
CICS Family

Interproduct Communication

SC34-6473-01

���

CICS Family

Interproduct Communication

SC34-6473-01

���

Note!

Before using this information and the products it supports, be sure to read the general information under “Notices” on page

73.

Eleventh edition (June 2005)

This edition applies to the following IBM licensed programs, and to all subsequent versions, releases, and

modifications of these programs until otherwise indicated in new editions. Consult the latest edition of the applicable

IBM system bibliography for current information on these products.

v CICS Transaction Server for z/OS Version 3

v CICS Transaction Server for z/OS Version 2, program number 5697-E93

v CICS Transaction Server for OS/390, program number 5655-147

v CICS Transaction Server for VSE/ESA, program number 5648-054

v CICS/VSE Version 2, program number 5686-026

v CICS Transaction Server for Windows, Version 5.0, program number 5724-D05

v CICS Transaction Server for iSeries, program number 5722-DFH

v CICS/400 Version 4, program number 5769-DFH

v TXSeries Version 5.0 for Multiplatforms, part number 5724-B44

v TXSeries for HP-UX, Version 4.2, program number 5801-AAR

This book is based on the ninth edition of the CICS Family: Interproduct Communication manual, SC34-6267-00.

Changes from that edition are marked by vertical lines to the left of the changes.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,

but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories Limited, Information Development, Mail Point 095, Hursley Park, Winchester,

Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface . vii

What this book is about . vii

Who this book is for . vii

What you need to know to understand this book vii

Terminology . vii

Summary of changes . ix

Changes for the tenth edition . ix

Changes for the ninth edition . ix

Changes for the eighth edition ix

Changes for the seventh edition ix

Part 1. Introduction to CICS interproduct communication 1

Chapter 1. CICS interproduct communication 3

The documentation plan . 3

Chapter 2. CICS communication support 5

What is a product’s communication ability? 5

The CICS intersystem communication functions 5

Communication protocols . 5

Synchronization . 6

Data conversion . 7

CICS product communication support 7

CICS on System/390 interproduct communication 7

CICS Transaction Server for Windows interproduct communication 8

CICS on Open Systems interproduct communication 8

CICS/400 interproduct communication 10

Chapter 3. CICS Clients . 11

Functions that the CICS Clients provide 11

The External Call Interface 11

The External Presentation Interface 11

The External Security interface 12

Terminal emulation . 12

CICS Clients . 12

Supported functions and protocols 13

Chapter 4. Data conversion . 15

Numeric data . 15

Character data . 15

Code pages . 16

Chapter 5. Configuring CICS for SNA communications 17

Introduction to SNA terminology 17

SNA concepts . 18

SNA products . 19

Preparing for SNA configuration 20

Matching parameters . 20

Platform specific implementation 20

The scenario . 20

Configuration details . 21

Mainframe host configuration 21

© Copyright IBM Corp. 1992, 2005 iii

AIX machine configuration . 22

Configuring CICS for SNA—next steps 23

Part 2. CICS intercommunication functions 25

Chapter 6. Introduction to the CICS intercommunication functions 27

Summary of CICS intercommunication functions 27

Function shipping . 27

Transaction routing . 27

Distributed program link . 28

Distributed transaction programming 28

Which intercommunication function? 29

Chapter 7. Function shipping 31

Introduction to function shipping 31

Transparency to application . 32

Remote resources that can be accessed 32

CICS file control data sets . 32

IMS databases . 33

Temporary storage and transient data 33

How function shipping works . 34

The transformer programs . 34

The mirror transaction . 35

Synchronization . 36

Function shipping examples . 36

Chapter 8. Transaction routing 39

Introduction to transaction routing 39

Initiating transaction routing . 40

Terminal-initiated transaction routing 40

Automatic transaction initiation 41

The relay program . 43

Basic mapping support . 44

The routing transaction (CRTE) 44

Chapter 9. Distributed program link 47

Introduction to DPL . 47

Why use DPL? . 47

Synchronization . 48

DL/I and SQL databases . 48

Restrictions when using DPL . 48

Abends when using DPL . 49

Chapter 10. Asynchronous processing 51

Introduction to asynchronous processing 51

Example . 52

Asynchronous processing methods 52

Asynchronous processing using START/RETRIEVE commands 53

Starting and canceling remote transactions 53

Passing information with the START command 53

Improving performance of intersystem START requests 54

Including start request delivery in a logical unit of work 54

Deferred sending of START requests with NOCHECK option 55

Local queuing of START commands for remote transactions 55

Data retrieval by a started transaction 55

Terminal acquisition by a remotely-initiated CICS transaction 56

iv Interproduct Communication

System programming considerations 56

Asynchronous processing example (with NOCHECK) 57

Chapter 11. Distributed transaction programming 59

Why use distributed transaction programming? 59

Limitations of function shipping 59

Advantages of distributed transaction programming 60

Conversations . 61

Conversation initiation and transaction hierarchy 61

Application design . 62

Control flows . 63

Conversation state and error detection 63

Synchronization . 63

EXEC CICS or CPI Communications? 65

Additional notes on the two APIs 66

Part 3. Appendixes . 67

Bibliography . 69

CICS Family intercommunication books 69

CICS on System/390 intercommunication books 69

CICS Transaction Server for z/OS Version 3 Release 1 69

CICS Transaction Server for z/OS Version 2 Release 3 69

CICS Transaction Server for z/OS Version 2 Release 2 69

CICS Transaction Server for OS/390 Release 3 69

CICS Transaction Server for VSE/ESA Release 1.1.1 69

CICS/VSE Version 2 . 69

CICS non-System/390 intercommunication books 69

CICS Transaction Gateway and CICS Universal Clients 69

Non-CICS books . 70

SNA books . 70

Accessibility . 71

Notices . 73

Trademarks . 74

Index . 75

Sending your comments to IBM 79

Contents v

vi Interproduct Communication

Preface

What this book is about

This book introduces the subject of intercommunication between CICS® family

members. It shows what functions are available, and how the systems are

configured.

The CICS products covered by this book are:

v CICS on System/390®

v CICS Transaction Server for Windows®

v CICS on Open Systems

v CICS/400®

v CICS Clients

Important: These are generic terms for subsets of CICS products. Their meanings

are defined in “Terminology.”

Who this book is for

This book is for anyone who is involved in the planning and implementation of

communication between different CICS products.

What you need to know to understand this book

You should have a general knowledge of the facilities of CICS, and of the

communication functions of the operating environments of your CICS systems. To

implement CICS interproduct communication, you will also need the detailed

product-specific information that is in the Intercommunication Guide for your local

CICS product. The documentation plan for the individual CICS products is explained

in Chapter 1, “CICS interproduct communication,” on page 3.

Terminology

Throughout this book, when the term “CICS” is used without specifying any

particular product or version level, it can be taken as a generic term for all the CICS

family products.

The following CICS products run on computers of the System/370™, System/390, or

zSeries® family, and support communication with CICS products that run on other

hardware platforms. (Not all of these products run on all of these computers—for

example, CICS Transaction Server for z/OS™ Version 2 does not run on

System/370.)

v CICS Transaction Server for z/OS Version 3

v CICS Transaction Server for z/OS Version 2, program number 5697–E93

v CICS Transaction Server for OS/390® Version 1, program number 5655-147

v CICS Transaction Server for VSE/ESA™, program number 5648-054

v CICS/VSE Version 2, program number 5686-026

In this book, the term System/390 is used to refer to any System/370, System/390,

or zSeries computer on which one of the above products can run. The term

non-System/390 refers to the hardware platforms used by other CICS

products—for example, iSeries™ (used by CICS/400), IBM-compatible personal

© Copyright IBM Corp. 1992, 2005 vii

|

computers (used by CICS Transaction Server for Windows), and RISC

System/6000® (used by CICS on Open Systems).

In statements that apply to each of the CICS products that runs on a System/390

hardware platform, the generic term CICS on System/390 is used to represent all

of them. One of these CICS products is referred to by name only if there is a

difference in its interface to non-System/390 products as compared with the

interface from other System/390 products. Subject to explicitly-stated exceptions,

interpret all references to CICS as applying to your CICS on System/390 product.

The term CICS Transaction Server for z/OS, without a qualifying Version number, is

used as a generic term for:

v CICS Transaction Server for z/OS Version 3 Release 1

v CICS Transaction Server for z/OS Version 2 Release 3

v CICS Transaction Server for z/OS Version 2 Release 2

The term CICS Transaction Server for OS/390, without a qualifying Version number,

refers to CICS Transaction Server for OS/390 Release 3.

The term CICS Transaction Server for Windows, without a qualifier, means CICS

Transaction Server for Windows, Version 5.0.

The term CICS on Open Systems is used as a generic name for:

v TXSeries® Version 5.0 for Multiplatforms, which contains:

– CICS for AIX®

– CICS for HP-UX

– CICS for Sun Solaris

– CICS for Windows NT®

v TXSeries Version 4.3 for AIX (which contains CICS for AIX)

v TXSeries Version 4.3 for Sun Solaris (which contains CICS for Sun Solaris)

v TXSeries Version 4.3 for Windows NT (which contains CICS for Windows NT)

v TXSeries Version 4.2 for HP-UX (which contains CICS for HP-UX)

Where it is necessary to distinguish between these products, the full product names

are quoted.

The term CICS Transaction Server for VSE/ESA means CICS Transaction Server

for VSE/ESA Release 1.1.1.

The term CICS/VSE® means CICS for VSE/ESA Version 2 Release 3.

The term CICS/400 is used as a generic name for:

v CICS/400 Version 4 Release 5

v CICS Transaction Server for iSeries

The term CICS Clients is used as a generic term for:

v The CICS Universal Client (for Windows NT, Windows 2000, and Windows XP)

v The CICS Client elements of the CICS Transaction Gateway products

v The client daemons of the CICS Transaction Gateway products

The notation CICS–CICS Transaction Server for Windows is used to refer to

communication in either direction. To specify communication in only one direction,

an arrow is added. For example, CICS–CICS on Open Systems function shipping

refers to function shipping from CICS to CICS on Open Systems or from CICS on

Open Systems to CICS. CICS/400–�CICS function shipping refers only to function

shipping from CICS/400 to CICS.

viii Interproduct Communication

|

Summary of changes

This book is based on the ninth edition of the CICS Interproduct Communication

manual, SC34-6267-00. Changes from that edition are marked by vertical bars in

the left margin.

This part lists briefly the changes that have been made for the following editions:

v “Changes for the tenth edition”

v “Changes for the ninth edition”

v “Changes for the eighth edition”

v “Changes for the seventh edition”

Changes for the tenth edition

The more significant changes for this edition are:

v The book has been revised to take account of the following new products:

– CICS Transaction Server for z/OS Version 3 Release 1

Changes for the ninth edition

The more significant changes for this edition were:

v The book was revised to take account of the following new products:

– CICS Transaction Server for z/OS Version 2 Release 3

– CICS Transaction Server for Windows, Version 5.0

v References to the following CICS products, which are no longer supported, were

removed:

– CICS Transaction Server for z/OS Version 2 Release 1

– CICS Transaction Server for OS/390 Release 2

– CICS Transaction Server for OS/390 Release 1

– CICS Transaction Server for VSE/ESA Release 1.0

– CICS/ESA Version 4.1

– CICS Transaction Server for OS/2 Warp Version 4

– CICS for OS/2 Version 3.1

Changes for the eighth edition

The more significant changes for this edition were:

v The book was revised to take account of the following new product:

– CICS Transaction Server for z/OS Version 2 Release 2

v Support for the new ECI over TCP/IP function was described in Table 5 on page

13.

Changes for the seventh edition

The more significant changes for this edition were:

v The book was revised to take account of the following new product:

– CICS Transaction Server for z/OS Version 2 Release 1

v References to CICS/ESA Version 3 were removed, because this product is no

longer supported.

© Copyright IBM Corp. 1992, 2005 ix

x Interproduct Communication

Part 1. Introduction to CICS interproduct communication

This part includes the following chapters:

v Chapter 1, “CICS interproduct communication,” on page 3 introduces CICS

interproduct communication, and describes the documentation plan used for each

CICS product.

v Chapter 2, “CICS communication support,” on page 5 describes the CICS

intercommunication functions, and shows what functions are supported between

any pair of CICS systems.

v Chapter 3, “CICS Clients,” on page 11 introduces the CICS client products, and

shows what functions are supported with each CICS server.

v Chapter 4, “Data conversion,” on page 15 explains why data conversion is

necessary, explaining its concepts and terminology.

v Chapter 5, “Configuring CICS for SNA communications,” on page 17 introduces

the concepts and practice of system configuration for SNA communications.

© Copyright IBM Corp. 1992, 2005 1

2 Interproduct Communication

Chapter 1. CICS interproduct communication

This manual describes how you can connect CICS systems, and explains what

functions those connected CICS systems can use. The following groups of CICS

systems are discussed:

v CICS on System/390

v CICS Transaction Server for Windows

v CICS on Open Systems

v CICS/400

The documentation plan

This manual provides an overview of how all the CICS products communicate. Each

CICS product has its own intercommunication manual which provides greater detail

on how that product is configured and what functions are available to it.

The configurations with all the CICS products, and the associated documentation,

are shown in Figure 1 on page 4. This shows each CICS product in communication

with another product of the same type, and then all products being interconnected.

The highlighted numbers in the figure refer to the following manuals:

1. CICS on System 390 Intercommunication Guide. (This means the

Intercommunication Guide for your CICS on System/390 product.)

2. CICS Family: Communicating from CICS on System/390

3. CICS TS for Windows, Intercommunication

4. CICS on Open Systems Intercommunication Guide

5. CICS/400 Intercommunication

The order numbers of these manuals are listed in “Bibliography” on page 69.

© Copyright IBM Corp. 1992, 2005 3

half-session

half-session

SESSION

SESSION

half-session

CICS on System/390

CICS on System/390

half-session

half-session

CICS/400

SESSION

half-session

CICS/400

half-session

SESSION

half-session

CICS on Open Systems

CICS on Open Systems

half-session

3

SESSION

half-session

CICS TS for Windows

CICS TS for Windows

half-session

half-session

3

3

3

Figure 1. Sessions between CICS systems. This figure shows the coverage of each of the CICS intercommunication

books. The numbers refer to the books in the “list of books” on page 3.

4 Interproduct Communication

Chapter 2. CICS communication support

This chapter has two sections:

v “What is a product’s communication ability?” is an introduction to intersystem

communication terminology, and to the CICS communication functions.

v “CICS product communication support” on page 7 shows the ways in which any

pair of CICS products can communicate.

What is a product’s communication ability?

When planning your communication functions between different CICS systems you

must consider:

v The intersystem communication functions that the CICS products support

v The communication protocols that are supported

v The synchronization levels that are supported

v What data conversion support will be required

These questions are examined in the following sections.

The CICS intersystem communication functions

CICS intersystem communication supports five basic functions:

Function shipping

enables an application program running in one CICS system to access data

resources (such as files and queues) that are owned by another CICS

system.

Transaction routing

enables a terminal connected to one CICS system to run a transaction in

another CICS system.

Distributed program link (DPL)

enables an application program executing in one CICS system to link (pass

control) to a program in a different CICS system. The linked-to program

executes and returns a result to the linking program.

Asynchronous processing

enables a transaction executing in one CICS system to start a transaction

in a different system. The two transactions then execute independently of

each other.

Distributed transaction programming

enables a transaction running in one CICS system to communicate with

transactions running in other systems. The transactions are designed and

coded specifically to communicate with each other.

For more information about these functions, see Part 2, “CICS intercommunication

functions,” on page 25.

Communication protocols

If two systems are to communicate successfully they must use a common set of

rules that both understand. A communications protocol is such a set of rules that

defines, for example, a set of standard requests and responses, and the order in

which they can be sent.

© Copyright IBM Corp. 1992, 2005 5

For CICS products, three communication protocols are important:

SNA LU TYPE 6.2

LU TYPE 6.2 (LU 6.2) is a Systems Network Architecture (SNA) protocol that

supports both system-to-system communication and system-to-device

communication. LU 6.2 is also known as Advanced Program-to-Program

Communications (APPC).

 CICS can make use of the AnyNet® product, which allows SNA flows to be

transmitted over a TCP/IP network.

 All CICS products support the LU 6.2 protocol.

TCP/IP

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a set of

protocols that are used for both LANs and Wide Area Networks (WANs).

 TCP/IP is supported natively by CICS Transaction Server for Windows, CICS on

Open Systems, and versions of CICS Transaction Server for z/OS from Version

2.2 onwards.

Note: CICS TS for z/OS Version 2.2 and later support native TCP/IP

connections to clients. The CICS External Call Interface (ECI) is

supported, but not the External Presentation Interface (EPI) nor the

External Security Interface (ESI). See Table 5 on page 13.

 All CICS on System/390 products except CICS TS for VSE/ESA and CICS/VSE

2.3 can make use of the AnyNet product, which allows SNA flows to be

transmitted over a TCP/IP network.

NetBIOS

The Network Basic Input/Output System (NetBIOS) is a local area network

(LAN) protocol for personal computers. It is supported by CICS Transaction

Server for Windows.

 You can use IBM® NetBIOS, or another NetBIOS emulator. For example,

Novell’s NetBIOS emulator provides NetBIOS flows over its Internetwork Packet

eXchange (IPX) protocol.

Synchronization

During CICS interproduct communication, partner transactions may make

logically-related updates to their data stores — data sets, databases, temporary

storage, transient data, and so on. Data integrity would be lost if both transactions

did not commit (or back out) the updates they made to their resources.

The process used to ensure data integrity is called synchronization. Synchronization

has to prevent one transaction completing normally and committing its updates

while its partner transaction abends and backs out its updates. Synchronization

must also handle situations when network problems prevent the transactions from

communicating and informing each other of their actions.

Synchronization levels

SNA APPC architecture defines three levels of synchronization, which it calls

NONE, CONFIRM, and SYNCPOINT. CICS refers to these as synchronization

levels 0, 1, and 2, respectively.

Level 0 Provides no synchronization support.

6 Interproduct Communication

Level 1 Allows transactions to exchange confirmation requests which they

may use to provide some degree of synchronization. CICS is not

involved in this process.

Level 2 Provides system-level syncpoint exchanges.

Synchronization level 2 provides two-phase commit. In a two-phase commit

process, one CICS system initiates the syncpointing and acts as coordinator for the

operation. The coordinating system:

1. Asks each connected system to prepare to commit

2. When each system has signalled readiness, it tells each to commit, or, if any

resource manager signals that it cannot commit, it tells each to back out.

The synchronization level that two connected CICS systems can use is established

when they first establish the connection. A connection established at

synchronization level 2 can support a synchronization level 0, 1, or 2 conversation,

and a connection established at synchronization level 1 can support a

synchronization level 0 or 1 conversation.

The synchronization level you can use depends upon the capabilities of the

particular CICS systems, and the capability of the network that they are using for

the connection. The synchronization levels for all pairings of CICS systems is

summarized in “CICS product communication support.”

Data conversion

CICS products use two interchange codes for character data representation,

EBCDIC and ASCII. Data in CICS on System/390 products and CICS/400 is held in

EBCDIC format. Data in CICS Transaction Server for Windows and CICS on Open

Systems is typically held in ASCII format.

Support of an intersystem communication function between two products requires

support for any necessary data conversion. For further information, see Chapter 4,

“Data conversion,” on page 15.

CICS product communication support

This section summarizes the support each CICS product provides when it is in

communication with another CICS product of the same type, and when it is

communicating with each of the other CICS family products.

CICS on System/390 interproduct communication

Functions supported

CICS on System/390 supports all CICS intersystem communication functions.

Communication protocols supported

All CICS on System/390 products support SNA.

All CICS on System/390 products except CICS TS for VSE/ESA and CICS/VSE 2.3

can make use of the AnyNet product, which allows SNA flows to be transmitted

over a TCP/IP network.

Chapter 2. CICS communication support 7

Only CICS TS for z/OS Version 2.2 and later support native TCP/IP connections to

clients. The CICS External Call Interface (ECI) is supported, but not the External

Presentation Interface (EPI) nor the External Security Interface (ESI). See Table 5

on page 13.

Synchronization level supported

CICS on System/390 can support synchronization levels 0, 1, and 2. The

synchronization level used depends upon the support available in the partner

system. This is summarized in Table 1.

 Table 1. CICS on System/390 synchronization level support

CICS on

System/390

CICS on Open

Systems

CICS/400 CICS

Transaction

Server for

Windows

Maximum synchronization level

supported:

2 2 2 1

CICS Transaction Server for Windows interproduct communication

Functions supported

CICS Transaction Server for Windows supports all CICS intersystem communication

functions.

Communication protocols supported

CICS Transaction Server for Windows supports SNA, TCP/IP, and NetBIOS. The

communication protocol that can be used is dependent upon the support available

in the partner system. This is summarized in Table 2.

 Table 2. CICS Transaction Server for Windows communication protocol support

CICS

Transaction

Server for

Windows

CICS on Open

Systems

CICS on

System/390

CICS /400

Communication SNA SNA SNA SNA

protocols TCP/IP TCP/IP

supported: NetBIOS

Note: Distributed transaction processing is supported only by SNA.

Synchronization level supported

CICS Transaction Server for Windows supports only synchronization levels 0 and 1,

and either level can be used with any partner CICS system.

CICS on Open Systems interproduct communication

Functions supported

CICS on Open Systems supports all CICS intersystem communication functions.

Communication protocols supported

CICS on Open Systems supports SNA and two types of TCP/IP:

v CICS family TCP/IP for communication with other CICS on Open Systems

regions, CICS Transaction Server for Windows, and CICS Clients.

CICS family TCP/IP supports only synchronization levels 0 and 1, and it cannot

be used for distributed transaction processing.

8 Interproduct Communication

v Encina® PPC TCP/IP for communication with other CICS on Open Systems

regions.

Encina PPC TCP/IP supports synchronization levels 0, 1, and 2, and can be

used for distributed transaction processing.

The choice of communication protocol depends upon the function supported by the

partner system, and is summarized in Table 3.

 Table 3. CICS on Open Systems communication protocol, and synchronization level support

CICS on Open

Systems

CICS

Transaction

Server for

Windows

CICS on

System/390

CICS/400

Communication protocols

supported:

SNA

TCP/IP (1)

TCP/IP (2)

SNA

TCP/IP(1)

SNA SNA

Maximum synchronization level

supported:

2 1 2 2

Note:

1. TCP/IP (1) - CICS family TCP/IP support

2. TCP/IP (2) - Encina PPC TCP/IP support

Synchronization level supported

CICS on Open Systems can support synchronization levels 0, 1, and 2 when using

SNA and Encina PPC TCP/IP, and levels 0 and 1 when using CICS family TCP/IP.

The synchronization level that CICS on Open Systems supports with other CICS

systems is summarized in Table 3.

Chapter 2. CICS communication support 9

CICS/400 interproduct communication

Functions supported

CICS/400 supports all CICS intersystem communication functions.

Communication protocols supported

CICS/400 supports only SNA.

Synchronization level supported

CICS/400 supports synchronization levels 0, 1, and 2. The synchronization level

you use depends upon the support available in the partner system. This is

summarized in Table 4.

 Table 4. CICS/400 synchronization level support

CICS/400 CICS on

System/390

CICS on Open

Systems

CICS

Transaction

Server for

Windows

Maximum synchronization level

supported:

2 2 2 1

10 Interproduct Communication

Chapter 3. CICS Clients

Terminology

In this book, we use the term CICS Clients as a generic term for:

v The CICS Universal Client (for Windows NT, Windows 2000, and Windows

XP)

v The CICS Client elements of the CICS Transaction Gateway products

(which are available on all the platforms listed in “CICS Clients” on page 12)

v The client daemons of the CICS Transaction Gateway products

 CICS Clients allow a workstation to access the transactions and resources in a

CICS system.

The CICS Clients are not themselves full-function CICS systems, but they contain

functions that enable them to access the resources of CICS systems running on

other machines in the network. The CICS systems to which Clients are connected

are known as CICS servers.

There is a CICS Client for many different operating systems. These are described in

“CICS Clients” on page 12.

Functions that the CICS Clients provide

CICS Clients provide a set of functions for client/server computing. This section

gives an overview of the most important functions; it is not meant to be exhaustive.

The External Call Interface

The External Call Interface (ECI) is an application programming interface (API) that

allows a non-CICS program running on a workstation to call a CICS program

located on a CICS server. This enables the program to make use of existing server

routines that could be used, for example, to make enquiries on a database.

The client program can make the following types of call to a CICS server:

v Program link calls, which can be synchronous (that is, the calling program waits

for a response from the linked-to program), or asynchronous (that is, the two

programs continue to execute independently). The client program can issue a

number of such calls, which can all run within the same unit of work (UOW), or

they may run as individual units of work.

v Calls to retrieve a response from a previous asynchronous call.

v Calls that return a value indicating the status of the CICS system. This allows an

application to test for availability of the CICS server or to monitor it by waiting for

a change in its status.

The External Presentation Interface

The External Presentation Interface (EPI) is an API that allows a client program to

appear to a CICS server as a 3270 terminal. You could, for example, use the EPI to

enable workstation users to access CICS server transactions written for 3270

terminals, without changing the server code.

© Copyright IBM Corp. 1992, 2005 11

The client program can start CICS transactions and send and receive standard

3270 data streams to and from the transactions. It can present the 3270 data to the

user by emulating a 3270 terminal, or by means of a graphical user interface such

as Windows (Windows clients).

The EPI consists of a set of calls that can be made from an application program.

The calls are provided in a library that is linked to the application. Among the

functions available are calls to:

v Initialize the EPI.

v Terminate the EPI.

v Obtain a list of CICS servers to which a terminal may attach.

v Attach a pseudo-terminal.

v Detach a pseudo-terminal.

v Start a transaction for a terminal.

v Send data from a terminal to a transaction.

v Obtain details of an event that has occurred for a terminal. An example of an

event is when the transaction is expecting a reply from the terminal.

v Obtain detailed error information for the last error that occurred for a terminal.

The External Security interface

The External Security Interface (ESI) is an API that allows a non-CICS Client

program to verify and change the passwords used by Clients to connect to a CICS

server.

Terminal emulation

CICS Clients can run 3270 terminal emulators. A client terminal emulator transmits

or receives standard CICS transaction routing flows to or from a CICS server. This

allows a user to interact with the server, and run transactions, as if the client were a

locally-attached 3270 terminal.

It is possible to run multiple terminal emulators on a single client. The emulators

can be connected to the same CICS server, or to different servers.

Users can customize the colors and keyboard mapping of their emulators.

Double-byte character sets (DBCS) are supported but note that CICS clients

attached to CICS/400 servers do not support double-byte character sets.

CICS Clients

There is a CICS Client for each of the following operating systems:

v AIX

v Microsoft® Windows XP

v Microsoft Windows 2000

v Microsoft Windows NT

v Solaris

v HP-UX

v Linux 390

Each Client can attach to any or all of the following CICS servers:

v CICS Transaction Server for z/OS

v CICS Transaction Server for OS/390

v CICS Transaction Server for VSE/ESA

v CICS/VSE Version 2.3

12 Interproduct Communication

v CICS/400

v CICS Transaction Server for Windows

v CICS on Open Systems

Supported functions and protocols

Table 5 shows the functions and communication protocols that are supported on

each CICS Client–CICS server link.

 Table 5. IBM CICS Client function and protocol support

CICS Servers ECI EPI

Terminal

Emulator

Auto

install

LU 6.2 NetBIOS TCP/IP

CICS Transaction Server for

Windows

Y Y Y Y Y Y Y

CICS on Open Systems Y Y Y Y Y - Y

CICS/400 Y Y Y Y Y - -

CICS TS for z/OS Version 2.2

and above

Y Y Y Y Y - Y1 2

CICS TS for z/OS Version 2.1 Y Y Y Y Y - Y2

CICS TS for OS/390 Y Y Y Y Y - Y2

CICS TS for VSE/ESA Y Y Y Y Y - -

CICS/VSE V2.3 Y - - Y3 Y - -

Notes:

Y Function or protocol is supported

- Function or protocol not supported

ECI External Call Interface

EPI External Presentation Interface

Autoinstall

User does not need to predefine the client connection to the server

1. Native TCP/IP is supported. Using ECI over TCP/IP, all clients are supported,

but only the ECI (not the EPI nor the ESI) can be used.

2. TCP/IP is supported through the use of IBM TCP62 and the AnyNet feature of

VTAM®. Using this method, only the Windows clients are supported, but both

the ECI and EPI can be used.

3. Only single-session LU6.2 connections can be autoinstalled.

Chapter 3. CICS Clients 13

14 Interproduct Communication

Chapter 4. Data conversion

The CICS family of products runs on a variety of operating system and hardware

platforms. Numeric and character data can be held in different ways in different

systems. When intercommunication between CICS products requires the transfer of

data, data conversion may be necessary.

This chapter gives an overview of data conversion that serves as an introduction to

the task-oriented information in the CICS Intercommunication manual for your CICS

product. It does not describe the mechanics of the process.

CICS products do most of the necessary data conversion automatically. Some

conversion requires no setup by the user, for example, file names in function

shipping requests. For other data, such as file records, you supply resource

definitions that identify the types of conversion to be applied to specified fields in

data records. For non-automatic conversion, exits or user-replaceable conversion

programs are available in some products.

Numeric data

The main ways of holding numeric data are binary and packed decimal. If these

types of data are held differently in two CICS systems, resource definitions in each

system may be sufficient to cause automatic data conversion.

In some cases, you can arrange for one system to hold data in a way that is

compatible with the other, avoiding the need for conversion. For example, if a CICS

Transaction Server for Windows COBOL/2 application program is compiled with the

IBMCOMP and SIGN EBCDIC directives, packed decimal data is held in

System/390-compatible format.

Automatic data conversion is not available in some cases. For example, conversion

between workstation packed decimal data and System/390 packed decimal data

requires user-written conversion code. This code can be inserted in a

user-replaceable conversion program in the CICS on System/390 product.

See the platform-specific CICS intercommunication guides for a detailed explanation

of which CICS system is responsible for converting the data when two systems are

exchanging data.

Character data

The smallest unit of computer data is a bit, or binary digit. A bit has only two

possible values, 0 or 1. To represent character data, bits must be grouped. The

most common grouping is the 8-bit byte, providing up to 256 different characters.

A named character set is a particular set of characters—“Latin-1”, for example, is a

set of Western uppercase and lowercase letters, numbers, and a selection of

symbols.

A single-byte character set (SBCS) allows the representation of up to 256

characters, each character being represented by a single byte.

A double-byte character set (DBCS) allows the representation of more than 256

characters, each character being represented by a pair of bytes. Some languages

© Copyright IBM Corp. 1992, 2005 15

|

require characters to be represented by multiple bytes in what is called a

multi-byte character set (MBCS); here, each character is represented by up to 4

bytes.

The different languages in some countries (such as Japan) may use both SBCS

and DBCS.

A computer program or operating system must assign a byte, 2-byte, or multi-byte

value to each character that it wants to represent. Several conventions exist for

character representation. In this chapter, these conventions are called interchange

codes. Two different interchange codes are used in the hardware platforms on

which CICS products run:

v Extended Binary-Coded Decimal Interchange Code (EBCDIC), typically used on

System/370 System/390 and AS/400® machines.

v American National Standard Code for Information Interchange (ASCII), typically

used in personal computers and RISC System/6000 (RS/6000®) machines.

Code pages

A code page defines the code points for the characters in a particular character

set. It consists of a list of byte values or 2-byte values and the characters they

represent. The EBCDIC and ASCII interchange codes include more than one code

page, so data conversion can be necessary even between two systems that use the

same interchange code.

A Coded Character Set Identifier (CCSID) is a combination of a character set and

its associated code page. A CCSID may be composite; that is, it may contain

multiple character sets and code pages—for example, Katakana (1-byte) and Kanji

(2-byte).

Most CICS products use in-built conversion tables to handle conversion between

common code pages. Some products allow you to define your own conversion

tables. For nonstandard conversion, you can supply a user-written conversion

program.

For detailed information about data conversion, see the CICS Intercommunication

manuals for your CICS products.

Notes:

1. CICS for OS/400® uses a comprehensive set of conversion tables provided by

AS/400, and does not support user-defined tables.

2. CICS on Open Systems uses the operating system’s iconv routines, which

provide data conversion by both table-driven and algorithmic methods. A

comprehensive set of converters is supplied. A CICS on Open Systems user

can create or customize a converter.

16 Interproduct Communication

Chapter 5. Configuring CICS for SNA communications

Before two systems can communicate, they each need to know:

v The identity of the other system

v The characteristics of the other system

v The communication methods to be used

v The services and functions to be used

This chapter shows how you specify that information when configuring CICS

systems for SNA communication.

There are a number of stages in the process of configuring a system for

communication:

1. Establish a basic connection between the two systems that can be used by a

simple test application.

2. Build on that initial configuration to enable support for your own applications.

3. Refine that working configuration to expand facilities and enhance performance.

This chapter gives you the information on SNA and CICS that you will need to

establish that first basic configuration. You should not consider proceeding beyond

that first stage until you have completed and successfully tested a basic, simple

SNA connection.

There are other manuals that give broader and more detailed information about

SNA. There are manuals that explain the SNA architecture, manuals that explain

how individual products have implemented the architecture, and manuals that

explain how to configure various combinations of different systems. There is a list of

useful books in “SNA books” on page 70.

The scenario chosen for the discussion is based on an established SNA network of

interconnected CICS on System/390 systems. To this we will be adding a CICS for

AIX system, which will use SNA to connect to one of the CICS on System/390

systems.

The rest of this chapter contains:

v “Introduction to SNA terminology”

v “Preparing for SNA configuration” on page 20

v “Configuration details” on page 21

v “Configuring CICS for SNA—next steps” on page 23

Introduction to SNA terminology

IBM’s System Network Architecture (SNA) defines a set of rules that systems use to

communicate. These rules define the layout of the data that flows between the

systems and the action the systems take when they receive the data. The layout of

the data is known as the format, and the action the systems take when they

receive that data is known as the protocol. Together, formats and protocols

constitute the architecture.

SNA does not specify how a system should implement the architecture. Indeed, a

fundamental objective of SNA is to allow systems that have very different internal

hardware and software design to communicate. The only requirement is that the

network flows meet the rules of the architecture.

© Copyright IBM Corp. 1992, 2005 17

One consequence of this independent implementation is that each system brings its

own terminology into its SNA implementation, and this can lead to a confusion of

terminology when you start to establish a connection between two different

systems. This section introduces those particular SNA concepts and terms that you

will encounter when configuring CICS systems.

SNA concepts

network

A network is a collection of interconnected computers and devices, together with

the physical and logical connections that connect them.

network address

A network address is a unique code that is assigned to every device in a

network. With a personal computer, for example, it is likely to be the medium

access control (MAC) address in its network adapter card.

link and node

A link connects two nodes, where a node is any device in a network that

transmits and receives data.

logical unit (LU)

A logical unit represents the logical destination of a communication data flow.

The formal definition of an LU is that it is the means by which an end user gains

entry into a network, and an end user is defined as the ultimate source, or

destination, of data flow in a network. SNA supports several different types of

LUs. These are grouped together in numbered LU types, such as LU type 2 for

3270 display terminals, and LU type 4 for printers. The LU type for

CICS-to-CICS communication is LU type 6.2, and is frequently referred to as

advanced program-to-program communication (APPC). Each LU is given a

unique name that identifies it in the network, and this is referred to as the

LU name.

 Sometimes the name of the network that the LU is in is appended to the name

of the LU. It is then known as the network-qualified LU name, or the fully

qualified LU name, and it takes the form network-name.LU-name.

physical unit (PU)

A physical unit is the hardware and software components in a device that

manage its network resources. LUs reside within a PU, and one PU may hold

many LUs. There are several different types of PU. VTAM running in a

mainframe host is a PU type 5, and NCP running in a 37x5 network controller is

a PU type 4. When workstations connect together in a peer-to-peer manner they

act as PU type 2.1. When a workstation connects to a mainframe host in a

hierarchical manner, it acts as a PU type 2.0. The PU type 2.1 is described as

an independent node (because it is independent of a mainframe host), and the

PU type 2.0 is a dependent node.

control point (CP)

The SNA concept that relates LUs to PUs is a control point. A CP can be

thought of as that part of a PU that manages the LU.

exchange identification (XID)

Associated with the PU and CP is the exchange identification. XID is actually the

name of a data flow that PUs exchange during the early stages of their attempt

to establish a connection, but, in the context of SNA configuration, XID refers to

one of the fields within that XID flow. It is a hexadecimal field which the PUs use

to confirm the identity of each other.

18 Interproduct Communication

session

SNA uses the term session to refer to various types of data flow in a network. To

avoid ambiguity, it should always be qualified by a description of the type of data

flow, for example CP-CP session. However, when used by CICS for APPC, it

can be assumed to refer to data flow between LUs, and so is an LU-LU session.

There are usually several sessions between any two LUs, and these are known

as parallel sessions.

connection

CICS uses the term connection to refer to a group of sessions that connect two

CICS systems.

transaction program (TP)

In SNA, the term transaction program refers to the application program in an

APPC environment. The TP uses the LU to gain access to the network. When

CICS is using APPC, the TP is a CICS transaction.

conversation

In SNA, the term conversation describes the communication between two TPs.

That is, when two APPC TPs are in communication, they are said to be holding

a conversation. Conversations flow on LU-LU sessions. Each conversation is

allocated a session for its own private use. When the conversation ends, the

session is free to be used by another conversation. There can only be one

conversation between any two TPs, but one TP could have multiple

conversations with different TPs.

mode

There may be a choice of many routes and paths in the network that an LU-LU

session could use. One route might be suitable for large volumes of batch data,

another might be reserved for smaller, high speed exchanges. SNA allows for

these different route types to be grouped into modes. A TP can select an

appropriate mode when it first establishes a conversation. The conversation will

flow on an LU-LU session that follows the route defined by the node.

local, remote, partner

These terms are used in many contexts. For example, you could refer to the

local system, the remote system, and the partner system. When you are at a

workstation, you regard the workstation as the local system, the machine your

workstation is communicating with is the remote system, and that remote system

is your partner. However, these terms are all relative to your point of reference,

so the remote system regards itself as being a local system with your

workstation being its remote system, and each system is a partner of the other.

 In summary, it may help you to understand these terms if you visualize a session as

being like a pipe that links LUs. When the LU inserts data into the pipe it is

inevitable that the data will be passed to the LU at the other end of the pipe. Pipes

with similar characteristics are grouped together in a mode. These pipes are

created when the systems are first initialized and SNA is started, or when a TP first

requests the use of one. Several pipes usually run in parallel between two CICS

systems. When a CICS transaction wants to hold a conversation with a transaction

on another system, it requests the use of a pipe. It is given the sole use of a pipe.

When the transaction ends, the pipe is returned to the pool and can be allocated to

the next transaction.

SNA products

CICS does not provide its own SNA support. That is, CICS does not structure the

network data flows into the SNA format, nor is it responsible for initiating the SNA

protocol when a data flow is received. These SNA functions are provided by a

Chapter 5. Configuring CICS for SNA communications 19

separate SNA product, and CICS uses the services of that product. On a

System/390 host the SNA product is VTAM, and on an AIX machine it is AIX SNA

Server/6000 (AIX SNA).

When you configure your systems, you have to configure both the CICS product

and the associated SNA product.

Preparing for SNA configuration

To establish a SNA connection, each system must:

1. Define itself to the network

2. Define the connection to its partner

3. Ensure that the remote system has a definition of the local system

You could regard the first step as the system registering its name and address with

the network; the second step as a system specifying its intended partner’s name

and address so that the network can establish a link to it; and the third step as your

partner registering your system’s name so that it will recognize your system’s

requests when it receives them.

Matching parameters

The names that are used to define system resources include the network name, LU

name, PU name, CP name and XID.

Some of these names are used as parameters when configuring the CICS product,

and others are used as parameters when configuring the SNA product. Some are

used in both products. Some are used in one product on the local system and in

another product on the remote system. When a parameter is used in more than one

place, it is important that the same name is used. That is, the parameters must

match.

Mode name

The partners must use matching mode names. Any mode may be used, but a

convenient one is the #INTER architected mode.

Alias names

Some resources (typically the LU) may have an alias or local name as well as a

real name. The alias is only used internally within a local system. The partner

system recognizes only the real name, and it is that name that must match across

the systems.

Platform specific implementation

Depending upon the particular network configurations and SNA products being

used, you may find that not all the parameters are needed. For example, the XID

may be used rather than the CP name to identify the partner. In other

circumstances when, for example, there is only one LU in the PU, the CP may have

to have the same name as the LU. You should refer to the product-specific manuals

for clarification of these points when you are ready to proceed beyond this first

basic configuration.

The scenario

In the scenario chosen for this discussion, we assume that there is an established

SNA network of interconnected CICS on System/390 systems into which we are

adding a CICS for AIX system. This chapter is written from the perspective of the

AIX systems’ administrator who connects the workstations to the mainframe host.

20 Interproduct Communication

To avoid the potential problem of duplicate names being used, and to assist

management of the network, the VTAM system administrator may act as

coordinator for the network resource names. You therefore need to agree the

network names of your workstations with the VTAM systems administrator.

Configuration details

The tables in the following sections show where the resource names are configured

in the CICS and SNA products. The information is generally given by naming the

attribute in which the resource name is specified as a parameter, and giving the

name of the definition statement or front-end panel in which that attribute appears.

If you need further information on the configuration tools used by the different

product you should refer to the product-specific manuals listed in “SNA books” on

page 70.

If the tables show that a name is specified in both CICS and the SNA product, then

the same matching name must be used in both. When a name is not defined in one

of the products, this is indicated by a dash (-).

There is not complete symmetry in the configuration details in the mainframe host

and the workstations. For example, the workstation configuration requires that it

knows the address of the mainframe host, but the mainframe is not given the

address of the workstation. This is because the workstations are regarded as the

calling system, and the mainframe the listener. This means that the session will be

initiated by the workstation calling the mainframe. Therefore the information the

workstation needs about the mainframe is different from the information the

mainframe needs about the workstation.

Mainframe host configuration

CICS on System/390 and VTAM will have already defined their network name and

LU name to the network. Table 6 shows where these names are defined in CICS on

System/390 and VTAM. Here they refer to the mainframe’s local resources. You use

these names when you later configure the workstations where they refer to the

workstation’s partner resources.

The workstations need to know the address of the mainframe host. This is a

12-character hexadecimal code assigned to the front-end processor. This code is

not used in the configuration of CICS on System/390 or VTAM and so is not shown

in the table. The network administrator will be able to tell you the address.

 Table 6. Defining local resources to CICS on System/390 and VTAM.

CICS on System/390 VTAM

Network name - NETID= attribute in VTAM startup

procedure

LU name APPLID= attribute in the SIT The label on the APPL statement

that defines CICS to VTAM

Defining the workstations to CICS on System/390 and VTAM

You now have to agree with the CICS and VTAM system administrator on the

resource names that you use for your workstations. The workstations have to be

defined to CICS on System/390 and VTAM so that CICS on System/390 recognizes

and accepts session initiation requests from them. For each workstation the system

administrator creates a new CONNECTION definition in CICS, and new PU, LU,

and MODEENT definition statements in VTAM.

Chapter 5. Configuring CICS for SNA communications 21

Table 7 shows where the LU, PU, CP and XID names are defined. Remember that

these are the names of the mainframe’s partner resources. You use these same

names when configuring the workstations, where they refer to those workstation’s

local resources (see Table 8).

 Table 7. Defining the workstation to CICS Transaction Server and VTAM.

CICS on System/390 VTAM

LU name NETNAME attribute in the

CONNECTION definition

The label on the LU statement

PU name - The label on the PU statement

CP name - CPNAME= attribute in the PU

statement

XID - IDBLK= and IDNUM= attributes in

the PU statement

Mode MODENAME attribute in the

SESSIONS definition

LOGMODE= attribute in the

MODEENT statement

Note: The workstation is in the same network as the mainframe, and so the network name

it uses is the same as that defined to VTAM in Table 6 on page 21.

AIX machine configuration

To configure the AIX machine, you must:

1. Define it to the network

2. Define a connection to its partner

AIX is a versatile platform and offers many ways of connecting CICS to the

network. The AIX SNA product can be in a different machine from the CICS for AIX

product. It can be using an Encina PPC Gateway, with CICS using TCP/IP to

communicate with the gateway before gaining access to the SNA network. The

machines can be in different networks. The example shown here describes the

basic case of a single machine, that is running both CICS for AIX and AIX SNA,

and that is in the same network as the mainframe.

Defining the AIX machine to the network

Table 8 shows where the local resources are defined to CICS for AIX and AIX SNA.

You use the names you have previously agreed with the mainframe system

administrator that are shown in Table 7.

 Table 8. Defining local resources in CICS for AIX and AIX SNA

CICS for AIX AIX SNA

Network name LocalNetworkName= attribute in

the Region Definition

Local network name attribute in the

Initial Node Setup panel

LU name LocalLUName= attribute in the

Region Definition

Local LU name attribute in the Add

LU 6.2 Local LU Profile and the

Side Information Profile panels

CP name - control point name attribute in the

Initial Node Setup panel

XID - XID node ID attribute in the Initial

Node Setup panel

Mode DefaultSNAModeName= attribute in

the Communication Definition

Profile name attribute in the Add

LU 6.2 Mode Profile panel

22 Interproduct Communication

Defining the connection to CICS on System/390

Table 9 shows how you define the connection to the mainframe. All you have to

provide is the LU name (which is effectively the name of the CICS on System/390

system), and the hardware address.

 Table 9. Defining the connection to CICS on System/390

CICS for AIX AIX SNA

LU name RemoteLUName attribute in the

Communications Definition

Fully qualified partner LU name

attribute in the Add LU 6.2 Partner

LU Profile panel

Address - Link address attribute in Link

station information in the Initial

Node Setup panel

Configuring CICS for SNA—next steps

This chapter shows what has to be done to configure your workstations for SNA

communications. Only information on the logical connections has been given. You

need to add information on the particular physical connections you are using (such

as whether you are using a Token Ring or Ethernet LAN, or a SDLC connection to

the mainframe).

The CICS on Open Systems Intercommunication Guide gives complete

configuration examples for various types of connections.

As stated in the introduction, your first aim must be to configure a basic setup and

test it with a simple application. For instance:

v APING is the APPC equivalent of the TCP/IP PING program. It can be used

independently of CICS as a stand-alone APPC application and so will test the

configuration of your SNA products.

v The CICS Server ISC PING Transaction is available as SupportPac™ CC02 at

this web site:

www.ibm.com/software/ts/cics/txppacs/cc02.html

Only after you are satisfied that you have a working APPC link should you expand

the configuration to include your own applications.

Chapter 5. Configuring CICS for SNA communications 23

http://www.ibm.com/software/ts/cics/txppacs/cc02.html

24 Interproduct Communication

Part 2. CICS intercommunication functions

This part describes the CICS intercommunication functions. The information is

intended for planners and analysts, and as an introduction for programmers.

This part includes the following chapters:

v Chapter 6, “Introduction to the CICS intercommunication functions,” on page 27

v Chapter 7, “Function shipping,” on page 31

v Chapter 8, “Transaction routing,” on page 39

v Chapter 9, “Distributed program link,” on page 47

v Chapter 10, “Asynchronous processing,” on page 51

v Chapter 11, “Distributed transaction programming,” on page 59

© Copyright IBM Corp. 1992, 2005 25

26 Interproduct Communication

Chapter 6. Introduction to the CICS intercommunication

functions

This chapter gives a simple description of the CICS intercommunication functions.

In “Summary of CICS intercommunication functions,” the figures and explanations

deliberately gloss over technical details, but present the functions as seen by an

application programmer. The important point is that function shipping, asynchronous

processing, transaction routing, and distributed program link (DPL) are powerful

distributed functions that are transparent to the application programmer. Applications

can access local or remote resources and programs entirely under the control of

definitions created by the systems programmer.

Distributed transaction programming is a more complex facility and application

programmers need to be aware that a dialog is taking place with a remote

transaction. The program logic must react to the current state of the dialog.

“Which intercommunication function?” on page 29 gives some guidelines for the

selection of the correct intercommunication function for particular requirements.

Summary of CICS intercommunication functions

As an introduction for new CICS users, this section presents deliberately simplified

definitions of the CICS intercommunication functions.

Function shipping

A program in system CICSA accesses resources (such as files or transient data

queues) that are owned by remote system CICSB as though they were locally

owned. The diagram shows a data-access request.

EXEC CICS READ

Program

Data

CICSA CICSB

response

resource access

request

Asynchronous processing is an example of function shipping that does not access

data – the shipped request is an EXEC CICS START command for a remote

transaction.

Transaction routing

A terminal attached to system CICSA runs a transaction in remote system CICSB

as though it were a local transaction.

© Copyright IBM Corp. 1992, 2005 27

CICSA CICSB

response

Program

Transactiontransaction initiation

request

Terminal

Distributed program link

A program in system CICSA links a program in remote system CICSB as though it

were running in the local system.

Program

CICSA CICSB

EXEC CICS RETURN

EXEC CICS LINK
Program

Distributed transaction programming

Two programs, one in system CICSA and one in system CICSB, communicate

synchronously with each other. This dialog is called a conversation.

Program

CICSA CICSB

Program
Dialog

28 Interproduct Communication

Which intercommunication function?

To help you choose the right intercommunication function, the list below gives

typical requirements and the functions that meet them:

v A terminal user needs to run a transaction owned by a different system

than the one to which he or she is connected.

Use transaction routing.

v A transaction wants to read/write data owned by another system.

Use function shipping. However, function shipping has higher overheads than

transaction routing, so it is better to use transaction routing unless the transaction

accesses data in the local system as well as data in the remote system.

v A transaction wants to read/write IMS™ or DL/I data to which another

system has access.

Use distributed program link.

v A transaction needs to signal a remote system that it should start a named

transaction.

Use asynchronous processing.

v A transaction wants several accesses to remote data, possibly with some

processing between the accesses.

Use distributed program link if possible. This requirement can be met with

several function shipping requests, but DPL minimizes the data flows on the

network. If DPL cannot meet the whole requirement, a mixture of DPL and

function shipping is more efficient use of the network than total reliance on

function shipping.

v An application requires communication between two or more systems with

interdependent resource updates based on data exchanges.

Use distributed transaction programming.

Chapter 6. Introduction to the CICS intercommunication functions 29

30 Interproduct Communication

Chapter 7. Function shipping

This chapter contains the following topics:

v “Introduction to function shipping”

v “Transparency to application” on page 32

v “Remote resources that can be accessed” on page 32

v “How function shipping works” on page 34

v “Synchronization” on page 36

v “Function shipping examples” on page 36

Introduction to function shipping

CICS function shipping enables CICS application programs to use EXEC CICS

commands to:

v Access CICS files owned by other CICS systems by shipping file control

requests.

v Transfer data to or from transient data and temporary storage queues in other

CICS systems by shipping requests for transient data and temporary storage

functions.

v Initiate transactions in other CICS systems, or other non-CICS systems that

implement SNA LU Type 6 protocols, such as IMS, by shipping START requests.

This form of communication is described in Chapter 10, “Asynchronous

processing,” on page 51.

An illustration of a shipped file control request is given in Figure 2. In this figure, a

transaction running in a CICS system, CICA, issues a file control READ command

against a file called NAMES. From the resource definition table, CICA discovers that

this file is owned by a remote CICS system called CICB. CICA changes the READ

request into a suitable transmission format, and then ships it to CICB for execution.

In CICB, the request is passed to a special transaction known as the mirror

transaction. The mirror transaction recreates the original request, issues it on

CICB, and returns the acquired data to CICA.

Remote definition
of

file
NAMES

.
EXEC CICS READ
FILE
INTO(XXXX)
.
.
.

CICA

Local definition
of

file
NAMES

CICS MIRROR
transaction
(issues READ
command and
passes data
back)

CICB

file access

request

response

(NAMES)

Figure 2. Function shipping

© Copyright IBM Corp. 1992, 2005 31

Transparency to application

An application that uses function shipping need not know the location of the

requested resources; it uses file control commands, temporary storage commands,

and so on, as if all resources are owned by the system in which the application

runs. Entries in the CICS resource definition tables allow the system programmer to

specify that the named resource is not on the local (or requesting) system but on a

remote (or owning) system.

The definition of a remote resource can include both the name by which the

resource is known in the remote system, and a different name by which it is known

locally. When the resource is requested by its local name, CICS substitutes the

remote name before sending the request. This facility is useful when resources

exist with the same name on more than one system, but each contains data

peculiar to the system on which it is located.

Application programs can use the SYSID option of various EXEC CICS commands

to name remote systems explicitly. If this option is specified, the request is routed

directly to the named system, and the resource definition tables on the local system

are not used. Using SYSID in this way destroys the program’s independence of the

resource’s location. The advantage is that any system, including the local system,

can be named in the SYSID option. The decision whether to access a local

resource or a remote one can be taken at execution time.

Remote resources that can be accessed

Function shipping requests can access the following remote resources:

v CICS file control data sets

v Temporary storage

v Transient data

v IMS and DOS DL/I databases (from CICS on System/390 systems).

CICS file control data sets

Function shipping allows access to files located on a remote CICS system. The

following EXEC CICS commands are not supported:

v INQUIRE FILE

v INQUIRE DSNAME

v SET FILE

v SET DSNAME

Both read-only and update requests are allowed. Protection of data depends on the

security facilities available to the different CICS products. Updates to remote

recoverable files are not committed until the application program issues a syncpoint

request or terminates successfully. Logically-related updates of local and remote

files can be performed within the same logical unit of work, even if the remote files

are located on more than one connected CICS system.

Care should be taken when designing systems that use remote file requests

containing physical record identifier values (examples include BDAM, VSAM RBA,

and files with keys not embedded in the record). Application programs in remote

systems must have access to the correct values following updating or

reorganization of such files.

32 Interproduct Communication

IMS databases

Function shipping allows a CICS on System/390 transaction to access IMS/ESA®

DM and IMS/VS DB databases associated with a remote CICS OS/390 system, or

DL/I for VSE/ESA databases associated with a remote CICS/VSE system.

CICS Transaction Server for Windows, CICS/400, and CICS on Open Systems

systems cannot access IMS or DL/I databases by function shipping, but can do so

by distributed program link (see Chapter 9, “Distributed program link,” on page 47).

The following discussion applies to CICS on System/390 systems only.

The IMS/ESA DM (DL/I) database associated with a remote CICS system can be a

local database owned by the remote system, or a database accessed using IMS

database control (DBCTL). To the CICS system that is doing the function shipping,

this database is simply remote.

As with file control, updates to remote DL/I databases are not committed until the

application reaches a syncpoint. In IMS/ESA DM, it is not possible to schedule more

than one PSB for a single logical unit of work, even when the PSBs are defined to

be on different remote systems. For this reason, logically-related DL/I updates on

different systems cannot be made in a single logical unit of work.

The PSB directory list (PDIR or DLZACT) is used to define a PSB as being on a

remote system. The remote system owns the database and the associated PCB

definitions. When DL/I access requests are made to another processor system by a

CICS system but no local requests are made, it is not necessary to install IMS on

the requesting system.

Temporary storage and transient data

Many of the uses made of transient data and temporary storage queues in a single

CICS system can be extended to an interconnected system environment. For

example, a queue of records can be created in a remote system for processing

overnight. Queues also provide a means of handling responses from remote

systems, while keeping local terminals free to enter other requests. A response can

be returned to a terminal when it is ready, and delivered to the operator when there

is a lull in entering transactions.

Temporary storage

Function shipping enables application programs to send data to, or retrieve data

from, temporary storage queues located on remote systems. A recoverable queue

must be defined as recoverable in its local (resource-owning) system.

Transient data

An application program can access intrapartition or extrapartition transient data

queues on remote systems. The resource definition in the requesting system

defines the named queue as being on the remote system. The queue definition in

the remote system specifies whether the queue is recoverable, and whether it has a

trigger level and associated terminal.

If a transient data destination has an associated transaction, the named transaction

must be defined to execute in the system owning the queue; it cannot be defined as

remote. If a terminal is associated with the transaction, it can be connected to

another CICS system and used through the transaction routing facility of CICS.

The remote naming capability enables a program to send data to the CICS service

destinations, such as CSMT, in both local and remote systems.

Chapter 7. Function shipping 33

How function shipping works

Two CICS components implement function shipping:

v The CICS transformer programs

v The CICS mirror transaction.

Figure 3 illustrates how these components work together.

The transformer programs

If a CICS transaction issues a request to access a resource, the command level

EXEC interface program determines whether the resource is owned by the local

CICS system. If the resource is on another system, control passes to the

function-shipping transformer program.

DL/I (EXEC DL/I or CALL DLI) requests use the DL/I interface, which also provides

part of the transformer program’s function.

A transformer program converts the request to a form suitable for transmission, and

calls the intercommunication component to send the request to the resource-owning

system.

The CICS intercommunication component sends the request to the remote system.

On the first request to a particular remote system on behalf of a transaction, the

communication component in the local system precedes the formatted request with

the mirror-transaction identifier, in order to attach this transaction in the remote

system. The local transformer program keeps track of whether the remote mirror

transaction terminates, and reinvokes it as required.

When a reply is received from the remote system, a second transformer program

decodes it. CICS uses the decoded reply to complete the original command-level

request.

The remote system uses its own transformer programs in dealing with the request

(see next section).

CICA CICB

Transformer 2Transformer 1 MirrorApplication

Function
shipping
request

Continues
processing

Codes
request

Transmits request

Receives response

Decodes
response

Invokes
transformer

Executes
request

Invokes
transformer

Returns
response

Decodes
request

Codes
response

Transformer 3
Intercomm.

Transformer 4

Figure 3. Relationship of mirror and transformers

34 Interproduct Communication

The mirror transaction

A resource-owning system passes an incoming function-shipping request to the

mirror transaction. The first request from a particular remote transaction causes the

initiation of a new instance of the mirror transaction, which uses CICS

intercommunication facilities to communicate with the requesting system.

Using a CICS transformer program, the mirror transaction decodes the formatted

request, and executes the command. On completion of the command the mirror

transaction uses a transformer program to construct a formatted reply, and returns

this to the requesting system.

The mirror transaction remains active after sending its reply to the current command

in any of the following cases:

v Execution of a future command depends on the retention of system-specific

information established during execution of the current command, for example:

 REWRITE depends on prior READ UPDATE

 READNEXT depends on prior STARTBR

v Execution of a future command may depend on the retention of

application-specific information established during execution of the current

command, for example when a recoverable resource has been updated.

v The mirror remained active after replying to a previous command for one of the

reasons above (the mirror then remains active until the end of the logical unit of

work in the requesting system).

In other cases, the mirror terminates after replying to the current command.

An active mirror always terminates when the requesting transaction issues a

synchronization request or terminates successfully. The mirror always terminates

after executing a LINK command with the SYNCONRETURN option. For a further

explanation of SYNCONRETURN, please refer to “Synchronization” on page 48.

Multiple mirrors

A transaction can access recoverable and nonrecoverable resources in any order,

and is not affected by the location of recoverable resources (they could all be in

different remote systems, for example). When a local transaction accesses

resources in more than one remote system, the intercommunication component

invokes a mirror transaction in each remote system to execute requests for the local

transaction. Each mirror transaction follows the above rules for termination, and

when the transaction reaches a synchronization point, the intercommunication

component exchanges synchronization point messages with those mirror

transactions that have not yet terminated (if any).

Chained mirrors

The mirror transaction uses the EXEC CICS interface to execute CICS requests

and the DL/I CALL or the EXEC DLI interface to execute DL/I requests. The request

is thus processed as for any other transaction and the requested resource is

located in the appropriate resource table. If its entry defines the resource as being

remote, the mirror transaction’s request is formatted for transmission and sent to

the specified remote system, which activates its own mirror transaction. This is

called a chained-mirror.

Chapter 7. Function shipping 35

Synchronization

CICS recovery and restart facilities ensure that when the requesting transaction

reaches a synchronization point, any mirror transactions that are updating

recoverable resources also take a synchronization point, so that changes to

recoverable resources in remote and local systems are consistent. The CICS

master terminal (or, with CICS/400, the control region) receives notification of any

failures in this process, so that suitable corrective action can be taken. This action

can be taken manually or by user-written code.

When a transaction issues a synchronization point request, or terminates

successfully, the intercommunication component sends a message to the mirror

transaction that causes it also to issue a synchronization point request and

terminate. The successful synchronization point by the mirror transaction is

indicated in a response sent back to the requesting system, which then completes

its synchronization point processing, so committing changes to any recoverable

resources.

Function shipping examples

Figure 4 and Figure 5 on page 37 give examples to illustrate the lifetime of the

mirror transaction.

System A

ApplicationTransaction
.
.

EXEC CICS READ
FILE('RFILE')
...

Free session. Reply is
passed back to the
application, which
continues processing.

System B

Attach mirror transaction.
Process READ request.

Free session. Terminate
mirror.

Transmitted Information

'READ' request

'READ' Reply, Last

Figure 4. Function shipping—simple inquiry. Here, no resource is being changed; the session is freed and the mirror

task is terminated immediately.

36 Interproduct Communication

In Figure 5 the mirror is long-running.

System A

ApplicationTransaction
.
.

EXEC CICS READ UPDATE
FILE('RFILE')

.

.

.
Reply passed to application

.

.
EXEC CICS REWRITE
FILE('RFILE')

Reply passed to application
.
.
.

EXEC CICS SYNCPOINT

Sync point completed.
Application continues.

System B

Attach mirror transaction.

Perform READ UPDATE.
Enqueue on update record.
Mirror waits.

Mirror performs REWRITE.

Mirror waits, still holding the
enqueue on the updated record.

Mirror takes syncpoint.
commits the record, releases
the enqueue, frees the
session, and terminates.

Transmitted Information

'READ UPDATE' request

'READ UPDATE' reply

'REWRITE' request

'REWRITE' reply

'SYNCPOINT' request,last

positive or negative response

Figure 5. Function shipping—update. Because the mirror must wait for the REWRITE, it does not terminate until

SYNCPOINT is received. Note that the enqueue on the updated record would not be held beyond the REWRITE

command if the file was not recoverable.

Chapter 7. Function shipping 37

38 Interproduct Communication

Chapter 8. Transaction routing

This chapter contains the following topics:

v “Introduction to transaction routing”

v “Initiating transaction routing” on page 40

v “The relay program” on page 43

v “Basic mapping support” on page 44

v “The routing transaction (CRTE)” on page 44

Introduction to transaction routing

CICS transaction routing allows terminals connected to one CICS system to run

with transactions in another, connected, CICS system. This means that you can

distribute terminals and transactions around your CICS systems and still have the

ability to run any transaction with any terminal.

Figure 6 shows a terminal connected to one CICS system running with a user

transaction in another CICS system. Communication between the terminal and the

user transaction is handled by a CICS-supplied transaction called the relay

transaction.

Two different CICS products must be connected by an LU6.2 link. Transaction

routing over LU6.1 links is not supported.

In transaction routing, the term terminal is used in a general sense to mean such

things as an IBM 3270, or a single-session APPC device, or an APPC session to

another CICS system, and so on. All terminal and session types supported by

CICS on System/390 are eligible for transaction routing, except those given in the

following list:

v LUTYPE6.1 connections and sessions

v Pooled 3600 or 3650 pipeline logical units

v MVS™ system consoles.

CICS Transaction Server for Windows, CICS/400, and CICS on Open Systems

support minimum BMS. (They support SEND TEXT.) Only CICS on System/390

systems support batch data interchange, standard BMS, and full BMS. Depending

on these product capabilities, a user transaction can use CICS terminal control,

BMS, or batch data interchange facilities to communicate with the terminal, as

appropriate for the terminal or session type. Mapping and data interchange

functions are performed in the application-owning system (CICS B in Figure 6).

BMS paging operations are performed in the terminal-owning system (CICS A in

Figure 6).

CICSA CICSB

LU6.2

User
Transaction

CICS Relay
Transaction

Terminal

Figure 6. The elements of transaction routing

© Copyright IBM Corp. 1992, 2005 39

Pseudoconversations are supported (except when the terminal is an APPC

session), and the various transactions that make up a pseudoconversation can be

in different systems.

Initiating transaction routing

Transaction routing can be initiated in the following three ways:

1. A terminal sends a request to the CICS terminal-owning system to start a

transaction. On the basis of an installed resource definition for the transaction

(and possibly, in CICS on System/390 and CICS Transaction Server for

Windows, on decisions made by a user-written dynamic routing program) the

request is routed to an appropriate transaction-owning system, and the

transaction runs as if the terminal were attached to the transaction-owning

system.

2. A transaction started by automatic transaction initiation (ATI) acquires a terminal

that is owned by another CICS system.

3. A CICS on System/390 transaction issues an ALLOCATE command for a

session to an APPC terminal or connection that is owned by another CICS

system.

4. The CICS-supplied transaction CRTE is used to invoke transactions in other

systems. See “The routing transaction (CRTE)” on page 44.

Terminal-initiated transaction routing

When a terminal requests transaction initiation, CICS examines the installed

transaction definition. If the transaction is defined with a remote system named in

the REMOTESYSTEM option (or REMOTESYSID in CICS on Open Systems),

CICS initiates the relay transaction, which passes control to the relay program to

drive transaction routing.

Static transaction routing

Static transaction routing is a term used to distinguish standard transaction routing

from dynamic transaction routing. In CICS/400, all transaction routing is static. In

CICS on System/390 and CICS on Open Systems, static transaction routing occurs

when DYNAMIC(NO) is specified in the transaction definition.

In static transaction routing, the request is routed to the system named in the

REMOTESYSTEM option. If REMOTESYSTEM is unspecified, or if it names the

local CICS system, the transaction is a local transaction, and transaction routing is

not involved.

Dynamic transaction routing

Dynamic transaction routing allows a user-written program to select the system to

which a transaction routing request is to be directed. Dynamic transaction routing is

provided by CICS on System/390, CICS on Open Systems, and CICS Transaction

Server for Windows. The implementations are different (see following descriptions).

CICS/400 does not support dynamic transaction routing.

CICS on System/390 and CICS on Open Systems: In a CICS on System/390 or

CICS on Open Systems system, you can use the DYNAMIC option when defining a

transaction. This includes a remote definition of a CICS Transaction Server for

Windows or CICS/400 transaction.

Specifying DYNAMIC(YES) means that you want the opportunity to route the

terminal data to an alternative transaction at the time the defined transaction is

invoked. CICS enables this by allowing a user-supplied program, called the

40 Interproduct Communication

dynamic transaction routing program, to examine the terminal input data and

redirect it to any transaction and system it chooses. In CICS on System/390, this

program has the default name of DFHDYP, but an alternative name may be defined

by using the DTRPGM system initialization parameter.

Parameters are passed in a communications area between CICS and the routing

program. The program may change some of these to influence subsequent CICS

action. For example, in CICS on System/390, some of the parameters are:

v Invocation reason. The routing program can be reinvoked after an unsuccessful

routing attempt or when the target transaction has terminated.

v Error information.

v The SYSID of the target system. Initially, the one specified on the

REMOTESYSTEM option for the installed transaction (or REMOTESYSID in

CICS on Open Systems).

v The name of the target transaction. Initially, the name specified on the

REMOTENAME option for the installed transaction.

v A pointer to a data area containing the initial input data from the terminal.

The dynamic transaction routing program can issue most EXEC CICS commands.

Dynamic transaction routing enables you to make transaction routing decisions

based on such factors as input to the transaction, available CICS systems, relative

loading of the available systems, and so on.

CICS Transaction Server for Windows: CICS Transaction Server for Windows

provides a user exit in which a user program can change the target system of a

transaction routing request. This exit can also change the target system for any

shipped function request and provide a target system for a transaction not defined

in the local system.

The exit, if defined, is called before processing any of the following:

v An undefined transaction code

v A transaction routing request

v A function shipping request

v A DPL request

v Any command with a SYSID option.

Shipping terminal definitions

Terminals defined as shippable do not need a definition in the transaction-owning

system. If necessary to support transaction routing, the terminal-owning system

sends the terminal definition to the transaction-owning system.

Automatic transaction initiation

Automatic transaction initiation (ATI) is the process whereby a transaction request

made internally within a CICS system or systems network leads to the scheduling of

the transaction.

An ATI request can cause the initiation of a transaction in a remote system (see

Figure 7 on page 43).

ATI also allows a request for a transaction owned by a particular CICS system to

name a terminal that is owned by another, connected system (see Figure 7).

Although the original ATI request occurs in the application-owning system, it is sent

Chapter 8. Transaction routing 41

by CICS to the terminal-owning system, where it causes the relay transaction to be

initiated in conjunction with the specified terminal.

The user transaction in the application-owning system is then initiated as described

on page 40 for terminal-initiated transaction routing, with one important difference.

The extra factor in this case is the AID (automatic initiate descriptor) associated with

an ATI request. The AID specifies the names of the remote transaction and system,

(P1 and S1 in Figure 7). In Figure 7, the terminal-owning system (S2) must find a

transaction definition that specifies REMOTENAME (P1) and REMOTESYSTEM

(S1) (or REMOTESYSID on CICS on Open Systems).

In a CICS on System/390 system, an alternative to REMOTESYSTEM is

DYNAMIC(YES). In CICS/VSE and CICS Transaction Server for VSE/ESA, if

DYNAMIC(YES) is coded, the dynamic routing program is not driven and the

remote system name is taken from the AID. In CICS Transaction Server for OS/390

and CICS Transaction Server for z/OS, if DYNAMIC(YES) is coded, the dynamic

routing program is driven, but the remote system name is still taken from the AID;

the routing program can do other things—for example, update counts of requests

routed to various remote systems.

In summary, if S2 finds a transaction definition that specifies REMOTENAME (P1)

and either REMOTESYSTEM (S1) or DYNAMIC(YES), the START command is

routed back to S1; otherwise the START command is rejected.

ATI requests are queued:

v If the link to the terminal-owning system is not available, in the

application-owning system.

v If the terminal is not available, in the terminal-owning system.

The overall effect is to create a “single-system” view of ATI as far as the

application-owning system is concerned; the fact that the terminal is remote does

not affect the way in which ATI appears to operate.

In the transaction-owning system, the normal rules for ATI apply. The transaction

can be initiated from a transient data queue when the trigger level is reached, or on

expiry of an interval control START request. Note particularly that, for transient data

initiation, the transient data queue must be in the same system as the transaction.

Figure 7 on page 43 shows an example of ATI involving three systems:

S0 The initiating system

S1 The transaction-owning system

S2 The terminal-owning system.

42 Interproduct Communication

Terminal definitions not shipped with ATI requests

As mentioned in “Shipping terminal definitions” on page 41, CICS ships a copy of

the terminal definition to the transaction-owning system when necessary to support

transaction routing. This definition is available for use with ATI requests received

subsequently by the transaction-owning system.

However, terminal definitions are not shipped at the time an ATI request is

received. If an ATI request names a terminal not already known in the

transaction-owning system, the terminal-not-known condition occurs.

User exits for terminal-not-known condition: In CICS on System/390 systems

only, two global user exits, XALTENF and XICTENF, help you to deal with the

terminal-not-known condition.

The relay program

When a terminal operator enters a transaction code, and CICS determines that the

transaction is in a remote system, a local relay transaction is attached to execute a

CICS-supplied program known as the relay program. The relay program provides

the communication mechanism between the terminal and the remote transaction.

Note that in CICS on Open Systems, the relay is a function running in a shared

library.

Although CICS determines the program to be associated with the relay transaction,

the user’s definition for the remote transaction determines the other attributes of the

relay transaction. These are usually those of the “real” transaction in the remote

system.

When the relay transaction is attached, it acquires an intersystem session and

sends a request to the application-owning system, to cause the “real” user

transaction to be started. In the application-owning system, the terminal is

represented by a control block known as the surrogate TCTTE (in CICS on Open

Systems, terminal surrogate). This TCTTE becomes the transaction’s principal

START
TRANSID(P1)
SYSID(S1)
TERMID(T2)

Determines
that T2 is
owned by S2 ,
sends request
to S2

Initiates
transaction

Checks for
transaction
defined with
REMOTENAME
(P1)
and initiates
relay program

T2

Initiating
system

Transaction-
owning system

Terminal-
owning system
S2S1S0

Asynchronous

processing

request

Transaction

routing

request

Function

shipped

ATI request

P1

Figure 7. Automatic transaction initiation involving three CICS systems

Chapter 8. Transaction routing 43

facility, and is indistinguishable by the transaction from a “real” terminal entry. If the

transaction issues a request to its principal facility, the request is shipped back to

the relay transaction over the intersystem session. The relay transaction then issues

the request or output to the terminal. In a similar way, terminal status and input are

shipped through the relay transaction to the user transaction.

Automatic transaction initiation is handled in a similar way. If a transaction that is

initiated by ATI requires a terminal that is connected to another system, a request to

start the relay transaction is sent to the terminal-owning system. When the terminal

is free, the relay transaction is connected to it.

The relay transaction remains in existence for the life of the user transaction and

has exclusive use of the session to the remote system during this period. When the

user’s transaction terminates, an indication is sent to the relay transaction, which

terminates and frees the terminal and the intersystem session.

Basic mapping support

CICS Transaction Server for Windows, CICS on Open Systems, and CICS/400

support only the minimum level of BMS. (They support SEND TEXT.)

The mapping operations of BMS are performed in the system on which the user’s

transaction is running; that is, the application-owning system. The mapped

information is routed between the terminal and this transaction via the relay

transaction, as for terminal control operations.

When transaction routing with BMS, you should be aware of the limitations of BMS,

and of the possible different levels of support in the application owning region and

the terminal owning region when they are running on CICS systems on different

platforms.

The routing transaction (CRTE)

The routing transaction (CRTE) is a CICS-provided transaction that enables a

terminal operator to invoke transactions that are owned by a connected CICS

system. It differs from normal transaction routing in that the remote transactions do

not have to be defined in the local system. However, the terminal through which

CRTE is invoked must be defined on the remote system (or defined as “shippable”

in the local system), and the terminal operator needs security authorization if the

remote system is protected. For the security support available, see the CICS

Intercommunication manual for each product.

CRTE can be used from any 3270 display device.

To use CRTE, the terminal operator enters:

CRTE SYSID=xxxx

where xxxx is the local name of the remote system. The transaction then indicates

that a routing session has been established, and the user enters input of the form:

yyyyzzzzzz

where yyyy is the name by which the required remote transaction is known on the

remote system, and zzzzzz is the initial input to that transaction. Subsequently, the

44 Interproduct Communication

remote transaction can be used as if it had been defined locally and invoked in the

ordinary way. All further input is directed to the remote system until the operator

terminates the routing session.

In secure systems, operators are normally required to sign on before they can

invoke transactions. The first transaction that is invoked in a routing session is

therefore usually the sign-on transaction CESN; that is, the operator signs on to the

remote system. The use of CRTE itself can also be restricted by security.

Although the routing transaction is implemented as a pseudoconversational

transaction, the terminal from which it is invoked is held by CICS until the routing

session is terminated. Any ATI requests that name the terminal are therefore

queued until the CANCEL command is issued.

The CRTE facility is particularly useful for invoking the master terminal transaction,

CEMT, on a particular remote system. It is an alternative to installing a definition of

the remote CEMT in the local system. CRTE is also useful for testing remote

transactions before final installation.

Chapter 8. Transaction routing 45

46 Interproduct Communication

Chapter 9. Distributed program link

This chapter contains the following topics:

v “Introduction to DPL”

v “Why use DPL?”

v “Synchronization” on page 48

v “DL/I and SQL databases” on page 48

v “Restrictions when using DPL” on page 48

v “Abends when using DPL” on page 49

Introduction to DPL

When a CICS application program issues an EXEC CICS LINK command, control

passes to a second program, named in the command. The second program

executes and, when it completes, control returns to the first program at the

instruction following the LINK command. The linked-to program can return data to

the linking program if the LINK command has used the COMMAREA option to pass

the address of a communication area.

Distributed program link (DPL) extends the use of the EXEC CICS LINK command

so that the linking and linked-to programs can be in different CICS systems. The

systems can be copies of the same CICS product or of different CICS products.

In certain circumstances, the use of DPL can improve performance by reducing the

number of data flows between connected CICS systems.

You can specify that the linked program is to run on a connected CICS system by

coding the SYSID option in the LINK command, or by specifying the remote system

name in the local definition of the program.

In Figure 8, program A links to a program B, which is in a different CICS system.

The arrowed line represents the flow of control. To program A, program B appears

as a called subroutine.

Why use DPL?

The following are some reasons why you use might use DPL:

EXEC CICS
RETURN

CICS system

Program B

EXEC CICS
LINK

CICS system

Program A

Figure 8. Distributed program link

© Copyright IBM Corp. 1992, 2005 47

v To separate the end-user interface (for example, BMS screen handling) from the

application business logic (for example, accessing and processing data). This

makes it easier to port part of an application between systems; an example

would be moving the end-user interface from a 370/390 system to a workstation.

v To obtain performance benefits from running programs closer to the resources

they access, reducing the need for function shipping requests.

v Where applicable, to provide a simpler solution than distributed transaction

programming (DTP).

Synchronization

DPL provides two ways to handle synchronization:

1. If you code SYNCONRETURN, the linked-to program commits its resource

updates immediately before returning control to the linking program. There are

separate units of work in the two communicating systems.

The linked-to program may take one or more syncpoints during its execution.

However, the response the linking program is given (which may be Normal or

Rollback) corresponds to the outcome of the syncpoint taken by CICS on return

from the linked-to program, and does not relate to the outcome of any of the

syncpoints the linked-to program may have initiated.

2. If you do not code SYNCONRETURN, the linking program initiates commitment

in both systems, either by issuing a SYNCPOINT command or implicitly at task

end.

Data integrity considerations govern the decision whether or not to use the

SYNCONRETURN option.

DL/I and SQL databases

DPL is an easy way for a CICS Transaction Server for Windows, CICS on Open

Systems, or CICS/400 application program to access DL/I and SQL databases and

BDAM files on a remote CICS system. The program simply links to an application

program (in the data-owning system) that reads and updates the databases or files.

Another way to access this data is to use distributed transaction programming

(DTP) as described in Chapter 11, “Distributed transaction programming,” on page

59. DTP is more difficult and therefore more costly to develop, but, if well designed,

should be more efficient in use.

Restrictions when using DPL

There are a number of restrictions on the programs that you can link to using DPL.

You should not link to programs that issue syncpoints (unless SYNCONRETURN is

coded in the LINK command). See “Taking syncpoints” on page 64.

Because there is no terminal involved, you should not link to programs that issue:

v Terminal control commands to the system in which the linking program is running

v Commands that inquire on terminal attributes (such as ASSIGN commands)

v BMS commands

v Batch data interchange commands

v Commands that address the TCTUA (programs can use the communication area

to pass data).

48 Interproduct Communication

For DPL between any combination of CICS products, the maximum recommended

length of a communications area is 32500 bytes.

Abends when using DPL

If the linked-to program terminates abnormally, the mirror transaction returns the

last abend code to the linking system. The abend code returned is the last abend

to occur in the linked-to program, which may have handled other abends before

terminating.

Chapter 9. Distributed program link 49

50 Interproduct Communication

Chapter 10. Asynchronous processing

This chapter contains the following topics:

v “Introduction to asynchronous processing”

v “Example” on page 52

v “Asynchronous processing methods” on page 52

v “Asynchronous processing using START/RETRIEVE commands” on page 53

v “System programming considerations” on page 56

v “Asynchronous processing example (with NOCHECK)” on page 57

Introduction to asynchronous processing

Asynchronous processing is a way of distributing the processing of an application

between connected systems. In contrast to distributed transaction programming, the

processing is asynchronous.

In distributed transaction programming, a session is held by two transactions for the

period of a “conversation” between them, and requests and replies (if any) can be

directly correlated.

In asynchronous processing, requests and replies are transmitted on different

sessions. No processing dependency exists between a request and a reply, and no

assumptions are made about the timing of the reply. The differences between

synchronous and asynchronous processing are illustrated in Figure 9. The starting

of TRAN4 can be time-dependent and can be delayed by scheduling constraints in

System B.

In general, asynchronous processing is applicable to any situation in which it is not

necessary or desirable to tie up local resources while a remote request is being

processed.

Asynchronous processing is not suitable for applications that require synchronized

changes to local and remote resources; for example, it cannot be used to process

concurrent logically-related updates to data in different systems.

Synchronous Processing (DTP)

TRAN1 andTRAN2 hold synchronous
conversation on session.

Asynchronous Processing

TRAN3 initiatesTRAN4 and sends
request. At a later time,TRAN4
initiatesTRAN5 and sends reply
No direct correlation between
executions ofTRAN3 andTRAN5.

Note: TRAN4 could be designed
to request a new invocation
ofTRAN3.

TRAN4

TRAN2TRAN1

TRAN3

TRAN5

System A System B

Figure 9. Synchronous and asynchronous processing compared

© Copyright IBM Corp. 1992, 2005 51

Note that, in Figure 9 on page 51, any changes made by the synchronous

transactions TRAN1 and TRAN2 can be co-ordinated for recovery purposes; any

changes made by the asynchronous transactions TRAN3, TRAN4, and TRAN5

cannot.

Example

A typical asynchronous processing application is online inquiry on remote

databases; for example, a credit rating check application. A terminal operator uses a

local transaction to enter a succession of inquiries without waiting for replies. For

each inquiry, the local transaction initiates a remote transaction to process the

request, so that many copies of the remote transaction can be executing

concurrently. The remote transactions send their replies by initiating a local

transaction (possibly the same transaction) to deliver the output to the operator

terminal. The replies may not arrive in the same order as the inquiries were issued;

correlation between the inquiries and the replies must be made by means of fields

in the user data.

Asynchronous processing methods

In CICS, asynchronous processing can be done in two ways:

1. By using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote system

in much the same way as you would in a single CICS system. This type of

asynchronous processing is essentially a form of CICS function shipping, and as

such, is usually transparent to the application. CICS recognizes that a

transaction is remote in one of two ways:

v The transaction resource definition specifies that it is remote

v The START command includes the SYSID option to specify a remote CICS

system.

A CICS transaction that is initiated by a remotely-issued start request can use

the RETRIEVE command to retrieve any data associated with the request. Data

transfer is restricted to a single record passing from the initiating transaction to

the initiated transaction.

A CICS transaction can use the EXEC CICS ASSIGN STARTCODE command

to determine how it was initiated.

Asynchronous processing is more fully discussed under “Asynchronous

processing using START/RETRIEVE commands” on page 53.

2. By using distributed transaction programming (DTP), a cross-system method

with no single-system equivalent.

When you use DTP to attach a remote transaction, you also allocate a session

and start a conversation. This permits you to send data directly and, if you want,

to receive data from the remote transaction. Your transaction design determines

the format and volume of the data you exchange. For example, you can use

repeated SEND commands to pass multi-record files. However short the

conversation, during the time it is in progress, the processing is synchronous.

Error recovery and syncpoint functions are available using the normal DTP

commands.

When you have exchanged data, you terminate the conversation and quit the

local transaction, leaving the remote transaction to continue processing

asynchronously.

DTP can be used for CICS—non-CICS communication, as well as for

CICS—CICS communication.

52 Interproduct Communication

If data conversion is required, the DTP application must contain logic to handle

this.

Distributed transaction programming is more fully discussed under Chapter 11,

“Distributed transaction programming,” on page 59.

Asynchronous processing using START/RETRIEVE commands

The interval control commands that can be used for asynchronous processing are:

v START

v CANCEL

v RETRIEVE.

Starting and canceling remote transactions

The interval control START command is used to queue a transaction-initiation

request in a remote CICS system. The command is effectively function shipped. In

the remote system, the mirror transaction is invoked to issue the START command.

You can include time-control information on the shipped START command, using

the INTERVAL or TIME option. Before a command is shipped, a TIME specification

is converted by CICS to a time interval relative to the local clock. If the ends of a

link are in different time zones, use the INTERVAL option.

The time interval specified in a START command is the time at which the remote

transaction is to be initiated, not the time at which the request is to be shipped to

the remote system.

A START command shipped to a remote CICS system can be canceled, before the

expiry of the time interval, by shipping a CANCEL command to the same system.

The START command to be canceled is uniquely identified by the REQID value

specified on the START command and on the associated CANCEL command. Any

task can issue the CANCEL command.

Passing information with the START command

The START command has a number of options that enable information to be made

available to the remote transaction when it is started. If the remote transaction is in

a CICS system, the information is obtained by using the RETRIEVE command. The

information that can be specified is summarized in the following list:

v User data specified in the FROM option. This is the principal way in which data

can be passed to the remote transaction.

v Additional user data can be located by using the QUEUE option, which could (for

example) identify a temporary storage queue.

v A terminal name—specified in the TERMID option. This is the name of a terminal

that is to be associated with the remote transaction when it is initiated. If a

terminal is defined in the system that owns the remote transaction but is not

owned by that system, it is acquired by transaction routing. This is illustrated in

Figure 7 on page 43.

In a CICS on System/390 system, the global user exits XICTENF and XALTENF

can be coded to cover the case where the terminal is not defined in the

application-owning system.

v The transaction name and terminal name to be used for replies—specified in the

RTRANSID and RTERMID options. These options provide a means for the

remote transaction to pass a reply to the local system. (That is, the TRANSID

Chapter 10. Asynchronous processing 53

and TERMID specified by the remote transaction on its reply are the RTRANSID

and RTERMID specified by the local transaction on the initial request.)

Passing an APPLID with the START command

If you have a transaction that can be started from several different systems, and

that is required to issue a START command to the system that initiated it, you can

arrange for each invoking transaction to send its local system APPLID as part of the

user data in the START command. A transaction can obtain its local APPLID by

using an ASSIGN APPLID command.

Improving performance of intersystem START requests

In some inquiry-only applications, sophisticated error-checking and recovery

procedures may not be justified. When the transactions make inquiries only, the

terminal operator can retry an operation if no reply is received within a specific time.

In such a situation, the number of data flows to and from the remote system can be

substantially reduced by using the NOCHECK option of the START command.

When the connection between the two systems is through VTAM, this can result in

considerably improved performance. The trade-off is between performance and

sophisticated recovery procedures.

A typical use for the START NOCHECK command is in the remote inquiry

application described in “Example” on page 52.

The transaction attached as a result of the terminal operator’s inquiry issues an

appropriate START command with the NOCHECK option, which causes a single

message to be sent to the appropriate remote system to start, asynchronously, a

transaction that makes the inquiry. The command should specify the operator’s

terminal identifier. The transaction attached to the operator’s terminal can now

terminate, leaving the terminal available for either receiving the answer or initiating

another request.

The remote system performs the requested inquiry on its local database, then

issues a start request for the originating system. This command passes back the

requested data, together with the operator’s terminal identifier. Again, only one

message passes between the two systems. The transaction that is then started in

the originating system must format the data and display it at the operator’s terminal.

If a system or session fails, the terminal operator must reenter the inquiry, and be

prepared to receive duplicate replies. To aid the operator, either a correlation field

must be shipped with each request, or all replies must be self-describing.

An example of intercommunication using the NOCHECK option is given in Figure 10

on page 57.

The NOCHECK option is always required when shipping of the START command is

queued pending the establishment of links with the remote system (see “Local

queuing of START commands for remote transactions” on page 55).

Including start request delivery in a logical unit of work

The delivery of a start request to a remote system can be made part of a logical

unit of work by specifying the PROTECT option on the START command. The

PROTECT option indicates that the remote transaction must not be scheduled until

the local one has successfully completed a synchronization point. (It can take the

synchronization point either by issuing a SYNCPOINT command or by terminating.)

54 Interproduct Communication

Successful completion of the syncpoint guarantees that the start request has been

delivered to the remote system. It does not guarantee that the remote transaction

has completed, or even that it will be initiated.

Deferred sending of START requests with NOCHECK option

For START commands with the NOCHECK option, CICS defers transmission of the

request to the remote system.

START requests with NOCHECK are deferred until one of the following events

occurs:

v The transaction issues a syncpoint.

v The transaction terminates with an implicit syncpoint.

v The transaction issues any other type of function shipping request—for example,

a WRITE TS, or a START without the NOCHECK option.

v A sufficient number of START NOCHECK requests for the same remote system

have accumulated on the local system to make transmission efficient.

There are exceptions to the above rules:

v In CICS on System/390 MRO intercommunication, START commands with

NOCHECK are not deferred.

v In CICS on Open Systems, a START NOCHECK with the PROTECT option

causes the buffer to be flushed.

The first, or only, start request transmitted from a transaction to a remote system

carries the begin-bracket indicator; the last, or only, request carries the end-bracket

indicator. Also, if any of the start requests issued by the transaction specifies

PROTECT, the last request carries the syncpoint-request indicator. Deferred

sending allows the indicators to be added to the deferred data, and thus reduces

the number of transmissions required. The sequence of requests is transmitted

within a single SNA bracket and all the requests are handled by the same mirror

task.

Local queuing of START commands for remote transactions

When a local transaction is ready to ship a START command, the intersystem

facilities may be unavailable, either because the remote system is not active or

because a connection cannot be established. The normal CICS action in these

circumstances is to raise the SYSIDERR condition. This can be avoided by using

the NOCHECK option, and arranging for CICS to queue the request locally and

forward it when the required link is in service.

If the required connection is out of service, CICS queues a START NOCHECK

command for a remote transaction when two conditions are satisfied:

1. The SYSID option is not coded in the START command

2. The local definition of the transaction specifies LOCALQ(YES).

CICS on System/390 products support the XISLCLQ global user exit, which allows

flexibility by enabling a user-written program to make a decision about local

queueing, overriding the LOCALQ option.

Data retrieval by a started transaction

A CICS transaction that is started by a start request can get user data and other

information associated with the request by using the RETRIEVE command.

Chapter 10. Asynchronous processing 55

In accordance with the normal rules for interval control, CICS queues a start

request for a transaction that carries both user data and a terminal identifier if the

transaction is already active and associated with the same terminal. During the

waiting period, the data associated with the queued request can be accessed by

the active transaction by using a further RETRIEVE command. Such an access

automatically cancels the queued start request.

Thus, it is possible to design a transaction that can handle the data associated with

multiple start requests. Typically, a long-running transaction could be designed to

accept multiple inquiries from a terminal and ship start requests to a remote system.

From time to time, the transaction could issue RETRIEVE commands to receive the

replies, the absence of further replies being indicated by the ENDDATA condition.

The WAIT option of the RETRIEVE command can be used to put the transaction

into a WAIT state pending the arrival of the next start request from the remote

system. Overall application design should ensure that a transaction cannot get into

a permanent wait state due to the absence of further start requests—for example,

the transaction can be defined with a timeout interval. (Note that this option is not

supported by CICS on Open Systems.)

Terminal acquisition by a remotely-initiated CICS transaction

When a CICS transaction is started by a start request that names a terminal

(TERMID), CICS makes the terminal available to the transaction as its principal

facility. It makes no difference whether the start request was issued by a user

transaction in the local CICS system or was received from a remote system and

issued by the mirror transaction.

Starting transactions

You can name a system, rather than a terminal, in the TERMID option of the

START command.

If CICS finds that the “terminal” named in a start request is a system, it selects an

available session to that system and makes it the principal facility of the started

transaction. If no session is available, the request is queued until there is one.

System programming considerations

Resources must be defined for asynchronous processing, as briefly indicated below.

Detailed information on how to define the resources is given in the resource

definition guide for your CICS product.

v A link to a remote system must be defined.

v Remote transactions that are to be initiated by start requests must be defined as

remote resources to the local CICS system. This is not necessary, however, for

transactions that are initiated only by START commands that name the remote

system explicitly in the SYSID option.

v If the QUEUE option is used, the additional user data located by that option must

be accessible from the system to which the START command is shipped.

v In a START command, the RTRANSID option specifies a transaction identifier

that can be retrieved by the started transaction and used in a subsequent START

command. The transaction named by the RTRANSID option must be defined in

the remote system.

For example, in Figure 9 on page 51, the START command in TRAN3 would

include the options TRANSID(TRAN4) and RTRANSID(TRAN5). These options

cause TRAN4 to be started, and indicate to TRAN4 that it in turn should start

56 Interproduct Communication

TRAN5. This is the intended use of the RTRANSID option; its actual use is

application-dependent. TRAN5 must be defined to System B.

Asynchronous processing example (with NOCHECK)

Figure 10 shows an example of asynchronous processing using the NOCHECK

option of the START command.

SystemA System BTransmitted
Information

TransactionTRX
initiated by terminalT1.

EXEC CICS STARTTRANSID ('TRY')
RTRANSID('TRZ') RTERMID('T1')
FROM(area) LENGTH(length)

NOCHECK

Terminate, and free terminalT1.
T1 could now initiate
transaction, butTRZ could not
start until T1 became free again.

Attach mirror transaction.

Perform STARTrequest with
TRANSID value of 'TRZ' andTERMID
value of 'T1'. Free session.
Terminate mirror.

TransactionTRZ is dispatched on
terminalT1 and starts processing.

Attach mirror. Perform START
request for transactionTRY.
Free session. Terminate
mirror.

TransactionTRY is initiated
and starts processing.
EXEC CICS RETRIEVE INTO(area)

LENGTH(length) RTR
RTERMID(T)

(TR has a value 'TRZ',Thas
value 'T1')

Processing based on data
acquired. Reply put in data
area REP.

EXEC CICS STARTTRANSID(TR)
FROM(REP) LENGTH(length)
TERMID(T) NOCHECK

(TR has a value 'TRZ',T
value 'T1')

TRYterminates.

Attach mirror
transaction
'SCHEDULE'
request for
trans, last
(no reply)

session
available

Attach mirror
transaction
'SCHEDULE'
request for
trans
(no reply)

session
available

Figure 10. Asynchronous processing—remote transaction initiation using NOCHECK

Chapter 10. Asynchronous processing 57

58 Interproduct Communication

Chapter 11. Distributed transaction programming

When CICS arranges function shipping, asynchronous transaction processing,

transaction routing, or distributed program link, it establishes a logical data link with

a remote system. A data exchange between the two systems follows. CICS-supplied

programs control this exchange, issuing commands to allocate conversations, and

send and receive data between the systems.

CICS supplies equivalent commands to enable application programs to converse

under their own control across intercommunication links. Using these commands,

you can distribute the functions of a business transaction over several transaction

programs within a network. This technique is called distributed transaction

programming (DTP).

DTP is the most flexible and the most powerful of the CICS intercommunication

facilities, but it is also the most complex. This chapter introduces you to the basic

concepts.

Why use distributed transaction programming?

Distributed transaction programming is needed because of the possible costs of

other intercommunication functions (see “Limitations of function shipping”) and

because of its own advantages (see “Advantages of distributed transaction

programming” on page 60).

Limitations of function shipping

Function shipping gives you access to remote resources, and transaction routing

lets a terminal communicate with remote transactions. From a functional point of

view, these two facilities are probably sufficient for most intercommunication needs.

However, design criteria go beyond pure function. Machine loading, response time,

continuity of service, line traffic, and economic use of all resources are factors that

affect transaction design.

The following two examples describe cases where function shipping is an obvious

but not ideal solution.

Example 1

You are browsing a remote file to select a record that satisfies some criteria.

Solution 1: Use function shipping. CICS ships each GETNEXT request across the

link, and the mirror reads the record and ships it back to the requester.

There are two network data flows per record; the data flow can be quite significant.

For a browse on a large file, the overhead can be unacceptably high.

Solution 2: Use distributed program link. CICS links to a program that is running

in the system that owns the file.

Solution 3: Use a DTP conversation. The local transaction sends the selection

criteria. The remote transaction returns the keys and relevant fields from the

selected records. This drastically reduces both the number of flows and the amount

of data sent over the link.

© Copyright IBM Corp. 1992, 2005 59

Example 2

A supermarket chain has many branches, which are served by several distribution

centers, each stocking a different range of goods. Local stock records at the

branches are updated online from point-of-sale terminals. Sales information has to

be sorted for the separate distribution centers, and transmitted to them to enable

reordering and distribution.

Solution 1: Use function shipping to write each reorder record to a remote file as

it arises. This method is simple, but has several drawbacks:

v Data is transmitted to the remote systems irregularly in small packets. This

means inefficient use of busy links.

v The transactions associated with the point-of-sale devices are competing for

sessions with the remote systems. This could mean unacceptable delays at

point-of-sale.

v Failure of a link causes a catastrophic suspension of operations at a branch.

v Intensive intercommunications activity (for example, at peak periods) causes

reduction in performance at the point-of-sales terminals.

Solution 2: Each sales transaction writes its reorder records to a transient data

queue, and continues its conversation with the terminal.

Restocking requests are not urgent, so sorting and sending the data is delayed until

an off-peak period. Alternatively, the transient data queue can be set to trigger the

sender transaction when a predefined data level is reached. Either way, the sender

transaction has the same job to do.

The sender transaction can use function shipping to transmit the reorder records.

After the sort process, each record is written to a remote file in the relevant remote

system.

This method is not ideal either. The sender transaction must wait after writing each

record to make sure that it gets the right response. Apart from using the link

inefficiently, waiting between records makes the whole process very slow.

Solution 3: Using distributed transaction programming, a transaction in the

branch:

1. Sorts the reorder records and creates a file for each distribution center.

2. Sends each file to a partner transaction at the appropriate distribution center.

Each distribution center then processes the reorder records like any other local file.

This solution is a much more efficient use of the link.

Advantages of distributed transaction programming

In a multisystem environment, data transfers between systems are necessary

because end users need access to remote resources. In managing these

resources, network resources are used. But performance suffers if the network is

used excessively. There is, therefore, a performance gain if application design

places the processing associated with a resource in the resource-owning region.

DTP (like asynchronous processing and distributed program link) lets you process

data at the point where it arises, instead of overworking network resources by

assembling it at a central processing point. However, DTP is much more flexible

than either asynchronous processing or DPL. For example, it:

v Can be used to communicate with both CICS and non-CICS systems.

60 Interproduct Communication

v Enables synchronous communication and data transfer between applications

running on different systems.

v Can provide a common interface to transactions owned by different systems.

v Allows some measure of parallel processing to shorten response times.

v Provides a buffer between a security-sensitive file or database and applications,

so that no application need know the format of the file records.

v Enables batching of less urgent data destined for a remote system.

Conversations

In DTP, transactions pass data to each other directly. While one sends, the other

receives. The exchange of data between two transactions is called a conversation.

Although several transactions can be involved in a single distributed process,

communication between them breaks down into a number of self-contained

conversations between pairs. Each such conversation uses a CICS resource known

as a session.

Conversation initiation and transaction hierarchy

A transaction starts a conversation by requesting the use of a session to a remote

system. Having obtained the session, it causes an attach request to be sent to the

other system to activate the transaction that is to be the conversation partner.

A transaction can initiate any number of other transactions, and hence,

conversations. In a complex process, a distinct hierarchy emerges, with the

terminal-initiated transaction at the very top. Figure 11 on page 62 shows a possible

configuration. Transaction TRAA is attached over the terminal session. Transaction

TRAA attaches transaction TRBB, which, in turn, attaches transactions TRCC and

TRDD. Both these transactions attach the same transaction, SUBR, in system

CICSE. This gives rise to two different tasks running SUBR.

Chapter 11. Distributed transaction programming 61

Structure of a distributed process

The structure of a distributed process is determined dynamically; it cannot be

specified beforehand in transaction definitions. For each transaction, there is only

one inbound attach request, but there can be any number of outbound attach

requests. The session that activates a transaction is called its principal facility. A

session that is allocated by one transaction to activate another transaction is called

the alternate facility of the allocating transaction. In Figure 11, session 1 is the

principal facility of transaction TRBB and an alternate facility of transaction TRAA. A

transaction has only one principal facility, but can have any number of alternate

facilities. Transaction TRBB has two alternate facilities, sessions 2 and 3.

When a transaction initiates a conversation, it is the front end on that conversation.

Its conversation partner is the back end on the same conversation. In Figure 11,

transaction TRBB is the front end of the conversations on sessions 2 and 3, and

the back end of the conversation on session 1. (Some publications refer to the front

end as the initiator and the back end as the recipient.) It is normally the front end

that dominates, and determines the way the conversation goes. You can arrange for

the back end to take over if you want, but, in a complex process, this can cause

unnecessary complication. This is further explained in the discussion on

synchronization later in this chapter.

Application design

DTP has none of the transparency of function shipping or transaction routing. A

conversation transfers data from one transaction to another. For this to function

properly, each transaction must know what the other intends. It is therefore

necessary to design, code, and test front end and back end as one software unit.

The same applies when there are several conversations and several transaction

programs. Each new conversation adds to the complexity of the overall design.

Transaction TRCC Transaction TRDD

Transaction SUBR Transaction SUBR

Transaction TRBB

Transaction TRAA

CICSA

CICSB

CICSC

CICSE

CICSD

Session 1

Session 3Session 2

Session 4 Session 5

Terminal

Figure 11. DTP in a multisystem configuration

62 Interproduct Communication

In “Example 2” on page 60, the DTP solution (Solution 3) is to transfer a file of data

from one transaction to another–in this case, transmit the entire contents of the

transient data queue from the front end to the back end. The next stage of

complexity is to cause the back end to return data to the front end, perhaps the

result of some processing. Here, the front end is programmed to request

conversation turnaround at the appropriate point.

Among other things, the designer of a DTP application must decide:

v Which syncpoint-level to use for conversations

v If data conversion is necessary, which partner in the conversation should handle

it

Control flows

During a conversation, data passes over the link in both directions. A single

transmission is called a flow. Issuing a SEND command does not always cause a

flow. This is because the transmission of user data can be deferred; that is, held in

a buffer until some event takes place. The APPC architecture defines data formats

and packaging. CICS handles these things for you, and they concern you only if

you need to trace flows for debugging.

The APPC architecture defines a data header for each transmission, which holds

information about the purpose and structure of the data following. The header also

contains bit indicators to convey control information to the other side. For example,

if one side wants to tell the other that it can start sending, CICS sets a bit in the

header that signals a change of direction in the conversation.

To keep flows to a minimum, non-urgent control indicators are accumulated until it

is necessary to send user data. Then they are added to the header.

In complex procedures, such as establishing syncpoints, it is often necessary to

send control indicators when there is no user data available to send. This is called

a control flow.

Conversation state and error detection

As a conversation progresses, it moves from one state to another within both

conversing transactions. The conversation state determines the commands that

may be issued. For example, it is no use trying to send or receive data if there is no

session linking the front end to the back end. Similarly, if the back end signals end

of conversation, the front end cannot be in a state to receive more data.

Either end of the conversation can cause a change of state, usually by issuing a

particular command from a particular state. CICS tracks these changes, and stops a

transaction from issuing a command that is wrong for its current state.

Synchronization

Many things can go wrong during the running of a transaction. The conversation

protocol helps you to recover from errors and ensures that the two sides remain in

step with each other. This use of the protocol is called synchronization.

Synchronization allows you to protect resources such as transient data queues and

files. Whatever goes wrong during the running of a transaction should not leave the

associated resources in an inconsistent state.

Chapter 11. Distributed transaction programming 63

Example

A transaction is transmitting a queue of data to another system to be written to a

file. The receiving transaction is abended.

Even if a further abend can be prevented, there is the problem of how to continue

the process without loss of data. It is uncertain how many queue items have been

received and how many have been correctly written to the file. The only safe way of

continuing is to go back to a point where you know that the contents of the queue

are consistent with the contents of the file. The sending system must restore the

queue entries that have been sent, and the receiving system must delete any

entries made in the file. CICS helps you to do this (see “Taking syncpoints”).

Rollback and backout

The cancelation by an application program of all changes to recoverable resources

since the last known consistent state is called rollback. The physical process of

recovering resources is called backout. For the most part, the two terms are used

interchangeably. The condition that exists as long as there is no loss of consistency

between distributed data resources is called data integrity.

Application-initiated rollback: There are cases where you want to recover

resources, even though there are no error conditions detectable by CICS. Consider

an order entry system. While entering an order for a customer, an operator is told

by the system that the customer’s credit limit would be exceeded if the order went

through. Because there is no use continuing until the customer is consulted, the

operator presses a PF key to abandon the order. The transaction can be

programmed to respond by restoring the data resources to the state they were in at

the start of the order. At synchronization level 2 (see “Synchronization levels” on

page 6), rollback occurs automatically in all remote partner transactions.

Taking syncpoints

If you log your own data movements, you can arrange backout of your files and

queues. However, this involves very complex programming. To save you the

trouble, CICS arranges resource recovery for you.

A point in the process where resources are declared to be in a known consistent

state is called a synchronization point, often shortened to syncpoint.

Synchronization points are implied at the beginning and end of a transaction. A

transaction can define other syncpoints by program command. All processing

between two syncpoints belongs to a unit of work (UOW).

Taking a syncpoint, if successful, commits all changes to recoverable resources.

This means that all systems involved in a distributed process erase all the

information they have been keeping about data movements on recoverable

resources. Now backout is no longer possible, and all changes to the resources

since the last syncpoint are made irreversible.

An unsuccessful syncpoint causes rollback. Recoverable resources are restored to

their state at the start of the UOW.

CICS can commit and back out changes to resources, but the service has a

performance trade-off. Some transactions do not need such facilities. If the recovery

of resources is not a problem, use simpler methods of synchronization.

64 Interproduct Communication

The three synchronization levels

The APPC architecture defines three levels of synchronization:

 Level 0 – NONE

 Level 1 – CONFIRM

 Level 2 – SYNCPOINT

At synchronization level 0, there is no system support for synchronization. It is

nevertheless possible to achieve some degree of synchronization through the

interchange of data, using the SEND and RECEIVE commands.

If you select synchronization level 1, you can use specific commands for

communication between the two conversation partners. One transaction can confirm

the continued presence and readiness of the other. The user is responsible for

preserving the data integrity of recoverable resources.

The level of synchronization described earlier in this section corresponds to

synchronization level 2. Here, system support is available for maintaining the data

integrity of recoverable resources.

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of

changes to recoverable resources, but no control flows take place. CICS takes a full

syncpoint when a transaction is normally terminated. Transaction abend causes

rollback. The transactions themselves can initiate syncpoint or rollback requests.

However, a syncpoint or rollback request is propagated to another transaction only

when the originating transaction is in conversation with the other transaction, and

synchronization level 2 has been selected for the conversation between them.

Remember that syncpoint and rollback are not peculiar to any one conversation

within a transaction. They are propagated on every current synchronization level 2

conversation within the transaction.

A transaction specifies the required synchronization level in the CONNECT

PROCESS command that initiates a conversation. The requested level must not be

higher than that supported between the two products. Support for the different

synchronization levels varies between products. Refer to “CICS product

communication support” on page 7.

EXEC CICS or CPI Communications?

Some CICS products give you a choice of two application programming interfaces

(APIs) for coding your DTP conversations on APPC sessions. The first, the CICS

API, is the end-user interface of the CICS implementation of the APPC architecture.

It consists of EXEC CICS commands and can be used with all CICS-supported

languages. The second, Common Programming Interface for Communications

(CPI Communications) is the communications interface defined by Systems

Application Architecture® (SAA®). It consists of a set of defined verbs, in the form of

program calls, which are adapted for the language being used.

Table 10 on page 66 compares the two methods to help you to decide which API to

use for a particular application.

Chapter 11. Distributed transaction programming 65

Table 10. CICS API compared with CPI Communications

CICS API CPI Communications

Portability between different members of the

CICS family.

Portability between systems that support

SAA.

Synchronization levels 0, 1, and 2 supported. Synchronization levels 0, 1, and 2 supported,

except for transaction routing, for which only

synchronization levels 0 and 1 are

supported.

Program initialization parameter (PIP) data

supported (CICS on System/390 and CICS

on Open Systems only).

PIP data not supported.

Only a few conversation characteristics are

programmable. The rest are defined by

resource definition.

Most conversation characteristics can be

changed dynamically by the transaction

program.

Can be used on the principal facility to a

transaction started by ATI.

Cannot be used on the principal facility to a

transaction started by ATI.

Mapped conversations (see note 3) can be

programmed in any of the languages

supported by CICS.

Mapped conversations can be programmed

in any of the languages supported by CICS.

Basic conversations (see note 3) can be

programmed only in assembler language or

C, and only on a CICS on System/390

system.

Basic conversations can be programmed in

any of the languages supported by CICS, but

only on a CICS on System/390 system.

Additional notes on the two APIs

1. You can mix CPI Communications calls and EXEC CICS commands in the

same transaction, but not on the same side of the same conversation. In other

words, each half-session can use only one application interface.

2. One partner in a conversation can use CPI Communications calls while the

other uses the CICS API. In other words, the half-sessions at either end of

the same conversation can use different application interfaces.

To correctly coordinate a conversation that is using a different API in each

half-session, the programmers must know the details of how both APIs map to

the APPC architecture.

3. Both interfaces, CICS API and CPI Communications, support APPC mapped

conversations, in which the systems provide and interpret protocol headers,

and the application programs deal only with user data. In an APPC basic

conversation, the sending application must prefix the data with the header

required by the communications protocol. The receiving application must

interpret this header.

4. CICS/VSE 2.3 does not support the CPI Communications API.

66 Interproduct Communication

Part 3. Appendixes

© Copyright IBM Corp. 1992, 2005 67

68 Interproduct Communication

Bibliography

This section lists those books in the System/390

and non-System/390 CICS libraries that are

related to intercommunication.

Note: To help you find the information you need,

some books are listed in more than one

category.

CICS Family intercommunication

books

 CICS Family: Communicating from CICS on

System/390, SC34-6474

 CICS Family: Interproduct Communication,

SC34-6473

CICS on System/390

intercommunication books

CICS Transaction Server for z/OS

Version 3 Release 1

 CICS Distributed Transaction Programming

Guide, SC34-6438-00

 CICS External Interfaces Guide, SC34-6449-00

 CICS Front End Programming Interface User’s

Guide, SC34-6436-00

 CICS Intercommunication Guide,

SC34-6448-00

 CICS Internet Guide, SC34-6450-00

CICS Transaction Server for z/OS

Version 2 Release 3

 CICS Distributed Transaction Programming

Guide, SC34-6236-00

 CICS External Interfaces Guide, SC34-6244-00

 CICS Front End Programming Interface User’s

Guide, SC34-6234-00

 CICS Intercommunication Guide,

SC34-6243-00

 CICS Internet Guide, SC34-6245-00

CICS Transaction Server for z/OS

Version 2 Release 2

 CICS Distributed Transaction Programming

Guide, SC34-5998-00

 CICS External Interfaces Guide, SC34-6006-00

 CICS Front End Programming Interface User’s

Guide, SC34-5996-00

 CICS Intercommunication Guide,

SC34-6005-00

CICS Internet Guide, SC34-6007-00

CICS Transaction Server for

OS/390 Release 3

 CICS Distributed Transaction Programming

Guide, SC33-1691-02

 CICS External Interfaces Guide, SC33-1944-01

 CICS Front End Programming Interface User’s

Guide, SC33-1692-02

 CICS Intercommunication Guide,

SC33-1695-02

 CICS Internet Guide, SC34-5445-00

CICS Transaction Server for

VSE/ESA Release 1.1.1

 Distributed Transaction Programming Guide,

SC33-1661

 External CICS Interface, SC33-1669

 Front End Programming Interface User’s

Guide, SC33-1662

 Intercommunication Guide, SC33-1665

CICS/VSE Version 2

 Distributed Transaction Programming Guide,

SC33-0898

 Intercommunication Guide, SC33-0701

 Server Support for CICS Clients, SC33-1712

CICS non-System/390

intercommunication books

 CICS TS for Windows, Intercommunication,

SC34-6209

 CICS on Open Systems Intercommunication

Guide, SC33-1564

 CICS/400 Intercommunication, SC33-1388

CICS Transaction Gateway and

CICS Universal Clients

 CICS Transaction Gateway: Programming

Guide, SC34-6141

 CICS Transaction Gateway: Programming

Reference, SC34-6140

 CICS/VSE Version 2 Release 3 Server Support

for CICS Clients, SC33-1712

© Copyright IBM Corp. 1992, 2005 69

Non-CICS books

SNA books

 Systems Network Architecture Technical

Overview, GC30-3073

 Systems Network Architecture Transaction

Programmer’s Reference Manual for LU Type

6.2, GC30-3084

 Systems Network Architecture--Sessions

Between Logical Units, GC20-1868

 Systems Network Architecture Format and

Protocol Reference Manual: Architecture Logic

for LU Type 6.2, SC30-3269

 Systems Network Architecture LU 6.2

Reference–Peer Protocols, SC31-6808

70 Interproduct Communication

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system

in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features

for people with disabilities. You can use this product to provide the accessibility

features you need in your CICS system.

© Copyright IBM Corp. 1992, 2005 71

72 Interproduct Communication

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply to

you.

This publication could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact IBM United Kingdom Laboratories,

MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such

information may be available, subject to appropriate terms and conditions, including

in some cases, payment of a fee.

© Copyright IBM Corp. 1992, 2005 73

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Programming License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks, or registered trademarks, of International

Business Machines Corporation in the United States, or other countries, or both:

 AIX Encina SAA

AS/400 IBM SupportPac

AnyNet IMS System/370

BookManager IMS/ESA System/390

C/370 MVS Systems Application

Architecture

CICS MVS/ESA TXSeries

CICS/400 OS/2 VSE/ESA

CICS/ESA OS/390 VTAM

CICS/MVS OS/400 iSeries

CICS/VSE Presentation Manager z/OS

CICSPlex RISC System/6000 zSeries

DB2 RS/6000

INTEL is a registered trademark of Intel Corporation, in the United States, or other

countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems Inc, in the United States, or other countries, or

both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in

the United States, or other countries, or both.

UNIX is a trademark of X/Open Company Limited, in the United States, or other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

74 Interproduct Communication

Index

A
allocating APPC terminal or connection 40

alternate facility 62

American National Standard Code for Information

Interchange (ASCII) 16

APIs 65

APPC terminals, transaction routing 40

APPC, communication protocol 5

application design, DTP 62

application programming interfaces 65

APPLID passed with START command 54

ASCII 16

asynchronous processing 51, 57

compared with synchronous processing (DTP) 51

initiated by DTP 52

initiating asynchronous processing 52

START/RETRIEVE interface 53, 56

“terminal” is a system 56

canceling remote transactions 53

information passed with START command 53

information retrieval 55

local queuing of START requests 55

NOCHECK option, START command 54

performance improvement 54

PROTECT option, START command 54

RETRIEVE command 55

starting remote transactions 53

terminal acquisition 56

system programming considerations 56

typical application 52

ATI (automatic transaction initiation) 41

restricted by CRTE routing transaction 45

with transaction routing 41

B
back end 62

backout 64

basic conversation 66

basic mapping support (BMS), transaction routing 39,

44

C
CANCEL command 53

CEMT master terminal transaction, invoked by

CRTE 45

choosing an intercommunication function 29

CICS clients
functions provided

External Call Interface 11

External Presentation Interface 11

Terminal Emulation 12

CICS Clients
for AIX 12

for HP-UX 12

for Linux 390 12

CICS Clients (continued)
for Microsoft Windows 12

for Sun Solaris 12

functions provided
External Security Interface 12

overview 11

servers supported 12

CICS on System/390
dynamic transaction routing 40

CICS Transaction Server for Windows
dynamic transaction routing 41

client/server computing 11

clients, CICS
functions provided

External Call Interface 11

External Presentation Interface 11

Terminal Emulation 12

overview 11

code pages 16

committing changes to resources 64

communication functions
functions listed 5

product support for 5, 11

communication protocols
APPC 5

IPX 5

LU6.2 5

NetBIOS 5

TCP/IP 5

configuring CICS for SNA 17

control flows 63

conversation 61, 65

alternate facility 62

back end 62

basic 66

control flows 63

data header 63

error detection 63

front end 62

principal facility 62

session 61

state 63

synchronization 63, 65

Conversation
initiation 61

CPI Communications 65

CRTE transaction 44

D
data conversion 15, 17

ASCII 16

character data 15, 17

code pages 16

EBCDIC 16

numeric data 15

data header, APPC architecture 63

data integrity 6, 64

© Copyright IBM Corp. 1992, 2005 75

DBCS, double-byte character set 16

deferred sending, START NOCHECK 55

distributed program link 28, 47, 49

distributed transaction programming 28

DL/I databases
accessed by DPL 48

accessed by function shipping 33

double-byte character set (DBCS) 16

DPL (distributed program link) 47, 49

DTP (distributed transaction programming) 59, 66

advantages of 60

application design 62

compared with asynchronous processing 51

conversation 61, 65

synchronization 63, 65

why it is needed 59

dynamic transaction routing 40, 41

E
EBCDIC 16

ECI (External Call Interface) 11

EPI (External Presentation Interface) 11

error detection, conversation 63

ESI (External Security Interface)
overview 12

examples
ATI 42

function shipping 36

EXEC CICS, API 65

exits, user
XALTENF 53

XICTENF 53

Extended Binary-Coded Decimal Interchange Code

(EBCDIC) 16

External Call Interface (ECI) 11

External Presentation Interface (EPI) 11

F
file control 32

front end 62

function shipping 27, 31, 37

DL/I databases 33

examples 36

file control 32

how it works 34

IMS databases 33

interval control 31

limitations 59

mirror transaction 31, 35

synchronization 36

temporary storage 33

transformer program 34

transient data 33

transparency to application 32

H
hierarchy, transaction 61

I
IMS databases, function shipping 33

initiator, conversation 62

intercommunication functions 27

brief definitions 27

choosing between 29

interproduct communication
defining a product’s communication ability 5

how each pair of products can communicate 7

interval control, function shipping 31

IPX, communication protocol 5

L
local queuing of START requests 55

LU6.2, communication protocol 5

M
MBCS, multi-byte character set 16

mirror transaction 31, 35

chained mirrors 35

multiple mirrors 35

multi-byte character set (MBCS) 16

N
NetBIOS, communication protocol 5

NOCHECK option, START command
deferred sending 55

improving performance 54, 55

local queuing 55

P
principal facility 62

PROTECT option, START command 54

protocols, for communication
APPC 5

IPX 5

LU6.2 5

NetBIOS 5

TCP/IP 5

pseudoconversation 40

R
recipient, conversation 62

relay program (DFHCRP) 43

relay transaction 39

RETRIEVE command 52

RETRIEVE command, WAIT option 56

retrieving data sent with START command 55

rollback 64

routing transaction, CRTE 44

S
SBCS, single-byte character sets 15

76 Interproduct Communication

session
used by a conversation 61

shipping terminal definitions 41, 43

SNA configuration 17

CICS for AIX 22

CICS on System/390 21

SNA terminology 17

SQL databases, accessed by DPL 48

START command 52

deferred sending 55

local queuing 55

NOCHECK option 54

PROTECT option 54

START/RETRIEVE, asynchronous processing 53

state, conversation 63

synchronization 6

DPL 48

DTP 63, 65

backout 64

committing changes to resources 64

data integrity 64

rollback 64

syncpoints 64

unit of work (UOW) 64

function shipping 36

synchronization levels 6

two-phase commit 6

synchronization levels 6, 65

syncpoints 64

T
TCP/IP, communication protocol 5

temporary storage, function shipping 33

terminal-not-known condition 43

terminals, shipping definitions 43

transaction hierarchy 61

transaction routing 27, 39, 45

ATI (automatic transaction initiation) 41

basic mapping support (BMS) 39, 44

dynamic transaction routing 41

eligible sessions 39

eligible terminals 39

initiating transaction routing 40

pseudoconversation 40

relay program 43

routing transaction, CRTE 44

shipping terminal definitions 43

static transaction routing 40

terminal-initiated transaction routing 40

transformer program 34

transient data, function shipping 33

two-phase commit 6

U
unit of work (UOW) 64

UOW (unit of work) 64

user exits
XALTENF 53

XICTENF 53

W
WAIT option, RETRIEVE command 56

X
XALTENF, user exit 53

XICTENF, user exit 53

Index 77

78 Interproduct Communication

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the

information is presented.

To ask questions, make comments about the functions of IBM products or systems,

or to request additional publications, contact your IBM representative or your IBM

authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring any

obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use

44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1992, 2005 79

80 Interproduct Communication

���

SC34-6473-01

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

C
IC

S
Fa

m
ily

In

te
rp

ro
du

ct

Co

m
m

un
ic

at
io

n

	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	Terminology

	Summary of changes
	Changes for the tenth edition
	Changes for the ninth edition
	Changes for the eighth edition
	Changes for the seventh edition

	Part 1. Introduction to CICS interproduct communication
	Chapter 1. CICS interproduct communication
	The documentation plan

	Chapter 2. CICS communication support
	What is a product’s communication ability?
	The CICS intersystem communication functions
	Communication protocols
	Synchronization
	Synchronization levels

	Data conversion

	CICS product communication support
	CICS on System/390 interproduct communication
	Functions supported
	Communication protocols supported
	Synchronization level supported

	CICS Transaction Server for Windows interproduct communication
	Functions supported
	Communication protocols supported
	Synchronization level supported

	CICS on Open Systems interproduct communication
	Functions supported
	Communication protocols supported
	Synchronization level supported

	CICS/400 interproduct communication
	Functions supported
	Communication protocols supported
	Synchronization level supported

	Chapter 3. CICS Clients
	Functions that the CICS Clients provide
	The External Call Interface
	The External Presentation Interface
	The External Security interface
	Terminal emulation

	CICS Clients
	Supported functions and protocols

	Chapter 4. Data conversion
	Numeric data
	Character data
	Code pages

	Chapter 5. Configuring CICS for SNA communications
	Introduction to SNA terminology
	SNA concepts
	SNA products

	Preparing for SNA configuration
	Matching parameters
	Mode name
	Alias names

	Platform specific implementation
	The scenario

	Configuration details
	Mainframe host configuration
	Defining the workstations to CICS on System/390 and VTAM

	AIX machine configuration
	Defining the AIX machine to the network
	Defining the connection to CICS on System/390

	Configuring CICS for SNA—next steps

	Part 2. CICS intercommunication functions
	Chapter 6. Introduction to the CICS intercommunication functions
	Summary of CICS intercommunication functions
	Function shipping
	Transaction routing
	Distributed program link
	Distributed transaction programming

	Which intercommunication function?

	Chapter 7. Function shipping
	Introduction to function shipping
	Transparency to application
	Remote resources that can be accessed
	CICS file control data sets
	IMS databases
	Temporary storage and transient data
	Temporary storage
	Transient data

	How function shipping works
	The transformer programs
	The mirror transaction
	Multiple mirrors
	Chained mirrors

	Synchronization
	Function shipping examples

	Chapter 8. Transaction routing
	Introduction to transaction routing
	Initiating transaction routing
	Terminal-initiated transaction routing
	Static transaction routing
	Dynamic transaction routing
	Shipping terminal definitions

	Automatic transaction initiation
	Terminal definitions not shipped with ATI requests

	The relay program
	Basic mapping support
	The routing transaction (CRTE)

	Chapter 9. Distributed program link
	Introduction to DPL
	Why use DPL?
	Synchronization
	DL/I and SQL databases
	Restrictions when using DPL
	Abends when using DPL

	Chapter 10. Asynchronous processing
	Introduction to asynchronous processing
	Example
	Asynchronous processing methods
	Asynchronous processing using START/RETRIEVE commands
	Starting and canceling remote transactions
	Passing information with the START command
	Passing an APPLID with the START command

	Improving performance of intersystem START requests
	Including start request delivery in a logical unit of work
	Deferred sending of START requests with NOCHECK option
	Local queuing of START commands for remote transactions
	Data retrieval by a started transaction
	Terminal acquisition by a remotely-initiated CICS transaction
	Starting transactions

	System programming considerations
	Asynchronous processing example (with NOCHECK)

	Chapter 11. Distributed transaction programming
	Why use distributed transaction programming?
	Limitations of function shipping
	Example 1
	Example 2

	Advantages of distributed transaction programming

	Conversations
	Conversation initiation and transaction hierarchy
	Structure of a distributed process

	Application design
	Control flows
	Conversation state and error detection
	Synchronization
	Example
	Rollback and backout
	Taking syncpoints
	The three synchronization levels

	EXEC CICS or CPI Communications?
	Additional notes on the two APIs

	Part 3. Appendixes
	Bibliography
	CICS Family intercommunication books
	CICS on System/390 intercommunication books
	CICS Transaction Server for z/OS Version 3 Release 1
	CICS Transaction Server for z/OS Version 2 Release 3
	CICS Transaction Server for z/OS Version 2 Release 2
	CICS Transaction Server for OS/390 Release 3
	CICS Transaction Server for VSE/ESA Release 1.1.1
	CICS/VSE Version 2

	CICS non-System/390 intercommunication books
	CICS Transaction Gateway and CICS Universal Clients
	Non-CICS books
	SNA books

	Accessibility
	Notices
	Trademarks

	Index
	Sending your comments to IBM

