
iSeries™

Programming with VisualAge® RPG
Version 4 for Windows®

SC09-2449-05

ERserver
���

iSeries™

Programming with VisualAge® RPG
Version 4 for Windows®

SC09-2449-05

ERserver
���

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page 531.

Sixth Edition (May 2002)

This edition applies to Version 4 of IBM WebSphere Development Studio Client for iSeries and to all subsequent
releases and modifications until otherwise indicated in new editions.

This edition replaces SC09-2449-04 .

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

You can also send your comments electronically to IBM. See “How to Send Your Comments” on page xi for a
description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this Book ix
Who Should Use This Book ix
Prerequisite and Related Information ix
How to Use This Book ix
The VisualAge RPG Library x
How to Send Your Comments xi
Accessing Online Information xii

Using Online Books xii
Publications in PDF Format xii
Using Online Help. xii

What’s New This Release xv

Part 1. A First Look at Client/Server
Applications. 1

Chapter 1. Creating a Client/Server
Application 3
About the Sample Application 3
Building the Sample Application 3
Deciding What to Show the User 5

Welcome to the Video Store Catalog . . . 6
Browsing by Category 6
Searching for Specific Titles 6
Previewing Titles 6
Modifying and Submitting Orders 6
Submitting Orders 7

High-Level Window Design 7
Creating the Comedy Window 8

Creating the GUI. 8
Setting Attributes 8
Adding Program Logic 10

Creating the Preview Window 12
Creating the GUI 13
Setting Attributes at Design Time 13
Setting Attributes at Run Time 13
Adding Program Logic 13

Creating Messages 17
Creating the Online Help 17

Context-sensitive help. 17
Creating Help push buttons. 18

A Review of Visual Programming 20

Chapter 2. Planning Your Application . . . 23

Enabling Secure Java Applications 23
Decide What Functions to Provide 23
Help Your Users 24
Keep Window Design Simple 24

Number of Windows 24
Content of Each Window 25

Plan Your Code Effectively 25
Keep the User Informed 25
Use a Consistent Style 26
Anticipate Translation Issues 26

Part 2. Working with Parts 29

Chapter 3. Programming with Parts . . . 31
Getting and Setting Part Attributes 31

Referencing Parts in Your Program . . . 31
Responding to Events 32
System Attributes 33
Working with Event and System Attributes . 34
Coding Static Text and Entry Field Parts . . 35

Creating and Retrieving Entry Field Parts 35
Operation Codes for Window Parts . . . 36
Using Window Operation Codes on Parts
with Identical Names 37

Chapter 4. Sample Programs for VisualAge
RPG 41
Before You Begin 42

Building the Examples 42
Running the Examples 43
Accessing an iSeries 400 Server 43

Chapter 5. Common Attributes 45
PartName Attribute 45
ParentName Attribute. 45
PartType Attribute 45
Color Attributes. 47
Enabled Attribute 47
Size and Position Attributes 48
Visible Attribute 49
Focus Attribute 49
UserData Attribute 50
Label Attribute 50

Label Substitution 50

© Copyright IBM Corp. 1994, 2002 iii

||

Translation Tips 51

Chapter 6. Using Data Transfer 53
A Typical Data Transfer Scenario 53
Parts That Support Data Transfer 53
Enabling Parts for Data Transfer 54
Data Transfer Example 54

Chapter 7. Using Parts 57
ActiveX 59

Adding ActiveX Controls 59
Setting Properties 59
Calling Methods 61
Responding to Events 62

Animation Control 63
Calendar 64

Determining Which Date the User Selected 64
Using Date Index Attributes. 65

Canvas. 67
Check Box 68

Setting the State of a Check Box Part. . . 69
Setting a Mnemonic 69
Signaling Events 69

Combination Box 71
Selecting the Type of Combination Box . . 71
Adding and Setting the Initial Sequence of
Items 71
Adding Items at Run Time 71
Updating Items in a List 72
Setting the Top of the List 72
Removing Items. 72
Selecting and Deselecting Items 72
Retrieving a User-Selected Item 72
Using Keys 73
Setting the Entry Field Text 74
Signaling Events 74

Component Reference 75
Referencing Part Attributes in Other
Components 75
Monitoring for Events in Another
Component 76

Container 77
Adding Columns to a Container 77
Adding Records to a Container 78
Updating Container Columns 79
Removing Records from a Container . . . 80
Changing the Container View 81

DDE Client 85
Entry Field 87

Using the InsertMode Attribute 87

Using the Text Attribute 87
Getting and Setting Information for a
Window 87
Validity Checking 87
Preventing User Input 88
Masking Sensitive Data 88

Graph 89
Sending data to the Graph 89

Graphic Push Button 92
Setting the Image 92
Assigning Command Keys 92
Signaling Events 92

Group Box 93
Labeling a Group Box. 93
Grouping Radio Buttons 93

Horizontal Scroll Bar 94
Image 96

Creating the Image Part 96
Setting the File Name 96
Controlling the Magnification Panel . . . 96
Image Example 97

Java Bean 101
Adding Beans to your Project 101
Location of Bean JAR Files 102
Setting the JAR Classpath 102
Setting/Getting JavaBean Properties and
Invoking Methods 103

List Box 104
Adding and Setting the Sequence of Items 105
Adding Items at Run Time. 105
Updating Items in a List 105
Setting the Top of the List 105
Removing Items 105
Selecting and Deselecting Items 105
Types of Selection. 106
Retrieving Items from the List 106
Using Keys 106
Signaling Events 106
List Box Example 107
Search Example 110

Media. 113
Specifying a File Name 114
Setting AudioMode 114
Setting the Volume 114
Setting the Position 114
Using the Media Panel Part 114
Signaling Events 114

Media Panel 115
Creating a Media Panel Part 115
Linking Other Parts 115

iv Programming with VisualAge RPG

Signaling Events 116
Menu Bar 117

Creating Pull-down Menus. 117
Menu Item 118

Placing a Check Mark beside a Menu
Item 118
Setting Menu Text. 118
Setting a Mnemonic 119
Enabling Menu Items 119
Signaling Events 119

Message Subfile 120
Displaying Predefined Messages 120
Displaying Text Supplied in Your
Program 120
Using Substitution Variables 121
Removing Messages 121
Message Subfile Example 122

Multiline Edit 125
Getting and Setting the Text 125
Manipulating Lines of Text in a Multiline
Edit Part 126
Manipulating Characters in a Multiline
Edit Part 126
Manipulating Selected Portions of Text in
a Multiline Edit Part 126
Changing Color 126
Choosing Fonts 127
Preventing User Input 127
Multiline Edit Example 127

Notebook 130
Changing Font Emphasis 131

Notebook Page. 132
Showing Tab Text 132
Setting a Mnemonic 132

Notebook Page with Canvas 134
ODBC/JDBC Interface 136

Connecting to an ODBC Database . . . 136
Creating a Record Set 137
Accessing Table Data 137
Data Types 139
Retrieving Table Rows 139
Updating Row Data 140
Deleting a Row 140
ODBC/JDBC Interface Part Example . . 140

Outline Box 153
Special Height and Width Settings . . . 153

Pop-up Menu 154
Progress Bar 155

Progress Bar Example 155
Push Button 156

Setting a Default Push Button. 156
Setting a Mnemonic 157
Assigning Command Keys 157
Signaling Events 157

Radio Button 158
Setting a Mnemonic 158
Grouping Radio Buttons 159
Setting the State of a Radio Button . . . 160
Signaling Events 161

Slider 162
Getting and Setting the Slider Value . . 163
Signaling Events 163
Slider Example. 163

Spin Button 168
Setting Spin Button Values 168
Getting the Spin Button Value 169
Preventing User Input 169
Spin Button Example 169

Static Text 172
Changing the Text of a Static Text Part 172
Getting Static Text Values 173
Getting and Setting Information for a
Window 173
Editing Output. 173

Status Bar 174
Status Bar Example 174

Subfile 176
Creating a Subfile Part 176
Maximum Number of Fields per Subfile 176
Operation Codes for Manipulating Subfile
Parts 176
Loading a Subfile 177
Determining the Subfile Size 177
Getting the Record Count 177
Reading and Updating Records 177
Changing Subfile Fields 178
Hidden Fields 178
Formatting Subfile Fields 179
Enabling Tabbing 179
Subfile Example 179
Signaling Events 189

Submenu 190
Timer 191

Displaying the Timer Icon 191
Setting the Interval 192
Generating Tick Events 192
Getting the Timer Value. 192
Controlling the Timer Using Timer Modes 192
Timer Example. 192

Vertical Scroll Bar 200

Contents v

Window 201
Window with Canvas 202

Displaying a Window 203
Resizing a Window 204
Setting the Focus 207
Window List 208
Terminating a Program 208
Clearing Fields on a Window 210
Example of a Window Part 210

*Component 211
Using the *component part. 211
Displaying a File Open/Save As dialog. 211
Selecting a printer 212
Using Plugins 212

Part 3. Working with iSeries Data 213

Chapter 8. iSeries Connectivity 215
Defining iSeries Information 215

Notebook Considerations 216
Setting Up a Server 216

Setting a Server at Design Time 216
Setting a Server at Run Time 216

Using Data Areas 217
Using iSeries 400 Database Files 218

Level Checking 222
Locking Database Files 222
Overriding Database Files 222

iSeries 400 Database I/O Considerations . . 223
Using Record Blocking to Improve
Performance 223

iSeries 400 Servers Used 224
Controlling Server Connections at Run Time 224

Sample Program Using the Signon API 227
Using the Security File for Applets 230

Chapter 9. Reusing iSeries Applications 233
Reuse Scenario 233
Importing Display Files 238

Converting Display Files 239
Reusing UIM Help 245

UIM and IPF functions that use the same
tags 245
Equivalent UIM and IPF functions that
use different tags 246
UIM Functions with no IPF equivalents 247

Reusing RPG Source 247

Part 4. Advanced Topics 249

Chapter 10. Debugging Your Application 251
Starting the Debugger 251
Displaying the Assembly Code 252
Loading the DLL Occurrence 253
Entering Debug Startup Information . . . 254
Setting a Breakpoint 254
Running with Breakpoints 256
Using the Mouse or Keyboard to Start
Debug Functions 257
Selecting Options from the Tool Bar. . . . 258
Displaying and Changing Variables, Arrays,
and Structures 259
Changing the Contents of a Field or
Structure 261
Changing the Representation 261
Changing the Default Representation . . . 261
Displaying Pointers and Storage 262
Changing the Debugger Views 263
Setting Fonts 264

Chapter 11. Editing Output 265
Edit Codes 265
Edit Words 267

Parts of an Edit Word 267

Chapter 12. Using Picture, Sound, and
Video Files 269
Creating Icons for Windows 270
Converting OS/2 Icons to Windows Format 270

Chapter 13. Tips for Creating Online Help
with IPF. 271
Creating Online Help 271
Using IPF 271
Supporting Help for Other Languages . . . 271
Adding Graphics to Your Online Help . . . 272
Deciding What Type of Help to Provide . . 272

Adding Context-Sensitive Help 272
Creating a Help Push Button 273
Creating Hypertext Links 273

Chapter 14. Tips for Creating and Using
Windows Help 275
Establishing the Resource ID 276
Writing the Help Text 276
Creating the Help Project File 278
Compiling the VARPG Program 278
Testing the Help 278
Creating a Contents File 279

vi Programming with VisualAge RPG

||
||

Chapter 15. Tips for Creating JavaHelp 281
Creating a HelpSet File 282
Creating the Map File 283
Creating the TOC File 284
Creating the JAR File 284

Chapter 16. Working with Messages. . . 287
Defining Text for Substitution Labels . . . 287
Creating a New Message 288
Editing a Message 289
Deleting a Message 290
Finding a Message 290
Using Messages with Logic 290
Translating Message Files 291

Manually Changing Message Files . . . 291
Using Messages as Labels 292

Chapter 17. Communicating Between
Objects 293
Linking Parts 293
Using a VisualAge RPG Application as a
DDE Server 294

AppName 295
Topic 295
Item 295
DDEAddLink 295
DDEMode 295

Communicating Between Components . . . 295
Making Local Calls 295

Using the CALLB Operation 296
Calling Local Programs using CALLP . . 299
Calling Local Programs using START . . 300
Starting Components using START . . . 302

Calling Remote Programs 303
Calling iSeries 400 Programs 303
Starting Workstation Programs from the
iSeries server 305

Using Multiple Procedures 305
Prototyped Calls 305
Procedure Considerations 307
Procedure Implications 308

Chapter 18. Calling Java Methods from
VisualAge RPG Programs 311
The Object Data Type and CLASS Keyword 311
Prototyping a Java Method. 313

Examples of Prototyping Java Methods 314
Creating Objects 316
Calling Java Methods 316
Additional Considerations 319

Chapter 19. Considerations When
Compiling for Java 321
Project File Name Convention. 321
Conditional Compile Directives 321
Java Source Code Restrictions 321
Possible VARPG Source Changes. 322
Runtime Differences 325
Applet Restrictions 326
J2SDK 1.2 Printing Problems 326

Chapter 20. Creating and Running
VisualAge RPG Applets 327
Creating Applets 327
Testing Your Applet 330

Troubleshooting 332
Running One Applet from Another 333

Chapter 21. Calling System Functions
when Compiling for Java 335
A Simple Call 335
Passing and Receiving Parameters 337

Parameter Types 338
Passing Arrays 362
Returning A Char Value. 377
Returning A Zoned Value 379
Returning A Packed Value 381
Returning A Binary Value 383
Returning An Integer Value 385
Returning An Unsigned Value 386
Returning A Date, Time, or Timestamp
Value 388
Returning A Float Value 389
Returning A Varying-Length Character
Value 390
Returning Array Values 391

Chapter 22. Creating Non-GUI VisualAge
RPG Programs 417
Creating Standalone VARPG Programs. . . 417
Creating DLLs 418
Exception Handling 422
Debugging Applications 422
Debugging Procedures 422

Chapter 23. DBCS Considerations . . . 425
VisualAge RPG Support for DBCS Data
Types 425

DBCS ONLY Data Type 427
DBCS Either Data Type 427
DBCS Mixed Data Type 427

Contents vii

|
||
||
||
||
||

Pure DBCS Considerations 428

Chapter 24. Merging Code in Your
Application 429

Chapter 25. Vendor Plugins 435
Adding a Vendor Plugin 435
Invoking a Vendor Plugin 435
Managing Vendor Plugins 436

Chapter 26. Creating Plugins 437
Creating Plugins Using VisualAge RPG . . 437

Creating the .plg file 437
Template for .plg file and sample . . . 445
Creating the .EXE file 446
Packaging Your Application 463

Considerations when Creating Plugins using
VisualAge for C++ 463
Considerations when Creating Plugins using
REXX 463

Part 5. Distributing Your
Application 465

Chapter 27. Packaging Runtime Code and
Applications 467
Before You Begin 467
Packaging the VisualAge RPG Runtime Code
and Applications 467

Starting the Packaging Utility 468
Packaging Windows Applications for
Windows 469
Packaging Java Applications for Windows 472
Packaging Java Applications for Other
Platforms 473

Chapter 28. Installing Windows Runtime
Code and Applications 477
Installing the Runtime Code 477

A Note About Embedded SQL 477
Installing an Application 477
Maintaining the Runtime Code and
Applications 478

Installing From the LAN 478
Installing Silently from the LAN 478

Part 6. Appendixes 481

Appendix A. Application Files 483

Appendix B. Writing Thin Client
Applications 487
Implementing a VARPG Thin Application
Model 488
Sample Application Using Remote Calls . . 489

The Client Program 490
The Server Program 491

Sample Application Using Data Queues . . 493
The Client Application 495
The Server Program 499

Other Possible Implementations 501
Reusable Server Program Example 502

Appendix C. Creating and Compiling
Non-GUI Programs from MS-DOS. . . . 505
Accessing an iSeries Server 506

Appendix D. Secure Sockets Layer (SSL)
Setup 509
SSL Considerations 509
Prerequisites 509
SSL Setup for the iSeries 400 Server 510
SSL Setup for the Workstation 512

Glossary 515

Bibliography 529

Notices 531
Programming Interface Information 532
Trademarks and Service Marks 532

Index 535

viii Programming with VisualAge RPG

|
||
||
||
||
||

About this Book

This book is a guide for using VisualAge® RPG to develop client/server
applications. It describes the steps at every stage of the application
development cycle, from design to packaging and distribution. Programming
examples are included, to clarify the concepts and the process.

Who Should Use This Book

This book is written for programmers who will be using VisualAge RPG to
develop client/server applications. It assumes that you are familiar with
developing RPG applications on iSeries™ 400™ systems.

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up
iSeries and AS/400e technical information. You can access the Information
Center in two ways:
v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter
v From CD-ROMs that ship with your OS/400 order:

iSeries Information Center, SK3T-4091-00. This package also includes the PDF
versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,
SK3T-4092-00, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as
CL commands, system application programming interfaces (APIs), logical
partitions, clustering, Java ™ , TCP/IP, Web serving, and secured networks. It
also includes links to related IBM® Redbooks and Internet links to other IBM
Web sites such as the Technical Studio and the IBM home page.

How to Use This Book

Note: For information on the product, see Getting Started with WebSphere
Development Studio Client for iSeries, SC09-2625-06.

The Programming with VisualAge RPG book consists of the following parts:

A First Look at Client/Server Applications
This part describes the steps involved in creating a client/server
application with VisualAge RPG. It walks you through the design and
development of a sample application, and discusses design issues.

© Copyright IBM Corp. 1994, 2002 ix

|
|

Working with Parts
This part contains tips about creating a graphical user interface with
VisualAge RPG parts and writing program logic to drive those parts.
It does not describe how to use every operation code, nor does it
describe the details of every attribute or event. For such information,
see the VisualAge RPG Language Referenceand VisualAge RPG Parts
Reference.

Working with iSeries 400 Data
This part discusses how to set up your application to access data on
an iSeries 400 server, and how to reuse existing server applications by
converting them to VisualAge RPG applications that run on a
programmable workstation (PWS).

Advanced Topics
This part highlights the many features you can add to your VisualAge
RPG application. It covers topics such as printing from your
application, editing output, using the debugger, using picture and
sound files, creating online help, adding messages, and running your
application on a DBCS system. It also describes the many different
ways VisualAge RPG applications can share data and communicate.

Distributing Your Application
This part discusses how to package the VisualAge RPG runtime code
and your application. It also describes how to install the runtime code
and the application on a user’s PWS.

The VisualAge RPG Library

The VisualAge RPG library contains the following publications:

Programming with VisualAge RPG

This book contains specific information about creating applications with
VisualAge RPG. It describes the steps you have to follow at every stage of the
application development cycle, from design to packaging and distribution.
Programming examples are included to clarify the concepts and the process of
developing VisualAge RPG applications.

VisualAge RPG Parts Reference

This book provides information on the VisualAge RPG parts, part attributes,
part events, and event attributes. It is a reference for anyone who is
developing applications using VisualAge RPG.

VisualAge RPG Language Reference

x Programming with VisualAge RPG

This book provides information about the RPG IV language as implemented
using the VisualAge RPG compiler. It contains:
v Language fundamentals such as the character set, symbolic names and

reserved words, compiler directives, and indicators
v Data types and data formats
v Error and exception handling
v Specifications
v Built-in functions, expressions, and operation codes.

For an overview of the entire product, see Getting Started with WebSphere
Development Studio Client for iSeries.

For a list of related publications, see the Bibliography at the end of this book.

You can also find the most current information about IBM WebSphere
Development Studio Client for iSeries on the following online source:

The WebSphere Development Studio Client Home Page
ibm.com/software/ad/wdsc/

How to Send Your Comments

Your feedback is important in helping us to provide the highest quality
information possible. IBM welcomes any comments about this book or any
other iSeries documentation.
v If you prefer to send comments by mail, use the following address:

IBM Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

v If you prefer to send comments electronically, use one of these e-mail
addresses:
– Comments on books:

torrcf@ca.ibm.com
IBMLink: to toribm(torrcf)

– Comments on the iSeries Information Center:
RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book
v The publication number of the book
v The page number or topic to which your comment applies.

About this Book xi

|
|

|
|

|
|

|
|
|
|
|

Accessing Online Information

VisualAge RPG contains a variety of online books and online help. You can
access the help while you are using the product, and can view the books
either while you are using the product, or independently.

Using Online Books
To view an online book, either:
v Select the name of the book from the Help pull-down menu of the

VisualAge RPG GUI Designer or the editor window.
v Access the books from the Start menu. Select Programs → IBM WebSphere

Development Studio Client for iSeries. Then select Documentation.

Publications in PDF Format
VisualAge RPG publications are available in Portable Document Format (PDF)
from the iSeries Information Center at URL
http://www.ibm.com/eserver/iseries/infocenter .

Note: You need the Adobe Acrobat Reader, Version 3.01 or later for Windows,
to view the PDF format of our publications on the workstation. If your
location does not have the reader, you can download a copy from the
Adobe Systems Web site (http://www.adobe.com).

The following VisualAge RPG publications are available in PDF format:
v Programming with VisualAge RPG
v VisualAge RPG Parts Reference
v VisualAge RPG Language Reference

For information on the product, see Getting Started with WebSphere Development
Studio Client for iSeries, SC09-2625-06.

Using Online Help
Online help is available for all areas of VisualAge RPG. To get help for a
particular window, dialog box, or properties notebook, select the Help push
button (when available).

Note: To view help that is in HTML format, your workstation must have a
frames-capable Web browser, such as Netscape Navigator 4.04 or
higher, or Microsoft® Internet Explorer 4.01 or higher. (Recommended
browser is Netscape Navigator 4.6 or Internet Explorer 5.0)

Using context-sensitive help
To receive context-sensitive help at any time, press F1. The help that appears
is specific to the area of the interface that has input focus. Input focus can be
on menu items, windows, dialog boxes, and properties notebooks, or on
specific parts of these.

xii Programming with VisualAge RPG

|
|

|
|
|

|
|
|
|

|
|

For context-sensitive help on dialog boxes, click on the question mark (when
available) in the top right-hand corner of the window. A question mark will
appear beside the mouse arrow. Click on a word or field and help information
on that specific field will be displayed.

Using hypertext
Some help windows contain words, phrases, or graphics that are highlighted.
These are hypertext links that take you from one topic to another. To display
help that is specific to a highlighted topic, click on it. When you follow a
hypertext link, a Synchronize button may appear in the upper right-hand
corner of the help topic. (You may need to page up to see the button.) If you
click the Synchronize button, the list of topics in the left-hand frame is
refreshed to show you how the current topic fits into the overall table of
contents.

Using the help table of contents
When the Help window is displayed, press the Synchronize button (when
available) to display the Components section in the left-hand frame. Click the
plus + and minus − symbols to expand and collapse the section for the
desired component. To view a topic, click on it.

Using the search facility
The help system uses an advanced, full-text search engine, which returns
″hits″ based on your search request. To search the current information set,
click the Search tab, at the bottom left-hand corner of the navigation (table of
contents) frame. Enter the search string and press the GO button.

For tips on refining your searches, see the Searching online information link.

Using language-sensitive help
To receive language sensitive help, press F1 in an edit window. If the cursor is
on an operation code, you receive help for that operation code; otherwise, you
receive help for the current specification.

About this Book xiii

|
|
|
|

xiv Programming with VisualAge RPG

What’s New This Release

New part attributes and events include:
v Canvas part now has the VKeyPress event. You only need to code one

action subroutine for all parts that can respond to this event.
v ActiveX: ReturnVal returns the value of a method call; OCXPropIdx sets or

retrieves the index for an array property. The array can be string or
numeric.

v Container: DeleteRcd can be set to delete one or all records.
v *component: HostName returns the workstation host name in the form of

host_name IP_address.
v Menu Item:Visible attribute added. More shortcut keys have been added;

short-cut key text is now displayed automatically next to the menu-item
label at run time.

This publication includes information from the previous releases’ Readme and
other technical corrections. Previous Readme content includes descriptions for
the following new VisualAge RPG part attributes:
v Subfile part attributes

EditColumn, EditIndex, and EditText return the column number, column
row, or text being edited.
MapViewCol and ViewColumn can be used for changing the order in
which Subfile data columns are displayed.
DColFRVCol and VColFRDCol return the data column and view column,
respectively.
SortAsc and SortDesc can be used to sort data in a column.

v PrintAsIs for the Window and Image parts prints images and maintains
their aspect ratio.

v DropValue is used to change or retain a label after a drop operation.
v OnTop changes the specified Notebook Page into the current page.
v Graph part: now has the Popup event.

Changes are noted by a vertical bar (|).

© Copyright IBM Corp. 1994, 2002 xv

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

xvi Programming with VisualAge RPG

Part 1. A First Look at Client/Server Applications
Chapter 1, “Creating a Client/Server Application” on page 3

Walks you through the design and implementation of a client/server
application.

Chapter 2, “Planning Your Application” on page 23
Helps you plan and design a graphical user interface for your new
client/server application.

© Copyright IBM Corp. 1994, 2002 1

2 Programming with VisualAge RPG

Chapter 1. Creating a Client/Server Application

This section describes how to create a client/server application using
VisualAge® RPG. A sample application is used to describe the following
stages of the development process:
1. Designing what the user will see and do with the application.
2. Creating the graphical user interface (GUI).
3. Setting attributes for the GUI parts.
4. Writing the program logic to drive the GUI.
5. Writing messages and online help for the application.

About the Sample Application

The sample application, called the Video Store Catalog, was created with
VisualAge RPG, and is in the VisualAge RPG Samples folder. It provides an
online catalog that customers can use to buy videos, and has a preview
component that customers can use to view video clips before they place their
order.

The information about the videos is stored in a database on the iSeries 400
server. Customers using the Video Store Catalog are actually viewing data
stored on the iSeries server. The information that customers provide, such as
their name and phone number, is also stored on the host.

Note: Another sample application, Video Store Cashier, can access the same
database on the host. It uses the information from the customers’ orders
to update the inventory of the video store and to bill customers. The
Video Store Cashier is not discussed in this section. For information
about building and running it, see the comments in the CASHIER.VPG
file in the Video Store Cashier project folder.

Building the Sample Application

The Video Store Catalog application requires the files defined in the F
specification to be on an iSeries server. The WDSC\samples\vidcust
subdirectory has the save file VIDEOSTORE.sav of the library with the
required files.

To upload the necessary files and build the application and its associated
preview component, follow these steps:
1. Ensure that both VisualAge RPG and the VisualAge RPG Samples are

installed.

© Copyright IBM Corp. 1994, 2002 3

|
|

2. Upload and restore the VIDEOSTORE.sav file on your iSeries server as
follows:
a. On your iSeries server, create a save file named VIDEOSTORE in any

library, for example, USER.
b. On your workstation, change your current directory to vidcust and

issue the ftp command as follows:
x:\...\WDSC\samples\vidcust>ftp HOSTNAME

c: is the drive where you installed the product and HOSTNAME is the
name of the iSeries server where you created the save file. (You can use
your server’s TCP/IP address, instead.)

c. Enter your user ID when prompted for it.
d. Enter your password when prompted for it.
e. After you are signed on, make the USER library your current library.

Enter:
ftp>cd user

f. Specify the file transfer as binary. Enter:
ftp>binary

The 200 Representation type is binary IMAGE message appears.
g. Transfer the save file. Enter:

ftp>put VIDEOSTORE.sav

The File transfer completed successfully. message indicates that the
VIDEOSTORE.sav was uploaded.

h. Enter: ftp>quit
The VIDEOSTORE save file should now be in library USER on your
iSeries server.

i. Use RSTLIB to restore the library and retain the same name -
VIDEOSTORE - on your iSeries server. Otherwise, change the
REMOTE_FILE_NAME parameter in the Catalog.rst file to the name
you restored the save file to.

j. In the Catalog.rst file, change the REMOTE_LOCATION_NAME
parameter to point to the Remote location name of your iSeries server.

3. Build the Video Store Catalog sample application. Select Build>Windows
or Build>Java from the pop-up menu of the Video Store Catalog project
folder in the VisualAge RPG Sample Applications folder. When the project
builds successfully, an executable program, CATALOG.EXE for Windows,
or CATLAOG.CLASS for Java is created in the Video Store Catalog project
folder.

4. Build the associated Preview component. Select Build>Windows or
Build>Java from the pop-up menu of the Preview project folder. When the
project builds successfully, a dynamic link library (COMMON.DLL) for
Windows, or a COMMON.CLASS file for Java is created.

4 Programming with VisualAge RPG

Use one of the following methods to run the Video Store Catalog application:
v Select Run>Windows or Run>Java from the pop-up menu of the Video

Store Catalog project folder.
v Open the Video Store Catalog project folder and double-click on the

CATALOG.EXE icon.
v Type catalog on a command line.

Notes:

1. The multimedia aspects of this application require additional hardware
and software. To run the audio in the preview, you must have a sound
card on your system. To run the video clip in the preview, you must have
Media Player installed. Java applications require the Java Media
Framework (JMF) API.

2. The video clips are ·AVI files (for Windows) or ·MOV files (for Java) that
are stored in the Preview folder.

3. To build and run Java applications, you must have Sun’s Java 2 Software
Development Kit (J2SDK) Version 1.2, or higher, installed on your
workstation. If you do not have the J2SDK, you can download it from Sun
Microsystems at the following URL:
http://java.sun.com/products/

After installing the J2SDK, set the PATH environment variable to point to
the location of both the Java compiler and the Java Runtime Environment
(JRE). For example, if your home directory for the J2SDK is c:\jdk1.2, add
the following path statement: c:\jdk1.2\bin

Deciding What to Show the User

A key step in creating your application is to decide what you want users to
do with your application, and then to determine what you need to provide so
that they can do it.

During the planning stages of the Video Store application, we decided that
customers should be able to list the videos in a particular category (such as
Action/Adventure or Comedy). They should also be able to list the videos
that are made by their favorite director, feature their favorite actor, or are
among the top-10 sellers in the store. To help them decide whether they want
to buy a particular video, they should be able to preview it. After they find
the video they want to buy, they can place their order and then pay for their
purchase at the cashier counter.

Now that we have itemized what the customers should be able to do with the
application, we can design what they will see when they display the video
catalog. This is the time to start designing the content, number, and order of
windows in the application.

Chapter 1. Creating a Client/Server Application 5

Welcome to the Video Store Catalog
The main window, or entry point to the application, is the Video Catalog —
Welcome window. It sets the stage for what customers can do with the
catalog. To use the catalog, the customers must press a graphic push button to
select from the following choices:

Browse by Category...

New releases...

Top 10 Best Sellers...

Search for Specific Titles...

Help Catalog

Selecting Help Catalog displays the Get Help on using theCatalog window. If
they press one of the other push buttons, another window is displayed from
which they can perform other actions, such as view lists, preview clips, or
submit a purchase order.

Browsing by Category
Selecting Browe by Category displays the Video Catalog — Categories
window. This window presents a list of video categories to choose from:

Action/Adventure Horror
Children Western
Science Fiction Romance
Comedy Classics

To select a category, the customer presses its associated push button. This
displays the Video Titles window, which lists the items for that category.
Customers can preview some of the titles, add a title to their order, delete it
from their order if they change their mind, and submit their order to the
cashier.

Searching for Specific Titles
The Video Catalog — Search window lets customers search for a video by
category, title, director, or actor. After they specify the search criteria and press
the Search push button to initiate a search of the database, the results are
displayed in the Video Titles window.

Previewing Titles
Customers can preview a video that is on a list by reading a review of it or, if
they have the appropriate hardware and software, by viewing a clip of it with
associated audio.

Modifying and Submitting Orders
The Video Catalog — Review/Order My Selections window lets customers
modify their order. They can delete videos from the list, change the number of

6 Programming with VisualAge RPG

copies they want to buy, and change the type of medium they want the video
to be on (tape or laser disk). This window is displayed when customers select
a video from a list in a Video Titles window and then press the
Review/submit order push button.

When all the information for their order is entered, customers submit their
order from this window.

Submitting Orders
When customers submit their orders, they must provide their name, address,
and phone number on the Video Catalog — Order Reference window. This
information is stored in a database on the iSeries 400 server.

High-Level Window Design

Discussing how to create every one of the windows in the Video Store Catalog
is beyond the scope of this section. The following sections describe how you
could use the GUI Designer to create two windows resembling the Comedy
and the Preview windows, modify some of their part attributes, and write
some of the associated program logic. You find these windows by taking the
following path through the Video Store Catalog application:

Video Catalog — Welcome Pressing the Browse by Category push button on
the Video Catalog — Welcome window displays
the Video Catalog — Categories window.

Video Catalog — Categories Pressing the Comedy push button on the Video
Catalog — Categories window displays the Video
Catalog — Comedy window.

Video Catalog — Comedy Pressing the Preview button after selecting a title
on the Video Catalog — Comedy window
displays a Preview window.

Video Catalog — Preview The preview runs in this window.

If you want to see the design for the sample application, select Edit from the
pop-up menu of the Video Store Catalog project folder in the VisualAge RPG
Sample Applications folder. This displays the application’s project window

Chapter 1. Creating a Client/Server Application 7

and the parts palette. The project window shows all the windows defined for
the application. Double-click on an entry to see its design window with the
associated parts. To view the project’s VARPG source code, select Project>Edit
source code from the project window.

Creating the Comedy Window

The Comedy window displays the list of comedy videos that customers can
purchase. This section describes how you can create a window similar to this
one.

Creating the GUI
Select a window with canvas part from the parts palette with the right mouse
button, move the pointer icon onto the project view of the GUI Designer, and
right-click again. This becomes the design window, on which you put the
following parts from the palette: group box, push button, static text, and
subfile.

Aligning the parts
You can use the alignment tools in the GUI Designer to size, align, and space
the parts so that they resemble those shown in Figure 1. For information on
using these tools, see the online help or HTML tutorial.

Setting Attributes
After a part is placed and positioned on the window, you can modify the
default settings for the part attributes using its properties notebook. To do
this, right-click on the part and select Properties from the part’s pop-up
menu.

Figure 1. The Comedy window

8 Programming with VisualAge RPG

Some of the part attributes you can modify are described below.

Window attributes
You can select the items you want to appear on the window (such as system
menu, title bar, and minimize and maximize buttons), and configure the
border of the window. By default, the window uses the system font and has a
white background. You can change the font and color.

Canvas attributes
By default, the canvas part uses the system font, and is the same color as the
folder background. You can change the font and background color of the
canvas part. You can also place a graphic on the canvas part.

Subfile attributes
By default, the subfile part is created with no columns. If you know the
database field names, you can create subfile entry fields using the GUI
Designer. Otherwise, you can reference the existing fields in the database by
following these steps:
1. Select Define reference fields from the Server menu. The Define

Reference Fields window appears.
2. Specify the iSeries 400 server and library information to view the database

field information.
3. Select the appropriate fields from the Fields list box with the right mouse

button, move the pointer icon onto the subfile part in the design window,
and right-click again.
The new subfile entry field inherits the attributes from the original field:
Length is set to the column width, and Type is set to the data type.

Set the style and data type for a subfile entry field using the appropriate
properties notebook. For example, you can set the length, or the type of data.

Push button attributes
Label each of the push buttons to indicate its purpose to the user. To create a
mnemonic for each push button, put the mnemonic identifier before a
character in the label. For Windows, use an ampersand (&). Note that we put
an ellipsis (...) in the label of the Review/submit order push button so that
users know that they will have to provide more information after they press
the button to place their order.

For each push button, specify what action will happen when the user presses
it. For example, for the Preview push button, an action subroutine will be
performed; for the Help push button, help for the window will be displayed.
You can set this information on the Action tab of the push button’s properties
notebook. (See “Creating the Online Help” on page 17 for related information.)

Chapter 1. Creating a Client/Server Application 9

Adding Program Logic
Program logic is required to drive certain GUI functions. This section
describes some of the Video Store Catalog’s program logic. (The source file,
CATALOG.VPG, is in the Video Store Catalog folder.)

Note: You can type the program logic for a particular event by invoking an
edit session from the GUI Designer. For example, to add program logic
to the Press event for a particular push button, select Events>Press
from the push button’s pop-up menu.

Displaying the Comedy window
To have the Comedy window appear when the user presses the Comedy push
button on the Video Titles — Categories window, do the following:
1. Write an action subroutine to handle the Press event for the Comedy push

button.
We wrote the COMEDYGPB action subroutine (shown in Figure 2) to
handle this event. When the user presses the push button, the
COMEDYGPB subroutine calls the brComedy user subroutine. This
subroutine reads the database and calls another user subroutine,
dspbrowse, to check if the database is empty. If it is, a message is
displayed. If it is not empty, control returns to the brComedy user
subroutine, the title of the window is changed, and the results of the
database search are displayed.

2. Write program logic to read the Comedy video titles from the database
and populate the subfile part with the list of titles. Call the dspbrowse
subroutine to check whether the database is empty. If the database is not
empty, set the title for the browse window to display the found comedy
titles. Otherwise, display message number MSG0001 to inform the user
that no match was found in the database. See Figure 3 on page 11.

** **
** Categories window action-link subroutines **
** **
** **

*
* This routine is executed when the Comedy graphic push button in the
* Categories window is pressed.
*
C COMEDYGPB BEGACT PRESS CATW
C z-add 0 srchdir
C z-add 0 srchact
C exsr brComedy
C ENDACT

Figure 2. Handling the PRESS event

10 Programming with VisualAge RPG

Displaying the Preview Window
We wrote an action subroutine (see Figure 4 on page 12) to handle the PRESS
event for the Preview push button on the Comedy window. When the user

* *
* User Subroutine: brComedy *
* Description : Show browse window with comedy videos *
* *

C brComedy BEGSR
C clear browsesf
* Get records from vil0004, the logical file on the AS/400
* for comedy type videos.

C *start setll vil0004
C read vil0004 61
C *IN61 doweq ’0’
C exsr ckcriteria
C read vil0004 61
C end
C exsr dspbrowse
* The next three lines set the browse window’s title bar text.

C movel *blanks vdocatstl
C movel stlcmdy vdocatstl
C eval %setatr(’browsew’:’browsew’:’Label’) =
C vdocatttl
C ENDSR

...

* *
* User Subroutine: dspbrowse *
* Description : Check if the browse subfile is empty. If so, *
* display message MSG0001 saying match not found. *
* *

C dspbrowse BEGSR
C eval items=%getatr(’BROWSEW’:’BROWSESF’:’Count’)
C items ifeq 0
C *MSG0001 dsply msgrsp 9 0
C else
C eval %setatr(’BROWSEW’: ’BROWSEW’: ’VISIBLE’)=1
C eval %setatr(’BROWSEW’: ’BROWSEW’: ’FOCUS’)=1
C endif
C ENDSR

Figure 3. Reading the iSeries Database and showing the results window

Chapter 1. Creating a Client/Server Application 11

presses the button, the PREVIEWPB action subroutine is called to start the
common component that displays the Preview window.

Creating the Preview Window

The Preview window uses the multimedia capabilities of the operating system
to give customers a glimpse of a video clip. This section describes how you
can create a window that resembles the above.

Note: To run the audio in the preview, you must have a sound card on your
system. To run the video clip, you must have a Media Player installed.
Java applications require the Java Media Framework (JMF) API.

* When the preview button in the browse window is pressed, the common
* component is started. The common component displays the preview
* window of a video.
*
*
C PREVIEWPB BEGACT PRESS BROWSEW
C READS BROWSESF 55
C *IN55 ifeq ’0’
C start ’common’
C parm brsfpart
C endif
C ENDACT

Figure 4. Action subroutine for displaying the Preview window

Figure 5. The Preview Window

12 Programming with VisualAge RPG

Creating the GUI
Point-and-click the following parts onto a window with canvas part to create
a window that resembles the Preview window:
v Media part
v Multiline edit part
v Push button parts
v Static text parts

Setting Attributes at Design Time
After the parts are placed and positioned in the window, you can set the part
attributes using their respective properties notebook. Some of the attributes
you can set are described below.

Media part attributes
Push button parts are used to control the playback of the video clip: Play,
Pause, Record, and Stop. The AudioMode attribute sets the operating mode
of the media part.

Static text attributes
You can change the font attribute of a static text part to make it stand out
from the other text on the display. Resize the static text part so that it is large
enough to hold the longest text. (It is a good idea to leave a bit of extra room,
if your application is to be translated in the future.)

Multiline edit part
In the code, we set the multiline edit (MLE) part called ABSTMLE to accept
text. In the part’s properties notebook, we indicated that the part is read-only.

Setting Attributes at Run Time
To change the title of the displayed window at run time, we used the SETATR
operation code to set the Label attribute (see Figure 6 on page 15).

Adding Program Logic
You have to provide some program logic to drive certain GUI functions on the
Preview window. This section describes some of the program logic (see
Figure 6 on page 15) for the Preview component.

Specifying the video to preview
The video selected in the Comedy window determines which video preview
is played. The previeww action subroutine reads which video is to be used,
and then determines the file name of the actual video file.

Controlling the video
You can write code to control video by using the media part. In our sample,
the media part is used to play a digital video file associated with the video
selected.

Chapter 1. Creating a Client/Server Application 13

Push buttons with the associated AudioMode attribute control the playback of
the video file:

1 Pause

2 Play

3 Record

4 Stop

The code for the Preview component follows:

14 Programming with VisualAge RPG

*

Fvideo if e k disk remote BLOCK(*YES)
*

DFlg s 1 inz(*OFF)
DFldx s 12
*

*

C *entry PLIST
C parm partno 5 0
*

* Action link subroutines for PREVIEWW *

*

C PREVIEWW BEGACT CREATE PREVIEWW
C partno setll video 50
C N50*msg0001 DSPLY msgrsp 9 0
C read video 51
C *IN51 IFEQ ’0’
C ’TITLEST’ SETATR vititle ’label’
C ’DIRST’ SETATR vidirect ’label’
*

C viactr1 CAT viactr2:1 actors 41
C ’ACTST’ SETATR actors ’label’
*

C ’ABSTMLE’ SETATR vireview ’text’
*
* If its for Java, use .mov file
/If defined(COMPILE_JAVA)
*

C vibitmap CAT ’.mov’:0 videofil 13
* If its not for Java, then use .avi file
/else

C vibitmap CAT ’.avi’:0 videofil 13
/EndIf

C endif
*signify videofil is not yet loaded to Audio part

C move ’N’ loaded
*

C ENDACT
* *

Figure 6. The Preview Component (Part 1 of 3)

Chapter 1. Creating a Client/Server Application 15

*
C PBPLAY BEGACT PRESS PREVIEWW
*
C if loaded=’N’
C eval %setatr(’previeww’:’audo’:’FileName’)
C =videofil
C move ’Y’ loaded 1
C endif
*
C eval %setatr(’previeww’:’audo’:’audioMode’)=2
*
C ENDACT
* *

*
C PBPAUSE BEGACT PRESS PREVIEWW
*
C eval %setatr(’previeww’:’audo’:’audioMode’)=1
C ENDACT
* *

*
C PBRECORD BEGACT PRESS PREVIEWW
*
C eval %setatr(’previeww’:’audo’:’audioMode’)=3
C ENDACT

* *

*
C PBSTOP BEGACT PRESS PREVIEWW
*
C eval %setatr(’previeww’:’audo’:’audioMode’)=4
C ENDACT
* *

Figure 6. The Preview Component (Part 2 of 3)

16 Programming with VisualAge RPG

Creating Messages

To add messages, select Project>Define messages from the GUI Designer. The
Define Messages window appears. Select Create, and then select the type of
message you want to create (for example, information or warning). Type the
actual text for the message, and any additional information or second-level
help, in the spaces provided.

VisualAge RPG automatically generates a message ID for the message you
create. Reference that message ID in your code. For example, in Figure 3 on
page 11, MSG0001 is used by the DSPLY operation code.

Creating the Online Help

We added different types of help to the Video Store Catalog application. The
following sections describe how you can replicate some of this help.

Context-sensitive help
Add context-sensitive help to the Browse by Category graphic push button
part by selecting Help text from the part’s pop-up menu. This starts an edit
session that already contains information similar to that shown in Figure 7 on
page 18.

*

C CANCELPB BEGACT PRESS PREVIEWW
*

C move *on Flg
C STOP
C ENDACT
* *

*

C PREVIEWW BEGACT CLOSE PREVIEWW
*

C if Flg=*ON
C eval Fldx=’*DEFAULT’
C else
C eval Fldx=’*NODEFAULT’
C endif
C ENDACT Fldx
*

Figure 6. The Preview Component (Part 3 of 3)

Chapter 1. Creating a Client/Server Application 17

The :h1 res=01. is a heading tag containing a resource identifier. The
resource identifier is automatically generated — do not edit this text. The
heading appears directly after this tag; it is used on the help panel and listed
in the help index at run time. By default, the name of the part for which you
are adding text is used as the heading. You should replace that with a
heading that identifies the purpose of the help panel and is more meaningful
to users. Type the actual help text after the :p· tag. By default, the word Help
appears in the edit session.

An example of help text from the Video Store Catalog application is shown in
Figure 8. The help panel that is generated from that source and displayed at
run time is shown in Figure 9.

Creating Help push buttons
To create the help graphic push button at the bottom of the Preview window
or the Comedy window, select a graphic push button from the parts palette
with the right mouse button, move the pointer icon onto the design window,

:h1 res=01.PSB0000C
:p.Help

Figure 7. Edit session for adding online help

:h1 res=12.Browse by Category
:p.Select this to browse videos by categories.

Figure 8. Help for the Browse by Category graphic push button

Figure 9. Example of context-sensitive online help panel

18 Programming with VisualAge RPG

and right-click again. In the properties notebook, specify the image to be
displayed on the graphic push button, and specify that you want to display
help when the Press event occurs.

Figure 10 shows the source for the push button that provides help for the
Welcome window. The :link· tag is used to link related pieces of help
information so that users can find the appropriate information quickly and
easily. You place this tag around text that is related to the help text in another
panel. The text between the :link. and :elink. tags is highlighted in the
runtime application (see Figure 11). By selecting the highlighted text, the user
jumps to the related target help panel. The resource id (resid) of the target
panel is a parameter of the link tag.

For more information about creating online help for your application, see the
following topics:

:h1 res=22.Get Help on using the Catalog
:p.Select one of the graphic push buttons.
:p.
:link reftype=hd res=12.Browse by Category:elink.
Press this button to browse by categories.
:p.
:link reftype=hd res=19.New Releases:elink.
Press this button to view the new video releases.
:p.
:link reftype=hd res=20.Top 10 Bestsellers:elink.
Press this button to view the 10 best ranked.
:p.
:link reftype=hd res=21.Search for Specific Titles:elink.
Press this button to search for specific titles.

Figure 10. Help for the Welcome window

Figure 11. Example of help for a window that contains a hypertext link

Chapter 1. Creating a Client/Server Application 19

v Chapter 13, “Tips for Creating Online Help with IPF” on page 271
v Chapter 14, “Tips for Creating and Using Windows Help” on page 275
v Chapter 15, “Tips for Creating JavaHelp” on page 281

A Review of Visual Programming

The steps described in the previous sections are similar to the ones you will
take when you create your own application using VisualAge RPG. These steps
are:
1. Deciding What to Show the User

Before you begin creating a new application, you should select the
purpose of your application, how it will be presented to the user, and how
it will communicate with other applications.

2. Creating the GUI using the GUI Designer
After you have designed the application, you can use the GUI Designer to
create the graphical user interface. VisualAge RPG provides a catalog of
GUI parts for you to choose from, and gives you the ability to create
user-defined parts to suit your needs. You can select the parts that you
want to appear in the interface, and select their positions on a design
window. Customize the parts as required.
See the online help for information about creating windows, adding parts
to the window, and aligning and customizing them.

3. Getting and Setting Attributes
You can set some part attributes during design time using the part’s
properties notebook. You can also use GETATR and SETATR operations
codes, or %getatr and %setatr built-in functions, to get or set the attributes
for a part during run time. When getting or setting part attributes, you
reference a part by using the name defined for it in the GUI Designer.
For more information about the parts, and how you can get and set part
attributes, refer to VisualAge RPG Parts Reference.

4. Writing Program Logic
Each part responds to a set of predefined events. Events are typically
generated as a result of some user interaction with the GUI. For example,
selecting a push button signals a Press event. Events can also be generated
by your program. For example, the DDE client part generates a Timeout
event if it is unable to start a conversation with a server program within a
predetermined period of time.
You respond to events in your program by coding the BEGACT (begin
action) and ENDACT (end action) operation codes. The code between
these operation codes, called an action subroutine, is executed for a
particular event. If you do not code an action subroutine, no action is
taken when the event occurs.

5. Adding Messages and Online Help

20 Programming with VisualAge RPG

In addition to creating the GUI and writing some program logic to make it
run, you can add messages and online help to your application.

Chapter 1. Creating a Client/Server Application 21

22 Programming with VisualAge RPG

Chapter 2. Planning Your Application

This section discusses what you should do before you begin coding a new
application or converting an existing OS/400* application into a VisualAge
RPG application.

If you are creating a new application, this is the time to decide on its purpose,
how it will be presented to the user, and how it will communicate with other
applications.

If you are planning to reuse an existing OS/400 application, this is the time to
evaluate the old character screen displays and decide how to improve them
using the power of graphical user interface parts. (For more information about
reusing existing applications, see Part 3, “Working with iSeries Data” on
page 213.)

The information in this section will help you design an application that meets
the user’s needs and is practical to implement.

Enabling Secure Java Applications

If you plan to deploy Java applications for use on the World Wide Web, note
that only systems running on the OS/400, Version 4 Release 4, or later,
support the Secure Sockets Layer (SSL) specification. Data flow between
workstation applications and servers running on earlier OS/400 versions will
not be secure.

For information on setting up SSL support for VisualAge RPG, see
Appendix D, “Secure Sockets Layer (SSL) Setup” on page 509. If your VARPG
applications will be running applets that use the client security file, see
“Using the Security File for Applets” on page 230.

Decide What Functions to Provide

First, determine what the main purpose of your application is, and what
functions you must provide to address it. After you determine the core
functions, tackle the advanced functions such as dynamic data exchange
(DDE) and printing.

© Copyright IBM Corp. 1994, 2002 23

Help Your Users

Users will have varying degrees of experience with GUIs. Consider providing
online help that is tailored for the level of knowledge of a typical user.
VisualAge RPG makes it easy for you to add online help to the GUI. You can
add four kinds of help:

Context-sensitive help
Help information that is adapted to the current context of a choice,
object, or group of choices or objects.

Task help
Information about tasks the user can perform with your application.

ToolTip help
Hover-type help about the tools available to the user.

Window-level help
Information about the contents of a window.

Other ways to help your users are to give them all the information they need
to complete a task, and to provide meaningful prompts and labels on GUI
parts. You can use an ellipsis (...) to indicate that more information is needed
before a particular action can be performed. (For example, use Display... to
tell users that they will be prompted for more information before the display
action is carried out.) Do not use an ellipsis on a label if the action will be
performed immediately after the button is pressed. For example, a Help
button does not need an ellipsis because the help information is displayed as
soon as the button is pressed. You can also provide help in the form of a static
text field that is updated when the mouse pointer moves over different parts
of your interface.

You can minimize the amount of information that your users have to provide
by setting default values. For example, you can use a combination box part to
give users the option of selecting from a list of commonly used choices. This
prevents key-in errors at run time.

Keep Window Design Simple

There are two basic aspects to good window design:
v The number and structure of windows in your application
v The content of each window

Number of Windows
It is a good idea to have one main window from which the user can initiate
all of the main tasks. Provide secondary windows for additional information
that users must specify to complete a task.

24 Programming with VisualAge RPG

Avoid a lot of nested windows because too many layers make a simple task
look complex. Also remember that too many windows will clutter the screen,
especially if the user has more than one application running. Users can also
get lost if they have many windows on their screen.

Try to minimize the number of parts in each window. This will increase
performance when windows are displayed. An application with many
windows and few parts per window will perform better than the same
application with fewer windows and more parts per window.

Content of Each Window
Group all related information in one place. Use the group box part and the
outline box part to visually indicate which radio buttons are related.

Use graphic images and icons to identify tasks or to complement the words in
the window. Make sure that all text is spelled correctly.

Position the parts in a window in a neat, logical manner. You do not have to
plan the position of some parts because their position is predetermined. For
example, a menu bar part is always located just below the window’s title bar.

If windows have common parts, you should display those parts in a
consistent location. This makes it easier for users to find common information.

Plan Your Code Effectively

After you design the GUI, you must decide what code is needed to support
actions that will be performed by users. VisualAge RPG helps you create the
GUI without writing a lot of code — it does the routine tasks for you. All
parts have default attributes, which you can modify using the GUI Designer
or in your program. You have to explicitly set other attributes. For example, if
you want users to be able to view graphics by pressing a push button labeled
Display..., you must do more than point and click the push button part from
the palette onto your design window: at the very least you must set the label
attribute to read Display... and write logic to find and display the data.

Keep the User Informed

Use messages to provide particularly important or urgent information. Give
detailed but not verbose messages that describe the problem and, if at all
possible, explain how to correct it. VisualAge RPG provides three ways of
displaying messages, and you should choose the method most appropriate for
the type of information you want displayed:

Window
To provide urgent information that the user should know about; for
example, a process that was not completed successfully.

Chapter 2. Planning Your Application 25

Message subfile
To provide information about a choice, or to contain a message about
the completion of an action or process.

Second-level message help
To provide an extra level of detail that may not be required at all
times by all users; for example, to describe a course of action that
novice users may not know about.

For long processes, you may want to add a progress indicator to keep the user
informed.

Plan to provide text, visual, or audio cues to users to present exceptions. For
example, you may want to show that a push button is not available by
dimming the text on it. No one can plan for every possible user action, so you
should also plan how your application will inform users about actions it
cannot interpret. For example, you may want to display a message if a user
tries to exit a file without saving the changes made during an edit session.

Use a Consistent Style

Use consistent terms to minimize confusion. For example, if you use Login on
one window, do not use User ID to refer to the same concept somewhere else.

Use consistent mnemonics across the application windows. A mnemonic is a
letter key that can be pressed to select a choice or perform an action. The
letter key corresponds to the underlined letter of a choice on a push button or
in a menu. For example, if you use Save to represent the save function on a
push button in one window, use it on every window that has that push
button.

Anticipate Translation Issues

Even if your current plans do not include translating the application into
another language, you should design and create your application so that it
could be easily translated in the future. By doing so you will have less to
rework if the need to translate arises.

Consider keeping the executable code separate from the text. This way you
can use the text in the appropriate language with the standard executable
code.

Note: There are other reasons why you should consider separating the text
from the code. You can correct errors in the text and make changes to
terminology in future releases more easily.

26 Programming with VisualAge RPG

You can create separate message files for each language and assign different
file extensions to each. Each of the message files should have identical
message numbers but text written in a different language. You can build one
·EXE for all languages simply by using the appropriate message file. For
example, an English version of the compiled message file could be named
SAMPLE·ENG and a German version could be named SAMPLE·GER. You can
instruct users to rename the appropriate message file to SAMPLE·MSG before
running the application. For more information, see Chapter 16, “Working with
Messages” on page 287.

Also keep in mind that translation can change the sizing requirements for text
(such as labels), entry fields, buffer, and windows. When sizing a part in the
GUI Designer that will have a substitution label, keep in mind that translated
text may be longer than the original.

If you use mnemonics, remember that the mnemonic character may be
different for different languages.

Chapter 2. Planning Your Application 27

28 Programming with VisualAge RPG

Part 2. Working with Parts
Chapter 3, “Programming with Parts” on page 31

Provides an overview of the general programming tasks you must do
to drive the GUI parts.

Chapter 4, “Sample Programs for VisualAge RPG” on page 41
Describes how to use sample programs for some VisualAge RPG
parts.

Chapter 5, “Common Attributes” on page 45
Describes attributes that are common to most parts and how you can
use them.

Chapter 6, “Using Data Transfer” on page 53
Describes how you can use data transfer to manipulate the value of
some parts.

Chapter 7, “Using Parts” on page 57
Contains helpful hints about using VisualAge RPG parts.

© Copyright IBM Corp. 1994, 2002 29

30 Programming with VisualAge RPG

Chapter 3. Programming with Parts

This section presents some tips for programming with parts. Topics include
how to get and set part attributes, reference parts in your program, respond to
events and system attributes, work with event and system attributes, and code
static text and entry field parts.

Getting and Setting Part Attributes

You can set some part attributes during design time using the part’s
properties notebook. You can also use GETATR and SETATR operation codes,
or %getatr and %setatr built-in functions, to change or retrieve the attributes
for some parts at run time. For more information about the attributes and
where you can set them, refer to the VisualAge RPG Parts Reference.

GETATR and SETATR are fixed operation codes that you can use to reference
parts on the same window as the part that generated the event. For example,
if the part that generated the event is on WINDOW1, the fixed operation
codes can reference only parts on WINDOW1. If a GETATR or SETATR
operation code references a part on another window, compile-time errors
occur for single-link action subroutines because the compiler verifies that the
referenced part exists on that window. Run time errors occur for multiple-link
action subroutines.

To reference parts on different windows, you must use the %getatr and
%setatr built-in functions. You can use these built-in functions to specify the
window name and the part name.

See the VisualAge RPG Language Reference for information about using these
operation codes and built-in functions.

Referencing Parts in Your Program
When getting or setting part attributes, you reference a part by using the
name defined for it in the GUI Designer. The name must follow OS/400
naming conventions. Specifically, the name:
v Must not exceed 10 characters in length. Only SBCS characters are allowed.

Characters must be letters A-Z, numbers 0-9, @, #, $, or _ (underscore).
v Must begin with the letters A-Z, @, #, or $.
v Can be entered in upper case or lower case.
v Must not have embedded blanks.
v Must not be an extended name (that is, must not be in double-quotation

marks).

© Copyright IBM Corp. 1994, 2002 31

Note: When your program is running, you can reference only those parts that
have been created. Parts are created when the window they are on is
also created. Creating a window or part loads it into memory. Any
attempt to reference a part that is not yet created results in a Part not
found message.

Responding to Events

Each part responds to a set of predefined events. You can use one of the
following methods to obtain a list of predefined events:
1. Refer to the VisualAge RPG Parts Reference for a complete list.
2. Press F1 when focus is on the part in the palette or catalog to get a general

description of the part and a list of the attributes and events associated
with it.

3. In the GUI Designer, invoke the pop-up menu for the part, and select the
Events item.

Events are typically generated as the result of some interaction with the user
interface. For example, pressing a push button signals a Press event. Events
can also be generated by your program. For example, the DDE Client part
generates a Timeout event if it is unable to start a conversation with a server
program within a predetermined time period. If your program changes the
text value of an entry field part, a Change event is signaled by the entry field.

You respond to events in your program by coding the BEGACT (begin action)
and ENDACT (end action) operation codes. The code between these operation
codes, called an action subroutine, is executed for a particular event. When
you create an action subroutine for a specific event, an action link is defined.
If you did not code an action subroutine for a particular event, no action is
taken when the event occurs. The code in an action subroutine is executed
until the ENDACT operation code is reached. Therefore, if you coded EXSR
operation codes within an action subroutine, these subroutines (called user
subroutines) are also executed.

You cannot invoke an action subroutine using the EXSR operation code. You
can, however, invoke a particular action subroutine by more than one action.
For example, you can have code that is executed when a push button is
pressed or when a menu item is selected. You can review which events have
action subroutines and modify link events to action subroutines in the Action
Subroutines window. To display the Action Subroutines window:
1. Select Edit source code from the Project menu in the GUI Designer. This

starts an edit session.
2. From the edit session, select Edit>Action subroutines. The Action

Subroutines window appears.

32 Programming with VisualAge RPG

Event attributes contain data that is relevant to an event. For example, the
MouseMove event stores the X and Y coordinates to indicate where the
mouse was located when the event occurred. Before you can use event
attributes in your program, they must be defined on definition specifications.
The name of the event attribute is the name of the entity on the definition
specification. Because the compiler does not verify the length of the variable
and some attributes have varying lengths, be sure to specify a length large
enough to contain the expected value.

Note: Event attributes cannot be changed by your program. Therefore, they
cannot appear in a result field or as the target field for an EVAL
operation.

The VisualAge RPG Parts Reference describes all the event attributes.

The following example illustrates how the %MouseX and %MouseY event
attributes can be defined and used in a program.

System Attributes

System attributes pertain to your application rather than to a specific part.

As with event attributes, system attributes must be defined on a definition
specification. They cannot be modified by your program.

*
* Define mouse x and y coordinate event attributes
*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++
D%MouseX S 4P 0
D%MouseY S 4P 0
*
* Check if Mouse coordinates in range:
*
CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...
CSRN01Factor1+++++++Opcode(E)+Extended-factor2++++++++++++++++++++++++++
C %MouseX ifgt 100
C %MouseY andgt 100
C ..
C endif
*
***** End of Source

Chapter 3. Programming with Parts 33

VisualAge RPG supports the following system attributes:

Table 1. System Attributes

Attribute Description Type Length

%DspHeight Returns the height
of the screen at run
time, in pixels.

Numeric 4

%DspWidth Returns the width of
the screen at run
time, in pixels.

Numeric 4

Working with Event and System Attributes

Each event attribute is valid for a particular event and can be used only
within action subroutines that are linked to that event. For example, if you
use an event attribute for the MouseMove event within an action subroutine
that is linked to the ReSize event, a runtime error is issued. Type checking is
performed only on event attributes at run time. If you define a character field
for a numeric event attribute, this error is detected only at run time.

System attributes can be used anywhere within your program because they
are not linked to any particular event. Type checking is performed on system
attributes at compile time.

Event and system attributes must be defined on a definition specification
before they can be used throughout the VisualAge RPG component. They are
treated by the compiler as read-only fields in automatic storage. Any nested
and active action subroutine has its own copy of an event attribute.

For example, assume that the ENT0000A+CHANGE+WIN1 action subroutine
is linked to window WIN1, entry field part ENT0000A, and event CHANGE.

Also assume that the PSB0000A+PRESS+WIN1 subroutine is linked to
window WIN1, push button part PSB0000A, and event PRESS.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
CSRN01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++
C ENT0000A BEGACT CHANGE WIN1
C .
C .
C %PART dsply boxid reply
* ’ENT0000A’ is displayed.
C .
C .
C endact

34 Programming with VisualAge RPG

When push button PSB0000A is pressed, action subroutine
PSB0000A+PRESS+WIN1 is invoked. When the SETATR operation is
performed, the CHANGE event is triggered for entry field part ENT0000A.
This invokes the ENT0000A+CHANGE+WIN1 action subroutine.

Each action subroutine has its own storage for %PART because event attribute
fields are in automatic storage:
v In action subroutine PSB0000A+PRESS+WIN1, %PART contains ’PSB0000A’.
v In action subroutine ENT0000A+CHANGE+WIN1, %PART contains

’ENT0000A’.
v When action subroutine ENT0000A+CHANGE+WIN1 completes and action

subroutine PSB0000A+PRESS+WIN1 continues executing, %PART contains
’PSB0000A’, not ’ENT0000A’.

Coding Static Text and Entry Field Parts

The following section contains some tips for coding static text and entry field
parts.

Creating and Retrieving Entry Field Parts

Note: This section also applies to static text parts. For simplicity, only entry
field parts are mentioned in the text.

When a READ is performed, where does VisualAge RPG store the retrieved
value? When a WRITE is performed, what value does VisualAge RPG use to
set the value?

For each entry field part, VisualAge RPG creates a field with the same name
as the part. This field is defined to match the definition of the Text attribute
(or the Label attribute for static text parts). For example, if there is an entry

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
CSRN01Factor1+++++++Opcode(E)+Extended-factor2++++++++++++++++++++++++
C PSB0000A BEGACT PRESS WIN1
C .
C %PART dsply boxid reply
* ’PSB0000A’ is displayed.
C .
C ENT0000A SETATR 10 TEXT
* This triggers the CHANGE event for entry field ENT0000A
* which causes action subroutine ENT0000A+CHANGE+WIN1 to be
* invoked.
C .
C .
C %PART dsply boxid reply
* ’PSB0000A’ is displayed.
C .
C .
C endact

Chapter 3. Programming with Parts 35

field part called ENT00012, and the Text attribute is defined as character 20,
then VRPG automatically defines a 20-character field called ENT00012. You
can use this field in your program.

You can override the definition of the field on a definition specification by
defining a field of the same name. However, the definition of the field must
comply with the rules of VisualAge RPG concerning type and length
compatibility. For example, the field must be the same length as the attribute
definition. For numeric fields, the field does not have to be the same type as
the attribute definition.

When you run your application, the value of an entry field is initialized by
the value that you supplied in the GUI Designer. However, you can overwrite
this value by setting the INZ keyword in your definition specification, or by
moving a value into the program field. In these cases, the value stored in each
of these fields does not necessarily match the value that you see on the screen
for the corresponding part.

If you store a different value in a field in a user or action subroutine,
VisualAge RPG does not reflect that new value on the screen. Therefore, the
value stored in the field is different from what is displayed on the screen. To
reflect the stored value on the screen, you must use a WRITE operation or a
SETATR operation.

The same holds true for SHOWWIN. When a window is first opened, the
values that appear on the screen correspond to the values supplied for the
parts in the GUI Designer. If you change the stored value for a corresponding
VisualAge RPG field before you show the window, then the value in the field
does not match what is seen on the screen. To make the two values identical,
you have to perform a WRITE operation or a set attribute operation in an
action subroutine that is linked to the Create event for the window. This
synchronizes the value stored in the field with the value on the screen, and
the user sees only the new value when the window is shown.

In general, it is a good idea to use an action subroutine that is linked to the
Create event to set values that should appear on the screen when a window is
opened.

Operation Codes for Window Parts
Several operation codes have been enhanced in VisualAge RPG to operate on
windows and their parts: READ, WRITE, CLEAR, and RESET. These
operation codes can be used with windows and affect static text and entry
field parts.

READ Performs get attribute operations on all the affected static text and
entry field parts.

36 Programming with VisualAge RPG

WRITE
Performs set attribute operations on all of the affected static text and
entry field parts.

CLEAR
Sets all numeric entry field parts to zero, and all character entry field
parts to blanks. (It does not operate on static text parts.)

RESET
Sets static text and entry field parts back to their initial values.

The window operation codes use these attributes:

Text Attribute of entry field parts that is used to perform READ, WRITE,
CLEAR, and RESET operations.

Label Attribute of static text parts that is used to perform READ, WRITE,
and RESET operations.

Using Window Operation Codes on Parts with Identical Names
You can have two entry fields with the same name, two static text parts with
the same name, or even an entry field part that has the same name as a static
text part, as long as the parts belong to different windows. This section
describes how to avoid inadvertently setting the value of one of these parts to
the value of another.

Only one program field is created for a given part name. If there is an entry
field part in window W1 named MYPART, and an entry field part in window
W2 named MYPART, then one VisualAge RPG field is created, called
MYPART. The compiler creates the definition to match one of the part
definitions.

If you have more than one part with the same name, the compiler will issue
an error message if the parts do not have compatible definitions. Parts are
compatible if they accept the same type of data (numeric or character), are the
same length, and (if numeric) have the same number of decimal positions.

If the parts that share a field have different initial values, then the initial value
of the field is set depending on the part the compiler encounters first when
creating the internal fields for entry field parts. This can vary from one build
to another, so when multiple parts share the same field you should not
depend on the field having a specific initial value, unless you set all the initial
values to be the same.

Performing an operation on one of the windows containing one of these parts
itself, or on one of the parts, results in the entry field containing a value that
matches the screen value of the part involved in the operation. However, the
field contains a value that probably does not match the screen values of the

Chapter 3. Programming with Parts 37

other parts on other windows that share this field. Even though multiple parts
share the same field, an operation on any of these parts affects only the part
specified on the operation or contained in the window specified on the
operation. The other parts that share the field are not affected.

Example
The following example shows what can happen when you set the value of
one of the parts to a value of another part when the parts share a field.

1· Define the fields: The Entry field A01 in window W1 is defined as
character 10, and the Entry field A01 in window W2 is defined as character
10. The value on the screen for W1 is 78893, and the value on the screen for
W2 is 885364. Field A01 contains the value 0000000000. These are the initial
values.

2· Perform a READ on W1: Field A01 now contains 78893. This matches
entry field A01 in W1.

3· Perform a WRITE on W2: The screen value of entry field A01 in W2 is
now 78893.

4· Perform a CLEAR on W2: Field A01 now contains blanks. This matches
entry field A01 in W2. The Entry field A01 in W1 - value on screen is 78893.
The Entry field A01 in W2 - value on screen is blank.

W1 W2 Program Field

A01 78893 885364 0000000000A01 A01

W1 W2 Program Field

A01 78893 885364 78893A01 A01

W1 W2 Program Field

A01 78893 78893 78893A01 A01

W1 W2 Program Field

A01 78893 A01 A01

38 Programming with VisualAge RPG

5· Perform a GETATR on entry field A01 in W1 with target field A01: Field
A01 now contains 78893. This matches entry field A01 in W1.

If you want all the parts that share a field to display the same value, then you
have to perform SETATR operations on all the parts using the field as the
source value, or perform WRITE operations on all the windows that contain
one of these parts.

It is recommended that you give unique names to all entry field parts in your
component to avoid accidentally setting the value of one of the parts to the
value of another.

W1 W2 Program Field

A01 78893 78893A01 A01

Chapter 3. Programming with Parts 39

40 Programming with VisualAge RPG

Chapter 4. Sample Programs for VisualAge RPG

The Samples folder (in the VisualAge RPG projects folder) contains the source
code and the runtime version of the sample applications discussed in this part
of the book. Table 2 lists the sample programs.

Table 2. Sample programs for VisualAge RPG

Program Description

Animation Animation control part example

ActiveX ActiveX control example

Bean Java bean part example

Calendar Calendar part example

Component Reference Part Component reference example

Container Container part example

Customer Maintenance* Customer maintenance example

DDE Client DDE client part example

DDE Hotlink DDE hot link example

Drag and Drop Data transfer example

Graph Graph part example

Image* Image part example

Listbox List box part example

Message Subfile Message subfile part example

Multiline Edit Multiline edit part example

Notebook Notebook part example

Odbcceld ODBC/JDBC interface part example

Popup Menu Pop-up menu part example

Progress Progress bar part example

Resize Resize example

Runtime_control_of_server_connections Control of server connection using the
Signon API example

Scroll Scroll bar part example

Slider** Slider part example

Spin Button Spin button part example

Subfile* Subfile part example

© Copyright IBM Corp. 1994, 2002 41

||

||
|

Table 2. Sample programs for VisualAge RPG (continued)

Program Description

Timer Timer part example

VARPG Plug-in Vendor plug-in example

Video Store Cashier* Video store cashier example

Video Store Catalog* Video store catalog example

Welcome Welcome example

Notes:

1. * This example requires data on an iSeries 400 server.
2. ** Also shows how to use the BackMix and ForeMix attributes

Before You Begin

Before you can run the sample applications, you must install the VisualAge
RPG component. The associated samples are in the Samples folder, which is in
the VRPG Projects folder.

Read the comments in the sample programs. The comments contain tips and
requirements, as well as any restrictions.

Before you can build and run Java applications, you must have Sun
Microsystem’s Java 2 Software Development Kit (J2SDK) Version 1.2, or
higher, installed on your workstation. If you do not have the J2SDK, you can
download it from Sun Microsystems at the following URL:
http://java.sun.com/products/

After installing the J2SDK, set the PATH environment variable to point to the
location of both the Java compiler and the Java Runtime Environment (JRE).
For example, if your home directory for the J2SDK is c:\jdk1.2, add the
following path statement: c:\jdk1.2\bin

If you plan to run VisualAge RPG applets inside a browser, the international
version of the JRE must be installed on the client workstation.

Building the Examples
If you want to run most of the samples, you must first build the application.

To build one of the sample programs, display the pop-up menu for the
sample’s folder, and select Build>Windows or Build>Java.

42 Programming with VisualAge RPG

|
|
|

|

|
|

|

Running the Examples
To run a sample program, display the pop-up menu for the program, and
select Run>Windows or Run>Java.

Accessing an iSeries 400 Server
Some sample programs, such as the subfile example, access data on an iSeries
400 server. The data files used by these programs are not shipped with
VisualAge RPG. However, the source file comment section describes the file
layout for that example. You must create the data file on the server and
supply data.

To run these examples, start the GUI Designer on the sample program, and
use the Define iSeries Information notebook in the Servers pull-down menu to
do the following:
1. Change the remote location parameter to point to the server that you want

to access.
2. Change the remote file name parameter so that you can access the

appropriate data file for the example.

See Chapter 8, “iSeries Connectivity” on page 215 for more information about
defining iSeries 400 information.

Chapter 4. Sample Programs for VisualAge RPG 43

44 Programming with VisualAge RPG

Chapter 5. Common Attributes

This section lists the attributes that are common to most parts and describes
how you can use them.

PartName Attribute

All parts have a name. VisualAge RPG automatically generates this name
when the part is created. You can change the name of the part in its properties
notebook or by editing it directly in the tree view of the GUI Designer’s
project window. The *component part name cannot be edited.

Note: You cannot change the part name at run time.

Each window must have a unique name, and all parts on a given window
must have unique names. Parts on different windows can have the same
name, except for subfile part names, which must be unique across your
component.

The compiler implicitly defines a field name for entry field and static text
parts using the PartName attribute. You can use that name in your program if
you want to refer to the value of these parts. For more information, see
Chapter 3, “Programming with Parts” on page 31.

If you change the name of a part, you must change all references to that part
in your program source. If you attempt to reference the old name of a part
that has been renamed, you will get either compile errors, or a runtime error
indicating that the part could not be found.

ParentName Attribute

The ParentName attribute returns the name of the parent part. The parent is
the window on which a part is placed. For a window part, the parent is the
window itself.

PartType Attribute

You can use the PartType attribute to determine the type of a part in your
program. PartType returns the type of the part as defined by VisualAge RPG.
The value returned for VisualAge RPG parts consists of the string FVDES
followed by the part type. For example, for an entry field part, the part type
would be FVDESEntryField. One exception to this rule is the component
reference part; it has a prefix of FVDESV.

© Copyright IBM Corp. 1994, 2002 45

Table 3 summarizes the PartType attribute value for each VisualAge RPG part.

Table 3. The PartType attribute for VisualAge RPG parts

PartType attribute VisualAge RPG part

FVDESOCX ActiveX

FVDESAnimationControl Animation control

FVDESCalendar Calendar

FVDESCanvas Canvas

FVDESCheckBox Check box

FVDESComboBox Combination box

FVDESContainerControl Container

FVDESVComponentReference Component reference

FVDESDDEClient DDE client

FVDESEntryField Entry field

FVDESGraph Graph

FVDESGraphicPushButton Graphic push button

FVDESGroupBox Group box

FVDESHScrollBar Horizontal scroll bar

FVDESImage Image

FVDESJavaBean Java Bean

FVDESListBox List box

FVDESAudio Media

FVDESMediaPanel Media panel

FVDESMenuItem Menu item

FVDESMessageSubfile Message subfile

FVDESMultiLineEdit Multiline edit

FVDESNotebook Notebook

FVDESNotebookPage Notebook page

FVDESODBCInterface ODBC/JDBC Interface

FVDESOutlineBox Outline box

FVDESPopUpMenu Pop-up menu

FVDESProgressBar Progress bar

FVDESPushButton Push button

FVDESRadioButton Radio button

FVDESSlider Slider

46 Programming with VisualAge RPG

Table 3. The PartType attribute for VisualAge RPG parts (continued)

PartType attribute VisualAge RPG part

FVDESSpinButton Spin button

FVDESStaticText Static text

FVDESStatusBar Status bar

FVDESSubfile Subfile

FVDESSubmenu Submenu

FVDESTimer Timer

FVDESVScrollBar Vertical scroll bar

FVDESFrameWindow Window

Color Attributes

You can change the color of most parts by using the BackColor and
ForeColor attributes. The attribute values are numbers that represent specific
colors. The compiler provides a set of figurative constants, such as *RED and
*GREEN, that you can use to set the colors. Refer to the VisualAge RPG
Language Reference for these names.

You can specify a color mix for the part by using the ForeMix and BackMix
attributes. The value of these attributes represents a mixture of the primary
colors of red, green, and blue. This is often referred to as the RGB color value.
This RGB value is a string consisting of three values separated by colons (:).
Each value represents the intensity of red, green, and blue, in that order. The
value of each color is between 0 and 255.

In the following code example, the background color mix of a static text part
is set to a medium shade of blue:

For a more detailed example on how to specify the ForeMix and BackMix
attributes, see “Slider” on page 162.

Enabled Attribute

When a part is enabled, it can respond to user interaction and generate
events. For example, when an enabled push button is pressed, it generates a
Press event that may then be handled by your program.

CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
C ’ST1’ setatr ’000:000:128’ ’BackMix’

Chapter 5. Common Attributes 47

You may not want a part to be enabled until a certain condition exists. In the
case of the push button, you may want the user to be able to press it only
when an item has been selected in a list box.

When a part is not enabled, it does not respond to user interaction, and its
label is dimmed.

To enable a part, set its Enabled attribute value to 1. If you do not want it to
be enabled, set this value to 0.

Size and Position Attributes

You can use the Height and Width attributes to indicate the size, in pixels, of
most parts.

You can also use the Left, Bottom and Top attributes to specify the position of
the part in its containing part (usually a window). The position value is also
expressed in pixels. When you position any part, the values are relative to the
top left corner.

These attributes are useful because they dynamically change the size and
position of the parts at run time. For example:
v If a user can resize a window, you may want to code an action subroutine

to handle the ReSize event and alter the position of the parts on that
window so that they remain centered within the window. If you do not do
this, the parts will remain relative to the top left corner of the window.

v If your application runs on systems that use monitors with different
resolutions, you can use the %DspWidth and %DspHeight system
attributes to ensure that the windows are visible regardless of the screen
resolution. You may want to position the window in the center of the
screen, or at some other coordinate.

Here’s a calculation that can be done in the Create event for a window. This
example calculates the appropriate coordinates to center a window called
Window1; then moves the window to a new coordinate before displaying it on
the screen.

48 Programming with VisualAge RPG

Visible Attribute

You can use the Visible attribute to specify when you want a part or a
window to be displayed. For example, you may want a push button to appear
on the screen only at run time. To do this, when you create the push button in
the GUI Designer, go to the properties notebook for the part and set the
visible flag off. Then, at run time, set the Visible attribute value to 1 when
you want the push button to appear.

Focus Attribute

The area of a window where a user can interact with the interface has input
focus. The part that has input focus must be enabled to respond to user
actions, such as the pressing of a key or a button.

There are times when you want to focus on a part in your program so that
the user can use it immediately. For example, if you are checking several entry

*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
*
* Declare the display size system attributes
D%DspHeight S 4P0
D%DspWidth S 4P0
*
CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq
*
* Handle create event for Window1.
* Gets screen size and calculates pixel coordinates to
* position the window in the center of the screen.
*
C WINDOW1 BEGACT CREATE WINDOW1
*
* Get the windows dimensions:
C ’Window1’ GETATR ’Width’ winWidth 4 0
C ’Window1’ GETATR ’Height’ winHeight 4 0
*
* Calculate new coordinates to center window
C %DspWidth SUB winWidth newLeft 4 0
C %DspHeight SUB winHeight newBottom 4 0
C newLeft DIV 2 newLeft
C newBottom DIV 2 newBottom
*
* Center the window and make it visible
C ’Window1’ SETATR newLeft ’Left’
C ’Window1’ SETATR newBottom ’Bottom’
C ’Window1’ SETATR 1 ’Visible’
C ENDACT
*

Chapter 5. Common Attributes 49

fields and require the user to re-enter information in a particular entry field,
you would set the Focus attribute value to 1 for that entry field. When you set
the attribute, the cursor appears where the user can begin typing data into the
entry field.

In addition to giving focus to a particular part, you can determine if a part
has gained focus. A part gains focus when the user selects it by either tabbing
to it or by selecting it with the mouse. When this happens, a GotFocus event
is generated for the part. Conversely, a LostFocus event is generated when a
part loses focus.

UserData Attribute

All parts support the UserData attribute. Use this attribute to assign any text
string to a part. This string has no effect on the value of any other attribute of
the part, and it is not displayed. The UserData attribute can contain a
maximum of 65,535 characters.

Label Attribute

Several parts have a Label attribute. This is descriptive text that explains the
purpose of the part. The text that appears on a push button is an example of
this attribute.

The following parts have a Label attribute:
v Check box
v Container
v Group box
v Menu item
v Push button
v Radio button
v Static text
v Window
v Window with canvas

Label Substitution
You can substitute the text of a label by using a symbol when you set the
Label, TabLabel, or InfoLabel attributes. This is particularly useful if you are
developing applications for use with other languages, because it allows you to
translate labels and messages that you defined in the GUI Designer.

When you specify label substitution for a part, an entry is made in the
component’s message file. Multiple parts can use the same label substitution
(for example, ^OK·). The same message file entry is used for all references.

50 Programming with VisualAge RPG

You define a substitution label for a part in its properties notebook by
specifying a string, with no imbedded blanks, preceded by the caret (^)
symbol. This adds a message to the message file. Select Project>Define
Messages... to invoke the message editor and add the message text you want
to replace the Label attribute when the application is run.

Translation Tips
When sizing a part in the GUI Designer that will have a substitution label,
keep in mind that translated text may be longer than the original.

If you use mnemonics, remember that the mnemonic character may be
different for other languages.

You can have more than one translated message file in the runtime
subdirectories by assigning different file extensions to each. For example, an
English version of the compiled message file could be named SAMPLE·ENG
and a German version named SAMPLE·GER. You can instruct the user to
copy the appropriate message file to SAMPLE·MSG before running the
application.

Chapter 5. Common Attributes 51

52 Programming with VisualAge RPG

Chapter 6. Using Data Transfer

This section discusses how you can use data transfer to manipulate the value
of some parts.

Note: Data transfer is not supported for Java applications.

A Typical Data Transfer Scenario

In a typical data transfer scenario the user selects a part (called the source
part) with the mouse, drags it to another part (called the target part) and
releases the button to drop the value on the target part. This transfers
information from the source part to the target part, and the target part can
then act upon that information.

Note: The part itself is not being moved with data transfer. It is the value of
the part that is being transferred.

Parts That Support Data Transfer

The following table lists the parts that support data transfer, and the data that
each of them acts on.

Table 4. VisualAge RPG parts that support data transfer

Part Data Transferred

Combination box The value in the entry field portion of the combination
box, or the selected item for a drop-down list type of
combination box

Entry field The Text attribute value

List box The selected item

Message subfile The selected message

Multiline edit The Text attribute value

Static text The Label attribute value

© Copyright IBM Corp. 1994, 2002 53

Enabling Parts for Data Transfer

If you want a part to be a source part, set the DragEnable attribute for it to a
value of 1 and if you want it to be a target part, set the DropEnable attribute
for it to a value of 1. You can set these attributes in the part’s properties
notebook or in your program. You can not reset these attributes during run
time: once you enable a part for data transfer, it remains set.

After you have set the DragEnable and DropEnable attributes, you can drag
the source part and drop it on the target part. This causes the Drop event to
occur for the target part.

Note: The DragEnable and DropEnable attributes are not supported in Java
applications.

Data Transfer Example

In the following example, a window has two entry fields named EF1 and EF2.
The DragEnable attribute is set for EF1, and the DropEnable attribute is set
for EF2. The text value of EF1 can then be dragged and dropped onto EF2.

Entry field EF2 only allows certain values. In the Drop event for this part, the
action subroutine checks that the dropped value is valid. If the value is not
valid, a message is added to the message subfile part.

54 Programming with VisualAge RPG

* *
* Program ID . . : DragDrop *
* *
* Description . : Sample program to illustrate how to respond *
* to the DROP event, and access the dropped data. *
* *
* Note: Drag and drop is not supported for Java *
* *

*
* Define the DROP data event attribute

D%Data S 5A

* *
* Window . . : MAIN *
* *
* Part . . . : PB_EXIT *
* *
* Event . . : PRESS *
* *
* Description: End the program *
* *

*

C PB_EXIT BEGACT PRESS MAIN
*

C move *on *inlr
*

C ENDACT

Figure 12. Sample Drag and Drop Code (Part 1 of 2)

Chapter 6. Using Data Transfer 55

* *
* Window . . : MAIN *
* *
* Part . . . : EF2 *
* *
* Event . . : DROP *
* *
* Description: This action subroutine will get control when a *
* value has been ’dropped’ onto the entry field EF2 *
* By checking the %Data event attribute, it will *
* determine if the dropped value is allowed for the *
* entry field and add a message to the message *
* subfile part accordingly. *
* *

*
C EF2 BEGACT DROP MAIN
*
* Clear the message subfile
C ’Msg1’ setatr 0 ’RemoveMsg’
*
* Check that dropped value is allowed
*
C if %Data <> ’Yes ’ and
C %Data <> ’No ’ and
C %Data <> ’Maybe’
*
C ’Msg1’ setatr 1 ’AddMsgID’
C endif
*
C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : EF2 *
* *
* Event . . : CHANGE *
* *
* Description: *
* *

*
C EF2 BEGACT CHANGE MAIN
*
C ENDACT

Figure 12. Sample Drag and Drop Code (Part 2 of 2)

56 Programming with VisualAge RPG

Chapter 7. Using Parts

This section contains helpful hints about using VisualAge RPG parts. Each
part description contains a list of the attributes and events which apply to the
part. The following parts are described in detail.
v “ActiveX” on page 58
v “Animation Control” on page 63
v “Calendar” on page 64
v “Canvas” on page 66
v “Check Box” on page 68
v “Combination Box” on page 70
v “Component Reference” on page 75
v “Container” on page 77
v “DDE Client” on page 85
v “Entry Field” on page 86
v “Graph” on page 89
v “Graphic Push Button” on page 91
v “Group Box” on page 93
v “Horizontal Scroll Bar” on page 94
v “Image” on page 95
v “Java Bean” on page 101
v “List Box” on page 104
v “Media” on page 113
v “Media Panel” on page 115
v “Menu Bar” on page 117
v “Menu Item” on page 118
v “Message Subfile” on page 120
v “Multiline Edit” on page 125
v “Notebook” on page 130
v “Notebook Page” on page 132
v “Notebook Page with Canvas” on page 134
v “ODBC/JDBC Interface” on page 135
v “Outline Box” on page 153
v “Pop-up Menu” on page 154
v “Progress Bar” on page 155
v “Push Button” on page 156
v “Radio Button” on page 158
v “Slider” on page 162
v “Spin Button” on page 168
v “Static Text” on page 172
v “Status Bar” on page 174
v “Subfile” on page 175
v “Submenu” on page 190

© Copyright IBM Corp. 1994, 2002 57

v “Timer” on page 191
v “Vertical Scroll Bar” on page 200
v “Window” on page 201
v “Window with Canvas” on page 202
v “*Component” on page 211

Note: The parts are presented in alphabetical order, not in the order in which
you must use them. You must use the window part or the window
with canvas part first to start building your application, and then add
other parts as required.

For more information about part attributes, events, and event attributes, see
the VisualAge RPG Parts Reference. For additional programming tips, see
Chapter 3, “Programming with Parts” on page 31.

ActiveX

* Restriction: This part is unsupported in Java applications.

Use the ActiveX part to add ActiveX control objects to your project. Your
applications can then access their attributes and monitor for events. (ActiveX
controls are developed and provided by third party vendors.)

You must be familiar with the ActiveX controls you are adding. The VARPG
GUI Designer cannot control the functions provided by these parts.

Note: VARPG only works with ActiveX controls that have interfaces written
in C++. Check with your ActiveX control provider to make sure that
VARPG will work with the ActiveX control you want to use.

58 Programming with VisualAge RPG

Part Attributes

Activate AddEvent Bottom DeActivate
HasPrpPage Height Left Method
OCXProp OCXPropIdx OCXValue ParentName
PartName PartType Refresh ReturnVal
RmvEvent ShowProp Top UserData
Visible Width

Applicable Events

Create Destroy OCXEvent

Adding ActiveX Controls
To add an ActiveX control to your project, click on the ActiveX part in the
parts palette. Click the mouse pointer onto the design window where you
want the ActiveX part placed. An Insert Object dialog appears. Select the
ActiveX control you want to work with.

An ActiveX control can contain properties, methods, and events that a
programmer can manipulate, call, and respond to respectively. The term
ActiveX control refers to the actual ActiveX component you are using.
Examples include a graph, calendar, or spreadsheet control. The term ActiveX
part refers to the ActiveX part found on the VARPG parts palette.

Setting Properties
You can set the properties of an ActiveX control at build or run time. To set
properties during build time, open the ActiveX Part Properties notebook from
the design window. Right-click on the ActiveX icon in the design window and
select Properties. If a properties editor is available for the ActiveX control, it
will be displayed, as well. You can then directly edit the property values.

The properties, methods, and events of the ActiveX control appear on the
Information page of the ActiveX Part Properties notebook. Select the
appropriate radio button to view what is available.

Setting or getting a property during run time requires two steps. First, set the
ActiveX part’s OCXProp attribute to the property name of the ActiveX control
you are using. Use the OCXValue attribute to set or get the property.

The following example sets the Depth property for an ActiveX pie chart
control:
C ’PieChart’ Setatr ’Depth’ ’OCXProp’
C ’PieChart’ Setatr DepthValue ’OCXValue’

Chapter 7. Using Parts 59

|
|

Note: The OCXValue attribute takes a string value. The VisualAge RPG run
time will handle the appropriate conversions before forwarding the
value to your ActiveX control.

The OCXPropIdx attribute sets or retrieves the index for an ActiveX string
array property type. You can use this attribute together with the OCXProp
and OCXValue attributes to manipulate string array property types.

For example, the following code sets the first element of the property
DataFiles to c:\temp\Sample.mdb, that is, DataFiles[0]=’c:\temp\Sample.mdb’.
C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROP’)=
C ’DataFiles’
C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROPIDX’)=’0’
C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXVALUE’)
C =’C:\temp\Sample.mdb’

To set an element of a multi-dimensional array property, pass the index value
for each element in a string as ’n1 n2 n3’, where n1 is the index for element 1
and so on. For example, the following code sets 3DImageData[2][4][7] to 200:
C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROP’)=
C ’3DImageData’
C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXPROPIDX’)
C = ’2 4 7’
C EVAL %SETATR(’WINNEWJOB’:ocxname:’OCXVALUE’)
C = 200

Each time the OCXProp attribute is set, the internal index value for an array
at run time is reset to NULL. So, to set or get the array properties, first set
OCXProp to the property name. Then, set OCXPropIdx to the index value in
the array. Lastly, set or get the OCXValue attribute.

The ActiveX part properties notebook shows the property types in the
Information tab. If the type of a property is a string array, the Information tab
displays String[][]...[], where the number of [] pairs indicates the
dimension of the array. For a numeric array, Numeric[][]...[] is displayed.
For a non-array property, either ″Numeric″ or ″String″ is displayed. In the
following example, the properties are all string arrays:

60 Programming with VisualAge RPG

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Calling Methods
The VisualAge RPG IDE attempts to compile a listing of available methods for
your ActiveX control. This list is available on the Information page of the
ActiveX Part Properties notebook. For each method, the parameters are shown
with brace brackets containing IN for an input parameter, OUT for an output
parameter, or nothing if no information is available.

Note: It may not be possible for the builder to discover all available methods
for your ActiveX control. Consult the control’s documentation for a
complete listing.

Calling an ActiveX control’s methods is performed at run time by setting the
ActiveX part’s Method attribute. The Method attribute takes a string value
containing the method name, followed by zero or more parameter values
separated by a comma. The syntax is:
method_name, value1, value2, ...

The following example calls the AboutBox method of an ActiveX pie chart
control. The method takes no parameters.
C ’PieChart’ Setatr ’AboutBox’ ’Method’

The next example calls the AddData method of an ActiveX pie chart control.
This method takes two parameters: a string label and a float value.
D datax C const(’AddData, ItemX, 3.0’)

C ’PieChart’ Setatr datax ’Method’

Chapter 7. Using Parts 61

Responding to Events
VisualAge RPG can respond to any events generated by the ActiveX control
you are using. ActiveX control events are accepted by VisualAge RPG as an
OCXEvent. You can use the %RealName event to retrieve the actual name of
the event.

To receive an event from an ActiveX control, you must first register the event
with the VisualAge RPG run time. Set the ActiveX part’s AddEvent attribute
to the string name of the event to be received. You can also set the AddEvent
attribute to *ALL to receive all events generated by the ActiveX control. To
unregister an event, set the RmvEvent attribute to the string name of the
event.
* Declare the event attribute
D %RealName s 20a

* Register the event with the VisualAge RPG run time
C ’DataQ’ Setatr ’Click’ ’AddEvent’

* Respond to the OCXEvent
C DATAQ BEGACT OCXEVENT FRA000000B
C if %RealName = ’Click’
* Do something here
C endif

62 Programming with VisualAge RPG

Animation Control

In Windows applications, the animation control part plays video files with the
AVI extension. This part differs from the media part in that the video is
actually played independently of the program logic. One typical use of this
part is to display an AVI file that shows some progress, such as a file being
moved from one folder to another.

The animation control part plays video files with no sound. The AVI file
cannot be in compressed format, unless it was compressed with the
Running-Length Encoded (RLE) method.

In Java applications, the animation control part is used to play back an
animated GIF file sequence using the NbrOfImage attribute.

Part Attributes

FileName FrameRate Handle* Left
Mode NbrOfImage ParentName PartName
PartType Top UserData Visible

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

Chapter 7. Using Parts 63

Calendar

The calendar part represents a monthly calendar. By clicking on one of the
month arrows, the user can navigate the calendar by going to the next or
previous month.

You also have complete program control over the calendar such as going to a
specific date, determining which date the user has selected, and adding short
text comments to individual days in the calendar.

Part Attributes

Border Bottom ClearAll ClearDate
ClearMonth ClearYear Color ColorArea
ColorMix Date DateIdx DateText
DateUnder Day DayIdx DayLen
DayNumPos DayNumRect DayStart Enabled
FontArea FontBold FontItalic FontName
FontSize FontStrike* FontUnder* FrmtString
Handle* Height HRule Left
Month MonthArrow MonthIdx MonthLen
OutlineRcl ParentName PartName PartType
Refresh ShowRects ShowText TipText
Top UserData Visible VRule
WeekDay WeekDayIdx Width Year
YearIdx YearLen

* Note: See the attribute description for restrictions.

Applicable Events

Click Create Destroy DblClick
MouseDown MouseEnter MouseExit MouseMove
MouseUp MthChange YearChange

Determining Which Date the User Selected
The DateUnder attribute can be used to determine which date the mouse
pointer is over. In the following example, the date is being retrieved when the
user clicks on the calendar. Note that we are checking that the DateUnder

64 Programming with VisualAge RPG

value is not blank. This is because the click event occurs no matter where the
mouse is. If the mouse is not over a specific date, the DateUnder attribute
will be blank.

Also note that the date is returned as character string in the form of
YYYYMMDD:

Using Date Index Attributes
Several attributes are provided that allow you to access the calendar without
affecting what is currently being displayed. In this example, a comment is
being added to a specific day in the calendar.

C ’Cal1’ Getatr ’DateUnder’ YYYYMMDDA 8
*
* If mouse is over a day...

C If YYYYMMDDA <> *Blanks
*
* Make date numeric

C Move YYYYMMDDA YYYYMMDD 8 0
*
* Process the date
* ...
* ...

C EndIf
*

Figure 13. Example of the calendar part

*
* Set index to date to reference

C ’Cal1’ Setatr ’19971210’ ’DateIdx’
*
* Set comment for the day

C ’Cal1’ Setatr ’Vacation’ ’DateText’
*

Figure 14. Adding a comment

Chapter 7. Using Parts 65

Canvas

Use the canvas part with a window or a notebook page if you want to place
more than one part on your window or notebook page. You can point and
click various parts onto the canvas, position them, and organize them to
produce a graphical user interface.

The canvas part occupies the client area of either a window or a notebook
page. If there is no canvas in your window or notebook page, then you can
put only one part on the client area, unless the parts are extensions to the
window, such as menu bars and message subfiles.

More often than not, you will be creating windows and notebook pages with
more than one part on them. In that case, you should use the notebook page
with canvas part and the window with canvas part. They save you a step
because they already contain the canvas part.

At build time, you can also include a bitmap image as the canvas background
by specifying the FileName attribute. This image can be tiled by setting the
Tile attribute. For Java applications, you can include GIF or JPG images as the
background.

Notes:

1. The canvas part, the window (without canvas) part, and the notebook
page (without canvas) part are located on the parts catalog, not the parts
palette. If you want to use them frequently, you can add them to the parts
palette.

2. If parts located on a canvas part have the default font setting specified
(Default System Font), they will inherit the font definition specified for the
canvas part. To apply a certain font to the majority of parts on a canvas,
specify that font for the canvas part rather than for each individual part.

For related information, see:
v “Window” on page 201
v “Window with Canvas” on page 202
v “Notebook Page” on page 132
v “Notebook Page with Canvas” on page 134.

66 Programming with VisualAge RPG

Part Attributes

BackColor BackMix Bottom* Enabled
FileName FontBold FontItalic FontName
FontSize FontStrike* FontUnder* Handle*
Height Left ParentName PartName
PartType ReadOnly Refresh Tile
Top* UserData Width

* Note: See the attribute description for restrictions.

Applicable Events

Click Create DblClick Destroy
MouseDown MouseMove MouseUp Popup
VKeyPress

Chapter 7. Using Parts 67

|

Check Box

Use the check box part if you want the user to choose between two clearly
distinguishable states; for example, on and off.

A label associated with the check box describes what its setting is when it is
selected.

Typically, you use a group of check boxes to provide a list of options. The
user can select one or more check boxes, or not select any. The options are not
mutually exclusive; therefore, selecting one check box has no effect on others
on the window. If you want the user to be able to select only one option from
two or more, use radio buttons instead. See “Radio Button” on page 158 for
more information.

To set the state of a check box, the user can either click on it with the mouse,
press the space bar on the keyboard when the check box is in focus, or (if you
have assigned one) press the mnemonic key.

Part Attributes

AddLink* AllowLink* BackColor BackMix
Bottom Checked Enabled Focus
FontBold FontItalic FontName FontSize
FontStrike* FontUnder* ForeColor ForeMix
Handle* Height Highlight* Label
Left ParentName PartName PartType
Refresh RemoveLink* ShowTips TipText
Top UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy MouseEnter MouseExit
MouseMove Popup Select

68 Programming with VisualAge RPG

Setting the State of a Check Box Part
Set the Checked attribute to one of the following values to describe the state
of the check box:

1 The check box is set and the state is turned on.

0 The check box is not set and the state is turned off.

The check box contains a check mark when its state is on.

Setting a Mnemonic

Note: Mnemonics are not supported in Java applications.

To specify a mnemonic key for the check box, place the mnemonic identifier
in front of a character in the check box label. For Windows, use an ampersand
(&). This character is the mnemonic key and will be displayed on your
interface with an underscore (for example, Visible). The underscore informs
users that they can select the check box by pressing the underlined character
on the keyboard.

Signaling Events
When the user selects a check box to turn the state either on or off, a Select
event is signaled.

Chapter 7. Using Parts 69

Combination Box

A combination box provides the user with the option of entering specific
information, or selecting from a list of commonly used choices.

It consists of an entry field with an attached list box that presents a list of
values which the user can scroll through. If the user selects one of these
values, it will appear in the entry field and replace any existing text.
Alternatively, the user can type a value, that does not have to match any of
the listed ones, directly into the entry field.

Combination boxes come in different styles. You can select the style you want
from the part’s properties notebook

For related information, see:
v “List Box” on page 104
v “Entry Field” on page 86

Part Attributes

AddItemEnd AutoScroll* BackColor BackMix
Bottom Case* Count DelimChar
DeSelect* DragEnable* DropEnable* Enabled
FieldExit FirstSel Focus FontBold
FontItalic FontName FontSize FontStrike*
FontUnder* ForeColor ForeMix GetItem
Handle* Height Index InsertItem*
ItemKey Left ParentName PartName
PartType ReadOnly Refresh RemoveItem
Search* SearchType* Selected SelectItem
Sequence* SetItem SetTop* Showtips
SizeToFit* Text TipText Top
UseDelim UserData Visible Width

* Note: See the attribute description for restrictions.

70 Programming with VisualAge RPG

Applicable Events

Change Create Destroy Drop*
DropDown* Enter GotFocus KeyPress
LostFocus MouseEnter MouseExit MouseMove
Popup Select VKeyPress

* Note: See the event description for restrictions.

Selecting the Type of Combination Box
In the combination box properties notebook, choose the type of combination
box you want to create:

Combination box
Displays both the entry field and the list box portions of the
combination box.

Drop-down combination box
Displays the entry field portion. The list box portion is hidden until
the down arrow (↓) is pressed.

Drop-down list combination box
Displays the entry field portion. The list box portion is hidden until
the down arrow (↓) is pressed. The entry field does not accept text; it
is used only to display the selection from the list box portion.

Note: All types of combination boxes support dragging from the entry field
portion. Only the simple combination box supports dragging from the
list box portion. All types support dropping onto the entry field
portion, not onto the list box portion.

Adding and Setting the Initial Sequence of Items
You can use the combination box properties notebook to place an initial list of
items in a combination box at design time.

By default, items are displayed in the combination box in the order in which
you added them. If you want them displayed in a more precise order, then
before you start adding them, set the Sequence attribute to either ascending,
descending, or index. This sorts the items in ASCII collating sequence as they
are added.

You cannot use the Sequence attribute to change the order of items that are
already in the combination box.

Adding Items at Run Time
You can insert items into a combination box at run time by using the
InsertItem attribute. The order in which items are displayed is determined by
the Sequence attribute.

Chapter 7. Using Parts 71

Updating Items in a List
You can update items that are already in the list. Use the Index attribute to
indicate which item you want to change, and then use the SetItem attribute to
set the changed data.

Note: The SetItem attribute replaces an item to its original location in a list,
regardless of the value you set for the Sequence attribute. For example,
if you had set the Sequence attribute to ascending order before the
combination box was filled, the items appear in the combination box in
ascending sequence; however, if you then retrieve an item, change its
value, and use the SetItem attribute to replace it in the combination
box, the item is inserted in the same position it was in before.
Therefore, the list may or may not be in ascending sequence after the
change.

Setting the Top of the List
Use the SetTop attribute to specify which list item should appear at the top of
the combination box. Setting this item does not reorder the items in the list; it
scrolls the list so that the item you select is displayed at the top, followed by
the items that came after it.

Removing Items
Use the RemoveItem attribute and the Index value of the item you want to
remove. Index values start at 1. When an item is removed from the list, all
items following the removed item are moved up one position in the list.

To remove all items in the list, specify an Index value of 0.

Selecting and Deselecting Items
The user can select and deselect items by using the mouse or the keyboard.
You can select and deselect items using the Selected and DeSelect attributes
in your program. Before you use these attributes, set the Index attribute.

Retrieving a User-Selected Item
When the user selects an item from the list in a combination box, that item is
placed into the entry field. You can use the Text attribute to get the item. Also,
you can use the FirstSel attribute to determine the index of the item that was
selected.

72 Programming with VisualAge RPG

The user may also type a value into the entry field portion of the combination
box. This value does not have to be one of those in the list. If you want the
user to be able to select only items that are in the list, set the ReadOnly
attribute value to 0.

You can use the Count attribute to determine if there are items to retrieve.

Using Keys
Both the list box and the combination box allow you to add items to the list
that consist of a ’key’ portion and a ’data’ portion. When items are added to
the list, only the data portion of the item is displayed. When the user selects
an item you can programatically retrieve the key portion of the item.

To enable keys in a list, you must check the ’Use separator’ check box on the
’Separator’ page of the parts settings notebook and specify a separator
character. The default separator character is the semicolon (;). The items in the
list consist of the key portion, followed by the separator, followed by the data
portion. For example:
01;Shipping

As an example, assume you wish to display a list of departments in a list
allowing the user to make a selection. In your database you store the
department as a 2 character field but you want the user to see the descriptive
name. You would add the following data to the list:
v 01;Shipping
v 02;Manufacturing
v 03;Payroll
v 04;Distribution

Note: With the combination box you can add the default list on the Data page
of its settings notebook.

When the user makes a selection from the list the following code could be
used to get the key portion of the item

C ’Combo1’ Getatr ’FirstSel’ X 2 0
C ’Combo1’ Setatr X ’Index’
C ’Combo1’ Getatr ’ItemKey’ Key

Chapter 7. Using Parts 73

Setting the Entry Field Text
When a combination box is first displayed, its entry field is blank. If you want
to place one of the list items in the entry field, set the SelectItem attribute
value with the index of the item to be used.

Signaling Events
The Select event is signaled when:
v The user selects an item that is in a combination box.
v You select an item in the list in your program.
v The user selects an item that is already selected.

The Enter event is signaled when:
v The user double-clicks on an item that is in the combination box
v The Enter key is pressed when the list box has focus and an item has been

selected.

In your action subroutine for these events, you can use the Selected attribute
to determine which item was selected.

74 Programming with VisualAge RPG

Component Reference

The component reference part enables one VARPG component to
communicate with another. You use the component reference part to affect a
part on the other component. The component being referenced must be
running in the same application as the component reference part.

The component reference part also monitors a specified event in the other
component. When the monitored event occurs, a Notify event is signaled by
the component reference part.

Part Attributes

AddSrcEvt AttrValue Bottom CompName
Left NotSrcEvt NotSrcPart NotSrcWin
ParentName PartName PartType RefAttr
RefParent RefPart RmvSrcEvt UserData
Visible

Applicable Events

Create Destroy Notify

Referencing Part Attributes in Other Components
There are two methods you can use to reference an attribute of a part in
another component:
1. Define the attribute in the properties notebook of the component reference

part.
2. Set the appropriate component reference part attributes at run time.

Before you can reference part attributes in another component, you must
ensure that the other component is running. Use the START operation code to
start another component.

The following code fragment illustrates how a component reference part in
one component can change the value of a part attribute in another. In this
example, the FileName attribute of an image part (IMG1) on window WIN01
in component COMPB is being updated with a new value.

Chapter 7. Using Parts 75

Monitoring for Events in Another Component
You can use the component reference part in one component to monitor for an
event that occurs in another component running in the same application.
Define the event to be monitored in the component reference part’s properties
notebook, or at run time by setting the appropriate attributes. When the event
being monitored in the other component occurs, a Notify event is signaled by
the component reference part.

The following code fragment shows how a component reference part can be
set at run time to monitor for an event in another component. In this example,
the event being monitored is the Press event for a push button called PB1 on
window WIN01 in component COMPB.

*
* Change the bitmap for image part IMG1 on
* window WIN01 in component COMPB
C ’CR1’ Setatr ’COMPB’ ’CompName’
C ’CR1’ Setatr ’WIN01’ ’RefParent’
C ’CR1’ Setatr ’IMG1’ ’RefPart’
C ’CR1’ Setatr ’FILENAME’ ’RefAttr’
C ’CR1’ Setatr ’D:\PIC.BMP’ ’AttrValue’
*

*
* Monitor for the PRESS event of push button
* PB1 on window WIN01 in component COMPB
C ’CR1’ Setatr ’COMPB’ ’CompName’
C ’CR1’ Setatr ’PRESS’ ’NotSrcEvt’
C ’CR1’ Setatr ’PB1’ ’NotSrcPart’
C ’CR1’ Setatr ’WIN01’ ’NotSrcWin’
*

76 Programming with VisualAge RPG

Container

Use the container part to store related records. The records can be shown in
an icon view, tree view, text tree view, or details view.

Part Attributes

AddRcd Arrange BackColor BackMix
BlankChar Bottom ChildCount ChildList
Collapsed ColNumber Count DeleteRcd
DeSelect EditItem Enabled ExtSelect*
FirstSel Focus FontBold FontItalic
FontName FontSize FontStrike* FontUnder*
ForeColor ForeMix GetNewID GetRcdFld
GetRcdIcon GetRcdText Handle* Height
InUse* Label Left MiniIcon
ParentId ParentList ParentName PartName
PartType ReadOnly RecordID Refresh
RemoveRcd Selected SelectRcd SetRcdFld
SetRcdIcon SetRcdText SetTop* ShowTips
SortAsc SortDesc TipText Top
UserData View* Visible VisTitle
VisTitlSep Width

* Note: See the attribute description for restrictions.

Applicable Events

Click Collapsed ColSelect Create
DblClick Destroy Enter Expanded
GotFocus KeyPress LostFocus MouseDown
MouseEnter MouseExit MouseMove MouseUp
Popup Select VKeyPress

Adding Columns to a Container
In a details view, a record corresponds to a row in the container part, and
each column in that row corresponds to a field in that record. Before you can
add a record to a container, you must add the columns required to display the
fields by using the container part’s properties notebook.

Chapter 7. Using Parts 77

|

You have to specify which of the following four types of columns you want to
create:

Object text
An object text column displays the descriptive text that is specified
when the record is created. You can change the text at run time with
the SetRcdText attribute. Users can change this text at run time by
pressing the Alt key and selecting the field with the mouse. To get the
value of this column, use the GetRcdText attribute.

Object icon
An object icon column displays the icon file that is specified when the
record is created. You can change the icon file name at run time using
the SetRcdIcon attribute.

Text Text is a string containing additional information. A text column can
contain any string value. The text cannot have any blanks in it. If you
want a blank to appear at run time, use an underscore (_) character
in the string. Use the SetRcdFld attribute to change this text at run
time. Users can change the text at run time by pressing the Alt key
and selecting the field with the mouse. To get the value of this
column, use the GetRcdFld attribute.

Icon An icon shows additional graphical record information. An icon
column displays an icon file. Use the SetRcdIcon to change the icon
file name at run time.

You can add up to 20 columns to a container part. Of these, up to 15 can be
some combination of object text and text columns, and up to five can be object
icon columns and icon columns. Note that under Windows, only the first
column can contain an icon.

The number of columns and column types cannot be changed at run time. If
you add records that have more fields than the number of columns in the
container, the extra fields are ignored.

Adding Records to a Container
In your code, use the AddRcd attribute to add records to a container. This
attribute consists of a string of the following:

ID Text FileName ParentID {field_data field_data ...}

Blanks are used as delimiters. The parameters are:

ID A unique numeric value you give to a record. This number must be
greater than zero. To ensure that you assign a unique ID to each
record you create, use the GetNewID attribute.

Text The text that is displayed with the object icon. The text can be
changed at run time by using the SetRcdText attribute.

78 Programming with VisualAge RPG

FileName
The name of a file containing the icon image for an object icon
column. This icon is displayed in the container’s Icon and Tree views.
You can change the icon file name at run time using the SetRcdIcon
attribute.

ParentID
The unique ID of the record under which this record will appear. If
this record does not have a parent record, put a 0 in this field.

Field_data
Additional information for a record that is displayed in a text or icon
column. Each field_data value updates a corresponding column in the
container part. If you want to have an empty text column or icon
container column, you must specify an underscore (_) in the
corresponding field_data parameter.

The following code fragment shows the parameters that are specified to add a
sample record to a container. No column data is added in this example.
Use the Count attribute to determine how many records are in a container.

Updating Container Columns
Once a record has been added to a container, the data in the record fields is
displayed in the corresponding columns of the container. You can update data
in individual container text columns by updating the record fields.

*
* This is not a child record

C Eval Parent = ’0’
*
* Use the icon text specified in the GUI designer

C Eval IconText = ’_’
*
* Set the icon file name to be used for this record

C Eval IconFile = ’.\\TOM.ICO’
*
* Get a new container record ID and make it character

C ’CT1’ Getatr ’GetNewId’ NextIDN 6 0
C Move NextIDN NextID 6
*
* Create the container record structure

C Eval NextRcd = NextID + ’ ’ +
C IconText + ’ ’ +
C IconFile + ’ ’ +
C Parent
*
* Add the record to the container

C ’CT1’ Setatr NextRcd ’AddRcd’
*

Chapter 7. Using Parts 79

Note: You can update only the data in the columns; you cannot change the
number of columns in the container. The number of columns is set
when you create the container in the GUI Designer.

To update a column, set the RecordID attribute to the record that corresponds
to that column, and set the ColNumber attribute to the field on that record
that contains the updated data. The following code fragment illustrates how
to update the third column in a container:

If you want the new column value to contain imbedded blanks, use the
underscore character to represent each blank. The underscore characters are
replaced by blanks when the column is updated. For example:

Use the GetRcdFld attribute to retrieve the contents of a record field. Set the
RecordID attribute to the unique ID of the record, and the ColNumber
attribute to the desired column number.

Removing Records from a Container
Use the RemoveRcd attribute to remove records from a container part and to
remove the record ID that uniquely identifies that record. To remove all
records in the container, set the record ID value to zero.

The following code fragment illustrates how a record is removed from a
container:

*
* Set the record id to be referenced
C ’CT1’ Setatr NextIDN ’RecordID’
*
* Reference the third column in the record
C ’CT1’ Setatr 3 ’ColNumber’
*
* Update the column with the new data
C ’CT1’ Setatr ’Larry’ ’SetRcdFld’
*

*
* ’New data’ is set in the column
C ’CT1’ Setatr ’New_data’ ’SetRcdFld’
*

80 Programming with VisualAge RPG

Changing the Container View
To change the view, use the View attribute. The container part can display the
following views of the data: icon, tree icon, tree text, and details.

Icon view
An icon view has each record represented by an icon, with text beneath it.
Child records are not displayed in icon view. You specify the icon file name
and the descriptive text in the record structure when you add the record to
the container.

You can change the icon and icon text at run time by using the SetRcdIcon
and SetRcdText attributes.

To have the icons displayed in rows in the container, set the Arrange attribute
to 1.

To use mini icons, set the MiniIcon attribute to 1 or check the Mini Icon box
on the properties notebook’s ’Style’ page.

*
* Get ID of first selected record

C ’CT1’ Getatr ’FirstSel’ TmpID 6 0
*
* If a record was selected, remove it from the container

C If TmpID <> 0
C ’CT1’ Setatr TmpID ’RemoveRcd’
C EndIf
*

Chapter 7. Using Parts 81

Tree view
In a tree view, records are presented in a hierarchy. The tree icon view
displays each record with its icon and icon text beside it. If a record has child
records, a plus sign is displayed next to its icon. Selecting the plus sign shows
all the records related to this record. The tree text view displays records in the
same way as the tree icon view, except in text-only mode, without icons.

Connecting lines are drawn between related records to show their
relationship.

Figure 15. Sample icon view

82 Programming with VisualAge RPG

Details View
In a details view, records are shown one after the other with each column
displayed (similar to a subfile). Child records are not displayed in this type of
view.

Figure 16. Sample tree view

Chapter 7. Using Parts 83

If the container is not large enough to display all records at once, scroll bars
are automatically added.

To change the view, use the View attribute.

Mini Icons
This option allows the programmer to specify whether the icons contained in
the container part will be shown as regular icons, or as mini icons. This will
only affect the icon view, and will leave the tree and details views unchanged.

Figure 17. Sample details view

84 Programming with VisualAge RPG

DDE Client

* Restriction: This part is unsupported in Java applications.

Use the DDE client part to exchange data with other applications, such as
spreadsheet applications, that support the dynamic data exchange (DDE)
protocol.

The exchange is called a DDE conversation. The application that initiates the
conversation is the client, and the application that responds is the server. To
determine if an application supports DDE, refer to the documentation that
came with it.

The DDE client part supports both cold-link and hot-link conversations. A
cold-link conversation consists of a client program making explicit requests to
the server program. A hot-link conversation consists of a server program
automatically updating the client program when its data changes.

You can configure cold-link or hot-link conversations from the DDE client
part’s properties notebook and in your program logic.

Part Attributes

AppName Bottom DDEAddLink DDEMode
DDERmvLink Execute Format Item
Left ParentName PartName PartType
Poke Request TimeOut Top
Topic UserData Visible

Applicable Events

Create Data Destroy ExecuteAck
PokeAck Terminate TimeOut

Chapter 7. Using Parts 85

Entry Field

Use the entry field part if you want the user to input something that you
cannot predict the value of. An entry field is an area into which the user can
type or place text. Its boundaries are usually indicated. The user can scroll
through the text in the entry field if more information is available than is
currently visible.

You can configure the entry field part to accept character, numeric, or
double-byte character set (DBCS) data.

You can also make the entry field read-only, so that it contains information
that cannot be directly altered by the user.

You can point and click on an entry field part in the parts palette and then
click it onto the subfile part to create a subfile entry field.

Part Attributes

AddLink* Alignment AllowLink* AutoScroll*
AutoSelect BackColor BackMix Bottom
CapsLock Copy CsrAtEnd Cut
DataType Delete DragEnable* DropEnable*
Enabled FieldExit Focus FontBold
FontItalic FontName FontSize FontStrike*
FontUnder* ForeColor ForeMix Handle*
Height InsertMode* Left Masked
ParentName PartName PartType Paste
ReadOnly Refresh RemoveLink* ShowTips
Text TextEnd TextLength TextSelect
TextStart TipText Top UserData
Visible Width

* Note: See the attribute description for restrictions.

86 Programming with VisualAge RPG

Applicable Events

Change Click Create DblClick
Destroy Drop GotFocus KeyPress
Link* LostFocus MouseDown MouseEnter
MouseExit MouseMove MouseUp Popup
VKeyPress

* Note: See the event description for restrictions.

Using the InsertMode Attribute
In Windows, insert mode is always on. It cannot be turned off.

Using the Text Attribute
Use the Text attribute to get or set the value of an entry field. The field you
use to do this must be defined as the same type as the entry field. For
example, if you are getting the value of a numeric entry field, the field that
receives the value must also be defined as numeric.

Getting and Setting Information for a Window
During compilation, the compiler implicitly defines fields in your program
with the same name as the entry field part, and with the same data type and
length. By using the READ and WRITE operation codes with a window name
specified in factor 2, the Text attribute value is automatically copied to or
from these fields. The READ and WRITE operation codes are most useful if
you have many entry fields in your user interface because you do not have to
execute a series of get and set attributes.

See Chapter 3, “Programming with Parts” on page 31 for more information.

Validity Checking
You can use the properties notebook to specify that an entry field should
accept only data that meets criteria you specify. To ensure that the data
matches certain values, set the Compare values. To ensure that the data falls
within a range of predefined values, set the Range values.

Note: VisualAge RPG uses the ASCII collating sequence for validity checking.
This differs from the server, which uses the EBCDIC collating sequence.
Therefore, results may vary between systems.

To have validity checking performed, you must have at least one push button
or graphic push button on the window that has the Validate attribute set.
When the push button is pressed, validity checking is performed for each
entry field that has validity checking criteria defined. If any of the entry fields
fail this validity check, a message window is displayed and no press event is
signaled to your program.

Chapter 7. Using Parts 87

You can also use the field at the top of the properties notebook to set the
message that is displayed if the validity check fails. Either enter the text of the
message to be diplayed or the named message file (such as *MSG0001) to
have the corresponding message appear. If this field is left blank, the default
system message is displayed whenever there is a validity check failure.

Note: There is a 15 character limit on this field.

Preventing User Input
To prevent the user from entering data in an entry field, do one of the
following:
v Set the ReadOnly attribute to 1. After you set this attribute, you can still

change the value of the entry field in your program.
v Set the Enabled attribute to 0. After you set this attribute, the entry field

does not respond to events and the user cannot tab to it.

Masking Sensitive Data
If the entry field contains sensitive data, such as a password or an account
number, set the Masked attribute to 1. When this attribute is set, the asterisk
character (*) appears in the entry field for each character typed. This does
not affect the actual data read from the entry field.

88 Programming with VisualAge RPG

Graph

The graph part allows you to create and design a graph in your project. At
runtime, you can send data to the graph and change graph attributes and the
graph type. The graph part supports Pie, Line, Bar, and Line and Bar graph
types.

The Bar and Line graph types support the ToolTip text control. When
enabled, moving the mouse over a data point displays the tooltip text control.
To use this support in your program logic, set the value for the point into the
TipText attribute and set the ShowTips attribute on for the window that
contains the graph part.

Part Attributes

AutoInc BarLabel Bottom Color
ColorArea ColorMix DataGroup DataPoint
DataValue Enabled FillStyle* FontArea
FontBold FontItalic FontName FontSize
FontStrike* FontUnder* GnEqGrpCol GnEqPntCol
GraphType GroupLabel GrphHiLite Handle*
Height HitItem* HlitPoints* LabelPlace
Left LegendType ParentName PartName
PartType Refresh StartNew TipText
Title TitlePlace Top UnderPoint*
UseData UserData Visible Width
XAxisLabel YAxisLabel YInc

* Note: See the attribute description for restrictions.

Applicable Events

Click Create DblClick Destroy
MouseDown MouseEnter MouseExit MouseMove
MouseUp Popup

Sending data to the Graph
Before you send data to the graph, you must indicate which DataGroup and
which DataPoint is to receive the value. The DataPoint attribute represents
the positional element of the graph that represents the value. For a Bar chart,
this would be a Bar. For a line graph, a point, and for a Pie graph, which
slice. The DataGroup is optional. This attribute indicates that there are groups

Chapter 7. Using Parts 89

|

of data to be graphed. The default DataGroup is one. Setting the DataValue
attribute sets the value of the selected element.

As an example of a DataGroup, assume you wish to plot the high and low
temperature of each month for a given year. This graph would have two data
groups. The first would represent the low temperature for a month and the
second the high temperature for the month. For this graph, you first set the
DataGroup attribute to 1. Then, in a loop, you would set the DataValue for
each DataPoint to the low temperature value. To complete the graph repeat
the same steps for the high temperatures by setting the DataGroup to 2.

Sending data to the graph does not update the graph. You must set the
UseData attribute to display the data.

The following code fragment shows how this may be done:

If the graph is a pie graph, each group is represented as a separate pie.

*
C Do 2 Group 2 0
C ’Graph1’ Setatr Group ’DataGroup’
*
C Do 12 Point 2 0
C ’Graph1’ Setatr Point ’DataPoint’
*
C If Group = 1
C ’Graph1’ Setatr Low(Point) ’DataValue’
*
C Else
C ’Graph1’ Setatr High(Point) ’DataValue’
C Endif
*
C EndDo
*
C EndDo
*
C ’Graph1’ Setatr 1 ’UseData’

Figure 18. Sending data to the graph

90 Programming with VisualAge RPG

Graphic Push Button

Use graphic push buttons to provide convenient access to frequently used
actions.

A graphic push button provides the same function as a push button. It
indicates an action that will be initiated when the user selects it, but instead
of displaying a label to describe its function, it displays an image. The
FileName attribute specifies the name of the image to use.

Valid Windows image formats include:
v Windows and OS/2® Bitmaps (BMP, VGA, BGA, RLE, DIB, RL4, RL8)
v Icon (ICO)
v Microsoft/Aldus Tagged Image File Format (TIF, TIFF)
v CompuServe Graphics Interchange Format (GIF)
v ZSoft PC Paintbrush Image File Format (PCX)
v Truevision Targa/Vista Bitmap (TGA, VST, AFI)
v Amiga Interleaved Bitmap Format (IFF, ILBM)
v X Windows Bitmap (XBM)
v IBM Printer Page Segment (PSE, PSEG, PSEG38PP, PSEG3820)
v Joint Photographic Experts Group format (JPG, JPEG)

Note: This product’s support for the JPG/JPEG format is based in part on the
work of the Independent JPEG Group.

Valid Java image formats include:
v CompuServe Graphics Interchange Format (GIF)
v Joint Photographic Experts Group format (JPG, JPEG)

For related information, see “Push Button” on page 156.

Chapter 7. Using Parts 91

|

|
|

Part Attributes

Bottom Enabled FileName Focus
Handle* Height HelpEnable HighLight
Left ParentName PartName PartType
Refresh ShowTips TipText Top
UserData Validate Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy GotFocus LostFocus
MouseEnter MouseExit MouseMove Popup
Press

Setting the Image
To set the image that is displayed on a graphic push button, use the FileName
attribute, and specify a valid bitmap (.BMP) or icon (.ICO) file name. You
must store system-specific bitmap and icon files in the appropriate runtime
directory. For more information, see Chapter 12, “Using Picture, Sound, and
Video Files” on page 269.

Assigning Command Keys
You can assign a command key to a graphic push button. To do this, open the
properties notebook and select one of the command keys from the available
list. When the user presses the command key at run time, it has the same
effect as pressing the mouse button or a key on the keyboard. A Press event is
signaled to your program.

Signaling Events
When the push button is pressed, a Press event is signaled to your program.

92 Programming with VisualAge RPG

Group Box

Use a group box to visually distinguish a group of parts in a window.

A group box is a rectangular box that is drawn around a group of parts to
indicate that they are related. It is generally advisable to label a group box. If
a label is not needed, you can use an outline box.

Part Attributes

Bottom Enabled FontBold FontItalic
FontName FontSize FontStrike* FontUnder*
ForeColor ForeMix Handle* Height
Label Left ParentName PartName
PartType Refresh Top UserData
Visible Width

Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

Labeling a Group Box
Use the Label attribute to specify what string is to be used for the group box
label.

Grouping Radio Buttons
See “Grouping Radio Buttons” on page 159 for related information.

Chapter 7. Using Parts 93

Horizontal Scroll Bar

Use the horizontal scroll bar part to allow users to scroll through a pane of
information from left-to-right, or right-to-left. The information can be a list of
files, records in a database, columns in a document, and so on. You can use
the Range attribute to represent the total number of objects to be scrolled
through and the PageSize attribute to determine the number of objects that
can be displayed on a page.

Part Attributes

Bottom Enabled Focus Handle*
Height Left NextLine NextPage
PageSize ParentName PartName PartType
Position PrevLine PrevPage Range
Top UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy Scroll

94 Programming with VisualAge RPG

Image

Use the image part to display a picture. The FileName attribute specifies the
name of the image to use.

Valid Windows image formats include:
v Windows and OS/2 Bitmaps (BMP, VGA, BGA, RLE, DIB, RL4, RL8)
v Icon (ICO)
v Microsoft/Aldus Tagged Image File Format (TIF, TIFF)
v CompuServe Graphics Interchange Format (GIF)
v ZSoft PC Paintbrush Image File Format (PCX)
v Truevision Targa/Vista Bitmap (TGA, VST, AFI)
v Amiga Interleaved Bitmap Format (IFF, ILBM)
v X Windows Bitmap (XBM)
v IBM Printer Page Segment (PSE, PSEG, PSEG38PP, PSEG3820)
v Joint Photographic Experts Group format (JPG, JPEG)

Note: This product’s support for the JPG/JPEG format is based in part on the
work of the Independent JPEG Group.

Valid Java image formats include:
v CompuServe Graphics Interchange Format (GIF)
v Joint Photographic Experts Group format (JPG, JPEG)

These files reside on the programmable workstation (PWS), not on the host.
You should store system-specific bitmap and icon files in the appropriate
runtime directory (RT_JAVA, or RT_WIN32) so that the packaging utility
includes them when you package your application.

Note: The image part can only be dropped on a notebook page with canvas
or window with canvas.

Chapter 7. Using Parts 95

|

|
|

Part Attributes

AddLink* AllowLink* BackColor BackMix
Border Bottom Enabled FileName
Handle* Height Left Magnify
Panel ParentName PartName PartType
Print PrintAsIs Refresh RemoveLink*
ShowTips TipText Top UserData
Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Click Create DblClick Destroy
Link* MouseEnter MouseExit MouseMove

* Note: See the event description for restrictions.

Creating the Image Part
The image part can be created only on a canvas part.

Setting the File Name
To display a picture in the image part, set the FileName attribute with the
name of the file containing the image. In Windows applications, the file must
contain a valid bitmap or icon image. In Java applications, the file must
contain a valid GIF or JPG image. The image may appear differently on
individual workstations depending on the display device driver. If you specify
a file name that is not valid, no picture will be displayed. You can clear the
image part by setting the FileName attribute to blanks. If you get an error
(such as File not found) when using the SETATR operation code to set a file
name, the error indicator is turned on. For more information, see Chapter 12,
“Using Picture, Sound, and Video Files” on page 269.

Controlling the Magnification Panel
By default, the image part is created with a magnification panel. You can
remove the magnification panel by disabling it in the properties notebook of
the image part.

You can also enable or disable the magnification panel by using the Panel
attribute in your program. If you set the Panel attribute to 0, the
magnification panel is not displayed, and more of the picture can be shown. If
you set it to 1, the magnification panel is displayed, and there is less room for
the picture to be shown.

96 Programming with VisualAge RPG

|

You can set the amount of magnification in your program. The magnification
value is represented by a percentage between 25 and 200. Specifying a value
of 0 will result in the best fit, where the image will just fit in the image
window while keeping the horizontal to vertical ratio constant.

Image Example
In this example, a file is read from the iSeries 400 server. Each record in the
file contains a part number field, which is inserted into the list box as each
record is read. When the user selects a part number in the list box and presses
the View push button, the part number is concatenated with the string .BMP
to form a file name. That file name is then used to set the FileName attribute
of the image part to display the picture. The Label attribute of the PINFO
static text part is updated to indicate the result of setting the file name
attribute. Press the Close push button to terminate the program.

Chapter 7. Using Parts 97

* *
* Program ID . . : IMAGE *
* *
* Description . : Example of the Image Part *
* *
* This sample program illustrates how the image *
* part can be implemented in VARPG Client. *
* *
* The example assumes there is file on the host *
* AS/400 system called PARTS. That file format *
* consists of a field called PARTNO. *
* *
* When the application is started, the Create *
* event for window WIN1 is invoked which reads all *
* records from the file and inserts the PARTNO *
* field value into list box LB1. *
* *
* When the user presses the View push button, *
* the image file name is constructed and used to *
* set the FILENAME attribute of the image part *
* IMG1. *
* *

*
H
* Define the PARTS file
*
FPARTS IF E DISK REMOTE
*
DPath C ’’
dnopic C ’Picture not available’
*

Figure 19. Sample Using the Image Part (Part 1 of 3)

98 Programming with VisualAge RPG

* *
* Window . . : WIN1 *
* *
* Part . . . : Close *
* *
* Event . . : Press *
* *
* Description: Terminate the program *
* *

*

C CLOSE BEGACT PRESS WIN1
*

C move *on *inlr
*

C ENDACT

* *
* Window . . : WIN1 *
* *
* Part . . . : WIN1 *
* *
* Event . . : Create *
* *
* Description: This action subroutine is executed when window WIN1 *
* is created. *
* It will fill the list box with the part number values*
* from the PARTS file. *
* *

*

C WIN1 BEGACT CREATE WIN1
*
* Fill the listbox part with items from the database

C read produc1 9999
*

C *in99 doweq *off
C ’LB1’ setatr partno ’InsertItem’
C read produc1 9999
C enddo
*

C ENDACT
*

Figure 19. Sample Using the Image Part (Part 2 of 3)

Chapter 7. Using Parts 99

* *
* Window . . : WIN1 *
* *
* Part . . . : VIEW *
* *
* Event . . : PRESS *
* *
* Description: Display the image for the selected part *
* *

*
C VIEW BEGACT PRESS WIN1
*
* Get index of selected item
C ’LB1’ getatr ’FirstSel’ x 4 0
*
* If an item was selected, build the bitmap file name
C x ifgt *zero
C ’LB1’ setatr x ’Index’
C ’LB1’ getatr ’GETITEM’ tmp20 20
C movel tmp20 part 5
C endif
*
C move *blanks fullpath 64
C move *blanks tmp64 64
C path cat part:0 tmp64
C tmp64 cat ’.gif’:0 fullpath
*
* Set the file name in the image FILENAME attribute
* to display the image
C ’IMG1’ setatr fullpath ’FILENAME’ 80
*
* If indicator 80 is on, the set the image file name
* failed. i.e. the file was not found.
* Set the Label attribute for the static text part PINFO to
* indicate status
C *in80 ifeq *on
C ’PINFO’ setatr nopic ’Label’
*
C else
C ’PINFO’ setatr *BLANKS ’Label’
C endif
*
C ENDACT
*

Figure 19. Sample Using the Image Part (Part 3 of 3)

100 Programming with VisualAge RPG

Java Bean

* Restriction: This part is unsupported in Windows applications.

Use the Java Bean part to add JavaBeans® to your project. You can use
JavaBeans by calling Java methods, directly. For more information on calling
Java methods, see Chapter 18, “Calling Java Methods from VisualAge RPG
Programs” on page 311.

To develop applications that use the Java Bean part, you must have Sun
Microsystem’s Java 2 Software Development Kit (J2SDK), Standard Edition,
version 1.2 or higher, installed on your workstation. If you do not have the
J2SDK, you can download it from Sun Microsystems at the following URL:
http://java.sun.com/products/

After installing the J2SDK, set the PATH environment variable to point to the
location of both the Java compiler and the jvm.dll, which is part of the J2SDK
and JRE (Java Runtime Environment). For example, if your home directory for
the J2SDK is x:\jdk1.2, add the following path statements:
x:\jdk1.2\bin

x:\jdk1.2\jre\bin\classic

Part Attributes

AddEvent Bottom Enabled Height
Left ParentName PartName PartType
RmvEvent ShowProp Top UserData
Visible Width

Applicable Events

Create Destroy BeanEvent

Adding Beans to your Project
To add a bean to your project, click on the Java Bean part in the parts palette.
Click the mouse pointer onto the design window where you want the bean
placed. A file Open dialog appears. Select the JAR file containing the bean (or
beans) you want to work with. A window appears listing all the beans
available in the JAR file. After you select a bean from the list, the bean will be
instantiated. It will be shown in a seperate window together with the

Chapter 7. Using Parts 101

associated property-sheet dialog and the bean-customizer, if available. (You
can change the properties of the bean through the property-sheet dialog and
the bean customizer.)

To show the properties, methods, and events for a bean, open the Java Bean
Part Properties notebook from the design window. Right-click on the Java
Bean icon in the design window and select Properties. The properties,
methods, and events of a bean are on the Information page. Select the
appropriate radio button to view what is available.

Not all bean events are supported. VARPG-supported events are prefixed with
an asterisk(*) in the Events list.

Location of Bean JAR Files
All bean-related JAR files for the project should be in the internal bean
directory, x:\...\WDSC\beans, where x:\...\WDSC is the home directory where
VARPG is installed. This directory should include any bean-dependent JAR
files, as well. For example, if BeanA is found in BeanA.jar and requires class
files in beanclass.jar, both BeanA.jar and beanclass.jar must be copied to the
internal bean directory.

While editing a project, you may select a bean from a JAR file that is not in
the internal bean directory. This JAR file will be copied to the internal bean
directory after you build the project. However, you still need to copy any
bean-dependent JAR files to this directory.

Remove any unused JAR files from the internal bean directory. Doing this
avoids the loading of unnecessary, non-project JARs.

Setting the JAR Classpath
The VARPG packaging utility does not handle the classpath setup for JAR
files. You must set the classpath variable to include all the JAR files used by
the beans in your project. For example, if BeanA uses BeanA.jar and depends
on beanclasses.jar, set the classpath as follows:
SET CLASSPATH=x:\beandir\BeanA.jar;x:\beandir\beanclasses.jar;%CLASSPATH%;

where x:\beandir is the path for bean’s the JAR files.

102 Programming with VisualAge RPG

Setting/Getting JavaBean Properties and Invoking Methods
VARPG supports invoking java methods directly. (See Chapter 18, “Calling
Java Methods from VisualAge RPG Programs” on page 311 for details.) The
VARPG run time provides a Java accessor class to access the JavaBeans objects
in your projects. The accessor class, com.ibm.varpg.parts.VarpgBeanPart, is in the
varpg.jar file. This class allows you to retrieve the bean objects that are
instantiated by the VARPG run time. These bean objects are parts of the
VARPG project. The method to get the bean object is:
public static Object getBeanObject(String strComponentName,

String strParentName,
String strPartName);

where strComponentName is the name of component containing the bean part,
strParentName is the name of the window containing the bean part, and
strPartName is the name of the bean part. The caller must check for any null
references returned by the method to make sure the call is successful.

To find the actual method specification for setting or getting properties and
invoking methods, refer to the Bean’s documentation as provided by the
vendor, or view the Information page of the Java Bean Part Properties
Notebook.

Chapter 7. Using Parts 103

List Box

Use the list box part to provide the user with a list of items from which one
or more items can be selected. A list box consists of read-only items. An item
in a list box is a string of characters.

Horizontal and vertical scroll bars allow the user to view sections of the list
that are not currently displayed. You can configure the list box so that the
user can select either just one item or multiple items. You can use the Search,
SearchType, and Case attributes to easily search for a particular item in the
list.

Part Attributes

AddItemEnd AddLink* AllowLink* BackColor
BackMix Bottom Case* Count
DelimChar DeSelect DragEnable* DropEnable*
Enabled ExtSelect* FirstSel Focus
FontBold FontItalic FontName FontSize
FontStrike* FontUnder* ForeColor ForeMix
GetItem Handle* Height Index
InsertItem* ItemKey Left MultSelect
NbrOfSel ParentName PartName PartType
Refresh RemoveItem RemoveLink* Search*
SearchType* Selected SelectItem SelectList
Sequence* SetItem SetTop ShowTips
SizeToFit TipText Top UseDelim
UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy Drop* Enter*
GotFocus KeyPress LostFocus MouseEnter
MouseExit MouseMove Popup Select
VKeyPress

* Note: See the event description for restrictions.

104 Programming with VisualAge RPG

Adding and Setting the Sequence of Items
By default, items are displayed in the list box in the order in which you
added them. If you want them displayed in a more precise order, then before
you start adding them, set the Sequence attribute to either ascending,
descending, or index. This sorts the items in ASCII collating sequence as they
are added.

You cannot use the Sequence attribute to change the order of items that are
already in the list box.

Adding Items at Run Time
You can insert items into a list box at run time by using the InsertItem
attribute. The order in which items are displayed is determined by the
Sequence attribute.

Updating Items in a List
You can change items that are already in the list. Use the Index attribute to
indicate which item you want to change, and the SetItem attribute to specify
the changed data.

Note: When you change an item using the SetItem attribute, the item remains
in its original location, regardless of the value of the Sequence
attribute. For example, if you had set the Sequence attribute to
ascending order when you created the list, the items appear in the list
box in ascending order; however, if you then retrieve an item, change
its value, and use the SetItem attribute to replace it in the list box, the
item is inserted in the same position it was in before. Therefore, the list
may or may not be in ascending sequence after the change.

Setting the Top of the List
Use the SetTop attribute to specify which list item should appear at the top of
the list box. Setting this item scrolls the list. It changes the display, but it does
not reorder the items in the list.

Removing Items
Use the RemoveItem attribute to remove items from the list. Use the index
value to specify the item that is to be removed. Index values start at 1. When
an item is removed from the list, all items following the removed item are
moved up one position in the list.

To remove all items in the list, specify an index value of 0.

Selecting and Deselecting Items
The user can select or deselect items by using the mouse or the keyboard. You
can select and deselect items by setting the Selected and DeSelect attributes
in your program. To use these attributes, first set the Index attribute.

Chapter 7. Using Parts 105

Types of Selection
You can use attributes to specify how items are selected in a list box. Single,
multiple, and extended selection are available.

Single selection
Single selection (the default) permits only one item in a list to be
selected at one time. If an item is currently selected, it will be
deselected when another item is selected.

Multiple selection
The user can select any number of objects, or not select any.

Extended selection
This type of selection is optimized for the selection of a single object,
but the user can extend selection to more than one object, if required.

Retrieving Items from the List
To retrieve an item from a list box, use the GetItem attribute. First set the
Index attribute to indicate which item you want to retrieve.

You typically retrieve items that have been selected by the user. To determine
which items in a list box have been selected, use the FirstSel or Selected
attribute. The FirstSel attribute returns the index of the first selected item in
the list. If you need to check for additional selected items, be sure to use the
DeSelect attribute to deselect this item; otherwise the FirstSel attribute
returns the same item.

To determine if a specific item has been selected, use the Selected attribute.
The Selected attribute uses the Index attribute value to determine if that item
has been selected.

You can use the Count attribute to determine if there are any items to
retrieve.

Using Keys
Both the list box and the combination box allow you to add items to the list
that consist of a ’key’ portion and a ’data’ portion. When items are added to
the list, only the data portion of the item is displayed. When the user selects
an item you can programatically retrieve the key portion of the item.

See the Using Keys section in the combination box part description for more
information.

Signaling Events
The Select event is signaled when:
v The user selects an item that is in a list box.
v You select an item in the list in your program.
v The user selects an item that is already selected.

106 Programming with VisualAge RPG

The Enter event is signaled when:
v The user double-clicks over an item that is in the list box
v The user presses the Enter key when the list box has focus and an item has

been selected.

In your action subroutine for these events, you can use the Selected or
FirstSel attribute to determine which item was selected.

List Box Example
Press the Add push button to insert the text value from the entry field part
into the list. Press the Clear push button to clear the list, the Select push
button to select an item from the list and the Remove push button to remove
the selected item from the list. Press Close to end the program.

Chapter 7. Using Parts 107

* *
* Program ID . . : LISTBOX *
* *
* Description . : Sample program to demonstrate the Listbox part. *
* *

*

* *
* Window . . : MAIN *
* *
* Part . . . : CLEAR *
* *
* Event . . : PRESS *
* *
* Description: Clear the listbox and the entry field. Give focus *
* to the entry field part. *
* *

*
C CLEAR BEGACT PRESS MAIN
*
C ’LB1’ setatr 0 ’RemoveItem’
C ’EF1’ setatr *blanks ’Text’
C ’EF1’ setatr 1 ’Focus’
*
C ENDACT

* *
* Window . . : FRA0000B *
* *
* Part . . . : CLOSE *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program *
* *

*
C CLOSE BEGACT PRESS MAIN
*
C move *on *INLR
*
C ENDACT

Figure 20. Coding Example Using the List Box Part (Part 1 of 3)

108 Programming with VisualAge RPG

* *
* Window . . : MAIN *
* *
* Part . . . : REMOVE *
* *
* Event . . : PRESS *
* *
* Description: Remove the selected item from the list box. *
* The ’FirstSel’ attribute is used to determine the *
* index of the first selected item. *
* *

*

C REMOVE BEGACT PRESS MAIN
*

C ’LB1’ getatr ’FirstSel’ Index 3 0
*

C Index ifgt *zero
C ’LB1’ setatr Index ’RemoveItem’
C endif
*

C ENDACT

* *
* Window . . : FRA0000B *
* *
* Part . . . : ADD *
* *
* Event . . : PRESS *
* *
* Description: Adds the value in the entry field part as a new item *
* to the list box part. *
* *

*

C ADD BEGACT PRESS MAIN
*

C ’EF1’ getatr ’TEXT’ tmp 30
*

C tmp ifne *blanks
C ’LB1’ setatr tmp ’InsertItem’
C ’EF1’ setatr *blanks ’Text’
C ’EF1’ setatr 1 ’Focus’
C endif
*

C ENDACT

Figure 20. Coding Example Using the List Box Part (Part 2 of 3)

Chapter 7. Using Parts 109

Search Example
You can use the Search, SearchType, and Case attributes to search for a
particular item in the list. Using them is faster than reading each item in your
program and comparing for specific values.

* *
* Window . . : MAIN *
* *
* Part . . . : SELECT *
* *
* Event . . : PRESS *
* *
* Description: Retrieves the selected item from the list box and *
* copies it to the entry field. *
* *

*
C SELECT BEGACT PRESS MAIN
*
C ’LB1’ getatr ’FirstSel’ x 3 0
*
C x ifgt *zero
C ’LB1’ setatr x ’Index’
C ’LB1’ getatr ’GetItem’ temp 20
C ’EF1’ setatr temp ’Text’
C endif
*
C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : EF1 *
* *
* Event . . : CHANGE *
* *
* Description: For CRP sample’s notify event purpose *
* *

*
C EF1 BEGACT CHANGE MAIN
*
C ENDACT
*

Figure 20. Coding Example Using the List Box Part (Part 3 of 3)

110 Programming with VisualAge RPG

The following example shows how to locate a customer name in a list box as
the user types a name in the entry field. The window is named MAIN, the list
box is LB1, and the entry field is EF1. The user interface follows:

In the window’s Create event, we set the Case attribute of the list box to 0 to
indicate that the search is not case sensitive. The SearchType attribute is set to
1 indicating we only want to compare the number of characters in the search
string with the first characters of the list item. The rest of the code is filling
the list box with records from the iSeries database.
C MAIN BEGACT CREATE MAIN
*
C ’LB1’ Setatr 0 ’Case’
C ’LB1’ Setatr 1 ’SearchType’
*
C Read Custom01 99
*
C DoW NOT *in99
C ’LB1’ Setatr CustNa ’AddItemEnd’
C Read Custom01 99
C EndDo
*
C ’LB1’ Setatr 1 ’SelectItem’
*
C ENDACT

Chapter 7. Using Parts 111

The following code is the action subroutine for the Change event of the entry
field EF1. Each time a character is typed in the entry field, this action
subroutine is invoked.

The value of the Text attribute of the entry field is retrieved, and if it is not
blank, that value is used as the search string for the Search attribute of the list
box. If a match is found (Index attribute is greater than 0), the found item is
selected and then moved to the top of the list box with the Settop attribute.
C EF1 BEGACT CHANGE MAIN
*
C ’EF1’ Getatr ’Text’ Search 40
*
C If Search <> *Blanks
C ’LB1’ Setatr Search ’Search’
*
C If %Getatr(’Main’:’LB1’:’Index’)<>0
C Eval %Setatr(’Main’:’LB1’:’SelectItem’)=
C %Getatr(’Main’:’LB1’:’Index’)
C Eval %Setatr(’Main’:’LB1’:’SetTop’)=
C %Getatr(’Main’:’LB1’:’Index’)
C EndIf
*
C Else
C ’LB1’ Setatr 1 ’SetTop’
C ’LB1’ Setatr 1 ’SelectItem’
C ’LB1’ Setatr 1 ’Index’
*
C EndIf
*
C ENDACT

If the entry field is blank, the first item in the list box is moved to the top,
and is selected. The INDEX attribute is set to 1 so that subsequent searches
begin at the top of the list.

112 Programming with VisualAge RPG

Media

Use the media part to play or record audio information or to play video files.

The media part gives your programs the ability to process wave (.WAV), MIDI
(.MID), and QuickTime Movie (.MOV) files. If you want to use audio files, the
computer must be equipped with a sound card capable of processing these
files. To record a sound file, you will need a microphone or some other
supported input device for the sound card. MIDI files cannot be recorded
with the media part.

Java applications require the Java Media Framework (JMF) API. The media
part only supports the playback of audio and video files in the Java
environment.

The video file formats that can be processed are: MPEG (*.mpg) files,
QUICKTIME Movie (*.mov) files, *.dat files, Microsoft® Video for Windows
*.avi files are supported for Windows. To play these video files, the computer
must have the appropriate drivers.

Part Attributes

AddLink* AllowLink* AudioMode Bass*
Bottom FileName Handle* InPlace
Left Length Panel ParentName
PartName PartType Position RemoveLink*
Top Treble* UserData Visible
Volume

* Note: See the attribute description for restrictions.

Applicable Events

Complete Create Destroy Link*

* Note: See the event description for restrictions.

Chapter 7. Using Parts 113

Specifying a File Name
Use the FileName attribute value to specify the name of the file you want to
process. For more information, see Chapter 12, “Using Picture, Sound, and
Video Files” on page 269.

Note: Some wave files are shipped in compressed format. The media part
processes only noncompressed wave files.

Setting AudioMode
To process a file, set the AudioMode attribute to one of the following values:

Value Description

1 Pause — Suspends processing the file

2 Play — Plays the file

3 Record — Records a file

4 Stop — Stops processing the file

Setting the Volume
Use the Volume attribute to set the volume for the for the media part and the
system’s waveout and synthesizer.

Setting the Position
Use the Position attribute to determine the start position in the file to be
processed. Express the attribute value in milliseconds.

Using the Media Panel Part
You can use the media panel part to control the media part. In the media
panel part’s properties notebook, set the media part name in the AddLink
attribute, and enable the AllowLink attribute. This allows the user to control
the media part simply by pressing the appropriate button on the media panel.
See “Media Panel” on page 115 for more information.

Signaling Events
When the media part has completely processed a file, a Complete event is
signaled.

114 Programming with VisualAge RPG

Media Panel

Note: This part is not supported in Java applications.

Use the media panel part to provide convenient access to frequently used
actions.

You can also use it to give the user control over other parts without your
having to write any program logic. For example, you can use it to create push
buttons or slider controls that control the volume or mode of a media part.

In the properties notebook for the media panel part, you can determine:
v Which buttons, from a defined set of buttons, the media panel will contain
v Whether or not the position and volume slider controls will be visible

Note: The media panel part can only be dropped on a notebook page with
canvas or window with canvas.

Part Attributes

AddLink AllowLink BackColor BackMix
Bottom Enabled Handle Height
Left PanelItem PanelMode ParentName
PartName PartType Position RemoveLink
Top UserData Visible Volume
Width

Applicable Events

Change Create Destroy Link
MouseEnter MouseExit MouseMove Popup
Press

Creating a Media Panel Part
A media panel part can be created only on a canvas part.

Linking Other Parts
There are two methods for linking a media panel part to another part: one
involves using the properties notebook and the other involves writing
program logic. The first method is the simplest. The only time you need to
write program logic is if you want the link to be set during run time, and

Chapter 7. Using Parts 115

then you would set the AddLink and AllowLink attributes. A typical
example would be to link the media panel to a media part. When a control is
changed on the media panel, the link mechanism automatically affects the
media part.

When you create a link from the media panel part to another part, only
certain buttons are enabled on the media panel part. To make all the buttons
enabled, you must also create a link from the other part back to the media
panel part.

Refer to the AddLink description in VisualAge RPG Parts Reference,
SC09-2450-05 for more information about the parts you can link to a media
panel part.

Signaling Events
When the volume slider or the position slider is moved, a Change event is
signaled. Use the PanelItem attribute to determine which slider was changed.
Use the Volume attribute to determine the value of the volume slider, and the
Position attribute to determine the value of the position slider.

When a push button on the media panel is pressed, a Press event is signaled.
Use the numeric value returned by the PanelItem attribute to determine
which button caused the Press event. Refer to VisualAge RPG Parts Reference,
SC09-2450-05for a list of possible values.

116 Programming with VisualAge RPG

Menu Bar

Use the menu bar part to give users access to pull-down menus. You can add
submenu parts and menu item parts to the menu bar.

A menu bar appears near the top of the window frame, just below the title
bar. When the user selects a menu item from it, a pull-down menu appears,
showing the items on that menu. Selecting a menu item immediately initiates
the action it describes.

Note: You can manipulate this part’s properties, events, and so on, only from
its pop-up menu in the project tree view.

For related information, see:
v “Menu Item” on page 118
v “Submenu” on page 190
v “Pop-up Menu” on page 154

Part Attributes

PartType PartName ParentName UserData

Applicable Events

Create Destroy

Creating Pull-down Menus
You cannot open the properties notebook of a menu bar, submenu, or menu
item by double clicking on it or via pop-up menus. You must manipulate it in
the tree view.

Chapter 7. Using Parts 117

Menu Item

Use menu items to construct pull-down or pop-up menus.

A menu item describes an action that is initiated when the user selects that
item.

To construct a menu:
1. Drop a submenu part onto a menu bar or pop-up menu.
2. Drop menu items onto the submenu.

Note: You can manipulate this part’s properties, events, and so on, only from
its pop-up menu in the project tree view.

For related information, see:
v “Menu Bar” on page 117
v “Pop-up Menu” on page 154
v “Submenu” on page 190

Part Attributes

Checked Enabled FileName Label
ParentName PartName PartType UserData
Visible

Applicable Events

Create Destroy MenuSelect

Placing a Check Mark beside a Menu Item
A check mark symbol next to a menu item informs the user that the action
represented by the menu item is selected. For example, if a check mark
appears next to a Show Grid menu item, a grid is displayed.

To display a check mark next to a menu item, set the Checked attribute to 1.
To remove a check mark, set the attribute to 0.

Setting Menu Text
Use the Label attribute to set the text for a menu item.

118 Programming with VisualAge RPG

|

Setting a Mnemonic

Note: Mnemonics are not supported in Java applications.

To specify a mnemonic key for the menu item, place the mnemonic identifier
in front of a character in the text of the Label attribute. For Windows, use an
ampersand (&). The designated character is displayed on the interface with an
underscore, for example, Display. The underscore informs users that they can
select the menu item by pressing the underlined character on the keyboard.

Enabling Menu Items
You can control whether or not a MenuSelect event is issued when the user
selects a menu item.

By default, the menu item is enabled when you create it. An enabled menu
item generates a MenuSelect event when selected.

Set the Enabled attribute to 0 if you do not want a menu item enabled. When
a menu item is not enabled, it is dimmed on the display, and it does not
generate a MenuSelect event when selected.

Signaling Events
When the user selects a menu item, a MenuSelect event is signaled.

Note: Only menu items signal a MenuSelect event. Submenus (such as
cascaded menus), which are attached to other menu items do not.

Chapter 7. Using Parts 119

Message Subfile

Use the message subfile part to display predefined messages or to display text
that you supply in your program logic: for example, error or status
information.

This part is always positioned at the bottom of the window frame and runs
the width of the window. You cannot resize its width; you can, however,
resize its height so that it shows more messages. At run time, users can use
scroll bars to view all of the messages.

Part Attributes

AddMsgID AddMsgText Count DragEnable*
DropEnable* Enabled FirstSel FontBold
FontItalic FontName FontSize FontStrike*
FontUnder* ForeColor ForeMix GetItem
Handle* Height Index MsgSubText
NbrOfSel ParentName PartName PartType
RemoveMsg Selected ShowTips TipText
UserData Visible

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy Drop Enter
MouseEnter MouseExit MouseMove Popup
Select

Displaying Predefined Messages
To display messages that are already defined in the GUI Designer, set the
AddMsgId attribute to the ID number of the message you want to display.
Use the numeric portion of the message identifier.

Displaying Text Supplied in Your Program
To display text that is not part of a predefined message, use the AddMsgText
attribute in your program and supply a text string or literal as the message
value.

120 Programming with VisualAge RPG

Using Substitution Variables
The message subfile part supports substitution variables. A substitution
variable is defined when you create the message by typing an percent (%)
character followed by a numeric value (for example, %123). This substitution
variable is replaced by data your program provides before you add the
message. Message substitution data applies to the AddMsgID and
AddMsgText attributes.

Message substitution data is a series of words separated by blanks. Each
substitution word replaces the corresponding substitution variable before the
message is added to the message subfile part. To set the message substitution
data, use the MsgSubText attribute before you set the AddMsgID attribute.

Note: The substitution data remains in effect until another MsgSubText
attribute is used.

Removing Messages
Use the RemoveMsg attribute to remove a message from the message subfile
part. Specify the index number of the message to be removed. To remove all
messages, use an index value of 0.

Chapter 7. Using Parts 121

Message Subfile Example
In this example, the user is prompted to enter a part number for processing.
The part number must be greater than zero and less than 2000. When the OK
push button is pressed, the program checks that the value is in the required
range. If the value is not in the range, a message is added to the message
subfile part.

122 Programming with VisualAge RPG

* *
* Program ID . . : MESSAGE *
* *
* Description . : Sample program to demonstrate the Message *
* subfile part. *
* *

*

* *
* Window . . : MAIN *
* *
* Part . . . : PB_CLOSE *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program *
* *

*

C PB_CLOSE BEGACT PRESS MAIN
*

C move *on *inlr
*

C ENDACT

Figure 21. Coding Example Using the Message Subfile Part (Part 1 of 2)

Chapter 7. Using Parts 123

* *
* Window . . : MAIN *
* *
* Part . . . : PB_OK *
* *
* Event . . : PRESS *
* *
* Description: Check that the value entered is allowed. If not, *
* add a message to Message subfile part. *
* *
* The value entered is used as substitution text in *
* the message. *
* *

*
C PB_OK BEGACT PRESS MAIN
*
* Clear the message subfile
*
C ’Msg1’ setatr 0 ’RemoveMsg’
*
* Get the part number
*
C ’PartNum’ getatr ’Text’ tmp4 4 0 *
* If part number is not valid, add a message to the
* Message part. The partnumber entered by the user is
* used as the substition text.
* Since substitution text must be a string, we move the
* numeric part number value to a character field, and use
* it as the substitution text.
C tmp4 ifle *zero
C tmp4 orgt 1999
C move tmp4 char4 4
C ’Msg1’ setatr char4 ’MsgSubText’
C ’Msg1’ setatr 1 ’AddMsgID’
*
* Give the PartNum entry field FOCUS, so the cursor will
* return to it.
C ’PartNum’ setatr 1 ’Focus’
*
* Part number is OK, continue processing
C else
* ...
* ...
* ...

Figure 21. Coding Example Using the Message Subfile Part (Part 2 of 2)

124 Programming with VisualAge RPG

Multiline Edit

Use the multiline edit part if you want the user to be able to type in several
lines of text.

The multiline edit part has defined boundaries. Sometimes not all of its text is
visible. The user can scroll up, down, left, or right to view text that is
currently not visible.

Part Attributes

AddLineEnd AddOffset BackColor BackMix
Bottom CanUndo CharOffset Copy
CsrLine CsrPos Cut Delete
DragEnable* DropEnable* Enabled Focus
FontBold FontItalic FontName FontSize
FontStrike* FontUnder* ForeColor ForeMix
Handle* Height InsertLine InsertText
Left LineNumber LineText NbrOfLines
ParentName PartName PartType Paste
ReadOnly Refresh ShowTips Text
TextEnd TextLength TextSelect TextStart
TextString TipText Top TopLine
Undo UserData Visible Width
WordWrap

* Note: See the attribute decription for restrictions.

Applicable Events

Change Click Create DblClick
Destroy Drop GotFocus KeyPress
LostFocus MouseDown MouseEnter MouseExit
MouseMove MouseUp Popup VKeyPress

Getting and Setting the Text
Use the Text attribute to get or set the text of the multiline edit part.

Chapter 7. Using Parts 125

Note: The default text entered in the properties notebook for the multiline
edit part is not saved. Text for a multiline edit part can only be set at
run time.

Manipulating Lines of Text in a Multiline Edit Part
To insert new lines into a multiline edit part:
1. Set the LineNumber attribute to the line number after which you want to

insert text.
2. Use the InsertLine attribute.

Your text is inserted after the line you specify. Any lines that are below the
line you specified are moved down to make room for the inserted text.

Manipulating Characters in a Multiline Edit Part
To insert a string of characters into a multiline edit part:
1. Set the CharOffset attribute to specify where you want the new text

inserted.
Text following the CharOffset value will be replaced with the new text.

2. Use the AddOffset attribute to add text at CharOffset.

Manipulating Selected Portions of Text in a Multiline Edit Part
You can use several attributes to manipulate selected portions of text in a
multiline edit part.

To return just the selected text, use the TextSelect attribute. If no text is
selected, the TextSelect attribute returns a null string, and the result field that
is to receive the text remains unchanged.

Use the TextStart and TextEnd attributes to return the starting and ending
character positions of the selected text.

Changing Color
If a multiline edit part exists on a canvas part whose background color is set
to the system default, changes to the background color of the canvas will be
inherited by the multiline edit part. Additional multiline edit parts added to
the canvas will not inherit this color. To correct this, defer setting the
background color of the canvas until you have placed all multiline edit parts
on it. Alternatively, you can make the multiline edit parts inherit the color by
setting the color of the canvas to the system default and then back to your
predefined RGB color setting.

If you drag and drop a color onto the scroll bar of a multiline edit part, that
color is not saved. The multiline edit part will be changed to the new color,
but when you close and reopen the window, the color will be changed back to
the original.

126 Programming with VisualAge RPG

Choosing Fonts
Not all fonts are supported by the multiline edit part. After you select a font
for this part, it will adjust to display the closest match for the selected font.

Preventing User Input
You can prevent users from entering text in the multiline edit part by doing
one of the following:
v Set the ReadOnly attribute to 0.
v Set the Enabled attribute to 0. (This also prevents the multiline edit part

from responding to events such as Change and GotFocus.)

You can still change the value of the multiline edit part in your program.

Multiline Edit Example
In this example, pressing the Copy push button copies the selected text from
the multiline edit to the entry field. Pressing the Close push button ends the
program.

Chapter 7. Using Parts 127

* *
* Program ID . . : MLE *
* *
* Description . : Sample program to demonstrate the Multiline Edit *
* part. *
* *

* *
* Window . . : MAIN *
* *
* Part . . . : PB_CLOSE *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program *
* *

*
C PB_CLOSE BEGACT PRESS MAIN
*
C move *on *inlr
*
C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : PB_COPY *
* *
* Event . . : PRESS *
* *
* Description: Copy the selected text in the MLE to the entry field *
* part. *
* *

*
C PB_COPY BEGACT PRESS MAIN
*
C ’EF1’ setatr *blanks ’Text’
C ’MLE1’ getatr ’TextStart’ start 5 0
C ’MLE1’ getatr ’TextSelect’ selected 128
*
C start ifgt *zero
C ’ef1’ setatr selected ’Text’
C endif
*
C ENDACT

Figure 22. Coding Example Using the Multiline Edit Part (Part 1 of 2)

128 Programming with VisualAge RPG

* *
* Window . . : Main *
* *
* Part . . . : Top *
* *
* Event . . : Press *
* *
* Description: Set the 5th line in the MLE part as top line. *
* *
* Change activity: *
* *

*

C TOP BEGACT PRESS MAIN
*

C eval %setatr(’MAIN’:’MLE1’:’TOPLINE’) = 5
C ENDACT

* *
* Window . . : Main *
* *
* Part . . . : Bottom *
* *
* Event . . : Press *
* *
* Description: Set bottom *
* *

*

C BOTTOM BEGACT PRESS MAIN
*

C eval %setatr(’MAIN’:’MLE1’:’TOPLINE’) = 0
C ENDACT

Figure 22. Coding Example Using the Multiline Edit Part (Part 2 of 2)

Chapter 7. Using Parts 129

Notebook

Use the notebook part to present data that can be logically grouped by topic:
for example, customer information divided into categories such as Name,
Shipping Address, Orders, and Credits.

A notebook part is a graphical representation of a bound notebook. (In
Windows applications, this is known as a tab control.) You can add pages to
the notebook, and you can group the pages into sections separated by tabbed
dividers. If the notebook page has a canvas, you can add more than one part
to it. If it does not have a canvas, you can add only one part to it.

The user can turn the pages of the notebook to move from one page to the
next, or go straight to a section by clicking on its divider tab.

You can add notebook pages by:
v Using the properties notebook for the notebook part
v Pointing-and-clicking (or dragging-and-dropping) a properties tab or

notebook page with canvas onto the notebook part

For related information, see:
v “Notebook Page” on page 132
v “Notebook Page with Canvas” on page 134

Part Attributes

BackColor BackMix Bottom Count
Enabled Focus FontBold FontItalic
FontName FontSize FontStrike* FontUnder*
ForeColor ForeMix Handle* Height
Left PageNumber ParentName PartName
PartType Refresh ShowTabs* Top
UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

130 Programming with VisualAge RPG

Changing Font Emphasis
Changing the font emphasis for a notebook part to underscore or strikeout
causes the status text to take on the new emphasis but not the tab text.

Chapter 7. Using Parts 131

Notebook Page

Use the notebook page part to add pages to a notebook.

You can add only one part to a notebook page; that part will be automatically
sized to fit the entire page. If you want to add more than one part on a page,
you must point-and-click a canvas part onto the notebook page. Alternatively,
you can use the notebook page with canvas part to save a step.

Note: You can manipulate this part’s properties, events, and so on, only from
its pop-up menu in the project tree view.

The user can press the left and right arrow keys to move from one page to the
next.

For related information, see
v “Notebook” on page 130
v “Notebook Page with Canvas” on page 134

Part Attributes

Enabled OnTop ParentName PartName
PartType Refresh TabImage TabLabel
UserData Visible

Applicable Events

Create Destroy PageSelect SelPending*

* Note: See the event description for restrictions.

Showing Tab Text
On a DBCS machine, the tab of a notebook page may not show all its text
when the MINCHO Proportional font is used. Changing the font to another
style, such as MINCHO Normal or MINCHO System, will fix this.

Setting a Mnemonic
To specify a mnemonic key for the notebook page, place the mnemonic
identifier in front of a character in the text of the Label attribute. This

132 Programming with VisualAge RPG

|

designated character is displayed on the interface with an underscore (for
example, Display). Note that for Windows, mnemonics are displayed, but do
not function on notebook pages.

Note: Mnemonics are not supported in Java applications

Chapter 7. Using Parts 133

Notebook Page with Canvas

Use the notebook page with canvas to add pages to a notebook part.

The canvas part occupies the client area of a notebook page part. By adding
parts to the canvas part, you can create a graphical user interface.

If you want to add only one part to the page, you can use the notebook page
part instead of the notebook page with canvas part. Because the notebook
page part does not have a canvas on it, the part you add will be sized
automatically.

For related information, see:
v “Notebook” on page 130
v “Notebook Page” on page 132

Part Attributes

Enabled OnTop ParentName PartName
PartType Refresh TabImage TabLabel
UserData Visible

Applicable Events

Create Destroy PageSelect SelPending

134 Programming with VisualAge RPG

|
|

|

ODBC/JDBC Interface

The ODBC/JDBC Interface part provides the ability to process database files
that support the Windows ODBC API or Sun Microsystem’s JDBC API.
Examples of these database file types include Foxpro, Access, and Paradox.

To develop applications that can use the ODBC/JDBC Interface part, you
must be familiar with SQL and have either the Windows ODBC SDK or Sun
Microsystem’s Java 2 Software Development Kit (J2SDK), Standard Edition,
installed on your workstation.

If you do not have the ODBC SDK, you can download it from Microsoft at the
following URL:
http://www.microsoft.com/odbc/download.htm

The JDBC support is part of the Java™ 2 Software Development Kit (J2SDK)
Version 1.2 for Windows. If you do not have the J2SDK, you can download it
from Sun Microsystems at the following URL:
http://java.sun.com/products/

Applications that access and manipulate data in a JDBC database require the
appropriate JDBC 2.0 compliance driver. You can find JDBC driver and other
information at the following URL:
http://java.sun.com/products/jdbc/

Note: JDBC is not supported in applets.

An ODBC or JDBC database consists of one or more tables. Data is stored in a
table as a series of rows. Each row, or record, contains a number of columns
with data. Your program can submit SQL statements along with ODBC/JDBC
Interface part attributes to manipulate rows, or to move data between
program fields and table columns.

Before you can process an existing database, your VARPG program must first
connect to the database and indicate which table to reference. To manipulate
the rows in a table, your program must create a record set that identifies the
records to be returned and maintained by the ODBC/JDBC Interface part. To
access the data in a row, you must bind each column used in the table row

Chapter 7. Using Parts 135

with a program field in your program. In Java applications, pointers are not
supported. A column is bound to a part; only the static text and entry field
parts can be used for binding.

If you are creating a Java application that uses the ODBC/JDBC interface part,
end users running your application must install the varpgjdb.jar file on their
workstation and add its location to their classpath statement. The packaging
utility does inlcude this JAR file. The JAR file is located in the WDSC\java
subdirectory.

Part Attributes

AllowChg* BindPart Bottom BufferDec*
BufferLen* BufferPtr* BufferType* CharData
Column ColumnDec ColumnLen ColumnName
Columns ColumnType Connect Connected
ConnectStr CurrentRow DeleteRow ExecuteSQL
Fetch FetchNext FetchPrior GetTables
Handle* Height InsertRow IsData
Left ParentName PartName PartType
Refresh Rows* SQLError SQLMsgBox
SQLQuery Top UnBind UpdateRow
UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

Connecting to an ODBC Database
Before you can process an existing database, your VARPG program must first
connect to the database and indicate which table to reference.

Note: The VARPG ODBC/JDBC Interface part can only connect to one table
at a time. If that table has dependencies or relations with other tables,
your program cannot update or delete records in the database.

To connect to a database, first set the ConnectStr attribute to the required
connection string for the database. Then, use the Connect attribute to do the
connection. In Windows, if you set the ConnectStr attribute to *BLANKS, the
ODBC Manager will display the Select Data Source dialog from which you
can select the table to connect to. Once the connection is made, the Connected
attribute will be set to 1. If the connection fails, the Connected attribute is set
to 0.

136 Programming with VisualAge RPG

When the following code fragment is executed, the Select Data Source dialog
will be displayed. If a table was selected, the ConnectStr attribute will contain
the connection string. The Connect attribute is set to make the connection.
C ’ODBC’ Setatr *Blanks ’ConnectStr’
C ’ODBC’ Setatr 1 ’Connect’
C If %Getatr(’Main’:’ODBC’:’Connected’)=1
C ...
C Else
C ...
C EndIf

Creating a Record Set
Once you have connected to a database, you must create a record set before
you can access any data in the database. To create a record set, submit a
SELECT statement to the ODBC/JDBC Interface part using the SQLQuery and
ExecuteSQL attributes. The SELECT statement identifies which table in the
database is being accessed and which group of records in the table is to be
processed.

The following code segment is an example of creating a record set of all
records in table CUSTOMERS:
D SelAll C ’Select * From "Customers"’
*
C ’ODBC’ Setatr SelAll ’SQLQuery’
C ’ODBC’ Setatr 1 ’ExecuteSQL’

Accessing Table Data
Data is stored in a table as a series of rows. Each row contains a number of
columns with data. You can manipulate the rows in a table by using the
ODBC/JDBC Interface part attributes such as FetchNext, FetchPrior,
UpdateRow, and so on. However, to access the data in a row, you must bind
each column in the table row with a program field in your program. Once this
binding is set, the ODBC/JDBC Interface part can move data between the
program fields and the table columns.

To bind the program field, you use the following ODBC/JDBC Interface part
attributes:

Column
Establishes which column in the table is to be bound.

BufferPtr
Contains the address of the program field to bind to the column.

BufferDec
Specifies the number of decimal places for the buffer column.

BufferLen
Specifies the length of the program field.

Chapter 7. Using Parts 137

BufferType
Indicates the data type of the program field.

In the following example, 2 fields defined in the D specifications are being
bound to columns 1 and 2 in a table:
D first S 20
D last S 30
*
D fptr S * INZ(%Addr(first))
D lptr S * INZ(%Addr(last))
*
C ’ODBC1’ Setatr 1 ’Column’
C ’ODBC1’ Setatr 20 ’BufferLen’
C ’ODBC1’ Setatr fptr ’BufferPtr’
C ’ODBC1’ Setatr 1 ’BufferType’
*
C ’ODBC1’ Setatr 2 ’Column’
C ’ODBC1’ Setatr 30 ’BufferLen’
C ’ODBC1’ Setatr lptr ’BufferPtr’
C ’ODBC1’ Setatr 1 ’BufferType’

You can also use the %ADDR built-in directly on the C specifications to avoid
coding the D specifications to define the pointers:
C Eval %Setatr(`Main’:’ODBC1’:’BufferPtr’)=%Addr(first)

Data Types
Use the BufferType attribute to indicate the data type of the program field
referenced by the BufferPtr attribute. The ODBC/JDBC Interface part uses the
BufferType attribute to perform the correct data translation when moving data
between the program field and table column. It is important to set this
attribute correctly, as there is no checking for proper field types.

Set the Column attribute before using the BufferType attribute. If the program
field is associated with a part on the interface, you can use the DataType
attribute to get the buffer type.

Use the following chart to set the VARPG data type for the corresponding,
supported SQL data type. Specify the BufferLen and BufferDec attributes only
as listed in the chart.

For character, decimal, integer, or small integer data types, specify only the
BufferLen attribute.

Note that Double, Float, and Real data types can be defined, in VARPG, as
either Float(F) or Zoned. If you define these as Zoned, the VARPG run time
will only use the number of decimal places specified by the BufferDec
attribute when moving data from the column. This can result in a loss of
precision if the data source has more decimal places than is specified by the

138 Programming with VisualAge RPG

BufferDec attribute. If you define these fields as Float(F), do NOT specify the
BufferLen or BufferDec attribute.

SQL Data Type VARPG Data
Type

Specify Program
Field Length (use

BufferLen)

Specify Decimal Places
for Buffer Column (use

BufferDec)
Character CHAR X
Decimal Zoned X
Integer Zoned X

Small Integer Zoned X
Double 8F
Double Zoned X X

Float 4F
Float Zoned X X
Real 4F
Real Zoned X X

If a column contains a data type that is not supported by the ODBC/JDBC
Interface part, set the AllowChg attribute to 0 for that column. The
ODBC/JDBC Interface part will not move data between any program field
and the column. The data remains unchanged.

Retrieving Table Rows
To process rows in a table, you must first create a record set. A record set is a
group of records returned and maintained by the ODBC/JDBC Interface part.
Your program submits an SQL statement to the ODBC/JDBC Interface part
using the SQLQuery and ExecuteSQL attributes. First, the SQLQuery attribute
is set to the SQL statement to execute. Then, the ExecuteSQL attribute is set to
1 to execute the query.

In the following example, all records are being selected from the table
Customers:
D SelAll C ’Select * From "Customers"’
*
C ’ODBC1’ Setatr SelAll ’SQLQuery’
C ’ODBC1’ Setatr 1 ’ExecuteSQL’

To determine the number of rows that were returned as the result of an
SQLQuery, you can check the value of the Rows attribute.

Once a record set has been returned, you can process each row using the
FetchNext and FetchPrior attributes. Set the FetchNext attribute to 1 to return
the next row in the record set. Set the FetchPrior attribute to 1 to return the
previous row in the record set. To determine if a FetchNext or FetchPrior
successfully returned a row, check the value of the IsData attribute. A value of
1 indicates that data was returned. Otherwise, the IsData value is set to 0.

Chapter 7. Using Parts 139

In the following example, all of the records in a record set are read and the
value of column 1 (field first) is added to list box LB1.
C ’ODBC1’ Setatr 1 ’FetchNext’
C ’ODBC1’ Getatr ’IsData’ Temp 1 0
*
C DoW Temp = 1
C ’LB1’ Setatr first ’AddItemEnd’
C ’ODBC1’ Getatr ’IsData’ Temp
C EndDo

Updating Row Data
To update data in a row, use the UpdateRow attribute to specify the row to be
updated. Be aware that UpdateRow will cause any row to be updated. You do
not need to fetch the row first. Typically however, you will update a row that
has just been fetched. In this case, you would use the CurrentRow attribute.
This attribute contains the row number of a row just fetched.

In the following code segment, assume a row has been read and information
has been displayed on a window. The user presses the update button after
making changes.
C PB_Update BEGACT PRESS Main
*
C Read ’Main’
C ’ODBC1’ Getatr ’CurrentRow’ Row 1 0
C ’ODBC1’ Setatr Row ’UpdateRow’
*
C ENDACT

Deleting a Row
Deleting a row is similar to updating one. (See “Updating Row Data”.) Use
the DeleteRow attribute to specify the row to be deleted. As with the
UpdateRow attribute, DeleteRow will cause any row in the row set to be
deleted. It is not necessary to fetch the row first.

In the following example, the user has pressed the Delete push button to
delete a record that has just been fetched and is currently being displayed on
a window.
C PB_Delete BEGACT PRESS Main
*
C ’ODBC1’ Getatr ’CurrentRow’ Row 1 0
C ’ODBC1’ Setatr Row ’DeleteRow’
*
C ENDACT

ODBC/JDBC Interface Part Example
The following example uses a database created with Microsoft Access. The
database has one table named CUSTOMERS. This simple inquiry program

140 Programming with VisualAge RPG

displays a window containing details about a customer. Push buttons are
provided that allow the user to go to the next and previous records, and to
update and delete the current record.

The following figure shows the inquiry window:

The code for this example follows.

Chapter 7. Using Parts 141

* Define connect string
*

D ConnectStr C ’DSN=MS Access 97 Database;DBQ=-
D CelDial.mdb;-
D DriverId=25;FIL=-
D MS Access;MaxBufferSiz’
* Working variables

DClr S 2 0
DCol S 10
DSQL S 255A
D%ColNumber S 2 0
D%Part S 10
D%Character S 2
D AppStart C ’HourGlas.ANI’
*

DDel M MsgNbr(*MSG0003)
D MsgData(CustNo:CustNa)
D J S 4 0
D I S 4 0
*

D CSENDINFO S 1S 0
*
* Define pointers to field buffers
*

DCBalance S 18S 3 Balance (Numeric-Double)
DP_001 S * Number
DP_002 S * Name
DP_003 S * Rep number
DP_004 S * Contact
DP_005 S * Phone
DP_006 S * Fax
DP_007 S * Address
DP_008 S * City
DP_009 S * Country
DP_010 S * Zip Postal Code
DP_011 S * Zip location
DP_012 S * Balance
DP_013 S * Send Market Info to?
*
* Select ALL records
*

DSelAll C ’Select * From "Customers"’

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 1 of 11)

142 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* *
* Window/Part/Event: *
* *
* Description: Bind program fields to columns and connect to the *
* database table CUSTOMERS *
* *

*

C Main BEGACT CREATE Main
*

C ’Main’ Setatr appstart ’MouseIcon’
C ’ODBC’ Setatr 0 ’Visible’
C MoveL ’ASC ’ Seq 4
C Eval CLR = *White
C Move ’255:255:255’ Mix
C ’SFL1’ Setatr 1 ’SizeToFit’
C ’SFL1’ Getatr ’BackColor’ RowClr 2 0
* Bind fields to columns
*
* Bind column: Number

C ’ODBC’ SetAtr 1 ’Column’
C ’ODBC’ SetAtr 7 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_001=%Addr(CUSTNO)
C ’ODBC’ SetAtr P_001 ’BufferPtr’
*
* Bind column: Name

C ’ODBC’ SetAtr 2 ’Column’
C ’ODBC’ SetAtr 40 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_002=%Addr(CUSTNA)
C ’ODBC’ SetAtr P_002 ’BufferPtr’
*
* Bind column: Rep number

C ’ODBC’ SetAtr 3 ’Column’
C ’ODBC’ SetAtr 5 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_003=%Addr(Repno)
C ’ODBC’ SetAtr P_003 ’BufferPtr’
*
* Bind column: Contact

C ’ODBC’ SetAtr 4 ’Column’
C ’ODBC’ SetAtr 30 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_004=%Addr(Contac)
C ’ODBC’ SetAtr P_004 ’BufferPtr’
*

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 2 of 11)

Chapter 7. Using Parts 143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* Bind column: Phone
C ’ODBC’ SetAtr 5 ’Column’
C ’ODBC’ SetAtr 17 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_005=%Addr(CPhone)
C ’ODBC’ SetAtr P_005 ’BufferPtr’
*
* Bind column: Fax

C ’ODBC’ SetAtr 6 ’Column’
C ’ODBC’ SetAtr 17 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_006=%Addr(CFax)
C ’ODBC’ SetAtr P_006 ’BufferPtr’
*
* Bind column: Address

C ’ODBC’ SetAtr 7 ’Column’
C ’ODBC’ SetAtr 40 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_007=%Addr(CAddr)
C ’ODBC’ SetAtr P_007 ’BufferPtr’
*
* Bind column: City

C ’ODBC’ SetAtr 8 ’Column’
C ’ODBC’ SetAtr 30 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_008=%Addr(CCity)
C ’ODBC’ SetAtr P_008 ’BufferPtr’
*
* Bind column: Country

C ’ODBC’ SetAtr 9 ’Column’
C ’ODBC’ SetAtr 20 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_009=%Addr(CCount)
C ’ODBC’ SetAtr P_009 ’BufferPtr’
*
* Bind column: Zip Postal Code

C ’ODBC’ SetAtr 10 ’Column’
C ’ODBC’ SetAtr 10 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_010=%Addr(CZip)
C ’ODBC’ SetAtr P_010 ’BufferPtr’
*
* Bind column: Zip location

C ’ODBC’ SetAtr 11 ’Column’
C ’ODBC’ SetAtr 1 ’BufferLen’
C ’ODBC’ SetAtr 1 ’BufferType’
C Eval P_011=%Addr(CZiplo)
C ’ODBC’ SetAtr P_011 ’BufferPtr’
*

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 3 of 11)

144 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* Bind column: Balance
C ’ODBC’ SetAtr 12 ’Column’
C ’ODBC’ SetAtr 18 ’BufferLen’
C ’ODBC’ SetAtr 0 ’BufferType’
C ’ODBC’ SetAtr 3 ’BufferDec’
C Eval P_012=%Addr(CBalance)
C ’ODBC’ SetAtr P_012 ’BufferPtr’
C ’ODBC’ SetAtr ConnectStr ’ConnectStr’
*
* Bind column: Send Info

C ’ODBC’ SetAtr 13 ’Column’
C ’ODBC’ SetAtr 1 ’BufferLen’
C ’ODBC’ SetAtr 0 ’BufferType’
C ’ODBC’ SetAtr 0 ’BufferDec’
C Eval P_013=%Addr(CSendInfo)
C ’ODBC’ SetAtr P_013 ’BufferPtr’
*
* Connect to the database and select all records

C ’ODBC’ SetAtr 1 ’Connect’
C ’ODBC’ SetAtr SelAll ’SQLQuery’
C ’ODBC’ SetAtr 1 ’ExecuteSQL’
*

C ’Main’ Setatr 1 ’ProgresBar’
C ’ODBC’ Getatr ’Rows’ Rows 4 0
C ’Main’ Setatr Rows ’PBRange’
C Eval %Setatr(’Main’:’Main’:’PBStepSize’)=110
*

C Z-Add 22 MaxRows 2 0
C Exsr Fill
*

C ENDACT

* *
* Window/Part/Event: Main/PB_Close/Press *
* *
* Description: End the program *
* *

*

C PB_CLOSE BEGACT PRESS Main
*

C Move *ON *INLR
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 4 of 11)

Chapter 7. Using Parts 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* *
* Window/Part/Event: Main/PB_OK/Press *
* *
* Description: Close the Detail window *
* *

*

C PB_OK BEGACT PRESS DETAIL
*

C ClsWin ’Detail’
*

C ENDACT

* *
* Window/Part/Event: Main/SFL1/Enter *
* *
* Description: Show detail on selected customer *
* *

*

C SFL1 BEGACT ENTER MAIN
*

C ReadS SFL1
C Eval SQL=’SELECT * FROM CUSTOMER WHERE CUSTNO=’+
C Custno
C ShowWin ’Detail’ 80
C Write ’Detail’
C Eval %Setatr(’Detail’:’Detail’:’Focus’)=1
*

C ENDACT

* *
* Window/Part/Event: Main/PB_Columns/Press *
* *
* Description: Show the options window *
* *

*

C PB_COLUMNS BEGACT PRESS MAIN
*

C ShowWin ’Columns’ 88
C Eval %Setatr(’Columns’:’Columns’:’Focus’)=1
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 5 of 11)

146 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* *
* Window/Part/Event: Columns/PB_Cancel/Press *
* *
* Description: Close the options window *
* *

*

C PB_CANCEL BEGACT PRESS COLUMNS
*

C ClsWin ’Columns’
*

C ENDACT

* *
* Window/Part/Event: Main/SFL1/ColSelect *
* *
* Description: Sort columns by selected column *
* *

*

C SFL1 BEGACT COLSELECT MAIN
*

C Eval SQL=’SELECT * FROM CUSTOMERS ORDER BY ’ +
c %EditC(%ColNumber:’1’) + ’ ’ + Seq
C ’ODBC’ Setatr SQL ’SQLQuery’
C ’ODBC’ Setatr 1 ’ExecuteSQL’
C Exsr Fill
*

C ENDACT

* *
* Window/Part/Event: Main/PB_Update/Press *
* *
* Description: Updated changed record *
* *

*

C PB_UPDATE BEGACT PRESS MAIN
*

C ReadC SFL1 99
*

C If NOT *IN99
C ’SFL1’ Getatr ’FirstSel’ Sel 4 0
C ’ODBC’ Setatr Sel ’UpdateRow’
*

C Else
C *MSG0002 Dsply mRC 9 0
C EndIf
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 6 of 11)

Chapter 7. Using Parts 147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

* *
* Window/Part/Event: Main/PB_Delete/Press *
* *
* Description: Delete selected record *
* *

*

C PB_DELETE BEGACT PRESS MAIN
*

C ReadS SFL1 99
*

C If NOT *in99
C Del Dsply mRC
*

C If mRC=*YESButton
C ’SFL1’ Getatr ’FirstSel’ Sel 4 0
C ’ODBC’ Setatr Sel ’DeleteRow’
C EndIf
*

C EndIf
*

C ENDACT

* *
* Window/Part/Event: Main/PB_Opt/Press *
* *
* Description: Show the options window *
* *

*

C PB_Opt BEGACT PRESS MAIN
*

C ShowWin ’Columns’ 88
*

C ENDACT

* *
* Window/Part/Event: Columns/CB_Hrule/Select *
* *
* Description: Toggle horizontal rule *
* *

*

C CB_HRULE BEGACT SELECT COLUMNS
*

C Eval %Setatr(’Main’:’SFL1’:’HRule’)=
C %Getatr(’Columns’:’CB_HRule’:’Checked’)
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 7 of 11)

148 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

* *
* Window/Part/Event: Columns/CB_VRule/Select *
* *
* Description: Toggle vertical rule *
* *

*

C CB_VRULE BEGACT SELECT COLUMNS
*

C Eval %Setatr(’Main’:’SFL1’:’VRule’)=
C %Getatr(’Columns’:’CB_VRule’:’Checked’)
*

C ENDACT

* *
* Subroutine: Fill *
* *
* Description: Fill the subfile from the database *
* *

C Fill Begsr
*

C ’Main’ Setatr 99 ’MouseShape’
C Z-Add 0 Count
C Eval *IN01 = *OFF
C Clear SFL1
C ’SQL’ Setatr SQL ’Text’
C ’ODBC’ Setatr 1 ’FetchNext’
C ’ODBC’ Getatr ’IsData’ Temp 1 0
*
* Do while there is data

C DoW Temp = 1
C Write SFL1
*

C Eval *IN01 = NOT *IN01
*

C If *IN01
C Eval %Setatr(’Main’:’SFL1’:’RowBGMix’)=Mix
C EndIf
*
* Move the progress bar

C Add 1 Count
C ’Main’ Setatr 1 ’PBStep’
* Check if there is another row

C ’ODBC’ Setatr 1 ’FetchNext’
C ’ODBC’ Getatr ’IsData’ Temp 1 0
C EndDo
*

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 8 of 11)

Chapter 7. Using Parts 149

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

C ’Main’ Setatr 0 ’PBSetPos’
C ’Count’ Setatr Count ’Label’
C ’SFL1’ Setatr 1 ’SelectItem’
C Eval %Setatr(’Main’:’SQL’:’Text’)=
C %Getatr(’Main’:’ODBC’:’SQLQuery’)
C ’Main’ Setatr 1 ’MouseShape’
*

C EndSr

* *
* Window/Part/Event: Columns/ST06/Click *
* *
* Description: Change list colour *
* *

*

C ST06 BEGACT CLICK COLUMNS
*

C Eval *IN01 = *OFF
C Eval I=%Getatr(’Main’:’SFL1’:’Count’)
C %Part Getatr ’BackMix’ Mix 11
*

C Do I J
C Eval *IN01 = NOT *IN01
*

C If *IN01
C Eval %Setatr(’Main’:’SFL1’:’Index’)=J
C Eval %Setatr(’Main’:’SFL1’:’RowBGMix’)=Mix
C EndIf
*

C EndDo
*

C ENDACT

* *
* Window/Part/Event: Main/PB_Sql/Press *
* *
* Description: Process SQL statement *
* *

*

C PB_SQL BEGACT Press MAIN
*

C ’SQL’ Getatr ’Text’ SQL
C Eval %Setatr(’Main’:’ODBC’:’SQLQuery’)=SQL
C Eval %Setatr(’Main’:’ODBC’:’ExecuteSQL’)=1
C Exsr Fill
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 9 of 11)

150 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* *
* Window/Part/Event: Columns/CB01/Select *
* *
* Description: Hide/Show columns *
* *

*

C CB01 BEGACT SELECT COLUMNS
*

C MoveL %Part TempName 4
C Move TempName Num2 2 0
C Eval %Setatr(’Main’:’SFL1’:’ColNumber’)=Num2
C %Part Getatr ’Checked’ State 1 0
*

C If State = 1
C Eval State = 0
*

C Else
C Eval State=1
C EndIf
*

C Eval %Setatr(’Main’:’SFL1’:’Hidden’)=State
*

C ENDACT

* *
* Window/Part/Event: Columns/CB_Sort/Select *
* *
* Description: Set sort sequence *
* *

*

C CB_SORT BEGACT SELECT COLUMNS
*

C If %Getatr(’Columns’:’CB_Sort’:’Checked’)=1
C Eval SEQ = ’ASC ’
*

C Else
C Eval SEQ = ’DESC’
C EndIf
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 10 of 11)

Chapter 7. Using Parts 151

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

* *
* Window/Part/Event: Detail/Detail/Create *
* *
* Description: Set all fields to read only *
* *

*

C DETAIL BEGACT CREATE DETAIL
*

C ’CAN0000037’ Setatr 1 ’ReadOnly’
*

C ENDACT

* *
* Window/Part/Event: Main/MI_Tips/MenuSelect *
* *
* Description: Toggle display of tip text *
* *

*

C MI_TIPS BEGACT MENUSELECT MAIN
*

C If %Getatr(’Main’:’MI_Tips’:’Checked’)=0
C Eval %Setatr(’Main’:’MI_Tips’:’Checked’)=1
*

C Else
C Eval %Setatr(’Main’:’MI_Tips’:’Checked’)=0
C EndIf
C Eval %Setatr(’Main’:’Main’:’ShowTips’)=
C %Getatr(’Main’:’MI_Tips’:’Checked’)
*

C ENDACT

Figure 23. Code for ODBC/JDBC Inquiry Example (Part 11 of 11)

152 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Outline Box

Use an outline box around a group of parts to indicate that they are related.

An outline box is a rectangular, unlabeled box. If you need a label on the box,
use the group box part instead.

For related information, see “Group Box” on page 93.

Part Attributes

Bottom Handle* Height Left
ParentName PartName PartType Refresh
Top UserData Visible Width

Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

Special Height and Width Settings
You can create lines using two outline box attributes. Set the Width attribute
to 1 to create a vertical line, or set the Height attribute to 1 to create a
horizontal line.

Chapter 7. Using Parts 153

Pop-up Menu

Use the pop-up menu part to display a number of choices that pertain to a
particular part on your interface. You can add menu item parts and submenu
parts to the pop-up menu part.

The menu is called a “pop-up” because it appears when the user presses the
appropriate key or mouse button.

Note: You can manipulate this part’s properties, events, and so on, only from
its pop-up menu in the project tree view.

For related information, see:
v “Menu Bar” on page 117
v “Menu Item” on page 118
v “Submenu” on page 190

Part Attributes

Handle* InvName InvPName ParentName
PartName PartType UserData Visible*
X Y

* Note: See the attribute description for restrictions.

Applicable Events
There are no events for this part.

154 Programming with VisualAge RPG

Progress Bar

Use the progress bar part to indicate graphically the progress of a process,
such as copying files, loading a database, and so on.

For example, to show the progress of copying 100 files, you could set the
PBRange attribute to 100 and the PBStepSize attribute to 10. Your code could
then monitor the copyfile process and move the progress bar indicator
forward in steps for every ten files copied.

In Java applications, if the progress bar’s width is smaller than its height, the
progress bar will have a vertical orientation.

Part Attributes

Bottom Handle* Height Left
ParentName PartName PartType PBRange
PBSetPos PBStep PBStepSize Top
UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

Progress Bar Example
In the following example, the progress bar indicator is updated every time a
read operation occurs:
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq----
*
C EVAL %setatr(’win01’:’WIN1’:’PBRange’)=10
C EVAL %setatr(’win01’:’WIN1’:’PBStepSize’)=1
C DO 10
C Read Input
C EVAL %setatr(’win01’:’WIN1’:’PBStep’)=1
C EndDo
*

Chapter 7. Using Parts 155

Push Button

Use push buttons to provide convenient access to frequently used actions.

Each push button part controls a specific action. When the user clicks on a
push button, its action is initiated immediately. The text label on the push
button describes its action.

Compare with “Graphic Push Button” on page 91.

Part Attributes

BackColor BackMix Border* Bottom
Enabled Focus FontBold FontItalic
FontName FontSize FontStrike* FontUnder*
ForeColor ForeMix Handle* Height
HelpEnable HighLight Label Left
ParentName PartName PartType Refresh
ShowTips TipText Top UserData
Validate Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy GotFocus LostFocus
MouseEnter MouseExit MouseMove Popup
Press

Setting a Default Push Button
In the properties notebook of a push button part, you can specify that you
want the push button to be the default push button for the window you are
designing. The default push button is displayed with a heavy black border,
and the action associated with it is performed when the user presses the Enter
key.

Note: You can define only one default push button per window. If you define
more than one, VisualAge RPG will choose one.

156 Programming with VisualAge RPG

Setting a Mnemonic

Note: Mnemonics are not supported in Java applications.

For each push button, use the Label attribute to associate text with a specific
push button. That text appears on the button.

To specify a mnemonic key for the push button, place the mnemonic identifier
in front of a character in the text of the Label attribute. For Windows, use an
ampersand (&). This designated character is displayed on the interface with
an underscore (for example, Cancel). The underscore informs users that they
can select the push button by pressing the Alt key and the underlined
character on the keyboard.

Assigning Command Keys
You can assign a command key to a push button. To do this, open the part’s
properties notebook and select one of the command keys from the available
list.

When the user presses the command key at run time, it has the same effect as
pressing the mouse button or a key on the keyboard. A Press event is signaled
to your program.

Signaling Events
A Press event is signaled to your program when:
v the user selects a push button.
v the user presses the Enter key if a default push button is defined.
v the user presses a command key that is assigned to a push button.

Chapter 7. Using Parts 157

|

Radio Button

Use radio buttons if you want the user to select only one of a group of related
but mutually exclusive choices. When the user makes a selection, the
previously selected choice in the group is deselected.

A radio button appears as a raised circular button that is labeled with text
beside it. When selected, the circular button displays a dot.

Do not use radio buttons if you want the user to be able to select more than
one choice at a time. In that case, see “Check Box” on page 68.

Part Attributes

BackColor BackMix Bottom Checked
Enabled Focus FontBold FontItalic
FontName FontSize FontStrike* FontUnder*
ForeColor ForeMix Handle* Height
HighLight* Label Left ParentName
PartName PartType Refresh SelectIdx
ShowTips TipText Top UserData
Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy Enter MouseEnter
MouseExit MouseMove Popup Select

Setting a Mnemonic
To specify a mnemonic key for the radio button, place the mnemonic
identifier in front of a character in the text of the Label attribute. For
Windows, use an ampersand (&). This designated character is displayed on
the interface with an underscore (for example, Blue). The underscore informs
users that they can select the radio button by pressing the underlined
character on the keyboard.

Note: Mnemonics are not supported in Java applications.

158 Programming with VisualAge RPG

Grouping Radio Buttons
When you create radio buttons, group them logically, so that selecting a
button will affect only the state of buttons in its own group.

For example, assume that you have four radio buttons on a design window.
RB1 and RB2 are mutually exclusive to each other, and RB3 and RB4 are
mutually exclusive to each other. You must group these buttons into two
logical groups. The following figure illustrates how these radio buttons can be
grouped on the design window:

To arrange radio buttons in logical groups:
1. Arrange the radio buttons as desired, and optionally place a group box

around each group. (See “Group Box” on page 93.)
2. Select the canvas part in the design window and press mouse button 2.
3. From the pop-up menu, select Tabs and Groups....

The Customize Tabs and Groups window appears, listing all of the parts
on the design window. Resize this window, if necessary, to see all the
parts.

4. Click mouse button 1 to select the radio button that will be the first button
in the first group. In this example, RB1 is the first radio button in group 1.

5. Click mouse button 2 to get the pop-up menu for this radio button part,
and select Group mark.
An X mark symbol appears next to the radio button under the Group
Mark column.

Note: You can also set the group mark in the properties notebook for the
part.

Chapter 7. Using Parts 159

6. Use Ctrl+Up Arrow and Ctrl+Down Arrow to position RB2 after RB1.
Note that this positioning can also be done within the tree view and can
also be done using move up and move down menu items. Ensure that the
Group mark attribute is not set for RB2.
This specifies that RB2 is the second radio button in group 1.

7. Press OK to close the window.

Note: Do not close the window using the system menu, or your changes
will not be saved.

RB1 and RB2 are now considered to be part of one group, so selecting either
will only affect the other. Repeat the same process for RB3 and RB4. The
following figure shows the Customize Tabs and Groups window after parts
have been grouped:

Note: Tab stops and group marks can also be set for individual parts from
within a part’s properties notebook.

Setting the State of a Radio Button
In the radio button’s properties notebook, you can indicate if the radio button
is to be initially selected or not. Only one radio button in a group may be
selected at one time. If you select more, only the last one in the group will be
selected.

By default, when you create a radio button, the Checked attribute is set to 0.
This means that the radio button is not set and the state is turned off. The
radio button is displayed with the circle empty.

160 Programming with VisualAge RPG

If you want to create a radio button that is set and the state is turned on, you
must set the Checked attribute to 1. In this case, the radio button is displayed
with the circle partially filled.

You can set the Checked attribute in the properties notebook or in your
program.

Signaling Events
When the user selects a radio button, a Select event is signaled.

Chapter 7. Using Parts 161

Slider

Use the slider part if you want the user to be able to display, set, or modify a
value by moving a slider arm along a slider shaft.

Sliders are typically used for values that have familiar increments, such as
seconds or degrees, or to show the percentage of a task that has been
completed.

By default, a slider is placed horizontally in the center of a box with the slider
shaft on the left side. A scale can be displayed to show the units of measure
for the shaft.

Use the properties notebook for the slider part to:
v Set the range of values that a slider can return
v Position the slider vertically or horizontally in a window
v Provide a scale to indicate the units of measure represented by the slider

Part Attributes

AddLink* AllowLink* BackColor BackMix
Bottom Enabled Focus FontBold
FontItalic FontName FontSize FontStrike*
FontUnder* ForeColor ForeMix Handle*
Height Left Maximum Minimum
ParentName PartName PartType Refresh
RemoveLink* ShowTips TickLabel TickNumber
TipText Top UserData Value
Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Change Create Destroy GotFocus
Link* LostFocus MouseEnter MouseExit
MouseMove Popup

* Note: See the event description for restrictions.

162 Programming with VisualAge RPG

Getting and Setting the Slider Value
You can get or set the value of the slider by using the Value attribute.

When you get the Value attribute, make sure that you have defined a large
enough result field to contain the returned value.

Signaling Events
The Change event is signaled when the position of the slider arm changes.

If you use increment buttons to move the slider arm, the Change event is
signaled continuously as long as the buttons are pressed.

If you use the mouse to move the slider arm, the Change event occurs when
the mouse button is released.

Slider Example
This example illustrates how the slider part can be used to control the color of
other parts by using the BackMix attribute. As each slider is moved, its value
is used to determine the background color mix of its corresponding static text
part to show the intensity of that color. The background color of the static text
labeled Sample is updated to show the combined color mix of all three colors.

Chapter 7. Using Parts 163

* *
* Program ID . . : Slider *
* *
* Description . : Sample program to illustrate the slider part. *
* *
* As each slider arm is moved, a CHANGE event is *
* signalled for that slider. *
* The CHANGE action subroutine retrieves the value *
* of the slider, and updates the background colour *
* mix of its corresponding static text part to *
* show the intensity of that colour. *
* *
* The background colour mix of static text part *
* ’SAMPLE’ is also updated to show the result of *
* mixing all the colour values. *
* *

*
H
*

* *
* Window . . : MAIN *
* *
* Part . . . : PB_EXIT *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program. *
* *

*
C PB_EXIT BEGACT PRESS MAIN
*
C move *on *inlr
*
C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 1 of 4)

164 Programming with VisualAge RPG

* *
* Window . . : MAIN *
* *
* Part . . . : GREEN *
* *
* Event . . : CHANGE *
* *
* Description: Update the Green colour value. *
* *

*

C GREEN BEGACT CHANGE MAIN
*

C ’green’ getatr ’Value’ val 3 0
C move val grnmix 3
C move *blanks mix 11
C movel ’000:’ mix
C mix cat grnmix:0 mix
C mix cat ’:000’:0 mix
C ’STGreen’ setatr mix ’BackMix’
C exsr update
*

C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : BLUE *
* *
* Event . . : CHANGE *
* *
* Description: Update the Blue colour value. *
* *

*

C BLUE BEGACT CHANGE MAIN
*

C ’blue’ getatr ’Value’ val
C move val blumix 3
C move *blanks mix
C movel ’000:000:’ mix
C mix cat blumix:0 mix
C ’STBlue’ setatr mix ’BackMix’
C exsr update
*

C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 2 of 4)

Chapter 7. Using Parts 165

* *
* Subroutine . . : UPDATE *
* *
* Description . : Updates the background colour mix of the static *
* text part ’Sample’ to show the results of *
* combining the colour values from the three *
* sliders. *
* *

*
C UPDATE BEGSR
*
C move *blanks smpmix 11
C movel redmix smpmix
C smpmix cat ’:’:0 smpmix
C smpmix cat grnmix:0 smpmix
C smpmix cat ’:’:0 smpmix
C smpmix cat blumix:0 smpmix
C ’Sample’ setatr smpmix ’BackMix’
*
C ENDSR

* *
* Window . . : MAIN *
* *
* Part . . . : RED *
* *
* Event . . : CHANGE *
* *
* Description: Update Red colour value. *
* *

*
C RED BEGACT CHANGE FRA0000B
*
C ’red’ getatr ’Value’ val
C move val redmix 3
C move *blanks mix
C movel redmix mix
C mix cat ’:000:000’:0 mix
C ’STRed’ setatr mix ’BackMix’
C exsr update
*
C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 3 of 4)

166 Programming with VisualAge RPG

* *
* Window . . : MAIN *
* *
* Part . . . : MAIN *
* *
* Event . . : CREATE *
* *
* Description: Initialize the color mix *
* *

*

C MAIN BEGACT CREATE MAIN
*

C move ’000’ grnmix
C move ’000’ blumix
C move ’000’ redmix
*

C ENDACT

Figure 24. Coding Example Using the Slider Part (Part 4 of 4)

Chapter 7. Using Parts 167

Spin Button

Use the spin button part to display, in sequence, a group of related but
mutually exclusive choices that have a logical consecutive order; for example,
months of the year. The choices are displayed as though they were arranged
in a ring. The user can move (or “spin”) through the choices by pressing the
up arrow to go to the next higher value, or the down arrow to go to the next
lower one. Alternatively, one of the choices can be typed directly into the
entry field for the spin button.

Part Attributes

AddItemEnd Alignment* BackColor BackMix
Bottom Enabled Focus FontBold
FontItalic FontName FontSize FontStrike*
FontUnder* ForeColor ForeMix Handle*
Height Left Maximum Minimum
ParentName PartName PartType ReadOnly
Refresh RemoveItem ShowTips Text
TipText Top UserData Value
Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Change Create Destroy GotFocus
Link* LostFocus MouseEnter MouseExit
MouseMove Popup SpinDown SpinEnd
SpinUp

* Note: See the event description for restrictions.

Setting Spin Button Values
The data type of the spin button determines the method used to set the spin
list values.

To specify the allowed values for a numeric spin button, set the Maximum
and Minimum attributes.

168 Programming with VisualAge RPG

To set the initial spin list values of a character spin button, set the
AddItemEnd attribute for each item you want to add. Add the items in the
order in which you want them to appear because the character spin button
items are not sorted automatically.

Getting the Spin Button Value
The attribute you use to retrieve the value that is selected in a spin button
depends on the type of spin button.
v For character spin buttons, use the Text attribute.
v For numeric spin buttons, use the Value attribute. This attribute returns a

value ranging from the minimum to the maximum value specified for the
spin button.

Preventing User Input
You can prevent the user from typing a value directly into the field associated
with the spin button by setting the ReadOnly attribute in the spin button
properties notebook or by setting the ReadOnly attribute to 1 in your
program.

Spin Button Example
This example illustrates how to set and get the values for a numeric and a
character spin button. When you start the program, an initial list is inserted
into each spin button. When you select the Copy push button, the value of
each spin button is copied to the associated entry field part.

Press the Close push button to end the program.

Chapter 7. Using Parts 169

* *
* Program ID . . : SPIN *
* *
* Description . : Sample program to demonstrate the Spin button *
* part. *
* *
* A Character, and Numeric spin button are used *
* to show how they are initialized, and how their *
* values are retrieved. *
* *

*
H
*
DDAY S 10A DIM(7) PERRCD(1) CTDATA
*

* *
* Window . . : MAIN *
* *
* Part . . . : PB_COPY *
* *
* Event . . : PRESS *
* *
* Description: Copy the value from each Spin button to its *
* corresponding entry field part. *
* *

*
C PB_COPY BEGACT PRESS MAIN
*
C ’SPB1’ Getatr ’Value’ tmp2N 2 0
C ’EF1’ Setatr tmp2N ’Text’
*
C ’SPB2’ Getatr ’Text’ tmp 10
C ’EF2’ Setatr tmp ’Text’
*
C ENDACT

Figure 25. Coding Example Using the Spin Button Part (Part 1 of 2)

170 Programming with VisualAge RPG

* *
* Window . . : MAIN *
* *
* Part . . . : MAIN *
* *
* Event . . : CREATE *
* *
* Description: Center the window on the display, and *
* initialize the spin buttons. *
* *

*

C MAIN BEGACT CREATE MAIN
*
* Initialize the Character spin button with the days of the
* week from the array DAY

C Do 7 I 2 0
C ’SPB2’ Setatr day(i) ’AddItemEnd’
C EndDo
*
* Initialize the numeric spin button

C ’SPB1’ Setatr 1 ’Minimum’
C ’SPB1’ Setatr 10 ’Maximum’
*

C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : PB_EXIT *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program. *
* *

*

C PB_EXIT BEGACT PRESS MAIN
*

C Move *On *INLR
*

C ENDACT
**CTDATA DAY
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Figure 25. Coding Example Using the Spin Button Part (Part 2 of 2)

Chapter 7. Using Parts 171

Static Text

Use the static text part as a label for other parts, such as a prompt for an
entry field part. Static text parts do not accept end user input. In Java
applications, static text can be displayed only on a single line.

Part Attributes

Alignment BackColor BackMix Bottom
DataType DragEnable* DropEnable* DropValue*
Enabled FontBold FontItalic FontName
FontSize FontStrike* FontUnder* ForeColor
ForeMix Handle* Height Label
Left ParentName PartName PartType
Refresh ShowTips TipText Top
UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Click Create DblClick Destroy
Drop Link* MouseDown MouseEnter
MouseExit MouseMove MouseUp Popup

* Note: See the event description for restrictions.

Changing the Text of a Static Text Part
The static text part is a rectangular area into which text is placed. Use the
Label attribute to change the text of a static text part.

If you change the text so that it is longer than the original text, the new text
will be clipped at the borders of the enclosing rectangle. The text will also be
clipped if you change the FontName and FontSize attributes to a larger font
or size.

When you change text in your program, make sure that the static text part in
the GUI Designer is large enough to show the new text.

172 Programming with VisualAge RPG

|

Getting Static Text Values
To get the value of a static text part, you must specify the Label attribute. If
you are getting the value of a numeric static text part, the field that receives
the value must also be defined as numeric.

Getting and Setting Information for a Window
During compilation, the compiler implicitly defines fields in your program
with the same name as the static text part, and with the same data type and
length. By using the READ and WRITE operation codes with a window name
specified in factor 2, the Label attribute value is automatically copied to or
from these fields. The READ and WRITE operation codes are most useful if
you have many static text parts in your user interface because you do not
have to execute a series of get and set attributes.

See Chapter 3, “Programming with Parts” on page 31 for more information.

Editing Output
You can edit the contents of a static text part if the data type is numeric. See
Chapter 11, “Editing Output” on page 265 for a description of editing.

Chapter 7. Using Parts 173

Status Bar

Use the status bar part to provide additional information about a process or
action for your window. You can create up to five panes for the status bar.
The status bar part provides more flexibility than the StatusBar attribute for
the window part.

By default, a status bar is created at the bottom of the window. However, you
can use the properties notebook to reposition it to the top. You can also set
the border style, number of panes, and text alignment.

Part Attributes

Handle* ParentName PartName PartType
SBIndex SBLabel SBPanes UserData
Visible

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy

Status Bar Example
In the following example, the status bar label is updated while some initial
processing occurs:
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq----
*
C STBAR BEGACT CREATE MAIN
C ’STBAR’ SETATR ’Wait...’ ’SBLABEL’
*
* Do some processing.
*
C DO
C ...
C ENDDO
*
* Clear the status bar label.
*
C ’STBAR’ SETATR *BLANKS ’SBLABEL’
C ENDACT
*

174 Programming with VisualAge RPG

Subfile

Use the subfile part to display a list of records, each consisting of one or more
fields.

The subfile part has similar function to an iSeries
™

subfile. The user can scroll
horizontally or vertically through the list using the subfile’s scroll bars.

To create a subfile entry field, point-and-click on a field from the Define
Reference Fields window or the parts palette and click it onto the subfile part.
You can also add fields using the properties notebook.

Note: The subfile part can only be point-and-clicked onto a notebook page
with canvas or window with canvas.

Part Attributes

AddItemEnd AllowEdit AutoSelect BackColor
BackMix Bottom ButtonIdx Buttons
ButtonTip CapsLock CellBGClr CellBGMix
CellFGClr CellFGMix ColBGClr ColBGMix
ColFGClr ColFGMix ColNumber ColWidth
Count DColFRVCol DeSelect EditColumn
EditIndex EditText EnableBtn Enabled
ExtSelect* FirstSel Focus FontArea
FontBold FontItalic FontName FontSize
FontStrike* FontUnder* ForeColor ForeMix
Handle* HdgBGClr HdgBGMix HdgFGClr
HdgFGMix HdgIdx HdgText Height
Hidden HRule Index ItemCount
Left MapViewCol MultSelect NbrOfSel
OpenEdit PageSize ParentName PartName
PartType RemoveItem RowBGClr RowBGMix
RowFGClr RowFGMix Scale Selected
SelectItem SelectList SetTop SflNxtChg
ShowTips SizeToFit SortAsc SortDesc
StartAt TipText Top TopRecord
UserData VColFRDCol ViewColumn Visible
VRule Width

Chapter 7. Using Parts 175

||
||

|

||

||

* Note: See the attribute description for restrictions.

Applicable Events

Change ColSelect Create Destroy
Enter FirstRec GotFocus KeyPress
LastRec LostFocus MouseEnter MouseExit
MouseMove NextRec PageDown PageEnd
PageTop PageUp Popup PrevRec
Select VKeyPress

Creating a Subfile Part
You can create a subfile part only on a canvas part.

Maximum Number of Fields per Subfile
You can define a maximum of 99 fields for a subfile.

Operation Codes for Manipulating Subfile Parts
In addition to using attributes to control a subfile, you can use several
operation codes to affect the subfile part. Specify the name of the subfile in
factor 2. Do not enclose it in quotation marks.

The following operation codes are supported. For a complete description of
each, refer to VisualAge RPG Language Reference, SC09-2451-04, or to the
language-sensitive help.

Code Operation

CHAIN
Reads a record from a subfile by specifying an index.

CLEAR
Clears all records from the subfile.

DELETE
Deletes a record from the subfile. All records following the deleted
record are moved up one position.

READC
Reads a record if the value of any of the entry fields in the record has
changed.

READS
Reads a selected record from the subfile. Users can select a record
with either the mouse or the keyboard. After the record has been read,
it is deselected.

UPDATE
Updates an existing subfile record. A record must have been read
before this operation code can be used.

176 Programming with VisualAge RPG

WRITE
Adds a new record to the subfile.

Loading a Subfile
To display information in a subfile part, the information is written one record
at a time to the subfile part. Subfile fields that were defined in the GUI
Designer for the subfile part are set to the desired values, and the WRITE
operation is performed on the subfile record format.

Determining the Subfile Size
Unlike the iSeries 400 subfile, the subfile part does not have subfile or subfile
page sizes. The number of records a subfile can hold is limited by the amount
of memory on your workstation. The subfile page size (that is, the number of
records shown at one time) is determined when you create the subfile in the
GUI Designer.

Getting the Record Count
To determine how many records are currently in a subfile, use the Count
attribute.

Reading and Updating Records
Records in a subfile part can be updated or deleted. To update records, you
must first position the subfile to the record that you want to update. You can
position the subfile by a CHAIN, READC, or READS operation. These
operations cause the field values from the retrieved record to be assigned to
the corresponding program fields for the subfile record format. Your program
can then modify the field values.

An UPDATE operation that is run on the subfile part then sends the current
values from the associated fields back out to the subfile. Use CHAIN to select
records by relative position within a subfile, READC to select records that the
user has changed on the subfile display, and READS for the records that the
user selected.

The following example shows a READS operation do a loop to obtain all the
selected records in a subfile, process them, and update them one record at a
time. This is coded in an action subroutine for the Press event for a push
button called Report.

Chapter 7. Using Parts 177

Changing Subfile Fields

Note: A subfile field cannot be changed by the user if it is set as read-only.

Before a field in a subfile can be changed by the user, it must be opened for
editing, either by the user of your application or by you in your program:
1. The user selects the field with the mouse pointer then clicks mouse button

1 while holding down the Alt key. The user can then use the tab and
back-tab keys to move to different fields on the same record, and use the
up and down arrow keys to move to different records.

2. To open a field for editing in your program:
a. Use the Index attribute to indicate which record contains the field to be

edited.
b. Set the ColNumber attribute to indicate the column number of the

field to be edited.
c. Set the OpenEdit attribute value to 1 to open the field for editing. (You

can set this attribute value to 0 to close any fields that are currently
open for editing.)

Use the READC operation to determine if the user has changed any field in
the subfile.

Hidden Fields
In the subfile part’s properties notebook, you can set subfile fields to be
Hidden so that they are not displayed. For example, a subfile record can

...
C REPORT BEGACT PRESS WIN1
*
C READS SUBF1 99
*
C *IN99 DOWEQ *OFF
*
*
* For the selected record, process it, and mark it
* as ’Reported’ in the subfile display.
*
C MOVEL ’(Reported)’ SF1NAME
*
C UPDATE SUBF1
*
C READS SUBF1 99
C END
*
C ENDACT

Figure 26. Coding example of reading and modifying records

178 Programming with VisualAge RPG

contain record key information in a hidden field. You cannot see the hidden
field, but the field is returned to the program with the subfile record.

Formatting Subfile Fields
The fields in a subfile can be highlighted in several ways. Foreground and
background colors can be set for both subfile headings and individual subfile
fields. You can place horizontal or vertical line separators within a subfile.

See Chapter 11, “Editing Output” on page 265 for information.

Enabling Tabbing
Use the Customize Tabs and Groups dialog to enable tabbing to a subfile part.
Right-click on the canvas part of the window containing the subfile part.
Select Tabs and Groups from the pop-up menu. The Customize Tabs and
Groups dialog appars. To set or clear the Tab stop setting, right-click on the
part name and select the Tab stop menu item.

Subfile Example
In the following example, a subfile part is used to display records from a
database file on an iSeries 400 server. Rather than filling the subfile with all
records from the database, navigation push buttons (FirstRec, LastRec,
PageTop, PageUp, PageDown, PrevPage, NextPage) are provided to control
scrolling through the records in the subfile.

When you press the Select push button, the READS operation code is used to
determine which record was selected, and the value of the CUSTNO field is
displayed in the static text part. Also, the first field in the record is opened for
editing.

Select the Exit menu item to end the program.

Chapter 7. Using Parts 179

* *
* Program ID . . : SUBFILE *
* *
* Description . : Sample program to demonstrate the subfile part. *
* *
* This sample program requires a physical database *
* file on the AS/400 called CUSTOMER. *
* *

*
H
FCUSTOMER IF E DISK REMOTE INFDS(INFDS) BLOCK(*Yes)
*
* INFDS for database file. FileSize will contain the number
* of records in the file when the file is opened.
DINFDS DS
DFileSize 156 159B 0
*

* *
* Subroutine . . : *INZSR *
* *
* Description . : Initialize working variables. *
* *

*
C *INZSR BEGSR
*
C Z-Add 10 PageSize 2 0
C Z-Add 1 CurRec 6 0
C FileSize Sub PageSize LastPage 6 0
C Add 1 LastPage
*
C ENDSR
* *

Figure 27. Coding Example Using the Subfile Part (Part 1 of 10)

180 Programming with VisualAge RPG

* *
* Subroutine . . : NEXTPAGE *
* *
* Description . : Get the next page of records from the database. *
* *

*

C NEXTPAGE BEGSR
*

C add PageSize CurRec
*

C CurRec IfGt FileSize
C Sub PageSize CurRec
*

C Else
C Exsr FillPage
C ’SFl1’ setatr 2 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C EndIf
*

C ENDSR

Figure 27. Coding Example Using the Subfile Part (Part 2 of 10)

Chapter 7. Using Parts 181

* *
* Subroutine . . : PREVPAGE *
* *
* Description . : Return the previous page of records from the *
* database. *
* *

*
C PREVPAGE BEGSR
*
C Sub PageSize CurRec
*
C CurRec IfLe *zero
C Add PageSize CurRec
*
C Else
C Exsr FillPage
C ’SFl1’ setatr 5 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C EndIf
*
C ENDSR

* *
* Subroutine . . : FILLPAGE *
* *
* Description . : Fill the subfile part with a page of records *
* from the database. *
* *

*
C FILLPAGE BEGSR
*
C Clear Sfl1
C CurRec Setll customer
C Z-Add 1 count 2 0
C Read customer 9999
*
C *in99 DoWeq *off
C count AndLE PageSize
C Write Sfl1
*
C If %Getatr(’Main’:’HILITE’:’Checked’)=1
C ’SFL1’ Setatr Count ’Index’
C ’SFL1’ Setatr 1 ’ColNumber’
C ’SFL1’ Setatr *DarkGreen ’CellFGClr’
C ’SFL1’ Setatr 2 ’ColNumber’
C ’SFL1’ Setatr *DarkPink ’CellFGClr’
C ’SFL1’ Setatr 3 ’ColNumber’
C ’SFL1’ Setatr *DarkBlue ’CellFGClr’
C EndIf

Figure 27. Coding Example Using the Subfile Part (Part 3 of 10)

182 Programming with VisualAge RPG

*
C Add 1 count
C Read customer 9999
C EndDo
*

C Read customer 9999
*

C CurRec ifeq 1
C ’SFl1’ setatr 1 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ’SFl1’ setatr 2 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ’SFl1’ setatr 5 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ’SFl1’ setatr 6 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C endif
*

C *in99 ifeq *on
C CurRec oreq LastPage
C ’SFl1’ setatr 1 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ’SFl1’ setatr 2 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ’SFl1’ setatr 5 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ’SFl1’ setatr 6 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C endif
C ENDSR
*

* *
* Window . . : MAIN *
* *
* Part . . . : MAIN *
* *
* Event . . : CREATE *
* *
* Description: Get the first page of records. *
* *

*

C MAIN BEGACT CREATE MAIN
*

C Exsr FillPage
*

C ’SFL1’ Setatr *Green ’HdgBGClr’
C ’SFL1’ Setatr *Black ’HdgFGClr’
C ’SFL1’ Setatr 1 ’ColNumber’

Figure 27. Coding Example Using the Subfile Part (Part 4 of 10)

Chapter 7. Using Parts 183

*
C ’MAIN’ Setatr 1 ’Visible’
C ’SFL1’ Setatr 1 ’BUTTONIDX’
C ’SFL1’ Setatr ’*MSG0001’ ’BUTTONTIP’
C ’SFL1’ Setatr 0 ’ENABLEBTN’
C ’SFL1’ Setatr 2 ’BUTTONIDX’
C ’SFL1’ Setatr ’*MSG0002’ ’BUTTONTIP’
C ’SFL1’ Setatr 0 ’ENABLEBTN’
C ’SFL1’ Setatr 3 ’BUTTONIDX’
C ’SFL1’ Setatr 0 ’ENABLEBTN’
C ’SFL1’ Setatr 4 ’BUTTONIDX’
C ’SFL1’ Setatr 0 ’ENABLEBTN’
C ’SFL1’ Setatr 5 ’BUTTONIDX’
C ’SFL1’ Setatr ’*MSG0004’ ’BUTTONTIP’
C ’SFL1’ Setatr 6 ’BUTTONIDX’
C ’SFL1’ Setatr ’*MSG0005’ ’BUTTONTIP’
*
C ENDACT
* *

* *
* Window . . : MAIN *
* *
* Part . . . : PB_SELECT *
* *
* Event . . : PRESS *
* *
* Description: Read the selected subfile record. *
* The static text part ’Selected’ is updated to show *
* the selected customer number. *
* The first field in the subfile is opened for editing.*
* *

*
C PB_SELECT BEGACT PRESS MAIN
*
C Reads sfl1 27
*
C *in27 IfEq *off
C ’Selected’ Setatr custno ’Label’
C ’SFL1’ Setatr 1 ’ColNumber’
C ’SFL1’ Setatr 1 ’OpenEdit’
C EndIf
*
C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 5 of 10)

184 Programming with VisualAge RPG

* *
* Window . . : MAIN *
* *
* Part . . . : HRULE *
* *
* Event . . : MENUSELECT *
* *
* Description: *
* *

*

C HRULE BEGACT MENUSELECT MAIN
*

C If %Getatr(’Main’:’HRULE’:’Checked’)=1
C ’SFL1’ Setatr 0 ’HRule’
C ’HRULE’ Setatr 0 ’Checked’
*

C Else
C ’SFL1’ Setatr 1 ’HRule’
C ’HRULE’ Setatr 1 ’Checked’
C EndIf
*

C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : VRULE *
* *
* Event . . : MENUSELECT *
* *
* Description: *
* *

*

C VRULE BEGACT MENUSELECT MAIN
*

C If %Getatr(’Main’:’VRULE’:’Checked’)=1
C ’SFL1’ Setatr 0 ’VRule’
C ’VRULE’ Setatr 0 ’Checked’
*

C Else
C ’SFL1’ Setatr 1 ’VRule’
C ’VRULE’ Setatr 1 ’Checked’
C EndIf
*

C Exsr FillPage
*

C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 6 of 10)

Chapter 7. Using Parts 185

* *
* Window . . : MAIN *
* *
* Part . . . : HILITE *
* *
* Event . . : MENUSELECT *
* *
* Description: *
* *

*
C HILITE BEGACT MENUSELECT MAIN
*
C If %Getatr(’Main’:’HILITE’:’Checked’)=1
C Eval %Setatr(’Main’:’HILITE’:’Checked’)=0
*
C Else
C Eval %Setatr(’Main’:’HILITE’:’Checked’)=1
C EndIf
*
C Exsr FillPage
*
C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : SFL1 *
* *
* Event . . : PAGETOP *
* *
* Description: *
* *

*
C SFL1 BEGACT PAGETOP MAIN
*
C Z-Add 1 CurRec
C Exsr FillPage
*
C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 7 of 10)

186 Programming with VisualAge RPG

* *
* Window . . : MAIN *
* *
* Part . . . : SFL1 *
* *
* Event . . : PAGEUP *
* *
* Description: *
* *

*

C SFL1 BEGACT PAGEUP MAIN
*

C exsr PrevPage
*

C ENDACT
*

* *
* Window . . : MAIN *
* *
* Part . . . : SFL1 *
* *
* Event . . : LASTREC *
* *
* Description: *
* *

*

C SFL1 BEGACT LASTREC MAIN
*

C FileSize Sub PageSize CurRec
C Add 1 CurRec
*

C CurRec IfLt 1
C Z-Add 1 CurRec
C EndIf
*

C Exsr FillPage
*

C ’SFL1’ setatr 1 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ’SFL1’ setatr 2 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ’SFL1’ setatr 5 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ’SFL1’ setatr 6 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 8 of 10)

Chapter 7. Using Parts 187

* *
* Window . . : MAIN *
* *
* Part . . . : SFL1 *
* *
* Event . . : PAGEDOWN *
* *
* Description: *
* *

*
C SFL1 BEGACT PAGEDOWN MAIN
*
C Exsr NextPage
*
C ENDACT

* *
* Window . . : MAIN *
* *
* Part . . . : SFL1 *
* *
* Event . . : FIRSTREC *
* *
* Description: *
* *

*
C SFL1 BEGACT FIRSTREC MAIN
*
C Z-Add 1 CurRec
C Exsr FillPage
*
C ’SFL1’ setatr 1 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ’SFL1’ setatr 2 ’BUTTONIDX’
C ’SFL1’ setatr 0 ’ENABLEBTN’
C ’SFL1’ setatr 5 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ’SFL1’ setatr 6 ’BUTTONIDX’
C ’SFL1’ setatr 1 ’ENABLEBTN’
C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 9 of 10)

188 Programming with VisualAge RPG

Signaling Events
The Select event is signaled when:
v The user selects an item that is in a subfile
v You select an item in the list in your program
v The user selects an item that is already selected

The Enter event is signaled when:
v The user double-clicks over an item that is in the subfile
v The user presses the Enter key when the subfile has focus, and an item has

been selected

In your action subroutine for these events, you can use the READS operation
code to determine which item was selected.

* *
* Window . . : MAIN *
* *
* Part . . . : EXIT *
* *
* Event . . : MENUSELECT *
* *
* Description: *
* *

*

C EXIT BEGACT MENUSELECT MAIN
*

C Move *on *inlr
*

C ENDACT

Figure 27. Coding Example Using the Subfile Part (Part 10 of 10)

Chapter 7. Using Parts 189

Submenu

Use a submenu to:
v Start a new cascaded menu from a menu item on an existing menu.
v Start a pull-down menu from a menu item on the menu bar.

After creating a submenu, you can add menu items to it by
pointing-and-clicking (or dragging-and-dropping) the menu item part onto the
submenu part in the tree view only.

Note: You can manipulate this part’s properties, events, and so on, only from
its pop-up menu in the project tree view.

For related information, see “Menu Item” on page 118.

Part Attributes

ParentName PartName PartType UserData

Applicable Events

Create Destroy

190 Programming with VisualAge RPG

Timer

Use the timer part if your program must perform certain operations at preset
time intervals. For example, you can use it to close a window, or perhaps end
an application, after a certain period of inactivity.

A timer part counts units of time and tracks the preset time interval between
two events, triggering the second event once the interval has passed.

When you create a timer part in the GUI builder, the part is represented as an
icon on the design window. However, in the properties notebook for a timer
part, you can specify that you do not want the icon displayed while the
program is executing.

Note: Do not use the timer part when precise timing is required. Due to other
programs running on your system, the Tick event may not necessarily
occur at the exact interval you specify.

Part Attributes

AddLink* AllowLink* Bottom Interval
Left Multiplier ParentName PartName
PartType RemoveLink* TimerMode TimerTicks
Top UserData Visible

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy Link* Tick

* Note: See the event description for restrictions.

Displaying the Timer Icon
By default, the Visible attribute is set to 1 so that the timer icon is displayed
while the program is executing. If you do not want this icon displayed, set
this attribute to 0.

Chapter 7. Using Parts 191

Setting the Interval
The timer interval is expressed in milliseconds. When the interval elapses, a
timer Tick event is signaled. You can set this interval in the timer part’s
properties notebook. You can also set it in your program by using the Interval
attribute.

Note: The minimum timer interval is 100 milliseconds.

The timer part has a Multiplier attribute. By setting this attribute you can
determine how many times the interval value elapses before a timer Tick
event is generated. The default multiplier value is set to 1, so that the timer
generates a Tick event at the end of each interval.

Generating Tick Events
When a timer is started, its interval value is reset to zero. When the interval
value is reached, the timer generates a Tick event and updates the interval
value.

Getting the Timer Value
Each time the timer generates a Tick event, its value is incremented by one.
Use the Value attribute to get the current value of the timer. You can set the
timer value in the properties notebook or in your program.

Controlling the Timer Using Timer Modes
Use the TimerMode attribute to control the timer.

Set TimerMode to 1 to start the timer. Starting the timer causes it to begin
generating Tick events, and its Value attribute is incremented when the
interval value is reached.

Set TimerMode to 2 to stop the timer. When the timer stops, it ceases
generating Tick events, and its value is not updated.

Timer Example
In this example, a static text part is moved in the window for each timer Tick
event.

When you press the Start push button, the timer mode is set to 1. This starts
the timer and generates Tick events. During the processing of the Tick event,
new coordinates are calculated for the static text part, and the part is set to
the new location.

When you press the Stop push button, the TimerMode is set to 2. This stops
the timer.

Press the Close push button to terminate the program.

192 Programming with VisualAge RPG

Chapter 7. Using Parts 193

* *
* Program ID . . : TIMER *
* *
* Description . : Sample program to demonstrate the timer part *
* by moving a static text part in a window each *
* time the timer ’Ticks’. *
* *

*
H
*
* Declare display size System attributes
D%DspHeight S 4 0
D%DspWidth S 4 0
*
* Declare new size event attributes
D%NewHeight S 4 0
D%NewWidth S 4 0
*
* Define working variables
DminX S 4 0 INZ(0)
DmaxX S 4 0
DminY S 4 0
DmaxY S 4 0
DxChange S 4 0 INZ(5)
DyChange S 4 0 INZ(5)
*

Figure 28. Coding Example Using the Timer Part (Part 1 of 6)

194 Programming with VisualAge RPG

* *
* Window . . : FRA0000B *
* *
* Part . . . : FRA0000B *
* *
* Event . . : CREATE *
* *
* Description: Center the window on the display. *
* *
* Calculate starting values. *
* Since the height attribute of the window part *
* includes the title bar, we subtract the height of *
* the title bar so the static text part remains within *
* the window frame. *
* *
* For SVGA, this value is about 20 pixels. It could *
* be adjusted for other resolutions. *
* *

*

C FRA0000B BEGACT CREATE FRA0000B
*
* Get beginning window height and width

C ’FRA0000B’ getatr ’Height’ winHeight 4 0
C ’FRA0000B’ getatr ’Width’ winWidth 4 0
*
* Center the window on the display

C eval %setatr(’FRA0000B’:
C ’FRA0000B’:
C ’Left’)=(%DspWidth-winWidth)/2
*

C eval %setatr(’FRA0000B’:
C ’FRA0000B’:
C ’Bottom’)=(%DspHeight-winHeight)/2
*
* Get beginning coordinates of static text part

C ’ST1’ getatr ’Left’ picX 4 0
C ’ST1’ getatr ’Bottom’ picY 4 0
*
* Get dimensions of static text part

C ’ST1’ getatr ’Height’ picHeight 4 0
C ’ST1’ getatr ’Width’ picWidth 4 0
* * Calculate minimum and maximum Y coordinates

C ’Start’ getatr ’Height’ startH 4 0
C ’Start’ getatr ’Bottom’ startB 4 0
C eval minY = startB + startH
C eval maxY = winHeight - picHeight - 20
*

Figure 28. Coding Example Using the Timer Part (Part 2 of 6)

Chapter 7. Using Parts 195

* Calculate maximum X coordinate
C eval maxX = winWidth - picWidth
*
C ENDACT

* *
* Window . . : FRA0000B *
* *
* Part . . . : START *
* *
* Event . . : PRESS *
* *
* Description: Start the timer. *
* *

*
C START BEGACT PRESS FRA0000B
*
C ’Timer1’ setatr 1 ’TimerMode’
*
C ENDACT

* *
* Window . . : FRA0000B *
* *
* Part . . . : STOP *
* *
* Event . . : PRESS *
* *
* Description: Stop the timer. *
* *

*
C STOP BEGACT PRESS FRA0000B
*
C ’Timer1’ setatr 2 ’TimerMode’
*
C ENDACT

Figure 28. Coding Example Using the Timer Part (Part 3 of 6)

196 Programming with VisualAge RPG

* *
* Window . . : FRA0000B *
* *
* Part . . . : CLOSE *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program. *
* *

*

C CLOSE BEGACT PRESS FRA0000B
*

C eval *inlr = *on
*

C ENDACT

* *
* Window . . : FRA0000B *
* *
* Part . . . : TIMER1 *
* *
* Event . . : TICK *
* *
* Description: Respond to timer tick events by moving the static *
* text part in the window. *
* *
* If the static text part moves outside the window *
* frame, its’ xChange or yChange values are multiplied *
* by -1 to reverse the direction. *
* *

Figure 28. Coding Example Using the Timer Part (Part 4 of 6)

Chapter 7. Using Parts 197

*
C TIMER1 BEGACT TICK FRA0000B
*
* Calculate new static text coordinates
C eval picX = picX + xChange
C eval picY = picY + yChange
*
* Check static text remains in window boundaries
C select
*
C picX whenlt 0
C eval xChange = xChange * -1
C eval picX = minX + xChange
*
C picX whengt maxX
C eval xChange = xChange * -1
C eval picX = maxX + xChange
*
C picY whenlt minY
C eval yChange = yChange * -1
C eval picY = minY + yChange
*
C picY whengt maxY
C eval yChange = yChange * -1
C eval picY = maxY + yChange
*
C endsl
*
* Move static text to new coordinates
C ’ST1’ setatr picX ’Left’
C ’ST1’ setatr picY ’Bottom’
*
*
C ENDACT

Figure 28. Coding Example Using the Timer Part (Part 5 of 6)

198 Programming with VisualAge RPG

* *
* Window . . : FRA0000B *
* *
* Part . . . : FRA0000B *
* *
* Event . . : RESIZE *
* *
* Description: Get the size of the window after it has been resized *
* so static part uses entire window. *
* *

*

C FRA0000B BEGACT RESIZE FRA0000B
*

C eval maxY = %NewHeight - picHeight - 20
C eval maxX = %NewWidth - picWidth
*

C ENDACT

Figure 28. Coding Example Using the Timer Part (Part 6 of 6)

Chapter 7. Using Parts 199

Vertical Scroll Bar

Use the vertical scroll bar part to allow users to scroll through a pane of
information vertically. The information can be a list of files, records in a
database, columns in a document, and so on. You can use the Range attribute
to represent the total number of objects to be scrolled through and the
PageSize attribute to determine the number of objects that can be displayed
on a page.

Part Attributes

Bottom Enabled Focus Handle*
Height Left NextLine NextPage
PageSize ParentName PartName PartType
Position PrevLine PrevPage Range
Top UserData Visible Width

* Note: See the attribute description for restrictions.

Applicable Events

Create Destroy Scroll

200 Programming with VisualAge RPG

Window

Windows are the user’s primary means of interacting with your program.
Your application must contain at least one window.

You can add only one part to the client area of a window, except for parts that
are extensions to the window frame, such as menu bars, pop-up menus and
message subfiles. The part you add is automatically sized to fit the client area.

If you want a window to contain more than one part, you must add a canvas
part to it. Or, use the window with canvas part to save a step.

Note: The window part is located in the Frames section of the parts catalog,
not on the parts palette.

For related information, see:
v “Canvas” on page 66
v “Window with Canvas” on page 202

Part Attributes

Bottom Center Enabled FileName*
Focus* FontBold* FontItalic* FontName*
FontSize* FontStrike* FontUnder* Handle*
Height IconHandle* Label Left
MouseIcon* MouseShape* ParentName PartName
PartType PBRange PBSetPos PBStep
PBStepSize Print PrintAsIs ProgresBar
Refresh SBLabel SBPosition SBStyle
ShowTips StatusBar Top UserData
Visible Width WindowMode*

* Note: See the attribute description for restrictions.

Applicable Events

Activate Close Create DeActivate
Destroy LClickTray Moved RClickTray
ReSize ShutDown

Chapter 7. Using Parts 201

|

Window with Canvas

Windows are the end user’s primary means of interacting with your program.
The canvas, on a window with canvas part, allows you to add many parts to
the window.

You can point and click various parts onto the canvas portion, position them,
and organize them to produce a graphical user interface. You can also add
parts that are extensions of the window’s frame, such as menu bars, pop-up
menus and message subfiles.

If you need to put only one part on the client area of the window, you do not
need the window with canvas part: you should use the window part instead
(found in the Frames section of the parts catalog). Without a canvas, the part
you add will be automatically sized to fit the client area.

For related information, see:
v “Canvas” on page 66
v “Window” on page 201

Part Attributes

Bottom Center Enabled FileName*
Focus* FontBold* FontItalic* FontName*
FontSize* FontStrike* FontUnder* Handle*
Height IconHandle* Label Left
MouseIcon* MouseShape* ParentName PartName
PartType PBRange PBSetPos PBStep
PBStepSize Print PrintAsIs ProgresBar
Refresh SBLabel SBPosition SBStyle
ShowTips StatusBar Top UserData
Visible Width WindowMode*

* Note: See the attribute description for restrictions.

Applicable Events

Activate Close Create DeActivate
Destroy LClickTray Moved RClickTray
ReSize ShutDown

202 Programming with VisualAge RPG

|

Displaying a Window
By default, all windows are marked as Visible and Open Immediately when
they are created in the GUI Designer.

Decide which window you want the user to see first. That window is called
the main or primary window and you must set the Visible and Open
Immediately attributes accordingly for it. If you do not change the default
settings, all the windows will appear when the user starts your application.

Setting the Open Immediately attribute
Set this attribute at design time if you want the window to be created when
the application starts. Creating a window loads it into memory: because there
is an overhead associated with this, you should decide which windows need
to be loaded when the application starts. (You can have the other windows
loaded later on.) You can use the SHOWWIN operation code to display
windows that are not displayed very often (such as a window that displays a
product copyright), instead of setting them so that they open immediately.

Note: The Open Immediately attribute does not control whether a window is
actually displayed on the screen. To display a window, you must set its
Visible attribute to 1 in your program, or mark it as Visible in its
properties notebook.

Using the SHOWWIN operation code
You can load a window in your program by specifying the window name in
Factor 2 of the SHOWWIN operation code. This operation code loads the
window into memory.

Note: The SHOWWIN operation does not control whether a window is
actually displayed on the screen. To display a window, you must set its
Visible attribute to 1 in your program or mark it Visible in its
properties notebook.

You can set a window’s attributes only after it has been loaded. To load a
window, either select the Open Immediately check box on the Startup page of
the part’s notebook, or use the SHOWWIN operation code in your program.

If a window is defined as Open Immediately, and you issue the SHOWWIN
operation code for that window in your program, you will receive a runtime
error indicating that the window has already been loaded. You can avoid this
error by coding an error indicator on the SHOWWIN operation code and
checking the error indicator in your program. If the indicator is turned on,
then the window is already up and you should set the Visible attribute on.
This will display the window, and the error will not be issued.

Chapter 7. Using Parts 203

Referencing
The parts on a window are created when the window is created. Therefore, if
you attempt to reference any part on a window that has not been loaded, or
to reference a window attribute before the window is created, you will receive
a Part not found message.

Hint

If a window is displayed and you cannot click on its title bar, use this
method to move the window:
1. Position the mouse cursor somewhere on the visible portion of the

window.
2. Click and release mouse button 1.
3. Press the Alt-space key combination. Then press M.
4. Use the arrow keys to reposition the window.
5. When the window is in the desired position, press Enter.

Resizing a Window
There are two things you can do to create your application so that the user
has one or more ways to resize a window:
v In the GUI Designer, set the border of a window as Sizeable. This setting

allows the user to select the window border with the mouse button, and
resize the border while keeping the mouse button pressed. When the mouse
button is released, the ReSize event is signaled.

v Add a Maximize and a Minimize button to the window. The user can then
change the size of the window by selecting one of these buttons.

You can position parts on the window so that they maintain their relative
position and size within the window’s boundaries after the window is resized.
To do this, use the ReSize event with the %NewHeight and %NewWidth
event attributes.

In the following coding example, a push button part labeled PB1 is located in
the upper right corner of a window. When the window is resized, the ReSize
action subroutine calculates new Left and Bottom attribute values to ensure
that the push button remains within the window’s boundaries.

204 Programming with VisualAge RPG

* *
* Program ID . . : ReSize *
* *
* Description . : Sample program to demonstrate how to ensure *
* parts remain within a window after it has been *
* resized. *
* *
* A push button is located in the upper right *
* corner of the window. If the window is resized *
* to a smaller size, the push button will no *
* longer be visible, since all parts maintain *
* their relation with the lower-left corner of the *
* window. *
* The RESIZE event is used to ensure the push *
* button also maintains its position relative to *
* the upper right corner of the window. *
* *

*

H
*
* Declare display size System attributes

D%DspHeight S 4 0
D%DspWidth S 4 0
*

Figure 29. Ensuring parts are displayed correctly after a window is resized (Part 1 of 3)

Chapter 7. Using Parts 205

* Declare %NewHeight, and %NewWidth event attributes. These will
* contain the width and height of the window after it has been
* resized.
D%NewHeight S 4 0
D%NewWidth S 4 0

* *
* Window . . : FRA0000B *
* *
* Part . . . : FRA0000B *
* *
* Event . . : RESIZE *
* *
* Description: Ensure the push button part ’PB1’ remains visible. *
* *

*
C FRA0000B BEGACT RESIZE FRA0000B
*
C %NewWidth sub HOffset NewLeft 4 0
C %NewHeight sub VOffset NewBottom 4 0
C ’PB1’ setatr NewLeft ’Left’
C ’PB1’ setatr NewBottom ’Bottom’
*
C ENDACT

* *
* Window . . : FRA0000B *
* *
* Part . . . : PSB0000D *
* *
* Event . . : PRESS *
* *
* Description: Terminate the program. *
* *

*
C PSB0000D BEGACT PRESS FRA0000B
*
C move *on *inlr
*
C ENDACT

Figure 29. Ensuring parts are displayed correctly after a window is resized (Part 2 of 3)

206 Programming with VisualAge RPG

Setting the Focus
Determine which window you want the user to work with first, and use the
Focus attribute to give that window focus. If you do not, VisualAge RPG
determines which window has focus when your application is loaded. By
default, it will be the last window created that has the Visible attribute set.

* *
* Window . . : FRA0000B *
* *
* Part . . . : FRA0000B *
* *
* Event . . : CREATE *
* *
* Description: Center the window on the display. *
* Get current coordinate of push button PB1 and its *
* offset from the upper right corner of the window. *
* *

*

C FRA0000B BEGACT CREATE FRA0000B
*

C ’FRA0000B’ getatr ’Height’ winHeight 4 0
C ’FRA0000B’ getatr ’Width’ winWidth 4 0
C %DspWidth sub winWidth diffWidth 4 0
C %DspHeight sub winHeight diffHeight 4 0
*

C eval %setatr(’FRA0000B’:
C ’FRA0000B’:
C ’Left’) = diffWidth / 2
*

C eval %setatr(’FRA0000B’:
C ’FRA0000B’:
C ’Bottom’) = diffHeight / 2
*
* Calculate the offsets of the push button part ’PB1’ from
* the upper right corner of the window. These values are used
* to maintain this offset if the window is resized.

C ’PB1’ getatr ’Left’ PBLeft 4 0
C ’PB1’ getatr ’Bottom’ PBBottom 4 0
C ’FRA0000B’ getatr ’Width’ WinWidth 4 0
C ’FRA0000B’ getatr ’Height’ WinHeight 4 0
C WinWidth sub PBLeft HOffset 4 0
C WinHeight sub PBBottom VOffset 4 0
*

C ENDACT

Figure 29. Ensuring parts are displayed correctly after a window is resized (Part 3 of 3)

Chapter 7. Using Parts 207

Window List
In the properties notebook for a window part, you can indicate if the window
should appear in the window list. This list appears when you press the
Ctrl+Alt+Delete in Windows. By default, window parts do not appear in the
window list. You should set at least the main window to appear in the
window list. You can use the task list to redisplay the window.

Terminating a Program
If the user selects the Close option from the system menu on a window, the
operating system closes the window but does not necessarily terminate your
program. To prevent this from happening, you can do one of the following:
v Select the Terminate on close check box in the second Style page in the

window’s properties notebook. This will terminate your program when the
user closes the window.

v In the first Style page of the window’s properties notebook, deselect the
System Menu check box so that your windows are created without a
System Menu. (By default, all windows are created with a system menu.)

v Use the Close event. This event is signaled when the user selects Close
from the system menu. In the Close event action subroutine, you could set
the LR indicator on, or prompt the user to confirm that this window should
be closed, and set the ENDACT return point accordingly. For example, by
setting the return value to *NODEFAULT the close request is ignored and
the window is not closed.

208 Programming with VisualAge RPG

*
* Define message box variables
Dstyle M button(*yesbutton: *nobutton)
D style(*WARN)
Dmsg M msgtext(’Are sure you want to exit?’)
*

* *
* Window . . : FRA0000B *
* *
* Part . . . : FRA0000B *
* *
* Event . . : CLOSE *
* *
* Description: Handle Close event from system menu to verify user *
* wants to close this window. *
* *

*
C FRA0000B BEGACT CLOSE FRA0000B
*
* Prompt for close
C msg dsply style rc 9 0
*
* If Yes, terminate program, allow close to occur
C rc ifeq *YESBUTTON
C move *on *inlr
C movel ’*DEFAULT ’return 12
*
* Else, do not close this window
C else
C movel ’*NODEFAULT ’return
C endif
*
C ENDACT return

Chapter 7. Using Parts 209

Clearing Fields on a Window
If you have several entry fields on a window, you can use the CLEAR
operation code. This will clear all entry field values to their default values.
Numeric fields are cleared with zeros and character fields are cleared with
blanks.

Example of a Window Part
The window part shown below has a System menu, a Minimize button, and
a Maximize button.

210 Programming with VisualAge RPG

*Component

The *component part allows programmers to access and use component- and
system-wide attributes.

A *component part is the ″part representation″ of the component. One
*component part is created for each component automatically; it is invisible
and not on the palette.

Part Attributes

Active* Alarm AppData Button
ClipBoard CurrentDir Dialog DIRName*
DlgOwner DoEvents* DspHeight DspWidth
FileName HelpWindow HostName* LookNFeel*
MsgData MsgFile* MsgID MsgText
Name OS Parent PartCount
PartList Platform PlugCmd* PlugDLL*
PlugID* PlugRC* PlugResult* Printer*
SelPrinter* ShData ShDataLen ShDataName
ShDataPos ShowMsgID SwitchTo* WrkStnName*

* Note: See the attribute description for restrictions.

Applicable Events
There are no events associated with this part.

Using the *component part
The *component part allows programmers to access and use component- and
system-wide attributes. A *component part is the ’part representation’ of the
component. One *component part is created for each component
automatically; it is not visible and is not on the parts palette.

Displaying a File Open/Save As dialog.
The Button, FileName, Dialog, and DlgOwner attributes of the *component
part are used to display the Windows common File Open or Save As dialog.
The dialog attribute determines which type of dialog to display. Set it to 1 to
display an Open dialog or to 2 to display a Save As dialog. The DlgOwner
attributes which part is the ’owner’ of the dialog. When this attribute is set,
the owner is ’modal’ to the dialog. That is the it can not respond to events
until the dialog is dismissed. Setting the FileName attribute displays the file
open dialog. To determine which button the user used to dismiss the dialog,
retrieve the value of the Button attribute.

Chapter 7. Using Parts 211

|

In the following example, a File Open dialog is displayed. Notice that
FileName attribute can be set to display only files with a certain extension:

Selecting a printer
If your application prints to a printer attached to the workstation you can use
the SelPrinter and Printer attributes to allow the user to select to which
printer the output is to be sent. Setting the SelPrinter attribute to 1 displays
the Windows Print dialog to be displayed. When the user selects a printer
from that dialog, the printed output from your application will be sent to that
printer.

Using Plugins
The PlugDLL, PlugID, PlugCmd, PlugRC, and PlugResult attributes give
you the ability to extend the functionality of the GUI Designer. You provide
the additional functionality in a program that you have developed. Once your
application is registered to the GUI Builder by using the Vendor menu, your
application can interact with the GUI Designer. See chapter 20 for more details
on creating plugins.

Querying the Parts in a Component
The Parent, PartCount and PartList attributes can be used at runtime to query
the part names in a component. For example, you could use these attributes to
resize and reposition parts on a window if the window has been resized.

*
* Display File Open dialog
C ’*Component’ Setatr 1 ’Dialog’
*
* This window is the owner
C ’*Component’ Setatr ’Main Main’ ’DlgOwner’
*
* Show only .DAT files
C ’*Component’ Setatr ’*.DAT’ ’Filename’
*
* Get the button pressed
C ’*Component’ Getatr ’Button’ Button 1 0
*
* Handle the OK button
C If Button = 1
*
* User canceled
C Else
*
C EndIf

Figure 30. Displaying a File Open dialog

212 Programming with VisualAge RPG

Part 3. Working with iSeries Data
Chapter 8, “iSeries Connectivity” on page 215

Describes how to set up a connection between your application and
an iSeries server.

Chapter 9, “Reusing iSeries Applications” on page 233
Describes how to import existing display files, UIM help, and RPG
source from existing iSeries 400 applications.

© Copyright IBM Corp. 1994, 2002 213

214 Programming with VisualAge RPG

Chapter 8. iSeries Connectivity

If you are using an iSeries server while you are developing your application
(for example, importing display files) or while you are running it (for
example, accessing iSeries database files for I/O), you must define the iSeries
information used by the application. This information is stored separately
from the application, so that it can be updated without changing the
application itself.

This section discusses the following topics:
v Defining iSeries information
v Setting up an iSeries server at design time and at run time
v Using data areas
v Using iSeries database files
v Database I/O considerations
v Controlling server connections at run time
v Using the security file for applets

Defining iSeries Information

During the development of your application, you can use the Define iSeries
Information properties notebook to define aliases (override names) for the
following iSeries information:
v Servers
v Files
v Programs
v Data areas
v Lock level

Once you have developed an application and are ready to install it on your
user’s workstation, you need to ensure that either:
v For SNA communications the following is configured:

A router must be defined using Client Access. This router name is also used
as the Remote Location Name.

v For TCP/IP communications the following is configured:
Use the host name defined for your iSeries server as the Remote Location
Name.

Additionally, refer to the online help for the steps you must take to define
iSeries information.

© Copyright IBM Corp. 1994, 2002 215

|
|

Notebook Considerations
If the Define iSeries Information properties notebook pages do not contain the
override name for the program, the data area, or the database file, then the
following occurs:
1. The name of the program, data area, or database file in the program is

used.
2. If the program name, data area, or database file is library-qualified in the

program, then this library is used.
3. If the program name or database file is not library-qualified in the

program, the library list (*LIBL) on the iSeries server is searched.
4. The first server listed on the server page is used.

Note: The first server listed in the server page of the Define iSeries
Information notebook is known as the default server. At least one
server is required for every program that makes use of an iSeries
server.

Setting Up a Server

You must set up a server when you are developing your application, so that
you can access it while you edit, compile, and debug your application. When
you package and distribute your application to other workstations, you also
have to set up a server if the running application accesses a different server
than the one used during design time.

Whenever you set up a server, ensure that the library list of the service job
contains the remote resource that you want to work with.

Setting a Server at Design Time
If you need to use a server while you are developing your application, you
must define server information using the Define Server Logon window and
the Define iSeries Information notebook. See the online help for more
information.

You must also define an iSeries job description to set up the library list. You
can associate a library list with a job description on the iSeries server. This job
description can then be associated with a user profile. Use the user ID from
this user profile when you are prompted by the VisualAge RPG to logon to a
server. The iSeries service job contains the correct library list.

Setting a Server at Run Time
If you need to access a server while you are running your application, you
must verify that the iSeries information points to the correct server. Use the
Define iSeries Information utility to invoke the Define iSeries Information
notebook.

216 Programming with VisualAge RPG

You must also set up the library list, either by changing the job description or
by using the CL commands QCMDDDM or QCMDEXC.

Defining a job description to set up a library list
You can associate a library list with a job description on the iSeries server.
This job description can then be associated with a user profile. Use the user
ID from this user profile when you are prompted by the VisualAge RPG to
logon to a server. The iSeries service job contains the correct library list.

Changing the library list
If a VisualAge RPG program calls CL commands:
v Specify a CALL to QCMDDDM if the CL command issues commands for

iSeries files.
v Specify a CALL to QCMDEXC if the CL command issues commands to

server programs or data areas.

CL commands can be issued to be run in the DDM service job using the
CALL operation code. A special program must be called in order for the CL
command to be run in the DDM service job. The special program is
QCMDDDM. This interface is the same as the interface for calling QCMDEXC.
The difference between QCMDEXC and QCMDDDM is that QCMDEXC runs
in a separate job that is used to service remote call requests and data area
requests.

QCMDDDM can be used to change the library list of the DDM service job to
ensure that the library containing the database files is present in the DDM
job’s library list.

Using Data Areas

Before your application can use data areas, you must set up the server.

If your application accesses a data area, the name of this data area can be
either the name of the data area or an override name. You can define the
override name in the GUI Designer using the Data area page of the Define
iSeriesInformation notebook.

See “Notebook Considerations” on page 216 if the notebook page does not
contain an override name for the data area.

Table 5 on page 218 and Figure 31 on page 218 illustrate how to access a data
area using an override name.

Chapter 8. iSeries Connectivity 217

Table 5. Enter this information on the Data area page of the Define iSeriesInformation
notebook

Data area override name: DTAARA (this must be entered in
uppercase)

Remote data area name: REMDTAARA

Server alias name: SERVER01

Be sure the data area has been initialized before you attempt to use it. A
runtime exception is issued if a data area on the server does not contain a
valid packed decimal value when attempting to retrieve it into a data area
data structure with a packed decimal subfield in a VisualAge RPG program.

Using iSeries 400 Database Files

Before your application can access iSeries 400database files, you must set up
the server.

Remote DISK file names used in your VisualAge RPG programs can be either
the iSeries 400 file name or a file alias name. You can define a file alias name
using the File page of the Define iSeriesInformation notebook. See “Notebook
Considerations” on page 216 for information about what happens if the
notebook page does not contain a file alias for the iSeries 400file.

* *
* Program ID . . : dtaaraex.vpg *
* *
* Description . : Code segment to get the contents of an AS/400 *
* data area. *

*
D dtaara S 6P 0 DTAARA

* *
* Window . . : WIN1 *
* *
* Part . . . : PSB0000C *
* *
* Event . . : PRESS *
* *
* Description: Get the contents of the AS/400 data area. *

*
C PSB0000C BEGACT PRESS WIN1
C IN dtaara
C ENDACT

Figure 31. Accessing a data area

218 Programming with VisualAge RPG

Database file overrides issued in the remote server DDM job are ignored by
open requests issued by the VisualAge RPG application. Open requests made
by server programs that run in the DDM service job may elect to either ignore
or apply the file overrides.

The VisualAge RPG supports overriding the server’s library name, file name,
and member name using the File page in the Define iSeriesInformation
notebook.

The Define iSeriesInformation notebook is used when the application is being
built and while the application is running. At build time, the File page is used
during file extracts to find the external descriptions of the files. It is also used
for an externally described data structure when so specified in a definition
specification.

At application run time, the File page is used to locate the actual remote
iSeries 400 database files being used. The file alias name used in the
VisualAge RPG program is used to find an appropriate entry in the File page.

If no entry exists in the File page, then the library list of the first server
defined in the server page is used to find a file with the same name as the file
in the VisualAge RPG program.

Keeping the actual file name separate from the file name used in the
VisualAge RPG program allows you to retarget the actual file. You can direct
it to a different file on the same iSeries server or a different iSeries server
without changing the VisualAge RPG program.

Figure 32 on page 220 contains an example that illustrates:
v The association of file names with file entries in the File page of the Define

iSeriesInformation notebook.
v Matching part names with fields.

Note: The NAME and ADDRESS information must be entered on the
application’s window. The information is entered on the database when
the OK push button is pressed.

Chapter 8. iSeries Connectivity 219

* *
* Program ID . . : ioex.vpg *
* *
* Description . : Create Database records using data from window. *
* *
* Files : FILE1 *
* *

*
FFILE1 UF A E DISK REMOTE USROPN

* *
* Window . . : WIN1 *
* *
* Part . . . : *INZSR *
* *
* Event . . : Initialization routine *
* *
* Description: Open Database file (FILE1). *
* *

*
C *INZSR BEGSR
C OPEN FILE1
C ENDSR

* *
* Window . . : WIN1 *
* *
* Part . . . : PSB0000D *
* *
* Event . . : PRESS *
* *
* Description: User is finished creating records. End Application. *
* *

*
C PSB0000D BEGACT PRESS WIN1
C SETON LR
C ENDACT

Figure 32. Database file example (Part 1 of 2)

220 Programming with VisualAge RPG

FILE1 in the file specification is used as a file alias, since an entry exists in the
File page of the associated Define iSeriesInformation notebook.

The first member of FILE1 in library LIB1 on server TORAS180 is used during
file open. FILE1 in the remote name does not have to match the override
name in the file entry. The override name represents a link between the file
entry in the File page and the file name used in the VisualAge RPG program.

The part names of the two entry fields are NAME and ADDRESS. The
VisualAge RPG creates fields with the same names and the same attributes. In
this example, NAME and ADDRESS are 20-character fields. The database file
also contains two fields named NAME and ADDRESS, both 20 characters. The
following is the DDS for these fields:

R RECORD100
A NAME 20A
A ADDRESS 20A

When field names and their attributes match, only one field is created. This
example reads the data from the window.

When this READ is performed, data is moved automatically from the screen
into the two fields NAME and ADDRESS. Since the data is now in the

* *
* Window . . : WIN1 *
* *
* Part . . . : PSB0000C *
* *
* Event . . : PRESS *
* *
* Description: Read field information from screen and add record *
* to AS/400 Database file. *
* *
* *

*

C PSB0000C BEGACT PRESS WIN1
C READ ’WIN1’
C WRITE FORMAT1
C ENDACT

Figure 32. Database file example (Part 2 of 2)

C* N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C READ ’WIN1’

Chapter 8. iSeries Connectivity 221

appropriate fields, it can be written directly to the database without any
further field movement.

In this example, the data in the two fields NAME and ADDRESS is moved to
the output buffer automatically before the write command is issued to the
iSeries 400 database.

Level Checking
The VisualAge RPG supports level checking between a VisualAge RPG
program and the iSeries 400 database files being used.

The compiler always provides the information required by level checking.
Level checking occurs on a record-format basis when the file is opened, unless
you specify LVLCHK(*NO) when creating or changing the database file.

Note: If a level check occurs, it is handled as an I/O error. For more
information, see VisualAge RPG Language Reference.

Locking Database Files
The OS/400 system allows a lock state (exclusive, exclusive allow read, shared
for update, shared no update, or shared for read) to be placed on a file used
during the execution of a job. Programs within a job are not affected by file
lock states. A file lock state applies only when a program in another job tries
to use the file concurrently. The file lock state can be allocated with the CL
command ALCOBJ (Allocate Object). For more information on allocating
resources and lock states, see the see the CL and APIs section of the
Programming category in the Information Center at this Web site -
http://www.ibm.com/eserver/iseries/infocenter.

The OS/400 system places the following lock states on database files when it
opens the files:
v Opened for INPUT: Lock state of Shared for read
v Opened for UPDATE: Lock state of Shared for update
v Opened for ADD: Lock state of Shared for update
v Opened for OUTPUT: Lock state of Shared for update

Overriding Database Files
To override the library name or file name of a database file, use the
QCMDDDM command as shown in the following example:

D QCMDDDM C ’QCMDDDM’ Linkage(*Server)
C OvrMenufl BEGSR

C* N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C WRITE FORMAT1

222 Programming with VisualAge RPG

C Eval QCMDDDM_Parm1 = ’OVRDBF FILE(MENUFL)’ +
C

’ TOFILE(SYSLIBT/MENUFL)’ +
C

’ MBR(’ + MemberName + ’)’ +
C

’ OVRSCOPE(*JOB)’ +
C

’ OPNSCOPE(*JOB)’
C Exsr CallExecDDM

C ENDSR

C CallExecDDM BEGSR

C EVAL QCMDDDM_Parm2 = %LEN(QCMDDDM_Parm1)
C Call QCMDDDM
C Parm QCMDDDM_Parm1
C Parm QCMDDDM_Parm2

C ENDSR

iSeries 400 Database I/O Considerations

In general, all VisualAge RPG database I/O operations available in the ILE
RPG/400 language are also available in the VisualAge RPG language, and are
semantically equivalent. See VisualAge RPG Language Reference for more
information, including which operation codes support local access, remote
access, or both.

Using Record Blocking to Improve Performance
If your application reads data from an iSeries 400 server, you can improve the
performance of your application by using record blocking. Record blocking
means that file I/O operations are done on multiple sequential records (on
blocks of records) instead of on one record at a time.

VisualAge RPG offers default record blocking if any of the following are true:
v The file is output-only and contains only one record format.
v The file is a combined file.
v The file is input-only, contains only one record format, and uses only

OPEN, CLOSE, FEOD, and READ operation codes.
v The RECNO keyword is not specified on the file description specification.

In addition, you can perform explicit record blocking on files that meet the
following criteria:
v The File Addition entry (position 20) is blank.
v The RECNO keyword is not used on the file.
v The file has only one record format.
v The CHAIN, SETLL or SETGT operation codes are used on the file.

Chapter 8. iSeries Connectivity 223

v The READE, READP, or READPE operation codes are not used on the file.

If a file meets the above criteria, you can enable record blocking by updating
your program with BLOCK(*YES) on the file description and recompiling the
program. Figure 33 shows an example that uses the BLOCK keyword option.

If you use BLOCK(*NO) on a file description and recompile the program, no
record blocking will take place, not even the default record blocking that
VisualAge RPG supports.

iSeries 400 Servers Used

If you use TCP/IP, the Optimized Central server and the Remote Command
server must be activated. Use the STRHOSTSVR command to start these
servers. Go to the iSeries Information Center at URL
http://www.ibm.com/eserver/iseries/infocenter for more information on
this command.

These servers are required when you develop your applications. In addition,
when you run your applications, you should have the TCP/IP DDM server
active as well. Use the STRTCPSRV command to start this server.

Controlling Server Connections at Run Time

VARPG provides two APIs to control connection startup at run time. These
APIs can be used directly in VARPG programs. The Signon API allows users
to connect to an iSeries server by providing their own signon information. The
Change Password API allows programmers to handle changes to the signon
password.

In the VARPG environment, connections remain active during the lifetime of
an application. Connections are shared by components running inside the
application’s process. This behavior is true for user controlled VARPG
connections, too. A user-controlled signon differs from a normal VARPG
signon in the way a connection gets established.

FFILE1 IF E K DISK BLOCK(*YES)
F REMOTE

...
C FLD2 SETLL REC1

...
C READ REC1 10

Figure 33. Example using BLOCK keyword option

224 Programming with VisualAge RPG

|
|
|

|

|
|
|
|
|

|
|
|
|
|

For a VARPG runtime controlled connection startup, the VARPG runtime gets
the server name from the project’s Remote Server Table (.RST) file, the
userid/password from the VARPG security file, and then establishes the
connection. If there is no information in the security file, the run time will
prompt for the user ID and password. For the user controlled connection
startup, the programmer uses the Signon API to identify the server name, user
Id, and password so the VARPG run time can establish the connection. The
functions whose interface is described by these APIs are located in the
FVDCWVC9.DLL. This DLL is part of the VARPG run time and is located in
the path; there is no need to rearrange the path environment for applications
using this API.

The Set Signon function, VARPG_Set_Signon_Info, accepts the following
parameters and provides a numeric return code indicating success or failure
of the signon process:
v Server name
v UserId
v Password

The parameters are null terminated character variables passed by reference.

The following example lists the C signature and the RPG IV prototype for the
API:

* Signon prototype
* extern "C" int VARPG_Set_Signon_Info(char * server, char * userid,
* char * password);

D signon pr 5I 0 dll(’FVDCWVC9’)
D extproc(’VARPG_Set_Signon_Info’)
D system * value
D userid * VALUE
D password * VALUE

The Change Password function, VARPG_Change_Password, has one
additional parameter - the new password to be used. The function also
returns a numeric value indicating success or failure of the API execution. Its
parameters are:
v Server name
v UserId
v Old password
v New password

These parameters are null terminated character variables passed by reference.
The following example shows the C API and the corresponding RPG
prototype:

* New password prototype
* VARPG_ENTRY int __cdecl VARPG_Change_Password(char * server,
* char * userid, char * password, char * newpassword);

Chapter 8. iSeries Connectivity 225

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

D newpassw pr 5I 0 dll(’FVDCWVC9’)
D extproc(’VARPG_Change_Password’)
D system * value
D userid * VALUE
D oldpassword * VALUE
D newpassword * VALUE

There are many different ways to gather the server/user Id information. The
sample program provided here uses its own signon dialog written in VARPG.
Remember that the connection is established for the VARPG application and
its components. If you start another VARPG application, you will need to use
the signon API again to establish a connection for this new application.
Otherwise, the VARPG run time will use its usual connection startup
mechanism.

To use the Signon API in a VARPG application that uses externally described
files, specify the USROPN keyword in the file specifications for the external
files. If USROPN is not specified, the server connection will be established
before you have a chance to invoke the SIGNON function. In components
started after the communication session has been established, you can use the
RPG implicit opening of files by not specifying the USROPN keyword in these
components. The components will reuse the existing connection of the
application.

The following return codes apply for both functions:
OK 0
INVALID_PARAMETER 1
INTERNAL_ERROR 2
FUNCTION_NOT_SUPPORTED 3
COMMUNICATIONS_ERROR 4
SERVER_INVALID 101
USER_ID_UNKNOWN 201
USER_ID_REVOKED 202
NEW_PWD_LENGTH_LONGER_THAN_MAX 301
NEW_PWD_LENGTH_SHORTER_THAN_MIN 302
NEW_PWD_CONTAINS_CHAR_USED_THAN_ONCE 303
NEW_PWD_CONTAINS_ADJACENT_DIGIT 304
NEW_PWD_CONTAINS_REPEATED_CONSECUTIVELY 305
NEW_PWD_PREVIOUSLY_USED 306
NEW_PWD_MUST_CONTAIN_ONE_NUMERIC 307
NEW_PWD_CONTAINS_INVALID_CHAR 308
NEW_PWD_CONATINS_DISALLOWED_WORD 309
NEW_PWD_CONTAINS_USERID 310
PASSWORD_INCORRECT 311
PASSWORD_DISABLED_NEXT_INVALID_ATTEMPT 312
PASSWORD_EXPIRED 313
NEW_PWD_CONTAINS_CHAR_SAME_POSITION_AS_LAST 315

226 Programming with VisualAge RPG

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Sample Program Using the Signon API
The sample application presents a window with a ″Signon to server″ push
button. Pressing this button starts the Signon component, which gathers the
userID/password information. The component will signal back whether or not
the connection is successful. This application uses the component reference
part to monitor the Signon component for completion.

Files have been specified with the USROPN keyword, so no connection
request is made by the VARPG run time. Pressing ″Sign on to server″ will
start the component.

Figure 34. Initial Window with Signon Push Button

Chapter 8. iSeries Connectivity 227

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|

The user can now specify the server and userID/password information. The
component will use this data to start the signon API and establish the
connection to the server. When the initial window gets notified that a
connection has been established successfully, the program accesses the
customer database on the iSeries server.

228 Programming with VisualAge RPG

|

|
|
|
|
|
|
|

A variation that is implemented in this sample is to show a Change password
dialog if the user’s password has expired. This condition can be detected by
checking the return code of the SIGNON function.

Chapter 8. iSeries Connectivity 229

|

|
|
|
|
|

The program uses this dialog to get the new password and then send it to the
VARPG communications layer by invoking the VARPG_Change_Password
function. The code for all of these functions is included in the
Runtime_control_of_server_connections sample program.

Using the Security File for Applets

When a VARPG application needs an iSeries resource, such as a database file,
a valid user ID and password is required to connect to the iSeries server. For
VARPG, the user ID and password are stored in a security file on the client
workstation. However, applets by default, cannot access any files on the client
workstation. This results in the user being prompted for a user ID and
password each time the applet is run. If you want to use the security file
when running applets and avoid this prompting, you need to give each applet
permission to read the security file. You do this by using the PolicyTool utility
that is part of Sun Microsystem’s J2SDK. You can find more information on
how to use PolicyTool in the Tool Documentation section of the J2SDK 1.2
documentation.

Note: The procedure described here only works for Windows clients.
1. Create the security file on the client workstation.

If not already done, install the VARPG runtime on the client workstation.
From the Start menu, choose Programs>VisualAge RPG Runtime>Define

230 Programming with VisualAge RPG

|

|
|
|
|
|

Server Logon. The Define Server Logon dialog appears. Add the user ID
and password for a specific iSeries server to store them in the security file.

2. Create the required permissions.
Permissions are required so that the Java VM can read the security file. To
create the permissions, do the following:
a. From an MS DOS prompt, type PolicyTool and press enter. The Policy

Tool dialog box appears.
If this is the first time you have used PolicyTool, a message indicating
that the policy file cannot be found in a certain directory is also
displayed. Make a note of the name and directory of the policy file in
the message. This will be the location you will save your policy file to
in a later step.

b. From the Policy Tool dialog, click the Add Policy Entry button. The
Policy Entry dialog appears. In the CodeBase entry field, type:
"http://xxxx/-"

where xxxx is the URL and directory that contains the applet that is to
be given permission to the security file.

c. Click the Add Permission button. Complete the Permissions dialog as
follows:
v From the Permissions combination box, choose RuntimePermission.
v From the Target combination box, choose

loadLibrary.<library name>.
v In the entry field immediately to the right of the Target combination

box, change loadLibrary.<library name> to loadLibrary.fvdcjava.
v Press OK to return to the Policy Entry dialog.

d. From the Policy Entry dialog, again click the Add Permission button.
Complete the Permissions dialog as follows:
v From the Permissions combination box, choose FilePermission.
v In the entry field immediately to the right of the Target combination

box, type the name of the security file. This file is located in the
ibmcom subdirectory of your Windows directory. For example:
c:\windows\ibmcom\fvdcsec.txt

where your Windows directory is c:\windows.
v From the Actions drop down combination box, choose read.
v Press OK to return to the Policy Entry dialog.
v Press Done to return to the Policy Tool dialog.

e. From the Policy Tool dialog, choose File then Save as from the menu.
Save the policy file you have just created to the file name and directory
you noted in 2a. Now choose File, then Exit to exit the PolicyTool.
If you are still prompted for the user ID and password, use PolicyTool
again to verify that you have specified all the parameters correctly.

Chapter 8. iSeries Connectivity 231

232 Programming with VisualAge RPG

Chapter 9. Reusing iSeries Applications

When you develop your VisualAge RPG application, you may want to reuse
an existing iSeries 400 application or various pieces of it. This section
describes some of the things you must consider when reusing iSeries 400
applications.

Reuse Scenario

You can use VisualAge RPG to modify applications that run on the server so
that they run on a PWS, access data on the host, and have a graphical user
interface. This section provides an overview of the steps involved.

Importing display files: The Import utility converts existing display files to a
graphical user interface on a PWS. After you import a display file, the record
formats are converted to user-defined parts and stored on the Imported page
of the parts catalog. You can move the parts to the parts palette as you work
on the application, and then store them in the parts catalog when you finish
working on the application until you need them again.

For example, importing the 5250 screen shown in Figure 35 on page 234
results in the GUI shown in Figure 36 on page 235. Records are converted to a
group of parts, fields are converted to entry field parts, and constants are
converted to static text parts. All command keys are converted to push button
parts, and the push button labels reflect the original command key keyword.

© Copyright IBM Corp. 1994, 2002 233

OOO OO OOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO Status: OOOOOOO

Purchase Order Header Maintenance P.O. Number: 666666
-.

Vendor Number: 99999 OOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO 66666666-666-6666
OOOOOOOOOOOOOOOOO OOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Ship to: 9999 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Print : B (Y,N)
Ship Via: BBBBBBBBBB Date Entered: OOO OO OOOO

F.O.B.: BBBBBBBBBBBBBBB Date Revised: OOO OO OOOO
Terms Code : BBBB OOOOOOOOOOOOOOO OOO OO OOOO

Password : Originator : OOOOOOOOOOOOOOO
Prep./Collect/Chg : B (P,C,X)

Confirm./Orig. : B (C,O)
Warehouse: BB OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Requested by: BBBBBBBBBBBBBBB Work Order #: 9999999
-.
Cmd1 Exit Cmd3 PO Notes Cmd4 Lookup Cmd5 Material Status Cmd9 Vendor Maint.
Cmd11 Delete Cmd15 Vendor Notes Cmd16 Vendor Quotes

Figure 35. Sample 5250 screen from a Purchase Order application

234 Programming with VisualAge RPG

Note: The new parts inherit the original field names, but you can rename
them if you like. Retaining the same field name improves productivity
when manipulating program logic for reuse.

Figure 36. Result of importing the Purchase Order screen

Chapter 9. Reusing iSeries Applications 235

You may want to customize the imported parts to take advantage of the basic
design issues discussed in Chapter 2, “Planning Your Application” on page 23.

Customizing the GUI:

Figure 37 shows how the imported window would look if you made the
following changes to the interface:
v Replace the command keys with a menu bar and associated menu items.

For example, a Vendor menu contains actions that were originally
converted to push buttons. This gives users easy access to frequently
performed actions, and launches related windows.

v Group related information, using group box parts to provide a visual cue
for users. For example, a group box labeled Shipment Information contains
entry fields that pertain to shipment information.

v Use grouped radio buttons for information that requires a user to select
from a number of known choices. For example, only three methods of
payment are possible (prepaid, collect, charge); therefore users need to

Figure 37. Customized GUI for the Purchase Order application

236 Programming with VisualAge RPG

select only one radio button to indicate the method being used. The radio
buttons are in a group box labeled Payment.

These changes take advantage of the graphical capabilities that VisualAge
RPG offers.

Reusing online help: When you reuse an application, you may want to reuse
the existing User Interface Manager (UIM) help, too. You will have to modify
it somewhat to reflect the look of the new GUI; however, it could save you
the effort required to create help from scratch.

You can customize the converted UIM help and add new types of help using
the Information Presentation Facility (IPF). You can write help for each
window and context-sensitive help for each part, and you can link the help
information by creating hypertext links in the help source. See “Reusing UIM
Help” on page 245, and Chapter 13, “Tips for Creating Online Help with IPF”
on page 271 for more information.

Writing program logic: You can reuse logic written in RPG IV because the
compiler is based on that language. Simply cut-and-paste existing code for
reuse.

You also have to write some additional program logic, using event-driven
programming. For every event associated with a part, there is an action
subroutine which describes how the program responds to an event.
Procedural operation codes for program control are not required; program
control is implicit. Some of the VisualAge RPG operation codes unique to
VisualAge RPG applications are:

BEGACT
Begins an action subroutine

ENDACT
Ends an action subroutine

SETATR
Sets the value of a part attribute

GETATR
Retrieves the value of a part attribute

SHOWWIN
Displays a window

CLSWIN
Closes a window

Figure 38 on page 238 contains an action subroutine from a sample purchase
order application. When SHOWWIN is called from a particular window to

Chapter 9. Reusing iSeries Applications 237

display the PUR570R2 window, an action subroutine is coded for the Create
event to prepare the window for the user’s next action.

If this is a new purchase order (#PONUM = 0), the menu items change,
delete, print, and fax are set to not respond to the MENUSELECT event. For
each of the menu items, the %setatr function is used to set the enabled
attribute to 0. The BEGACT operation code indicates the beginning of the
action subroutine, and ENDACT indicates the end of it.

Connecting to the Host: If your application uses iSeries 400 database fields or
imports iSeries 400 display files when you are building your application, you
must define the iSeries 400 server it uses. You can communicate with the host
at any time, as long as the server logon information is appropriately defined.
See the online help for more information about defining server information.

Importing Display Files

If you have a display file that contains record formats you wish to include on
a design window, you can import these record formats from an iSeries server
to the VisualAge RPG environment. After the import is completed, the record
is converted to a user-defined part and stored on the Imported page of the
parts catalog. Before you can import a display file:
v define the server that you will be accessing. See the online help.
v You must have a minimum of *USE authority for these display files.

*
* Window . . : PUR570R2 PO Header Maintenance *
* *

***-
*

C PUR570R2 BEGACT CREATE PUR570R2
c*
c*
C if #PONUM = 0
C eval %setatr(’pur570r2’:’m2_change’:’enabled’)=0
C eval %setatr(’pur570r2’:’m2_delete’:’enabled’)=0
C eval %setatr(’pur570r2’:’m2_print’:’enabled’)=0
C eval %setatr(’pur570r2’:’m2_fax’:’enabled’)=0
c end
c exsr POCHECK
c write ’PUR570R2’
C ENDACT
***-

Figure 38. Sample action subroutine

238 Programming with VisualAge RPG

To import a display file:
1. Choose the Server→Import display file from the GUI Designer.
2. Select a display file using one of these methods:

v Type the full name of the display file (<server>library/file) in the File
name entry field, and press Enter while the cursor is still in the field.

v Do the following:
a. Select one of the servers that is displayed. A list of libraries is

displayed under the server name.
b. Select one of these library names. A list of display file objects is

displayed.
c. Select one of these display file objects. A list of records in the file is

displayed.
3. Select the record that you want to import.
4. If you do not want to use the default part name, type a part name in the

Part name entry field.
5. If you do not want to use the default icon, you can press the Find push

button to use the Find an Icon window.
6. Select one of the following to indicate where you want the part to reside:

Catalog only
The part is added to the Imported page in the catalog.

Catalog and palette
The part is added to the Imported page in the catalog, and the
icon for the imported part appears on the palette.

7. Choose Import.

Converting Display Files
When you import a display file, the record formats, fields, and keywords that
have equivalent parts or attributes are converted, and you can use these parts
as you would any other part. The record formats, fields, and keywords that
do not have an equivalent part are not converted.

In general,
v Record formats are converted to a VisualAge RPG window or a group of

parts, depending on the record type.
v Fields are converted to entry fields.
v Constants are converted to static text parts.
v Conditioning indicator options are ignored.

Note: Fields with a length greater than 64 bytes are sized to 64 bytes on the
GUI; however, the length attribute in the properties notebook is set to
the original length.

Record Formats
The following list describes how display record formats are converted to
parts.

Chapter 9. Reusing iSeries Applications 239

MNUBAR
The MNUBAR record format is converted to a menu bar part that you
can drop onto a window with canvas.

PULLDOWN
The PULLDOWN record format is used with the MNUBAR record
format to create a submenu part. The PULLDOWN record format is
converted to menu item parts for the MNUBAR record format that it
references.

RECORD
The RECORD record format is converted to a group of parts that you
can drop onto a window with canvas.

SFL, SFLCTL
These record formats are converted to a subfile part that you can drop
onto a window with canvas.

Constants in the SFL records are not converted.

WINDOW
The WINDOW definition record format is converted to a window
with canvas part. The WINDOW reference record format is converted
to a group of parts that you can drop onto a window with canvas.

These record formats are not converted: ERRSFL, SFLMSG, and USRDFN. The
PULLDOWN and WINDOW keywords within a subfile are not converted.

Positional Entries
The following table describes how positional entries in the DDS used to create
a display file determine how formats and fields are converted.

Table 6. Positional entries and conversion

Columns Meaning Entry and Conversion Results

8-16 Indicators
Not converted

17 Record type
R Converted as described in

Record Formats

H Not converted

19-28 Name
If a named field, used as the
name of the part

29 Reference
R Not converted

30-34 Length
Sets the data length

240 Programming with VisualAge RPG

|
|

Table 6. Positional entries and conversion (continued)

Columns Meaning Entry and Conversion Results

35 Keyboard shift
A Converted to character

E Data type set to DBCS
Either

G Data type set to DBCS Only

I Read-only, Disabled

J Data type set to DBCS Only

O Data type set to DBCS
Mixed

D F M N S W X Y
Not converted

36-37 Decimals
Determines the number of
decimal positions in the
converted part. If specified,
sets data type to Numeric.

38 Usage
I B Enabled

M P Not converted

O Read-only, Enabled

H Converted if the field is a
subfile field

39-41 Location
Determines the position of
the part on the window

45-80 Keywords
Constant

Creates a static text part

Display File Keywords
The following list describes how display file keywords are converted to parts.
Options used with these keywords can determine whether or not the
keywords are converted.

CFnn, CAnn
These keywords are converted to push buttons that have a label
identical to the name of the keyword.

CHOICE
See MLTCHCFLD and SNGCHCFLD.

Chapter 9. Reusing iSeries Applications 241

CNTFLD
The CNTFLD keyword is converted to a multiline edit part.

COLOR
The COLOR keyword determines the foreground color attribute of the
part. If there is more than one COLOR keyword, the last one is used.

COMP
The COMP keyword is used to set the comparison attributes in the
part’s properties notebook.

DATE The DATE keyword is converted to a static text part.

DFT The text associated with DFT becomes the label for the part.
v If the field that is being converted is a constant field, the DFT value

is used on the label.
v If the field that is being converted is specified on a named field, the

DFT keyword value is converted to the default text of the part.

DFTVAL
The DFTVAL keyword value is converted to the default value of the
part.

DSPATR
If the DSPATR display attribute is:
v HI, the foreground color is made brighter.
v ND, the converted field is set to not visible.
v PR, the converted field is set to disabled.

Any other display attributes are not converted.

HELP The HELP keyword is converted to a push button with the label
HELP. The help function is not converted.

MLTCHCFLD
If the MLTCHCFLD keyword is used inside a PULLDOWN record,
each CHOICE keyword associated with it is converted to a menu item
part on a submenu part. The converted menu item part has a check
mark next to it to indicate that it is active.

If the MLTCHCFLD keyword is used outside a PULLDOWN record,
each CHOICE keyword associated with it is converted to a check box
part. Check boxes are positioned horizontally with the same default
space between them. They are not grouped.

MNUBAR
The MNUBAR record format is converted to a menu part.

MNUBARCHC
Each MNUBARCHC is converted to a menu item.

242 Programming with VisualAge RPG

PRINT
The PRINT keyword is converted to a push button with the label
PRINT. The print function is not converted.

PSHBTNCHC, PSHBTNFLD
The PSHBTNFLD is converted to a push button part. The text
associated with the PSHBTNCHC keyword is converted to the label
on a push button part.

PULLDOWN
The PULLDOWN record format is used with the MNUBAR record
format to create a submenu part. The PULLDOWN record format is
converted to the menu item parts for the MNUBAR record format that
it references.

RANGE
The RANGE keyword is converted to the range attribute for the part.

SFL, SFLCTL
These record formats are converted to a subfile part.

SFLPAG
Influences the initial height of the subfile part.

SNGCHCFLD
If the SNGCHCFLD keyword is used inside a PULLDOWN record,
each CHOICE keyword associated with it is converted to a menu item
part on a submenu part.

If the SNGCHCFLD keyword is used outside a PULLDOWN record,
each CHOICE keyword associated with it is converted to a radio
button part. The radio buttons are arranged horizontally with the
same default space between them. They are not grouped.

SYSNAME
The SYSNAME keyword is converted to a static text part.

TIME The TIME keyword is converted to a static text part.

USER The USER keyword is converted to a static text part.

VALUES
The VALUES keyword causes the field to be converted to a
drop-down combination box part. The values associated with the
VALUES keyword are used on the drop-down list.

WDWTITLE
The WDWTITLE keyword is used to determine the label and
attributes for a window with canvas part.
v If the title text is assigned to a program-to-system field, it is not

converted.

Chapter 9. Reusing iSeries Applications 243

v If the title text is assigned to a literal field, the label for the window
with canvas part is set to this text.

WINDOW
The WINDOW definition record format is converted to a window
with canvas part. The WINDOW reference record format is converted
to a group of parts that you can drop onto a window with canvas.

No other keywords are converted.

Converting Color
Character-based computer screen entry fields are converted to entry field
parts that are color-coded.

Note: Not all displays support these colors. On VGA displays, for example,
the converted entry fields will be white.

The color of each converted entry field depends on the type and attributes
defined in the display file:

Table 7. Original and Converted Field Attributes

Field Type Field Attributes GUI Attributes

I/O* ReadOnly: Off
Enabled: On
Color: Light Yellow

Output ReadOnly: On
Enabled: On
Color: Light Green

Input ReadOnly: Off
Enabled: On
Color: Light Blue

Input or I/O Protected ReadOnly: Off
Enabled: Off
Color: Light Red

Input or I/O Inhibited keyboard ReadOnly: On
Enabled: On
Color: Medium Red

Input or I/O Inhibited keyboard
Protected

ReadOnly: On
Enabled: Off
Color: Deep Pink

Note: I/O = Input and output

The color-coding allows you to visually determine the attributes that are set
for the entry field part. For example, if a light-green entry field is displayed,

244 Programming with VisualAge RPG

you know that it is used by the program to display data and cannot receive
user input. If a light-red entry field is displayed, you know that it can receive
user input, but that it is not enabled because it was a protected field in the
original application.

Reusing UIM Help

You can reuse the iSeries 400 help that was written using User Interface
Manager (UIM) even though VisualAge RPG help files are written using the
Information Presentation Facility (IPF). Both UIM and IPF formats use
General Markup Language (GML) principles and are highly inter-changeable.
For detailed information about using IPF, see Information Presentation Facility
Guide and Reference(available online). You should also see the online document
entitled IPF Restrictions. This document provides details on the subset of IPF
tags that you are restricted to in a Windows environment.

To reuse UIM help files:
1. Use the editor to copy and paste the members containing the UIM help.
2. Change the UIM tags to the appropriate IPF tags.

The following sections compare some of the UIM and IPF tags.

UIM and IPF functions that use the same tags
There are functions in UIM and IPF that are equivalent and are tagged exactly
the same way. In these cases you can use your UIM tags verbatim.

Table 8. Identical UIM and IPF Tags

UIM Tag Tag Function IPF Tag

:DL. Definition List :dl.

:FIG. Figure :fig.

:HP1. Highlighted Phrase :hp1.

:HP2. Highlighted Phrase :hp2.

:HP3. Highlighted Phrase :hp3.

:HP4. Highlighted Phrase :hp4.

:HP5. Highlighted Phrase :hp5.

:HP6. Highlighted Phrase :hp6.

:HP7. Highlighted Phrase :hp7.

:HP8. Highlighted Phrase :hp8.

:HP9. Highlighted Phrase :hp9.

:LINES. Lines :lines.

:LI. List Item :li.

Chapter 9. Reusing iSeries Applications 245

Table 8. Identical UIM and IPF Tags (continued)

UIM Tag Tag Function IPF Tag

:LP. List Part :lp.

:NT. Note :nt.

:OL. Ordered List :ol.

:P. Paragraph :p.

:PARML. Parameter List :parml.

:P Parameter Description :pd.

:PT. Parameter Term :pt.

:SL. Simple List :sl.

:UL. Unordered List :ul.

:XMP. Example :xmp.

&. Ampersand (&) &.

&COLON. Colon (:) &colon.

&period. Period (.) &period.

&SLR. Right slash (/) &slr.

Equivalent UIM and IPF functions that use different tags
There are functions in UIM and IPF that are equivalent but are tagged
differently. In this situation, change the UIM tagging to its equivalent IPF
tagging.

Table 9. Equivalent UIM and IPF Tags

UIM Tag Function IPF Tag

:CIT. Citation :hp5.

:H1. Heading :h2.

:H2. Heading :h3.

:H3. Heading :h4.

:H4. Heading :h5.

:HELP. Heading :help.

:ISCH. Index item :i1.

:ISCHSYN. Index synonym :isyn.

:PK. Programming keyword :hp2.

:PK. with :DEF. Default programming
keyword

:hp7.

:PV. Programming variable :hp5.

246 Programming with VisualAge RPG

UIM Functions with no IPF equivalents
There are functions available in UIM that are not available in IPF. In this
situation, either delete the function or find another way to implement the
function using IPF tagging.

Table 10. UIM Tags with No IPF Equivalents

UIM Tag Function Suggested IPF Substitutions

:HP0. No highlighting Use no :hpn tag around the text.

:PC. Paragraph continuation Use no tag. Continue with the text of the
paragraph.

:RT. Reverse text Use a different type of highlighting using
a :hpn tag.

:XH1. Extended help heading There is no extended help in IPF. Use a
:link. tag to create a hypertext link to
another help window (:h1.) where you
provide extended help.

:XH2. Extended help heading There is no extended help in IPF. Use a
:link. tag to create a hypertext link to
another help window (:h1.) where you
provide extended help.

:XH3. Extended help heading There is no extended help in IPF. Use a
:link. tag to create a hypertext link to
another help window (:h1.) where you
provide extended help.

:XH4. Extended help heading There is no extended help in IPF. Use a
:link. tag to create a hypertext link to
another help window (:h1.) where you
provide extended help.

Reusing RPG Source

To reuse RPG source code on a server:
1. If the source code is not RPG IV syntax, convert it to RPG IV syntax using

the ILE RPG conversion tool (CVTRPGSRC) on the server.
2. Use the editor to copy and paste the members containing the RPG source

and commonly used subroutines.
3. The syntax checker highlights any operation codes that are not supported

by the compiler. See VisualAge RPG Language Reference for a description of
the supported operation codes.

Note: In addition to differences between operation codes, there are a
number of other differences between the RPG IV language and the
VisualAge RPG compiler you must be aware of prior to reusing

Chapter 9. Reusing iSeries Applications 247

RPG source. For a description of the differences between the RPG
IV language and the VisualAge RPG language, see VisualAge RPG
Language Reference.

248 Programming with VisualAge RPG

Part 4. Advanced Topics
Chapter 10, “Debugging Your Application” on page 251

Describes how to debug an application.

Chapter 11, “Editing Output” on page 265
Describes how to format output.

Chapter 12, “Using Picture, Sound, and Video Files” on page 269
Describes the use of picture and sound files in your application.

Chapter 13, “Tips for Creating Online Help with IPF” on page 271
Describes how to create and use online help in your application.

Chapter 14, “Tips for Creating and Using Windows Help” on page 275
Describes how to create and use Windows help in your application.

Chapter 15, “Tips for Creating JavaHelp” on page 281
Describes how to create and use JavaHelp in your application.

Chapter 16, “Working with Messages” on page 287
Describes how to create and use message files in your application.

Chapter 17, “Communicating Between Objects” on page 293
Describes how to communicate between objects in your application.

Chapter 20, “Creating and Running VisualAge RPG Applets” on page 327
Describes how to create and run Java applets.

Chapter 18, “Calling Java Methods from VisualAge RPG Programs” on
page 311

Describes how to call Java methods.

Chapter 19, “Considerations When Compiling for Java” on page 321
Describes RPG source restrictions, possible required source changes,
and runtime differences for Java applications.

Chapter 21, “Calling System Functions when Compiling for Java” on
page 335

Describes how to call external procedures through the Java Native
Interface.

Chapter 22, “Creating Non-GUI VisualAge RPG Programs” on page 417
Describes how to create non GUI applications.

Chapter 23, “DBCS Considerations” on page 425
Describes how to prepare your application for translation.

Chapter 24, “Merging Code in Your Application” on page 429
Describes how to merge pieces of code into your application.

© Copyright IBM Corp. 1994, 2002 249

|
|

250 Programming with VisualAge RPG

Chapter 10. Debugging Your Application

The debugger provided with VisualAge RPG helps you detect and diagnose
any errors in your application. It can be used to debug multiple-language
applications. You can:
v Manage execution of applications and DLLs
v Set and control breakpoints
v Display and modify program states by using storage, registers, variables,

and call stack windows.

This section illustrates some of these features using a VisualAge RPG
program.

To debug Java code generated by VARPG, you need Windows NT and the
Distributed Debugger.

Starting the Debugger

To start the debugger, select the Debug menu item from the Project menu.
Two windows appear. The Debug Session Control window and the
VisualAge RPG Source window. Figure 39 on page 252 illustrates these two
windows.

© Copyright IBM Corp. 1994, 2002 251

When the debugger starts, it searches for the VisualAge RPG source member
and then displays it in the Source window. Once the source is displayed, you
can perform debugging tasks.

Note: The current position of the executing program is indicated by a
highlighted line number. Here, the first line of the source member is
highlighted.

Displaying the Assembly Code

If the debugger does not find the VisualAge RPG source, it loads the program
and displays the assembly source code instead of the VisualAge RPG source
code. The window that is displayed is similar to the one displayed in
Figure 40 on page 253.

Figure 39. The VisualAge RPG Source and Debug Session Control Windows

252 Programming with VisualAge RPG

To correct this problem, make sure that the VisualAge RPG source code (.VPG
file) resides on your workstation.

Loading the DLL Occurrence

If the assembly source code is displayed, it means that the VisualAge RPG
source member cannot be found. To resolve this, select Set load occurrence
from the Breakpoints pull-down menu. The load occurrence breakpoint
window is displayed (Figure 41 on page 254). From this window, you can load
the DLL occurrence. Type the following information, and then select OK:
application_name.DLL

This returns you to the debug session. When the assembly source view is
displayed again, press the R key to resume execution of the program. When
the DLL is loaded, the system displays a message and the name of your
application is displayed in the control window. You can now click on the
application to get the source to display. If the source does not display this
means you have lost or deleted the source.

Figure 40. The Disassembly Window.

Chapter 10. Debugging Your Application 253

If your application uses the START opcode to start another component, you
will have to use this procedure to load the other component DLL. This will
allow you to set breakpoints within the other components.

Entering Debug Startup Information

If the executable file cannot be located, the debugger displays a window
similar to the one in Figure 42 below. You can re-enter the program name and
parameters on this window.

Setting a Breakpoint

You can control how your program executes by setting breakpoints. A
breakpoint stops the execution of your program at a specific location or when
a specific event occurs. To set a breakpoint, move the cursor to the line
number that you would like to break at and double-click mouse button 1. The
debugger highlights the line number with a red mark. You can repeat this

Figure 41. Setting the Load Occurrence Breakpoint.

Figure 42. Startup Information.

254 Programming with VisualAge RPG

process as many times to mark all the necessary lines that you would like to
break at. Figure 43 illustrates the way the screen looks with several
breakpoints set. You can view all of your breakpoints in the Breakpoints List
window.

Select Breakpoints>List to display this window. The following information is
also provided for each breakpoint:
v The enablement state
v The type of breakpoint
v The position of the breakpoint
v The condition under which the breakpoint is activated

Figure 43. Setting Several Breakpoints.

Chapter 10. Debugging Your Application 255

Running with Breakpoints

Pressing the R key causes the program to run. It stops at the first breakpoint
that it encounters. When the debugger encounters a breakpoint, it stops and
highlights the entire line as shown in Figure 45 on page 257 below. This
indicates the position where the executing program has paused.

Figure 44. The Breakpoints List Window.

256 Programming with VisualAge RPG

Using the Mouse or Keyboard to Start Debug Functions

Most debug functions can be started using the mouse or keyboard. For
example, to set a breakpoint location, you double-click mouse button 1 on a
line number. The same thing can be accomplished by selecting Line from the
Breakpoints pull-down menu. When you select Line, the Line Breakpoint
window is displayed. You must then enter the line number. When you enter
the line number and press Enter, the line you selected is highlighted with red.

Figure 45. Running with Breakpoints.

Chapter 10. Debugging Your Application 257

You can also resume execution of the program in different ways. Do any of
the following:
v Press the letter R
v Move the mouse to the Run pull-down menu, then select Run
v Move the mouse to the run icon on the tool bar and single-click mouse

button 1

Selecting Options from the Tool Bar

The following table lists all the options available on the tool bar and briefly
explains each one.

Icon Function

Step over
Executes the current (highlighted) line in the program, but does not
enter any called function.

Figure 46. The Line Breakpoints Window.

Figure 47. Tool Bar Options.

258 Programming with VisualAge RPG

Step into
Executes the current (highlighted) line in the program and enters any
called program or function.

Step debug
Executes the current (highlighted) line in the program. The debugger
steps over any function for which debug information is not available,
and steps into any function for which debugging information is
available.

Step return
Automatically executes the lines of code up to, and including, the
return statement of the current function.

Run Begins execution of the program at the current (highlighted) line.

Halt Stops execution of the program.

Views Toggles to the next view.

Monitor expression
Displays a variable or expression in a monitor window.

Call stack
Views the active functions of a thread’s call stack.

Registers
Displays the threads registers in the register window.

Storage
Displays the contents of storage in the storage window.

Breakpoints
Lists all the breakpoints that have been set.

Debug session control
Displays the debug session control window.

Displaying and Changing Variables, Arrays, and Structures

Displaying a variable, array or other valid VisualAge RPG structure while
debugging is a commonly used function. The easiest way to do this is to
move the mouse to any specification where fields are allowed and
double-click mouse button 1. For example, move the mouse to the
conditioning indicator, factor 1, factor 2, result field, and/or the resulting
indicators and double-click. This causes the specification’s contents to be
displayed.

Note: If the variable is an operand for the EVAL operation code, select the
variable you want to display by highlighting it with the mouse, then
double-click.

Chapter 10. Debugging Your Application 259

If the field or structure you would like to display or change is in view, then
the simplest way to display its content is to use the mouse and double-click it.
However, if you are dealing with a large program, and you cannot locate a
certain variable or structure easily, then Monitor expression from the
Monitors pull down menu (Note that pressing Ctrl-M accomplishes the same
thing).

On the Monitor Expression window, as shown in Figure 48, type the
expression, field or structure that you would like to display, then press Enter.

After you press Enter, the VisualAge RPG field or structure is displayed in the
Program Monitor window, as shown in Figure 49 on page 261.

Figure 48. The Monitor Expression Window.

260 Programming with VisualAge RPG

Changing the Contents of a Field or Structure

Once you display a field or a VisualAge RPG structure, you can change its
contents. To do this, double-click on the value in the Program Monitor
window, type the new value, then press Enter.

Changing the Representation

The debugger allows you to change the representation for any displayed
variable on the program monitor. Representation types can be decimal,
hexadecimal, binary, or string; any valid representation for that variable or
structure. To do this, select a variable in the Program Monitor window. Then
select a representation from the Edit>Representation menu. The contents of
the variable is now displayed in the representation you selected.

Changing the Default Representation

Variables have default representation types. For example, a character field
would be displayed in the Program Monitor window as characters, not
hexadecimal. The debugger allows you to alter this behavior. You have the
option of setting the default representation for each data type. To change the

Figure 49. The Program Monitor Window.

Chapter 10. Debugging Your Application 261

default representation for a field, select Options>Debugger settings>Default
data representation>System. The Default Data Representation window is
displayed.

Displaying Pointers and Storage

One of the data types supported by VisualAge RPG is pointers. Figure 50
illustrates an example of displaying a pointer value by using the Storage
window. Select Monitor>Storage to display the Storage window.

Figure 50. Displaying a Pointer Value.

262 Programming with VisualAge RPG

Changing the Debugger Views

Most of the examples in this section illustrate the VisualAge RPG Source view.
The debugger also displays other views: disassembly and mixed view. To
change views, select an option from the View menu, as shown in Figure 51.

Figure 51. Changing the Debug Views.

Chapter 10. Debugging Your Application 263

Setting Fonts

There are many options available in the debugger that allow you to customize
your debug session. For example, you can set your fonts. Figure 52 displays
the font window. To display the font window, select Options>Window
settings>Fonts. In the font window, select the desired font, style, and size,
then select OK. The font changes display in your debugging session.

Figure 52. Setting fonts.

264 Programming with VisualAge RPG

Chapter 11. Editing Output

The compiler supports editing capabilities that determine how data is
formatted when it is displayed in entry field and static text parts. To edit the
output, you can set edit codes or edit words in the properties notebook for
these parts.

Edit codes let you format data according to predefined formats, while edit
words let you define your own formatting. You can specify either an edit code
or an edit word for a part: you cannot specify both.

Edit codes and edit words can be specified only for numeric entry field and
numeric static text parts.

When data from a formatted entry field is read into your program, the
compiler strips all editing characters before returning the data to your
program.

Note: Edit code entries on the control specification in your application are
ignored; they have no effect on the output of these edit codes.

Edit Codes

Several edit codes are supported to format the data into predefined formats.
These formats insert the proper thousand and decimal separators, and
determine how a negative number is displayed by providing a fixed or
floating minus sign or the CR (Credit) symbol.

You can optionally specify asterisk protection or floating currency symbol
with the edit codes. If you specify asterisk protection, an asterisk is displayed
with each zero that is suppressed. If you specify floating currency symbol, the
symbol appears to the left of the first significant digit. The symbol does not
display on a zero balance when an edit code is used that suppresses the zero
balance.

The actual characters to be used for the thousand and decimal separators and
currency symbol are determined by the operating system when the
application is run.

© Copyright IBM Corp. 1994, 2002 265

The following table summarizes the supported edit codes and the editing they
provide, and provides examples.

Note: The compiler does not support user-defined edit codes. User-defined
edit codes are defined and stored on the server, and are not available to
VisualAge RPG programs.

Table 11. VisualAge RPG Edit Codes

Edit
Code

Com-
mas

Deci-
mal
Point

Sign for
Negative
Balance

Positive
Number
Example

Negative
Number
Example

Zero
balance

none No Yes Yes 0123456789 0123456789-

1 Yes Yes No Sign 124,567.89 124,567.89 .00

2 Yes Yes No Sign 124,567.89 124,567.89

3 No Yes No Sign 124567.89 124567.89 .00

4 No Yes No Sign 124567.89 124567.89

A Yes Yes CR 124,567.89 124,567.89CR .00

B Yes Yes CR 124,567.89 124,567.89CR

C No Yes CR 124567.89 124567.89CR .00

D No Yes CR 124567.89 124567.89CR

J Yes Yes -(minus) 124,567.89 124,567.89- .00

K Yes Yes -(minus) 124,567.89 124,567.89-

L No Yes -(minus) 124567.89 124567.89- .00

M No Yes -(minus) 124567.89 124567.89-

N Yes Yes -(floating minus) 124,567.89 -124,567.89 .00

O Yes Yes -(floating minus) 124,567.89 -124,567.89

P No Yes -(floating minus) 124567.89 -124567.89 .00

Q No Yes -(floating minus) 124567.89 -124567.89

Y (2.) 1984-12-25

Z
(3.)

No No No Sign 1234567 1234567

Notes:

1. All edit codes suppress leading zeros
2. The Y edit code is used to date fields. The date field should be defined as

a numeric field. The output of this edit code is in the form nnnn-nn-nn.
This format cannot be changed. The date separator character is determined
by the operating system when the application is run.

3. The Z edit code removes the + or − sign.

266 Programming with VisualAge RPG

Edit Words

You can use edit words if none of the supplied edit codes meets your editing
requirements. An edit word is a template that is applied to your data before it
is placed in the part. With edit words you can specify:
v Suppression of leading zeros
v Leading asterisks
v The fixed/floating currency symbol
v The position of thousands and decimal separators.

Note: When you use edit words, make sure that you specify the currency,
decimal, and thousands symbols correctly. If the symbols do not match
the edit word, you will get improperly formatted output but no
runtime error. These symbols are replaced by the runtime operating
system values when the application is run.

Parts of an Edit Word
An edit word consists of the body, the status and the expansion. These parts
are shown in the following example:

x x x , x x $ 0 . x x & C R * x T O T A L
| || || |
|-------------body--------------||-status-||----expansion-----|

where BLANK = x
CURRENCY SYMBOL = $
THOUSAND SEPARATOR = ,
DECIMAL SYMBOL = .

Body of an edit word
The body is the space for the digits that are transferred from the data field to
the part. It begins at the farthest left position of the edit word. It contains a
number of blanks plus one zero or asterisk, the total equals the number of
digits in the data field to be edited.

The following characters have special meaning when used in the body of an
edit word:

Blank A blank is replaced with the digit from the corresponding position of
the data field.

Ampersand
An ampersand causes a blank in the edited display.

Zero A zero stops zero suppression. The zero is itself a digit position. Any
zeros in the data field to the right of the stop-zero-suppression
character are displayed. Each zero that is suppressed is replaced by a
blank.

Asterisk
An asterisk instead of a zero can be used as a stop-zero-suppression

Chapter 11. Editing Output 267

character. This is called asterisk protection, and each zero that is
suppressed is replaced by an asterisk. Any asterisks or zeros to the
right of the stop-zero-suppression character are constants, and will be
displayed as-is.

Currency Symbol
If you code a currency symbol immediately to the left of the
stop-zero-suppression character, a currency symbol is inserted in the
position to the left of the first significant digit. It is called a floating
currency symbol when it is used in this manner. If you code a
currency symbol in the farthest left position of the edit word, it is
fixed and is displayed in the same location. It is called a fixed
currency symbol.

Thousand Separator and Decimal Separators
Thousand and decimal separators are displayed in the same relative
positions in which they are coded in the edit word. All other
characters are displayed if they are to the right of significant digits in
the edit word. If they are to the left of the high-order significant digit
in the edit word, they are blanked out or replaced by an asterisk if
asterisk protection is being used.

Status of an edit word
The status positions display the sign of the data. The status continues to the
right of the body to either a credit (CR) or minus (-) symbol. These two
symbols display only when the field is negative. An ampersand (&) is used
for displaying a blank.

Expansion of an edit word
The expansion positions are not changed by the edit operations. The
expansion position starts at the first position to the right of the status (or
body, if status is not specified). The expansion cannot contain blanks. If a
blank is required, use an ampersand in the edit word.

268 Programming with VisualAge RPG

Chapter 12. Using Picture, Sound, and Video Files

The animation control, canvas, graphic push button, image, media, and menu
item parts allow you to display images on your windows by specifying a
valid image name in the FileName attribute.

Valid Windows image formats include:

OS/2 and Windows Bitmaps
The file extensions .BMP, .VGA, .BGA, .RLE, .DIB, .RL4, and .RL8 are
recognized as OS/2 or Windows bitmaps.

Icon Format
The .ICO file extension is recognized as an icon file.

CompuServe Graphics Interchange Format
The .GIF file extension is recognized as a GIF file.

ZSoft PC Paintbrush Image File Format
The .PCX file extension is recognized as a Paintbrush file.

Microsoft/Aldus Tagged Image File Format
The .TIF and .TIFF file extensions are recognized as TIFF files.

Truevision Targa/Vista Bitmap
The file extensions .TGA, .VST, and .AFI are recognized as
Targa/Vista files. This class only supports 8 bit-per-plane and 24
bit-per-plane images.

Amiga IFF/ILBM Interleaved Bitmap Format
The file extensions .IFF and .LBM are recognized as interleaved
bitmap files.

X Windows Bitmap
The .XBM file extension is recognized as a X Bitmap file. This class
supports X10 and X11 1bpp bitmaps. Some .XBM files with text
strings inside look to be sprites or icons and are not supported.

IBM Printer Page Segment
The following file extensions .PSE, .PSEG, .PSEG38PP and .PSEG3820
are recognized as PSEG files. PSEG files are used to include image
data in BookMaster documents. PSEG files only contain 1
bit-per-plane, which is always ink on paper, that is, black on white.

Valid Java image formats include:
v CompuServe Graphics Interchange Format (GIF)
v Joint Photographic Experts Group format (JPG, JPEG)

© Copyright IBM Corp. 1994, 2002 269

In addition, you can add sound and video by using the media part, which
supports WAV, .MID, .MPG, .MOV, .DAT, and .AVI files.

When developing a VisualAge RPG application that includes pictures, sound,
or video, avoid hard coding the FileName attribute for the parts. The user
will probably install your application in a different directory than the one in
which it was developed.

To be sure that these files are found at run time, use the Current directory
string (·\): a dot and a backslash followed by the file name. At run time, the
file is found in the current directory from which the application is run.

For example, in the properties notebook for a graphic push button, specify the
following as the file name for an icon named EXIT.ICO, so that it will be
found at run time in the current directory.

.\\EXIT.ICO

Note: For applications running in Windows, the current directory must be
specified in the AUTOEXEC.BAT file.

During build time, you must copy your picture files to the build-time
directory to access these files.

Before packaging your application for distribution, copy all associated picture
and sound files to the appropriate runtime subdirectory (RT_JAVA or
RT_WIN32) of your project, because it is this directory that is packaged and
distributed to users. See Part 5, “Distributing Your Application” on page 465
for instructions on packaging your application.

Creating Icons for Windows

If you have VisualAge for C++ for Windows, you can use the Resource
Workshop utility to create Windows icons.

Converting OS/2 Icons to Windows Format

VisualAge RPG includes a utility program to convert OS/2 icons and bitmaps
into Windows versions. For details on this utility and its parameters, go to a
DOS prompt and type IBMPCNV -H.

270 Programming with VisualAge RPG

Chapter 13. Tips for Creating Online Help with IPF

The Information Presentation Facility (IPF) lets you create and manage online
help files for your application. You can also use IPF to create tutorials and
online documentation. With VisualAge RPG, the online help that you create
will be native Windows help.

This section introduces IPF, and gives you some tips for creating online help
for your application. For detailed information about using IPF, see Information
Presentation Facility Guide and Reference(available online). You should also see
the online document entitled IPF Restrictions. This document provides details
on the subset of IPF tags that you are restricted to in a Windows environment.

You can reuse UIM help source from an iSeries/400 server, as well. See
“Reusing UIM Help” on page 245.

Creating Online Help

To add online help for a part in your application:
1. Display the part’s pop-up menu.
2. Choose Help text. An edit session opens.
3. Type the contextual help text for the part.
4. Tag the help text using the IPF tag language.
5. Save the help by choosing Save from the File menu.

Using IPF

The source for VisualAge RPG application help modules is in IPF format. IPF
enables you to create online information, specify how it will appear on the
screen, connect various parts of the information, and provide help information
that can be requested by the user. IPF features include:
v A tagging language that formats text, provides ways to connect information

units, and customizes windows
v A compiler that creates online documents and help windows
v A viewing program that displays formatted online documents

Supporting Help for Other Languages

You can copy and manually edit the .VPF file using any text editor. Do not,
however, do either of the following:
v Modify or remove the number that appears after the res= text. That number

is the resource identifier, and it is generated by the GUI Designer when you
create the help for a part. The resource identifier is used to locate the

© Copyright IBM Corp. 1994, 2002 271

appropriate help text. If you delete or change a resource identifier, the help
text pertaining to it will not be located.

v Remove the heading information. You can replace the heading information
with the translated text.

Adding Graphics to Your Online Help

Use the :artwork. tag to imbed graphics inside the source files, as required.
The graphics must be in bitmap format (.BMP files).

Deciding What Type of Help to Provide

Users can access help in three different ways within your VisualAge RPG
application:

Context-sensitive help
Help information that is adapted to the current context of a choice or
part. A user accesses this help by pressing F1 when a choice or part is
in focus. You can provide this help via the part’s pop-up menu.

Window-level help
Information about the purpose of a window. A user accesses this help
by pressing on a help push button. You can provide this help by
creating a Help push button and adding the associated help
information.

Task help
Information about tasks the user can perform with your application. A
user accesses this help by hypertext linking to other help information
from within a help panel. You can supply this information by creating
online information and creating a hypertext link to it from the
window-level or context-sensitive help. A hypertext link allows a user
to jump from one help panel to another, or from selected text within a
help panel to related information.

ToolTip help
Hover help style information about the tools that are available for use.
To create this help, go to the ’general’ page of a part’s properties
notebook and type a description of the tool (up to 15 characters) in
the entry field. You can also use a message identifier, for example
*MSG0001, to specify the help text.

Adding Context-Sensitive Help
To add context-sensitive help for a part, select Help text from the part’s
pop-up menu. This starts an edit session that contains information similar to
that shown in Figure 53 on page 273.

272 Programming with VisualAge RPG

The :h1 res=01· is a resource identifier that is automatically generated. Do
not edit this text. Type a heading after this tag that identifies the purpose of
the help panel, and type the help text after the :p. tag.

Creating a Help Push Button
To create a Help push button, select a push button from the parts palette with
the right mouse button, move the mouse pointer onto the design window, and
right-click again. Select Help text from the push button’s pop-up menu to edit
the help information. Set the Help Enable attribute for that push button, and
set the Label attribute to the word Help.

Creating Hypertext Links
To link related pieces of help information so that your users can find the
appropriate information quickly and easily, use a link tag in your help text.
You can create links to a help panel using a resid or a refid.

For linking to help panel defined with a id=:
:link reftype=hd refid=search.Search window:elink.

For linking to help panel defined with a res=:
:link reftype=hd res=15433.Search push button:elink.

:h1 res=01.PSB0000C
:p.Help

Figure 53. Edit session for adding online help

Chapter 13. Tips for Creating Online Help with IPF 273

274 Programming with VisualAge RPG

Chapter 14. Tips for Creating and Using Windows Help

One of the features of VisualAge RPG is the ability to create cursor-sensitive
help for your applications. You create the help by right clicking the mouse on
a part in the design window and choosing Help text. This starts the editor.
You write the help text using the Information Presentation Facility (IPF) tag
language. During the build process, the help source is compiled to create the
HLP file. The IPF tag language results in a help file with a distinctive OS/2
look. This section explains how you can create true Windows help for your
application.

What you Need

You need two tools to create a Windows help file:
v A word processor capable of saving files in Rich Text Format (RTF) format
v The Windows help compiler

The help compiler uses a help source file saved in RTF as input. Several word
processors, including Lotus WordPro, Microsoft Word, and WordPerfect are
capable of saving files in RTF format. Note that the Windows WordPad editor
can save files in RTF format. However, this particular RTF format cannot be
used to create help files. It does not retain many of the formatting options
required by the help compiler to create a help file.

The Help Compiler Workshop is a tool available from Microsoft that consists
of an IDE for managing your help files, as well as the help compiler. It can be
downloaded from the Microsoft help compiler FTP at URL:

ftp://ftp.microsoft.com/softlib/mslfiles/hcwsetup.exe

There are many tools on the market available, commercially and as shareware,
that provide complete help authoring environments.In addition, there a
several books available that describe how to use the Help Compiler
workshop. Many of these books include a CD-ROM with the help compiler
workshop, such as the Microsoft Windows 95 Help Authoring Kit
ISBN1-55615-892-0.

Steps to creating Windows help

The basic steps to follow to use Windows help in your application are:
1. Establish the resource id for each part that will have help.
2. Write the help text.
3. Create the help project file.

© Copyright IBM Corp. 1994, 2002 275

4. Compile the help file.

Establishing the Resource ID

Every part, such as an entry field, push button, or window, has an identifier
assigned to it usually referred to as a resource ID. VisualAge RPG assigns
resource IDs for you and they cannot be changed. To see the resource ID for a
part, right-click on the part in the design window. Select Properties to show
its properties notebook. The resource Id is the number at the top of the
General page. In the following example, it is the number 12 next to the Part
ID:

During the build process, VisualAge RPG generates a resource ID table entry
for each part that you have created help for using the Help text menu item
from the part’s popup menu. The Windows help engine uses this table to
determine the resource ID for a part so it can display the correct help. You
must create the help text for each part in this way for the part to have
Windows help. Currently, VisualAge RPG does not create this table entry
automatically for you. If you do follow this process, no help is displayed and
no error message is generated.

Writing the Help Text

Before writing the help, you need to know a few Windows help terms. The
following files are needed before you can create a Windows help file (HLP
extension):

Topic file
This file contains your help text. Your help project can consist of one
or more topic files. Topic files contain one or more topics. You create
the topic file with your word processor and save it in RTF format
(RTF extension).

Project file
The project file contains information about your help file. It contains
such things as which topic files are to be included. The project file is
maintained by the Help Workshop IDE. Typically, you do not modify
it directly.

Figure 54. Displaying the Resource ID

276 Programming with VisualAge RPG

Contents file
If you want a Contents tab when the help file is displayed, you must
have a contents file. The Contents file is also created and maintained
by the Help Workshop IDE.

The following example outlines the basic steps for creating a topic file with
one topic. It has the help text for the entry field part. Lotus WordPro is used
to create the topic file. When the new document is opened in your word
processor, type a title at the top of the page such as Help for Entry Field.
Following the title, type the body of the help text.

Each topic must have a topic ID. A topic ID is a footnote with the # symbol.

Here are the steps for creating the required footnote in WordPro. Follow the
steps in your word processor for creating footnotes with the # symbol:
1. Position the cursor just before the topic heading.
2. Select Create-Footnote/EndNote...
3. On the Footnotes dialog press OK.
4. The cursor will be positioned at the bottom of the document in the

footnote section.
5. Type the topic Id: HelpForEF.
6. Position the cursor at the beginning of the topic Id.
7. Right click the mouse and select Text properties from the pop-up menu.
8. On the Properties dialog, select the Bullet and number tab.
9. Check the Edit on page checkbox.

10. Type a # character before the topic Id.
11. Close the Text properties dialog.

Your document should look similar to the following. The data following the
line is the footnote:

#Help for Entry field

This is help for the entry field part.

more stuff ...

__

#HelpForEF

You can have several topics in a single topic file. Each topic must begin on a
new page. Once you complete typing the help text, save your topic file in RTF
format.

Chapter 14. Tips for Creating and Using Windows Help 277

Creating the Help Project File

Following are the basic steps to create a minimum project file. Start the
Microsoft Help Workshop and do the following:
1. Create a new project file by choosing File-New and select New project. A

new project is created.
2. Press the Files push button.
3. On the Topic files dialog, press Add... and add the topic file you just

created. Press OK to close the Topic Files dialog.
4. Press the Windows push button.
5. On the Window Properties dialog, press Add to display the Add a New

Window Type dialog.
6. Create a window named main, and close all dialogs to return to the Help

Workshop.
7. Map the topic Id(HelpForEF) in the topic file to the resource Id for the

entry field part(12).
8. Press the Map push button.
9. On the Map dialog, press Add.

10. When the Add Map Entry dialog appears, type HelpForEF in the Topic
ID field, and 12 in the Mapped numeric value field. Press OK.

11. Press OK to close the Map dialog.
12. Save and compile the project file. This will create the help (HLP) file.

Copy the new HLP file to the RT_WIN32 directory of the VARPG project.

Compiling the VARPG Program

During the build process, VisualAge RPG creates a HLP file in the RT_WIN32
directory. This will, of course, overwrite the HLP file you just copied. Also, a
RTF file with will be created in the project’s source directory. If you have
saved your topic file here with the same name, it will be overwritten. To
prevent this, open the project’s Build Options properties notebook and go to
the Help file page. Clear the Create RTF Help file check box. Now, VisualAge
RPG will not build the help or create the RTF and HLP files.

Each time you add help to a part, you must recompile the VARPG program.

Testing the Help

Start the VARPG application. When the window appears, tab to the entry field
and press F1. The help should be displayed in a Windows help window.

You can also display the help as What’s this? help. To do this, open the
properties notebook for the window. On the Style page, check the Context
check box. The Minimize and Maximize button check boxes must be cleared.

278 Programming with VisualAge RPG

To have the help displayed in a pop-window rather than a help window,
check the Popup choice.

Creating a Contents File

If you want your help to have a Help Topics dialog box, you need to create a
Contents file. A Contents file is created in the Help Workshop IDE when you
select File-New and New contents file. Name the contents file the same name
as the help file, and save it in the same directory.

Chapter 14. Tips for Creating and Using Windows Help 279

280 Programming with VisualAge RPG

Chapter 15. Tips for Creating JavaHelp

One of the features of VisualAge RPG is the ability to serve context-sensitive
JavaHelp for your VARPG Java applications. (VisualAge RPG currently
supports the JavaHelp 1.1 release.) To build and run VARPG Java applications
that include JavaHelp, you need:
v A basic knowledge of the HTML 3.2 tags.
v JavaHelp metadata files for your application:

– Navigational data - table-of-contents file (TOC)
– HelpSet data - HelpSet and Map files
– HTML topic files

v A copy of the Java 2 Software Development Kit, Standard Edition (J2SDK)
version 1.2, or higher, installed on your workstation. (The J2SDK is
available from Sun at URL http://java.sun.com/products/)

This section summarizes how to create basic, context-sensitive JavaHelp for
your VARPG Java applications. For complete information on the JavaHelp
System, see the JavaHelp System User’s Guide. All JavaHelp documentation is
available with the JavaHelp System, which you can download at URL
http://java.sun.com/products/javahelp.

The following steps summarize how to create and incorporate JavaHelp into
your application:
1. Create a HelpSet:

v Create the HTML topics.
v Create a HelpSet file.
v Create a map file.
v Create a table-of-contents (TOC) file.

Optionally, you can create an index file and a full-text search database.
Refer to the JavaHelp System User’s Guide for details on these topics and
the tools needed to implement search.

v Compress and encapsulate the help files into a JAR file.
2. After creating your JavaHelp with all required files and packaging them in

a JAR file, copy the JAR file to the RT_JAVA subdirectory of your propject.
3. Build and run your project.

The JavaHelp system is file based - topics are contained in files that are
displayed in a suitable viewer, one file at a time. It is a good idea to group
related topics together to keep them organized and to make it as easy as
possible to link the topics together. It is also important to organize topics so

© Copyright IBM Corp. 1994, 2002 281

they can be easily packaged into a compressed JAR for your application. It is
usually best to organize your topics in a folder hierarchy that you can ″tear
off″ and place in the JAR file.

The Video Store Catalog application contains sample JavaHelp files. They are
located in the javahelp and help subdirectories of the WDSC\samples\vidcust
directory. Use these files as templates for developing your own JavaHelp.

Note: In Java, file and folder names are case-sensitive. Type names exactly as
shown in the samples provided.

Creating a HelpSet File

When JavaHelp is started by your application, the first thing it does is read
the HelpSet file. The HelpSet file defines the HelpSet for your application: the
set of data that comprises your help system. The HelpSet file includes the
following information:

Map file
The map file associates topic IDs with the URL or path name of your
HTML topic files.

View information
Describes the navigators used in the HelpSet. The standard navigators
are: table of contents, index, and full-text search.

HelpSet title
The name of the top-level TOC folder.

Home ID
The name of the (default) ID that is displayed when the help viewer
is called without specifying an ID.

The HelpSet file (filename.hs) is coded in Extended Markup Language (XML)
format. The following is an example of a HelpSet file:
<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE helpset

PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 1.0//EN"
"http://java.sun.com/products/javahelp/helpset_1_0.dtd">

<helpset version="1.0">

<!-- title -->
<title>Video Store Catalog - Help</title>

<!-- maps -->
<maps>

<homeID>11</homeID>
<mapref location="Map.jhm"/>

</maps>

282 Programming with VisualAge RPG

<!-- views -->
<view>

<name>TOC</name>
<label>Table Of Contents</label>
<type>javax.help.TOCView</type>
<data>VIDCTOC.xml</data>

</view>

</helpset>

Where:

<title> Names the HelpSet. This corresponds to the title of the help window.

<homeID>
Specifies the name of the (default) ID that is displayed when the help
is called if an ID is not explicitly specified.

<data>
Specifies the path to the data used by the navigator. In our example,
this is the TOC view. The TOC file name is uppercase and the xml
extension is lowercase. The TOC file must exist in your help directory.

Creating the Map File

When your application activates JavaHelp, the first thing it does is read the
application’s HelpSet file. The next thing it does is read the map file listed in
the HelpSet file. The map file associates topic IDs with URLs (paths to HTML
topic files). By convention, map file names include the jhm suffix. The Map
file is in XML format.

Following is an example of a map file:
<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE map

PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"
"http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">
<mapID target="11" url="help/welcome.htm" />
<mapID target="18" url="help/catalog.htm" />
<mapID target="14" url="help/browse.htm" />
<mapID target="15" url="help/new.htm" />
<mapID target="16" url="help/top10.htm" />
<mapID target="17" url="help/search.htm" />

</map>

target Specifies the part ID for the VARPG part. The part ID is automatically
assigned to the part by the GUI Designer. You can retrieve it from the
part’s properties notebook.

Chapter 15. Tips for Creating JavaHelp 283

url Specifies the path to the HTML topic file containing the help text. The
path can be relative or absolute.

Creating the TOC File

The table of contents (TOC) file describes to the TOC navigator the content
and layout of the TOC. The TOC file is in XML format. Following is a small
example of a TOC file:
<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE toc

PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN"
"http://java.sun.com/products/javahelp/toc_1_0.dtd">

<toc version="1.0">
<tocitem text="Video Store Catalog - help">

<tocitem text="Welcome" target="11"/>
<tocitem text="Help" target="22"/>
<tocitem text="Browse" target="14"/>
<tocitem text="New" target="19"/>
<tocitem text="Top 10" target="20"/>
<tocitem text="Search" target="21"/>

</tocitem>
</toc>

Where:

tocitem
The first TOC entry specifies the title for your table of contents. (You
can nest TOC entries within a higher-level entry.)

text Specifies the text to use for subsequent TOC entries.

target Specifies the ID of the HTML topic to display when the user chooses
this entry in the TOC. The ID corresponds to the part ID identified in
the map file.

Creating the JAR File

Once all necessary help files are created, use the jar command to encapsulate
and compress your files. Your jar file name must be as follows:
SOURCE_FILE_NAMEHS

Where the SOURCE_FILE_NAME part is the name specified in the Source file
field on the Save as Application - VisualAge RPG window. The file name
must end with HS and be in uppercase. The jar extension is lowercase.

284 Programming with VisualAge RPG

Issue the command from the top most directory containing your help
hierarchy. For example, if your help directory structure is as follows:
javahelp (directory)

Map.jhm
CATALOG.hs
VIDCTOC.xml

help (subdirectory)
browse.htm
catalog.htm
new.htm
search.htm
top10.htm
welcome.htm

Issue the jar command from the javahelp directory as follows:
jar -cf VIDCUSTHS.jar *.*

Copy the resultant jar file into the RT_JAVA subdirectory for your project.
Build and run the project with the Java option (Build>Java or Run>Java,
respectively.).

Chapter 15. Tips for Creating JavaHelp 285

286 Programming with VisualAge RPG

Chapter 16. Working with Messages

You can create, view, edit, and delete messages for your VARPG application.

You can view and delete existing messages directly from the Define Messages
window. Use the Define Messages window to access the Edit Message
window, from which you can create a new message or modify an existing one.

Messages fall into two groups in VARPG: those that you cannot reference in
your code at run time, and those that you can.

The first group consists of a label-type message that is used to replace a
substitution label; for example, on a push button or a window.

The second group contains four types of messages: Action, Critical,
Information, and Warning. These messages can be displayed on a message
window or in a message subfile part. They can be used to dynamically update
text in your interface at run time; for example, to display installation progress
messages.

Defining Text for Substitution Labels

To associate text with a substitution label:
1. Ensure that you have defined a substitution label on the part. Follow the

procedure described in the online help.
2. Choose Project→Define messages from the GUI Designer. The Define

Messages window opens.
3. Select a label-type message from the list that is displayed.
4. Choose the Edit push button. The Edit Message window opens displaying

the label you selected.
5. In the Message field, type the text to be substituted for the label
6. Select Save to keep your changes, or Cancel (or double click in the

window’s system menu) to discard them.

Note: When sizing a part in the GUI Designer that has a substitution label,
keep in mind that translated text may be longer than the original.

© Copyright IBM Corp. 1994, 2002 287

Creating a New Message

To create a new message:
1. Choose Project→Define messages from the GUI Designer. The Define

Messages window opens.
2. Select Create. The Edit Message window opens.
3. In the Message Alias field, type a string up to 10 characters long. It must

not contain blanks. Your code can use the message alias instead of the
message ID to display the message.

4. Select a message type from the Type drop-down box. There are four
types to choose from:

Message Type
Meaning

Action
Use this type of message for situations in which the user must
take some action to correct the situation or choose an alternative
action.

Critical
Use this type of message for situations in which the user must
take immediate action to correct the situation or choose an
alternative action.

Information
Use this type of message for situations in which you simply want
to inform the user about something; but the user does not have
to perform any action.

Warning
Use this type of message when the user can continue the original
request without modification, but should be aware of the
existence of some situation.

5. Type the message text in the Message field.
6. If you want to provide help for the message, type it in the Message Help

field.
When you create message help and use the DSPLY operation code to
display the message, a Help push button will appear at the bottom of the
message window. When the user clicks on this push button, the help text
will be displayed as additional information.

7. Select the Moveable check box if you want the user to be able to move
the message to the background and continue with other tasks before
taking action with the message.

8. From the Buttons drop-down box, select what combination of push
buttons you want to appear at the bottom of the message window:

Choice Buttons That Will Appear

288 Programming with VisualAge RPG

abortRetryIgnoreButton
Abort, Retry and Ignore

okButton
OK

okCancelButton
OK and Cancel

retryCancelButton
Retry and Cancel

yesNoButton
Yes and No

yesNoCancelButton
Yes, No and Cancel

9. Select a default push button by selecting the Button 1, Button 2, or
Button 3 radio button. When the message window is displayed and the
user presses the Enter key, the action associated with the default push
button is performed.
For example, if you selected enterCancelButton from the Buttons
drop-down and you want the default push button to be Cancel, you
would select the Button 2 radio button.

10. Select Save to keep the message, or Cancel to discard it.

Note: Message identifiers (message IDs) range from MSG0001 to MSG9999,
and are assigned by VisualAge RPG. When all message IDs in the
range are used, VisualAge RPG posts an error when you try to create a
new message, and no new message can be created until you delete one.
After you delete a message, you can create a new message that uses the
ID of the deleted one.

Editing a Message

To edit a message:
1. Select Project→Define messages from the GUI Designer. The Define

Messages window appears.
2. Select a message from the list that is displayed. If you cannot find the

message you want, follow the instructions in “Finding a Message” on
page 290.

3. Choose Edit from the Define Messages window. The Edit Message
window opens, displaying the message you selected.

4. Change the message alias, type, text, help or message window
information.

5. Select Save to keep your changes, or Cancel to discard them.

Chapter 16. Working with Messages 289

Deleting a Message

To delete a message:
1. Choose Project→Define messages from the GUI Designer. The Define

Messages window opens.
2. Select a message from the list that is displayed. If you cannot find the

message you want, follow the instructions in “Finding a Message”.
3. Choose the Delete push button.

Finding a Message

Here are some tips for finding a message:
v If you know what the exact message ID is, use the Sort by Message ID

feature of the Define Messages window. The messages appear in ascending
order of message ID.

v If you know what type of message you are looking for, use the Sort by
Type feature of the Define Messages window. The messages are sorted in
ascending order of message ID within the following groups:
1. Messages you can set at run time:

a. Information
b. Warning
c. Action
d. Critical

2. Messages you cannot set at run time (substitution labels).

You can move through the list of messages using either the arrow keys or the
scroll bars. If the list is long, scrolling is the fastest way to find what you are
looking for.

Using Messages with Logic

It is common practice to display messages in message windows at run time.
Once a message is created, one way to display it is to use the DSPLY
operation code and the message subfile part’s AddMsgID attribute.

For information on the AddMsgID attribute, see the VisualAge RPG Parts
Reference, SC09-2450-05 .

You can use the MSGDATA and MSGNBR keywords on the definition
specification to define messages with substitution variables. A substitution
variable is defined when you create the message by typing a percent (%)
character followed by a numeric value (for example, %1 %2 %3). The
substitution variable is replaced by the corresponding field defined in the

290 Programming with VisualAge RPG

MSGDATA keyword. For example, %1 would be replaced by the first field
defined in MSGDATA, %2 by the second field defined in MSGDATA, and so
on. The MSGNBR keyword must contain an 8-character message identifier; for
example, *MSG0001.

To use message substitution on the DSPLY operation code, define a message
data type on the D specification. For example:
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
*
D notFound M MSGNBR(*MSG0001)
D MSGDATA(cusno: file)
*

The fields CUSNO and FILE are defined elsewhere in the program. Assume
that the message text for message *MSG0001 is:
Customer number %1 was not found in file %2.

To display the message with the DSPLY operation and have substitution done,
code the following on the C specification:
CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq
C notFound DSPLY rc 9 0

For more information on the DSPLY operation code, see the VisualAge RPG
Language Reference, SC09-2451-04.

Translating Message Files

You do not have to recompile your application to incorporate translated
messages.

You can have more than one message file in a runtime directory, by assigning
different file extensions to each. For example, an English version of the
compiled message file could be named SAMPLE.ENG and a German version
could be named SAMPLE.GER. You can instruct the user to rename the
appropriate message file to SAMPLE.MSG before running the application.

Manually Changing Message Files
You can manually edit the ·TXM ASCII file for translation purposes. This file
contains the messages you created for your application. It is created in the
source directory that is specified when the application is created.

An example of the record layout of the file is shown in Figure 55 on page 292.

Chapter 16. Working with Messages 291

Make sure that you edit only the text that appears after the colon (:) in the
record layout.

The first record identifies the message prefix, and the following records each
represent a message in the application.

Each message has a message prefix, MSG; a four-digit identifier or ID number;
and a letter describing the type of message. In our example, message number
1 is an information message, and message number 2 is a warning message.

Do not do any of the following:
v Modify the message ID. Changing message IDs will cause unpredictable

results. Without a message ID, your message cannot be displayed.
v Add a message. The message style will not be defined, and the message

will never display in the Define Messages window.
v Delete a message. The Define Messages window will still display

everything about the message except its message text.

Using Messages as Labels

You can set the label for any part that has a LABEL attribute from the
message text in a message file. Any label with the prefix ‘*MSG’ indicates the
message text from a message file. In the example in Figure 56, the label for the
push button PB1 is set with the text from message number 0001 in the
message file.

If the message number cannot be found in the component message file, then
the application searches the message file indicated by the *component MsgFile
attribute for the message number. If the message number does not exist in
either message file, then the message identifier (in this example, MSG0001)
appears as the label text.

MSG
MSG0001I:The file was saved to your current working directory.
MSG0002W:Another user already has this file open for editing.

Figure 55. Sample record layout for a TXM file

C ’PB1’ SETATR ’*MSG0001’ ’Label’

Figure 56. Dynamically setting a part label from a message file

292 Programming with VisualAge RPG

Chapter 17. Communicating Between Objects

With VisualAge RPG, you can perform various kinds of communications
between objects.

Part to Part
You can link parts in VisualAge RPG so that one part notifies another
that it has changed, and the recipient part issues an event when it is
notified of this change.

VisualAge RPG application to other PWS applications
You can enable your application to exchange information with another
application that supports the DDE protocol. A VisualAge RPG
application can be either the client or the server in the exchange. For
information on the client function, see “DDE Client” on page 85. The
server function is described in this section.

Component to Component
You can enable one component to communicate with another.

You can also use operation codes to do the following:
v Call local functions
v Call local programs
v Start and stop components
v Call remote programs

This section provides helpful tips for each type of communication, and gives
examples.

Linking Parts

The following parts can be linked using VisualAge RPG:
v Check box
v Entry field
v Image
v List box
v Media
v Media panel
v Slider
v Timer

A part that notifies another part when it changes is called the source part, and
the part that is notified of this change is called the target part.

© Copyright IBM Corp. 1994, 2002 293

One way to set up communication between a source part and a target part is
to use the Link page of the source part’s properties notebook. In the fields
provided, type the name of the target part and the name of the window in
which it resides. If you want the target to issue a Link event when it is
notified by the source part, select the Enable notify target check box.

Alternatively, you can set up the communication link by setting the AddLink
attribute and the target in the form WindowName|PartName. If you want the
target to issue a Link event, set the AllowLink attribute to 1. Figure 57 shows
sample code used to link a media panel part, MMP1, to a media part,
AUDIO1.

Note: You can set only one link for a source part in the GUI Designer, but
you can set multiple links in your code.

Using a VisualAge RPG Application as a DDE Server

Any VisualAge RPG application can act as a server in a dynamic data
exchange (DDE) conversation.

Parts that can be a source of a LINK event can produce DDE data. A DDE
client part can obtain data from a component of the same application or a
different application. For more information about the DDE client part, see
“DDE Client” on page 85.

For example, assume that you are building an application called CLIENT. It
consists of a window called WINDOW_C, a DDE client part called
DDECLI_C, and a static text part called STTEXT_C.

Suppose the application needs data from a server application called SERVER.
This server application has a window called WINDOW_S and an entry field
part called ENTRY_S. Whenever the value in the entry field of the server
application is changed, the static text part of the client application is updated
to reflect the change.

To establish a hot link between the client and server applications, you would
specify the following attributes of the DDECLI_C DDE client part in the client
application:

*
C ’MMP1’ SETATR ’WIN2|AUDIO1’ ’AddLink’
C ’MMP1’ SETATR 1 ’AllowLink’
*

Figure 57. Sample code showing one part linked to another

294 Programming with VisualAge RPG

AppName
This is the name of the server application: SERVER.EXE.

Topic
This is the name of the server component, followed by a vertical bar, followed
by the component instance name. For VisualAge RPG, in most cases the
component name is the same as the component instance name, and also the
same as the executable name. For this example, the component name is
SERVER|SERVER.

Item
This is the name of the server part. For VisualAge RPG programs, this is the
window name, followed by a vertical bar, followed by the part name. In this
example, the item attribute value is WINDOW_S|ENTRY_S.

DDEAddLink
This is the name of the client part. It consists of the window name, followed
by a vertical bar, followed by the part name. In this example, the
DDEAddLink attribute is WINDOW_C|STTEXT_C.

DDEMode
Set DDEMode to 1 to begin the conversation and initiate the hot link between
the server and the client. To terminate the conversation, set DDEMode to 2.
This signals the Terminate event to the client application.

Communicating Between Components

Components are projects in VisualAge RPG. They represent one or more
application windows that were created with the GUI Designer. An example is
a window that prompts a user to enter the name of an image file, and then
displays the image. To enable one VisualAge RPG component to communicate
with another, use a component reference part. For more information, see
“Component Reference” on page 75.

Making Local Calls

This section discusses local calls you can make using these operation codes:

Operation Code
Purpose

CALLB
Calls a local function. The function can be in an object code file (OBJ)
or exported from a dynamic link library (DLL).

CALLP
Calls a local program or function (procedure) . The function must be

Chapter 17. Communicating Between Objects 295

exported from a dynamic link library (DLL). For more information,
see “Using Multiple Procedures” on page 305. Using CALLP is
preferable to using CALLB.

START
Starts a new component in the application or calls a local program.

Using the CALLB Operation
Use the CALLB operation code to call a function from your VisualAge RPG
application. If you are linking to an OBJ that was compiled in a language
other than RPG, make sure that the runtime environment for the compiler is
correctly initialized and terminated (see the compiler documentation for more
information).

The following examples illustrate the different ways that you can call a C
function using CALLB. Figure 58 on page 297 contains the sample C function
that is called.

296 Programming with VisualAge RPG

Calling functions using named constants or literals
The following examples illustrate how to call a function using a named
constant or literal:

#include <stdio.h>
*
/*The following two lines are required only if you compile */
/*the OBJ with the IBM C/C++ compiler. These lines */
/*are not required if the function is exported from a DLL. */
int _CRT_init(void);
void _CRT_term(void);
*
/* print the str and age parameters to a file */
void MYFUNC(char *str, int *age) {

FILE *fp;
int j;

*
/*The following line is required only if you compile */
/*the OBJ with the IBM C/C++ compiler. This line */
/*is not required if the function is exported from a DLL. */

_CRT_init();
*
fp=fopen("myfunc.log", "a");
*
/* print the character data to a file*/
for (j=0; j<10; ++j) {

fprintf(fp, "%c", str[j]);
}
*
/* if an age is given, print the age */
if (age == NULL) {

fprintf(fp, "no age is given\n");
} else {

fprintf(fp, "num = %d\n", *age);
}
*
fclose(fp);
*

/*The following line is required only if you compile */
/*the OBJ with the IBM C/C++ compiler. This line */
/*is not required if the function is exported from a DLL. */

_CRT_term();
}

Figure 58. Sample C function, MYFUNC

Chapter 17. Communicating Between Objects 297

Calling functions using a procedure pointer
The following example illustrates how to call a function using a procedure
pointer. If a procedure pointer is used with CALLB, then the *ROUTINE field
in the program status data structure (PSDS) is not updated with the name of
the function being called. The field is set to blanks.

DConst1 C CONST(’MYFUNC’)
Dwilma s 80a inz(’mydata’)
Dage s 9b 0 inz(32)
*
*
C *inzsr begsr
c***
c*********** *** CALLB in VRPG with a PLIST *** ******************
c***
C myplist plist
C parm wilma
C parm age
C CALLB Const1 myplist
C seton lr
C endsr

Figure 59. Calling functions using a named constant

*
Dwilma s 80a inz(’mydata’)
Dage s 9b 0 inz(32)
C *inzsr begsr
C callb ’MYFUNC’
C parm wilma
C parm age
C seton lr
C endsr

Figure 60. Calling library functions using a literal

*
Dp2 s * procptr inz(%paddr(’MYFUNC’))
Dwilma s 80a inz(’mydata’)
Dage s 9b 0 inz(32)
C *inzsr begsr
C callb p2
C parm wilma
C parm age
C seton lr
C endsr

Figure 61. Calling functions using a procedure pointer

298 Programming with VisualAge RPG

Calling functions without the required parameters
The following example illustrates how to call a function with less than the
required number of parameters. Use the *OMIT parameter which maps to a
NULL pointer.

Calling Local Programs using CALLP
Use CALLP to make calls to local programs synchronously. This means that
the called program completes execution before the VisualAge RPG statement
following CALLP is executed.

Each program that you call using CALLP requires a prototype. The prototype
defines the system name of the called program and the number and types of
parameters that the program is expecting. Specify this prototype using the PR
type definition specification. This specification consists of:

Columns
Description

6 D

7-21 Name of the program to be used in the VisualAge RPG program

24-25 PR

44-80 keyword

Use the CLTPGM keyword with the system name of the program as a
parameter.

If the program expects parameters, use one definition specification for each
parameter immediately after the PR definition specification. These definition
specifications should consist of the name, length, and type of parameter.
Specify the precision of numeric parameters. Always specify the VALUE
keyword. You can also specify the ASC, DATFMT, DESC, DIM, LIKE, NOOPT,
OPTIONS, and TIMFMT keywords on your parameter definitions.

*
Dp2 s * procptr inz(%paddr(’MYFUNC’))
Dwilma s 80a inz(’mydata’)
Dage s 9b 0 inz(32)
C *inzsr begsr
C callb p2
C parm wilma
C parm *OMIT
C seton lr
C endsr

Figure 62. Calling functions without the required parameters

Chapter 17. Communicating Between Objects 299

Figure 63 defines pgm1 to VisualAge RPG. One parameter can be passed to
the program.

In Figure 64, the CALLP operation code calls pgm1 with parameters f1d1 and
22.4.

For more information on procedures, see “Using Multiple Procedures” on
page 305.

Calling Local Programs using START
When you use the START operation code to call a program, VisualAge RPG
does not wait for the called program to finish executing, but makes the call
and then continues. From that point on, the called program executes
independently of the VisualAge RPG program that called it.

When using START, you do not have to prototype local programs.

F2 can be a character literal, a named constant, or a variable name.

If F2 is a character literal, it is assumed to be a component. If it is a constant
name and you specify LINKAGE(*CLIENT) on the definition of the constant,
it is assumed to be a local program. See Figure 65.

If F2 is a variable name, it is assumed to be the component name unless you
define the variable on a definition specification with LINKAGE(*CLIENT)

D pgm1 PR CLTPGM(’testprog’)
D parm1 20A VALUE

Figure 63. Specifying definition specification parameters when calling local programs

C CALLP pgml(f1d1:22·4)

Figure 64. Calling a local program using CALLP

D test1 C ’component’
D test2 C ’testprog’ LINKAGE(*CLIENT)
*
*To start a component:
C START ’xxx’
*
*To start a component:
C START test1
*
*Starts local program testprog.exe:
C START test2

Figure 65. Example using START to call local programs

300 Programming with VisualAge RPG

|

specified. Any variable defined in this way can be used like any other RPG
field. In Figure 66, the first START operation code will attempt to start a
component, and the second START operation code will attempt to start a local
program.

START can still have a PLIST specified in the result field, or it can be followed
by a list of PARMS. These PARMS are passed to the component or local
program.

Restrictions for CALLP and START
Note these restrictions when using CALLP and START operation codes with
local programs:
v The PATH environment variable is used to find the local program if the

program name is not specified with a full path name.
v The program can normally have a maximum of 20 parameters. In some

cases, this maximum is less than 20 because the command string must not
exceed 1024 bytes. (The command string consists of the program name and
the parameters converted to characters.)

v Pointers and procedure pointers are not allowed as parameters. Everything
must be passed by value.

v When you use START with an error indicator to call local programs, the
error indicator is set to ON if the local program cannot be started.

v LINKAGE(*SERVER) is not valid with the START operation code.
v When specifying the name of a program to call, include the extension if it is

other than EXE. If you do not provide an extension, EXE is assumed. For
example,

CLTPGM(’superc2’)
Calls SUPERC2.EXE

CLTPGM(’rexxpgm’)
Calls REXXPGM.EXE

CLTPGM(’rexxpgm.cmd’)
Calls REXXPGM.CMD

This applies when specifying the program name as a named constant for
START, or when passing the program name as a variable.

D name1 S 20A
D name2 S 20A LINKAGE(*CLIENT)
*
C START name1
C START name2

Figure 66. Defining variable names for the START operation code

Chapter 17. Communicating Between Objects 301

Starting Components using START
Use the START operation code to start a new component in the application,
and the STOP operation code to terminate its execution. For a detailed
description of the syntax for these two operation codes, see VisualAge RPG
Language Reference.

The following section describes the behavior of START and STOP with your
application’s components.

Starting a Component
The START operation code starts a new component in the application. When
the operation is performed, both the starting and the started components,
together with any other active components in the application, are ready to
receive user actions on all the parts currently enabled by all the components.

The START operation code is similar to the CALL operation code in the
following ways:
v Parameters can be passed to a component.
v Parameters are mapped to the parameters in the *ENTRY PLIST of the

target component.
v In the source component, factor 2 of the PARM operation code is copied to

the result field of the same PARM operation code. When control returns to
the source component, the result field is copied to factor 1.

v In the target component, the result field is copied to factor 1. When control
returns to the source component, factor 2 is copied to the result field if the
target component completes a successful startup.

v No checks or conversions are performed on the parameters.

The START operation code is different from the CALL operation code in the
following ways:
v The terms called and calling are used with the CALL operation code. A

called program is a program whose execution is requested by another
program. A calling program is a program that requests the execution of
another program. With the START operation code, the terms target (called)
and source (calling) are used.

v CALL invokes a program, executes it, then returns back to the calling
program with factor 1, factor 2, and the result field copied as described
above. START initializes a component, executes its *INZSR, and returns to
the source component with factor 1, factor 2, and the result field copied as
described above. The difference is that with the START operation code,
factor 2 in the target program is copied to the result field at the end of the
*INZSR (if *INZSR is successful), not at the end of the program.

v Once the START operation has finished initializing the target component,
the action subroutine in the source component continues executing, and the
target component remains active with its action subroutines enabled to
receive events.

302 Programming with VisualAge RPG

v Since parameters are passed by address, any parameters that are passed can
be accessed by both the source and target components after the initial
START has ended. This means that both the source and target components
can continue to share information using the parameter fields.

Terminating a Component
The STOP operation code terminates the execution of a component. If you do
not specify the component name in factor 2, the component that is currently
running is terminated. When a component is terminated, any child
components that it may have started are terminated first.

When a STOP operation is performed that affects the currently executing
component, operations following the STOP are not executed. In other words,
the result of a STOP is immediate. For example, if COMPA starts COMPB, and
COMPB is the component that is currently executing and it issues a STOP for
COMPA, COMPB terminates first, followed by COMPA. No operations
following the STOP are performed.

Terminating a component with a STOP is considered normal termination, and
the *TERMSR is invoked for any final user processing.

Calling Remote Programs

This section discusses how your VisualAge RPG application can call an iSeries
400 program, and how an RPG application running on an iSeries 400 server
can call a VisualAge RPG application.

Calling iSeries 400 Programs
Before your application can call an iSeries server program, you must set up
the server.

The name of the called program can be either the iSeries server program
name (optionally library-qualified) or an override name. You can define the
program override using the Program page of the Define iSeries Information
notebook. See “Notebook Considerations” on page 216 for information about
what happens if the notebook pages do not contain an override name for the
data area.

Table 12 and Figure 67 on page 304 illustrate how to call an iSeries program
using an override name. The program in Figure 67 on page 304 calls
MYLIB/LOOKUP on SERVER01.

Table 12. Enter this information on the Program page

Program override name: REMPGM

Remote program name: MYLIB/LOOKUP

Chapter 17. Communicating Between Objects 303

Table 12. Enter this information on the Program page (continued)

Server alias name: SERVER01

Note: If the program on the iSeries server contains a workstation file, it will
fail when the system attempts to open it. Since the remote call
command is done through the DDM server, the display device is
unknown to workstation data management. A technique you can use is
to create the workstation file on the iSeries server with the Display
Device value set to the name of the session (OMXxxxx) and set the
Maximum Number of Devices parameter to a value greater than 1. This
will allow parameters to be passed to the iSeries server program. Do
not try to explicitly acquire the session with an ACQ statement. This
will cause a conflict to occur which results in an error. You still cannot

* *
* Program ID . . : rcallex.vpg *
* *
* Description . : Code segment to call a remote program on the *
* AS/400. *
* *

*
* REMPGM is the remote program alias name
D as400pgm S 6A INZ(’REMPGM’) LINKAGE(*SERVER)
* The following variables are parameters that are passed to the
* remote program
* student_id - input
* name - output
D student_id S 6S 0 INZ(32533)
D name S 20A

* *
* Window . . : WIN1 *
* *
* Part . . . : PSB0000C *
* *
* Event . . : PRESS *
* *
* Description: Call a remote program on the AS/400 to get the name *
* of the person associated with a student id. *
* *

*
C PSB0000C BEGACT PRESS WIN1
C CALL as400pgm
C PARM student_id
C PARM name
C ENDACT

Figure 67. Calling an iSeries 400 program

304 Programming with VisualAge RPG

acquire any 5250 emulator display device on your workstation, because
it will result in a deadlock that can only be ended by rebooting the
workstation.

Starting Workstation Programs from the iSeries server
If you have an RPG application running on the server and would like to start
a VisualAge RPG application on a Windows workstation, use the STRPCCMD
command.

Using Multiple Procedures

The ability to code more than one procedure greatly enhances your ability to
code a modular application.

A VisualAge RPG program consists of one or more modules. A procedure is
any piece of code that can be called with a bound call. VisualAge RPG has
two kinds of procedures: a main procedure and a subprocedure. A main
procedure is a procedure that can be specified as the program entry procedure
and receives control when it is first called. Note that a main procedure is only
produced when creating an EXE.

A subprocedure is a procedure that is specified after the main source section.
A subprocedure differs from a main procedure primarily in that:
v Names that are defined within subprocedure are not accessible outside the

subprocedure.
v The call interface must be prototyped.
v Calls to subprocedures must be bound procedure calls.
v Only P, D, and C specifications can be used.

Subprocedures can provide independence from other procedures because the
data items are local. Local data items are normally stored in automatic
storage, which means that the value of a local variable is not preserved
between calls to the procedure.

Subprocedures offer another feature. You can pass parameters to a
subprocedure by value, and you can call a subprocedure in an expression to
return a value.

Prototyped Calls
To call a subprocedure, you must use a prototyped call. You can also call any
program or procedure that is written in any language by using a prototyped
call. A prototyped call is one where the call interface is checked at compile
time through the use of a prototype. A prototype is a definition of the call
interface. It includes the following information:
v Whether the call is bound (procedure) or dynamic (program)
v How to find the program or procedure (the external name)

Chapter 17. Communicating Between Objects 305

v The number and nature of the parameters
v Which parameters must be passed, and which are optionally passed
v The data type of the return value, if any (for a procedure)

The prototype is used by the compiler to call the program or procedure
correctly, and to ensure that the caller passes the correct parameters. Figure 68
shows a prototype for a procedure FmtCust, which formats various fields of a
record into readable form. It has two output parameters.

To produce the formatted output fields, FmtCust calls a procedure
NumToChar. NumToChar has a numeric input parameter that is passed by
value, and returns a character field. Figure 69 shows the prototype for
NumToChar.

If the program or procedure is prototyped, you call it with CALLP or within
an expression if you want to use the return value. You pass parameters in a
list that follows the name of the prototype, for example, name (parm1 : parm2 :
...).

Figure 70 shows a call to FmtCust. Note that the names of the parameters,
shown in Figure 68, do not match those in the call statement. The parameter
names in a prototype are for documentation purposes only. The prototype
serves to describe the attributes of the call interface. The actual definition of
call parameters takes place inside the procedure itself.

Using prototyped calls you can call (with the same syntax):

* Prototype for procedure FmtCust (Note the PR on definition
* specification.) It has two parameters.
D FmtCust PR
D Name 100A
D Address 100A

Figure 68. Prototype for FmtCust Procedure

* Prototype for procedure NumToChar
* The returned value is a character field of length 31.
D NumToChar PR 31A
* The input parameter is packed with 30 digits and 0 decimal
* positions, passed by value.
D NUMPARM 30P 0 VALUE

Figure 69. Prototype for NumToChar Procedure

C CALLP FmtCust(RPTNAME : RPTADDR)

Figure 70. Calling the FmtCust Procedure

306 Programming with VisualAge RPG

v Programs that are on the system at run time
v Exported procedures in other modules
v Subprocedures in the same module

In order to format the name and address properly, FmtCust calls NumToChar
to convert the customer number to a character field. Because FmtCust wants
to use the return value, the call to NumToChar is made within an expression.
Figure 71 shows the call.

The use of procedures to return values, as in the above figure, allows you to
write any user-defined function you require. In addition, the use of a
prototyped call interface opens up a number of options for parameter passing.
v Prototyped parameters can be passed in several ways: by reference, by

value (for procedures only), or by read-only reference. The default method
for RPG is to pass by reference. However, passing by value or by read-only
reference gives you more options for passing parameters.

v If the prototype indicates that it is allowed for a given parameter, you may
be able to do one or more of the following:
– Pass *OMIT
– Leave out a parameter entirely
– Pass a shorter parameter than is specified (for character and graphic

parameters, and for array parameters)

Procedure Considerations
v You cannot define return values for a main procedure. Parameters must be

passed by value.
v A main procedure is only contained within an EXE. you specify that its

parameters be passed by value.
v Any of the calculation operations may be coded in a subprocedure.

However, all files must be defined globally, so all input and output
specifications must be defined in the main source section. Similarly, all data
areas must be defined in the main procedure, although they can be used in
a subprocedure.

v The control specification can only be coded in the main source section since
it controls the entire module.

v A subprocedure can be called recursively. Each recursive call causes a new
invocation of the procedure to be placed on the call stack. The new

*--
* CUSTNAME and CUSTNUM are formatted to look like this:
* A&P Electronics (Customer number 157)
*--

C EVAL Name = CUSTNAME + ’ ’
C + ’(Customer number ’
C + %trimr(NumToChar(CUSTNUM)) + ’)’

Figure 71. Calling the NumToChar Procedure

Chapter 17. Communicating Between Objects 307

invocation has new storage for all data items in automatic storage, and that
storage is unavailable to other invocations because it is local. (A data item
that is defined in a subprocedure uses automatic storage unless the STATIC
keyword is specified for the definition.)
The automatic storage that is associated with earlier invocations is
unaffected by later invocations. All invocations share the same static
storage, so later invocations can affect the value held by a variable in static
storage.

v Exception handling within a subprocedure differs from that in a main
procedure primarily because there is no default exception handler for
subprocedures. Situations where the default handler would be called for a
main procedure result in the abnormal end of the subprocedure.

v VisualAge RPG procedure names are in uppercase. When calling these
procedures, make sure that the case matches that of the procedure.

Procedure Implications
As a programmer, you have the have the option of producing three possible
target objects:
v A VisualAge RPG DLL (contains GUI operation codes)
v A utility DLL which contains only RPG subprocedures that do not include

any GUI operation codes
v An RPG EXE which does not contain any GUI operation codes.

VisualAge RPG DLL Considerations
v VisualAge RPG DLL subprocedures are not externalized.

These subprocedures are designated as internal only by the compiler. Entry
points are not externalized to other modules. Any attempt to link to these
subprocedures will cause the link step to fail.

v The EXPORT keyword is not allowed on procedure specifications, since
procedures cannot be exported from VisualAge RPG DLLs.

Utility DLL Considerations
This DLL is built when the keyword NOMAIN is provided on the control
specification.

The compiler will produce both a DLL and LIB file as a result of the
compilation. The LIB file will contain all the procedures that have the
EXPORT keyword on their Begin P-specification. The LIB file allows you to
link to the subprocedures that the DLL contains.
v The DLL consists of procedures only.

All subroutines (BEGSR) must be local to a procedure.
v There are no GUI operation codes allowed in the source.

This includes START, STOP, SETATR, GETATR, %SETATR, %GETATR,
SHOWWIN, CLSWIN and READS. DSPLY can be used, but if the
procedure containing it is called from a VisualAge RPG DLL, then the
DSPLY operation code does nothing.

308 Programming with VisualAge RPG

v *inzsr and *termsr are not permitted.
v *ENTRY parms are not permitted.
v Exception handling differs from the VisualAge RPG DLL in the following

way:
– No information about the exception is communicated back to the caller if

the caller does not reside in the utility DLL.
– The recommended way for a user to handle exceptions in a utility DLL

is to have an error indicator, or a local *PSSR for each routine which
returns an appropriate return code to the caller.

– The default exception handler is never invoked from a utility DLL, since
the default exception handler is not invoked when an exception occurs in
a procedure. If an exception occurs in the utility DLL and there is no
error indicator or *PSSR, an exit() is performed and information about
the exception is written to the FVDCERRS.LOG file.

EXE Considerations
v An EXE is built when the keyword EXE is provided on the control

specification.
v The EXE consists of procedures only.

All subroutines (BEGSR) must be local to a procedure. The EXE must
contain a procedure whose name matches the name of the source file. This
will be the main entry point for the EXE (i.e. the main procedure).

v There are no GUI operation codes allowed in the source.
This includes START, STOP, SETATR, GETATR, %SETATR, %GETATR,
SHOWWIN, CLSWIN and READS. DSPLY can be used.

v *inzsr and *termsr are not permitted.
v *ENTRY parms are not permitted.

If there are entry parameters, they are specified on the parameter definition
for the main procedure, and they must be passed in by VALUE (the VALUE
keyword must be specified for each parameter).

v The EXPORT keyword is not allowed on the Begin P specification.
v Exception handling differs from the VRPG DLL. The default exception

handler is never invoked from an EXE. If an exception occurs in the EXE,
and there is no error indicator or *PSSR, an exit() is performed and
information about the exception is written to the FVDCERRS.LOG file.

Chapter 17. Communicating Between Objects 309

310 Programming with VisualAge RPG

Chapter 18. Calling Java Methods from VisualAge RPG
Programs

This section describes how to call Java methods from VARPG programs that
have been converted to Java source code, and the additions to the VARPG
language to support this. In order to call Java methods, the VARPG compiler
needs the following information:
v The name of the method
v The class that contains the method
v The class of the returned object if the method returns an object
v Whether or not the method is a static method
v The data types of the parameters passed to the method

In addition, if the method is not a static method, then an object must be
instantiated in order to call the method. If the method returns an object, then
the compiler must have somewhere to store that object. If the method accepts
an object as a parameter, then there must be some way to create that object.

These requirements have led to the following additions to the VARPG
language:
v The Object data type
v The CLASS keyword
v Extension of the EXTPROC keyword

The Object Data Type and CLASS Keyword

Fields that can store objects are declared using the O data type. To declare a
field of type O, code O in column 40 of the D-specification and use the
CLASS keyword to provide the class of the object. The CLASS keyword
accepts two parameters:
CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. Class_name specifies the class of
the object. It must be a character literal, and the class name must be fully
qualified. The class name is case sensitive.

For example, to declare a field that will hold an object of type BigDecimal:
D bdnum S O CLASS(*JAVA:’java.math.BigDecimal’)

To declare a field that will hold an object of type String:
D string S O CLASS(*JAVA:’java.lang.String’)

© Copyright IBM Corp. 1994, 2002 311

Note that both class names are fully qualified and that their case exactly
matches that of the java class.

Fields of type O cannot be defined as subfields of data structures. It is
possible to have arrays of type O fields, but tables of type O are not allowed
because they have to be preloaded at run time.

The following keywords cannot be used with the CLASS keyword:
ALIGN, ALT, ASCEND, BASED, BUTTON, CLTPGM, CONST, CTDATA, DATFMT,
DESCEND, DTAARA, EXTFLD, EXTFMT, EXTNAME, FROMFILE, INZ, LINKAGE,
MSGDATA, MSGNBR, MSGTEXT, MSGTITLE, NOOPT, NOWAIT, OCCURS, OPTIONS,
OVERLAY, PACKEVEN, PERRCD, PREFIX, PROCPTR, STYLE, TIMFMT, TOFILE,
VALUE, VARYING

Prototyping a Java Method

Like subprocedures, Java methods must be prototyped in order to call them
correctly. The VARPG compiler must know the name of the method, the class
it belongs to, the data types of the parameters and the data type of the
returned value (if any), and whether or not the method is a static method.

The extended EXTPROC keyword can be used to specify the name of the
method and the class it belongs to. When prototyping a Java method, the
expected format of the EXTPROC keyword is:
EXTPROC(*JAVA:class_name:method_name | *JAVARPG:class_name:method_name)

*JAVARPG identifies the method as a VARPG-generated Java method. *JAVA
identifies the method as a Java method that was generated from code
originally written in Java, and not VARPG-generated. This distinction is
important because methods generated from *JAVARPG will allow certain data
types to be passed by reference that normally cannot be passed by reference
in Java. This allows the same source code to be used when targetting
Windows and when generating Java source code.

Both the class name and the method name must be character literals. The class
name must be a fully qualified Java class name and is case sensitive. The
method name must be the name of the method to be called, and is case
sensitive.

The extended form of the EXTPROC keyword can only be used when calling
Java methods. If targeting Windows, using this form of the EXTPROC
keyword will result in a compiler error.

The data types of the parameters and the returned value of the method are
specified in the same way as they are when prototyping a subprocedure. The
only twist on this is that the data types actually map to Java data types. The

312 Programming with VisualAge RPG

compiler maps VARPG data types to Java data types as follows:

Java Data Type VARPG Data Type

char[] graphic or unicode

boolean indicator (N)

byte[] alpha (A of any length)

byte integer (3I)

int integer (10I)

short integer (5I)

long integer (20I)

float float (4F)

double float (8F)

any object object (O)

Zoned, Packed, Binary, and Unsigned data types are not available in Java. If
you pass a Zoned, Packed, Binary, or Unsigned field as a parameter, the
compiler will do the appropriate conversion, but this will most likely result in
truncation and/or loss of precision.

If the method you are calling is a VARPG-generated method, meaning that
*JAVARPG has been specified as the first parameter of the EXTPROC
keyword, then Packed, Zoned, Binary, and Unsigned data types can be
specified as the data type of parameters and returned values. Methods
generated from code originally written in Java cannot use Packed, Zoned,
Binary, and Unsigned data types on the prototype for parameters or return
values.

When calling a method, the compiler will accept arrays as parameters if the
parameter is prototyped using the DIM keyword. Otherwise, only scalar
fields, data structures, and tables will be accepted.

Currently, you cannot call methods which expect the following Java data
types or which return values of these types: byte, char, and long

If the return value of a method is an object, then you must provide the class
of the object by coding the CLASS keyword on the prototype. The class name
specified will be that of the object being returned. Use the EXTPROC keyword
to specify the class of the method being called.

If the method being called is a static method, then you must be specify the
STATIC keyword on the prototype.

Chapter 18. Calling Java Methods from VisualAge RPG Programs 313

In Java, the following data types can only be passed by value:
byte
int
short
long
float
double

Parameters of these types must have the VALUE keyword specified for them
on the prototype.

If the method you are calling is a VARPG-generated method, meaning that
*JAVARPG has been specified as the first parameter of the EXTPROC
keyword, then these data types can be passed by reference and the VALUE
keyword is not required.

Note that objects can only be passed by reference. The VALUE keyword
cannot be specified with type O. Since arrays are seen by Java as objects,
parameters mapping to arrays must also be passed by reference. This includes
byte arrays.

Examples of Prototyping Java Methods
This section presents some examples of prototyping Java methods.

Example 1
The Java Integer class contains a static method called toString, which accepts
an int parameter, and returns a String object. It is declared in Java as follows:
String Integer.toString(int)

This method would be prototyped as follows:
D tostring PR O EXTPROC(*JAVA:
D ’java.lang.Integer’:
D ’toString’)
D CLASS(*JAVA:’java.lang.String’)
D STATIC
D num 10I 0 VALUE

The EXTPROC keyword identifies the method as a non VARPG-generated
method. It also indicates that the method name is ’toString’, and that it is
found in class ’java.lang.Integer’.

The O in column 40 and the CLASS keyword tell the compiler that the
method returns an object, and the class of that object is ’java.lang.String’.

The STATIC keyword indicates that the method is a static method, meaning
that an Integer object is not required to call the method.

314 Programming with VisualAge RPG

The data type of the parameter is specified as 10I, which maps to the Java int
data type. Because the parameter is an int, it must be passed by value, and
the VALUE keyword is required.

Example 2
The Java Integer class contains a static method called getInteger, which accepts
String and Integer objects as parameters, and returns an Integer object. Is is
declared in Java as follows:
Integer Integer.getInteger(String, Integer)

This method would be prototyped as follows:
D getint PR O EXTPROC(*JAVA:
D ’java.lang.Integer’:
D ’getInteger’)
D CLASS(*JAVA:’java.lang.Integer’)
D STATIC
D string O CLASS(*JAVA:’java.lang.String’)
D num O CLASS(*JAVA:’java.lang.Integer’)

This method accepts two objects as parameters. O is coded in column 40 of
the D-specification and the CLASS keyword specifies the class of each object
parameter.

Example 3
The Java Integer class contains a method called shortValue, which returns the
short representation of the Integer object used to invoke the method. It is
declared in Java as follows:
short shortValue()

This method would be prototyped as follows:
D shortval PR 5I 0 EXTPROC(*JAVA:
D ’java.lang.Integer’:
D ’shortValue’)

The STATIC keyword is not specified because the method is not a static
method. The method takes no parameters, so none are coded.

The returned value is specified as 5I, which maps to the Java short data type.

Example 4
The Java Integer class contains a method called equals, which accepts an
Object as parameter and returns a boolean. It is declared in Java as follows:
boolean equals(Object)

This method would be prototyped as follows:

Chapter 18. Calling Java Methods from VisualAge RPG Programs 315

D equals PR N EXTPROC(*JAVA:
D ’java.lang.Integer’:
D ’equals’)
D obj O CLASS(*JAVA:’java.lang.Object’)

The returned value is specified as N, which maps to the Java boolean data
type.

Creating Objects

In order to call a non-static method, an object is required. The class of the
object must be the same as the class containing the method. Objects are
instantiated, or created, by calling the class constructor. The class constructor
is not a static method, but it does not require an object to call it. The special
method name *CONSTRUCTOR is used when prototyping a constructor.

For example, in order to construct a BigDecimal object from a float value, the
constructor that expects a float parameter must be called as follows:
BigDecimal(float) returns a new BigDecimal object

The constructor would be prototyped as follows:
D bdcreate PR O EXTPROC(*JAVA:
D ’java.math.BigDecimal’:
D *CONSTRUCTOR)
D CLASS(*JAVA:’java.math.BigDecimal’)
D dnum 4F VALUE

Note that the parameter must be passed by value because it maps to the Java
float data type.

Calling Java Methods

Java methods can be called using existing operation codes CALLP (when no
return value is expected) and EVAL (when a return value is expected). No
new syntax is required.

When calling a static method, an object is not required in order to make the
call. When calling a non-static method, an object is required. The object to be
used must be coded as the first parameter in the call. This parameter is not
specified on the prototype, but is implied for all methods that are not static.
This means that whenever a method that is not static is called, a minimum of
one parameter must be specified.

Example 1

In this example, the goal is to add two BigDecimal values together. In order to
do this, two BigDecimal objects must be instantiated by calling the constructor

316 Programming with VisualAge RPG

for the BigDecimal class, fields must be declared to store the BigDecimal
objects, and the add() method in the BigDecimal class must be called.
*
* Prototype the BigDecimal constructor that accepts a String
* parameter. It returns a new BigDecimal object.
*
D bdcreate1 PR O EXTPROC(*JAVA:
D ’java.math.BigDecimal’:
D *CONSTRUCTOR)
D CLASS(*JAVA:’java.math.BigDecimal’)
D str O CLASS(*JAVA:’java.lang.String’)
*
* Prototype the BigDecimal constructor that accepts a double
* parameter. 8F maps to the Java double data type and so must
* be passed by VALUE. It returns a BigDecimal object.
*
D bdcreate2 PR O EXTPROC(*JAVA:
D ’java.math.BigDecimal’:
D *CONSTRUCTOR)
D CLASS(*JAVA:’java.math.BigDecimal’)
D double 8F VALUE
*
* Define fields to store the BigDecimal objects.
*
D bdnum1 S O CLASS(*JAVA:’java.math.BigDecimal’)
D bdnum2 S O CLASS(*JAVA:’java.math.BigDecimal’)
*

*
* Since one of the constructors we are using requires a String object,
* we will also need to construct one of those. Prototype the String
* constructor that accepts a byte array as a parameter. It returns
* a String object.
*
D makestring PR O EXTPROC(*JAVA:
D ’java.lang.String’:
D *CONSTRUCTOR)
D CLASS(*JAVA:’java.lang.String’)
D bytes 10A
*
* Define a field to store the String object.
*
D string S O CLASS(*JAVA:’java.lang.String’)
*
* Prototype the BigDecimal add method. It accepts a BigDecimal object
* as a parameter, and returns a BigDecimal object (the sum of the parameter
* and of the BigDecimal object used to make the call).
*
D add PR O EXTPROC(*JAVA:
D ’java.lang.BigDecimal’:
D ’add’)
D CLASS(*JAVA:’java.math.BigDecimal’)
D bd1 O CLASS(*JAVA:’java.math.BigDecimal’)
*
* Define a field to store the sum.
*

Chapter 18. Calling Java Methods from VisualAge RPG Programs 317

D sum S O CLASS(*JAVA:’java.math.BigDecimal’)
D
D double S 8F INZ(1.1)
D fld1 S 10A

Here is the code that does the call.
C MOVEL ’mystring’ fld1 10
C*
C* Call the constructor for the String class, to create a String
C* object from fld1. Since we are calling the constructor, we
C* do not need to pass a String object as the first parameter.
C*
C EVAL string = makestring(fld1)
C*
C* Call the BigDecimal constructor that accepts a String
C* parameter, using the String object we just instantiated.
C*
C EVAL bdnum1 = bdcreate1(string)
C*
C* Call the BigDecimal constructor that accepts a double
C* as a parameter.
C*
C EVAL bdnum2 = bdcreate2(double)
C*
C* Add the two BigDecimal objects together by calling the
C* add method. The prototype indicates that add accepts
C* one parameter, but since add is not a static method, we
C* must also pass a BigDecimal object in order to make the
C* call, and it must be passed as the first parameter.
C* bdnum1 is the object we are using to make the
C* call, and bdnum2 is the parameter.
C*
C EVAL sum = add(bdnum1:bdnum2)
C* sum now contains a BigDecimal object with the value
C* bdnum1 + bdnum2.

Example 2

This example shows how to perform a TRIM in Java by using the trim()
method as an alternative to the VARPG %TRIM built-in function. The trim()
method in the String class is not a static method, so a String object is needed
in order to call it.
*
* Define a field to store the String object we wish to trim
*
D str S O CLASS(*JAVA:’java.lang.String’)
*
* Prototype the constructor for the String class. The
* constructor expects a byte array.
*
D makestring PR O EXTPROC(*JAVA:
D ’java.lang.String’:
D *CONSTRUCTOR)

318 Programming with VisualAge RPG

D CLASS(*JAVA:’java.lang.String’)
D parm 10A
D
*
* Prototype the String method getBytes which converts a String to a byte
* array. We can then store this byte array in an alpha field.
*
D makealpha PR 10A EXTPROC(*JAVA:
D ’java.lang.String’:
D ’getBytes’)
*
* Prototype the String method trim. It doesn’t take any parameters,
* but since it is not a static method, must be called using a String
* object.
*
D trimstring PR O EXTPROC(*JAVA:
D ’java.lang.String’:
D ’trim’)
*
D fld S 10A INZ(’ hello ’)

The call is coded as follows:
C*
C* Call the String constructor
C*
C EVAL str = makestring(fld)
C*
C* Trim the string by calling the String trim() method.
C* We will reuse the str field to store the result.
C*
C EVAL str = trimstring(str)
C*
C* Convert the string back to a byte array and store it
C* in fld.
C*
C EVAL fld = makealpha(str)

Static methods are called in the same way, except that an object is not
required to make a call. If the makealpha() method above was static, the call
would look like:
C EVAL fld = makealpha()

If the method does not return a value, use the CALLP operation code.

Additional Considerations

The compiler will not attempt to resolve classes at compile time. If a class
cannot be located at run time, a runtime error will occur. It will indicate that
an UnresolvedLinkException object was received from the Java environment.

Chapter 18. Calling Java Methods from VisualAge RPG Programs 319

The compiler does no type checking of parameters at compile time. If there is
a conflict between the prototype and the method being called, an error will be
received at run time.

It is very important that *JAVARPG be specified as the first parameter of
EXTPROC if the method being called is a non VARPG-generated method. If
this is not done, it is likely that one of the above two error situations will
occur.

320 Programming with VisualAge RPG

Chapter 19. Considerations When Compiling for Java

This section describes VARPG source restrictions, possible changes required in
your VARPG source, and runtime behaviour diffferences when using the Java
build option to create Java source.

Project File Name Convention

The project file name for a Java application must follow Java naming
conventions. The first character must be alphabetic. If your project’s name is
incorrect, you can use the Rename Project utility to rename it. (Select Rename
project from the pop-up menu of the project’s icon.)

Conditional Compile Directives

Two conditional compiler directives are defined by the compiler to help
maintain a single source file that can be used to create both Windows
components and Java source code. These directives are:
v COMPILE_WINDOWS is defined by the compiler when a Windows build

is requested.
v COMPILE_JAVA will be defined by the compiler when a Java build is

requested.

Since the compiler defines these two names, it is not necessary to define them
using the /DEFINE directive.

Java Source Code Restrictions

The following language elements are not supported when generating Java
source code:

Keywords:
v ALIGN
v EXPROPTS
v STATIC on field definitions. STATIC is supported on Java method

prototypes.

Operation codes:
v ALLOC
v CABxx
v CALLB
v DEALLOC
v DSPLY (only for NOMAIN and EXE; otherwise supported)
v GOTO

© Copyright IBM Corp. 1994, 2002 321

v REALLOC
v TAG

Operation extenders:
v M
v R

Language Elements:
v Embedded SQL

Data types:
v Pointer data type

File types:
v SPECIAL

File operations:
v Writing records by relative record number

Possible VARPG Source Changes

This section summarizes the changes that may be required to your VARPG
source in order to generate the Java source code.
1. The to/from notation must be used when defining subfields of the PSDS

and INFDS in order to allow the compiler to validate the subfield
definitions. The definition of subfields in the INFDS and PSDS must
match the definitions specified in the VARPG Language Reference. A
compile time error will be issued if they do not.

2. There cannot be an unconditional LEAVE or ITER operation as anything
other than the last operation in a loop, otherwise the Java compiler will
issue an error. If there is an unconditional LEAVE or ITER operation in a
loop, all operations occuring after it in the loop should be deleted, as
they will never be executed.

3. When adding and and subtracting date/time/timestamp durations, only
values between maxint (2 147 483 647) and -maxint (-2 147 483 648) can
be used.

4. Because Java does not allow int (10I), short (5I), float (4F), and double
(8F) values to be passed by reference, Java code has to be generated by
VARPG to retain this functionality for subprocedures being converted to
Java. The code generated to accomplish this can cause java compiler
errors when the VARPG source contains subprocedures with multiple
return points and receives integer or float parameters passed by
reference.
Sample code that may cause Java compile errors:

C IF x = 1
C ...
C RETURN 1

322 Programming with VisualAge RPG

C ELSE
C ...
C RETURN 0
C ENDIF

The preceding code should be changed to:
C IF x = 1
C ...
C RETURN 1
C ELSE
C ...
C ENDIF
C RETURN 0

5. The characters ’*’, ’#’, and ’@’ cannot be used in Java identifiers. Because
of this, all occurences of ’*’, ’#’, and ’@’ in VARPG names will be changed
to ’_’. It is possible that this conversion will result in duplicate names.

6. If a COMMIT or ROLBK operation is coded within an application that
has no files, a severity 30 message (RNF7833) will be issued.

7. Due to the way that a local *PSSR is converted to Java, it is not possible
to call a local *PSSR. Also note that since GOTO is not supported, the
only way to leave a local *PSSR and avoid the default handler is to code
a RETURN operation.

8. There is no short circuiting of logical expressions. This means that the
order in which a compound logical expression is executed cannot be
relied upon.

9. Varying length fields are implemented as a class when converting to Java.
This means that they are not stored as documented in the VARPG
Language Reference. Code that depends on them being stored a certain
way will not work.

10. Data structure subfields will not be initialized to blanks if there is no
initial value provided, but will be initialized to a default value depending
on the datatype of the subfield. The default value is 0 for numerics,
blanks for character, and *LOVAL for date, time, and timestamp. Varying
length fields will have their length set to 0.

11. The *HIVAL and *LOVAL values are not allowed for graphic and UCS-2
fields.

12. If a length is specified for a data structure, it must match the total length
of the subfields it contains, otherwise the compiler will issue a severity 30
diagnostic message.

13. Subroutines cannot be defined within subprocedures. The only exception
to this is that a *PSSR can be defined within a subprocedure. Any
subroutines within subprocedures should be moved outside the
subprocedure. If the subroutine accesses local fields within the
subprocedure, then either the fields need to be changed to global fields,
or the subroutine should be changed to a subprocedure that accepts the
local fields as parameters.

14. Unconditional LEAVE statements within DO loops are not supported. A
Java compiler error will occur if this situation exists. Since an

Chapter 19. Considerations When Compiling for Java 323

unconditional LEAVE within a DO loop means that the loop will only
ever be executed once, the LEAVE should be removed and the code
changed to remove the loop operation codes.

15. Using event attributes in fixed compound conditional statements
currently causes Java compile errors. The equivalent free form expression
should be used instead.
Sample code that may cause Java compile errors:

C %mousex IFEQ x
C %mousey ANDEQ y
C ...
C ENDIF

The preceding code should be changed to:
C IF %mousex = x AND
C %mousey = y
C ...
C ENDIF

16. An unconditional RETURN operation cannot be coded unless it is the last
statement in a user subroutine, action subroutine, or subprocedure.
Otherwise, the Java compiler may report errors.

17. An unconditional LEAVESR operation cannot be coded unless it is the
last statement in a user subroutine or action subroutine. Otherwise, the
Java compiler may report errors.

18. SELECT statements can cause Java compile errors when they occur in
subprocedures, contain RETURN operations, and no RETURN is coded
within the main body of the subprocedure.
Sample code that may cause Java compile errors:

C SELECT
C x WHENEQ y
C RETURN 1
C x WHENEQ z
C RETURN 2
C OTHER
C RETURN 0
C ENDSL

The preceding code should be changed to:
C SELECT
C x WHENEQ y
C RETURN 1
C x WHENEQ z
C RETURN 2
C ENDSL
C RETURN 0

In general, a RETURN operation should be coded for all possible code
paths of a subprocedure, otherwise the Java compiler may report errors.

19. Arrays cannot be passed by value to subprocedures.

324 Programming with VisualAge RPG

Runtime Differences

Because of differences between the Windows and Java environments, an
application may run differently under Java than it does under Windows. The
following areas are affected:
1. The %SCAN builtin function will return an integer result. In Windows, it

returns an unsigned result.
2. The truncate numeric build option is unreliable and should not be

depended upon.
3. When an I/O exception occurs, the user will not be given the option to

retry the operation.
4. Data structures are not treated as one large character field when the Java

application is running. This may cause unexpected results if they are
used as such.

5. The format of binary, integer, and unsigned datatypes is handled
differently for local files. When reading and writing local files, the Java
format is assumed, which means that the high order bytes are leftmost,
whereas when running as a Windows application, they are rightmost.

6. Exception handling for subprocedures will behave the same as for action
subroutines. The default error handler will be called if there is no local
*PSSR or INFSR and no error indicator on the operation.

7. If an invalid date, time, or timestamp value is encountered when reading
or writing a field to/from a file, the field will be set to the default value
(*LOVAL). No error is reported.

8. Java can only handle a 3 digit millisecond portion in timestamps. When
doing calculations with timestamps that use all 6 digits of the millisecond
portion (meaning they do not have milliseconds in the form 000xxx), the
results might not be as expected.

9. Intermediate results in expressions are not limited to 30 digits. In fact,
when running in the VARPG environment, no attention is paid to the
precision of intermediate results.

10. Memory cannot be shared between components. If a component is started
by another component via START, changes made to passed parameters
are not reflected across components.

11. Integer overflow or underflow will not be reported. Float overflow or
underflow will be reported as status 9999.

12. If an error occurs while a subprocedure in a NOMAIN or EXE
application is being executed, and there is no error indicator or *PSSR,
then the error will be reported back to the caller and handled by the
caller. When running under Windows, the application would terminate.

13. A status 50 error will never be issued when running Java applications.
Java gives no diagnostic messages for character conversions it cannot
handle. Java may issue a status 100 for an unsuccessful conversion or an
ArrayIndexOutOfBoundsException when the converted string is used.

14. Positioning a host file to Null-Valued Records when ALWNULL(*NO) has
been specified results in CPF5035.

Chapter 19. Considerations When Compiling for Java 325

Applet Restrictions

The following language elements are not supported when running a VARPG
applet and will result in Java errors at run time:
v Printer files
v Local files
v Calling C functions, external subprocedures, EXEs.
v NOMAIN and EXE applications cannot be run as applets.

J2SDK 1.2 Printing Problems

The Java 2 Software Development Kit (J2SDK), version 1.2 or higher, is
currently experiencing problems when text is sent to a printer device. One
workaround for this problem is to run the Java application as follows:

java -Djava2d.font.usePlatformFont=true -ms32m -mx32m <classname>

However, the printed text may not appear as expected. This problem will be
resolved when the existing problem with J2SDK 1.2 is fixed, without requiring
a VARPG update.

326 Programming with VisualAge RPG

Chapter 20. Creating and Running VisualAge RPG Applets

Once you have created a visual interface and the associated VARPG logic on
your workstation, you can build and deploy your application as a Java applet
that runs in any Web browser with an appropriate Java Virtual Machine
(JVM). This gives you the extra flexibility of making your application widely
available over the internet. Many users with browser access to your Web site
can run the applet inside their browser and also communicate with data on
the iSeries server.

This section describes how to build and deploy such VARPG applets.

Creating Applets

Note: In order to build the Java version of a project, the Java 2 Software
Development Kit (J2SDK), version 1.2 or greater, must be installed on
the workstation. The J2SDK is available from Sun Microsystems at URL
http://java.sun.com/products/

To run applets, the international version of the Java 2 Run Time
Environment (J2RE) must be installed.

Applets are Java applications that run inside the context of a Web page. When
a Web page containing an applet is loaded, the applet’s code is downloaded
from the HTTP server to the workstation and the Java applet is started.
Typically, the applet is embedded in the main Web page and runs when the
Web page is displayed in a browser. Teh applet can also be displayed in a
separate window.

There are no special design or development steps required to create VARPG
applets. Designing and coding your VARPG project is the same for applets as
for Windows applications. However, you may want to consider writing thin
clients when targeting as applets to avoid long download times. (See
Appendix B, “Writing Thin Client Applications” on page 487 for more
information.).

There are security restrictions for applets that you should be aware of. These
security restrictions are not VisualAge RPG restrictions, but are part of the
Java language run time specification for applets. Applets cannot:
v Access local resources on the client, such as, the file system and printers

© Copyright IBM Corp. 1994, 2002 327

|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

v Open a socket connection to a different host from the one where the applet
resides. This means that you cannot load an applet from one iSeries 400
server and access files that are on a different server.

You can , however, set up a policy file to relax some of these security
restrictions. See “Using the Security File for Applets” on page 230 and the Java
documentation for more information on setting up policy files.

Use the same steps to design and code your applet as you would to design
and code a typical Windows application . However, be aware of the
restrictions that apply when coding for the Java environment. Once you
complete your applet’s visual interface and the associated VARPG logic, build
the application.

You can control your applet’s build options on the Java: Build options
notebook. Select Project>Build Options>Java from the VisualAge RPG design
window to display the Java Build Options for your project:

Figure 72. Listbox Sample - Java: Build Options Notebook

328 Programming with VisualAge RPG

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

||

|

|

The majority of the settings are simliar to those used for building a Windows
application, with the following exceptions:

SSL Select SSL if you want all TCP/IP connections between your iSeries
server and Java applet or application to be encrypted using Secure
Sockets Layer technology. (See Appendix D, “Secure Sockets Layer
(SSL) Setup” on page 509 for information on SLL setup.)

Java Compiler
VisualAge RPG generates a Java source file (.java) from your project
and relies on an external Java compiler to create the class file (.class)
from the source. If you are not using the IBM or Sun Microsystem’s
Java 2 SDK, then you will need to specify the Java compiler you are
using here.

Options
Pass any command line options you want to the Java compiler.

Applet - Embedded
Determines if your applet is run when the HTML page it is embedded
in is displayed in a Web browser, or if your applet starts in an
external window.

Applet - Directory for HTML and JAR files
You can specify a directory where you want all of the required
runtime files for your applet to be placed. These files are generated
when you build your project for Java. By default, these files are placed
in the project’s source directory on your workstation.

Hint: Map a network drive to your iSeries server and enter the IFS
directory where you would like to deploy the applet from.

Now that you have configured the options for your applet, you are ready to
build the project. From the project’s design window, select
Project>Build>Java. Upon a successful build, the runtime files for the applet
are created in the project’s source directory or the directory specified in the
Directory for HTML and JAR files Java build option.

For example, if you build the Listbox sample to create a Java application and
specify c:\applet\Listbox as the directory to contain the applet’s runtime
files, you should see the following files in this directory:

listbox.htm
listbox_applet.htm
LISTBOX.jar
vapplet.jar

These files are used to deploy your applet from the Web server, as follows:

Chapter 20. Creating and Running VisualAge RPG Applets 329

|
|

||
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

listbox.htm
Launches your applet using the Java Plug-in.

listbox_applet.htm
Checks the user’s workstation for the required VisualAge RPG Java
runtime (varpg.jar) file. If the workstation has the correct version of
the run time, then the browser opens the listbox.htm page. Otherwise,
the user is prompted to download and install the correct runtime file.

LISTBOX.jar
Contains the LISTBOX.class, LISTBOXApplet.class, LISTBOX.ODX,
LISTBOX.RST and any *Resources.properties (if you defined messages
for the application) files used by your project.

vapplet.jar
Contains a small subset of the VisualAge RPG Java run time that is
required on the Web server.

Testing Your Applet

This section describes the set up required for testing your VisualAge RPG
applet.
1. Install the IBM or Sun Microsystem’s Java 2 Runtime Environment (J2RE).

VisualAge RPG generated applets require the international version of the
Java 2 Run Time Environment (J2RE) to execute prorperly. When you
install the IBM or Sun Microsystem’s Java 2 SDK (or JRE), the Java Plug-in
is automatically installed. If you are running on your development
machine, then the J2SDK you installed for developing the applet is
sufficient.

2. Add the VisualAge RPG Java run time (varpg.jar) file to your JRE’s
extension directory.
The VisualAge RPG Java run time file should be copied to each client
machine and added to the local JRE’s extension directory. Typically this is
a subdirectory named jre\lib\ext\. This avoids having to download the
run time from the HTTP server every time an applet is run from the Web
page. The varpg.jar file is located in the JAVA subdirectory under the
WDSC install directory. For example c:\wdsc\java\varpg.jar.

3. Copy your applet’s runtime files to the iSeries IFS directory where you
will be serving the applet from. In the Listbox sample, these files would
be:

listbox.htm
listbox_applet.htm
LISTBOX.jar
vapplet.jar

330 Programming with VisualAge RPG

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

Hint: Map a network drive to your iSeries server and enter the IFS
directory in the Directory for HTML and JAR files Java build option
before you create your applet.

4. Set up the iSeries HTTP server to allow access to the directory containing
your applet.
You will need to start and configure the IBM HTTP Server if you have not
already done so. See HTTP Server for iSeries Webmaster’s Guide for
information on configuring the HTTP server.
Add a PASS statement to your iSeries HTTP configuration file that allows
access to the IFS directory where you placed the applet runtime files. For
this example the applet files are in the IFS directory /applets. So, add the
following PASS statement:
Pass /applets/* /applets/*

5. Run the applet from your Web browser. For example, open your Web
browser with the following URL:
http://Toras14m:999/Listbox.htm

where Toras14m is your iSeries server name, 999 is your HTTP port
number, and Listbox.htm is the Web page containing your applet.

Here is the Listbox applet running inside the Windows browser:

Chapter 20. Creating and Running VisualAge RPG Applets 331

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

Troubleshooting
The following is a list of common configuration problems that can cause
applets not to run:
v The proper J2RE is not installed. Ensure that the Java 2 SDK or

international version of the J2RE is installed along with the Java Plug-in.
v The applet’s required runtime files are not in the correct directory on the

server. The files AppName.htm, AppName_applet.htm, vapplet.jar, and
APPNAME.jar need to be in the directory referenced in the second
parameter to the HTTP server’s Pass statement.

v Java file names are case sensitive. This causes the majority of configuration
issues. Make sure that all .jar files are in the correct case. Windows
Explorer does not always show file names in their actual case. Use the
OS/400 wrklnk command to check the case of the file names stored in the
IFS.

If your applet is still not running, try enabling the Java Plug-in console to see
if any error messages are being displayed. Start the Plug-in control pannel by

Figure 73. Listbox Applet Running inside Internet Explorer

332 Programming with VisualAge RPG

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

selecting Start>Programs>Java Plug-in Control Panel. From the basic tab,
select Show Java Console and click Apply. Close all open Web browser
windows and restart the Web browser for the changes to take affect. The next
time you run the applet, the Java Console window appears with messages.

Running One Applet from Another

You can run one VisualAge RPG-generated applet from another, by modifying
the calling applet’s main .htm file to include the called applet. For example, to
start AppletB from AppletA, modify the AppletA.htm file as follows:
v Find the lines that inlcude APPLETA.jar and varpg.jar. Typically, the

following lines:
<PARAM NAME = "archive" VALUE = "APPLETA.jar , varpg.jar">

...
archive = "APPLETA.jar , varpg.jar"

v Insert , APPLETB.jar between the varpg.jar and closing quotes so the
VALUE and archive values are now:
<PARAM NAME = "archive" VALUE = "APPLETA.jar , varpg.jar , APPLETB.jar">

...
archive = "APPLETA.jar , varpg.jar , APPLETB.jar"

Be sure to include a blank character before and after the comma delimiter.

When you display the AppletA.htm page in your Web browser, it should now
run AppletB, too.

If the called applet (AppletB, in this example), also accesses data on the
server, you need to give each applet permission to read the security file that
resides on the workstation. Otherwise, the user will be prompted to enter a
valid user Id and password each time that AppletB is run. See“Using the
Security File for Applets” on page 230 for more information.

In this example, you need to modify the local policy file by adding the
following lines:

permission java.lang.RuntimePermission "modifyThreadGroup";
permission java.lang.RuntimePermission "modifyThread";

The policy file (java.policy) is located in the Java run time lib\security
subdirectory.

For socket permission, you may need to add a line like the following:
permission java.net.SocketPermission

"server_name:port_number", "connect,resolve";

Chapter 20. Creating and Running VisualAge RPG Applets 333

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|

|
|

|
|

|

|
|

If you need to change the name or location of this policy file, modify the
java.security file in the same directory.

334 Programming with VisualAge RPG

|
|

Chapter 21. Calling System Functions when Compiling for
Java

The VisualAge RPG compiler includes support for calling external procedures
implemented as function entry points in Dynamic Link Libraries (DLLs) on
the Windows platform through the Java Native Interface (JNI). This section
discusses how to use this support.

Refer to the Java Native Interface (JNI) section of the Java 2 Software
Development Kit (J2SDK) documentation as prerequisite reading.

A Simple Call

The first code example shows a simple call to an external procedure with no
parameters and no return value. The simple VisualAge RPG application calls
an external procedure in a sample dynamic link library. The JNI specification
dictates the function name and interface to the native function being called. A
function will be coded and compiled into a new DLL to be the target of the
call. The following samples will only demonstrate native functions coded in
the C language, but the illustrated coding principles apply equally to other
language implementations. Once the native function has control, it is free to
call other native functions, such as system APIs.

Code a procedure prototype for the procedure in VisualAge RPG, specifying
the DLL keyword to provide the name of the DLL which will contain the
native function being called. The EXTPROC keyword may optionally be coded
to specify a function name different from the procedure name within the
VisualAge RPG program.

Note: The value of the EXTPROC keyword is case sensitive. Code a call to the
procedure in the VisualAge RPG source.

© Copyright IBM Corp. 1994, 2002 335

For the Windows platform, the native function is coded to use the StdCall
program linkage. The function is coded as an exported function in the DLL.
The exported function name must match the name dictated by the JNI
specification. The format of the JNI Specification is:
Java_VARPGComponentName_ExternalProcedureName_OverloadedNativeMethods

The full native function names are ’Java_VCOMP1_proc1’ and
″Java_VCOMP1_SUB2’ in this sample. The overloaded native method are not
needed for this sample.

The JNI interface dictates the first two parameters: an interface pointer, and a
this object pointer. Additional parameters correspond to the procedures
declared parameters. The jni.h header file is included in the C language
source program to provide interface definitions. This file is provided with the

**
* Source File: VCOMP1.VPG
*
* Demonstrate calling an external procedure thru JNI.
*
**

* This declares a procedure named ’sub1’ which refers to
* a function named ’proc1’ in a Dynamic Link Library ’VSUB.DLL’

d sub1 pr dll(’VSUB’) extproc(’proc1’)

* Without the EXTPROC keyword
d sub2 pr dll(’VSUB’)

C *INZSR BEGSR

C callp sub1
C callp sub2

c seton lr

C ENDSR

* This action subroutine is linked to a Create event for the Window.
* It causes the component to end after running the INZSR.

C CREATE1 BEGACT
C seton LR
C ENDACT

Figure 74. Sample file VCOMP1.VPG

336 Programming with VisualAge RPG

J2SDK. You may need to update your INCLUDE environment variable in your
C compiler to include the directory containing the C language header files for
J2SDK.

Lastly, the sample C source file is compiled into a DLL.

Passing and Receiving Parameters

The JNI specification passes Java primitive data types directly, but VisualAge
RPG processes all the VARPG data types through classes. This means that
VARPG calls to native functions will always involve passing objects. The JNI
specification provides interface functions for the native function to access the
values of passed objects. Due to the different class methods for each VARPG
data type, each type will be discussed individually.

// Source File: VSUB.C

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting
// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5
// Compile command: icc /q /ss /ge- /fe vsub.dll vsub.c

#include <stdio.h>
#include <string.h>

#include <jni.h>

//---

void _Export __stdcall Java_VCOMP1_proc1(void *je , void *jc)

{

printf(" proc1 called successfully.\n");
}
//---

void _Export __stdcall Java_VCOMP1_SUB2(void *je , void *jc)
{

printf(" SUB2 called successfully.\n");
}

Figure 75. Sample File VSUB.C

Chapter 21. Calling System Functions when Compiling for Java 337

Parameter Types

Character
VisualAge RPG implements character fields as byte arrays in Java including a
character field of length one. The JNI interface function GetByteArrayElements
returns the value of the byte array parameter. The value can be changed and
returned to the calling function through the ReleaseByteArrayElements
interface function.

Note: The value should not be used in the native function after calling the
release function.

The first parameter for the native function in the C language source has been
changed from a void pointer to a JNIEnv pointer. It points to a table of
function pointers for JNI interface functions. The prototyped parameters for
the external procedure are added to the native function’s parameters, after the
two standard JNI pointers. The character parameters are declared as
jbyteArray types in the native function.

The GetByteArrayElements interface function is used to obtain the value of
the Java byte array for the VARPG character field.

The obtained value can be changed and returned to the Java caller with the
ReleaseByteArrayElements interface function.

The obtained value should not be accessed after releasing it.

Note: It is possible the value obtained is the actual value in the Java object,
and not a copy in memory. The changes made to it might be reflected
in the Java caller even without calling the release function. Refer to the
GetByteArrayElements function in the JNI documentation for more
information.

338 Programming with VisualAge RPG

**
* Source File: VCOMP1.VPG
*
* Demonstrate calling an external procedure thru JNI.
*
**

* This declares a procedure named ’sub1c’ which refers to
* a function named ’proc1c’ in a dynamic Load Library ’VSUBC.DLL’

* With 1 character parameter
d sub1c pr dll(’VSUBC’) extproc(’proc1c’)

d 1

* Without the EXTPROC keyword
* With 2 character parameters
d sub2c pr dll(’VSUBC’)
d 4
d 10

d c1 s 1 inz(’J’)
d c4 s 4 inz(’blue’)
d c10 s 10 inz(’abcdefghij’)

d mb1 m style(*info) button(*OK)

d rc s 9 0

C *INZSR BEGSR

C callp sub1c(c1)
C callp sub2c(c4:c10)

* Display the changed values from the calls
c c4 dsply mb1 rc
c c10 dsply mb1 rc

c seton lr
C ENDSR

* This action subroutine is linked to a Create event for the Window.
* It causes the component to end after running the INZSR.

C CREATE1 BEGACT
C seton LR
C ENDACT

Figure 76. Sample file VCOMPC.VPG

Chapter 21. Calling System Functions when Compiling for Java 339

// Source File: VSUBC.C
// Native function with Character parameters

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5
// Compile command: icc /q /ss /ge- /fe vsubc.dll vsubc.c

#include <stdio.h>
#include <string.h>

#include <jni.h>

//---

void _Export __stdcall Java_VCOMPC_proc1c(JNIEnv *je , void *jc,
jbyteArray p1)

{
char *c1;

printf(" proc1c called successfully.\n");

c1 = (char *) (*je)->GetByteArrayElements(je, p1, NULL);

printf(" c1 = \’%c\’\n", c1[0]);
}
//---

void _Export __stdcall Java_VCOMPC_SUB2C(JNIEnv *je , void *jc,
jbyteArray p1, jbyteArray p2)

{
char *c4;
char *c10;

printf(" SUB2C called successfully.\n");

c4 = (char *) (*je)->GetByteArrayElements(je, p1, NULL);
c10 = (char *) (*je)->GetByteArrayElements(je, p2, NULL);

printf(" c4 = %.4s.\n", c4);
printf(" c10 = %.10s.\n", c10);

Figure 77. Sample file VSUBC.C (Part 1 of 2)

340 Programming with VisualAge RPG

Zoned Numeric

// Now change the values

memcpy(c4, "Gray", 4);
memcpy(c10, ">Received<", 10);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, p1, (signed char *) c4, 0);
(*je)->ReleaseByteArrayElements(je, p2, (signed char *) c10, 0);

}

Figure 77. Sample file VSUBC.C (Part 2 of 2)

**
* Source File: VCOMPN.VPG
*
* Demonstrate calling an external procedure thru JNI.
*
**

* With a Zoned(4,0) parameter
d subz pr dll(’VSUBN’)
d 4S 0

* With a Packed(9,2) parameter
d subp pr dll(’VSUBN’)

d 9P 2

* With Binary(4,0), Binary(9,0) parameter2
d subb pr dll(’VSUBN’)
d 4B 0
d 9B 0

d z4 s 4S 0 inz(1234)
d p92 s 9P 2 inz(1234567.89)
d b4 s 4B 0 inz(1234)
d b9 s 9B 0 inz(123456789)

Figure 78. Sample File VCOMPN.VPG (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 341

d mb1 m style(*info) button(*OK)
d rc s 9 0

C *INZSR BEGSR

C callp subz(z4)
C callp subp(p92)
C callp subb(b4:b9)
* Display the changed values from the calls
c z4 dsply mb1 rc
c p92 dsply mb1 rc

c b4 dsply mb1 rc
c b9 dsply mb1 rc

c seton lr
C ENDSR

* This action subroutine is linked to a Create event for the Window.
* It causes the component to end after running the INZSR.

C CREATE1 BEGACT
C seton LR

C ENDACT

Figure 78. Sample File VCOMPN.VPG (Part 2 of 2)

342 Programming with VisualAge RPG

// Source File: VSUBN.C

// Native function with Character parameters

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting
// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5
// Compile command: icc /q /ss /ge- /fe vsubn.dll vsubn.c

#include <stdio.h>
#include <string.h>

#include <jni.h>

static void SwapBin2(short *b2);

static void SwapBin4(int *b4);

//---

void _Export __stdcall Java_VCOMPN_SUBZ(JNIEnv *je , void *jc,
jobject p1)

{
jclass cls;
jmethodID mid;
jobject aryobj;
char *zd;

printf(" SUBZ called successfully.\n");

// p1: Zoned
// Call the method to get the zoned value

cls = (*je)->GetObjectClass(je, p1);

mid = (*je)->GetMethodID(je, cls, "zonedValue", "()[B");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

aryobj = (*je)->CallObjectMethod(je, p1, mid);

zd = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

printf(" zd = %.4s.\n", zd);

Figure 79. Sample File VSUBN.C (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 343

An RpgZoned object is passed as the parameter. The RpgZoned::zonedValue
method is used to obtain a byte array containing the numeric value of the
object in zoned decimal format. Once the byte array is obtained on the Java
side of the interface, the GetByteArrayElements JNI interface function is called
to access the byte array on the native side of the interface.

To invoke the zonedValue method on the object, the GetObjectClass,
GetMethodID, and CallObjectMethod interface functions are used. Care must
be taken to specify the correct method signature on the GetMethodID call. (No
parameters, and returning a byte array in this case.)

To alter the value on the Java side, the byte array value is changed, the
ReleaseByteArrayElements interface function is invoked to set the byte array
change on the Java side, and the appropriate RpgZoned class method is
invoked on the Java side to set the RpgZoned object’s value with the value

// Now change the values

memcpy(zd, "9876", 4);

// Returning the Zoned parameter

// 1. Update the Byte array object with the changed value.

(*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) zd, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return;

}

(*je)->CallVoidMethod(je, p1, mid,
aryobj,
(int) 1, // = Component.ZONED_TYPE
0 // precision

);
}

Figure 79. Sample File VSUBN.C (Part 2 of 2)

344 Programming with VisualAge RPG

represented in the byte array. In this case, it’s the assignFromNative method
which takes a byte array and two integers as parameters. (The RpgNumeric
class referred to in the sample code is a parent class to the RpgZoned class.)

Packed Numeric

void _Export __stdcall Java_VCOMPN_SUBP(JNIEnv *je , void *jc,
jobject p1) // P(9,2)

{
jclass cls;
jmethodID mid;
jobject aryobj;
char *packednum;

printf(" SUBP called successfully.\n");

// p1: Packed 9,2
// Call the method to get the zoned value

cls = (*je)->GetObjectClass(je, p1);

mid = (*je)->GetMethodID(je, cls, "packedValue", "()[B");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

aryobj = (*je)->CallObjectMethod(je, p1, mid);

packednum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

// Now change the values

memcpy(packednum, "\x98\x76\x54\x32\x1C", 5);

Figure 80. Sample File VSUBN.C continued (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 345

The packed decimal parameter case is similar to the zoned decimal. Only the
appropriate methods for converting an RpgPacked object to and from a byte
array value are used.

The RpgPacked::packedValue method is used to obtain a byte array containing
the numeric value of the RpgPacked parameter object in native packed
decimal format, and then the JNI interface functions are invoked to make the
Java byte array accessible from the native side of the interface.

After altering the byte array on the native side and invoking the
ReleaseByteArrayElements interface function to return the byte array to the
Java side, the assignFromNative method is once again invoked to set the
RpgPacked object’s value from the Java byte array.

// Returning the Packed parameter

// 1. Update the Byte array object with the changed value.

// Fourth Parameter = 0 also causes the variable’s storage to be freed,

// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) packednum, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (cls) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return;

}

(*je)->CallVoidMethod(je, p1, mid,
aryobj,
(int) 2, // = Component.PACKED_TYPE
2 // precision (Number of decimal places)

);
}

Figure 80. Sample File VSUBN.C continued (Part 2 of 2)

346 Programming with VisualAge RPG

Binary

void _Export __stdcall Java_VCOMPN_SUBB(JNIEnv *je , void *jc,
jobject p1 // B(4,0)

,jobject p2) // B(9,0)
{

jclass cls;
jmethodID mid;
jobject aryobj;
jobject aryobj2;

char *binarynum;
char *b9;

short binary2;
int binary4;

printf(" SUBB called successfully.\n");

// p1: Binary 4,0

// Call the method to get the binary value

cls = (*je)->GetObjectClass(je, p1);

mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

aryobj = (*je)->CallObjectMethod(je, p1, mid);

binarynum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

// Must reverse the byte order of the value received

memcpy(&binary2, binarynum, 2);

SwapBin2(&binary2);

Figure 81. Sample File VSUBN.C continued (Part 1 of 5)

Chapter 21. Calling System Functions when Compiling for Java 347

printf(" binary = %hd\n", (short) binary2);

// p2: Binary 9,0
// Call the method to get the binary value

cls = (*je)->GetObjectClass(je, p2);

mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

aryobj2 = (*je)->CallObjectMethod(je, p2, mid);

b9 = (char *) (*je)->GetByteArrayElements(je, aryobj2, NULL);

// Must reverse the byte order of the value received

memcpy(&binary4, b9, 4);
SwapBin4(&binary4);

printf(" binary = %d.\n", (int) binary4);

Figure 81. Sample File VSUBN.C continued (Part 2 of 5)

348 Programming with VisualAge RPG

// Now change the values

binary2 = 5;

// Swap it back for returning to the Java value

SwapBin2(&binary2);
memcpy(binarynum, &binary2, 2);

// Returning the parameter

// 1. Update the Byte array object with the changed value.

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) binarynum, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

cls = (*je)->GetObjectClass(je, p1);

// (cls) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return;

}

Figure 81. Sample File VSUBN.C continued (Part 3 of 5)

Chapter 21. Calling System Functions when Compiling for Java 349

(*je)->CallVoidMethod(je, p1, mid,
aryobj,
(int) 3, // = Component.BINARY_TYPE
0 // precision (Number of decimal places)

);

// Now change the values

binary4 = 19981999;

// Swap it back for returning to the Java value

SwapBin4(&binary4);
memcpy(b9, &binary4, 4);

// Returning the parameter

// 1. Update the Byte array object with the changed value.

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, aryobj2, (signed char *) b9, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

cls = (*je)->GetObjectClass(je, p2);
// (cls) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return;

}

Figure 81. Sample File VSUBN.C continued (Part 4 of 5)

350 Programming with VisualAge RPG

This case is similar to the zoned decimal. Only the appropriate methods for
RpgBinary objects are used. The only added complication is that the native
Intel architecture platform stores binary integers in a low-order-bytes-leftmost
format, but the Java side works with them in a low-order-bytes-rightmost
format. The SwapBin2 and SwapBin4 functions are employed to reverse the
byte order when converting between the two sides for two- and four-byte
binary integers.

The RpgBinary::binaryValue method is used to obtain a byte array containing
the numeric value of the RpgBinary parameter object in native binary format.
Then the JNI interface functions are invoked to make the Java byte array
accessible from the native side of the interface. After altering the byte array on

(*je)->CallVoidMethod(je, p2, mid,
aryobj2,
(int) 3, // = Component.BINARY_TYPE
0 // precision (Number of decimal places)

);
}
//---
static void SwapBin2(short *b2)
{

char tmp;
char *p;

p = (char *) b2;

tmp = p[0];
p[0] = p[1];
p[1] = tmp;

}
//---
static void SwapBin4(int *b4)
{

char tmp;
char *p;

p = (char *) b4;

tmp = p[0];
p[0] = p[3];
p[3] = tmp;

tmp = p[1];
p[1] = p[2];
p[2] = tmp;

}

Figure 81. Sample File VSUBN.C continued (Part 5 of 5)

Chapter 21. Calling System Functions when Compiling for Java 351

the native side and invoking the ReleaseByteArrayElements interface function
to return the byte array to the Java side, the assignFromNative method is once
again invoked to set the RpgBinary object’s value from the Java byte array.

Integer, Unsigned

* With Parameters: Integer, unsigned
d subiu pr dll(’VSUBO’)
d 5i 0
d 10i 0
d 5u 0
d 10u 0

Figure 82. Sample VJNIO.VPG

352 Programming with VisualAge RPG

static void SwapBin2(char *);
static void SwapBin4(char *);

void _Export __stdcall Java_VJNIO_SUBIU(JNIEnv *je , void *jc,
jobject p1, jobject p2, jobject p3, jobject p4)

{
jclass cls, cls2;
jmethodID mid;
jshort i2;
jint i4;
jobject aryobj3, aryobj4;
unsigned short *u2;
unsigned int *u4;

printf(" SUBIU called successfully.\n");

// p1: Integer, 2 byte
// Call the method to get the value

cls = (*je)->GetObjectClass(je, p1);
mid = (*je)->GetMethodID(je, cls, "getValue", "()S");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

i2 = (*je)->CallShortMethod(je, p1, mid);

printf(" i2 = %hd\n", (short) i2);

// p2: Integer, 4 byte
// Call the method to get the value

cls = (*je)->GetObjectClass(je, p2);

mid = (*je)->GetMethodID(je, cls, "getValue", "()I");

Figure 83. Sample VSUBO.C (Part 1 of 6)

Chapter 21. Calling System Functions when Compiling for Java 353

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

i4 = (*je)->CallIntMethod(je, p2, mid);

printf(" i4 = %d\n", (short) i4);

// p3: Unsigned 2-byte.
// Call the method to get the double value

cls = (*je)->GetObjectClass(je, p3);

mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");

return;
}

aryobj3 = (*je)->CallObjectMethod(je, p3, mid);

u2 = (unsigned short *) (*je)->GetByteArrayElements(je, aryobj3, NULL);

// Must reverse the byte order of the value received
SwapBin2((char *) u2);

printf(" u2 = %hu\n", *u2);

Figure 83. Sample VSUBO.C (Part 2 of 6)

354 Programming with VisualAge RPG

// p4: Unsigned 4-byte.
// Call the method to get the double value

cls = (*je)->GetObjectClass(je, p4);

mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

aryobj4 = (*je)->CallObjectMethod(je, p4, mid);

u4 = (unsigned int *) (*je)->GetByteArrayElements(je, aryobj4, NULL);

// Must reverse the byte order of the value received
SwapBin4((char *) u4);

printf(" u4 = %u\n", *u4);

// Now change the values

i2 = 99;
i4 = 88;
*u2 = 77;
*u4 = 66;

// Must reverse the byte order of the value being returned
SwapBin2((char *) u2);
SwapBin4((char *) u4);

// Return the array memory to Java. Used later to set return
// values for parameters

(*je)->ReleaseByteArrayElements(je, p3, (signed char *) u2, 0);
(*je)->ReleaseByteArrayElements(je, p4, (signed char *) u4, 0);

Figure 83. Sample VSUBO.C (Part 3 of 6)

Chapter 21. Calling System Functions when Compiling for Java 355

// Returning P1: Integer 2-byte

// Invoke the RpgShortRef::setValue method to set the object

// value with a short parameter value

// Obtain the method ID so it can be invoked.

cls = (*je)->GetObjectClass(je, p1);
mid = (*je)->GetMethodID(je, cls, "setValue", "(S)V");

if (mid == NULL)
{

printf(" ERROR 5: GetMethod.\n");
return;

}

(*je)->CallVoidMethod(je, p1, mid, i2);

// Returning P2: Integer 4-byte

// Invoke the RpgIntRef::setValue method to set the object

// value with an integer parameter value

// Obtain the method ID so it can be invoked.

cls = (*je)->GetObjectClass(je, p2);
mid = (*je)->GetMethodID(je, cls, "setValue", "(I)V");

if (mid == NULL)
{

printf(" ERROR 6: GetMethod.\n");
return;

}

(*je)->CallVoidMethod(je, p2, mid, i4);

Figure 83. Sample VSUBO.C (Part 4 of 6)

356 Programming with VisualAge RPG

// Returning P3: Unsigned 2-byte

// Invoke the RpgNumeric::assignFromNative method to set the object

// value with an unsigned parameter value

// Obtain the method ID so it can be invoked.
cls = (*je)->GetObjectClass(je, p3);
mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 7: GetMethod.\n");
return;

}

// Pass (aryobj3) as first parameter to method because the
// method expects a Java byte array object

(*je)->CallVoidMethod(je, p3, mid,

aryobj3,
(int) 5, // = Component.UNSIGNED_TYPE
(int) 0); // 0 decimal places

// Returning P4: Unsigned 4-byte

// Invoke the RpgNumeric::assignFromNative method to set the object
// value with an unsigned parameter value

// Obtain the method ID so it can be invoked.

cls = (*je)->GetObjectClass(je, p4);

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 8: GetMethod.\n");
return;

}

(*je)->CallVoidMethod(je, p4, mid, aryobj4,
(int) 5, // = Component.UNSIGNED_TYPE
(int) 0); // 0 decimal places

}

Figure 83. Sample VSUBO.C (Part 5 of 6)

Chapter 21. Calling System Functions when Compiling for Java 357

Two-byte integers use the RpgShortRef::getValue and setValue methods to
access their values into short values on the native side. Similarly four-byte
integers use RpgIntRef::getValue and setValue methods to pass between
native-side int values.

Unsigned parameters are complicated by the lack of a Java primitive matching
an unsigned value. The unsigned object value is accessed through byte array
primitives. The parameter access invokes the method to get the byte array
representing the unsigned value then invokes the GetByteArrayElements
interface function to access the array elements on the native side.
Furthermore, on a native Intel/Windows platform, the byte value must first
be byte-reversed to change it into the low-order-bytes-leftmost format.
Returning the parameter follows a reverse process.

Float (4/8)

static void SwapBin2(char *p)
{

char tmp;

tmp = p[0];
p[0] = p[1];

p[1] = tmp;
}

static void SwapBin4(char *p)
{

char tmp;

tmp = p[0];
p[0] = p[3];
p[3] = tmp;

tmp = p[1];
p[1] = p[2];
p[2] = tmp;

}

Figure 83. Sample VSUBO.C (Part 6 of 6)

* With Parameters: Float 4, Float 8.
d subf pr dll(’VSUBO’)
d 4f
d 8f

Figure 84. Sample VJNIO.VPG

358 Programming with VisualAge RPG

void _Export __stdcall Java_VJNIO_SUBF(JNIEnv *je , void *jc,
jobject p1, jobject p2)

{
jclass cls, cls2;
jmethodID mid;
jfloat f4;
jdouble f8;

// p1: Float
// Call the method to get the float value

cls = (*je)->GetObjectClass(je, p1);
mid = (*je)->GetMethodID(je, cls, "getValue", "()F");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");

return;
}

f4 = (*je)->CallFloatMethod(je, p1, mid);

printf(" f4 = %f\n", (float) f4);

// p2: Double
// Call the method to get the double value

cls2 = (*je)->GetObjectClass(je, p2);

mid = (*je)->GetMethodID(je, cls2, "getValue", "()D");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return;

}

f8 = (*je)->CallDoubleMethod(je, p2, mid);

printf(" f8 = %lf\n", (double) f8);

Figure 85. Sample VSUBO.C (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 359

The float and double parameter cases are similar to the previous data types.
Only the methods to access the parameter values work with Java primitive
data types, which map to corresponding native primitives, instead of the
usual byte arrays. JNI interface functions dealing with these specific
primitives are used to invoke the methods to access the parameter values.

The RpgFloatRef::getValue, setValue, RpgDoubleRef::getValue, and setValue
methods are used.

// Now change the values

f4 = 999.888;
f8 = 98789.65456;

// Returning the Float parameter

// Invoke the method from the RpgFloatRef class which
// assigns a Float parameter value to the object

// Obtain the method ID so it can be invoked.

mid = (*je)->GetMethodID(je, cls, "setValue", "(F)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");

return;
}

(*je)->CallVoidMethod(je, p1, mid, f4);

// Returning the Double parameter

// Invoke the method from the RpgDoubleRef class which
// assigns a Double parameter value to the object

// Obtain the method ID so it can be invoked.

mid = (*je)->GetMethodID(je, cls2, "setValue", "(D)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return;

}

(*je)->CallVoidMethod(je, p2, mid, f8);
}

Figure 85. Sample VSUBO.C (Part 2 of 2)

360 Programming with VisualAge RPG

Date, Time, Timestamp

Date, time, and timestamp parameters work the same as character parameters,
since they are implemented on the Java side as byte arrays.

* With Parameters: Date, Time, Timestamp.
d subdtz pr dll(’VSUBO’)
d 10d
d 8t
d 26z

d fd s 10d inz(D’1999-12-31’)
d ft s 8t inz(T’09.00.00’)
d fts s 26z inz(Z’2001-01-01-08.01.01’)

C callp subdtz(fd:ft:fts)

Figure 86. Sample VJNIO.VPG

void _Export __stdcall Java_VJNIO_SUBDTZ(JNIEnv *je , void *jc,
jbyteArray p1, jbyteArray p2, jbyteArray p3)

{
char *fd, *ft, *fz;

fd = (char *) (*je)->GetByteArrayElements(je, p1, NULL);
ft = (char *) (*je)->GetByteArrayElements(je, p2, NULL);
fz = (char *) (*je)->GetByteArrayElements(je, p3, NULL);

printf(" fd = %.10s.\n", fd);
printf(" ft = %.8s.\n", ft);
printf(" fz = %.26s.\n", fz);

// Now change the values

memcpy(fd, "2000-01-01",10);
memcpy(ft, "17.00.00", 8);
memcpy(fz, "2222-22-22-02.02.02", 19);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, p1, (signed char *) fd, 0);
(*je)->ReleaseByteArrayElements(je, p2, (signed char *) ft, 0);
(*je)->ReleaseByteArrayElements(je, p3, (signed char *) fz, 0);

}

Figure 87. Sample VSUBO.C

Chapter 21. Calling System Functions when Compiling for Java 361

Passing Arrays
Handling arrayed parameters is done one of two ways depending on the
datatype. Invoke the GetObjectArrayElement interface function to get an
address to an individual object element in the array, then process it like the
scalar parameter methods. Or in the case of an array of Java primitives, there
are specific interface functions to access them as an array of native primitives,
and then release them back to Java.

d subca pr dll(’VSUBA’)
d 4
d 10 dim(4)

d c1 s 1 inz(’J’)
d c4 s 4 inz(’blue’)
d c10 s 10 inz(’abcdefghij’) dim(4)

d subz pr dll(’VSUBA’)
d 4S 0 dim(4)

d subp pr dll(’VSUBA’)

d 9P 2 dim(4)

d subb pr dll(’VSUBA’)
d 4B 0 dim(4)
d 9B 0 dim(4)

d z4 s 4S 0 dim(4)
d p92 s 9P 2 dim(4)
d b4 s 4B 0 dim(4)
d b9 s 9B 0 dim(4)

d subf pr dll(’VSUBA’)

d 4f dim(4)
d 8f dim(4)

Figure 88. Sample VJNIA.VPG (Part 1 of 2)

362 Programming with VisualAge RPG

d subdtz pr dll(’VSUBA’)
d 10d dim(4)
d 8t dim(4)
d 26z dim(4)

d subiu pr dll(’VSUBA’)
d 5i 0 dim(4)
d 10i 0 dim(4)

d 5u 0 dim(4)
d 10u 0 dim(4)

d f4 s 4f dim(4) inz(1234.56)
d f8 s 8f dim(4) inz(1111.2222)
d fd s 10d dim(4) inz(D’1999-12-31’)
d ft s 8t dim(4) inz(T’09.00.00’)
d fts s 26z dim(4) inz(Z’2001-01-01-08.01.01’)

d fi2 s 5i 0 dim(4) inz(1)

d fi4 s 10i 0 dim(4) inz(2)
d fu2 s 5u 0 dim(4) inz(3)
d fu4 s 10u 0 dim(4) inz(4)

C *INZSR BEGSR

C callp subca(c4:c10)
C callp subz(z4)
C callp subp(p92)
C callp subb(b4:b9)
C callp subf(f4:f8)
C callp subdtz(fd:ft:fts)

C callp subiu(fi2:fi4:fu2:fu4)
c seton lr
C ENDSR

Figure 88. Sample VJNIA.VPG (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 363

// Source File: VSUBA.C
// Native function with Character parameters
// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting
// in order to find jni.h when compiling.
// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5
// Compile command: icc /q /ss /ge- /fe vsuba.dll vsuba.c
#include <stdio.h>
#include <string.h>
#include <jni.h>
static void SwapBin2(char *);
static void SwapBin4(char *);

void _Export __stdcall Java_VJNIA_SUBCA(JNIEnv *je , void *jc,

jbyteArray p1, jobjectArray p2)
{

char *c4;
char *c10;
jobject p2e;

// Resolve to 2nd element of array parameter
p2e = (*je)->GetObjectArrayElement(je, p2,

1); /* Array index, first element = 0. */

c4 = (char *) (*je)->GetByteArrayElements(je, p1, NULL);
c10 = (char *) (*je)->GetByteArrayElements(je, p2e, NULL);

printf(" c4 = %.4s.\n", c4);

printf(" c10 = %.10s.\n", c10);

// Now change the values

memcpy(c4, "Gray", 4);
memcpy(c10, "Changed ", 10);

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, p1, (signed char *) c4, 0);
(*je)->ReleaseByteArrayElements(je, p2e, (signed char *) c10, 0);

}

void _Export __stdcall Java_VJNIA_SUBZ(JNIEnv *je , void *jc,
jobject p1)

Figure 89. Sample VSUBA.C (Part 1 of 14)

364 Programming with VisualAge RPG

{
jclass cls;
jmethodID mid;
jobject aryobj;
char *zd;
jobject pe;

// Resolve to element of array parameter
pe = (*je)->GetObjectArrayElement(je, p1,

0); /* Array index, first element = 0. */

// p1: Zoned
// Call the method to get the zoned value

cls = (*je)->GetObjectClass(je, pe);

mid = (*je)->GetMethodID(je, cls, "zonedValue", "()[B");

aryobj = (*je)->CallObjectMethod(je, pe, mid);

zd = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

printf(" zd = %.4s.\n", zd);

// Now change the values

memcpy(zd, "9876", 4);

// Returning the Zoned parameter

// 1. Update the Byte array object with the changed value.

(*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) zd, 0);

Figure 89. Sample VSUBA.C (Part 2 of 14)

Chapter 21. Calling System Functions when Compiling for Java 365

// 2. Prepare to call the method from the RpgNumeric class which

// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, pe, mid,
aryobj,
(int) 1, // = Component.ZONED_TYPE
0 // precision

);
}

void _Export __stdcall Java_VJNIA_SUBP(JNIEnv *je , void *jc,
jobject p1 // P(9,2)
)

{
jclass cls;
jmethodID mid;
jobject aryobj;
char *packednum;
char tmp[80]; // For tracing
jobject pe;

// Resolve to element of array parameter

pe = (*je)->GetObjectArrayElement(je, p1,

1); /* Array index, first element = 0. */

// p1: Packed 9,2
// Call the method to get the zoned value

cls = (*je)->GetObjectClass(je, pe);

mid = (*je)->GetMethodID(je, cls, "packedValue", "()[B");

aryobj = (*je)->CallObjectMethod(je, pe, mid);

packednum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

Figure 89. Sample VSUBA.C (Part 3 of 14)

366 Programming with VisualAge RPG

// Now change the values
memcpy(packednum, "\x98\x76\x54\x32\x1C", 5);

// Returning the Packed parameter

// 1. Update the Byte array object with the changed value.

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) packednum, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the

// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, pe, mid,
aryobj,
(int) 2, // = Component.PACKED_TYPE
2 // precision (Number of decimal places)

);
}
//---

Figure 89. Sample VSUBA.C (Part 4 of 14)

Chapter 21. Calling System Functions when Compiling for Java 367

void _Export __stdcall Java_VJNIA_SUBB(JNIEnv *je , void *jc,
jobject p1 // B(4,0)
,jobject p2 // B(9,0)
)

{
jclass cls;
jmethodID mid;
jobject aryobj;
jobject aryobj2;
char *binarynum;
char *b9;

short binary2;
int binary4;
jobject pe,p2e;

// Resolve to element of array parameter

pe = (*je)->GetObjectArrayElement(je, p1,
2); /* Array index, first element = 0. */

// Resolve to element of array parameter

p2e = (*je)->GetObjectArrayElement(je, p2,
3); /* Array index, first element = 0. */

// p1: Binary 4,0

// Call the method to get the binary value

cls = (*je)->GetObjectClass(je, pe);

mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

aryobj = (*je)->CallObjectMethod(je, pe, mid);

binarynum = (char *) (*je)->GetByteArrayElements(je, aryobj, NULL);

Figure 89. Sample VSUBA.C (Part 5 of 14)

368 Programming with VisualAge RPG

// Must reverse the byte order of the value received

memcpy(&binary2, binarynum, 2);
SwapBin2((char *) &binary2);

printf(" binary = %hd\n", (short) binary2);

// p2: Binary 9,0
// Call the method to get the binary value

cls = (*je)->GetObjectClass(je, p2e);

mid = (*je)->GetMethodID(je, cls, "binaryValue", "()[B");

aryobj2 = (*je)->CallObjectMethod(je, p2e, mid);

b9 = (char *) (*je)->GetByteArrayElements(je, aryobj2, NULL);

// Must reverse the byte order of the value received

memcpy(&binary4, b9, 4);
SwapBin4((char *) &binary4);

printf(" binary = %d.\n", (int) binary4);

// Now change the values

binary2 = 5;

// Swap it back for returning to the Java value

SwapBin2((char *) &binary2);

Figure 89. Sample VSUBA.C (Part 6 of 14)

Chapter 21. Calling System Functions when Compiling for Java 369

memcpy(binarynum, &binary2, 2);

// Returning the Packed parameter

// 1. Update the Byte array object with the changed value.

// Fourth Parameter = 0 also causes the variable’s storage to be freed,

// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, aryobj, (signed char *) binarynum, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

cls = (*je)->GetObjectClass(je, pe);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, pe, mid,
aryobj,
(int) 3, // = Component.BINARY_TYPE
0 // precision (Number of decimal places)

);

// Now change the values

binary4 = 19981999;

// Swap it back for returning to the Java value

SwapBin4((char *) &binary4);

memcpy(b9, &binary4, 4);

Figure 89. Sample VSUBA.C (Part 7 of 14)

370 Programming with VisualAge RPG

// Returning the Packed parameter

// 1. Update the Byte array object with the changed value.

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, aryobj2, (signed char *) b9, 0);

// 2. Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the

// RpgNumeric object. Obtain the method ID.

cls = (*je)->GetObjectClass(je, p2e);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, p2e, mid,
aryobj2,
(int) 3, // = Component.BINARY_TYPE
0 // precision (Number of decimal places)

);
}

//---

Figure 89. Sample VSUBA.C (Part 8 of 14)

Chapter 21. Calling System Functions when Compiling for Java 371

void _Export __stdcall Java_VJNIA_SUBF(JNIEnv *je , void *jc,
jfloatArray p1, jdoubleArray p2)

{
jclass cls, cls2;
jmethodID mid;
jfloat *f4;
jdouble *f8;
jobject p1e,p2e;

printf(" SUBF called successfully.\n");

f4 = (*je)->GetFloatArrayElements(je, p1, NULL);

f8 = (*je)->GetDoubleArrayElements(je, p2, NULL);

printf(" f4 = %f\n", (float) f4[0]);

// p2: Double
// Call the method to get the double value

printf(" f8 = %lf\n", (double) f8[0]);

// Now change the values

f4[0] = 999.888;
f8[1] = 98789.65456;

// Returning the Float parameter

(*je)->ReleaseFloatArrayElements(je, p1, f4, 0);
(*je)->ReleaseDoubleArrayElements(je, p2, f8, 0);

}

Figure 89. Sample VSUBA.C (Part 9 of 14)

372 Programming with VisualAge RPG

//---

void _Export __stdcall Java_VJNIA_SUBDTZ(JNIEnv *je , void *jc,
jbyteArray p1, jbyteArray p2, jbyteArray p3)

{
char *fd, *ft, *fz;
jobject p1e, p2e, p3e;

printf(" SUBDTZ called successfully.\n");

// Resolve to element of array parameter

p1e = (*je)->GetObjectArrayElement(je, p1,
2); /* Array index, first element = 0. */

p2e = (*je)->GetObjectArrayElement(je, p2,
3); /* Array index, first element = 0. */

p3e = (*je)->GetObjectArrayElement(je, p3,
0); /* Array index, first element = 0. */

fd = (char *) (*je)->GetByteArrayElements(je, p1e, NULL);
ft = (char *) (*je)->GetByteArrayElements(je, p2e, NULL);
fz = (char *) (*je)->GetByteArrayElements(je, p3e, NULL);

printf(" fd = %.10s.\n", fd);
printf(" ft = %.8s.\n", ft);
printf(" fz = %.26s.\n", fz);

// Now change the values

memcpy(fd, "2000-01-01",10);
memcpy(ft, "17.00.00", 8);
memcpy(fz, "2222-22-22-02.02.02", 19);

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, p1e, (signed char *) fd, 0);
(*je)->ReleaseByteArrayElements(je, p2e, (signed char *) ft, 0);
(*je)->ReleaseByteArrayElements(je, p3e, (signed char *) fz, 0);

}

Figure 89. Sample VSUBA.C (Part 10 of 14)

Chapter 21. Calling System Functions when Compiling for Java 373

//---

void _Export __stdcall Java_VJNIA_SUBIU(JNIEnv *je , void *jc,
jshortArray p1, jintArray p2, jobject p3, jobject p4)

{
jclass cls, cls2;
jmethodID mid;
jshort *i2;
jint *i4;
jobject aryobj3, aryobj4;
unsigned short *u2;
unsigned int *u4;
jobject p1e, p2e, p3e, p4e;

printf(" SUBIU called successfully.\n");

// Resolve to element of array parameter

i2 = (*je)->GetShortArrayElements(je, p1, NULL);
i4 = (*je)->GetIntArrayElements(je, p2, NULL);

p3e = (*je)->GetObjectArrayElement(je, p3, 2);
p4e = (*je)->GetObjectArrayElement(je, p4, 3);

printf(" i2 = %hd\n", (short) i2[0]);

printf(" i4 = %d\n", (short) i4[1]);

// p3: Unsigned 2-byte.
// Call the method to get the double value

cls = (*je)->GetObjectClass(je, p3e);

mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

aryobj3 = (*je)->CallObjectMethod(je, p3e, mid);

u2 = (unsigned short *) (*je)->GetByteArrayElements(je, aryobj3, NULL);

Figure 89. Sample VSUBA.C (Part 11 of 14)

374 Programming with VisualAge RPG

// Must reverse the byte order of the value received
SwapBin2((char *) u2);

printf(" u2 = %hu\n", *u2);

// p4: Unsigned 4-byte.
// Call the method to get the double value

cls = (*je)->GetObjectClass(je, p4e);

mid = (*je)->GetMethodID(je, cls, "unsignedValue", "()[B");

aryobj4 = (*je)->CallObjectMethod(je, p4e, mid);

u4 = (unsigned int *) (*je)->GetByteArrayElements(je, aryobj4, NULL);

// Must reverse the byte order of the value received
SwapBin4((char *) u4);

printf(" u4 = %u\n", *u4);

Figure 89. Sample VSUBA.C (Part 12 of 14)

Chapter 21. Calling System Functions when Compiling for Java 375

// Now change the values

i2[0] = 99;
i4[1] = 88;

*u2 = 77;
*u4 = 66;

// Must reverse the byte order of the value being returned
SwapBin2((char *) u2);
SwapBin4((char *) u4);

// Return the array memory to Java. Used later to set return
// values for parameters

(*je)->ReleaseByteArrayElements(je, p3e, (signed char *) u2, 0);
(*je)->ReleaseByteArrayElements(je, p4e, (signed char *) u4, 0);

(*je)->ReleaseShortArrayElements(je, p1, i2, 0);

(*je)->ReleaseIntArrayElements(je, p2, i4, 0);

// Returning P3: Unsigned 2-byte

// Invoke the RpgNumeric::assignFromNative method to set the object
// value with an unsigned parameter value

// Obtain the method ID so it can be invoked.
cls = (*je)->GetObjectClass(je, p3e);
mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

// Pass (aryobj3) as first parameter to method because the

// method expects a Java byte array object

(*je)->CallVoidMethod(je, p3e, mid,
aryobj3,
(int) 5, // = Component.UNSIGNED_TYPE
(int) 0); // 0 decimal places

Figure 89. Sample VSUBA.C (Part 13 of 14)

376 Programming with VisualAge RPG

Returning A Char Value

// Returning P4: Unsigned 4-byte

// Invoke the RpgNumeric::assignFromNative method to set the object
// value with an unsigned parameter value

// Obtain the method ID so it can be invoked.

cls = (*je)->GetObjectClass(je, p4e);
mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, p4e, mid, aryobj4,
(int) 5, // = Component.UNSIGNED_TYPE
(int) 0); // 0 decimal places

}

static void SwapBin2(char *p)
{

char tmp;

tmp = p[0];
p[0] = p[1];
p[1] = tmp;

}

static void SwapBin4(char *p)

{
char tmp;

tmp = p[0];
p[0] = p[3];
p[3] = tmp;

tmp = p[1];
p[1] = p[2];
p[2] = tmp;

}

Figure 89. Sample VSUBA.C (Part 14 of 14)

d subrc pr 10 dll(’VSUBR’)

d fc s 10 inz(’ibm varpg ’)

C eval fc = subrc

Figure 90. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 377

Returning a value from the function involves obtaining the appropriate Java
object and then returning it. In this sample, a new object (matching a
Character(10) field) was created, then it’s value was assigned. Since the RPG
character fields are implemented as Java byte arrays, a Java byte array object
of length ten was created, then the GetByteArrayElements interface function
was used to access the byte array elements on the native side, then released
back to Java, and finally used to return from the function.

If the appropriate Java byte array object was already available from one of the
input parameters, then it could have been used instead of creating a new
object.

jbyteArray _Export __stdcall Java_VJNIR_SUBRC(JNIEnv *je , void *jc)
{

jbyteArray ba;
char *p;

printf(" SUBRC called successfully.\n");

// Create a new byte array object so it can be returned.

ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

// Pin the byte array element memory so native side can access it.
p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "Success ",10);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

return ba;
}

Figure 91. Sample VSUBR.C

378 Programming with VisualAge RPG

Returning A Zoned Value

d subrs pr 5s 0 dll(’VSUBR’)
d fs s 5s 0

C eval fc = subrc

Figure 92. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 379

jobject _Export __stdcall Java_VJNIR_SUBRS(JNIEnv *je , void *jc)
{

jclass cls;
jmethodID mid;
jobject rzo;

jbyteArray ba;
char *p;

printf(" SUBRS called successfully.\n");

// Create a new RpgZoned object.

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgZoned");

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

rzo = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */

(int) 0 /* # of decimal places */
);

// To set the zoned object value, we need a Java byte array to use
// as an input parameter to the method for setting the zoned object.
// Could constuct a new byte array object, or get one by retrieving
// the zoned value from the object.

// Will construct a byte array.

// Create a new byte array object

ba = (*je)->NewByteArray(je, 5 /* = byte array length */);

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "55555", 5);

Figure 93. Sample VSUBR.C (Part 1 of 2)

380 Programming with VisualAge RPG

An RpgZoned object is constructed so it may be returned. Its value is then set
through a method call. However, the method to set the value requires a byte
array object as an input parameter supplying the value, so the byte array
object is constructed first.

An RpgZoned object is constructed by looking up the class, then the
constructor method for the class, then invoking the constructor method. A
Java byte array object is then constructed and set to a zoned format byte
value. A method for setting the RpgZoned object’s value is then resolved and
invoked, passing it the byte array object as one of its parameters.

Returning A Packed Value

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

// Prepare to call the method from the RpgNumeric class which

// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (cls) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, rzo, mid,
ba,
(int) 1, // = Component.ZONED_TYPE
0 // precision

);
return rzo;

}

Figure 93. Sample VSUBR.C (Part 2 of 2)

d subrp pr 5p 0 dll(’VSUBR’)
d fp s 5p 0

C eval fp = subrp

Figure 94. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 381

jobject _Export __stdcall Java_VJNIR_SUBRP(JNIEnv *je , void *jc)
{

jclass cls;
jmethodID mid;
jobject ro;

jbyteArray ba;
char *p;

printf(" SUBRP called successfully.\n");

// Create a new RpgPacked object.

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgPacked");

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

ro = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */

(int) 0 /* # of decimal places */
);

// To set the packed object value, we need a Java byte array to use
// as an input parameter to the method for setting the packed object.
// Could constuct a new byte array object, or get one by retrieving
// the packed value from the object.

// Create a new byte array object

ba = (*je)->NewByteArray(je, 3 /* = byte array length */);

Figure 95. Sample VSUBR.C (Part 1 of 2)

382 Programming with VisualAge RPG

Returning a packed value is similar to the zoned case above.

An RpgPacked object is constructed by looking up the class, then the
constructor method for the class, then invoking the constructor method. A
Java byte array object is then constructed and set to a packed format byte
value. A method for setting the RpgPacked object’s value is then resolved to
and invoked, passing it the byte array object as one of it’s parameters.

Returning A Binary Value

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "\x55\x55\x5C", 3);

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, ro, mid,
ba, // The byte array object
(int) 2, // = Component.PACKED_TYPE
0 // decimal places

);
return ro;

}

Figure 95. Sample VSUBR.C (Part 2 of 2)

d subrb pr 5b 0 dll(’VSUBR’)
d fb s 5b 0

C eval fb = subrb

Figure 96. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 383

jobject _Export __stdcall Java_VJNIR_SUBRB(JNIEnv *je , void *jc)
{

jclass cls;
jmethodID mid;
jobject ro;

jbyteArray ba;
char *p;

printf(" SUBRB called successfully.\n");

// Create a new RpgPacked object.

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgBinary");

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

ro = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */

(int) 0 /* # of decimal places */
);

Figure 97. Sample VSUBR.C (Part 1 of 2)

384 Programming with VisualAge RPG

Returning a binary value is similar to the zoned or packed cases above, only
an RpgBinary object is returned.

Returning An Integer Value

// To set the object value, we need a Java byte array to use
// as an input parameter to the method for setting the object.

// Create a new byte array object

ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, ro, mid,
ba, // The byte array object
(int) 3, // = Component.Binary_TYPE
0 // decimal places

);
return ro;

}

Figure 97. Sample VSUBR.C (Part 2 of 2)

d subri2 pr 5i 0 dll(’VSUBR’)
d subri4 pr 10i 0 dll(’VSUBR’)

d fi2 s 5i 0
d fi4 s 10i 0

C eval fi2= subri2
C eval fi4= subri4

Figure 98. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 385

Returning a two-byte or four-byte binary integer value is simple. This is due
to the types supported as Java primitives.

Returning An Unsigned Value

jshort _Export __stdcall Java_VJNIR_SUBRI2(JNIEnv *je , void *jc)
{

jshort rc;
rc = -5555;
return rc;

}

jint _Export __stdcall Java_VJNIR_SUBRI4(JNIEnv *je , void *jc)
{

return -55555;
}

Figure 99. Sample VSUBR.C

d subru pr 10u 0 dll(’VSUBR’)
d fu s 10u 0
C eval fu = subru

Figure 100. Sample VJNIR.VPG

386 Programming with VisualAge RPG

jobject _Export __stdcall Java_VJNIR_SUBRU(JNIEnv *je , void *jc)
{

jclass cls;
jmethodID mid;
jobject ro;

jbyteArray ba;
char *p;

printf(" SUBRU called successfully.\n");

// Create a new RpgUnsigned object.

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgUnsigned");

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

ro = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */

(int) 0 /* # of decimal places */
);

// To set the object value, we need a Java byte array to use
// as an input parameter to the method for setting the object.

// Create a new byte array object

ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

Figure 101. Sample VSUBR.C (Part 1 of 2)

Chapter 21. Calling System Functions when Compiling for Java 387

Returning a two- or four-byte unsigned binary value is similar to the zoned or
packed cases above, only an RpgUnsigned object is used.

Returning A Date, Time, or Timestamp Value

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

(*je)->CallVoidMethod(je, ro, mid,
ba, // The byte array object
(int) 5, // = Component.UNSIGNED_TYPE
0 // decimal places

);
return ro;

}

Figure 101. Sample VSUBR.C (Part 2 of 2)

d subrd pr 10d dll(’VSUBR’)
d fd s 10d
C eval fd = subrd

Figure 102. Sample VJNIR.VPG

388 Programming with VisualAge RPG

Date, time, and timestamp values are returned as Java byte arrays of the
expected length. This is similar to the character data type.

Returning A Float Value

jbyteArray _Export __stdcall Java_VJNIR_SUBRD(JNIEnv *je , void *jc)
{

jbyteArray ba;
char *p;

// Create a new byte array object so it can be returned.

ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "2000-01-01",10);

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

return ba;
}

Figure 103. Sample VSUBR.C

d subrf pr 4f dll(’VSUBR’)
d subrf8 pr 8f dll(’VSUBR’)
d ff s 4f
d ff8 s 8f

C eval ff = subrf
C eval ff8= subrf8

Figure 104. Sample VJNIR.VPG

Chapter 21. Calling System Functions when Compiling for Java 389

Returning a float or double (eight-byte float) value is done directly. This is
due to the types supported as Java primitives.

Returning A Varying-Length Character Value

jfloat _Export __stdcall Java_VJNIR_SUBRF(JNIEnv *je , void *jc)
{

jfloat rc;

rc = -4444.4444;
return rc;

}

jdouble _Export __stdcall Java_VJNIR_SUBRF8(JNIEnv *je , void *jc)
{

return -7777777.55555;
}

Figure 105. Sample VSUBR.C

d subrcv pr 10 dll(’VSUBR’) varying
d fcv s 10 varying
C eval fcv= subrcv

Figure 106. Sample VJNIR.VPG

390 Programming with VisualAge RPG

A varying-length character value is returned through a Java byte array, where
the array length matches the current value length.

Returning Array Values
A JNI interface function is called to allocate an array object. If the array
elements are Java primitive data types, then the interface functions for
allocating these type of array objects is used. (There is a specific function for
each primitive type.) These also allocate the elements of the array. Then it is
only a matter of calling the interface function to map the array elements to
native memory and they can be set, relased back to Java, and then returned
from the function.

If it is not the case of a Java primitive data type for the array elements, then a
Java object must be allocated for each element of the array, its value set as
desired , and then finally the object is assigned to the specific element of the
array. Allocating the individual objects for the elements is similar to the scalar
return value case for that datatype.

jbyteArray _Export __stdcall Java_VJNIR_SUBRCV(JNIEnv *je , void *jc)
{

jbyteArray ba;
char *p;

// Return a byte array of the current data length

// Create a new byte array object so it can be returned.

ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "abcd",4);

// Update the values back to the Java Caller

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

return ba;
}

Figure 107. Sample VSUBR.C

Chapter 21. Calling System Functions when Compiling for Java 391

* Source File: VJNIRA.VPG

d subrca pr 10 dll(’VSUBRA’) dim(4)
d subrsa pr 5s 0 dll(’VSUBRA’) dim(4)
d subrpa pr 5p 0 dll(’VSUBRA’) dim(4)
d subrba pr 5b 0 dll(’VSUBRA’) dim(4)
d subri2a pr 5i 0 dll(’VSUBRA’) dim(4)
d subri4a pr 10i 0 dll(’VSUBRA’) dim(4)
d subrua pr 10u 0 dll(’VSUBRA’) dim(4)

d subrda pr 10d dll(’VSUBRA’) dim(4)
d subrfa pr 4f dll(’VSUBRA’) dim(4)
d subrf8a pr 8f dll(’VSUBRA’) dim(4)
d subrcva pr 10 dll(’VSUBRA’) varying dim(4)

d fc s 10 dim(4)
d fs s 5s 0 dim(4)
d fp s 5p 0 dim(4)
d fb s 5b 0 dim(4)

d fi2 s 5i 0 dim(4)
d fi4 s 10i 0 dim(4)
d fu s 10u 0 dim(4)
d fd s 10d dim(4)
d ff s 4f dim(4)
d ff8 s 8f dim(4)
d fcv s 10 varying dim(4)

d mb1 m style(*info) button(*OK)
d rc s 9 0

Figure 108. Sample VJNIRA.VPG (Part 1 of 2)

392 Programming with VisualAge RPG

C *INZSR BEGSR

C eval fc = subrca
c fc(2) dsply mb1 rc
C eval fs = subrsa
c fs(2) dsply mb1 rc

C eval fp = subrpa
c fp(2) dsply mb1 rc

C eval fb = subrba
c fb(2) dsply mb1 rc

C eval fi2= subri2a
c fi2(2) dsply mb1 rc

C eval fi4= subri4a
c fi4(2) dsply mb1 rc

C eval fu = subrua
c fu(2) dsply mb1 rc

C eval fd = subrda
c fd(2) dsply mb1 rc

C eval ff = subrfa

c ff(2) dsply mb1 rc

C eval ff8= subrf8a
c ff8(2) dsply mb1 rc

C eval fcv= subrcva
c fcv(2) dsply mb1 rc
C eval rc = %len(fcv(2))
c rc dsply mb1 rc
c seton lr
C ENDSR

Figure 108. Sample VJNIRA.VPG (Part 2 of 2)

Chapter 21. Calling System Functions when Compiling for Java 393

// Source File: VSUBRA.C

// Native function which returns Array values

// Add (d:\jdk12\include;d:\jdk12\include\win32) to the INCLUDE setting
// in order to find jni.h when compiling.

// Compiled with: IBM VisualAge(TM) for C++ for Windows(R), Version 3.5
// Compile command: icc /q /ss /ge- /fe vsubra.dll vsubra.c

#include <stdio.h>
#include <string.h>

#include <jni.h>

static void SwapBin2(char *);

static void SwapBin4(char *);

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRCA(JNIEnv *je , void *jc)
{

jobjectArray oa;
jclass cls;
jbyteArray ba;
char *p;
int i;

printf(" SUBRCA called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "java/lang/Object");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

Figure 109. Sample VSUBRA.C (Part 1 of 22)

394 Programming with VisualAge RPG

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");
return NULL;

}

// Populate the array
for (i=0; i<4; i++)
{

// Create a new byte array object so it can be returned.

ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

// Set value of 2nd element

if (1 == i)
{

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "Success ",10);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

}

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */
, ba);

} // for i

return oa;
}
//---

Figure 109. Sample VSUBRA.C (Part 2 of 22)

Chapter 21. Calling System Functions when Compiling for Java 395

jobjectArray _Export __stdcall Java_VJNIRA_SUBRSA(JNIEnv *je , void *jc)
{

jobjectArray oa;
int i;
jclass cls;
jmethodID mid;
jobject rzo;

jbyteArray ba;
char *p;

printf(" SUBRSA called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgZoned");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");
return NULL;

}

// Populate the array
for (i=0; i<4; i++)

{

// Create a new RpgZoned object.

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgZoned");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

Figure 109. Sample VSUBRA.C (Part 3 of 22)

396 Programming with VisualAge RPG

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return NULL;

}

rzo = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */

(int) 0 /* # of decimal places */
);

if (rzo == NULL)
{

printf(" ERROR3: \n");
return NULL;

}

// Set value of 2nd element
if (1 == i)
{

// To set the zoned object value, we need a Java byte array to use
// as an input parameter to the method for setting the zoned object.
// Could constuct a new byte array object, or get one by retrieving

// the zoned value from the object.

// Will construct a byte array.

// Create a new byte array object

ba = (*je)->NewByteArray(je, 5 /* = byte array length */);

if (ba == NULL)
{

printf(" ERROR4: \n");
return NULL;

}

Figure 109. Sample VSUBRA.C (Part 4 of 22)

Chapter 21. Calling System Functions when Compiling for Java 397

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "55555", 5);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return NULL;

}

(*je)->CallVoidMethod(je, rzo, mid,
ba,
(int) 1, // = Component.ZONED_TYPE
0 // precision

);

}

Figure 109. Sample VSUBRA.C (Part 5 of 22)

398 Programming with VisualAge RPG

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */
, rzo);

} // for i

return oa;

}
//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRPA(JNIEnv *je , void *jc)
{

jobjectArray oa;
int i;
jclass cls;
jmethodID mid;
jobject ro;

jbyteArray ba;
char *p;

printf(" SUBRPA called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgPacked");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");
return NULL;

}

// Populate the array
for (i=0; i<4; i++)
{

Figure 109. Sample VSUBRA.C (Part 6 of 22)

Chapter 21. Calling System Functions when Compiling for Java 399

// Create a new RpgPacked object.
#if 0

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgPacked");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}
#endif

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return NULL;

}

ro = (*je)->NewObject(je, cls, mid,

(int) 5, /* # of digits */
(int) 0 /* # of decimal places */

);

if (ro == NULL)
{

printf(" ERROR3: \n");
return NULL;

}

// Set value of 2nd element
if (1 == i)
{

// To set the packed object value, we need a Java byte array to use
// as an input parameter to the method for setting the packed object.
// Could constuct a new byte array object, or get one by retrieving

// the packed value from the object.

// Will construct a byte array.

Figure 109. Sample VSUBRA.C (Part 7 of 22)

400 Programming with VisualAge RPG

// Create a new byte array object

ba = (*je)->NewByteArray(je, 3 /* = byte array length */);

if (ba == NULL)
{

printf(" ERROR4: \n");
return NULL;

}

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "\x55\x55\x5C", 3);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return NULL;

}

Figure 109. Sample VSUBRA.C (Part 8 of 22)

Chapter 21. Calling System Functions when Compiling for Java 401

(*je)->CallVoidMethod(je, ro, mid,
ba, // The byte array object
(int) 2, // = Component.PACKED_TYPE

0 // decimal places
);

}

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */
, ro);

} // for i

return oa;
}
//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRBA(JNIEnv *je , void *jc)
{

jobjectArray oa;
int i;
jclass cls;

jmethodID mid;
jobject ro;

jbyteArray ba;
char *p;

printf(" SUBRBA called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgBinary");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

Figure 109. Sample VSUBRA.C (Part 9 of 22)

402 Programming with VisualAge RPG

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");

return NULL;
}

// Populate the array
for (i=0; i<4; i++)
{

// Create a new RpgPacked object.
#if 0

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgBinary");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}
#endif

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return NULL;

}

ro = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */
(int) 0 /* # of decimal places */

);

Figure 109. Sample VSUBRA.C (Part 10 of 22)

Chapter 21. Calling System Functions when Compiling for Java 403

if (ro == NULL)
{

printf(" ERROR3: \n");
return NULL;

}

// Set value of 2nd element
if (1 == i)
{

// To set the packed object value, we need a Java byte array to use
// as an input parameter to the method for setting the packed object.

// Could constuct a new byte array object, or get one by retrieving
// the packed value from the object.

// Will construct a byte array.

// Create a new byte array object

ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

if (ba == NULL)
{

printf(" ERROR4: \n");
return NULL;

}

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

Figure 109. Sample VSUBRA.C (Part 11 of 22)

404 Programming with VisualAge RPG

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the

// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return NULL;

}

(*je)->CallVoidMethod(je, ro, mid,
ba, // The byte array object
(int) 3, // = Component.Binary_TYPE

0 // decimal places
);

}

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */
, ro);

} // for i

return oa;
}

Figure 109. Sample VSUBRA.C (Part 12 of 22)

Chapter 21. Calling System Functions when Compiling for Java 405

//---

jshortArray _Export __stdcall Java_VJNIRA_SUBRI2A(JNIEnv *je , void *jc)
{

jshortArray rc;
jshort *n;

printf(" SUBRI2A called successfully.\n");

rc = (*je)->NewShortArray(je, 4 /* = array length */);

// Pin the array element memory so native side can access it.

n = (*je)->GetShortArrayElements(je, rc, NULL);

n[1] = -5555;

// Update the values back to the Java Caller

(*je)->ReleaseShortArrayElements(je, rc, n, 0);

return rc;
}
//---

jintArray _Export __stdcall Java_VJNIRA_SUBRI4A(JNIEnv *je , void *jc)
{

jintArray rc;
jint *n;
printf(" SUBRI4A called successfully.\n");

rc = (*je)->NewIntArray(je, 4 /* = array length */);

// Pin the array element memory so native side can access it.

n = (*je)->GetIntArrayElements(je, rc, NULL);

n[1] = -5555;

// Update the values back to the Java Caller

(*je)->ReleaseIntArrayElements(je, rc, n, 0);

return rc;
}

Figure 109. Sample VSUBRA.C (Part 13 of 22)

406 Programming with VisualAge RPG

//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRUA(JNIEnv *je , void *jc)
{

jobjectArray oa;
int i;
jclass cls;
jmethodID mid;
jobject ro;

jbyteArray ba;
char *p;

printf(" SUBRUA called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgUnsigned");

if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");
return NULL;

}

// Populate the array
for (i=0; i<4; i++)
{

// Create a new RpgPacked object.
#if 0

cls = (*je)->FindClass(je, "com/ibm/varpg/rpgruntime/RpgUnsigned");
if (cls == NULL)

{
printf(" ERROR 1: FindClass.\n");
return NULL;

}
#endif

Figure 109. Sample VSUBRA.C (Part 14 of 22)

Chapter 21. Calling System Functions when Compiling for Java 407

mid = (*je)->GetMethodID(je, cls, "<init>", "(II)V");

if (mid == NULL)
{

printf(" ERROR: GetMethod.\n");
return NULL;

}

ro = (*je)->NewObject(je, cls, mid,
(int) 5, /* # of digits */
(int) 0 /* # of decimal places */

);

if (ro == NULL)

{
printf(" ERROR3: \n");
return NULL;

}

// Set value of 2nd element
if (1 == i)
{

// To set the packed object value, we need a Java byte array to use
// as an input parameter to the method for setting the packed object.
// Could constuct a new byte array object, or get one by retrieving
// the packed value from the object.

// Will construct a byte array.

Figure 109. Sample VSUBRA.C (Part 15 of 22)

408 Programming with VisualAge RPG

// Create a new byte array object

ba = (*je)->NewByteArray(je, 4 /* = byte array length */);

if (ba == NULL)
{

printf(" ERROR4: \n");
return NULL;

}

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "\x00\x00\xD9\x03", 4); // 55555 = 0xD903

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,

// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

Figure 109. Sample VSUBRA.C (Part 16 of 22)

Chapter 21. Calling System Functions when Compiling for Java 409

// Prepare to call the method from the RpgNumeric class which
// takes a byte array object and assigns it’s value into the
// RpgNumeric object. Obtain the method ID.

// cls = (*je)->GetObjectClass(je, p1);
// (clS) still identifies the second parameter. Re-use value

mid = (*je)->GetMethodID(je, cls, "assignFromNative", "([BII)V");

if (mid == NULL)
{

printf(" ERROR 2: GetMethod.\n");
return NULL;

}

(*je)->CallVoidMethod(je, ro, mid,
ba, // The byte array object
(int) 5, // = Component.UNSIGNED_TYPE
0 // decimal places

);

}

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */

, ro);
} // for i

return oa;
}
//---

Figure 109. Sample VSUBRA.C (Part 17 of 22)

410 Programming with VisualAge RPG

jobjectArray _Export __stdcall Java_VJNIRA_SUBRDA(JNIEnv *je , void *jc)
{

jobjectArray oa;
jclass cls;
jbyteArray ba;
char *p;
int i;

printf(" SUBRD called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "java/lang/Object");

if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");
return NULL;

}

// Populate the array
for (i=0; i<4; i++)
{

// Create a new byte array object so it can be returned.

ba = (*je)->NewByteArray(je, 10 /* = byte array length */);

Figure 109. Sample VSUBRA.C (Part 18 of 22)

Chapter 21. Calling System Functions when Compiling for Java 411

// Set all elements to a valid date value.

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "2000-01-01",10);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */
, ba);

} // for i

return oa;
}
//---

jfloatArray _Export __stdcall Java_VJNIRA_SUBRFA(JNIEnv *je , void *jc)
{

jfloatArray rc;
jfloat *n;

printf(" SUBRF called successfully.\n");

rc = (*je)->NewFloatArray(je, 4 /* = array length */);

// Pin the array element memory so native side can access it.

n = (*je)->GetFloatArrayElements(je, rc, NULL);

n[1] = -4444.4444;

// Update the values back to the Java Caller

(*je)->ReleaseFloatArrayElements(je, rc, n, 0);

return rc;
}

Figure 109. Sample VSUBRA.C (Part 19 of 22)

412 Programming with VisualAge RPG

//---

jdoubleArray _Export __stdcall Java_VJNIRA_SUBRF8A(JNIEnv *je , void *jc)

{
jdoubleArray rc;
jdouble *n;

printf(" SUBRF8 called successfully.\n");

rc = (*je)->NewDoubleArray(je, 4 /* = array length */);

// Pin the array element memory so native side can access it.

n = (*je)->GetDoubleArrayElements(je, rc, NULL);

n[1] = -7777777.55555;

// Update the values back to the Java Caller

(*je)->ReleaseDoubleArrayElements(je, rc, n, 0);

return rc;

}
//---

jobjectArray _Export __stdcall Java_VJNIRA_SUBRCVA(JNIEnv *je , void *jc)
{

// This is similar to fixed length character, only the individual
// array elemnts can be created as byte arrays of different lengths
// to reflect the current length of the varying length values.

Figure 109. Sample VSUBRA.C (Part 20 of 22)

Chapter 21. Calling System Functions when Compiling for Java 413

jobjectArray oa;
jclass cls;
jbyteArray ba;
char *p;
int i;

printf(" SUBRCVA called successfully.\n");

// Create the object array

cls = (*je)->FindClass(je, "java/lang/Object");
if (cls == NULL)
{

printf(" ERROR 1: FindClass.\n");
return NULL;

}

oa = (*je)->NewObjectArray(je, 4 /* array length */, cls, NULL);

if (oa == NULL)
{

printf(" ERROR 2: Newobj\n");
return NULL;

}

Figure 109. Sample VSUBRA.C (Part 21 of 22)

414 Programming with VisualAge RPG

// Populate the array
for (i=0; i<4; i++)

{
// Create a new byte array object so it can be returned.

ba = (*je)->NewByteArray(je,
/* = byte array length */
(1==i) ? 4 : 10);

// Set value of 2nd element
if (1 == i)
{

// Pin the byte array element memory so native side can access it.

p = (char *) (*je)->GetByteArrayElements(je, ba, NULL);

memcpy(p, "abcd",4);

// Update the values back to the Java Caller

// Fourth Parameter = 0 also causes the variable’s storage to be freed,
// so can not access the variables after this function call.

(*je)->ReleaseByteArrayElements(je, ba, (signed char *) p, 0);
}

(*je)->SetObjectArrayElement(je, oa, i /* array element, starting at 0 */
, ba);

} // for i

return oa;
}

Figure 109. Sample VSUBRA.C (Part 22 of 22)

Chapter 21. Calling System Functions when Compiling for Java 415

416 Programming with VisualAge RPG

Chapter 22. Creating Non-GUI VisualAge RPG Programs

This section describes how to create standalone VARPG applications and
Dynamic Link Libraries (DLLs). Standalone VARPG applications have no
user interface, but they can access local and server files, and call OS/400
programs. DLLs are modules that cannot be executed directly; they contain
procedures that can be called by other VARPG applications. DLLs can also
access local files, as well as server files and programs. You can think of DLLs
as you would of OS/400 service programs.

You can create standalone VARPG applications within the VARPG GUI
designer, or by issuing commands in an MS-DOS command prompt. (See
Appendix C, “Creating and Compiling Non-GUI Programs from MS-DOS” on
page 505 for the commands.) This section describes how to use the GUI
designer to create non-GUI programs.

When creating standalone applications or DLLs, the following restrictions
apply:
v They must consist entirely of procedures.
v *ENTRY is not permitted.
v The special subroutines *INZSR and *TERMSR are not allowed.
v All subroutines must be local to a procedure.
v The EXPORT keyword is not allowed when creating standalone

applications.
v Because standalone applications and DLLs have no user interface, the

%GETATR and %SETATR built-ins, and GUI operation codes are not
allowed. These include:
– CLSWIN, GETATR, SETATR, START, STOP, SHOWWIN, READS

The DSPLY operation code can be used. However, if the procedure
containing it is called from a VisualAge RPG DLL, the DSPLY operation
code does nothing. Also, the DSPLY operation code does not support a
message data type in factor 1.

Creating Standalone VARPG Programs

A standalone VARPG program is created when the EXE keyword is specified
on the control specification.
H EXE

The program source must contain a procedure whose name matches the name
of the source file. This will be the main entry point for the program. If there
are parameters to be passed to the program, they must be specified on the

© Copyright IBM Corp. 1994, 2002 417

parameter definition for the main procedure, and they must be passed in by
value. That is, the VALUE keyword must be specified for each parameter.
When calling an application from the command line, separate parameters by
spaces. If more parameters or fewer are passed than are specified, no error
message is displayed.

To create a standalone program in the GUI Designer, select Project > New >
Non GUI project from the project window. The editor opens a new source file
that has an H control specification template. Uncomment the H * EXE
specification and code your program. When completed, save your project and
build the application. You can set any needed build options from the project
window, as well.

In the following example, the standalone VARPG program accepts a single
parameter. When run, the program will translate the parameter to uppercase
and display the result using the DSPLY operation code. Note that the name of
the main, and only, procedure is MyPgm. If you want to try this sample, be
sure to specify MYPGM as the file name when you save it.
* Sample standalone VARPG program
H EXE
*
* Prototype for the main procedure
D MyPgm PR
D 64A Value
*
* Procedure definition for MYPGM
PMyPgm B
*
D MyPgm PI
D InString 64A Value
*
D OutString S 64A
*
D LC C ’abcdefghijklmnopqrstuvwxyz’
D UC C ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
*
* Translate input parameter to uppercase and display it
C lc:uc Xlate InString OutString
C OutString Dsply I 1
*
PMyPgm E

Creating DLLs

A DLL is created when the keyword NOMAIN is specified on the control
specification:
H NOMAIN

418 Programming with VisualAge RPG

To create a DLL in the GUI Designer, select Project > New > Non GUI project
from the project window. The editor opens a new source file that has an H
control specification template. Uncomment the H * NOMAIN specification and
code your program. When completed, save your project and build the DLL.
You can set any needed build options from the project window, as well.

When you build a DLL, the compiler produces the DLL and a LIB file. The
LIB file is used to link the DLL to other applications. The LIB file will be in
the same directory as the source and it will have the same name as the DLL.
The LIB file contains all the procedures that have the EXPORT keyword on
their Begin P-specification.

The following example shows how to code the part of program MyPGM that
translates the lowercase string to uppercase as a procedure in a DLL. The
source for the DLL has one procedure named ToUpper in it. Add the Export
keyword to the procedure defintion so that this procedure can be called from
other programs.

* Sample VARPG DLL
H NOMAIN
*
* Prototype ToUpper procedure
D ToUpper PR 64A
D 64A Value
*
* The ToUpper procedure
PToUpper B Export
*
D ToUpper PI 64A
D InString 64A Value
*
D OutString S 64A
*
D LC C ’abcdefghijklmnopqrstuvwxyz’
D UC C ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
*
*
C lc:uc Xlate InString OutString
C Return OutString
*
PToUpper E

When you create and build a DLL, you can give it any name. For this
example, we use MyFunc. A successful build will create the following files in
the source directory:
v MyFunc.VPG - program source
v MyFunc.DLL - the DLL
v MyFunc.LST - the compiler listing
v MyFunc.LIB - the library file

Chapter 22. Creating Non-GUI VisualAge RPG Programs 419

v MyFunc.EVT - the event file (used by the GUI designer to display the error
feedback window; not required to run the program)

Edit and modify the MyPGM source so it calls the ToUpper procedure in the
MyFunc.DLL that was just created. The modified source follows:

0000 * Calling a procedure in a VARPG DLL
0001 H EXE
0002 *

0003 D ToUpper PR 64A DLL(’MyFunc’)
0004 D ExtProc(’TOUPPER’)
0006 D 64A Value

0007 *
0008 D MyMain PR
0009 D 64A Value
0010 *
0011 PMyMain B
0012 *
0013 D MyMain PI
0014 D InString 64A Value
0015 *
0016 D Upper S 64A
0017 *

0018 C Eval Upper=ToUpper(Instring)

0019 C Upper Dsply I 1
0010 *
0011 PMyMain E

Line Description of Change

0003 Define the prototype for the ToUpper procedure and specify that the
procedure returns a parameter that is an alpha field, 64 bytes long.
The DLL keyword specifies that the procedure is in the DLL named
MyFunc.DLL.

0004 The ExtProc keyword specifies the name of the procedure to be called.
Since the name is the same name that is used on the Definition
specification (line 0003), you can omit the keyword. If the name is
specified, however, it must be in uppercase, as shown.

0006 This statement indicates that the procedure expects one parameter - a
64 character alpha field. In this case, the parameter is being passed by
VALUE.

0018 This is the call to the procedure.

If the procedure you are calling does not return a value, then you must use
the CALLP operation code to invoke it:

420 Programming with VisualAge RPG

C CALLP SomeFunc(parm1:parm2)

Chapter 22. Creating Non-GUI VisualAge RPG Programs 421

Exception Handling

Exception handling differs from GUI VARPG applications in the following
ways:
v No information about the exception is communicated back to the caller if

the caller does not reside in the utility DLL.
v The default exception handler is never invoked from a DLL, since the

default exception handler is not invoked when an exception occurs in a
procedure. If an exception occurs in the DLL and there is no error indicator
or *PSSR, the DLL ends. Information about the exception is written to the
FVDCERRS.LOG file.

v The recommended way to handle exceptions in a utility DLL is to have an
error indicator or a local *PSSR for each routine which returns an
appropriate return code to the caller.

Debugging Applications

To debug VARPG programs, be sure to use the debug compiler option when
building the application. If the debug option is not set, you can still start the
debugger on the program, but you will have to work with the assembler view
of your program.

To run the debugger against your source, you must first build your
application. From the project view, choose Project > Build > Windows. To
start the debugger, select the Debug menu item from the Project menu. See
Chapter 10, “Debugging Your Application” on page 251 for more information
on debugging.

Debugging Procedures

If you want to debug code in your DLL, you need to follow some extra steps:
1. Start the debugger for your main application- in our example, MyMain.
2. On the Debugger - Session Control dialog, choose Breakpoints-Set load

occurrence....
3. When the Load Occurrence Breakpoint dialog is displayed, type the name

of the DLL, MyFunc, in the DLL File Name entry and press OK.
4. Run your program.

When the procedure is called in the DLL, a debugger message dialog is
displayed indicating that the DLL is being loaded. Press OK and do the
following:
1. Locate the Debug - Session Control dialog and note that there is a new

entry in the right side panel with the name of the DLL.

422 Programming with VisualAge RPG

2. Click on the + sign next to the DLL name. It will expand to show the
name of the object module, MyFunc.obj.

3. Double-click on the object module name.
4. The source view of the debugger will now show the source for procedure

ToUpper in DLL MYFUNC.

You can now add breakpoints and display program variables in the DLL.
Also, if you are currently STARTing other VARPG components, or if you are
calling your own ’C’ functions, you can also use the above procedures to
debug them.

Figure 110. Selecting the MyFunc.DLL Object File

Chapter 22. Creating Non-GUI VisualAge RPG Programs 423

424 Programming with VisualAge RPG

Chapter 23. DBCS Considerations

If you plan to use VisualAge RPG on a Double Byte Character Set (DBCS)
system, you must consider the following:
v The compiler does not allow shift-in and shift-out characters in literals. If

you use the VisualAge RPG editor to open an member in order to copy
source into your VisualAge RPG program, you must remove the shift-in
and shift-out characters from all literals. If they are not removed, compile
errors occur.

v The compiler removes shift-in and shift-out characters from your VisualAge
RPG source members when they are retrieved using the remote /COPY
feature.

v DBCS characters are not allowed in the icon file name extension for an
application.

v A VisualAge RPG application name that contains non-DBCS characters will
cause a build failure.

VisualAge RPG Support for DBCS Data Types

VisualAge RPG supports a number of DBCS data types. When you run your
application, certain rules are followed when the DBCS data types are used, in
order to ensure that data is correctly transferred between the server and the
workstation. The following DBCS data types are supported:

DBCS Only
A field of this data type contains only DBCS data, and should be used
when you are using the database. It is equivalent to the J data type
supported by the database.

DBCS Either
A field of this data type contains all single-byte or all DBCS data. It
should be used when you are using the database. It is equivalent to
the E data type supported by the database.

DBCS Mixed
A field of this data type contains all single-byte or all DBCS data. It
should be used when you are interchanging data with the database. It
is equivalent to the O data type supported by the database.

J, O and E data types require that DBCS data be bracketed by SO (Shift Out)
and SI (Shift In) characters. The workstation fields DBCS Either, DBCS Mixed,
and DBCS ONLY fields do not use SO and SI characters. When these fields
are used to transfer data to the server, SO and SI characters are added

© Copyright IBM Corp. 1994, 2002 425

appropriately. When data is being retreived from the server, SO and SI
characters are stripped, and the VisualAge RPG field is padded with two
single-byte blanks.

DBCS Either, DBCS Mixed, and DBCS ONLY fields are represented as
character fields with the same names as their part names within the
VisualAge RPG application.

The following example illustrates how data is converted when DBCS data is
transferred to and from the server. In this example, a 10 byte DBCS ONLY
field is created using VisualAge RPG. This means that the field can contain
four DBCS characters, since each DBCS character requires two bytes. The extra
two bytes are used to insert the SO and SI characters before the field is
transferred to the server. Assume that the field contains the following data
before being transferred to the server:

DBDBDBDBblbl

Where DB = 1 Double byte character.
bl = 1 Single byte blank character.

Before the field is transferred to the server, it is converted so that the DBCS
data is bracketed by the SO and SI characters. The single-byte blanks are
treated as being insignificant, and they are replaced with the appropriate SO
and SI characters. Therefore, the field would appear as follows before being
transferred to the server:

SODBDBDBDBSI

If the same data is retrieved from the server, then the SO and SI characters are
stripped and the field is padded with two single byte blanks:

DBDBDBDBblbl

Where DB = 1 Double byte character
bl = 1 Single byte blank character

Note: The character fields representing the DBCS ONLY, DBCS Mixed, or
DBCS Either data types must be padded with the appropriate number
of single-byte blanks in order for the field to be transferred to the
server and in order for the data within the field to be displayed in the
window correctly.

VisualAge RPG ensures that enough single-byte blanks are present. When
setting DBCS fields or retrieving information from DBCS fields using the
SETATR and GETATR operation codes, respectively, you must ensure that the

426 Programming with VisualAge RPG

length of the field in the SETATR and GETATR operations is the same length
as the field in the window. If it is not, it may not be transferred between the
server and the workstation.

DBCS ONLY Data Type
VisualAge RPG ensures the following when the DBCS ONLY data type is
used, regardless of whether the data is added via the field on the window or
entered using the SETATR operation code:
v The minimum field length is 2. This ensures that there is enough room for

the SO and SI characters that are added when the data is transferred to the
server.

v The field contains valid DBCS characters. Each double-byte pair is checked
to ensure that a valid DBCS character is used.

v The field is appropriately padded with blank characters. If a smaller value
is entered than the field allows, the field is padded to the maximum length
of 2 with double-byte blanks. The last two bytes of the field are padded
with single-byte blanks.

DBCS Either Data Type
The DBCS Either data type must contain either all single-byte data or all
double-byte data: mixture of DBCS and single-byte data is not allowed. If
single-byte data is used, then the maximum length of the field can be used to
hold the single-byte data and the maximum length of the data can be
transferred to and from the server.

VisualAge RPG enforces the following rules when the first two bytes of the
field represent a DBCS character, regardless of whether the data is added via
the field on the window or entered using the SETATR operation code:
v The minimum field length is 2. This ensures that there is enough room for

the SO and SI characters that are added when the data is transferred to the
server.

v The field contains only valid DBCS characters. Each double-byte pair is
checked to ensure that a valid DBCS character is used.

v The field is appropriately padded with blank characters. If a smaller value
is entered than the field will allow, then the field is padded to the
maximum length of 2 with double-byte blanks. The last two bytes of the
field are padded with single-byte blanks.

DBCS Mixed Data Type
This field can contain any number of DBCS or single-byte characters
interchangeably. VisualAge RPG enforces the following rules:
v This character field is always padded with single-byte blanks.
v For each change in DBCS mode, an SO and SI character must be accounted

for. Each time the user changes between entering DBCS characters and
entering single-byte characters, 2 is subtracted from the maximum length

Chapter 23. DBCS Considerations 427

that can be entered. For example, assume a DBCS Mixed field is created
with a length of 20 using VisualAge RPG. This field has the following
value:

DBsbDBsbDBsbDBsb.

where DB = 1 DBCS character.
sb = 1 single byte character.

This is the maximum length of the field, since the field is converted to the
following before being transferred to the server.

SODBSIsbSODBSIsbSODBSIsbSODBSIsb.

where SO = 1 shift out character.
sb = 1 shift in character.

All 20 bytes of the field are used.

Pure DBCS Considerations
Both the VisualAge RPG language and the database support a pure DBCS
data type: the G or Graphic data type. Pure DBCS data does not require the
SO (Shift Out) or the SI (Shift In) characters on the server or the workstation.
When Graphic data is converted between the server and the workstation, no
SO and SI characters are added or removed.

GUI entry fields do not directly map to the Graphic data type supported in
the VisualAge RPG language. To use the full extent of the field, it is
recommended that you create a character entry on the window. When you do,
a VisualAge RPG character field is created with the same name as the GUI
Designer part. A separate Graphic field can then be used to interact with the
character entry field created, using the GUI Designer. Use the SETATR or
GETATR operation code to interact with the entry fields. In this way, the
entire length of the entry field can be used to store DBCS characters without
concern for the SO and SI characters.

428 Programming with VisualAge RPG

Chapter 24. Merging Code in Your Application

When programming, you may wish to merge two or more parts of a project
or component and the associated code together. You can use the Merge
function to do this. Select the Merge menu item from the Project pull-down
menu. This will bring up the Open Component - VisualAge RPG dialog box,
which will allow you to select the project that you would like to merge from.

This dialogue is similar in look and function to the Find Folder/Project dialog
box. You can either specify the project in the entry field, including the
complete path, or you can use the list box to select a drive and proceed to
select folders to find the necessary project. Both methods will open the GUI
Objects Tree View window for the specified project. Alternatively, you can
select the GUI Objects menu item from the View pull-down menu in the
project organizer.

This window shows two views, the one on the left contains the tree view of
the project that you selected to merge from, and the one on the right contains
all of the children of the part that is selected in the tree-view on the left. You
can select multiple parts in the right side of the window much like you can in

Figure 111. The Code Merge GUI Objects Tree View

© Copyright IBM Corp. 1994, 2002 429

the Windows Explorer. This view may be used as an additional parts pallette
because you can select items from here (either the left or the right pane), and
then point-and-click them onto the current project’s tree view or onto the
design window. This works in the same way as the parts pallette in that you
can only place parts into a frame-based part, and frame-based parts can only
be placed into the root of your project tree. When you merge the GUI and the
associated code, the builder will force a save of the current project that you
are working on, in order to provide you with a backup of your work in the
event that you are not satisfied with the merge results.

In addition to the GUI layout, the merge will copy linked action subroutines,
help panels, technical descriptions, references to media files, referenced user
subroutines and user messages. There are a few rules to keep in mind about
merging code in these specific cases.
v All linked action subroutines will be copied.
v Referenced media files are not copied along with the references. It is your

responsibility to do this.
v File description specifications and definition specifications are not copied to

the current project. Again, it is your responibility to do this.
v User subroutines, RPG procedures and User messages referenced by the

action subroutine being copied will also be copied. This includes all
references to user subroutines used by an EXSR or a CASxx operation code,
RPG procedures referenced on a CALLP operation code, and user messages
referenced with the DSPLY operation code.

v For parts which have been renamed, all action subroutines that refer to the
part, and which have names that conform to the standard format will be
renamed. For example, the following source code would be renamed as it
follows the standard format. The requirement for this format is that the
partname and windowname directly correspond to the location in which
the part can be found.
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
CSRN01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq----
C PSB000000C BEGACT PRESS FRA000000B

.

.

.
C ENDACT

v User messages which are copied are renamed consecutively begining with
the first message copied. All merged user messages are numbered
sequentially starting immediately after the last message in the current
project. The message IDs are changed on DSPLY operation codes that
reference them.

v If a name conflict is detected for a user subroutine, it will not be renamed
and it will be added to a list contained in the merge log file. The log will
also be displayed on the Code Merge Results window. The merge log file
will be placed in the project directory, with a filename of projectname.mrg
where projectname is the name of your project. This file will be overwritten

430 Programming with VisualAge RPG

if more than one merge is performed for the same project. The file is not
automatically appended. The following example contains a listing of a
sample merge file.

The following parts were copied to the target project:

Source Name Target Name

SEARCHW:CAN00023 SEARCHW:CAN00023
SEARCHW:SEARCHW SEARCHW:SEARCHW
SEARCHW:SEARCHGB SEARCHW:SEARCHGB
SEARCHW:STX00071 SEARCHW:STX00071
SEARCHW:TITLECB SEARCHW:TITLECB
SEARCHW:STX00073 SEARCHW:STX00073
SEARCHW:STX00074 SEARCHW:STX00074
SEARCHW:STX00075 SEARCHW:STX00075
SEARCHW:CATCB SEARCHW:CATCB
SEARCHW:DIRCB SEARCHW:DIRCB
SEARCHW:ACTORCB SEARCHW:ACTORCB
SEARCHW:SEARCHPB SEARCHW:SEARCHPB
SEARCHW:CANCELSEPB SEARCHW:CANCELSEPB
SEARCHW:HELPPB SEARCHW:HELPPB
SEARCHW:STX00082 SEARCHW:STX00082

Chapter 24. Merging Code in Your Application 431

The following help panels were copied to the target project:

Source Name Target Name

24.SEARCHW 88.SEARCHW
79.SEARCHPB 99.SEARCHPB
80.CANCELSEPB 100.CANCELSEPB
81.HELPPB 101.HELPPB

Merging Source Code:

Action Subroutine CATW+CLOSE+CATW
Renaming To SEARCHW+CLOSE+SEARCHW

Action Subroutine TITLECB+CREATE+SEARCHW
Action Subroutine DIRCB+CREATE+SEARCHW
Action Subroutine ACTORCB+CREATE+SEARCHW
Action Subroutine CATCB+CREATE+SEARCHW
Action Subroutine TITLECB+ENTER+SEARCHW
Action Subroutine CATCB+SELECT+SEARCHW
Action Subroutine DIRCB+SELECT+SEARCHW
Action Subroutine ACTORCB+SELECT+SEARCHW
Action Subroutine CANCELSEPB+PRESS+SEARCHW
Action Subroutine SEARCHPB+PRESS+SEARCHW

Message *MSG0001 -> *MSG0003
Message *MSG0001 -> *MSG0003
Message *MSG0001 -> *MSG0003
Message *MSG0001 -> *MSG0003

User Subroutine WRTBRSFSR
User Subroutine CASECAT
User Subroutine CKCRITERIA
User Subroutine DSPBROWSE

Message *MSG0001 -> *MSG0003
User Subroutine BRACTION
User Subroutine BRCHILDREN
User Subroutine BRSCIFI
User Subroutine BRCOMEDY
User Subroutine BRHORROR
User Subroutine BRWESTERN
User Subroutine BRROMANCE
User Subroutine BRCLASSIC

432 Programming with VisualAge RPG

The following messages were copied to the target project:

Source Message Target Message

1 3

Technical description of the following parts were copied to the target
project:

Source Name Target Name

SEARCHW:SEARCHPB SEARCHW:SEARCHPB
SEARCHW:CANCELSEPB SEARCHW:CANCELSEPB
SEARCHW:HELPPB SEARCHW:HELPPB

Chapter 24. Merging Code in Your Application 433

The following rules apply to the resolution of part name conflicts:
v The merged part or window will be renamed.
v If a window gets renamed all of the parts contained in it will inherit the

new window name.
v Action subroutines linked to a renamed window or part will be renamed

and relinked, if they follow the standard naming format.
v Calculation Specifications containing a GETATR or SETATR operation code

which refer to a renamed part will be changed.
v The merge process tries to correct part references in the code being merged

to address part name changes.

User messages that are used in merged parts are also copied. The following
rules apply:
v If there is a name conflict, for a user message, a rename will take place.
v References to renamed user messages will be updated.

434 Programming with VisualAge RPG

Chapter 25. Vendor Plugins

Plugins are applications that are written by third party developers and are
created to provide additional functionality to VisualAge RPG. A wide variety
of tasks could be automated such as the insertion of a line of code to set the
value of an attribute selected from a list for a named part; or a procedure
which allows programmers to print their RPG source formatted to include
page headings and footers.

Adding a Vendor Plugin

To add a plugin that you have either created or obtained from a third party
developer, do the following:
1. Click on the Vendor pull-down menu.
2. Highlight the Plugins item to reveal the plugins submenu.
3. Click on the Add plugin... command to open the Add plugin window.
4. Select the vendor plugin that you would like to add from the files

diplayed in the window. The files that are displayed have a .plg extension.

Invoking a Vendor Plugin

When you have added a plugin to the VisualAge RPG GUI designer, you then
have to invoke the function. The most simple method of doing this is to select
the plugin menu item that was defined by the vendor. The menu item can
either be on the Vendor pull-down menu, or on the Selected pull-down menu
or from a part’s popup menu. In some cases the plugin will not have a menu
item defined, and it will be necessary to invoke this plugin external to the
GUI designer (to see an example of this method of invocation, see the
LPEXSAMP sample plugin). As an example, add one or more of the vendor
plugin samples provided with VisualAge RPG. To invoke these plugins, do
the following:
1. Click on the Vendor pull-down menu.
2. Highlight the Plugins item to reveal the plugins submenu.
3. Highlight the menu item that is added along with the plugin. The name of

this menu item is variable, because it is created by the developer of the
plugin. Depending on the developer/vendor this may produce another
submenu. If this is the case, go to step 4, otherwise, click the menu item to
invoke the plugin.

4. Click on the appropriate menu item from the submenu to invoke the
plugin.

© Copyright IBM Corp. 1994, 2002 435

Managing Vendor Plugins

If you have vendor plugins functioning in VisualAge RPG, you may want to
find out information about a plugin, such as the developer, the developer’s
description of what it is that the plugin does, or the dll that is associated with
the plugin. This information can be obtained in the Manage plugins window.

To open the Manage plugins window, do the following:
1. Click on the Vendor pull-down menu.
2. Highlight the Plugins item to reveal the plugins submenu.
3. Click on the Manage plugins... command to open the Manage plugins

window.

436 Programming with VisualAge RPG

Chapter 26. Creating Plugins

You can create a plugin to address your own specific needs, or as a VisualAge
RPG supplement to be shipped to other programmers who may benefit from
your plugin. Plugins can be created using one of either VisualAge RPG,
VisualAge C++, or REXX. The following steps outline the plugin creation
process using VisualAge RPG code. Additional sections will follow that will
address the exceptions and additional guidelines for creating plugins with
VisualAge C++ or REXX.

Creating Plugins Using VisualAge RPG

There are two components required to create a plugin, the executable file and
the plugin informations file. The executable file consists of compiled source
code which performs the desired function. The plugin information file (.plg)
acts as an interface between the GUI designer and the executable file. It
contains important information such as the definitions for the pull-down
menu items that are added to the GUI designer, as well as the actual call to
the executable file.

It does not matter which of the two files that you create first, as both must be
present for the plugin to function. This example starts with the .plg file.

Creating the .plg file
The .plg file acts as the interface between the plugin and the designer. It is an
ASCII file which contains organizational information such as the location of
the necessary DLL, the location of the associated help files, and the name of
the plugin itself and the vendor. The .plg file also contains the information
that is needed to interface the plugin with the designer. This includes the
command line string, the desired text for the menu items, and the key
combination that serves as an accelerator. The following list of keywords
explains the various parameters, including the rules which apply, whether the
parameter is required or optional, and the information that you need to
provide. An example follows this list of keywords which illustrates how this
file appears when it is finished.

Note: The spaces between the keyword and the parameter value that is being
used for the value in your plugin are arbitrary. The spaces used in the
examples are designed for presentation only.

Alternate_Paths
This is a string that indicates what relative paths should be used when
loading the plugin DLL described below. This field is optional.

© Copyright IBM Corp. 1994, 2002 437

The string takes the form:
"&1\relativePath1;&1relativePath2;...;&1\relativePathN;"

where &1\ will be converted to the full path to the .plg file. This means that if
you have a suite of plugins that get installed in a directory such as
c:\myplugins, and they all link to a common DLL:
c:\myplugins\plugutil\plugutil.dll, then if each individual plugin was
located in c:\myplugins\plugN\plugN.plg, you could specify the alternate
path: &1\..\util;, which would be converted to:
c:\myplugins\plugN\..\util; and be appended to the PATH before your DLL
is loaded. The quotation marks are required if you choose to use this
keyword.

Instead of a string, you may also use a resource id to point to a path specified
in an external source.

DLL_Names
The value for this field is a string that defines the name of the required DLL
files for this plugin. This is an optional field, but if used, there must be a DLL
named that is used by the plugin. Additionally, an mri.dll may be named. The
mri.dll name is optional, but cannot be included without a plugin.dll. If both
are included, they are delimited by a space. The name of the DLL files can
include the path relative to the location of the plugin files.

plugin.dll
This is the name of the DLL containing the code for the plugin. If the
plugin is not a function call within a DLL, then this may be omitted.

mri.dll
If mri (translatable strings) is in a separate DLL, name that dll here.
The DLLS are specified first so that any strings to follow can be
contained in the DLLs.

Whenever a string is required further on in the .plg file, if a string enclosed in
quotation marks is not specified, then the value given is assumed to be a
string resource id in either mri.dll or plugin.dll

Vendor_Name
This is either the name of the vendor enclosed in double quotation marks, or
the resource id of a string. This field is optional, but recommended. An
example of this string would be:
Vendor_Name: "Plug-Me-In Inc."

Plugin_Name
This is either the name of the plugin enclosed in quotation marks, the
resource id of a string. This field is optional, but recommended. An example
of this field using a string is:

438 Programming with VisualAge RPG

Plugin_Name: "Who Am I?"

Help_File
This field is optional, and identifies the Windows .hlp file used for displaying
help for the menu items. It is a string, not enclosed in quotation marks, which
includes the relative path to the help file.

Unloading_Function
This field is optional. The Unloading_Function field cannot be used in
conjunction with the Unloading_Command_Line field. This field is only used
if there is information or a display element that needs to be modified or
removed after the plugin is finished or removed. This string, enclosed in
quotation marks, designates the function which will be used. This function
must be contained in the DLL that accompanies the plugin.

The Unloading_Function is the name of the function to be called when the
plugin is about to be unloaded. It has the following signature:

where the parameters are:

ppluginPath_
The fully qualified path to the plugin being invoked, up to and
including the final backslash.

ppluginStub_
The rest of the plugin filename (eg. ″myplug.plg″).

pdllPath_
The fully qualified path to the DLL containing VARPG’s exposed
methods.

builderId_
A string used by VARPG to identify the builder and which is used by
the plugin when communicating with the builder.

remove_

0 The builder is shutting down.

1 The user has requested that the plugin be removed altogether.
If this is the case, the plugin should remove any information it
has stored in the registry at this time.

Return value

unsigned long
unloadFunctionName(

const char* ppluginPath_,
const char* ppluginStub_,
const char* pdllPath_,
const char* builderId_,
int remove_)

Chapter 26. Creating Plugins 439

0 success

1 failure, or refusal

If the plugin returns a 1 from this function, the builder may prompt
the user with the option to forcibly remove the plugin by unloading
its DLL. If this occurs, it is possible that the plugin may then crash the
designer. If this occurs, restart the designer.

Unloading_Command_Line
As mentioned above, this field cannot be used at the same time as the
Unloading_Function field.

When this option is used, you provide a string to be executed as though it
were being run from the command line. For example, you could start
Netscape by specifying the string: netscape.exe

This method allows you to obtain the same set of parameters that would be
available to a function in a DLL. This is accomplished through the definition
of substitution variables. Whenever a ’&0’, ’&1’, ’&2’, ’&3’, ’&4’ or ’&5’ is
found in the string specified, it is replaced with the following:

&0 ppluginPath_

&1 ppluginStub_

&2 pdllPath_

&3 builderId_

&4 remove_

&5 path to the GUI Designer’s root directory

IBM_PluginInterface | PluginInterface
This is an advanced feature that is not required. This field allows you to
expose your plugin as a programmable component. You cannot use these two
options in the same .plg file. If you do not have a reason to specify either of
these interfaces, do not do so.

When either one or the other of these options is used, the function name
specified is used when other plugins interact with this plugin through a
target/command/parameters interface.

The signature of the function should be:

440 Programming with VisualAge RPG

for the IBM_ style function, where arguments_ is used for input and output.

For the non-IBM style function, the signature should be:

In this case, if there is a return string, ppreturnString_ should be allocated
memory by the plugin using GlobalAlloc(GMEM_FIXED, [bufferSize]) so
that VARPG can deallocate the memory when it is finished with it. If there is
no return string required, this parameter can be ignored. The following is an
example of this command:

To see an example of a plugin that supports the IBM_PluginInterface feature,
look at the LPEXSAMP sample provided in the
x:\...\WDSC\samples\vndplugs\lpexsamp directory (where x corresponds to
the letter of the drive onto which you installed VisualAge RPG).

Begin_Details ... End_Details
Between these tags, enter anything that you wish to show the user when this
plugin’s information is displayed in the Manage plugins dialog. You may
want to give a brief description of the purpose and use of your plugin. You
can enter text here, or you can use the String/Resid form described for the
mri.dll. This field is optional, but is highly recommended.

Function_Name
This is the name of the function that should be called in the plugin.dll when
the menu item is triggered. You can either use this field or the

unsigned long __stdcall IBMtargetCommandFunction(
const IString& pluginPath_,
const IString& dllPath_,
const IString& builderId_,
const IString& target_,
const IString& command_,
IString& arguments_);

unsigned long __stdcall targetCommandFunction(
const char* ppluginPath_,
const char* pdllPath_,
const char* pbuilderId_,
const char* ptarget_,
const char* pcommand_,
const char* parguments_,
char** ppreturnString_);

{
IString returnString = ...;
...

*ppreturnString = GlobalAlloc(returnString. length() + 1);
strcpy(*ppreturnString, returnString);

}

Chapter 26. Creating Plugins 441

Command_Line field. You may not use both. It should have the following
signature:

where the parameters are:

ppluginPath_
Same meaning as for unloadFunctionName().

pdllPath_
Same meaning as for unloadFunctionName().

builderId_
Same meaning as for unloadFunctionName().

menuContextId_
An unsigned long value representing the type of menu from which
this plugin is invoked. This value determines the meaning of
partsIds_. The possible values are:

1 The plugin was invoked from the menu bar, (that is, this is a
project-scoped plugin) and partsIds_ is an empty string.

2 The plugin was invoked for a single selected part, (that is, this
is a single-selection-scoped plugin) and partsIds_ contains the
identifier of the selected part.

4 The plugin was invoked for a group of jointly-selected parts
(that is, this is a multiple-selection-scoped plugin) and
partsIds_ is a string containing the blank delimited set of part
identifiers of the selected parts.

8 The plugin is invoked when the GUI designer is started.

partsIds_

This is a string representing the part or parts, to which the function
call should apply as indicated by the menuContextId_. Within
partsIds_, each individual part identifier is a sequence of
dot-separated unsigned long values (eg. 432.5632.612) which represent
the child-parent hierarchy of the given part. In the stated example, 612
is the ID of the part, 5632 is the ID of its parent, and 432 is the ID of
the parent’s parent.

unsigned long
pluginFunctionName(

const char* ppluginPath_,
const char* pdllPath_,
const char* builderId_,
unsigned long menuContextId_,
const char* partsIds_);

442 Programming with VisualAge RPG

Command_Line
When this option is used, you provide a string to be executed as though it
was being run from the command line. For example, you could start Netscape
by specifying the string: netscape.exe.

This method allows you to obtain the same set of parameters that would be
available to a function in a DLL. This is accomplished through the definition
of substitution variables. Whenever a ’&0’, ’&1’, ’&2’, ’&3’, ’&4’ or ’&5’ is
found in the string you specify, it is replaced with the following:

&0 ppluginPath_

&1 pdllPath_

&2 builderId_

&3 menuContextId_

&4 partsIds_

&5 path to the GUI Designer’s root directory.

Using the Netscape example above, suppose the vendor provided an HTML
file with its plugin, and this particular menu item is intended to display that
HTML file. Assume also that the plugin file is located in d:\vendor\plugins,
and the HTML file is d:\vendor\plugins\htmlsrc\plugpage.html. To have the
plugin display this web page, the definition of the command line might be as
follows:
netscape &0htmlsrc\plugpage.html

Which would expand to, and be run as:
netscape d:\vendor\plugins\htmlsrc\plugpage.html

Menu_Name
This is either a string or a string resource id that indicates what the menu
item should be. These strings have the format:
submenu1/submenu2/.../submenuN/menuitem

where submenu1 through submenuN are optional submenus.

For example:

where ″Plug-Me-In Inc.″ is the submenu and ″Who am I?″ is the menu item.

Menu_Name: "Plug-Me-In Inc./Who am I?"

Chapter 26. Creating Plugins 443

Menu_Info_Strings
This is a list of strings or string ids that are associated with the corresponding
submenus/menuitem as specified in Menu_Name. The association works
backwards.

For example, if you specify one submenu and one menu item in Menu_Name,
but only specify one string in Menu_Info_Strings, then the string you specify
in Menu_Info_Strings will be associated with the menu item, and the
submenu will be ignored. (It is possible that a previous menu item addition
defined an info-area string for the given menu item.)

Supported_Menus
As mentioned in Function_Name, the menuContextId_ indicates a type of
menu. Supported_Menus indicates the menus to which this particular entry
should be added.

Help_Id
If a help file has been specified, and there is help associated with this
command, provide the help id here in the ulong_panel parameter of Help_Id.
If the optional_force_window_parameter is provided and is a non-zero value,
then the help will be displayed in a full help window rather than in the
default context popup. This field takes the form of:

and a sample of how this is actually coded is:

Accelerator
This optional field specifies the accelerator to be associated with the item. It
consists of one of F1 through F12, followed by one or more modifiers (SHIFT,
ALT, CONTROL)

Note: <F1/10>, <Alt-F5/7/8/9/10>, and <Shift-F9/10> are already reserved
by the designer, and if specified will be ignored.

To use this function, provide the following information:

This field, when used will look like the following sample:

End_of_Definition
This indicates to the parser that a function definition has ended and that a
new one may begin.

Help_Id: ulong_panel optional_force_window_parameter

Help_Id: 1000 1

Accelerator: [F1 | F2 | F3 | ... | F12] [SHIFT] [CONTROL] [ALT]

Accelerator: F8 Shift

444 Programming with VisualAge RPG

Template for .plg file and sample
When using the previously described fields to create a .plg file for the GUI
designer you need to follow this format:

Note: There must be at least one Function_Name or Command_Line
definition. There is no limit on the maximum number allowed.

Note:
v All filenames are given relative to the location of the .plg file.
v The unloaders are optional, but if you choose to have one, you can

only have one or the other.
v Either the Function Name or Command Line may be specified.

The following is a specific example of a simple .plg file. There are some
plugin samples provided with VisualAge RPG. The files can be found in the

// Lines that begin with double forward-slashes are ignored
// (that is, treated as comments)

Alternate_Paths: string_or_resId
dll_Names: plugin.dll mri.dll
Vendor_Name: string_or_resId
Plugin_Name: string_or_resId
Help_File: helpfile.hlp
Unloading_Function: "unloadingFunction"

(or)
Unloading_Command_Line: "command line invocation with substitution symbols &0, &1, &2, &3, &4, &5"
IBM_PluginInterface: "IBMtargetCommandFunction"

(or)
PluginInterface: "targetCommandFunction"

Begin_Details:
.
.
Optional text outlining the function of the plugin.
.
.

End_Details:

Function_Name: "functionName1"
(or)

Command_Line: "command line invocation1 with substitution symbols &0, &1, &2, &3, &4"
Menu_Name: string_or_resId
Menu_Info_Strings: string_or_resId string_or_resId ...
Supported_Menus: menuContextId1 menuContextId2 ...
Help_Id: ulong_panel optional_force_window_parameter
Accelerator: [F1 | F2 | F3 | ... | F12] [SHIFT] [CONTROL] [ALT]
End_of_definition:

Chapter 26. Creating Plugins 445

X:\...\WDSC\samples\vndplugs\ directory on the workstation where
VisualAge RPG is installed (where X corresponds to the drive letter).

Creating the .EXE file
To create an .EXE file for the GUI designer you need to be aware of the
following:

When using VisualAge RPG to create plugins, you use the *component part to
interact with the designer. By setting values for the PlugDLL, PlugId,
PlugCmd, PlugRC, and PlugResult attributes, all of the necessary information
can be communicated between the designer and the plugin.

To create a working plugin you must establish proper communication by
providing the designer with the following information:

builderId_
This is the same id that was provided by the designer when the
plugin was invoked.

target_
This is a string representing the aspect of the designer you wish to
interact with.

command_
This is the specific action you wish the designer to take.

parameters_
Any arguments required by the command.

Note: In a VARPG program, builderId_ corresponds to *component’s PlugId
attribute. In order to make a call to the Plugin interface, you must first
have set PlugId and also PlugDLL. PlugDLL indicates to the VARPG

// Print project plugin

Vendor_Name: "Plug-Me-In Inc."
Plugin_Name: "Who Am I?"
Begin_Details:

Who Am I?

This plugin will display information about the current
project including its directory name and file name.

End_Details:

Command_Line: "d:\myproj\whoami\rt_win32\whoami.exe &1 &2 &4"
Menu_Name: "Plug-Me-In Inc./Who am I?"
Supported_Menus: 1
Accelerator: F7 Shift
End_of_Definition

446 Programming with VisualAge RPG

runtime where the dll containing the builder’s plugin interface is
located. When issuing a command, first concatenate the values of
target_, command_ and parameters_ using blanks for delimeters and
then use the result to set *component’s PlugCmd attribute.

You get a result and an error code in return. In the case of a function call, one
of the parameters is set to contain the result string, and the returned unsigned
long value contains the error code. The following are some basic return codes
common to all commands. Any additional error codes will be defined in the
respective table of Targets and Commands.

Return Code
Meaning

0 All went well, and the command was handled.

1 The target was not recognized.

2 The target did not recognize the command.

4 The builder can not be found.

5 Some unknown error occurred and the results of the command can
not be trusted.

Targets/Commands and the associated Return Values
A list of the valid targets and commands follows, along with the semantics of
their parameters and returned values.

Table 13. Target: Project

Command Parameter(s) Meaning/Return Value

Build [win32|java]
Default: win32

Builds either a win32 or java
version of the project,
depending on whether the
platform is ″win32″ or ″java″.
No return value, and returns
immediately (that is, before the
build completes).

BuildOptions [win32|java]
Default: win32

Shows the build options for
either win32 or java,
depending on whether the
platform is ″win32″ or ″java″.
No return value, but does not
return until the (modal) dialog
is dismissed.

Chapter 26. Creating Plugins 447

Table 13. Target: Project (continued)

CursoredPart none Returns a string containing the
partId for the currently
cursored part. If no design
window is open, or if no open
design window is the active
design window, then this is an
empty string.

ExpandAll [1] If this parameter=1, then the
entire treeview is expanded;
otherwise, it is collapsed.

ForceOpen [projectName] Opens the specified project
without checking whether or
not the current project needs to
be saved. Returns a 1
indicating that the ForceOpen
was successful, or a 0 to
indicate that the ForceOpen
was unsuccessful.

Get ProjectDir Returns the current project’s
root directory.

ProjectFileName Returns the current project’s
fully qualified .IVG file name.

ProjectTargetName Returns the name of the file
that will be generated when
the project is built (for
example, ″myproj.exe″).

ProjectTitle Returns the title of the current
project.

ProjectFileStub Returns the filename (minus
the extension) of the names of
the current project (for
example, ″myproj″).

IsSaveRequired none Returns 1 to indicate that the
project has been modified, 0 to
indicate that it hasn’t been
touched since being opened.

IsTemporary none Returns a 1 if this is an
unnamed project, 0 otherwise.

MostRecentlyUsed n Returns the n’th most recently
opened project, where n is
equal to or greater than 1.
Returns an empty string if the
index is out of bounds.

448 Programming with VisualAge RPG

Table 13. Target: Project (continued)

Open projectName Checks to see if the user wants
to save the project before
opening another project.
Returns 1 if a project was
successfully opened, and 0
otherwise.

PartId partName [windowName
|[0|1|2]]

Returns a partId when given a
part name. If you specify a
windowName, then this will
either return the id of the part,
or if there is no such part, it
will return an empty string. If
you specify a searchType, then
the following rules will be
used when searching for a part
with the given name:
0 (default) - Return the first
part with the given name.
1 - Return all parts with
the given name.
2 - If there is only one part
with this name, return it;
otherwise return nothing.

PromptedSave none Prompts the user for a project
name and then saves the
project. Returns a 1 to indicate
that a successful save took
place; otherwise it returns a 0.

PromptExisting none Prompts the user for an
existing project. Returns the
project filename.

Run none Runs the current project.

Save none Saves the current project.

SaveAs projectName Saves the current project with
the specified project name.

SelectedParts none Returns a string containing the
partIds of all of the parts
currently selected in the
project’s treeview.

Table 14. Target: PartClass

Command Parameter(s) Meaning/Return Value

Chapter 26. Creating Plugins 449

Table 14. Target: PartClass (continued)

AllAttributes ClassName Returns a list of the attributes
supported by the given
ClassName.

AllClasses none Returns a list of all available
part classes. Each list item is
embedded in double quotation
marks since some may consist
of multiple words (for
example, in the case of vendor
parts).

AllEvents ClassName Returns all registered events
for the given class.

IBMClasses none Returns a list of all IBM
supplied, non-vendor part
classes.

IconDll ClassName Returns the path of the dll
containing the icon that
represents the given part class.

IconId ClassName Returns the resource id of the
icon (in the dll given by
″IconDll″) for the given class.

IsType TypeName Returns 1 to indicate that the
ClassName given class is of the
given type; otherwise it returns
a 0. Possible values for
TypeName include: Frame,
Canvas, MenuBar, NoteBook,
NoteBookPage, PopUpMenu,
SubMenu, MenuItem, Subfile
and SubfileEntryField.

VendorClasses none Returns a list of all available
vendor part part classes.

Table 15. Target: Part

Command Parameter(s) Meaning/Return Value

ActionSubroutine partId eventName Locates the linked action
subroutine, eventName or
creates a link and scans to it if
it does not already exist.

ActionSubroutines partId Returns a list of action
subroutines defined for this
part.

450 Programming with VisualAge RPG

Table 15. Target: Part (continued)

AllEvents partId Returns all registered events
for the given part.

Children [partId] Returns a list of blank
delimited partIds enumerating
all of the specified part’s
children. If no partId is
provided, a list of all of the
project’s windows is returned.

ClassName partId Returns the classname of the
indicated part.

CreateChild partId className Creates a part of the given
class name className as a
child of the specified part.
Returns the partID of the
newly created part.

CreateFrame ClassName Creates a part of the specified
class. The class must be a
frame based part. Returns the
partID of the newly created
part.

DataInfo dataType dataLength
decimalPlaces

where:

dataType is ’0’=Numeric or
’1’=Character

dataLength is the data length

decimalPlaces is the number of
decimal places

Returns a string of three
numbers, each separated by a
blank. Applicable parts include
entry field, static text, and
subfile entry field.

ExtraColorAreas
see Note below

partId Returns a count of the color
areas that this part supports if
this part supports color areas
other than foreground and
background.

FileName partId Obtains the file name set for
this part. If the part doesn’t
support files, the return value
is an empty string.

Chapter 26. Creating Plugins 451

Table 15. Target: Part (continued)

GetColor partId [x]
where x corresponds to the
colorArea of the part indicated.

Get the color for the specified
area. Returns a string with 4
blank delimited numbers:
useDefault - (0 or 1)
redMix - (0 - 255)
greenMix - (0 - 255)
blueMix - (0 - 255)

GetFont partId [x]
where x corresponds to the
fontArea of the part indicated.

Gets the part’s font. Returns an
empty string if the font is not
supported. Otherwise, the first
part of the returned string is a
0 or 1 indicating whether or
not the default font is being
used, the second word of the
string is a point size, the third
word of the string is a number
which (ORs) together
applicable font styles from the
following:
1 - bold
2 - italic
4 - underscore
8 - strikeout
16 - outline
The rest of the string is the
font’s facename.

GetRect partId Gets the coordinates (x y width
height) of the part relative to
its parent.

HasFile partId Returns a 1 to indicate that the
part supports a file (for
example, canvas, image, media,
...); otherwise it returns a 0.

IsColorArea
see Note below

partId [x]
where x corresponds to the
colorArea of the part indicated.

Returns a 1 to indicate that the
color area is supported;
otherwise it returns a 0.

IsFontArea partId [x]
where x represents a fontArea
of the part indicated.

Returns a 1 to indicate that the
font area is supported;
otherwise it returns a 0.

Label partId Returns the part’s label (if it
has one).

LinkedEvents partId Returns a list of events for
which this part has action
links.

452 Programming with VisualAge RPG

Table 15. Target: Part (continued)

Name partId Returns the name of the part
as shown in the treeview and
settings notebook.

OpenDesignWindow partId [1] When set to 1, opens and sets
focus to the design window to
which the indicated part
belongs. If set to 0, then the
design window is closed
instead.

OpenPart partId Either opens the part’s settings
notebook, or if the part is a
frame, opens the part’s
corresponding design window.

OpenSettings partId Opens the part’s settings
notebook.

SetColor
see Note below

partId
colorArea
useDefault
redMix
greenMix
blueMix

Sets the color for the given
area. See GetColor for more
information for the allowed
values for each of the
parameters.

SetCursored partId If the part’s design window is
open the part becomes the
active part but selection state
doesn’t change. If the design
window is not open, this has
no effect.

SetDataInfo partId dataType dataLength
decimalPlaces

where:

partId is the part’s id

dataType is ’0’=Numeric or
’1’=Character

dataLength is the data length

decimalPlaces is the number of
decimal places

Sets the data properties of a
part. Does not update the
Properties Notebook of a part
that is already open, or in use.
The programmer must ensure
new values are compatible
with existing ones already
defined for the part. Applicable
parts include entry field, static
text, and subfile entry field.

SetFileName partId newFileName Sets the file name for this part.
Nothing happens if the part
doesn’t support files.

Chapter 26. Creating Plugins 453

Table 15. Target: Part (continued)

SetFont partId fontArea setToDefault
pointSize styles faceName

Sets the part’s font.

SetLabel partId newLabel Attempts to set the part’s label.
If the given label is invalid, an
error message is shown.
Returns 1 to indicate that the
label was set; otherwise it
returns a 0.

SetName partId newName Attempts to set the name of
the part. If the set fails, an
error message is displayed. If
the part has action links
associated with it, a message is
displayed asking the user if
they wish to break the links.
Returns 1 to indicate success,
or 0 to indicate failure.

SetRect partId x y width height Sets the coordinates (x y width
height) of the part relative to
its parent.

SetSelected partId [0|1] [0|1] Selects/deselects the given
part. The first parameter in the
string is turnOn, and the
second is exclusive. If turnOn
or exclusive are not specified,
it is assumed they have the
value ″1″. Exclusive indicates
whether selecting the part
should deselect all other parts
and turnOn indicates whether
or not the part’s selection
status should be altered.

SetStyles partId styles extendedStyles
[0|1]

Sets the styles and extended
styles of the given part. Note
that these settings will not
necessarily be updated in the
properties notebook or the
design window if either is
open. This command is
intended for use when a part is
being created and initialized. A
″0″ at the end of this string
will indicate that the value is
in decimal format, while a one
indicates that hexadecimal
notation is being used.

454 Programming with VisualAge RPG

Table 15. Target: Part (continued)

Styles partId [0|1] Returns two numeric values
separated by a space
representing the styles and
extended styles of the given
part. A ″0″ at the end of this
string will indicate that the
value is in decimal format,
while a one indicates that
hexadecimal notation is being
used.

Zoom partId [0|1] Expands the treeview and
scrolls to the indicated part. If
″1″ is specified, then the
treeview is also given focus.

Note: A part will have a Foreground (1) color area, a Background (0) color
area or no color area, or it will have Extra color areas. The window
part, for example has no color areas. The Checkbox has foreground and
background color areas. The graph has Extra color areas. Therefore, 0
and 1 only necessarily indicate background and foreground color if the
part has no Extra colors.

The following require that the source file be open in LPEX.

Table 16. Target: Subroutine

Command Parameter(s) Meaning/Return Value

DeleteActionSub routineName Deletes the action subroutine
with the given name.

DeleteUserSub routineName Deletes the user subroutine
with the given name.

UserSubroutine routineName If the subroutine does not exist,
creates a user subroutine with
the given name and locates it
in the source file. If it does
exist, it is located in the source
file.

UserSubroutines none Returns a list of user
subroutines.

Table 17. Target: Grid

Command Parameter(s) Meaning/Return Value

Chapter 26. Creating Plugins 455

Table 17. Target: Grid (continued)

IsOn none Returns a 1 if the grid is
currently on, and a 0 if it is off.

TurnOn [0|1] If set to 1, will turn on the
grid. If set to 0, will turn it off.
(Defaults to on.)

Table 18. Target: Lpex

Command Parameter(s) Meaning/Return Value

DoIt Any_LPEX_command Passes your parameters to
LPEX’s ″DoIt″.

IsSourceFileOpen none Returns a 1 to indicate that the
source file is open; otherwise it
returns a 0.

OpenSourceFile none Opens the source file in LPEX.

Query Any_LPEX_query Passes your parameters to
LPEX’s ″Query″.

Table 19. Target: Plugin

Command Parameter(s) Meaning/Return Value

AddPlugin filename Attempts to add the specified
plugin. Returns ″0″ if
successful.

get PluginCount Returns the number of plugins
currently installed.

Plugin oneBasedIndex Returns the fully qualified path
of the oneBasedIndex’th
plugin. If n is less than 1 or
greater than the number of
plugins, a null string is
returned.

Plugins Returns a list of the fully
qualified paths of all plugins.

InvokePlugin oneBasedIndex target
command parameters

Invokes the plugin using a
target/command interface.

Table 20. Target: Registry

Command Parameter(s) Meaning/Return Value

DeleteKey key This command will delete the
given key from the registry
(including any subkeys).

456 Programming with VisualAge RPG

Table 20. Target: Registry (continued)

Get key [″defaultValue″] If the key does not exist, the
return value is defaultValue,
otherwise it is the value of the
key in the registry. When
entering substitute the
’defaultValue’ string with the
string of your choice. The
double quotation marks are
required.

GetRect key [″x y width height″] This command will retreive a
rectangle from the registry, and
if the element with the given
key is not found, the default
values supplied will be
returned instead. The double
quotation marks are required.

Set key value Use this command to set a
string value into the registry.
No return value.

SetRect key ″x y width height″ This command will store the
given rectangle in the registry
using normalized coordinates.
The double quotation marks
are required.

A note on using the registry commands.

Plugins are strongly urged to use an initial subkey that is likely to be
uniquely theirs, so that they don’t interfere with other plugins’ registry
entries.

All registry entries made using these commands will be restricted to a
common subsection of VARPG’s registry entry, however; it is possible to
overlap across plugins.

To avoid such overlaps, plugins could use a variation on the pathname of the
.PLG file as the initial subkey as follows:

If the plugin’s pathname is:
"c:\plugins\My_Plugins\myplug.plg",

and the registry entry is to be used to store a window position, then an
appropriate key to use for this value would be:
"c__plugins_my plugins_myplug.plg\Window Position"

Chapter 26. Creating Plugins 457

(Note that case was eliminated from the path portion of the key, and that the
colon and back-slashes were converted to underscores.) The keys and values
specified must be enclosed in quotes, since the keys can contain spaces. Thus,
if you were trying to set a string value you would use:
Set("c__plugins_my_plugins_myplug.plg\Some relevant keyname" "The new value.")

Embedded quotes are prefaced with a backslash:
Set("c__plugins_my_plugins_myplug.plg\Some relevant keyname" "The new \"quoted\"value.")

There are some other commands which apply to (some of) the GUI Designer’s
own constituant windows. (For example, the parts catalog)

Applicable Targets:
MainWindow

This is the main Gui Designer window.
Catalog

The parts catalog.
DBRefDlg

The Define Reference Fields window.
ImportDlg

The Import Display File window.
LPEX The editor window.

Note that these only apply when the indicated window is open.

Table 21. Target: GUI Designer constituent windows

Command Parameter(s) Meaning/Return Value

GetHandle none Returns the Windows
HANDLE for the given
window.

GetIWindowPointer none Returns the IWindow pointer
for the given window.

MoveSizeTo X Y Width Height Sets the window’s size and
position.

MoveTo X Y Moves the window to position
(X, Y).

Position none Returns the position of the
window in the form ″X,Y″.

Rect none Returns the window’s rectangle
in the form ″X,Y,Width,Height″

SetFocus none Sets focus to the indicated
window.

SetSize Width Height Sets the size of the window.

458 Programming with VisualAge RPG

Table 21. Target: GUI Designer constituent windows (continued)

ShowSetFocus none Shows the window (if it’s not
already visible) and sets focus
to it.

Size none Returns the size of the window
in the form ″X Y″.

NotifyOnClose Window handle Specifies which window is to
be notified when the GUI
Designer is closed.

Sample Plugin Source Code
The following is the source code for the plugin that corresponds to the plg file
used the in section above.

Chapter 26. Creating Plugins 459

* *
* Program ID . . : WhoAmi *
* *
* Description . : Sample program to illustrate the Vendor plugin *
* interface of VARPG. *
* *
* When invoked from the Vendor menu item on the *
* GUI Designer this program will use the plugin *
* interface to gather information about the *
* current project and display it on a window *
* named MAIN. *
* *
* The following plugin file, WHOAMI.PLG, was specified when adding *
* this plugin to the GUI designer *
* *
* // WhoAmi.plg plug in file *
* Vendor_Name: "Plug-Me-In Inc." *
* Plugin_Name: "Who Am I?" *
* Begin_Details: *
* Who Am I? *
* This plug-in will display information about the current *
* project including its directory name and file name. *
* End_Details: *
* Command_Line: "d:\myproj\whoami\rt_win32\whoami.exe &1 &2"*
* Menu_Name: "Plug-Me-In Inc./Who am I?" *
* Supported_Menus: 1 *
* Accelerator: F7 Shift *
* End_of_Definition *
* *

*
D Cmd S 255A
*
C *Entry Plist
C Parm PlugDLL 64
C Parm PlugID 64

460 Programming with VisualAge RPG

* *
* Window . . : Main *
* *
* Part . . . : PB_Cancel *
* *
* Event . . : Press *
* *
* Description: Terminate the program *
* *

*
C PB_CANCEL BEGACT PRESS MAIN
*
C Move *on *inlr
*
C ENDACT
*

* *
* Window . . : Main *
* *
* Part . . . : Main *
* *
* Event . . : Create *
* *
* Description: Set up the PLUGDLL and PLUGID values of the *
* *COMPONENT part to establish communication with the *
* GUI builder. *
* *
* Execute PLUGCMD attributes to collect information *
* about the current project *
* *

*
C MAIN BEGACT CREATE MAIN
*
C ’*Component’ Setatr PlugDll ’PlugDLL’
C ’*Component’ Setatr PlugID ’PlugID’
*
C Eval Cmd=’Project Get ProjectDir’
C ’*Component’ Setatr Cmd ’PlugCmd’
C ’*Component’ Getatr ’PlugResult’ DirName
*
C Eval Cmd=’Project Get ProjectFileStub’
C ’*Component’ Setatr Cmd ’PlugCmd’
C ’*Component’ Getatr ’PlugResult’ File
*
C Eval Cmd=’Project Get ProjectTargetName’
C ’*Component’ Setatr Cmd ’PlugCmd’
C ’*Component’ Getatr ’PlugResult’ TAR

Chapter 26. Creating Plugins 461

*
C Eval Cmd=’Project Get ProjectTitle’
C ’*Component’ Setatr Cmd ’PlugCmd’
C ’*Component’ Getatr ’PlugResult’ Title
*
C Eval Cmd=’Project Get ProjectFileName’
C ’*Component’ Setatr Cmd ’PlugCmd’
C ’*Component’ Getatr ’PlugResult’ Folder
*
C Write ’Main’
*
C ENDACT

462 Programming with VisualAge RPG

Packaging Your Application
The final step in creating the plugin is the compilation of the .EXE file. Select
Build from the File pull-down menu, and then select the platform that you
would like to use the plugin on. Once the file is compiled, it is ready for use.
Refer back to the instructions for Adding a Vendor Plugin in order to add the
plugin. From this point, you may use the plugin, or you can do any further
testing that may be required.

Considerations when Creating Plugins using VisualAge for C++

The process for creating plugins using VisualAge for C++ is the same as for
using VisualAge RPG. The only difference is that when you create the plugin
using VisualAge for C++, you do not have the direct use of the *component
part. Instead, to allow VisualAge for C++ programs to be used as plugins, the
IBMExecuteVDECommand() function has been provided. Its use is
demonstrated in the sample plugin, ″TreeSamp″.

If necessary, you can cut and paste the code from the
x:\...\WDSC\samples\vndplugs\treesamp (where x corresponds to the letter
of the drive onto which you installed VisualAge RPG) and the
x:\...\WDSC\samples\vndplugs\plugutil directories in order to create the
correct calls to the IBMExecuteVDECommand().

Considerations when Creating Plugins using REXX

The process for creating plugins using REXX is almost identical to that of the
VisualAge RPG example. REXX programmers do not have direct access to the
GUI designer using the *component part. To facilitate the use of REXX scripts
as plugins, the RexxExecuteVDECommand() function is included amongst this
set of functions. An example of how to use this function in a REXX file can be
found in the sample plugin, ″RexxSamp″.

If necessary, you can cut and paste the code from the
x:\...\WDSC\samples\vndplugs\rexxsamp (where x corresponds to the letter
of the drive onto which you installed VisualAge RPG) directory in order to
create the correct calls to the REXXExecuteVDECommand().

Chapter 26. Creating Plugins 463

464 Programming with VisualAge RPG

Part 5. Distributing Your Application
Chapter 27, “Packaging Runtime Code and Applications” on page 467

Describes using the packaging utility.

Chapter 28, “Installing Windows Runtime Code and Applications” on
page 477

Describes using the installation utility for Windows applications.

© Copyright IBM Corp. 1994, 2002 465

466 Programming with VisualAge RPG

Chapter 27. Packaging Runtime Code and Applications

After you build and test your application, you can package it and distribute it
to other workstations that have the VisualAge RPG runtime code installed.

This section describes how to package the VisualAge RPG runtime code and
VisualAge RPG applications.

Note: If the application will be using an iSeries server other than the one it
accessed during the development cycle, all server objects used by the
application should also be packaged and restored to the new server.
They are not packaged by the VisualAge RPG application packaging
utility.

Before You Begin

Make sure that the files needed by your application are stored in the
appropriate runtime directory (RT_WIN32 for Windows or RT_JAVA for Java).
Some files are automatically placed in the runtime directory after you build
your application (for example, the ·MSG, ·HLP, ·DLL, ·BND, ·RST, and ·EXE
files); others you will have to put in yourself (for example, any ·BMP, ·GIF,
·ICO, ·JPG, ·MID, and ·WAV files).

If you put additional files in the runtime directories before you package your
application, make sure that the file names are not the same as those of any
existing application files.

After you put all the files in the runtime directory, also make sure that no two
files have the same name and first two characters in their file extension. For
example, if you have two files FILEA·ABC and FILEA·ABB in the RT_WIN32
directory, one will be overwritten during the packaging process.

If you plan to package to diskettes, it is convenient to have pre-formatted
diskettes available before you begin the packaging process.

Packaging the VisualAge RPG Runtime Code and Applications

This section describes the process you must follow to package either the
VisualAge RPG runtime code, an application, or shared components.

Note: Verify that the remote location name in the RST file is the same server
as your users will be using. If not, modify the Remote Location column
for the entry on the Servers page in the Define iSeries Information

© Copyright IBM Corp. 1994, 2002 467

notebook. To access this notebook from the GUI Designer, select Define
iSeries information from the Server pull-down menu. To access it at
run time, use the Define iSeries Information icon. To access it at
packaging time, use the Change server button.

In the RST file, you must also specify the correct protocol used by your users.

For SNA, the remote location name is the name of the router defined in Client
Access.

For TCP/IP, the remote location name is the iSeries server host name defined
in your TCP/IP server list.

Starting the Packaging Utility
To start the packaging utility, use one of these methods:
v Select Project>Package from the Project Organizer
v Select the Package option from the project icon’s pop-up menu
v Select Application Packaging Utility from the Start > Programs > IBM

WebSphere Development Studio Client for iSeries > VisualAge RPG
menu.

The Application Package window appears:

Specify the target system for your application:
v Windows

Packages the Windows version of your application for the Windows
platform.

v Java applications for Windows

Packages the Java version of your application for the Windows platform.
v Java application/applet for all platforms

Packages the Java version of your application for other operating systems.

468 Programming with VisualAge RPG

Packaging Windows Applications for Windows
Select Windows and press OK. The Package Windows dialog appears:

Specify the following:
v What you want to package
v The application package information
v The runtime package information

Specifying What You Want to Package
In the Package window, specify the following information:

Application Name
The fully qualified application project name. You can type over the
default (if any), or use the Find push button to invoke the Find
Projects for Packaging window. When you specify an application
project name, the title of the application will be displayed for your
information.

What you want to package
Use the check boxes to indicate whether you want to package the
application, the shared components, the runtime code, or all three. If
you select shared components, a window containing a list of shared
components will open. You can select which shared components in the
list should be packaged.

Chapter 27. Packaging Runtime Code and Applications 469

Use the radio buttons to indicate whether you want to package the
entire application or only selected components. If you choose to
package selected components, a window will open that contains a list
of components within the application that you can select. You can also
package additional shared components created by other applications.
These shared components will be automatically added to the list the
next time you choose to package by component.

Specifying the Application Package Information
After making your selections on the Package window, press OK. The package
information window appears:

In the Package information window, specify the following information:

Target directory
The target directory for packaging. If you package to a diskette, the
target directory can only be the root directory of the diskette; there
can be no subdirectory. If you package to a directory, that directory
must not contain other files.

Company Name
The company name that the application will be registered under.

470 Programming with VisualAge RPG

Note: When you package an updated version of a previously
distributed application, use the same company name for the
revised application. Otherwise, the revised application will be
treated like a new application.

Version
The version of the application.

Title The title of the application.

Chapter 27. Packaging Runtime Code and Applications 471

Here you can use the Change server button to display a list of servers (remote
locations) used by your application. You can modify the list so that the
package will use the new names.

Select Package to begin the packaging. A progress indicator window appears.
Messages are displayed to tell you what labels to put on the various diskettes
as you create them. When packaging is completed, a completion message is
displayed.

Specifying the Runtime Package Information
If you indicated that you want to package the runtime code, you must specify
the target directory in the Package Run-Time window:

If you package to a diskette, the target directory can only be the root directory
of the diskette; there can be no subdirectory. If you package to a directory,
that directory must not contain other files.

Select Package to begin the packaging. A progress indicator window appears.
A completion message indicates when packaging is completed.

Packaging Java Applications for Windows
Packaging the Java version of your application for the Windows platform
follows a similar set of dialogs as the Windows version.

Specify what you want to package and whether you want to package the run
time. If you want to package the application, specify the application project
name and select the application check box. Use the runtime checkbox to
package the run time.

472 Programming with VisualAge RPG

Packaging Java Applications for Other Platforms
Select Java application/applet for all platforms on the Application Package
window and press OK. The Package Java window appears:

Specify the following:
v What you want to package: the application, run time, or both.
v The format of your package: the Application files (valid only for the

Application choice) or the Jar file.

Specifying What You Want to Package
In the Package Java window, specify the following information:

Application Name
The fully qualified application project name. You can type over the
default (if any), or use the Find push button to display the Find
Projects for Packaging window. When you specify an application
project name, the title of the application will be displayed for your
information.

What you want to package
Indicate whether you want to package the application or the runtime
jar file.

For the Application choice, you can choose one of the following
formats:
v Application files

Chapter 27. Packaging Runtime Code and Applications 473

Include all of the files in the runtime directory and place them in
the target directory.

v Jar file

Include all of the files for a component in its own jar file. (Any GIF
image files will just be copied and not included in the jar file.)

v Include JDBC

Include the JDBC class functions file in the jar.

Packaging the Application Jar File
If you select to have your application packaged as a Jar file, the following
window appears:

Specify the target directory. You can specify Jar options, as well. If you select
Inlcude HTML file, the default HTML page for the application will be copied
to the target diretory. If you select Export to iSeries, the Smart Guide to
export files to the server will be displayed.

Note: If your application has multiple components, each component will have
its own jar file. Also, any GIF image files will just be copied and not
included in the jar file.

474 Programming with VisualAge RPG

Packaging the Run Time
If you select to have a runtime Jar file, the following window appears:

Specify the jar file name and the target directory. If you select Export to
iSeries, the Smart Guide to export files to the server will be displayed.

Chapter 27. Packaging Runtime Code and Applications 475

476 Programming with VisualAge RPG

Chapter 28. Installing Windows Runtime Code and
Applications

This section describes installing the runtime code and applications for
Windows, using InstallShield.

Note: The runtime code must always be installed before you install an
application. Only one copy of the runtime code is installed on a
workstation, regardless of how many applications are installed.

Installing the Runtime Code

Start the installation utility by running the
setup.exe

command in the package and follow the steps given in the dialog boxes.

The Define Server Logon, the Define iSeries Information utility and the Define
TCP/IP Server List are installed with the runtime code. Use these utilities to
maintain and update the names and location of server resources at run time.
See Chapter 8, “iSeries Connectivity” on page 215 for more information.

A Note About Embedded SQL
If your application has embedded SQL and is referencing a database to which
your application was not bound at build time, you have to re-bind your
application to a database to which it does have access.

Installing an Application

Install the application by calling the
setup.exe

in the package and follow the steps given in the dialog boxes.

The Define iSeries Information utility is installed optionally with the
application. Use this utility to maintain and update the names and location of
iSeries resources at run time. See Chapter 8, “iSeries Connectivity” on page 215
for more information.

© Copyright IBM Corp. 1994, 2002 477

Maintaining the Runtime Code and Applications

To update the runtime code or application, use the same setup.

To remove the runtime code or VisualAge RPG applications do the following:
1. From the Windows Start menu on the Task Bar, select Settings and then

Control Panel.
2. Invoke the Add/Remove Programs utility.

Installing From the LAN

This section applies to Windows applications.

To run from the LAN:
1. Package the runtime code or application to a LAN server.
2. Install the runtime code or application to the root directory of the same

server. The directory name should be VRPGRT_LAN for the runtime code
or XXX_LAN for the application. XXX is the name of the application’s
executable file.

3. Install the runtime code to the client workstation using the package from
step 1. Select the compact option.

4. Install the application using the package from step 1. Select the compact
option.

Installing Silently from the LAN

This section describes how to install the runtime or application code silently
from a LAN server. The basic steps are:
1. Package the runtime or application code to your LAN server using the

packaging utility. (See “Packaging the VisualAge RPG Runtime Code and
Applications” on page 467 for instructions.)

2. Install the run time or application on the LAN server using the -r setup
option:
setup -r

The r parameter enables the system to record your keystrokes during the
installation process. This information is stored in the setup.iss file created
in your Windows directory. Your keystrokes will be used for silent
installation.

3. Copy the setup.iss file from your Windows directory to the LAN directory
where you packaged the run time or application. For example, if c:\winnt
is your Windows directory, the setup.iss file can be found under c:\winnt.

Note: Make sure you copy the runtime setup.iss file before you install the
application to its LAN directory with the r option. Otherwise the

478 Programming with VisualAge RPG

setup.iss file from the application install will overwrite the setup.iss
file created by the runtime install step.

4. Modify the copy of the setup.iss file in the LAN directory where you
packaged the run time or application. Change the szDir entry to point to
the target drive and directory where the run time or application package
will be installed to.

5. From the client workstation, go to the LAN directory where the run time
or application was packaged. Run the following command:
setup -s

After installing the run time, shut down and restart your operating
system.

Chapter 28. Installing Windows Runtime Code and Applications 479

480 Programming with VisualAge RPG

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2002 481

482 Programming with VisualAge RPG

Appendix A. Application Files

This section describes all the files that VisualAge RPG produces when you
create a GUI, write logic, and build an application. Unless specified, do not
edit, rename, or remove these files from the directory in which they were
created.

Note: For Java applications, it is RT_JAVA. For Windows applications, it is
RT_WIN32.

Table 22. Application files

File name Format Description

filename.CLASS Binary The runtime directory contains the
filename.CLASS file, which is created
when a project is compiled for Java.

filename.DLL Binary The runtime directory contains the
filename.DLL file, which is created using
the .VPG file. A VisualAge RPG DLL is
the program object for the application.
The compiler can also create a utility
DLL and its accompanying .LIB file.

filename.EVT ASCII The source directory for the application
contains the filename.EVT file, which
contains compiler feedback errors.

filename.EXE Binary The runtime directory contains the
filename.EXE file, which contains the
runtime mainline. The compiler can also
create an EXE that is self-contained.

filename.HLP Binary The runtime directory contains the
filename.HLP file, which is the compiled
help file that was created using the .IPF,
.IPM, .VPG, and .TXM files.

filename.HTM ASCII The source directory for the application
contains the filename.HTM file, which
includes HTML code for launching the
compiled Java program as an applet.

filename_applet.HTM ASCII The source directory for the application
contains the filename_applet.HTM file,
which includes HTML code that checks
the VARPG Java run time to ensure that
the user has the correct version of the
run time installed as an extension.

© Copyright IBM Corp. 1994, 2002 483

Table 22. Application files (continued)

File name Format Description

filename.IPF ASCII The source directory for the application
contains the filename.IPF file, which
contains all the control information
needed to build online help.

filename.IPM ASCII The source directory for the application
contains the filename.IPM file, which
contains all the second-level help you
write for messages for windows and
their parts.
v Do not rename or remove this file

from the directory it was created in.
v Use the GUI Designer (Define

Messages window) to edit this file. If
you must edit this file outside of the
GUI Designer, limit your changes to
simple text editing such as correcting
grammar and spelling mistakes. Do
not remove or modify resource IDs,
add messages, or delete messages.

filename.JAVA ASCII The source directory for the application
contains the filename.JAVA file, which
contains the generated Java source
resulting from a Java compile.

filename.LIB Binary The filename.LIB file contains all the
exported procedures that are part of a
utility filename.DLL.

filename.LST ASCII The source directory for the application
contains the filename.LST file, which
contains the compile listing.

filename.ODF Binary or
ASCII

The source directory for the application
contains the filename.ODF file, which
contains all the information about your
application’s windows and their parts.
v Do not rename or remove this file

from the directory it was created in.
v This file can only be edited using the

GUI Designer.

filename.ODX ASCII The source directory contains the
filename.ODX file, which is created using
filename.ODF and is used at run time.

484 Programming with VisualAge RPG

Table 22. Application files (continued)

File name Format Description

filenameResources.properties ASCII The runtime directory for the application
contains the filenameResources.properties
file, which contains all messages you
write for the windows and their parts, in
Java format.

filename.RST ASCII The source directory contains the master
copy of this file. filename.RST contains
all the server aliases, file overrides, data
area overrides, program overrides, and
lock level information you define for
your application. You can change its
contents at build time using the GUI
Designer, or at run time using the Define
iSeries Information utility.

filename.TXC ASCII The source directory for the application
contains the filename.TXC file, which
contains all the programming notes you
keep in the multiline edit fields provided
for storing technical descriptions.
v Do not rename or remove this file

from the directory it was created in.
v Use a part’s properties notebook to

change its settings.

filename.TXM ASCII The source directory for the application
contains the filename.TXM file, which
contains all messages you write for the
windows and their parts.
v Do not rename or remove this file

from the directory it was created in.
v Use the GUI Designer (Define

Messages window) to edit this file. If
you must edit this file outside of the
GUI Designer, limit your changes to
simple text editing such as correcting
grammar and spelling mistakes. Do
not remove or modify resource IDs
(resids), add messages, or delete
messages.

filename.VCX Binary The runtime and source directories for
the application contain the filename.VCX
file, which contains persistence
information for any ActiveX parts used
in your application.

Appendix A. Application Files 485

Table 22. Application files (continued)

File name Format Description

filename.VPF ASCII The source directory for the application
contains the filename.VPF file, which
contains all the help text you write for
windows and their parts.
v Do not rename or remove this file

from the directory it was created in.
v You can edit this file by using either

the GUI Designer’s editor (using a
pop-up menu for a part or using a
properties notebook) .

filename.VPG ASCII The source directory for the application
contains the filename.VPG file, which
contains all the VisualAge RPG
application source code you write.
v Do not rename or remove this file

from the directory it was created in.
v Use the GUI Designer to edit the

source code.

486 Programming with VisualAge RPG

Appendix B. Writing Thin Client Applications

VisualAge RPG applications that mainly run on and utilise workstation
resources are called thick client applications. Thin client applications mostly
rely on the iSeries server to perform their processing and only leave the GUI
handling to the client.

Thick client applications follow very much the same programming style found
in today’s RPG III or RPG IV applications, but they run mostly on the
workstation instead of the iSeries server. File specifications are used to specify
which database files to access, and native RPG operations like READ, CHAIN,
and so on, are used to access the data on the server. The iSeries server
functions as a data server and does minimal computing to support the
VARPG application.

The thick client model has several disadvantages over its thin client
counterpart. Its capability for module reuse is very limited and there is an
increased overhead cost associated with change management. As well, moving
processing onto the client workstation under utilises the processing power of
the server.

Making the client portion of an application thinner, offers the following
advantages:
v The amount of code running on the client can be easily reduced.
v Application reusability will be greatly enhanced.
v Maintainance of complex code will be easier.

This section discusses two possible implementations of the thin client model.
Both implementations exploit multiple VARPG capabilities that provide
integration with the iSeries server. The two examples include capabilities that
use:
v External description of data structures to define externally described data in

a data structure easily without the use of direct file access
v Remote call interface to provide a simple way of calling server programs

and passing data
v Reference fields in the GUI designer. Fields in the subfile of the user

interface are defined as reference fields, no additional definition of database
fields is needed.

© Copyright IBM Corp. 1994, 2002 487

Implementing a VARPG Thin Application Model

The thin VARPG application model can be implemented in several, different
ways. Two ways are described here. One implementation uses remote calls to
an iSeries server; the other uses data queues on the iSeries server. The same
user interface is used in both examples.

The simple client application reads data from a customer file and fills a
subfile with 10 records at a time. The following illustration shows the user
interface for this application:

The interface consists of a window with canvas, a subfile, and a push button
to load one More page of records into the subfile. The subfile size for this
particular example is 10 records. It can be changed by increasing the height of
the subfile part.

The following names are used in this example:

Part Name

Window
WIN1

Figure 112. Client GUI Interface

488 Programming with VisualAge RPG

Subfile
SUB1

Push button
PSBMORE

Sample Application Using Remote Calls

In traditional RPG programs, user interface code and database access logic are
intermixed in one module. Part of this structure stems from the history of
RPG, and part from the usage of the Original Program Model (OPM) that
forces the programmer to achieve good performance. One way to implement
the thin application model is to split the user interface logic completely from
the database access logic and have each piece run on different systems. The
user interface logic runs on a Windows client, the database access logic runs
on the iSeries server.

This sample application shows how to support reading records of data from
the iSeries database and placing this data into a GUI subfile. The program on
the iSeries server could just as well support full database access (READ and
WRITE). This could be implemented by supplying one program for each
different access method, or by passing the desired operations as parameters to
a single server program.

The following diagram shows how this sample works:

Call interface between client and server

Fill subfile

Client
Server Server program gets

called from client
does database access
ends with RETURN
passes data in DS back

as parameter

Client
program

Data
structure

Server
program

Database
file

Subfile

Appendix B. Writing Thin Client Applications 489

The client program gets requests from the user interface. It calls a server
program that reads records from a database program and passes this data
back to the client through parameters. The subfile gets filled with the returned
data.

The Client Program
The main part of the client side program is the user interface. It is created in
the same way as all VARPG applications and can utilize the external database
descriptions of the server by using database reference fields. Any validation
checking specified in the database is done automatically on the client by the
VARPG run time. The Client program requests data from the server by calling
a server data access program, the data itself is passed via parameters. The
Client program does not use file specifications; instead, the data definition is
done through external described data structures. This way the programmer
still gets the benefits of external field descriptions in the VARPG program.

Sample RPG Source for the Client Side
The VARPG program consists of D and C specifications. The D specifications
contain the following data definitions:
v The fields used as parameters:

– cust, a multi occurrence structure
– custelem, a numeric field, contains the maximum number of records being

requested
– eof, a named indicator, gets passed when the end-of-file indicator is set to

ON in the server program
– nrecords, a numeric field, contains the number of records returned

v Two working fields:
– fileend, a named indicator, for keeping the file end condition
– counter, a counter for the DO loop

v getrec, a constant, defines the program being called on the server. It defines
the linkage to the server and the actual name of the server program. The
program name must be specified in UPPERCASE.

H
D cust e ds extname(customer)
D occurs(10)
D inz
D eof s n inz
D nrecords s 2 0
D fileend s n inz
D getrec c linkage(*server)
D const(’GETREC’)
D counter s 2 0
D custelem s 2 0 inz(%elem(cust))

The C specifications contain one action subroutine that is linked to 3 events:
v Press event from push button PSBMore
v Create event from window Win1 (Linked to PSBmore/press action

subroutine)

490 Programming with VisualAge RPG

v Pageend event from subfile Subf1

The first statement is a call to the server program to fetch more records. The
rest of the logic just processes the data passed via parameter and moves it
from the multi occurrence data structure to the subfile. After the subfile is
filled with a set of records the highest record number in the subfile is applied
to the SETTOP attribute to move this set of record into the visible area of the
subfile.

At the end, if the end-of-file is reached, the More push button gets set to be
disabled. Note that the Page Down keys still work. It is still possible to cause
an event that will trigger this action subroutine even with a disabled push
button.
*
C PSBmore begact PRESS win1
C call GETREC
C parm cust
C parm custelem
C parm eof
C parm nrecords
C eval counter=1
C dow counter<=nrecords and not fileend
C counter occur cust
C write sub1
C eval counter=counter+1
C enddo
C eval %setatr(’win1’:
C ’sub1’:’settop’)=%getatr(’win1’§
C ’sub1’:’count’)

C if eof
C eval %setatr(’win1’:
C ’psbmore’:’enabled’)=0
C eval fileend=*on
C endif
*
C endact

As you can see, the client end of this code is straight forward and minimizes
the processing on the workstation.

The Server Program
Since the VARPG client program excludes the database access logic, this
function is now provided by the server program. The server program contains
all FILE definitions and operations to handle the database processing. Data is
exchanged by moving a data structure as a parameter between the client and
the server program. The data structure contains the field definitions of the
data file record format. In this example, a multi occurrence data structure is
used for accessing a collection of records. The number of occurrences is equal
to the numbers of records to be passed; in this example, 10. Any operational

Appendix B. Writing Thin Client Applications 491

information, such as error information for example, could be passed by
parameter, as well. The server program gets invoked by the Call in the
VARPG client program and ends after each request. The Return operation
code is used to end the program and keep the invocation environment. This
will benefit performance in subsequent calls, since no initialization is needed.
This also requires the program to be created to run in a named activation
group, since *NEW would destroy the invocation environment and free
storage immediately.

Sample RPG Source for the Server Side
The File specification defines the external database file Customer. The data
definition specifications define the parameters to be passed. These must be
defined the same as on the client side. Count represents a work variable for
the counter in the DO loop. Custelem contains the number of elements in the
data structure CUST, it is used as a limit for the DO loop.
* Program to read a set of records into a data structure
**
Fcustomer if e disk
D cust e ds extname(customer)
D occurs(20)
D eof s n
D count s 2 0
D custelem s 2 0

At the top of the calculation specifications, the PLIST operation code defines
the parameters being passed to this program. The DO loop reads from the
database file and puts the data into data structure CUST, which will be passed
back as a parameter to the client program. The other two parameters just
indicate the status of the database access:
v EOF will be set to ON if indicator 99 gets set by the READ statement.
v Count contains the number of records being passed back to the client in

data structure CUST.
C *entry plist
C parm cust
C parm custelem
C parm eof
C parm count
C eval count=1
C count occur cust
C read customer 9999
C dow count<custelem and not *in99
C eval count=count+1
C count occur cust
C read customer 9999
C enddo
C if *IN99
C eval count=count-1
C eval eof=*on
C endif
C return

492 Programming with VisualAge RPG

When compiling the server program, be sure not to specify *NEW for
Activation Group. If *NEW is specified (the default), any storage allocated by
this program is freed when RETURN is executed. One of the benefits of this
thin client example is the reusability of the server application by different
applications. Even traditional 5250 applications can use the server modules for
database access. This approach certainly makes it easier to maintain
applications since changes in a server module are reflected in all applications
that use it.

Sample Application Using Data Queues

The iSeries server provides built in support for data queues to allow
applications to communicate with each other asynchronously. This sample
application exploits data queues, instead of parameter passing, to exchange
the data from the database with the VARPG client program. This application
is based on 2 data queues on the server that are used by the client and server
program. The server program in this example gets launched as an
independent program on the server using the NOWAIT keyword in the D
specifications of the client program.

The following diagrams illustrate how this example works.

First, two data queues are created and server program DATAQ is started. The
server program begins requesting data from data queue ’O’ and remains in an
indefinite wait.

The next state is entered when a GUI event requests more data. (See
Figure 112 on page 488 for the client interface.) The three events that trigger
the action subroutine are:
v Create event from the window

Subfile

Server program waits for requests

Client

Server

Waiting for
requests

Client
program

Dataqueue O Dataqueue I

Server
program

Subfile

Appendix B. Writing Thin Client Applications 493

v Press event from the More... push button
v Pageend event from the subfile

The client program then waits on data queue ’I’ for data. The server program
accesses the database file and gets the data.

In the third state, the server program fills data queue ’I’. The client program
becomes active and puts the data into the subfile. After this, the program
returns to its initial state and the process starts again.

Client program requests data

Client

Server

Client
program

Dataqueue O

Server
program

Dataqueue I

Waiting for data

Getting data

Sending request

Getting
requests

Server program sends data

Client

Server

Sending data

Client
program

Dataqueue O

Server
program

Dataqueue I

filling subfile
with data

Getting data

Getting data

494 Programming with VisualAge RPG

The Client Application
The user interface is the same as that in the previous application, basically a
subfile getting filled with data from the iSeries server database. The filling of
the subfile starts with the create event of the window, and continues when the
More... push button is pressed or a pageend event occurs using the page down
keys. This is essentially the same as in the previous example.

The setup for the data queues is done in the create window action subroutine,
which calls a program on the server to create 2 data queues in a library on the
iSeries server. To create unique data queues for each client, we use the
*component part’s hostname attribute to retrieve the client’s hostname and IP
address. The last 5 characters of the IP address portion of the returned string
get tagged onto the name of the data queues. The characters ’I’ or ’O’ at the
end of the data queue name provide the unique names for the Input or
Output data queues.

The server job receives commands from the ’O’ data queue; the client
program sends commands to the ’O’ data queue.

After creating the data queues, the client program calls the server program
and passes it the 2 data queue names. The server program waits on data
queue ’O’ for commands from the client program.

The client program gets activated by GUI events and then sends requests to
data queue ’O’. It then waits on data queue ’I’ until this data queue is filled
by the server job.

When the client program gets a termination request, the *TERMSR subroutine
is invoked to signal the server program to end and the 2 data queues will be
deleted.

Client Sample Source
This program is a bit larger because the data queue environment has to be
managed in it, as well.

Data definitions

The data definitions for the client program:
D*
D* This program uses the *component part attribute hostname
D* variable to store the host name and IP address of the client.
D entipadd s 100a
D*
D* Command strings to create and delete data queues
D QCMDEXC s 10 inz(’QCMDEXC’)
D linkage(*server)
D* Variables to hold command information

Appendix B. Writing Thin Client Applications 495

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

D cmd s 256 INZ
D cmdlen s 15p 5 inz(%size(cmd))
D cmd1 s 256 INZ(’CRTDTAQ DTAQ(QGPL/’)
D cmde s 256 INZ(’DLTDTAQ DTAQ(QGPL/’)
D cmd2 s 9 inz(’) MAXLEN(’)
D*
D* Prefix for data queue name
D qname1 s 4 inz(’CUSQ’)
D*
D* Variables that contain the 2 data queue names used for one client
D qnamei s 10
D qnameo s 10
D
D* Define RCVDTAQ and SNDDTAQ programs as server programs
D QRCVDTAQ s 10 inz(’QRCVDTAQ’)
D linkage(*server)
D QSNDDTAQ s 10 inz(’QSNDDTAQ’)
D linkage(*server)
D* RPG IV server program defintion
D DATAQ s 10 inz(’DATAQ’)
D linkage(*server) nowait
D*
D* Data structure containing customer database data
D CustDS e ds extname(customer) occurs(10)
D*
D* Data structure containing process information
D rinfo ds
D eof n
D nrecords 2 0
D filler 20
D* Limit for loop
D custelem s 2 0 inz(%elem(CustDS))
D* Indicator for file end reached
D fileend s n
D*
D* Parameters for data queue APIs
D msg_sz s 5 0
D Name_of_Q s 10
D Name_of_Lb s 10
D count s 2 0
D maxlen s 10 0 inz(%size(custds:*all))
D wait_time s 5 0

The create window action subroutine

The data queues are created and the server RPG program DATAQ is started,
the program gets invoked with the NOWAIT keyword; the client program will
not wait for it to end. Both programs are working completely asynchronously.
C*
C WIN1 BEGACT CREATE WIN1
C* Get client IP address to build unique data queue names.
C* entipadd will contain the client’s full host name and IP address.
C*
C eval entipadd =

496 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

C %GetAtr(’*component’:
C ’*component’:’hostname’)
C* hostname returns the string ’hostname IPAddress’.
C* We only use the IPAddress portion of the returned string.
C* Substring the second part of the returned string:
C eval entipadd = %subst(entipadd: %scan(’ ’:
C entipadd)+1)
C* Create the names for the ’I’ and ’O’ data queues.
C* Use the last 5 characters of IPAddress and add ’I’ or ’O’.
C eval qnameI= qname1 +
C %subst(entipadd:%len
C (%trim(entipadd))-4:5) + ’I’
C eval qnameO= qname1 +
C %subst(entipadd:%len
C (%trim(entipadd))-4:
C 5) + ’O’
C* Set up command parameters to create data queues.
C eval cmd=%trim(%trimr(cmd1) +
C qnamei + cmd2 +
C %editc(%size(
C CustDS:*all):’Z’) + ’)’)
C* Create the data queues.
C call QCMDEXC 98
C parm cmd
C parm cmdlen
C*
C eval cmd=*blank
C eval cmd=%trim(%trimr(cmd1) +
C qnameo + cmd2 +
C %editc(%size(
C CustDS:*all):’Z’) + ’)’)
C call QCMDEXC 98
C parm cmd
C parm cmdlen
C*
C* Call server program to access database on server
C call DATAQ 98
C parm qnamei
C parm qnameo
C* Initialization is done; now, do event processing.
C*
C exsr callhost
C endact
C*

The action subroutine to handle requests for more data

A request is sent to data queue ’O’. The client program then waits for a
response from the server program DATAQ, on data queue ’I’. After receiving
the data, the subfile gets filled in a loop.
C*
C* Action subroutine gets invoked from:
C* - Press event of PSBMORE push button
C* - Pageend event from subfile

Appendix B. Writing Thin Client Applications 497

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

C PSBmore BEGACT PRESS win1
C*
C* Get data from server and display it in the subfile.
C EXSR callhost
C ENDACT
C*

C*
C* User subroutine ’callhost’ requests server data.
C*
C callhost begsr
C* As long as there is data, get more data.
C if not fileend
C*
C*
C* Send a request to data queue ’O’ to fetch data.
C*
C eval nrecords=10
C call QSNDDTAQ
C parm qnameo
C parm ’QGPL ’ NAME_OF_LB 10
C parm 23 MSG_SZ 5 0
C parm rinfo
C* Wait on data queue ’I’ for data.
C* Expecting processing data here in DS rinfo.
C eval wait_time=-1
C eval MSG_sz=23
C call QRCVDTAQ
C parm qnamei
C parm ’QGPL ’ NAME_OF_LB
C parm MSG_SZ
C parm rinfo
C parm WAIT_TIME
C* Expecting data from database here.
C eval Msg_sz=%size(custds:*all)
C call QRCVDTAQ
C parm QNAMEi
C parm ’QGPL ’ NAME_OF_LB
C parm MSG_SZ
C parm CustDS
C parm WAIT_TIME
C* For as many records as the server has read, fill the subfile.
C eval count=1
C dow count<=nrecords and not fileend
C count occur CustDS
C write sub1
C eval count=count+1
C enddo
C eval %setatr(’win1’:
C ’sub1’:’settop’)=
C %getatr(’win1’:
C ’sub1’:’count’)
C* If end-of-file was signaled, disable the push button.
C if eof
C eval %setatr(’win1’:
C ’psbmore’:’enabled’)=0

498 Programming with VisualAge RPG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

C eval fileend=*on
C endif
C endif
C* End of user subroutine
C endsr

Terminate subroutine

A termination request is sent to server program DATAQ and the 2 data
queues are deleted.
C* When client app ends, clean up server environment
C*
C *termsr begsr
C* Indicate end of program to server program and send data to dataq ’O’
C eval nrecords=0
C call QSNDDTAQ 98
C parm qnameo
C parm ’QGPL ’ NAME_OF_LB 10
C parm 23 MSG_SZ 5 0
C parm rinfo
C* Delete both data queues
C eval cmd=*blank
C eval cmd=%trim(%trimr(cmde) +
C qnamei + ’)’)
C call QCMDEXC 98
C parm cmd
C parm cmdlen
C eval cmd=*blank
C eval cmd=%trim(%trimr(cmde) +
C qnameo + ’)’)
C call QCMDEXC 98
C parm cmd
C parm cmdlen
C* Application ends
C endsr

The Server Program
After the server program gets launched, it enters a loop and waits on data
queue ’O’ until it gets a request from the client program. Two different
requests are possible in this example. The program determines which request
has been sent: to read more data, or to end.

For a request for more data it will read 10 more records from the database
and then send 2 items to data queue ’I’.

The first item contains process information, how many records were actually
read, and whether an end of file situation has occurred.

The second item contains the multi occurrence data structure with the data
from the database file.

Appendix B. Writing Thin Client Applications 499

|
|
|
|
|

|

The client program will receive these records from data queue ’I’ and fill the
subfile accordingly.

When the server program gets signaled that a termination is requested, the LR
indicator will be set on and the DO loop will end. This will end the program.
Any other cleanup will be managed by the client program.

Server Sample Source
File and data definitions
Fcustomer if e disk
D* data structure containing database data to be passed to client
D CustDS e ds extname(customer) occurs(10)
D* data structure to pass control information between client and server
D rinfo ds
D eof n
D count 2 0
D fill 20
D* number of occurs in DS for loop limit
D custelem s 2 0 inz(%elem(CustDS))
D* library name for dataq and data size to be send to dataq and wait time
D Name_of_LB s 10 inz(’QGPL’)
D msg_sz S 5 0
D wait_time s 5 0
D* name of dataq’s passed from client
D qnamei s 10
D qnameo s 10

Main line program

Process the DO loop, wait on data queue ’O’ until requests arrive, read more
records from the database, send the data to data queue ’I’, and wait again for
more requests.
C* Beginning of mainline
C *entry plist
C parm qnamei
C parm qnameo
C* DO loop runs forever until client program signals that it
C* terminates
C dow not *inlr
C* Wait for client program to signal that it needs data
C eval wait_time=-1
C eval MSG_sz=23
C call ’QRCVDTAQ’
C parm qnameo
C parm NAME_OF_LB
C parm MSG_SZ
C parm rinfo
C parm WAIT_TIME
C*
C* Read 10 records from database file
C* count = 0 means client program is terminating
C if count >0

500 Programming with VisualAge RPG

|

C eval count=1
C count occur CustDS
C read customer 9999
C dow count<custelem and not *in99
C eval count=count+1
C count occur CustDS
C read customer 9999
C enddo
C* Determine whether there is more data in file
C if *IN99
C eval count=count-1
C eval eof=*on
C endif

C* Send information to the data queue.
C* Send one record with information on how many records are read and
C* whether end-of-file was reached
C*
C call ’QSNDDTAQ’ 98
C parm QnameI
C parm NAME_OF_LB
C parm 23 MSG_SZ
C parm rinfo
C* Send the data in DS from database file to dataq
C eval msg_sz=%SIZE(custds:*all)
C call ’QSNDDTAQ’ 98
C parm qnamei
C parm NAME_OF_LB
C parm MSG_SZ
C parm CUSTds
C* When client program ends, it sends nrecords 0, then ends this
C* program as well
C else
C eval *inlr=*on
C*
C end
C enddo
C*
C* End of MAINLINE

Other Possible Implementations

In addition to these specific examples, variations and combinations of both
implementations are possible. The goal is to minimize client processing and
use the server’s power to run these applications. Reuse of modules on the
server can be accomplished since 5250 and GUI applications can use the same
server programs.

One possible implementation is to use requests in form of an SQL statement
that gets passed to a server program, This server program issues the SQL
statement and routes the received data to a data queue. The client program,

Appendix B. Writing Thin Client Applications 501

waiting on the data queue, uses the data passed back to satisfy the end user
request. In this particular application, a single keyed data queue is used
instead of multiple data queues.

Another implementation could pass all input data from the user interface to a
server program to do error checking and processing on the server; any error
conditions would get passed back to the client. This approach allows a high
degree of reusability of business logic between 5250 applications and GUI
applications, and provides an even thinner client.

Reusable Server Program Example

The following RPG IV code for a 5250 subfile application uses the same server
program, but drives a 5250 interface. This example shows the reuse
capabilities of server programs for GUI and 5250 applications. The business
logic contained in the 5250 server program can readily be used by thin client
GUI programs. The following illustration shows a sample of the 5250 screen
that displays the same database information as in the GUI sample in the
beginning of this chapter.

This subfile only fits 8 records on the screen because each record occupies 2
rows on the subfile. The program source for this application follows:

502 Programming with VisualAge RPG

H* Program to list customer records
F* Workstn file containing DSPF
Fgetrecs cf e workstn sfile(sub1:recnum)
D* Data structure to pass data from server program to the subfile
Dcust e ds extname(customer) occurs(8)
D inz
Deof s 1 inz(*off)
Dnrecords s 2 0
Dfileend s 1 inz(*off)
Dcount s 2 0
Dcustelem s 2 0 inz(%elem(cust))
Drecnum s 5 0 inz(1)
* Main program to invoke subfile sub routine and end the program
* In91 indicates that database file has not reached the end
C EVAL *IN91=*ON
C exsr more
C eval *inlr=*on
c
C more BEGsr
* LOOP to fetch more data and display in subfile
C dow not *in03
* Call server program to get data first time and when page down
* is used.
C if *in91
C call ’GETREC’
C parm cust
C parm custelem
C parm eof
C parm nrecords
C eval count=1
* recnum1 is sbfrcdnbr in subfile control record, to position top record
* to be shown on screen
C EVAL RECNUM1=RECNUM
* Loop to fill subfile with new records
C dow count<=nrecords
C count occur cust
C write sub1
C eval count=count+1
C eval recnum=recnum+1
C enddo
* After the set of records is added to subfile, display it, plus header
* and footer record formats
C write record1
C write footer
C exfmt sub1ctl
* Handle none pagedown keys
C else
C read sub1ctl 99
C endif
C if eof=*on
* IN90 enables PAGEDOWN key for additional records to be read.
* At file end it gets disabled.
C eval *in90=*on
C eval recnum=recnum1

Appendix B. Writing Thin Client Applications 503

C endif
C enddo
* Leave the LOOP when Exit requested
C ENDSR

504 Programming with VisualAge RPG

Appendix C. Creating and Compiling Non-GUI Programs
from MS-DOS

You can create standalone VARPG applications within the VARPG GUI
designer, or by issuing commands in an MS-DOS command prompt. This
section porvides the commands you can use from an command prompt. To
use the GUI Designer, see Chapter 22, “Creating Non-GUI VisualAge RPG
Programs” on page 417.

To start the editor and create source in an MS-DOS command prompt, enter:
codeedit filename.VPG

Be sure to include the .VPG extension in the filename so you can benefit from
the editor’s tokenizing and syntax checking of your source.

To run the FVDFNFE compiler, issue the compiler command from an
MS-DOS command prompt. The syntax of the command is:
fvdfnfe filename.VPG [/compiler_option1 ... /compiler_optionn]

Note: You must include the .VPG extension in the source file name; it is not
assumed.

The compiler options, which you can type in upper- or lowercase, are
optional. They are as follows:

Option Description

/BL name
Link library name. If more than one, enclose in double quotes.

/D Generate debug information

/GL 1-99
Generation severity level

/L Generate an output listing

/LI Indentation

/LX Generate a cross-reference (XREF) listing

/LV Generate a Visual cross-reference (XREF) listing

/LD Expand DDS in listing

/LC Expand /COPY in listing

/LE Show external references

© Copyright IBM Corp. 1994, 2002 505

/LM2 Show second-level messages in listing

/LS Show excluded lines in listing

/LP 10-99
Lines per page (listing)

/HCU Host cache enabled

/HCR Host cache refresh

/RF Fix numeric

/RN Allow null

/RNU Allow null under user control

/RT Truncate numeric

/TI Generate debug information (same as /D)

/SB Name
SQL bind file name

/SF XX
SQL format for date/time columns

/SI XX (RR RS CS UR) SQL isolation level

/SN Name
SQL database name

/SP Name
SQL package file name

/SR SQL record blocking

/SU Database user id

/SUP Database password

/SVC Convert variable character

/SVG Convert variable graphic

Accessing an iSeries Server

If the program is to access data on the iSeries server or call OS/400 programs,
you must create a Remote Server Table (RST) file. The RST file is an ASCII
file that is read by the compiler and the VARPG run time to determine
information about the system to use and the location of files. An RST file is
created by the GUI Designer when you use the Define iSeries Information
dialog. During compile time, the RST file must be in the same directory as the
program source. During run time, the RST file must be in the same directory
as the program executable files.

506 Programming with VisualAge RPG

Here is an example of an RST file:

DEFINE_SERVER SERVER_ALIAS_NAME(MYAS400)
REMOTE_LOCATION_NAME(TORAS40Z)
NETWORK_PROTOCOL(*TCP)
TEXT(Development - RST)

DEFINE_FILE FILE_ALIAS_NAME(CUSTOMER)
REMOTE_FILE_NAME(PRODUCT/CUSTMAST)
SERVER_ALIAS_NAME(MYAS400)
TEXT()

The DEFINE_FILE statement indicates where the files defined in the ’F’
specifications can be found on the iSeries server. In this example, the file
named CUSTOMER in the ’F’ specification actually refers to file CUSTMAST
in library PRODUCT. If the file is in your library list, the DEFINE_FILE
statement can be omitted. In that case, the library list, *LIBL, will be searched
for the file.

The TEXT keyword is used for comments and can be blank.

Appendix C. Creating and Compiling Non-GUI Programs from MS-DOS 507

508 Programming with VisualAge RPG

Appendix D. Secure Sockets Layer (SSL) Setup

Secure Sockets Layer (SSL) provides secure connections by encrypting the data
exchanged between a client and an iSeries 400 server session and performing
server authentication. SSL can be used only with a SSL capable iSeries 400
server running OS/400, Version 4 Release 4 or later. The use of SSL connection
significantly decreases performance of the product compared to the use of
connection without encryption. It is recommended that SSL be used only
when the sensitivity of data transferred merits the decrease in performance.

This section provides instructions on configuring your iSeries 400 server for
Secure Sockets Layer support.

Note: If any fixes are applied to the VARPG run time, the following
procedures must be repeated. For SSL to work properly on the iSeries
400 server, the QSECOFR user profile password must not be expired.

SSL Considerations
v A good knowledge of SSL is required for setup. You should know how to

use the Digital Certificate Manager (DCM) program on the iSeries 400
server to perform SSL-related tasks, such as generating system certificates.
For information on the DCM program, invoke its online help or go to the
Information Center at URL
http://www.ibm.com/eserver/iseries/infocenter.

v Ensure that you adhere to import and export regulations. IBM iSeries Client
Encryption products provide SSL version 3.0 encryption support using
non-exportable 128-bit for U.S. and Canada use only and exportable 56–bit
for international use. In customer configurations where Client Encryption
products might be downloaded across national boundaries, the customer is
responsible for ensuring that the non exportable products are not made
available outside the U.S. and Canada. Both the non-exportable and
exportable Client Encryption products can be used in combination to allow
the appropriate Client Encryption product to be downloaded on different
Web sites.

Prerequisites

The following prerequisites must be met before setting up SSL:
v Software:

– Crytographic Access Provider licensed program (5769-AC1, 5769-AC2, or
5769-AC3)

© Copyright IBM Corp. 1994, 2002 509

|

|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

– IBM iSeries Client Encryption program (5722-CE2 or 5722-CE3) where
5722-CE2 (56-bit) is for use in countries other than the U.S. or Canada,
and 5722-CE3 (128-bit) is for use only in the U.S. and Canada.

v Hardware:
– IBM HTTP Server for iSeries (5722-DG1)
– Base operating system option 34 Digital Certificate Manager (DCM)

v Authorization:
Provide proper authorizations for users to access the SSL files. Follow these
steps to change the authority:
1. Enter the command:

wrklnk ’/QIBM/ProdData/HTTP/Public/jt400/*

2. Choose option 9 in the correct directory (SSL56, or SSL128).
3. Give users *RX authority to the directory.

Note: Individual users or groups of users can be authorized.

SSL Setup for the iSeries 400 Server

Follow the instructions below to setup your iSeries 400 server for SSL:

Start DCM:
1. Start the HTTP servers by using the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR (*ADMIN)
2. Access the iSeries 400 Administration server by typing in your server’s

URL address and port number. For example:
http://your.server.name:2001/

The proper security officer authority, plus *secadm and *allobj authorities
are needed.

3. Enter your iSeries 400 user ID and password.
4. From the AS/400 Tasks page, access DCM by selecting the DCM link.

Obtain a system certificate for your iSeries 400 server from the Digital
Certificate Manager program:

Click on the ? icon for instructions on obtaining a system certificate. You can
either obtain the system certificate from a trusted Certificate Authority (CA)
or build your own.
v To obtain a system certificate from a trusted CA:

Note: This is what you should use if your application is an internet
application and you need to distribute your run time.

Select a CA. You can get a certificate from one of the following companies:
– VeriSign, Inc.

510 Programming with VisualAge RPG

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

– Integration Financial Network
– Thawte Consulting
– RSA Data Security

Obtain request data for submission to the trusted CA from DCM. Refer to
the DCM help for the exact steps you need to follow.Your CA will process
your request form and provide you with the certificate. To install it onto
your system, use the Receive a System Certificate option.

v To obtain your own system certificate:

Note: This should only be used for an intranet because the run time
created can only be used for your specific iSeries 400 server.

1. Create your CA on the iSeries 400 server.
2. Generate the system certificate from your own CA.

For information on creating a CA, on the DCM page click on Certificate
Authority.

Apply the system certificate to the following server applications:
QIBM_OS400_QZBS_SVR_CENTRAL
QIBM_OS400_QZBS_SVR_DATABASE
QIBM_OS400_QZBS_SVR_DTAQ
QIBM_OS400_QZBS_SVR_NETPRT
QIBM_OS400_QZBS_SVR_RMTCMD
QIBM_OS400_QZBS_SVR_SIGNON
QIBM_OS400_QZBS_SVR_FILE
QIBM_OS400_QRW_SVR_DDM_DRDA

Appendix D. Secure Sockets Layer (SSL) Setup 511

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

SSL Setup for the Workstation

To set up SSL for the workstation, follow the steps below:

Download the appropriate version of the SSL Client Encryption software to
your workstation from the iSeries 400 server:

Product File to Download Location for Download
5722-CE2
5722-CE3

sslightx.zip
sslightu.zip

/QIBM/ProdData/HTTP/Public/jt400/SSL56
/QIBM/ProdData/HTTP/Public/jt400/SSL128

If you built your own certificate, perform the following steps to download the
CA certificate:
1. Download SSLTools.jar from the directory in which you downloaded the

SSL Client Encryption.
2. Add SSLTools.jar and sslightu.zip to your CLASSPATH statement.
3. Create a temporary directory. For example, c:\tempkey.
4. Create the following subdirectory under c:\tempkey:

com\ibm\as400\access
5. From the tempkey directory, run the following command in one line:

java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing
connect <systemname>:<port>

Where <systemname> is the name of your iSeries 400 server and <port> is
your port number.

Note: The server port can be any of the host servers to which you have
access. For example, you can use 9476, which is the default port for
the secure sign-on server on the iSeries 400 server. When you are
prompted to enter a password, enter toolbox. This is the only
password that works. The SSL tool then connects to the iSeries 400
server and lists the certificates it finds.

6. Enter the CA certificate number. Be sure to use the CA certificate and not
the site certificate. A message will be issued stating that the certificate is
being added to com.ibm.as400.access.KeyRing.class.

7. Delete the file SSLTools.jar.

A KeyRing.class file has been created in the directory.

Create a customized varpg.jar file by following the instructions below:
1. Create a temporary directory. For example, c:\tempjar.
2. Copy the file sslightu.zip to c:\tempjar.

512 Programming with VisualAge RPG

|
|

|

|
|

||||
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

3. Run the following command:
jar xvf sslightu.zip

You will find the meta-inf and com\ibm\sslight subdirectories created for
you in c:\tempjar.

4. If you built your own certificate:
a. Under subdirectory c:\tempjar\com\ibm add subdirectory

\as400\access.
b. Copy the KeyRing.class file in c:\tempkey\com\ibm\as400\access

subdirectory to the c:\tempjar\com\ibm\as400\access subdirectory.
5. Copy the varpg.jar file into c:\tempjar.
6. From c:\tempjar, run the following command:

jar uvf varpg.jar -C ./ com

Note: C is in uppercase.
Running this command updates the varpg.jar file so that it can be used
with your SSL-enabled VARPG applications. This will also work for
regular, non SSL-enabled applications.

Enable your application to use SSL:
1. Rename the varpg.jar in your VARPG install directory \WDSC\JAVA .
2. Compile your application with the /SSL user-defined option in the Build

options dialog.
3. Run the application with the customized file varpg.jar.

Appendix D. Secure Sockets Layer (SSL) Setup 513

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

514 Programming with VisualAge RPG

Glossary

This glossary includes terms and definitions from:
v The American National Dictionary for Information Systems ANSI X3.172-1990,

copyright 1990 by the American National Standards Institute (ANSI).
Copies may be purchased from the American National Standards Institute,
1430 Broadway, New York, New York, 10018. Definitions are defined by the
symbol (A) after the definition.

v The Information Technology Vocabulary developed by Subcommittee 1, Joint
Technical Committee 1, of the International Organization for
Standardization and the International Electrotechnical Committee (ISO/IEC
JTC1/SC1). Definitions of published parts of this vocabulary are identified
by the symbol (|) after the definition; definitions taken from draft
international standards, committee drafts, and working papers being
developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the
definition indicating that the final agreement has not yet been reached
among participating National Bodies of SC1.

v IBM Dictionary of Computing , New York: McGraw-Hill, 1994.
v Object-Oriented Interface Design IBM Common User Interface Guidelines,

SC34-4399-00, Carmel, IN: Que Corporation, 1992.

A

action. (1) Synonym for action subroutine. (2) An executable program or command file used to
manipulate a project’s parts or participate in a build.

action subroutine. Logic that you write to respond to a specific event.

active window. The window with which a user is currently interacting. This is the window that
receives keyboard input.

activeX part. A part that adds ActiveX control objects to the project. VARPG applications can then
access their attributes and monitor for events.

anchor. Any part that you use as a reference point for aligning, sizing, and spacing other parts.

animation control part. A part that allows the playback of video files, with the AVI extension, in
Windows, or the playback of animated GIF sequences in Java applications.

API. Application programming interface.

applet. A program that is written in Java and runs inside of a Java-compatible browser or
AppletViewer.

application. A collection of software components used to perform specific user tasks on a computer.

© Copyright IBM Corp. 1994, 2002 515

application programming interface (API). A functional interface supplied by the operating system or a
separately orderable licensed program that allows an application program written in a high-level
language to use specific data or functions of the operating system or the licensed program.

ASCII (American National Standard Code for Information Interchange). The standard code, using a
coded character set consisting of 7-bit coded characters (8 bits including parity check), that is used for
information interchange among data processing systems, data communication systems, and associated
equipment. The ASCII set consists of control characters and graphic characters. (A)

B

BMP. The file extension of a bitmap file.

build. The process by which the various pieces of source code that make up components of a VARPG
application are compiled and linked to produce an executable version of the application.

button. (1) A mechanism on a pointing device, such as a mouse, used to request or start an action. (2)
A graphical mechanism in a window that, when selected, results in an action. An example of a button is
an OK push button that, when selected, initiates an action.

C

calendar part. A part that adds a calendar that can be modified by the user to include text, color and
other attributes.

canvas part. A part onto which you can point and click various other parts, position them, and
organize them to produce a graphical user interface. A canvas part occupies the client area of either a
window part or a notebook page part. See also notebook page with canvas part and window with canvas part.

check box part. A square box with associated text that represents a choice. When a user selects a
choice, an indicator appears in the check box to indicate that the choice is selected. The user can clear
the check box by selecting the choice again. In VisualAge RPG, you point and click on a check box part
in the parts palette or parts catalog and click it onto a design window.

click. To press and release a mouse button without moving the pointer off of the choice or object. See
also double-click.

client. (1) A system that is dependent on a server to provide it with data. (2) The PWS on which the
VARPG applications run. See also DDE client.

client area. The portion of the window that is the user’s workspace, where a user types information
and selects choices from selection fields. In primary windows, the area where an application
programmer presents the objects that a user works on.

client/server. The model of interaction in distributed data processing in which a program at one site
sends a request to a program at another site and awaits a response. The requesting program is called a
client; the answering program is called a server. See also client, server, DDE client, DDE server.

clipboard. An area of storage provided by the system to hold data temporarily. Data in the clipboard is
available to other applications.

516 Programming with VisualAge RPG

cold-link conversation. In DDE, an explicit request made from a client program to a server program.
The server program responds to the request. Contrast with hot-link conversation.

color palette. A set of colors that can be used to change the color of any part in your application’s GUI.

combination box. A control that combines the functions of an entry field and a list box. A combination
box contains a list of objects that a user can scroll through and select from to complete the entry field.
Alternatively, a user can type text directly into the entry field. In VisualAge RPG, you can point and
click on a combination box part in the parts palette or parts catalog and click it onto a design window.

Common User Access architecture (CUA architecture). Guidelines for the dialog between a human and
a workstation or terminal.

compile. To translate a source program into an executable program (an object program).

component. A functional grouping of related files within a project. A component is created when the
NOMAIN and EXE keywords are not present on the control specifications.

component reference part. A part that enables one component to communicate with another
component in a VARPG application.

*component part. A part that is the “part representation” of the component. One *component part is
created for each component automatically, and it is invisible.

CONFIG.SYS. The configuration file, located in the root directory of the boot drive, for the DOS, OS/2,
or Windows operating systems. It contains information required to install and run hardware and
software.

configuration. The manner in which the hardware and software of an information processing system
are organized and interconnected (T).

container part. A part that stores related records and displays them in a details, icon, or tree view.

CUA architecture. Common User Access architecture.

cursor. The visible indication of the position where user interaction with the keyboard will appear.

D

database. (1) A collection of data with a given structure for accepting, storing, and providing, on
demand, data for multiple users. (T) (2) All the data files stored in the system.

data object. An object that conveys information, such as text, graphics, audio, or video.

DBCS. Double-byte character set.

DDE. Dynamic data exchange.

DDE client. An application that initiates a DDE conversation. Contrast with DDE server. See also DDE
client part, DDE conversation.

DDE client part. A part used to exchange data with other applications, such as spreadsheet
applications, that support the dynamic data exchange (DDE) protocol.

Glossary 517

DDE conversation. The exchange of data between a DDE client and a DDE server. See also cold-link
conversation and hot-link conversation.

DDE server. An application that provides data to another DDE-enabled application. Contrast with DDE
client. See also DDE conversation.

default. A value that is automatically supplied or assumed by the system or program when no value is
specified by the user. The default value can be assigned to a push button or graphic push button.

default action. An action that will be performed when some action is taken, such a pressing the Enter
key.

dereferencing. The action of removing the association between a part and an iSeries database field.

design window. The window in the GUI designer on which parts are placed to create a user interface.

details view. A standard contents view in which a small icon is combined with text to provide
descriptive information about an object.

dimmed. Pertaining to the reduced contrast indicating that a part can not be selected or directly
manipulated by the user.

direct editing. The use of techniques that allow a user to work with an object by dragging it with a
mouse or interacting with its pop-up menu.

DLL. Dynamic link library.

double-byte character set (DBCS). A set of characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and Korean, which contain more symbols than can be
represented by 256 code points, require double-byte character sets. Because each character requires 2
bytes, the typing, displaying, and printing of DBCS characters requires hardware and programs that
support DBCS. Four double-byte character sets are supported by the system: Japanese, Korean,
Simplified Chinese, and Traditional Chinese. Contrast with single-byte character set (SBCS).

double-click. To quickly press a mouse button twice.

drag. To use a mouse to move or to copy an object. For example, a user can drag a window border to
make it larger by holding a button while moving the mouse. See also drag and drop.

drag and drop. To directly manipulate an object by moving it and placing it somewhere else using a
mouse.

drop-down combination box. A variation of a combination box in which a list box is hidden until a
user takes explicit acts to make it visible.

drop-down list. A single selection field in which only the current choice is visible. Other choices are
hidden until the user explicitly acts to display the list box that contains the other choices.

dynamic data exchange (DDE). The exchange of data between programs or between a program and a
datafile object. Any change made to information in one program or session is applied to the identical
data created by the other program. See also DDE conversation, DDE client, DDE server.

518 Programming with VisualAge RPG

Dynamic link library (DLL). A file containing executable code and data bound to a program at load
time or run time, rather than during linking. The code and data in a dynamic link library can be shared
by several applications simultaneously.

E

EBCDIC. Extended binary-coded decimal interchange code. A coded character set of 256 8-bit
characters.

emphasis. Highlighting, color change, or other visible indication of conditions relative to an object or
choice that affects a user’s ability to interact with that object or choice. Emphasis can also give a user
additional information about the state of a choice or an object.

entry field part. An area on a display where a user can enter information, unless the field is read-only.
The boundaries of an entry field are usually indicated. In VisualAge RPG, you point and click on an
entry field part in the parts palette or parts catalog and click it onto a design window.

error logging. Keeps track of errors in an error log. The editor takes you to the place in the source
where the error occurred.

event. A signal generated as a result of a change to the state of a part. For example, pressing a button
generates a Press event.

exception. (1) In programming languages, an abnormal situation that may arise during execution, that
may cause a deviation from the normal execution sequence, and for which facilities exist in a
programming language to define, raise, recognize, ignore, and handle it. (I) (2) In VisualAge RPG, an
event or situation that prevents, or could prevent, an action requested by a user from being completed
in a manner that the user would expect. Exceptions occur when a product is unable to interpret a user’s
input.

EXE. The extension of an executable file.

EXE module. An EXE module consists of a main procedure and subprocedures. It is created when the
EXE keyword is present on the control specification. All subroutines (BEGSR) must be local to a
procedure. The EXE must contain a procedure whose name matches the name of the source file. This
will be the main entry point for the EXE, that is, the main procedure.

export. A function that converts an internal file to some standard file format for use outside of an
application. Contrast with import.

F

field. (1) An identifiable area in a window, such as an entry field where a user types text. (2) A group
of related bytes, such as a name or amount, that is treated as a unit in a record.

file. A collection of related data that is stored and retrieved by an assigned name. A file can include
information that starts a program (program-file object), contains text or graphics (data-file object), or
processes a series of commands (batch file).

focus. Synonym for input focus.

Glossary 519

font palette. A set of fonts that can be used to change the font of a part in your application’s GUI.

G

graph part. A part that allows the user to add a graph to the GUI. The graph styles available are line,
bar, line and bar, or pie chart.

graphical user interface (GUI). A type of user interface that takes advantage of high-resolution
graphics. A graphical user interface includes a combination of graphics, the object-action paradigm, the
use of pointing devices, menu bars and other menus, overlapping windows, and icons.

graphic push button part. A push button, labeled with a graphic, that represents an action that will be
initiated when a user selects it. Contrast with push button part.

group box part. A rectangular frame around a group of controls to indicate that they are related and to
provide an optional label for the group. In VisualAge RPG, you point and click on a group box part in
the parts palette or parts catalog and click it onto a design window.

group marker. A mark that identifies a part as being the first one in a group. When a user moves the
cursor through a group of parts and reaches the last part, the cursor returns to the first part in the
group.

GUI designer. A suite of tools used to create interfaces by dragging and dropping parts from the parts
palette to the design window.

H

hide button. A button on a title bar that a user clicks on to remove a window from the workplace
without closing the window. When the window is hidden, the state of the window, as represented in the
window list, changes. Contrast with maximize button and minimize button.

horizontal scroll bar part. A part that adds a horizontal scroll bar to a window. This part allows users
to scroll through a pane of information, from left-to-right or right-to-left.

hot-link conversation. In DDE, an automatic update of a client program by a server program when
data changes on the server. Contrast with cold-link conversation.

I

ICO. The file extension of an icon file.

icon. A graphical representation of an object, consisting of an image, image background, and a label.

icon view. A standard contents view in which each object contained in a container is displayed as an
icon.

image part. A part used to display a picture, from a BMP or ICO file, on a window.

import. A function that converts display file objects to the appropriate VARPG part. Contrast with
export.

520 Programming with VisualAge RPG

inactive window. A window that can not receive keyboard input at a given moment.

index. The identifier of an entry in VARPG parts such as list boxes or combination boxes.

information area. A part of a window in which information about the object or choice that the cursor is
on is displayed. The information area can also contain a message about the normal completion of a
process. See also status bar.

Information Presentation Facility (IPF). A tool used to create online help on a programmable
workstation.

Information Presentation Facility (IPF) file. A file in which the application’s help source is stored.

INI. The file extension for a file in the OS/2 or Windows operating system containing
application-specific information that needs to be preserved from one call of an application to another.

input focus. The area of a window where user interaction is possible from either the keyboard or the
mouse.

input/output (I/O). Data provided to the computer or data resulting from computer processing.

IPF. Information Presentation Facility

item. In dynamic data exchange, a unit of data. For example, the top left cell position in a spreadsheet
is row 1, column 1. This cell position may be referred to as item R1C1.

J

JAR files (.jar). In Java, abbreviation for Java ARchive. A file format that is used for aggregating many
files into one.

Java. An object-oriented programming language for portable interpretive code that supports interaction
among remote objects. Java was developed and specified by Sun Microsystems, Incorporated.

java bean part. A part that allows VARPG applications to access Sun Microsystem’s JavaBeans.

JavaBeans. In Java, a portable, platform-independent reusable component model.

Java Database Connectivity (JDBC). An industry standard for database-independent connectivity
between Java and a wide range of databases. The JDBC provides a call-level application programming
interface (API) for SQL-based database access.

Java 2 Software Development Kit (J2SDK). Software that Sun Microsystems distributes for Java
developers. This software includes the Java interpreter, Java classes, and Java development tools. The
development tools include a compiler, debugger, dissassembler, AppletViewer, stub file generator, and
documentation generator.

Java Native Interface (JNI). A programming interface that allows Java code that runs inside of a Java
Virtual Machine (JVM) to interoperate with functions that are written in other programming languages.

Java Runtime Environment (JRE). A subset of the Java Developer Kit for end users and developers
who want to redistribute the JRE. The JRE consists of the Java Virtual Machine, the Java Core Classes,
and supporting files.

Glossary 521

Java Virtual Machine (JVM). The part of the Java Runtime Environment (JRE) that is responsible for
interpreting Java bytecodes.

L

link event. An event that a target part receives whenever the state of a source part changes.

list box part. A control that contains scrollable choices that a user can select. In VisualAge RPG, you
can point and click on a list box part in the parts palette or parts catalog and click it onto a design
window.

M

main procedure. A main procedure is a subprocedure that can be specified as the program entry
procedure and receives control when it is first called. A main procedure is only produced when creating
an EXE. See EXE module

main source section. In a VARPG program, the main source section contains all the global dedfinitions
for a module. For a component, this section also includes the action and user subroutines.

main window. See primary window.

manipulation button. See mouse button 2.

maximize button. A button on the rightmost part of a title bar that a user clicks on to enlarge the
window to its largest possible size. Contrast with minimize button, hide button.

media panel part. A part used to give the user control over other parts. For example, a media panel
part can be used to control the volume of a media part.

media part. A part that gives a program the ability to process sound files and video files.

menu. A list of choices that can be applied to an object. A menu can contain choices that are not
available for selection in certain contexts. Those choices are dimmed.

menu bar part. The area near the top of a window, below the title bar and above the rest of the
window, that contains choices that provide access to other menus. In VisualAge RPG, you can point and
click on a menu bar part in the parts palette or parts catalog and click it onto a design window.

menu item part. A part that is a graphical or textual item on a menu. A user selects a menu item to
work with an object in some way.

message. (1) Information not requested by a user but displayed by a product in response to an
unexpected event or when something undesirable could occur. (2) A communication sent from a person
or program to another person or program.

message file. A file containing application messages. The file is created from the message source file
during the build process. See also build.

message subfile part. A part that can display predefined messages or text supplied in program logic.

522 Programming with VisualAge RPG

migrate. (1) To move to a changed operating environment, usually to a new release or version of a
system. (2) To move data from one hierarchy of storage to another.

MID. The file extension of a MIDI file.

MIDI file. Musical Instrument Digital Interface file.

minimize button. A button, located next to the rightmost button in a title bar, that reduces the window
to its smallest possible size. Contrast with maximize button and hide button.

mnemonic. A single character, within the text of a choice, identified by an underscore beneath the
character. See also mnemonic selection.

mnemonic selection. A selection technique whereby a user selects a choice by typing the mnemonic for
that choice.

mouse. A device with one or more push buttons used to position a pointer on the display without
using the keyboard. Used to select a choice or function to be performed or to perform operations on the
display, such as dragging or drawing lines from one position to another.

mouse button. A mechanism on a mouse used to select choices, initiate actions, or manipulate objects
with the pointer. See also mouse button 1 and mouse button 2.

mouse button 1. By default, the left button on a mouse used for selection.

mouse button 2. By default, the right button on a mouse used for manipulation.

mouse pointer. Synonym for cursor.

multiline edit (MLE) part. A part representing an entry field that allows the user to enter multiple
lines of text.

N

navigation panel. A group of buttons that can be used to control the visible selection of records in a
subfile.

NOMAIN module. A module that contains only subprocedures. There are no action or standalone user
subroutines in it. A NOMAIN module is created when the NOMAIN keyword is present on the control
specification.

notebook part. A graphical representation of a notebook. You can add notebook pages to the notebook
part and then group the pages into sections separated by tabbed dividers. In Windows, a notebook is
sometimes referred to as a Windows tab control. See also notebook page part, notebook page with canvas part.

notebook page part. A part used to add pages to a notebook part. See also notebook.

notebook page with canvas part. A combination of a notebook page part and a canvas page part. See
also notebook, canvas part.

Glossary 523

O

object. (1) A named storage space that consists of a set of characteristics that describe itself and, in
some situations, data. An object is anything that exists in and occupies space in storage and on which
operations can be performed. Some examples of objects are programs, files, libraries, and folders. (2) A
visual component of a user interface that a user can work with to perform a task. An object can appear
as text or an icon.

object-action paradigm. A pattern for interaction in which a user selects an object and then selects an
action to apply to that object.

object-oriented programming. A method for structuring programs as hierarchically organized classes
describing the data and operations of objects that may interact with other objects. (T)

object program. A target program suitable for execution. An object program may or may not require
linking. (T)

odbc/jdbc part. A part that allows VAPRG applications to access and process database files that
support the Windows ODBC API or Sun Microsystem’s JDBC API.

operating system. A collection of system programs that control the overall operation of a computer
system.

outline box part. A part that is a rectangular box positioned around a group of parts to indicate that all
the parts are related.

P

package. A function used to collect all the parts of a VARPG application together for distribution.

parts. Objects that make up the GUI of a VARPG application.

parts catalog. A storage space for all of the parts used to create graphical user interfaces for VARPG
applications.

parts palette. A collection of parts that are most appropriate for building the current graphical user
interface for an application. When you finish one GUI, you can wipe the palette clean and add parts
from the parts catalog that you require for the next application.

plugin. A function created by the user or an outside vendor that can be used in VARPG programs.

point and click. (1) A selection method which is used to copy a part from the parts palette or catalog to
the GUI design window, the icon view, or the tree view. (2) To place a part in any of the desired views,
point to and click on the part, then move the cursor to the chosen window and point the cursor and
click where you want the part to appear. In the icon and tree views, the part will be placed on the
parent part, and you will then have to move it where you would like it to appear in the design window.

pop-up menu. A menu that, when requested, appears next to the object with which it is associated. It
contains choices appropriate for the object in its current context.

524 Programming with VisualAge RPG

pop-up menu part. A part that, when added to an object on your interface, appears next to the object
with which it is associated when requested. You can point and click on a pop-up menu part in the parts
palette or parts catalog and click it onto a design window.

pop-up window. A movable window, fixed in size, in which a user provides information required by
an application so that it can continue to process a user request. Synonymous with secondary window.

primary window. The window in which the main interaction between the user and the application
takes place. Synonymous with main window.

procedure. A procedure is any piece of code that can be called with the CALLP operation code.

procedure interface definition. A procedure interface definition is a repetition of the prototype
information within the definition of a procedure. It is used to declare the entry parameters for the
procedure and to ensure that the internal definition of the procedure is consistent with the external
definition (the prototype)

programmable workstation (PWS). A workstation that has some degree of processing capability and
that allows a user to change its functions.

progress bar part. A part that can be used to indicate graphically the progress of a process, such as
copying files, loading a database, and so on.

progress indicator. One or more controls used to inform a user about the progress of a process.

project. The complete set of data and actions needed to build a single target, such as dynamic link
library (DLL) or an executable file (EXE).

prompt. (1) A visual or audible message sent by a program to request the user’s response. (T) (2) A
displayed symbol or message that requests input from the user or gives operational information. The
user must respond to the prompt in order to proceed.

properties notebook. A graphical representation that resembles a bound notebook containing pages
separated into sections by tabbed divider pages. Select the tabs of a notebook to move from one section
to another.

prototype. A prototype is a definition of the call interface. It includes information such as: whether the
call is bound (procedure) or dynamic (program); the external name; the number and nature of the
parameters; which parameters must be passed; the data type of any return value (for a procedure)

pull-down menu. A menu that extends from a selected choice on a menu bar or from a system-menu
symbol. The choices in a pull-down menu are related to one another in some manner.

push button part. A button labeled with text that represents an action that starts when a user selects
the push button. You can point and click on a push button part in the parts palette or parts catalog and
click it onto a design window. See also graphic push button part.

PWS. Programmable workstation.

Glossary 525

R

radio button part. A circle with text beside it. Radio buttons are combined to show a user a fixed set of
choices from which only one can be selected. The circle is partially filled when a choice is selected. You
can point and click on a radio button part in the parts palette or parts catalog and click it onto a design
window.

reference field. An iSeries database field from which an entry field part can inherit its characteristics.

restore button. A button that appears in the rightmost corner of the title bar after a window has been
maximized. When the restore button is selected, the window returns to the size and position it was in
before it was maximized. See also maximize button.

S

SBCS. Single-byte character set.

scroll bar. A part that shows a user that more information is available in a particular direction and can
be moved into view by using a mouse or the page keys.

secondary window. A window that contains information that is dependent on information in a primary
window, and is used to supplement the interaction in the primary window. See also primary window.
Synonym for pop-up window.

secure sockets layer (SSL). A popular security scheme that was developed by Netscape
Communications Corp. and RSA Data Security, Inc. SSL allows the client to authenticate the server and
all data and requests to be encrypted. The URL of a secure server that is protected by SSL begins with
https rather than http.

selection border. The visual border that appears around a VARPG part or a custom-made part,
allowing the part to be moved with the mouse or keyboard.

selection button. See mouse button 1.

server. A system in a network that handles the requests of another system, called a client.

server alias. A name you define that can be used instead of the server name.

shared component. A component that can be accessed by more than one project.

single-byte character set (SBCS). A character set in which each character is represented by a one-byte
code. Contrast with double-byte character set (DBCS).

sizing border. The border or frame around a part (or set of parts) that you select to resize the part (or
set of parts) using the mouse or the keyboard.

slider part. A visual component of a user interface that represents a quantity and its relationship to the
range of possible values for that quantity. A user can also change the value of the quantity. You can
point and click on a slider part in the parts palette or parts catalog and click it onto a design window.

slider arm. The visual indicator in the slider that a user can move to change the numerical value.

526 Programming with VisualAge RPG

source directory. The directory in which all source files for a VARPG application are stored.

source part. A part that can notify target parts whenever the state of the source part changes. A source
part can have multiple targets.

spin button part. A type of entry field that shows a ring of related but mutually exclusive choices
through which a user can scroll and select one choice. A user can also type a valid choice in the entry
field. You can point and click on a spin button part in the parts palette or parts catalog and click it onto
a design window.

SSL. Secure sockets layer.

static text part. A part used as a label for other parts, such as a prompt for an entry field part.

status bar. A part of a window that displays information indicating the state of the current view or
object. See also information area.

status bar part. A part on a window that can display additional information about a process or action
for the window.

subfile field. A field used to define fields in a subfile part. See also subfile part.

subfile part. A part used to display a list of records, each consisting of a number of fields. This part is
similar to an iSeries subfile. See also subfile field.

submenu. A menu that appears from, and contains choices related to, a cascading choice in another
menu. Submenus are used to reduce the length of a pull-down menu or a pop-up menu. See also
submenu part.

submenu part. A part used to start a submenu from a menu item or existing menu, or to start a
pull-down menu from a menu item on a menu bar. See also submenu and menu item part.

subprocedure. A subprocedure is a procedure specified after the main source section. It must have a
corresponding prototype in the definition specifications of the main source section

syntax checking. Verifies that the syntax of each line is correct while you are editing the source. By
doing so, it can avoid compile errors. You can set this option on or off. You can view only certain
specification types, such as C specs, or a line with a specific string.

T

tab stop. An attribute used to set a tab stop for a part so that users can focus on it when they use the
Tab key to move through the interface.

target part. A part that receives a link event from a source part whenever the state of the source part
changes.

target directory. The directory in which the compiled VARPG application is stored after a build.
Contrast with target folder.

target folder. The object in which the icon representing a VARPG application is placed.

target program. The object to be built by the project, such as a dynamic link library (DLL).

Glossary 527

thread. The smallest unit of operation to be performed within a process.

timer part. A part used to track the interval of time between two events and trigger the second event
when the interval has passed.

title bar. The area at the top of each window that contains the system-menu symbol.

token highlighting. Enhances the readability of the code. You can configure highlighting of different
language constructs with different colors or fonts to identify the program structures. You can turn token
highlighting on or off.

tool bar. A menu that contains one or more graphical choices representing actions a user can perform
using a mouse.

topic. In dynamic data exchange (DDE), the set of data that is the subject of a DDE conversation.

tree view. A way of displaying the contents of an object in a hierarchical fashion.

U

user-defined part. A part, consisting of one or more parts you have customized, that you save to the
parts palette or parts catalog for reuse. When in the palette or catalog, you can point and click this part
onto the design window as you would any other VARPG part.

utility DLL. See NOMAIN module

V

vertical scroll bar part. A part that adds a vertical scroll bar to a window. This part allows users to
scroll through a pane of information vertically.

W

WAV. The file extension of a wave file.

wave file. A file used for audio sounds on a waveform device.

window part. An area with visible boundaries that represents a view of an object or with which a user
conducts a dialog with a computer system. You can point and click on a window part from the parts
palette or parts catalog and click it onto the project window.

window with canvas part. A combination of the window part and the canvas part. See also window part
and canvas part.

work area. An area used to organize objects according to a user’s tasks. When a user closes a work
area, all windows opened from objects contained in the work area are removed from the workplace.

workplace. An area that fills the entire display and holds all of the objects that make up the user
interface.

workstation. A device that allows a user to do work. See also programmable workstation.

528 Programming with VisualAge RPG

Bibliography

For additional information about topics related to WebSphere Development
Studio Client, refer to the following IBM publications:

WebSphere Development Studio Client manuals:
v Getting Started with WebSphere Development Studio Client for iSeries,

SC09-2625-06, provides information about WebSphere Development Studio
Client for iSeries, giving an overview of the various components, how they
work together, and the business advantages of using them.

VisualAge RPG manuals:
v Programming with VisualAge RPG, SC09-2449-05, contains specific

information about creating applications with VisualAge RPG. It describes
the steps you have to follow at every stage of the application development
cycle, from design to packaging and distribution. Programming examples
are included to clarify the concepts and the process of developing VARPG
applications.

v VisualAge RPG Parts Reference, SC09-2450-05, provides a description of each
VARPG part, part attribute, part event, part attribute, and event attribute. It
is a reference for anyone who is developing applications using VisualAge
RPG.

v VisualAge RPG Language Reference, SC09-2451-04, provides reference
information about the VARPG language and compiler.

v Java for RPG Programmers introduces you to the Java language (and RPG IV)
by comparing it to the RPG language. It is a good first step in your Java
journey. It also includes an interactive CD tutorial on Java and VisualAge
for Java, by MINDQ.

v Experience RPG IV Tutorial is an interactive CD tutorial that teaches you
RPG IV and ILE, in a fun and step-by-step approach. The book is a
handbook with questions and exercises to help you get hands-on experience
with this exciting new version of RPG.

v Another non-IBM book of interest to VisualAge RPG users is VisualAge for
RPG by Example.

If you have internet access, you can obtain current iSeries and AS/400e
information and publications from the following Web site:
http://www.ibm.com/eserver/iseries/infocenter

For the PDF version of iSeries publications, refer to the CD ROM iSeries
Information Center: Supplemental Manuals, SK3T-4092.

Application Development Manager manuals:

© Copyright IBM Corp. 1994, 2002 529

|
|

|

|
|

v ADTS/400: Application Development Manager Introduction and Planning Guide,
GC09-1807-00, describes the basic concepts and the planning needed to
make effective use of the Application Development Manager feature.

v ADTS: Application Development Manager User’s Guide, SC09-2133-02,
describes how to create and manage projects defined to the Application
Development Manager feature.

v ADTS/400: Application Development Manager Self-Study Guide, SC09-2138-00,
provides practical hands-on experience using the Application Development
Manager feature. The guide illustrates how to use the Application
Development Manager feature by leading you through a series of
step-by-step exercises.

v ADTS/400: Application Development Manager API Reference, SC09-2180-00,
describes how application programmers can write their own interface to the
Application Development Manager feature.

Information Presentation Facility manual:
v Information Presentation Facility Programming Guide G25H-7110, describes the

elements that make up the Information Presentation Facility (IPF). IPF is a
tool that supports the design and development of online documents and
online help facilities.

SQL manuals:
v IBM SQL Reference Version 2 SC26-8416, Volume 2, compares the facilities of

– DB2
– SQL/DS™

– DB2/400™

– DB2/6000™

– IBM SQL
– ISO-ANSI (SQL92E)
– X/Open™ (XPG4-SQL).

v DB2 Universal Database Administration Guide S10J-8157, provides information
necessary to use and administer the DB2 product.

v DB2 Universal Database Embedded SQL Programming Guide S10J-8158,
describes how to design and code application programs that access DB2
Client/Server family servers (such as DB2 or DB2/400). It presents detailed
information on the use of Structured Query Language (SQL), and API calls
in applications.

530 Programming with VisualAge RPG

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1994, 2002 531

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information

This publication is intended to help you to create and manage VisualAge RPG
applications and user interfaces on the workstation, in a client/server
environment. This publication documents General-Use Programming Interface
and Associated Guidance Information provided by IBM WebSphere
Development Studio Client for iSeries.

Trademarks and Service Marks

The following terms are trademarks or registered trademarks of the
International Business Machines Corporation in the United States or other
countries or both:

AS/400 AS/400e Common User Access
CUA DATABASE 2 DB2

532 Programming with VisualAge RPG

|
|
|
|
|

DB2 Connect DB2 Universal Database IBM
iSeries OS/400 SQL/DS
VisualAge WebSphere 400

Java and all Java-based trademarks are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.

Lotus is a trademark of Lotus Development Corporation in the United States,
or other countries, or both.

ActiveX, Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation in the United States, or other countries,
or both.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 533

534 Programming with VisualAge RPG

Index

Special Characters
.BMP file

using 95, 269
.DLL file

calling functions 297
description 483
loading the DLL occurrence while

debugging 253
.EVT file, description 483
.EXE file

calling .EXEs 299
description 483

.HLP file, description 483

.ICO file
using 95, 269

.IPF file, description 483

.IPM file, description 483

.LIB file, description 483

.LST file, description 483

.MID file
processing by media parts 113

.ODF file, description 483

.ODX file, description 483

.RST file, description 483

.TXC file, description 483

.TXM file, description 483

.VPF file, description 483

.VPG file, description 483

.WAV file
processing by media parts 113

*component part
attributes 211
events 211
purpose of 211

*INZSR 302
*TERMSR 303
%DspHeight system attribute 33,

48
%DspWidth system attribute 33, 48
%GETATR, using 31
%SETATR, using 31

A
accessing picture files at build

time 270
action subroutine

modifying link events 33
action subroutine, invoking 32

ActiveX part
attributes 59
creating 59
events 59, 62, 101
methods 61
properties 59
purpose of 58

AddItemEnd attribute 168
AddLink attribute

controlling media part with 114
for media panel parts 115

AddMsgId attribute 120
AddMstTxt attribute 120
AddOffset attribute 126
AddRcd attribute 78
AllowLink attribute

enabling media panel control by
setting 114

for media panel parts 115
animation control part

attributes 63
events 63
purpose of 63

applets
calls 333
create 327
Java build options 328
runtime requirements 330

application
installing 477
packaging 467
re-installing 478
re-packaging 478
removing 478
updating 478

Application files
description 483
filename.DLL 253, 483
filename.EVT 483
filename.EXE 483
filename.HLP 483
filename.IPF 483
filename.IPM 483
filename.LIB 483
filename.LST 483
filename.ODF 483
filename.ODX 483
filename.RST 215, 483
filename.TXC 483

Application files (continued)
filename.TXM 483
filename.VPF 483
filename.VPG 483

applications, thin client 487
Arrange attribute 81
array

changing during debug
session 260

displaying during debug
session 259, 260

attributes
AddItemEnd 168
AddLink 114, 115
AddMsgId 120
AddMsgTxt 120
AddOffset 126
AddRcd 78
AllowLink 114, 115
Arrange 81
AudioMode 114
BackColor 47
BackMix 47, 163
Bottom 48
CharOffSet 126
Checked 68, 118
checking event and system

attributes 34
ColNumber 80, 178
Count 79, 106, 177
DDEMode 295
DeSelect 72, 105, 106
DragEnable 54
DropEnable 54
Enabled 47, 88, 119, 127
FileName 92, 96, 114, 270
FirstSel 72
Focus 49
FontName 172
FontSize 172
for ActiveX parts 59
for animation control parts 63
for canvas parts 67
for check box parts 68
for combination box parts 70, 71
for component reference

parts 75
for container parts 77
for DDE client parts 85

© Copyright IBM Corp. 1994, 2002 535

attributes (continued)
for entry field parts 86
for graphic push button

parts 92
for group box parts 93
for horizontal scroll bar parts 94
for image parts 96
for Java Bean parts 101
for list box parts 89, 104
for media panel parts 115
for menu item parts 118
for message subfile parts 120
for multiline edit parts 125
for notebook canvas parts 134
for notebook page parts 132
for notebook parts 130
for ODBC/JDBC interface

parts 136
for outline box parts 153
for pop-up menu parts 154
for positioning parts 48
for progress bar parts 155
for push buttonparts 156
for radio button parts 158
for slider parts 162
for static text parts 172
for status bar parts 174
for subfile parts 175
for submenu parts 190
for timer parts 191
for vertical scroll bar parts 200
for window with canvas

parts 202
for window without canvas

parts 201
ForeColor 47
ForeMix 47
GetItem 106
GetNewID 78
GetRcdText 78
getting and setting 31
Height 48, 153
Index 72, 106, 178
InfoLabel 50
InsertItem 71, 105
InsertLine 126
InsertMode 87
Interval 192
Label 50, 93, 118, 157, 172, 173
Left 48
LineNumber 126
Masked 88
Maximum 168
Minimum 168
MsgSubText 121

attributes (continued)
Multiplier 192
OpenEdit 178
OpenImmediately 203
Panel 96
PanelItem 116
ParentName 45
PartName 45
PartType 45
Position 114, 116
ReadOnly 72, 88, 127, 169
RecordID 80
RemoveItem 72, 105
RemoveMsg 121
RemoveRcd 80
Selected 72, 105, 106
SelectItem 74
Sequence 71, 105
SetItem 72, 105
SetRcdIcon 81
SetRcdText 78
SetTop 72, 105
TabLabel 50
Terminate on close 208
Text 72, 87, 125, 169
TextEnd 126
TextSelect 126
TextStart 126
TimerMode 192
UserData 50
Validate 87
Value 163, 169, 192
View 84
Visible 49, 191, 203
Volume 114, 116
Width 48, 153

AudioMode attribute 114

B
BackColor attribute, common uses

of 47
backmatter

common uses of 47
for slider parts 163

BEGACT operation code, responding
to events with 32

bibliography 529
bitmaps, using 269
Bottom attribute, common uses

of 48
breakpoint

setting 254, 257

C
calendar 64

purpose of 64
CALL operation code, example

of 304
CALLB operation code

calling local functions 295, 297
calling local programs

calling local programs 295
functions using named

constants 297
functions using procedure

pointer 298
functions without required

parameters 299
local functions 297
local programs 295
remote programs 302

canvas part
attributes 67
events 67
purpose of 66

CHAIN (random retrieval from file)
operation code 176

Change event
and multiline edit parts 127
for media panel parts 116
for slider parts 163

changing
a pointer value while

debugging 263
debugger views 263
the contents of a field while

debugging 261
the representation while

debugging 261
variables, arrays, and structures

while debugging 260
changing position of parts 204
CharOffset attribute 126
check box part

attributes 68
events 68, 69
getting and setting states 68
purpose of 68

Checked attribute
for check box parts 68
for menu item parts 118

CLEAR operation code
for subfile parts 176
purpose of 36

Close event 208
ColNumber attribute 80, 178
color of converted parts after

import 244

536 Programming with VisualAge RPG

combination box part
adding and changing items 71
and data transfer 53
attributes 70
events 71
order of items 71
purpose of 70
removing items 72
retrieving a user-selected

item 72
selecting and deselecting

items 72
common attributes, description

of 45
compiling programs

filename.EVT 483
filename.LST 483

Complete event 114
component reference part

attributes 75
communication between

components 293
events 75
example 75
purpose of 75

components
communication between 293
starting 302
stopping 303

container part
attributes 77
changing views of 81
events 77
example adding records to 79
example removing records

from 80
example updating data in 80
purpose of 77

container views, changing 81
context-sensitive help 272
control language (CL) program

ALCOBJ 222
CVTRPGSRC, ILE RPG

conversion tool 247
QCMDDDM 217
QCMDEXC 217
STRPCCMD 305

controlling server connections 224
conversion

RPG source code using
CVTRPGSRC 247

Count attribute
for container parts 79
for list box parts 106
for subfile parts 177

Create event, example of 48
CVTRPGSRC, ILE RPG/400

conversion tool 247

D
data area overrides 217
data transfer

example 54
parts that support 53
using 53

DDE client
attributes 85
determining if programs

support 85
events 85
purpose of 85

DDEAddLink attribute
using 295

DDEMode attribute 295
debugger

breakpoints 253
changing debugger views 263
changing the contents of a

field 261
changing the representation 261
changing the view 259
displaying registers 259
displaying the debug session

control window 259
displaying the program

monitor 259
displaying the stack 259
displaying the storage 259
displaying variables 259
Load occurrence 253
overview 251
running a program while

debugging 258
running the program 259
setting breakpoints 254, 257
starting 251
step return 259
stepping 259
stepping into 258
stepping over 258
tool bar selections 258

default settings
due to CLEAR operation

code 210
focus 207
open immediately 203
order of items in a combination

box 71
system menu settings 208
visible 203

default settings (continued)
window list contents 208

Define iSeries Information utility
and packaging your

application 468
setting a server at run time 216

DELETE (delete record) operation
code 176

DeSelect attribute
for list box parts 105, 106

designing
messages 25
number of windows 24
online help 24
program logic 25
Video Store Catalog

application 5
window content 25

directly editing messages 291
display files

color of converted parts 244
display file keywords 241
display record formats 239
reusing 238, 239

displaying variables
debug assembly source

code 252
debug load occurrence

breakpoint 253
pointer value while

debugging 262
variables while debugging 259
variables, arrays, and structures

while debugging 260
Double Byte Character Set

application development
considerations 425

DBCS Either data type 425, 427
DBCS Mixed data type 425, 427
DBCS Only data type 425, 427
GETATR operation code 426,

427, 428
graphic data type 428
Pure DBCS 428
SETATR operation code 426,

427, 428
DragEnable attribute 54
DropEnable attribute 54
DSPLY 290

E
edit codes

formatting data into predefined
formats 265

purpose of 265

Index 537

edit codes (continued)
user-defined 266

edit words
body of 267
correcting improperly formatted

output 267
expansion positions of 268
parts of 267
purpose of 265, 267
status of 268

editing
data in entry fields and static text

parts 265, 267
help files 245
messages 289
RPG source 247

Enabled attribute
common uses of 47
for entry field parts 88
for menu item parts 119
for multiline edit parts 127

ENDACT operation code,
responding to events with 32

Enter event
for combination box parts 74
for list box parts 107, 189

entry field part
and data transfer 53
attributes 86
clearing 210
events 87
overriding defined values 36
purpose of 86
starting components 302
storing read values 35

error messages
error referencing parts 203
improperly formatted

output 267
Event attributes

defining event and system
attributes 34

purpose of 33
event attributes, using 33
events

Change 116, 127, 163
checking for event attribute

errors 34
Close 208
coding BEGACT and

ENDACT 32
Complete 114
description of attributes 33
Enter 107, 189
for ActiveX parts 59

events (continued)
for animation control parts 63
for check box parts 69
for combination box parts 74
for DDE client parts 85
for entry field parts 87
for graphic push button

parts 92
for group box parts 93
for horizontal scroll bar parts 94
for image parts 96
for Java Bean parts 101
for list box parts 104
for media panel parts 115
for media parts 113
for menu bar parts 117
for menu item parts 118
for message subfile parts 120
for multiline edit parts 125
for notebook page parts 132
for notebook parts 130
for ODBC/JDBC Interface

parts 136
for outline box parts 153
for progress bar parts 155
for push button parts 156
for radio button parts 158
for slider parts 162
for spin button parts 168
for static text parts 172
for status bar parts 174
for subfile parts 176
for submenu parts 190
for timer parts 191
for vertical scroll bar parts 200
for window with canvas

parts 202
for window without canvas

parts 201
GotFocus 50, 127
invoking action subroutines 32
listing events for a part 32
LostFocus 50
MenuSelect 119
Notify 76
Press 92, 157
responding to events in your

program 32
Select 69, 106, 161, 189
Tick 192

examples
adding records to a container

part 79
getting and setting values for

spin button parts 169

examples (continued)
grouping radio buttons 159
of data transfer 54
of parts sharing a program

field 38
reading and modifying subfile

records 177
removing records from container

parts 80
resizing a window 204
updating container parts 80
using component reference

part 75
using Create event for a

window 48
using subfile part to display

database records 180
using subfiles to display server

data 179
using the image part 97
using the list box part 107
using the message subfile

part 122
using the multiline edit part 127
using the slider part 163
using the timer part 192
Video Store Catalog

application 3
window part 210

exchanging information with other
PWS applications 293

execute subroutine
invoking action subroutines

with 32

F
field parts

unique names 37
file aliases (overrides) 218
FileName attribute

for graphic push button
parts 92

for image parts 96
for media parts 114, 270

finding a message
a message 290

FirstSel attribute 72
Focus attribute, common uses of 49
FontName attribute 172
FontSize attribute 172
ForeColor attribute, common uses

of 47
ForeMix attribute, common uses

of 47

538 Programming with VisualAge RPG

G
GETATR

using 31
GetItem attribute 106
GetNewID attribute 78
GetRcdText attribute 78
getting the record count

count of records in a subfile 177
part attributes 31
state of check box parts 68
state of radio button parts 160
text attribute for multiline

parts 125
value for slider parts 163
values for spin button parts 169

glossary 515
GotFocus event

and multiline edit parts 127
common uses of 50

graph 89
purpose of 89

graphic data type 428
graphic push button part

attributes 92
events 92
purpose of 91

group box
attributes 93
events 93
purpose of 93

grouping radio buttons,
example 159

H
Height attribute

common uses of 48
for outline box parts 153

help
adding graphics to 272
creating a help push button 273
creating for Windows 275
creating hypertext links 273
editing 245
filename.IPM 483
filename.VPF 483
for Java applications 281
planning your application 24
reusing UIM 245
translating 271
types of 272

help push button, creating 273
hidden subfile fields 178
horizontal scroll bar

attributes 94
events 94

horizontal scroll bar (continued)
purpose of 94

hypertext links, creating 273

I
icons, using 269
image part

accessing picture and sound files
at build time 270

attributes 96
events 96
purpose of 95
specifying the FileName

attribute 270
importing 238

and color of converted parts 244
display file keywords 241
display files 238, 239
display record formats 239
positional entries and

conversion 240
scenario 233

Index attribute
for combination box parts 72
for list box parts 106
for subfile parts 178

InfoLabel attribute 50
Information Presentation Facility

(IPF) 271
InsertItem

for list box parts 105
InsertItem attribute

for combination box parts 71
for list box parts 105

InsertLine attribute 126
InsertMode attribute 87
installing

applications (for Windows) 477
code for examples in this

book 41
DBCS considerations 425
runtime code (for Windows) 477
Video Store Catalog example 3

Interval attribute 192
IPF (Information Presentation

Facility) 271
iSeries 400 server

accessing files on the iSeries 400
server 43

creating data files for the sample
programs 43

filename.RST 483
messages for translation 291
reusing applications from 233
reusing UIM help 245

J
Java applications

SSL setup 509
Java Bean part

associated JARs 102
attributes 101
classpath setup 102
creating 101
properties and methods 103
purpose of 101

java methods, calling 311
Java methods, prototyping 312
java restrictions 321
java runtime differences 325
java source changes 322
java, compiling 321
JavaHelp, creating 281

L
Label attribute

common uses of 50
for group box parts 93
for menu item parts 118
for push button parts 157
for static text parts 172, 173
purpose of 37

labels
description 50
substitution 287

Left attribute, common uses of 48
level checking 222
library lists

Define iSeriesInformation
notebook considerations 219

job description 216
QCMDDDM 217
QCMDEXC 217
setting up a server 216

LineNumber attribute 126
for multiline edit parts 125

linking parts 293
list box part

and data transfer 53
attributes 89, 104
events 104
purpose of 104

locking database files 222
LostFocus event, common uses

of 50

M
Make Message File utility 291
Masked attribute 88
Maximize button 204
Maximum attribute 168

Index 539

media panel part
attributes 115
controlling media part with 114
events 115
purpose of 115

media part
attributes 113
controlling with media panel

part 114
events 113
purpose of 113
signaling events 114

menu bar
attributes 117
events 117
purpose of 117

menu item part
attributes 118
events 117, 118
purpose of 118

menubar
purpose of 117

MenuSelect event
for menu item parts 119

message subfile part
and data transfer 53
attributes 120
events 120
example of 122
purpose of 120

messages
choosing type of 288
compiling for translation 291
creating 287, 288
deleting 290
designing 25
editing 289
editing for translation 291
filename.TXM 483
finding 290
types of 287
using as labels 292
using with logic 290

Minimize button 204
Minimum attribute 168
mnemonics

for check box parts 69
for menu items 119
for notebook pages 132
for push buttons 157
for radio buttons 158
translating 27

modifying
link events to action

subroutines 32

modifying (continued)
resource IDs 483

MsgSubText attribute 121
multiline edit part

and data transfer 53
attributes 125
events 125
example of 127
purpose of 125

multiple procedures
prototyped call 305

Multiplier attribute 192
MultSelect attribute

for list box parts 89, 104
for subfile parts 175

N
non-GUI programs 417
non-GUI programs from DOS 505
notebook page part

attributes 132
events 132
purpose of 132

notebook page with canvas part
attributes 134
events 134
purpose of 134

notebook part
attributes 130
events 130
purpose of 130

Notify event 76

O
ODBC/JDBC interface part

access table data 137
attributes 136, 155
connect to a database 136
create a record set 137
data types 138
events 136, 155
purpose of 135
retrieve table rows 139

Open Immediately attribute 203
OpenEdit attribute 178
operation codes

CALLB 297
CHAIN 176
CLEAR 176, 210
DELETE 176
READ 87
READC 176
READS 176
SETATR 96
SHOWWIN 203

operation codes (continued)
START 75, 302
STOP 302
UPDATE 176
WRITE 87, 177

Outline Box part
attributes 153
events 153
purpose of 153

overrides
accessing data areas 217
accessing database files 218
calling iSeries server

programs 303

P
packaging

application 467
prerequisites 467
runtime code 467

Packaging utility 467
Panel attribute 96
PanelItem attribute 116
ParentName attribute, common uses

of 45
part colors

common uses of 47
slider part example 163

part type
description 305

PartName attribute, common uses
of 45

parts
*component 211
ActiveX 58
animation control 63
canvas 66
changing colors of 47
check box 68
combination box 70
Combination box 70
component reference 75
Component Reference 75
container 77
Container 77
DDE client 85
enabling parts 47
entry field 86
graph 89
graphic push button 91
group box 93
horizontal scroll bar 94
image 95
Java Bean 101
linking 293

540 Programming with VisualAge RPG

parts (continued)
list box 97, 104
listing events for a part 32
media 113
media panel 115
menu bar 117
menu item 118
message subfile 120
multiline edit 125
notebook 130
notebook page 132
notebook page with canvas 134
ODBC/JDBC interface 135
outline box 153
placement on various monitor

resolutions 48
pop-up menu 154
positioning 48
progress bar 155
push button 156
radio button 158
referencing 31
slider 162
spin button 168
static text 172
status bar 174
subfile 175
submenu 190
support data transfer 53
timer 191
vertical scroll bar 200
window 201, 202
window frame 201

PartType attribute, common uses
of 45

Picture file
for image parts 95
using 269

pictures, adding 269
planning your application 24
pointer

changing the value while
debugging 263

displaying while debugging 262
pop-up menu part

attributes 154
events 154
purpose of 154

Position attribute
for media panel parts 116
setting 114

position of parts, changing 204
positional entries, and conversion

during import 240

Press event
for graphic push button

parts 92
for push button parts 157

programs, non-GUI 417
progress bar part

purpose of 155
prototyped call

prototyped call 305
prototyping, Java methods 312
publications, list of 529
push button part

attributes 156
events 156
purpose of 156

Q
QCMDDDM

changing the library list 217
QCMDDDM, changing the library

list 217
QCMDEXC

changing the library list 217
QCMDEXC, changing the library

list 217

R
radio button part

attributes 158
events 158
example showing how to

group 159
purpose of 158

re-packaging 478
READ (read a record) operation code

database files 221
purpose of 36

READC (read next modified record)
operation code 176

ReadOnly attribute
for combination box parts 72
for entry field parts 88
for multiline edit parts 127
for spin button parts 169

READS (read selected record from
subfile) operation code 176

RecordID attribute 80
recursion

recursive calls 307
referencing

parts on different windows 31
parts on the same windows 31

RemoveItem attribute 72, 105
RemoveMsg attribute 121
RemoveRcd attribute 80

removing
an application 478
the runtime code 478

RESET
purpose of 36

resizing windows 204
reusing

applications from iSeries
400 233

display files 238, 239
RPG source 247
UIM help files 245

RGB color value 47
RPG source

reusing 247
running with breakpoints

debug breakpoints 256, 257
programs while debugging 258

runtime
deleting 478
filename.DLL 483
filename.EXE 483
filename.HLP 483
filename.ODX 483
filename.RST 483
re-installing 478
re-packaging 478
removing 478
updating 478

runtime code
installing 477
packaging 467

S
sample programs

building 42
installing 41
running 43
special instructions for samples

requiring iSeries server
data 43

secure sockets layer setup 509
Select event

for combination box parts 74
for list box parts 106
for radio button parts 161
for subfile parts 189
signaling 69

Selected attribute
for combination box parts 72
for list box parts 105, 106

selecting items in combination
boxes 72

SelectItem attribute 74

Index 541

Sequence attribute
for combination box parts 71
for list box parts 105

server connections, runtime
control 224

servers
accessing data areas 217
accessing database files 218
calling iSeries 400 programs with

workstation files 304
calling server programs 303
database considerations 223
defining iSeries Information 215
issuing CL commands 217
level checking 222
library list considerations 216
locking database files 222
notebook considerations 216
overriding database files 222
setting up for

developing/running
applications 216

using your application as a DDE
Server 294

SETATR
using 31

SETATR (set attribute) operation
code

for image parts 96
reflecting stored values on the

screen 36
SetItem attribute

for combination box parts 72
for list box parts 105

SetRcdIcon attribute 81
SetRcdText attribute 78, 81
setting

debug breakpoints 255
debug fonts 264

SetTop attribute
for combination box parts 72
for list box parts 105

sharing program fields, example of
parts 38

SHOWWIN operation code
loading window into

memory 203
Signon API, sample program 227
Signon API, using 224
slider part

attributes 162
events 162
purpose of 162

sound files, using 269
sound, adding 269

source code
editing 247
filename.VPG 483

spin button part
events 168
example of 169
purpose of 168

SSL setup 509
standalone programs 417
START (start a component) operation

code
and component reference

parts 75
calling local programs using 300
description 302
restrictions when calling local

programs with 301
starting

debug window 251
the debugger 251

starting a component 302
starting components

starting components 302
static text part

and data transfer 53
attributes 172
events 172
overriding defined values 36
purpose of 172
storing read values 35
unique names 37

status bar part
attributes 174
events 174
purpose of 174

stepping over
while debugging 258

STOP (stop a component) operation
code

description 303
subfile part

attributes 175
events 176
example displaying server

data 179
example of reading and updating

records 177
hidden fields 178
purpose of 175

submenu part
attributes 190
events 190
purpose of 190

substitution labels
defining text for 287

substitution labels (continued)
description 50

system attributes
%DspHeight 33, 48
%DspWidth 33, 48

System attributes
checking for system attribute

errors 34

T
TabLabel attribute 50
Terminate on close 208
terminating a program 208
text

for combination box parts 72
for entry field parts 87
for spin button parts 169
purpose of 37

Text attribute 125
TextEnd attribute 126
TextSelect attribute 126
TextStart attribute 126
thin clients 487
Tick event 192
TickLabel attribute

for slider parts 162
timer part

events 191
purpose of 191

TimerMode attribute 192
translating

compiling messages for 291
editing messages for 291
messages 27
mnemonics 27
tips for 26, 51

U
update subfiel record

for subfile parts 176
User Interface Manager, reusing

files 245
UserData attribute, common uses

of 50
utilities

Define iSeries Information 216,
468

Make Message File 291
Packaging 467

V
Validate attribute 87
Value attribute

for slider parts 163
for spin button parts 169
for timer parts 192

542 Programming with VisualAge RPG

Vendor Plugins
adding 435
creating 437
invoking 435
managing 436

vertical scroll bar
attributes 200
events 200
purpose of 200

Video Catalog application
adding messages 17
adding online help 17
creating the Comedy window 8
creating the Preview window 12
description of 3
designing 5
installing 3
running 5

View attribute 84
views, changing 81
Visible attribute

common uses of 49
for timer parts 191
for window parts 203

visual RPG
breakpoints list 255
changing a pointer value 263
changing variables, arrays, and

structures 260
debug startup information 254
debug tool bar 258
debug window 251
displaying a pointer value 262
displaying the assembly source

code 252
displaying the load occurrence

breakpoint 253
displaying variables, arrays, and

structures 260
running breakpoints 256, 257
setting breakpoints 255
setting debug fonts 264

Volume attribute
for media panel parts 116
for media parts 114

W
Width attribute

common uses of 48
for outline box parts 153

window part
attributes 201
events 201
purpose of 201

window with canvas part
attributes 202
events 202
purpose of 202

windows
attributes 201, 202
attributes for operation codes 37
creating at startup 203
default settings 203
designing content of 25
displaying 203
displaying pictures on 269
events 201, 202
giving input focus 49
loading into memory 203
method for moving 204
OpenImmediately attribute 203
operation codes for 36
positioning without use of title

bar 204
purpose of 201, 202
referencing 204
resizing 204
setting focus 207
setting window list contents 208
specifying when to display 49
style considerations 26
system menu settings 208
terminating on Close 208
unique names for entry field and

static text parts 37
using sound 269
Visible attribute 203
when you can set attributes 203

Windows help, creating 275
WRITE (create new records)

operation code
database files 221
for subfile parts 177
purpose of 36
reflecting stored values on the

screen 36

Index 543

544 Programming with VisualAge RPG

���

Printed in U.S.A.

SC09-2449-05

	Contents
	About this Book
	Who Should Use This Book
	Prerequisite and Related Information
	How to Use This Book
	The VisualAge RPG Library
	How to Send Your Comments
	Accessing Online Information
	Using Online Books
	Publications in PDF Format
	Using Online Help
	Using context-sensitive help
	Using hypertext
	Using the help table of contents
	Using the search facility
	Using language-sensitive help

	What's New This Release
	Part 1. A First Look at Client/Server Applications
	Chapter 1. Creating a Client/Server Application
	About the Sample Application
	Building the Sample Application
	Deciding What to Show the User
	Welcome to the Video Store Catalog
	Browsing by Category
	Searching for Specific Titles
	Previewing Titles
	Modifying and Submitting Orders
	Submitting Orders

	High-Level Window Design
	Creating the Comedy Window
	Creating the GUI
	Aligning the parts

	Setting Attributes
	Window attributes
	Canvas attributes
	Subfile attributes
	Push button attributes

	Adding Program Logic
	Displaying the Comedy window
	Displaying the Preview Window

	Creating the Preview Window
	Creating the GUI
	Setting Attributes at Design Time
	Media part attributes
	Static text attributes
	Multiline edit part

	Setting Attributes at Run Time
	Adding Program Logic
	Specifying the video to preview
	Controlling the video

	Creating Messages
	Creating the Online Help
	Context-sensitive help
	Creating Help push buttons

	A Review of Visual Programming

	Chapter 2. Planning Your Application
	Enabling Secure Java Applications
	Decide What Functions to Provide
	Help Your Users
	Keep Window Design Simple
	Number of Windows
	Content of Each Window

	Plan Your Code Effectively
	Keep the User Informed
	Use a Consistent Style
	Anticipate Translation Issues

	Part 2. Working with Parts
	Chapter 3. Programming with Parts
	Getting and Setting Part Attributes
	Referencing Parts in Your Program

	Responding to Events
	System Attributes
	Working with Event and System Attributes
	Coding Static Text and Entry Field Parts
	Creating and Retrieving Entry Field Parts
	Operation Codes for Window Parts
	Using Window Operation Codes on Parts with Identical Names
	Example

	Chapter 4. Sample Programs for VisualAge RPG
	Before You Begin
	Building the Examples
	Running the Examples
	Accessing an iSeries 400 Server

	Chapter 5. Common Attributes
	PartName Attribute
	ParentName Attribute
	PartType Attribute
	Color Attributes
	Enabled Attribute
	Size and Position Attributes
	Visible Attribute
	Focus Attribute
	UserData Attribute
	Label Attribute
	Label Substitution
	Translation Tips

	Chapter 6. Using Data Transfer
	A Typical Data Transfer Scenario
	Parts That Support Data Transfer
	Enabling Parts for Data Transfer
	Data Transfer Example

	Chapter 7. Using Parts
	ActiveX
	Adding ActiveX Controls
	Setting Properties
	Calling Methods
	Responding to Events

	Animation Control
	Calendar
	Determining Which Date the User Selected
	Using Date Index Attributes

	Canvas
	Check Box
	Setting the State of a Check Box Part
	Setting a Mnemonic
	Signaling Events

	Combination Box
	Selecting the Type of Combination Box
	Adding and Setting the Initial Sequence of Items
	Adding Items at Run Time
	Updating Items in a List
	Setting the Top of the List
	Removing Items
	Selecting and Deselecting Items
	Retrieving a User-Selected Item
	Using Keys
	Setting the Entry Field Text
	Signaling Events

	Component Reference
	Referencing Part Attributes in Other Components
	Monitoring for Events in Another Component

	Container
	Adding Columns to a Container
	Adding Records to a Container
	Updating Container Columns
	Removing Records from a Container
	Changing the Container View
	Icon view
	Tree view
	Details View
	Mini Icons

	DDE Client
	Entry Field
	Using the InsertMode Attribute
	Using the Text Attribute
	Getting and Setting Information for a Window
	Validity Checking
	Preventing User Input
	Masking Sensitive Data

	Graph
	Sending data to the Graph

	Graphic Push Button
	Setting the Image
	Assigning Command Keys
	Signaling Events

	Group Box
	Labeling a Group Box
	Grouping Radio Buttons

	Horizontal Scroll Bar
	Image
	Creating the Image Part
	Setting the File Name
	Controlling the Magnification Panel
	Image Example

	Java Bean
	Adding Beans to your Project
	Location of Bean JAR Files
	Setting the JAR Classpath
	Setting/Getting JavaBean Properties and Invoking Methods

	List Box
	Adding and Setting the Sequence of Items
	Adding Items at Run Time
	Updating Items in a List
	Setting the Top of the List
	Removing Items
	Selecting and Deselecting Items
	Types of Selection
	Retrieving Items from the List
	Using Keys
	Signaling Events
	List Box Example
	Search Example

	Media
	Specifying a File Name
	Setting AudioMode
	Setting the Volume
	Setting the Position
	Using the Media Panel Part
	Signaling Events

	Media Panel
	Creating a Media Panel Part
	Linking Other Parts
	Signaling Events

	Menu Bar
	Creating Pull-down Menus

	Menu Item
	Placing a Check Mark beside a Menu Item
	Setting Menu Text
	Setting a Mnemonic
	Enabling Menu Items
	Signaling Events

	Message Subfile
	Displaying Predefined Messages
	Displaying Text Supplied in Your Program
	Using Substitution Variables
	Removing Messages
	Message Subfile Example

	Multiline Edit
	Getting and Setting the Text
	Manipulating Lines of Text in a Multiline Edit Part
	Manipulating Characters in a Multiline Edit Part
	Manipulating Selected Portions of Text in a Multiline Edit Part
	Changing Color
	Choosing Fonts
	Preventing User Input
	Multiline Edit Example

	Notebook
	Changing Font Emphasis

	Notebook Page
	Showing Tab Text
	Setting a Mnemonic

	Notebook Page with Canvas
	ODBC/JDBC Interface
	Connecting to an ODBC Database
	Creating a Record Set
	Accessing Table Data
	Data Types
	Retrieving Table Rows
	Updating Row Data
	Deleting a Row
	ODBC/JDBC Interface Part Example

	Outline Box
	Special Height and Width Settings

	Pop-up Menu
	Progress Bar
	Progress Bar Example

	Push Button
	Setting a Default Push Button
	Setting a Mnemonic
	Assigning Command Keys
	Signaling Events

	Radio Button
	Setting a Mnemonic
	Grouping Radio Buttons
	Setting the State of a Radio Button
	Signaling Events

	Slider
	Getting and Setting the Slider Value
	Signaling Events
	Slider Example

	Spin Button
	Setting Spin Button Values
	Getting the Spin Button Value
	Preventing User Input
	Spin Button Example

	Static Text
	Changing the Text of a Static Text Part
	Getting Static Text Values
	Getting and Setting Information for a Window
	Editing Output

	Status Bar
	Status Bar Example

	Subfile
	Creating a Subfile Part
	Maximum Number of Fields per Subfile
	Operation Codes for Manipulating Subfile Parts
	Loading a Subfile
	Determining the Subfile Size
	Getting the Record Count
	Reading and Updating Records
	Changing Subfile Fields
	Hidden Fields
	Formatting Subfile Fields
	Enabling Tabbing
	Subfile Example
	Signaling Events

	Submenu
	Timer
	Displaying the Timer Icon
	Setting the Interval
	Generating Tick Events
	Getting the Timer Value
	Controlling the Timer Using Timer Modes
	Timer Example

	Vertical Scroll Bar
	Window
	Window with Canvas
	Displaying a Window
	Setting the Open Immediately attribute
	Using the SHOWWIN operation code
	Referencing

	Resizing a Window
	Setting the Focus
	Window List
	Terminating a Program
	Clearing Fields on a Window
	Example of a Window Part

	*Component
	Using the *component part
	Displaying a File Open/Save As dialog.
	Selecting a printer
	Using Plugins
	Querying the Parts in a Component

	Part 3. Working with iSeries Data
	Chapter 8. iSeries Connectivity
	Defining iSeries Information
	Notebook Considerations

	Setting Up a Server
	Setting a Server at Design Time
	Setting a Server at Run Time
	Defining a job description to set up a library list
	Changing the library list

	Using Data Areas
	Using iSeries 400 Database Files
	Level Checking
	Locking Database Files
	Overriding Database Files

	iSeries 400 Database I/O Considerations
	Using Record Blocking to Improve Performance

	iSeries 400 Servers Used
	Controlling Server Connections at Run Time
	Sample Program Using the Signon API

	Using the Security File for Applets

	Chapter 9. Reusing iSeries Applications
	Reuse Scenario
	Importing Display Files
	Converting Display Files
	Record Formats
	Positional Entries
	Display File Keywords
	Converting Color

	Reusing UIM Help
	UIM and IPF functions that use the same tags
	Equivalent UIM and IPF functions that use different tags
	UIM Functions with no IPF equivalents

	Reusing RPG Source

	Part 4. Advanced Topics
	Chapter 10. Debugging Your Application
	Starting the Debugger
	Displaying the Assembly Code
	Loading the DLL Occurrence
	Entering Debug Startup Information
	Setting a Breakpoint
	Running with Breakpoints
	Using the Mouse or Keyboard to Start Debug Functions
	Selecting Options from the Tool Bar
	Displaying and Changing Variables, Arrays, and Structures
	Changing the Contents of a Field or Structure
	Changing the Representation
	Changing the Default Representation
	Displaying Pointers and Storage
	Changing the Debugger Views
	Setting Fonts

	Chapter 11. Editing Output
	Edit Codes
	Edit Words
	Parts of an Edit Word
	Body of an edit word
	Status of an edit word
	Expansion of an edit word

	Chapter 12. Using Picture, Sound, and Video Files
	Creating Icons for Windows
	Converting OS/2 Icons to Windows Format

	Chapter 13. Tips for Creating Online Help with IPF
	Creating Online Help
	Using IPF
	Supporting Help for Other Languages
	Adding Graphics to Your Online Help
	Deciding What Type of Help to Provide
	Adding Context-Sensitive Help
	Creating a Help Push Button
	Creating Hypertext Links

	Chapter 14. Tips for Creating and Using Windows Help
	Establishing the Resource ID
	Writing the Help Text
	Creating the Help Project File
	Compiling the VARPG Program
	Testing the Help
	Creating a Contents File

	Chapter 15. Tips for Creating JavaHelp
	Creating a HelpSet File
	Creating the Map File
	Creating the TOC File
	Creating the JAR File

	Chapter 16. Working with Messages
	Defining Text for Substitution Labels
	Creating a New Message
	Editing a Message
	Deleting a Message
	Finding a Message
	Using Messages with Logic
	Translating Message Files
	Manually Changing Message Files

	Using Messages as Labels

	Chapter 17. Communicating Between Objects
	Linking Parts
	Using a VisualAge RPG Application as a DDE Server
	AppName
	Topic
	Item
	DDEAddLink
	DDEMode

	Communicating Between Components
	Making Local Calls
	Using the CALLB Operation
	Calling functions using named constants or literals
	Calling functions using a procedure pointer
	Calling functions without the required parameters

	Calling Local Programs using CALLP
	Calling Local Programs using START
	Restrictions for CALLP and START

	Starting Components using START
	Starting a Component
	Terminating a Component

	Calling Remote Programs
	Calling iSeries 400 Programs
	Starting Workstation Programs from the iSeries server

	Using Multiple Procedures
	Prototyped Calls
	Procedure Considerations
	Procedure Implications
	VisualAge RPG DLL Considerations
	Utility DLL Considerations
	EXE Considerations

	Chapter 18. Calling Java Methods from VisualAge RPG Programs
	The Object Data Type and CLASS Keyword
	Prototyping a Java Method
	Examples of Prototyping Java Methods
	Example 1
	Example 2
	Example 3
	Example 4

	Creating Objects
	Calling Java Methods
	Additional Considerations

	Chapter 19. Considerations When Compiling for Java
	Project File Name Convention
	Conditional Compile Directives
	Java Source Code Restrictions
	Possible VARPG Source Changes
	Runtime Differences
	Applet Restrictions
	J2SDK 1.2 Printing Problems

	Chapter 20. Creating and Running VisualAge RPG Applets
	Creating Applets
	Testing Your Applet
	Troubleshooting

	Running One Applet from Another

	Chapter 21. Calling System Functions when Compiling for Java
	A Simple Call
	Passing and Receiving Parameters
	Parameter Types
	Character
	Zoned Numeric
	Packed Numeric
	Binary
	Integer, Unsigned
	Float (4/8)
	Date, Time, Timestamp

	Passing Arrays
	Returning A Char Value
	Returning A Zoned Value
	Returning A Packed Value
	Returning A Binary Value
	Returning An Integer Value
	Returning An Unsigned Value
	Returning A Date, Time, or Timestamp Value
	Returning A Float Value
	Returning A Varying-Length Character Value
	Returning Array Values

	Chapter 22. Creating Non-GUI VisualAge RPG Programs
	Creating Standalone VARPG Programs
	Creating DLLs
	Exception Handling
	Debugging Applications
	Debugging Procedures

	Chapter 23. DBCS Considerations
	VisualAge RPG Support for DBCS Data Types
	DBCS ONLY Data Type
	DBCS Either Data Type
	DBCS Mixed Data Type
	Pure DBCS Considerations

	Chapter 24. Merging Code in Your Application
	Chapter 25. Vendor Plugins
	Adding a Vendor Plugin
	Invoking a Vendor Plugin
	Managing Vendor Plugins

	Chapter 26. Creating Plugins
	Creating Plugins Using VisualAge RPG
	Creating the .plg file
	Alternate_Paths
	DLL_Names
	Vendor_Name
	Plugin_Name
	Help_File
	Unloading_Function
	Unloading_Command_Line
	IBM_PluginInterface | PluginInterface
	Begin_Details ... End_Details
	Function_Name
	Command_Line
	Menu_Name
	Menu_Info_Strings
	Supported_Menus
	Help_Id
	Accelerator
	End_of_Definition

	Template for .plg file and sample
	Creating the .EXE file
	Targets/Commands and the associated Return Values
	Sample Plugin Source Code

	Packaging Your Application

	Considerations when Creating Plugins using VisualAge for C++
	Considerations when Creating Plugins using REXX

	Part 5. Distributing Your Application
	Chapter 27. Packaging Runtime Code and Applications
	Before You Begin
	Packaging the VisualAge RPG Runtime Code and Applications
	Starting the Packaging Utility
	Packaging Windows Applications for Windows
	Specifying What You Want to Package
	Specifying the Application Package Information
	Specifying the Runtime Package Information

	Packaging Java Applications for Windows
	Packaging Java Applications for Other Platforms
	Specifying What You Want to Package
	Packaging the Application Jar File
	Packaging the Run Time

	Chapter 28. Installing Windows Runtime Code and Applications
	Installing the Runtime Code
	A Note About Embedded SQL

	Installing an Application
	Maintaining the Runtime Code and Applications
	Installing From the LAN
	Installing Silently from the LAN

	Part 6. Appendixes
	Appendix A. Application Files
	Appendix B. Writing Thin Client Applications
	Implementing a VARPG Thin Application Model
	Sample Application Using Remote Calls
	The Client Program
	Sample RPG Source for the Client Side

	The Server Program
	Sample RPG Source for the Server Side

	Sample Application Using Data Queues
	The Client Application
	Client Sample Source

	The Server Program
	Server Sample Source

	Other Possible Implementations
	Reusable Server Program Example

	Appendix C. Creating and Compiling Non-GUI Programs from MS-DOS
	Accessing an iSeries Server

	Appendix D. Secure Sockets Layer (SSL) Setup
	SSL Considerations
	Prerequisites
	SSL Setup for the iSeries 400 Server
	SSL Setup for the Workstation

	Glossary
	Bibliography
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Index

