPCODE Operation code. The first five
positions (left-adjusted) specify the
type of operation by using the
character representation of the
calculation operation codes. For
example, if a READE was being
processed, READE is placed in the
leftmost five positions.

Operation codes which have 6
letter names are be shortened to 5
letters.

DELETE
DELET

EXCEPT
EXCPT

READPE
REDPE

UNLOCK
UNLCK

UPDATE
UPDAT

The remaining position contains
one of the following:

F The last operation was
specified for a file name.

R The last operation was
specified for a record.

I The last operation was an
implicit file operation.

22 29 Character 8 *ROUTINE First 8 characters of the procedure
name or zero if the call is by
procedure pointer

30 37 Character 8 Source listing line number

38 42 Zoned 5,0 User-specified reason for error on
decimal SPECIAL file

38 45 Character 8 *RECORD For a program described file the
record identifying indicator is
placed left-adjusted in the field;
the remaining six positions are
filled with blanks.

For an externally described file,
the first 8 characters of the name
of the record being processed
when the exception or error
occurred.

Chapter 5. Error and Exception Handling 43

Table 7. File Feedback Information in the INFDS (continued)

From |To

(Pos. | (Pos.

26-32) |33-39) |Format Length | Keyword Information

46 52 Character 7 Machine or system message
number

53 66 Character 14 Unused

For a complete description of the contents of the file feedback area, see the DB2®
Universal Database” section of the Database and File Systems category in the
Information Center at this Web site -
http://www.ibm.com/eserver/iseries/infocenter.

INFDS File Feedback Example: To define an INFDS which contains fields in the

file feedback section, specify the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification

* Specify special keywords left-adjusted, in the FROM field (positions 26-32) on
the definition specification, or specify the positions of the fields in the FROM
field (position 26-32) and the TO field (position 33-39).

FFilename++IT.A.FRlen+...... A.Devicet.Keywords+++++++tt+ttttttttttt+t+t++++Comment s++++++++++
FMYFILE IF E DISK INFDS (FILEFBK) REMOTE
DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords+++++++++t++tttttttttttt+++++-Comment s++++++++++
DFILEFBK DS

D FILE *FILE * File name

D OPEN_IND 9 9 * File open?

D EOF_IND 10 10 * File at eof?
D STATUS *STATUS * Status code

D OPCODE *QPCODE * Last Opcode

D ROUTINE *ROUTINE * RPG Routine

D LIST_NUM 30 37 * Listing line
D SPCL_STAT 38 425 0 * SPECIAL status
D RECORD *RECORD * Record name

D MSGID 46 52 * Error MSGID

Figure 10. Example of Coding an INFDS with File Feedback Information

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Open Feedback Information

Positions 81 through 240 in the file information data structure contain open
feedback information. The contents of this area are copied to the open feedback
section whenever the file associated with the INFDS is opened. This includes
members opened as a result of a read operation on a multi-member processed file.

Note: Open feedback information is not provided for printer files, however device
feedback information is provided for printer files. See the DB2 Universal
Database section of the Database and File Systems category in the Information
Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter for
a complete description of the contents of the open feedback area.

44 VisualAge RPG Language Reference

INFDS Open Feedback Example: To define an INFDS which contains fields in

the open feedback section, specify the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in the DB2 Universal Database section of the Database and File
Systems category in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the open feedback section, use the Offset, Data Type, and Length
given in the Information Center and do the following calculations:

From = 81 + Offset

To = From - 1 + Character_Length
Character_Length = Length (in bytes)

Input/Output Feedback Information

Positions 241 through 366 in the file information data structure are used for
input/output feedback information. The contents of the file common input/output
feedback area are copied to the input/output feedback section only after a POST
for the file. For more information see ['POST (Post)” on page 652.]

A description of the contents of the input/output feedback area can be found in
the DB2 Universal Database section of the Database and File Systems category in the
Information Center.

Note: I/O feedback information is not provided for printer files, however
device-specific feedback information is provided for printer files.

INFDS Input/Output Feedback Example: To define an INFDS which contains

fields in the open feedback section, specify the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in the DB2 Universal Database section of the Database and File
Systems category in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the input/output feedback section, use the Offset, Data Type, and
Length given in Information Center and do the following calculations:

From = 241 + Offset

To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device class of a file, Information Center gives:

O0ffset = 30
Data Type is character
Length = 2

Therefore,

From = 241 + 30 = 271,
To =271 -1+ 2 =272.

See subfield DEV_CLASS in [Figure 11 on page 46|

Chapter 5. Error and Exception Handling 45

FFilename++IT.A.FRlen+...... A.Device+.Keywords+++tttttttttttttttttttttttr+tCOmment s+ttt
FMYFILE IF E DISK INFDS (MYIOFBK) REMOTE
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++ttttttttttttttttt+++Comment s++++++++++
DMYIOFBK DS

D * 241-242 not used
D WRITE_CNT 243 246B 0 * Write count

D READ_CNT 247 250B 0 * Read count

D WRTRD_CNT 251 254B 0 * Write/read count
D OTHER_CNT 255 258B 0 * Other I/0 count

D OPERATION 260 260 * Current operation
D IO_RCD_FMT 261 270 * Rced format name

D DEV_CLASS 271 272 * Device class

D I0_PGM_DEV 273 282 * Pgm device name

D IO_RCD_LEN 283 286B 0 * Rcd Ten of I/0

Figure 11. Coding Input/Output Feedback Information

Device-Specific Feedback Information

The device-specific feedback information in the file information data structure
starts at position 367 in the INFDS. It contains input/output feedback information
specific to a database or printer device.

The length of the INFDS when device-specific feedback information is required, is
variable and depends on whether the device type of the file is variable and on
whether the file is keyed or not (if it’s a DISK file).

For externally-described DISK files, the INFDS is at least long enough to hold the
longest key in the file beginning at position 401.

The contents of the device-specific input/output feedback area of the file are
copied to the device-specific feedback section of the INFDS only after a POST for
the file. For more information, see [“POST (Post)” on page 652

INFDS Device-Specific Feedback Examples: To define an INFDS which contains
fields in the device feedback section, specify the following entries:
* Specify the INFDS keyword on the file description specification with the name
of the file information data structure
* Specify the file information data structure and the subfields you wish to use on
a definition specification
* Use information in the DB2 Universal Database section of the Database and File
Systems category in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the device-specific feedback, use the Offset, Data Type, and Length
given in the Information Center and do the following calculations:
From = 367 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)
For example, for relative record number of a data base file, the Information
Center uses:

0ffset = 30

Data Type is binary

Length = 4
Therefore,

From = 367 + 30 = 397,
To = 397 - 1 + 4 = 400.

46 VisualAge RPG Language Reference

See subfield DB_RRN in the DBFBK data structure in

FFilename++IT.A.FRlen+...... A.Devicet.Keywords+++++++tt+tttttttt+tt++t++++++Comment s++++++++++
FMYFILE DISK INFDS (DBFBK) REMOTE
DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords++++++++++t+++++++++++++++++-Comment s+H++++++++
DDBFBK

D FDBK_SIZE 367 370B 0 * Size of DB fdbk
D JOIN_BITS 371 374B 0 * JFILE bits

D LOCK_RCDS 377 378B 0 * Nbr locked rcds
D POS_BITS 385 385 * File pos bits

D DLT_BITS 384 384 * Rcd deleted bits
D NUM_KEYS 387 388B 0 * Num keys (bin)

D KEY_LEN 393 394B 0 * Key length

D MBR_NUM 395 395B 0 * Member number

D DB_RRN 397 400B 0 * Relative-rcd-num
D KEY 401 2400 * Key value (max
D * size 2000)

Figure 12. Example of Coding an INFDS with Database Specific Feedback Information

Blocking Considerations: The fields of the input/output specific feedback area
and in most cases the fields of the device-specific feedback information area, are
not updated for each operation to the file in which the records are blocked and
unblocked, except for key and relative record number. The exception to this occurs
when a POST operation is performed. In this case, all of the fields of the
input/output specific and device-specific feedback areas are updated. In a POST
operation, the key and relative record number are updated with information from
the current record, not the last record in the block.

File Exception and Error Subroutine (INFSR)

To identify the subroutine that receives control following any file exceptions or
errors, specify the INFSR keyword on the File Description specification with the
name of the subroutine. The subroutine name can be *PSSR, which indicates that
the program exception/error subroutine is given control for the exception and
errors on this file.

A file exception/error subroutine receives control when an exception or error
occurs on a file operation that does not have an indicator specified in positions 73
and 74, does not have an (E) extender, and is not in the monitor block of a
MONITOR group that can handle the error.. The file exception/error subroutine
can also be run by the EXSR operation code. Any of the operation codes can be
used in the file exception/error subroutine. Factor 1 of the BEGSR operation and
factor 2 of the EXSR operation must contain the name of the subroutine that
receives control (same name as specified with the INFSR keyword on the file
description specifications). The ENDSR operation must be the last specification for
the file exception/error subroutine and must be specified as follows:

Position Entry

6 C

7-11 Blank

12-25 Can contain a label that is used in a GOTO specification within the
subroutine.

26-35 ENDSR

36-49 Optional entry to designate where control is to be returned

Chapter 5. Error and Exception Handling 47

following processing of the subroutine. The entry must be a
character field, literal, or array element whose value specifies one
of the following return points.

Note: If the return points are specified as literals, they must be
enclosed in apostrophes. If they are specified as named
constants, the constants must be character and must contain
only the return point with no leading blanks. If they are
specified in fields or array elements, the value must be
left-adjusted in the field or array element.

*DEFAULT
Return control from the current action subroutine and
perform the default processing associated with the current
event.

*NODEFAULT
Return control from the current action subroutine. Do not
perform any default processing. If LR is on when
processing reaches this point, the component is terminated,
and the *DEFAULT and *NODEFAULT return points are
ignored.

*CANCL
Terminate the component abnormally.

*ENDAPPL
Terminate all currently active components, ending the
application.

*ENDCOMP
Terminate the component abnormally.

Blanks
Return control to the default error handler. This applies
when factor 2 is a value of blanks and when factor 2 is not
specified. If the subroutine was called by the EXSR
operation and factor 2 is blank, control returns to the next
sequential instruction. Blanks are only valid at run time.

50-76 Blank.

Remember the following when specifying the file exception/error subroutine:

* You can explicitly call the file exception/error subroutine by specifying the name
of the subroutine in factor 2 of the EXSR operation.

* After the ENDSR operation of the file exception/error subroutine is run, the
field or array element in factor 2 is reset to blanks. If you do not place a value in
this field during the processing of the subroutine, the default error handler
receives control following processing of the subroutine unless the subroutine
was called by the EXSR operation. Because factor 2 is set to blanks, you can
specify the return point within the subroutine that is best suited for the
exception or error that occurred. If the subroutine was called by the EXSR
operation, control returns to the next sequential instruction following the EXSR
operation. A file exception/error subroutine can handle errors in more than one
file.

* If a file exception or error occurs during the start or end of a program, control
passes to the default error handler, and not to the user-written file exception
/error or subroutine (INFSR).

48 VisualAge RPG Language Reference

* Because the file exception/error subroutine may receive control whenever a file
exception or error occurs, an exception or error could occur while the subroutine
is running if an I/O operation is processed on the file in error. If an
exception/error occurs on the file already in error while the subroutine is
running, the subroutine is called again; this results in a program loop unless you
code the subroutine to avoid this problem. One way to avoid such a program
loop is to set a first-time switch in the subroutine. If it is not the first time
through the subroutine, set the LR indicator on and issue the RETURN
operation as follows:

CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C+ If INFSR is already handling the error, exit.

C ERRRTN BEGSR

C SW IFEQ 1!

C SETON LR
C RETURN

C* Otherwise, flag the error handler.

C ELSE

C MOVE 1! SW
C :

C

C :

C ENDIF

C* End error processing.

C MOVE 0 SW
C ENDSR

Note: It may not be possible to continue processing the file after an 1/O error has
occurred. To continue, it may be necessary to issue a CLOSE operation and
then an OPEN operation to the file.

File Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is
considered to be an exception or error. When the status code is greater than 99; the
error indicator — if specified in positions 73 and 74 — is set on, or the %ERROR
built-in function — if the "E” extender is specified — is set to return "1". Otherwise,
the file exception/error subroutine receives control. Location *STATUS is updated
after every file operation.

You can use the %STATUS built-in function to get information on exception/errors.

It returns the most recent value set for the program or file status. If a file is
specified, %STATUS returns the value contained in the INFDS *STATUS field for
the specified file.

The following tables summarize the codes placed in the subfield location *STATUS
for the file information data structure:

Chapter 5. Error and Exception Handling 49

Table 8. Normal Codes

Code Device' RC Condition

00000 No exception/error

00011 D End of file on a read (input)

00012 D No-record-found condition on a CHAIN,
SETLL, and SETGT operations

00014 Output record of local file truncated

00015 Input record of local file truncated

Note: '“Device” refers to the devices for which the condition applies. The following
abbreviations are used: P = PRINTER; D = DISK; SP = SPECIAL

Table 9. Exception/Error Codes

Code Device' RC Condition

01011 D Undefined record type (input record does
not match record identifying indicator)

01021 D Tried to write a record that already exists
(file being used has unique keys and key is
duplicate)

01022 D Referential constraint error detected on file
member

01041 n/a Array/table load sequence error

01042 n/a Array/table load sequence error

01051 n/a Excess entries in array/table file

01211 all I/0O operation to a closed file

01215 all OPEN issued to a file already opened

012162 all Error on an implicit OPEN/CLOSE
operation.

012172 all Error on an explicit OPEN/CLOSE
operation.

01218 D Record already locked

01221 D Update operation attempted without a
prior read

01222 D Record cannot be allocated due to
referential constraint error

01231 SpP Error on SPECIAL file

01235 P Error in PRTCTL space or skip entries

50 VisualAge RPG Language Reference

Table 9. Exception/Error Codes (continued)

Code Device' RC Condition

01299 D,P Other I/0 error detected. For local files,
this message contains one of the following
ids:

* *LF0001: Could not open file

e *LF0002: Could not close file

* *LF0003: Unexpected 1/0O result

 *LF0004: File pointer could not be set

e *LF0005: Read failed

* *LF0006: Write failed

e *LF0007: Could not determine size of file

* *LF0008: Could not resize file

* *LF0009: Could not copy file

e *LF0010: Could not delete file

* *LF0011: File designated as local at
compile time is found to be a remote file
at run time.

Note: '“Device” refers to the devices for which the condition applies. The following
abbreviations are used: P = PRINTER; D = DISK; SP = SPECIAL; *Any errors that occur
during an open or close operation will result in a *STATUS value of 1216 or 1217.

Program Exception and Errors

Some examples of program exception and errors are: division by zero, SQRT of a

negative number, invalid array index, an error on a CALL, an error return from a

called program, and a start position or length out of range for a string operation.

They can be handled in one of the following ways:

* An indicator can be specified in positions 73 and 74 of the calculation
specifications for certain operation codes. This indicator is set on if an exception
or error occurs during the processing of the specified operation. The optional
program status data structure is updated with the exception/error information.
You can determine the action to be taken by testing the indicator.

* The operation code extender 'E’ can be specified for some operation codes.
When specified, before the operation begins, this extender sets the %ERROR and
%STATUS built-in functions to return zero. If an exception/error occurs during
the operation, then after the operation %ERROR returns 1" and %STATUS
returns the program status. The optional program status data structure is
updated with the exception/error information. You can determine the action to
be taken by testing %ERROR and %STATUS.

* ON-ERROR groups can be used to handle errors for statements processed within
a MONITOR block. If an error occurs when a statement is processed, control
passes to the appropriate ON-ERROR group.

* A program exception/error subroutine can be specified by coding *PSSR in
factor 1 of a BEGSR operation. Information regarding the program
exception/error is made available through a program status data structure that
is specified with an S in position 23 of the data structure statement on the
definition specifications.

e If the indicator, 'E” extender, monitor block, or the program exception/error
subroutine is not present, program exception and errors are handled by the
default error handler.

Program Status Data Structure

A program status data structure can be defined to make program exception and
error information available to a VisualAge RPG program.

Chapter 5. Error and Exception Handling 51

A data structure is defined as a program status data structure by an S in position
23 of the data structure statement. A program status data structure contains
subfields that provide you with information about the program exception or error
that occurred. The location of these subfields is defined by special keywords or by
predefined From and To positions. In order to access the subfields, you assign a
name to each subfield. The keywords must be specified, left-adjusted in positions
26 through 39.

provides the layout of the subfields of the data structure and the From
and To positions of its subfields.

Table 10. Contents of the Program Status Data Structure

From
(Pos.
26-32)

To (Pos.
33-39)

Format Length | Keyword Information

1

10

Character 10 *PROC Component name

11

15

Zoned 5,0 *STATUS Status code
decimal

16

20

Zoned 5,0 Previous status code
decimal

21

28

Character |8 Source listing line number

29

36

Character |8 *ROUTINE Name of the routine where the exception or
error occurred. This subfield is updated at the
beginning of a routine or after a program call
only when the *STATUS subfield is updated
with a nonzero value. The following names
identify the routines:

*INIT Program initialization

*TERM
Program ending

*ROUTINE
Name of program or procedure called
(first 8 characters).

37

39

Zoned 3,0 *PARMS Number of parameters passed to this program
decimal from a calling program

40

42

Character 3 Exception type: CPF for an OS/400® system
exception, MCH for a machine exception or *RT
for an error return code from a runtime routine.
For a Windows exception, this field contains
*EX.

43

46

Character 4 Exception number: For a CPF exception, this
field contains a CPF message number. For a
machine exception, it contains a machine
exception number. For a Windows exception,
this field contains the exception number in
binary 9,0 format. The error return code from a
VisualAge RPG runtime routine is also
contained in this field, in binary 9,0 format.

47

90

44 Reserved

91

170

Character |80 Retrieved exception data. OS/400 messages are
placed in this subfield

171

190

20 Reserved

52 VisualAge RPG Language Reference

Table 10. Contents of the Program Status Data Structure (continued)

From
(Pos.
26-32)

To (Pos.
33-39)

Format

Length |Keyword

Information

191

198

Character

8

Date (*DATE format) the job entered the
system.The date represented by this value is the
same date represented by positions 270 - 275.

199

200

Zoned
decimal

2,0

First 2 digits of a 4-digit year. The same as the
first 2 digits of *YEAR.This field applies to the
century part of the date in positions 270 to 275.
For example, for the date 1999-06-27, UDATE
would be 990627, and this century field would
be 19. The value in this field in conjunction
with the value in positions 270 - 275 has the
combined information of the value in positions
191 -198.

Note: This century field does not apply to the
dates in positions 276 to 281, or positions 288 to
293.

201

208

Character

Name of file on which the last file operation
occurred (updated only when an error occurs)

209

243

Character

35

Status information on the last file used. This
information includes the status code, the
operation code, the VisualAge RPG routine
name, the source listing line number, and
record name. It is updated only when an error
occurs.

Note: The opcode name is in the same form as
*OPCODE in the INFDS.

244

253

10

Reserved

254

263

Character

10

The iSeries host Sign-On userid for a remote
file open operation. This value is updated only
when a different host is accessed with a
different Sign-On userid.

264

269

10

Reserved

270

275

Zoned
decimal

6,0

Date (in UDATE format) the program started
running in the system. (UDATE is derived from
this date.) See [“User Date Special Words” on|
for a description of UDATE. This is
commonly known as the ‘job date’. The date
represented by this value is the same date
represented by positions 191 - 198.

276

281

Zoned
decimal

6,0

Date of program running (the system date in
UDATE format) If the year part of this value is
between 40 and 99, the date is between 1940
and 1999. Otherwise the date is between 2000
and 2039. The ’century’ value in positions 199 -
200 does not apply to this field.

282

287

Zoned
decimal

6 (zero
decimal
positions)

Time of program running in the format
hhmmss

Chapter 5. Error and Exception Handling 53

Table 10. Contents of the Program Status Data Structure (continued)

From

(Pos. To (Pos.

26-32) 33-39) Format Length |Keyword Information

288 293 Character 6 Date (in UDATE format) the program was
compiled If the year part of this value is
between 40 and 99, the date is between 1940
and 1999. Otherwise the date is between 2000
and 2039. The ‘century’ value in positions 199 -
200 does not apply to this field.

294 299 Character 6 Time (in the format hhmmss) the program was
compiled

300 303 Character 4 Level of the compiler

304 313 Character 10 Source file name (first 10 characters)

314 429 116 Reserved

Program Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is
considered to be an exception or error condition. When the status code is greater
than 99; the error indicator — if specified in positions 73 and 74 — is set on, or the
%ERROR built-in function — if the 'E” extender is specified — is set to return '1’,
or control passes to the appropriate ON-ERROR group within a MONITOR block;
otherwise, the program exception/error subroutine receives control. *STATUS is
updated when an exception or error occurs.

The %STATUS built-in function returns the most recent value set for the program
or file status.

The following codes are placed in the subfield location *STATUS for the program
status data structure:

54 VisualAge RPG Language Reference

Normal Codes:

Code
00000
00031

00032

00033

00034

00035

00050

Condition
No exception/error occurred

Component is terminating; LR indicator on when a RETURN or ENDACT
operation performed

Component is terminating as a result of an explicit termination of the
component (STOP component)

Component is terminating as a result of an implicit termination of the
component (STOP parent or grandparent of component)

Component is terminating as a result of an explicit termination request
from another component (STOP component)

Component is terminating as a result of an implicit termination request
from another component (STOP parent of component)

Conversion resulted in substitution.

Exception/Error Codes:

Code
00100
00101
00102
00103
00104

00105
00112
00113

00114

00115

00120
00121
00122
00123
00202
00211
00221
00222
00301

Condition

Value out of range for string operation

Negative square root

Divide by zero

An intermediate result is not large enough to contain the result

Float underflow. An intermediate value is too small to be contained in the
intermediate result field.

Invalid characters in character to numeric conversion functions.
Invalid Date, Time or Timestamp value.

Date overflow or underflow. (For example, when the result of a Date
calculation results in a number greater than *HIVAL or less than *LOVAL)

Date mapping errors, where a Date is mapped from a 4 character year to a
2 character year and the date range is not 1940-2039

Variable-length character or graphic field has a current length that is not
valid.

Table or array out of sequence

Array index not valid

OCCUR outside of range

Reset attempted during initialization step of program
Called program or procedure failed

Error calling program or procedure

Called program tried to use a parameter not passed to it
Pointer or parameter error

Class or method not found for a method call, or error in method call.

Chapter 5. Error and Exception Handling 55

00302

00303

00304

00305

00306
00333
00401
00411
00412
00413
00414
00415
00421
00431
00432
00451
00501
00802
00803
00804
00805
00907
00940
00970

01400
01401
01402
01403
01404
01405
01406
01407
01408
01410

Error while converting a Java array to an RPG parameter on entry to a
Java native method.

Error converting RPG parameter to Java array on exit from an RPG native
method.

Error converting RPG parameter to Java array in preparation for a Java
method call.

Error converting Java array to RPG parameter or return value after a Java
method.

Error converting RPG return value to Java array.
Error on DSPLY operation

Data area specified on IN/OUT not found

Data area type or length does not match

Data area not locked for output

Error on IN/OUT operation

User not authorized to use data area

User not authorized to change data area

Error on UNLOCK operation

Data area previously locked by another program
Data area locked by program in the same process
Conversion between two CCSIDs is not supported.
Failure to retrieve sort sequence

Commitment control not active

Rollback operation failed

Error occurred on COMMIT operation

Error occurred on ROLBK operation

Decimal data error (digit or sign not valid)

Error occurred in host services

The level number of the compiler used to generate the program does not
agree with the level number of the VisualAge RPG runtime subroutines.

Attribute name is not valid

SHOWWIN operation attempted on an opened window

Part name was not found in the application

New attribute value is not within the valid range

Attribute access type not valid for the operation

Data type of event attribute is not compatible with the operation
Invalid message identifier

Data type of attribute is not compatible with the operation
Insufficient resources

START operation failed

56 VisualAge RPG Language Reference

01411 STOP operation failed
01420 Error occurred on subfile operation

01421 The user cancelled the signon dialog

01422 The component containing the part being operated on has not been started.

1601 One or more of the DB2 product’s dynamic link libraries (DLL) could not

be found.
08888 Recursion error
09001 No error indicator or *PSSR
09998 Internal failure in VisualAge RPG compiler or in runtime subroutines
09999 Program exception in system routine.
Program Status Data Structure Example
To specify a program status data structure (PSDS) in your program, code the

program status data structure and the subfields you wish to use on a definition
specification.

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++++tttttttttttttt+++++Comment s++++++++++
DMYPSDS SDS

D PROC_NAME *PROC * Component name

D PGM_STATUS *STATUS * Status code

D PRV_STATUS 16 20S 0 * Previous status
D LINE_NUM 21 28 * Src 1ist line num
D ROUTINE *ROUTINE * Routine name

D PARMS *PARMS * Num passed parms
D EXCP_TYPE 40 42 * Exception type

D EXCP_NUM 43 46 * Exception number
D*

D EXCP_DATA 91 170 * Exception data
D*

D DATE 191 198 * Date (*DATE fmt)
D YEAR 199 200S 0 * Year (*YEAR fmt)
D LAST_FILE 201 208 * Last file used

D FILE_INFO 209 243 * File error info
D*

D JOB_DATE 270 2755 0 * Date (UDATE fmt)
D RUN_DATE 276 2815 0 * Run date (UDATE)
D RUN_TIME 282 287S 0 * Run time (UDATE)
D CRT_DATE 288 293 * Create date

D CRT_TIME 294 299 * Create time

D CPL_LEVEL 300 303 * Compiler level

D SRC_FILE 304 313 * Source file

D*

Figure 13. Example of Coding a PSDS

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Program Exception and Error Subroutine

To identify the subroutine that receives control when a program exception or error

occurs, specify *PSSR in factor 1 of the subroutine’s BEGSR operation. If an
indicator is not specified in positions 73 and 74 for an operation code, or if the

operation does not have an (E) extender, or if the statement is not in a MONITOR
block that can handle the error, or if an exception occurs that is not expected for an

operation code (for example an array indexing error during a SCAN operation),

Chapter 5. Error and Exception Handling

57

control is transferred to this subroutine when a program exception or error occurs.
In addition, the subroutine can also be called by the EXSR operation. *PSSR can be
specified on the INFSR keyword on the file description specifications and receives
control if a file exception/error occurs.

Any operation codes can be used in the program exception/error subroutine. The
ENDSR operation must be the last specification for the subroutine, and the factor 2
entry on the ENDSR operation specifies the return point following the running of
the subroutine. For more information, see [“File Exception and Error Subroutine|
[(INESR)” on page 47

Remember the following when specifying a program exception/error subroutine:

* You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of
the EXSR operation.

* After the ENDSR operation of the *PSSR subroutine is run, the field, subfield,
array element, or array element specified in factor 2 is reset to blanks. This
allows you to specify the return point within the subroutine that is best suited
for the exception or error that occurred. If factor 2 contains blanks at the end of
the subroutine, the default error handler receives control; if the subroutine was
called by an EXSR or CASxx operation, control returns to the next sequential
instruction following the EXSR or ENDCS. If the exception occured in a
subprocedure an no GOTO operation was encountered before the ENDSR
operation, error code 9001 is issued and the application ends. Factor 2 is not
supported on the ENDSR operation of subprocedure *PSSRs.

* Because the program exception/error subroutine may receive control whenever a
non-file exception/error occurs, an exception or error could occur while the
subroutine is running. If an exception/error occurs while the subroutine is
running, the subroutine is called again; this results in a program loop unless you
code the subroutine to avoid this problem.

e A *PSSR can be defined in a subprocedure, and each subprocedure can have its
own *PSSR. Note that the *PSSR in a subprocedure is local to that subprocedure.
If you want the subprocedures to share the same exception routine, then you
should have each *PSSR call a shared procedure.

* If you have a *PSSR that is not defined within a subprocedure, this *PSSR is
never executed in an exception occurs within a subprocedure.

Component Errors/Exceptions

The following sections describe how to handle errors during an event and which
exceptions are trapped by the VisualAge RPG exception handler.

Component Status Codes

The following *STATUS values allow you to query how the component has
terminated for normal termination:

00031 The component terminates because LR is on. LR is checked when the root
ENDACT has been reached. The root action subroutine is the subroutine at
the bottom (or first) of any nested action subroutines.

00032 The component terminates itself directly. For example, The component
"thiscomp” issues STOP "thiscomp’. The component "thiscomp” is
terminated.

00033 The component terminates itself indirectly. For example, STOP "'myparent’
is issued by the current component to terminate the component which
STARTed the current component. All the children of ‘myparent” are
terminated first including the current component.

58 VisualAge RPG Language Reference

00034 The component is terminated directly by another component. For example,
STOP "X’ is issued by another component to terminate the current
component, "X’

00035 The component is terminated indirectly by another component. For
example, STOP 'myparent’ is issued by another component to terminate
the parent of the current component, ‘myparent’, and indirectly, the current
component is also being terminated.

When normal termination occurs, subroutine *TERMSR is called. *TERMSR is a
user written subroutine from which any final code execution can occur. At the time
that *TERMSR is invoked, no action subroutines are active, and the current
component has been marked as being in termination. This means that few
graphical user interface operations are allowed. See the following for more
information:

* [Table 3 on page 35
* [Table 4 on page 36
* [Table 5 on page 37
* [Table 6 on page 39

Event Error Handling

If an error occurs during the handling of an event, one of two things happens:

 If a *PSSR or INFSR is not present, the default exception handler is invoked.

* If an error handling routine is present (*PSSR or INFSR), the error handling
routine is invoked.

If your application contains an error handling subroutine, this subroutine continues
to execute until one of the following operation codes is reached:

RETURN Control returns to the same place where ENDACT *DEFAULT
processing occurs. If there are no other nested action subroutines,
LR is checked:
* If LR is on, the component terminates normally. See
[Termination” on page 32,
* If LR is not on, the current action subroutine ends and any
default action for the event is performed.

STOP The component terminates normally. Some restrictions apply. See
[Chapter 4, “Working with Components,” on page 31

ENDSR What you specify in factor 2 affects the flow of execution:

* If factor 2 is not specified, the default exception handler inquiry
message information window is displayed.

» If *DEFAULT is specified in factor 2, control returns to the same
place that ENDACT *DEFAULT processing occurs. If there are
no other nested action subroutines, LR is checked:

— If LR is on, the component terminates normally. See
[Termination” on page 32

— If LR is not on, the current action subroutine ends and any
default action for the event is performed.

» If *NODEFAULT is specified in factor 2, control returns to the
same place where ENDACT *NODEFAULT processing occurs.
See ["ENDSR (End of User Subroutine)” on page 569.If there are
no other nested action subroutines, LR is checked:

- If LR is on, the component terminates normally. See
[Termination” on page 32|

Chapter 5. Error and Exception Handling 59

— If LR is not on, the current action subroutine ends and any
default action for the event is NOT performed.

* If *(ENDCOMP or *CANCL is specified in factor 2, the action
subroutine that was running when the error occurred finishes
and the component terminates abnormally. See [“ENDSR (End off
[User Subroutine)” on page 569 .|

* If *‘ENDAPPL is specified in factor 2, the action subroutine that
was running when the error occurred is finished, and all
components in the application are closed in reverse hierarchical
order. See ['ENDSR (End of User Subroutine)” on page 569 The
component that was active when the error occurred is
terminated abnormally. All other components terminate
normally. See [“Normal Termination” on page 32| and [“Abnormal]
[Termination” on page 34

When the default exception handler is invoked for an exception that occurs outside

a procedure, a window is displayed from which you can make one of the

following choices:

* Do Default Processing (the information above for ENDSR *DEFAULT applies)

* Do Not Do Default Processing (the same information above for ENDSR
*NODEFAULT applies)

* Retry the Operation: This option only appears for a small set of I/O errors. It
allows you to retry the same operation.

* Terminate the Component (the same information above for ENDSR *ENDCOMP
applies)

¢ Terminate the Application (the information above for ENDSR *ENDAPPL
applies)

Note: If the exception occurs within a subprocedure and there is no local *PSSR or
error indicator, the application ends.

When control is given to an error handling routine or to the default exception
handler, the current action subroutine that caused the error is still active. You can
still access the same event attributes that were valid at the time of the error. For
example, the %BUTTON event attribute is valid during the processing of the
MouseDown event. If an error occurs during the handling of this event, the
%BUTTON can be referenced in the *PSSR.

Note: If %BUTTON is referenced in the *PSSR for an event where the event
attribute is not valid, then an error occurs. This kind of error can easily
cause the application to go into an endless recursion situation if the *PSSR is
not properly coded to handle this.

For cases where multiple action subroutines are nested, the error handling routine
only affects the top-most action subroutine invocation when ENDSR *DEFAULT,
*NODEFAULT or an equivalent field name is executed. For example, if a
SHOWWIN WINDOW?2 is performed from inside the action subroutine
BUTTON+CLICK+WINDOW1, then BUTTON+CLICK+WINDOWT1 is suspended
and the action subroutine WINDOW2+CREATE+WINDOW?2, is invoked. If an
error occurs during the invocation of this second action subroutine, the *PSSR or
the default exception handler is 0xC0000095invoked. If *DEFAULT is taken, only
WINDOW2+CREATE+WINDOW?2 ends, and control returns back to
BUTTON1+CLICK+WINDOWT1 at the operation following SHOWWIN WINDOW?2.

60 VisualAge RPG Language Reference

Exception Handling
The following exceptions are trapped by the VisualAge RPG exception handler.

These exceptions are placed in the exception number field (43-46) of the PSDS as a

4 byte binary number with *EX placed in the exception type field (40-42) of the

PSDS.

Access violation 0xC0000005
Integer divide by zero 0xC000009B
Float divide by zero 0xC0000095
Float invalid operation 0xC0000097
Illegal instruction 0xC000001C
Privileged instruction 0xC000009D
Integer overflow 0xC000009C
Float overflow 0xC0000098
Float underflow 0xC000009A
Float denormal operand 0xC0000094
Float inexact result 0xC0000096
Float stack check 0xC0000099
Datatype misalignment 0xCO000009E
Invalid lock sequence 0xC000001D
Array bounds exceeded 0xC0000093

For more information on Windows—-specific exceptions, consult the operating
system’s documentation.

All other exceptions are handled in one of the following ways:

* If the exception occurs during a CALLB or CALL, the status code is set to 202 or

211.

¢ If the exception does not occur during a CALLB or CALL, the exceptions are

mapped to a status code as follows:

Integer divide by zero 102
Float divide by zero 102
Float overflow 103
Access violation 222
Datatype misalignment 222
All other exceptions 9999

Chapter 5. Error and Exception Handling

61

62 VisualAge RPG Language Reference

Chapter 6. Subprocedures and Prototypes

One of three possible target objects can result from a compilation. The result

depends on the control specification keyword used:

* A component is created when the NOMAIN and EXE keywords are not present.

* A utility, or NOMAIN, DLL is created when the NOMAIN keyword is specified.
This DLL contains only RPG subprocedures.

¢ An RPG EXE is created when the EXE keyword is specified. This module
contains a main procedure and subprocedures.

A VisualAge RPG program consists of one or more modules. A procedure is any
piece of code that can be called with the CALLP operation code. VisualAge RPG
has two kinds of procedures: a main procedure and a subprocedure. A main
procedure is a procedure that can be specified as the program entry procedure and
receives control when it is first called. Note that a main procedure is only
produced when creating an EXE.

A subprocedure is a procedure specified after the main source section. (See

[“Placement of Definitions and Scope” on page 256| for the layout of the main

source section for each type of compilation target.) Subprocedures differ from a

main procedure in that:

* Names that are defined within a subprocedure are not accessible outside the
subprocedure.

* The call interface must be prototyped.

* Calls to subprocedures must be bound procedure calls.

¢ Only P, D, and C specifications can be used.

All subprocedures must have a corresponding prototype in the definition
specifications of the main source section. The prototype is used by the compiler to
call the program or procedure correctly, and to ensure that the caller passes the
correct parameters.

This section discusses the following aspects of subprocedures:
* Subprocedure definition

* NOMAIN and EXE modules

* Comparison with subroutines

© Copyright IBM Corp. 1994, 2005 63

Subprocedure Definition

Subprocedures are defined after the main source section. shows a
subprocedure, highlighting the different parts of it.

*
*

O oo o

*

P

*
*

* % F X X

D
D
D
D
D
C
C
C
C
p

*

Prototype for procedure FUNCTION

FUNCTION PR 101 0
TERM1 51 0 VALUE
TERM2 51 0 VALUE
TERM3 5I 0 VALUE
Function B 2]
This procedure performs a function on the 3 numeric values
passed to it as value parameters.
This illustrates how a procedure interface is specified for a
procedure and how values are returned from a procedure.
Function PI 101 0
Terml 51 0 VALUE
Term2 51 0 VALUE
Term3 51 0 VALUE
Result S 10I 0
EVAL Result = Terml ** 2 % 17
+ Term2 * 7
+ Term3
RETURN Result * 45 + 23
E a

Figure 14. Example of a Subprocedure

1.

2.
3.

6.

A Prototype which specifies the name, return value if any, and parameters if
any.

A Begin-Procedure specification (B in position 24 of a procedure specification)
A Procedure-Interface definition, which specifies the return value and
parameters, if any. The procedure interface must match the corresponding
prototype. The procedure-interface definition is optional if the subprocedure
does not return a value and does not have any parameters that are passed to it.
Other definition specifications of variables, constants, and prototypes needed
by the subprocedure. These definitions are local definitions.

Any calculation specifications, standard or free-form, needed to perform the
task of the procedure. The calculations may refer to both local and global
definitions. Any subroutines included within the subprocedure are local. They
cannot be used outside of the subprocedure. If the subprocedure returns a
value, then the subprocedure must contain a RETURN operation.

An End-Procedure specification (E in position 24 of a procedure specification)

Except for the procedure-interface definition, which may be placed anywhere
within the definition specifications, a subprocedure must be coded in the order
shown above.

You cannot code the following for subprocedures:

Prerun-time and compile-time arrays and tables
*DTAARA definitions

64 VisualAge RPG Language Reference

The calculation specifications are processed only once and the procedure returns at
the end of the calculation specifications. See [“Subprocedure Calculations” on page|
@ for more information.

A subprocedure may be exported, meaning that procedures in other modules in
the program can call it. To indicate that it is to be exported, specify the keyword
EXPORT on the Procedure-Begin specification. If not specified, the subprocedure
can only be called from within the module. Note that procedures can be exported
only from NOMAIN DLLs.

Procedure Interface Definition

If a prototyped procedure has call parameters or a return value, then it must have

a procedure interface definition. A procedure interface definition is a repetition of
the prototype information within the definition of a procedure. It is used to declare
the entry parameters for the procedure and to ensure that the internal definition of
the procedure is consistent with the external definition (the prototype).

You specify a procedure interface by placing PI in the Definition-Type entry
(positions 24-25). Any parameter definitions, indicated by blanks in positions 24-25,
must immediately follow the PI specification. The procedure interface definition
ends with the first definition specification with non-blanks in positions 24-25 or by
a non-definition specification.

For more information on procedure interface definitions, see [“Procedure Interface”|

Return Values

A procedure that returns a value is essentially a user-defined function, similar to a

built-in function. To define a return value for a subprocedure, you must:

1. Define the return value on both the prototype and procedure-interface
definitions of the subprocedure.

2. Code a RETURN operation with an expression in the extended-factor 2 field
that contains the value to be returned.

You define the length and the type of the return value on the procedure-interface
specification (the definition specification with PI in positions 24-25). The following
keywords are also allowed:

DATFMT (fmt)
The return value has the date format specified by the keyword.

DIM(N)
The return value is an array with N elements.

LIKE(name)
The return value is defined like the item specified by the keyword.

LIKEDS(name)
The return value is a data structure defined like the data structure
specified by the keyword.

LIKEREC(namef,type})
The return value is a data structure defined like the record name specified
by the keyword.

PROCPTR
The return value is a procedure pointer.

Chapter 6. Subprocedures and Prototypes 65

TIMFMT (fmt)
The return value has the time format specified by the keyword.

To return the value to the caller, you must code a RETURN operation with an
expression containing the return value. The expression in the extended-factor 2
field is subject to the same rules as an expression with EVAL. The actual returned
value has the same role as the left-hand side of the EVAL expression, while the
extended factor 2 of the RETURN operation has the same role as the right-hand
side. You must ensure that a RETURN operation is performed if the subprocedure
has a return value defined; otherwise an exception is issued to the caller of the
subprocedure.

Scope of Definitions

Any items defined within a subprocedure are local. If a local item is defined with
the same name as a global data item, then any references to that name inside the
subprocedure use the local definition.

However, keep in mind the following:

* Subroutine names and tag names are known only to the procedure in which
they are defined, even those defined in the main procedure of an EXE.

* All fields specified on input and output specifications are global. When a
subprocedure uses input or output specifications (for example, while processing
a read operation), the global name is used even if there is a local variable of the
same name.

When using a global KLIST or PLIST in a subprocedure some of the fields may
have the same names as local fields. If this occurs, the global field is used. This
may cause problems when setting up a KLIST or PLIST prior to using it.

For example, consider the following source:

D* Main procedure definitions

D F1d1 S 1A

D F1d2 S 1A

D*

Cx Define a global key field 1ist with 2 fields, F1dl and F1d2
C global_kIl KLIST

C KFLD F1d1

C KFLD F1d2

C*

P+ Subprocedure Section

P Subproc B

D F1d2 S 1A

D*

C* local_k1 has one global kfld (f1d1l) and one local (f1d2)
C*

C Tocal_kI KLIST

C KFLD Fld1

C KFLD F1d2

C*

C* Even though F1d2 is defined locally in the subprocedure,

C+ the global F1d2 is used by the global_k1, since global KLISTs
C* always use global fields. As a result, the assignment to the
C* local F1d2 will NOT affect the CHAIN operation.

C*

C EVAL F1dl = 'A'
C EVAL F1d2 = 'B'
C global_kIl SETLL file

C*

C* Local KLISTs use global fields only when there is no local
C+ field of that name. Tocal_k1 uses the Tocal F1d2 and so the

66 VisualAge RPG Language Reference

C+ assignment to the local F1d2 WILL affect the CHAIN operation.

C EVAL F1dl = 'A
C EVAL F1d2 = 'B'
C Tocal_kI SETLL file

P E

For more information on the placement of definitions and their effect on scope, see
[“Placement of Definitions and Scope” on page 256

Subprocedure Calculations

A subprocedure ends when one of the following occurs:
¢ A RETURN operation is processed.
¢ The last calculation in the body of the subprocedure is processed.

Figure 15 on page 68| shows the normal processing steps for a subprocedure.
Figure 16 on page 69|shows the exception/error handling sequence.

Chapter 6. Subprocedures and Prototypes 67

Start

* Run module initialization

* Perform data structure and
subfieldinitialization

*Retrieve external indicators

(U1 through U8) and user date fields

*Openfiles

*Load dataareadata
sructures, arrays, and tables

First time
DLLisloadedor
when EXE s called.

vo [

e |fthereis no *INZSR, store
data structures and variables
for RESET operations

Initialize
automatic variables

Firsttime
subprocedure
hasbeencalled?

Yes « Initialize static variables
* Store variables for RESET
operations on local variables

No

Return operation

Perform calculations once
Setreturnvalue for caller
(ifthe subprocedure
returns avalue)

If subprocedure
returnsavalue, wasa Yes
RETURN operation
done?

Returnto caller

)

No

Signal exception to
caller (subprocedure
ends)

Figure 15. Normal Processing Sequence for a Subprocedure

Taking the "No” branch means that another procedure has already been
called since the program was activated. You should ensure that you do not
make any incorrect assumptions about the state of files, data areas, etc.,
since another procedure may have closed files, or unlocked data areas.

68 VisualAge RPG Language Reference

Exceptionduring
calculations

Program error Ye .
and subprocedure =S Execute *PSSR
has *PSSR? subroutine

Percolate exception
(subprocedure ends)

Program continues
normally after RETURN
orGOTO

*PSSRreached
ENDSR?

Signal exceptionto
caller (subprocedure
ends)

Figure 16. Exception/Error Handling for a Subprocedure

Here are some points to consider when coding subprocedures:

¢ There is no *INZSR associated with subprocedures. Data is initialized (with
either INZ values or default values) when the subprocedure is first called, but
before the calculations begin.

* When a subprocedure returns normally, the return value, if specified on the
prototype of the called program or procedure, is passed to the caller. Nothing
else occurs automatically. All files and data areas must be closed manually. Files
must be written out manually. In the case of an EXE, you can set on indicators
such as LR, but program termination will not occur until the main procedure for
the EXE terminates.

* Exception handling within a subprocedure differs from a main procedure
primarily because there is no default exception handler for subprocedures and
so situations where the default handler would be called for a main procedure
correspond to abnormal end of the subprocedure. For example, Factor 2 of an
ENDSR operation for a *PSSR subroutine within a subprocedure must be blank.
A blank factor 2 normally would result in control being passed to the default
handler, but in a subprocedure, if the ENDSR is reached, then the subprocedure
will end abnormally.

You can avoid abnormal termination either by coding a RETURN operation in
the *PSSR, or by coding a GOTO and label in the subprocedure to continue
processing.

* The *PSSR error subroutine is local to the subprocedure. Conversely, file errors
are global by definition, and so you cannot code an INFSR in a subprocedure,
nor can you use a file for which an INFSR is coded.

NOMAIN Module

You can code one or more subprocedures in a module without coding any action
subroutines. Such a module is called a NOMAIN module, and it requires the
specification of the NOMAIN keyword on the control specification. The concept of
a NOMAIN DLL is similar to that of an OS/400"" service program.

For NOMAIN DLLs, the following should be considered:

¢ The DLL must consist of procedures only. All subroutines (BEGSR) must be local
to a procedure.

* No GUI operation codes allowed in the source. These include START, STOP,
SETATR, GETATR, %SETATR, %GETATR, SHOWWIN, CLSWIN, and READS.

Chapter 6. Subprocedures and Prototypes 69

DSPLY can be used. However, if the procedure containing it is called from a
VisualAge RPG DLL, then the DSPLY operation code does nothing.

*INZSR and *TERMSR are not permitted.

*ENTRY parameters are not permitted.

EXE Module

A module is called an EXE module, since it requires the specification of the EXE
keyword on the control specification.

The EXE module consists of a main procedure and subprocedures. All subroutines
(BEGSR) must be local to a procedure. The EXE must contain a procedure whose
name matches the name of the source file. This will be the main entry point for the
EXE, that is, the main procedure.

For EXE modules, the following should be considered:

No GUI operation codes are allowed in the source. This includes START, STOP,
SETATR, GETATR, %SETATR, %GETATR, SHOWWIN, CLSWIN and READS.
DSPLY can be used.

*INZSR and *TERMSR are not permitted.

*ENTRY parms are not permitted.

If there are entry parameters, they are specified on the parameter definition for
the main procedure, and they must be passed in by VALUE (the VALUE
keyword must be specified for each parameter).They cannot be UCS-2
parameters.

The EXPORT keyword is not allowed on the Begin P specification.

The return value for the main procedure must be defined as a binary or integer
of precision zero(0).

Subprocedures and Subroutines

A subprocedure is similar to a subroutine, except that a subprocedure offers the
following improvements:

You can pass parameters to a subprocedure, even passing by value.

This means that the parameters used to communicate with subprocedures do not
have to be modifiable. Parameters that are passed by reference, as they are with
programs, must be modifiable, and so may be less reliable.

The parameters passed to a subprocedure and those received by it are checked
at compile time for consistency. This helps to reduce run-time errors, which can
be more costly.

You can use a subprocedure like a built-in function in an expression.

When used in this way, they return a value to the caller. This basically allows
you to custom-define any operators you might need in an expression.
Names defined in a subprocedure are not visible outside the subprocedure.

This means that there is less chance of the procedure inadvertently changing a
item that is shared by other procedures. Furthermore, the caller of the procedure
does not need to know as much about the items used inside the subprocedure.
You can call the subprocedure from outside the module, if it is exported.

You can call subprocedures recursively.

Procedures are defined on a different specification type, namely, procedure
specifications. This different type helps you to immediately recognize that you
are dealing with a separate unit.

70 VisualAge RPG Language Reference

Nonetheless, if you do not require the improvements offered by subprocedures,
you should use a subroutine. The processing of a subroutine is much faster than a
call to a subprocedure.

Prototypes and Parameters

The recommended way to call programs and procedures is to use prototyped calls,
since prototyped calls allow the compiler to check the call interface at compile
time. If you are coding a subprocedure, you will need to code a
procedure-interface definition to allow the compiler to match the call interface to
the subprocedure.

This section describes how to define each of the following: [prototypes} [prototyped|
[parameters| and [procedure-interface| definitions.

Prototypes

A prototype is a definition of the call interface. It includes the following
information:

* Whether the call is bound (procedure) or dynamic (program)

* How to find the program or procedure (the external name)

* If it is a remote program residing on an iSeries server

¢ The number and nature of the parameters

* Which parameters must be passed, and which are optionally passed

* The data type of the return value, if any (for a procedure)

A prototype must be included in the definition specifications of the program or
procedure that makes the call. The prototype is used by the compiler to call the
program or procedure correctly, and to ensure that the caller passes the correct
parameters.

The following rules apply to prototype definitions.

* A prototype name must be specified in positions 7-21. If the keyword EXTPGM
or EXTPROC is specified on the prototype definition, then any calls to the
program or procedure use the external name specified for that keyword. If
neither keyword is specified, then the external name is the prototype name, that
is, the name specified in positions 7-21 (in uppercase).

* Specify PR in the Definition-Type entry (positions 24-25). Any parameter
definitions must immediately follow the PR specification. The prototype
definition ends with the first definition specification with non-blanks in positions
24-25 or by a non-definition specification.

* Specify any of the following keywords as they pertain to the call interface:

EXTPROC(name)
The call will be a bound procedure call that uses the external name
specified by the keyword.

EXTPGM(name)
Together with LINKAGE(*SERVER), determines the call will be to a
remote program on an iSeries server using the external program name
specified by the keyword.

CLTPGM(name)
The call will be an external program call that uses the external name
specified by the keyword.

Chapter 6. Subprocedures and Prototypes 71

DLL(name)
The DLL keyword, together with the LINKAGE keyword, is used to
prototype a procedure that calls functions in Windows DLLs, including
Windows APIs.

LINKAGE(name | *SERVER)
The LINKAGE keyword, together with the DLL keyword, specifies the
Linkage convention (interface) to be used when invoking functions in a
DLL.

LINKAGE(*SERVER), together with the EXTPGM keyword, specify the
prototype is for a remote program on an iSeries server.

STATIC
The STATIC keyword specifies that the data item is to be stored in static
storage, and thereby hold its value across calls to the procedure in which
it is defined.
* A return value, if any, is specified on the PR definition. Specify the length and
data type of the return value. In addition, you may specify the following
keywords for the return value:

DATFMT (fmt)
The return value has the date format specified by the keyword.

DIM(N)
The return value is an array or data structure with N elements.

LIKE(name)
The return value is defined like the item specified by the keyword.

LIKEDS(data_structure_name)
The returned value is a data structure. (You cannot refer to the subfields
of the return value when you call the procedure.)

LIKEREC(namef,type})
The returned value is a data structure defined like the specified record
format name.

Note: You cannot refer to the subfields of the return value when you
call the procedure.

PROCPTR
The return value is a procedure pointer.

TIMFMT (fmt)
The return value has the time format specified by the keyword.

VARYING
A character, graphic, or UCS-2 return value has a variable-length format.

For information on these keywords, see [“Definition-Specification Keywords” on|

[Figure 17 on page 73|shows a prototype for a subprocedure CVTCHR that takes a
numeric input parameter and returns a character string. Note that there is no name
associated with the return value. For this reason, you cannot display its contents
when debugging the program.

72 VisualAge RPG Language Reference

* The returned value is the character representation of
* the input parameter NUM, left-justified and padded on
* the right with blanks.

D CVTCHR PR 31A
D NUM 31P 0 VALUE
*
* The following expression shows a call to CVTCHR. If
* variable rrn has the value 431, then after this EVAL,
* variable msg would have the value
* 'Record 431 was not found.'
*
C EVAL msg = 'Record '
C + %TRIMR(CVTCHR(RRN))
C + ' was not found '

Figure 17. Prototype for CVTCHR

If you are writing a prototype for an exported subprocedure or for a main
procedure, put the prototype in a /COPY file and copy the prototype into the
source file for both the callers and the module that defines the procedure. This
coding technique provides maximum parameter-checking benefits for both the
callers and the procedure itself, since they all use the same prototype.

Prototyped Parameters

If the prototyped call interface involves the passing of parameters, then you must

define the parameter immediately following the PR specification. The following
keywords, which apply to defining the type, are allowed on the parameter
definition specifications:

ASCEND
The array is in ascending sequence.

CCSID(number | *DFT)
Sets the CCSID for graphic and UCS-2 definitions.

CLASS(*JAVA:class_name)
For Java only, provides the class of the object for fields that can store
objects.

DATFMT (fmt)
The date parameter has the format fmt.

DIM(N)
The parameter is an array or data structure with N elements.

LIKE(name)
The parameter is defined like the item specified by the keyword.

LIKEREC(name{type})
The parameter is a data structures whose subfields are the same as the
fields in the specified record format name.

LIKEDS(data_structure_name)
The parameter is a data structure whose subfields are the same as the
subfields identified in the LIKEDS keyword.

PROCPTR
The parameter is a procedure pointer.

TIMFMT (fmt)
The time parameter has the format fmt.

Chapter 6. Subprocedures and Prototypes

73

VARYING
A character, graphic, or UCS-2 return value has a variable-length format.

For information on these keywords, see [Definition-Specification Keywords” onl|

The following keywords, which specify how the parameter should be passed, are
also allowed on the parameter definition specifications:

CONST
The parameter is passed by read-only reference. A parameter defined with
CONST must not be modified by the called program or procedure. This
parameter-passing method allows you to pass literals and expressions.

NOOPT
The parameter will not be optimized in the called program or procedure.

OPTIONS(optl { : opt2 { : opt3 { : opt4 } } })
Where optl ... opt4 can be the following parameter passing options:

*HEX Valid only for remote program calls, this indicates the
parameter should be passed as if it were a hex value,
without the automatic data conversion between the
Windows client and iSeries server.

*OMIT The special value *OMIT may be passed for this reference
parameter.

*VARSIZE The parameter may contain less data than indicated on the
definition. This keyword is valid only for character
parameters, graphic parameters, or arrays passed by
reference. The called program or procedure must have
some way of determining the length of the passed
parameter.

Note: When this keyword is omitted for fixed-length
fields, the parameter may only contain more or the
same amount of data as indicated on the definition;
for variable-length fields, the parameter must have
the same declared maximum length as indicated on
the definition.

*RIGHTAD] For a CONST or VALUE parameter, *RIGHTAD] indicates
that the graphic, UCS-2, or character parameter value is to
be right adjusted.

*STRING Pass a character value as a null-terminated string. This
keyword is valid only for basing pointer parameters passed
by a value or by read-only reference.

*TRIM The parameter is trimmed before it is passed. This option
is valid for character, UCS-2 or graphic parameters passed
by value or by read-only reference. It is also valid for
pointer parameters that have OPTIONS(*STRING) coded.

Note: When a pointer parameter has OPTIONS(*STRING :
*TRIM) specified, the value will be trimmed even if
a pointer is passed directly. The null-terminated
string that the pointer is pointing to will be copied
into a temporary, trimmed of blanks, with a new

74 VisualAge RPG Language Reference

null-terminator added at the end, and the address of
that temporary will be passed.

VALUE
The parameter is passed by value.

For information on the keywords listed above, see [“Definition-Specification|
[Keywords” on page 264

Procedure Interface

If a prototyped procedure has call parameters or a return value, then a procedure
interface definition must be defined, either in the main source section (for a main
procedure) or in the subprocedure section. A procedure interface definition
repeats the prototype information within the definition of a procedure. It is used to
declare the entry parameters for the procedure and to ensure that the internal
definition of the procedure is consistent with the external definition (the

prototype).

The following rules apply to procedure interface definitions:

¢ The name of the procedure interface, specified in positions 7-21, is optional. If
specified, it must match the name specified in positions 7-21 on the
corresponding prototype definition.

* Specify PI in the Definition-Type entry (positions 24-25). The procedure-interface
definition can be specified anywhere in the definition specifications. In the main
procedure, the procedure interface must be preceded by the prototype that it
refers to. A procedure interface is required in a subprocedure if the procedure
returns a value, or if it has any parameters; otherwise, it is optional.

* Any parameter definitions, indicated by blanks in positions 24-25, must
immediately follow the PI specification.

e Parameter names must be specified, although they do not have to match the
names specified on the prototype.

 All attributes of the parameters, including data type, length, and dimension,
must match exactly those on the corresponding prototype definition.

* To indicate that a parameter is a data structure, use the LIKEDS keyword to
define the parameter with the same subfields as another data structure.

* The keywords specified on the PI specification and the parameter specifications
must match those specified on the prototype.

If a module contains calls to a procedure, then there must be a prototype definition
for each program and procedure that you want to call. One way of minimizing the

required coding is to store shared prototypes in /COPY files.

If you provide prototyped procedures to other users, be sure to provide them with
the prototypes (in /COPY files) as well.

Chapter 6. Subprocedures and Prototypes 75

76 VisualAge RPG Language Reference

Chapter 7. SQL Support

If your VisualAge RPG application contains Structured Language (SQL) statements

to access DB2® databases, you must perform the following tasks:

1. Install DB2 and set up access to it. The DB2 manuals DB2 Universal Database
Personal Edition Quick Beginnings, S10]-8150 and DB2 Universal Database for
Windows NT Quick Beginnings, S10J-8149, and the DB2 Universal Database section
of the Database and File Systems category in the Information Center (at this Web
site - http://www.ibm.com/eserver/iseries/infocenter) describe how to install
and setup the DB2 products on workstation and iSeries servers.

2. Code the SQL statements in your source program. |“General Syntax Rules”
describes how to code SQL statement in a VisualAge RPG program.

3. Build the application. The online help for the Build Options dialog from the

GUI Designer describes which build options can be selected for VisualAge RPG

programs with SQL statements. For additional information on building,

running, and connecting to databases, see [“Building an Application” on page]
8_5,||“Running an Application” on page 86|and |‘Connecting to a Database” on|

page 86/

4. Package and install the user application. Programming with VisualAge RPG,
5C09-2449-05 describes how to package and install a VisualAge RPG
application.

The VisualAge RPG embedded SQL support differs from most other
implementations in that there is no separate precompiler for creating the
intermediate file which is then compiled. The embedded SQL statements are
handled during the compile step of the build process.

Your application can be built to use local databases, databases on other
workstation nodes, or databases on other iSeries servers. Any differences in the
level of SQL supported on these other systems are overlooked with the level of
SQL supported on the workstation where the build is performed. Only the syntax
supported by DB2 on the build-time workstation is allowed.

If you port your application to another workstation, the application can only run
on the same or higher level of DB2.

Note: VisualAge RPG supports the level of function defined in DB2/2 V1.2. More
recent releases of DB2/2 can be used if only V1.2 functions are used in the
application.

General Syntax Rules

The following rules describe the syntax for SQL statements which are included in

your VisualAge RPG source program:

1. SQL statements are coded in the calculation specifications. The following
statements are exceptions and can be coded anywhere before any compile-time
data (** in positions 1 to 2): INCLUDE, BEGIN DECLARE, END DECLARE.

2. To specify the beginning of an SQL statement, code /EXEC SQL in positions 7
to 15. Position 16 must be blank. The remainder of the line from positions 17 to
80 can either be an SQL statement or part of an SQL statement.

3. To specify the end of an SQL statement, code /END-EXEC in positions 7 to 15.

4. Only one SQL statement can be coded between /EXEC SQL and /END-EXEC.

© Copyright IBM Corp. 1994, 2005 77

5. An SQL statement can be coded on several lines. The lines between the /EXEC
SQL and the /END-EXEC must contain a plus sign (+) in position 7 and a
blank in position 8.

6. Character literals can span several lines. The literal is coded up to column 80
on one line and continues on column 9 of the next line.

7. To specify a comment line within the SQL statement, code an asterisk (*) in
position 7.

8. To specify a comment on the same line as an SQL statement, use -- within the
SQL statement.

9. Names beginning with SQL should be avoided in the program since they may
conflict with SQL names.

The following example illustrates the general syntax rules:

SV PSS JU R JUPRT SRy P SN . SR SR . SR
C/EXEC SQL WHENEVER SQLERROR GO TO ERRLAB
C/END-EXEC
C/EXEC SQL -- starts SQL statement
C+ SELECT =

* this is a normal RPG style comment
C+ INTO :hvarl, -- host variable one
C+ :hvar2 -- host variable two
C+ FROM TABLEX
C+ WHERE NAME='TESTING'
C/END-EXEC

Figure 18. General Syntax Rules for SQL Statements

78 VisualAge RPG Language Reference

Host Variable Declarations

The SQL statements BEGIN DECLARE and END DECLARE are allowed in
VisualAge RPG programs, however these statements are ignored. All variables that
are declared are considered candidate host variables.

Host variables are identified by a preceding colon in an SQL statement.

The data types supported for host variables are character, variable-length character,
graphic, integer packed decimal, zoned decimal, binary numeric, date, time, and
timestamp. The SQL data types REAL, DOUBLE and VARCHAR are not

supported.

The following table summarizes how VisualAge RPG data types map to SQL data

types.

Table 11. Host Data Types

VARPG Data Type

SQL Data Type

Description

Notes

4 digit binary SMALLINT 16 bit signed integer No decimal positions

9 digit binary INTEGER 32 bit signed integer No decimal positions

Packed decimal DECIMAL(m,n) Default RPG numeric data

type

Character CHAR(m) Fixed length character Up to 254 chars

Graphic GRAPHIC(m) Fixed length DBCS string ~ Up to 127 chars

Zoned decimal DECIMAL(m,n) Fixed point number Converted to packed decimal by RPG
before or after DB2 operation.

Date DATE Date The following formats are supported by
DB2: *ISO, *USA, *EUR, *JIS. Other RPG
formats are converted by RPG before or
after DB2 operation.

Time TIME Time The following formats are supported by
DB2: *ISO, *USA, *EUR, *JIS. Other RPG
formats are converted by RPG before or
after DB2 operation.

Timestamp TIMESTAMP Timestamp

Chapter 7. SQL Support 79

Host Variable Rules

The following describes the rules for host variables:

1.

A host variable may be any scalar character, numeric, date, time, timestamp, or
DBCS field defined in the program. A host variable cannot be any of the
following:

* Multiple occurrence data structures

* Indicator field names (*INxx)

* Tables

« UDATE, UDAY, UMONTH, UYEAR

Indexed arrays are not allowed as host variables.

All numeric data types in SQL are compatible and the appropriate conversions
occur when the host variable type does not match the column definition. This
includes database columns in scientific notation (FLOAT). You will receive a
message indicating truncation.

All character data types in SQL are compatible and the appropriate conversions
occur when the host variable type does not match exactly the column
definition. SQL will perform the appropriate conversions between fixed length
and varying length character. You will receive a message indicating truncation.
All DBCS data types in SQL are compatible and the appropriate conversions
occur when the host variable type does not match exactly the column
definition. SQL will perform the appropriate conversions between fixed length
and varying length DBCS data. You will receive a message indicating
truncation.

Date, time, and timestamp fields in SQL are compatible with character fields.
For example, when an SQL date column is fetched into a character host
variable, it is formatted using the Date/Time format value specified on the DB2
options page of the Build notebook.

Indicator variables must be declared as 4 digit binary numeric.

Single occurrence data structures with no subfields are considered character

data type following normal RPG rules (see [Chapter 11, “Data Structures,” onl|

). Data structures with subfields are considered host structures.

80 VisualAge RPG Language Reference

Data Structures as Host Variables

When a data structure is specified as a host variable in a SQL statement, the name
refers to all subfields of the data structure. This is a convenient way to specify a
long list of host variables. [Figure 19| illustrates the source code if a data structure is
not used while [Figure 20| illustrates the source code if a data structure is used.

SV PSR Sy Y P Sy JUPR SR, DU SRR . SRR SR . U
C/EXEC SQL
C+ SELECT =
C+ INTO :F1, :F2, :F3, :F4, :F5, :F6, :F7
C+ FROM TABLEX
C+ WHERE NAME="'GASPARE'
C/END-EXEC

Figure 19. Coding host variables without using a data structure
Using data structure:

e T e L LT B e T ittt &

D ROW DS

D F1 1 10
D F2 11 20
D F3 21 30
D F4 31 40
D F5 41 50
D F6 51 60
D F7 61 70
*

C/EXEC SQL

C+ SELECT =*

C+ INTO :ROW

C+ FROM TABLEX

C+ WHERE NAME="'GASPARE'
C/END-EXEC

Figure 20. Coding host variables using a data structure

Although there is some extra coding for the data structure subfields, the host
variable list in the SQL statement is much smaller. Since there are likely to be
several SQL statements in the program, the overall coding effort can be less.

Chapter 7. SQL Support 81

Indicator Variables and Structures

If indicator variables are required (for example, by null columns), then a short
binary numeric array can be specified along with the name of the host structure.

T gy | puympp—

D ROW DS
D Fl 1 10
D F2 11 20
D F3 21 30
D F4 31 40
D F5 41 50
D F6 51 60
D F7 61 70
*
D STRUCT DS
D Al 1 14B 0 DIM(7)
*
C/EXEC SQL
C+ SELECT =
C+ INTO :ROW:AI
C+ FROM TABLEX
C+ WHERE NAME='GASPARE"
C/END-EXEC

Figure 21. Indicator variables and structures

This is the same as to coding each array element as an indicator variable. For
example, the indicator variable for field F1 is AI(1); for field F2, AI(2); etc.

Host Structure Rules
The following describes the rules for host structures:

* A ssingle SQL statement can contain one or more host structures.
¢ The data structure must contain subfields in order to be recognized as a host
structure. A data structure without subfields is considered a normal character

field.

* A host structure name can be followed immediately by an indicator array, which
is a binary numeric array with zero decimal positions. Each element of the array

corresponds to a subfield of the data structure.

/EXEC SQL INCLUDE Statement

The /EXEC SQL INCLUDE statement can appear anywhere in the program prior
to the compile time data section (** in positions 1-2). The filename is specified by a

single name. The file extension defaults to VPG.

Note: The filename can only refer to a local file.

82 VisualAge RPG Language Reference

/EXEC SQL INCLUDE SQLCA Statement

An SQLCA data structure is automatically included in the VisualAge RPG program
when database processing has been specified on the DB2 options page of the Build
notebook. The data structure is included even if the INCLUDE SQLCA statement is
not specified.

You can use the SQLCA data structure to query the result of each SQL statement
after it has been executed.

If the INCLUDE SQLCA statement is specified, the definition for the data structure
is included at that point in the program. Subsequent instances of the INCLUDE
SQLCA statement are ignored.

Note: The SQLCA data structure can also be included using the /COPY compiler
directive, instead of /EXEC SQL INCLUDE SQLCA.

shows the layout of the SQLCA data structure:

T T e e LTl TRTupuyar JRPRPRp | pyupapa)
SQL D= Start of SQLCA Data Structure

SQL D SQLCA DS

SQL D SQLAID 1 8A
SQL D SQLABC 9 12B 0
SQL D SqQLcob 13 16B 0
SQL D SQLERL 17 188 0
SQL D SQLERM 19 88A
SQL D SQLERP 19 96A
SQL D SQLERRD 97 120B 0 DIM(6)
SQL D SQLERR 97 120A
SQL D SQLER1 97 100B 0
SQL D SQLER2 101 104B 0
SQL D SQLER3 105 108B 0
SQL D SQLER4 109 112B 0
SQL D SQLER5 113 116B 0
SQL D SQLER6 117 120B 0
SQL D SQLWRN 121 127A
SQL D SQLWNO 121 121A
SQL D SQLWN1 122 122A
SQL D SQLWN2 123 123A
SQL D SQLWN3 124 124A
SQL D SQLWN4 125 125A
SQL D SQLWN5 126 126A
SQL D SQLWN6 127 127A
SQL D SQLWN7 128 128A
SQL D SQLWN8 129 129A
SQL D SQLWN9 130 130A
SQL D SQLWNA 131 131A
SQL D SQLSTT 132 136A
SQL D* End of SQLCA Data Structure

Figure 22. Source expansion for SQLCA data structure

Chapter 7. SQL Support 83

/EXEC SQL WHENEVER Statement

The /EXEC SQL WHENEVER statement determines what error handling is done
following execution of SQL statements. illustrates the syntax of the
/EXEC SQL WHENEVER statement.

C/EXEC SQL WHENEVER <condition> <action>
C/END-EXEC

Figure 23. Syntax of SQL WHENEVER statement

Note: <condition> is SQLWARNING, SQLERROR, or NOT FOUND. <action> is
GOTO <tag-name>, GO TO <tag-name>, or CONTINUE.

The /EXEC SQL WHENEVER identifies the action to be performed when an SQL
statement returns with a non-zero return code. It applies to all subsequent SQL
statements in the program up to the next /EXEC SQL WHENEVER statement.

A message is issued whenever the action is inapplicable based on the section of
code that the statement is in. illustrates this.

B s T D e LT e
1 C SUBR1 BEGSR

2 C/EXEC SQL WHENEVER SQLERROR GOTO ERRLAB

3 C/END-EXEC

4 C ERRLAB TAG

5 C ENDSR

6 C SUBR2 BEGSR

7 C/EXEC SQL FETCH ...

8 C/END-EXEC

9 C ENDSR

Figure 24. Error messages using SQL WHENEVER

In this example, statement 7 is invalid since the WHENEVER action would cause a

branch into another subroutine. The possible values for the condition are:

* SQLWARNING: The action is invoked if the value of the SQL return code is
greater than 0 and less than 100.

* SQLERROR: The action is invoked if the value of the SQL return code is less
than 0.

* NOT FOUND: The action is invoked if the value of the SQL return code is 100.

The possible values for the action are:

* GOTO <tag-name>: If the condition is true, execution resumes at the specified
tag name.

¢ CONTINUE: If the condition is true, execution resumes at the next executable
statement is the program. This is the default action.

Note: The /EXEC SQL WHENEVER statement must appear in the calculation
specifications.

84 VisualAge RPG Language Reference

/EXEC SQL BEGIN DECLARE Statement

The /EXEC SQL END DECLARE statement are ignored by the compiler, however
the statements in between are not ignored. [Table 12| describes how SQL data types
map to VisualAge RPG data types.

Table 12. Mapping of SQL types to host variables

Decimal
Data Format Length (Bytes) Positions
VARPG Data

SQL Data Type |Type (pos 43) (pos 44-51) (pos 52)
SMALLINT 4 digit binary B 2 0
INTEGER 9 digit binary B 4 0
DECIMAL(m,n) Packed decimal P m/2+1 n
CHAR(m) Character m
DATE Date 10
TIME Time 8
TIMESTAMP Timestamp 26
GRAPHIC(m) Graphic G m*2

Runtime Error Handling

If an SQL statement fails, no messages are issued during run time. You must code
an SQL WHENEVER statement or explicitly check the SQLCOD value in order to
detect these errors.

Building an Application

To build an application that contains embedded SQL, you must specify the
following options on the Build notebook:

* DB2 database name

* Either a Package name or a Bind file name.

For more information, see Programming with VisualAge RPG, SC09-2449-05.

The database name you specify must be cataloged on your workstation. You must
have the proper authority to use the database. When you start building an
application, the DB2 Database Manager is started automatically (the build process
issues the DB2START command). However, if you are building your application
from a client environment, you must start the database manager yourself on the
server. To connect to the database automatically during compilation, you must first
specify a valid userid and password on the DB2connect page of the Build Options
Notebook. For subsequent builds, VARPG will use this information to connect to
the database.

Before your application can be run, a package must be created. A package is an
object stored in the database that includes information to execute the embedded
SQL in your application, or program. If the package is created at build time, this is
called binding enabled. This allows the application to only access the database
used during the build. If the application is built with binding deferred, a bind file
is created and the application can access many databases.

Chapter 7. SQL Support 85

Running an Application

To run an application that contains embedded SQL, the following conditions must

exist:

¢ The database that your application accesses must be cataloged on your
workstation

* You must have the proper authority to access the database

* The timestamp with which your application was built must match the
timestamp of the database package you are accessing.

When you run your VisualAge RPG application, the DB2 Database Manager is
started automatically (DB2START). If you are running your application from a
client environment, you must start the database manager yourself on the server.

If the application is built with binding deferred, the bind files that are produced
must be bound to the database before the application can run.

When you build your application, a timestamp is embedded in it. This timestamp
is compared to the database package when the application is run. If the
timestamps are not equal, the application will not run. This mismatch can occur if
the application is run against an older package.

If you port your application to another workstation, the timestamps in your
application must match the timestamps in the package that you are accessing on
the new workstation. You can either:
* Rebind your application by issuing the following command from a command
prompt:
sqlbind applicl.bnd typesx

where sqlbind is the DB2 command, applicl.bnd is the bind file created during the
build, and typesx is the database you wish to access.

* Setup access to the database used by your application. You must catalog the
database that you are trying to access on the new workstation. This is the same
database used during the build. The database can be on another workstation, or
on a remote system.

Connecting to a Database

86

Before your application can access a database, your application must have a
connection to the database. You can do this by either using the CONNECT TO
statement or by using an implicit connect.

Using the CONNECT TO Statement

You can specify the database name you wish to connect to by using the CONNECT
TO statement in your application. For example,

C\EXEC SQL CONNECT TO LATONA
C\END-EXEC
Note: LATONA is the name of the database.

You can use a variable for the database name as shown in the following example:

D server S 10a
D userid S 8a
D password S 10a
C eval server = 'LATONA'

VisualAge RPG Language Reference

C eval userid = 'USERID'
C eval password = 'password’

C\EXEC SQL
C+ CONNECT TO :server IN SHARE MODE user :userid using :password
C\END-EXEC

For more information on the syntax of the CONNECT SQL statement, refer to the
SQL Reference for your DB2 configuration.

Chapter 7. SQL Support 87

Using an Implicit Connect

You can establish an implicit connection to your database by setting the
environment variable SQLDBDEFT to point to the database that you want to
implicitly connect to. For example,

SET SQLDBDFT=LATONA

This environment variable can be set either in your CONFIG.SYS file, or set from
the session’s command prompt.

If you are running your application in a Windows environment, you can use the
following to connect to a database:

SET DB2DBDFT=LATONA
SET DB2USERID=USERID
SET DB2PASSWORD=password

These environment variables are set in the AUTOEXEC.BAT file.

Note: Some differences exist in the environment variable names depending on the
configuration of DB2 installed. Refer to the DB2 installation manuals.

88 VisualAge RPG Language Reference

Chapter 8. File Considerations

This section describes how to use files in a VisualAge RPG program. Your program
can use DISK, PRINTER, and SPECIAL files:
* DISK files:
— DISK files can either be remote or local
— Remote DISK files must be externally described
— Local DISK files must be program described
¢ PRINTER files:
— A maximum of eight PRINTER files are allowed
— PRINTER files must be program described
— PRINTER files must be local
» SPECIAL files:
— SPECIAL files must be program described
— SPECIAL files must be local

For more information on how to specify files, see the following sections:
* [Chapter 17, “File Description Specifications,” on page 237

* [Chapter 18, “Definition Specifications,” on page 255

+ [Chapter 19, “Input Specifications,” on page 299

+ [Chapter 21, “Output Specifications,” on page 321,

Disk Files

[Part 3, “Specifications,” on page 209| describes how to define both local and remote
files on the various specifications. This section describes additional considerations
if your VisualAge RPG application uses local files or OS/400 database files.

Local Files

The following is a summary of restrictions for local files:

* Local file cannot be locked.

* Numeric fields in local files are written and read as is, with no conversion.

* If your program performs I/O on a local file does not exist, the file is created.
* If the local file is created by VisualAge RPG, records in this file are terminated
with a carriage return line feed. If you use a local file that does not contain
carriage return line feeds, your VisualAge RPG application will not be able to

perform I/O operations on this file.

* Bit patterns in a local file are read into storage as is. If a bit pattern contains the
binary representation for a carriage return line feed (CRLF), the record that is
read by your VisualAge RPG program will be split into two records.

* If a local file contains binary numbers, the numbers are byte-swapped.

0S/400 Files

VisualAge RPG operation codes can access OS/400 physical, source physical, and
logical database files. For more information on how to setup OS/400 database files,
see the DB2 Universal Database section of the Database and File Systems category in
the Information Center at this Web site -
http://www.ibm.com/eserver/iseries/infocenter.

© Copyright IBM Corp. 1994, 2005 89

Before your application can access OS/400 database files, you must set up the
server. For more information on how to setup a server, see Getting Started with
WebSphere Development Studio Client for iSeries, SC09-2625-06 and Programming with
VisualAge RPG, SC09-2449-05.

When your VisualAge RPG application accesses an OS/400 database file, a DDM
service job is used to handle the database 1/O requests. A single DDM service job
is used on each different iSeries server where files are opened for each VisualAge
RPG application. When the application ends, all the DDM service jobs end.

Sharing the File Open Data Path

Sharing open data paths is not supported. If a VisualAge RPG application contains
an OPNQRYF CL command, then the open data path associated with the
OPNQRYF command cannot be shared by files opened in the VisualAge RPG
application.

If the VisualAge RPG application calls a program which uses the OPNQRYF
command, the open data path can be shared.

Each open performed by the VisualAge RPG application creates a unique open
data path. Multiple opens of the same database file within the same VisualAge
RPG application result in different instances of the file, each with its own open
data path.

You can open the same database file more than once by using different file alias
names in the VisualAge RPG program to refer to the same actual OS/400 database
file. You must define multiple file pages in the Define iSeries Information
notebook.

You can also open the same database file in different components of the VisualAge
RPG application.

Query Files and Single/Blocked Record I/O Operations

When using query files (OPNQRYF command), set both the VisualAge RPG
application and the query file to expect either single or blocked record
input/output operations. If these settings do not match, the application appears to
skip records on input. This mismatch can occur because the OPNQRYF command
first opens the file, then the open data path is shared with the VisualAge RPG
application file open request, ignoring some of its open settings. However, the
single or blocked record setting is fixed in the VisualAge RPG application at
compile time.

For the OPNQRYF and OVRDBF commands, the SEQONLY(*NO/*YES) keyword

determines single or blocked record input or output processing. For VisualAge

RPG applications, single or blocked record processing is based on one of the

following:

* The F specification keyword BLOCK(*NO/*YES) value

* The presence of random record positioning operations (SETLL, for example) on
the file in the program.

Invalid Data Errors on Query Files

A run time error can occur if a query file (OPNQRYF command) is used which has
a key field definition that does not match the compile-time file’s key field
definition. A single-record input operation from the query file will perform
server-to-workstation conversion on the key feedback values returned with the

90 VisualAge RPG Language Reference

operation. This may trigger invalid data errors if the returned key value formats

do not match the expected formats from the compile-time file’s key definition. This

error situation can be avoided if:

* Only blocked record input operations are used, or

* A compile-time file with a key field definition which matches the query file used
at program run time is selected.

Applications with Embedded Database File Overrides

If a VARPG application uses an OVRDBF (Override Database File) command to
specify a different library or file name, the file open will fail if a file by the original
name does not exist on the server.

The VARPG file open request goes through the iSeries DDM support, which
attempts to locate and lock the file before applying the file override information. If
this lock attempt fails on the original library/filename, then the open request fails.
If the file lock succeeds, the request then passes to the iSeries database layer which
applies the file override and performs the open on the redirected file name.

0S/400 File Data Conversions

Data is stored differently on the iSeries server than on the workstation. For this
reason, VisualAge RPG data conversion occurs if your VisualAge RPG application
calls OS/400 programs, accesses OS/400 data areas, or accesses OS/400 database
files. This conversion ensures that data is represented correctly on both the
workstation and on the iSeries server.

If a data structure is passed as a parameter to a call to an OS/400 program, or if
the data structure represents an OS/400 data area, each subfield is converted based
on its data type.

Note: In order for the data conversions to work, all database files and TO/FROM
tiles must be externally described.

The following conversions are performed on VisualAge RPG data types:

Character Data:
Character data is converted from EBCDIC to ASCII and vice versa. All
character data stored in the database must be tagged with an appropriate
EBCDIC CCSID in order for the conversion to work correctly. Character
data is converted depending on the CCSID of the character field and the
code page of the ASCII workstation. If your application calls an OS/400
program or accesses an OS/400 data area, the CCSID of the job serving the
call or the data area request is used when converting data.

For more information on tagging character data, see the the DB2 Universal
Database section of the Database and File Systems category in the
Information Center at this Web site -
http://www.ibm.com/eserver/iseries/infocenter.

Graphic data type:
The Graphic data type contains all DBCS characters without the SO and SI
characters. Since this is the format that the system expects, the entire
graphic data type can be used.

Note: If your application issues server I/O requests, you must tag the

0OS/400 Graphic fields with an appropriate DBCS CCSID in order
for the VisualAge RPG conversion to work successfully.

Chapter 8. File Considerations 91

Date, Time and Timestamp data types:
The conversion is the same as for character data types. Explicit CCSID
tagging is not required for OS/400 database access.

Zoned Numeric data type:
Zoned numbers are converted so they can be displayed and printed on
both the server and the workstation.

When negative EBCDIC zoned numbers are converted to ASCII, the sign

portion of the last byte is converted to x’7". See [Zoned-Decimal Format’]

Packed Decimal data type:
When EBCDIC packed numbers are converted to ASCII, the sign portion of
the packed number is converted to x’C” if the number is positive and x'D’
if the number is negative. See [“Packed-Decimal Format” on page 126

Binary data types:
Binary fields are reordered when this data is sent between the server and
the workstation.

The following conversions are performed on database types:

Float data types:

Binary and Float fields are byte swapped when this data is sent between

the server and the workstation. For example,

* A 2 byte integer field on the server containing "1 2’ is converted to "2 1’
on the workstation.

* A 2 byte integer field on the containing "2 1" on the workstation is
converted to ‘1 2’ on the server .

* A 4 byte integer field on the server containing 1 2 3 4’ is converted to "4
3 2 1’ on the workstaiton.

* A4 byte integer field on the containing 4 3 2 1" on the workstation is
converted to "1 2 3 4’ on the server .

Hex Data Type and Character Data tagged with a CCSID of 65535
Data conversion does not occur if the character field is tagged with a
CCSID of 65535 (implying no conversion should take place).

J, O, or E Data types:
The] (DBCS only), O (Mixed data) and E (Either all single byte or all
double type) data types are treated as character fields in the VisualAge
RPG program.

J, O, and E data types must be tagged with an appropriate CCSID.
However, since they may contain DBCS characters they are special. On the
server, DBCS characters for these data types are enclosed by the SO (Shift
out) and SI (Shift In) characters. On the workstation, DBCS is not enclosed
with the SO and SI characters.

When data is retrieved from the server, these characters are stripped and
the character field is padded with two additional trailing blanks.

When data is sent to the server, you must ensure that there are enough
trailing blanks in the character field so that they can be replaced by the
appropriate number of SO and SI characters which must be added to the
0S/400 DBCS field.

For example, assume that an O (mixed data) field is created in the
database. On the workstation, this field contains the following before being
written to the database.

92 VisualAge RPG Language Reference

sbDBsbDBb1b1b1b1

Where sb = Single byte character.
DB = Double byte character.
b1 = Single byte blank character.

In this example, this field is converted as follows:
sbSODBSIsbSODBSI

Note: The trailing single byte blanks are treated as insignificant and are
replaced with the SO and SI characters appropriately.

Variable length fields:
For server 1/0 requests, the Binary portion is reordered when this data is
sent between the server and the workstation. The character portion is
converted based on the field CCSID.

0S/400 Database File Commitment Control

0S/400 commitment control allows you to process a group of database changes as
a unit. This unit can be successfully applied to the database by issuing a commit
operation. Changes associated with the unit can be rolled back if they cannot be
successfully applied as a group.

The information you enter on the Define iSeries Information notebook allows you
to define multiple OS/400 database files for your VisualAge RPG application.
These files can exist on multiple servers. For more information on defining server
information, see the online help and Programming with VisualAge RPG,
SC09-2449-05.

A commitment control environment can only be started for one server. You can still
use the database file on other servers. However those files cannot be opened under
commitment control.

After the commitment control environment has been started for a server, you can
open database files on that server using the COMMIT keyword on the file
specification for the files you want opened under commitment control. Only files
opened under commitment control are affected by subsequent COMMIT and
ROLLBK operations. For more information on the COMMIT keyword, see

[COMMIT{(rpg_name)}” on page 245

After making the appropriate changes associated with your transaction, you can
commit the changes to the database using the COMMIT operation code or you can
rollback the database changes using the ROLLBK operation code.

Commitment control is ended when your VisualAge RPG application ends. If
changes are pending in the database which have not been explicitly committed or
rolled back, then an implicit rollback operation occurs at application termination.

You can write a program so that the decision to open a file under commitment
control is made at run time. The COMMIT keyword on the file specification has a
parameter which allows you to specify conditional commitment control. For more
information on using the COMMIT keyword to control opening a file for
commitment control at run time, see ['COMMIT{(rpg_name)}” on page 245

Level Checking: The VisualAge RPG supports level checking between a
VisualAge RPG program and the database files being used.

Chapter 8. File Considerations 93

The VisualAge RPG compiler provides the information required by level checking.
Level checking occurs on a record-format basis when the file is opened unless you
specify LVLCHK(*NO) when creating or changing the database file.

Note: If a level check occurs, it is handled as an I/O error.

Floating Point: Floating-point fields are not supported. If you process an
externally-described OS/400 file with floating-point fields, the floating-point fields
cannot be accessed by the VisualAge RPG application. When you create a new
record, the floating-point fields in the record have a value of zero. When you
update existing records, the floating-point fields are unchanged. You cannot use a
floating-point field as a key field.

Locking Files: The OS/400 system allows a lock state (exclusive, exclusive allow
read, shared for update, shared no update, or shared for read) to be placed on a
file used during the execution of a job. Programs within a job are not affected by
file lock states. A file lock state applies only when a program in another job tries to
use the file concurrently. The file lock state can be allocated with the CL command
ALCOBJ (Allocate Object). For more information on allocating resources and lock
states, see the CL and APIs section of the Programming category in the Information
Center at this Web site - http://www.ibm.com/eserver/iseries/infocenter.

The OS/400 system places the following lock states on database files when it opens
the files:

* Opened for INPUT: Lock state of Shared for read

* Opened for UPDATE: Lock state of Shared for update

* Opened for ADD: Lock state of Shared for update

* Opened for OUTPUT: Lock state of Shared for update.

Locking Records: When a record is read from a file that has been opened for
update, a lock is applied to the record. Other programs on the server and other
open instances in your VisualAge RPG application of the same file cannot read this
record for update until the record lock is released.

You can read a record for input purposes even if the file is an update file by using
the (N) operation code extender in the operation code field following the operation
code name. The following operation codes cause a record to be locked if the
operation code extender (N) is not specified:

* CHAIN

* READ

* READE

* READP

* READPE

The lock remains until one of the following occurs:

* The record is updated

* The record is deleted

* Another record is read from the file (for input or update)

e A SETLL or SETGT operation is performed against the file

* An UNLOCK operation is performed against the file

* An output operation defined by an output specification with no field names
included is performed against the file

Note: An output operation that adds a record to a file does not result in a
record lock being released.

94 VisualAge RPG Language Reference

If your program attempts to read a record for update and the record is already
locked by another file open instance, then the read operation waits until the record
is unlocked. If the wait time exceeds the WAITRCD parameter on the file, an
exception occurs. If your program does not handle this exception (RNQ1218), then
the default error handler gets control. You have the option to retry the operation.
This allows the program to continue as if the record lock timeout had not occurred.

Note: If the file has an INFSR subroutine specified when an I/O operation is
performed on the file before the default error handler is given control,
unexpected results can occur if the input operation that is retried is a
sequential operation. This can occur if the file cursor has been modified.

Chapter 8. File Considerations 95

Printer Files

The following rules apply to printer files:

* The record length for the printer device in a VisualAge RPG application must be
less than or equal to the physical page width.

* An automatic form-feed is inserted when the value of the current line is equal to
the value specified by the FORMLEN(n) keyword, where n is the number of
lines per page, If FORMLEN is not specified, the default page length is 66 lines.

* If printing finishes in the middle of a printer file’s page, a form-feed is added
automatically.

The following restrictions apply to printer files:

* The PRINT feedback area (for number of pages and lines) is updated only after
a POST operation.

* Major/minor return codes, I/O feedback areas, and open feedback areas are not
supported.

* Overflow/fetch is not supported. However, when the line number reaches the
value specified by FORMLEN (or the default of 66), a form feed takes place.

* Since overflow is not supported, the *OFL routine (for file exceptions and errors)
is not supported. This means the *ROUTINE does not get updated with this
value in the file feedback area.

Special Files

A special file allows you to specify an input and/output device that is not directly
supported by the VisualAge RPG operations. The input and output operations for
the file are controlled by a user-written routine. Use the PROCNAME keyword on
the file specifications to define the special file handler.

Note: The user-written routine is a function contained in a Dynamic Link Library
(DLL).

In [Figure 25 on page 97} fspecr is a function within a C module which has been
compiled and linked to a VisualAge RPG application. This example demonstrates
how to perform local I/O on a workstation.

Note: In order for your VisualAge RPG program to connect with a DLL, you must
create the DLL containing the C function definition referred to by the
procedure keyword (PROCNAME) in the VisualAge RPG program. When
you build your VisualAge RPG application, you must specify the list of
libraries (LIB) and/or objects (OB]) which contains all the functions that the
application calls on the Build notebook.

96 VisualAge RPG Language Reference

Fr mmmmmmmeee oo VRPG Special Files === ==--mmmmmmmmmemmee
S Y
F+ Special file declaration. Explicit open and close.

F dino cf f 18 SPECIAL USROPN PLIST(dinoplist)

F PROCNAME (' fspecr')

F INFDS (info)
g g gy
D+ The INFDS- positions 38 to 42.

D info DS

d errinfo 38 42s 0
Sy Sy Sy Sy S PRy PRSPy
D* Used to display set indicators and read values.

D BoxId M STYLE (*INFO)

D BUTTON (*0K: *ENTER)

D BUTTON (*ABORT : *x IGNORE)
gy
D+ Input field associated with special file.

D fieldc S 18 inz ('VRPGisGreat')
g g gy
D+ Extra, user-defined parameter for special file I/0 operations.
D mySFparm S 10 inz ('VRPGisGreat')
5y g

I* Input specification, i.e. fieldc is updated for the VRPG program
I*x after each I/0 operation performed on the special file dino.

I dino NS

I 1 18 fieldc

I*

Figure 25. Using Special Files (Part 1 of 2)

gy

C *INZSR BEGSR

CF m e e e e e

C dinoplist PLIST

C PARM mySFparm

C EVAL fieldc = 'FIRSTINIT'

C FIELDC DSPLY BoxId Reply 90

G mm m e e e e
C OPEN dino 90

C 90'IND9O' DSPLY BoxId Reply

C 99'IND99' DSPLY BoxId Reply

Crmmm e e e e e e e e e e e ——————————
C N90O READ dino 9099
gy
C N9OFIELDC DSPLY BoxId Reply

C 90'IND9O' DSPLY BoxId Reply

C 99'IND99' DSPLY BoxId Reply

CF m e
C CLOSE dino 90
G mm e e e e e e
C 90'IND9O' DSPLY BoxId Reply

C 99'IND99' DSPLY BoxId Reply

C ENDSR

Figure 25. Using Special Files (Part 2 of 2)

Chapter 8. File Considerations

#include <stdlib.h>
#include <memory.h>
#include <stdio.h>

| Special File Function |
e ————— */
*
extern void fspecr (char *option, // VRPG provided
char *status, // VRPG provided
char *error, // VRPG provided
char *area, // VRPG provided
char *mySFparm) // User provided
J4 wemmeeemeemeeemeem e eemmeetmeemeeemeeneeemeeereee |
| Local Constants |
e e */
#define REC_SIZE 18 // Size of record to be read.
#define NORMAL_STATUS '0' // Values for 'status' parameter.
#define ERROR_STATUS '2'
#define EOF_STATUS !
#define OPEN_ERROR 12345 // Update values for 'error' also
#define READ_ERROR 88888 // used for the *RECORD field in
#define OPTION_ERROR 99999 // in the INFDS.
*
static FILE *fp ;
*
int radix = 10 ; // Required for the ' itoa' function.
*
int a =0 ;
char temp[6];
switch (option[0]) {
case '0' : // Locally open the file.
if ((fp=fopen("special.dat", "rb+")) == NULL) {
a = OPEN_ERROR ; // ASCII value of an open error

_itoa(a, temp, radix) ; // is set here for the INFDS.
memcpy (error, temp, 5) ;
status[0] = ERROR_STATUS ; // Return status.

}

else {
status[0] = NORMAL_STATUS ;
break ;
case 'C' : // Local close ...
fclose(fp) ;

status[0] = NORMAL_STATUS ;
break ;

Figure 26. C program for Special Files (Part 1 of 2)

98 VisualAge RPG Language Reference

case 'R' : // Local file open... read.
fread(area, 1, REC_SIZE, fp) ;
if (feof(fp)) {
status[0] = EOF_STATUS ; // File read and EOF reached.

else if (ferror(fp)) { // Check for any errors.
a = READ_ERROR ; // ASCII equivalent of a read error
_itoa(a, temp, radix) ; // is set here for the INFDS.
memcpy (error, temp, 5) ;
status[0] = ERROR_STATUS ; // Return status.

else {
status[0] = NORMAL_STATUS ;

break ;

default :
a = OPTION_ERROR ; // Set the ASCII equivalent of an
_itoa(a, temp, radix) ; // option error for the INFDS.
memcpy (error, temp, 5) ;
status[0] = ERROR_STATUS ; // Return status.
break ;

}

return ;

*

#undef REC_SIZE
#undef NORMAL_STATUS
#undef ERROR_STATUS
#undef EOF_STATUS
#undef OPEN_ERROR
#undef READ_ERROR
#undef OPTION_ERROR
}

Figure 26. C program for Special Files (Part 2 of 2)

Chapter 8. File Considerations 99

The example in illustrates how the OPEN and CLOSE operations are
done implicitly by omitting the USROPN keyword from the File specifications.

Fr e e e e -
Fr mmmmmmmeee oo VRPG Special Files === =-m-mmmmmmmmmmmmeeem
Sy gy gy Ly
Fx Special file declaration. Implicit open and close.

F dino cf f 18 SPECIAL PLIST(dinoplist)

F PROCNAME (' fspecr')

F INFDS (info)
)3y
D* The INFDS- positions 38 to 42.

D info DS

d errinfo 38 42s 0

)y gy g g gy gy
Dx Used to display set indicators and field values.

D BoxId M STYLE (*INFO)

D BUTTON (*OK: *ENTER)

D BUTTON (*ABORT : * IGNORE)

D¥ s e e e e e -
D* Input field associated with special file.

D fieldc S 18 inz ('VRPGisGreat')
)3y
Dx Extra, user-defined parameter for special file I/0 operations.
D mySFparm S 10 inz ('VRPGisGreat')
I Ty Sy iy iy Sy iy Sy sy iy iy Sy iy Sy Sy iy Sy iy Sy iy Sy iy Sy Sy

I* Input specification, i.e. fieldc is updated for the VRPG program
I* after each I/0 operation performed on the special file dino.

I dino NS

I 1 18 fieldc
gy

C *INZSR BEGSR

G m e e e e e e e

C dinoplist PLIST

C PARM mySFparm

C EVAL fieldc = 'FIRSTINIT'

C FIELDC DSPLY BoxId Reply 90

G mm e e e e e e
C READ dino 9099
Gk mm e e e e e
C N9OFIELDC DSPLY BoxId Reply

C 90'IND9O' DSPLY BoxId Reply

C 99'IND99' DSPLY BoxId Reply
Oy
C ENDSR

Figure 27. Opening and Closing Special Files Implicitly

100 VisualAge RPG Language Reference

Part 2. Data

This section provides information on using data in a program:

* [Chapter 9, “Data Types and Data Formats,” on page 103| describes data type and
formats

+ [“Literals” on page 149 describes literals

* |Chapter 11, “Data Structures,” on page 157 describes data structures

* [Chapter 12, “Using Arrays and Tables,” on page 171| describes Arrays and tables
* [Chapter 13, “Editing Numeric Fields,” on page 191| describes how to edit
numeric fields

[Chapter 14, “Initialization of Data,” on page 207] describes data initialization

© Copyright IBM Corp. 1994, 2005 101

102 VisualAge RPG Language Reference

Chapter 9. Data Types and Data Formats

This section describes the data types supported by VisualAge RPG and their
special characteristics. The supported data types are:
* Basing Pointer

* Character

e Date

* Graphic

¢ Numeric

* Object

¢ Procedure Pointer

e Time

e Timestamp

» UCS-2

In addition, some of the data types allow different data formats. This section
describes the difference between internal and external data formats, describes each
format, and how to specify them.

Internal and External Formats

Numeric, date, and timestamp fields have an internal format that is independent of
the external format. The internal format is the way the data is stored in the
program. The external format is the way the data is stored in files.

You need to be aware of the internal format when:
* Passing parameters by reference
* Opverlaying subfields in data structures

In addition, you may want to consider the internal format of numeric fields, when
the runtime performance of arithmetic operations is important. For more
information, see [“Performance Considerations” on page 349

There is a default internal and external format for numeric and date-time data
types. You can specify an internal format for a specific field on a definition
specification. Similarly, you can specify an external format for a program-described
field on the corresponding input or output specification.

For fields in an externally-described file, the external data format is specified in the
data description specifications in position 35. You cannot change the external
format of externally-described fields, with one exception. If you specify
EXTBININT on a control specification, any binary field with zero decimal positions
will be treated as having an integer external format.

For subfields in externally-described data structures, the data formats specified in
the external description are used as the internal formats of the subfields by the
compiler.

Internal Format

The default internal format for numeric standalone fields is packed-decimal. The
default internal format for numeric data structure subfields is zoned-decimal. To

© Copyright IBM Corp. 1994, 2005 103

specify a different internal format, specify the format desired in position 40 on the
definition specification for the field or subfield.

The default format for date, time, and timestamp fields is *ISO. In general, it is
recommended that you use the default ISO internal format, especially if you have
a mixture of external format types.

For date, time, and timestamp fields, you can use the DATFMT and TIMFMT
keywords on the control specification to change the default internal format, if
desired, for all date-time fields in the program. You can use the DATFMT or
TIMFMT keyword on a definition specification to override the default internal
format of an individual date-time field.

External Format

If you have numeric, character, or date-time fields in program-described files, you
can specify their external format. Valid external numeric formats are: binary,
integer, packed-decimal, zoned-decimal, unsigned or float. The external format
does not affect the way in which a field is processed. However, you may be able to
improve performance of arithmetic operations, depending on the internal format
specified. For more information, see [“Performance Considerations” on page 349

Specifying an External Format for a Numeric Field

The following table shows how to specify the external format of numeric
program-described fields. For more information on each format type, see the
appropriate section in the remainder of this section.

Table 13. Entries and Locations for Specifying External Formats

Type of Field Specification Using

Input Input Position 36
Output Output Position 52

Array or Table Definition EXTFMT keyword

For any of these fields in specify one of the following valid external
numeric formats:

Binary

Float

Integer

Left sign

Packed decimal

Right sign

Zoned decimal

Unsigned

comgE—=mw

The default external format for float numeric data is called the external display
representation. The format for 4-byte float data is:

+n.nnnnnnnE+ee, where + represents the sign (+ or -)
n represents digits in the mantissa
e represents digits in the exponent

The format for 8-byte float data is:

+n.nnnnnnnnnnnnnnnE+eee

Note that a 4-byte float value occupies 14 positions and an 8-byte float value
occupies 23 positions.

104 VisualAge RPG Language Reference

For numeric data other than float, the default external format is zoned decimal.
The external format for compile-time arrays and tables must be zoned-decimal,
left-sign or right-sign.

For float compile-time arrays and tables, the compile-time data is specified as
either a numeric literal or a float literal. Each element of a 4-byte float array
requires 14 positions in the source record; each element of an 8-byte float array
requires 23 positions.

Non-float numeric fields defined on input specifications, calculation specifications,
or output specifications with no corresponding definition on a definition
specification are stored internally in packed-decimal format.

Specifying an External Format for a Character, Graphic, or UCS-2
Field

For any of the input and output fields in [Table 13 on page 104} specify one of the
following valid external data formats:

A (valid for character and indicator data)
N (valid for character and indicator data)
G (valid for graphic data)

C (valid for UCS-2 data)

The EXTFMT keyword can be used to specify the data for an array or table in
UCS-2 format.

Specify the *VAR data attribute in positions 31-34 on an input specification and in
positions 53-80 on an output specification for variable-length character, graphic, or
UCS-2 data.

Specifying an External Format for a Date-Time Field

If you have date, time, and timestamp fields in program-described files, then you
must specify their external format. You can specify a default external format for all
date, time, and timestamp fields in a program-described file by using the DATFMT
and TIMFMT keywords on a File-Description specification. You can specify an
external format for a particular field as well. Specify the desired format in
positions 31-34 on an Input specification. Specify the appropriate keyword and
format in positions 53-80 on an Output specification.

For more information on each format type, see the appropriate section in the
remainder of this chapter.

Basing Pointer Data Type

Basing pointers are used to locate the storage for based variables. The storage is
accessed by defining a field, array, or data structure as based on a particular basing
pointer variable and setting the basing pointer variable to point to the required
storage location.

For example, consider the based variable MY_FIELD, a character field of length 5,
which is based on the pointer PTR1. The based variable does not have a fixed
location in storage. You must use a pointer to indicate the current location of the
storage for the variable.

Suppose that the following is the layout of some area of storage:

Chapter 9. Data Types and Data Formats 105

MY _FIELD is now located in storage starting at the ‘G’, so its value is "GHIJK". If
the pointer is moved to point to the ’J’, the value of MY_FIELD becomes 'JKLMN':

If MY_FIELD is now changed by an EVAL statement to "'HELLO’, the storage
starting at the ’J” would change:

Use the BASED keyword on the definition specification (see
['BASED(basing_pointer_name)” on page 266) to define a basing pointer for a field.
Basing pointers have the same scope as the based field.

The length of the basing pointer field must be 4 bytes long and must be aligned on
a 4 byte boundary. This requirement for boundary alignment can cause a pointer
subfield of a data structure not to follow the preceding field directly, and can cause
multiple occurrence data structures to have non-contiguous occurrences. For more
information on the alignment of subfields, see [“Aligning Data Structure Subfields”]

The default initialization value for basing pointers is *NULL.

Notes:

1. When coding basing pointers, you must be sure that you set the pointer to
storage that is large enough and of the correct type for the based field.
[Figure 31 on page 109 shows some examples of how not to code basing
pointers.

2. You can add or subtract an offset from a pointer in an expression, for example
EVAL ptr = ptr + offset. When doing pointer arithmetic be aware that it is your
responsibility to ensure that you are still pointing within the storage of the item
you are pointing to. In most cases no exception will be issued if you point
before or after the item.

When subtracting two pointers to determine the offset between them, the
pointers must be pointing to the same space, or the same type of storage. For
example, you can subtract two pointers in static storage, or two pointers in
automatic storage, or two pointers within the same user space.

106 VisualAge RPG Language Reference

Setting a Basing Pointer

You set or change the location of the based variable by setting or changing the

basing pointer in one of the following ways:

e Initializing with INZ(%ADDR(FLD)) where FLD is a non-based variable

* Assigning the pointer to the result of %ADDR(X) where X is any variable

* Assigning the pointer to the value of another pointer

 Using ALLOC or REALLOC (See ["ALLOC (Allocate Storage)” on page 505/ and
["'REALLOC (Reallocate Storage with New Length)” on page 666| for examples.)

* Moving the pointer forward or backward in storage using pointer arithmetic:

EVAL PTR = PTR + offset

("offset” is the distance in bytes that the pointer is moved)

Examples
shows how to define a based data structure.

L R AR TG SR DU S N RIS, PUNPUR ¢ BEPUPIPE PP AR PR
DName+++++++++++ETDSsFrom+++To/ L+++IDc. Keywords++++++++++tttttttttttttttttttt
*

* Define a based data structure, array and field.

* If PTR1 is not defined, it will be implicitly defined

* by the compiler.

*

* Note that before these based fields or structures can be used,
* the basing pointer must be set to point to the correct storage
* Jocation. PTR1 will be set to a valid storage address before the
* DSbased data structure is used.

*

D DSbased DS BASED(PTR1)

D Fieldl 1 16A

D Field2 2

D

D ARRAY S 20A DIM(12) BASED(PTR2)

D

D Temp_f1d S % BASED(PTR3)

D

D PTR2 * INZ

D PTR3 * INZ(*NULL)

Figure 28. Defining Based Structures and Fields

Chapter 9. Data Types and Data Formats 107

The following shows how you can add and subtract offsets from pointers and also
determine the difference in offsets between two pointers.

P T A U P PITIY. SR . TP AP ¢ RIS ST |
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++ttttttttttttttttttttt
A PP Keywords+++++t+tttttttttttttttttttttt
*

D P1 S *

D P2 S *

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
CSRNO1++++++++++++++0pcode (E) +Extended Factor 2++++++++tttttttttttttttttttt

* Allocate 20 bytes of storage for pointer PI.

C ALLOC 20 P1

* Initialize the storage to 'abcdefghij'

C EVAL %STR(P1:20) = 'abcdefghij'

* Set P2 to point to the 9th byte of this storage.

C EVAL P2 = P1 + 8

* Show that P2 is pointing at 'i'. %STR returns the data that
* the pointer is pointing to up to but not incuding the first
* null-terminator x'00' that it finds, but it only searches for
* the given Tength, which is 1 in this case.

C EVAL Result = %STR(P2:1)

C DSPLY Result 1
* Set P2 to point to the previous byte

C EVAL P2 = P2 -1

* Show that P2 is pointing at 'h'

C EVAL Result = %STR(P2:1)

C DSPLY Result

* Find out how far P1 and P2 are apart. (7 bytes)

C EVAL Diff = P2 - P1

C DSPLY Diff 50
* Free Pl's storage

C DEALLOC P1

C RETURN

Figure 29. Pointer Arithmetic

108 VisualAge RPG Language Reference

shows how to obtain the number of days in Julian format, if the Julian

date is required.

H KeyWOY‘dS++

H DATFMT (*JUL)
DName+++++++++++ETDsFrom+++To/ L+++IDc. Keywords+++++++++ttttttttttttttttttt

3PP Keywords++++++++++t+ttttttttt+tt++++
*

D JulDate S D INZ(D'95/177"')

D DATFMT (*JUL)

D JulDS DS BASED (JulPTR)

D Jul_yy 2 0

D Jul_sep 1

D Jul_ddd 30

D JulDay S 30

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
CSRNO1++++++++++++++0pcode (E) +Extended Factor 2++++++++tttttttttttttttttttt
*

* Set the basing pointer for the structure overlaying the

* Julian date.

C EVAL JulPTR = %ADDR(JulDate)
* Extract the day portion of the Julian date
C EVAL JulDay = Jul_ddd

Figure 30. Obtaining a Julian Date

When coding basing pointers, make sure that the pointer is set to storage that is
large enough and of the correct type for the based field. shows some
examples of how not to code basing pointers.

DName+++++++++++ETDSFrom+++To/ L+++1Dc . Keywords+++++++++tttttttttttttttttttt

Dttt ittt ettt it e, Keywords++++++tttttttttttttttrttt+++
*

D chrl0 S 10a based(ptrl)

D charl00 S 100a based(ptrl)

D pl S 5p 0 based(ptrl)

CSRNO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ...
CSRNO1++++++++++++++0pcode (E) +Extended Factor 2+++++ttttttttttttttttttit
*

*
* Set ptrl to the address of pl, a numeric field
x Set chrl® (which is based on ptrl) to 'abc'
* The data written to pl will be unreliable because of the data
* type incompatibility.
*
C EVAL ptrl = %addr(pl)
C EVAL chrl@ = 'abc'
*
* Set ptrl to the address of chrlO, a 10-byte field.
* Set chrl00, a 100-byte field, all to 'x'
* 10 bytes are written to chrlO, and 90 bytes are written in other
* storage, the Tocation being unknown.
*
C EVAL ptrl = %addr(chr10)
C EVAL chrl00 = *all'x'

Figure 31. How Not to Code Basing Pointers

Chapter 9. Data Types and Data Formats 109

Character Data Type

The character data type represents character values and may have one of the
following formats:

A
N ndicato
G raphic
C CS-2,

Character data may contain one or more single-byte or double-byte characters,
depending on the format specified. Character, graphic, and UCS-2 fields can also
have either a fixed or variable-length format. Operation codes which operate on
strings accept character data. The following table summarizes the different
character data-type formats.

Character Data | Number of Bytes CCSID

Type

Character One or more single-byte characters | assumed to be the CCSID of the
that are fixed or in length | workstation

Indicator One single-byte character that is |assumed to be the CCSID of the
fixed in length workstation

Graphic One or more double-byte CCSID of the workstation or a
characters that are fixed or valid user-defined double-byte
in length CCSID

UCs-2 One or more double-byte 13488 (UCS-2 version 2.0)
characters that are fixed or
in length

For information on the CCSIDs of character data, see[“Conversion between|
[Character, Graphic and UCS-2 Data” on page 119.|

The default initialization value for non-indicator character fields is blanks.

Indicators are a special type of character data. Indicator data consists of the
indicator and the field specified with the COMMIT keyword on the file description
specification. Indicators are all one byte long and can only contain the character
values ‘0" and "1". The default value of indicators is "0’

Character Format

The fixed-length character format is one or more bytes long with a set length.

For information on the variable-length character format, see [“Variable-Length|
[Character, Graphic, and UCS-2 Format” on page 113

You define a character field by specifying A in the Data-Type entry of the
appropriate specification. You can also define one using the LIKE keyword on the
definition specification where the parameter is a character field.

The default initialization value is blanks.

110 VisualAge RPG Language Reference

Indicator Format

The indicator format is a special type of character data. Indicators are all one byte
long and can only contain the character values ‘0" (off) and "1” (on). They are
generally used to indicate the result of an operation or to condition (control) the
processing of an operation. The default value of indicators is "0’.

You define an indicator field by specifying N in the Data-Type entry of the
appropriate specification. You can also define an indicator field using the LIKE
keyword on the definition specification where the parameter is an indicator field.
Indicator fields are also defined implicitly with the COMMIT keyword on the file
description specification.

The rules for defining indicator variables are:

* Indicators can be defined as standalone fields, subfields, prototyped parameters,
and procedure return values.

* If an indicator variable is defined as a prerun-time or compile-time array or
table, the initialization data must consist of only '0’s and "1’s.

Note: If an indicator contains a value other than ‘0" or 1" at runtime, the results
are unpredictable.
¢ If the keyword INZ is specified, the value must be one of '0’, *OFF, "1’, or *ON.
* The keyword VARYING cannot be specified for an indicator field.

The rules for using indicator variables are:

¢ The default initialization value for indicator fields is "0’.

* Operation code CLEAR sets an indicator variable to "0".

* Blank-after function applied to an indicator variable sets it to '0".

 If an array of indicators is specified as the result of a MOVEA(P) operation, the
padding character is 0’

* Indicators may be used as search arguments where the external key is a
character of length 1.

Chapter 9. Data Types and Data Formats 111

Graphic Format

The graphic format is a character string where each character is represented by 2
bytes.

The difference between single- byte character and double-byte graphic data is
shown in the following figure:

1 byte 1 byte 1 byte 1 byte

Single-byte
‘ data
1 char 1 char 1 char 1 char
1 byte 1 byte 1 byte 1 byte
Graphic
‘ data

1 graphic char 1 graphic char

Figure 32. Comparing Single-byte and Graphic Data

The length of a graphic field, in bytes, is two times the number of graphic
characters in the field.

If a record is added, the database file and graphic fields are not specified for
output, double-byte blanks are placed in the fields for output. Blanks are placed in
output fields in the following conditions:

* The fields are not specified for output on the output specification.

* Conditioning indicators are not satisfied for the field.

Graphic data may be fixed or variable length. The fixed-length graphic format is a
character string with a set length where each character is represented by 2 bytes.

For information on the variable-length character format, see [“Variable-Length|
[Character, Graphic, and UCS-2 Format” on page 113

You define a graphic field by specifying G in the Data-Type entry of the
appropriate specification. You can also define one using the LIKE keyword on the
definition specification where the parameter is a graphic field.

The default initialization value for graphic data is the double byte blank. Its
hexadecimal value depends on the code page installed on your workstation. The
value of *HIVAL is X'FFFF', and the value of *LOVAL is X'0000'.

UCS-2 Format

The Universal Character Set (UCS-2) format is a character string where each
character is represented by 2 bytes. This character set can encode the characters for
many written languages.

The length of a UCS-2 field, in bytes, is two times the number of UCS-2 characters
in the field.

112 VisualAge RPG Language Reference

The fixed-length UCS-2 format is a character string with a set length where each
character is represented by 2 bytes.

For information on the variable-length UCS-2 format, see [“Variable-Length|
[Character, Graphic, and UCS-2 Format.”|

You define a UCS-2 field by specifying C in the Data-Type entry of the appropriate
specification. You can also define one using the LIKE keyword on the definition
specification where the parameter is a UCS-2 field.

The default initialization value for UCS-2 data is X'0020'. The value of *HIVAL is
X'FFFF', *LOVAL is X'0000', and the value of *BLANKS is X'0020'.

For more information on the UCS-2 format, see the CL and APIs section of the
Programming category in the Information Center at this Web site -
http://www.ibm.com/eserver/iseries/infocenter.

Variable-Length Character, Graphic, and UCS-2 Format

Variable-length character fields have a declared maximum length and a current
length that can vary while a program is running. The length is measured in single
bytes for the character format and in double bytes for the graphic and UCS-2
formats. The storage allocated for variable-length character fields is 2 bytes longer
than the declared maximum length. The leftmost 2 bytes are an unsigned integer
field containing the current length in characters, graphic characters, or UCS-2
characters. The actual character data starts at the third byte of the variable-length
field.

Chapter 9. Data Types and Data Formats 113

shows how variable-length character fields are stored:

<|:grr]rgetrr11t character-data
UNS(5) CHAR(N)

!

N = declared maximum length
2 + N = total number of bytes
Figure 33. Character Fields with Variable-Length Format

shows how variable-length graphic fields are stored. UCS-2 fields are
stored similarly.

‘l"gr';r&?]t graphic-data

UNS(5) GRAPHIC(N)

!

N = declared maximum length = number of double bytes
2 + 2(N) = total number of bytes
Figure 34. Graphic Fields with Variable-Length Format

Note: Only the data up to and including the current length is significant.

You define a variable-length character field by specifying A (character), G
(graphic), or C (UCS-2) and the [keyword VARYING]|on a definition specification. It
can also be defined using the LIKE keyword on a definition specification where the
parameter is a variable-length character field.

You can refer to external variable-length fields, on an [input| or foutput| specification,
with the *VAR data attribute.

The default initialization value is the null string ("’); a value with length zero.

For examples of using variable-length fields, see:

+ |“Using Variable-Length Fields” on page 117]

* [“%LEN (Get or Set Length)” on page 452|

* ["%CHAR (Convert to Character Data)” on page 416|

* ["%REPLACE (Replace Character String)” on page 466

The variable-length format is also available for graphic data.

114 VisualAge RPG Language Reference

Rules for Variable-Length Character, Graphic, and UCS-2
Formats
The following rules apply when defining variable-length fields:

The declared length of the field can be from 1 to 65535 single-byte characters
and from 1 to 16383 double-byte graphic or UCS-2 characters.

The current length may be any value from 0 to the maximum declared length
for the field.

The field may be initialized using keyword INZ. The initial value is the exact
value specified and the initial length of the field is the length of the initial value.
The field is padded with blanks for initialization, but the blanks are not included
in the length.

In all cases except subfields defined using positional notation, the length entry
(positions 33-39 on the definition specifications) contains the maximum length of
the field not including the 2-byte length.

For subfields defined using positional notation, the length includes the 2-byte
length. As a result, a variable-length subfield may be 65537 single bytes long or
16384 double bytes long for an unnamed data structure.

The keyword VARYING cannot be specified for a data structure.

For variable-length prerun-time arrays, the initialization data in the file is stored
in variable format, including the 2-byte length prefix.

Since prerun-time array data is read from a file and files have a maximum
record length of 32766, variable-length prerun-time arrays have a maximum size
of 32764 single-byte characters, or 16382 double-byte graphic or UCS-2
characters.

A variable-length array or table may be defined with compile-time data. The
trailing blanks in the field of data are not significant. The length of the data is
the position of the last non-blank character in the field. This is different from
prerun-time initialization since the length prefix cannot be stored in
compile-time data.

For graphic compile time data, single-byte blanks are considered to be
significant data. Compile time data for graphic arrays and tables must be
padded with double-byte blanks. Single-byte blanks are considered non blanks.
*LIKE DEFINE cannot be used to define a field like a variable-length field.

Chapter 9. Data Types and Data Formats 115

The following is an example of defining variable-length character fields:

LR A A . S T S SO ST O R S A T

* Standalone fields:

D varb S 5A VARYING

D varl0 S 10A VARYING INZ('0123456789')
D max_Ten_a S 32767A VARYING

* Prerun-time array:

D arrl S 100A VARYING FROMFILE(dataf)

* Data structure subfields:

D dsl DS

* Subfield defined with Tength notation:

D sflb 5A VARYING

D sf2_10 10A VARYING INZ('0123456789")

* Subfield defined using positional notation: A(5)VAR
D sf4 5 101 107A VARYING

* Subfields showing internal representation of varying:

D sf7_25 100A VARYING

D sf7_1len 51 O OVERLAY(sf7_25:1)

D sf7_data 100A OVERLAY(sf7_25:3)

* Procedure prototype

D Replace PR 32765A VARYING

D String 32765A CONSTANT VARYING OPTIONS(*VARSIZE)
D FromStr 32765A CONSTANT VARYING OPTIONS(*VARSIZE)
D ToStr 32765A CONSTANT VARYING OPTIONS(*VARSIZE)
D StartPos 5U 0 VALUE

D Replaced 5U © OPTIONS(*OMIT)

Figure 35. Defining Variable-Length Character and UCS-2 Fields

116 VisualAge RPG Language Reference

The following is an example of defining variable-length graphic and UCS-2 fields:

I T O . R T SIS P R T S

* Standalone fields:

D GRA20 S 206G VARYING

D MAX_LEN_G S 16383G VARYING

* Prerun-time array:

D ARR1 S 100G VARYING FROMFILE(DATAF)
* Data structure subfields:

D DS1 DS

* Subfield defined with Tength notation:

D SF3.20 206G VARYING

* Subfield defined using positional notation: G(10)VAR

D SF6_10 11 32G VARYING

D MAX_LEN_C S 16383C VARYING

D FLD1 S 5C INZ(%UCS2('ABCDE')) VARYING
D FLD2 S 2C INZ(U'01230123") VARYING

D FLD3 S 2C INZ (*HIVAL) VARYING

D DS_C DS

D SF3.20C 20C VARYING

x Subfield defined using positional notation: C(10)VAR

D SF 110 C 11 32C VARYING

Figure 36. Defining Variable-Length Graphic and UCS-2 Fields

Using Variable-Length Fields

The length part of a variable-length field represents the current length of the field
measured in characters. For character fields, this length also represents the current
length in bytes. For double-byte fields (graphic and UCS-2), this represents the
length of the field in double bytes. For example, a UCS-2 field with a current
length of 3 is 3 double-byte characters long, and 6 bytes long.

The following sections describe how to best use variable-length fields and how the
current length changes when using different operation codes.

How the Length of the Field is Set: When a variable-length field is initialized
using INZ, the initial length is set to be the length of the initialization value. For
example, if a character field of length 10 is initialized to the value "ABC’, the initial
length is set to 3.

The EVAL operation changes the length of a variable-length target. For example, if
a character field of length 10 is assigned the value 'XY’, the length is set to 2.

LA R AN PTG S SRR S O RS SPUPUR ¢ BPUPE PP AU DU <
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++tttttttttttttttttttt
D fld 10A VARYING

* It does not matter what Tength 'f1d' has before the

* EVAL; after the EVAL, the Tlength will be 2.
CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. . .
C EVAL fld = 'XY!

The CLEAR operation changes the length of a variable-length field to 0.

Chapter 9. Data Types and Data Formats 117

The PARM operation sets the length of the result field to the length of the field in
Factor 2, if specified.

Fixed form operations MOVE, MOVEL, CAT, SUBST and XLATE do not change
the length of variable-length result fields. For example, if the value "XYZ’ is moved
using MOVE to a variable-length character field of length 10 whose current length
is 2, the length of the field will not change and the data will be truncated.

DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords++++++++tttttttttttttttttttt
D fld 10A VARYING

* Assume fld has a Tength of 2 before the MOVEL.

* After the first MOVEL, it will have a value of 'XY'
CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. . .

C MOVEL 'XYZ' f1d
* After the second MOVEL, it will have the value '1Y'
C MOVEL "1 f1d

Note: The recommended use for MOVE and MOVEL, as opposed to EVAL, is for
changing the value of fields that you want to be temporarily fixed in length.
An example is building a report with columns whose size may vary from
day to day, but whose size should be fixed for any given run of the
program.

When a field is read from a file (Input specifications), the length of a
variable-length field is set to the length of the input data.

The "Blank After” function of Output specifications sets the length of a
variable-length field to 0.

You can set the length of a variable-length field yourself using the %LEN builtin
function on the left-hand-side of an EVAL operation.

How the Length of the Field is Used: When a variable-length field is used for its
value, its current length is used. For the following example, assume 'result’ is a
fixed length field with a length of 7.

LA R A T TS PRy S PR, T O ¢ RPN ST AP R -
DName+++++++++++ETDsFrom+++To/ L+++IDc. Keywords++++++++tttttttttttttttttttt
D fld 10A VARYING

* For the following EVAL operation

* Value of 'fl1d' Length of 'fld' 'result’

¥ eecccccccccccses 0 sssscccscscscsss—s 0 O sesemem e ——————
* "ABC' 3 "ABCxxx '
* "A! 1 "AXXX !

* [} 0 IXXX 1

* "ABCDEFGHIJ' 10 'ABCDEFG'
CSRNO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ..
C EVAL result = f1d + 'xxx'

* For the following MOVE operation, assume 'result'
* has the value '....... ' before the MOVE.

* Value of 'fld' Length of 'fld' 'result’

¥ sacsccsccsccss $ cosccsccscocaome 0 O Ga s oo m------
* "ABC' 3 ' .ABC'

* A 1 RPN A

* " 0 L. '

* "ABCDEFGHIJ' 10 'DEFGHIJ'
C MOVE fld result

Why You Should Use Variable-Length Fields: Using variable-length fields for
temporary variables can improve the performance of string operations, as well as

118 VisualAge RPG Language Reference

making your code easier to read since you do not have to save the current length
of the field in another variable for %SUBST, or use %TRIM to ignore the extra
blanks.

If a subprocedure is meant to handle string data of different lengths, using
variable-length fields for parameters and return values of prototyped procedures
can enhance both the performance and readability of your calls and your
procedures. You will not need to pass any length parameters within your
subrocedure to get the actual length of the parameter.

Conversion between Character, Graphic and UCS-2 Data

Note: If graphic CCSIDs are ignored (CCSID(*GRAPH:*IGNORE) was specified on
the control specification or CCSID(*GRAPH) was not specified at all),
graphic data is not considered to have a CCSID and conversions are not
supported between graphic data and UCS-2 data.

Character, graphic, and UCS-2 data can have different CCSIDs (Coded Character
Set IDs). Conversion between these data types depends on the CCSID of the data.

CCSIDs of Data
The CCSID of character data is only considered when converting between
character and UCS-2 data.

When converting between character and UCS-2 or graphic data, the CCSID of the
character data is assumed to be the CCSID of the workstation.

The CCSID of UCS-2 data defaults to 13488. This default can be changed using the
CCSID(*UCS2) keyword on the Control specification. The CCSID for
program-described UCS-2 fields can be specified using the CCSID keyword on the
Definition specification. The CCSID for externally-described UCS-2 fields comes
from the external file.

Note: UCS-2 fields are defined in DDS by specifying a data type of G and a
CCSID of 13488.

The CCSID of graphic data defaults to the value specified in the CCSID(*GRAPH)
keyword on the Control specification. The CCSID for program-described graphic
fields can be specified using the CCSID keyword on the Definition specification.
The CCSID for externally-described graphic fields comes from the external file.

Date Data

Date fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all date data.

Date constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Dates used for 1/O operations such
as input fields, output fields or key fields are converted (if required) to the
necessary format for the operation.

The default internal format for date variables is *ISO. This default internal format

can be overridden globally by the control specification keyword DATEMT and
individually by the definition specification keyword DATFMT.

Chapter 9. Data Types and Data Formats 119

The hierarchy used when determining the internal date format and separator for a
date field is:

1. From the DATFMT keyword specified on the definition specification

2. From the DATFMT keyword specified on the control specification

3. *ISO

There are three kinds of date data formats, depending on the range of years that
can be represented. This leads to the possibility of a date overflow or underflow
condition occurring when the result of an operation is a date outside the valid
range for the target field. The formats and ranges are as follows:

Number of Digits in Year Range of Years
2 (*YMD, *DMY, *MDY, *JUL) 1940 to 2039
3 (*CYMD, *CDMY, *CMDY) 1900 to 2899
4 (*ISO, *USA, *EUR, *JIS, *LONGJUL) 0001 to 9999

lists the formats for date data and their separators:

For examples on how to code date fields, see the examples in:
* |[“Date Operations” on page 359

+ [“Moving Date-Time Data” on page 370|

+ [“ADDDUR (Add Duration)” on page 502|

+ ['MOVE (Move)” on page 604

+ ["EXTRCT (Extract Date/Time/Timestamp)” on page 579

+ ['SUBDUR (Subtract Duration)” on page 693|

o |“TEST (Test Date/Time/Timestamp)” on page 700

Table 14. RPG-defined date formats and separators for Date data type

Format Description Format Valid Length |Example
Name (Default Separators
Separator)
2-Digit Year Formats
*MDY Month/Day/Year |mm/dd/yy /-, & 8 01/15/96
*DMY Day/Month/Year |dd/mm/yy /- & 8 15/01/96
*YMD Year/Month/Day |yy/mm/dd /-, & 8 96/01/15
*JUL Julian yy/ddd /-, & 6 96/015
4-Digit Year Formats
*ISO International yyyy-mm-dd |- 10 1996-01-15
Standards
Organization
*USA IBM® USA mm/dd/yyyy |/ 10 01/15/1996
Standard
*EUR IBM European dd.mm.yyyy |. 10 15.01.1996
Standard
*JIS Japanese Industrial |yyyy-mm-dd |- 10 1996-01-15
Standard Christian
Era

120 VisualAge RPG Language Reference

The following table lists the *LOVAL, *HIVAL, and default values for all the date

formats:

Table 15. Date Values

Format name | Description *LOVAL | *HIVAL | Default Value

2-Digit Year Formats

*MDY Month/Day/ Year 01/01/40 12/31/39 |01/01/40

*DMY Day/Month/Year 01/01/40 31/12/39 |01/01/40

*YMD Year/Month/Day 40/01/01 39/12/31 |40/01/01

*JUL Julian 40/001 39/365 40/001

4-Digit Year Formats

*ISO International Standards 0001-01-01 9999-12-31 | 0001-01-01
Organization

*USA IBM USA Standard 01/01/0001 12/31/9999 |01/01/0001

*EUR IBM European Standard 01.01.0001 31.12.9999 | 01.01.0001

*TIS Japanese Industrial 0001-01-01 9999-12-31 | 0001-01-01
Standard Christian Era

Separators

When coding a date format on a MOVE, MOVEL or TEST operation, separators are
optional for character fields. To indicate that there are no separators, specify the
format followed by a zero. For more information on how to code date formats
without separators see [“MOVE (Move)” on page 604}[“MOVEL (Move Left)” on|

[page 626 and [“TEST (Test Date/Time/Timestamp)” on page 700

Formats for MOVE, MOVEL, and TEST Operations

Several formats are also supported for fields used by the MOVE, MOVEL, and
TEST operations only. This support is provided for compatibility with externally
defined values that are already in a 3-digit year format and the 4-digit year
*LONGJUL format.

lists the valid externally defined date formats that can be used in Factor 1
of a MOVE, MOVEL, and TEST operation.

Table 16. Externally defined date formats and separators

Format Description Format Valid Length | Example
Name (Default Separators (April 25,
Separator) 2001)

3-Digit Year Formats(1.)

*CYMD Century cyy/mm/dd /- & 9 101/04/25
Year/Month/Day

*CMDY Century cmm/dd/yy /- & 9 104/25/01
Month/Day/Year

*CDMY Century cdd/mm/yy /-, & 9 125/04/01
Day/Month/Year

4-Digit Year Formats

*LONGJUL | Long Julian yyyy/ddd /-.& |8 [2001/115

Chapter 9. Data Types and Data Formats

121

Table 16. Externally defined date formats and separators (continued)

Format Description Format Valid Length |Example
Name (Default Separators (April 25,
Separator) 2001)

Notes:
1. Valid values for the century character ‘¢’ are:

‘c' Years

0 1900-1999

1 2000-2099

9 2800-2899

Separators are optional for character fields in the *CYMD format. To indicate that
there are no separators you can specify *CYMDO.

Numeric Data Type

Numeric data consists of any data defined as having zero or more decimal
positions. Numeric data has one of the following formats:

* |“Binary Format”|

* [“Float Format” on page 124|

+ [“Integer Format” on page 126|

+ |“Packed-Decimal Format” on page 126|

+ [“Unsigned Format” on page 128

* [“Zoned-Decimal Format” on page 129

The default initialization value for numeric fields is zeroes.

Binary Format

Binary format means that the sign (positive or negative) is in the leftmost bit of the
field and the integer value is in the remaining bits of the field. Positive numbers
have a zero in the sign bit; negative numbers have a one in the sign bit and are in
twos complement form. In binary format, each field must be either 2 or 4 bytes
long.

A binary field can be from one to nine digits in length and can be defined with
decimal positions. If the length of the field is from one to four digits, the compiler
assumes a binary field length of 2 bytes. If the length of the field is from five to
nine digits, the compiler assumes a binary field length of 4 bytes.

Program-Described File

Every input field read in binary format is assigned a field length (number of
digits) by the compiler. A length of 4 is assigned to a 2-byte binary field; a length
of 9 is assigned to a 4-byte binary field, if the field is not defined elsewhere in the
program. Because of these length restrictions, the highest decimal value that can be
assigned to a 2-byte binary field is 9999 and the highest decimal value that can be
assigned to a 4-byte binary field is 999 999 999. In general, a binary field of n digits
can have a maximum value of n 9s. This discussion assumes zero decimal
positions.

122 VisualAge RPG Language Reference

For program-described files, specify binary input, binary output, and binary array

or table fields with the following entries:

* Binary input field: Specify B in position 36 of the input specifications.

* Binary output field: Specify B in position 52 of the output specifications. This
position must be blank if editing is specified.

The length of a field to be written in binary format cannot exceed nine digits. If
the length of the field is from one to four digits, the compiler assumes a binary
field length of 2 bytes. If the length of the field is from five to nine digits, the
compiler assumes a binary field length of 4 bytes.

Because a 2-byte field in binary format is converted by the compiler to a decimal
field with 1 to 4 digits, the input value may be too large. If it is, the leftmost
digit of the number is dropped. For example, if a four digit binary input field
has a binary value of hexadecimal 6000, the compiler converts this to 24 576 in
decimal. The 2 is dropped and the result is 4576. Similarly, the input value may
be too large for a 4-byte field in binary format. If the binary fields have zero (0)
decimal positions, then you can avoid this conversion problem by defining
integer fields instead of binary fields.

Note: Binary input fields cannot be defined as match or control fields.

* Binary array or table field: Specify B in position 40 of the definition
specifications. The external format for compile-time arrays and tables must not
be binary.

Externally Described File

For an externally-described file, the data format is specified in position 35 of the
data description specifications. The number of digits in the field is exactly the same
as the length in the DDS description. For example, if you define a binary field in
your DDS specification as having 7 digits and 0 decimal positions, the data is
handled as follows:

1. The field is defined as a 4-byte binary field in the input specification

2. A Packed(7,0) field is generated for the field in the VisualAge RPGprogram.

If you want to retain the complete binary field information, redefine the field as a
binary subfield in a data structure or as a binary standalone field. Note that an
externally-described binary field may have a value outside of the range allowed by
VARPG binary fields. If the externally-described binary field has zero (0) decimal
positions then you can avoid this problem. To do so, you define the
externally-described binary field on a definition specification and specify the
EXTBININT keyword on the control specification. This will change the external
format of the externally-described field to that of a signed integer.

[Figure 37 on page 124 shows what the decimal number 8191 looks like in various
formats.

Chapter 9. Data Types and Data Formats 123

Packed Decimal Format
Positive Sign

0 8 1 9 1

0000 1000 0001 1001 0001 | 1100

3 bytes »

Zoned Decimal Format:'

Zone Zone Zone Zone Positive Sign

[SRS ST ST T

0011 | 0000 | 0011 | 1000 | 0011 |ooo1 0011 | 1001 | 0011 | 0001

5 bytes »
Binary Format:®
Positive Sign || | | o [A
l 4096 +2048 + 1024 + 512T256 +128 + 64 + 32 + 16 T 8 4 2 + 1 T 8191
‘ 0o o0 o0 1 ‘ 101 11 11 A 1 ‘ 101 1A
2 bytes »

Figure 37. Defining Binary Fields

'If 8191 is read into storage as a zoned-decimal field, it occupies 4 bytes. If it is
converted to packed-decimal format, it occupies 3 bytes. When it is converted back
to zoned-decimal format, it occupies 5 bytes.

*To obtain the numeric value of a positive binary number add the values of the
bits that are on (1), do not include the sign bit. To obtain the numeric value of a
negative binary number, add the values of the bits that are off (0) plus one (the
sign bit is not included).

Float Format
The float format consists of two parts:
* the mantissa
* the exponent

The value of a floating-point field is the result of multiplying the mantissa by 10
raised to the power of the exponent. For example, if 1.2345 is the mantissa and 5 is
the exponent then the value of the floating-point field is:

1.2345 * (10 ** 5) = 123450

You define a floating-point field by specifying F in the data type entry of the
appropriate specification.

The decimal positions must be left blank. However, floating-point fields are
considered to have decimal positions. As a result, float variables may not be used
in any place where a numeric value without decimal places is required, such as an
array index, do loop index, and so on.

The default initialization and CLEAR value for a floating point field is 0EO.

124 VisualAge RPG Language Reference

The length of a floating point field is defined in terms of the number of bytes. It
must be specified as either 4 or 8 bytes. The range of values allowed for a positive
floating-point field are:

Field length Minimum Allowed Value Maximum Allowed Value
4 bytes 1.175 494 4 E-38 3.402 823 5 E+38
8 bytes 2.225 073 858 507 201 E-308 1.797 693 134 862 315 E+308

Note: Negative values have the same range, but with a negative sign.

Since float variables are intended to represent "scientific” values, a numeric
value stored in a float variable may not represent the exact same value as it
would in a packed variable. Float should not be used when you need to
represent numbers exactly to a specific number of decimal places, such as
monetary amounts.

External Display Representation of a Floating-Point Field
See [“Specifying an External Format for a Numeric Field” on page 104 for a general
description of external display representation.

The external display representation of float values applies for the following:

* Output of float data with Data-Format entry blank.

* Input of float data with Data-Format entry blank.

* External format of compile-time and prerun-time arrays and tables (when
keyword EXTEMT is omitted).

 Display and input of float values using operation code DSPLY.

* Result of built-in function %EDITFLT.

Output: When outputting float values, the external representation uses a format

similar to float literals, except that:

* Values are always written with the character E and the signs for both mantissa
and exponent.

* Values are either 14 or 23 characters long (for 4F and 8F respectively).

* Values are normalized. That is, the decimal point immediately follows the most
significant digit.

¢ The decimal separator character is either period or comma depending on the
parameter for Control-Specification keyword DECEDIT.

Here are some examples of how float values are presented:

+1.2345678E-23

-8.2745739E+03

-5.722748027467392E-123

+1,2857638E+14 if DECEDIT(',') is specified

Input: When inputting float values, the value is specified just like a float literal.
The value does not have to be normalized or adjusted in the field. When float
values are defined as array/table initialization data, they are specified in fields
either 14 or 23 characters long (for 4F and 8F respectively).

Note the following about float fields:

* Alignment of float fields may be desired to improve the performance of
accessing float subfields. You can use the ALIGN keyword to align float
subfields defined on a definition specification. 4-byte float subfields are aligned

on a 4-byte boundary and 8-byte float subfields are aligned along a 8-byte
boundary. For more information on aligning float subfields, see |["ALIGN” o

Chapter 9. Data Types and Data Formats 125

* Length adjustment is not allowed when the LIKE keyword is used to define a
field like a float field.

Integer Format

The integer format is similar to the binary format with two exceptions:
* The integer format allows the full range of binary values
* The number of decimal positions for an integer field is always zero.

You define an integer field by specifying I in the Data-Type entry of the
appropriate specification. You can also define an integer field using the LIKE
keyword on a definition specification where the parameter is an integer field.

The length of an integer field is defined in terms of number of digits; it can be 3, 5,
10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field takes
up 2 bytes of storage; a 10-digit field takes up 4 bytes; a 20-digit field takes up 8
bytes. The range of values allowed for an integer field depends on its length.

Field length
Range of Allowed Values

3-digit integer
-128 to 127

5-digit integer
-32768 to 32767

10-digit integer
-2147483648 to 2147483647

20-digit integer
-9223372036854775808 to 9223372036854775807

Note the following about integer fields:

* Alignment of integer fields may be desired to improve the performance of
accessing integer subfields. You can use the ALIGN keyword to align integer
subfields defined on a definition specification.

2-byte integer subfields are aligned on a 2-byte boundary and 4-byte integer
subfields are aligned along a 4-byte boundary; 8-byte integer subfields are
aligned along an 8-byte boundary. For more information on aligning integer
subfields, see [’ALIGN” on page 265,

* If the LIKE keyword is used to define a field like an integer field, the Length
entry may contain a length adjustment in terms of number of digits. The
adjustment value must be such that the resulting number of digits for the field is
3,5, 10, or 20.

Packed-Decimal Format

Packed-decimal format means that each byte of storage (except for the low-order
byte) can contain two decimal numbers. The low-order byte contains one digit in
the leftmost portion and the sign (positive or negative) in the rightmost portion.
All packed-decimal numbers use the preferred signs: hexadecimal C for positive
numbers and hexadecimal D for negative numbers. In addition, the following signs
are supported: hexadecimal A, E, F for positive numbers and hexadecimal B for
negative numbers. The packed-decimal format looks like this:

126 VisualAge RPG Language Reference

Digit | Digit | Digit | Sign

Byte

[Figure 37 on page 124 shows what the decimal number 8191 looks like in
packed-decimal format.

For a program-described file:
* Specify P in position 36 of the input specifications for packed-decimal input

Specify P in position 52 of the output specifications for packed-decimal output.
This position must be blank if editing is specified.

Specify P in position 40 of the definition specifications for packed-decimal arrays
and tables. The external format for compile-time arrays and tables cannot be
packed-decimal format.

For an externally described file, the data format is specified in the data description
specifications.

Determining the Digit Length of a Packed-Decimal Field

Use the following formula to find the length in digits of a packed-decimal field:
Number of digits = 2n - 1,
...where n = number of packed input record positions used.

This formula gives you the maximum number of digits you can represent in
packed-decimal format; the upper limit is 31.

Packed fields can be up to 16 bytes long. shows the packed equivalents
for zoned-decimal fields up to 31 digits long:

Table 17. Packed Equivalents for Zoned-Decimal Fields up to 31 Digits Long

Number of Bytes Used in Packed-Decimal
Zoned-Decimal Length in Digits Field
1 1
2,3 2
4,5 3
28, 29 15
30 16
31 16

For example, an input field read in packed-decimal format has a length of five
bytes (as specified on the input or data description specifications). The number of
digits in this field equals 2(5) — 1 or 9. Therefore, when the field is used in the

calculation specifications, the result field must be nine positions long. The
PACKEVEN]| keyword on the definition specification can be used to indicate which

Chapter 9. Data Types and Data Formats 127

of the two possible sizes you want when you specify a packed subfield using from
and to positions rather than number of digits.

Unsigned Format

The unsigned integer format is like the integer format except that the range of
values does not include negative numbers. You should use the unsigned format
only when non-negative integer data is expected.

You define an unsigned field by specifying U in the Data-Type entry of the
appropriate specification. You can also define an unsigned field using the LIKE
keyword on the definition specification where the parameter is an unsigned field.

The length of an unsigned field is defined in terms of number of digits; it can be 3,
5, 10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field
takes up 2 bytes of storage; a 10-digit field takes up 4 bytes;a 20-digit field takes
up 8 bytes. The range of values allowed for an unsigned field depends on its

length.

Field length Range of Allowed Values
3-digit unsigned 0 to 255

5-digit unsigned 0 to 65535

10-digit unsigned 0 to 4294967295

20-digit unsigned 0 to 18446744073709551615

For other considerations regarding the use of unsigned fields, including
information on alignment, see [‘Integer Format” on page 126/

128 VisualAge RPG Language Reference

Zoned-Decimal Format

Zoned-decimal format means that each byte of storage can contain one digit or one
character. In the zoned-decimal format, each byte of storage is divided into two
portions: a 4-bit zone portion and a 4-bit digit portion. The zoned-decimal format
looks like this:

0 »7 0 »7 0 »7 0 »7

Zone | Digit | Zone | Digit | Zone | Digit | Zone | Digit

|— Byte —I

0111 = Minus sign (hex 7)
0011 = Plus sign (hex 3)

The zone portion of the right-most byte indicates the sign (positive or negative) of
the decimal number. All zoned-decimal numbers use the preferred signs:
hexadecimal 3 for positive numbers and hexadecimal 7 for negative numbers. In
addition, the following signs are supported: hexadecimal 0, 1, 2, 8, 9, A, B for
positive numbers and hexadecimal 4, 5, 6, C, D, E, F for negative numbers. In
zoned-decimal format, each digit in a decimal number includes a zone portion;
however, only the right-most zone portion serves as the sign. [Figure 37 on page|
shows what the number 8191 looks like in zoned-decimal format.

You must consider the change in field length when coding the end position in
positions 40 through 43 of the output specifications and the field is to be output in
packed format. To find the length of the field after it has been packed, use the
following formula:

n
Field length= — + 1
2

... Where n = number of digits in the zoned decimal field.
(Any remainder from the division is ignored.)

For a program-described file, zoned-decimal format is specified by a blank in
position 36 of the input specifications, in position 52 of the output specifications, or
in position 40 of the definition specifications. For an externally described file, the
data format is specified in position 35 of the data description specifications.

You can specify an alternative sign format for zoned-decimal format. In the
alternative sign format, the numeric field is immediately preceded or followed by a
+ or — sign. A plus sign is a hexadecimal 2B, and a minus sign is a hexadecimal
2D.

When an alternative sign format is specified, the field length (specified on the
input specification) must include an additional position for the sign. For example,
if a field is 5 digits long and the alternative sign format is specified, a field length
of 6 positions must be specified.

Considerations for Using Numeric Formats

Keep in mind the following when defining numeric fields:

Chapter 9. Data Types and Data Formats 129

* When coding the end position in positions 47 through 51 of the output
specifications, be sure to use the external format when calculating the number of
bytes to be occupied by the output field. For example, a packed field with 5
digits is stored in 3 bytes, but when output in zoned format, it requires 5 bytes.
When output in integer format, it only requires 2 bytes.

* If you move a character field to a zoned numeric, the sign of the character field
is fixed to zoned positive or zoned negative. The zoned portion of the other
bytes will be forced to '3". However, if the digit portion of one of the bytes in
the character field does not contain a valid digit a decimal data error will occur.

* When numeric fields are written out with no editing, the sign is not printed as a
separate character; the last digit of the number will include the sign. This can
produce surprising results; for example, when -625 is written out, the zoned
decimal value is XX'363275" which appears as 62u.

* The default is to perform 4-byte arithmetic. The compiler only performs 8-byte
arithmetic if at least one operand is an 8-byte integer. An overflow runtime error
can occur for those arithmetic operations where two 4-byte integers produce an
8-byte result. To avoid this problem, make sure one operand is 8 bytes.

Guidelines for Choosing the Numeric Format for a Field
You should specify the integer or unsigned format for fields when:
* Performance of arithmetic is important

With certain arithmetic operations, it may be important that the value used be
an integer. Some examples where performance may be improved include array
index computations and arguments for the built-in function %SUBST.

* The default is to perform 4-byte arithmetic. The compiler only performs 8-byte
arithmetic if at least one operand is an 8-byte integer. From a performance
perspective, 8-byte arithmetic is expensive and should be avoided.

* Interacting with routines written in other languages that support an integer data
type, such as ILE C.

* Using fields in file feedback areas that are defined as integer and that may
contain values above 9999 or 999999999.

Packed, zoned, and binary formats should be specified for fields when:

* Using values that have implied decimal positions, such currency values
* Manipulating values having more than 19 digits

* Ensuring a specific number of digits for a field is important

Float format should be specified for fields when:
* The same variable is needed to hold very small and/or very large values that
cannot be represented in packed or zoned values.

However, float format should not be used when more than 16 digits of precision
are needed.

Note: Overflow is more likely to occur with arithmetic operations performed using
the integer or unsigned format, especially when integer arithmetic occurs in
free-form expressions. This is because the intermediate results are kept in
integer or unsigned format rather than a temporary decimal field of
sufficient size.

130 VisualAge RPG Language Reference

Representation of Numeric Formats

The following figure shows what the decimal number 21544 looks like in various

formats.

Packed Decimal Format:

Positive Sign

2 1 5 4 4 *
|

T I
0010 0001|0101 0010|0010 1100
| | |

= 3bytes s

Zoned Decimal Format:

Zone Zone Zone Zone Positive Sign

| T T | T
0011 0010 | 0011 0001|0011 0101 | 0011 0100 [0011 0100
! |

| |]
1 5bytes =

Binary Format:

16384

+ 4096

Positive + 1024
Sign

- . .

000000000000|00000101
|

= 4 bytes

Chapter 9. Data Types and Data Formats

131

Integer (Signed) Format:

16384

Positive + 1024
Sign + 32

+ 8

21544

- 2bytes ——— P

Unsigned Format:

01010100|]001TO0T1TO0O0O0
| |

- 2bytes —— P

Note the following about the representations in the figure.

* To obtain the numeric value of a positive binary or integer number, unsigned
number, add the values of the bits that are on (1), but do not include the sign bit
(if present). For an unsigned number, add the values of the bits that are on,
including the leftmost bit.

e The value 21544 cannot be represented in a 2-byte binary field even though it
only uses bits in the low-order two bytes. A 2-byte binary field can only hold up
to 4 digits, and 21544 has 5 digits.

132 VisualAge RPG Language Reference

Object Data Type

shows the number -21544 in integer format.

Negative Sign

101010111 1011000

- 2bytes =

Figure 38. Integer Representation of the Number -21544

Note: The workstation architecture stores binary, integer, and unsigned formats in
program memory in a byte-reversed order. This storage mechanism will
affect the value of any character subfields used to overlay subfields for these
formats.

Object Data Type

The object data type allows you to define a Java object. You specify the object data
type as follows:

* Variable MyString is a Java String object.
D MyString S 0 CLASS(*JAVA
D :'java.lang.String")

or as follows:

D bdcreate PR 0 EXTPROC(*JAVA
D :'java.math.BigDecimal’
D :*CONSTRUCTOR)

In position 40, you specify data type O. In the keyword section, you specify the
CLASS keyword to indicate the class of the object. Specify *JAVA for the
environment, and the class name.

If the object is the return type of a Java constructor, the class of the returned object
is the same as the class of the method so you do not specify the CLASS keyword.
Instead, you specify the EXTPROC keyword with environment *JAVA, the class
name, and procedure name *CONSTRUCTOR.

An object cannot be based. It also cannot be a subfield of a data structure.

If an object is an array or table, it must be loaded at runtime. Pre-run and
compile-time arrays and tables of type Object are not allowed.

Every object is initialized to *NULL, which means that the object is not associated
with an instance of its class.

To change the contents of an object, you must use method calls. You cannot
directly access the storage used by the object.

Classes are resolved at runtime. The compiler does not check that a class exists or
that it is compatible with other objects.

Where You Can Specify an Object Field

You can use an object field in the following situations:

Chapter 9. Data Types and Data Formats 133

Object Data Type

Free-Form Evaluation
You can use the EVAL operation to assign one Object item (field or
prototyped procedure) to a field of type Object.

Free-Form Comparison
You can compare one object to another object. You can specify any
comparison, but only the following comparisons are meaningful:
* Equality or inequality with another object. Two objects are equal only if
they represent exactly the same object. Two different objects with the
same value are not equal.

If you want to test for equality of the value of two objects, use the Java
‘equals’ method as follows:

D objectEquals PR N EXTPROC(*JAVA

D : 'java.lang.Object'
D : 'equals')

C IF objectEquals (objl : obj2)

C

C ENDIF

* Equality or inequality with *NULL. An object is equal to *NULL if it is
not associated with a particular instance of its class.
Free-Form Call Parameter

You can code an object as a parameter in a call operation if the parameter
in the prototype is an object.

Notes:
1. Objects are not valid as input or output fields.

2. Assignment validity is not checked. For example, RPG would allow you to
assign an object of class Number to an object variable defined with class String.
If this was not correct, a Java error would occur when you tried to use the
String variable.

D Obj S 0 CLASS(*JAVA

D :'java.lang.0Object')

D Str S 0 CLASS(*JAVA

D :'java.lang.String')

D Num S 0 CLASS(*JAVA

D :'java.math.BigDecimal')

* Since all Java classes are subclasses of class 'java.lang.Object',
* any object can be assigned to a variable of this class.

* The following two assignments are valid.

C EVAL Obj = Str

C EVAL 0bj = Num

* However, it would probably not be valid to assign Str to Num.

Figure 39. Object Data Type Example

Procedure Pointer Data Type

Procedure pointers are used to point to procedures or functions. A procedure
pointer points to an entry point that is bound into the program. Procedure pointers
are defined on the definition specification.

The length of the procedure pointer field must be 4 bytes long and must be

aligned on a 4 byte boundary. This requirement for boundary alignment can cause
a pointer subfield of a data structure not to follow the preceding field directly, and

134 VisualAge RPG Language Reference

Object Data Type

can cause multiple occurrence data structures to have non-contiguous occurrences.
The default initialization value for procedure pointers is *NULL.

S R S P R DU S . IR DO i NP P AR S -
DName+++++++++++ETDSsFrom+++To/ L+++IDc. Keywords++++++++++t+ttttttttttttttttt
D*

D* Define a basing pointer field and initialize to the address of the

D+ data structure My Struct.

D*

D My_struct DS

D My array 10 DIM(50)

D

D Ptrl S 4% INZ(%ADDR(My Struct))
D*

D* Or equivalently, defaults to length 4 if Tength not defined
D*

D Ptrl S * INZ(%ADDR(My Struct))
D*

D+ Define a procedure pointer field and initialize to NULL
D*

D Ptrl S 4% PROCPTR INZ(*NULL)

D*

D* Define a procedure pointer field and initialize to the address
D+ of the procedure My Proc.

D*
D Ptrl S 4 PROCPTR INZ(%PADDR(My Proc))
D*

D* Define pointers in a multiple occurrence data structure and map out
D+ the storage.

D*

DDataS DS 0CCURS(2)
D ptrl *

D ptr2 *

D Switch 1A

D*

D+ Storage map would be:

D*

D= DataS

*

*

* ptri 4 bytes
*

* ptr2 4 bytes
*

* Switch 1 byte
*

* Pad 3 bytes
*

* ptri 4 bytes
*

* ptr2 4 bytes
* .

. v Switch 1 byte
*

*

Figure 40. Defining Pointers

Time Data

Time fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all time data.

Chapter 9. Data Types and Data Formats 135

Object Data Type

Time constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Times are used for I/O operations
where input fields, output fields or key fields are converted (if required) to the
necessary format for the operation.

The default internal format for time variables is *ISO. This default internal format
can be overridden globally by the control specification keyword TIMFMT and
individually by the definition specification keyword TIMEMT.

The hierarchy used when determining the internal time format and separator for a
time field is:

1. From the TIMFMT keyword specified on the definition specification

2. From the TIMFMT keyword specified on the control specification

3. *ISO

For examples on how to code time fields, see the examples in:
+ [“Date Operations” on page 359

+ [“Moving Date-Time Data” on page 370|

+ [“/ADDDUR (Add Duration)” on page 502|

+ ['MOVE (Move)” on page 604

+ [“'SUBDUR (Subtract Duration)” on page 693

* ["TEST (Test Date/Time/Timestamp)” on page 700|

The following table lists the formats for time data:

Table 18. Time Formats and Separators for Time data type

Format |Description Format with | Valid Length | Example
Name Default Sepa-
Separator) |rators
*HMS Hours:Minutes:Seconds hh:mm:ss L, & 8 14:00:00
*ISO International Standards hh.mm.ss . 8 14.00.00
Organization
*USA IBM USA Standard. AM and PM |hh:mm AM |: 8 02:00 PM
can be any mix of upper and or hhimm
lower case. PM
*EUR IBM European Standard hh.mm.ss . 8 14.00.00
*TIS Japanese Industrial Standard hh:mm:ss : 8 14:00:00
Christian Era

The following table lists the *LOVAL, *HIVAL, and default values for all the date
formats:

136 VisualAge RPG Language Reference

Object Data Type

Table 19. Time Values

Format Default

name Description *LOVAL *HIVAL Value

*HMS Hours:Minutes:Seconds 00:00:00 24:00:00 00:00:00

*ISO International Standards 00.00.00 24.00.00 00.00.00
Organization

*USA IBM USA Standard. AM and PM 00:00 AM 12:00 AM 00:00 AM

can be any mix of upper and lower
case.

*EUR IBM European Standard 00.00.00 24.00.00 00.00.00

*TIS Japanese Industrial Standard 00:00:00 24:00:00 00:00:00
Christian Era

Separators

When coding a time format on a MOVE, MOVEL or TEST operation, separators
are optional for character fields. To indicate that there are no separators, specify the
format followed by a zero. For more information on how to code time formats
without separators see |“"MOVE (Move)” on page 604

Timestamp Data

Timestamp fields have a predetermined size and format. They can be defined on
the definition specification. Timestamp data must be in the format

yyyy-mm-dd-hh.mm.ss.mmmmmm (length 26).

Microseconds (.mmmmmm) are optional for timestamp literals and if not provided
will be padded on the right with zeroes. Leading zeros are required for all
timestamp data.

The default initialization value for a timestamp is midnight of January 1, 0001
(0001-01-01-00.00.00.000000). The *HIVAL value for a timestamp is
9999-12-31-24.00.00.000000. Similarly, the *LOVAL value for timestamp is
0001-01-01-00.00.00.00000.

Separators

When coding the timestamp format on a MOVE, MOVEL or TEST operation,
separators are optional for character fields. To indicate that there are no separators,
specify *ISO0. For an example of how *ISO is used without separators see|"TES l|
[(Test Date/Time /Timestamp)” on page 700.

Database Null Value Support

In a VisualAge RPG program, you can select one of three different ways of

handling null-capable fields from an externally-described database file. This

depends on how you specify the Allow null values option or ALWNULL control

specification keyword:

1. User control, ALWNULL(*USRCTL) - read, write, update, and delete records
with null values and retrieve and position-to records with null keys.

2. Input only, ALWNULL(*INPUTONLY) - read records with null values to access
the data in the null fields

3. No, ALWNULL(*NO)- do not process records with null values

Chapter 9. Data Types and Data Formats 137

Object Data Type

Note: For a program-described file, a null value in the record always causes a data
mapping error, regardless of the value specified on the Allow null values
option or ALWNULL keyword

For more information on specifying compiler options, Getting Started with
WebSphere Development Studio Client for iSeries, SC09-2625-06.

User Controlled Support for Null-Capable Fields and Key
Fields

When an externally-described file contains null-capable fields and the User control

or ALWNULL(*USRCTL) option is specified, you can do the following:

* Read, write, update, and delete records with null values from
externally-described database files.

* Retrieve and position-to records with null keys using keyed operations, by
specifying an indicator in factor 2 of the KFLD associated with the field.

¢ Determine whether a null-capable field is actually null using the %NULLIND
built-in function on the right-hand-side of an expression.

* Set a null-capable field to be null for output or update using the %NULLIND
built-in function on the left-hand-side of an expression.

You are responsible for ensuring that fields containing null values are used
correctly within the program. For example, if you use a null-capable field as factor
2 of a MOVE operation, you should first check if it is null before you do the
MOVE, otherwise you may corrupt your result field value. You should also be
careful when outputting a null-capable field to a file that does not have the field
defined as null-capable, for example a PRINTER or a program-described file.

Note: The value of the null indicator for a null-capable field is only considered for
these operations: input, output and file-positioning. Here are some examples
of operations where the null indicator is not taken into consideration:

* DSPLY of a null-capable field shows the contents of the field even if the
null indicator is on.

* If you move a null-capable field to another null-capable field, and the
factor 2 field has the null indicator on, the result field will get the data
from the factor 2 field. The corresponding null indicator for the result
field will not be set on.

* Comparison operations, including SORTA and LOOKUP, with null
capable fields do not consider the null indicators.

A field is considered null-capable if it is null-capable in any externally-described
database record and is not defined as a constant in the program.

When a field is considered null-capable in a VARPG program, a null indicator is

associated with the field. Note the following;:

e If the field is a multiple-occurrence data structure or a table, an array of null
indicators will be associated with the field. Each null indicator corresponds to an
occurrence of the data structure or element of the table.

* If the field is an array element, the entire array will be considered null-capable.
An array of null indicators will be associated with the array, each null indicator
corresponds to an array element.

* If the field is an element of an array subfield of a multiple-occurrence data
structure, an array of null indicators will be associated with the array for each
occurrence of the data structure.

138 VisualAge RPG Language Reference

Object Data Type

Null indicators are initialized to zeros during program initialization and thus
null-capable fields do not contain null values when the program starts execution.

Null-capable fields in externally-described data structures

If the file used for an externally described data structure has null-capable fields
defined, the matching RPG subfields are defined to be null-capable. Similarly, if a
record format has null-capable fields, a data structure defined with LIKEREC will
have null-capable subfields. When a data structure has null-capable subfields,
another data structure defined like that data structure using LIKEDS will also have
null-capable subfields. However, using the LIKE keyword to define one field like
another null-capable field does not cause the new field to be null-capable.

Input of Null-Capable Fields

For a field that is null-capable in the RPG program, the following will apply on

input, for DISK and SPECIAL files:

* When a null-capable field is read from an externally-described file, the null
indicator for the field is set on if the field is null in the record. Otherwise, the
null indicator is set off.

* If field indicators are specified and the null-capable field is null, all the field
indicators will be set off.

* If a field is defined as null-capable in one file, and not null-capable in another,
then the field will be considered null-capable in the RPG program. However,
when you read the second file, the null indicator associated with the field will
always be set off.

* An input operation from a program-described file using a data structure in the
result field does not affect the null indicator associated with the data structure or
any of its subfields.

* Reading null-capable fields using input specifications for program-described files
always sets off the associated null indicators.

¢ If null-capable fields are not selected to be read due to a field-record-relation
indicator, the associated null indicator will not be changed.

* When a record format or file with null-capable fields is used on an input
operation (READ, READP, READE, READPE, CHAIN) and a data structure is
coded in the result field, the values of %NULLIND for null-capable data
structure subfields will be changed by the operation. The values of %NULLIND
will not be set for the input fields for the file, unless the input fields happen to
be the subfields used in the input operation.

Output of Null-Capable Fields

When a null-capable field is written (output or update) to an externally-described
file, a null value is written out if the null indicator for the field is on at the time of
the operation.

When a null-capable field is output to or updated in an externally-described
database file, then if the field is null, the value placed in the buffer will be ignored
by data management.

Note: Fields that have the null indicator on at the time of output have the data
moved to the buffer. This means that errors such as decimal-data error, or
basing pointer not set, will occur even if the null indicator for the field is on.

During an output operation to an externally-described database file, if the file
contains fields that are considered null-capable in the program but not null-capable
in the file, the null indicators associated with those null-capable fields will not be
used.

Chapter 9. Data Types and Data Formats 139

Object Data Type

When a record format with null-capable fields is used on a WRITE or UPDATE
operation, and a data structure is coded in the result field, the null attributes of the
data structure subfields will be used to set the null-byte-map for the output or
update record.

When a record format with null-capable fields is used on an UPDATE operation
with %FIELDS, then the null-byte-map information will be taken from the null
attributes of the specified fields.

shows how to read, write and update records with null values when the
User control option or ALWNULL(*USRCTL) keyword is selected.

H*

Hx Specify the ALWNULL(*USRCTL) keyword on a control
H* specification or compile the VARPG program with the
H* User control option.

H*

H Keywor‘dS++
H* H ALWNULL (*USRCTL)

Fx

Fx DISKFILE contains a record REC which has 2 fields:
Fx Both FLD1 and FLD2 are null-capable.

Fx
FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords++++++tttttttttttttttttttt
Fx

FDISKFILE UF A E DISK
CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq.
C*

C* Read the first record.

C* Update the record with new values for any fields which are not

C* null.

FLD1 and FLD2

C READ REC 10
C IF NOT %NULLIND(F1d1)

C MOVE "FLDI' F1d1l

C ENDIF

C IF NOT %NULLIND(F1d2)

C MOVE "FLD2' F1d2

C ENDIF

C UPDATE REC

C*

C* Read another record.

C* Update the record so that all fields are null.

C* There is no need to set the values of the fields because they
C* would be ignored.

C READ REC 10
C EVAL %NULLIND(F1d1) = =ON

C EVAL %NULLIND(F1d2) = =ON

C UPDATE REC

C*

Cx Write a new record where F1d 1 is null and F1d 2 is not null.
C*

C EVAL %NULLIND(F1d1) = *ON

C EVAL %NULLIND(F1d2) = *OFF

C EVAL F1d2 = 'New value'

C WRITE REC

Figure 41. Input and Output of Null-Capable Fields

140 VisualAge RPG Language Reference

Object Data Type

Keyed Operations

If you have a null-capable key field, you can search for records containing null
values by specifying an indicator in factor 2 of the KFLD operation and setting that
indicator on before the keyed input operation. If you do not want a null key to be
selected, you set the indicator off.

When a record format with null-capable key fields is used on a CHAIN, SETLL,
READE, or READPE operation, and a %KDS data structure is used to specify the
keys, then the null-key-byte-map information will be taken from the null attributes
of the subfields in the data structure specified as the argument of %KDS.

When a record format with null-capable key fields is used on a CHAIN, SETLL,
READE, or READPE operation, and a list of keyfields is used, then the
null-key-byte-map information will be taken from the null attributes of the
specified keys.

[Figure 42 on page 142| and [Figure 43 on page 143|illustrate how keyed operations
are used to position and retrieve records with null keys.

Chapter 9. Data Types and Data Formats 141

Object Data Type

// Assume Filel below contains a record Recl with a composite key
// made up of three key fields: Keyl, Key2, and Key3. Key2 and Key3
// are null-capable. Keyl is not null-capable.
// Each key field is two characters long.
2 RPN AU UG DUPRPIPE DUPRP DU PP JUPUPPE. DU ¢ DUPUPIDE DPUPRY AR S
FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords+++++ttttttttttttttttttttt
FFilel IF E DISK REMOTE
// Define two data structures with the keys for the file
// Subfields Key2 and Key3 of both data structures will be
// null-capable.
DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords+++++++++tttttttttttt+++
D Keys DS LIKEREC(Recl : *KEY)
D OtherKeys DS LIKEDS (keys)
// Define a data structure with the input fields of the file
// Subfields Key2 and Key3 of the data structures will be
// null-capable.
D FilelFlds DS LIKEREC(Recl : *INPUT)
/free
// The null indicator for Keys.Key2 is ON and the
// null indicator for Keys.Key3 is OFF, for the
// SETLL operation below. Filel will be positioned
// at the next record that has a key that is equal
// to or greater than 'AA??CC' (where ?? is used
// in this example to indicate NULL)

// Because %NULLIND(Keys.Key2) is ON, the actual content
// in the search argument Keys.Key2 will be ignored.

// If a record exists in Filel with '"AA' in Keyl, a null
// Key2, and 'CC' in Key3, %EQUAL(Filel) will be true.

Keys.Keyl = 'AA';

Keys.Key3 = 'CC';

%NULLIND (Keys.Key2) = *ON;

%NULLIND (Keys.Key3) = *OFF;

SETLL %KDS(Keys) Recl;

// The CHAIN operation below will retrieve a record
// with 'JJ' in Keyl, 'KK' in Key2, and a null Key3.
// Since %NULLIND(OtherKeys.Key3) is ON, the value of
// 'XX' in OtherKeys.Key3 will not be used. This means
// that if Filel actually has a record with a key

// 'JIKKXX', that record will not be retrieved.

OtherKeys.Key3 = "XX';

%NULLIND (Keys.Key3) = *ON;

CHAIN ('JJ' : 'KK' : OtherKeys.Key3) Recl;

// The CHAIN operation below uses a partial key as the
// search argument. It will retrieve a record with 'NN'
// in Keyl, a null key2, and any value including a null
// value in Key3. The record is retrieved into the

// FilelFlds data structure, which will cause the

// null flags for FilelFlds.Key2 and FilelFlds.Key3

// to be changed by the operation (if the CHAIN

// finds a record).

Keys.Keyl = 'NN';
%NULLIND (Keys.Key2) = *ON;
CHAIN %KDS(Keys : 2) Recl FilelFlds;

|
| Figure 42. Example of handling null-capable key fields

142 VisualAge RPG Language Reference

Object Data Type

* Using the same file as the previous example, define two
* key lists, one containing three keys and one containing
* two keys.
*
S

CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq.
C*

C Full_K1 KLIST

C KFLD Keyl
C KFLD *INO2 Key?2
C KFLD *INO3 Key3
C*

C Partial_KI1 KLIST

C KFLD Keyl
C KFLD *INO5 Key?2
C*

C*

C* *INO2 is ON and *INO3 is OFF for the SETLL operation below.
Cx Filel will be positioned at the next record that has a key
C+ that is equal to or greater than 'AA??CC' (where ?? is used
Cx in this example to indicate NULL)

C* Because *INO2 is ON, the actual content in the search argument
C* for Key2 will be ignored.

Cx If a record exists in Filel with "AA' in Keyl, a null Key2, and
Cx 'CC' in Key3, indicator 90 (the Eq indicator) will be set ON.

C MOVE "AA! Keyl

C MOVE 'CC' Key3

C EVAL *INO2 = '1'

C EVAL *INO3 = '0'

C Full_K1 SETLL Recl 90
C*

Figure 43. Example of Keyed Operations Using Null-Capable Key Fields (Part 1 of 2)

Chapter 9. Data Types and Data Formats 143

Object Data Type

C

The CHAIN operation below will retrieve a record with 'JJ' in Keyl,
'KK' in Key2, and a null Key3. Again, because *INO3 is ON, even
if the programmer had moved some value (say 'XX') into the search
argument for Key3, 'XX' will not be used. This means if Filel

actually has a record with a key 'JJKKXX', that record will not
be retrieved.
MOVE 'JJ" Keyl
MOVE KK Key?2
EVAL *INO2 = '0'
EVAL *INO3 = '1'
Full K1 CHAIN Recl 80

The CHAIN operation below uses a partial key as the search argument.
It will retrieve a record with 'NN' in Keyl, a null key2, and any
value including a null value in Key3.

In the database, the NULL value occupies the highest position in
the collating sequence. Assume the keys in Filel are in ascending
sequence. If Filel has a record with 'NN??xx' as key (where ??
means NULL and xx means any value other than NULL), that record
will be retrieved. If such a record does not exist in Filel, but

Filel has a record with 'NN????' as key, the 'NN????' record will
be retrieved. The null flags for Key2 and Key3 will be set ON
as a result.
MOVE "NN' Keyl
SETON 05
Partial K1 CHAIN Recl 70

Figure 43. Example of Keyed Operations Using Null-Capable Key Fields (Part 2 of 2)

Input-Only Support for Null-Capable Fields

When an externally-described input-only file contains null-capable fields and the
Input only option or ALWNULLC*INPUTONLY) keyword is specified, the
following conditions apply:

* When a record is retrieved from a database file and there are some fields

containing null values in the record, database default values for the null-capable
fields will be placed into those fields containing null values. The default value
will be the user defined DDS defaults or system defaults.

You will not be able to determine whether any given field in the record has a
null value.

Field indicators are not allowed on an input specification if the input field is a
null-capable field from an externally-described input-only file.

Keyed operations are not allowed when factor 1 of a keyed input calculation
operation corresponds to a null-capable key field in an externally-described
input-only file.

No Null Fields Option

When an externally-described file contains null-capable fields and the No option or
ALWNULL(*NO) keyword is specified, the following conditions apply:
* A record containing null values retrieved from a file will cause a data mapping

error and an error message will be issued.
Data in the record is not accessible and none of the fields in the record can be
updated with the values from the input record containing null values.

144 VisualAge RPG Language Reference

Object Data Type

* With this option, you cannot place null values in null-capable fields for updating
or adding a record. If you want to place null values in null-capable fields, use
the User control option.

Converting Database Variable-Length Fields

The VisualAge RPG compiler can internally define variable-length character or
graphic fields from an externally described file or data structure as fixed-length
character fields. Although converting variable-length character and graphic fields
to fixed-length format is not necessary, the CVTOPT compiler option remains in
the language to support programs written before variable-length fields were
supported.

You can convert variable-length fields by specifying *VARCHAR (for
variable-length character fields) or *VARGRAPHIC (for variable-length graphic
fields) on the control specification keyword. When *VARCHAR or
*VARGRAPHIC is not specified, or *‘NOVARCHAR or *NOVARGRAPHIC is
specified, variable-length fields are not converted to fixed-length character and can
be used in your VisualAge RPG program as variable-length.

The following conditions apply when *VARCHAR or *VARGRAPHIC is specified:

* If a variable-length field is extracted from an externally described file or an
externally described data structure, it is declared as a fixed-length character
field.

* For single-byte character fields, the length of the declared field is the length of
the DDS field plus 2 bytes.

* For DBCS-graphic data fields, the length of the declared field is twice the length
of the DDS field plus 2 bytes.

* The two extra bytes in the field contain a binary number which represents the
current length of the variable-length field. [Figure 44 on page 146 shows the field
length of variable-length fields.

* For variable-length graphic fields defined as fixed-length character fields, the
length is double the number of graphic characters.

Chapter 9. Data Types and Data Formats 145

Object Data Type

Single-byte character fields:

—> length character-data —>

UNS(5) CHAR(N)

!

N = declared length in DDS

2 + N = fieldlength

Graphic data type fields:

—> length graphic-data —>

UNS(5) CHAR(2(N))

!

N = declared length in DDS = number of double bytes

2 + 2(N) = field length
Figure 44. Field Length of Converted Variable Length Fields

* Your program can perform any valid character calculation operations on the
declared fixed-length field. However, because of the structure of the field, the
first two bytes of the field must contain valid unsigned integer data when the
field is written to a file. An I/O exception error occurs for an output operation if
the first two bytes of the field contain invalid field length data.

* Field definition conflict errors will occur during a compile when a
variable-length field is imported from an OS/400 file into a GUI object and the
file is also used as an externally-described file in the program with the
*VARCHAR or *VARGRAPHIC option specified. Two bytes for the data length
are added to the definition of the field coming from the file record format, which
conflicts with the field length definition from the GUI object.

To circumvent this conflict, do not specify the *VARCHAR or *VARGRAPHIC
option, or rename the GUI object and write source code to move data between
the two fields as appropriate.

* Field indicators are not allowed on an input specification if the input field is a
variable-length field from an externally described input file.

* Keyed operations are not allowed when factor 1 of a keyed operation
corresponds to a variable-length key field in an externally described file.

* If you choose to selectively output certain fields in a record and the
variable-length field is not specified on the output specification, or if the
variable-length field is ignored in the program, a default value is placed in the
output buffer of the newly-added record. The default is 0 in the first two bytes
and blanks in all of the remaining bytes.

* If you want to change converted variable-length fields, ensure that the current
field length is correct. One way to do this is:

1. Define a data structure with the variable-length field name as a subfield
name.

2. Define a 5-digit unsigned integer subfield overlaying the beginning of the
field, and define an N-byte character subfield overlaying the field starting at
position 3.

3. Update the field.

146 VisualAge RPG Language Reference

Object Data Type

Alternatively, you can move another variable-length field left-aligned into the field.
An example of how to change a converted variable-length field in a VARPG
program follows.

A*
Ax File MASTER contains a variable-Tength field

A*
AANOINO2NO3T.Name++++++R1en++TDpBLinPosFunctions++++++++++++t+t+t++++
Ax

A R REC

A FLDVAR 100 VARLEN

2 I 2P IPNC DUPS DY SUPE U DM PPN c DUPRPIE. S A SO
H*
Hx Specify the CVTOPT(*VARCHAR) keyword on a control

Hx specification or compile the VisualAge RPG program with

Hx CVTOPT (*VARCHAR) on the command.

H*
HKeywords+++++++tttttttttttttttttttttttttt bttt bttt
H*

H CVTOPT (*VARCHAR)

F*

Fx Externally described file name is MASTER.

F*
FFilename++IPEASFR1en+LKT1en+AIDevice+.Keywords+++++++t+ttttttttttttttttttt
Fx

FMASTER UF E DISK

Figure 45. Converting a Variable-Length Field in a Program (Part 1 of 2)

D*

D+ FLDVAR is a variable-Tength field defined in DDS with

D= a DDS length of 100. Notice that the VARPG field length

D* is 102.

D*

DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords++++++tttttttttttttttttt++
D*

D DS

D FLDVAR 1 102

D FLDLEN 5U © OVERLAY(FLDVAR:1)
D FLDCHR 100 OVERLAY (FLDVAR:3)

L R O JRPUE. U EENIPE P S UL TP DU | BEPIE SO AR
CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C+ A character value is moved to the variable length field FLDCHR.

C+ After the CHECKR operation, FLDLEN has a value of 5.

C READ MASTER LR
C MOVEL 'SALES' FLDCHR

C v CHECKR FLDCHR FLDLEN

C NLR UPDAT REC

Figure 45. Converting a Variable-Length Field in a Program (Part 2 of 2)

Chapter 9. Data Types and Data Formats 147

Object Data Type

If converted variable-length graphic fields are required, you can code a 2-byte
unsigned integer field to hold the length, and a graphic subfield of length N to
hold the data portion of the field.

N T AN PRI TEPIPE AP S DU TP S R SO A
D*
D= The variable-length graphic field VGRAPH is declared in the

D+ DDS as length 3. This means the maximum length of the field

D+ is 3 double bytes, or 6 bytes. The total Tength of the field,

D+ counting the length portion, is 8 bytes.

D*

Dx Compile the VARPG program with CVTOPT(*VARGRAPHIC).

D*

DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords+++++++ttttttttttttttttt++
D*

D DS

DVGRAPH 8

D VLEN 4U © OVERLAY(VGRAPH:1)
D VDATA 3G OVERLAY(VGRAPH:3)

S P O APPSR U S . TEPAPPE DU - PR U AR
C*
C+ Assume GRPH is a fixed length graphic field of length 2

C+ double bytes. Copy GRPH into VGRAPH and set the length of

C* VGRAPH to 2.

C*

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C MOVEL GRPH VDATA

C Z-ADD 2 VLEN

Figure 46. Converting a Variable-Length Graphic Field

148 VisualAge RPG Language Reference

Chapter 10. Literals and Named Constants

Literals and named constants are types of constants. Constants can be specified in
any of the following places:

In factor 1

In factor 2

In an extended factor 2 on the calculation specifications

As parameters to keywords on the control specification

As parameters to built-in functions

In the Field Name, Constant, or Edit Word fields in the output specifications.
As array indexes

With keywords on the definition specification.

Literals

A literal is a self-defining constant that can be referred to in a program. A literal
can belong to any of the VisualAge RPG data types.

Character Literals

The following rules apply when specifying a character literal:

Any combination of characters can be used in a character literal. This includes
DBCS characters. DBCS characters must be an even number of bytes. Embedded
blanks are valid.

A character literal with no characters between the apostrophes is allowed.
Character literals must be enclosed in apostrophes (’).

An apostrophe required as part of a literal is represented by two apostrophes.
For example, the literal O’CLOCK is coded as ‘O"CLOCK’".

Character literals are compatible only with character data

Indicator literals are one byte character literals which contain either 1" (on) or ‘0’

(off).

Hexadecimal Literals
The following rules apply when specifying a hexadecimal literal:

Hexadecimal literals take the form:
X'xIx2...xn'
where:

X'x1x2..xn" must contain the characters A-F, a-f, and 0-9.

The literal coded between the apostrophes must be of even length.

Each pair of characters defines a single byte.

Hexadecimal literals are allowed anywhere that character literals are supported
except as factor 2 of ENDSR and as edit words.

A hexadecimal literal has the same meaning as the corresponding character
literal except when used in the bit operations BITON, BITOFFE, and TESTB. For
the bit operations, factor 2 may contain a hexadecimal literal representing 1 byte.
The rules and meaning are the same for hexadecimal literals as for character
fields.

If the hexadecimal literal contains the hexadecimal value for a single quote, it
does not have to be specified twice, unlike character literals. For example, the
literal A'B is specified as 'A''B' but the hexadecimal version is X'412742" not
X'41272742’.

© Copyright IBM Corp. 1994, 2005 149

* Normally, hexadecimal literals are compatible only with character data.
However, a hexadecimal literal that contains 16 or fewer hexadecimal digits can
be treated as an unsigned numeric value when it is used in a numeric
expression or when a numeric variable is initialized using the INZ keyword.

Numeric Literals

The following rules apply when specifying a numeric literal:

* A numeric literal consists of any combination of the digits 0 through 9. A
decimal point or a sign can be included.

e The sign (+ or —), if present, must be the leftmost character. An unsigned literal
is treated as a positive number.

* Blanks cannot appear in a numeric literal.

* Numeric literals are not enclosed in apostrophes (’).

* Numeric literals are used in the same way as a numeric field, except that values
cannot be assigned to numeric literals.

* The decimal separator may be either a comma or a period

Numeric literals of the float format are specified somewhat differently. Float literals
take the form:

<mantissa>E<exponent>
Where

<mantissa> is a literal as described above with 1 to 16 digits

<exponent> is a literal with no decimal places, with a value
between -308 and +308

e Float literals do not have to be normalized. That is, the mantissa does not have
to be written with exactly one digit to the left of the decimal point. (The decimal
point does not even have to be specified.)

* Lower case e may be used instead of E.

* Either a period (") or a comma (’,’) may be used as the decimal point.

* Float literals are allowed anywhere that numeric constants are allowed except in
operations that do not allow float data type. For example, float literals are not
allowed in places where a numeric literal with zero decimal positions is
expected, such as an array index.

* Float literals follow the same continuation rules as for regular numeric literals.
The literal may be split at any point within the literal.

* A float literal must have a value within the limits described in 1.6.2, "Rules for
Defining” on page 4.

The following lists some examples of valid float literals:

1E1 =10

1.2e-1 = .12

-1234.9E0 = -1234.9

12e12 = 12000000000000

+67,89E+0003 = 67890 (the comma is the decimal point)

The following lists some examples of invalid float literals:

1.234E <--- no exponent

1.2e- <--- no exponent
-1234.9E+309 <--- exponent too big
12E-2345 <--- exponent too small
1.797693134862316e308 <--- value too big
179.7693134862316E306 <--- value too big
0.0000000001E-308 <--- value too small

Date Literals

Date literals take the form D’xxxxxx” where:
* D indicates that the literal is of type date

150 VisualAge RPG Language Reference

e xxxxxx is a valid date in the format specified on the control specification
¢ xxxxxx is enclosed by apostrophes ().

Time Literals

Time literals take the form T'xxxxxx” where:

* T indicates that the literal is of type time

¢ xxxxxx is a valid time in the format specified on the control specification
¢ xxxxxx is enclosed by apostrophes (’).

Timestamp Literals

Timestamp literals take the form Z’yyyy-mm-dd-hh.mm.ss.mmmmmm’ where:
* Z indicates that the literal is of type timestamp

* yyyy-mm-dd is a valid date (year-month-day)

* hh.mm.ssmmmmmm is a valid time (hours.minutes.seconds.microseconds)
* yyyy-mm-dd-hh.mm.ssmmmmmm is enclosed by apostrophes

* Microsecond are optional and if not specified, default to zeros

Chapter 10. Literals and Named Constants 151

Graphic Literals

Graphic literals take the form G’K1K2" where:
* G indicates that the literal is of type graphic
* K1K2 is an even number of bytes

* K1K2 is enclosed by apostrophes ().

UCS-2 Literals

UCS-2 literals take the form U'Xxxx...Yyyy’ where:

* U indicates that the literal is of type UCS-2.

* Each UCS-2 literal requires four bytes per UCS-2 character in the literal. Each
four bytes of the literal represents one double-byte UCS-2 character.

* UCS-2 literals are compatible only with UCS-2 data.

UCS-2 literals are assumed to be in the default UCS-2 CCSID of the module.

Named Constants

A named constant is a symbolic name assigned to a literal. Named constants are
defined on definition specifications. The value of a named constant follows the
rules specified for literals.

Named Constants

You can give a name to a constant. This name represents a specific value which
cannot be changed when the program is running.

Rules for Named Constants

* Named constants can be specified in factor 1, factor 2, and extended-factor 2 on
the calculation specifications, as parameters to keywords on the control
specification, as parameters to built-in functions, and in the Field Name,
Constant, or Edit Word fields in the output specifications. They can also be used
as array indexes or with keywords on the definition specification.

¢ Numeric named constants have no predefined precision. Actual precision is
defined by the context that is specified.

¢ The named constant can be defined anywhere on the definition specifications.

152 VisualAge RPG Language Reference

Example of Defining a Named Constant

DName+++++++++++ETDsSFrom+++To/L+++1Dc. Keywords++++++++ttttttttttttttttttr+

3PP Keywords++++++++t+tttttttttttttttt++
*

* Define a date field and initialize it to the 3rd of September
* 1988.

*

D DateField S D INZ(D'1988-09-03')

*

* Define a binary 9,5 field and initialize it to 0.

*

D BIN9 5 S 9B 5 INZ

*

* Define a named constant whose value is the Tower case alphabet.
*

D Lower C CONST('abcdefghijklmnop-

D grstuvwxyz')

*

* Define a named constant without explicit use of the keyword CONST.
*

D Upper C "ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Figure 47. Defining Named Constants

Figurative Constants

The following figurative constants are implied literals that can be specified without
a length, because the implied length and decimal positions of a figurative constant
are the same as those of the associated field. See [“Rules for Figurative Constants”]

for a list of exceptions.

*ALL’x..", *ALLG’K1K2’ *BLANK/*BLANKS *HIVAL
*ALLU XxxxYyyy’,

*ALLX'x1.”

*LOVAL *NULL *ON/*OFF
*ZERO/*ZEROS

Figurative constants can be specified in factor 1 and factor 2 of the calculation
specifications. The following shows the reserved words and implied values for
figurative constants:

Reserved Words Implied Values

*BLANK/*BLANKS All blanks. Valid only for character, graphic, or UCS-2 fields.

*ZERO/*ZEROS Character/numeric fields: All zeros. For numeric float fields: The
value is "0 E0".

*HIVAL Character, graphic, or UCS-2 fields: The highest collating character

for the system (hexadecimal FFs).
Numeric fields: All nines with a positive sign.

For Float fields: *HIVAL for 4-byte float = 3.402 823 5E38
(X’7F7FFFFF’) *HIVAL for 8-byte float = 1.797 693 134 862 315 E308
(x’7FEFFFFFFFFFFFFF’)

Date, time and timestamp fields: See [“Date Data” on page 119)
[“Time Data” on page 135)and [“Timestamp Data” on page 137] for
*HIVAL values for date, time, and timestamp data.

Chapter 10. Literals and Named Constants 153

*LOVAL Character, graphic, or UCS-2 fields: The lowest collating character
for the system (hexadecimal zeros).

Numeric fields: All nines with a negative sign.

For Float fields: *LOVAL for 4-byte float = -3.402 823 5E38
(x’FE7FFFFF’) *LOVAL for 8-byte float = -1.797 693 134 862 315
E308 (x’ FFEFFFFFFFFFFFFE’)

Date, time and timestamp fields: See [Date Data” on page 119
[“Time Data” on page 135|and [“Timestamp Data” on page 137 for
*LOVAL values for date, time, and timestamp data.

*ALL'x.." Character /numeric fields: Character string x . . is cyclically
repeated to a length equal to the associated field. If the field is a
numeric field, all characters within the string must be numeric (0
through 9). No sign or decimal point can be specified when
*ALL’x..” is used as a numeric constant.
Note: You cannot use *ALL’x..” with numeric fields of float format.

For numeric integer or unsigned fields, the value is never greater
than the maximum value allowed for the corresponding field.

*ALLG'K1K?2’ Graphic fields: The graphic string K1K2 is cyclically repeated to a
length equal to the associated field.
*ALLU XxxxYyyy’ UCS-2 fields: A figurative constant of the form *ALLU XxxxYyyy’

indicates a literal of the form "XxxxYyyyXxxxYyyy...” with a length
determined by the length of the field associated with the

*ALLU XxxxYyyy’ constant. Each double-byte character in the
constant is represented by four hexadecimal digits. For example,
*ALLU’0041" represents a string of repeated UCS-2 "A’s.

*ALLX'x1.. Character fields: The hexadecimal literal X'x1..” is cyclically
repeated to a length equal to the associated field.

*NULL A null value valid for basing pointers, procedure pointers, or
objects.

*ON/*OFF *ON “1” *OFF is '0". Both are only valid for character fields.

The following figurative constants are implied literals that can be used with the
DSPLY operation code:

*ABORT *CANCEL *ENTER *HALT
*IGNORE *INFO *NOBUTTON *OK
*RETRY *WARN *YESBUTTON

The following figurative constants are implied literals that can be used when
creating an application’s GUI:

*BLACK *BLUE *BROWN *CYAN
*DARKBLUE *DARKCYAN *DARKGREEN *DARKGRAY
*DARKPINK *DARKRED *GREEN *PALEGRAY
*PINK *RED *YELLOW *WHITE

Rules for Figurative Constants

The following rules apply when using figurative constants:

 Figurative constants that are allowed for fixed-length character fields are also
allowed for variable-length character fields (*BLANK/*BLANKS,
*ZERO/*ZEROS, *HIVAL, *LOVAL, *ALL’x..’, *ALLG’K1K2’, *ALLX'x1../,
*ON/*OFF).

154 VisualAge RPG Language Reference

Figurative constants that are allowed for fixed-length graphic fields are also
allowed for variable-length graphic fields (*BLANK/*BLANKS, *HIVAL,
*LOVAL, *ALLG’K1K2').

The figurative constant values are the same for both fixed-length and
variable-length character and graphic fields:

*HIVAL = X'FF'

*LOVAL = X'00'

*BLANK ="' ' or X'20' or double-byte blank
*ZERO ='0' or X'30'

*QFF ='0' or X'30'

*0N = '1" or X'31'

MOVE and MOVEL operations allow moving a character figurative constant to a
numeric field. The figurative constant is first expanded as a zoned numeric with
the size of the numeric field, converted to packed or binary numeric if needed,
and then stored in the target numeric field. The digit portion of each character in
the constant must be valid.

Figurative constants are considered elementary items. Except for MOVEA,
figurative constants act like a field if used in conjunction with an array. For
example: MOVE *ALL’XYZ’ ARR.

If ARR has 4-byte character elements, then each element contains "XYZX'.
MOVEA is considered to be a special case. The constant is generated with a

length equal to the portion of the array specified. For example:
- MOVEA *BLANK ARR(X)

Beginning with element X, the remainder of ARR will contain blanks.
- MOVEA *ALL’XYZ" ARR(X)

ARR has 4-byte character elements. Element boundaries are ignored, as is
always the case with character MOVEA operations. Beginning with element
X, the remainder of the array will contain "XYZXYZXYZ...".
The SETGT and SETLL operation codes do not support use of the *HIVAL or
*LOVAL value in factor 1.

Note: The results of MOVEA are different from those of the MOVE example:

After figurative constants are set/reset to their appropriate length, their normal
collating sequence can be altered if an alternate collating sequence is specified.
The move operations MOVE and MOVEL produce the same result when moving
the figurative constants *ALL’x..", *ALLG’K1K2’, and *ALLX'x1..". The string is
cyclically repeated character by character (starting on the left) until the length of
the associated field is the same as the length of the string.

Figurative constants can be used in compare operations as long as one of the
factors is not a figurative constant.

The figurative constants, *BLANK/*BLANKS, are moved as zeros to a numeric
field in a MOVE operation.

Chapter 10. Literals and Named Constants 155

156 VisualAge RPG Language Reference

Chapter 11. Data Structures

You can define an area in storage and the layout of the fields (subfields) within the
area. This area in storage is called a data structure. Specify DS in positions 24
through 25 on a definition specification to define a data structure.

You can use a data structure to:

¢ Define the same internal area multiple times using different data formats

* Operate on an individual subfield using its name

* Operate on all the subfields as a group using the name of the data structure
* Define a data structure and its subfields in the same way a record is defined
* Define multiple occurrences of a set of data

* Group non-contiguous data into contiguous internal storage locations.

There are three special data structures, each with a specific purpose:

* A data-area data structure (identified by a U in position 23 of the definition
specification). See [“Position 23 (Type of Data Structure)” on page 260

* A file information data structure (identified by the keyword INFDS on a file
description specifications). See [“INFDS(DSname)” on page 248 |

* A program-status data structure (identified by an S in position 23 of the
definition specification). See [“Position 23 (Type of Data Structure)” on page 260,

Data structures can be program-described or externally-described. One data
structure can be defined like another using the LIKEDS keyword.

A program-described data structure is identified by a blank in position 22 of the
definition specification. The subfield definitions for a program-described data
structure must immediately follow the data structure definition. See
[(External Description)” on page 260

An externally-described data structure, identified by an E in position 22 of the
definition specification, has subfield descriptions contained in an
externally-described file. When the program is compiled, the external name is used
to locate and extract the external description of the data structure subfields. Specify
the name of the external description either in positions 7 through 21, or as a
parameter for the keyword EXTNAME. See |“Positions 7-21 (Name)” on page 260
and ["EXTNAME(file-name{:format-name}{:*ALL | *INPUT |*OUTPUT | *KEY})” on|

|Eage 272.|

Note: The data formats specified for the subfields in the external description are
used as the internal formats of the subfields by the compiler. This differs
from the way in which externally described files are treated.

An external subfield name can be renamed in the program using the keyword
EXTFLD. The keyword PREFIX can be used to add a prefix to the external subfield
names that have not been renamed with EXTFLD. Note that the data structure
subfields are not affected by the PREFIX keyword specified on a file-description
specification even if the file name is the same as the parameter specified in the
EXTNAME keyword when defining the data structure using an external file name.
Additional subfields can be added to an externally described data structure by
specifying program-described subfields immediately after the list of external
subfields. See ["EXTFLD(field_name)” on page 271] and
[“PREFIX(prefix{:nbr_of_char_replaced})” on page 293

© Copyright IBM Corp. 1994, 2005 157

Qualifying Data Structure Names

The keyword QUALIFIED indicates that subfields of the data structure are
referenced using qualified notation. This permits access by specifying the data
structure name followed by a period and the subfield name, for example DS1.FLD1.
If the QUALIFIED keyword is not used, the subfield name remains unqualified, for
example FLD1. If QUALIFIED is used the subfield name can be specified by one of
the following:

* A "Simply Qualified Name" is a name of the form "A.B". Simply qualified
names are allowed as arguments to keywords on File and Definition
Specifications; in the Field-Name entries on Input and Output Specifications; and
in the Factor 1, Factor 2, and Result-Field entries on fixed-form calculation
specifications, i.e.dsname.subf. While spaces are permitted between elements of a
fully-qualified name, they are not permitted in simply qualified names.

* A "Fully Qualified Name" is a name with qualification and indexing to an
arbitrary number of levels, for example, "A(X).B.C(Z+17)". Fully qualified names
are allowed in any free-form calculation specifications, or in any
Extended-Factor-2 entry. This includes operations codes CLEAR and DSPLY
coded in free-form calculations.

In addition, arbitrary levels of indexing and qualification are allowed. For example,
a programmer could code:ds (x) .subfl.s2.s3(y+1).s4 as an operand within an
expression. Please see [‘QUALIFIED” on page 293| for further information on the
use of the QUALIFIED keyword.

Fully qualified names may be specified as the Result-Field operand for opcodes
CLEAR and DSPLY when coded in free-form calc specs. An expression is allowed
for the Factor 1 operand for opcode DSPLY (coded in free-form calculation
specifications), however, if the operand is more complex than a fully qualified
name, the expression must be enclosed in parentheses.

Array Data Structures

An "Array Data Structure” is a data structure defined with keyword DIM. An

array data structure is like a multiple-occurrence data structure, except that the

index is explicitly specified, as with arrays.

Notes:

1. Keyword DIM is allowed for data structures defined as QUALIFIED.

2. When keyword DIM is coded for a data structure or LIKEDS subfield, array
keywords CTDATA, FROMFILE, and TOFILE are not allowed. In addition, the
following data structure keywords are not allowed for an array data structure:

« DTAARA
* OCCURS.

3. For a data structure X defined with LIKEDS(Y), if data structure Y is defined
with keyword DIM, data structure X is not defined as an array data structure.

4. If X is a subfield in array data structure DS, then an array index must be
specified when referring to X in a qualified name. In addition, the array index
may not be *. Within a fully qualified name expression, an array index may
only be omitted (or * specified) for the right-most name.

158 VisualAge RPG Language Reference

Defining Data Structure Parameters in a Prototype or Procedure

Interface

To define a prototyped parameter as a data structure, you must first define the
layout of the parameter by defining an ordinary data structure. Then, you can
define a prototyped parameter as a data structure by using the LIKEDS keyword.
To use the subfields of the parameter, specify the subfields qualified with

parameter name: dsparm.subfield. For example

* PartInfo is a data structure describing a part.
D PartInfo DS QUALIFIED
D Manufactr 4
D Drug 6
D Strength 3
D Count 3 0
* Procedure "Proc" has a parameter "Part" that is a data
* structure whose subfields are the same as the subfields
* in "PartInfo". When calling this procedure, it is best
* to pass a parameter that is also defined LIKEDS(PartInfo)
* (or pass "PartInfo" itself), but the compiler will allow
* you to pass any character field that has the correct
* length.
D Proc PR
D Part LIKEDS (PartInfo)
P Proc B
* The procedure interface also defines the parameter Part
* with keyword LIKEDS(PartInfo).
* This means the parameter is a data structure, and the subfields
* can be used by specifying them qualified with "Part.", for
* example "Part.Strength"
D Proc PI
D Part LIKEDS (PartInfo)
C IF Part.Strength > getMaxStrength (Part.Drug)
c CALLP PartError (Part : DRUG_STRENGTH_ERROR)
c ELSE
C EVAL Part.Count = Part.Count + 1
c ENDIF
P Proc

Defining Data Structure Subfields

You define a subfield by specifying blanks in the Definition-Type entry (positions
24 through 25) of a definition specification. The subfield definition(s) must
immediately follow the data structure definition. The subfield definitions end when
a definition specification with a non-blank Definition-Type entry is encountered, or
when a different specification type is encountered.

The name of the subfield is entered in positions 7 through 21. To improve
readability of your source, you may want to indent the subfield names to show
visually that they are subfields.

If the data structure is defined with the QUALIFIED keyword, the subfield names
can be the same as other names within your program. The subfield names will be
qualified by the owning data structure when they are used.

You can also define a subfield like an existing item using the LIKE keyword. When
defined in this way, the subfield receives the length and data type of the item on

Chapter 11. Data Structures 159

which it is based. Similarly, you can use the LIKEDS keyword to define an entire
data structure like an existing item. See [Figure 92 on page 279|for an example
using the LIKE keyword.

The keyword LIKEDS is allowed on any subfield definition. When specified, the
subfield is defined to be a data structure, with its own set of subfields. If data
structure DS has subfield S1 which is defined like a data structure with a subfield
52, a programmer must refer to S2 using the expression DS.S1.S2.

Notes:
1. Keyword LIKEDS is allowed for subfields only within QUALIFIED data
structures.

2. Keywords DIM and LIKEDS are both allowed on the same subfield definition.

You can overlay the storage of a previously defined subfield with that of another
subfield using the OVERLAY keyword. The keyword is specified on the later
subfield definition.

Specifying Subfield Length
The length of a subfield may be specified using absolute (positional) or length
notation, or its length may be implied.

Absolute
Specify a value in both the From-Position (positions 26 through 32) and the
To-Position/Length (positions 33 through 39) entries on the definition
specification.

Length
Specify a value in the To-Position/Length (positions 33 through 39) entry.
The From-Position entry is blank.

Implied Length
If a subfield appears in the first parameter of one or more
keywords, the subfield can be defined without specifying any type or
length information. In this case, the type is character and the length is
determined by the overlaid subfields.

In addition, some data types, such as Pointers, Dates, Times and
Timestamps have a fixed length. For these types, the length is implied,
although it can be specified.

When using length notation, the subfield is positioned such that its starting
position is greater than the maximum To-Position of all previously-defined
subfields. For examples of each notation, see [‘Data Structure Examples” on page|

Aligning Data Structure Subfields

Alignment of subfields may be necessary. In some cases it is done automatically; in
others, it must be done manually.

For example, when defining subfields of type basing pointer or procedure pointer
using the length notation, the compiler will automatically perform padding if
necessary to ensure that the subfield is aligned properly.

When defining float, integer or unsigned subfields, alignment may be desired to
improve runtime performance. If the subfields are defined using length notation,

160 VisualAge RPG Language Reference

you can automatically align float, integer or unsigned subfields by specifying the

keyword ALIGN on the data structure definition. However, note the following

exceptions:

* The ALIGN keyword is not allowed for a file information data structure or a
program status data structure.

* Subfields defined using the keyword OVERLAY are not aligned automatically,
even if the keyword ALIGN is specified for the data structure. In this case, you
must align the subfields manually.

Automatic alignment will align the fields on the following boundaries.

* 2 bytes for 5-digit integer or unsigned subfields

* 4 bytes for 10-digit integer or unsigned subfields, or 4-byte float subfields
* 8 bytes for 20-digit integer or unsigned subfields

* 8 bytes for 8-byte float subfields

* 16 bytes for pointer subfields

If you are aligning fields manually, make sure that they are aligned on the same
boundaries. A start-position is on an n-byte boundary if ((position - 1) mod n) =
0. (The value of "x mod y” is the remainder after dividing x by y in integer
arithmetic. It is the same as the MVR value after X DIV Y.)

shows a sequence of bytes and identifies the different boundaries used
for alignment.

ﬂ‘

Figure 48. Boundaries for Data Alignment

Note the following about the preceding byte sequence:

* DPosition 1 is on a 16-byte boundary, since ((1-1) mod 16) = 0.
* Position 13 is on a 4-byte boundary, since ((13-1) mod 4) = 0.
* DPosition 7 is not on a 4-byte boundary, since ((7-1) mod 4) = 2.

Initialization of Nested Data Structures

The keyword INZ(*LIKEDS) is allowed on a LIKEDS subfield. The LIKEDS
subfield is initialized exactly the same as the corresponding data structure.

Keyword INZ is allowed on a LIKEDS subfield. All nested subfields of the LIKEDS
subfield are initialized to their default values. This also applies to more deeply
nested LIKEDS subfields, with the exception of nested LIKEDS subfields with
INZ(*LIKEDS) specified.

If keyword INZ is coded on a main data structure definition, keyword INZ is
implied on all subfields of the data structure without explicit initialization. This
includes LIKEDS subfields.

Chapter 11. Data Structures 161

Special Data Structures

Special data structures include:

e |Data area data structures|

+ [File information data structures (INFDS)|
* |Program-status data structures|

For examples, see [‘Data Structure Examples”]|

Note that the above data structures cannot be defined in subprocedures.

Data-Area Data Structure

A data-area data structure is specified by a U in position 23 of the definition
specification. This indicates that the same data area that is read and locked at
program initialization should be written out and unlocked at the end of the
program. Data-area data structures, like other data structures, have the type
character. A data area read into a data area data structure must also be character.
The data area and data-area data structure must have the same name unless you
rename the data area in the program by using the “DTAARA DEFINE operation
code or the DTAARA keyword. See ["DEFINE (Field Definition)” on page 548 and
['DTAARA{(*VAR:)data_area_name}” on page 270

You can specify the data area operations (IN, OUT, and UNLOCK) for a data area
that is implicitly read in and written out. Before you use a data area data structure
with these operations, you must specify that data area in the result field of the
*DTAARA DEFINE operation or with the DTAARA keyword. See [“DEFINE (Field|
[Definition)” on page 548| and ["'DTAARA{(*VAR:)data_area_name}” on page 270

Note: A data-area data structure cannot be specified in the result field of a PARM
operation in the *ENTRY PLIST.

File Information Data Structure

You can specify a file information data structure for each file in the program. File
information data structures are defined by the keyword INFDS on a file
description specifications. See [“INFDS(DSname)” on page 248 This provides you
with status information on the file exception or error that occurred. The file
information data structure name must be unique for each file. A file information
data structure contains subfields that provide information on the file exception or
error that occurred. For more information on file information data structures and
their subfields, see [“File Information Data Structure” on page 41)

Program-Status Data Structure

A program-status data structure provides program exception and error information
to the program. It identified by an S in position 23 of the definition specification.
For more information on program-status data structures and their subfields, see
[“Program Status Data Structure” on page 51

Data Structure Examples

The following examples show various uses for data structures and how to define

them.
Example Description
[Figure 49 on page 163)| Using a data structure to subdivide a field

162 VisualAge RPG Language Reference

Example Description
[Figure 50 on page 164| Using a data structure to group fields
I|Figure 51 on page 165| Using keywords QUALIFIED, LIKEDS, and DIM with data
structures, and how to code fully-qualified subfields
[Figure 52 on page 166| Data structure with absolute and length notation
([Figure 53 on page 166| Rename and initialize an externally described data structure
[Figure 54 on page 167] Using PREFIX to rename all fields in an external data
structure
[Figure 55 on page 167 Defining a multiple occurrence data structure
ilFigure 56 on page 168 Aligning data structure subfields
[[Figure 57 on page 169 Using data area data structures
L R R T N T A T R A I -
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++tttttttttttttttttttttt
Dt i i e e e Keywords++++++++t+ttttttttttttttttttt
*
* Use length notation to define the data structure subfields.
* You can refer to the entire data structure by using Partno, or by
* using the individual subfields Manufactr, Drug, Strength or Count.
*
D Partno DS
D Manufactr 4
D Drug 6
D Strength 3
D Count 3 0
D
L R R T R T S A T -
IFiTename++Sq. .RiPOSI+NCCPOS2+NCCPOS3+NCC. o v v v st it iieiitiiiieieeeeennnns
Lo Fmt+SPFrom+To+++DcField+++++++++. .. .FrPIMnZr......

*
* Records in program described file FILEIN contain a field, Partno,
* which needs to be subdivided for processing in this program.

* To achieve this, the field Partno is described as a data structure
* using the above Definition specification

*

F

IFILEIN NS 01 1 CA 2 CB

I 3 18 Partno
I 19 29 Name

I 30 40 Patno

Figure 49. Using a Data Structure to Subdivide a Field

Chapter 11. Data Structures 163

LN R AR DTG JEPIE RN S . R DU RS D A PO -
DName+++++++++++ETDSFrom+++To/ L+++IDc. Keywords+++++++++tttttttttttttttttttt

PP Keywords++++++++++++tttttttttttt+t++
*

* When you use a data structure to group fields, fields from

* non-adjacent locations on the input record can be made to occupy

* adjacent internal Tocations. The area can then be referred to by

* the data structure name or individual subfield name.

*

D Partkey DS

D Location 4

D Partno 8

D Type 4

D

2 P U TSP BRI P SV PR TSP PR . SEPRPE DU AN PP -
IF11ename++Sq .RiP0OS1+NCCPOS2+NCCPOS3+NCC. o vt v veiieireeinenenensarnsnsnnnns
P Fmt+SPFrom+To+++DcField+++++++++. .. .FrPIMnZr......

*

* Fields from program described file TRANSACTN need to be
* compared to the field retrieved from an Item Master file
*
T

ITRANSACTN NS 01 1 C1 2 C2

I 3 10 Partno

I 11 16 0Quantity

I 17 20 Type

I 21 21 Code

I 22 25 Location

I

I U U TSP BRI AP SV RS TP PRI . SEPRPE DU SRR PP <1

CSRNOlFact0r1+++++++0pcode(E)+Factor2+++++++Resu1t++++++++Len++D+H1LoEq
*

* Use the data structure name Partkey, to compare to the field
* Item_Nbr
*

Partkey IFEQ Item_Nbr 99

OO0

Figure 50. Using a Data Structure to Group Fields

164 VisualAge RPG Language Reference

D CustomerInfo DS QUALIFIED BASED(@)

D Name 20A

D Address 50A

D ProductInfo DS QUALIFIED BASED(@)

D Number 5A

D Description 20A

D Cost 9P 2

D SalesTransaction...

D DS QUALIFIED

D Buyer LIKEDS (CustomerInfo)
D Seller LIKEDS (CustomerInfo)
D NumProducts 10I 0

D Products LIKEDS (ProductInfo)
D DIM(10)

/free
TotalCost = 0;
for i = 1 to SalesTransation. Numproducts;
TotalCost = TotalCost + SalesTransaction.Products (i).Cost;
dsply SalesTransaction.Products (i).Cost;

endfor;
dsply ('Total cost is ' + %char(TotalCost));
/end-free

Figure 51. Using Keywords QUALIFIED, LIKEDS and DIM with data structures

Chapter 11. Data Structures 165

LN R AR DTG JEPIE RN S . R DU RS D A PO -
DName+++++++++++ETDSFrom+++To/ L+++IDc. Keywords+++++++++tttttttttttttttttttt

Dttt it e i et et et e e Keywords++++++++++++tttttttttttt+t++
*

* Define a program described data structure called FRED

* The data structure is composed of 5 fields:

* 1. An array with element length 10 and dimension 70(Fieldl)
* 2. A field of length 30 (Field2)

* 3/4. Divide Field2 in 2 equal length fields (Field3 and Field4)
* b, Define a binary field over the 3rd field

* Note the indentation to improve readability

*

*

* Absolute notation:

*

* The compiler will determine the array element length (Fieldl)
* by dividing the total length (700) by the dimension (70)

*

D FRED DS

D Fieldl 1 700 DIM(70)

D Field2 701 730

D Field3 701 715

D Field5 701 704B 2

D Field4 716 730

*

* Length notation:

*

* The OVERLAY keyword is used to subdivide Field2

*

D FRED DS

D Fieldl 10 DIM(70)

D Field2 30

D Field3 15 OVERLAY (Field2)

D Fields 4B 2 OVERLAY(Field3)

D Field4 15 OVERLAY (Field2:16)

Figure 52. Data Structure with Absolute and Length Notation

LR R AR TG JEPIPE RN S . R UM RS O A T <
DName+++++++++++ETDSFrom+++To/ L+++I1Dc . Keywords+++++++++tttttttttttttttttttt
Dt i e e Keywords++++++++t+tttttttttttttttt+++

*

* Define an externally described data structure with internal name

* FRED and external name EXTDS and rename field CUST to CUSTNAME

* Initialize CUSTNAME to 'GEORGE' and PRICE to 1234.89.

* Assign to subfield ITMARR (defined in the external description as a
% 100 byte character field) the DIM keyword

*

D Fred E DS EXTNAME (EXTDS)

D CUSTNAME E EXTFLD(CUST) INZ('GEORGE')
D PRICE E INZ(1234.89)

D ITMARR E DIM(10)

Figure 53. Rename and Initialize an Externally Described Data Structure

166 VisualAge RPG Language Reference

L R AR TP SRS OV S AU R DU R PO A TR -
DName+++++++++++ETDSsFrom+++To/ L+++1Dc . Keywords+++++++++ttttttttttttttttttttt

PP Keywords++++++++++t+tttttttttt++++
D

D extdsl E DS EXTNAME (CUSTDATA)

D PREFIX (CU_)

D Name E INZ ('Joe's Garage')

D Custnum E EXTFLD (NUMBER)

D

*

* The previous data structure will expand as follows:

* -- A1l externally described fields are included in the data
* structure

* -- Renamed subfields keep their new names

* -- Subfields that are not renamed are prefixed with the

* prefix string

*

* Expanded data structure:

*

EXTDS1 E DS
CU_NAME

m

D

D 20A EXTFLD (NAME)

D INZ ('Joe's Garage')
D CU_ADDR E 50A EXTFLD (ADDR)

D CUSTNUM E 9SO EXTFLD (NUMBER)

D CU_SALESMN E 7PO EXTFLD (SALESMN)

Figure 54. Using PREFIX to Rename All Fields in an External Data Structure

L R AR P ST UV S SUP. TIPS DU JEPIPE PO AR TR -
DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++++++ttttttttttttttttttt

3PP Keywords++++++++ttttttttttttttttt+++
*

* Define a Multiple Occurrence data structure of 20 elements with:
* -- 3 fields of character 20

* -- A 4th field of character 10 which overlaps the 2nd

* field starting at the second position.

*

* Named constant 'twenty' is used to define the occurrence

*

* Absolute notation (using begin/end positions)

*

D twenty C CONST(20)

D

DDataStruct DS OCCURS (twenty)

D fieldl 1 20

D field2 21 40

D field2l 22 31

D field3 41 60

*

* Mixture of absolute and length notation
*

D DataStruct DS OCCURS (twenty)
D fieldl 20
D field2 20
D field21 22 31
D field3 41 60

Figure 55. Defining a Multiple Occurrence Data Structure

Chapter 11. Data Structures

167

L R R T TS P R T A T
DName+++++++++++ETDSFrom+++To/ L+++IDc. Keywords+++++++++tttttttttttttttttttt
* Data structure with alignment:

D MyDS DS ALIGN

* Properly aligned subfields

* Integer subfields using absolute notation.

D Subfl 33 341 0

D Subf2 37 40I 0

* Integer subfields using length notation.

* Note that Subf3 will go directly after Subf2

* since positions 41-42 are on a 2-byte boundary.

* However, Subf4 must be placed in positions 45-48
* which is the next 4-byte boundary after 42.

D Subf3 51 0

D Subf4 10I 0

* Integer subfields using OVERLAY.

D Group 101 120A

D Subfé 5I 0 OVERLAY (Group: 3)
D Subf7 10I 0 OVERLAY (Group: 5)
D Subf8 5U 0 OVERLAY (Group: 9)

* Subfields that are not properly aligned:
* Integer subfields using absolute notation:

D SubfX1 10 111 0

D SubfX2 15 18I 0

* Integer subfields using OVERLAY:

D BadGroup 101 120A

D SubfX3 5I 0 OVERLAY (BadGroup: 2)

D SubfX4 10I 0 OVERLAY (BadGroup: 6)

D SubfX5 10U 0 OVERLAY (BadGroup: 11)

* Integer subfields using OVERLAY:

D WorseGroup 200 299A

D SubfX6 5I 0 OVERLAY (WorseGroup)

D SubfX7 10I 0 OVERLAY (WorseGroup: 3)

*

* The subfields receive warning messages for the following reasons:

* SubfXl - end position (11) is not a multiple of 2 for a 2 byte field.
* SubfX2 - end position (18) is not a multiple of 4 for a 4 byte field.
* SubfX3 - end position (103) is not a multiple of 2.

* SubfX4 - end position (109) is not a multiple of 4.

* SubfX5 - end position (114) is not a multiple of 4.

* SubfX6 - end position (201) is not a multiple of 2.

* SubfX7 - end position (205) is not a multiple of 4.

Figure 56. Aligning Data Structure Subfields

168 VisualAge RPG Language Reference

L R AR TP SRS OV S AU R DU R PO A TR -
DName+++++++++++ETDSsFrom+++To/ L+++1Dc . Keywords+++++++++ttttttttttttttttttttt

PP Keywords++++++++++t+tttttttttt++++
*

* This program uses a data-area data structure to accumulate

* a series of totals.

*

D Totals ubns

D Tot_amount 82

D Tot_gross 10 2

D Tot_netto 10 2

L R AR P ST OV S P TP DU ¢ ISR U AR TR -

CSRNO1Factorl+++++++0pcode (E) +Factor2+++++ttttttttttttttttttttttttttt bttt
*

C :

C EVAL Tot_amount = Tot_amount + amount
C EVAL Tot_gross = Tot_gross + gross

C EVAL Tot_netto = Tot_netto + netto

Figure 57. Using Data-area Data Structures

Chapter 11. Data Structures

169

170 VisualAge RPG Language Reference

Chapter 12. Using Arrays and Tables

Arrays and tables are both collections of data fields (elements) of the same:
* Field length
* Data type
— Character
— Numeric
— Data Structure
— Date
— Time
— Timestamp
— Graphic
— Basing Pointer
— Procedure Pointer
- UCS-2
* Format
¢ Number of decimal positions (if numeric)

Arrays and tables differ in that:

* You can refer to a specific array element by its position

* You cannot refer to specific table elements by their position

* An array name by itself refers to all elements in the array

* A table name always refers to the element found in the last LOOKUP (Look Up
a Table or Array Element) operation. .

Note: You can define only run-time arrays in a subprocedure. Tables, pre-runtime
arrays, and compile-time arrays are not supported. If you want to use a
pre-run array or compile-time array in a subprocedure, you must define it in
the main source section.

The following sections describe how to use arrays:
. ”Arrays”|

+ [“Initializing Arrays” on page 178

+ ["“Defining Related Arrays” on page 178|

* |“Searching Arrays” on page 180|

+ [“Using Arrays” on page 183

+ [“Array Output” on page 184

[“Tables” on page 186| describes the same information for tables.

describes how to code an array, how to specify the initial values of the
array elements, how to change the values of an array, and the special
considerations for using an array.

Arrays

There are three types of arrays:

¢ The runtime array is loaded while the program is running.

¢ The compile-time array is loaded when your program is created. The initial data
becomes a permanent part of your program.

* The pre-runtime array is loaded from an array file when your program begins
running, before any input, calculation, or output operations are processed.

© Copyright IBM Corp. 1994, 2005 171

The essentials of defining and loading an array are described for a runtime array.
For defining and loading compile-time and pre-runtime arrays, use these essentials
and some additional specifications.

Array Name and Index

You refer to an entire array using the array name alone. You refer to the individual
elements of an array using the array name, followed by a left parenthesis, followed
by an index, followed by a right parenthesis. For example:

AR (IND)

The index indicates the position of the element within the array (starting from 1)
and is either a number or a field containing a number.

The following rules apply when specifying an array name and index:

* The array name must be a unique symbolic name

* The index must be a numeric field or constant greater than zero and with zero
decimal positions

* If the array is specified within an expression in the extended factor 2 field, the
index may be an expression returning a numeric value with zero decimal
positions

* At run time, if the program refers to an array using an index with a value that is
zero, negative, or greater than the number of elements in the array, then the
error/exception routine takes control of the program.

Essential Array Specifications

You define an array on a definition specification:

* Specify the array name in positions 7 through 21

* Specify the number of entries in the array using the DIM keyword

* Specify length, data format, and decimal positions as you would any scalar
fields. You may specify explicit From- and To-position entries (if defining a
subfield), or an explicit Length-entry; or you may define the array attributes
using the LIKE keyword; or the attributes may be specified elsewhere in the
program.

* If you need to specify a sort sequence, use the ASCEND or DESCEND
keywords.

shows an example of the essential array specifications.

Coding a Runtime Array

If you make no further specifications beyond the essential array specifications, you
have defined a runtime array. Note that the keywords ALT, CTDATA, EXTEMT,
FROMEFILE, PERRCD, and TOFILE cannot be used for a runtime array.

DName+++++++++++ETDSFrom+++To/ L+++1DcC . Keywords+++++++++ttttttttttttttttttt
DARC S 3A DIM(12)

Figure 58. The Essential Array Specifications to Define a Runtime Array

Loading a Runtime Array

You can assign initial values for a runtime array using the INZ keyword on the
definition specification. You can also assign initial values for a runtime array
through input or calculation specifications. This second method can also be used to
put data into other types of arrays.

172 VisualAge RPG Language Reference

For example, you can use the calculation specifications for the MOVE operation to
put 0 in each element of an array (or in selected elements).

Using the input specifications, you can fill an array with the data from a file. The
following sections provide more details on retrieving this data from the records of
a file.

Note: Date and time runtime data must be in the same format and use the same
separators as the date or time array being loaded.

Loading a Runtime Array in One Source Record
If the array information is contained in one record, the information can occupy
consecutive positions in the record or it can be scattered throughout the record.

If the array elements are consecutive on the input record, the array can be loaded

with a single input specification. shows the specifications for loading an
array of six elements (12 characters each) from a single record.

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++tttttttttttttttttt

DINPARR S 12A DIM(6)

IFiTename++Sq. .RiPOSI+NCCPOS2+NCCPOS3+NCC. o vv v v in ittt i i iieiaeennn
PP Fmt+SPFrom+To+++DcField+++++++++. .. . FrPIMnZr....
IARRFILE AA 01

I 1 72 INPARR

Figure 59. Using a Runtime Array with Consecutive Elements

If the array elements are scattered throughout the record, they can be defined and
loaded one at a time, with one element described on a specification line.

shows the specifications for loading an array of six elements (12

characters each) from a single record. A blank separates each of the elements from
the others.

o T R . U I SRS UL N DA T
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++ttttttttttttttttttt
DARRX S 12A DIM(6)

IFiTename++Sq. .RiPOSI+NCCPOS2+NCCPOS3+NCC. s v v e et ieieieeineneenennannns
P Fmt+SPFrom+To+++DcField+++++++++. .. . FrPIMnZr....
IARRFILE AA 01

I 1 12 ARRX(1)

I 14 25 ARRX(2)

I 27 38 ARRX(3)

I 40 51 ARRX(4)

I 53 64 ARRX(5)

I 66 77 ARRX(6)

Figure 60. Defining a Runtime Array with Scattered Elements

Loading a Runtime Array Using Multiple Source Records

If the array information is in more than one record, you can use various methods
to load the array. The method to use depends on the size of the array and whether
or not the array elements are consecutive in the input records. Records are
processed one record at a time. Therefore the entire array is not processed until all
the records containing the array information are read and the information is
moved into the array fields. It may be necessary to suppress calculation and output
operations until the entire array is read into the program.

Chapter 12. Using Arrays and Tables 173

Sequencing Runtime Arrays

Runtime arrays are not sequence checked. If you process a SORTA (sort an array)
operation, the array is sorted into the sequence specified on the definition
specification (the ASCEND or DESCEND keywords) defining the array. If the
sequence is not specified, the array is sorted into ascending sequence. When the
high (positions 71 and 72 of the calculation specifications) or low (positions 73 and
74 of the calculation specifications) indicators are used in the LOOKUP operation,
the array sequence must be specified.

Coding a Compile-Time Array

A compile-time array is specified using the essential array specifications and the
keyword CTDATA. You can specify the number of array entries in an input record
using the PERRCD keyword on the definition specification. If you do not specify
the PERRCD keyword, the number of entries defaults to 1. See the specifications in
[Figure 61 on page 175|for an example.

You can specify the external data format using the EXTEMT(code) keyword. See
["EXTEMT(code)” on page 271| for more information.

Note: The EXTFMT keyword cannot be used if the array data resides on the
workstation. The EXTFMT keyword is not allowed for float compile-time
arrays.

The TOFILE keyword can be used to specify a file to which the array is to be
written when the program ends with LR on.

Loading a Compile-Time Array

For a compile-time array, enter array source data into records in the program
source member. If you use the **CTDATA keyword, the array data may be entered
in anywhere following the source records. If you do not use this keyword, the
array data must follow the source records in the order in which the compile-time
arrays and tables were defined on the definition specifications. This data is loaded
into the array when the program is compiled. Until the program is recompiled
with new data, the array will always initially have the same values each time you
call the program unless the previous call ended with LR off.

Compile-time arrays can be described separately or in alternating format (with the
ALT keyword). Alternating format means that the elements of one array are
intermixed on the input record with elements of another array.

Rules for Array Source Records

The rules for array source records are:

* The first array entry for each record must begin in position 1.

* All elements must be the same length and follow each other with no intervening
spaces

e An entire record need not be filled with entries. If it is not, blanks or comments
can be included after the entries. See [Figure 61 on page 175

e If the number of elements in the array as specified on the definition specification
is greater than the number of entries provided, the remaining elements are filled
with the default values for the data type specified.

174 VisualAge RPG Language Reference

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++ttttttttttttt
DARC S 3A DIM(12) PERRCD(5) CTDATA

**xCTDATA ARC

48K16343J64044HComments can be placed here
12648A47349K346Comments can be placed here
50B125 Comments can be placed here

|48K | 163 | 43J | 640 | 44H| 126 | 48A | 473 | 49K | 346 | SOB| 125|

This is the compile-time array, ARC.

Figure 61. Array Source Record with Comments

Each record, except the last, must contain the number of entries specified with

the PERRCD keyword on the definition specifications. In the last record, unused

entries must be blank and comments can be included after the unused entries.

Each entry must be contained entirely on one record. An entry cannot be split

between two records. The length of a single entry is limited to the maximum

length of 100 characters (size of source record). If arrays are used and are

described in alternating format, corresponding elements must be on the same

record. Together they cannot exceed 100 characters.

For date and time compile-time arrays the data must be in the same format and

use the same separators as the date or time array being loaded.

Array data may be specified in one of two ways:

— *CTDATA arrayname: The data for the array may be specified anywhere in
the compile-time data section.

— **b: (b=blank) The data for the arrays must be specified in the same order in
which they are specified in the Definition specifications.

Only one of these techniques may be used in one program.

Arrays can be in ascending(ASCEND keyword), descending (DESCEND
keyword), or no sequence (no keyword specified).

Graphic and UCS-2 arrays are sorted by hexadecimal values.

If L or R is specified on the EXTFMT keyword on the definition specification,
each element must include the sign (+ or —). For example, an array with an
element size of 2 with L specified would require 3 positions in the source data
(+37-38+52-63).

Float compile-time data are specified in the source records as float or numeric
literals. Arrays defined as 4-byte float require 14 positions for each element;
arrays defined as 8-byte float require 23 positions for each element.

Chapter 12. Using Arrays and Tables 175

Coding a Pre-Runtime Array

On the definition specifications, in addition to the essential array specifications,
you can specify the name of the file with the array input data, using the
FROMEFILE keyword. You can use the TOFILE keyword to specify the name of a
file to which the array is written at the end of the program. If the file is a
combined file (specified by a C in position 17 of the file description specifications),
the parameter for the FROMFILE and TOFILE keywords must be the same. You
can use the PERRCD keyword to specify the number of elements per input record.

On the EXTFMT keyword, specify:

B if the data is in binary format

e L to indicate a sign on the left of a data element

* P if the array data is in packed decimal format

* R to indicate a sign on the right of a data element
* S if the array data is in zoned decimal format.

Specify a T in position 18 of the file description specifications for the file with the
array input data.

To compare the coding of two pre-runtime arrays, a compile-time array, and a
runtime array, see [Figure 62 on page 177

The ALT keyword can be used to specify arrays in alternating format. (See
[Figure 62 on page 177})

Note: The integer or unsigned format cannot be specified for arrays defined with
more than ten digits.

176 VisualAge RPG Language Reference

HKeywords+++
H DATFMT (*USA) TIMFMT (*HMS)

DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords++++++++++tttttt+++
D* Runtime array. ARI has 10 elements of type date. They are

D* initialized to September 15, 1994. This is in month, day,

D* year format using a slash as a separator as defined on the

D* control specification.

DARI S D DIM(10) INZ(D'09/15/1994"')
D* Compile-time arrays in alternating format. Both arrays have

D+ eight elements (three elements per record). ARC is a character
D* array of length 15, and ARD is a time array with a predefined
D* length of 8.

DARC S 15 DIM(8) PERRCD(3)
D CTDATA

DARD S T DIM(8) ALT(ARC)
D*

D* Pre-runtime array. ARE, which is to be read from file DISKIN,
Dx has 250 character elements (12 elements per record). Each

D+ element is five positions Tong. The size of each record

Dx is 60 (5*12). The elements are arranged in ascending sequence.

DARE S 5A DIM(250) PERRCD(12) ASCEND
D FROMFILE (DISKIN)

D*

D*

D* Pre-runtime array specified as a combined file. ARH is written
D* back to the same file from which it is read when the program

D* ends normally with LR on. ARH has 250 character elements

Dx (12 elements per record). Each elements is five positions Tlong.
D* The elements are arranged in ascending sequence.

DARH S 5A DIM(250) PERRCD(12) ASCEND
D FROMFILE (DISKOUT)
D TOFILE(DISKOUT)
*xCTDATA ARC
Toronto 12:15:00Winnipeg 13:23:00Calgary 15:44:00
Sydney 17:24:30Edmonton 21:33:00Saskatoon 08:40:00
Regina 12:33:00Vancouver 13:20:00

Figure 62. Definition Specifications for Different Types of Arrays

Loading a Pre-Runtime Array

For a pre-runtime array, enter array input data into a sequential program-described
file. When you call a program, but before any input, calculation, or output
operations are processed, the array is loaded with initial values from the file. By
modifying this file, you can alter the array’s initial values on the next call to the
program, without recompiling the program. The file is read in arrival sequence.
The rules for pre-runtime array data are the same as for compile-time array data,
except there are no restrictions on the length of each record. See [‘Rules for Array]|
[Source Records” on page 174

Sequence Checking for Character Arrays

When sequence checking for character arrays occurs, VisualAge RPG uses the
default ASCII collating sequence.

Chapter 12. Using Arrays and Tables 177

Initializing Arrays

To initialize each element in a runtime array to the same value, specify the INZ
keyword on the definition specification. If the array is defined as a data structure
subfield, the normal rules for data structure initialization overlap apply (the
initialization is done in the order that the fields are declared within the data
structure).

Compile-Time and Pre-Runtime Arrays

The INZ keyword cannot be specified for a compile-time or pre-runtime array,
because their initial values are assigned to them through other means
(compile-time data or data from an input file). If a compile-time or pre-runtime
array appears in a globally initialized data structure, it is not included in the global
initialization.

Note: Compile-time arrays are initialized in the order in which the data is declared
after the program, and pre-runtime arrays are initialized in the order of
declaration of their initialization files, regardless of the order in which these
arrays are declared in the data structure. Pre-runtime arrays are initialized
after compile-time arrays.

If a subfield initialization overlaps a compile-time or pre-runtime array, the array is
initialized after the subfield, regardless of the order in which fields are declared
within the data structure.

Defining Related Arrays

You can load two compile-time arrays or two pre-runtime arrays in alternating
format by using the ALT keyword on the definition of the alternating array. You
specify the name of the primary array as the parameter for the ALT keyword. The
records for storing the data for such arrays have the first element of the first array
followed by the first element of the second array, the second element of the first
array followed by the second element of the second array, the third element of the
first array followed by the third element of the second array, and so on.
Corresponding elements must appear on the same record. The PERRCD keyword
on the main array definition specifies the number of corresponding pairs per
record, each pair of elements counting as a single entry. You can specify EXTFMT
on both the main and alternating array.

[Figure 63 on page 179 shows two arrays in alternating format.

178 VisualAge RPG Language Reference

ARRA A RRB

(Part Number) (Unit Cost)

345126 373

38A437 498

39K143 1297

40B125 93 .
Arrays ARRA and ARRB can be described

41C023 3998 as two separate array files or as one
array file in alternating format.

42D893 87

43K823 349

44H111 697

45P673 898

46C732 47587

Figure 63. Arrays in Alternating and Nonalternating Format

The records for ARRA and ARRB look like the records in when described
as two separate array files.

This record contains ARRA entries in positions 1 through 60.

Figure 64. Arrays Records for Two Separate Array Files

This record contains ARRB entries in positions 1 through 50.

Figure 65. Arrays Records for One Array File

The records for ARRA and ARRB look like the records below in when
described as one array file in alternating format. The first record contains ARRA
and ARRB entries in alternating format in positions 1 through 55. The second

record contains ARRA and ARRB entries in alternating format in positions 1
through 55.

Figure 66. Array Records for One Array File in Alternating Format

Chapter 12. Using Arrays and Tables 179

DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords++++++++tttttttttt++
DARRA S 6A DIM(6) PERRCD(1) CTDATA
DARRB 5 0 DIM(6) ALT(ARRA)
DARRGRAPHIC 3G DIM(2) PERRCD(2) CTDATA
DARRC 3A DIM(2) ALT(ARRGRAPHIC)
DARRGRAPH1 3G DIM(2) PERRCD(2) CTDATA
DARRGRAPH2 3G DIM(2) ALT(ARRGRAPH1)

*xCTDATA ARRA

345126 373

38A437 498

39K143 1297

40B125 93

41C023 3998

42D893 87

*xCTDATA ARRGRAPHIC

oklk2k3iabcok4k5k6iabc

*xCTDATA ARRGRAPH1

ok1k2k3k4k5k6k1k2k3kak5k6i

W w;m ;v ;v

Figure 67. Arrays Records for One Array File in Alternating Format

Searching Arrays

The following can be used to search arrays:
* The LOOKUP operation code

e The %LOOKUP built-in function

* The %LOOKUPLT built-in function

* The %LOOKUPLE built-in function

e The %LOOKUPGT built-in function

* The %LOOKUPGE built-in function

For more information about the LOOKUP operation code, see:

* |“Searching an Array with an Index” on page 181

+ [“Searching an Array without an Index”]

+ ["'LOOKUP (Look Up a Table or Array Element)” on page 599

For more information about the %LOOKUPxx built-in functions, see
[“%LOOKUPxx (Look Up an Array Element)” on page 455

Searching an Array without an Index

When searching an array without an index, use the status (on or off) of the
resulting indicators to determine whether a particular element is present in the
array. Searching an array without an index can be used for validity checking of
input data to determine if a field is in a list of array elements. Generally, an equal
LOOKUP is used.

In factor 1 in the calculation specifications, specify the search argument (data for
which you want to find a match in the array named) and place the array name
factor 2.

In factor 2 specify the name of the array to be searched. At least one resulting

indicator must be specified. Entries must not be made in both high and low for the
same LOOKUP operation. The resulting indicators must not be specified in high or

180 VisualAge RPG Language Reference

low if the array is not in sequence (ASCEND or DESCEND keywords). Control
level and conditioning indicators (specified in positions 7 through 11) can also be
used. The result field cannot be used.

The search starts at the beginning of the array and ends at the end of the array or
when the conditions of the lookup are satisfied. Whenever an array element is
found that satisfies the type of search being made (equal, high, low), the resulting
indicator is set on.

shows an example of a LOOKUP on an array without an index.

FFilename++IT.A.FRlent...... A.Devicet.Keywords++++t+ttttttttttttttttttttttttt
FARRFILE IT F 5 DISK

F*

DName+++++++++++ETDSFrom+++To/L+++1Dc. Keywords+++++++ttttttttttttttttttttt
DDPTNOS S 55 © DIM(50) FROMFILE(ARRFILE)

D*

CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C* The LOOKUP operation is processed and, if an element of DPTNOS equal
Cx to the search argument (DPTNUM) is found, indicator 20 is set on.

C DPTNUM LOOKUP DPTNOS 20

Figure 68. LOOKUP Operation for an Array without an Index

ARRFILE, which contains department numbers, is defined in the file description
specifications as an input file (I in position 17) with an array file designation (T in
position 18). The file is program described (F in position 22), and each record is 5
positions in length (5 in position 27).

In the definition specifications, ARRFILE is defined as containing the array
DPTNOS. The array contains 50 entries (DIM(50)). Each entry is 5 positions in
length (positions 33-39) with zero decimal positions (positions 41-42). One
department number can be contained in each record (PERRCD defaults to 1).

Searching an Array with an Index

To find out which element satisfies a LOOKUP search, start the search at a
particular element in the array. To do this type of search, make the entries in the
calculation specifications as you would for an array without an index. However, in
factor 2, enter the name of the array to be searched, followed by a parenthesized
numeric field (with zero decimal positions) containing the number of the element
at which the search is to start. This numeric constant or field is called the index
because it points to a certain element in the array. The index is updated with the
element number which satisfied the search or is set to 0 if the search failed.

You can use a numeric constant as the index to test for the existence of an element
that satisfies the search starting at an element other than 1.

All other rules that apply to an array without an index apply to an array with an
index.

[Figure 69 on page 182 shows a LOOKUP on an array with an index. This example
shows the same array of department numbers, DPTNOS, as However, an
alternating array of department descriptions, DPTDSC, is also defined. Each
element in DPTDSC is 20 positions in length. If there is insufficient data in the file

Chapter 12. Using Arrays and Tables 181

to initialize the entire array, the remaining elements in DPTNOS are filled with
zeros and the remaining elements in DPTDSC are filled with blanks.

E NP U SRR PG DUPPIIE. SPUPY DU PN DRPI RRIPUNY - DUV P
FFilename++IT.A.FRlen+...... A.Device+t.Keywords++++++tttttttttttttttttttttt bttt
FARRFILE 1T F 25 DISK

Fx

DName+++++++++++ETDSFrom+++To/ L+++1Dc. Keywords++++++tttttttttttttttttttet
DDPTNOS S 55 © DIM(50) FROMFILE(ARRFILE)

DDPTDSC S 20A DIM(50) ALT(DPTNOS)

D*

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C* The Z-ADD operation begins the LOOKUP at the first element in DPTNOS.
C Z-ADD 1 X 30

C+ At the end of a successful LOOKUP, when an element has been found

C* that contains an entry equal to the search argument DPTNUM,

C* indicator 20 is set on and the MOVE operation places the department
C* description, corresponding to the department number, into DPTNAM.

C DPTNUM LOOKUP DPTNOS (X) 20
C+ If an element is found that is equal to the search argument,

C+ element X of DPTDSC is moved to DPTNAM.

C IF *IN20
C MOVE DPTDSC(X) DPTNAM 20
C ENDIF

Figure 69. LOOKUP Operation on an Array with an Index

182 VisualAge RPG Language Reference

Using Arrays
Arrays can be used in input, output, or calculation specifications.

Specifying an Array in Calculations

An entire array or individual elements in an array can be specified in calculation
specifications. Individual elements are processed like fields.

A noncontiguous array defined with the OVERLAY keyword cannot be used with
the MOVEA operation or in the result field of a PARM operation.

To specify an entire array, use only the array name, which can be used as factor 1,
factor 2, or the result field. The following operations can be used with an array

name:

ADD ADDDUR CHECK CHECKR CLEAR
DEFINE DIV EVAL EXTRCT LOOKUP
MOVE MOVEL MOVEA MULT PARM
RESET SCAN SORTA SQRT SUB
SUBDUR XFOOT Z-ADD Z-SUB

Several other operations can be used with an array element only but not with the
array name alone. These operations include but are not limited to:

BITON BITOFF CABxx CAT CcOMP
DO DOU DOUxx DOW DOWxx
IF TFxx MVR SUBST TESTB
TESTN TESTZ WHEN WHENXx

When specified with an array name without an index or with an asterisk as the
index (for example, ARRAY or ARRAY(*)) certain operations are repeated for each
element in the array. These are:

ADD ADDDUR DIV EVAL EXTRCT
MOVE MOVEL MULT SQRT SUB
Z-ADD Z-SUB

The following rules apply to these operations when an array name without an

index is specified:

* When factor 1, factor 2, and the result field are arrays with the same number of
elements, the operation uses the first element from every array, then the second
element from every array until all elements in the arrays are processed. If the
arrays do not have the same number of entries, the operation ends when the last
element of the array with the fewest elements has been processed. When factor 1
is not specified for the ADD, SUB, MULT, and DIV operations, factor 1 is
assumed to be the same as the result field.

* When one of the factors is a field, a literal, or a figurative constant and the other
factor and the result field are arrays, the operation is done once for every
element in the shorter array. The same field, literal, or figurative constant is used
in all of the operations.

* The result field must always be an array.

Chapter 12. Using Arrays and Tables 183

* If an operation code uses factor 2 only (for example, Z-ADD, Z-SUB, SQRT,
ADD, SUB, MULT, or DIV may not have factor 1 specified) and the result field is
an array, the operation is done once for every element in the array. The same
field or constant is used in all of the operations if factor 2 is not an array.

* Resulting indicators (positions 71 through 76) cannot be used because of the
number of operations being processed.

Note: When used in an EVAL operation, % ADDR(arr) and %ADDR(arr(*)) do not
have the same meaning. See [“%ADDR (Get Address of Variable)” on page
for more details.

When coding an EVAL or a SORTA operation, built-in function %SUBARR(arr) can
be used to select a portion of the array to be used in the operation. See
[“%SUBARR (Set/Get Portion of an Array)” on page 480| for more detail.

Sorting Arrays

You can sort arrays or a section of an array using the SORTA operation code. The
array is sorted into sequence (ascending or descending), depending on the
sequence specified for the array on the definition specification.

Sorting using Part of the Array as a Key

You can use the OVERLAY keyword to overlay one array over another. For
example, you can have a base array which contains names and salaries and two
overlay arrays (one for the names and one for the salaries). You could then sort the
base array by either name or salary by sorting on the appropriate overlay array.

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++tttttttttttttttttt
D DS

D Emp_Info 50 DIM(500) ASCEND

D Emp_Name 45 OVERLAY (Emp_Info:1)
D Emp_Salary 9P 2 OVERLAY (Emp_Info:46)
D

CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
C

C+ The following SORTA sorts Emp_Info by employee name.

C+ The sequence of Emp_Name is used to determine the order of the

Cx elements of Emp_Info.

C SORTA Emp_Name

Cx The following SORTA sorts Emp_Info by employee salary

C+ The sequence of Emp_Salary is used to determine the order of the

Cx elements of Emp_Info.

C SORTA Emp_Salary

Figure 70. SORTA Operation with OVERLAY

Array Output

Entire arrays can be written out only at the end of the program when the LR
indicator has been set on. To indicate that an entire array is to be written out,
specify the name of the output file with the TOFILE keyword on the definition
specifications. This file must be described as a sequentially organized combined file
in the file description specifications.

184 VisualAge RPG Language Reference

If the file is a combined file and is externally described as a physical file, the
information in the array at the end of the program replaces the information read
into the array at the start of the program. Logical files may give unpredictable
results.

If an entire array is to be written to an output record (using output specifications),

describe the array along with any other fields for the record:

¢ Positions 30 through 43 of the output specifications must contain the array name
used in the definition specifications.

* DPositions 47 through 51 of the output specifications must contain the record
position where the last element of the array is to end. If an edit code is specified,
the end position must include blank positions and any extensions due to the edit
code (see “Editing Entire Arrays” listed next in this section).

Output indicators (positions 21 through 29) can be specified. Zero suppress
(position 44), blank-after (position 45), and data format (position 52) entries pertain
to every element in the array.

Editing Entire Arrays

When editing is specified for an entire array, all elements of the array are edited. If
different editing is required for various elements, refer to them individually.

When an edit code is specified for an entire array (position 44), two blanks are
automatically inserted between elements in the array: there are blanks to the left of
every element in the array except the first. When an edit word is specified, the
blanks are not inserted. The edit word must contain all the blanks to be inserted.

Using Dynamically-Sized Arrays

If you don’t know the number of elements you will need in an array until runtime,
you can define the array with the maximum size, and then use a subset of the
array in your program.

To do this, you use the |%SUBARR|builtin function to control which elements are

used when you want to work with all the elements of your array in one operation.
You can also use the |%LOOKUP| builtin function to search part of your array.

Chapter 12. Using Arrays and Tables 185

* Define the "names" array as large as you think it could grow

D names S 25A VARYING DIM(2000)

* Define a variable to keep track of the number of valid elements
D numNames S 10I 0 INZ(0)

* Define another array

D temp S 50A DIM(20)

Dp S 101 0

/free

// set 3 elements in the names array

names(1) = 'Friendly';
names(2) = 'Rusty';
names(3) = 'Jerome';
names(4) = 'Tom';
names(5) = 'Jane';
numNames = 5;

// copy the current names to the temporary array
// Note: %subarr could also be used for temp, but
// it would not affect the number of elements
// copied to temp

temp = %subarr(names : 1 : numNames);

// change one of the temporary values, and then copy

// the changed part of the array back to the "names" array
temp(3) = 'Jerry’';

temp(4) = 'Harry';

// The number of elements actually assigned will be the
// minimum of the number of elements in any array or

// subarray in the expression. In this case, the

// available sizes are 2 for the "names" sub-array,

// and 18 for the "temp" subarray, from element 3

// to the end of the array.

%subarr(names : 3 : 2) = %subarr(temp : 3);

// sort the "names" array

sorta %subarr(names : 1 : numNames);

// search the "names" array
// Note: %SUBARR is not used with %LOOKUP. Instead,

// the start element and number of elements
// are specified in the third and fourth
// parameters of %LOOKUP.

p = %lookup('Jane' : names : 1 : numNames);

Figure 71. Example using a dynamically-sized array

Tables

The explanation of arrays applies to tables except for the following differences:

Activity Differences

Defining A table name must be a unique symbolic name that begins
with the letters TAB.

Using and Modifying Table Only one element of a table is active at one time. The table

Elements name is used to refer to the active element.

Searching The LOOKUP operation is specified differently for tables.
Different built-in functions are used for searching tables.

Note: You cannot define a table in a subprocedure.

The following can be used to search a table:

186 VisualAge RPG Language Reference

¢ The LOOKUP operation code

* The %TLOOKUP built-in function

e The %TLOOKUPLT built-in function
e The %TLOOKUPLE built-in function
* The %TLOOKUPGT built-in function
e The %TLOOKUPGE built-in function

For more information about the LOOKUP operation code, see:

+ ["LOOKUP with One Table”]

+ ["LOOKUP with Two Tables” on page 18§|

+ ["LOOKUP (Look Up a Table or Array Element)” on page 599

For more information about the % TLOOKUPxx built-in functions, see
[“%TLOOKUPxx (Look Up a Table Element)” on page 489

LOOKUP with One Table

When a single table is searched, factor 1, factor 2, and at least one resulting
indicator must be specified. Conditioning indicators (specified in positions 7
through 11) can also be used.

Whenever a table element is found that satisfies the type of search being made
(equal, high, low), the table element is made the current element for the table. If
the search is not successful, the previous current element remains the current
element.

Before a first successful LOOKUP, the first element is the current element.

Resulting indicators reflect the result of the search. If the indicator is on, reflecting
a successful search, the element satisfying the search is the current element.

Chapter 12. Using Arrays and Tables 187

LOOKUP with Two Tables

When two tables are used in a search, only one is actually searched. When the
search condition (high, low, equal) is satisfied, the corresponding elements are
made available for use.

Factor 1 must contain the search argument, and factor 2 must contain the name of
the table to be searched. The result field must name the table from which data is
also made available for use. A resulting indicator must also be used. Control level
and conditioning indicators can be specified in positions 7 through 11, if needed.

The two tables used should have the same number of entries. If the table that is
searched contains more elements than the second table, it is possible to satisfy the
search condition. However, there might not be an element in the second table that
corresponds to the element found in the search table. Undesirable results can occur.

Note: If you specify a table name in an operation other than LOOKUP before a
successful LOOKUP occurs, the table is set to its first element.

CSRNO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
C* The LOOKUP operation searches TABEMP for an entry that is equal to

C* the contents of the field named EMPNUM. If an equal entry is

C* found in TABEMP, indicator 09 is set on, and the TABEMP entry and

Cx its related entry in TABPAY are made the current elements.

C EMPNUM LOOKUP TABEMP TABPAY 09
Cx If indicator 09 is set on, the contents of the field named

C+ HRSWKD are multiplied by the value of the current element of

Cx TABPAY.

C IF *INO9

C HRSWKD MULT(H) TABPAY AMT 62
C ENDIF

Figure 72. Searching for an Equal Entry

188 VisualAge RPG Language Reference

Specifying the Table Element Found in a LOOKUP Operation

Whenever a table name is used in an operation other than LOOKUP, the table
name actually refers to the data retrieved by the last successful search. Therefore,
when the table name is specified in this fashion, elements from a table can be used
in calculation operations.

If the table is used as factor 1 in a LOOKUP operation, the current element is used
as the search argument. In this way an element from a table can itself become a
search argument.

The table can also be used as the result field in operations other than the LOOKUP
operation. In this case the value of the current element is changed by the

calculation specification. In this way the contents of the table can be modified by
calculation operations. See

CSRNO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C ARGMNT LOOKUP TABLEA 20
C+ If element is found multiply by 1.5

C+ If the contents of the entire table before the MULT operation

C+ were 1323.5, -7.8, and 113.4 and the value of ARGMNT is -7.8,

C* then the second element is the current element.

C+ After the MULT operation, the entire table now has the

C+ following value: 1323.5, -11.7, and 113.4.

C* Note that only the second element has changed since that was

C* the current element, set by the LOOKUP.

C IF *IN20
C TABLEA MULT 1.5 TABLEA
C ENDIF

Figure 73. Specifying the Table Element Found in LOOKUP Operations

Chapter 12. Using Arrays and Tables 189

190 VisualAge RPG Language Reference

Chapter 13. Editing Numeric Fields

Editing provides a means of punctuating numeric fields, including the printing of
currency symbols, commas, periods, minus signs, and floating minus. It also
provides for field sign movement from the rightmost digit to the end of the field,
blanking zero fields, spacing in arrays, date field editing, and currency symbol or
asterisk protection.

A field can be edited by edit codes or edit words. You can print fields in an edited
format using output specifications, or you can obtain the edited value of the field
in calculation specifications using the built-in functions %EDITC (edit code) and
%EDITW (edit word).

Note: For a description of how to edit Entry field parts and Static text parts, see
Programming with VisualAge RPG, SC09-2449-05.

When you print fields that are not edited, the fields appear exactly as they are
internally represented. The following examples show why you may want to edit
numeric output fields.

Printing of Unedited |Printing of Edited
Type of Field Field in the Computer | Field Field
Alphanumeric JOHN T SMITH JOHN T SMITH JOHN T SMITH
Numeric 0047652 0047652 47652
(positive)
Numeric 004765r 004765r 47652-
(negative)

The unedited alphanumeric field and the unedited positive numeric field are easy
to read when printed, but the unedited negative numeric field is confusing because
it contains a 'r’, which is not numeric. The 't is a combination of the digit 2 and
the negative sign for the field. They are combined so that one of the positions of
the field does not have to be set aside for the sign. The combination is convenient
for storing the field in the computer, but it makes the output hard to read.
Numeric fields must be edited before they are printed.

Edit Codes

Edit codes provide a means of editing numeric fields according to a predefined
pattern. They are divided into two categories: simple (X, Y, Z) and combination (1
through 4, A through D,] through Q). You enter the edit code in position 44 of the
output specifications for the field to be edited. Or, you can specify the edit code as
the second parameter of the %EDITC built-in function in calculation specifications.

Simple Edit Codes

You can use simple edit codes to edit numeric fields without having to specify any
punctuation. These codes and their functions are:

© Copyright IBM Corp. 1994, 2005 191

* The X edit code ensures a hexadecimal 3 sign for positive fields. However,
because the system does this, you normally do not have to specify this code.
Leading zeros are not suppressed. The X edit code does not modify negative
numbers.

* The Y edit code is normally used to edit a 3 to 9 digit date field. It suppresses
the leftmost zeros of date fields, up to but not including the digit preceding the
first separator. Slashes are inserted to separate the day, month, and year. The
[DATEDIT (fmt{separator})| and [DECEDIT('value’)| keywords on the control
specification can be used to alter edit formats.

e The Y edit code is not valid for *YEAR, *MONTH, and *DAY.

e The Z edit code removes the sign (plus or minus) from and suppresses the
leading zeros of a numeric field. The decimal point is not placed in the field and
is not printed.

Combination Edit Codes

The combination edit codes (1 through 4, A through D,] through Q) punctuate a
numeric field.

The DECEDIT keyword on the control specification determines what character is
used for the decimal separator and whether leading zeroes are suppressed. The
decimal position of the source field determines whether and where a decimal point
is printed. If decimal positions are specified for the source field and the zero
balance is to be suppressed, the decimal separator prints only if the field is not
zero. If a zero balance is not to be printed, a zero field prints as blanks.

When a zero balance is to be printed and the field is equal to zero, either of the

following is printed:

* A decimal separator followed by n zeros, where n is the number of decimal
places in the field

* A zero in the units position of a field if no decimal places are specified.

You can use a floating currency symbol or asterisk protection with any of the 12
combination edit codes. To specify a floating currency symbol, code the currency
symbol in positions 53-55 on the output specification, along with an edit code in
position 44 for the field to be edited. The floating currency symbol appears to the
left of the first significant digit. The floating currency symbol does not print on a
zero balance when an edit code is used that suppresses the zero balance. The
currency symbol does not appear on a zero balance when an edit code is used that
suppresses the zero balance.

A dollar sign ($) is used as the currency symbol unless a currency symbol is
specified with the CURSYM keyword on the control specification.)

An asterisk constant coded in positions 53 through 55 of the output specifications
("*), along with an edit code for the field to be edited causes an asterisk to be
printed for each zero suppressed. A complete field of asterisks is printed on a zero
balance source field. To specify asterisk protection using the built-in function
%EDITC, specify *ASTFILL as the third parameter.

Asterisk fill and the floating currency symbol cannot be used with the simple (X, Y,
Z) edit codes.

For the built-in function %EDITC, you specify a floating currency symbol in the

third parameter. To use the currency symbol for the program, specify *CURSYM.
To use another currency symbol, specify a character constant of length 1.

192 VisualAge RPG Language Reference

A currency symbol can appear before the asterisk fill (fixed currency symbol). This

requires two output specifications with the following coding:

1. Place a currency symbol constant in position 53 of the first output specification.
The end position specified in positions 47-51 should be one space before the
beginning of the edited field.

2. In the second output specification, place the edit field in positions 30-43, an edit
code in position 44, end position of the edit field in positions 47-51, and "*" in
positions 53-55.

You can do this using the %EDITC built-in function by concatenating the
currency symbol to the %EDITC result as follows

C EVAL X = '$" + %EDITC(N: 'A' : *ASTFILL)

When an edit code is used to print an entire array, two blanks precede each
element of the array (except the first element).

Note: You cannot edit an array using the %EDITC built-in function.

able 20| summarizes the functions of the combination edit codes. The codes edit
the field in the format listed on the left. A negative field can be punctuated with
no sign, CR, a minus sign (-), or a floating minus sign as shown on the top of the
figure.

Table 20. Combination Edit Codes

Negative Balance Indicator
Prints with
Grouping Prints Zero Floating
Separator Balance No Sign CR - Minus
Yes Yes 1 A J N
Yes No 2 B K 0
No Yes 3 C L P
No No 4 D M Q

Editing Considerations

When you specify any of the edit codes, do the following;:

* Edit fields of a non-printer file with caution. If you do edit fields of a
non-printer file, be aware of the contents of the edited fields and the effects of
any operations you do on them. For example, if you use the file as input, the
fields written out with editing must be considered character fields, not numeric
fields.

* Consideration should be given to data added by the edit operation. The amount
of punctuation added increases the overall length of the output field. If these
added characters are not considered when editing in output specifications, the
output fields may overlap.

* The end position specified for output is the end position of the edited field. For
example, if any of the edit codes] through M are specified, the end position is
the position of the minus sign (or blank if the field is positive).

e The compiler assigns a character position for the sign even for unsigned numeric
fields.

Chapter 13. Editing Numeric Fields 193

Summary of Edit Codes

able 21] summarizes the edit codes and the options they provide. A simplified
version of this table is printed above positions 45 through 70 on the output
specifications. [Table 22 on page 195|shows how fields look after they are edited.

Table 21. Edit Codes

[Table 23 on page 196/ shows the effect that the different edit codes have on the

same field with a specified end position for output.

DECEDIT Keyword Parameter

Sign for
Decimal Negative Zero
Edit Code |Commas Point Balance " 'l 0, 0. Suppress
1 Yes Yes No Sign .00 or 0 ,00 or 0 0,00 or O 0.00 or O Yes
2 Yes Yes No Sign Blanks Blanks Blanks Blanks Yes
3 Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 0.00 or O Yes
4 Yes No Sign Blanks Blanks Blanks Blanks Yes
A Yes Yes CR .00 or 0 ,00 or 0 0,00 or O 0.00 or O Yes
B Yes Yes CR Blanks Blanks Blanks Blanks Yes
C Yes CR .00 or0 ,00 or 0 0,00 or 0 0.00 or 0 Yes
D Yes CR Blanks Blanks Blanks Blanks Yes
] Yes Yes — 5 (minus) |.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes
K Yes Yes — (minus) |Blanks Blanks Blanks Blanks Yes
L Yes — (minus) |.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes
M Yes — (minus) |Blanks Blanks Blanks Blanks Yes
N Yes Yes — (floating |.00 or O ,00 or 0 0,00 or 0 0.00 or 0 Yes
minus)
O] Yes Yes — (floating |Blanks Blanks Blanks Blanks Yes
minus)
P Yes — (floating |.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes
minus)
Q Yes — (floating | Blanks Blanks Blanks Blanks Yes
minus)
X! Yes
Y? Yes
73 Yes

194 VisualAge RPG Language Reference

Table 21. Edit Codes (continued)

DECEDIT Keyword Parameter

Edit Code

Commas

Decimal
Point

Sign for
Negative
Balance

rr

4
7

,0/’

10.1

Zero
Suppress

'The X edit code ensures a hexadecimal 3 sign for positive values. Because the system does this for you, normally
you do not have to specify this code.

*The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following
pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

Table 22. Examples of Edit Code Usage

Positive Positive Negative Negative Zero Zero
Number- Number- Number- Number- Balance- Balance-
Two No Three No Two No

Edit Decimal Decimal Decimal Decimal Decimal Decimal

Codes Positions Positions Positions Positions Positions Positions

Unedited |1234567 1234567 00012b* 000000 000000

1 12,345.67 1,234,567 120 120 .00 0

2 12,345.67 1,234,567 120 120

3 12345.67 1234567 120 120 .00 0

4 12345.67 1234567 120 120

A 12,345.67 1,234,567 .120CR 120CR .00 0

B 12.345.67 1,234,567 .120CR 120CR

C 12345.67 1234567 .120CR 120CR .00 0

D 12345.67 1234567 .120CR 120CR

J 12,345.67 1,234,567 .120- 120- .00 0

K 12,345,67 1,234,567 .120- 120-

L 12345.67 1234567 .120- 120- .00 0

M 12345.67 1234567 .120- 120-

N 12,345.67 1,234,567 -.120 -120 .00 0

(@) 12,345,67 1,234,567 -.120 -120

P 12345.67 1234567 -.120 -120 .00 0

Q 12345.67 1234567 -.120 -120

X! 1234567 1234567 00012b* 000000 000000

Y? 0/01/20 0/01/20 0/00/00 0/00/00

73 1234567 1234567 120 120

Chapter 13. Editing Numeric Fields

195

Table 22. Examples of Edit Code Usage (continued)

Edit
Codes

Positive
Number-
Two
Decimal
Positions

Positive
Number-
No
Decimal
Positions

Negative
Number-
Three
Decimal
Positions

Negative
Number-
No
Decimal
Positions

Zero
Balance-
Two
Decimal
Positions

Zero
Balance-
No
Decimal
Positions

! The X edit code ensures a hex F sign for positive values. Because the system does this for
you, normally you do not have to specify this code.

2 The Y edit code suppresses the leftmost zeros of date fields, up to but not including the
digit preceding the first separator. The Y edit code also inserts slashes (/) between the
month, day, and year according to the following pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

Format
Format
Format
Format

used with M, D or blank in position 19
used with M, D or blank in position 19
used with Y in position 19
used with Y in position 19

® The Z edit code removes the sign (plus or minus) from a numeric field and suppresses
leading zeros of a numeric field.

* The b represents a blank. This may occur if a negative zero does not correspond to a
printable character.

Table 23. Effects of Edit Codes on End Position

Negative Number, 2 Decimal Positions. End Position Specified

as 10.

Output Print Positions
it Code s o s Js 7 s s Jw |
'r represents a negative 2.
Unedited 0 0 4 1 rt
1 4 1 2
2 4 1 2
3 4 1 2
4 4 1 2
A 4 1 2 C R
B 4 1 2 C R
C 4 1 2 C R
D 4 1 2 C R
J 4 1 2 -
r 4 1 2 -
L 4 1 2 -
M 4 1 2 -
N - 4 1 2
@) - 1 2
P - 1 2

196 VisualAge RPG Language Reference

Table 23. Effects of Edit Codes on End Position (continued)

Negative Number, 2 Decimal Positions. End Position Specified

as 10.

Output Print Positions
Edit Code 3 4 5 6 7 8 9 10
Q - 4 : 1 2
X 0 0 4 1 r!
Y 0 / 4 1 / 2
Z 4 1 2

Edit Words

If you have editing requirements that cannot be met by using the edit codes, you
can use an edit word. An edit word is a character literal or a named constant
specified in positions 53 - 80 of the output specification. It describes the editing
pattern for a numeric and allows you to directly specify:

* Blank spaces

* Commas and decimal points, and their position

* Suppression of unwanted zeros

* Leading asterisks

¢ The currency symbol and its position

* Addition of constant characters

¢ Output of the negative sign, or CR, as a negative indicator.

The edit word is used as a template that the system applies to the source data to
produce the output.

The edit word can be specified directly on an output specification or can be
specified as a named constant with a named constant name appearing in the edit
word field of the output specification. You can obtain the edited value of the field
in calculation specifications using the built-in function %EDITW (edit word).

Edit words are limited to 115 characters.

How to Code an Edit Word

To use an edit word, code the output specifications as shown below:

Position Entry
21-29 Can contain conditioning indicators.
30-43 Contains the name of the numeric field from which the data that is

to be edited is taken.

44 Edit code: Must be blank, if you are using an edit word to edit the
source data.

45 A “B” in this position indicates that the source data is to be set to
zero or blanks after it has been edited and output. Otherwise, the
source data remains unchanged.

47-51 Identifies the end (rightmost) position of the field in the output
record.
53-80 Edit word: Can be up to 26 characters long and must be enclosed

by apostrophes, unless it is a named constant. Enter the leading

Chapter 13. Editing Numeric Fields 197

apostrophe, or begin the named constant name in column 53. The
edit word, unless a named constant, must begin in column 54.

To edit using an edit word in calculation specifications, use built-in function

%EDITW, specifying the value to be edited as the first parameter, and the edit
word as the second parameter

198 VisualAge RPG Language Reference

Parts of an Edit Word

An edit word (coded into positions 53 to 80 of the output specifications) consists of
three parts: the body, the status, and the expansion. The following shows the three
parts of an edit word:

Body Status Expansion

The body is the space for the digits transferred from the source data field to the
output record. The body begins at the leftmost position of the edit word. The
number of blanks (plus one zero or an asterisk) in the edit word body must be
equal to or greater than the number of digits of the source data field to be edited.
The body ends with the rightmost character that can be replaced by a digit.

The status defines a space to allow for a negative indicator, either the two letters
CR or a minus sign (-). The negative indicator specified is output only if the
source data is negative. All characters in the edit word between the last replaceable
character (blank, zero suppression character) and the negative indicator are also
output with the negative indicator only if the source data is negative; if the source
data is positive, these status positions are replaced by blanks. Edit words without
the CR or - indicators have no status positions.

The status must be entered after the last blank in the edit word. If more than one
CR follows the last blank, only the first CR is treated as a status; the remaining
CRs are treated as constants. For the minus sign to be considered as a status, it
must be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered after the

status. Ampersands are replaced by blank spaces in the output; constants are
output as is. If status is not specified, the expansion follows the body.

Chapter 13. Editing Numeric Fields 199

Forming the Body of an Edit Word

The following characters have special meanings when used in the body of an edit
word.

Ampersand: Causes a blank in the edited field. The example below might be used
to edit a telephone number. Note that the zero in the first position is required to
print the constant AREA.

Edit Word Source Data Appears in Output Record as:
'0AREA &bbb&NO.&bbb-bbbb' 4165551212 HAREAD416bNO.b555-1212

Asterisk: The first asterisk in the body of an edit word also ends zero
suppression. Subsequent asterisks put into the edit word are treated as constants
(see below). Any zeros in the edit word following this asterisk are also
treated as constants. There can be only one end-zero-suppression character in an
edit word, and that character is the first asterisk or the first zero in the edit word.

If an asterisk is used as an end-zero-suppression character, all leading zeros that
are suppressed are replaced with asterisks in the output. Otherwise, the asterisk
suppresses leading zeros in the same way as described below for

Edit Word Source Data Appears in Output Record as:
"*bbbbbb.bb' 000000123 *000001.23

'‘bbbbb*b.bb' 000000000 *26%0.00

'‘bbbbb*h.bb**' 000056342 *563.42**

Note that leading zeros appearing after the asterisk position are output as leading
zeros. Only the suppressed leading zeros, including the one in the asterisk
position, are replaced by asterisks.

Blank: Blank is replaced with the character from the corresponding position of
the source data field specified by the field name in positions 30 through 43 of the
output specifications. A blank position is referred to as a digit position.

Constants: All other characters entered into the body of the edit word are treated
as constants. If the source data is such that the output places significant digits or
leading zeros to the left of any constant, then that constant appears in the output.
Otherwise, the constant is suppressed in the output. Commas and the decimal
point follow the same rules as for constants. Notice in the examples below, that the
presence of the end-zero-suppression character as well as the number of significant
digits in the source data, influence the output of constants.

The following edit words could be used to print cheques. Note that the second
asterisk is treated as a constant, and that, in the third example, the constants
preceding the first significant digit are not output.

Edit Word Source Data Appears in Output Record as:
'$bbbbbb*DOLLARS&bH&CTS' 000012345 $**+*123*DOLLARSH45bCTS
'$bbbbbb** DOLLARS&bb&CTS' 000000006 $reDOLLARSDO6HCTS
'$bbbbbbb&DOLLARS&DH&CTS' 000000006 $bbbbbbbbbbbbbLLEDEDCTS

200 VisualAge RPG Language Reference

A date could be printed by using either edit word:

Edit Word Source Data Appears in Output Record as:
'bb/bb/bb’ 010388 b1/03/88
'0bb/bb/bb' 010389 501/03/89

Note that any zeros or asterisks following the first occurrence of an edit word are
treated as constants. The same is true for — and CR:

Edit Word Source Data Appears in Output Record as:
'bb0.6b000’ 01234 512.34000
'bb*.5b000’ 01234 *12.34000

Currency Symbol: A currency symbol followed directly by a first zero in the edit
word (end-zero-suppression character) is said to float. All leading zeros are
suppressed in the output and the currency symbol appears in the output
immediately to the left of the most significant digit.

Edit Word Source Data Appears in Output Record as:
'bb,bbb,b$0.bb’ 000000012 bbbbbbbbb$.12
'bb, bbb, b$0.6b’ 000123456 bbbb$1,234.56

Chapter 13. Editing Numeric Fields 201

If the currency symbol is put into the first position of the edit word, then it will
always appear in that position in the output. This is called a fixed currency

symbol.

Edit Word Source Data Appears in Output Record as:
'$b,bbb,bb0.bb’ 000123456 $bbbb1,234.56

'$bb,bbb,060.bb' 000000000 $bbbbbbHb00.00

'$b,bbb,*bb.bd’ 000123456 $**%%1,234.56

A currency symbol anywhere else in the edit word and not immediately followed

by a zero end-suppression-character is treated as a constant (see [Constants| above).

Decimals and Commas: Decimals and commas are in the same relative position
in the edited output field as they are in the edit word unless they appear to the left
of the first significant digit in the edit word. In that case, they are blanked out or

replaced by an asterisk.

In the following examples below, all the leading zeros will be suppressed (default)
and the decimal point will not print unless there is a significant digit to its left.

Edit Word Source Data Appears in Output Record as:
'bbbbbbb’ 0000072 bbbbb72

'‘bbbbbbb.bb’ 000000012 bbbbbbbb12

'‘bbbbbbb.bb' 000000123 bbbbbbh1.23

Zeros: The first zero in the body of the edit word is interpreted as an
end-zero-suppression character. This zero is placed where zero suppression is to
end. Subsequent zeros put into the edit word are treated as constants (see

above).

Any leading zeros in the source data are suppressed up to and including the
position of the end-zero-suppression character. Significant digits that would appear
in the end-zero-suppression character position, or to the left of it, are output.

Edit Word Source Data Appears in Output Record as:
'‘bbb0bbbbbb’ 00000004 bbbb000004
'‘bbb0bbbbbd' 012345 bbbb012345
'‘bbb0bbbbbHH’ 012345678 bb12345678

If the leading zeros include, or extend to the right of, the end-zero-suppression
character position, that position is replaced with a blank. This means that if you
wish the same number of leading zeros to appear in the output as exist in the
source data, the edit word body must be wider than the source data.

Edit Word Source Data Appears in Output Record as:
'0bbb’ 0156 b156
'0bbbb' 0156 b0156

Constants (including commas and decimal point) that are placed to the right of the
end-zero-suppression character are output, even if there is no source data.

202 VisualAge RPG Language Reference

Constants to the left of the end-zero-suppression character are only output if the
source data has significant digits that would be placed to the left of these

constants.

Edit Word Source Data Appears in Output Record as:
'bbbbbb0.bb' 000000001 bbbbbbb.01

'bbbbbb0.bb' 000000000 bbbbbbb.00

'bbb,b0b.bb' 00000012 bbbbbb0.12

'bbb,b0b.bb’ 00000123 bbbbbb1.23

'b0b,bbb.bb' 00000123 bb0,001.23

Forming the Status of an Edit Word

The following characters have special meanings when used in the status of an edit

word:

Ampersand: Causes a blank in the edited output field. An ampersand cannot be

placed in the edited output field.

CR or minus symbol: If the sign in the edited output is plus (+), these positions
are blanked out. If the sign in the edited output field is minus (-), these positions

remain undisturbed.

The following example adds a negative value indication. The minus sign will print
only when the value in the field is negative. A CR symbol fills the same function

as a minus sign.

Edit Word Source Data Appears in Output Record as:
'bbbbbbb.bb—' 000000123— bbbbbb1.23—
'‘bbbbbbb.bb-' 000000123 bbbbbb1.23b

Constants between the last replaceable character and the — or CR symbol will print
only if the field is negative; otherwise, blanks will print in these positions. Note
the use of ampersands to represent blanks:

Edit Word Source Data Appears in Output Record as:
'b,bbb,bb0.bb&30&DAY&CR' 000000123— bbbbbbbbb1.23b30bDAYHCR
'b,bbb,bb0.bb&30&DAY&CR' 000000123 bbbbbbbbb1.23bbbbbbbbbb

Formatting the Expansion of an Edit Word

The characters in the expansion portion of an edit word are always written. The
expansion cannot contain blanks. If a blank is required in the edited output field,

specify an ampersand in the body of the edit word.

Constants may be added to print on every line:

Edit Word Source Data Appears in Output Record as:
'b,bb0.bb&CR&NET' 000123- bbbb1.23bCRONET
'b,bb0.bb&CR&NET' 000123 bbbb1.23bbbbNET

Chapter 13. Editing Numeric Fields 203

Note that the CR in the middle of a word may be detected as a negative field
value indication. If a word such as SECRET is required, use the coding in the

example below.

Edit Word Source Data Appears in Output Record as:
'bb0.bb&SECRET" 12345- 123.45bSECRET
'bb0.bb&SECRET' 12345 123.45bbbbHET
'bb0.bb&CR&&SECRET' 12345 123.45bbbbbSECRET

204 VisualAge RPG Language Reference

Summary of Coding Rules for Edit Words

The following rules apply to edit words:

Position 44 (edit codes) must be blank.

Positions 30 through 43 (field name) must contain the name of a numeric field.
An edit word must be enclosed in apostrophes, unless it is a named constant.
Enter the leading apostrophe or begin a named constant name in position 53.
The edit word itself must begin in position 54.

The edit word can contain more digit positions (blanks plus the initial zero or
asterisk) than the field to be edited, but must not contain less. If there are more
digit positions in the edit word than there are digits in the field to be edited,
leading zeros are added to the field before editing.

If leading zeros from the source data are desired, the edit word must contain
one more position than the field to be edited, and a zero must be placed in the
high-order position of the edit word.

In the body of the edit word only blanks and the zero-suppression stop
characters (zero and asterisk) are counted as digit positions. The floating
currency symbol is not counted as a digit position.

When the floating currency symbol is used, the sum of the number of blanks
and the zero-suppression stop character (digit positions) contained in the edit
word must be equal to or greater than the number of positions in the field to be
edited.

Any zeros or asterisks following the leftmost zero or asterisk are treated as
constants; they are not replaceable characters.

When editing an unsigned integer field, DB and CR are allowed and will always
print as blanks.

Editing Externally Described Files

To edit output for remote disk files, edit codes must be specified in data
description specifications (DDS).

Note: Edit codes cannot be used for special files.

Chapter 13. Editing Numeric Fields 205

206 VisualAge RPG Language Reference

Chapter 14. Initialization of Data

This section describes how data is initialized. Initialization of data consists of three
parts: the initialization subroutine (*INZSR), the CLEAR and RESET operation
codes, and data initialization (INZ keyword). For information on initializing
components, see [“Initializing Components” on page 31|

Initialization Subroutine (*INZSR)

The initialization subroutine allows you to process calculation specifications. It is
declared like any other subroutine, but with *INZSR in factor 1. You can enter any
operations in this subroutine except the RESET operation. *INZSR can also be
called explicitly by using an EXSR or CASxx operation code.

CLEAR and RESET Operation Codes

The CLEAR operation code sets variables in a window or a structure to their
default values. If you specify a structure (record format, data structure or array) all
fields in that structure are cleared in the order in which they are declared.

The RESET operation code sets variables in a window or a structure to their initial
values. You can use data structure initialization to assign initial values to subfields,
and then change the values during the running of the program, and use the RESET
operation code to set the field values back to their initial values.

Data Initialization

Data is initialized with the INZ keyword on the definition specification. You can
specify an initial value as a parameter on the INZ keyword, or specify the
keyword without a parameter and use the default initial values. Default initial
values for the various data types are described in |Chapter 9, “Data Types and Datal
[Formats.”| See [Chapter 12, “Using Arrays and Tables”| for information on
initializing arrays.

© Copyright IBM Corp. 1994, 2005 207

208 VisualAge RPG Language Reference

Part 3. Specifications

This section describes the VisualAge RPG specifications:

* Information that is common to several specifications, such as keyword syntax
and continuation rules, is described.

* Each specification is described in the order in which it must be entered in the
program. Each specification description lists all the fields on the specification
and explains all the possible entries.

© Copyright IBM Corp. 1994, 2005 209

210 VisualAge RPG Language Reference

Chapter 15. About VisualAge RPG Specifications

The VisualAge RPG language consists of a mixture of position-dependent and
free-form code. A VisualAge RPG program is coded on a variety of specifications.
Each specification has a specific set of functions.

There are three groups of source records that may be coded in a VisualAge RPG
program: the main source section, the subprocedure section, and the program data
section. The structure of the main source section depends on the resultant
compilation target: component, NOMAIN DLL, or EXE. The main source section
contains all of the global definitions for a module. For a component target, this
section also includes the action and user subroutines. The layout of the main
source section for each compilations target is shown in [“Placement of Definitions|
[and Scope” on page 256

The subprocedure section contains specifications that define any subprocedures
coded within a module. The program data section contains source records with
data that is supplied at compile time.

The following illustration shows the types of source records that may be entered
into each group and their order.

Note: The VisualAge RPG source program must be entered into the system in the
order shown. Any of the specification types can be absent, but at least one
must be present.

Compile-Time Array and Table Data 4‘~
*% ‘b

‘ Program Data

‘ Q Procedure
‘@ Calculation

‘@ Definition
‘ Q Procedure

‘ Subprocedure

‘@ Output

‘@ Calculation

‘o Input

‘@ Definition
e File Description

m Control

Figure 74. Order of the Types of Specifications in an VisualAge RPG Source Program

[H] Control (Header) specifications provide information about program

© Copyright IBM Corp. 1994, 2005 211

generation and running of the compiled program. Refer to

[“Control Specifications”| for a description of the entries on this
specification.

File description specifications define all files in the program. Refer to
[Chapter 17, “File Description Specifications”| for a description of the entries
on this specification.

Definition specifications define items used in your program. Arrays, tables,
data structures, subfields, constants, standalone fields, event attributes,
prototypes and their parameters, and procedure interfaces and their
parameters are defined on this specification. Refer to
[“Definition Specifications”| for a description of the entries on this
specification.

Input specifications describe records, and fields in the input files and
indicate how the records and fields are used by the program. Refer to
[Chapter 19, “Input Specifications”| for a description of the entries on this
specification.

Calculation specifications describe calculations to be done by the program
and indicate the order in which they are done. Calculation specifications
can control certain input and output operations. For component targets,
this section includes action subroutines and standalone user subroutines.
NOMAIN DLLs and EXEs do not have a calculation specifications section.
Refer to [Chapter 20, “Calculation Specifications”| for a description of the
entries on this specification. [Chapter 23, “Operations”| describes the
operation codes that are coded on the Calculation specification.

Output specifications describe the records and fields and indicate when

they are to be written by the program. Refer to [Chapter 21, “Output]
for a description of the entries on this specification.

Subprocedure Specifications

Procedure specifications describe the procedure-interface definition of a
prototyped program or procedure. Refer to [Chapter 22, “Procedure|
for a description of the entries on this specification.
Definition specifications define items used in the prototyped procedure.

Procedure-interface definitions, entry parameters, and other local items are
defined on this specification. Refer to [Chapter 18, “Definition|

Specifications”| for a description of the entries on this specification.

Calculation specifications perform the logic of the prototyped procedure.
Refer to [Chapter 20, “Calculation Specifications”| for a description of the
entries on this specification.

Program Data

Source records with program data follow all source specifications. The first line of
the data section must start with **. If desired, you can indicate the type of program
data that follows the **, by specifying the keyword. By associating the
program data with this keyword, you can place the groups of program data in any
order after the source records.

The first entry for each input record must begin in position 1. The entire record
need not be filled with entries. Array elements with unused entries will be
initialized with the default value.

212 VisualAge RPG Language Reference

For more information on entering compile-time array records, see [‘Rules for Array]|
[Source Records” on page 174

The specifications which support keywords (Control, File Description, Definition,
and Procedure) allow free format in the keyword fields. The Calculation
specification allows free format with those operation codes which support
extended-factor 2. Otherwise, entries are position specific. To represent this, each
illustration of VisualAge RPG code is in listing format with a scale drawn across
the top.

This reference contains a detailed description of the individual specifications. Each
field and its possible entries are described. [Chapter 23, “Operations,” on page 341
describes the operation codes that are coded on the Calculation specification,
which is described in [Chapter 20, “Calculation Specifications,” on page 311

Common Entries

The following entries are common to all VisualAge RPG specifications:
* Positions 1-5 can be used for comments.
* Position 6 indicates the specification type. You can use the following letter codes:

Entry Specification Type
Control

File description
Definition

Input

Calculation

Output

=T O N T U T m

Procedure
* Comment Statements
— Position 7 contains an asterisk (*). This denotes the line as a comment line
regardless of any other entry on the specification. In a free-form calculation
specification, you can use // for a comment. Any line on any fixed-form
specification that begins with // is considered a comment by the compiler.
The // can start in any position provided that positions 6 to the // characters
contain blanks.
— Positions 6 - 80 is blank
* Positions 7 - 80 are blank and position 6 contains a valid specification. This is a
valid line, not a comment, and sequence rules are enforced.

Syntax of Keywords

Keywords may have no parameters, optional parameters, or required parameters.
The syntax for keywords is as follows:

Keyword (parameterl : parameter2)

where:
¢ Parameter(s) are enclosed in parentheses ().

Note: Parentheses should not be specified if there are no parameters.
* Colons (:) are used to separate multiple parameters.

Chapter 15. About VisualAge RPG Specifications 213

The following notational conventions are used to show which parameters are

optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.
* An ellipsis (...) indicates that the parameter can be repeated.
* A colon () separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.
¢ A vertical bar (|) indicates that only one parameter may be specified for the

keyword.

* A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

Table 24. Examples of Keyword Notation

Notation Example of Notation |Description Example of
Used Source Entered
braces {} PRTCTL (data_struct |Parameter data_struct is required |PRTCTL
{:*COMPAT}) and parameter *COMPAT is (data_structl)
optional.
braces {} TIME(format Parameter format{separator} is TIME(*HMS&)
{separator}) required, but the {separator} part
of the parameter is optional.
colon (:) RENAME(Ext_format |Parameters Ext_format and RENAME
:Int_format) Int_format are required. (nameE: namel)
ellipsis (...) |IGNORE(recformat Parameter recformat is required IGNORE
{:recformat...}) and can be specified more than (recformatl:
once. recformat2:
recformat3)
vertical bar | FLTDIV{(*NO | Specify *NO or *YES, or no FLTDIV
) *YES)} parameter.
blank OPTIONS(*OMIT One of *OMIT, *VARSIZE, OPTIONS
*VARSIZE *STRING | *STRING, *TRIM, or *RIGHTAD] | (*OMIT:
*TRIM *RIGHTAD]J) |is required and more than one *VARSIZE:
parameter can be optionally *STRING: *TRIM:
specified. *RIGHTADY)

214 VisualAge RPG Language Reference

Continuation Rules

The fields which may be continued are:

* The keywords field on the control specification

* The keywords field on the file description specification

* The keywords field on the definition specification

* The Extended-factor 2 field on the calculation specification

* The constant/editword field on the output specification

¢ The Name field on the definition or the procedure specification

General rules for continuation are as follows:

* The continuation line must be a valid line for the specification being continued
(H, FE D, C, or O in position 6).

* No special characters should be used when continuing specifications across
multiple lines, except when a literal or name must be split. For example, the
following pairs are equivalent. In the first pair, the plus sign (+) is an operator,
even when it appears at the end of a line. In the second pair, the plus sign is a
continuation character.

C eval X=a+b
C eval X =a+
C b

C eval x = 'abc'
C eval x = 'ab+
C c'

* Only blank lines, empty specification lines, or comment lines are allowed
between continued lines.
* The continuation can occur after a complete token. Tokens are:
— Names (for example, keywords, file names, field names)
— Parentheses
— The separator character (:)
— Expression operators
— Built-in functions
— Special words
— Literals
* A continuation can also occur within a literal:
For character, date, time, and timestamp literals:
- A hyphen (-) indicates continuation is in the first available position in the
continued field
- A plus (+) indicates continuation with the first nonblank character in or
past the first position in the continued field
For graphic literals :
- Either the hyphen (-) or plus (+) can be used to indicate a continuation.
— For numeric literals:
- No continuation character is used
- A numeric literal continues with a numeric character or decimal point on
the continuation line in the continued field
For hexadecimal and UCS-2 literals:
- Either a hyphen (-) or a plus (+) can be used to indicate a continuation
- The literal will be continued with the first nonblank character on the next
line
* A continuation can also occur within a name in free-format entries
— In the name entry for Definition and Procedure specifications. For more
information on continuing names in the name entry, see [“Definition and|
[Procedure Specification Name Field” on page 220
— In the keywords entry for File and Definition specifications.
— In the extended factor 2 entry of Calculation specifications.

Chapter 15. About VisualAge RPG Specifications 215

You can split a qualified name at a period, as shown below:

C EVAL dataStructureWithALongName.
C subfieldWithAnotherLongName = 5

If a name is not split at a period, code an ellipsis (...) at the end of the partial
name, with no intervening blanks.

R T T T T DOV R D A O .
DName++
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++ttttttttttttttttttttt
D Keywords-cont++++++++ttttttttttttttt

* Define a 10 character field with a long name.

* The second definition is a pointer initialized to the address

* of the variable with the Tong name.

D QuitelLongFieldNameThatCannotAlwaysFitInOnelLine...

D S 10A

D Ptr S * inz(%addr(QuiteLongFieldName...
D ThatCannotAlways...

D FitInOneLine))

D ShorterName S 5A

R R A . S Y S O T O R ST AR P .
CSRNOlFactor1+++++++0pcode(E)+Extended factor2++++++++++++++++++++++++H+H++++
C Extended-factor2-++++++++++++++++++++++++++++
* Use the Tong name in an expression

* Note that you can split the name wherever it is convenient.

C EVAL QuiteLongFieldName...

C ThatCannotAlwaysFitInOneLine = 'abc'
* You can split any name this way

C EVAL P...

o tr = %addr(Shorter...

C Name)

Figure 75. Example

216 VisualAge RPG Language Reference

Control Specification Keyword Field
The rule for continuation on the control specification is that the specification
continues on or past position 7 of the next control specification.

R R A . R Y S e T U R R A T
HKeywor‘ds++

H DATFMT(
H *MDY&
H)

Figure 76. Continuation on a Control Specification

File Description Specification Keyword Field

The rules for continuation on the file description specification are:

* The specification continues on or past position 44 of the next file description
specification

* Positions 7-43 of the continuation line must be blank

Lo T T Y S N P O R T AR PR .

FFilename++IT.A.FRTen+...... A.Device+.Keywords+++++tttttttbttbbbbbbbbb bt
F RECNO

F (

F *INU1

F)

Figure 77. File description specification keyword field

Chapter 15. About VisualAge RPG Specifications

217

Definition Specification Keyword Field

The rules for continuation on the definition specification are:

* The specification continues on or past position 44 of the next Definition
specification depending on the continuation character specified

* DPositions 7-43 of the continuation line must be blank.

DName+++++++++++ETDSFrom+++To/ L+++I1Dc . Keywords+++++++++tttttttttttttttttttt

D Keywords-cont+++++++++tttttttttttttt+
*

DMARY C CONST(

D 'Mary had a 1ittle Tamb, its -

D* Only a comment or a completely blank line is allowed in here

D fleece was white as snow.'

D

D+ Numeric Titeral, continues with the first non blank in/past position 44
D*

DNUMERIC C 12345

D 67

D+ Graphic named constant

DGRAF C G'AABBCCDD+

D EEFFGG'

Figure 78. Definition specification keyword field example

218 VisualAge RPG Language Reference

Calculation Specification Extended-Factor 2

The rules for continuation on the calculation specification are:

* The specification continues on or past position 36 of the next calculation
specification

* Positions 7-35 of the continuation line must be blank.

L R R T TS P c RPN T AP
CSRNO1Factorl+++++++Opcode (E) +Extended-factor2+++++++tttttttttttttttttttttt

C Extended-factor2-++++++++++++++++++++++++++++
*

C EVAL MARY='Mary had a little lamb, its +

C* Only a comment or a completely blank Tine is allowed in here

C fleece was white as snow.'

C*

C+ Continuation of arithmetic expression, NOT a continuation
C* character

C
C EVAL A= (BxD)/ C +
C 24

C+ The first use of '+' in this example is the concatenation
C+ operator. The second use is the character Titeral continuation.

C EVAL ERRMSG = NAME +
C ' was not found +
C in the file.'

Figure 79. Calculation specification Extended-Factor 2 Example

Free-Form Calculation Specification

The rules for continuation on a free-form calculation specification are:

* The free-form line can be continued on the next line. The statement continues
until a semicolon is encountered.

Example

/FREE

/END-FREE

time = hours * num_employees

+ overtime_saved;

Chapter 15. About VisualAge RPG Specifications

219

Output Specification Constant/Editword Field

The rules for continuation on the Output specification are:

¢ The specification continues on or past position 53 of the next Output
specification

* Positions 7-52 of the continuation line must be blank.

[0 P NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat+++
0 Continue Constant/editword+++
0 80 'Mary had a little lTamb, its-
0* Only a comment or a completely blank Tine is allowed in here

0 fleece was white as snow.'

Figure 80. Output specification constant/editword field example

Definition and Procedure Specification Name Field

The rules for continuation of the name on the definition and procedure

specifications are:

* Continuation rules apply for names longer than 15 characters. Any name (even
one with 15 characters or fewer) can be continued on multiple lines by coding
an ellipsis (...) at the end of the partial name.

* A name definition consists of the following parts:

1. Zero or more continued name lines. Continued name lines are identified as
having an ellipsis as the last non-blank characters in the entry. The name
must begin within positions 7 - 21 and may end anywhere up to position 77
(with an ellipsis ending in position 80). There cannot be blanks between the
start of the name and the ellipsis (...) characters. If any of these conditions is
not true, the line is considered to be a main definition line.

2. One main definition line containing name, definition attributes, and
keywords. If a continued name line is coded, the name entry of the main
definition line may be left blank.

3. Zero or more keyword continuation lines.

220 VisualAge RPG Language Reference

L R . T Py | T T A c B ST A IR
DName++++++++++++tt+tttttttttttttttttttttttttttttttt bttt bbb+
DName+++++++++++ETDSFrom+++T0/L+++IDC. Keywords++++++++ttttttttttttttttt++++

D Keywords-cont++++++++tt+tttttttt++++
D* Long name without continued name lines:
D RatherLongName S 10A

D* Long name using 1 continued name line:

D NameThatIsEvenlLonger...

D C 'This is the constant -

D that the name represents.'

D* Long name using 1 continued name line:

D NameThatIsSolLongItMustBe...

D Continued S 10A

D+ Compile-time arrays may have Tong names:

D CompileTimeArrayContainingDataRepresentingTheNamesOfTheMonthsOf...

D TheYearInGermanLanguage...

D S 20A DIM(12) CTDATA PERRCD(1)

D* Long name using 3 continued name Tines:

D ThisNameIsSoMuchLongerThanThe...

D PreviousNamesThatItMustBe...

D ContinuedOnSeveralSpecs...

D PR 10A

D parm_1 10A VALUE
CSRNO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
C* Long names defined on calc spec:

C LongTagName TAG

C * IKE DEFINE RatherLongNameQuiteLongName +5
PName+++++++++++, B o oot i e it e e e e ee Keywords+++++++++++++++++++++++++++++
PContinuedName++++++++t+tttttttttttttttttttttttttttttttttt bttt bbbttt 4
P+ Long name specified on Procedure spec:

P ThisNameIsSoMuchLongerThanThe...

p PreviousNamesThatItMustBe...

P ContinuedOnSeveralSpecs...

P B

D ThisNameIsSoMuchLongerThanThe...

D PreviousNamesThatItMustBe...

D ContinuedOnSeveralSpecs...

D

PI 10A
D parm_1 10A VALUE
D* Body of the Procedure
D*

P ThisNameIsSoMuchLongerThanThe...
P PreviousNamesThatItMustBe...
P ContinuedOnSeveralSpecs...

P E

Figure 81. Defining long names in RPG

Chapter 15. About VisualAge RPG Specifications

221

222 VisualAge RPG Language Reference

Chapter 16. Control Specifications

The control specification statement, identified by an H in column 6, provides
information about generating and running programs. This information is provided
to the compiler by means of a control specification included in your source. If no
control specification is included, the control specification keywords are assigned
their default values.

See the description of the individual entries for their default values.
The control specification keywords apply at the modular level. This means that if

there is more than one procedure coded in a module, the values specified in the
control specification apply to all procedures.

Control Specification Statement

The control specification consists solely of keywords. The keywords can be placed
anywhere between positions 7 and 80. Positions 81-100 can be used for comments.

o S T B N T T O R I N T T O B e (]
HKeywords+++++++++ttttttttttttttttttttttttttttt bttt Commen t S H+++++HHHHH+4+

Figure 82. Control Specification Layout
The following is an example of a control specification:

L R AR TG TR DR S RS RIS, PPN ¢ BEPUPIPE, PP AR PR
HKeywords++++++ttt bbbttt
H CURSYM('$') DATEDIT(*MDY) DATFMT(*MDY/)

H DECEDIT('.') TIMFMT(*ISO)

Position 6 (Form Type)

An H must appear in position 6 to identify this line as the control specification.

Positions 7-80 (Keywords)

The control specification keywords are used to determine how the program deals
with devices and how certain types of information are represented.

© Copyright IBM Corp. 1994, 2005 223

Syntax of Keywords

Control-specification keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword (parameterl : parameter2)

where:
* Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are

optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.

* An ellipsis (...) indicates that the parameter can be repeated.

* A colon () separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.

* A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

* A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for control-specification keywords, the keyword field
can be continued on subsequent lines. See [“Control Specification Statement” on|
[page 223| and [“Control Specification Keyword Field” on page 217

ALWNULL(*NO | *INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how you will use records containing
null-capable fields from externally described database files.

If ALWNULL(*NO) is specified, then you cannot process records with null-value
fields from externally described files. If you attempt to retrieve a record containing
null values, no data in the record will be accessible and a data-mapping error will
occur.

If ALWNULL(*INPUTONLY) is specified, then you can successfully read records

with null-capable fields containing null values from externally described input-only

database files. When a record containing null values is retrieved, no data-mapping

errors will occur and the database default values are placed into any fields that

contain null values. However, you cannot do any of the following:

* Use null-capable key fields

* Create or update records containing null-capable fields

* Determine whether a null-capable field is actually null while the program is
running

* Set a null-capable field to be null.

If ALWNULL(*USRCTL) is specified, then you can read, write, and update records

with null values from externally described database files. Records with null keys
can be retrieved using keyed operations. You can determine whether a null-capable

224 VisualAge RPG Language Reference

field is actually null, and you can set a null-capable field to be null for output or
update. You are responsible for ensuring that fields containing null values are used
correctly.

If the ALWNULL keyword is not specified, then the value specified on the
command is used.

For more information, see [“Database Null Value Support” on page 137

CACHE(*YES | *NO)

The CACHE keyword specifies that the remote file descriptions stored on the
workstation in the cache folder is to be used by the application. The first time that
the CACHE(*YES) option is used, a list of remote file descriptions will be created.
Each subsequent time, the compile process will access this information instead of
accessing the server files.

CACHEREFRESH(*YES | *NO)

The CACHEREFRESH keyword specifies that the remote file descriptions in the
cache folder is to be updated before the compile process. If you specify
CACHE(*NO), the existing remote file descriptions are used.

CCSID(*GRAPH : parameter | *UCS2 : number | *“MAPCP : 932)

This keyword sets the default graphic (*GRAPH) and UCS-2 (*UCS2) CCSIDs for
the module. These defaults are used for compile-time data, program-described
input and output fields, and data definitions that do not have the CCSID keyword
coded.

CCSID(*GRAPH : *IGNORE | *SRC | number)
Sets the default graphic CCSID for the module. The possible values are:

*IGNORE
This is the default. No conversions are allowed between graphic and
UCS-2 fields in the module. The %GRAPH built-in function cannot be
used.

*SRC
The graphic CCSID associated with the CCSID of the source file will be
used.

number
A graphic CCSID.

CCSID(*UCS2 : number)
Sets the default UCS-2 CCSID for the module. If this keyword is not
specified, the default UCS-2 CCSID is 13488.

number must be a UCS-2 CCSID. Valid CCSIDs are 13844 and 17584
(which inlcudes the Euro).

CCSID(*MAPCP : 932)
For remote file opens and program calls, maps the Japanese code page 932
to CCSID 943.

If CCSID(*GRAPH : *SRC) or CCSID(*GRAPH : number) is specified:

* Graphic and UCS-2 fields in externally-described data structures will use the
CCSID in the external file.

Chapter 16. Control Specifications 225

* Program-described graphic or UCS-2 fields will default to the graphic or UCS-2
CCSID of the module, respectively. This specification can be overridden by using
the CCSID(number) keyword on the definition of the field. (See [“CCSID(number|
[| *DFT)” on page 267))

* Program-described graphic or UCS-2 input and output fields and keys are
assumed to have the module’s default CCSID.

COPYNEST(number)

The COPYNEST keyword specifies the maximum depth to which nesting can occur
for /COPY directives. The depth must be greater than or equal to 1 and less than
or equal to 2048. The default depth is 32.

COPYRIGHT(’copyright string’)

The COPYRIGHT keyword provides copyright information. The copyright string is
a character literal with a maximum length of 256. The literal may be continued on
a continuation specification. (See [“Continuation Rules” on page 215| for rules on
using continuation lines.) If the COPYRIGHT keyword is not specified, copyright
information is not added to the created module or program.

CURSYM(’sym’)
The CURSYM keyword specifies a character used as a currency symbol in editing.
The symbol must be a single character enclosed in quotes. Any character in the
VisualAge RPG character set may be used. (See [Chapter 1, “Symbolic Names and|
[Reserved Words,” on page 3.) The following characters are exceptions:

0 (zero) * (asterisk) , (comma)
& (ampersand) . (period) — (minus sign)
C (letter C) R (letter R) Blank

If the keyword is not specified, the dollar sign ($) is the default for the currency
symbol.

CVTOEM(*YES | *NO)

The CVTOEM keyword specifies that OEM conversion should be used when I/O
is performed to local files. If you specify CVTOEM(*NO), no OEM conversion is
done.

CVTOPT(*{NO}VARCHAR *{NO}VARGRAPHIC)

The CVTOPT keyword is used to determine how the VARPG compiler handles
variable-length data types that are retrieved from externally described database
files.

You can specify any or all of the data types in any order. However, if a data type is
specified, the *NOxxxx parameter for the same data type cannot be used, and vice
versa. For example, if you specify *VARCHAR you cannot specify *NOVARCHAR,
and vice versa. Separate the parameters with a colon. A parameter cannot be
specified more than once.

Note: If the keyword CVTOPT does not contain a member from a pair, then the

value specified on the command for this particular data type will be used.
For example, if the keyword CVTOPT(*NOVARCHAR) is specified on the

226 VisualAge RPG Language Reference

Table 25. External Date Formats for Date Data Type

Control specification, then for the pair (*YVARGRAPHIC,
*NOVARGRAPHIC), whatever was specified implicitly or explicitly on the
command will be used.

If *VARCHAR is specified, then variable-length character data types are declared
as fixed-length character fields.

If *NOVARCHAR is specified, then variable-length character data types are not

converted.

If *VARGRAPHIC is specified, then variable-length double-byte character set
(DBCS) graphic data types are declared as fixed-length character fields.

If *NOVARGRAPHIC is specified, then variable-length double-byte character set
(DBCS) graphic data types are not converted.

If the CVTOPT keyword is not specified, then the values specified on the

command are used.

DATEDIT(fmt{separator})

The DATEDIT keyword specifies the format of numeric fields when using the Y
edit code. The separator character is optional. The value (fmt) can be *DMY, *MDY,
or *YMD. The default separator is /. A separator character of & (ampersand) may
be used to specify a blank separator.

DATFMT(fmt{separator})

The DATFMT keyword specifies the internal date format for date literals and the
default format for date fields within the program. You can specify a different
internal date format for a particular field by specifying the format with the
DATEMT keywork on the definition specification for that field.

The default is *ISO format. For more information on internal formats, see

[and External Formats” on page 103

able 25| describes the various date formats and their separators.

RPG name |Description Format (Default | Valid Length Example
Separator) Separators

*MDY Month/Day/ Year mm/dd/yy /- & 8 01/15/91

*DMY Day/Month/Year dd/mm/yy /-, & 8 15/01/91

*YMD Year/Month/Day yy/mm/dd /-.,'& 8 91/01/15

*JUL Julian yy/ddd /-, & 6 91/015

*ISO International Standards Organization | yyyy-mm-dd - 10 1991-01-15

*USA IBM USA Standard mm/dd/yyyy / 10 01/15/1991

*EUR IBM European Standard dd.mm.yyyy 10 15.01.1991

*IS Japanese Industrial Standard yyyy-mm-dd - 10 1991-01-15
Christian Era

DEBUG{(*NO | *YES)}

The DEBUG keyword determines whether debug information is generated.

Chapter 16. Control Specifications 227

If this keyword is not specified or specified with *NO, no debug information is
generated.

DECEDIT(’value’)

This keyword specifies the character used as the decimal point for edited decimal
numbers. Leading zeros are printed when the absolute value of the number is less
than 1. The default value is "." (period).

The possible values are:

rs
.

Decimal point is period; leading zero not printed (.123)

rs

, Decimal point is comma; leading zero not printed (,123)
0. Decimal point is period; leading zero printed (0.123)

0, Decimal point is comma; leading zero printed (0,123)

DECPREC(30I31)

Keyword DECPREC is used to specify the decimal precision of decimal (packed,
zoned, or binary) intermediate values in arithmetic operations in expressions.
Decimal intermediate values are always maintained in the proper precision, but
this keyword affects how decimal values are presented when used in certain
operations, such as %EDITC and %EDITW.

DECPREC(30)
The default decimal precicion. It indicates that the maximum precision of
decimal values when used in %EDITC and %EDITW operations is 30
digits. However, if at least one operand in the expression is a 31 digit

decimal variable, the precision of the expression is 31 digits regardless of
the DECPREC value.

DECPREC(31)
This alternate decimal precision indicates that 31 digits are always
presented in %EDITC and %EDITW operations.

EXE

The EXE keyword indicates that this is a module consisting of a main procedure
and subprocedures. All subroutines (BEGSR) must be local to a procedure. The
EXE must contain a procedure whose name matches the name of the source file.
This will be the main entry point for the EXE, that is, the main procedure.

For EXE modules, consider the following:

* No GUI operation codes are allowed in the source. This includes START, STOP,
SETATR, GETATR, %SETATR, %GETATR, SHOWWIN, CLSWIN, and READS.
DSPLY can be used.

* *INZSR and *TERMSR are not permitted.

* *ENTRY parameters are not permitted.

If there are entry parameters, they are specified on the parameter definition for the

main procedure, and they must be passed in by value, that is, the VALUE keyword

must be specified for each parameter.

* The EXPORT keyword is not allowed on the Begin P specification.

* The return value for the main procedure must be defined as a binary or integer
of precision zero(0).

228 VisualAge RPG Language Reference

EXPROPTS(*MAXDIGITS | *YRESDECPOS)

The EXPROPTS (expression options) keyword specifies the type of precision rules
to be used for an entire program. If not specified or specified with *MAXDIGITS,
the default precision rules apply. If EXPROPTS is specified, with *RESDECPOS, the
"Result Decimal Position” precision rules apply and force intermediate results in
expressions to have no fewer decimal positions than the result.

Note: Operation code extenders R and M are the same as
EXPROPTS(*RESDECPOS) and EXPROPTS(*MAXDIGITS) respectively, but
for single free-form expressions.

EXTBININT{(*NO | *YES)}

The EXTBININT keyword is used to process externally described fields with binary
external format and zero decimal positions as if they had an external integer
format. If not specified or specified with *NO, then an externally described binary
field is processed with an external binary format. If EXTBININT is specified,
optionally with *YES, then an externally described field is processed as follows:

DDS Definition RPG external format
B(n,0) where 1 =n =4 1(5)
B(n,0) where 5=n =<9 1(10)

By specifying the EXTBININT keyword, your program can make use of the full
range of DDS binary values available. (The range of DDS binary values is the same
as for signed integers: -32768 to 32767 for a 5-digit field or -2147483648 to
2147483647 for a 10-digit field.)

Note: When the keyword EXTBININT is specified, any externally described
subfields that are binary with zero decimal positions will be defined with an
internal integer format.

FLTDIV{(*NO | *YES)}

The FLTDIV keyword indicates that all divide operations within expressions are
computed in floating point and return a value of type float. If not specified or
specified with *NO, then divide operations are performed in packed-decimal
format (unless one of the two operands is already in float format).

If FLTDIV is specified, optionally with *YES, then all divide operations are
performed in float format (guaranteeing that the result always has 15 digits of
precision).

GENLVL(number)

The GENLVL keyword controls the creation of the object. The object is created if all
errors encountered during compilation have a severity level less than or equal to
the generation severity level specified. The value must be between 0 and 20
inclusive. For errors greater than severity 20, the object will not be created.

If the GENLVL keyword is not specified, then the value specified on the command
is used.

Chapter 16. Control Specifications 229

INDENT(*NONE | ’character-value’)

The INDENT keyword specifies whether structured operations should be indented
in the source listing for enhanced readability. It also specifies the characters that
are used to mark the structured operation clauses.

If *NONE is specified, structured operations will not be indented in the source
listing.

If character-value is specified, the source listing is indented for structured
operation clauses. Alignment of statements and clauses are marked using the
characters you choose. You can choose any character literal up to 2 characters in
length.

Note: The indentation may not appear as expected if there are errors in the source.

If the INDENT keyword is not specified, then the value specified on the command
is used.

INTPREC(10 | 20)

The INTPREC keyword is used to specify the decimal precision of integer and
unsigned intermediate values in binary arithmetic operations in expressions.
Integer and unsigned intermediate values are always maintained in 8-byte format.
This keyword affects only the way integer and unsigned intermediate values are
converted to decimal format when used in binary arithmetic operations (+, -, *, /).

INTPREC(10), the default, indicates a decimal precision of 10 digits for integer and
unsigned operations. However, if at least one operand in the expression is an
8-byte integer or unsigned field, the result of the expression has a decimal
precision of 20 digits regardless of the INTPREC value.

INTPREC(20) indicates that the decimal precision of integer and unsigned
operations is 20 digits.

LIBLIST(’filename1 filename2 ... filenamen’)

The LIBLIST keyword specifies the list of library files to be used when linking the
application. Each file name must be separated by a blank and the list must be
enclosed by single quotation marks. If a file name contains blanks, its name must
be enclosed by double quotation marks.

NOMAIN

The NOMAIN keyword indicates that there are no action or standalone user
subroutines in the module. A NOMAIN module contains only subprocedures. The
resulting compilation target is a DLL that can be used by other applications.

For NOMAIN DLLs, the following should be considered:

e The DLL must consist of procedures only. All subroutines (BEGSR) must be local
to a procedure.

* No GUI operation codes allowed in the source. These include START, STOP,
SETATR, GETATR, %SETATR,%GETATR;, SHOWWIN, CLSWIN, and READS.
DSPLY can be used. However, if the procedure containing it is called from a
VisualAge RPGDLL, then the DSPLY operation code does nothing.

* *INZSR; and *TERMSR; are not permitted.

* *ENTRY; parameters are not permitted.

230 VisualAge RPG Language Reference

See Programming with VisualAge RPG for information on coding and calling
multiple procedures.

Chapter 16. Control Specifications 231

OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL *{NO}SHOWCPY
*INO}EXPDDS *{NO}EXT *{NO}SHOWSKP
*{NO}NHERITSIGNON)

The OPTION keyword specifies the options to use when the source member is
compiled.

You can specify any or all of the options in any order. However, if a compile
option is specified, the *NOxxxx parameter for the same compile option cannot be
used, and vice versa. For example, if you specify *XREF, you cannot also specify
*NOXREEF, and vice versa. Separate the options with a colon. You cannot specify an
option more than once.

Note: If the keyword OPTION does not contain a member from a pair, then the
value specified on the command for this particular option will be used. For
example, if the keyword OPTION(*XREF : *NOGEN : *NOSECLVL :
*SHOWCPY) is specified on the Control specification, then for the pairs,
(*EXT, *NOEXT), (*EXPDDS, *NOEXPDDS) and (*SHOWSKEP,
*NOSHOWSKP), whatever was specified implicitly or explicitly on the
command will be used.

If *XREF is specified, a cross-reference listing is produced (when appropriate) for
the source member. *NOXREF indicates that a cross-reference listing is not
produced.

If *GEN is specified, a program object is created if the highest severity level
returned by the compiler does not exceed the severity specified in the GENLVL
option. *NOGEN does not create an object.

If *SECLVL is specified, second-level message text is printed on the line following
the first-level message text in the Message Summary section. *NOSECLVL does not
print second-level message text on the line following the first-level message text.

If *SHOWCPY is specified, the compiler listing shows source records of members
included by the /COPY compiler directive. *NOSHOWCPY does not show source
records of members included by the /COPY compiler directive.

If *EXPDDS is specified, the expansion of externally described files in the listing
and key field information is displayed. *NOEXPDDS does not show the expansion
of externally described files in the listing or key field information.

If *EXT is specified, the external procedures and fields referenced during the
compile are included on the listing. *NOEXT does not show the list of external
procedures and fields referenced during compile on the listing.

If *SHOWSKRP is specified, then all statements in the source part of the listing are
displayed, regardless of whether or not the compiler has skipped them.
*NOSHOWSKP does not show skipped statements in the source part of the listing.
The compiler skips statements as a result of /IF, /ELSEIF, or /ELSE directives.

If *INHERITSIGNON is specified, the calling application’s server signon
information is used by the called program. This avoids the user ID/password
prompting when data or programs are accessed on the remote server.

If the OPTION keyword is not specified, then the values specified on the
command are used.

232 VisualAge RPG Language Reference

SIGNON(*CLEARUSERID *HIDEPWSAVE *INHERIT)

The SIGNON keyword specifies options to use when signing on to a remote server
to access files or call programs.

You can specify any or all of the options in any order. Separate the options with a
colon. You cannot specify an option more than once.

If *CLEARUSERID is specified, no initial value will be shown in the user ID field
of the remote server signon prompt dialog box, if the signon prompt is needed.
(This option does not affect the Change Password prompt shown when an expired
password is used to signon.)

The default behaviour is to show the last-used user ID.

If *HIDEPWSAVE is specified, the password save option will not be shown on the
Change Password dialog box which appears when the server indicates a signon
attempt used an expired password.

Note: If a VARPG application has a saved version of the password, and the actual
password has changed, subsequent application signon attempts will report
invalid password errors and prompt for the correct password, until the
saved password entry is corrected or cleared.

If *INHERIT is specified in a VARPG application called by another, the calling
application’s server signon information is used by the called program. This avoids
the user ID and password prompting when data or programs are accessed on the
remote server.

Do not specify both SIGNON(*INHERIT) and OPTION(*INHERITSIGNON), which
mean the same.

SQLBINDFILE(filename’)

The SQLBINDFILE keyword specifies that an SQL bind file be created. You can
optionally specify a fully qualified bind file name enclosed in single quotation
marks. The name can be up to 8 characters long.

A bind file allows the application to defer binding to a database until a later time
and allows an application to access many databases. This is done using the
SQLBIND command before the application runs.

No package file is generated unless you specify the SQLPACKAGENAME
keyword. Applications can be built with binding enabled, that is, with the
SQLPACKAGENAME keyword specified, or with binding deferred (no package
name). Building with binding enabled generates a package file and stores it in the
database. Building with binding deferred extracts the data needed to create the
package from the source file and stores this information in a bind file.

SQLDBBLOCKING(*YES | *NO)

The SQLDBBLOCKING keyword specifies whether blocking is done on any
cursors. Specify SQLDBBLOCKING(*YES) to perform record blocking on any
cursors.

When you use record blocking and specify SQLISOLATIONLVL(*RR), a read-only
cursor isolation level, Database Manager at the database server returns a block of

Chapter 16. Control Specifications 233

rows to the database client in one network transmission. These rows are retrieved
one at a time from the database client when Database Manager processes a FETCH
request. When all rows in the block have been fetched, Database Manager at the
database client sends another request to the remote database, until all output rows
have been retrieved.

Record blocking can lead to results that are not entirely consistent with the
database when used in combination with the cursor stability,
SQLISOLATIONLVL(*CS), or uncommitted read, SQLISOLATIONLVL(*UR),
isolation levels. With cursor stability and uncommitted read, the row being
retrieved by the application from the block is not locked at the remote database.
Therefore, another application may be updating the row in the database while
your application is reading the row from the block. Specifying the repeatable read
isolation level locks all accessed rows in the database until the unit of work is
complete, but restricts updates by other processes.

Specify SQLDBBLOCKING(*NO) if you do not want blocking done on any cursors.
When a SELECT statement returns multiple rows, the application must declare a
cursor and use the FETCH statement to retrieve the rows one at a time. With a
remote database, this means that each request and each reply travel across the
network. With a large number of rows, this leads to a significant increase in
network traffic.

SQLDBNAME(’'Dbname’)

The SQLDBNAME keyword specifies the name of the DB2 database referenced by
imbedded SQL statements in your application. The name must be enclosed by
single quotation marks and can be up to 8 characters long.

SQLDTFMT(*EUR | *ISO | *USA | *JIS)
The SQLDTFMT keyword specifies the date and time format used in your
application. The possible values are:

*EUR IBM European Standard format.
*ISO International Standards Organization format.

*USA IBM USA Standard format.

*JIS Japanese Industrial Standard Christian Era format.

SQLISOLATIONLVL(*RR | *CS | *UR)

The SQLISOLATIONLVL keyword specifies how SQL database records will be read
by your application. The possible values are:

*RR Repeatable read keeps a lock on all rows accessed by the application since
the last commit point. If the application reads the same row again, the
values will not have changed. The effect of the *RR isolation level is that
one application can prevent other applications or users from changing
tables. As a result, overall concurrency may decrease.

Specify repeatable read only if the application requires row locking;
otherwise, cursor stability, *CS, is preferable.

*CS Cursor stability, *CS, holds a row lock only while the cursor is positioned
on that row. When the cursor moves to another row, the lock is released. If
the data is changed, however, the lock must be held until the data is
committed. Cursor stability applies only to data that is read. All changed
data remains locked until either a COMMIT or ROLLBACK is processed.

234 VisualAge RPG Language Reference

Specify cursor stability if a given row will be accessed only once during
the life of the transaction. In this way, the lock has the least impact on
concurrent applications and users.

*UR Uncommitted read, *UR, views rows without waiting for locks.
Uncommitted read applies to FETCH and SELECT INTO operations. For
other operations, the *UR choice performs the same as *CS, cursor stability.
An application using this level reads and returns all rows, even if they
contain uncommitted changes made by other applications. Because this
isolation level does not wait for concurrency locks, overall performance
may increase.

SQLPACKAGENAME(’package.txt’)

The SQLPACKAGENAME keyword specifies that a package file be created
containing the executable SQL statements. You can optionally specify a fully
qualified package name enclosed in single quotation marks. The name can be up to
8 characters long.

A Database Manager application uses one package file for every built source file
used to build the application. Each package is a separate entity and has no
relationship to any other packages used by the same or other applications.
Packages are created by running the precompiler against a source file with binding
enabled or by running the binder (SQLBIND command) against one or more DB2
names.

SQLPASSWORD(’password’)

The SQLPASSWORD keyword specifies the password of the user ID accessing the
SQL database. The password must be enclosed by single quotation marks

SQLUSERID('userid’)

The SQLUSERID keyword specifies the user ID connecting to the SQL database.
The user ID must be enclosed by single quotation marks

TIMFMT(fmt{separator})

The TIMFMT keyword specifies the internal format of time literals and the default
format for time fields in the program. You can specify a different internal time
format for a particular field by specifying the format with the TIMFEMT keyword
on the definition specification for that field.

The default is *ISO. For more information on the internal formats, see
[and External Formats” on page 103

Chapter 16. Control Specifications 235

shows the time formats supported and their separators:
Table 26. External Time Formats for Time Data Type

Format
RPG (Default Valid
name Description Separator) |Separators |Length Example
*HMS Hours:Minutes:Seconds hh:mm:ss L, & 8 14:00:00
*ISO International Standards hh.mm.ss 8 14.00.00
Organization
*USA IBM USA Standard. AM hh:mm AM 8 02:00 PM
and PM can be any mix of |or hh:mm
upper and lower case. PM
*EUR IBM European Standard hh.mm.ss 8 14.00.00
*TIS Japanese Industrial hh:mm:ss 8 14:00:00
Standard Christian Era

TRUNCNBR(*YES | *NO)

The TRUNCNBR keyword specifies if the truncated value is moved to the result
field or if an error is generated when numeric overflow occurs while running the

object.

Note: The TRUNCNBR option does not apply to calculations performed within
expressions. (Expressions are found in the Extended-Factor 2 field.) If

overflow occurs for these calculations, an error will always occur.

If *YES is specified, numeric overflow is ignored and the truncated value is moved

to the result field.

If *NO is specified, a run-time error is generated when numeric overflow is

detected.

If the TRUNCNBR keyword is not specified, then the value specified on the

command is used.

236 VisualAge RPG Language Reference

Chapter 17. File Description Specifications

File description specifications identify each file used by a program. Each file in a
program must have a corresponding file description specification statement.

A file can be either program-described or externally-described. In
program-described files, record and field descriptions are included within the
program using input and output specifications. Externally-described files have
their record and field descriptions defined externally on an iSeries server using
DDS or SQL/400™ commands.

The following limitations apply for each program:
* There is no limit for the maximum number of files allowed
* DISK files:
— DISK files can be either remote or local
- Remote files must be externally described
— Local files must be program described
¢ PRINTER files:
— A maximum of eight PRINTER files are allowed
— PRINTER files must be program described
» SPECIAL files:
— SPECIAL files must be program described.

File Description Specification Statement

The general layout for the file description specification is as follows:

¢ The file description specification type (F) is entered in position 6

* The non-comment part of the specification extends from position 7 to position
80:
— The fixed-format entries extend from positions 7 to 42
— The keyword entries extend from positions 44 to 80

¢ The comments section of the specification extends from position 81 to position
100.

Foo Dl Lo 2 Lok 3 b B Lo B Lk B e T ke 8 k. 9 L+l 10
FFilename++IT.A.FRlen+...... A.Device+.Keywords+++tttttttttttttttttttttt+COMMEnts+trtrtttttt

Figure 83. File Description Specification Layout

File-Description Keyword Continuation Line

If additional space is required for keywords, the keywords field can be continued
on subsequent lines as follows:

* position 6 of the continuation line must contain an F

* positions 7 to 43 of the continuation line must be blank

* the specification continues on or past position 44

L T T T T R L T S A TR - B U R S (]

Figure 84. File-Description Keyword Continuation Line Layout

© Copyright IBM Corp. 1994, 2005 237

Position 6 (Form Type)

An F must be entered in this position.

Positions 7-16 (File Name)

Entry Explanation

A valid file name Every file used in a program must have a unique
name. The file name can be from 1 to 10 characters
long, and must begin in position 7.

For an externally-described file, the file must exist at both compilation time and at
run time. For a program-described file, the file needs to exist only at run time.

At run time:

* If you use the EXTFILE keyword, the EXTMBR keyword (remote OS/400 files
only), or both, RPG will open the file named in these keywords.

e Otherwise, RPG will open the file named in position 7. This file (or an
overridden file) must exist when the file is opened.

* For remote OS/400 files, if an OS/400 system override command has been used
for the file that RPG opens, that override will take effect and the actual file
opened will depend on the override. See the [“EXTFILE(filename)” on page 246|
keyword for more information about how overrides interact with this keyword.

When the files are opened at run time, they are opened in the reverse order to that
specified in the file-description specifications. The device name defines the
operations that can be processed on the associated file.

Program-Described File

For program-described files, the file name entered in positions 7 through 16 must

also be entered on:

* Input specifications

* Output specifications or an output calculation operation line if the file is an
output, update, or combined file, or if file addition is specified for the file

* Definition specifications if the file is a table or array file

* Calculation specifications if the file name is required for the operation code
specified.

Externally-Described File

For externally described files, the file name entered in positions 7 through 16 is the

name used to locate the record descriptions for the file. The following rules apply

to externally described files:

* Input and output specifications for externally described files are optional. They
are required only if you are adding VisualAge RPG functions, such as record
identifying indicators, to the external description retrieved.

* When an external description is retrieved, the record definition can be referred
to by its record format name on the input, output, or calculation specifications.

* A record format name must be a unique symbolic name.

* An externally-described logical file with two record formats of the same name is
not allowed.

Position 17 (File Type)
Entry Explanation

I An Input file can be either a local or remote DISK file

238 VisualAge RPG Language Reference

(0] An Output file can be either a local or remote DISK file
U An Update file can be either a local or remote DISK file
C A Combined (input/output) file must be a remote DISK file

Input Files
A program reads information from an input file. The input file can contain data
records, arrays, or tables.

Output Files

An output file is a file to which information is written.

Update Files

An update file is an input file whose records can be read and updated. Updating
alters the data in one or more fields of any record contained in the file and writes
that record back to the same file from which it was read. If records are to be
deleted, the file must be specified as an update file.

Combined Files

A combined file is both an input file and an output file. When a combined file is
processed, the output record contains only the data represented by the fields in the
output record. This differs from an update file, where the output record contains
the input record modified by the fields in the output record.

A combined file is valid for a SPECIAL file and a DISK file if position 18 contains
T (an array or table replacement file).

Chapter 17. File Description Specifications 239

Position 18 (File Designation)
Entry Explanation
Blank Output file
T Array or table file
F Full procedural file
Array or Table File
Array and table files specified by a T in position 18 are loaded at program
initialization time. The array or table file can be input or combined. Leave this
entry blank for array or table output files. You cannot specify SPECIAL as the

device for array and table input files. You cannot specify an externally described
file as an array or table file.

If T is specified in position 18, you can specify a file type of combined (C in
position 17) for a DISK file. A file type of combined allows an array or table file to
be read from or written to the same file (an array or table replacement file) or to a
different file. In addition, the file name in positions 7-16 must also be specified as
the parameter to the TOFILE keyword on the definition specification.

Full Procedural File
For a full procedural file, input is controlled by calculation operations. File
operation codes such as CHAIN or READ are used to do input functions.

Position 19 (Reserved)

Entry Explanation
Blank This entry must be blank.

Position 20 (File Addition)

Position 20 indicates whether records are to be added to an input or update file.
For output files, this entry is ignored.

Entry Explanation
Blank No records can be added to an input or update file (I or U in position 17).

A Records are added to an input or update file when positions 18 through 20
of the output record specifications for the file contain "ADD", or when the
WRITE operation code is used in the calculation specification.

See [Table 27 on page 241| for the relationship between position 17 and position 20
of the file-description specifications and positions 18 through 20 of the output
specifications.

240 VisualAge RPG Language Reference

Table 27. Processing Functions for Files

Specification
File Description Output
Function Position 17 Position 20 Positions 18-20
Create new file! (@) Blank Blank
or ADD
Add records to existing file (@) A
Process file I Blank Blank
Process file and add records to the |1 A ADD
existing file
Process file and update the U Blank Blank
records (update or delete)
Process file and add new records |U A ADD
to an existing file
Process file and delete an existing |U Blank DEL
record from the file
: 'Within RPG, the term create a new file means to add records to a newly created file. Thus,
the first two entries in this table perform the identical function. Both are listed to show that
there are two ways to specify that function.

Position 21 (Reserved)
Entry Explanation
Blank This entry must be blank.

Position 22 (File Format)

Entry Explanation
F Program described file
E Externally described file

An F in position 22 indicates that the records for the file are described within the
program on input/output specifications (except for array/table files). PRINTER
files and SPECIAL files must be program described. Local DISK files must be
program described.

An E in position 22 indicates that the record descriptions for the file are external to
the VisualAge RPG source program. The compiler obtains these descriptions at
compilation time and includes them in the source program. Remote DISK files
must be externally described.

Positions 23-27 (Record Length)

Use positions 23 through 27 to indicate the length of the logical records contained
in a program described file. The maximum record size that can be specified is
32766; however, record-size constraints of any device may override this value. For
PRINTER files, specify a record length which does not exceed the number of
columns of printer output. This entry must be blank for externally described files.

Chapter 17. File Description Specifications 241

Position 28 (Reserved)
Entry Explanation
Blank This entry must be blank.

Positions 29-33 (Reserved)

Entry Explanation
Blank This entry must be blank.

Position 34 (Record Address Type)
Entry Explanation

Blank Relative record numbers are used to process the file. Records are read
consecutively.

K Key values are used to process the file. This entry is valid only for
externally described files.

Blank = Non-keyed Processing
A blank indicates that the file is processed without the use of keys.

A file processed without keys can be processed consecutively or randomly by
relative-record number.

Input processing by relative-record number is determined by a blank in position 34
and by the use of the CHAIN, SETLL, or SETGT operation code. Output
processing by relative-record number is determined by a blank in position 34 and
by the use of the RECNO keyword on the file description specifications.

Key

A K entry indicates that the externally described file is processed on the
assumption that the access path is built on key values. If the processing is random,
key values are used to identify the records.

If this position is blank for a keyed file, the records are retrieved in arrival
sequence.

Position 35 (Reserved)

Entry Explanation
Blank This entry must be blank.

Positions 36-42 (Device)

Entry Explanation

PRINTER File is a printer file, with control characters that can be sent to a
printer.

DISK File is a disk file. Sequential and random read/write processing is

available for remote files. Sequential and relative record processing
is available for local files.

SPECIAL This is a special file. Input or output is on a device that is accessed
by user-supplied code that is linked in to the VisualAge RPG
application. The name of the user-supplied code module must be

242 VisualAge RPG Language Reference

specified as the parameter for the PROCNAME keyword. A
parameter list is created for use with this program, including an
option code parameter and a status code parameter. The file must
be a fixed unblocked format. See [“PLIST(Plist_name)” on page 248|
and ["PROCNAME(proc_name)” on page 250| for more information.

Use positions 36 through 42 to specify the device name to be associated with the
file. The device name defines the functions that can be done on the associated file.
Certain functions are valid only for a specific device name.

Position 43 (Reserved)
Position 43 must be blank.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for file description specification keywords.
Keywords are used to provide additional information about the file being defined.

File-description specification keywords may have no parameters, optional
parameters, or required parameters. The syntax for keywords is as follows:

Keyword(parameterl : parameter2)

where:
e Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are

optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.

¢ An ellipsis (...) indicates that the parameter can be repeated.

* A colon () separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.

* A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

* A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for keywords, the keyword field can be continued
on subsequent lines. See [“File-Description Keyword Continuation Line” on page]
and [“File Description Specification Keyword Field” on page 217 |

The following table summarizes which keywords apply to externally-described
files and which keywords apply to program-described files.

Keyword Program-described Externally-described
BLOCK Y
COMMIT{(rpg_name)} Y
CVTHEX Y

Chapter 17. File Description Specifications 243

Keyword

Program-described

Externally-described

DATFMT(format{separator})

Y

Y

DEVMODE(name)

EOFMARK(*NONE)

EXTFILE(fname)

Y
Y
Y

EXTMBR(membername)

FORMLEN (number)

IGNORE(recformat{:recformat...})

INCLUDE(recformat{:recformat...})

INFDS(DSname)

INFSR(SUBRname)

=

PLIST(Plist_name)

=~

PREFIX(prefix_name)

<= =] ===

PROCNAME(proc_name)

PRTCTL(data_struct{:*COMPAT})

PRTFMT(*SYS | *TEXT)

RCDLEN(fieldname)

RECNO(fieldname)

<= =] ==

REMOTE

RENAME(Ext_format:Int_format)

TIMFMT (format{separator})

=<

USROPN

<= ===

BLOCK(*YESI*NO)

The BLOCK keyword controls the blocking of records associated with the file. The

keyword is valid only for DISK files.

If this keyword is not specified, the VARPG compiler unblocks input records and
blocks output records to improve runtime performance in DISK files when the
following conditions are met:
1. The file is externally described and has only one record format.

2. The RECNO keyword is not used in the file description specification.
3. One of the following is true:

a. The file is an output file.

b. If the file is a combined file, then it is an array or table file.

c. The file is an input-only file and none of the following operations are used
on the file: READE, READPE, SETGT, SETLL, and CHAIN. (If any READE
or READPE operations are used, no record blocking will occur for the input
file. If any SETGT, SETLL, or CHAIN operations are used, no record
blocking will occur unless the BLOCK(*YES) keyword is specified for the

input file.)

When you specify BLOCK(*YES), record blocking occurs as described above except
that the operations SETGT, SETLL, and CHAIN can be used with an input file and

blocking will still occur (see condition 3¢ above).

244 VisualAge RPG Language Reference

To prevent the blocking of records, BLOCK(*NO) can be specified. No record
blocking is done by the compiler.

COMMIT{(rpg_name)}

The COMMIT keyword allows the option of processing remote files under
commitment control. An optional parameter, rpg_name, may be specified. The
parameter is implicitly defined as a field of type indicator (that is, a character field
of length one), and is initialized to '0’.

By specifying the optional parameter, the programmer can control whether
commitment control is enabled at run time. If the parameter contains a '1’, the file
is opened with COMMIT on, otherwise the file is opened without COMMIT. The
parameter must be set prior to opening the file. If the file is opened at program
initialization, the parameter can be passed in through a parameter. If the file is
opened explicitly, using the OPEN operation in the calculation specifications, it can
be set prior to the OPEN operation.

Use the COMMIT and ROLBK operation codes to group changes to this file and
other files currently under commitment control so that changes all happen
together, or do not happen at all.

Note: If the file is already open with a shared open data path, the value for
commitment control must match the value for the previous OPEN operation.

CVTHEX

The CVTHEX provides support for processing externally-described remote disk
files containing database fields with CCSID 65535.

A CCSID value of 65535 implies that no conversion should be done when
accessing the field data, but the traditional EBCDIC data often in these fields on
the server isn’t understood on the client workstation operating in ANSL

When CVTHEX is specified for the file, any character fields with a CCSID of 65535
in the file will be converted to the workstation CCSID on input/output operations
for use in the application. (The client-side conversion process uses the server
connection job’s CCSID in place of the field’s 65535 CCSID to perform the
conversion.)

Note: CVTHEX is not supported when compiling to JAVA.

DATFMT(format{separator})

The DATFMT keyword allows the specification of a default external date format
and a default separator (which is optional) for all date fields in the
program-described file. If the file, for which this keyword is specified, is indexed
and the keyfield is a date, then this also provides the default format for the
keyfield. The file can be either remote or local.

You can specify a different external format for individual input or output date
fields in the file by specifying a date format/separator for the field on the
corresponding input specification (positions 31-35) or output specification (position
53-57).

For date Input fields this specifies the default external date format/separator
(Input specification positions 31-35).

Chapter 17. File Description Specifications 245

For date Output fields this specifies the default external date format/separator
(Output specification positions 53-57).

See ["'DATFMT (fmt{separator})” on page 227 for date formats and separators. For
more information on external formats, see [“Internal and External Formats” on page]
103.

DEVMODE(name)
The DEVMODE keyword can be used for printer files to provide print settings.

Use the DEVMODE keyword to specify a data structure name containing a
Windows operating system GDI DEVMODE structure to specify printer settings
when the printer file is opened.

* This example demonstrates using the DEVMODE keyword and a
* DEVMODE data structure to set the printer to Landscape orientation

ffilo 0 f 80 printer DEVMODE (pdevmode)
f prtfmt (*sys)

* The following initial settings select landscape orientation printing:
* (For more information, see http://msdn.microsoft.com/ and search for
* DEVMODE.)

d pdevmode ds 200

* These next few fields need to be correctly initialized:
*

d pdevname 1 32 inz(' ')

d pspecver 33 34i 0 inz(x'0401"')

d pdrvver 35 361 0 inz(0)

d pdmsize 37 38i 0 inz(148)

d pdrvextr 39 401 0 inz(0)

* This field contains the bit flags which indicate which of the
* subsequent fields have valid settings to apply:

* Bit Flag Settings:

* x'0001' Orientation

* x'0100' Number of Copies

* Specify only the Orientation setting: (x'00001' = 1)

d pfields 41 4471 0 inz(1)
* Orientation: 1 = Portrait, 2 = Landscape
d porient 45 461 0 inz(2)
* Number of Copies:

d pcopies 55 561 0

Figure 85. Setting Landscape Orientation for Printing

EOFMARK(*NONE)

Specify the EOFMARK(*NONE) keyword to omit the end-of-file marker from local
disk files. The *NONE parameter is required.

EXTFILE(filename)

The EXTFILE keyword allows you to specify an actual filename to be opened at
run time rather than supplying the name at compile time. The value can be a
literal or a variable.

246 VisualAge RPG Language Reference

Notes:

1. If a variable name is used, it must be set before the file is opened. For files that
are opened automatically at program initialization, the variable must be set in
one of the following ways:

* Using the INZ keyword on the D specification
* Passing the value in as an entry parameter

Local Files
The file must be a local DISK or PRINTER file. The USROPN keyword must also
be specified with the EXTFILE keyword.

Remote 0S/400 Files
You can specify the value in any of the following forms:

filename
Tibname/filename
*IBL/filename

Notes:
1. You cannot specify *CURLIB as the library name.
2. If you specify a file name without a library name, *LIBL is used.

3. The name must be in the correct case. For example, if you specify
EXTFILE(filename) and variable filename has the value 'qtemp/myfile’', the
file will not be found. Instead, it should have the value 'QTEMP/MYFILE".

4. This keyword is not used to find an externally-described file at compile time.

If you have specified an override for the file that RPG will open, that override will
be in effect. In the following code, for the file named INPUT within the RPG
program, the file that is opened at runtime depends on the value of the filename
field.

Finput if e disk extfile(filename) remote

If the filename field has the value MYLIB/MYFILE at runtime, RPG will open the
file MYLIB/MYFILE. If the command OVRDBF MYFILE OTHERLIB/OTHERFILE
has been used, the actual file opened will be OTHERLIB/OTHERFILE. Note that
any overrides for the name INPUT will be ignored, since INPUT is only the name
used within the RPG source member.

EXTMBR(membername)

The EXTMBR keyword specifies which member of the file is opened. You can
specify a member name, '*ALL', or '*FIRST'. Note that *ALL" and "*FIRST” must
be specified in quotes, since they are member "names”, not RPG special words. The
value can be a literal or a variable. The default is '«FIRST'.

The name must be in the correct case. For example, if you specify
EXTMBR(mbrname) and variable mbrname has the value 'mbrl', the member will not
be found. Instead, it should have the value 'MBR1'.

If a variable name is used, it must be set before the file is opened. For files that are
opened automatically during program initialization, the variable must be set in one
of the following ways:

* Using the INZ keyword on the D specification

* DPassing the value in as an entry parameter

Chapter 17. File Description Specifications 247

FORMLEN(number)

Use the FORMLEN keyword to specify the form length of a PRINTER file. The
form length must be greater than or equal to 1 and less than or equal to 255. The
parameter specifies the exact number of lines available on the form or page to be
used. When the number of lines matches the FORMLEN, an automatic form feed is
inserted.

IGNORE(recformat{:recformat...})

The IGNORE keyword lets you ignore a record format from an externally
described file. The external name of the record format to be ignored is specified as
the parameter recformat. One or more record formats can be specified, separated
by colons (:). The program runs as if the specified record format(s) did not exist.
All other record formats contained in the file will be included.

When the IGNORE keyword is specified for a file, the INCLUDE keyword cannot
be specified.

INCLUDE(recformat{:recformat...})

The INCLUDE keyword specifies those record format names that are to be
included. All other record formats contained in the file will be ignored. Multiple
record formats can be specified, separated by colons (:).

When the INCLUDE keyword is specified for a file, the IGNORE keyword cannot
be specified.

INFDS(DSname)

The INFDS keyword lets you define and name a data structure to contain the
feedback information associated with the file. The data structure name is specified
as the parameter for INFDS. If INFDS is specified for more than one file, each
associated data structure must have a unique name. An INFDS can only be defined
in the main source section.

INFSR(SUBRname)

The file exception/error subroutine specified as the parameter to this keyword may
receive control following file exception/errors. The subroutine name may be *PSSR,
which indicates the user defined program exception/error subroutine is to be
given control for errors on this file.

The INFSR keyword cannot be specified if the file is to be accessed by a
subprocedure

PLIST(Plist_name)

PLIST supplies, as its parameter, the name of the parameter list to be passed to the
program for the SPECIAL file. The procedure is specified using the
PROCNAME(proc_name) keyword. This entry is valid only when the device
specified (positions 36 to 42) in the file-description line is SPECIAL. The
parameters identified by this entry are added to the end of the parameter list
passed by the program.

248 VisualAge RPG Language Reference

PREFIX(prefix{:nbr_of_char_replaced})

The PREFIX keyword is used to partially rename the fields in an
externally-described file. The character string or character literal specified is
prefixed to the names of all fields defined in all records of the file specified in
positions 7-16. In addition, you can optionally specify a numeric value to indicate
the number of characters, if any, in the existing name to be replaced. If the
‘nbr_of_char_replaced” is not specified, then the string is attached to the beginning
of the name.

If the 'nbr_of_char_replaced’ is specified, it must be a numeric constant containing
a value between 0 and 9 with no decimal places. For example, the specification
PREFIX(YE:3) would change the field name "YTDTOTAL’ to "YETOTAL".
Specifying a value of zero is the same as not specifying ‘nbr_of char_replaced” at
all.

Rules:
¢ To explicitly rename a field on an Input specification when the PREFIX
keyword has been specified for a file you must choose the correct field name to
specify for the External Field Name (positions 21 - 30) of the Input specification.
The name specified depends on whether the prefixed name has been used prior
to the rename specification.
— If there has been a prior reference made to the prefixed name, the prefixed
name must be specified.
— If there has not been a prior reference made to the prefixed name, the external
name of the input field must be specified.

Once the rename operation has been coded then the new name must be used to
reference the input field. For more information, see [External Field Name] of the
Input specification.

* The total length of the name after applying the prefix must not exceed the
maximum length of a VisualAge RPG field name.

e The number of characters in the name to be prefixed must not be less than or
equal to the value represented by the nbr_of_char_replaced” parameter. That is,
after applying the prefix, the resulting name must not be the same as the prefix
string.

* If the prefix is a character literal, it can end in a period. In this case, the field
names must all be subfields of the same qualified data structure.

e If the prefix is a character literal, it must be uppercase.

Examples:

The following example uses prefix ‘"MYDS.” to associate the fields in MYFILE with
the subfields of qualified data structure MYDS.

Fmyfile if e disk prefix('MYDS.') remote
D myds e ds qualified extname(myfile)

The next example uses prefix 'MYDS.F2":3 to associate the fields in MYFILE with
the subfields of qualified data structure MYDS. The subfields themselves are
further prefixed by replacing the first three characters with 'F2’. The fields used by
this file will be MYDS2.F2FLD1 and MYDS2.F2FLD2. (Data structure MYDS2 must
be defined with a similar prefix. However, it is not exactly the same, since it does
not include the data structure name.)

A R REC
A ACRFLD1 10A
A ACRFLD2 55 0

Chapter 17. File Description Specifications 249

Fmyfile2 if e disk prefix('MYDS2.F2':3) remote
D myds2 e ds qualified extname(myfile)
D prefix('F2':3)

PROCNAME(proc_name)

When SPECIAL is the device entry (positions 36 through 42), the user-supplied
code module specified as the parameter to PROCNAME handles the support for
the special I/O device. See [“Positions 36-42 (Device)” on page 242| and
[‘PLIST(Plist_name)” on page 248 for more information.

PRTCTL(data_struct{:*COMPAT})

The PRTCTL keyword specifies the use of dynamic printer control. The data
structure specified as the parameter data_struct refers to the forms control
information and line count value. The PRTCTL keyword is valid only for a
program described file.

The optional parameter *COMPAT indicates that the data structure layout is
compatible with RPG III. If *COMPAT not specified, the extended length data
structure must be used.

Extended Length PRTCTL Data Structure

A minimum of 15 bytes is required for this data structure. The layout of the
PRTCTL data structure is as follows:

Data Structure Subfield Contents

Positions

1-3 A three-position character field that contains the space-before value
(blank or 0-255)

4-6 A three-position character field that contains the space-after value
(blank or 0-255)

7-9 A three-position character field that contains the skip-before value
(valid entries: blank or 1-255)

10-12 A three-position character field that contains the skip-after value (blank
or 1-255)

13-15 A three-digit numeric (zoned decimal) field with zero decimal positions

that contains the current line count value.

*COMPAT PRTCTL Data Structure

Data Structure Subfield Contents

Positions

1 A one-position character field that contains the space-before value (blank
or 0-3)

2 A one-position character field that contains the space-after value (valid
entries: blank or 0-3)

3-4 A two-position character field that contains the skip-before value (blank,
1-99, A0-A9 for 100-109, BO-B2 for 110-112)

5-6 A two-position character field that contains the skip-after value (blank,
1-99, A0-A9 for 100-109, BO-B2 for 110-112)

7-9 A three-digit numeric (zoned decimal) field with zero decimal positions

that contains the current line count value.

The values in the first four subfields of the extended length data structure are the
same as those allowed in positions 40 through 51 (space and skip entries) of the
output specifications. If the space and skip entries (positions 40 through 51) of the
output specifications are blank, and if subfields 1 through 4 are also blank, the

250 VisualAge RPG Language Reference

default is to space 1 after. If the PRTCTL option is specified, it is used only for the
output records that have blanks in positions 40 through 51. You can control the
space and skip value (subfields 1 through 4) for the PRINTER file by changing the
values in these subfields while the program is running.

Subfield 5 contains the current line count value. The VisualAge RPG compiler does
not initialize subfield 5 until after the first output line is printed. The VisualAge
RPG compiler then changes subfield 5 after each output operation to the file.

PRTFMT(*SYS | *TEXT)

The PRTEMT keyword with parameter *SYS can be used for printer files to specify
the application should perform output to the printer through a device context and
graphics device interface calls to the operating system, instead of the default raw
text output.

After opening the printer file, the device context handle is copied to positions 81 to
84 of the printer file INFDS, for the application to reference in making it’s own
Windows GDI calls.

The default is *TEXT, where the application’s text data is output directly.

Note: PRTFMT does not apply when compiling to JAVA.

RCDLEN(fieldname)

The RCDLEN keyword can be used for local DISK files. The field name parameter
must be numeric with zero decimal places. For input files, the field name contains
the length of the record that was read. For output files, the field name specifies the
length of the record to be written. The record length specified in positions 23-27
defines the maximum field length. The RCDLEN must be less than or equal to this
record length. The smallest record length that can be written to is zero. If the value
specified with RECLEN is less than zero, it is rounded up to zero.

If the RCDLEN keyword is present, the file is treated as if it contains variable
length records. If the keyword is not present, the file is treated as if it contains
fixed length records.

Note: If the RCDLEN field is set on output, it overrides the length of any data
structure being used.

RECNO(fieldname)

This keyword is optional for DISK files to be processed by relative-record number.
The RECNO keyword must be specified for output files processed by
relative-record number, output files that are referenced by a random WRITE
calculation operation, or output files that are used with ADD on the output
specifications.

Note: If you do not specify the RECNO keyword, records blocking occurs.

The RECNO keyword can be specified for input/update files. The relative-record
number of the record retrieved is placed in the ’fieldname’, for all operations that
reposition the file (such as READ, SETLL, or OPEN). It must be defined as numeric
with zero decimal positions. The field length must be sufficient to contain the
longest record number for the file.

Chapter 17. File Description Specifications 251

When the RECNO keyword is specified for input or update files with file-addition
("A” in position 20), the value of the fieldname parameter must refer to a
relative-record number of a deleted record, for the output operation to be
successful.

Note: The RECNO keyword is ignored if you are writing (WRITE) to a local file.

REMOTE

The REMOTE keyword specifies that the disk device resides on an iSeries server.

RENAME(Ext_format:int_format)

The RENAME keyword allows you to rename record formats in an externally
described file. The external name of the record format that is to be renamed is
entered as the Ext_format parameter. The Int_format parameter is the name of the
record as it is used in the program. The external name is replaced by this name in
the program.

To rename all fields by adding a prefix, use the PREFIX keyword.

TIMFMT(format{separator})

The TIMFMT keyword allows the specification of a default external time format
and a default separator (which is optional) for all time fields in the program
described fields. If the file, on which this keyword is specified, is indexed and the
keyfield is a time, then the time format specified also provides the default format
for the keyfield. The file can either be local or remote.

You can specify a different external format for individual input or output time
fields in the file by specifying a time format/separator for the field on the
corresponding input specification (positions 31-35)or output specification (positions
53-57).

See [Table 18 on page 136 for valid format and separators. For more information on
external formats see [“Internal and External Formats” on page 103

USROPN

The USROPN keyword causes the file not to be opened at program initialization.
This gives the programmer control of the file’s first open. The file must be
explicitly opened using the OPEN operation in the calculation specifications. This
keyword is not valid for input files designated as table files.

The USROPN keyword is required for programmer control of the first file opening.
For example, if a file is opened and later closed by the CLOSE operation, the file
can be reopened (using the OPEN operation) without having specified the
USROPN keyword on the file description specification.

252 VisualAge RPG Language Reference

File Types and Processing Methods

The following table shows the valid entries for positions 28, 34, and 35 of the
file-description specifications for the various file types and processing methods.
The methods of disk file processing include:

* Relative-record-number processing

 Consecutive processing

* Sequential-by-key processing

* Random-by-key processing

Note: Local DISK files can only be processed sequentially or by relative record.

Table 28. Processing Methods for DISK Files

Position Position Position
Access Method Opcode 28 34 35 Explanation
Random |RRN CHAIN Blank Blank Blank Access by
physical order
of records
Sequential | Key READ Blank K Blank Access by key
READE sequentially
READP
READPE
Sequential |RRN READ Blank Blank Blank Access
sequentially
Random | Key CHAIN Blank K Blank Access by key
randomly

Chapter 17. File Description Specifications 253

254 VisualAge RPG Language Reference

Chapter 18. Definition Specifications

Definition Specifications can be used to define data structures, data-structure
subfields, prototypes, procedure interfaces, prototyped parameters, standalone
fields, named constants, and message windows.

Depending on where the definition occurs, there are differences both in what can
be defined and also the scope of the definition. Specify the type of definition in
positions 24 through 25, as follows:

Entry Definition Type

Blank A data structure subfield or parameter definition
C Named constant

DS Data structure

PI Procedure interface

PR Prototype

S Standalone field

Definitions of data structures, prototypes, and procedure interfaces end with the
first definition specification with non-blanks in positions 24-25, or with the first
specification that is not a definition specification.

Definition specifications can appear in two places within a module or program: in
the main source section and in a subprocedure. Within the main source section,
you define all global definitions. Within a subprocedure, you define the procedure
interface and its parameters as required by the prototype. You also define any local
data items that are needed by the prototyped procedure when it is processed. Any
definitions within a prototyped procedure are local. They are not known to any
other procedures (including the main procedure). For more information on the
structure of the main source section and how the placement of definitions affects
scope, see [“Placement of Definitions and Scope” on page 256

On the definition specification, arrays and tables can be defined as either a
data-structure subfield or a standalone field. For additional information on
defining and using arrays and tables, see [Chapter 12, “Using Arrays and Tables,”|

Built-in functions (BIF) can be specified on definition specifications in the keyword
field as a parameter to a keyword. A built-in function is allowed on the definition
specification only if the values of all arguments are known at compile-time. All
arguments for a BIF must be defined earlier in the specifications when specified as
parameters for the definition specification keywords DIM, OCCURS, OVERLAY,
and PERRCD. For further information on using built-in functions, see
[Functions (Alphabetically)” on page 405

For further information on data structures, constants, data types, and data formats,
see [Chapter 9, “Data Types and Data Formats,” on page 103)[Chapter 11, “Datal
Structures,” on page 157 and [Chapter 10, “Literals and Named Constants,” onl|

age 149] For more information on prototypes, see|“Prototypes and Parameters” on|
Eage 71.|

© Copyright IBM Corp. 1994, 2005 255

Placement of Definitions and Scope

Depending on where a definition occurs, it will have different scope. Scope refers
to the range of source lines where a name is known. There are two types of scope:
global and local. [Figure 86] shows how the placement of definitions in a module is
related to scope. |[Figure 87 on page 257| shows the layout of the main source section
for each possible compilation target: component, NOMAIN DLL, or EXE.

*MODULE

— Main Source Section

A

Gilobal
Scope

—Subprocedure 1

+— Local
<—:| Scope

—Subprocedure 2

<+ Local
<+ Scope

Program Data - part of main source section

Figure 86. Scope of Definitions

256 VisualAge RPG Language Reference

COMPONENT - - Omit the NOMAIN and EXE keywords
from the Control Specification

H
I'::) Main Source
I Section
Action Subroutines c Global
User subroutines : 8 Definitions
(0]
Procedures follow the P
action and user P
subroutines P

NOMAIN DLL - - Specify the NOMAIN keyword
on the Control Specification

H
F Main Source Section
D with
| Global Definitions
(6]
P
P
P
EXE - - Specify the EXE keyword
on the Control Specification
H —
F Main Source Section
D with
| Global Definitions
(o} —
P —
p One of these
P is the
P] Main Procedure
P

Figure 87. Main Source Section for Each Compilation Target

In general, all items that are defined in the main source section are global, and
therefore, known throughout the module. Global definitions are definitions that
can be used by both the statements in the main procedure and any subprocedures
within the module.

Items in a subprocedure, on the other hand, are local. Local definitions are
definitions that are known only inside that subprocedure. If an item is defined
with the same name as a global item, then any references to that name inside the
subprocedure will use the local definition.

However, note the following exceptions:

* Subroutine names and tag names are known only to the procedure in which
they are defined. This includes subroutine or tag names that defined in the main
procedure.

 All fields specified on input and output specifications are global. For example, if
a subprocedure does an operation using a record format, say a WRITE

Chapter 18. Definition Specifications 257

operation, the global fields will be used even if there are local definitions with
the same names as the record format fields. This rule also applies to the READ
and WRITE of windows.

Sometimes you may have a mix of global and local definitions. For example,
KLISTs and PLISTs can be global or local. The fields associated with global KLISTs
and PLISTs contain only global fields. The fields associated with local KLISTs and
PLISTs can contain both global and local fields. For more information on the
behavior of KLISTs and KFLDs inside subprocedures, see |“Scope of Definitions” on|

Storage of Definitions

Local definitions use automatic storage. Automatic storage is storage that exists
only for the duration of the call to the procedure. Variables in automatic storage do
not save their values across calls.

Global definitions, on the other hand, use static storage. Static storage is storage
that has a constant location in memory for all calls of a program or procedure. It
keeps its value across calls.

Specify the STATIC keyword to indicate that a local field definition use static
storage, in which case it will keep its value on each call to the procedure. If the
keyword STATIC is specified, the item will be initialized at module initialization
time.

Using automatic storage reduces the amount of storage that is required at run time
by the program. The storage is reduced largely because automatic storage is only
allocated while the procedure is running. On the other hand, all static storage
associated with the program is allocated when the program starts, even if no
procedure using the static storage is ever called.

258 VisualAge RPG Language Reference

Definition Specification Statement

The general layout for the definition specification is as follows:

*o0 1 Lot 2 +

The definition specification type (D) is entered in position 6

The non-commentary part of the specification extends from position 7 to
position 80

— The fixed-format entries extend from positions 7 to 42

— The keyword entries extend from positions 44 to 80

The comments section of the specification extends from position 81 to position
100

I T R T T i A RIS B S B R (0]

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++++++++++++++++++++++Comment s++++++++++++

Figure 88. Definition Specification Layout

Definition-Specification Keyword Continuation Line

If additional space is required for keywords, the keywords field can be continued
on subsequent lines as follows:

Position 6 of the continuation line must contain a D
Positions 7 to 43 of the continuation line must be blank
The specification continues on or past position 44

L T O . R O N T I VO R I S P R e T ()

Figure 89. Definition-Specification Keyword Continuation Line Layout

Definition Specification Continued Name Line

A name that is up to 15 characters long can be specified in the Name entry of the
definition specification without requiring continuation. Any name (even one with
15 characters or fewer) can be continued on multiple lines by coding an ellipsis (...)
at the end of the partial name. A name definition consists of the following parts:

1.

Zero or more continued name lines. Continued name lines are identified as
having an ellipsis as the last non-blank character in the entry. The name must
begin within positions 7 to 21 and may end anywhere up to position 77 (with
an ellipsis ending in position 80). There cannot be blanks between the start of
the name and the ellipsis character. If any of these conditions is not true, the
line is parsed as a main definition line.

One main definition line, containing a name, definition attributes, and
keywords. If a continued name line is coded, the Name entry of the main
definition line may be left blank.

3. Zero or more keyword continuation lines.

L R AR . B T SO DA R U BEPUPE. OO A T - SRTSPUPS PP IR PO 0}
DContinuedName++++++++++tttttttttttttttttttttttttttHHtttttt e Commen t s HH++++HHHHH+H+

Figure 90. Definition Specification Continued Name Line Layout

Position 6 (Form Type)

A D must be entered in this position for definition specifications.

Chapter 18. Definition Specifications 259

Positions 7-21 (Name)
Entry Explanation

Name The name of the data structure, data-structure subfield, standalone field,
named constant, local program, and parameters for the local program to be
defined.

Blank Specifies filler fields in data-structure subfield definitions, or an unnamed
data structure in data-structure definitions.

Use positions 7-21 to specify the name of the data item being defined. The name
can begin in any position in the space provided. Indenting can be used to indicate
the shape of data in data structures.

For continued name lines, a name is specified in positions 7 through 80 of the
continued name lines and positions 7 through 21 of the main definition line. As
with the traditional definition of names, case of the characters is not significant.

For an externally-described subfield, a name specified here replaces the
external-subfield name specified on the EXTFLD keyword.

For a prototype parameter definition, the name entry is optional. If a name is
specified, the name is ignored. (A prototype parameter is a definition specification
with blanks in positions 24-25 that follows a PR specification or another prototype
parameter definition.)

If you are defining a prototype and the name specified in positions 7-21 cannot
serve as the external name of the procedure, use the EXTPROC keyword to specify
the valid external name. For example, the external name may be required to be in
lower case, because you are defining a prototype for a procedure written in C.

Position 22 (External Description)

This position identifies a data structure or data-structure subfield as externally
described. If a data structure or subfield is not defined on this specification, then
this field must be left blank.

Entry Explanation for Data Structures

E Identifies a data structure as externally described: subfield definitions are
defined externally. If the EXTNAME keyword is not specified, positions
7-21 must contain the name of the externally described file containing the
data structure definition.

Blank Program described: subfield definitions for this data structure follow this
specification.

Entry Explanation for Subfields

E Identifies a data-structure subfield as externally described. The
specification of an externally-described subfield is necessary only when
keywords such as EXTFLD and INZ are required.

Blank Program described: the data-structure subfield is defined on this

specification line.

Position 23 (Type of Data Structure)

This entry is used to identify the type of data structure being defined. If a data
structure is not being defined, this entry must be left blank.

260 VisualAge RPG Language Reference

Entry Explanation

Blank The data structure being defined is not a program status or data-area data
structure; or a data structure is not being defined on this specification.

S Program status data structure. Only one data structure may be designated
as the program status data structure.

U Data-area data structure. The data area is retrieved at initialization and is
rewritten at the end of the program:
 If the DTAARA keyword is specified, the parameter to the DTAARA
keyword is used as the name of the external data area. If the name is a
variable, the value must be set before the program begins. This can be

done by:

— DPassing the variable as a parameter.
— Explicitly initializing the variable with the INZ keyword.
— Sharing the variable with another module using the IMPORT and
EXPORT lkeywords, and ensuring the value is set prior to the call.
* If the DTAARA keyword is not specified, the name in positions 7-21 is
used as the name of the external data area.

Positions 24-25 (Type of Definition)

Entry
Blank

C (in column 24)
DS

M (in column 24)
PI

PR

S (in column 24)

Explanation

The specification defines a data structure subfield or a parameter
within a prototype or procedure interface definition.

The specification defines a constant. Position 25 must be blank.
The specification defines a data structure.

The specification defines a message window for use with the
DSPLY operation code. Position 25 must be blank.

The specification defines a procedure interface, and the return
value if any.

The specification defines a prototype for a call to a local EXE,
CMD, or BAT file. The PR specification is followed by zero or
more parameter definitions (a blank in positions 24-25), indicating
the number and type of parameters required by the program. A
prototype definition ends with the first definition specification
with non-blanks in positions 24-25, or with the first specification
that is not a definition specification.

The specification defines a standalone field, array or table.
Standalone fields allow you to define individual work fields,
without requiring the definition of a data structure. The following
is allowed for standalone fields:

* A standalone field has a specifiable internal data type.

* A standalone field may be defined as an array, table or field.

¢ Only length notation is allowed.

Definitions of data structures, prototypes, and procedure interfaces end with the
first definition specification with non-blanks in positions 24-25, or with the first
specification that is not a definition specification.

Named constant and standalone-field definition specifications may not be included
within definition specifications for a data structure and its subfields.

For a list of valid keywords, grouped according to type of definition, see

[‘Summary According to Definition Specification Type” on page 295|

Chapter 18. Definition Specifications 261

Positions 26-32 (From Position)

Positions 26-32 may only contain an entry if the location of a subfield within a
data structure is being defined.

Entry Explanation

Blank A blank FROM position indicates that the value in the TO/LENGTH field
specifies the length of the subfield, or that a subfield is not being defined
on this specification line.

nnnnnnn
Absolute starting position of the subfield within a data structure. The value
specified must be from 1 to 65535 for a named data structure (and from 1
to 9999999 for an unnamed data structure), and right-justified in these
positions.

Reserved Words
Reserved words for the program status data structure or for a file
information data structure are allowed (left-justified) in the
FROM-TO/LENGTH fields (positions 26-39). These special reserved words
define the location of the subfields in the data structures. Reserved words
for the program status data structure are *STATUS, *PROC, *PARM, and
*ROUTINE. Reserved words for the file information data structure (INFDS)
are *FILE, *RECORD, *OPCODE, *STATUS, and *ROUTINE.

Positions 33-39 (To Position/Length)
Entry Explanation

Blank If positions 33-39 are blank:

* A named constant is being defined on this specification line, or

* The standalone field or subfield is being defined LIKE another field, or

* The standalone field or subfield is of a type where a length is implied,
or,

* The subfield’s attributes are defined elsewhere, or

* A data structure is being defined. The length of the data structure is the
maximum value of the subfield To-Positions. The data structure may be
defined using the LIKEDS or LIKEREC keyword.

nnnnnnn

Positions 33-39 may contain a (right-justified) numeric value, from 1 to

65535 for a named data structure (and from 1 to 9999999 for an unnamed

data structure), as follows:

* If the From field (position 26-32) contains a numeric value, then a
numeric value in this field specifies the absolute end position of the
subfield within a data structure.

¢ If the From field is blank, a numeric value in this field specifies :

— The length of the entire data structure, or
— The length of the standalone field, or

— the length of the parameter, or

— The length of the subfield.

Within the data structure, this subfield is positioned such that its
starting position is greater than the maximum to-position of all
previously defined subfields in the data structure. Padding is inserted
if the subfield is defined with type basing pointer or procedure
pointer to ensure that the subfield is aligned properly.

262 VisualAge RPG Language Reference

Note: For graphic or UCS-2 fields, the number specified here is the
number of graphic or UCS-2 characters, NOT the number of bytes
(1 graphic or UCS-2 character = 2 bytes). For numeric fields, the
number specified here is the number of digits (for packed and
zoned numeric fields: 1-31; for binary numeric fields: 1-9; for
integer and unsigned numeric fields: 3, 5, 10, or 20).

+|-nnnnn

This entry is valid for standalone fields or subfields defined using the
LIKE keyword. The length of the standalone field or subfield being defined
on this specification line is determined by adding or subtracting the value
entered in these positions to the length of the field specified as the
parameter to the LIKE keyword.

Note: For graphic or UCS-2 fields, the number specified here is the
number of graphic or UCS-2 characters, NOT the number of bytes (1
graphic or UCS-2 character = 2 bytes). For numeric fields, the
number specified here is the number of digits.

Reserved Words

If positions 26-32 are used to enter special reserved words, this field
becomes an extension of the previous one, creating one large field
(positions 26-39). This allows for reserved words, with names longer than 7
characters in length, to extend into this field. See [“Positions 26-32 (From|
[Position)” on page 262

Position 40 (Internal Data Type)

This entry allows you to specify how a standalone field or data-structure subfield
is stored internally. This entry pertains strictly to the internal representation of the
data item being defined, regardless of how the data item is stored externally (that
is, if it is stored externally). To define variable-length character, graphic, and UCS-2
formats, you must specify the keyword VARYING; otherwise, the format will be
fixed length.

Entry Explanation

Blank If the LIKE keyword is not specified: the item is being defined as character

= ONTO H QO N0 Z »

if the decimal positions entry is blank. If the decimal positions entry is not
blank, the item is defined as packed numeric if it is a standalone field, or
as zoned numeric if it is a subfield.

Note: The entry must be blank whenever the LIKE, LIKEDS and LIKEREC
keywords are specified.

Character (Fixed or Variable-length format)

Character (Indicator format)

UCS-2 (Fixed or Variable-length format)

Graphic (Fixed or Variable-length format)

Time

Date

Timestamp

Object

Numeric (Packed decimal format)

Chapter 18. Definition Specifications 263

Numeric (Binary format)
Numeric (Integer format)
Numeric (Zoned format)
Numeric (Unsigned format)

Numeric (Float format)

O M c »w = w

Object (for Java'" applications only)

*

Basing pointer or procedure pointer

Positions 41-42 (Decimal Positions)

Positions 41-42 are used to indicate the number of decimal positions in a numeric
subfield or standalone field. If the field is numeric, there must always be an entry
in these positions; if there are no decimal positions, enter a 0.

Entry Explanation
Blank The value is not numeric or has been defined with the LIKE keyword.
0-31 Decimal positions: the number of positions to the right of the decimal in a

numeric field.

This entry can only be supplied in combination with the TO/Length field. If the
TO/Length field is blank, the value of this entry is defined somewhere else in the
program (for example, through an externally described database file).

Position 43 (Reserved)
Position 43 must be blank.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for definition-specification keywords. Keywords are
used to describe and define data and its attributes. See |[“Definition-Specification|
for a description of each keyword.

Use this area to specify any keywords necessary to fully define the field.

Definition-Specification Keywords

Definition-specification keywords can have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword(parameterl : parameter2)

where:
* Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.
e An ellipsis (...) indicates that the parameter can be repeated.

* A colon () separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are
enclosed in braces.

264 VisualAge RPG Language Reference

e A vertical bar () indicates that only one parameter may be specified for the
keyword.

¢ A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for keywords, the keyword field can be continued
on subsequent lines. See [“Definition-Specification Keyword Continuation Line” on|
[page 259| and [“Definition Specification Keyword Field” on page 218]

ALIGN

The ALIGN keyword is used to align float, integer, and unsigned subfields. When
ALIGN is specified, 2-byte subfields are aligned on a 2-byte boundary, 4-byte
subfields are aligned on a 4-byte boundary and 8-byte subfields are aligned on an
8-byte boundary. Alignment may be desired to improve performance when
accessing float, integer, or unsigned subfields.

Specify ALIGN on the data structure definition. However, you cannot specify
ALIGN for either the file information data structure (INFDS) or the program status
data structure (PSDS).

Alignment occurs only to data structure subfields defined with length notation and
without the keyword OVERLAY. A diagnostic message is issued if subfields that
are defined either with absolute notation or using the OVERLAY keyword are not
properly aligned.

Pointer subfields are always aligned on a 4-byte boundary whether or not ALIGN
is specified.

See [“Aligning Data Structure Subfields” on page 160| for more information.

ALT(array_name)

The ALT keyword indicates that the compile-time array, pre-runtime array, or table
is in alternating format.

The array defined with the ALT keyword is the alternating array and the array
name specified as the parameter is the main array. The alternate array definition
may precede or follow the main array definition.

The keywords on the main array define the loading for both arrays. The
initialization data is in alternating order, beginning with the main array, as follows:
main/alt/main/alt/...

In the alternate array definition, the PERRCD, FROMFILE, TOFILE, and CTDATA
keywords are not valid.

ASCEND

The ASCEND keyword describes the sequence of the data in an array or table
loaded at pre-runtime or compile time. See ['DESCEND” on page 269

Chapter 18. Definition Specifications 265

Ascending sequence means that the array or table entries must start with the
lowest data entry (according to the default ASCII collating) and go to the highest.
Items with equal value are allowed.

A pre-runtime array or table is checked for the specified sequence at the time the
array or table is loaded with data. If the array or table is out of sequence, control
passes to the exception/error handling routine. A run-time array (loaded by input
and/or calculation specifications) is not sequence checked.

A sequence (ascending or descending) must be specified if the LOOKUP operation,
%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table
for an entry to determine whether the entry is high or low compared to the search
argument.

If the SORTA operation code is used with an array, and no sequence is specified,
an ascending sequence is assumed.

BASED(basing_pointer_name)

When the BASED keyword is specified for a data structure or standalone field, a
basing pointer is created using the name specified as the keyword parameter. This
basing pointer holds the address (storage location) of the based data structure or
standalone field being defined. In other words, the name specified in positions 7-21
is used to refer to the data stored at the location contained in the basing pointer.

Note: Before the based data structure or standalone field can be used, the basing
pointer must be assigned a valid address.

If an array is defined as a based standalone field it must be a run-time array.

If a based field is defined within a subprocedure, then both the field and the
basing pointer are local.

266 VisualAge RPG Language Reference

BUTTON(button1:button2....)

The BUTTON keyword defines the buttons on the message window that are
specified in Factor 2 of the DSPLY operation code. You can specify a maximum of
3 button parameters per keyword. The valid button combinations are:

*OK *OK: *CANCEL *RETRY: *CANCEL
*YESBUTTON: *NOBUTTON *RETRY: *ABORT: *IGNORE *YESBUTTON: *NOBUTTON:
*CANCEL

This keyword cannnot be used if the MSGDATA, MSGNBR, or MSGTEXT
keywords are used.

CCSID(number | *DFT)
This keyword sets the CCSID for graphic and UCS-2 definitions.

number must be an integer between 0 and 65535. It must be a valid graphic or
UCS-2 CCSID value. Valid UCS-2 CCSIDs are 13488 and 17584.

For program-described fields, CCSID(number) overrides the defaults set on the
control specification with the CCSID(*GRAPH: *SRC), CCSID(*GRAPH: number),
or CCSID(*UCS2: number) keyword.

CCSID(*DFT) indicates that the default CCSID for the module is to be used. This is
useful when the LIKE keyword is used since the new field would otherwise inherit
the CCSID of the source field.

If the keyword is not specified, the default graphic or UCS-2 CCSID of the module
is assumed. (This keyword is not allowed for graphic fields when CCSID(*GRAPH
: IGNORE) is specified or assumed).

If this keyword is not specified and the LIKE keyword is specified, the new field
will have the same CCSID as the LIKE field.

CLASS(*JAVA:class_name)

This keyword indicates the class for an object definition.

To declare fields that can store objects, specify O in column 40 of the
D-specification and use the CLASS keyword to provide the class of the object. The
CLASS keyword requires two parameters:

CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. class_name specifies the class of the
object. The class name must be a character literal and fully qualify the Java class.
The class name is case sensitive.

Fields of type O cannot be defined as subfields of data structures. It is possible to
have arrays of type O fields, but tables of type O are not allowed because tables

have to be preloaded at run time.

The following keywords cannot be used with the CLASS keyword:

Chapter 18. Definition Specifications 267

ALIGN, ALT, ASCEND, BASED, BUTTON, CLTPGM, CONST, CTDATA, DATFMT,
DESCEND, DTAARA, EXTFLD, EXTFMT, EXTNAME, FROMFILE, INZ, LINKAGE,
MSGDATA, MSGNBR, MSGTEXT, MSGTITLE, NOOPT, NOWAIT, OCCURS, OPTIONS,
OVERLAY, PACKEVEN, PERRCD, PREFIX, PROCPTR, STYLE, TIMFMT, TOFILE,
VALUE, VARYING

For more information on calling Java methods and examples, see the Programming
with VisualAge RPG manual.

CLTPGM(program name)

The CLTPGM keyword is used to specify the name of the local program called by
the VisualAge RPG program, using the CALLP operation.

The local program that is called can be an EXE, a PIF, a COM, or a BAT file.
The default extension is EXE.

Note: A definition specification must be coded for each parameter.

CONST(constant)

The CONST keyword is used to specify the value of a named constant. This
keyword is optional (the constant value can be specified with or without the
CONST keyword), and is only valid for named constant definitions (C in position
24).

The parameter must be a literal, figurative constant, or built-in-function. The
constant may be continued on subsequent lines by adhering to the appropriate
continuation rules. See [“Continuation Rules” on page 215

If a named constant is used as a parameter for the keywords DIM, OCCURS,
PERRCD, or OVERLAY, the named constant must be defined prior to its use.

When specifying a read-only reference parameter, you specify the keyword CONST
on the definition specification of the parameter definition on both the prototype
and procedure interface. No parameter to the keyword is allowed.

When the keyword CONST is specified, the compiler may copy the parameter to a
temporary and pass the address of the temporary. Some conditions that would
cause this are: the passed parameter is an expression or the passed parameter has a
different format.

— Attention!
Do not use this keyword on a prototype definition unless you are sure that
the parameter will not be changed by the called program or procedure.

If the called program or procedure is compiled using a procedure interface
with the same prototype, you do not have to worry about this, since the
compiler will check this for you.

Although a CONST parameter cannot be changed by statements within the
procedure, the value may be changed as a result of statements outside of the
procedure, or by directly referencing a global variable.

268 VisualAge RPG Language Reference

Passing a parameter by constant value has the same advantages as passing by
value. In particular, it allows you to pass literals and expressions.

CTDATA

The CTDATA keyword indicates that the array or table is loaded using
compile-time data. The data is specified at the end of the program following the **
or *CTDATA(array/table name) specification.

When an array or table is loaded at compilation time, it is compiled along with the
source program and included in the program. Such an array or table does not need
to be loaded separately every time the program is run.

DATFMT(format{separator})

The DATFMT keyword specifies the internal date format for a Date field and
optionally the separator character. This keyword is automatically generated for an
externally described data structure subfield of type Date and determined at
compile time.

This keyword can be used when defining CALLP parameters.

See ['DATEMT (fmt{separator})” on page 227

The hierarchy used when determining the internal format and separator for a date
array or field is:

1. From the DATEMT keyword specified on the definition specification

2. From the DATFMT keyword specified in the control specification

3. *ISO

DESCEND

The DESCEND keyword describes the sequence of the data in an array or table
loaded at pre-runtime or compile time. See [“ASCEND” on page 265

Descending sequence means that the array or table entries must start with the
highest data entry (according to the collating sequence) and go to the lowest. Items
with equal value are allowed.

A pre-runtime array or table is checked for the specified sequence at the time the
array or table is loaded with data. If the array or table is out of sequence, control
passes to the exception/error handling routine. A run-time array (loaded by input
and/or calculation specifications) is not sequence checked.

A sequence (ascending or descending) must be specified if the LOOKUP operation,
%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table
for an entry to determine whether the entry is high or low compared to the search
argument.

If the SORTA operation code is used with an array, and no sequence is specified,
an ascending sequence is assumed.

DIM(numeric_constant)

The DIM keyword defines the number of elements in an array, table, a prototyped
parameter, array data structure, or a return value on a prototype or
procedure-interface definition.

Chapter 18. Definition Specifications 269

The numeric constant must have zero (0) decimal positions. It can be a literal, a
named constant or a built-in function.

The constant value does not need to be known at the time the keyword is
processed, but the value must be known at compile-time.

This keyword can be used when defining CALLP parameters.

When DIM is specified on a data structure definition, the data structure must be a
qualified data structure, and subfields must be referenced as fully qualified names,
i.e. "dsname(x).subf”. Other array keywords, such as CTDATA, FROMFILE,
TOFILE, and PERRCD are not allowed with an array data structure definition.

DLL(name)

The DLL keyword, together with the LINKAGE keyword, is used to prototype a
procedure that calls functions in Windows® DLLs, including Windows APIs.

The following example shows how to code the prototype and call to the Windows
API GetCurrentDirectory:

D GetCurDir PR 101 0 ExtProc('GetCurrentDirectoryA')
D DLL('KERNEL32.DLL")

D Linkage(*StdCall)

D 10I 0 Value

D 255A

D CurDir S 255A

D CurDirSiz S 101 0 Inz(%Size(CurDir))

D RCLong S 10T 0

C Eval RCLong = GetCurDir(CurDirSiz:CurDir)

The A in the external procedure name (GetCurrentDirectoryA) indicates that the
single-byte version of the DLL is being called. To call the unicode version, specify a
W.

DTAARA{(*VAR:)data_area_name}

The DTAARA keyword is used to associate a standalone field, data structure,
data-structure subfield, or data-area data structure with an external data area. The
DTAARA keyword has the same function as the *“DTAARA DEFINE operation
code. See |“Defining a Field as a Data Area” on page 548

If data_area_name is not specified then the name specified in positions 7-21 is also
the data area name. If data_area_name is specified, then it must be a data area
name.

If data_area_name is not specified, then the name specified in positions 7-21 is also
the name of the external data area.

If the parameter is not specified, then the data-structure name must be.

If *VAR is not specified, the data_area_name parameter can be either a name or a
literal. If a name is specified, the name of the parameter of DTAARA is used as the
name of the data area. For example, DTAARA(MYDTA) means that the data area
*LIBL/MYDTA will be used at runtime. It must be a valid data area name,
including *LDA (for the local data area) and *PDA (for the program initialization

270 VisualAge RPG Language Reference

parameters data area). If a literal is specified, the value of the literal is used as the
name of the data area. For example, DTAARA('LIB/DTA’) will use data area DTA
in library LIB, at runtime.

If *VAR is specified, the value of data_area_name is used as the data area name.
This value can be:

* A named constant whose value is the name of the data area.

* A character variable that will hold the name of the data area at runtime.

You can specify the value in any of the following forms:

dtaaraname
libname/dtaaraname
*LIBL/dtaaraname

Notes:
1. You cannot specify *CURLIB as the library name.
2. If you specify a data area name without a library name, *LIBL is used.

3. The name must be in the correct case. For example, if you specify
DTAARA(*VAR:dtaname) and variable dtaname has the value 'qtemp/mydta’,
the data area will not be found. Instead, it should have the value
‘QTEMP/MYDTA'.

Attention!
If DTAARA(*VAR) keyword is used with a UDS data area, and the name is a
variable, then this variable must have the value set before the program starts.
This can be done by initializing the variable, or passing the variable as an
entry parameter.

When the DTAARA keyword is specified, the IN, OUT, and UNLOCK operation
codes can be used on the data area.

EXTFLD(field_name)

The EXTFLD keyword is used to rename a subfield in an externally described data
structure. The field_name parameter is the external name of the subfield. The name
of the program to be used is specified in the Name field (positions 7-21).

The keyword is optional. If not specified, the name extracted from the external
definition is used as the data-structure subfield name.

If the PREFIX keyword is specified for the data structure, the prefix will not be
applied to fields renamed with EXTFLD.

EXTFMT(code)

The EXTFMT keyword specifies the external data type for compile-time and
pre-runtime numeric arrays and tables. The external data type is the format of the
data in the records in the file. This entry has no effect on the format used for
internal processing (internal data type) of the array or table in the program.

The possible values for the parameter are:

S The data for the array or table is in zoned decimal format.
P The data for the array or table is in packed decimal format.
B The data for the array or table is in binary format.

Chapter 18. Definition Specifications 271

C The data for the array or table is in UCS-2 format.

I The data for the array or table is in integer format.

L The data for a numeric array or table element has a preceding (left) plus or
minus sign.

R The data for a numeric array or table element has a following (right) plus
or minus sign.

U The data for the array or table is in unsigned format.

F The data for the array or table is in float numeric format.

Notes:

1. If the EXTFMT keyword is not specified, the external format defaults to 'S” for
non-float arrays and tables, and to the external display float representation for
float pre-runtime arrays and tables.

2. For compile-time arrays and tables, the only values allowed are S, L, and R,
unless the data type is float, in which case the EXTFMT keyword is not
allowed.

3. EXTEMT(I) or EXTEMT(U) is not allowed for arrays defined with more than 10
digits. Arrays defined as having 1 to 5 digits will occupy 2 bytes. Arrays
defined as having 6 to 10 digits will occupy 4 bytes.

4. When EXTFMT(I) or EXTFMT(U) is used, arrays defined as having 1 to 5 digits
will occupy 2 bytes per element. Arrays defined as having 6 to 10 digits will
occupy 4 bytes per element. Arrays defined as having 11 to 20 digits will
occupy 8 bytes per element.

5. The default external format for UCS-2 arrays is character. The number of
characters allowed for UCS-2 compile-time data is the number of double-byte
characters in the UCS-2 array.

6. The EXTEMT keyword cannot be used if the data for the array or table resides
on the workstation.

EXTNAME(file-name{:format-name}{:*ALLI
*INPUTI*OUTPUTI*KEY})

The EXTNAME keyword specifies the name of the file which contains the field
descriptions used as the subfield description for the data structure being defined.

The file_name parameter is required. Optionally, a format name may be specified
to direct the compiler to a specific format within a file. If format_name parameter
is not specified, the first record format is used.

The last parameter specifies which fields in the external record to extract:
e *ALL extracts all fields.

e *INPUT extracts just input capable fields.

e *OUTPUT extracts just output capable fields.

* *KEY extracts just key fields.

If this parameter has not specified, the compiler extracts the fields of the input
buffer.

Notes:

1. If the format-name is not specified,, the record defaults to the first record in the
file.

2. For *INPUT and *OUTPUT, subfields included in the data structure occupy the
same start positions as in the external record description.

272 VisualAge RPG Language Reference

If the data structure definition contains an E in column 22, and the EXTNAME
keyword is not specified, the name specified in positions 7-21 is used.

The compiler generates the following Definition specification entries for all fields

of the externally described data structure:

* Subfield name: this name is the same as the external name, unless renamed by
keyword EXTFLD or the PREFIX keyword is used to apply a prefix

* Subfield length

* Subfield internal data type: this name is the same as the External type, unless
the CVTOPT control specification keyword is specified for the type. In that case
the data type will be character.

All data structure keywords except LIKEDS and LIKEREC are allowed with the
EXTNAME keyword.

EXTPGM(name)

The EXTPGM keyword indicates the external name of the remote program on an
iSeries server whose prototype is being defined. The name can be a character
constant or a character variable.

If neither EXTPGM or EXTPROC is specified, then the compiler assumes that you
are defining a prototype for a procedure, and assigns it the external name found in
positions 7-21.

Any parameters defined by a prototype with EXTPGM must be passed by
reference. In addition, you cannot define a return value.

EXTPROC({*JAVA:class-name:}name)
The EXTPROC keyword can have one of the following formats:

EXTPROC(*JAVA:class-name:name)
Specifies a method that is written in Java, or an RPG native method to be
called by Java. The first parameter is *JAVA. The second parameter is a
character constant containing the class of the method. The third parameter
is a character constant containing the method name. The special method
name *CONSTRUCTOR means that the method is a constructor; this
method can be used to instantiate a class (create a new class instance).

For more information about invoking Java procedures, see ILE RPG
Programmer’s Guide.

EXTPROC(name)
Specifies an external procedure.

The EXTPROC keyword indicates the external name of the procedure whose
prototype is being defined. The name can be a character constant or a procedure
pointer. When EXTPROC is specified, then the procedure should be called using
CALLB or CALLP.

If EXTPROC is not specified, then the compiler assumes that you are defining a
procedure, and assigns it the external name found in positions 7-21.

If the name specified for EXTPROC (or the prototype name, if EXTPROC is not
specified) starts with "CEE” or an underscore ("_’"), the compiler will treat this as a

Chapter 18. Definition Specifications 273

system built-in. If it is not actually a system built-in, then a warning will appear in
the listing; To avoid confusion with system provided APIs, you should not name
your procedures starting with "CEE".

If a procedure pointer is specified, it must be assigned a valid address before it is
used in a call. It should point to a procedure whose return value and parameters
are consistent with the prototype definition.

For example, to define the prototype for the procedure SQLAllocEnv, that is in the
program QSQCLI, the following definition specification could be coded:

D SQLEnv PR EXTPROC('SQLAT1ocEnv')

igure 91| shows an example of the EXTPROC keyword with a procedure pointer
p p p
as its parameter.

D* Assume you are calling a procedure that has a procedure
D* pointer as the EXTPROC. Here is how the prototype would
D* be defined:

D*

D DspMsg PR 10A EXTPROC (DspMsgPPtr)
D Msg 32767A

D Length 4B 0 VALUE

D*

D* Here is how you would define the prototype for a procedure
D* that DspMsgPPtr could be assigned to.

D*

D MyDspMsg PR LIKE (DspMsg)
D Msg 32767A

D Length 4B 0 VALUE

C*

C* Before calling DSPMSG, you would assign DSPMSGPPTR
C* to the actual procedure name of MyDspMsg, that is
C* MYDSPMSG.

C*

o EVAL DspMsgPPtr = %paddr('MYDSPMSG')
C EVAL Reply = DspMsg(Msg, %size(Msg))
P MyDspMsg B

Figure 91. Specifying the External Name of a Prototyped Procedure

The extended form of the EXTPROC keyword can be used to prototype Java
methods that are called from VARPG Java applications. See [“Prototyping Javal

Prototyping Java Methods

Java methods must be prototyped so that VARPG Java applications can call them
correctly. The compiler must know the name of the method, the class it belongs to,
the data types of the parameters and the data type of the returned value (if any),
and whether or not the method is a static method.

Use the extended form of the EXTPROC keyword to specify the name of the
method and the class it belongs to. The format of the EXTPROC keyword is:

EXTPROC (*JAVA:class_name:method_name | *JAVARPG:class_name:method_name)

The possible parameter values are:

*JAVA:class_name:method_name
Identifies the method as a Java method that was generated from code
originally written in Java.

274 VisualAge RPG Language Reference

*JAVARPG:class_name:method_name
Identifies a VARPG-generated Java method.

VARPG-generated methods allow certain data types to be passed by reference
that normally cannot be passed by reference in Java. This allows you to use the
same source code when targeting for Windows applications or when
generating Java source code.

The class and method names must be character literals, and are case sensitive. The
class name must be a fully qualified Java class name. The method name must be
the name of the method to be called.

The data types of the parameters and the returned value of the method are
specified in the same way as they are when prototyping a subprocedure. However,
note that the compiler maps VARPG data types to Java data types as follows:

Java Data Type VARPG Data Type
boolean indicator (N)

byte[] alpha (A of any length)
byte integer (3I)

int integer (10I)

short integer (5I)

long integer (201I)

float float (4F)

double float (8F)

any object object (O)

When calling VARPG-generated methods (*JAVARPG), you can specify the Packed,
Zoned, Binary, or Unsigned data type as the data type of parameters and returned
values. Methods generated from Java source code cannot use these data types on
the prototype for parameters or return values.

When calling a method, the compiler will accept arrays as parameters if the
parameter is prototyped using the DIM keyword. Otherwise, only scalar fields,
data structures, and tables will be accepted.

You cannot call methods that expect the Java char data type or return this value
type.

If the return value of a method is an object, provide the class of the object by
coding the CLASS keyword on the prototype. The class name specified will be that
of the object being returned.

If the method being called is a static method, specify the STATIC keyword on the
prototype.

Chapter 18. Definition Specifications 275

In Java, the following data types can only be passed by value:
byte
int
short
long
float
doubTe

Specify the VALUE keyword on the prototype for parameters of these types. The
VALUE keyword is not required when calling VARPG-generated methods as these
data types can be passed by reference.

Objects can only be passed by reference. The VALUE keyword cannot be specified
with type ‘O’. Since arrays are seen by Java as objects, parameters mapping to
arrays must also be passed by reference. This includes byte arrays.

For more information on calling Java methods and examples, see the Programming
with VisualAge RPG manual.

FROMFILE(file_name)

The FROMFILE keyword specifies the file with input data for the pre-runtime
array or table being defined. The FROMFILE keyword must be specified for every
pre-runtime array or table used in the program.

See [“TOFILE(file_name)” on page 295

INZ{(initial value)}

The INZ keyword initializes the standalone field, data structure or data-structure
subfield to the default value for its data type or, optionally, to the constant
specified in parentheses.

* For a program described data structure, no parameter is allowed for the INZ
keyword.

* For an externally described data structure, only the *EXTDFT parameter is
allowed.

* For a data structure that is defined with the LIKEDS keyword, the value
*LIKEDS specifies that subfields are initialized in the same way as the parent
data structure. This applies only to initialization specified by the INZ keyword
on the parent subfield. It does not apply to initialization specified by the
CTDATA or FROMFILE keywords. If the parent data structure has some
subfields initialized by CTDATA or FROMFILE, the data structure initialized
with INZ(*LIKEDS) will not have the CTDATA or FROMFILE data.

* For an object, only the *NULL parameter is allowed. Every object is initialized to
*NULL, whether or not you specify INZ(*NULL).

The initial value specified must be consistent with the type being initialized. The
initial value can be a literal, named constant, figurative constant, built-in function,
or one of the special values *EXTDFT, *LIKEDS, or *NULL. When initializing Date
or Time data type fields or named constants with Date or Time values, the format
of the literal must be consistent with the default format as derived from the
Control specification, regardless of the actual format of the date or time field.

A numeric field may be initialized with any type of numeric literal. However, a
float literal can only be used with a float field. Any numeric field can be initialized
with a hexadecimal literal of 16 digits or fewer. In this case, the hexadecimal literal
is considered an unsigned numeric value.

276 VisualAge RPG Language Reference

Specifying INZ(*EXTDFT) initializes externally described data-structure subfields
with the default values from the DFT keyword in the DDS. If no DFT or constant
value is specified, the DDS default value for the field type is used. You can
override the value specified in the DDS by coding INZ with or without a
parameter on the subfield specification.

Specifying INZ(*EXTDFT) on the external data structure definition, initializes all
externally described subfields to their DDS default values. If the externally
described data structure has additional program described subfields, these are
initialized to the RPG default values.

When using INZ(*EXTDEFT), take note of the following:

e If the DDS value for a date or time field is not in the RPG internal format, the
value will be converted to the internal format in effect for the program.

* External descriptions must be in physical files.

 If *NULL is specified for a null-capable field in the DDS, the compiler will use
the DDS default value for that field as the initial value.

» If DFT(”) is specified for a varying length field, the field will be initialized with
a string of length 0.

e INZ(*EXTDEFT) is not allowed if the CVTOPT option is in effect.

¢ If no initial value or *NULL is specified for date, time, or timestamp fields, the
initial value for the field is set to *LOVAL.

Please see |“Initialization of Nested Data Structures” on page 161| for a complete
description of the use of the INZ keyword in the inititlization of nested data
structures.

A data structure, data-structure subfield, or standalone field defined with the INZ
keyword cannot be specified as a parameter on an *ENTRY PLIST.

Note: When the INZ parameter is not specified:

* Static standalone fields and subfields of initialized data structures are
initialized to their default initial values (for example, blanks for character,
0 for numeric).

* Subfields of static uninitialized data structures (INZ not specified on the
definition specification for the data structure) are initialized to blanks
(regardless of their data type).

* Fields in automatic storage are not initialized.

This keyword is not valid in combination with BASED.

LIKE(RPG_name)

The LIKE keyword is used to define an item like an existing one. When the LIKE
keyword is specified, the item being defined takes on the length and data format
of the item specified as the parameter. Standalone fields prototypes, parameters,
and data-structure subfields may be defined using this keyword. The parameter of
LIKE can be a standalone field, a data structure, a data structure subfield, a
parameter in a procedure interface definition, or a prototype name. The data type
entry (position 40) must be blank.

This keyword is similar to the *LIKE DEFINE operation code (see
[Field Based on Another Field” on page 548). However, it differs from *LIKE
DEFINE in that the defined data takes on the data format and CCSID as well as
the length.

Chapter 18. Definition Specifications 277

Note: Attributes such as NOOPT, ASCEND, CONST and null capability are not
inherited from the parameter of LIKE by the item defined. Only the data
type, length, decimal positions, and CCSID are inherited.

If the parameter of LIKE is a prototype, then the item being defined will have the
same data type as the return value of the prototype. If there is no return value,
then an error message is issued.

This keyword can be used when defining CALLP parameters. See
[Field Based on Another Field” on page 548

LIKE can be used to define character fields, graphic fields, graphic characters,
numeric fields, and arrays. Here are some considerations for using the LIKE
keyword with different data types:

* For character fields, the number specified in the To/Length entry is the number
of additional (or fewer) characters

* For graphic or UCS-2 fields, the number specified in the To/Length entry is the
number of additional (or fewer) graphic or UCS-2 characters (1 graphic or UCS-2
character = 2 bytes).

* For numeric fields, the number specified in the To/Length entry is the number
of additional (or fewer) digits. For integer or unsigned fields, adjustment values
must be such that the resulting number of digits for the field are 3, 5, 10, or 20.
For float fields, length adjustment is not allowed.

* For date, time, timestamp, basing pointer, or procedure pointer fields, the
To/Length entry (positions 33-39) must be blank.

When LIKE is used to define an array, the DIM keyword is still required to define
the array dimensions. However, DIM(%elem(array)) can be used to define an array

exactly like another array.

Use LIKEDS to define a data structure like another data structure, with the same
subfields.

278 VisualAge RPG Language Reference

The following are examples of defining data using the LIKE keyword.

L R AR P ST RV SR DU TP, DUV ¢ BT UV A S -
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++++tttttttttttttttttttt
3PP Keywords++++++++++t+tttttttttttt++++
D*

D+ Define a field 1ike another with a length increase of 5 characters.

D*

D Name S 20

D Long_name S +5 LIKE (Name)

D*

Dx Define a data structure subfield array with DIM(20) Tike another

D+ field and initialize each array element with the value *ALL'X'.

D+ Also, declare another subfield of type pointer immediately

D= following the first subfield. Pointer is implicitly defined

D+ with a Tength of 4 bytes.

D*

D Struct DS

D Dim20 LIKE (Name) DIM(20) INZ(*ALL'X')
D Pointer *

Figure 92. Defining fields LIKE other fields

LIKE(object-name)

You can use the LIKE keyword to specify that one object has the same class as a
previously defined object. Only the values on the CLASS keyword are inherited.

* Variables MyString and OtherString are both Java String objects.

D MyString S 0 CLASS(*JAVA

D :'java.lang.String')

D OtherString S LIKE (MyString)

* Proc is a Java method returning a Java String object

D Proc PR EXTPROC (*JAVA: 'MyClass': 'meth')
D LIKE (MyString)

Figure 93. Defining objects LIKE other objects

Note: You cannot use the *LIKE DEFINE operation to define an object. You must
use the LIKE keyword.

LIKEDS(data_structure_name)

The LIKEDS keyword is used to define a data structure, data structure subfield,
prototyped return value, or prototyped parameter like another data structure. The
subfields of the new item will be identical to the subfields of the other data
structure.

The names of the subfields will be qualified with the new data structure name. An
unqualified subfield named subfield or a qualified subfield named dsname.subfield
will result in a new subfield named newdsname.subfield. An unnamed subfield will
also have no name in the new data structure.

LIKEDS can be coded for subfields of a qualified data structure. When LIKEDS is
coded on a data structure subfield definition, the subfield data structure is
automatically defined as QUALIFIED. Subfields in a LIKEDS subfield data
structure are referenced in fully qualified form: "ds.subf.subfa". Subfields defined
with LIKEDS are themselves data structures, and can be used wherever a data
structure is required.

Chapter 18. Definition Specifications 279

The value of the ALIGN keyword are inherited by the new data structure. The
values of the OCCURS, DIM, NOOPT, and INZ keywords are not inherited. To
initialize the subfields in the same way as the parent data structure, specify

INZ(*LIKEDS).
D sysName DS qualified
D T1ib 10A inz('*LIBL')
D obj 10A
D userSpace DS LIKEDS (sysName) INZ(*LIKEDS)

// The variable "userSpace" was initialized with *LIKEDS, so the
// first 'Tib' subfield was initialized to '*xLIBL'. The second
// ‘'obj' subfield must be set using a calculation.

C eval userSpace.obj = 'TEMPSPACE'

Figure 94. Using INZ(*LIKEDS)

P createSpace B

D createSpace PI

D name LIKEDS (sysName)
/free

if name.lib = *blanks;
name.lib = "*LIBL';

endif;

QUSCRTUS (name : *blanks : 4096 : ' ' : '«USE' : *blanks);
/end-free
P createSpace E

Figure 95. Using a data structure parameter in a subprocedure

LIKEREC(intrecname{:*ALLI*INPUTI*OUTPUT [|*KEY})

Keyword LIKEREC is used to define a data structure, data structure subfield,

prototyped return value, or prototyped parameter like a record. The subfields of

the data structure will be identical to the fields in the record. LIKEREC can take an

optional second parameter which indicates which fields of the record to include in

the data structure. These include:

e *ALL All fields in the external record are extracted.

* *INPUT All input-capable fields are extracted. (This is the default.)

* *OUTPUT All output-capable fields are extracted.

* *KEY The key fields are extracted in the order that the keys are defined on the
K specification in the DDS.

The following should be taken into account when using the LIKEREC keyword:

* The first parameter for keyword LIKEREC is a record name in the program. If
the record name has been renamed, it is the internal name for the record.

* The second parameter for LIKEREC must match the definition of the associated
record or file. *INPUT is only allowed for input and update capable records;
*OUTPUT is only allowed for output capable records; *ALL is allowed for any
type of record; and *KEY is only allowed for keyed files. If not specified, the
parameter defaults to *INPUT.

¢ For *INPUT and *OUTPUT, subfields included in the data structure occupy the
same start positions as in the external record description.

 If a prefix was specified for the file, the specified prefix is applied to the names
of the subfields.

* Even if a field in the record is explicitly renamed on an input specification the
external name (possibly prefixed) is used, not the internal name.

280 VisualAge RPG Language Reference

* A data structure defined with LIKEREC is a QUALIFIED data structure. The
names of the subfields will be qualified with the new data structure name,
DS1.SUBFI.

e LIKEREC can be coded for subfields of a qualified data structure. When
LIKEREC is coded on a data structure subfield definition, the subfield data
structure is automatically defined as QUALIFIED. Subfields in a LIKEREC
subfield data structure are referenced in fully qualified form: "ds.subf.subfa".
Subfields defined with LIKEREC are themselves data structures, and can be used
wherever a data structure is required.

LINKAGE(linkage_type)

When you define a program name to be used with the CALL and START
operations, the LINKAGE keyword specifies the location of the called program.
Use the *SERVER parameter value with this keyword for the CALL operation. The
*SERVER parameter specifies that the program which you are calling exists on an
iSeries server. Use the *CLIENT parameter value with this keyword for the START
operation.

Specify LINKAGE(*SERVER) on a prototype definition for a remote program on an
iSeries server.

The LINKAGE keyword, together with the DLL keyword, specifies the Linkage
convention (interface) to be used when invoking functions in a dynamic-link
library (DLL). The linkage convention specified must match that of the entry point
in the external DLL that is to be accessed. Windows System APIs use the StdCall
linkage convention. So, when prototyping a Windows System API, specify
LINKAGE(*STDCALL).

Do not use the LINKAGE keyword if you use the DLL keyword to prototype a
VARPG subprocedure in a NOMAIN application. The compiler will use the default
__cdecl linkage convention.

When protoyping your own DLLs, create them with the __stdcall or __cdecl
linkage convention. Using other linkage conventions may cause unpredictable
results or runtime errors.

MSGDATA(msgdatal:msgdata2....)

The MSGDATA keyword defines the substitution text, used in Factor 1 of the
DSPLY operation code, in the form of a list of field names that you define in your
program. The VisualAge RPG compiler replaces each substitution variable with the
corresponding field defined. For example, %1 would be replaced by the first field
defined in MSGDATA, %?2 by the second field defined in MSGDATA, and so on.
Substitution variables are defined by entering the percent (%) character followed
by a single digit (1 to 9). You can specify a maximum of 3 parameters per
keyword.

The MSGDATA and MSGNBR keywords are used together.

MSGNBR(*MSGnnnn or fieldname)

The MSGNBR keyword defines the message number used in Factor 1 of the DSPLY
operation code. The message number can be a maximum of 4 digits in length. You
must specify one of the following:

* The message identifier (for example, *MSG0001)

* A field containing the message number(for example, *MSG0001)

Chapter 18. Definition Specifications 281

If you have substitution text in your messages, use the MSGNBR and MSGDATA
keywords together.

MSGTEXT(’message text’)

The MSGTEXT keyword defines the message text, which is contained within single
quotes (). This text is used in Factor 1 of the DSPLY operation code. This keyword
cannot be used if the BUTTON, MSGDATA, MSGNBR, MSGTITLE, or STYLE
keywords are used.

MSGTITLE(title text’)

The MSGTITLE keyword specifies the title text for the message window (Factor 2
of the DSPLY operation code).You can enter an 8-character message identifier
enclosed in single quotes ('), for example, *MSG0001’, or a 4-digit message
number. If you use a message number, the text is retrieved from the message file.
(Use the Define messages option of the GUI designer to specify titles in message
format.)

This keyword cannot be used if the MSGDATA, MSGNBR, or MSGTEXT keywords
are used.

NOOPT

No optimization is to be performed on the standalone field, parameter, or data
structure for which this keyword is specified. This insures that the content of the
data item is the latest assigned value. This may be necessary for those fields whose
values are used in exception handling.

Note: The optimizer may keep some values in registers and restore them only to
storage at predefined points during normal program execution. Exception
handling may break this normal execution sequence, and consequently
program variables contained in registers may not be returned to their
assigned storage locations. As a result, when those variables are used in
exception handling, they may not contain the latest assigned value. The
NOOPT keyword ensures their currency.

If a data item which is to be passed by reference is defined with the NOOPT
keyword, then any prototype or procedure interface parameter definition must also
have the NOOPT keyword specified. This requirement does not apply to
parameters passed by value.

All keywords allowed for standalone field definitions, parameters, or data
structure definitions are allowed with NOOPT.

This keyword can be used when defining CALLP parameters.

NOWAIT

The NOWAIT keyword allows you to call an OS/400 program that uses a
workstation file. See [“Calling an OS/400 Progra